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Limit Cycle Oscillation is a type of aircraft wing structural vibration caused by the
non-linearity of the system. The objective of this thesis is to provide a numerical study
of this aeroelastic behavior. A CFD solver is used to simulate airfoils displaying such
an aeroelastic behavior under certain airflow conditions. Two types of airfoils are used
for this numerical study, including the NACA64a010 airfoil, and the supercritical NLR,
7301 airfoil. The CFD simulation of limit cycle oscillation (LCO) can be obtained by
using published flow and structural parameters. Final results from the CFD solver
capture LCO, as well as flutter, behaviors for both wings. These CFD results can be
obtained by using two different solution schemes, including the Roe and Zha scheme.
The pressure coefficient and skin friction coefficient distributions are computed using
the CFD results for LCO and flutter simulations of these two airfoils, and they provide

a physical understanding of these aeroelastic behaviors.
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Chapter 1

Introduction

Modern aeroelasticity is a multidisciplinary science of the study of flow behaviors
around structures [1]. When computers were not yet available to assist in the com-
putational efforts to solving complex , analytical methods of solutions to describe flow
phenomena such as shock waves and flutter were mainly used [2]. In the course of
time, advancements in computer applications provided the capability to solve more
complex aeroelastic problems using computational fluid dynamics (CFD). Also, im-
proved experimental tools have been devised for measuring a variety of structural and
flow parameters, thus allowing for a better physical understanding, as well as the dis-
covery, of aeroelastic behaviors. Also, the development of efficient solution schemes
for CFD provided for more accurate aeroelastic computations. These advancements
have collectively contributed in the discovery of an aeroelastic behavior known as
limit cycle oscillation (LCO). In recent times, there has been several scientific works
devoted to the understanding of the physics behind LCO behaviors. The objective of

this thesis is to provide a numerical study of LCO using a CFD solver in order to pro-



vide a physical understanding of, as well as to prove the capability of the CFD solver
to capture, this aeroelastic phenomenon. This study begins with the understanding

of the fundamental concepts behind LCO.

1.1 Flutter Oscillations

The fundamental concept of LCO is similar to that of the aeroelastic phenomenon
known as flutter. This occurs when a wing undergoes a flow-induced, self-sustainable
vibration with amplitude continuously increasing, eventually stabilizing to a constant
amplitude vibration. There exists a critical flow condition that causes the wing to
undergo a periodic heave and pitching motion with constant amplitude, as demon-
strated in References [3] [4]. This is known as the critical flutter phenomenon. In real
case scenarios, a wing that is going through a regular flutter behavior is vulnerable to
structural failures. This could be avoided by knowing the flow conditions that causes
critical flutter, and designing a wing that could at least support the aerodynamic
forces at critical flutter conditions. According to Reference [5], one of the aerody-
namic attributes of flutter is that the shock waves move almost in a sinusoidal manner
and remains present during the complete cycle of oscillation, although its strength
varies. This effect has been demonstrated in experimental and simulation tests, such
as in Reference [6]. This has also been confirmed by results obtained from the CFD
solver used for this thesis study. The periodical motion of shock waves around an

airfoil causes it to vibrate periodically in heave and pitch.



1.2 Limit Cycle Oscillations

According to literature, a wing subject to a certain flow condition may exhibit two dif-
ferent flow phenomena, including limit cycle oscillation and flutter [7]. These aeroelas-
tic behaviors are both similar in terms of their aerodynamic nature, and the condition
that both exhibit constant amplitude structural oscillations after a certain period of
time. They are basically described when the amplitude of the structural oscillations
grow in time, and gradually stabilizing into a state of constant amplitude oscillation.
Similarly to flutter, the aerodynamic nature of LCO is that of a shock wave motion
around the structures that induces a periodic flow separation at the trailing edge, thus
providing a damping effect that stabilizes the structural oscillation of the object [8].
The difference between these two aeroelastic phenomena is in the growth rate and
amplitude size of the structural oscillation during their transient phase. This has been
demonstrated in various studies, such as in References [9], [10], [11], and [12]. The
objective behind these studies has been to investigate if LCO could be used to extend
the operational flight regime, even though it is seen as an undesirable vibration that
limits the aircraft flight performance. This thesis attempts to investigate LCO and
flutter behaviors by using a CFD solver to capture these aeroelastic behaviors from

the NLR 7301 and the NACA 64a010 wing,



Chapter 2

Governing Flow Equations

The CFD solver that is used to capture LCO uses the Reynolds averaged Navier-
Stokes equations (RANS) to obtain a solution of the flowfield. These equations arise
from applying the concept of mass, momentum, and energy balance equations. The
RANS model is supplemented with turbulence model such as the Baldwin Lomax
model, which is what this thesis study uses to obtain its results. The RANS model
that is embedded in the CFD solver can be used to simulate two and three dimensional
flow around moving or non-moving objects, as provided in Reference [13]|. This study
focuses on CFD computations of the two dimensional geometry of both the NLR 3701

and the NACA 64a010 wings.

2.1 Formulation of Navier-Stokes Equation

The Navier-Stokes equations consists of the three principal equations of heat transfer
and fluid dynamics; namely, the conservation of mass, the conservation of momen-

4



tum, and the conservation of energy [14]. The RANS equations can be collectively
combined to form a single vector equation. This equation is then expanded with a
source term representing external heating and forces. The end result is the integral

form the Navier-Stokes equation, expressed as:

o [ L .
EAQM+£AM—WOM_LKM (2.1)

The vector @ is known as the conservative vector, and it consists of parameters
related to the physical properties of the flow. The vector W, represents the convec-
tive flux vector, which contains the expressions related to the convective transport of
quantities in the fluid. The vector WU represents the viscous flux vector, which con-
tains the expressions related to viscous stresses. Lastly, the vector K represents the
source term which is comprised of volume sources due to body forces and volumetric
heating. Supposed that the convective and viscous fluxes are continuous such that a
first-order differentiation of these vectors is possible, then the Navier-Stokes equation
can be transformed from an integral to a differential form by first applying Gauss’

theorem [15], yielding:

o [ - L. B
aAQm+LV(C—WQm_AKm. (2.2)

Equation 2.2 can then be integrated with respect to a control volume, 2, resulting in

the desired differential form of the Navier-Stokes equation, that is:

99 4. (W) - & 23)



The Cartesian coordinates of equation 2.3 are transformed into curvilinear coordi-
nates, as shown in equation 2.4. This is done by applying the equations of metric
transformation [16], leading to equation 2.5, which is the Navier-Stokes equation in

non-dimensional form and in the computational space.

5 = £(x,y,z,t) (24)
n = n(x7y7zat)

C - C(ZL’,y,Z,t)

00* OW., W., OW. 1 (oW, OW,, OW,
¢ ol 22 el < L 202y ’3> (2.5)

o T Tae "oy T o T Rme\ ae "oy T

The vector @* of equation 2.5 is defined as @* = g, where J is the determinant
of the coordinate transformation Jacobian. Equation 2.5 can be supplemented with
moving grid models so it can be applied for cases involving both moving and non-
moving grids. Also, since equation 2.5 is suitable for laminar CFD computations, it
is supplemented with a turbulence model in order to solve for problems involving tur-
bulent flows. The CFD solver that is used for this study makes use of the curvilinear,
nondimensional, moving-grid form of the Reynolds-averaged Navier-Stokes equation
with Favre mass averaged terms for the Baldwin-Lomax turbulence model. The con-

servative, convective and viscous vectors of equation 2.5, are defined in equations 2.6,



2.7, and 2.8. They are implemented in the present CFD solver.
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The pressure variable p of equation 2.9 is the force exerted on the fluid flow.
The variable 7;;, and pé are the shear stress of the flow around the body, and the
total energy. The variables u, v, and w are the Cartesian components of the flow
velocity. The expressions for the heat flux and shear stress, as shown in equations
2.11 and 2.12, are in the Cartesian coordinate space, and it is modified with Favre
mass-averaged expressions for turbulence motion. These expressions use Einstein
summation notations, in order to accommodate the three Cartesian components of
shear stress, and heat transfer variables. A systematic method of replacing the ijk

with zyz notation can be used in order to obtain each component.

2 0, od; i
Tij = gﬂé_xké” + 1% (al'] + a{L‘l) (211)
Qi = fLZ (77'1']‘ - p’LL”’LL”) — (le — C’ppT”u”) (212)

The variable ¢; of equation 2.12 is the mean molecular heat flux defined as
G = —#%, in which [ is the turbulent-based viscosity, which, in turn, is
determined using Sutherland’s formula, and a is the speed of sound, as determined

by a = \/vRT,,.The thermodynamic state that closes the system is given by equation

2.13 as



1
+ 5P (@® +0° + &%) + k, (2.13)

where ~ is the ratio of specific heats, and k is the Favre mass-averaged turbulence

kinetic energy.



Chapter 3

Governing Structural Equations

In order to make the CFD solver capable of solving the fluid flow around a moving
geometry, the governing flow equations need to be coupled with governing structural
equations. In the case of a wing with infinitely large span-to-chord ratio, the governing
structural equations for two dimensions can be used, including the heave and pitching
structural equations. As shown in figure 3.1, the heave and pitching motion of an
airfoil is the vertical and rotational motion, respectively. The CFD solver is also
capable of simulating three dimensional cases with cross-section deflections [13]. For
this kind of problems, the modal equations are used. The present work is focused on

two dimensional airfoils which is rigid with no deflection.

10
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Pan
T

H(t)

Figure 3.1: Profile Diagram of an Airfoil

3.1 Heave and Pitching Equations

Using Newton’s law of force summation, the heave structural equation can be ex-

pressed as follows:

mh + mecxy i + ®ph + kyh = L. (3.1)

Equation 3.1 can be applied for two dimensional flow problems involving moving
structures such as wings with large span-to-chord ratios. The variable m is the mass
of the wing, c is the chord length, A is the vertical displacement along the rotating
axis, « is the rotational displacement around its rotating axis, ®; is the translational
damping factor along its rotating axis, kj is vertical stiffness factor, and L is the

lift per unit span. The damping variable ®, gives a measure of resistance of the



12

wing against flow-induced heave vibrations. However, the damping value for real case
scenarios is so small compared to aerodynamic forces, that it is practically zero in CFD
computations. Equation 3.1 is non-dimensionalized using the procedure provided in

Appendices D.3 and D.4, resulting in the following:

2 2 U*2
Wiy 2

2
w3, T W

B+ mad” + 205 S 4+ Cy. (3.2)
u‘)ot

The Newton’s law of moment summation can be used to obtain the pitching

structural equation as follow:

mexoh + I+ @460+ kgo = M. (3.3)

The variable I, is the moment of inertia around its rotating axis. The variable &,
is rotational damping factor. k, is the rotational stiffness factor. Lastly, M is the
moment around its rotating axis, as indicated in figure 3.1. Equation 3.3 is non-
dimensionalized using the procedure provided in Appendix D.1 and D.2, resulting in

the following:

. 2 U*z
Toh* + 28" + 205 20" + 2o = =
T

Cis. (3.4)

The rotational damping variable is also a measure of resistance of the wing against
flow-induced pitching vibration. It is also considered to be very small in real case
flow problems, that it can be set to zero in CFD computations. Nevertheless, the

CFD solver could take both rotational and translational damping values for solving



the governing structural equations.

13



Chapter 4

Discretization of Equations

In order to simulate the fluid flow around a moving object, the CFD solver makes use
of the Fully Coupled Solution Methodology to obtain the flowfield solution at every
timestep of the simulation run [17] [18]. This fully coupling solution method consists
of running pseudo-time steps during every physical time step, in order to obtain a
converging solution of the RANS equations. During each pseudo-time step, the CFD
solver finds an iterative solution of the structural equations, which is then coupled
with the RANS equations so that they can be solved for at the current pseudo time
step. If the computed RANS solution does not converge at this pseudo-time step,
the solution of structural equations is solved for the next pseudo-time level, and the
same process is repeated until a final converging solution of the RANS equation is
obtained. The same overall process is then repeated at the next physical time step.
This fully coupled solution methodology is made possible by the discretization of
both the RANS equations and structural equations, which is the focus of the present
chapter.

14
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4.1 Structural Equation Formulation

The two non-dimensional structural equations, as given by equations 3.2 and 3.4, can

be combined to form a matrix equation, as follows:

oS 5 .
M2+ (K]S = (11)
where:
1 0O 0 0 0 —1 0 0
o1 0 -z, % 2@, 0 0
0 —zo 0 7g 0 0 12 20,2
and
2 h*
2U* .
“ CL 5 h*
_): ™ ‘u‘ pr—
2U*2 . %
7 Cm @

In equation 4.1, the matrices [M] and [K| are the mass matrix, and the stiffness
matrix, respectively, and the vector S is structural conservative vector. In equations
4.2 and 4.3, x,, is the nondimensional distance between the center of mass and axis of
rotation, r, is the radius of gyration, u is the mass ratio, w, is the pitch frequency,
wy, is the heave frequency, ®;, is the heave damping factor, @, is the pitch damping
factor, C', is coefficient of lift, and C}; is coefficient of moment. More details about
these parameters are available in Appendix D.

Equation 4.1 is discretized using the 3-step backward differencing techniques, thus

yielding equation 4.4. The solver then solves the matrix equation 4.4 for S using the
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Gauss-Seidel Line relaxation iterative techniques involving pseudo-time steps toward

a converging solution.

3§n+1,m—1 _ 4§n + Sv'n—l
2At

(i[l] + E[M] + [K]) §SmHLmtl — M)

~ _[K]§n+1,m+q—n+1,m+1

(4.4)

4.2 Flow Equations

In order to discretize the RANS equations, it must be transformed from a nonlinear to
linearized form. This can be achieved by imposing the Method of Lines, as described
in Reference [15]. The outcome from this method is the vector R, also known as
the residual vector, which contains the viscous and convective vectors, as given by
equations 2.7 and 2.8. Then, using the same implicit discretization technique as used

for the structural equation, the RANS equation becomes equation 4.5, as follows:

1 3 w1 [OR
(2 omr (20)

where R is the residual vector, expressed as:

R=— /[(WCJ — W%l) i + (WQQ — WU72)j—|— (WC73 — ng) k] - ds. (46)

The term g—g of equation 4.5 is known as the flux Jacobian. The CFD solver evaluates

the convective flux vectors in equation 4.5 using specialized schemes such as central
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scheme, flux-Vector Splitting scheme, etc. For this study, the Roe scheme [15] [19]

and Zha scheme [17] [20] are used to solve these vectors for CFD computation.



Chapter 5

The CFD solver

The present CEFD solver that is used to obtain LCO simulations with the NACA
64a010 and the NLR 7301 wing is available at the CFD lab of the college of engineer-
ing of the University of Miami. A complete technical description of this aeroelastic
solver can be found in Reference [13]. It is used to simulate airflow around moving or
non-moving two dimensional airfoils, generating time-dependent CFD results of the
aerodynamic properties of the flowfield. It can also simulate fluid flow around three
dimensional moving or non-moving objects such as wings and airplanes. It makes
use of Reynolds-averaged Navier-Stokes equations, supplemented with the turbulence
model known as the Baldwin-Lomax model, as described in Reference [21]. As men-
tioned in section 4.2, the fully coupled solution methodology is employed to obtain
CFD solution of the flowfield around moving objects at every physical time step. In
the present chapter, the overall process of running the CFD solver for solving the flow
field of moving structures is described. Also, the solution schemes that are used to
solve the convective flux vectors of RANS equations are described.

18
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Two particular schemes are used, including the Roe scheme [15] [19] and the Zha

scheme [17] [20].

5.1 CFD Simulation Process

In order to obtain CFD solutions of the flowfield around a moving object, the CFD
solver needs to go through a series of CFD simulation pre-runs that require different
initial flow solutions, before running the true CFD run that provides the necessary
CFD results. First, an initial solution is created to run the program with laminar
flow. This flowfield solution, like all subsequent solutions, consists of initial values
of the flow conservative variables, as shown in equation 2.6. The final CFD solution
that is generated by the first pre- run serves as the initial solution for the second pre-
run, which simulates turbulent flow around a non-moving object. The final flowfield
solution from the second pre-run is used as the initial solution for the third pre-run.
This simulation pre-run generates solution in pseudo-time steps, and it generates a
pair of CFD solutions; one for the final physical time step, and the other for the
second final physical time step. These two CFD solutions are then used as the initial
solutions for the next and true run, which simulates turbulence flows around a flow-
induced vibrating airfoil.

During the third simulation pre-run, the program makes use of the fully coupled
methodology to obtain a converging solution of the flowfield at every physical time
step. During the pseudo-time iteration process, the program basically finds the solu-

tions of the flow equations by first acquiring the solution of the structural equation
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at the current pseudo-time step. This cycle repeats until both the residuals of the
RANS solutions reach machine zero, or if the maximum allowable pseudo time step

is reached, whichever comes first.

5.2 Upwind Schemes

As explained in section 4.2, the two solution schemes that can be used to solve
the RANS inviscid convective flux vector are the Roe scheme [15] [19] and Zha
scheme [17] [20]. These solution schemes are based on the physical properties of
Euler equations that define the physical characteristic of flow. Hence, they are re-
ferred as upwind schemes. They are different from central schemes, which are based
on the idea of averaging out the conservative variables to the left and to the right of
control volume, thus not reflecting the actual physical flow characteristics. There are
several categories of upwind schemes, including flux-vector splitting, flux-difference

splitting, total variation diminishing, and fluctuation-splitting schemes [15].

5.2.1 The Roe Scheme

The governing principle behind the Roe Scheme is to evaluate the convective fluxes
at the face of a control volume from the left and right state by solving the Riemann
problem. It belongs to the category of flux-difference splitting schemes. It can be used
for flow fields that are discretized based on the based on cell-centered scheme or dual
control-volume. In the case of the CFD solver, the cell-centered volume approach is

used. The Roe scheme can be expressed in general as:
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(7),~ (), = (Awa),., (G- G2). )

In equation 5.1, the matrix variable Ag,. denotes the so called Roe matriz, and the
subscripts and L and R represent the left and right state, respectively. The Roe
matrix is identical to the convective flux Jacobian, as described in references [15],
and [22]. The convective interface flux can be evaluated at the faces of a control

volume, as follow [23]:

(7 () + B (2) A,y (Fa-2)] 652

N | —

(7)., =

1

According to References [24] and [13], The Roe matrix Ag,. is a 6 x 6 matrix
and has the form A = TAT~!, where T, T~!, and A are the right eigenvector, left
eigenvector, and the eigenvalue matrix of A, respectively. By replacing the variables
of T, T7!, and A with the corresponding Roe-averaged counterparts, the Roe matrix

Apoe can be obtained. The expression for 7', and A are given as follow:

U+C 0 0 0 0 O
0 u-c 0 0 0 0
0 0 U o0 0 0
A= 0 0 0 U 0 0 (5-3)
0 0 0 0 U O
0 0 0 0 0 U
Ao 4 00 o
—“Eilf —UEZ; Mo fe —4 0
vt-cly v—cly A~ A~ v
T = 2h[' 2h, my ny —y 0 ’ (5.4)
B A
cU+ve—(y—1 —cU+~ve—(y— T 117
’72th q ’szh’Y q vV W _% 0
o o 0 0 —3 0
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where the static enthalpy A is calculated as,

h = 5.5
v — 1’ ( )
and the variable ¢ is the flow kinetic energy, expressed as,
1
¢=3 (v + v +w?). (5.6)

[ is the unit vector normal to the ¢ surface pointing to the direction that ¢ increases,

and it can be expressed as:

o~

(5.7)

=i~

m, n and [ are mutually orthogonal unit vectors; that is, lo 1 = 0, lef = 0, and
men=0. Let V = (u,v,w) be the velocity vector, [7, \7, and W are then determined

by,

U=V-Ii (5.8)
V=V-m (5.9)
W=V-n (5.10)

The Roe scheme that is used in the CFD solver is based on the above formulations,
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and it can be used for moving cases.

5.2.2 The Zha Scheme

The Zha scheme is based on the concept of Convective Upwind Split Pressure (CUSP)
scheme, as suggested in References [25], [26], [27], and [28]. Basically, the governing
principle behind CUSP schemes is to decompose the vector of the convective fluxes
into two parts, including a convective and a pressure part. The CUSP schemes can
be categorized into two types, including H-CUSP and E-CUSP schemes. The Zha
scheme belongs to the E-CUSP category. The main feature about E-CUSP schemes is
that the total energy is place in the convective vector, whereas the H-CUSP schemes,
as well as other upwind schemes, have the total enthalpy from the energy equation
in the convective vectors. The E-CUSP scheme developed by Zha has the advantages
of low diffusion and efficient calculations using a scalar dissipation term. The general

expression for CUSP schemes is as follows:

[qc (QR) + ﬁc (@L)] - 51+ . (5.11)

. Is the interface flux, and 13] 11 is the dissipation term. The general
I+1

where (ﬁ C)

expression of the interface flux that is evaluated by the Zha scheme is as follow:

o c c c c + -
Fria =5 |(pu)s (ag +ag) — [puls (a7 — qR)]+ PTp + Pp

1
2



Where, the interface mass flux is evaluated as:

= (prui + prug)

My + | My 1 My + | My
UJLFZCL;{ 9 + Z(ML‘i‘l)Q— 5
Mp — |M 1 Mp — |M
u;:(lé{ R 2‘ R“I’CYR |:Z(MR_1)2_ R 2‘ R‘
The variables o, and ap are evaluated as:
2(p/p)y un = 2P/P)g

Wt wine T WL+ /o)

)

The interface speed of sound as, and Mach number are evaluated as:

The pressure splitting coefficient is:
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(5.13)

(5.14)

(5.16)

(5.17)

(5.18)

(5.19)
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1 3
pi:Z(Mil)Q(Qq:M)iaM(MQ—Uz, a=— (5.20)

For u > a, ]3% = Fl; and for u < —a, ﬁ% = Fy.
More details about the parameters in equation 5.12 can be found in References
[20], [29], and [30]. The CFD solver can be run to solve the turbulent flow around a

moving geometry by using the Zha scheme.



Chapter 6

CFD Mesh Generation

In order to perform the CFD simulation of the flowfield around a NACA 64a010 and
NLR 7301 wing geometry, a mesh coordinate file linked must be generated first. To
begin with, the mesh coordinate file can be generated by running a Fortran code
developed by Chen [17]. The mesh coordinate file obtained from Chen’s Fortran
code is then used to generate the initial flowfield solution which has the initial flow
properties at each coordinate point. The most complicated phase in performing a
CFD computation is the generation of the mesh coordinate file. In the following
sections, the specific technique used to generate the mesh coordinate files of NACA
642010, NLR 7301, as well as a cylinder, is described. Also, the mesh coordinate
system and boundary conditions are described.
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6.1 Mesh Generation Mathematics

The method that is used to generate the mesh coordinates around the object of
interest is known as the algebraic grid generation method. Before implementing this
method, the topology of the mesh needs to be defined. For the present study, the O-
type topology is used, and the boundary conditions of this topology are schematically
depicted in figure 6.1.This particular mesh of O-type topology consists of one block,
which is the terminology used to name a topology region. The entire mesh itself
consists of two zones, including the fine and coarse mesh zones. This form of mesh
structure allows for the CFD solver to reposition the coordinate point of the mesh

files after every physical time step more effectively.

The mesh points along the surface of the object, or boundary I, are calculated
using a formula based on clustered geometry grid generation techniques. The mesh
points of the outer wall, or boundaries II and V, are equally distributed along their
entire lengths. The mesh points for boundaries III and IV are calculated using the
same clustering technique as used for boundary I. The boundary points that surround
the fine mesh zone serve as boundary conditions to solve for the fine mesh coordinates

using elliptic partial differential equations (PDE) for grid generation [16].

The computational finite difference analog of PDE in x coordinates is as follows:
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Figure 6.1: Mesh boundary descriptions using O-type topology.
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w(eaiin) = 2(ataif +w(erill) =

a c k
—2(1-w) [(Acf + (An)Q} Tigt

wb (b k k+1 k+1
2 (xi—i-l,j—i-l — Tiy1 -1 T xi—l,j—l—l) -

wa (zfy; + i)

The PDE for y-coordinates is the same as equation 6.1, only that the variable x is
replaced with y. These equations are also known as the Successive Overrelaxation
Line Gauss-Seidel form of Poisson’s equations. As indicated in equation 6.1, the com-
putational coordinates 7, j, and k provide a means to identify the physical coordinate
system of the mesh field. Basically, the ¢+ coordinate axis starts from the trailing
edge of the object surface, wraps counterclockwise around boundary I, and ends at
the same trailing edge. The j-coordinate axis starts from the surface of the object,
continues outward from the surface of the object, and ends at the wall of the block.
The PDEs are solved using an iterative convergence technique known as Thomas

algorithm [19].

The formula that is used to generate the clustered geometry grid of the coarse

mesh region, as shown in figure 6.1, is as follows:

B-1D[B+1)/(B-1]""
(B+1)/(B-1]j+1

vij =H =1, Jmax (6.2)

Equation 6.2 is based on algebraic grid generation techniques [16]. The variable H
is the physical length of boundary III (boundaries III and IV have equal lengths).

The variable (3 is the cluster parameter whose value can be anything between 1 and
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00. The closer the variable [ is to 1, the greater the number points become clustered
toward j = 1. More technical details about algebraic mesh generation techniques can

be found in References [31] and [32].



Chapter 7

Results

The goal of this thesis is to perform CFD simulations of flow-induced vibrations of
NACA 64a010 and NLR 7301 in order to capture LCO behaviors using both the Zha
and Roe scheme. After several CFD simulation trials, LCO and flutter behaviors
have been successfully captures using both schemes. The results given in the present
chapter are obtained using the Roe scheme. The CFD results associated with these
flow behaviors are post-processed in order to obtain the pressure coefficient distri-
bution and the skin friction coefficient distribution. These plots help demonstrate
the physics behind limit cycle oscillations, flutter, and damping vibrations. In the
following sections, the flow and structural parameters that are used to run the CFD
simulations of each airfoil are provided in tables 7.1, 7.2, 7.3. In these tables, the
mesh file that is used for cases involving the NACA 64a010 and NLR 7301 airfoil
have a grid size of 280x65. Also, mesh file that is used for cases involving a cylinder
has a mesh grid size of 120x80.
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7.1 Method of CFD Computation

The methods used to run the CFD solver consists of certain simulation pre-runs
and the final run, depending on the type of problem, and thus, requiring different
input parameters. The formulas that are used to obtain the flow and structural
parameters for the CFD solver can be found in Appendix E. In this thesis study,
three different categories of CFD computation are performed, including turbulent
flow around a stationary geometry, turbulent flow around force-induced vibrating
geometry, and turbulent/laminar flow around a flow-induced vibrating geometry. The
general process for running the CFD for each of these types of problem has been

described in section 5.1.

In order to run all three types of CFD simulation, it is necessary to obtain the
flow parameters, including the Reynolds Number Re, Mach number Ma, dimensionless
stagnation pressure P,, dimensionless static pressure P*, dimensional total tempera-
ture T,, and the Specific heat ratio . These five flow parameters must be calculated
using the formulas provided in Appendix E. If the flow problem belongs to the cate-
gory of flow-induced or force-induced vibrating objects, certain structural parameters
must be obtained. For the case of force-induced vibrating objects, the reduced pitch
frequency w? is require to simulate the pitching motion as a function of time as
a(t) = am + apsin (wit), where a,, and «, are the mean angle of attack and the
amplitude of oscillation, respectively. For the case of a flow-induced vibrating object,
several structural parameters must be acquired or calculated from given flow para-

meters. The necessary structural parameters are the dimensional velocity U,,, mass
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ratio p, dimensional pitch frequency w,, ratio between pitch and heave frequency
Z—Z, moment arm length a, initial angle of attack «,, unbalance distance z,, and the
squared radius of gyration r2. Out of these structural parameters, the dimensional

velocity has to be calculated from equation E.6 in Appendix E.

7.2 Validation Cases

The CFD solver and the mesh files of NACA 64a010 and NLR 7301 are tested by
validating certain simulation runs with experimental and computational data. Table

7.1 provides the initial input parameters for three validity cases.



Unbalance distance: xa (—

Structural and Flow Parameters | Case I | Case II | Case III
Reynolds Number: Re (—) 500 12560000 | 1700000
Mach Number: M (—) 0.2 0.8 0.753
Freestream temperature: 7' ( K) - - 498.6
Static Pressure: P (Pa) — — 4.418
Specific heat ratio: v (—) 14 14 14
Dimensionless static pressure: P* (—) | 17.85714 | 1.116071 | 1.259743
Total Pressure: P, (—) | 18.36216 | 1.701272 | 1.834694
Total Temperature: T, (—) | 1.008 1.128 1.113402
Viscosity: v (x107°) — 1.74 1.74
Velocity: Uy () — 315.678 —
Velocity Index: VI (—) — 1.278 —
Mass Ratio: p (=) | 1.2732 60 -
Reduced Velocity: U* (=) | 1.59155 | 9.899345 -
Pitch Frequency: w, (1 /s) | 0.046940 - -
Reduced Pitch Frequency (-) - 0.202 -
Frequency Ratio: wh (—) — 1 —
Heave Damping Factor: &) (—) — 0 —
Pitch Damping Factor: @, (—) - 0 -
Damping ratio: (—) | 0.633257 - -
Number of Cycles: NC' (—) — — —
Physical Time Step: ts (—) 0.05 0.3 0.3
Chord Length: ¢ (—) 1.0 1.0 1.0
Initial Angle of Attack: «, (deg) - 0.0 0.08
Moment arm length: a (—) 0.0 0.0 —
)
)

Radius of gyration: 72 (—

Case I: Cylinder, vortex indcued oscillating motion

Case II: NACA 64a010, force induced oscillating motion

Case III: NLR 7301, steady state (non-moving) condition

34

Table 7.1: Flow and structural parameters for CFD simulation runs to obtain results
for test and validation purposes
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|

Figure 7.2: NLR 7301 geometric profile

7.3 LCO and Flutter Cases: NACA 64a010 and
NLR 7301

One of the airfoils that are used to obtain CFD simulations of LCO and flutter is
the NACA 64a010 conventional airfoil. This airfoil is symmetric about its chord
line, as shown in figure 7.1. The coordinates of the airfoil shape can be obtained
from Reference [33]. The initial structural and fluid parameters that is used for the

damping, flutter, critical flutter, and LCO simulations are given in table 7.2.

The other airfoil that is used is the NLR 7301 supercritical airfoil. This airfoil is
not symmetrical with respect to its chord line, as shown in figure 7.2. The coordinates
of the airfoil can be obtained from Reference [34]. Like for the conventional airfoil,
the structural and fluid parameter that is used to obtain flutter and LCO plots are
given in table 7.3.

The results of the CFD simulations, using the Roe upwind scheme, are provided
for both the NACA 642010 and NLR 7301 airfoils in the following sections. The input
parameters that are used to simulate these airfoil vibrations are provided in tables

7.2 and 7.3.
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Structural and Flow Parameters | Case IV | Case V | Case VI | Case VII
Reynolds Number: Re (—) | 12560000 | 12560000 | 12560000 | 12560000
Mach Number: M (—) 0.825 0.825 0.825 0.925
Freestream temperature: 7' ( K) 277.8 277.8 277.8 277.8
Static Pressure: P (Pa) | 55157.2 | 55157.2 | 55157.2 55157.2
Specific heat ratio: v (—) 14 14 14 1.4
Dimensionless static pressure: P* (—) | 0.834811 | 1.049455 | 1.049455 | 1.049455
Total Pressure: P, (—) | 1.451108 | 1.640421 | 1.640421 | 1.640421
Total Temperature: T, (—) | 1.171125 | 1.136125 | 1.136125 | 1.136125
Viscosity: v (x107°) | 1.73891 1.73891 1.73891 1.73891
Velocity: Uy (%) | 315.6782 | 315.6782 | 315.6782 | 315.6782
Velocity Index: VI (—) 0.55 0.615 0.7 5.5
Mass Ratio: u (—) 60 60 60 60
Reduced Velocity: U* (=) | 4.26029 | 4.763769 | 4.763769 42.6028
Pitch Frequency: w, (1/s) | 296.392 | 265.066 | 232.879 29.6392
Reduced Pitch Frequency: w? (=) | 0.46945 | 0.419836 | 0.368856 | 0.46945
Frequency Ratio: 2= (—) 1 1 1 1
Heave Damping Factor: &) (—) 0 0 0 0
Pitch Damping Factor: @, (—) 0 0 0 0
Number of Cycles: NC' (—) 2 2 2 12
Physical Time Step: t (—) 0.3 0.3 0.3 0.3
Chord Length: ¢ (—) 1.0 1.0 1.0 1.0
Initial Angle of Attack: «, (deg) 0.0 0.0 0.0 0.0
Moment arm length: a (—) -2.0 —2.0 -2.0 —2.0
Unbalance distance: x, (—) 1.8 1.8 1.8 1.8
Radius of gyration: 72 (—) 3.48 3.48 3.48 3.48

Case IV: NACA 64a010, damped oscillating condition

Case V: NACA 64a010, Critical flutter oscillating condition

Case VI: NACA 64a010, Flutter oscillating condition

Case VII: NACA 642010, LCO condition

Table 7.2: Flow and structural parameters for CFD simulations of NACA64a010




Structural and Flow Parameters | Case VIII | Case IX
Reynolds Number: Re (=) | 1695000 1695000
Mach Number: M (—) 0.77 0.77
Freestream temperature: T ( K) 310 310
Static Pressure: P (Pa) 45000 45000
Specific heat ratio: v (—) 1.4 1.4
Dimensionless static pressure: P* (=) | 1.204732 | 1.204732
Total Pressure: P, (—) 1.78330 1.78330
Total Temperature: 7, (—) | 1.11858 1.11858
Viscosity: v (XlO %) 1.74 1.74
Velocity: Uy (%) | 257.2398 | 257.2398
Velocity Index: V] (—) 190 190
Mass Ratio: p (—) 1077.2 1077.2
Reduced Velocity: U* (=) | 0.31989 0.31989
Pitch Frequency: w, (1/3) 274.3014 | 274.3014
Reduced Pitch Frequency: w? (—) — -
Frequency Ratio: iz (—) 0.761 0.761
Heave Damping Factor: ®; (—) - -
Pitch Damping Factor: &, (—) - -
Damping ratio: (—) - -
Number of Cycles: NC' (—) — —
Non-D. Physical Time Step: t5 (—) 0.3 0.3
Chord Length: ¢ (—) 1.0 1.0
Initial Angle of Attack: «, (deg) 0.65 0.0
Moment arm length: a (—) —0.25 —0.25
Unbalance distance: z, (—) 0.086 0.086
Radius of gyration: r2 (—) | 0.155236 | 0.155236

Case VIII: NLR 7301, flutter oscillating condition

Case IX: NLR 7301, LCO oscillating condition

Table 7.3: Flow and Structural parameters for CFD simulations of NLR 7301
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Figure 7.3: Pressure distribution of NLR 7301 for steady state condition (Case III),
M, = 0.78, Re= 1700000.0, experimental data obtained from Reference [9]

7.4 Results I: Validation Cases

Figures 7.3 to 7.8 show the pressure distribution, lift and drag coefficients, and dis-
placement profiles that are obtained for different cases of flow and structural con-
ditions, as explained in table 7.1. Figures 7.7 and 7.8 show the computed moment
coefficient and lift coefficient, respectively, for a NACA 64a010 in force vibration, with
experimental data for comparison [33]. The computed moment coefficient does not
agree as accurately with experimental data as it does for the lift coefficient, although
these results are similar to those provided in References [4] and [35]. Figures 7.5 and
7.6 are CFD results for a cylinder using a geometry conservation law (GCL) condition
of 1 [29]. Lastly, figure 7.9 shows the time evolution of the Mach contour plots for
NACA 64a010 in critical flutter condition. The Mach contour plots are shown for

every dimensionless timestep of 3.

As shown in the figures 7.3 to 7.8, the CFD solver is validated from CFD results
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Figure 7.4: Pressure Distribution of NACA 64a010 for force-induced vibrating con-
dition (Case II), M, = 0.8, Re = 12560000.0, Experimental data obtained from
Reference [33]
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Figure 7.5: Displacement trajectory of a cylinder in laminar vortex induced oscillating
condition (Case I), GCL = 0.0 ¢ = 0.63326, pu, = 1.2732, u = 1.5915
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Figure 7.6: Drag and lift coefficient profile for a cylinder in laminar vortex induced
condition (Case I), GCL = 0, ¢ = 0.63326, u, = 1.2732, u = 1.5915
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Figure 7.7: Lift coefficient profile of NACA 64a010 for force induced vibrating condi-
tion (Case II), at a, = 0.0, a4 = 1.01, K. = 0.202, Re = 12560000.0, and M, = 0.8
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Figure 7.8: Torque coefficient profile of NACA 64a010 for force induced vibrating
condition (Case II), at a, = 0.0, a4 = 1.01, K, = 0.202, Re = 12560000.0, and
M, =0.8

related to steady-state and unsteady-state conditions. The flow and structural pa-
rameters corresponding to these results are shown in table 7.3. As shown in figure
7.3, the pressure distribution for NLR 7301 in steady-state condition closely matches
with experimental data obtained from Dietz [9]. As shown in figure 7.4, the pressure
distribution for NACA 64a010 in forced pitching oscillating condition also matches
with experimental data obtained from Davis [33]. The time evolution of the center
displacement, lift and drag coefficients of a cylinder in vortex induced oscillating con-
dition, as shown in figures 7.5 and 7.6, are relatively similar to results obtained by
Prananta and Bohbot [3], [4], and others. The time evolution of the lift and torque
coefficients of NACA 64a010 in force induced oscillating condition, as shown in figures
7.7 and 7.8, coincide with experimental data obtained from Davis [33], but the com-
puted moment coefficient is not as accurate as those for the lift coefficient. Lastly,
the description of critical flutter conditions in term of oscillatory motion of shock

waves around the structure, as provided in Reference [5], can be confirmed from the
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Figure 7.9: Subfigures A to J show the time history of Mach contour plots for NACA
642010 in critical flutter condition (Case V) in order to capture oscillatory motion of
shock waves
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Mach contour plots given in figure 7.9. All these CFD results validate the mesh files
used for the CFD simulations of NACA 64a010 and NLR 7301, and they show the
consistency of the Baldwin Lomax turbulence model that is used by the CFD solver

in computing flow properties.

7.5 Results II: LCO and Flutter Cases

Figures 7.10 to 7.17 show the heave and pitching motions of NACA 61a0101 for
the damping, critical stable, flutter, and LCO conditions. Figures 7.21, 7.22, 7.18
and 7.22 show the heave and pitching motions of NLR 7301 for flutter and LCO
conditions. These results are obtained using input structural parameters using the
method of calculations given in Appendix E. Figures 7.20 and 7.23 demonstrate the
phase diagram for the LCO oscillations of NLR 7301, as corresponding to figures 7.21
and 7.22. Tables 7.4 and 7.5 provide experimental and computational comparison

with the LCO and flutter simulation results.

The time history of the heave and pitching motion of NACA 64a010 for damped,
critical flutter, and flutter conditions, as shown in figures 7.10 to 7.15, are consistent
with those given in References [36] and [37]. These oscillation plots are obtained by
varying the reduced pitch frequency. There exists a critical pitch frequency at which
the heave and pitching motions remains constant in amplitude, as shown in figures
7.10 and 7.11. This condition is the called the critical flutter effect [2]. As for the
flutter and LCO plots obtained for NLR 7301, as shown in figures 7.18, 7.19, 7.21,
and 7.22, they are obtained by varying the initial angle of attack, and keeping the
relevant flow properties like Mach number and Reynolds number the same; that is,

these flow parameters do not change for cases of different angle of attack.

The limit cycle oscillation (LCO) for both NLR 7301 and NACA 64a010 are

shown in figures 7.16, 7.17, 7.21, and 7.22. The appearance of these LCO plots are
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consistent with the computational and experimental results in References [11], [17],
[9], [10], [12], etc. The physics behind the flow that causes flutter and LCO behavior
can be understood in terms of the skin friction and pressure coefficients obtained for
both airfoils.

As indicated in table 7.4, the flutter properties that are obtained for case VIII
( NLR 7301 in flutter oscillating condition) are consistent with experimental data
obtained from Reference [9]. However, as indicated in 7.4, the heave and pitching
amplitudes for case IX (NLR 7301 in LCO oscillating condition) are approximately
2 times larger than those for case VIII. This observation serves as a description of
the difference between LCO and flutter oscillating conditions for NLR 7301. Also, as
indicated in table 7.5, the critical flutter and LCO properties corresponding to cases
V and VII are consistent with computational data obtained from Reference [4]. It
can also be observed from table 7.5 that the heave and pitching amplitudes for case
VII (NACA 642010 LCO oscillating condition) is approximately 9 and 6 times larger
than those for case VI (NACA 64a010 in critical flutter oscillating condition). This
observation may also serve as a description of LCO and flutter oscillating conditions
for NACA 64a010. Both of these observations provide a general description that LCO

amplitudes are relatively larger than flutter amplitudes.
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Figure 7.10: Heave oscillation of NACA 64a010 for critical flutter condition (Case V),

a, = 0.0, Re = 12560000.0, M, = 0.825
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Figure 7.11: Pitch oscillation of NACA 64a010 for critical flutter condition (Case V),

a, = 0.0, Re = 12560000.0, M, = 0.825



46

HEAVE i TRAD
BRCA SAADTG
0.0 .

— R ]
af- -
oond-

i P
o -
e WAAARR AN AR
£ 0 =
281 = E
AN
A - ke A 4.
-ﬂﬂu o) &0 Loe) L] Lt e]
(Derrpniaiafoesy Pyt sl Toved {0

Figure 7.12: Heave oscillation of NACA 64a010 for damping condition (Case IV),
a, = 0.0, Re = 12560000.0, M, = 0.825.
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Figure 7.13: Pitch oscillation of NACA 64a010 for damping condition (Case IV),
a, = 0.0, Re = 12560000.0, M, = 0.825.
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Figure 7.14: Heave oscillation of NACA 64a010 for flutter condition (Case VI), o, =
0.0, Re = 12560000.0, M, = 0.825.
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Figure 7.15: Pitch oscillation of NACA 64a010 for flutter condition (Case VI), a,
0.0, Re = 12560000.0, M, = 0.825.

Figure 7.16: Heave oscillation of of NACA 64a010 for LCO condition (Case VII),
a, = 0.0, Re = 12560000.0, M, = 0.925
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Figure 7.17: Pitch oscillation of NACA 64a010 for LCO condition (Case VII), a, =
0.0, Re = 12560000.0, M, = 0.925
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Figure 7.18: Heave oscillation of NLR, 7301 for flutter condition (Case VIII), o, =
0.65, Re = 1700000.0, M, = 0.753
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Figure 7.19: Pitch oscillation of NLR 7301 for flutter condition (Case VIII), o, = 0.65,
Re = 1700000.0, M, = 0.753
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Figure 7.20: Left: Heave phase diagram of NLR 7301 for flutter condition (Case
VIII). Right: Pitch phase diagram of NLR 7301 for flutter condition (Case VIII)
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Figure 7.21: Heave oscillation of NLR 7301 for LCO condition (Case IX), a, = 0.0,
Re = 1700000.0, M, = 0.753
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Figure 7.22: Pitch oscillation of NLR 7301 for LCO condition (Case IX), «, = 0.0,
Re = 1700000.0, M, = 0.753
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Figure 7.23: Left: Heave phase diagram for NLR 7301 in LCO condition (Case IX).
Right: Pitch phase diagram for NLR 7301 in LCO condition (Case IX)

NLR 7301
Structural and flow parameters | Exp. [9] | Case VIII | Case IX
Reynolds Number: Re (—) | 1700000 169500 169500
Mach Number: Ma (=) | 0.768 0.77 0.77
Freestream Temperature: 7' ( K) 274 310 310
Stagnation pressure: P (Pa) | 45000 45000 45000
Velocity: Uy (%) 255 7717 77.17
Density: p (%) 388 506 506
Initial Angle of Attack: «, (deg) 1.9 0.65 0.0
Velocity Index: VI (—) 204 190 190
Mass Ratio: p (—) 942 1077.2 1077.2
Reduced Pitch Frequency: w? (—) 0.242 320 320
LCO and Flutter properties
Percent heave amplitude: AH/2 (%) | 0.365 0.425 1.25
Pitching amplitude: Aca/2 (deg) 0.3 0.425 1.0
Mean Lift coefficient: ¢z, (—) 0.272 .29 151
Mean Moment coeflicient: ¢y (—) | —0.082 —0.082 —0.068

Table 7.4: Comparison of Case VIII (flutter) and Case IX (LCO) of NLR 7301 with
experimental data available in Reference [9]



o1

NACA 64a010

Structural and flow parameters | Comp. [4] | Case V | Comp. [4] | Case VII
Reynolds Number: Re (—) | 12560000 | 12560000 | 12560000 12560000
Mach Number: M (—) 0.825 0.825 0.925 0.925
Initial Angle of Attack: «, (deg) 0.0 0.0 0.0 0.0
Mass Ratio: p (—) 60 60 60 60
LCO and Flutter properties
Velocity Index: VI (—) 0.75 0.55 3.5 5.5
Percent heave amplitude: AH/2 (%) — 0.88 - 9.0
Pitching amplitude: Aca/2 (deg) — 0.01 — 0.063

Table 7.5: Comparison of Case VIII (flutter) and Case IX (LCO) of NACA 64a010
with experimental data available in Reference [4]
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7.6 Results IIl: Skin Friction and Pressure Distri-
butions

Figures 7.24 to 7.39 show the skin friction and time averaged pressure distributions
for both NLR 7301 and NACA 64a010 for different unsteady state (flow-induced
oscillating) conditions. These plots are obtained from a post-processing code pro-
vided in Appendix A. This code basically post-processes the time-dependent results
generated by the CFD simulations, and it makes use of library DISLIN which plots
the post-processed data. This post-processing code makes use of the Fortran library
that evaluates the real-par and imaginary part of the unsteady pressure distributions.
More details about this library are provided in Appendix B.

Figures 7.24 to 7.39 show the skin friction and pressure distributions for NACA
642010 and NLR 7301. The skin friction distribution for NACA 64a010 in critical
flutter condition shows a sharp reduction as approaching the trailing side of both sides
of the airfoil, and this drop of skin friction occurs at the same location of both sides
of the airfoil. This is consistent with the symmetric aspect of the wing. Since skin
friction is reversely proportional to the flow velocity around the airfoil, these figures
indicate that the flutter condition for NACA 64a010 is caused by the flow separation
on the trailing region of the wing. The corresponding pressure distribution, as shown
in figure 7.31, is consistent with this type of skin friction distribution.

Unlike the time averaged pressure distribution of NACA 64a010 in critical flutter
condition, as shown in figure 7.27, the pressure distribution for NACA 64a010 in LCO
does not go up and down as it approaches the trailing side. Instead, the LCO pressure
distribution seems to increase at a decreasing rate from the leading to the trailing side
of the wing. This increasing pressure distribution seems to be compensated by the
non-reducing skin friction distribution of NACA 642010 in LCO condition, as shown

in figure 7.28.
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Figure 7.24: Instantaneous Skin friction distribution of NACA 64a010 in flutter os-
cillating condition (Case V)
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Figure 7.25: Real-part of the unsteady pressure distribution of NACA 64a010 in
flutter oscillating condition (Case V)
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Figure 7.26: Imaginary-part of the unsteady pressure distribution of NACA 64a010
in flutter oscillating condition (Case V)

As shown in figures 7.24, 7.27, 7.36, and 7.39, the skin friction and pressure
coefficient of NLR 7301 in LCO condition are similar in characteristic to those for
NACA 64a010 in critical flutter condition. This indicates that the physics that causes
LCO condition for NLR 7301 is similar to that of NACA 64a010 in critical flutter
condition. This could also indicate that the NLR 7301 wing has been designed so
that it can support the type of aerodynamic loadings associated with those of NACA
64a010 in flutter condition. However, unlike the pressure distribution for NACA
64a010 in critical flutter condition, the pressure distribution for NLR 7301 in LCO
condition, as shown in figure 7.39, does not show overlapping curves. That is, the
pressure distribution of the lower surface of the wing is higher than that of the upper
surface. This could indicate that the NLR 7301 wing is designed so that it could be

more dynamically stable than conventional wings.

The real and imaginary part of the unsteady time averaged pressure distribution

of NACA 64a010 in damping condition is much more linear than those of flutter and
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Figure 7.27: Time averaged pressure distribution of NACA 64a010 in flutter oscillat-
ing condition (Case V)
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Figure 7.28: Instantaneous skin friction distribution of NACA 64a010 in LCO oscil-
lating condition (Case VII)
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Figure 7.29: Real-part of the unsteady pressure distribution of NACA 64a010 in LCO
oscillating condition (Case VI)

LCO behaviors. The real and imaginary part of the unsteady pressure distributions
are obtained by using the Fast Fourier transform formula, as described in Reference
B.1. These plots could serve as a measure of the variation of the unsteady pressure
distribution. Figures 7.25, 7.26, 7.33, and 7.34 indicate that as oscillation is dampen
out in time, the time-evolution of the pressure distribution become more linear, so
that the real and imaginary-part of the unsteady pressure distribution become more
linear. That is, the pressure distribution in time gets closer to the time averaged
pressure distribution. The imaginary and real parts of the pressure distribution for
NACA 64a010 in critical flutter condition are similar to the results obtained from

Davis [33].
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Figure 7.30: Imaginary-part of the unsteady pressure distribution of NACA64a010 in
LCO oscillating condition (Case VI)
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Figure 7.31: Time averaged pressure distribution of NACA 64a010 in LCO oscillating
condition (Case VI)
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Figure 7.32: Instantaneous skin friction distribution of NACA 64a010 in damped
oscillating condition (Case IV)
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Figure 7.33: Real-part of the unsteady pressure distribution of NACA 64a010 in
damped oscillating condition (Case IV)
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Figure 7.34: Imaginary-part of the unsteady pressure distribution of NACA 64a010
in damped oscillating condition (Case VI)
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Figure 7.35: Time averaged pressure distribution of NACA 64a010 in damped oscil-
lating condition (Case VI)



60

Inzlanlanesus Skin Friction Coefficient
MNLE 7301

el

—0.50 —0.25 0.00 0.25 0.50
X/

Figure 7.36: Instantaneous skin friction distribution of NLR 7301 in LCO condition
(Case IX)
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Figure 7.37: Real-part of the unsteady pressure distribution of NLR 7301 in LCO
condition (Case IX)
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Figure 7.38: Imaginary-part of the unsteady pressure distribution of NLR 7301 in
LCO condition (Case IX)
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Figure 7.39: Time averaged pressure distribution of NLR 7301 in LCO condition
(Case IX)



Chapter 8

Conclusion

As shown in the plots given in the previous chapter, the CFD solver is able to capture
limit cycle oscillation (LCO) for both the NLR 7301 and NACA 64a010 airfoils. Both
the Zha scheme and Roe scheme can be used to obtain these results, but require
different flow parameters to obtain similar results. It has been observed though,
that the CFD solver can be run with the Zha scheme using a Courant-Friedrichs-
Lewy (CFL) value of 1.0. On the other hand, the Roe scheme could be used with
CFL values that are either higher or lower than 1.0. Since the Roe scheme does not
have this CFL constraint, it is ultimately used to obtain both the flutter and LCO
behaviors for both the NACA 64a010 and NLR 7301 airfoils, as well as the results to

validate the CFD solver and the mesh grid of both airfoils.

The results obtained from these CFD simulations provide an understanding of
the LCO and flutter behaviors for both the NACA 64a010 and NLR 7301 wing. The
surface pressure distribution and the skin friction distribution helps in understanding
the physics of these two flow behaviors. The understanding of the CFD simulation
process to capture LCO and flutter behaviors for both the NACA 64a010 and the
NLR 7301 airfoils, and also, the knowledge of the flow and structural parameters

that are required to obtain these aeroelastic plots, could serve as an indispensable

62
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guideline for future CFD studies of LCO using two and three dimensional geometries.
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Appendix A

CFD Post-Processing Code

The skin friction coefficient and unsteady pressure distribution plots displayed in sec-
tion 7.6 are all generated using a post-processing code made by the author of this
report. This code is written in FORTRAN 77, and it makes use of non-commercial
plotting library called DISLIN®. This is an advanced plotting library that is avail-
able at the website http://www.mps.mpg.de/dislin/. This code also makes
use of another Fortran library called SSL2©. This is a library that provides various
advanced mathematical subroutines. Specifically, it performs Fourier interpolations
of time dependent data, such as the CFD unsteady time-dependent fluid flow para-
meters. This library is used to obtain the imaginary and real part of the unsteady
pressure distribution. The output that is generated by this code is plotted using the

DISLIN plotting library. This code is documented in the following section.

A.1 Code: cdlt _all.f90

cdlt all.f90

PROGRAM CDLT ALL

USE DISLIN

IMPLICIT NONE

INTEGER, PARAMETER :: N=281, NN=141, M=280, &

TIME STEPS=500

DOUBLE PRECISION, DIMENSION(N) :: Y11, Y12, Y13, &
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Yl4, vy15, Yle, Y17, Y18, Y19

DOUBLE PRECISION,

Y5, Y6, Y7, Y8, Y9, Y110, Y111l

DOUBLE PRECISION,

z2, 7.3, Z4, 75, Ze6, 77, Z8, 79,

DOUBLE PRECISION,
712, 713,
DOUBLE PRECISION,
DOUBLE PRECISION,
DOUBLE PRECISION,

REAL, DIMENSION (NN)

DIMENSION (M) :: Y1, Y2, Y3, Y4, &

DIMENSION (TIME STEPS, M):: Z1,&
7110, 7111

DIMENSION (TIME STEPS,N):: 2711, &

714, 715

DIMENSION (M) THETA2, THETA3
DIMENSION (TIME STEPS, M):: THETA3Z
DIMENSION (N) :: X1, X2, X11

XRAY, Y1RAY, Y2RAY, Y3RAY, &

Y4RAY, Y5RAY, YTRAY, Y8RAY, YORAY

REAL, DIMENSION (NN)

YO1RAY, YO02RAY, YO3RAY, &

YO4RAY, YOT7RAY,YO8RAY, YOOSRAY

REAL, DIMENSION (TIME STEPS, NN)

XRAYZ,Y1RAYZ, &

Y2RAYZ, Y3RAYZ, Y4RAYZ,YS5RAYZ, YT7TRAYZ, Y8RAYZ, YORAYZ

REAL, DIMENSION (TIME STEPS, NN)

YO1RAYZ, YO2RAYZ, &

YO3RAYZ, YO4RAYZ,YO7RAYZ, YOBRAYZ, YOO9RAYZ

REAL, DIMENSION (NN)

DOUBLE PRECISION
DUM6, DX, DX2
REAL, PARAMETER
REAL
INTEGER
FLAG, ISN, JJ,

X11RAY, X22RAY
puM1l, DUM2, DUM3, DUM4, DUM5, &

PI=3.1415926

FPI,STEP, X
1,J, K, 11, IC, I2, I3, 1IJ, I21, &
ICONN

CHARACTER (LEN=20) FILENAMEl, LINESS, CBUF*24
CHARACTER (LEN=20) FILENAMEZ, FILENAME3

REAL, ALLOCATABLE, DIMENSION (:, :)

Y7COFF1l, YO7COFF1, &

Y7COFF2, YO7COFF2, &

Y8COFF1, Y8COFF2,

YO8COFF1, YOBCOFF2

REAL, ALLOCATABLE, DIMENSION(:) :: A
REAL, ALLOCATABLE, DIMENSION(:,:) :: AA

FPI=PI/180.
STEP=360./ (N-1)

CALL METAFL ('EPS’
CALL PAGE (2000,
WRITE (FILENAME],

)
2000)
"("cdlt all.his™)’)

OPEN (UNIT = 1, FILE = FILENAMEl, FORM = ’UNFORMATTED’, &

ACTION = "READ’,

WRITE (FILENAMEZ2,

OPEN (UNIT = 2, FILE = FILENAME2, FORM

ACTION = 'READ’,

STATUS = "OLD’)

’ ("ch_nlr") ’ )

"FORMATTED' , &
STATUS = "OLD’)
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WRITE (FILENAME3, ' ("ch nlr"™)’)
OPEN (UNIT = 3, FILE = FILENAME3, FORM =
ACTION = 'READ’, STATUS = ’'OLD’)

Reading x-wise position for plots.

DO I =1, 281
READ (2,300) X11(I)

ENDDO

DO J =1, 141

X11RAY (J)= REAL(X11 (J))
X22RAY (J)= REAL (X11 (J+140))
END DO

Start main time iteration loop
DO I =1, TIME STEPS

Several input parameters are read
READ (1) (Y1(J), J=1,280)

DO k =1, 280

Z1(I,k)= Y1 (k)

END DO

READ (1) (Y2 (J), J=1,280)
DO k = 1, 280

722 (I,k)= Y2 (k)

END DO

READ (1) (Y3 (J), J=1,280)
DO k = 1, 280

723(I,k)= Y3 (k)

END DO

READ (1) (Y4 (J), J=1,280)
DO k = 1, 280

74 (I,k)= Y4 (k)

END DO

READ (1) (Y5(J), J=1,280)
DO k =1, 280

Z5(I,k)= ¥Y5(k)

END DO

READ (1) (Y6(J), J=1,280)
DO k =1, 280

"FORMATTED' , &
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Z6 (I, k)= Y6 (k)
END DO

READ (1) (Y7 (J), J=1,280)
DO k = 1, 280

27(I,k)= Y7 (k)

END DO

READ (1) (Y11 (J), J=1,281)
DO k =1, 281
Zz11(I,k)= Y11 (k)
END DO

READ (1) (Y12(J), J=1,281)
DO k = 1, 281
712(I,k)= Y12 (k)
END DO

READ (1) (Y13(J), J=1,281)
DO k = 1, 281
7213(I,k)= Y13 (k)
END DO

Converting pressure coefficient, Y11, from double precision
to real type

DO k =1,141
Y7RAYZ (i, k) =REAL (Y11 (k) )
YOTRAYZ (i, k) =REAL (Y11 (k+140))

Y7RAYZ (1,k)=-2.* (YTRAYZ (i,k)-1.)
YO7RAYZ (1,k)=-2.* (YOTRAYZ (i, k)-1.)
END DO

Angular projection of line perpendicular to wing surface,
positive counterclockwise.

DO J = 1, 280

DX2 = Y12 (J+1) - Y12 (J)

IF (DX2.GT.0.) THEN

THETA3 (J) = ATAN((Y13(J+1)-Y13(J))/(Y12(J+1)-Y12(J)))
ELSE

THETA3 (J) = ATAN((Y13(J)-Y13(J-1))/(Y12(J)-Y12(J-1)))
ENDIF

END DO
DO k =1, 280
THETA3Z (I, k)=THETA3 (k)

END DO
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IJ =0

DO J = 1,280

IJ =1IJ + 1

DX = X11(IJ+1)-X11(1IJ)

IF(DX.LT.0) THEN

Shear Stress in the x-direction
Y110 (J)= =(Y1(J)-Y5(J))*sin (THETA3 (J)) *cos (THETA3 (J) ) +&
Y3 (J) * (cos (THETA3 (J) ) *cos (THETA3 (J)) -&

sin (THETA3 (J) ) *sin (THETA3 (J)))

Shear Stress in the y-direction

Y111 (J)= Y1 (J)*cos (THETA3(J)) *cos (THETA3 (J) ) +&
Y5 (J) *sin (THETA3 (J) ) *sin (THETA3 (J) ) +&

2.*Y3(J) *cos (THETA3 (J) ) *SIN(THETA3 (J))

Multiplication of shear stresses by negative sign
Y110(J) = Y110 (J)
Y111 (J) = Y111 (J)

ELSE

Shear stresses in the x-direction

Y110 (J)= —-(Y1(J)-Y5(J)) *sin (THETA3 (J)) *cos (THETA3 (J) ) +&
Y3 (J) * (cos (THETA3 (J) ) *cos (THETA3 (J)) -&

sin (THETA3 (J) ) *sin (THETA3 (J)))

Shear stresses in the y-direction

Y111 (J)= Y1 (J)*cos (THETA3 (J)) *cos (THETA3 (J) ) t&
Y5 (J) *sin (THETA3 (J) ) *sin (THETA3 (J) ) +&

2.*Y3(J) *cos (THETA3 (J) ) *SIN (THETA3 (J))

ENDIF
END DO

DO k=1,280
Z110(I,J)=Y110(J)
z111(1,J)=Y111(J)
END DO

DO J =1, 141

IF (J.EQ.1)THEN

Y8RAY (J) = 2.*REAL(.5*(Y110(1)+Y110(280)))
ELSE

IF(J.EQ.141) THEN
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236
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239

240

241

242

Y8RAY (J)
ELSE
Y8RAY (J)
END IF
END IF
END DO

2.*REAL (.5*(Y110(141)+Y110(140)))

2.*REAL (.5* (Y110 (J)+Y110(J-1)))

IT =1
DO J = 141, 281
IF (J.EQ.141)THEN

YO8RAY (I) = 2.*REAL(.5*(Y110(140)+Y110(141)))
IT = IT + 1

ELSE

IF(J.EQ.281) THEN

YO8RAY (II) = 2.*REAL(.5*(Y110(280)+Y110(1)))
IT = I1 + 1

ELSE

YO8RAY (IT) = 2.*REAL(.5* (Y110 (J)+Y110(J-1)))
IT = 1IT + 1

END IF

END IF

END DO

DO J = 1, 141
IF (J.EQ.1) THEN

YORAY (J) = 2.*REAL(.5* (Y111 (1)+Y111(280)))
ELSE

IF(J.EQ.141) THEN

YORAY (J) = 2.*REAL(.5% (Y111 (141)+Y111(140)))
ELSE

YORAY (J) = 2.*REAL(.5* (Y111 (J)+Y111(J-1)))
END IF

END IF

END DO

1T =1
DO J = 141, 281
IF (J.EQ.141)THEN

YOORAY (I) = 2.*REAL(.5*(Y111(140)+Y111(141)))
IT = 1IT + 1

ELSE

IF(J.EQ.281) THEN

YOORAY (II) = 2.*REAL(.5*(Y111(280)+Y111(1)))
IT = IT + 1

ELSE

YOORAY (II) = 2.*REAL(.5*(Y111(J)+Y111(J-1)))

IT = I1T + 1
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END IF
END IF
END DO

Store non-time-dependent Y8, Y08, Y9,Y09 on
time-dependent parameters

DO k=1,141
YB8RAYZ (I, k)=Y8RAY (k)
YO8RAYZ (I, k)=YO8RAY (k)
YORAYZ (I, k)=Y9RAY (k)
YOORAYZ (I, k)=Y0O9RAY (k)
END DO

End of main time iteration loop
END DO

Calculate time steps that’s required for FT
analysis subroutine.

I3 =20

FLAG = O

DO WHILE (FLAG.NE.1)

I3 =13 + 1

I2 = 2**I3

IF(I2.GT.TIME STEPS.OR.IZ.EQ.TIME STEPS) THEN
IF(I2.EQ.TIME STEPS)THEN
FLAG = 1

END IF
IF(I2.GT.TIME STEPS) THEN
FLAG = 1

I3 =13 -1

I2 = 2**I3

END IF

END IF

END DO

ALLOCATE (A (I2))
ALLOCATE (AA(I2,141))

Calculate FT output for upper surface of wing

DO J = 1, 141
DO k=1,1I2

A (k) =YO7RAYZ (k, J)
ENDDO
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329
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331

332

333

334

335

336

ISN 1

I21 12/2 - 1

CALL RFT (A, I2,ISN,ICONN)
DO k =1, I2

AA(k,J)= A(k)

END DO

END DO

ALLOCATE (YO7COFF1(I21,141))
ALLOCATE (YO7COFF2(I21, 141))

Store FT output on time-dependent variables

Jj =1
DO J = 1, 141
DO k=1,I21

YO7COFF1 (k, J)=AA (2*k+1, J)
YO7COFF2 (k, J)=AA (2*k+2, J)
Jjj =33 +1

END DO

END DO

Calculate FT output for lower surface of wing

DO J = 1, 141
DO k=1,1I2
A(k)=YTRAYZ (k, J)
ENDDO

ISN =1

I21 = 12/2 - 1
CALL RFT (A, I2,ISN,ICONN)
DO k =1, I2
AA(k,J)= A(k)
END DO

END DO

ALLOCATE (Y7COFF1(I21,141))
ALLOCATE (Y7COFF2(I21,141))

Store FT output on time-dependent variables

Do J =1, 141

DO k=1,1I21

Y7COFF1 (k,J)=AA(2*k+1,J)
Y7COFF2 (k,J)=AA(2*k+2,J)
END DO

END DO
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100
200
300

FORMAT (280 (e20.14,1x))
FORMAT (281 (e20.14,1x))
FORMAT (E20.14)

Plot of Skin Coefficients

CALL DISINI
CALL COMPLX
CALL AXSPOS (450,1800)

CALL AXSLEN(1200,1200)

CALL CHNCRV (' LINE')

CALL NAME (’Chord Position X/C’,’X")

CALL NAME (' Skin Friction Coefficient ’,’Y’")

)
)

— o~ o~ —~

CALL LABDIG(2,'X")
CALL LABDIG(3,’'Y")
CALL LEGTIT (' )

1 X

CALL TICKS(

’
0,"XY")

CALL LEGINI (CBUF, 2, 8)

CALL LEGLIN (CBUF,'Lower Cp’,1)

CALL LEGLIN (CBUF, 'Upper Cp’,2)

CALL LEGTIT(" ')

CALL TITLIN(’Skin Friction Coefficient’,1)
CALL TITLIN(’NLR 73017,2)
IC=INTRGB(1.,1.,1.)

CALL AXSBGD (IC)

CALL GRAF(-.5,.5,-.5,.25,&
-.008,.008,-.008,.001)
CALL SETRGB(0.7,0.7,0.7)
CALL GRID(1,1)

CALL COLOR (' FORE')
CALL TITLE ()

DO k=1,141
Y8RAY (k) =Y8RAYZ (TIME_STEPS, k)
YO8RAY (k) =YO8RAYZ (TIME STEPS, k)
END DO

CALL SETRGB(0.,0.,0.)

CALL CURVE (X11RAY,Y8RAY,141)
CALL SETRGB(0.,0.,0.)

CALL CURVE (X22RAY,YO8RAY,141)
CALL LEGEND (CBUF, 5)
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CALL DISFIN()
Plot of Pressure Coefficients

CALL DISINI ()
CALL COMPLX ()
CALL AXSPOS (450,1800)

CALL AXSLEN(1200,1200)

CALL CHNCRV (’'LINE’)

CALL NAME (' Chord Position X/C’,’X")
CALL NAME (' Pressure Coefficient 7,’Y")

CALL LABDIG(
CALL LABDIG(
CALL LEGTIT (
CALL TICKS (1

2,"X")
2,7Y")
4 I)

0,"XY")

CALL LEGINI (CBUF, 2, 8)

CALL LEGLIN (CBUF,’'Lower Cp’,1)

CALL LEGLIN (CBUF,'Upper Cp’,2)

CALL LEGTIT(" ')

CALL TITLIN(’Pressure Coefficient’,1)
CALL TITLIN(’NLR 73017,2)
IC=INTRGB(1l.,1.,1.)

CALL AXSBGD (IC)

CALL GRAF(-.5,.5,-.5,.25,%&
-.5,1.,-.5,.25)

CALL SETRGB(0.7,0.7,0.7)
CALL GRID(1,1)

CALL COLOR("FORE")
CALL TITLE ()

DO k=1,141
Y7RAY (k) =Y7RAYZ (TIME_STEPS, k)
YOTRAY (k) =YO7RAYZ (TIME STEPS, k)
END DO

CALL SETRGB(0.,0.,0.)

CALL CURVE (X11RAY,Y7RAY,141)
CALL SETRGB(0.,0.,0.)

CALL CURVE (X22RAY,Y0O7RAY,141)
CALL LEGEND (CBUF, 5)

CALL DISFIN ()

Plot of Real Pressure Distribution
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CALL DISINI ()

CALL COMPLX ()

CALL AXSPOS (450,1800)

CALL AXSLEN(1200,1200)

CALL CHNCRV (' LINE’)

CALL NAME ('’ Chord Position X/C’,’X")

CALL NAME ('Real Pressure Coefficient ’,’Y’")

CALL LABDIG(
CALL LABDIG(
CALL LEGTIT (
CALL TICKS (1

2,"%X")
1,7Y")
)
0,’XY")

CALL LEGINI (CBUF, 2, 8)

CALL LEGLIN (CBUF,'Lower Cp’,1)

CALL LEGLIN (CBUF,’Upper Cp’,2)

CALL LEGTIT(" ')

CALL TITLIN(’Real Pressure Coefficient’,1)
CALL TITLIN('NLR 7301",2)
IC=INTRGB(1.,1.,1.)

CALL AXSBGD (IC)

CALL GRAF(-.5,.5,-.5,.25,&
-18.,16.,-18.,2.)

CALL SETRGB(0.7,0.7,0.7)
CALL GRID(1,1)

CALL COLOR (' FORE")
CALL TITLE ()

DO k=1,141

Y7RAY (k) =Y7COFF1 (2, k)
YO7RAY (k) =YO7COFF1 (2, k)
END DO

CALL SETRGB(0.,0.,0.)

CALL CURVE (X11RAY,Y7RAY,141)
CALL SETRGB(0.,0.,0.)

CALL CURVE (X22RAY,YO7RAY,141)
CALL LEGEND (CBUF, 5)

CALL DISFIN()

Plot of Imaginary Pressure Distribution

CALL DISINTI ()
CALL COMPLX ()
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CALL AXSPOS (450,1800)

CALL AXSLEN(1200,1200)

CALL CHNCRV (' LINE’)

CALL NAME (’Chord Position X/C’,’X")

CALL NAME (' Imaginary Pressure Coefficient ’,’Y’)

CALL LABDIG(
CALL LABDIG(
CALL LEGTIT (
CALL TICKS(1

2,"X")
1,’Y")
4 14 )

0,"XY")

CALL LEGINI (CBUF, 2, 8)

CALL LEGLIN (CBUF,'Lower Cp’,1)

CALL LEGLIN (CBUF,'Upper Cp’,2)

CALL LEGTIT(" ")

CALL TITLIN(’'Imaginary Pressure Coefficient’,1)
CALL TITLIN(’NLR 73017,2)

IC=INTRGB(1l.,1.,1.)

CALL AXSBGD (IC)

CALL GRAF(-.5,.5,-.5,.25,&
-8.,8.,-8.,2.)

CALL SETRGB(0.7,0.7,0.7)
CALL GRID(1,1)

CALL COLOR (' FORE")
CALL TITLE ()

DO k=1,141
Y7RAY (k) =Y7COFF2 (2, k)
YOTRAY (k) =YO7COFF2 (2, k)
END DO

CALL SETRGB(0.,0.,0.)

CALL CURVE (X11RAY,Y7RAY,141)
CALL SETRGB(0.,0.,0.)

CALL CURVE (X22RAY,YO7RAY,141)
CALL LEGEND (CBUF, 5)

CALL DISFIN ()

Plot of Mean Pressure Distribution

CALL DISINTI ()
CALL COMPLX ()
CALL AXSPOS (450,1800)
CALL AXSLEN(1200,1200)
(

CALL CHNCRV (' LINE')
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526

CALL NAME (' Chord Position X/C’,’X")
CALL NAME (’'Mean Pressure Coefficient ’,’Y")

CALL LABDIG(
CALL LABDIG(
CALL LEGTIT (
CALL TICKS (1

2,7X")
1,7Y")
14 I)
0,’XY")

CALL LEGINI (CBUF, 2, 8)

CALL LEGLIN (CBUF,’'Lower Cp’,1)

CALL LEGLIN (CBUF,’Upper Cp’,2)

CALL LEGTIT(" ')

CALL TITLIN('’Mean Pressure Coefficient’,1)
CALL TITLIN('NLR 7301",2)
IC=INTRGB(1l.,1.,1.)

CALL AXSBGD (IC)

CALL GRAF(-.5,.5,-.5,.25,%&
-18.,16.,-18.,2.)

CALL SETRGB(0.7,0.7,0.7)
CALL GRID(1,1)

CALL COLOR (' FORE")
CALL TITLE ()

DO k=1,141
Y7RAY (k) =Y7COFF1 (1, k)
YO7RAY (k) =Y07COFF1 (1, k)
Y7RAY (k)= Y7RAY (k)
YOTRAY (k) =YO7RAY (k)

END DO

CALL SETRGB(0.,0.,0.)

CALL CURVE (X11RAY,Y7RAY,141)
CALL SETRGB(0.,0.,0.)

CALL CURVE (X22RAY,YO7RAY,141)
CALL LEGEND (CBUF, 5)

CALL DISFIN()

STOP
END PROGRAM CDLT ALL

cdlt all.f90
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Appendix B

The Scientific Subroutine Library

A commercial Fortran math library, called SSL2 is employed for performing a Fourier
interpolation of the time dependent CFD data, like the pressure, lift and moment
coefficients [38]. Basically, this is a Fortran library that is installed for usage in Fortran
codes. Discrete Fourier Transform is the name of the particular subroutine burrowed
from this library. The procedure of using this subroutine is available in its manual,

which could be found at http://www.lahey.com/docs/ssl2 1in62.pdf.

B.1 The Discrete Fourier Transform Subroutine

In chapter 7.3, the real and imaginary components of the Fourier interpolation of time
dependent CFD data are plotted. As mentioned above, this is done by a Fortran
subroutine named Discrete Fourier Transformation that is available in a Fortran
scientific subroutine library. The input that is needed for the DFT subroutine is
basically an array of time dependent data such as the flow coefficients given in chapter
7.3. The size of the input data has to be equal to 2¢, where the variable i is a non-
negative integer. The subroutine is capable of computing either the inverse or non-
inverse Fourier transforms. In this case, the inverse Fourier transform is used, so that

the imaginary and real coefficients from the general Fourier equation are obtained.
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The general expressions for both inverse and non-inverse Fourier transforms are given

in B.1 and B.2, respectively.

n—1 .
2 27k n
ap = 55 Z; cos ——=, k‘:(),...,a (B.1)

J=0

n—1 .
2 . 271k n
b, = - E_ x;sin nj’ kzl,...,§—1

7=0

n—1 . .
1 27k 2k 1
T = §ao+ E (akcos 7;‘7 + by sin 7;‘7) +§a% cosmj, j=0,..,n—1 (B.2)



Appendix C

Transformations of Shear Stresses

As displayed in chapter 7.3, the shear stress coefficients along the surface of an air-
foil are plotted. These values are calculated indirectly from the subroutine in the
CFD solver called cditj.f [13]. Basically, this subroutine generates the shear stresses
congruent with the Cartesian coordinates. Therefore, these parameters undergo a
transformation such that the new values are shear stress parallel and perpendicular
to the surface of the airfoil. In this case, the new parallel shear stress, because it is
representative of the skin friction coefficients. The transformation equation used to

carry out the necessary transformations is expressed as [39]:

Tony = — (04 — 0,) 8in 6 cos § + 74, (cos® § — sin6) (C.1)

where the definitions of 0, 7,.,,, 0., 0y, and 7,, are defined as the angular projec-
tion, the x-direction stress, the y-direction stress, and the shear stress, respectively,

associated with a segment of a shape such as a wing.
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Appendix D

Derivation of Equations

In deriving the governing pitch and heave equations, it is necessary to know the direc-
tion of force and moment applied. This is important because, if the directions are not
correct, than the values of heave and pitch will not be correct, causing miscalculations
of the conservative variables. The procedure presented in the following is given in
detail, so as to provide a full comprehension of the nondimensionalized parameters,

most of which are embedded in the CFD solver.

D.1 Pitching Mode without Damping

By applying Newton’s law of force summation, the pitch governing equation, without

damping, can be formulated as follow:

mexgh + Lyi + koo = M (D.1)

Eq. D.1 is divided by m. and c to obtain

T S 1
Toh +—0+ —a=—M. (D.2)
me me mc
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Hence, both m and ¢ are removed from the first term of eq. D.1. Coincidentally,
this process eliminates the need to non-dimensionalize [, and k,, as explained later.

Eq.D.2 is then divided by c¢ in order to non-dimensionalize the chord length.

Doy = — M (D.3)
&

The time parameter is then non-dimensionalized by dividing Eq. D.3 by —5*, as follow:

ToC 1,2 . k% . c

= M D.4
cU2, +mc2U§oa+mC2U§oa mc2U% (D-4)

which can be simplified as:

ce g.a rkc <
TN+ ridt + A U2 = M. (D.5)

Eq. D.5 is multiplied by poo , as follow:

72 ko €2 ? =

T h* +r2ET + .02 a= mCZUOZO%OM, (D.6)

which can be simplified by using the definition of Moment coefficient, that is, C, =

M
P 2 L2
TR UL

. . 72 ko C? 2l
T h* + 28 + 2 A U2 = mQ Cur (D.7)

Eq. D.7 is further modified by applying the definition of viscosity, that is, u = WLbQ.

. 72 ko C? 2
Toh* +r2Et + RiP :M_WCM (D.8)

Eq. D.8 is further modified by applying the definition of reduced frequency, that is,

2% _ koc?

wy' = 1.9z
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.. 2
Toh* + 2+ riuta = /TWCM (D.9)

Eq. D.9 is the governing equation of the non-damped pitching motion of an airfoil in
its pure form. In order to use this equation in the CFD solver, eq. D.9 is multiplied
on both sides by %, which is defined as the reduce velocity parameter U*. This
process rescales the dimensionless time variable such that ¢* = t*7=, and also, it

dimensionalizes the natural frequency such that w, = w* Y=, Eq. 9 is then modified

@ c
as follow:
. 2 U2
Toh* + it +ria = = —2 (D.10)
T pcw?
By applying the substitution U* = b%z, eq. D.10 becomes D.11, which is the desired
non-damped pitching equation for the CFD solver,
N 2 U*2
Toh* +r2E& +ria = =——Cy. (D.11)
T i

D.2 Pitching Mode with Damping

By applying Newton’s law of force summation, the equation of motion for pitching

mode with damping factor can be formulated as follow:

mexah + Ié + Oodv + koo = M. (D.12)

Just like in section D.1, eq. D.12 is divided by m and ¢ in order to eliminate these

2

variables from the first term of eq. D.12. Then, it is divided by ¢ and Y% in order

c2

to non-dimensionalize the chord length and time parameter. Then it is multiplied by

Poo

7%= on the right side. This results in the following equation,

2
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Lo C

.. I,c? . b2 . k.c? . 2
2h
C o0

- & a7 &+ A 0= M, (D.13)

which can be simplified as:

. d,c koc? 2l
WP+ T &t < = 2 M D.14
Talt T Ta0 mczUooa mcngoa mc2U2 B ( )
Eq. D.14 is modified by applying the definition of reduced frequency, that is, w? =
ko c?
1.0
1
co o, DuwilE ., Lw* c2ls
T+ riet + ———

1 2 - 2
me2ke mec mc?U

M (D.15)
% 2
Eq. D.15 is further modified by applying the definition of Radius of gyration, that is,

2 _ I
ri = <

mc?”

. (I)a 2.0* 2Pl
Toh* + it + —Tatlda &+ riwya = M (D.16)
[3 kg ’I’fLCz(]go?°O
Eq. D.16 is modified by applying the definition of reduced damping coefficient, that
: * Q
is, Do = Ve

2P0
. 4P
T b+ r2EF 20wt At 4 riwa = ——2 M (D.17)
mcUZ P

Eq. D.17 is modified by applying the definition of Moment Coefficient, that is, C,, =

Poo ]2 o2 °
%UOOC

2 Poo
Toh* + r2E&* 4 205 r2wiat + riwXa = —2-Cy (D.18)
m
Eq. D.18 is then modified by applying the definition of viscosity, that is, u = F’.'sz.

.. 2
Toh* + 126 + 205 r2wiat + riwa = —COy (D.19)
s
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Eq. D.19 is the equation of damped pitching motion in its pure form. Just as the

Uz, on both

2w?

non-damped pitch equation in section D.1, eq. D.19 is multiplied by
sides, so that the dimensionless time is rescaled, and the uncoupled pitch frequency
is dimensionalized. The outcome of this procedure is the desired damped pitching
equation that’s used in the CFD solver, as follow:

92 U*2

Toh* + r2a* + 205 r2at 4 ria = =
T

Cr. (D.20)

D.3 Heave Mode without Damping

By applying Newton’s law of moment summation, the equation of motion for pitching

mode is formulated as follow:

mh + mezqéi + kph = L (D.21)

In order to eliminate the variable m, eq. D.21 is divided by m.

. k 1
h+ cxoi + —h = =1L (D.22)
m m

Then, in order to eliminate the variable ¢, eq. D.22 is divided by c .

1. k 1
“ht el + b= —1L (D.23)
& mc mc

The last two steps eliminate the need to non-dimensionalize k;,. Eq. D.23 is then

divided by % in order to non-dimensionalize the time parameter, as follow:

2 . x.ct kpc? c

h+ h= L, (D.24)

&
cU2 U2, * mcU?2 mcU?2

which can be simplified as:
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R P Lty P (D.25)
Tl = . :
mU?2, mecUZ2
Eq. D.25 is modified by multiplying the right side by Z%:
2
. thQ CZp;OO
h* + x,d* h* = 2__ [, D.2
M mU?Z mecUZ% B (D-26)

Eq. D.26 is then modified by applying the definition of Moment coefficient, that is,
Cp = =2

Poo 72
seUS ¢

/C 2 CQP;'O
i i+ et = L0 (D.27)

Eq. D.27 is then modified by applying the definition of viscosity, that is, y = ﬁ.

En e _ 2 0, (D.28)

h* + z,6* +
mUZ T3

Eq. D.28 is then modified by applying the definition of reduced plunge frequency,

: 2% _ kpc?
that 18, wy = m

. 2
h* 4 2o + with® = u_WOL (D.29)

Eq. D.29 is the governing equation of the non-damped plunging motion in its pure

form. In order to use eq. D.29 in the CFD solver, eq. D.29 is multiplied by ng on

cw?
both sides, so that the dimensionless time parameter is rescaled, and the uncoupled

frequency dimensionalized. The outcome from this procedure is the desired non-

damped plunging equation for the CFD solver, as follow:

2 *2
; 20U
h* 4 zad" + w—gh* ==

w? T

. (D.30)
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D.4 Heave Mode with Damping

By applying Newton’s law of moment summation, the equation of motion for pitching

mode with damping can be formulated as follow:

mh + mecxyé + ®ph + kyh = L. (D.31)

Just like in section D.3, eq.D.31 is divided by m and c¢ in order to eliminate these

variables from the first term of eq. D.12. Then, it is divided by ¢ and %" in order to

non-dimensionalized the chord length and time parameter. Then it is multiplied by

3

+= on the right side. This results in the following equation,

w‘g

‘. e Dpe . R, ? =
h +ZEaOZ + mUooh mU2 = m (D32)

Eq. D.32 is modified by applying the definition of Moment coefficient, that is, C =

. . dc . kpc? 2l
h* + x,&" + ——h" h* = —2C D.33
+ Tod* + e + i) —CL (D.33)
Eq. D.33 is then modified by applying the definition of viscosity, that is, u = Tml)?‘
s . (I)hC . ]ﬂhC2 2
h* + x,0 h* h=—C D.34
+ ot +mUoo —l—mUozo e (D.34)

Eq. D.34 is then modified by applying the definition of reduced plunge frequency,

: 2% _ kpc?
that is, w;" = Jla-.

Dt 2
MR WP = O (D.35)
1 uﬂ

1.3
m2k;

h* + 26" +

Eq. D.35 is then modified by applying the definition of reduced damping coefficient,

that iS, q);kl = ﬁ
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. : 2
R* 4+ 26" 4 2®7wih* + with* = —C, (D.36)
nm

Eq. D.36 is the equation of damped plunging motion in its pure form. In order to

use eq.D.36 in the CFD solver, it is multiplied by (2]—53 on both sides, so that the

(&
dimensionless time parameter is rescaled, and the uncoupled frequency dimensional-

ized. The outcome from this procedure is the desired damped plunging equation for

the CFD solver, as follow:

. X 2 2 U*2
B ot + 205 St 4 g = 2
W w? T [

Cr. (D.37)

D.5 The CFD Structural Equations

Equations D.20 and D.37 are combined to form the governing structural matrix equa-
tion, as shown in eq. 4.1. However, the matrix equation that is actually coded in
the CFD solver is not exactly the same as eq. 4.1, because the former is actually
non-dimensionalized by the mid-chord b, whereas as the latter is non-dimensionalized
by the full chord length c. If the mid-chord length b is used, then this would only
modify the constant coefficients on the right side of the governing equations, such

that equations D.11, D.20, D.30, and D.37 become:

U2

. 1
zoh* + 128" +ria = ——>2=Cy, (D.38)
T pctw?
roh* + rid” + 200 ria" + oo = ———C)y, (D.39)
T op
. 2 2 U*2
P4 wad + hpr = 220y, and (D.40)

. T



DY Laally
Wa

2
Yhpr —
(JJ2

@

92 U*2

T

Cr.

88
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Appendix E

Derivation of Flow and Structural
Parameters

In order to simulate a particular type of flow induced vibration of an airfoil, the
CFD solver requires the value of certain flow and structural parameters. Certain flow
parameters are predetermined for the CFD solver, including the Reynolds Number,
Re, Mach number M, and the specific heat ratio v. These parameters belong to
the freestream conditions. Other flow parameters have to be calculated using an
appropiate mathematical formula. The formulas for most of these parameters can
be found in References [40] and [14]. To begin with, the dimensionless freestream
pressure is defined as:
2
P = % (E.1)

The ratio of stagnation pressure to static pressure is expressed as:

P y—1_, 1
o (141 "m . E.2
Py ( B ) (52

The stagnation pressure P can then be calculated from equations E.1 and E.2. The

ratio of stagnation to static temperature can be expressed as [40] [14]:

T, v—1
=(1+-1—=M?). E.3
T (+ 5 > (E.3)
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To

Equation E.3 can defined as the dimensionless stagnation temperature, or T = =>.

In all, the dimensionless static pressure, stagnation pressure, and static temperature

are flow parameters that are required to run the CFD solver.

Certain structural parameters are predetermined for the CFD solver, such as the
unbalance distance x,, mass ratio u, and radius of gyration r,. Other structural
parameters have to be calculated using an appropiate mathematical formula. To begin

with, the flow viscosity is calculated using Sutherland’s law of viscosity, expressed as:

T 15 7988.16 + 110
= 1.7894 x 10° i e E— E.4
v % (288.16) ( T. +110 ) (E.4)

The dimensional free stream velocity can be calculated from the formula of Reynolds

number, that is,

Uy = —H (E.5)

where p = %. Hence, the reduced freestream velocity U,, can be expressed as:

_ RepRT

Uso
Ps

(E.6)

The value of velocity index VI can also be predetermined for CFD computation. The
flutter index serves as a dimensionless scalar quantity that relates flow dynamics to
structural dynamics. From a given value of velocity index VI, the reduced velocity

UZ, can be obtained. The velocity index VI is mathematically expressed as [29]:

VI:UOO
Vi

(E.7)

Finally, both the reduced pitch and heave frequencies are defined in pages 83 and

87, and they can be obtained as follow:
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