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Distributed autonomous systems have demonstrated many advantageous features

over their centralized counterparts. In exchange for their scalability and robustness,

there are additional complexities in obtaining a global behavior from local interac-

tions. These complexities stem from a coordination problem while being provided a

limited information set. Despite this information constraint, it is still desirable for

agents to construct an estimate of the entire system for coordination purposes.

This work proposes an architecture for the coordination and control of a multi-

agent system while being limited in external communication. This architecture will

examine how to internally estimate states, assign goals, and finally execute a suitable

control. These techniques are first applied to a simple linear model and then extended

to non-linear domains. Specific aerospace applications are explored where there exists

a need for accuracy and precision.



to my friends and family

no matter where they are

iii



Acknowledgements

I would like to thank my advisor Dr. Amir Rahmani and my co-advisor Dr. Jae

Chung, who supported me in the past few years through the research and completion

of my degree. I believe their personality and technical capability was an indispensable

factor for me to finish this endeavor.
Thanh Vu

University of Miami

August 2017

iv



Table of Contents

LIST OF FIGURES viii

LIST OF TABLES x

1 INTRODUCTION 1

1.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Formation Flying Spacecraft . . . . . . . . . . . . . . . . . . . 2

1.1.2 Heterogeneous Systems . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Areas of Interest for Multi-Agent Systems . . . . . . . . . . . . . . . 4

1.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Guidance and Assignment . . . . . . . . . . . . . . . . . . . . 7

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 REVIEW OF ESSENTIAL CONCEPTS 10

2.1 Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Lyapanov Theory . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



2.1.2 Observer-controller Duality . . . . . . . . . . . . . . . . . . . 12

2.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 DISTRIBUTED LINEAR ESTIMATION AND CONTROL 18

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Distributed Estimation . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Distributed Control . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Convergence Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 DISTRIBUTED ASSIGNMENT 35

4.1 Distributed Assignment Algorithm . . . . . . . . . . . . . . . . . . . 36

4.2 Complete Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Proof of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 APPLICATION TO NON-LINEAR SYSTEMS 47

5.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



5.1.1 Orientation Estimation . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 OVER-DETERMINED NAVIGATION 58

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Projectile Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 CONCLUSIONS AND FUTURE WORK 64

7.1 Completed Development and Impact . . . . . . . . . . . . . . . . . . 64

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

BIBLIOGRAPHY 67

vii



List of Figures

3.1 Sketch of distributed estimation and control . . . . . . . . . . . . . . 19

3.2 Graph representation of communication topology among spacecraft . 30

3.3 Simulation of formation estimation and control in a 415 km circular

orbit under CWH equations of motion. . . . . . . . . . . . . . . . . . 32

3.4 Illustration of additional convergence properties. . . . . . . . . . . . . 33

4.1 Sketch of proposed architecture . . . . . . . . . . . . . . . . . . . . . 38

4.2 Graph representation of communication topology among agents . . . 42

4.2 Convergence of self-estimate and states to assignment . . . . . . . . . 43

4.3 Convergence of satellite 1 estimate and states to assignment . . . . . 44

4.4 Trajectory history of formation . . . . . . . . . . . . . . . . . . . . . 45

4.5 Control effort reduction via assignment algorithm . . . . . . . . . . . 45

5.1 Representation of Orientation . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Graph representation of communication topology among agents . . . 55

5.3 Effect of increasing number of sensors - Base Case Simulation . . . . 56

5.4 Effect of increasing number of sensors - Two Malfunctioning IMUs . . 56

5.5 Effect of Compensated Bias . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Projectile Tracking Problem . . . . . . . . . . . . . . . . . . . . . . . 59

viii



6.2 Integration of PTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



List of Tables

5.1 Comparison of attitude representations . . . . . . . . . . . . . . . . . 50

x



CHAPTER 1

Introduction

1.1 Distributed Systems

With ongoing advances in multi-agent robotics, there has been a growing need

for decentralized algorithms to ensure robustness, scalability, and computational ef-

ficiency compared to their centralized counterparts. These distributed algorithms,

despite their additional complexity, are seen as the primary of implementing net-

works of large sizes as seen by Hadaegh et al. [1]. Distributed algorithms cover many

heavily-researched topics of multi-agent systems such as localization, sensing, forma-

tion control, and task assignment. Individually, the distributed algorithm in each

of these areas seeks to replicate capabilities traditionally seen in monolithic archi-

tectures while maintaining the scalability seen in distributed networks. Formation

flying spacecraft is a particular application where all of these algorithms become nec-

essary for large scale implementation. For example, Roberts [2] shows that scientific

inferometry missions rely more and more on keeping a tight formation while efficient

formation assignment would be able to address fuel considerations.

1
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1.1.1 Formation Flying Spacecraft

Formation flying satellites are becoming a major new development in space opera-

tions. The commercial, scientific, and military sectors all wish to expand the mission

capabilities of their satellite fleets such as increased communication volume for infor-

mation transfers, increased field of surveillance, and improved navigational accuracy

for military and civilian aircraft [3]. While current distributed missions, such as GPS,

are conducted in satellite constellations, these constellations do not have a coupled

control law that takes into account the states of other satellites [4]. Therefore, for-

mation flying would be able to perform missions with tighter formation requirements.

With limited funds, implementing formation flying into existing satellite technology is

a cost-effective way to extract more utility. Formation flying capabilities increases not

only the scope of satellite missions but also the reliability. In addition to perform-

ing synchronous measurements, formations have redundancies in operation, which

means failure of one spacecraft would not endanger the integrity of the mission [5].

Through the comprehensive survey on guidance and control techniques for formation

flying spacecraft by Scharf et al., one can see that a central-control framework lacks

robustness to changes within the formations [4, 6]. Distributed systems also allow

for additional autonomy in conducting missions as they can reduce the reliance on

receiving instructions from a ground station [5]. However, the fundamental challenge

to the implementation of distributed systems is achieving a desired global outcome

from isolated, local interactions.

A notable but novel use of formation flying can be seen in the distributed aperture

telescope system [2]. In light of current restrictions on the cost and logistics of sending

large telescopes for scientific observations, formation flying spacecraft could be used
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to circumvent this problem. Each of the satellites within the formation would act as

a section of a larger reflecting telescope, and the formation, as a whole, would become

a ”virtual telescope” with an aperture several times larger than their conventional

reflecting counterparts [7]. This would give astronomers access to better clarity and

resolution compared to individual telescopes. Lastly, the robustness of architecture

would avert a incident similar to the Hubble telescope, which had a manufacturing

defect in its lens and had to be repaired in space. Smaller mirrors would be more

cost-efficient to manufacture, and satellites with defective instruments can be replaced

and substituted fairly easily. This application is notable for its tight requirement on

the shape of the formation in order to achieve satisfactory resolution. Thus, accurate

estimation of the global formation structure is paramount to the success of such a

mission. With a deliberate need for accuracy and precision, swarm based approaches,

which emphasize low-complexity to reduce computational and power requirements,

would not be entirely suitable for such an application [8].

1.1.2 Heterogeneous Systems

Most of the time, actuators and physical capabilities of agents differ dramatically.

In the context of search and rescue vehicles, air-based vehicles and ground based ve-

hicles each offer advantages and shortcomings that could be mitigated if their capa-

bilities were combined. Aerial vehicles have extended range, increased field of vision,

and are less susceptible to obstacles. Ground-based vehicles can maneuver into tight

space, require minimal power consumption on standby, and are more durable to en-

vironmental hazards. Combining these capabilities effectively would greatly increase

the efficiency of these autonomous units. In addition to differing capabilities, hetero-
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geneous systems display more resiliency to failure. For example, a major storm or

sudden gust could wipe a whole swarm of UAVs, however ground vehicles would be

less susceptible to weather; whereas a earthquake could devastate ground units, but

aerial ones would be left intact.

1.2 Areas of Interest for Multi-Agent Systems

1.2.1 Estimation

State estimation and localization has always been an integral part of a robot’s

perception component. A pertinent topic in localization is overdetermined navigation,

which arises in situations where GPS is not readily available. Localization in a global

frame of reference is often very difficult without such external communication. While

a naive solution could simply be obtained by integration of on-board sensors, because

of accumulated numerical errors and noise, this odometry method would start to

drift away from the true value. Therefore, fusion of position data from odometry

and externally measured correction is necessary to provide an accurate estimation of

positioning [9, 10]. In the context of distributed systems, with each agent operates a

local estimation that does not necessarily include all the states of the entire system;

however, through communication, information can be passed on through the system

so eventually unobservable states could be estimated. Rao et al. [11] first propose a

fully decentralized Kalman filter which effectively partitions the centralized Kalman

filter and then fuses the communication via a assimilation of the all information

collected. Olfati-Saber [12,13] proposed a distributed network of Kalman filters that

share information about estimates and uncertainty and then combines them via a
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consensus algorithm. Thus, a framework for fusing multiple estimation schemes is

elegantly established. Martinez [14] extended the Kalman filter concept to mapping

applications via a more general spatial-based framework when agents estimate fields

quantities within their vicinity and perform consensus to construct the global map.

An alternate framework for combining consensus with Bayesian filter is proposed

by [15]. Its major advantages over a standard Kalman Filter approach is its general

applicability to nonlinear systems with the ability to fully propagate dynamics and

uncertainties. However, the Bayesian filtering is more computational expensive and

its combination with consensus requires more for bandwidth to transmit the necessary

probability density functions.

1.2.2 Control

Control of multi-agent systems is a topic that is extremely rich in size and scope.

There are many different differing scenarios that researchers have used to tackle this

problem. The first approach has been the centralized approach where there is a

single agent or observer that takes all the current information on the state of the

system and computes every single trajectory and control that all the agents would

follow. The primary advantage is that you can employ inexpensive, “dumb” agents

because there is not a significant need for on-board processing. However, it is not

a robust way of organizing a system. Since all effective computational power rests

with the central unit, then it can not react as quickly to disturbances and failures. It

also cannot accommodate changes in the network size as the central unit has to re-

updated for the new changes. However, distributed architectures provides a solution

to many of these issues, such as resiliency to single-point failures, adaptability to
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system changes, and scalability to large number of agents. Since they rely heavily

on communication, however, bandwidth and communication issues are large concerns

compared to the centralized case. Many different methodology of distributed control

have been considered. The first is a simple leader-follower system [16–18] which

reduces the problem to orienting the swarm to a single agent, which eliminates the

need for a global coordinate system. Gradient descent approaches have also been

used because of ease of implementation [19, 20]. Decentralized controllers based on

convex optimization [21], have generally been used to ensure constraints satisfaction

and optimality of the solution relative to simple linear controllers. There have also

been probabilistic techniques such as Markov chains [22], bio-inspired control [23],

and evolutionary genetic algorithms [24]. These probabilistic approaches utilize a

simpler framework at the agent level so it is very effective in organizing large-scale

swarm and are extremely robust to single-point failures.

Concerns in estimation naturally leads into investigation into control in the pres-

ence of such uncertainty. The premier example for the single agent is the separation

principle Tillerson et. al. [25] investigates the effectiveness of an LP controller with

regards to different methods of localizing a formation of satellites. Rantzer [26] in-

vestigated the use of multiple controllers working as a team and was able to prove

a separation principle for output feedback with bounded information propagation.

Smith and Hadaegh sketched a formation controller that uses parallel estimators,

however the full formation states have to be observable by every estimator [27]. Rah-

mani et al. [28] was able to extend this idea with distributed systems that estimates

not only states but also control of the entire formation via communication across
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a connected network. Vu and Rahmani [29] then showed that these results could

successfully apply to spacecraft in a low-earth orbit.

1.2.3 Guidance and Assignment

Another major area of interest is task assignment, which is a combinatorial opti-

mization problem that seeks to find a minimum (or maximum) weight matching of a

bipartitite graph. With respect to formation control, this is usually seen as assign-

ment of positions within the formation with the weights being the distance to each

location. One of the first major algorithms is the Iterated Closest Point Algorithm

(ICP), first used by Besl [30] and Chen [31] to match point clouds for 3D shapes.

This algorithm seeks to minimize total distance error by selecting an optimum trans-

lation and rotation from one set to the other based on some initial data. While this

algorithm will always converge, its direct application to the assignment problem leads

to two unwanted phenomenons. The first problem is that there is no guarantee of a

one to one mapping between the two sets because it relies on the nearest neighbor

rule to match up points. McDonald [32] resolved this problem by incorporating the

Hungarian algorithm to maintain the bijective nature of the matching. However, the

modified algorithm will still converge to a local minimum based on the initial data.

Therefore, it is still necessary to obtain a good estimate for the initialization of the

rotation and translation vector. Alighanbari and How [33], proposes a robust task

assignment algorithm based on the petal algorithm, which achieves the same perfor-

mance as a centralized controller but requires a much higher bandwidth require and

computational power so that the agents can achieve the same situational awareness.
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An alternative solution to the assignment problem is an auction algorithm, in

which tasks would be assigned to the higher bidder among the swarm. While ini-

tial auction algorithms, like [34], needed a centralized depository to keep track of all

the bids, distributed-based auctions have since been implemented as seen by Choi

et al. [35] who allow the new bids to propagate through the network via a concen-

sus algorithm. Choi also considered the possiblility of of multi-task assignment by

bundling these task and performing bundle construction and conflict resolution sepa-

ratedly. Morgan et al. [36] proposes an architecture that deploys both swarm assign-

ment and trajectory optimization (SATO). This architecture uses an auction-based

approach to determine the assignment and sequential convex programming to gener-

ate trajectories before combining them into a model predictive control formulation.

However, a key difference between the auctions-based approach and the architecture

to be proposed is the degree of communication. The SATO algorithm requires on

both perfect information states and transmission of nominal trajectories and bids to

propagate through the network, whereas our architecture addresses the estimation

problem while only relying on the communication of the current neighboring state

estimates and covariances.

If one considers task assignment in terms of goal selection, then it can also be

thought as a coordination problem in guidance. Cortes et al. [20] uses a descent

based approach combined with a partition of the target space to move a formation to

cover the space. Saptarshi et al. [37] proposes a method of combining guidance, esti-

mation, and control by combining an inhomogeneous Markov chain with the Bayesian

Consensus Filter in order to estimate the probability density functions for the swarm

and thus reduce the number of transitions to convergence. This approach is extremely
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effective in organizing large number of agents; however, because it is still probabilistic

in nature then applications for precise, tight formation are still limited.

1.3 Summary

In most engineering applications, subsystems are designed by different teams and

assembled into the finished product. From a systems engineering perspective, this

approach is not guaranteed to work, and additional analysis is necessary to ensure

adequate performance. By extending this concept to distributed systems, this work

proposes to establish a framework for combining these topics of multi-agent systems

in an unified architecture. This unified architecture would then be demonstrated

through analysis of the subsystems and then verified through simulations.



CHAPTER 2

Review of Essential Concepts

As this work seeks to build framework around control of systems with sensor

networks, then relevant topics from control and graph theory will be summarized.

These topics will appear again in the context of distributed systems

2.1 Control Theory

Any dynamic system can modeled by a set of differential equations for continuous

time or difference equations for discrete time in terms of state variables x ∈ R
p and

control inputs u ∈ R
q.

ẋ = f(x(t), u(t), t) (2.1)

x[k + 1] = g(x[k], u[k], k) (2.2)

If the system is linear, the f and g are simply linear combinations of x and u,

with A,Φ ∈ R
p×p are the state matrices and B,Γ ∈ R

p×q are the control matrices:

10
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ẋ = A(t)x(t) + B(t)u(t) (2.3)

x[k + 1] = Φ[k]x[k] + Γ[k]u[k] (2.4)

Typically in the absence of any control input, then a system is asymptotically

stable if all the eigenvalues of A are on the open left half complex plane or all the

eigenvalues of Φ are inside the unit circle.

2.1.1 Lyapanov Theory

Stability analysis for nonlinear and time-varying systems is relatively difficult

to accomplish given the standard definitions of (asymptotic) stability because these

systems are so rich in behavior. What Lyapanov noticed was that if one can show that

there exists an energy-like function of the state of the system and which obeys certain

dissipation requirements, then the system is guaranteed to be stable. Lyapanov’s

theorem for global asymptotic stability is as follow [38]

Proof: Suppose there exists a scalar function V(x(t)) with the following prop-

erties

V > 0 ∀x �= 0

V = 0 for x = 0

V̇ < 0 ∀x �= 0

Now assume that x does not go to 0.

Then there must be an ε > 0 such that ε ≤ V (x(t)) ≤ V (x(0))

This is a closed and bounded interval therefore V̇ , which is assumed continuous,

attains its maximum, −m < 0, within this interval. Therefore
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V (x(T )) = V (x(0)) +

∫ T

0

V̇ (x(t))dt

≤ V (x(0))−mT

Therefore T > V (x(0))/m implies V (x(T )) < 0 but this is a contradiction to the

assumptions of V

Thus x(t)→ 0

The scalar function V is called a Lyapanov function of the system. In cases

of physical systems, the function corresponds to the energy of the system. Since

this proof places no restrictions on the dynamical system considered, then it can be

generally applied to time-varying and nonlinear systems.

2.1.2 Observer-controller Duality

Even if a system is naturally unstable, there are still conditions where it is possible

to achieve stability by controlling the system. For a linear time invariant system, its

controllability matrix C ∈ R
p×pq needs to be a rank p matrix.

C = [BABA2B . . . Ap−1B] (2.5)

If this condition is met then the system is called controllable or (A,B) is called

a controllable pair. It ensures the existence of a control sequence that will move the

system from one state to any other state in finite time. A basic class of controllers

is the state feedback controller where u(t) = Kx(t) and there the complete system

dynamics would be as follows:
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ẋ = Ax(t) + Bu(t) = (A+BK)x(t) (2.6)

A + BK is the closed loop state matrix and if the system is (A,B) controllable,

K could be constructed such that A+BK could have arbitrary eigenvalues. Another

closely related concept is observability of the system.

Many times some states are not directly measurable, but the output, z, some

function of the the states and the input is measurable.

z = h(x(t), u(t)) (2.7)

An important subclass of possible functions is the linear time invariant class, where

the dynamics are linear and the output is is simply a linear combination of the states

as encapsulated by the measurement matrix H ∈ R
r×p:

ẋ = Ax(t) + Bu(t) (2.8)

z = Hx(t) (2.9)

An observability matrix O ∈ R
rp×p can be constructed similarly to equation 2.5,

and if it has rank p then there would exist a state observer that could construct the

states from the outputs, with current estimate x̂ ∈ R
p and observer gain L ∈ R

p×r.
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O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H

HA

HA2

...

HAp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)

˙̂x = Ax̂+Bu+ L(z −Hx̂) (2.11)

Let η = x− x̂ then the dynamics of the error can be written as:

η̇ = Aη − L(Hx−Hx̂) = (A− LH)η (2.12)

This time if (A,H) is an observable pair then L can constructed such that the

A−LH have eigenvalues all on the left half complex plane or negative definite. One of

the most powerful theorem in control theory is the separation principle which states

the controller gain K and the observer gain L can be constructed separately without

affecting the overall stability of the system. A generalization of this statement will

be explored for distributed systems in chapter 3. If K was generated by least square

controller, then it seeks to minimize the square of the control effort u then it is called

a least quadratic regulator. Since observer and controller are mathematical duals

of one another, then a least square estimator also exists and is called the Kalman

filter, whose observer gain satisfies some form of Riccati equation, as seen in equation

2.15. In fact a system is (A,B) controlable is controllable if and only if (AT , BT ) is

observable.
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˙̂x = Ax̂+Bu+ L(z −Hx̂) (2.13)

L(t) = P (t)HTR−1 (2.14)

Ṗ = AP (t) + P (t)AT +Q− L(t)RLT (t) (2.15)

The parameters Q ∈ R
p×p
+ and R ∈ R

r×r
+ are positive definite matrices that ensure

P is also positive definite. In addition if the measurement and process disturbances

are white Gaussian noise, and if Q and R correctly characterize the noise covariance

statistics respectively, then the Kalman filter would be the optimal least squares

estimator for x. While the Kalman filter propagates the covariance error online in

real time, (A,H) observability guarantees that a steady state value exists, P∞, given

as the positive definite solution of the algebraic Riccati eqution. This in turn gives a

steady value of of the observer gain, L∞.

0 = AP∞ + P∞AT +Q− P∞HTR−1HP∞ (2.16)

L∞ = P∞HTR−1 (2.17)

These steady state values are useful in offline analysis of the filter and gives a

idea of how to initialize the Kalman filter. They also come in handy when onboard

computational power is severely restricted.

2.2 Graph Theory

Graph theory started an area of mathematics that seeks that quantitatively de-

scribe the structure of a network. In general a graph G is a collection of two sets
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(N , E), where N is the set of the nodes or vertices in the network given by some

enumeration and E ⊂ N ×N is the set of edges where each element indicates a con-

nection between its first and second arguments. Consequently, the size of the network

is given by |N | = n. A path is an alternating sequence of vertices and edges in which

each vertex is unique (except possibly the first and last) and is preceded and followed

by an edge to which it is a member of. A connected graph is one where there exists

a path between any two vertices in N . For any vertex i, its neighborhood Ni ⊂ N is

the set of vertices that shares an edge with i.

One of useful tools for the analysis of graph has been algebraic graph theory, which

connects graph theory with linear algebra. For any graph, its matrix representation

can be given by the adjacency matrix, A, which is a boolean matrix in which an

element Aij = 1 if (i, j) ∈ E and 0 otherwise. Another matrix of interest is the degree

matrix D which is a diagonal matrix given by the size of the neighborhoods of each

vertex i.e. D = diag(|N1|, |N2|, . . . , |Nn|). Finally its Laplacian matrix is simply:

L = A−D (2.18)

One of the most important features of the Laplacian is its eigenvalues give a

measure of the connectivity of the graph. It can be easily verified that a ones vector of

correct size is always an element of the null space of the the Laplacian. Any additional

zero eigenvalue would indicate the graph is disconnected. In fact, the number of

zero eigenvalues gives the number of connected components of the graph. Another

important property is that it is positive semidefinite. If the eigenvalues are listed in

increasing order, then the second eigenvalue is called the algebraic connectivity.
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2.2.1 Consensus

With many different nodes in a network, and if each node was itself an observer

of the formation, then surely they would disagree on their states. This is where the

consensus protocol, developed by Olfati-Saber and Murray [39], becomes necessary

to allow the nodes to agree with each other, as seen in equation 2.19, where xi be the

state of agent i and xj ∈ Ni.

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) (2.19)

It can be shown that the consensus dynamics is closely related to the Laplacian of

the network. It will converge to an element in the null space of the Laplacian, therefore

for a connected network it converge to a multiple of the ones vector 1. In its current

form the final agreed value will simplify the geometric centroid of the initial states

of the network. By adding weights to the protocol it is possible to change the final

converged value. The rate of convergence is controlled by the algebraic connectivity

of the Laplacian.



CHAPTER 3

Distributed Linear Estimation and
Control

3.1 Background

The first problem considered was to determine how would the separation principle

hold in the context of distributed systems. First, a framework is needed to consider the

states of such a system. For this analysis, a spacecraft flying formation is considered,

but the framework would be valid for any linear system. The dynamics of a distributed

system can be formed by first considering the dynamics of a single spacecraft and

aggregating their respective states to form the state of the entire formation. Again, we

will only consider linear dynamics for each spacecraft. While at first glance this might

look restrictive, in practice dynamics of most planned formation flying missions can be

represented by linearization around an operation point of interest, like the Clohessy-

Wiltshire-Hills equations for relative orbital dynamics. Since spacecraft formation

operate in relatively close proximity, the use of linearized dynamics is justified.

A sketch of the control scheme, along with its inter-dependencies, is summarized

in Figure 3.1. The major concept is that each spacecraft is not only estimating its own

states, but also the states, controls, and formation assignment of the other spacecraft.

18
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Using its estimate of the formation control and orientation, it would then implement

its own control and select its own goal, respectively. Communication of information

enables estimation of states even if no spacecraft can observe the entire formation.

With this framework in mind, the following sections will implement the structure

with respect to the linear dynamics on the spacecraft formation.

Figure 3.1: Sketch of distributed estimation and control

3.1.1 Dynamics

Consider first, n spacecraft, each under linear dynamics influenced by an exoge-

nous, zero mean white Gaussian noise, vi.

ẋi = Aixi +Biui + vi (3.1)

The states of each spacecraft, xi, can be concatenated to form an aggregated state

vector, X = [xT1 · · · xTn ]T . Similarly, the control input and noise disturbances can

also be aggregated as U = [uT1 · · · uTn ]T and V = [vT1 · · · vTn ]T respectively. Under this

formulation, the state and and control matrix can be written in a block diagonal form:

A = diag(A1, · · · , An) and B = diag(B1, · · · , Bn) respectively. These aggregated

dynamics can now be written in a form analogous to equation 3.1. Note that while

the use of different individual state matrices Ai keeps this analysis general for diverse,
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heterogeneous systems, for homogeneous systems within the same environment, the

state matrix would be identical.

Ẋ = AX +BU + V (3.2)

We assume, each spacecraft i can measure a subset of these aggregated states zi,

usually their own and a few select states of their neighbors, or a linear combination

of them via a measurement matrix Hi, with an additive Wi, a zero mean Gaussian

measurement noise. Thus, an aggregated system of measurements can be found.

zi = HiX +Wi (3.3)

It should be noted that it has not been required that (A,Hi) be observable, which

allows the possibility of the whole system not being observable by one spacecraft.

Instead, a weaker condition is assumed where each state could be constructed by at

least one spacecraft. In technical terms, this means that (A,H) is observable where

H = [HT
1 · · · HT

n ]
T . The linear combination of states for observation is especially

applicable to distributed systems since inter-agent distance can simply be represented

by 1 and −1 in the corresponding positions in the Hi matrices.

3.1.2 Distributed Estimation

We would like to employ state feedback to ensure global stability of the network,

either by LQR or pole placement. However, both methodologies require that K, the

state feedback gain, is calculated by assuming full knowledge of the entire formation

states.
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Uideal = KX (3.4)

Since complete knowledge of entire system states in a distributed setting is not pos-

sible, we assume each spacecraft can measure some of its own and neighboring space-

craft’s states represented by zi = HiX. Provided the spacecraft can locally commu-

nicate and share their estimate of the entire formation state X̂i with their immediate

neighbors (sensing and communication neighborhoods do not necessarily need to be

the same), each spacecraft can run its local version of a distributed consensus-based

Kalman filter to estimate the state of the entire network. Olfati-Saber show that such

a filter will converge to the same estimate in the absence of any external control.

However, the problem is that the dynamics of the entire formation depends on

knowledge of actual control U implemented by all spacecraft. Since each spacecraft

implements its own control locally and does not communicate this value with the

entire formation, we use the following distributed estimation and control proposed

by [28]. The distributed Kalman filter in presence of locally constructed controls is

as follows:

˙̂
Xi = (A+BK)X̂i +Ki(zi −HiX̂i)

+ γPi

∑
j∈Ni

(X̂j − X̂i), (3.5)

Ki = PiH
T
i R

−1
i , (3.6)

Ṗi = APi + PiA
T +Q−KiRiK

T
i (3.7)

where Pi, Q, and Ri are the symmetric covariance matrices of the error, process and

measurement noise, respectively. Every term except for the third term in equation
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3.5 is the standard local Kalman filter, with the addition of the extra term, which

is the consensus algorithm. This term is weighted by both a scalar constant, γ, and

the error covariance, Pi. The consensus, γ, is the relative weighting factor for the

entire consensus contribution to the estimate, while Pi is weighing each state by its

uncertainty. This means each spacecraft would put more “trust” in incoming data if

its own estimate is more uncertain. Naturally, for states that it is not observing, then

it would need to rely on incoming data to achieve an accurate estimate. Therefore,

it is not necessary for any single spacecraft to observe the entire formation, and it is

only required that (A,H) be a fully observable pair, i.e. any state is observable by

at least one spacecraft.

3.1.3 Distributed Control

Since each spacecraft would have to obtain its own controls from its respective

estimate, we can define Πi as the selection function of its estimate inputs. This

selection matrix is a block diagonal matrix whose blocks consist of zero matrices and

one identity matrix. These block matrices are square matrices whose length is the

size of the control input to each spacecraft, and the identity matrix is situated on the

position corresponding to spacecraft i. Now it is possible to write out actual control

input to the entire formation.

Πi = diag (0, 0, . . . I . . . 0) (3.8)

U(t) =
∑
i

ΠiÛi =
∑
i

ΠiKX̂i (3.9)

Essentially, each spacecraft i holds a local estimate of what every spacecraft control

action should be, i.e. Ûi = KX̂i. The selection function Πi only selects the control
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pertaining to spacecraft i and sets everything else to zero. This is the actual control

implemented by spacecraft i. Hence, the actual control implemented by the entire

formation is the concatenation of these locally constructed controls. This is achieved

via the summation sign since the selection matrix, Πi, returns values of spacecraft i’s

control at its corresponding locations and zero at every other location.

To show the convergence of each spacecraft’s estimation to the global state, one

can define a spacecraft’s error vector. Subsequently the system dynamics can be

derived in terms of state variables and the state error by exploiting the fact that∑
i

Πi = I.

ηi = X − X̂i (3.10)

Ẋ = AX +BU

Ẋ = AX +B
∑
i

ΠiKX̂i

Ẋ = AX +B
∑
i

ΠiK (X − ηi)

Ẋ = (A+BK)X −
∑
i

BΠiKηi (3.11)

Now it is possible to write the error dynamics in terms of the state error and

simplify the consensus term since Xj −Xi = ηi − ηj.

η̇i = (A+BK −KiHi)ηi + γPi

∑
j∈Ni

(ηj − ηi)−
∑
j

BΠjKηj (3.12)

where Ni is the communication neighborhood set of spacecraft i.
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3.2 Convergence Conditions

Since we wish to consider the validity of the separation principle to distributed sys-

tems, then it is necessary both for the estimates to converge onto the global formation

and for the formation itself to converge onto the desired formation simultaneously.

With this in mind, we consider a Lyapunov function of the form:

V (t) =
∑
i

ηTi P
−1
i ηi +XTX (3.13)

By construction, this Lyapunov function is positive definite and can be zero if and

only if the error vector of every spacecraft and the state vector are identically zero.

V̇ =
∑
i

(η̇Ti P
−1
i ηi − ηiP

−1
i ṖP−1

i ηi + ηTi P
−1
i η̇i) + 2XT Ẋ (3.14)

V̇ = −
∑
i

ηTi (H
T
i R

−1
i Hi + P−1

i QP−1
i )ηi

+ 2
∑
i

[
ηTi P

−1
i

(
BKηi −

∑
j

BΠjKηj

)]

+ 2γ
∑
i

∑
j∈Ni

[
ηTi (ηj − ηi)

]
+ 2XT (A+BK)X − 2XT

∑
i

BΠiKηi (3.15)

Next we define the following relations for concise notation:

η =
[
ηT1 η

T
2 . . . ηTn

]T
η̄ = [XT ηT ]T

Λi = HT
i R

−1
i Hi + P−1

i QP−1
i

M1 = diag(Λ1,Λ2, . . . ,Λi)
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Using this notation, then it is possible to assemble block matrices for an even simpler

representation:

−
∑
i

ηTi
(
HT

i R
−1
i Hi + P−1

i QP−1
i

)
ηi + 2XT (A+BK)X

= −η̄T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(A+BK) 0

Λ1

Λ2

. . .

0 Λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η̄

= −η̄T
⎡
⎢⎣ −2(A+BK) 0

0 M1

⎤
⎥⎦ η̄ (3.16)

By definition, 2γ
∑
i

∑
j∈Ni

[
ηTi (ηj − ηi)

]
= −2γηTLη where L is the Laplacian of

the graph. Now let us consider the following terms:
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−2
∑
i

ηTi P
−1
i

∑
j

BKηj = −2ηT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P−1
1 BΠ1K P−1

1 BΠ2K . . . P−1
1 BΠnK

P−1
2 BΠ1K P−1

2 BΠ2K . . . P−1
2 BΠnK

...
...

P−1
n BΠ1K P−1

n BΠ2K . . . P−1
n BΠnK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
η

= −2ηTM2η (3.17)

−2XTB
∑
i

ΠiKηi = −2XT

[
BΠ1K BΠ2 . . . BΠnK

]
η

= −2XT B̄η (3.18)

2
∑
i

ηTi P
−1
i BKηi = 2ηT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P−1
1 BK

P−1
2 BK

. . .

P−1
n BK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
η

= 2ηTM3η (3.19)

We can combine the previous equations to show that the time derivative of the

candidate Lyapunov function be characterize by a single block matrix:

V̇ = −η̄T
⎡
⎢⎣ −2(A+BK) 2B̄

0 M1 + 2M2 − 2M3 + 2γL

⎤
⎥⎦ η̄ (3.20)

= −η̄THη̄ (3.21)

For this system to be stable, then H 	 0. Since H is block triagonal, this must

imply that blocks on the diagonal are positive definite:

−2(A+BK) 	 0 (3.22)

S =M1 + 2M2 − 2M3 + 2γL 	 0 (3.23)
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By assuming that (A,B) is controllable, K was constructed to ensure that the

closed loop system is stable, then A+BK ≺ 0, and since every Λi ≺ 0, thenM1 	 0.

Since the eigenvalues of each Pi are bounded from below by the Cramer-Rao bounds

[40], which are nonzero because of the process noise Q, then P−1
i is guaranteed to

have bounded eigenvalues. Since L is assumed to represent a connected graph, it is

positive semi-definite, and its nullspace is within span{1}. Therefore, one can select

a sufficiently large γ such that S 	 0. Intuitively this means that consensus must be

reached first so that each agent will have a reliable estimate of total control input.

Once this occurs, then each agent would be running an estimation scheme as if there

is a singular global Kalman filter.

Thus, the system is stable if the following assumptions are satisfied:

(A,B) is controllable (3.24)

(A,H) is observable (3.25)

nulL = span{1} (3.26)

∃γ :M1 + 2M2 − 2M3 + 2γL 	 0 (3.27)

3.3 Design Considerations

Since the design of γ is influenced by the values of K, strictly speaking the sepa-

ration principle cannot be applied. Fortunately, there is only a unidirectional depen-

dence, as the controller can to be designed first without considering the estimator.

Only the estimator depends on the controller gains. Mathematically, this can be seen

in the derivation of the differential Riccati equation by Kalman and Bucy, [41] which
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assumes that the control input is explicitly known at all times, and has no effect in

the evolution of the error. Therefore, once there is a consensus in estimation, each

agent knows exactly what the global input is to the system. However, practically

speaking, in most applications, there are physical or design constraints on the gain

values, therefore initial design consideration could assume the worst case bound on

the gain values and then optimize as the design progresses.

In terms of selecting an appropriate γ, the last stability condition is rather cum-

bersome to use in designing a system because S has an implicit time dependence

due to P−1
i . Nevertheless, one can construct matrices M̄2 and M̄3 whose eigenval-

ues would be a worst case upper bound on the their respective counterparts. Using

these matrices, γ could be designed offline and also ensure stability for all time. As

mentioned earlier, the eigenvalues of Pi are bounded from below by the Cramer-Rao

bounds [40], therefore the eigenvalues from the Fisher information matrix, J , are the

upper bound for the eigenvalues of P−1
i . Therefore, M̄2 and M̄3 can be constructed

by replacing each P−1
i by J :

M̄2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

JBΠ1K JBΠ2K . . . JBΠnK

JBΠ1K JBΠ2K . . . JBΠnK

...
...

JBΠ1K JBΠ2K . . . JBΠnK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.28)

M̄3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

JBK

JBK

. . .

JBK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.29)
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Similarly, a time-invariant version of the stability criterion can be evaluated using

M̄2 and M̄3 and neglecting M1:

S̄ = M̄2 − M̄3 + γL � 0 (3.30)

Since M1 is always positive definite, it was neglected in order to add a factor of

safety to the stability of the system. One might also note the implicit assumption in

stating that the eigenvalues of J are bounded. For this assumption to be valid, the

designer will need to make sure that the covariance of the process noise, Q, is positive

definite, which is standard practice. This prevents the eigenvalues of Pi from going

to zero which allows P−1
i to exist and J is bounded.

3.4 Simulation

To illustrate the implementation of this distributed control scheme on a system of

satellite, the Hill-Clohessy-Wiltshire equations are considered as the natural dynamics

of the environment, which are inherently unstable under most initial conditions [42].

Therefore maintaining positions in the radial, along track and cross track direction

would indicate a validation of the control and estimation algorithm. The spacecraft

would be orbiting at an attitude of 415 km above the surface of the Earth, which

would corresponds to the orbit of the International Space Station. Each spacecraft

will be able to measure its own states and the states of its neighbors. Neighbors are

defined by the graph representation, given in Figure 3.2. Since the graph is connected,

it ensures that (A,H) is fully observable. As for controllability, it was assumed that

these spacecraft have control over all three acceleration components. The control
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1

2

3

4

Figure 3.2: Graph representation of communication topology among spacecraft

gain was chosen by an LQR regulator which gives more weight to the states in order

to show convergence of the system to the desired configuration. Though the initial

states and estimated states were both randomly drawn from uniform distributions,

the estimated states were given a wider range so that they would be more dispersed

from the actual states.

To simply assure positive-definite covariance matrices, positive scalar multiples

of the identity matrix were chosen for the P , Q, and R matrices. Since the control

scheme was given for the continuous Kalman-Filter, a Runge-Kutta scheme, with

a time step of 0.1 seconds was utilized for a high-fidelity simulation. It was noted

that changing the time step would surprisingly yet noticeably affect the trajectories

because the time step would have a physical significance. During every iteration of

the Runge-Kutta scheme, each spacecraft would place a zero order hold on the states

communicated from its neighbors. Therefore, the time-step would represent the time

lag in communication signals between the spacecraft.

The various graphs in Figure 3.3 show not only that the spacecraft can get into

formation but also, through communication, each spacecraft would know where ev-
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ery other one is located. Figure 3.3(a) shows a random initial configuration of the

four spacecraft, transparent satellites represents the the estimated position that each

satellite has for itself. Figure 3.3(b) shows the convergence of this configuration

within 0.04 percent of its 92.6 minutes orbital period. Figure 3.3(c) similarly shows

another random initial configuration, but now the estimated positions shown are the

perception of the blue satellite over the entire formation. Finally Figure 3.3(d) again

demonstrates convergence of the overall system along with the convergence of blue

satellite’s estimation. Randomizing the initial condition would also simulate a tem-

porary loss of communication or memory as each spacecraft would try reestablish

communication in order to find out the configuration of the formation. This also

shows the resilience of the control scheme to changes in initial conditions.
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(a) Random initial configuration showing each
spacecraft’s own estimation of themselves

(b) Convergence to formation showing each
spacecraft’s own estimation of themselves

(c) Random initial configuration showing the
blue spacecraft’s estimation of the entire for-
mation

(d) Convergence to formation emphasizing the
blue spacecraft’s estimation of the entire for-
mation

Figure 3.3: Simulation of formation estimation and control in a 415 km circular orbit under
CWH equations of motion.
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This architecture is also not limited in possible ending configurations, and the

formation can be made to converge to other locations in all three directions as seen in

Figure 3.4(a). Whereas Figure 3.4(b) shows convergence to the same formation but

with a five fold increase to each of the measurement covariance of each spacecraft.

By amplifying measurement uncertainty, it leads to a higher dispersion around the

equilibrium point in the estimation.

(a) Convergence to an alternate formation (b) Convergence with five times increase to the
measurement covariance

Figure 3.4: Illustration of additional convergence properties.

3.5 Summary

The stability criterion for distributed estimation and control of a collection of

agents is derived in a linear continuous system. It is also shown that a fully general-

ized version of the separation principle is not achievable with the estimation scheme,

and a weak version with one way dependence could be used for combined estima-
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tion and control. Simulations were performed for satellites operating under linear

orbital dynamics which validated results expected from the model. Since estimates

are communicated in discrete intervals, these results would need to be extended into

the discrete domain. A static graph is a major assumption taken within this work,

and a generalization to state dependent graphs would be necessary as many real world

applications have range limited communication and sensing.



CHAPTER 4

Distributed Assignment

In the previous chapter, it was shown that distributed estimation and control of

satellite formation could result in a stable system. However, formation location and

assignment were decided somewhat arbitrary, therefore a followup issue would be: Is

there an optimal way to assign a group of satellites into a formation? By utilizing the

Hungarian algorithm with a version of the ICP algorithm, McDonald developed an

efficient algorithm for optimally assigning agents with a distance based cost function.

When the desired convergence states are also a function of time, then convergence

to final equilibrium can be considered a tracking problem. Convergence analysis

of a tracking problem would then be addressed using sliding mode control, where

the switching mode are built into a Lyapanov function to derived a control law.

[43, 44]. This approach has already applied to swarms, as shown by Yao et al. using

artificial potentials. [45] However, the tracking trajectories are usually exogenous to

the dynamical model. However, this paper will illustrate a distributed, fully nested

architecture of estimation, guidance, and control that is shown to be stable even with

local implementation of all three sub-processes. The overall control scheme would be

based a simple state-feedback loop, thereby reducing the need to derive a complex

control law.

35
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4.1 Distributed Assignment Algorithm

Using the notation from McDonald, if P is the desired formation, given by a col-

lection of points in R
2, then we can define the assignment Y : R2 → R

2 to be a

bijective relation between the a set of subvectors of xi with P . With a cost function

that would be geometric in nature, then these subvectors, x̃i, would be the position

components of each xi. Succinctly, Y would map each current location of each space-

craft to a desired location for the formation. Then for θ ∈ R and τ ∈ R
2 representing

a rotation and translation respectively, the following cost function is defined:

L(Y, τ, θ) =
N∑
i=1

‖R(θ)Y (x̃i) + τ − x̃i‖2 (4.1)

R(θ) =

⎡
⎢⎣ cos(θ) −sin(θ)

sin(θ) cos(θ)

⎤
⎥⎦

McDonald’s assignment algorithm then minimizes this cost function with the fol-

lowing steps:

1: procedure Assignment Algorithm

2: k ← 0

3: Guess τ ← τk

4: Guess θ ← θk

5: Cost0 ←∞

6: ε←∞

7: while ε > 0 do

8: k ← k + 1

9: Compute Yk ← min
Y
L(Y, τk−1, θk−1)
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10: via Hungarian Algorithm

11: Costk ← L(Yk, τk−1, θk−1)

12: ε← Costk−1 − Costk

13: Compute (τk, θk)← min
(τ,θ)

L(Yk, τ, θ)

14: θ ← tan−1(W2

W1
)

15: W1 ←
N∑
i=1

(x̃i − μx)
T (Y (x̃i)− μy)

16: W2 ←
N∑
i=1

(x̃i − μx)
T

⎡
⎢⎣ 0 −1

1 0

⎤
⎥⎦ (Y (x̃i)− μy)

17: μx ← 1
N

N∑
i=1

x̃i

18: μy ← 1
N

N∑
i=1

Y (x̃i)

19: τ ← μx − μy

20: return (Y, τ, θ)← (Yk, τk, θk)

McDonald [32] proved that this algorithm would converge in finite time, therefore

there is no issue of not finding an assignment. While this assignment was shown to

work in a distributed setting, the complete graph requirement is a strong constraint

placed on the algorithm. By incorporating the distributed Kalman filter, this as-

sumption can be relaxed. In a distributed environment with noisy measurements,

then each spacecraft would use its generated estimate of the global formation X̂i and

independently compute a formation pose, (Y, τ, θ)i, for every spacecraft. It would then

select its own desired goal from this estimated formation pose. Therefore, within dis-

tributed assignment, there is an additional layer of estimation, where in addition to

estimating the states of every spacecraft in the formation, the global destination of

all spacecraft is also simultaneously computed using the estimated state. Since the

distributed assignment algorithm only uses the position components of X, then there
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is additional freedom for the goals of the excluded components Vdesired. The choice of

notation reflects that these excluded components are usually the velocity components

of the state vector X.

4.2 Complete Algorithm

All of the results described in the previous sections can be combined and sum-

marized below in both graphical and algorithmic form. In order to save power and

reduce computational cost after the convergence, the assignment algorithm would not

update if the X̂ −Xgoal is within a ball with pre-determined radius ε.

System
Dynamics

Measurement

Estimation
Distribuited
Kalman
Filter

Neighboring Agents

Estimated
Control
Input

Implement
Distributed
Control

Transmit EstimateFormation Sensing

True Control Input

Estimated
Formation

Goals

Select
Current
Goal

Figure 4.1: Sketch of proposed architecture

1: procedure Complete Distributed Algorithm

2: X̂ ← X0

3: P ← P0

4: Y ← Y0

5: τ ← 0

6: θ ← 0

7: Vdesired ← 0

8: while formation desired is available do

9: Extract positions {x̃i} from X̂
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10: Compute desired positions x̄i ← R(θ)Y (x̃i) + τ

11: Assemble Xgoal from {x̄i} and Vdesired

12: if New neighbor data is available then

13: Update current neighboring estimate{X̂j};

14: Update current estimate and covariance (X̂, P )

15: Using eq. 3.5 through 3.7

16: Implement control: U ← ΠK(X̂ −Xgoal)

17: if ‖X̂ −Xgoal‖ > ε then

18: Compute (Y, τ, θ)

19: Using Algorithm 0

4.3 Proof of Stability

Consider first the case where states are solely 2-D positions, with n number of

agents. Therefore X, X̂i ∈ R
2n and {x̃j}i could be could be concatenated to form

X̂i. Within the assignment algorithm, each spacecraft forms its own estimate of the

global desired position, which is a function of assignment, translation and rotation:

Ẑi = f(Yi, τi, θi). Once again it is position to express the actual desired formation

using the selection matrices and summing the result.

Z =
n∑

i=1

ΠiẐi

Based on the previous results from chapter 3, then it is known that for any given

desired formation Z, along with other convergence conditions, then X will approach

Z asymptotically. This proof was based on a Lyapanov function, given below where
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H3 is a positive definite block trigonal matrix:

V (t) =
∑
i

ηTi P
−1
i ηi + (X − Z)T (X − Z)

V̇ (t) = −η̄TH3η̄

In other words, as long as Z is fixed, the Lyapanov function would be decreasing with

time. The convergence rate could be estimated from below by the minimum eigenvalue

of the H3: V (t) ∼ e−λ1(H3)t. Therefore, every time Z is updated, then it would cause

a step function jump in the Lyapanov function, which can be similarly represented

in its approximation. Therefore as long the update time for Z is sufficiently long and

the step function jump is bounded for all time, then Lyapanov function decreasing

with time. To show that the jump is bounded, τi will first be shown to be bounded.

If τi is bounded then we can at least ensure that the formation does not diverge to

infinity.

τi = μx − μy =
1

N

N∑
j=1

x̃i,j − 1

N

N∑
j=1

Yi(x̃i,j)

=
1

N

N∑
j=1

x̃i,j − Yi(x̃i,j)

≤ 1

N
‖X̂i − Ẑi‖1

≤ 1

N
(‖X̂i −X‖1 + ‖X − Ẑi‖1)

The first term is going to zero because of the Lyapanov function, while the second

term is at least bounded because at least x̃i,i − Yi(x̃i,i) goes to zero and the terms

in the norm sum is bounded by the geometric diameter of the desired formation.

Now let’s consider the convergence of the angles, θi. Since τi is bounded and the

formation stays relatively localized, then one just has to wait for the estimates to

converge. Feeding the same estimates values into the assignment algorithm would
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mean that Ẑi goes to Z. In addition convergence of the estimates, along with the

Hungarian algorithm, ensures no overlap in matching. In other words, each assigned

goal is unique to each agent. The final case is whether θi would keep change such

that the agents are always chasing their goals and never truly converge. Based on the

construction of the cost function, being distance-based, then when the assignment

algorithm returns a new θ value, then it cannot return a value that would increase

the total distance to goal convergence. Therefore, the assignment algorithm would

never return a value that would rotate the formation goals away from equilibrium.

Finally for the general case, where you have additional degrees of freedoms due

to the velocity components of the aggregate state vector, the controlability of (A,B)

ensures that these components would also converge to zero.

4.4 Simulations

Again, to illustrate the implementation of this distributed architecture for space-

craft coordination, the natural dynamics of the environment is chosen to be the local

vertical and local horizon components (LVLH) of the Hills-Clohessy-Wiltshire Equa-

tions. The cross track component is not considered since the system is stable in this

direction.
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Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

n =

√
μ

a3
(4.3)

Following conventional notation, μ is the gravitational parameter of the Earth and

a is the semi-major axis of the orbit of the origin of the LVLH coordinate system.

Similarly, the International Space Station’s altitude of 615 km is chosen. All other

parameters, such as covariances and graph topology, remain the same as the previous

chapter’s.

1

2

3

4

Figure 4.2: Graph representation of communication topology among agents

As seen in Figure 4.2 and 4.3, the formation is shown at every 2.5 s increments,

illustrating that after 7.5 s the formation has indeed converged. For Figure 4.2 ,

each color corresponds to the characteristics of a single agent. In particular, the

estimation markers represent the estimated location each spacecraft had for itself.

On the other hand, in Figure 4.3, the estimation markers represents the estimate

locations as perceived by satellite 1 (represented by the blue markers). Thus, it

can be inferred that every estimate by every other satellite has also converged the

corresponding true state value. Additional evidence of this can be seen in the final

formation locations, which form the desired 4 by 4 square.
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(d) t=7.5 s

Figure 4.2: Convergence of self-estimate and states to assignment
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Figure 4.3: Convergence of satellite 1 estimate and states to assignment



45

Since fuel is such a precious commodity for spacecraft, then reducing control ef-

fort would lead to increased operational time or decreased cost of deployment. Figure

6.2 illustrates two cases of a formation starting from the same nominal initial condi-

tions, with the first case having a preset, goal locations and the other employing the

distributed assignment algorithm. As seen in Figure 4.4(a) and 4.4(b), most of the

satellites have to travel significantly farther to reach their intended goals. Figure 4.5

shows total control cost, in units of |u|2, for both cases, illustrating the significant

reduction in control effort.
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Figure 4.4: Trajectory history of formation
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4.5 Summary

A closed loop coordination and control architecture has been shown to successfully

not only keeping formation but also reducing the amount of effort needed to reach this

desired formation. It is interesting to note that the assignment algorithm does provide

ad-hoc collision avioidance as noted by McDonald [32]. Because the cost function of

assignment is distance-based, then then intersecting trajectories are impossible in a

linear cost function and with a quadratic cost function, they just become extremely

unlikely. Therefore, an LQR controller still only solves an uncontrained optimization

problem. In order to obtain guarantees on collision avoidance, then constraints must

be added to the control law which would require either a controller based on linear

programming or convex optimization. So far, considerations of how to actually mea-

sure the states of neighbors have not been elaborated on. The following chapter will

propose additional non-linear filters in order to address this localization problem.



CHAPTER 5

Application to Non-linear Systems

In this chapter, we will consider an application of the distributed architecture in

order to address a major engineering problem. Currently, the U.S. arsenal employs

a vast array of uncontrolled munitions. In these weapon systems, adjustments to

the firing initial conditions are made to account for visually observed error between

desired target and actual impact point. Collateral damage in war not only affects the

lives of the civilians, but can also be a detriment to morale for the soldiers. Currently,

cruise missiles and air drone strikes are used to achieve precision targeting. While

these methods have resulted in reduced collateral damage, they are also expensive

to manufacture and maintain. In order to mitigate these cost concerns, a projectile

can be equipped with canard control to create what is called a smart munition.

Since it lacks an internal propulsion system, it would be considerably cheaper and

less complex than most missiles. The challenge for these controlled munitions is the

extreme environment in which these projectiles are launched, in particular the high

acceleration experienced with values going as high as 200,000 g [46]. These high g

forces make it extremely difficult for onboard sensors to work properly. Since the

performance of any control system is intricately tied to the estimation of its state

47
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parameters, a robust estimation estimation scheme is of paramount importance for

this specific application.

5.1 Extended Kalman Filter

All the previous analysis have been conducted solely within the scope of linear

dynamics and measurement. However most real systems need to be modeled via non-

linear dynamics or measurements; therefore an extended kalman filter is necessary to

capture the non-linearity of the system. For a complete nonlinear system described by

equations 2.1 and 2.7, the extended kalman filter (EKF) greatly resembles its linear

counterpart. Its state propagation and measurement are derived from the non-linear

model, while its Kalman parameters are computed with the Jacobian of the non-linear

system around the current estimate.

˙̂x = f(x̂, u) + L(z − h(x̂, u)) (5.1)

L(t) = P (t)HTR−1 (5.2)

Ṗ = A(t)P (t) + P (t)AT (t) +Q− L(t)RLT (t) (5.3)

A(t) =
∂f

∂x

∣∣∣∣
x̂(t),u

(5.4)

H(t) =
∂h

∂x

∣∣∣∣
x̂(t),u

(5.5)

5.1.1 Orientation Estimation

Obtaining the orientation, or attitude, of a 3-D object is of utmost importance

to both UAVs and spacecraft since their mission often relies on their sensors being

pointed in the correct direction. Odometry, also called dead reckoning, is significantly
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affected by changes in orientation, especially for rapidly rotating objects. However,

unlike translation dynamics, where the three degrees of freedom are usually indepen-

dent, the rotational equations of motion are highly non-linear due to the coupling

between modes of rotation as seen in the second term of equation 5.6.

M = I

⎡
⎢⎢⎢⎢⎢⎣
ṗ

q̇

ṙ

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣
p

q

r

⎤
⎥⎥⎥⎥⎥⎦× I

⎡
⎢⎢⎢⎢⎢⎣
p

q

r

⎤
⎥⎥⎥⎥⎥⎦ (5.6)

The attitude of extended object can be represented in many ways, all with their

unique strengths. The most intuitive method is the direction cosine matrix (DCM),

which is constructed from the cosine of angles between the global reference frame and

the local one. Computation this method is not efficient because it has to keep track

of six independent parameters (because the DCM is an orthogonal matrix). The two

most used representations are Euler angles and quaternions. Euler angles express an

attitude as a sequence of three rotations. For aerospace applications, the convention

order is z-axis, y-axis, and then finally x-axis, and the rotation themselves are called

yaw, pitch, and roll, respectively. However, there is a possibility of gimbal lock with

this representation due to the loss of a degree of freedom. Quaternions are a quadruple

generalization of complex numbers with three imaginary components instead of only

one. Since it expresses an orientation as a rotation about a single axis, it does not

suffer from gimbal lock but does have to satisfy a normalization condition to remain

valid. Specific details on advantages are given in Table 5.1. Usually orientation is

stored as a quaternion and is converted into the other forms as needed.
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Table 5.1: Comparison of attitude representations

Pros Cons
DCM Simplicity of sequential transformation Computationally expensive

Simple visualization
Euler Angles Compatible with many control laws Gimbal Lock

Least number of parameters
Quaternions No Gimbal lock Not directly controllable

Simplicity of sequential transformation Needs to be normalize

(a) Directional Cosines (b) Euler Angles

(c) Quaternion

Figure 5.1: Representation of Orientation
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5.2 Background

Accurate attitude estimation is a critical requirement for any moving vehicle and

is typically accomplished by some combination of accelerometers, gyroscopes, and/or

magnetometers. Because, accelerometers are the most adversely affected sensor dur-

ing the launch, then gyro/mag extended kalman algorithm based on Bar and Osh-

man [47] is used as the baseline algorithm as shown in Algorithm 1, where q̂ is the

current quaternion estimate, φ is the linearized transition matrix, δq̂ is the current

quaternion error estimate. The basic premise of this algorithm is that it runs an

extended Kalman filter for quaternion error and then renormalize to compute the

actual quaternion.

1: procedure Bar-Oshman Algorithm(1)

2: Initialize q0

3: P ← P0

4: while New data is available do

5: Between Measurements:

6: q̂i+1/i = φiq̂
∗
i/i

7: Pi+1/i = φiPi/iφ
T
i +BiQiB

T
i

8: δq̂i+1/i = φiq̂i/i−1q̂
T
i/i−1δq̂i/i

9: Across Measurements:

10: Ki+1 = Pi+1/iH
T
i+1/i(Hi+1/iPi+1/iH

T
i+1/i +Ri+1/i)

−1

11: δq̂i+1/i+1 = δq̂i+1/i +Ki+1(ei+1 −Hi+1/iδq̂i+1/i)

12: Estimated Quaternion Reset and Normalization

13: q̂i+1/i+1 = q̂i+1/i + δq̂i+1/i+1

14: q̂∗
i+1/i+1 =

q̂i+1/i+1

‖q̂i+1/i+1‖
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15: Update Covariance

16: Pi+1/i+1 = (I−Ki+1H
∗
i+1/i+1)Pi+1/i(I−Ki+1H

∗
i+1/i+1)

T +Ki+1R
∗
i+1/i+1K

T
i+1

17: i+ 1← i

As gyroscopic measurements are of mission critical importance, then additional

redundancies must be considered in case of failure. This naturally leads to a scenario

where multiple IMU units are installed on the projectile and are operated indepen-

dently. This ensures that failure of one IMU unit would not compromise the whole

system. Subsequently some form of data fusion is necessary so that a single set

of parameters is fed into the controller. Consensus protocols were initially used on

multi-agent systems to allow distributed convergence and agreement of internal pa-

rameters [39]. Olfati-Saber [12] [13] then expanded these results into estimation by

incorporating a consensus term into the standard Kalman filter. This particular dis-

tributed kalman filter first fuses all covariances and sensor data from an information

perspective. This fused data is then injected into each local kalman filter.

procedure Distributed Kalman Filter(2)

2: Initialize x̂i(0|0)← x(0)

P (0)i ← P0

4: while New data is available do

Covariance Inverse Fusion and Sensor Data Fusion:

6: S(k) = 1
n

n∑
i=1

HT
i (k)R

−1
i Hi(k)

y(k) = 1
n

n∑
i=1

HT
i (k)R

−1
i zi(k)

8: Observation Update for each agent i:

Mi(k) = (Pi(k)
−1 + S(k))−1

10: x̂i(k + 1|k) = x̂i(k|k) +Mi(k)(y(k)− S(k)x̂(k|k))
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State and Covariance Propagation

12: Pi(k + 1) = AiMiA
T
i +Qi

x̂i(k + 1|k + 1) = Aix̂i(k + 1|k)

14: k + 1← k

Since each IMU unit would wired be into the projectile, then communication is not

an issue, therefore a fully connected network of IMUs is going to be the base case that

we are going to consider. The first failure mode under consideration is unmodeled

white noise, which means noise covariances are significantly greater then originally

modeled or assumed. As consensus is a weighted average over multiple observers,

then if a couple of sensors fail in such a fashion, then overall performance would not

be as adversely affected. The major drawback to use of consensus, especially in the

case of model noise, is the estimation of ψ.

φ̇ = p+ (qsin(φ) + rcos(φ))tan(θ) (5.7)

θ̇ = qcos(φ)− rsin(φ) (5.8)

ψ̇ = (qsin(φ) + rcos(φ))sec(θ) (5.9)

An important observation is that the first two equation are coupled while ψ itself

does not appear in any of the equations. Therefore, it is extremely sensitive to

changes to the other two angles. Therefore ψ estimation would always accumulate

errors. This problem is exacerbated with consensus as the errors are merged into the

estimate with every time step. Therefore, ψ would be calculated separately using the

current estimates and magnetometer data.

The second mode of failure considered is unobserved bias induced from the launch.

In this case, consensus only would not be effective as errors would still accumulated
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with time. This requires an external observer to estimate the bias online. As mag-

netometers are more robust to high acceleration environment, they are commonly

used to correct bias [48, 49]. We choose to integrate the algorithm from Batista et

al. [49] due to its simplicity and proof of convergence. Consider x1 to be a known

fixed vector in the body frame, x2 to be the gyro bias and S(x)y to be the matrix

product corresponding to x× y.

ẋ1 = −S(ω)x1 + S(x2)x1

ẋ2 = 0 (5.10)

y(t) = x1

This system of equations can then be transformed into state space form, where

x = [xT1 x
T
2 ]

T .

ẋ = A(y, ω)x

y(t) = Cx (5.11)

A(y, ω) =

⎡
⎢⎣ −S(ω) −S(y)

0 0

⎤
⎥⎦

C = [I 0]

As Bar-Oshman’s algorithm already utilizes magnetometers, then no additional

sensors are required. As the nonlinearity of this system does not depend on the

states but only measured outputs, Batista et al. were able to show that a Kalman

filter based on this system is asymptotically stable.

A complete sketch of our proposed architecture is shown below in Figure 5.2.
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Figure 5.2: Graph representation of communication topology among agents

5.3 Simulations

The simulations are conducted for a projectile with a initial roll angle of 45◦. After

12 seconds from launch, the canards would then deploy and the autopilot would first

attempt to return the roll angle back to zero. Then it would adjust the pitch angle

to extend the range as much as possible using a simple PID controller. To ease the

transition between the multiple control modes, a ramp input was implemented to

reduce drastic changes in aerodynamic parameters. The global position coordinates

are calculated from a GPS Kalman filter and included in the data for completeness.

As seen in Figure 5.3 through 5.4, we consider the effect of changing the number

of sensors. The solid blue plots represent true states while green dash lines represents

the current estimate. In Figure 5.3, we consider the base line scenario in which all

sensors are working properly. In both cases, they perform satisfactorily to estimate

the true state. From here, we can see that adding additional IMUs after 3 would not

improve the performance of the orientation estimator. However, in Figure 5.4, when

there are 2 IMUs malfunction, and the noises coming into the IMUs are actually 50

times more than what the Kalman filter in each IMU is expecting. As one can see,

having a larger population percentage of properly function IMUs adds redundancy to
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the consensus estimation, which makes the system more resilient to failure of a few

IMUs.
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Figure 5.3: Effect of increasing number of sensors - Base Case Simulation
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Figure 5.4: Effect of increasing number of sensors - Two Malfunctioning IMUs

In the next scenario, this time a bias is introduced into the gyroscope at launch

into each of the IMUs. Again, we will consider the case where two IMUs incorrectly

outputs extremely noisy data with a total number of 11 IMUs. Figure 5.5 illustrates

how inaccurate the estimator becomes if there is no bias compensation. By including

the Batista’s algorithm into the loop, one can see that effect of the bias is miti-
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gated but not completely compensated. However, this illustrates that an integrated

algorithm with online bias estimation is at least feasible.
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Figure 5.5: Effect of Compensated Bias

5.4 Summary

Under the extremely harsh operating conditions that a launch projectile endures,

while having to control such a system, then it is necessary to address the various issues

in an integrated approach. As each issue would usually have a specific subsystem

to address them, then it is necessary to verify that they all function properly in

the architecture loop. An integrated approach for addressing IMU failure is shown

to be feasible and capable of addressing incorrect noise parameters and online bias

estimation. In the following chapter this work will be extended to address the the

global estimation problem in a GPS-denied environment.



CHAPTER 6

Over-determined Navigation

6.1 Overview

In most filtering schemes of estimation and navigation, a major assumption is the

ability to combine information from dynamical processes with measurement correc-

tions from an independent source. The major drawback to localization exclusively

based on dynamic processes is the accumulation of errors because of the necessary

integration of the dynamical equations (also called dead reckoning). Therefore, the

external measurements serve to reset the integration error so that estimate does not

drift to far from the true value. In most application, these external corrections, also

called fiducials, are usually accomplished via GPS data, which was the case previ-

ously considered. Other fiducials typically used are radiation sources, ultrasound, or

magnetic fields [50]. The particular fiducial is suited depending on the application.

For example, for in-door navigation, a common method of navigation is called Simul-

taneous Localization and Mapping (SLAM), which sonar or point-radiation sources

to collect data from the surroundings in order to create a map, which can then be

used for navigational purposes. It relies on detecting distinctive features which it
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then uses as a reference marker in its map. Its obvious drawback would be areas with

no distinct feature, like a long hallway.

6.2 Projectile Tracking

Radar technology has been developed to fill the void left by the lack of GPS [51,52].

By knowing the location of radar station and the radar’s relative measurement,these

projectile tracking systems (PTS) run an EKF where it is possible to reconstruct

the global position from the linear global dynamics and nonlinear measurement. A

directed radar ground station would be the most suitable for the conditions in con-

sideration. Radar would be not be obscured by smoke and dust, as opposed to visible

light. A ground station would be more energy and computational efficient than hav-

ing an on-board point source and performing a SLAM algorithm, especially with the

distance that would have to be traversed.

(a) PTS Illustration

x

y

Radar (x   , y   )
RR

(x   , y   )
TT

r
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Cannon

(b) PTS Formulation

Figure 6.1: Projectile Tracking Problem
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From Figure 6.1(b), we can deduce the geometric relationship from measurements

given by the radar (r, θ) to global coordinates of the projectile (xT , yT ). From here

we can construct an measurement model so we can integrate it into our current

architecture.

H =

⎡
⎢⎣ ∂θ

∂xT

∂θ
∂ẋT

∂θ
∂yT

∂θ
∂ẏT

∂r
∂xT

∂r
∂ẋT

∂r
∂yT

∂r
∂ẏT

⎤
⎥⎦

=

⎡
⎢⎣ −(yT−yR)

r2
0 xT−xR

r2
0

xT−xR

r
0 yT−yR

r
0

⎤
⎥⎦ (6.1)

The final step is to incorporate the PTS into the simulation, while disabling GPS.

Because our PTS model only incorporates range and altitude, we assume that a full

3D model is available and lateral displacement is included for completeness. We will

utilize the last integrated case from the previous chapter, where there are 11 IMUs

with two of them malfunctioning with excessive noise. Every IMU will have bias

added to them and would include a bias estimator along with consensus. For the

integration of the accelerometer, lateral displacement is estimated because due to the

transformation from the body rates to global rates.

6.3 Simulations

For the simulation we will consider three scenarios:

1. No available PTS and solely by accelerometer integration
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2. PTS available for 80 s and then accelerometer integration

3. PTS available until landing

In the first scenario, there is no PTS available, and the projectile would have to

perform dead reckoning by transforming the measured body-frame accelerometer data

into the global frame via orientation estimate calculated previously. The transformed

data would then be doubly integrated in order to obtain the global position. In the

second scenario, PTS would only be allowed until 80 seconds (around the apogee of

the trajectory) and then it would perform dead reckoning like in Scenario 1. In the

final case, PTS would be completely available throughout the flight.
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Figure 6.2: Integration of PTS
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As expected, having the PTS available for a longer period improves the global

estimation of the projectile. As seen in Figure 6.2(a), the accumulated errors of

the accelerometer makes global estimation especially because of the compounded

error from initially estimating the attitude. Having it available until landing is a

rather unrealistic assumption, given distant objects that could disrupt the line of

sight needed for the system to work. However, even a more realistic assumption such

as PTS available until 80 s significantly improves the performance. This is due to

the compounding of errors that from accelerometers that accumulate numerical errors

and the residual errors from the previous attitude estimation scheme.

6.4 Summary

By integrating PTS into the architecture, a heterogeneous sensor network is es-

tablished where complete global system variables are estimated using on-board and

external sensors. Future extensions of this work would include a complete 3D PTS

algorithm and bias compensation for accelerometers.



CHAPTER 7

Conclusions and Future Work

7.1 Completed Development and Impact

Within the realm of controls and algorithms, developers and engineers typically

design from an input-output methodology, wherein inputs are exogenously generated

in another subsystem, imported and processed in the current subsystem, and then

exported out to other subsystems. This modularity keeps the design process simple

and efficient, as subsystems are designed independently and then combined after-

wards. However, the drawback to this methodology is the possibility for things to go

wrong due to some unforeseen interaction(s) between the subsystems. Therefore, it is

necessary to ensure that combining subsystems will indeed lead to the desire effects

and consequences.

A goal of developing an integrated architecture for distributed aerospace systems

is proposed and then analyzed. For the systems considered, a desired for precision

and accuracy necessitated an architecture where all the system states have to be

estimated. As a first step, an architecture for distributed estimation and control

(Chapter 3) is shown to be effective at keeping formation for spacecraft, and a relaxed

separation principle was proved for distributed systems. By combining guidance
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via task assignment into the architecture and allowing the formation to adjust its

orientation, an fully integrated architecture for distributed estimation, guidance and

control (Chapter 4) was shown to be stable, and its benefit for spacecraft systems is

shown, such as reduced bandwidth in communication and improved fuel economy.

Furthermore, a distributed sensor network of IMUs can be used to address the

challenges of implementing control over a canard-actuated projectiles. Adverse effects

to the gyroscopes can be mitigated with multiple IMU redundancy with consensus

information fusion with magnetometers for bias correction (Chapter 5). Meanwhile

an external laser tracking system could complete the estimation loop by providing an

external global positioning reference in the absence of GPS (Chapter 6).

7.2 Future Work

Additional technical analysis is needed for relaxing assumptions on network topol-

ogy and satisfying collision avoidance constraints. Current investigation in non-linear

estimation will be instrumental in implementing an autonomous system with min-

imal external communication. For the canard-actuated projectile, the expansion of

distributed techniques could be used to coordinate a swarm in order to maximize area

of coverage.

From a hardware perspective, implementation could be conducted to validate

the effectiveness of the architecture in a live test. The ground based units will use

techniques discussed in the previous chapter in order localize themselves relative to

the aerial vehicle and relative to each other. The aerial vehicle will act as the leader

of the formation and will be the reference origin for each ground vehicle’s estimate.
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They will then transmit this information to their neighbors and perform consensus

in order to build an estimate for the entire formation.

Ultimately this work primarily serves to illustrate the need for further insights of

how to integrate subsystems within the context of distributed systems. These systems

have shown, through coordination, new capabilities are possible even when it is not

possible for any individual unit.
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