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Abstract

The most widely used atomic frequency standards (or clocks) are based on the

microwave resonant frequencies of optically pumped vapors of alkali-metal atoms in

glass cells filled with buffer gas. These vapor-cell clocks are secondary, not primary

frequency standards mainly because of the light and pressure shifts, which alter the

resonant frequencies of the alkali-metal atoms. This dissertation presents studies of

atomic physics important to vapor-cell clocks and, in particular, their accuracy.

First, we report a simple method to suppress the light shift in optical pumping

systems. This method uses only frequency modulation of a radio frequency or mi-

crowave source, which excites an atomic resonance, to simultaneously lock the source

frequency to the atomic resonance and lock the pumping light frequency to suppress

the light shift. This technique can be applied to many optical pumping systems that

experience light shifts. It is especially useful for atomic clocks because it improves

the long-term performance, reduces the influence of a pumping laser, and requires

less equipment than previous methods.

Next, we present three studies of the pressure shift, starting with an estimation

of the hyperfine-shift potential that is responsible for most of the pressure shift. We

then show that the microwave resonant frequencies of ground-state Rb and Cs atoms

in Xe buffer gas have a relatively large nonlinear dependence on the Xe pressure,

presumably because of short-lived RbXe and CsXe van der Waals molecules. The Xe

data show striking discrepancies with the previous theory for nonlinear shifts, most

of which is eliminated by accounting for the spin-rotation interaction in addition to

the hyperfine-shift interaction in the molecules. To the limit of our experimental

accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. We

then consider the prospects for suppressing the pressure shift with buffer-gas mixtures

and feedback.
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Finally, we report an investigation of the potential for integrating spheres to en-

hance absorption in optically thin alkali-metal vapor cells. We demonstrate a roughly

ten-fold increase of the optical absorption that seems to be limited by the glass cell

required to contain the alkali-metal vapor.
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Chapter 1

Introduction

To measure the passage of time, a clock counts the cycles of an oscillator. In a perfect

clock the cycles of this oscillator would repeat with a temporal frequency that never

changes. In practice, the quality of a clock depends on the ability of its oscillator to

provide a stable, known frequency. Thus, the art and science of making clocks is that

of making stable oscillators, or frequency standards. Over time, clocks have evolved

to use many different types of frequency standards, for example, astronomical cycles

in sundials, pendulums in mechanical clocks, and quartz crystals in electrical clocks

[1, 2]. This ongoing development of frequency standards continues to improve the

stability, accuracy, and reliability of clocks, and to expand their range of applications.

During the 1870’s, James Clerk Maxwell and Lord Kelvin (William Thomson) sug-

gested that the natural oscillations of atoms could make excellent frequency standards

[3, 4]. The properties of atoms, as far as we know, are constant. An unperturbed

cesium atom (133Cs), for example, is identical to any other cesium atom, and its unper-

turbed natural oscillations are the same as those of any other past, present, or future

cesium atom, no matter where it is in the universe. In contrast, even the best quartz

oscillators cannot be manufactured identically, and their properties change with age.

It took until the early 20th century for Isaac Isidor Rabi to suggest a practical means
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to implement an atomic frequency standard (or atomic clock), and until 1948 for the

first working prototype, which used Rabi’s magnetic-resonance technique with am-

monia molecules, to be built by Harold Lyons at the National Bureau of Standards

(now the National Institute of Standards and Technology, or NIST) in the United

States (US) [5, 6, 7]. Ever since, the development of atomic clocks has progressed

rapidly [8]. By 1968, the International System of Units (SI) second was redefined to

be exactly 9,192,631,770 cycles of oscillation corresponding to a transition between

the two hyperfine sublevels of a ground-state 133Cs atom [9, 10]. Today, atomic clocks

provide the most precise and accurate measurements of time and frequency. Besides

scientific research, these clocks are crucial to much of modern technology, for exam-

ple, the Global Positioning System (GPS), the high-speed networks behind cellular

phones, and even long-distance electrical power transmission [7].

Most modern atomic clocks are based on the ground-state properties of either H or

an alkali-metal atom, typically Cs or Rb [11]. In these atoms, the hyperfine coupling

between the spins of the single valence electron and of the nucleus leads to convenient

resonant frequencies in the microwave (GHz) range. Different clocks use different

techniques to access these atomic resonant frequencies as standards. For example,

active atomic masers usually inject a beam of H atoms into a tuned microwave cavity

in such a way that the atoms excite a detectable electrical resonance of the cavity.

Atomic beam clocks usually send a stream of Cs atoms through a vacuum chamber

with varying magnetic fields and two microwave cavities. Microwaves applied to

the cavities are tuned to an atomic resonance by optimizing the number of atoms

transmitted. The current primary standard of time and frequency for the US is

an atomic fountain clock that launches clouds of Cs atoms upward into a vacuum

chamber, to pass up and down through the same microwave cavity, eliminating the

errors in beam clocks from differences between cavities [7]. However, the development

of new and improved atomic clocks is ongoing, and clocks that use other atoms and
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techniques, for example, trapped-ion clocks and optical lattice clocks, continue to

play an increasing role [12, 13].

Of the many types of modern atomic clocks, the most widespread is the vapor-cell

(or gas-cell) clock, which uses a glass cell to contain a dilute vapor of alkali-metal

atoms and an inert buffer gas [11, 14]. These clocks are robust enough for use onboard

GPS satellites, and simple enough to mass produce inexpensively, for example, as

compact laboratory frequency standards (e.g., Stanford Research Systems FS725).

Though vapor-cell clocks originated in the late 1950’s, they have enjoyed a recent

resurgence of interest [14, 15, 16]. Much of the current focus has been on either

improving these clocks by incorporating lasers, which allow for new techniques, or

miniaturizing them towards the level of integrated circuits for use in even more diverse

applications. The first miniaturized, chip-scale atomic clock was, in fact, a laser-based

vapor-cell clock built by Svenja Knappe and her collaborators at NIST in 2004 [17].

In conventional vapor-cell clocks, the alkali-metal vapor is optically pumped by

light and probed by microwaves in a technique known as microwave-optical double

resonance. First proposed by Alfred Kastler in 1950, optical pumping is the process

where resonant light polarizes atoms through absorption and scattering, by redis-

tributing the population of atoms between different sublevels of the atomic ground

and excited states [18, 19, 20, 21]. The pumping light creates an imbalance between

the atomic populations of the different ground-state hyperfine sublevels in the va-

por. This imbalance allows the vapor to absorb resonant microwaves that transfer

population back between the sublevels, which in turn alters how the vapor absorbs

the light. By measuring the transmission of the pumping light through the cell, the

microwaves may be tuned to a particular hyperfine resonant frequency, and output

as a clock signal. Buffer gas is required to increase the optical pumping efficiency,

in particular, by slowing the diffusion of the alkali-metal atoms to the cell walls,

where collisions destroy polarization. As discovered by Robert Dicke, the tight con-
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finement of the alkali-metal atoms by the cell (and in some situations, by collisions

with the buffer gas) leads to narrow hyperfine resonance lines that are nearly free of

Doppler broadening, enhancing the clock precision [22]. Because of the relative ease

to produce pumping light for 87Rb atoms with discharge lamps, vapor-cell clocks have

traditionally used 87Rb atoms, and so are often referred to as rubidium standards [23].

Despite their maturity and renewed interest, some elements of the physics impor-

tant to vapor-cell clocks and, in particular, their accuracy are not yet fully understood.

This dissertation presents studies of atomic physics important to vapor-cell clocks,

and is organized as follows:

Chapter 2 addresses the light shift, or the frequency shift of an atomic resonance

due to the dynamic (or AC) Stark effect of optical pumping light [24]. The light

shift is an important source of error in many optical pumping systems, and is one of

the main reasons for the difficulty in implementing vapor-cell clocks with lasers. We

report a simple method to suppress the light shift [25, 26, 27, 28]. This method uses

only frequency modulation of a radio frequency or microwave source, which is used to

excite an atomic resonance, to simultaneously lock the source frequency to the atomic

resonance and lock the pumping light to suppress the light shift. This method can be

applied to many optical pumping systems that experience light shifts. It is especially

useful for atomic clocks because it improves the long-term performance, reduces the

influence of a pumping laser, and requires less equipment than previous methods.

Chapters 3–5 address the pressure shift, or the frequency shift of an atomic res-

onance due to collisions with a chemically inert buffer gas [29, 30]. The pressure

shift is the main reason why vapor-cell clocks are secondary, not primary standards,

since the atomic resonant frequencies are not the same as free-atom frequencies, but

instead depend on the pressure, temperature, and composition of the buffer gas [11].

Most of the pressure shift is due to the hyperfine-shift interaction δA I · S between

the electronic spin S and nuclear spin I of an alkali-metal atom during binary colli-

4



sions with the buffer gas. Despite much theoretical and experimental attention, not

much is known yet about the potential δA = δA(R) as a function of the internu-

clear separation R of a colliding pair, especially at small R. Chapter 3 demonstrates

how to use experimental data for the pressure shift to estimate simple trials forms

of the potentials δA(R) for Na, K, and Rb in He, Ne, or Ar gas. Though these trial

forms are not unique, they still yield a surprising amount of information about the

shapes of the δA(R) about a potential well in an interaction potential V (R) for the

colliding pair, which agree well with theoretical and experimental results in the few

cases where they are available. Additionally, to aid these estimates, we provide an

improved estimate of the large-R asymptote of the ratio δA(R)/V (R).

Chapter 4 reports on precision measurements of the dependence of the microwave

resonant frequencies of ground-state 87Rb, 85Rb, and 133Cs atoms on the pressure of

the buffer gases He, Ne, N2, Ar, Kr, and Xe [31, 32, 33, 34, 35, 36]. Recent work has

shown that short-lived van der Waals molecules, which are known to form between

certain pairs of alkali-metal and buffer-gas atoms in three-body collisions [37, 38],

may lead to a nonlinear dependence of the pressure shift on the buffer-gas pressure

for certain gases [39, 40]. We show that the nonlinear shifts for Xe are opposite in

sign to the shifts for Ar and Kr, even though all three have negative linear shifts. The

Xe data show striking discrepancies with the previous theory for nonlinear shifts [39],

most of which is eliminated by accounting for the spin-rotation interaction, γN · S,

between the rotational angular momentum N of the molecules and S [41, 42], in

addition to the hyperfine-shift interaction δA I · S. To the limit of our experimental

accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure.

Chapter 5 considers the prospects for suppressing the pressure shift in vapor-

cell clocks. We demonstrate the properties of buffer-gas mixtures that are adjusted

to give no pressure shift at a particular temperature, and propose some possible

implementations of feedback to suppress the pressure shift using these mixtures. We
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examine how the nonlinear pressure shifts from van der Waals molecules may limit

the accuracy of these implementations. With suppression of the pressure shift, it

might be possible to significantly reduce the long-term drift of vapor-cell clocks and

the need for calibration.

Finally, Chapter 6 reports an investigation of the potential for integrating spheres,

or diffuse-reflectance optical cavities, to enhance the absorption of light in optically

thin alkali-metal vapor cells [43]. Miniaturized vapor cells for atomic clocks and

magnetometers have shortened optical path lengths. To compensate, miniature cells

usually operate at higher temperatures to increase the density of alkali-metal atoms,

which leads to reduced performance from spin-exchange broadening of the microwave

resonance lines [44] and to an increased power demand from heating the cell. Another

way to enhance absorption is to pass light through the cell multiple times with a cav-

ity, without increasing the temperature or alkali-metal density. Integrating spheres

are simple and robust optical cavities, since they do not require the precise align-

ment of specular-reflectance cavities with mirrors, which can misalign over time. We

demonstrate a roughly ten-fold enhancement of optical absorption, which seems to

be limited by the glass cell required to contain the alkali-metal vapor.
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Chapter 2

Simple method of light-shift

suppression

2.1 Introduction

The light shift normally refers to the frequency shift of an atomic resonance due to

the dynamic (or AC) Stark effect from optical pumping light [24]. The shift depends

on both the frequency and intensity of the light. The light shift is an important

source of error in many optical pumping systems. In particular, it is one of the main

performance limitations in atomic frequency standards (or clocks), since it turns the

fluctuations of the pumping light frequency and intensity into drift and noise in the

clock output. This is one reason it is difficult to implement atomic clocks with diode

lasers. Accordingly, understanding and reducing the light shift in optical pumping

systems remains an active area of research [14, 15, 16].

There are various ways to suppress light shifts. One simple technique for

monochromatic pumping sources, such as diode lasers, is to tune them to a zero-shift

optical frequency or “magic wavelength” that produces no light shift [24]. The

zero-shift frequencies are very close to the peaks of the optical absorption lines. The
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conventional method to suppress light shifts in laser-pumped atomic clocks uses

an additional feedback loop to lock the laser to a zero-shift frequency [39, 45, 46].

Other methods are even more complicated [15, 16, 47, 48, 49, 50, 51]. In the method

we describe here, we use the same feedback loop that locks the local oscillator to

the microwave resonant frequency of the atoms to simultaneously adjust the laser

frequency to suppress the light shift [25, 26, 27, 28].

Before we begin, we first provide some background on the structure of alkali-metal

atoms, on the microwave-optical double resonance technique, and on the light shift

relevant to vapor-cell clocks.

2.1.1 Alkali-metal atomic structure

Most atomic clocks are based on the hyperfine resonances of ground-state alkali-

metal atoms, so we review the atomic structure relevant to this and later chapters

here. Fig. 2.1 is a sketch of this atomic structure for 87Rb, the most commonly used

isotope of Rb in clocks, which we describe below. For additional information about

alkali-metal atoms, we recommend the book Optically Pumped Atoms by Happer,

Jau, and Walker [21] and the reference compilations of Steck [52].

The common alkali-metal atoms Na, K, Rb, and Cs have ground states with a

single valence electron and structures that are similar to H. Their electronic structure

[X]ns1 is the sum of a noble-gas-like core [X] and a valence S-state electron with

principle quantum number n: [Ne]3s1, [Ar]4s1, [Kr]5s1, and [Xe]6s1 for Na, K, Rb,

and Cs, respectively. The ground state is designated by the term symbol 2S+1LJ =

2S1/2. Term symbols are often written as n 2S+1LJ , such as in Fig. 2.1. The total

atomic angular momentum F = I + J is the sum of the nuclear spin I and the total

electronic angular momentum J = L+S. For S-states, the orbital angular momentum

L = 0, so the electronic total J = S, which is the electronic spin with quantum number

S = 1/2. The nuclear spin I is non-zero for the naturally occurring isotopes of each

8



alkali-metal atom; for example, the nuclear spin quantum number I is 3/2 for 23Na,

39K, and 87Rb, 5/2 for 85Rb, and 7/2 for 133Cs.

The strongest optical resonant lines of the alkali-metal atoms lie in the near-

infrared or visible range. In particular, the strong optical transitions between the

ground and lowest excited states are most often used for optical pumping. The lowest

excited state has an electronic structure [X]np1, with a valence P-state electron with

orbital quantum number L = 1. This state is split by fine structure into a doublet (D)

with the two terms 2P1/2 and 2P3/2, which have total electronic spin quantum numbers

J = 1/2 and 3/2, respectively. The optical transitions 2S1/2–2P1/2 and 2S1/2–2P3/2

are known as the D1 and D2 transitions, respectively, and for Rb have wavelengths of

roughly 795 and 780 nm. For simplicity, Fig. 2.1 includes only the D1 transition. As

sketched in the figure, the lowest excited states of the alkali-metal atoms have similar,

though usually more complicated structures than the ground states. The rest of this

section will focus on the ground-state structure, and we recommend Refs. [21, 52] for

more information about the excited-state structure.

A free alkali-metal atom evolves according to the ground-state spin Hamiltonian

H{g} = A I · S− µ ·B, (2.1)

where the first term is the hyperfine coupling of the nuclear spin I and electronic spin

S of the alkali-metal atom, with the magnetic-dipole coupling coefficient A. For the

ground S-states, this coupling is due to a contact magnetic-dipole interaction,

Hhf =
8π

3
gSµB

µI
I
δ(re) I · S, (2.2)

which leads to the coefficient

A =
8π

3
gSµB

µI
I
|ψ(0)|2, (2.3)
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|1〉
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{ |3〉 }
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F = 2

6,834,682,611 GHz52S1/2

52P1/2

795 nm D1

0.70 MHz/G

(not to scale)
F’ = 1, 2 815 MHz

Figure 2.1: Energy levels of 87Rb (I = 3/2) important to vapor-cell clocks (not
to scale). The ground state is split into upper and lower hyperfine manifolds with
F = a = I+1/2 and F = b = I−1/2, respectively. The hyperfine transition between
the sublevels |F m〉 with m = 0 is the known as the 0–0 or clock transition, and
corresponds to a microwave frequency ν00 ≈ 6.834 GHz for 87Rb. The kets |1〉, |2〉,
and |3〉 highlight the sublevels that are often used in approximate two- and three-level
models for vapor-cell clocks [11, 15, 16].

where |ψ(0)|2 is the finite probability density for the valence electron to be located

at the nucleus. Here, gS = 2.0023 is the electronic g factor, µB is the Bohr mag-

neton, and µI is the nuclear moment. Additional hyperfine couplings, in particular,

electric-quadrupole and non-contact magnetic-dipole interactions, are important for

the excited states [53].

The second term in (2.1) is the Zeeman interaction of the total magnetic dipole

moment of the atom,

µ = −gSµBS +
µI
I

I, (2.4)
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with an externally applied magnetic field B of amplitude B = |B|. Since the nuclear

moment µI is of the order of the nuclear magneton µN ≈ µB/1836, where 1836 is

roughly the ratio of the proton to electron mass, the total moment (2.4) is almost

entirely due to the electronic contribution. By default, we assume that any external

field is static and oriented along the Cartesian unit vector z, such that B = Bz.

The sublevel energies Eµ and spin eigenvectors |µ〉 of free, ground-state atoms are

given by the time-independent Schrödinger equation,

H{g}|µ〉 = Eµ|µ〉. (2.5)

Here, the energies Eµ are understood to be the shifts of the sublevels |µ〉 away from

the mean ground-state energy. The eigenvectors are complete,
∑

µ |µ〉〈µ| = 1, and

orthonormal, 〈µ|ν〉 = δνµ. The integer index µ = 1, 2, . . . , g{g}, where the total

number of ground-state sublevels is g{g} = [I][S]. Here and subsequently, the notation

[I] = 2I + 1 (2.6)

denotes the number of sublevels (or degeneracy) for a spin of quantum number I.

For zero applied field, B = 0, the Hamiltonian H{g} commutes with the angular-

momentum operator F and its square F2 = F · F, as well as I · I and S · S, since we

may write the operator I ·S = (F ·F− I · I−S ·S)/2. As a result, we can choose the

zero-field sublevels to be the the simultaneous eigenstates of F ·F and Fz = F ·z. Let

|µ〉 = |F m〉, where the total spin quantum number F = I ± 1/2 and the azimuthal

quantum number m = mF can take the values −F, 1−F, . . . , F −1, F . The zero-field

11



eigenvectors then satisfy

F · F|F m〉 = F (F + 1)|F m〉, (2.7)

Fz|F m〉 = m|F m〉, (2.8)

I · I|F m〉 = I(I + 1)|F m〉, and (2.9)

S · S|F m〉 = J(J + 1)|F m〉, (2.10)

where we use the convention that the angular-momentum operators are dimensionless,

and have the zero-field energies

E0
F =

A

2
[F (F + 1)− I(I + 1)− S(S + 1)]. (2.11)

In terms of the uncoupled spin states |S mS〉 for the electron and |I mI〉 for the

nucleus, we may expand the zero-field coupled-spin states as

|F m〉 =
∑
mImS

CFm
ImISmS

|I mI〉 ⊗ |S mS〉, (2.12)

where CFm
ImISmS

is a Clebsch–Gordon coefficient [54].

The zero-field eigenvectors |F m〉 are still a good approximation for the true

eigenectors |µ〉 of (2.5) as long as the applied field B is weak enough that gSµBB �

AI. This is usually satisfied for fields B of several Gauss or less, which are typical for

atomic clocks. In this case, the hyperfine coupling is still the dominant interaction in

the Hamiltonian H{g}. To determine the low-field energies Eµ ≈ EFm we treat the

Zeeman interaction as a perturbation. To first order, the low-field energies are

EFm ≈ E0
F − 〈F m|µ ·B|F m〉

= E0
F + gSµBB〈F m|Sz|F m〉 −

µI
I
〈F m|Iz|F m〉. (2.13)
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To evaluate these matrix elements, we may use the Wigner-Eckhart theorem to sub-

stitute the operators S and I with their projections along F,

S→ (S · F)F

F (F + 1)
and I→ (I · F)F

F (F + 1)
. (2.14)

As a result, we may write the low-field energies as

EFm ≈ E0
F + gFµBBm, (2.15)

where the coefficient

gF = gS
F (F + 1) + S(S + 1)− I(I + 1)

2F (F + 1)
−
(
µI
IµB

)
F (F + 1)− S(S + 1) + I(I + 1)

2F (F + 1)
.

(2.16)

As mentioned before, the nuclear contribution to the Zeeman interaction is roughly

a part-per-thousand correction, so the second term above can usually be neglected.

In this low-field basis, the ground-state of an alkali-metal atom has a structure

like that sketched in Fig. 2.1. The ground-state sublevels |F m〉 split into upper and

lower hyperfine manifolds with F = a = I + 1/2 and F = b = I − 1/2, respectively.

For 87Rb, a = 2 and b = 1. Neglecting the nuclear contribution to the Zeeman

interaction, the coefficient (2.16) simplifies to

gF ≈ gS
(−1)F−a

[I]
, (2.17)

and the ground-state sublevel energies (2.15) become

EFm ≈
A

2
{(F − a)[b] + (F − b)[a]}+

gSµBB

[I]
(−1)F−am. (2.18)
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We see that the Zeeman interaction leads to a first-order dependence of the energy

EFm on the applied field B for all sublevels except those with m = 0. Note that the

hyperfine and first-order Zeeman interactions lead to no net shift of the ground-state

energy,
∑

µEµ = 0.

The transitions between sublevels of different hyperfine manifolds (∆F = 1 tran-

sitions) are known as hyperfine transitions, and correspond to resonant frequencies in

the microwave range. These transitions are the atomic resonances used by vapor-cell

atomic clocks. Conventionally, vapor-cell clocks use the transition between the two

sublevels with m = 0, |a 0〉 and |b 0〉, known as the “0–0” or “clock” transition, since

it has no first-order dependence on the applied field B. This is clear if we use (2.18)

to write the (angular) Bohr frequency ωαβ for the transition between the states |aα〉

and |b β〉 as

ωαβ =
Eaα − Ebβ

~
≈ A[I]

2~
+
gSµBB

[I]~
(α + β), (2.19)

where ~ = h/(2π) is the reduced Planck constant. The corresponding temporal

frequency, for example, of microwaves resonant with the “α–β” transition, is ναβ =

ωαβ/(2π). For the 0–0 transition, this frequency is

ν00 ≈
A[I]

2h
, (2.20)

which is exact in the absence of an applied field B. The unperturbed, free-atom

values of ν00 are known very precisely for many alkali-metal atoms: 1.7716261288

GHz for 23Na (I = 3/2), 461.7197202 MHz for 39K (I = 3/2), 3.0357324390 GHz

for 85Rb (I = 5/2), 6.8346826109 GHz for 87Rb (I = 3/5), and 9.192631770 GHz

(exact) for 133Cs (I = 7/2) [53]. However, the 0–0 transition still has a small second-

order dependence on the field B, which in practice is often used to calibrate the clock

frequency against drift and other inaccuracies by adjusting the applied amplitude B
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[14]. This applied field B is also used to isolate the 0–0 transition from the other,

field-sensitive hyperfine transitions. In some cases, there are advantages to using

other transitions, for example, in “end-resonance” clocks [44] or “lin‖lin” clocks [55],

so vapor-cell clocks are by no means limited to using only the 0–0 transition.

As we discuss in later chapters, collisions with an inert buffer gas effectively lead

to small changes in the alkali-metal atomic structure, such as a shift in the value

of the magnetic-dipole coupling coefficient A. As a result, it is convenient to think

of the mean values of quantities such as optical transition and hyperfine transition

wavelengths as “thermodynamic” variables that depend on the buffer-gas pressure,

temperature, and composition [21]. While these changes may be small, they are

important to such high-precision optical pumping systems as atomic clocks.

2.1.2 Microwave-optical double resonance

Conventional vapor-cell clocks access the 0–0 transition for an ensemble of alkali-

metal atoms in a vapor by using both light for optical pumping and microwaves for

magnetic resonance, in a technique known as microwave-optical double resonance.

This section expands on the description of this technique from Chapter 1.

Optical pumping is used to create a difference between the populations of alkali-

metal atoms in the two ground-state sublevels forming the 0–0 transition, highlighted

with the kets |1〉 and |2〉 in Fig. 2.1. This is usually done with either unpolarized lamp

light or linearly polarized laser light, either of which propagate along the quantization

axis defined by an applied field B. Without this light, all the ground-state sublevels

would have nearly equal populations, since the differences between the energies of

these sublevels are much smaller than the mean thermal excitation energy in the

vapor: hν00 ≈ 28 µeV versus 3kT/2 ≈ 40 meV for 87Rb, where k is the Boltzmann

constant and a typical temperature T ≈ 40◦ C. With this light, optical pumping can

produce differences between the populations of the ground-state sublevels.
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For example, consider linearly (π) polarized D1 light with an optical frequency

that is tuned to be resonant, or nearly resonant, with transitions between the ground

state and the lowest P1/2 excited state, highlighted by the ket |3〉 in Fig. 2.1. For light

propagating along the quantization axis, there are allowed electric-dipole σ-transitions

between the ground-state sublevels |F m〉 and excited-state sublevels |F ′m′〉 that

satisfy the selection rules m′ − m = ±1 and F ′ − F = 0,±1. Absorption of light

transfers atoms from the ground to the excited state, which, depending on the tuning

of the light, depopulates some ground-state sublevels more than others. For a typical

small applied fieldB in a clock, this depopulation is similar for all sublevels in the same

hyperfine manifold, but may be different for the two manifolds. For example, for light

tuned near the schematic transition |1〉–|3〉, the depopulation would be greater for

lower manifold than the higher manifold. Atoms in the excited state quickly decay

back to the ground-state, which, for the typical conditions in a clock, repopulates

the different ground-state sublevels approximately equally, on average. Overall, this

process is known as depopulation pumping. Because of buffer-gas collisions, which

tend to depolarize the atoms in the excited state, there is no significant repopulation

pumping, or transfer of polarization from the excited state to the ground state by

spontaneous decay [19]. In the steady state, the pumping light produces nearly equal

populations of sublevels in the same ground-state hyperfine manifold, but possibly

different populations between the hyperfine manifolds, depending on the tuning. For

example, for light tuned near the schematic transition |1〉–|3〉, there will be more

population in the sublevel |2〉 than in |1〉, and for light tuned near |2〉–|3〉, more in

|1〉 than |2〉. Buffer gas, typically a mixture of Ar and N2, is used to improve the

efficiency of this optical pumping by slowing the diffusion of atoms to the cell walls,

where collisions tend to depolarize the atoms. The molecular gas N2 also reduces (or

quenches) the emission of resonant light by atoms decaying from the excited state,

which otherwise could cause unwanted pumping.
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Microwaves, in turn, are used to reduce the population difference between the

states forming the 0–0 transition. This is usually done with standing waves in a

resonant cavity or traveling waves from a horn antenna, either of which provide an

oscillatory magnetic field along the quantization axis. The microwaves have allowed

magnetic-dipole π-transitions between the ground-state sublevels with the same az-

imuthal quantum numbers m, for example, |1〉–|2〉. Absorption of these microwaves

transfers atoms between the hyperfine manifolds, with a rate that depends on the

field strength and the tuning of the microwave frequency. Without pumping light,

the microwaves would not appreciably affect the atomic populations, since any trans-

fer induced from the sublevel |1〉 to |2〉 would be counterbalanced by a transfer induced

from |2〉 to |1〉. With pumping light, the initial population difference from optical

pumping would allow an opposing, net transfer from the microwaves. In other words,

the pumping light allows the vapor to absorb resonant microwaves. This absorption

is strongest when the microwaves are resonant with a hyperfine transition, and in

turn allows the vapor to absorb more light. In the steady state, the net effect on the

populations is a balance between the effects of the pumping light and the microwaves.

A fortunate consequence is that the transmission of the pumping light through the

vapor may be used as a signal to determine when the microwaves are tuned to a hy-

perfine resonance. In practice, feedback may be used to tune the applied microwaves

to the 0–0 transition, locking the microwave frequency to the 0–0 frequency, which

may then be output as a frequency reference or clock signal. The details of this

feedback will be discussed later in this chapter, starting with Section 2.2.

Of course, this qualitative discussion has greatly simplified the physics of actual

vapor-cell clocks. It has also neglected other techniques used in vapor-cell clocks be-

sides microwave-optical double resonance, for example, coherent population trapping

(CPT). Later, in Section (2.4) we provide a more quantitative, two-level density-

matrix model of a conventional vapor-cell clock. For additional information on vapor-
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cell clocks, we recommend the book The Quantum Physics of Atomic Frequency Stan-

dards by Vanier and Audoin [11] and the review articles by Vanier [15] and Vanier and

Mandache [16]. For detailed modeling of optical pumping and magnetic resonance,

we recommend the book Optically Pumped Atoms by Happer, Jau, and Walker [21].

2.1.3 Light shifts

Most atomic clocks suffer light shifts from optical pumping light, so we review the

features of the light shift relevant to this and later chapters here. For ground-state

alkali-metal atoms, there are many different types of light shifts: scalar light shifts of

the net (or center of mass) ground-state energy or the hyperfine structure, vector light

shifts of the Zeeman structure, and additional tensor light shifts [24]. In addition to

these AC Stark shifts due to the virtual absorption of light, there are also shifts from

the real absorption of light, involving the transfer of coherence through the excited

state and back, but these shifts are usually negligible for hyperfine transitions.

For conventional vapor-cell clocks, the phrase “light shift” specifically refers to

the differential shift of the 0–0 hyperfine transition from pumping light [11, 14, 16].

This light shift is proportional to the intensity of the pumping light, but depends on

the optical frequency of the light in a complicated manner. Fig. 2.2 is a sketch of

this shift for 87Rb with monochromatic D1 pumping light, as calculated by Mathur

et al. [24] and discussed below. The most important point to notice is that there

are zero crossings at certain optical frequencies that produce no light shift. These

zero-shift frequencies or “magic wavelengths” are very close to the peaks of the D1

optical absorption line, and so may still be used for optical pumping. Therefore, a

simple technique to suppress the light shift is to tune the pumping light to a zero-shift

frequency. However, these zero-shift frequencies depend on the buffer-gas pressure,

temperature, and composition, so feedback is required to lock the light to a zero-shift
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frequency. The rest of this chapter describes a simple feedback method to implement

this technique.

Since discussions of light shifts and the AC Stark effect are less common than

those of similar effects from external fields (e.g., Zeeman effects from magnetic fields,

or the DC Stark effect from static electric fields), we provide a short, approximate

derivation of the light shift in a vapor-cell clock below. This derivation qualitatively

explains the curves shown in Fig. 2.2. For additional information about the AC Stark

effect, we recommend the book Atomic Physics: An Exploration through Problems

and Solutions by Budker, Kimball, and DeMille [56], as well as related articles in the

American Journal of Physics [57, 58, 59].

We may approximately derive the light shift in a conventional vapor-cell clock as

follows. Following the discussion in Section 2.1.2, we consider only the two sublevels

Figure 2.2: Calculated light shift for the 0–0 transition of 87Rb with monochromatic
795 nm D1 pumping light from Mathur, Tang, and Happer [24]. Each curve is the shift
divided by the light intensity for a different buffer-gas pressure, as parameterized by
Y . The frequency displacement is in units of millikayser (1 mK = 10−3 cm−1), and the
light frequency increases from left to right. The two zero-crossing regions correspond
to pumping light tuned near transitions with the upper and lower hyperfine multiplets,
respectively. Reprinted figure with permission from [24]. Copyright 1968 by the
American Physical Society.
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that form the 0–0 transition as well as the lowest P1/2 excited state, highlighted by

the kets |1〉, |2〉, and |3〉 in Fig. 2.1. We write a Hamiltonian for these states as

H = E1|1〉〈1|+ E2|2〉〈2|+ E3|3〉〈3|+ V (t), (2.21)

where the interaction V (t) of the alkali-metal atom with the pumping light will be

treated as a perturbation. In the long-wavelength approximation, this interaction is

V (t) = −d · E(t), (2.22)

where d is the instantaneous dipole moment of the valence electron and E(t) is the

electric field of the light. We consider monochromatic light with an angular frequency

ω, such that the oscillating electric field E(t) = E(0) cos(ωt).

In a vapor-cell clock, the optical pumping light will be in, or near resonance with

both of the optical transitions |1〉–|3〉 and |2〉–|3〉. As a result, the light shift of the

0–0 microwave transition, |1〉–|2〉, will be equal to the difference between the shifts of

these two optical transitions. To calculate the light shift, we will first calculate the

shift of the |2〉–|3〉 transition, corresponding to the transition with the lower optical

frequency (or the left side of Fig. 2.2). Define the (possibly complex) angular Rabi

frequency

Ω32 = 〈3|d|2〉 · E(0)/~, (2.23)

which we assume to be non-zero. Ignoring the sublevel |1〉, we may rewrite the

Hamiltonian (2.21) as

H32 = E2|2〉〈2|+ E3|3〉〈3| − ~ cos(ωt){Ω32|3〉〈2|+ Ω∗32|2〉〈3|}. (2.24)
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For simplicity, let E2 = 0 and E3 = ~ω32, where the Bohr frequency ω32 = (E3−E2)/~.

If we write a trial wave function |ψ〉 as a column vector

|ψ〉 = c2|2〉+ c3|3〉 =

c2

c3

 , (2.25)

then we may write the Hamiltonian (2.24) as

H32 = ~

 0 −Ω∗32 cos(ωt)

−Ω32 cos(ωt) ω32

 . (2.26)

Since this Hamiltonian depends on time, the wave function evolves according to the

time-dependent Schrödinger equation

i~
∂

∂t
|ψ〉 = H32|ψ〉, (2.27)

which we must solve in order to calculate the shift.

However, we may simplify the calculation by removing the time dependence of

the Hamiltonian as follows. First, perform a unitary transformation into a rotating

frame with the operator

U =

1 0

0 e−iωt

 . (2.28)

In the rotating frame, the time-dependent Schrödinger equation (2.26) becomes

i~
∂

∂t
|ψ′〉 = H ′32|ψ′〉, (2.29)
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where the transformed wave function is |ψ′〉 = U †|ψ〉 and the transformed Hamilto-

nian is

H ′32 = U †H32U − i~U †
∂U

∂t
= ~

 0 −Ω∗32 cos(ωt)e−iωt

−Ω32 cos(ωt)eiωt ω32 − ω

 . (2.30)

Since the light is resonant, ω ≈ ω32, we may use the secular (or rotating-wave)

approximation to drop the oscillatory terms with frequencies ±2ω,

H ′32 ≈ ~

 0 −Ω∗32/2

−Ω32/2 −δ32

 , (2.31)

where we introduce a frequency detuning δ32 = ω − ω32 for the light.

Since the Hamiltonian (2.31) is time independent, we may solve for the effect of

V as a time-independent perturbation. Up to second-order in |Ω32|, the two energy

eigenvalues of H ′32 are

E ′2 = 0 + δ2E ′, and E ′3 = −~ δ32 − δ2E ′, (2.32)

where the second-order perturbation, or AC Stark shift, is

δ2E ′ =
|〈2′|V |3′〉|2

~ δ32

≈ ~|Ω32|2

4 δ32

. (2.33)

This symmetric shift, or splitting, of the energy eigenvalues by the AC Stark effect is

analogous to a DC Stark effect in the rotating frame for the static electric field E(0)/2.

Since we neglected the finite linewidth Γ32 of the optical transition, the expression

(2.33) is not applicable near resonance, δ32 ≈ 0, where it diverges. However, we

may use a trick to include this linewidth [56]. If we substitute ω32 → ω32 − iΓ32, or
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equivalently E3 → E3 − i~Γ32, then the expression (2.33) becomes

δ2E ′ =
~|Ω32|2

4
Re

[
1

δ32 − iΓ32

]
=

~|Ω32|2

4

(
δ32

δ2
32 + Γ2

32

)
. (2.34)

For a narrow linewidth, this expression is a good approximation of the result of a

more detailed calculation (e.g., Problem 2.7(e) in Ref. [56]). This substitution trick

to include the linewidth is not rigorous, and makes the Hamiltonian (2.31) non-

Hermitian. It only works in some cases, such as this one. In general, relaxation

effects should be included using a density-matrix approach.

Finally, we need to connect the rotating-frame shifts (2.34) to the optical transition

|2〉–|3〉. Without light, Ω32 = 0, the two unshifted energies in the rotating frame are

E ′2 = 0 and E ′3 = −~ δ32, which can be though of as dressed-state energies. The

constant difference between these unshifted rotating-frame energies and those in the

lab frame, E2 and E3, is just a result of the unitary transformation, and are not part

of the light shift. As a result, the shift of the Bohr frequency in either frame is

δω32 = −|Ω32|2

2

(
δ32

δ2
32 + Γ2

32

)
, (2.35)

which has a dispersive shape about resonance, δ32 = ω − ω32 = 0, similar to the

right side of Fig. 2.2. Note that this shift can be of either sign, depending on the

detuning δ32. Though a second-order time-independent perturbation of a two-level

system always leads to an positive shift of the transition energy, we had a second-

order perturbation in a rotating frame. The sign of the detuning δ32 controls which

of the two unshifted rotating-frame energies E ′2 and E ′3 is largest, and so allows the

shift δω32 to be of either sign in the lab frame.
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If we repeated our analysis for the transition |1〉–|3〉, we would find a shift analo-

gous to (2.35),

δω31 = −|Ω31|2

2

(
δ31

δ2
31 + Γ2

31

)
, (2.36)

with Rabi frequency Ω31, linewidth Γ31, and detuning δ31 = ω − ω31. Using (2.36)

and (2.35), the light shift of the 0–0 transition with Bohr frequency ω21 = 2πν00 is

δω21 = δω31 − δω32 =
|Ω32|2

2

(
ω − ω32

(ω − ω32)2 + Γ2
32

)
− |Ω31|2

2

(
ω − ω31

(ω − ω31)2 + Γ2
31

)
.

(2.37)

Since the quantities |Ω32|2 and |Ω31|2 are proportional to the light intensity, the light

shift is also. Noting that the two optical transitions are offset by the 0–0 transition,

ω32−ω31 = ω21, we see that the shift (2.37) qualitatively reproduces the curves shown

in Fig. 2.2, whose overall shapes are the differences between two offset dispersive

curves. The extra features in the figure are due to the hyperfine structure of the

excited state, which we neglected. By inspection of (2.37), we see that the light shift

is zero for laser frequencies ω that satisfy δω31 = δω32. For the light shift (2.37),

there are two zero-shift frequencies, corresponding to ω slightly less than the smaller

optical transition ω32 or slightly more than the larger ω31. Since collisions with the

buffer gas perturb the transition linewidths and Bohr frequencies of each alkali-metal

atom, these zero-shift frequencies are not fixed, but depend on the buffer-gas pressure,

temperature, and composition.

2.2 Quadrature error signal in vapor-cell clocks

In conventional atomic clocks, the microwave field is frequency modulated (FM) at

a relatively low rate, typically less than 1 kHz. If the microwave carrier frequency is
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slightly higher than the atomic resonant frequency, the intensity of the pumping light

emerging from the vapor will be modulated at the 1st harmonic of the FM rate. If

the carrier frequency is slightly lower, the 1st harmonic component will reverse sign.

Only if the carrier frequency is at exact resonance (the “zero-crossing frequency”) will

there be no 1st harmonic modulation in the intensity. The 1st harmonic component

(the signal) is normally detected synchronously with a lock-in amplifier and used as

an error signal to lock the microwave carrier frequency (the local oscillator) to the

center of the atomic resonance line. Fig. 2.3 is a sketch of this feedback loop.

Superficially, it would seem that the phase adjustment of the lock-in amplifier

would not be critical. However, we were surprised to find that there were often differ-

ent zero-crossing frequencies for the in-phase and out-of-phase (quadrature) channels

of the lock-in amplifier, as shown in Fig. 2.4. We eventually found that if the laser

was tuned to a zero-shift frequency, the microwave zero-crossing frequency was in-
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Figure 2.3: Feedback loop in a conventional vapor-cell clock that uses frequency
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dependent of the lock-in amplifier phase. This is the phenomenon that is used for

the laser stabilization method described here. We use the in-phase and quadrature

channels from the synchronous detector of a single feedback loop as two independent

error signals to lock the local oscillator and suppress the light shift.

The density of atomic vapor used in atomic clocks is normally adjusted to atten-

uate the laser beam by a factor of about 1/e. This means that any light shift will be

greater where the beam enters the cell than where it exits. A spatial beam profile will

have a similar effect. Without a light shift, the entire cell will share a zero-crossing

frequency. However, with a light shift, such light-intensity gradients will lead to re-

gions in the cell with different light shifts and different homogenous broadening, as

depicted in Fig. 2.4. For stronger light intensities than typical in clocks, this leads to

the inhomogenous light shift [60].
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Figure 2.4: Modeling of lock-in channels versus microwave carrier frequency, where the
in-phase channel is optimized as the microwave error signal. An array representing
the different regions in a cell with a light-intensity gradient is combined to obtain
the total signal. The top panel shows the zero-crossing region of the middle panel,
with both axes magnified. The arrow indicates the quadrature channel output at the
in-phase channel zero-crossing. See Section 2.4 for modeling detail.
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The phase response of the signal from each cell region depends on the linewidth

(Γ), the carrier detuning, and the FM parameters, such as the modulation rate (ωm)

and index. When there is a light shift, the different cell regions will not only have

different detunings, but will also experience different effective FM rates (ωm/Γ) due

to intensity broadening from the pumping light. Hence, there is significant phase

variation in the signals from each region. As a result, when there is a light shift, the

total signal amplitude will not vanish for any carrier frequency, or in other words, there

will be no choice of carrier for which both lock-in channels vanish. When the in-phase

channel is used to lock the local oscillator, the quadrature channel is proportional to

the light shift near a zero-shift frequency. Therefore the quadrature channel may be

used as an error signal to lock the pumping light to a zero-shift frequency. This is the

origin of the phenomenon outlined above, which makes it possible to both lock the

local oscillator and suppress the light shift with a single feedback loop. The method

is sensitive to the choice of FM parameters and works best if the cell is not optically

thin.

2.2.1 Semi-quantitative model

A relatively simple and semi-quantitative way to explain this phenomenon is as fol-

lows. Suppose that the signal input to the lock-in amplifier from a particular spatial

region of the vapor-cell has the form

S1(ω) = A(ω − ω1)ei(ωmt+φ1), (2.38)

where ω is the (angular) microwave carrier frequency, ω1 is the resonant frequency

for the particular region in the cell, ωm is the microwave FM rate, and φ1 is the

phase response of the signal with respect to the microwave modulation. Let the

amplitude A(ω) be a real-valued function with the shape of the error signal sketched
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in Fig. 2.3(c), and with a zero-crossing at A(0) = 0. Lock-in detection of the signal S1

at the frequency ωm and phase φ0 = φ1 gives the following X and Y channel outputs:

X(ω) = Re[S1(ω)e−i(ωmt+φ0)] = A(ω − ω1), (2.39)

Y (ω) = Im[S1(ω)e−i(ωmt+φ0)] = 0. (2.40)

We see that this particular choice of the lock-in phase φ0 produces a quadrature

channel Y that is always zero, and an in-phase channel X that is an error signal.

Here, the microwave feedback loop would lock the carrier frequency ω to the resonant

frequency ω1, such that both channels are zero, X(ω1) = Y (ω1) = 0.

Now suppose that the lock-in measures a total signal S = S1 + S2, where the

additional signal

S2(ω) = A(ω − ω2)ei(ωmt+φ2) (2.41)

is from a different spatial region of the cell. Let the signal S2 have a slightly different

resonant frequency ω2 and phase response φ2 than S1, because of a slight difference

in light shift and intensity broadening, respectively, between the two cell regions.

Denote these small differences as δω = ω2 − ω1 and δφ = φ2 − φ1. Then the lock-in

signals become

X(ω) = Re[Se−i(ωmt+φ0)] = A(ω − ω1) + A(ω − ω2) cos(δφ), (2.42)

Y (ω) = Im[Se−i(ωmt+φ0)] = A(ω − ω2) sin(δφ). (2.43)

Since we assume a small δφ, we can approximate cos(δφ) ≈ 1 and sin(δφ) ≈ δφ.

Noting that the error signal amplitude sketched in Fig. 2.3(c) is an odd function,

A(−ω) = −A(ω), we see that if the in-phase channel X provides the microwave

error signal, then the feedback will lock the carrier ω to the weighted average ω =
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(ω1 + ω2)/2. With ω locked to ω by feedback, the lock-in channels become

X(ω) ≈ 0, (2.44)

Y (ω) ≈ δφA(δω/2). (2.45)

In contrast to before, the quadrature channel Y is no longer zero when the microwave

carrier is locked. Instead, it is proportional to an error signal A(δω/2) for the light

shift, which is responsible for the resonant frequency difference δω between the dif-

ferent spatial regions. As shown, the microwave feedback loop is unable to make

the total error-signal amplitude R =
√
X2 + Y 2 go to zero, and only suppresses a

particular projection, X, while pushing the remaining, non-vanishing amplitude R

into the other, quadrature channel Y . Note that the critical factor of δφ in (2.45) is

due to the inhomogeneous broadening from the different light intensities in the two

spatial regions for S1 and S2, and that without this phase-response difference δφ, the

quadrature error signal (2.45) would be zero, even with a light shift.

2.3 Experiment

A comparison of the “quadrature” method with the conventional, intensity-

modulation method to suppress the light shift in a laser-pumped, vapor-cell atomic

clock is sketched in Fig. 2.5. Both methods use two different error signals to lock the

local oscillator and to tune the laser to the zero-shift frequency. Both measure the

light-field-independent, ground-state 0–0 hyperfine resonant frequency of 87Rb atoms

to about 1 Hz.

Alternating between the two configurations allowed direct comparison between

both methods in the same setup. The experimental setup closely follows the descrip-

tion in Refs. [39] and [40]. For computerized control and measurement with National

Instruments NI-DAQ, GPIB, and serial (RS-232) communication, we used IGOR Pro
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Figure 2.5: Experimental setups with different light-shift suppression methods. DL,
diode laser; FR, Faraday rotator; PE, pellicle; PO, polarizer; LCW, liquid crystal
wave plate; BS, beam shaper; NDF, neutral density filter; BE, beam expander; I,
iris; O, oven; H, horn; HC, Helmholtz coils; L, lens; PD, photodetector; CP, current
preamplifier; LA, lock-in amplifier; PID, PID controller; FS, frequency synthesizer;
FC, frequency counter; FG, function generator.
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[61] with customized code for data acquisition and management [62, 63]. The vapor

cell is a cylindrical Pyrex cell, 17 mm in diameter and 25 mm long, filled with a small

amount of 87Rb metal. An external buffer-gas reservoir, pressure gauge, and vacuum

port permit convenient changes of the buffer-gas species and pressure. An air-heated,

non-magnetic oven (O) holds the cell at constant temperature between 35–65◦C. The

temperature of the cell controlled the equilibrium number density of the vapor of

87Rb atoms produced by the small amount of 87Rb metal in the cell. Helmholtz coils

(HC) cancel ambient fields and provide a static longitudinal field B of about 0.2 G.

A Toptica DL 100 diode laser (DL) provides 795 nm D1 optical pumping light for

87Rb. A Faraday rotator (FR) isolates the laser from back-reflected light. A pellicle

(PE) skims off light for analysis with a wavemeter and a Fabry–Pérot interferometer

(not shown). Polarizers (PO) ensure that the pumping light is linearly polarized.

When included, a liquid crystal wave plate (LCW, Meadowlark Optics LVR-200-IR1)

driven by a function generator (FG) provides about 30% intensity modulation of the

pumping light at a rate of 2 Hz. A beam shaper (BS), a beam expander (BE), and

an iris (I) ensure that the pumping light fills the cell uniformly. A rotatable neutral

density filter (NDF) adjusts the pumping beam intensity. A lens (L) collects the

transmitted pumping light onto a photodetector (PD). Microwaves from a frequency

synthesizer (FS, Agilent Technologies E8257C) are transmitted towards the cell by

a horn (H, Narda Microwave-East Standard Gain Horn 642) roughly 10 cm away to

drive magnetic resonances. A frequency counter (FC, Agilent Technologies 53150A)

referenced to a rubidium frequency standard (not shown, Stanford Research Systems

FS725) measures the microwave frequency. The microwaves are frequency modulated

at a rate of roughly 100–500 Hz with a modulation index of about 1. A lock-in

amplifier (LA1, Stanford Research Systems SR830) with a 10–300 ms time constant

provides an error signal for a proportional-integral-derivative (PID) controller (PID1,
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Figure 2.6: Comparison of laser frequency error signals illustrating that the quadra-
ture method locks to the same frequency as the conventional method, which is a
zero-shift frequency. The signal-to-noise ratio of the quadrature method improved at
higher temperatures due to increased cell optical thickness.

Stanford Research Systems SIM960) to lock the microwave carrier frequency to the

atomic resonance.

For implementation of the quadrature method (Fig. 2.5(a)), the quadrature chan-

nel of LA1 provides an error signal for a PID controller (PID2, Stanford Research

Systems SIM960) to lock the laser to a zero-shift frequency. For implementation

of the conventional method (Fig. 2.5(b)), a second lock-in amplifier (LA2, Stanford

Research Systems SR530) provides the error signal for PID2 by detecting modula-

tion in the first feedback loop control signal due to intensity modulation from the

LCW. Feedback adjusts the laser frequency through a piezoactuator. As a quick test

for light-shift suppression, we used the NDF filter to temporarily adjust the laser

intensity by a factor of 2–4 to verify intensity-independence of the clock output.

To verify that the quadrature method locks the laser to a zero-shift frequency, we

measured the error signals from both methods as a function of the laser frequency.

Here, the cell was filled with 30.0 Torr of N2 (at 50.0◦C). The error signals for both

methods were recorded separately with sweeps in both directions, using a wavemeter

to record the laser frequency to a precision of 0.01 GHz. Fig. 2.6 shows the results
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Figure 2.7: Comparison of clock frequency stability with and without the quadrature
method of light-shift suppression.

at 40.0◦C, 50.0◦C, and 60.0◦C, which demonstrate that both methods share the same

zero-crossing frequency to within experimental error. Therefore both methods lock

to the zero-shift frequency. The data also illustrate how higher temperatures improve

the signal-to-noise ratio for the quadrature method, which results from increased cell

optical thickness.

We measured the clock performance both with and without the quadrature method

engaged. For these tests we used a 27.1 Torr buffer-gas mixture of N2 and Ar at

52.6◦C, manually optimized for zero-pressure shift as described in Chapter 5, since

we were able to control temperature much better than pressure. Fig. 2.7 shows the

Allan deviation for the data [64]. The clock stability is significantly improved with the

quadrature method compared to a free-run system without laser feedback and light-

shift suppression. Unfortunately, limitations in our setup prevented a comparison

of the quadrature and the conventional methods. In the short-term, the measured

stability was limited by the 1 Hz precision of the frequency counter. In the long-term,

we think the measured stability was limited by fluctuations in the buffer-gas pressure

due to our cell design, which is shown in Fig. 4.10 of Chapter 4.
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Figure 2.8: Alternate implementation of light-shift suppression method. DL, diode
laser; FR, Faraday rotator; PE, pellicle; PO, polarizer; LCW, liquid crystal wave
plate; BS, beam shaper; NDF, neutral density filter; BE, beam expander; I, iris;
O, oven; H, horn; HC, Helmholtz coils; L, lens; PD, photodetector; CP, current
preamplifier; LA, lock-in amplifier; PID, PID controller; FS, frequency synthesizer;
FC, frequency counter; FG, function generator.

While for both methods the response speed of PID2 is limited below that of

PID1, in principle this speed may be faster for the quadrature method than for the

conventional due to the single-modulation scheme. The quadrature method may also

be implemented with the configuration of Fig. 2.5(b) altered to use the quadrature

channel of LA1 as the input to LA2, as sketched in Fig. 2.8. However, this version

sacrifices the original simplicity, and in practice may mix error signals from both

methods shown in Fig. 2.5.

2.4 Modeling

We modeled this phenomenon in two numerical simulations described below: two-level

systems (2LSs) and damped linear harmonic oscillators (DLHOs). Both simulations

combined an array representative of several regions in a cell with different light shifts
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and inhomogeneous broadening due to a light-intensity gradient. This is shown with

the two-level simulation in Fig. 2.4. Both simulations agree qualitatively with exper-

imental tests. In particular, both experiment and modeling show that the selection

of lock-in phase is not critical for the quadrature error signal, as shown in Fig. 2.9,

where the different curves represent different laser detuning from a zero-shift fre-

quency. Additionally, both experiment and modeling reveal that the quadrature error

signal changes sign with increased frequency modulation (FM) amplitude. Modeling

also indicates that the quadrature error signal is affected by non-light-shift resonant

frequency gradients in the cell, such as a temperature or magnetic-field gradient.

What follows are the details of these two simulations. Following the notation of

Section 2.2.1, let S(ω) be the signal input to the lock-in for a fixed microwave carrier

frequency ω. Lock-in detection at the FM rate ωm and detector phase φ0 gives the

following lock-in channels

X(ω) = Re[S(ω)e−i(ωmt+φ0)] = Re[S̃1(ω)e−iφ0 ], (2.46)

Y (ω) = Im[S(ω)e−i(ωmt+φ0)] = Im[S̃1(ω)e−iφ0 ], (2.47)
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where we have introduces the (complex-valued) first-harmonic component S̃1(ω) of

S(ω). As we show below, we may write this component as

S̃1(ω) =
∞∑
n=0

Jn(m)Jn+1(m)Cn(ω, ωm), (2.48)

where the Jn are Bessel functions of the first kind, and ωm and m are the FM rate

and index, respectively. The complex-valued coefficients Cn(ω, ωm) depend on the

particular simulation and will be determined below.

The first-harmonic component S̃1(ω) is the error-signal amplitude measured by

the lock-in, and its shape depends on the FM index m and rate ωm. The index m

determines the weight Jn(m)Jn+1(m) of each n-th component Cn(ω, ωm), and the

shapes of these components versus ω depends on the rate ωm. For weak modulation,

corresponding to an index m � 1, only the n = 0 term contributes. For slow

modulation, corresponding to a rate ωm much smaller than the microwave linewidth

Γ, the shape of the component C0(ω, ωm) versus ω is very much like the error signal

sketched in Fig. 2.3(c). However, the phase of this and the other components are

not constant with ω, and so the error signal cannot be adjusted into a single lock-in

channel, as in Fig. 2.3(c), but will have projections in both the X and Y channels,

as in Fig. 2.4. In practice, the error signal is optimized for an index m ≈ 1, which

maximizes the weight J0(m)J1(m), and a rate ωm a little less than half of the full-

width-at-half-maximum (FWHM) Γ of the microwave line, ωm . Γ/2. Larger values

of the index m or rate ωm lead to distortion of the error signal shape away from that

desired for optimal feedback.

2.4.1 Damped linear harmonic oscillators

First, we derive the components Cn(ω, ωm) for the DHLO simulation. This model

provides qualitatively similar error signals, and has a shorter derivation than the 2LS
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model. It also shows that the quadrature error signal is not just an atomic clock

phenomenon.

Consider a function y(t) that describes the amplitude of a linear harmonic oscil-

lator. Let y(t) evolve according to

d2y

dt2
+ Γ

dy

dt
+ ω2

0y = F (t), (2.49)

where ω0 is a natural (undamped) resonant frequency, Γ is a damping coefficient,

and F (t) is a periodic driving force. For a single oscillator, corresponding to a single

spatial region in our cell, the intensity |y(t)|2 plays the role of our detected signal

S(ω). The driving force F (t) plays the role of the microwave magnetic field, which

we take here to have unity amplitude.

We may write the time dependence of the microwave magnetic field as

F (t) = cos[ωt+ φ(t)], (2.50)

where ω is the (angular) carrier frequency. For frequency modulation with rate ωm

and index m, we may choose to write the time-dependent phase as

φ(t) =

∫ t

−∞
∆ω cos(ωmt

′)dt′ = m sin(ωmt), (2.51)

where ∆ω = mωm is the modulation amplitude, and we chose φ(0) = 0 such that

F (0) = 1. Using the relation [65]

eim sin(ωt) =
∞∑

n=−∞

Jn(m)einωt, (2.52)
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we may rewrite the function F (t) as the sum

F (t) =
∞∑

n=−∞

Jn(m) cos(ωnt) = Re
∞∑

n=−∞

Jn(m)eiωnt, (2.53)

where we introduced the shorthand

ωn = ω + nωm (2.54)

for the n-th sideband frequency. We see that FM leads to a superposition of contin-

uous oscillations at the sideband frequencies ωn in the function F (t).

In the steady state, the amplitude y(t) will be entirely due to the driving force

F (t). For a trial driving force

Ftrial(t) = esnt, (2.55)

we see by inspection that the inhomogenous (or particular) solution of (2.49) is

ytrial(t) = H1(sn)esnt, (2.56)

where we introduced the function

H1(s) =
1

ω2
0 + s2 + sΓ

. (2.57)

Since the driving force F (t) of (2.53) is a sum of terms proportional to the trial force

(2.55), we see that the steady-state solution of (2.49) for the F (t) of (2.53) is

y(t) = Re
∞∑

n=−∞

Jn(m)H1(iωn)eiωnt. (2.58)
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Before we continue, we note that the function H1(s) of (2.57) is known as a transfer

function, and is equal to the ratio of the steady-state solution to the driving force in

the Laplace domain [66]. This is clear if we introduce the Laplace transform L{g(t)}

of an arbitrary function g(t),

L{g(t)} =

∫ ∞
0

e−stg(t)dt. (2.59)

Using integration by parts, the Laplace transform of (2.49) is the algebraic equation

L{y(t)}
H1(s)

− dy(0)

dt
− (s+ Γ)y(0) = L{F (t)}. (2.60)

To obtain the steady-state solution, we can ignore the initial conditions y(0) and

dy(0)/dt, which lead to a transient, homogeneous solution that decays over time. We

then see from (2.60) that the ratio of the steady-state solution to the driving force is

the transfer function (2.57),

H1(s) =
L{y(t)}
L{F (t)}

. (2.61)

In the temporal domain, the steady-state solution y(t) is given by an inverse Laplace

transform,

y(t) = L−1{H1(s)L{F (t)}} =
1

2πi

∫ γ+i∞

γ−i∞
estH1(s)L{F (t)}dt, (2.62)

where γ is a real number that is greater than the real part of all singularities of the

integrand [65]. A convenient property of the trial driving force Ftrial(t) of (2.55),

which has the Laplace transform

L{Ftrial(t)} =
1

s− sn
, (2.63)
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is that the transfer function is also equal to the ratio of the steady-state solution to

the driving force in the time domain, as shown by (2.56). This is clear if we use

(2.62) with (2.63) and Cauchy’s residue theorem. Noting that the two residues from

the transfer function (2.57) cancel, we recover the trial solution (2.56).

Using the steady-state solution (2.58) with the relation Re[z]2 = |z|2/2+z2+(z∗)2,

and neglecting terms with the frequencies ±2ωm, the (real-valued) signal S(ω) =

|y(t)|2 for a single oscillator is

S(ω) ≈ 1

2

∣∣∣∣∣
∞∑

n=−∞

Jn(m)H1(iωn)eiωnt

∣∣∣∣∣
2

=
1

2

∞∑
n=−∞

∞∑
k=−∞

Jn(m)H1(iωn)Jk(m)H∗1 (iωk)e
i(ωn−ωk)t. (2.64)

The first-harmonic component S̃1(ω) oscillating at the FM rate ωm comes from the

nearest-neighbor terms with |n − k| = 1. Neglecting the other harmonics, we may

write the (real-valued) first-harmonic signal as

S1(ω) = Re
∞∑

n=−∞

Jn(m)Jn+1(m)H∗1 (iωn)H1(iωn+1)eiωmt. (2.65)

The corresponding, complex-valued first-harmonic component S̃1(ω) that satisfies

S1(ω) = Re
[
S̃1(ω)eiωmt

]
(2.66)

and gives the same lock-in channels (2.46) and (2.47) as the real-valued S1(ω) is

S̃1(ω) =
∞∑

n=−∞

Jn(m)Jn+1(m)H∗1 (iωn)H1(iωn+1). (2.67)
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Using the relation J−n(m) = (−1)nJn(m) [65], we find that the error-signal compo-

nents of (2.48) are

CDLHO
n (ω, ωm) = H∗1 (iωn)H1(iωn+1)−H1(iω−n)H∗1

(
ω−(n+1)

)
. (2.68)

These components are for a single oscillator, which represents a single spatial region

of the cell. For typical FM parameters m ≈ 1 and ωm ≈ Γ/2, and trial oscillator

parameters ω0 = 1 and Γ = 10−6ω0, these components give error signals very similar

to those shown in Fig. 2.4. We note that the zero-crossings of the X and Y lock-

in channels for a single DLHO will be slightly mismatched for low quality factors

Q = ω0/Γ, by an amount on the order of 1/Q, but that this is not the quadrature

error signal phenomenon. This mismatch vanishes in the limit of high Q, or if the

transfer function (2.57) is simplified with the “high-Q” approximation, ω2
0−ω2+iΓω ≈

2ω0[ω0 − ω + iΓ/2].

To model the quadrature error signal, an array of several oscillators with ampli-

tudes yk(t) must be used to represent spatial regions in the cell with different ω0 and

Γ from a spatial light-intensity gradient. The detected signal is then the intensity

of the total amplitude, S(ω) = |
∑

k yk(t)|2. However, in practice, similar results are

obtained with the approximation S(ω) ≈
∑

k |yk(t)|2, which conveniently allows the

use of a superposition of the components (2.68).

2.4.2 Two-level systems

Now we derive the components Cn(ω, ωm) for the 2LS simulation. Here, we ignore all

states except the two ground-state sublevels that form the 0–0 transition, which are

highlighted by the kets |1〉 and |2〉 in Fig. 2.1. We assume a two-level Hamiltonian

H = E1|1〉〈1|+ E2|2〉〈2|+ V21(t), (2.69)

41



where V21(t) is a time-dependent perturbation from the microwaves. In the full

ground-state spin Hamiltonian H{g} of (2.1), the oscillatory magnetic field Bmw(t)

from the microwaves leads to a magnetic-dipole interaction,

V (t) = −µ ·Bmw(t). (2.70)

Let |Bmw| = BmwF (t), where the function F (t) describes the time dependence of the

field and satisfies F (0) = 1. Using the results from the last section, we may write

this function as

F (t) = cos[ωt+m sin(ωmt)] =
∞∑

n=−∞

Jn(m) cos(ωnt), (2.71)

where frequency modulation with rate ωm and index m lead to a superposition of

continuous oscillations at the sideband frequencies ωn = ω+ nωm of (2.54) about the

microwave carrier ω. If we define the Rabi frequency

Ω21 = −〈2|µ|1〉 ·Bmw(0)/~, (2.72)

then we can write the two-level interaction V21(t) in (2.69) due to (2.70) as

V21(t) = ~F (t){Ω21|2〉〈1|+ Ω∗21|1〉〈2|}. (2.73)

To calculate the error signal, we will model the absorption by the vapor using a

density matrix. In general, the density operator for an ensemble of N identical atoms

with wave functions |ψj〉, where j = 1, 2, . . . , N , is defined as

ρ =
1

N

N∑
j=1

|ψj〉〈ψj|. (2.74)
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If we express each wave function in terms of a given basis |µ〉 as |ψj〉 =
∑

µ cj(µ)|µ〉,

then we may write the density operator as

ρ =
∑
µν

ρµν |µ〉〈ν|, (2.75)

where the coefficients ρµν = 〈µ|ρ|ν〉 are the matrix elements of the operator ρ in the

basis |µ〉, and are equal to ρµν =
∑

j cj(µ)c∗j(ν)/N . The diagonal elements ρµµ are

known as populations, and give the occupation probability for each state |µ〉. The

off-diagonal elements ρµν with µ 6= ν are known as coherences, and satisfy ρµν = ρ∗νµ.

The density operator evolves as

d

dt
ρ =

1

i~
[H, ρ]−R(ρ), (2.76)

where H is the Hamiltonian for the atomic evolution and R(ρ) is a correction for

optical pumping and relaxation (or damping) effects.

For our two-level system with the sublevels |1〉 and |2〉, the Hamiltonian H21 of

(2.69), and the perturbation V21(t) of (2.73), the evolution of the density operator ρ

according to (2.76) is equivalent to the evolution of the density-matrix elements ρµν

for a given spatial region in the cell according to the coupled system

d

dt
ρ11 = Υ11 − Γ11ρ11 − 2 Im[Ω21F (t)ρ12], (2.77)

ρ21 = ρ∗12, (2.78)

d

dt
ρ12 = (iω21 − Γ21)ρ12 − iF (t)(Ω∗21ρ22 − Ω21ρ11), (2.79)

d

dt
ρ22 = Υ22 − Γ22ρ22 + 2 Im[Ω21F (t)ρ12]. (2.80)

Here, the Υ and Γ are replenishment and relaxation rates from R(ρ), respectively,

ω21 = (E2 − E1)/~ is the Bohr frequency for the 0–0 transition, and Im[z] denotes
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the imaginary part of z. This system is valid locally at each spatial region in the

cell. Without microwaves, Ω21 = 0 and optical pumping produces the equilibrium

populations ρµµ = Υµµ/Γµµ.

The attenuation of the pumping light at each point in the cell is proportional

to the population difference ρ22 − ρ11. To calculate this difference in the presence

of microwaves, we must first solve for the coherence ρ12. Neglecting the nuclear

contribution to the moment µ of (2.4) and assuming that the microwave field is

aligned with the applied static field B along the Cartesian direction z, which defines

the quantization axis, the Rabi frequency becomes

Ω21 = gSµB〈2|Sz|1〉Bmw/~. (2.81)

From the spin-basis expansion (2.12), we see that the matrix element 〈2|Sz|1〉 =

〈a 0|Sz|b 0〉 is real valued. Therefore, the Rabi frequency Ω21 is real, or Ω21 = Ω∗21,

which simplifies the coupled system of equations (2.77)–(2.80).

Solving (2.79), we may write the coherence as

ρ12(t) = −i
∫ t

−∞
e(iω21−Γ12)(t−t′)F (t′)Ω21[ρ22(t′)− ρ11(t′)]dt′. (2.82)

If we assume that the population difference ρ22 − ρ11 is slowly varying, or that any

oscillations induced in this difference lead only to a small correction, then we may

approximate

ρ12(t) ≈ −iΩ21(ρ22 − ρ11)

∫ t

−∞
e(iω21−Γ12)(t−t′)F (t′)dt′. (2.83)

Using the secular approximation, we assume that only the low-frequency terms of the

product e−iω21tF (t) are important to the evolution of the coherence, and that we may

neglect the high-frequency components. For a microwave carrier ω tuned near the
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0–0 frequency ω21, this gives the approximate solution

ρ12(t) ≈ Ω21

2
(ρ22 − ρ11)

∞∑
n=−∞

Jn(m)H2(iωn)eiωnt, (2.84)

where we introduced the function

H2(s) =
1

ω21 + is+ iΓ21

. (2.85)

This function plays a similar role as the transfer function H1(s) of (2.57) obtained

for the DLHO, and these two functions have the same form for s = iω if H1(s) is

simplified with the “high-Q” approximation, ω2
0 − ω2 + iΓω ≈ 2ω0[ω0 − ω + iΓ/2].

We can now solve for the population difference D = ρ22 − ρ11. For simplicity,

let ΓD = Γ11 = Γ22 and denote the steady-state difference without microwaves as

D0 = Υ22/Γ22 −Υ11/Γ11. Subtracting (2.77) from (2.80), we find that D evolves as

d

dt
D = ΓD(D0 −D)− Γmw(t)D, (2.86)

where the time-dependent relaxation rate from the microwaves is

Γmw(t) = −4 Im[Ω21F (t)ρ12]/D. (2.87)

Using (2.84), (2.71), and the secular approximation, we may approximate this rate as

Γmw(t) ≈ −Ω2
21 Im

[
∞∑

n=−∞

∞∑
k=−∞

Jn(m)Jk(m)H2(iωn)ei(ωn−ωk)t

]
. (2.88)

Separating the rate (2.88) into constant and time-varying portions,

Γmw(t) = Γmw + Γ̃mw(t), (2.89)
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we may use (2.85) to find that the constant portion is

Γmw =
Γ21Ω2

21

(ω21 − ω)2 + Γ2
21

∞∑
n=−∞

J2
n(m). (2.90)

For no modulation, m = 0, the sum on the right-hand side equals 1, since Jn(0) = δn0.

Keeping only the first-harmonic component, the time-dependent portion of (2.88) is

Γ̃mw(t) ≈ −Ω2
21 Im

[
∞∑

n=−∞

Jn(m)Jn+1(m)
(
H2(iωn)e−iωmt +H2(iωn+1)eiωmt

)]
. (2.91)

Note that for intermediate modulation (m & 1) the constant (2.90) and time-

dependent (2.91) portions of Γmw are comparable in magnitude.

Similarly, we may separate the population difference D = ρ22 − ρ11 into constant

and time-varying portions,

D = D + D̃(t). (2.92)

Using (2.86) and (2.89), the constant portion is

D =
D0ΓD

ΓD + Γmw

. (2.93)

Using (2.90), the relative change in the constant portion of the population difference

due to the microwaves is

D −D0

D0

=
−Γmw

ΓD + Γmw

=
−(Γ21/ΓD)Ω2

21

∑
n Jn(m)2

(ω21 − ω)2 + Γ2
21 + (Γ21/ΓD)Ω2

21

∑
n Jn(m)2

. (2.94)

As a function of microwave carrier ω, we see that the population difference due to

the microwaves is a Lorentzian dip about resonance, as sketched in Fig. 2.3(b) and

observed in practice. We also see that the rate Γ21 plays the role of a half-width-at-

half-maximum (HWHM) for the microwave line. Typically, the density of alkali-metal
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atoms in the cell is adjusted so that the optical absorption attenuates the light passing

through the cell by roughly a factor of 1/e. In comparison, the additional relative

attenuation, (2.94) above, of this light due to microwave absorption is typically about

1% for clocks that use lasers.

Assuming that any oscillation induced in the population difference D is small, we

can approximate the evolution of the time-dependent portion D̃(t) from (2.86) as

d

dt
D̃ = −[ΓD + Γmw(t)]D̃ − Γ̃mw(t)D ≈ −Γ̃mw(t)D. (2.95)

Since the microwave absorption (2.94) is typically small, we can further approximate

D ≈ D0 in (2.95),

d

dt
D̃ ≈ −Γ̃mw(t)D0. (2.96)

If we write the first-harmonic component (2.91) as

Γ̃mw(t) = − Im
[
S̃1(ω)eiωmt

]
, (2.97)

then the solution of (2.96) including only the first-harmonic modulation is

D̃(t) =
D0

ωm

Re
[
S̃1(ω)eiωmt

]
. (2.98)

The attenuation of the pumping light intensity is proportional to D, and so from

(2.98) we see that the (real-valued) lock-in signal is

S1(ω) ∝ Re
[
S̃1(ω)eiωmt

]
. (2.99)
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Combining (2.91), (2.97), and (2.99), the complex-valued signal S̃1(ω) of (2.48) has

the error-signal components

C2LS
n (ω, ωm) ∝ H2(iωn+1)−H2(iω−n)−H∗2 (iωn) +H∗2

(
iω−(n+1)

)
. (2.100)

Just as with the DLHO result (2.68), these error-signal components are for a single

spatial region in the cell. For typical modulation parameters m ≈ 1 and ωm ≈ Γ/2,

where the microwave full-width Γ = 2Γ21, and trial atomic parameters ω21 ≈ 109 and

Γ12 ≈ 103, these components give error signals like those shown in Fig. 2.4.

To model the quadrature error signal in Figs. 2.4 and 2.9, an array of ten solutions

representing different spatial regions in the cell were combined to obtain the total

lock-in signal. To simulate the quadrature error signal in Fig. 2.4, the values of ω21

and of Γ21 were adjusted to vary uniformly by a total of 20% over the whole array.

To simulate the signals in Fig. 2.9, the size of the total variation in ω21 over the

cell was chosen to be proportional to the laser-frequency detuning from the zero-

shift frequency. The only free parameters were a lock-in phase offset and an overall

vertical-scaling coefficient for all of the quadrature error signals, which were adjusted

to match the theory curves with the experimental curves in the figure.

2.5 Summary and discussion

We have demonstrated a simple method to suppress the light shift in optical pumping

systems, which can be readily applied to existing atomic clocks with few additional

components. The method uses only frequency modulation of a radio frequency or mi-

crowave source in order to simultaneously lock the source to an atomic resonance and

lock the pumping light to suppress the light shift. In contrast, conventional stabiliza-

tion of both sources requires two individual modulation schemes, adding complexity.

This technique also works for clocks based on coherent population trapping (CPT),
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as demonstrated by Boudot et al. [67] with a Cs-Ne CPT clock. In principle, this

technique can also work with many other optical pumping systems that experience

light shifts.

Although the quadrature method performs well, as shown in Fig. 2.7, we have

observed a noticeable difference between the clock frequencies for the quadrature and

the conventional methods when the buffer-gas pressure is less than about 20 Torr.
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Figure 2.11: Dependence of the clock frequency at low pressure on the applied mi-
crowave power and the choice of zero-shift frequency, either near the upper or lower
hyperfine manifold. The data are for 87Rb in 1 Torr of N2 at 50.0◦ C.
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This difference can be up to a few tens of Hz for 2 Torr of Ar or N2, as shown in

Fig. 2.10. When there is a difference, the clock frequency using the quadrature method

shows a dependence on the applied microwave power and the choice of hyperfine

multiplet for optical pumping, as shown in Fig. 2.11. The conventional method does

not show such dependence. While these discrepancies may be partly due to the poor

signal-to-noise ratio of the quadrature error signal at very low buffer-gas pressures,

detailed understanding requires further investigation.
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Chapter 3

Estimation of the hyperfine-shift

potential from the pressure shift

3.1 Introduction

During a collision with a chemically inert atom or molecule, the hyperfine coupling

A I · S of (2.1), between the nuclear spin I and electronic spin S of a ground-state

alkali-metal atom, is perturbed by the isotropic hyperfine-shift interaction [21]

Hhfs = δA I · S, (3.1)

in addition to smaller anisotropic interactions, such as the electric quadrupole and

non-contact magnetic-dipole interactions. The shift parameter δA = δA(R) is a

potential that depends on the internuclear separation R of the colliding pair. Because

of the interaction (3.1), the microwave resonant frequencies ν of alkali-metal atoms

in cells with buffer gas, which have long been used in atomic frequency standards

(or clocks) and magnetometers, are not the same as the free-atom frequencies ν0, but

instead are shifted by an amount that depends on the pressure and composition of

the buffer gas and on the temperature T [11]. Known as the pressure shift, the mean
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frequency shift δν = ν−ν0 due to binary collisions of a dilute alkali-metal vapor with

a buffer gas is given by the isotope-independent statistical average

δν

ν0

= 4πN

∫ ∞
0

(
δA(R)

A

)
e−V (R)/kTR2dR, (3.2)

where N is the buffer-gas number density, V (R) is an interaction (or interatomic)

potential for the colliding alkali-buffer pair, and k is the Boltzmann constant [68, 69].

The smaller anisotropic interactions average to zero in the mean shift (3.2) [70].

Despite much theoretical and experimental attention, not much is known yet about

the potential δA(R), especially at small separations R. Theoretical calculation of

δA(R) is difficult even for H [71, 72], and for the heavy alkali metals is a hard, if

not unsolved, problem [73]. (For early work, see the references listed in Happer [19].)

In contrast, much more is known about the other quantities in (3.2): The fractional

shift δν/ν0 has been measured very precisely for certain alkali-buffer pairs, in part

because of its importance to practical atomic clocks, and estimates exist for V (R) that

have been inferred from theory or experiment. While this knowledge is not enough

to invert (3.2) in order to uniquely determine δA(R), here we show that (3.2) still

yields a surprising amount of information about δA(R). For a typical V (R) with a

potential well, the change of the pressure shift with temperature depends strongly

on the shape of δA(R) near the well. We demonstrate how to use experimental data

for the pressure shift to estimate simple trial forms of δA(R) for Na, K, and Rb in

He, Ne, or Ar gas. The results provide an estimate for the shape of δA(R) about a

potential well in V (R), which agree well with theoretical and experimental results in

the few cases where they are available. Additionally, to aid these estimates, we first

derive an improved estimate of the large-R asymptote of the ratio δA(R)/V (R).

Before we begin, we first provide some background on the pressure shift in vapor-

cell clocks and a derivation of the average (3.2).
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3.1.1 Pressure shifts

In general, the pressure shift refers to the frequency shift of an atomic resonance

due to collisions with other atoms or molecules, for example, from a chemically inert

buffer gas. The same collisions that produce shifts also tend to broaden the atomic

resonance lines [74]. Most atomic clocks suffer pressure shifts from buffer gases, so

we review features of the pressure shift important to this and later chapters here.

For conventional vapor-cell clocks, the phrase “pressure shift” specifically refers

to the differential shift of the 0–0 hyperfine transition from collisions with the buffer

gas [11, 16]. Sometimes this shift is referred to as the hyperfine pressure shift, to

differentiate it from the pressure shifts of the optical transitions important to optical

pumping. Fig. 3.1 is a sketch of the pressure shift of the 0–0 transition of 133Cs

for several different buffer gases, as measured by Arditi and Carver [29, 30]. As the

curves show, the frequency shift is very nearly linear with the buffer-gas pressure.

The slope depends on the particular buffer gas, and also on the temperature, as

sketched in Fig. 3.2. Commercial vapor-cell clocks typically use mixtures of buffer

gases, such as N2 and Ar, which are optimized to reduce any change in the pressure

shift with temperature. This has the advantage of improving the short-term stability

against temperature fluctuation, but the consequence that there is still a significant

net pressure shift. This net pressure shift is the main reason why vapor-cell clocks

are secondary standards, which require calibration to correct for the initial inaccuracy

and the long-term drift from this shift [11, 15, 16], as we discuss in Section 5.1.1.

The pressure shift of the 0–0 transition is almost entirely due to the hyperfine-shift

interaction (3.1) [21]. From Section 2.1.1, we may write the 0–0 frequency as

ν00 = A(I + 1/2)/h, (3.3)
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where the magnetic-dipole coupling coefficient A of (2.3) is proportional to the prob-

ability density |ψ(0)|2 for the alkali-metal valence electron to be located at the alkali-

metal nucleus. During a collision, the perturbing buffer-gas atom or molecule changes

this density |ψ(0)|2. When the alkali-metal atom is immersed in a gas, the net ef-

fect of collisions is an average perturbation 〈δA〉 to the coupling coefficient A, and a

corresponding shift of the 0–0 frequency away from the free-atom value (3.3),

δν00 = 〈δA〉(I + 1/2)/h. (3.4)

In vapor-cell clocks, this shift is mostly due to independent binary collisions. We

can write the average perturbation as 〈δA〉 = 〈δA〉1τb/Tb, where 〈δA〉1 is the average

perturbation during a single binary collision of mean duration τb (≈ 1 ps) [19]. Since

the rate 1/Tb of binary collisions is proportional to the buffer-gas pressure p, we see

Figure 3.1: Measured pressure shift of the 0–0 transition frequency of 133Cs in H2,
He, N2, Ne, Ar, Kr, or Xe buffer gas at 30◦ C from Arditi and Carver [29, 30]. Each
curve is the 0–0 frequency in MHz as a function of the buffer-gas pressure (10 mm
Hg = 1 Torr). As the curves show, collisions with the buffer gas lead to a mostly
linear shift of the 0–0 frequency, with a slope that depends on the particular buffer
gas (and temperature). Reprinted figure with permission from [30]. Copyright 1961
by the American Physical Society.
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that the overall shift (3.4) is also proportional to the pressure p. We can estimate this

rate from spatial diffusion to be 1/Tb = v3/(3D). For a characteristic mean velocity

v ≈ 3 × 104 cm/s, diffusion coefficient D ≈ 0.1 × (760 Torr/p) cm2/s, and pressure

p ≈ 10 Torr, this gives 1/Tb ≈ 1320 s−1 [21].

The pressure shift is positive for some gases and negative for others, as sketched

in Fig. 3.1. This dependence on the particular gas can be qualitatively understood as

follows. At large separations the attractive van der Waals forces between the atoms

dominate, and the interaction potential V (R) is negative. This attraction tends to

decrease the probability density |ψ(0)|2 by pulling the valence electron away from the

nucleus, leading to a negative frequency shift. However, at smaller separations the

repulsive exchange forces between the atoms dominate, and the interaction potential

V (R) is positive. This repulsion tends to increase |ψ(0)|2 by concentrating the valence

electron at the nucleus, leading to a positive frequency shift. Averaging over collisions,

these long- and short-range effects compete to produce the average perturbation 〈δA〉

and the overall shift (3.4), which can be of either sign. For the lighter gases such as

He and Ne, the exchange forces tend to dominate, leading to a positive shift. For

the heavier gases such as Kr and Xe, which are more polarizable, the van der Waals

forces tend to dominate, leading to a negative shift. For the intermediate gas Ar these

effects almost cancel, leaving to a relatively small negative shift. However, the exact

dependence of the shift with internuclear separation R is described by the hyperfine-

shift potential δA = δA(R), which is the subject of this chapter. While this potential

comes from the same interactions that produce the interaction potential V (R), much

less is known about the precise shape of δA(R) than of V (R).

As expression (3.2) shows, the pressure shift δν = ν−ν0 for a particular hyperfine

frequency ν is the combined result of both δA(R) and V (R). The expression (3.2)

has a remarkably simple form, which we may derive as follows. Pressure shifts, unlike

collisional broadenings, are an equilibrium phenonena that can be calculated rather
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simply with statistical mechanics. Instead of averaging over all possible collisions

(e.g., Appendix A of Camparo [73]), we can average over all possible configurations

of the buffer gas about an alkali-metal atom for a given temperature T . Consider a

single alkali-metal atom in a volume Ω filled with a buffer gas of number density N .

We assume that the buffer gas is dilute enough that the alkali-metal atom is perturbed

by at most one buffer-gas atom or molecule at any given time. The probability for a

buffer-gas particle to be at the position R relative to the alkali-metal atom is then

dP =
1

Z
e−V (R)/kTd3R, (3.5)

where e−V (R)/kT is a Boltzmann factor and Z is the canonical partition function.

Since the interatomic potential V (R) differs significantly from zero only within a small

radius R, roughly on the order of 100 Å, the partition function is almost exactly equal

to the volume,

Z =

∫
Ω

e−V (R)/kTd3R ≈ Ω. (3.6)

The average value 〈δA〉 of the perturbation is then given by a statistical average over

the potential δA(R) using the probability (3.5) and normalization (3.6),

〈δA〉 = NΩ

∫
δA(R)dP = 4πN

∫ ∞
0

δA(R)e−V (R)/kTR2dR, (3.7)

where we multiplied by the number of particles NΩ to account for the whole buffer

gas. From (3.3) and (3.4), we see that the relative shift δν/ν0 = 〈δA〉/A, and so

the expression (3.2) follows directly from (3.7). Finally, we note that since the ratio

δA(R)/A is equal to a fractional change in the density |ψ(0)|2, the ratio δA(R)/A

and the fractional shift δν/ν0 of (3.2) are very nearly independent of the particular

choice of isotope for a given alkali-metal atom.
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Figure 3.2: Pressure shift of 85Rb versus temperature for a sealed cell with a constant
number density N of He, Ne, N2, or Ar buffer gas. Each curve is the shift δν/ps

of (3.29) using the measured coefficients of Bean and Lambert [75], where ps is the
buffer-gas pressure of the cell when it was sealed at a temperature Ts = 300 K. As
the curves show, the shift is a nonlinear function of temperature, which depends on
the particular buffer gas. The shifts for 23Na and 39K, also measured by Bean and
Lambert [75], have very similar behavior with temperature.

As sketched in Fig. 3.2, the pressure shift depends on temperature in a nonlinear

fashion. In Section 3.3, we use this dependence to estimate the shape of the potential

δA(R). To understand why the pressure shift is sensitive to the shape of δA(R) at

relatively small R, we note that nearly all the change with temperature of the Boltz-

mann factor e−V (R)/kT in the statistical average (3.2) occurs at R near the potential

well and the region where the potential V (R) initially becomes repulsive. At larger

R, the Boltzmann factor quickly asymptotes to 1, and at smaller R, it quickly decays

to zero.

The pressure shift may also depend on the buffer-gas pressure in a nonlinear

fashion, for example, if the pressure is high enough that three-body collisions or

deviation from the ideal-gas equation of state are significant [76, 77, 78, 79]. However,

these effects are typically negligible in vapor-cell clocks, which normally use buffer-gas

pressures of a few Torr or tens of Torr. Instead, for vapor-cell clocks there may be a
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significant nonlinear (and linear) contribution to the pressure shift from short-lived

van der Waals molecules, which is discussed in Chapter 4.

3.2 Estimation of the large-R asymptote of δA(R)

In this section, we derive an improved estimate of the ratio δA(R)/V (R) of the

hyperfine-shift and interaction potentials at large internuclear separations R, which

we will use in Section 3.3. Retardation effects [80] should be negligible in the range

of R important to the shift (3.2), so the following large-R asymptotic forms of the

interaction potential,

V (R) ≈ C6

R6
, (3.8)

and of the hyperfine-shift potential,

δA(R)

A
≈ A6

R6
, (3.9)

should be good approximations. We derive below a relation between the coefficient

A6 in (3.9) and the van der Waals dispersion coefficient C6 in (3.8),

A6 ≈
2

Ea

C6, (3.10)

where the characteristic energy Ea depends only on the particular alkali-metal atom.

Previous work has produced expressions similar to (3.10), usually of the form

A6 ≈
(

2

Ea

+
1

Ea + Ib

)
C6, (3.11)

where Ib is an ionization energy for the perturbing buffer-gas atom or molecule. The

additional term in (3.11) not present in (3.10) is a small correction, typically 5–10%,
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Table 3.1: Characteristic energies Ea (eV) for Na, K, Rb, and Cs in the relation
(3.10). The values of EA were numerically estimated using the expression (3.20).
Previously suggested values for Ea are included for comparison: Ee from Vanier and
Audoin [11] and the ionization energy E∞ [83] from Herman and Margenau [81].

Alkali metal: Na K Rb Cs

Ea (this work): 6.574 5.311 5.056 4.586
Vanier and Audoin Ee [11]: 3.62 2.98 2.88 2.66
Ionization energy E∞ [83]: 5.14 4.34 4.18 3.89

and is negligible compared to the disagreement between the very different values

provided for the energy Ea: Vanier and Audoin [11] estimated Ea as an average of

optical (D1 and D2) transition and ionization energies, while Herman and Margenau

[81] estimated Ea as an ionization energy. As shown in Table 3.1, these values for

Ea differ by roughly a factor of 2. Here we provide an unambiguous derivation of

Ea in (3.10), similar in approach to Adrian [82] for H, which we use to numerically

estimate the values of Ea in Table 3.1 for Na, K, Rb, and Cs. These values allow for

an improved estimation of the large-R asymptote (3.9) of δA(R) for a given value of

C6 using the expression (3.10).

Consider an alkali-metal atom at position ra and a buffer-gas atom (or molecule)

at position rb = ra + R, both of which are in their ground states. For large enough

R = |R| and ignoring retardation [80], the leading-order interaction U responsible for

V (R) is the dispersive van der Waals interaction between an induced electric-dipole

moment pb of the buffer-gas atom and the electric field Ea from the instantaneous

dipole moment pa of the alkali-metal valence electron,

U = −1

2
pb · Ea(rb), (3.12)

where the factor of 1/2 accounts for pb being induced. We assume that the buffer-gas

atom is fully described by an electric-dipole polarizability α, such that pb = αEa(rb).
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The moment pa = −|e|re, where e is the charge and re is the position relative to ra of

the alkali-metal valence electron. The field Ea = pa · (3nn− 1)/R3, where n = R/R

and 1 is the identity dyadic tensor, so we may write

U = −αe
2(r2

e + 3z2
e )

2R6
, (3.13)

where re = |re| and ze = re · n. Following Adrian [82], we treat both U and the

contact hyperfine interaction of (2.2),

Hhf =
8π

3
gSµB

µI
I
δ(re) I · S, (3.14)

as perturbations to the alkali-metal atom. Let |n〉 denote the S-state wave function

for an unperturbed alkali-metal valence electron with principle quantum number n

and energy En, and let |g〉 denote the ground S-state with energy Eg and n = g = 3,

4, 5, and 6 for Na, K, Rb, and Cs, respectively. Each S-state |n〉 has a magnetic-dipole

coupling coefficient

An =
8π

3
gSµB

µI
I
|ψn(0)|2, (3.15)

with Ag = A of (2.1) and where |ψn(0)|2 is the valence-electron probability density at

the nucleus. Please note that the A6 of (3.10) is not to be confused with a magnetic-

dipole coupling coefficient An of (3.15). Then the first-order perturbation to the

ground-state energy Eg is

δEg,1 = 〈g|U +Hhf|g〉 =
C6

R6
+ A〈I · S〉, (3.16)
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where

C6 = −αe2〈r2
e〉, (3.17)

which is the Unsöld form for C6 [74]. Here and subsequently in this section, angle

brackets denote ground-state expectation values.

The leading-order hyperfine-shift interaction (3.1) comes from the terms in the

second-order perturbation δEg,2 that are linear in both U and Hhf. Because the

interaction (3.14) only has non-zero matrix elements between S-states, we may write

these terms as

δE ′g,2 = 2 Re
∑
n>g

〈g|U |n〉〈n|Hhf|g〉
Eg − En

. (3.18)

Using (3.16) with (3.18), the resulting large-R form (3.9) is

δA(R)

A
=

δE ′g,2
A〈I · S〉

, (3.19)

and using (3.17) and (3.15), we find that the characteristic energy in (3.10) is

1

Ea

=
1

〈r2
e〉
∑
n>g

〈g|r2
e |n〉

√
|An/Ag|

Eg − En
. (3.20)

We numerically estimated the values of Ea in Table 3.1 using this expression, as

described below.

Following Oreto et al. [70], and using Eqs. 5.13(1), 8.4.3(10), and 8.5.1(2) from

Varshalovich et al. [54], we write the wave function for the S-state |n〉 as

ψn,m(re, σ) =
Pn0(re)

2
√
π re

δσm, (3.21)
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where m is the azimuthal quantum number, the electronic spin variable σ = ±1/2,

and Pn0(r) is the (real) radial wave function. Then the remaining matrix elements in

(3.20) simplify to radial integrals,

〈g|r2
e |n〉 =

∫ ∞
0

Pg0(re)Pn0(re)r
2
edre. (3.22)

For the ground-state functions Pg0(re) and expectations 〈r2
e〉, we used the tabulated

Roothaan-Hartree-Fock (RHF) wave functions and values of Bunge et al. [84] for Na,

K, and Rb, and of McLean and McLean [85] (Triple Zeta form) for Cs. For the excited-

state functions Pn0(re) we used Coulomb-approximation (CA) wave functions, since

the operator r2 contributes mostly away from the nucleus, near which these functions

are least accurate. Following Oreto et al. [70], the CA functions are given by the

asymptotic series

Pn0(re) =

p∑
q=0

cqe
−re/n∗rn

∗−q
e , (3.23)

where the effective quantum number

n∗ =

√
R∞

E∞ − En
, (3.24)

R∞ is the Rydberg constant, and E∞ is the ionization energy of the alkali-metal atom.

Up to overall normalization, the coefficients cq are given by the recurrence relation

cq =
n∗(n∗ − q)(n∗ − q + 1)

2q
cq−1. (3.25)
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We chose the upper limit p of the series (3.23) to get the best convergence at re =

1 Bohr (≈ 0.53 Å), and normalized the CA functions such that

∫ ∞
0.1

Pn0(re)
2dre = 1, (3.26)

where the lower bound is 0.1 Bohr. To match the RHF convention, we chose the sign

of the CA functions so that the nuclear value of the unapproximated functions P ′n0(0)

are positive, using the relation

P ′n0(0)

|P ′n0(0)|
= (−1)n+g lim

re→∞

Pn0(re)

|Pn0(re)|
, (3.27)

which lead to negative values for all the elements (3.22). One consequence of using

RHF functions for the ground state and CA functions for the excited states is that the

combined set of radial functions is not perfectly orthogonal. That is, the numerical

integrals

∫ ∞
0.1

Pg0(re)Pn0(re)dre (3.28)

are not exactly zero for n 6= g, but are, for example, between 0.02–0.13 for the worst

case of n = g+1. However, the orthogonality quickly improves with n, as the accuracy

of the CA functions improves with n. This small error is not expected to contribute

much to Ea, since it is due to the inaccuracy of the CA functions near the nucleus,

where the operator r2
e in (3.22) contributes least.

For the physical parameters in (3.20), we used measured values where available,

and extrapolated otherwise. We used the values of An from Arimondo et al. [53] for

23Na, 39K, 87Rb, and 133Cs, as well as additional values for 133Cs from Sansonetti [86].

Though the parameters An are isotope dependent, the ratio An/Ag is very nearly
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isotope independent [53]. For the energies E∞ and En we used the values from the

NIST Spectra Database [83].

In general, the parameters An are the least available. We extrapolated the An to

higher n using a linear fit to a plot of ln(An) vs ln(n∗), which is very nearly a straight

line with a slope of almost exactly -3, in agreement with semiempirical formulas for

An [53]. To extrapolate n∗ and En we used a linear fit to a plot of n∗ vs n, which is

very nearly a straight line, in agreement with semiempirical formulas using a quantum

defect [21]. We explicitly calculated the matrix elements (3.22) up to n = 35. We

optimized the limit p for Pn0(re) where En is available, and extrapolated p to higher

n by noticing that p is very nearly equal to n at large n, up to a constant offset. We

extrapolated the matrix elements (3.22) to higher n using a linear fit to the large-

n∗ asymptote of a plot of ln(−〈g|r2
e |n〉) vs ln(n∗), in the region n = 30–35, which

gave intercepts and slopes close to 3.5 and -1.5, respectively, for each alkali-metal

atom. Such a dependence is expected since, as n increases, the CA functions Pn0(re)

converge to the same shape over the important range of re, up to normalization.

Using the values and approximations described above, we extrapolated the sum

(3.20) to n = 100, a value large enough to approximate including all n. The sums

converged quickly, with the highest terms contributing at least 1% being n = 15,

15, 17, and 18 for Na, K, Rb, and Cs, respectively. The extrapolation for n > 35

contributed roughly -6%, -3%, -2%, and -1% for Na, K, Rb, and Cs, respectively.

As Table 3.1 shows, the improved values of Ea are significantly larger than those

of previous work. These values allow for an improved estimation of the large-R

asymptote (3.9) of δA(R) for a given value of the van der Waals dispersion coefficient

C6 using the expression (3.10).
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Table 3.2: Parameters for the measured pressure shift δν/ps of (3.29): polynomial
degree D, temperature range (◦ C), and fit coefficients cn (Hz Torr−1 ◦C−n) measured
by Bean and Lambert [75]. The sealing pressure ps in (3.29) corresponds to a sealing
temperature Ts = 300 K, and the expansion variable in (3.29) is δT = (T − 0◦C)/103.
Fig. 3.2 is a sketch of these shifts for 85Rb.

Metal Gas D Range (◦ C) c0 c1 c2 c3 c4

23Na He 4 50–800 103.562 217.478 -267.284 213.028 -79.5682
23Na Ne 4 85–850 65.4070 110.205 -191.787 151.680 -50.3432
23Na Ar 3 100–700 -1.16738 50.2190 -109.832 51.5151 −
39K He 4 -100–800 41.9861 70.8683 -105.084 88.0880 -33.4209
39K Ne 4 -65–750 23.7893 24.4247 -74.1786 84.1616 -38.4843
39K Ar 4 -80–750 -1.93265 -7.37039 -57.9824 93.3986 -53.4416

85Rb He 4 -110–800 304.358 483.871 -779.542 692.833 -266.542
85Rb Ne 4 -70–50 174.398 138.574 -562.524 927.353 -680.600
85Rb Ar 3 -100–500 -19.6621 -116.826 -180.190 155.223 −

3.3 Estimation of the shape of δA(R)

In this section, we demonstrate how to use experimental data for the temperature-

dependence of the pressure shift to estimate simple trial forms of δA(R) for Na, K,

and Rb in He, Ne, or Ar gas. Experimental knowledge of the pressure shift is usually

summarized by a polynomial fit to the shift over a range of temperatures,

(
δν

ps

)
exp

≈
D∑

m=0

cm(δT )m = c0 + c1δT + . . .+ cD(δT )D, (3.29)

where the cm are non-zero fit coefficients and δT is the change in temperature away

from some reference. For a sealed cell with fixed N , ps = NkTs is the buffer-gas pres-

sure at the sealing temperature Ts. For certain alkali–buffer pairs, Bean and Lambert

[75] provide fit coefficients cm for measurements over wide temperature ranges of hun-

dreds of degrees C, with δT = (T − 0◦C)/103, Ts = 300 K, and typical polynomial

degree D = 4. Table 3.2 lists these parameters for 23Na, 39K, and 85Rb in He, Ne, or

Ar, and Fig. 3.2 is a sketch of these shifts (3.29) versus temperature for 85Rb.
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Table 3.3: Parameters for the interaction potential V (R) of (3.30): well depth εm
(meV) and location Rm (Å) from Patil [87].

Metal Na Na Na K K K Rb Rb Rb
Gas He Ne Ar He Ne Ar He Ne Ar

εm (meV) 0.149 1.007 5.551 0.121 0.762 5.252 0.122 0.890 4.980
Rm (Å) 6.41 5.29 5.01 7.18 5.40 5.34 7.33 5.70 5.31

Many different models exist for the interaction potentials V (R) of ground-state

alkali-metal–noble-gas pairs. For simplicity, we use a 6-12 Lennard–Jones form,

V (R) = εm

(
1

r12
− 2

r6

)
, where r =

R

Rm

(3.30)

is a dimensionless separation and εm is the positive depth of a potential well mini-

mum located at R = Rm. Patil [87] gives a convenient summary of experimental or

theoretical estimates for εm and Rm, which are listed in Table 3.3. Since the shift

(3.2) is the combined result of both δA(R) and V (R), this choice of V (R) will affect

the results inferred for δA(R). However, since we cannot uniquely determine δA(R)

from the shift (3.2), there is no real advantage to using a more realistic potential,

such as from Buck and Pauli [88] or Pascale and Vandeplanque [89].

For the hyperfine-shift potential δA(R), there are no standard models. Instead,

we use an educated guess for the isotope-independent ratio,

δA(R)

A
=

P∑
n=6,8,...

an
rn

=
a6

r6
+
a8

r8
+ . . .+

aP
rP
, (3.31)

where the maximal power P for r = R/Rm is chosen to truncate the series. Similar

models with even powers of 1/R have been suggested before [68, 71, 73, 90]. Since

both δA(R) and V (R) are due to the same interactions, the form of δA(R) is likely

similar to that of V (R). The model (3.31) resembles the typical van der Waals

66



dispersion terms (e.g., C6/R
6) in interaction potentials and the typical even-power

terms in Lennard–Jones potentials.

Using the results of Section 3.2, we may determine the leading coefficient a6 as

follows. Comparing the model (3.31) with the asymptotic expression (3.9) and using

the relation (3.10), we see that the leading coefficient is related to the van der Waals

dispersion coefficient C6 as

a6 =
A6

R6
m

≈ 2C6

EaR6
m

. (3.32)

Table 3.1 gives numerically estimated values for the characteristic energy Ea from

Section 3.2, which depends only on the particular alkali-metal atom. For simplicity,

we use the values

C6 = −2εmR
6
m (3.33)

from the potential (3.30), which, using the parameters from Patil [87], are in reason-

able agreement with the bounds of Standard and Certain [91]. As with choosing a

model for V (R), there is no real advantage to using more realistic values of C6 for our

purpose. Combining (3.32) and (3.33), the leading coefficient a6 in the model (3.31)

is then

a6 ≈ −4
εm
Ea

< 0, (3.34)

where the parameter εm is from Patil [87] and the energy Ea is from Table 3.1. Values

of a6 using (3.34) are given in Table 3.4.

With the exception of the leading coefficient a6, which we determine above, the

dimensionless parameters an in the model (3.31) for the hyperfine-shift potential are

unknown. We now describe how to estimate these remaining parameters an, for n 6= 6,
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from a measurement of the temperature dependence of the pressure shift, summarized

by (3.29). Using the expression (3.2) with the interaction potential (3.30) and the

model (3.31), we can calculate a theoretical pressure shift for a given set of parameters

an. By inspection, we see that each coefficient an in the model (3.31) contributes

independently in the expression (3.2), so we can write this theoretical shift as

(
δν

ps

)
th

=
ν0

kTs

P∑
n=6,8,...

anFn(T ), (3.35)

where Ts = ps/(Nk) is the sealing temperature from the measurement, ν0 is the

measured free-atom frequency, and the functions

Fn(T ) = 4πRn
m

∫ ∞
0

e−V (R)/kTR2−ndR (3.36)

are independent of the parameters an. Examples of these functions for 85Rb in Ar

are sketched in Fig. 3.3. However, to compare this theoretical shift to the measured

shift, we would like to summarize (3.35) using the same polynomial form as the fit
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Figure 3.3: Example functions Fn(T ) of (3.36) for 85Rb in Ar. The dashed lines are
polynomial fits of the form (3.38).
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(3.29) of the measurement,

(
δν

ps

)
th

≈
D∑

m=0

dm(δT )m. (3.37)

To relate the coefficients dm in (3.37) to the unknown parameters an in (3.35), we

could perform a linear least-squares fit of the theoretical shift (3.35) with the fit

function (3.37) over the same temperature range used for the fit of the measurement.

This is inconvenient, however, since the fit would have to be repeated to determine

the new fit coefficients dm for each choice of the parameters an. Instead, we note that

in an overdetermined, linear least-squares fit of the theoretical shift (3.35) with the

fit function (3.37), each term in the sum (3.35) contributes independently to the fit

coefficients dm in (3.37). As a result, if we instead perform a linear least-squares fit

of each function Fn(T ) of (3.36) with a fit function of the same form as (3.37),

Fn(T ) ≈
D∑

m=0

fmn(δT )m, (3.38)

over the same temperature range as used for the measurements, then we may sub-

stitute the fit result (3.38) into the theoretical shift (3.35) to produce the fit result

(3.37), which gives the relation

dm =
P∑

n=6,8,...

Bmnan, where Bmn =
ν0

kTs

fmn. (3.39)

We now have the theoretical shift (3.35) expressed in the convenient form (3.37), with

the fit coefficients dm given by (3.39) in terms of the unknown parameters an in the

model (3.31).
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Comparing (3.37) with (3.29), we see that the theoretical shift (3.35) would re-

produce the measured shift (3.29) if the two fitted polynomials match, or

(
δν

ps

)
th

=

(
δν

ps

)
exp

←→ dm = cm. (3.40)

Combining (3.39) and (3.40), we see that we can estimate δA(R), a continuous func-

tion of R, by solving the linear system

cm =
P∑

n=6,8,...

Bmnan (3.41)

for the unknown parameters an in the model (3.31). However, since we have already

determined the leading parameter a6, it will be convenient to simplify the system

(3.41) by removing a6 and its contributions to the cm. If we write the set of unknown

model parameters an as the vector

a = [a8, a10, . . . , aP ], (3.42)

where we have excluded a6, and we write the measured coefficients cm as the vector

c = [c0, c0, . . . , cD]− a6[B06, B16, . . . , BD6], (3.43)

where again we have removed the contribution from a6, then we may rewrite (3.41)

as the matrix equation

c = Ba, (3.44)

where B is a (D + 1) by (P/2 − 3) matrix with elements Bmn defined by (3.41).

Therefore, we may estimate δA(R), a continuous function of R, by solving the linear

system (3.44) for the unknown model coefficients an in (3.42).
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Unfortunately, we do not know what maximal power P to choose for the series

(3.31). One choice is the smallest P that allows a solution of the system (3.44), which

is typically P = 2(D + 4), corresponding to a square matrix B that gives a unique

solution. However, there is no reason to truncate the series (3.31) so short. For all

other choices of P , the linear system (3.44) is underdetermined, since the matrix B has

many more columns than rows. Thus, we cannot invert (3.44) to uniquely determine

a and δA(R). However, we can still solve the system (3.44) with pseudoinversion

techniques. Since these solutions are not unique, we generate trial forms for δA(R)

by picking the solutions that are, in a sense, the simplest solutions, for which the

vector a of (3.42) is minimized in one of three ways:

(i) the least-squares solution with ‖a‖2 =
∑

n a
2
n minimized,

(ii) the compressive-sensing solution with ‖a‖1 =
∑

n |an| minimized, and

(iii) the sparse solution with ‖a‖0 (the number of nonzero elements of a) minimized.

The least-squares solution (i) corresponds to a Moore–Penrose pseudoinverse [92, 93].

These solutions may be conveniently generated in MATLAB [94] with the function

pinv(), the package l1-MAGIC [95], and the function mldivision(), respectively. Ex-

cept for the case where B is a square matrix, the minimizations (i)–(iii) usually give

three different solutions. Minimization (ii) was only successful for some cases, while

minimizations (i) and (iii) worked for all cases attempted.

We estimated trial forms for the potentials δA(R) of Na, K, and Rb in He, Ne,

or Ar gas for multiple values of P , using the Ts and measured coefficients cm for

23Na, 39K, and 85Rb from Bean and Lambert [75] (Table 3.2), the corresponding

values of ν0 from Arimondo et al. [53] (summarized in Section 2.1.1), the parameters

εm and Rm from Patil [87] (Table 3.3), and the values for a6 determined by (3.34).

Remarkably, though the trial forms depend on the choice of P and minimization,

(i)–(iii), their qualitative shapes are relatively consistent about the potential well
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and initial repulsive region of V (R). These shapes are also relatively insensitive to

artificial changes to the coefficient a6 by factors of 2. To demonstrate this stability,

Fig. 3.4 shows a comparison of particular trials forms for the alkali-buffer pairs Na-He

and Rb-Ar. Panel (a) is representative of all the pairs with He or Ne gas. Though the

trial form changes quantitatively as P varies from 16 to 40, and with minimization

(i) or (iii), the qualitative shape for r & 0.55 is relatively unchanged. Panel (b) is

representative of all pairs with Ar gas, which have a more complicated shape. Except

for the outlier of P = 14, the qualitative shape of the trial form for r & 0.8 is relatively

unchanged for P = 16–40 and with minimization (i)–(iii). For Na-Ar, the smallest-P

Figure 3.4: Consistency of trial forms of δA(R) with different P and minimization
(i)–(iii). (a) Na-He, which is representative of all pairs with He or Ne. (b) Rb-Ar,
which is representative of all pairs with Ar. Except for the outlier of P = 14 with
Rb-Ar, the qualitative shapes are relatively insensitive to the choice of P and of
minimization, for r & 0.55 for Na-He and r & 0.8 for Rb-Ar. The solutions for the
same P but different minimizations (i)–(iii) are usually very similar; for example, the
three P = 16 Rb-Ar solutions are visually indistinguishable. The solutions usually
evolve smoothly as P is varied. Solutions for (ii) are shown where successful.
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Figure 3.5: Representative trial forms of δA(R) with the parameters of Table 3.4.
The trial forms are grouped according to buffer gas, since the shapes are qualitatively
similar for the same gas. Interaction potentials V (R) are included for reference, and
are not to scale.

solution is not an outlier, and has the same shape as the other solutions. For the pair

K-Ar, however, the solutions for P =16–22 seem to be outliers.

Representative solutions with P = 24 and minimization (iii) are shown in Fig. 3.5,

and given by the parameters in Table 3.4. We chose the maximal power P = 24 since

it gives similar results for the different minimizations (i)–(iii), and works for the

worst-case pair K-Ar. Remarkably, the qualitative shapes of these agree well with the

theoretical calculations for Na-He, K-He, and Rb-He by Oreto et al. [70], with the

experimental results for K-Ar of Freeman et al. [96, 97], and with the experimental

results for Rb-Ar of Gong et al. [39]. We do not expect the qualitative shapes of these

solutions to be reliable further inward than r ∼ 0.55, 0.60, and 0.75 for panels (a),

(b), and (c) of Fig. 3.5, respectively.

All of the shapes in Fig. 3.5 demonstrate that, though δA(R) and V (R) arise

from the same interactions, they do not in general have the same shape. Thus, the
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potential δA(R) should not be expected to have a minimum at roughly the same

location as that of V (R), which had been suggested by Camparo [73]. The shapes of

the pairs with Ar demonstrate that, in addition to a zero-crossing near the minimum

of V (R), which was inferred for K-Ar by Freeman et al. [97] and suggested for Rb-Ar

by Gong et al. [39], the temperature dependence of the shift (3.2) predicts that there

must be another zero-crossing in the region where the potential V (R) begins to be

repulsive as R decreases. This predicted zero-crossing explains the discrepancy in

the calculation of the pressure shift by Freeman et al. [97] with an experimentally

inferred δA(R), which was previously attributed to the small anisotropic interactions

that may be important in molecular-beam experiments, but which average out in the

shift (3.2).

3.4 Summary and discussion

In summary, we have provided an improved estimate of the large-R asymptote of the

ratio δA(R)/V (R) for Na, K, Rb, and Cs, and have demonstrated how to use mea-

surements of the pressure shift to estimate simple trial forms for the potential δA(R)

in the hyperfine-shift interaction (3.1) of Na, K, and Rb in He, Ne, or Ar gas. Though

these trial forms are not unique, they still yield a surprising amount of information

about the shapes of δA(R) about a potential well in the interaction potential V (R),

which agree with the few available theoretical and experimental results. We hope

this work encourages renewed study of the poorly known potentials δA(R), which,

for example, are important to the study of the shifting and broadening of hyperfine

resonances in vapor-cell atomic clocks [70, 73], to the study of spin interactions in

alkali-metal–noble-gas van der Waals molecules [39, 31], such as in the next chapter,

and are anticipated to aid the formation of ultracold molecules such as RbSr [98].
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Chapter 4

Pressure shifts from van der Waals

molecules

4.1 Introduction

The microwave resonant frequencies ν of a dilute vapor of alkali-metal atoms in a

chemically inert buffer gas are shifted away from the free-atom frequencies ν0 by

collisions. As described in the previous chapter, this pressure shift, ν − ν0, is very

nearly linear with the buffer-gas pressure, and depends on the buffer-gas composition

and temperature. Most of this shift is due to binary collisions between the alkali-

metal atoms and the buffer gas. However, recent precision measurements by Gong et

al. [39, 40] discovered that the pressure shift may have a nonlinear dependence on

the buffer-gas pressure, which is presumably due to the short-lived van der Waals

molecules that are known to form between certain pairs of alkali-metal and noble-gas

atoms [37, 38]. The frequency shifts, ν − ν0, can be measured very precisely, and

are one of the few measurable phenomena that can provide information about spin

interactions in van der Waals molecules, which are of considerable current interest

[99, 100].
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Here we present surprising results from precision measurements of the shifts of

the 0–0 resonant frequencies ν of 87Rb, 85Rb, and 133Cs atoms in He, Ne, N2, Ar,

Kr, and, in particular, Xe gas [31, 32, 33, 34, 35, 36]. We show that the nonlinear

shifts for Xe are opposite in sign to the shifts for Ar and Kr, even though all three

have negative linear shifts. The Xe data show striking discrepancies with the previous

theory for nonlinear shifts [39, 40], which assumes that the shift is entirely due to the

hyperfine-shift interaction,

Hhfs = δA I · S, (4.1)

which was the subject of Chapter 3. We show that most of this discrepancy is

eliminated by accounting for the spin-rotation interaction [41, 42],

Hsr = γN · S, (4.2)

between the rotational angular momentum N of a molecule and the electronic spin S,

in addition to the hyperfine-shift interaction (4.1) in van der Waals molecules. The

spin-rotation interaction (4.2) leads to significant spin relaxation of optically pumped

alkali-metal atoms, which is often referred to as S-damping [21]. Like the hyperfine-

shift potential δA = δA(R) in (4.1), the isotope-independent parameter γ = γ(R) in

(4.2) depends on the internuclear separation R of a colliding pair. However, much

more is known about γ(R) than δA(R) [42, 101, 102].

Before we begin, we first provide some background on alkali-metal–noble-gas van

der Waals molecules.

4.1.1 Van der Waals molecules

A van der Waals molecule is a weakly bound complex of at least two atoms or

molecules that are held together by polarization forces instead of chemical bonds
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[103, 104]. For example, while the noble gases do not react chemically with the

alkali metals, they may still form alkali-metal–noble-gas van der Waals molecules.

The importance of these molecules to the spin relaxation of optically pumped alkali-

metal atoms in Ar, Kr, and Xe was discovered almost forty years ago by Bouchiat et

al. [37, 38, 105, 106]. Van der Waals molecules also play an important role in the

polarization of 129Xe by spin-exchange optical pumping [99].

Consider a dilute vapor of Rb atoms immersed in a Xe gas at a pressure of several

Torr. Besides binary (two-body, simple, or sudden) collisions, there will also be

occasional three-body collisions. As sketched in Fig. 4.1, some of these three-body

collisions may produce a van der Waals molecule, which lasts until another collision

with the buffer gas breaks up the molecule. Though these sticking collisions are rare,

the typical lifetime of a molecule (τ ≈ 1 ns) is much longer than that of a binary

collision (τb ≈ 1 ps), so the effects of van der Waals molecules may still be significant.

We can estimate the number of van der Waals molecules in a typical vapor cell as

follows. Let [Rb] denote the number density of Rb atoms, and let M be the number

density of molecules, for example, [RbXe]. For low buffer-gas pressures, the density

Figure 4.1: Sketch of the formation and breakup of a RbXe van der Waals molecule
for Rb in Xe buffer gas. Starting on the left, a three-body collision, Rb+Xe+Xe −→
RbXe + Xe, forms a RbXe molecule that is later broken up by another collision,
RbXe + Xe −→ Rb + Xe + Xe. In each collision, a second free Xe atom is required to
carry away (or contribute) the excess energy needed to bind (or release) the molecule
from a potential well in the Rb-Xe interaction potential.
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Table 4.1: Characteristic parameters for Rb–noble-gas van der Waals molecules mea-
sured by Bouchiat et al. [38, 106] at room temperature (300 K): molecular formation
rate 1/T , molecular lifetime τ , root-mean-square (rms) value of the rotational angular
momentum N∗, rms value of the spin-rotation interaction (4.2) coupling coefficient γ,
and rms value of the characteristic magnetic field H∗1 = γN∗/(gSµB). The pressure-
dependent parameters T and τ assume a pure Ar, Kr, or Xe gas of pressure p.

Molecule Tp2 (ms Torr2) τp (ns Torr) N∗ γ/h (MHz) H∗1 (G)

RbAr 16.1± 1.3 48.5± 1.9 30.5–33.3 0.105± 0.018 1.19± 0.05
RbKr 10.6± 0.5 56.9± 1.7 41.5 0.657± 0.018 9.59± 0.28
RbXe 4.29± 0.23 34–61 63.2–76.7 34–61 38.1± 1.6

M evolves as

dM

dt
=

1

T
[Rb]− 1

τ
M, (4.3)

where 1/T is the molecular formation rate per alkali-metal atom, and τ is a charac-

teristic molecular lifetime. Table 4.1 gives experimental values for T and τ inferred by

Bouchiat et al. [38, 106], along with other characteristic parameters for Rb–noble-gas

molecules. As the table shows, the parameters T and τ depend on the buffer-gas

pressure p, but the parameters Tp2 and τp are independent of pressure. In terms of

these pressure-independent parameters, the evolution (4.3) is

dM

dt
=

p2

(Tp2)
[Rb]− p

(τp)
M. (4.4)

We see that sticking collisions produce molecules at a rate proportional to p2, and

that collisions breakup the molecules at a rate proportional to p. The equilibrium

density that satisfies dM/dt = 0 is

M =
(τp)p

(Tp2)
[Rb], (4.5)
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which is linear with the buffer-gas pressure. Using the parameters for RbXe in Ta-

ble 4.1, the bound fraction M/[Rb] = [RbXe]/[Rb] ≈ 1.1× 10−5× (p in Torr), which

means that the fraction of Rb atoms bound in a RbXe molecule will vary from about

10−5 at 1 Torr to about 10−3 at 100 Torr of Xe gas. At a temperature of 40.0◦ C,

the density [Rb] ≈ 6× 1010 cm−3 [52]. For a typical vapor cell of volume V ≈ 7 cm3,

the total number of Rb atoms is [Rb]V ≈ 4 × 1011, while the total number of RbXe

molecules [RbXe]V ≈ 5× 106× (p in Torr). Since conventional vapor-cell clocks typ-

ically use buffer-gas mixtures of mostly Ar with some N2 [11, 16], they will contain a

comparable number of RbAr molecules.

The heavy noble gases Ar, Kr, and Xe may form molecules with alkali-metal atoms

in many (hundreds of) vibration-rotation states [107, 108]. As shown in Table 4.1, the

characteristic values for the rotational angular momentum N = |N| of these molecules

are quite large, so much so that the molecular states may often be approximated with

a classical distribution [37, 109, 110]. In contrast, the lighter noble gas Ne may form

molecules with only a few (tens of) vibration-rotation states, and He with even less,

if any molecules are formed at all. In addition to bound vibration-rotation states,

there are a smaller number of quasibound (or resonant diffusion) states that may

also form in binary collisions and spontaneously breakup before the next collision.

These additional quasibound processes are not expected to contribute significantly

for Ar, Kr, or Xe [37], in part because many quasibound molecules should survive

long enough to effectively behave as bound molecules in practice [107, 108]. There

is some disagreement over the significance of quasibound molecules with He and

Ne [111, 112, 113, 114, 115]. However, the precision measurements of Gong et al. [39]

provide evidence against any significant formation of molecules with He, and this

chapter provides evidence against any significant formation with Ne.

While bound in a van der Waals molecule, an alkali-metal atom evolves very

much like a free alkali-metal atom, but with the same perturbing interactions that
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are present in binary collisions. For example, besides the interactions (4.1) and (4.2),

the interaction potentials that are responsible for the interatomic forces during a

collision also strongly disturb the optical resonance lines of alkali-metal atoms in

molecules [116]. Overall, this molecular structure is remarkably simple compared to

more typical molecular structures, which are quite complicated in general [117].

While there was speculation about significant pressure shifts from van der Waals

molecules [19, 105] shortly after the discovery of the importance of such molecules in

vapor cells by Bouchiat et al. [37], it took almost four decades before these shifts were

first measured [39]. Experimentally, the pressure shifts from van der Waals molecules

are distinguishable from those of binary collisions because they depend on the buffer-

gas pressure in a nonlinear manner, as we will see in this chapter. Interestingly,

Bouchiat et al. [105] predicted that the spin-rotation interaction (4.2) should not

contribute to any molecular shift of the 0–0 transition. Before we continue, we note

that van der Waals molecules also contribute significantly to the linear pressure shift

at high buffer-gas pressures. This is important, for example, when buffer gases are

mixed, since the resulting linear pressure shift will depend on how the mixture affects

the formation and breakup of any van der Waals molecules.

4.2 Hyperfine frequencies of 87Rb and 133Cs atoms

in Xe gas

Gong et al. [39] showed that one would expect the pressure shifts from Xe to have a

nonlinear dependence on the Xe pressure p because of the formation of van der Waals

molecules in three-body collisions between two Xe atoms and a Rb atom, as sketched

in Fig. 4.1. For a Rb atom bound in a RbXe molecule the precession of the nuclear

spin I and the electronic spin S about each other is perturbed by the hyperfine-shift

interaction (4.1), which acts until the molecule is broken up in a collision with another
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Xe atom. The same interaction (4.1) acts impulsively when an alkali-metal atom has

a binary collision with a buffer-gas atom or molecule. Following Gong et al. [39], we

fit our measured 0–0 hyperfine frequencies ν to a theoretical function of pressure,

f0 = ν0 + sp+ ∆2
0ν, (4.6)

where the nonlinear shift is

∆2
0ν = −

(
1

2πT

)
φ3

1 + φ2
. (4.7)

The theoretical function (4.6) is characterized by four parameters:

(i) the free-atom frequency ν0, which varies daily by a few Hz because of drifts in

the ambient magnetic field of our laboratory;

(ii) the “slope” s, which represents the linear shifts due to binary collisions and

three-body collisions at high pressures [39];

(iii) the formation rate 1/T ∝ p2 of molecules in three-body collisions; and

(iv) the differential phase shift φ = δA[I]τ/(2~) ∝ 1/p of the atomic coherence after

a mean bound-atom lifetime τ .

Here, [I] = 2I + 1 denotes the number of sublevels for a spin of quantum number I.

Table 4.2 lists the values of these parameters reported by Gong et al. [39]. We will

derive the fit function (4.7) in Section 4.5. Here, and subsequently in this chapter,

it is to be understood that the values of coupling coefficients, such as δA, should be

expectation values for van der Waals molecules.

In Fig. 4.2(a) we plot the measured shift

δν1 = ν − ν0 (4.8)
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Figure 4.2: Measured 0–0 resonant frequencies ν of 87Rb in Xe at 40.0◦ C and
B = 1 G. (a) The shift δν1 = ν−ν0 from the free-atom frequency ν0 ≈ 6.834683 GHz.
The solid line is the linear, limiting shift sp at high pressures. (b) The nonlinear shift
δν2 = δν1 − sp. The solid curve is the nonlinear shift ∆2

0ν of (4.7). (c) The fit
residuals to (4.6), δν3 = δν2−∆2

0ν = ν−f0. The solid curve is the difference, f1−f0,
of the best-fit theoretical curves, with and without the spin-rotation interaction (4.2).
Three separate data sets demonstrate the repeatability of the measurements.
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Table 4.2: Previous fit parameters for the pressure shifts of 87Rb at 40◦C and of 133Cs
at 35◦C in different buffer gases from Gong et al. [39, 40]. These fit parameters might
be influenced by a nonlinearity in pressure measurement, as discussed in Section 4.4.1.

Metal Gas Tp2 (sec Torr2) φp (rad Torr) s (Hz Torr−1)

87Rb Ar 0.094± 0.025 2.69± 0.22 −54.26
Kr 1.287± 0.096 25± 2.13 −559.58
He 714.3
N2 518.4

133Cs Ar 0.05± 0.01 3.90± 0.44 −194.3
Kr 0.153± 0.015 14.82± 0.74 −1123
He 1132.86
N2 824.6

of 87Rb in Xe at 40.0◦C. The free-atom frequency ν0 was obtained by fitting the data

to the model (4.6). The solid curve is sp, the linear part of (4.6). The apparent

linearity of the shift δν1 is deceptive, as shown in Fig. 4.2(b), where we plot

δν2 = δν1 − sp = ν − ν0 − sp. (4.9)

This reveals the highly nonlinear nature of the shift. The solid curve in Fig. 4.2(b) is

the nonlinear shift ∆2
0ν of (4.6). Once more, the apparently good agreement between

the measured δν2 and the predicted ∆2
0ν is deceptive, as shown in Fig. 4.2(c), where

we plot the fit residuals

δν3 = δν2 −∆2
0ν = ν − f0. (4.10)

The residuals δν3 have a striking, oscillatory behavior, which is the same for three

independent sets of measurements. Similar residuals δν3 are seen with 133Cs in Xe,

as shown in Fig. 4.3.
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Figure 4.3: The fit residuals δν3 to (4.6) for the measured 0–0 resonant frequencies
ν of 133Cs in Xe at 35.0◦ C and B = 0.2 G. As in Fig. 4.2(c), the solid curve is
the difference, f1 − f0, of the best-fit theoretical curves, with and without the spin-
rotation interaction (4.2), and three separate data sets demonstrate the repeatability
of the measurements.

To derive the nonlinear shift (4.7), Gong et al. [39] assumed that van der Waals

molecules form in a single vibration-rotation state in which the evolution of I and S is

perturbed by the hyperfine-shift interaction (4.1). Two problems with this assumption

are:

(i) the van der Waals molecules can form in many (hundreds of) vibration-rotation

states [107, 108], each with different values of the shift parameter δA and of T

and φ; and

(ii) the effects of spin interactions other than (4.1), such as the spin-rotation inter-

action (4.2), are ignored.

The interaction (4.2) is particularly large for RbXe or CsXe molecules, and is equiv-

alent to a magnetic field, of roughly 38 G for RbXe, oriented along N [42, 38]. Both

interactions (4.1) and (4.2) need to be included in an improved theory of nonlinear

pressure shifts.
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Here, we show that for 87Rb or 133Cs in Xe, most of the discrepancy between theory

and experiment is eliminated by including the effects of the spin-rotation interaction

(4.2) in a model that still has only one vibration-rotation state. The function (4.6)

must be replaced by

f1 = ν0 + sp+ ∆2
1ν, (4.11)

where the nonlinear shift that includes the effects of both (4.1) and (4.2) is

∆2
1ν = −

(
1

2πT

) 2I∑
σ=−2I

Wσ(1 + r1σ)3φ3

1 + (1 + r1σ)2φ2
. (4.12)

The parameter r1 = 2γN/(δA[I]2) accounts for the spin-rotation interaction (4.2).

We will discuss the meaning of the remaining symbols of (4.12) and its derivation

below.

We refit our data to the revised function (4.11), where we constrained the new

parameter r1 by estimating

r1φp =
γNτp

[I]~
(4.13)

from measurements of 〈γN〉 and 〈τp〉 for RbXe by Bouchiat et al. [38]. We do

not show the fits of (4.11) corresponding to Fig. 4.2(a)–(b), since they look very

similar to the fits of (4.6). However, as Table 4.3 shows, the fits to (4.11) give

substantially different values for the parameters T and φ. In Fig. 4.2(c) the solid line

is the difference, f1− f0, between the two theoretical fit functions. The revised curve

f1 gives substantially smaller residuals, and displays the same oscillatory behavior

with pressure. Similar results are seen with 133Cs in Xe, as shown in Fig. 4.3. The

remaining residuals are probably due to the distribution of vibration-rotation states

of the van der Waals molecules, or the neglect of still-smaller spin interactions, such
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Table 4.3: Fit parameters for the pressure shifts of 87Rb at 40◦C and B = 1 G and
of 133Cs at 35◦C and B = 0.2 G. Uncertainties for the slopes s are typically ±0.25%.

Metal Gas r1φp (rad Torr) Tp2 (sec Torr2) φp (rad Torr) s (Hz Torr−1)

87Rb Xe 7.97 0.082± 0.010 −14.8± 1.5 −1184.0
Xe – 0.164± 0.013 −26.2± 1.2 −1183.7
Ar – 0.070± 0.012 2.21± 0.16 −53.71
Kr – 1.08± 0.31 12.5± 1.9 −558.1
He 714.2
Ne 387.3
N2 518.0

133Cs Xe 2.79 0.0185 −5.96 −2243.9
Xe – 0.059± 0.006 −15.8± 1.3 −2242.4
He 1141.9
Ne 579.9
N2 828.6

as the anisotropic hyperfine-shift interaction or the electric quadrupole interaction,

which we explore in the next section.

To understand the origin of the formulas (4.7) and (4.12), which we will derive in

Section 4.5, note that when a clock atom is captured in a van der Waals molecule,

the microwave coherence frequency changes slightly. Gong et al. [39] ignored the

spin-rotation interaction (4.2) and assumed that the coherence frequency was shifted

by the amount δω = δA[I]/(2~), leading to the mean phase shift φ = δω τ . The form

of the function (4.7) describes how a statistical ensemble of molecular lifetimes shifts

the resonant frequency ν.

The generalization (4.12) is a superposition of functions with the same form as

(4.7), each labeled by an integer σ, with a weight Wσ and with a mean phase shift

φ → (1 + r1σ)φ. Assuming the Zeeman interaction gSµBSzB with an external mag-

netic field B is negligible compared to the spin-rotation interaction (4.2), the ground-

state sublevels |F m〉 for a bound clock atom will be quantized with the azimuthal

quantum number m along the rotational angular momentum N. The total spin an-
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gular momentum quantum number is F = a = I + 1/2 or F = b = I − 1/2. The

interactions (4.1) and (4.2) shift the sublevel energies as shown in Fig. 4.4. We can

write the shift in the Bohr frequency of a coherence between sublevels |am〉 and

|b, σ−m〉 as δωσ = (δEam− δEb,σ−m)/~ = δA[I](1 + r1σ)/(2~). The weights account

for the fraction of the unbound-atom coherence that evolves with the frequency shift

δωσ in the molecule. Averaging over an isotropic distribution of quantization direc-

tions gives the weights as the sum of Clebsch-Gordan coefficients [54],

Wσ =
∑
µk

(−1)σ

[k]
Ck0
a0;a0C

k0
a,µ;a,−µC

k0
b0;b0C

k0
b,σ−µ;b,µ−σ. (4.14)

For 87Rb with I = 3/2, (4.14) becomes [W3, . . . ,W−3] = [9, 9, 23, 23, 23, 9, 9]/105.

The weights Wσ for other alkali-metal atoms are given in Section 4.5.4. As we show

later, the weights depend on the choice of the unbound-atom hyperfine coherence,

and the nonlinear shifts (4.12) will be different for clocks that do not use the 0–0

transition, for example, “end-resonance” clocks [44] or lin‖lin clocks [55]. The weights

satisfy
∑

σWσ = 1, so if we let r1 −→ 0 in (4.12) we recover (4.7). We also recover

F = a = 2

F = b = 1

Figure 4.4: Energy shifts of the sublevels of a 87Rb atom in a van der Waals molecule
due to interactions (4.1) and (4.2). Representative perturbations 1 + r1σ of the
coherence frequencies are shown. The sublevels are quantized along N.
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(4.7) in the limit that the spin-rotation interaction (4.2) is negligible compared to the

interaction gSµBSzB. Between the small-B and large-B limits, the nonlinear shifts

from van der Waals molecules will depend on the applied field B. In all cases, the

analysis leading to (4.12) predicts a molecular contribution sm = φ/(2πTp) to the

slope s of (4.6) or (4.11) for the 0–0 transition.

Figs. 4.5 and 4.6 summarize our experimental measurements. As Fig. 4.6(a) shows,

the nonlinear shifts in Xe are relatively large and opposite in sign compared to those

in Ar and Kr. Table 4.3 lists the pressure-independent fit parameters for the data.

The linear shifts s are consistent with previous work [39, 30, 75, 118]. For Xe, results

are provided for both fit functions (4.6) and (4.11). For 133Cs in Xe, we fit to f1 of

(4.11) with r1 as a free parameter, since we were unable to estimate r1φp, as we did

for 87Rb, due to a lack of experimental data for 〈τp〉. Because of this, and the reduced

pressure range, the fit returned unrealistic uncertainties, not shown in Table 4.3. For

87Rb in Ar and Kr, we did not fit with f1 of (4.11) since the effects of the applied

field B may be important. Instead, we fit with the f0 of (4.6) to provide improved

Figure 4.5: Measured 0–0 resonant frequencies ν of 87Rb in Ar, Kr, or Xe at 40.0◦ C
and B = 1 G, with zero-pressure frequency ν0 ≈ 6.834683 GHz removed. Error bars
are too small to display. Solid dots are the data, solid lines are the linear limiting
shifts sp, and dashed lines are the binary shifts sbp, where sb = s− sm. Insets show
that the limiting shift is above the binary shift for Ar and Kr, but below for Xe.
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results over those of Gong et al. [39], given in Table 4.2. The new values for Tp2

and φp agree, with the exception of φp for 87Rb in Kr, which is roughly half the

value of 25± 2.13 rad Torr reported by Gong et al. [39]. As a result, we suspect that

the previous results may be biased by a nonlinearity in pressure measurement, as

described in Section 4.4.1, which we corrected for in our independent measurements

using (4.18).

Buffer-gas pressure p (Torr)
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Figure 4.6: Summary of the nonlinear shifts δν2 for 87Rb at 40.0◦ C and B = 1 G
and for 133Cs at 35.0◦ C and B = 0.2 G. (a) 87Rb and 133Cs in Xe, with 87Rb in Ar
and Kr for comparison. (b) 87Rb in Ar and Kr, and 87Rb and 133Cs in He, Ne, and
N2. The solid curves are the functions f0 of (4.6) with parameters in Table 4.3.
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The formation-rate parameters Tp2 are larger than the corresponding values mea-

sured by Bouchiat et al. [38, 106], which are given in Table 4.1. As pointed out by

Gong et al. [39], this is likely due to a cancellation of contributions from different

vibration-rotation states of the van der Waals molecules. For Ar and Kr, where the

signs of φ and s are opposite, the hyperfine-shift potential δA = δA(R) must change

sign as the internuclear separation R increases, as discussed in Chapter 3. A similar

radial dependence for δA was measured for K in Ar [97]. For Xe, however, the signs

of φ and s are the same, which suggests that δA(R) may have a qualitatively different

shape over the range of R important to van der Waals molecules.

4.3 Isotope comparison with 85Rb and 87Rb

To investigate the remaining discrepancy between the improved model (4.11) and

the measured shifts with Xe in the last section, and to rigorously test this model,

we repeated our measurements with 85Rb, the other naturally abundant isotope of

Rb, which has a different nuclear spin quantum number, I = 5/2, than 87Rb, with

I = 3/2. In this section, we report the preliminary results of this isotope comparison.

Fig. 4.7 summarizes our experimental measurements with 85Rb. Table 4.4 lists

the pressure-independent fit parameters for the data, and includes the fit parameters

for 87Rb of the last section for comparison. As Fig. 4.7(a) shows, and like before, the

nonlinear shift in Xe is relatively large and opposite in sign compared to the nonlinear

shifts in Ar and Kr, which are highlighted in Fig. 4.7(b). As before, we only fit the

data with Ar and Kr with the f0 of (4.6), which ignores the spin-rotation interaction

(4.2), since the effects of the applied field might be important. However, varying

the applied field B from 0.25–1 G for Kr and Xe did not change the fit parameters

significantly. For Ar, we note that the peak of the nonlinearity occurs at a very low

pressure, near the limit of our experimental range. The linear shifts s are consistent
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Figure 4.7: Summary of the nonlinear shifts δν2 for 85Rb at 40.0◦ C and B = 1 G.
(a) 85Rb in Xe, with 85Rb in Ar and Kr for comparison. (b) 87Rb in Ar, Kr, He, and
N2. The solid curves in (a) and (b) are the function f0 of (4.6), with the nonlinear
shift ∆2

0ν of (4.7), using the parameters in Table 4.4. (c) The fit residuals to (4.6),
δν3 = δν2−∆2

0ν = ν− f0, for 85Rb in Xe and 136Xe. The solid curve is the difference,
f1−f0, of the best-fit theoretical curves, with and without the spin-rotation interaction
(4.2). Three separate data sets demonstrate the repeatability of the measurements in
natural abundance Xe. The residuals are unchanged with isotopically enriched 136Xe.

92



Table 4.4: Fit parameters for the pressure shifts of 85Rb at 40◦C and B = 1 G. Fit
parameters from Table 4.3 for the pressure shifts of 87Rb with the same conditions
are included for comparison. Uncertainties for the slopes s are typically ±0.25%.

Metal Gas r1φp (rad Torr) Tp2 (sec Torr2) φp (rad Torr) s (Hz Torr−1)

85Rb Xe 5.31 0.0022 −0.018 −517.9
Xe – 0.310± 0.075 −8.8± 1.1 −517.7
Ar – 0.0271± 0.0045 1.68± 0.14 −23.85
Kr – 1.50± 0.45 11.7± 2.0 −249.7
He 316.8
N2 229.6

87Rb Xe 7.97 0.082± 0.010 −14.8± 1.5 −1184.0
Xe – 0.164± 0.013 −26.2± 1.2 −1183.7
Ar – 0.070± 0.012 2.21± 0.16 −53.71
Kr – 1.08± 0.31 12.5± 1.9 −558.1
He 714.2
Ne 387.3
N2 518.0

with previous work [39, 30, 75, 118], and the expected isotopic scaling, (s for 87Rb)/(s

for 85Rb) ∝ (ν00 for 87Rb)/(ν00 for 85Rb) ≈ 2.2514. To the limits of our experimental

accuracy, the shifts in He and N2 were again linear.

As with 87Rb, the nonlinear shift in Xe is not completely described by the fit

function f0 of (4.6), as shown in Fig. 4.7(c), where we plot the fit residuals δν3 = ν−f0.

The residuals δν3 are the same for three independent sets of measurements. We refit

our data to the function f1 of (4.11), where again we estimated the parameter r1φp

of (4.13) from measurements by Bouchiat et al. [38]. The weights Wσ of (4.14) for

85Rb are listed in Section 4.5.4. This fit returned unrealistic uncertainties, which are

not shown in Table 4.4. The solid curve in Fig. 4.7(c) shows the difference, f1 − f0,

between the two theoretical fit functions. However, unlike the case for 87Rb or 133Cs in

Xe, the revised function (4.11) does not give substantially smaller residuals. Instead,

the difference f1− f0 displays almost the opposite, oscillatory behavior with pressure
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as the measured residuals δν3. Fitting with r1 as a free parameter does not improve

the results much.

Following the previous section, this disagreement between theory and experiment

is most likely due to the neglect of either

(i) the vibration-rotation state distribution for the molecules, which might be dif-

ferent for the two Rb isotopes because of their slightly different mass, or

(ii) the effects of additional spin interactions other than (4.1) and (4.2) in the

molecules, for example, with any nuclear spin of the buffer gas.

Compared to natural-abundance Ar and Kr, which are mostly free of nuclear spin,

natural-abundance Xe is composed of roughly 26% 129Xe, with I = 1/2, and 21%

131Xe, with I = 3/2. Therefore, an interaction with the nuclear spin in Xe gas is one

candidate to explain this discrepancy.

To explore both (i) and (ii) above, we took advantage of the existence of the

multiple naturally abundant isotopes of Xe, by measuring the nonlinear shift of 85Rb

in an 83% isotopically enriched 136Xe gas (Isotec/Sigma–Aldrich 602213). Since the

relative change in mass between 136Xe and natural-abundance Xe is almost equal

to that between 87Rb and 85Rb, this measurement is a test of (i). In addition, the

enriched 136Xe gas contained only 0.05% 129Xe and 0.39% 131Xe (by atom), and so is

almost free of nuclear spin. As a result, this measurement is also a test of (ii) for any

interactions with the nuclear spin of the buffer gas. As Fig. 4.7(c) shows, the results

are the same for the enriched 136Xe gas as for natural-abundance Xe gas. Therefore,

we expect that the remaining disagreement between theory and experiment is most

likely due to the neglect of additional spin interactions other than (4.1) and (4.2),

but not with the nuclear spin of the buffer gas.
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During this study, we discovered an empirical fit function,

fq = ν0 + sp+ ∆2
qν, (4.15)

which is able to summarize the measured shift of 87Rb in Xe without any significant

fit residuals,

δνq = δν2 −∆2
qν = ν − fq, (4.16)

as shown in Fig. 4.8. Here, the nonlinear shift is the function

∆2
qν = −

(
1

2π(Tp2)

)
(φp)3p

(p+ p0)2 + (φp)2
. (4.17)

As we show in Section 4.5.3, this fit function may be interpreted as the theoretical shift

for a single quasibound state, instead of a single bound vibration-rotation state, which

considers only the hyperfine-shift interaction (4.1). The additional parameter pq

characterizes the effects of two-body formation and spontaneous dissociation. Fig. 4.8
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Figure 4.8: Fit residuals δνq = ν − fq for the pressure shifts of 87Rb and 85Rb in
Xe with the empirical, quasibound state fit function fq of (4.15). Fit parameters are
given in Table 4.5.
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Table 4.5: Fit parameters for the pressure shifts of 87Rb and 85Rb in Xe at 40◦C and
B = 1 G with the empirical, quasibound state model fq of (4.15), and nonlinear shift
∆2

qν of (4.17). Uncertainties for the slopes s are typically ±0.25%.

Metal Gas Tp2 (sec Torr2) φp (rad Torr) pq (Torr) s (Hz Torr−1)

87Rb Xe 0.063± 0.016 −25.0± 1.3 20.5± 3.4 −1184.8
85Rb Xe 0.472± 0.076 −7.7± 1.3 −4.81± 1.1 −517.7

is a plot of the fit residuals δνq for 87Rb and 85Rb in Xe, with the fit parameters given

in Table 4.5. As the figure shows, the quasibound fit function fq of (4.15) is not

able to summarize the measurements with 85Rb in Xe any better than the other fit

functions, f0 or f1, but instead displays oscillatory fit residuals similar to those in

Fig. 4.7(c).

Finally, we note that there is a significant nonlinearity in our measurement of the

buffer-gas pressure. As we describe in Section 4.4.1, we correct for this nonlinearity

in our measurements. This error is characterized by the parameter α in (4.18), and

could account for the fit residuals δν3 shown in Fig. 4.7(c) if we had underestimated

the value of α by at least a factor of 2. However, given our estimated uncertainty for

the value of α in (4.21), which was determined from the measurements with He and

N2, we do not think this is a likely explanation.

4.4 Experiment

We measured the ground-state 0–0 hyperfine resonant frequencies ν of 87Rb, 85Rb,

and 133Cs in pure buffer gases with two laser-pumped, vapor-cell clock systems that

closely follow the design of Gong et al. [39, 40]. The Rb system used most of the

same equipment described in Section 2.3. Both systems are based on two feedback

loops: one to lock the carrier frequency of frequency-modulated microwaves to the

0–0 transition, and another to lock the optical frequency of the pumping light to
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produce no light shift of the 0–0 transition. For the second feedback loop, we used

the intensity-modulation method described in Chapter 2, which for convenience is

sketched again in Fig. 4.9.

The 87Rb, 85Rb, and 133Cs vapor cells are cylindrical Pyrex cells, 17 mm in di-

ameter and about 25, 19, or 13 mm long, respectively, and are filled with a small

excess of 87Rb, 85Rb, or 133Cs metal, respectively. Each cell has an external buffer-

gas reservoir, pressure gauge, and vacuum port as shown in Fig. 4.10, which permit

convenient changes of the buffer-gas species and pressure. Before every experiment,

we used the vacuum port and a turbomolecular pump to empty the cell and to zero

the pressure gauge. During an experiment, we waited roughly 1 minute for the cell to

equilibrate after each incremental increase of the buffer gas pressure, before making

a measurement. Except for the source of isotopically enriched 136Xe gas, which was

CP
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NDF

PO1

BS
O

HC

L

PD

H

BELCW

PO2

LA1FSFC

LA2PID2

I

PID1

Figure 4.9: Experimental setup for the measurement of nonlinear pressure shifts.
DL, diode laser; FR, Faraday rotator; PE, pellicle; PO, polarizer; LCW, liquid crystal
wave plate; BS, beam shaper; NDF, neutral density filter; BE, beam expander; I, iris;
O, oven; H, horn; HC, Helmholtz coils; L, lens; PD, photodetector; CP, current
preamplifier; LA, lock-in amplifier; PID, PID controller; FS, frequency synthesizer;
FC, frequency counter; FG, function generator.
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only guaranteed to have a chemical purity above 99.8%, the source for each buffer

gas was of scientific or research grade chemical purity (99.995% or better).

An air-heated, non-magnetic oven (O) holds the cylindrical glass vapor cell at a

constant temperature of 40.0◦ C for Rb and 35.0◦ C for Cs. Helmholtz coils (HC)

cancel ambient magnetic fields and provide a static longitudinal field B of 1.0 G for

Rb and 0.2 G for Cs. A Toptica DL 100 diode laser (DL) provides 795 nm D1 optical

pumping light for Rb and 895 nm D1 light for Cs. A Faraday rotator (FR) isolates

the laser from back-reflected light. A pellicle (PE) skims off light for analysis with

a wavemeter and a Fabry–Perót interferometer (not shown). Polarizers (PO) ensure

that the pumping light is linearly polarized. A liquid crystal wave plate (LCW)

driven by a function generator (FG) provides about 30% intensity modulation of the

Glass Vapor Cell

Excess Alkali Metal

Pressure Gauge

Buffer-Gas Reservoir

Vacuum Port

Figure 4.10: 87Rb vapor cell with external pressure gauge, buffer-gas reservoir, and
vacuum port to conveniently change the buffer-gas species and pressure. The glass cell
is Pyrex, and the metal manifold is mostly stainless steel. The vacuum connections
are VCR fittings with copper or stainless steel gaskets. The 85Rb vapor cell is almost
identical. Pictures of the 133Cs cell are available as Figs. 4.2 and 4.3 in Ref. [34].
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pumping light at a rate of 2 Hz. A beam shaper (BS), a beam expander (BE), and

an iris (I) ensure that the pumping light fills the cell uniformly. A rotatable neutral

density filter (NDF) adjusts the pumping light intensity. A lens (L) collects the

transmitted pumping light onto a photodetector (PD).

Microwaves from a frequency synthesizer (FS) are transmitted towards the cell

by a horn (H, Narda Microwave-East Standard Gain Horn 642 for 87Rb, 644S for

85Rb, and 640 for 133Cs) roughly 10 cm away to drive magnetic resonances. For

the 85Rb measurements, we used a high-power amplifier (Mini-Circuits ZHL-16W-

43+) before the horn to obtain enough signal at high Xe pressures. A frequency

counter (FC) with 1 Hz precision, referenced to a rubidium frequency standard (not

shown), sampled the locked carrier to provide ν. We estimated the uncertainty with

the sample standard deviation, which increased with the 0–0 linewidth at higher

pressures. For the Rb system, the microwaves are frequency modulated internally by

the FS at a rate between 0.2–9.0 kHz, depending on the buffer gas and pressure, and

a modulation index of about 1. For the Cs system, the microwaves are frequency

modulated at a rate of roughly 255 Hz by modulating an external 10 MHz quartz

oscillator (Stanford Research Systems SC10) used as an external reference for the FS

[34]. This implementation limited the Xe pressure range and led to increased carrier

noise for the Cs measurements.

A lock-in amplifier (LA1) with a 10-300 ms time constant provides an error signal

for a proportional-integral-derivative (PID) controller (PID1) to lock the microwave

carrier frequency to the clock transition. A second lock-in amplifier (LA2) with a

time constant of roughly 1-3 s provides an error signal for another PID controller

(PID2) to lock the laser to a zero-shift optical frequency using a piezoactuator. As

a quick test for light-shift suppression, we use the NDF filter to temporarily adjust

the laser intensity by a factor of 2–4 to verify the intensity independence of the

clock output. As a final check for light-shift suppression, we compared the results
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of measurements that used each of the two different zero-shift optical frequencies, as

described in Chapter 2, for all choices of buffer gas with 87Rb and 85Rb.

4.4.1 Correction for nonlinearity in pressure measurement

The interactions (4.1) and (4.2) are so large for RbXe molecules that we needed

substantially higher gas pressures than those used by Gong et al. [39] to approach

the high-pressure, linear regime. As Fig. 4.2(b) shows, even at 100 Torr, much of the

nonlinear shift is still present. Several improvements were needed to precisely measure

nonlinear shifts of a few Hz on top of background, linear shifts of up to 120 kHz at high

pressures. For example, we found that stabilization of the temperature gradient along

the section of the vapor cell that exits the oven was critical to reduce the additional

clock noise and drift that are produced by temperature-induced changes of the cell

volume at higher pressures. The most important improvement was the removal of

nonlinearity in pressure measurement, which we describe below.

We measured the pressure p with capacitance manometers (MKS Instruments

Baratron) to a precision of roughly ±0.002 Torr and an accuracy of about ±0.25%.

We found that the true pressure p has a slight quadratic dependence on the pressure

pg measured by these gauges. We estimated the true pressure for our data with the

empirical formula,

p = r(α)(pg + α p2
g), (4.18)

where the coefficient α describes the curvature and the coefficient r(α) ≈ 1 minimizes

the small linear bias of (4.18). We determined r(α) by minimizing the least-squares

linear bias
∫

(p− pg)2dpg over a 0–100 Torr gauge range, which gives

r(α) =
1 + 75α

1 + 150α + 6000α2
. (4.19)
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Using the measured pressures pg, He, Ne, and N2 appear to have nonlinear shifts,

as demonstrated in Fig. 4.11. However, using the same empirically determined value

of α with (4.18) eliminates these nonlinearities. We determined the values of α from

measurements with He, Ne, and N2, for which the effects of van der Waals molecules,

if present at all, appear below our experimental accuracy. The results are:

87Rb gauge: α = (−3.40± 0.22)× 10−5 Torr−1, (4.20)

85Rb gauge: α = (−1.71± 0.52)× 10−5 Torr−1, (4.21)

133Cs gauge: α = (−1.71± 0.46)× 10−5 Torr−1. (4.22)

These values of α appear to have been stable over the course of our measurements.

Concern over the influence of fluctuations in the room temperature lead to the con-

struction of a temperature-controlled enclosure for the85Rb gauge. However, manual

variation of the enclosure temperature showed that small changes in temperature had

a negligible effect on the value of α, compared to the uncertainties listed above. Ad-

ditionally, we found that a gauge controller initially used in the Cs system imparted

Figure 4.11: Demonstration of a quadratic nonlinearity in pressure measurement
with 87Rb in Ne at 40.0◦ C and B = 1 G. (a) Residuals after fitting ν versus the
gauge pressure pg with a straight line, ν0 + spg, which show a quadratic dependence
with pg. (b) The apparent nonlinear shift δν2 after fitting ν with the fit function f0

of (4.6) using pg instead of p. The black curve is the f0 of (4.6) estimated by this
fit, which is due to the pressure gauge nonlinearity. For comparison, Fig. 4.6 shows
δν2 after fitting ν versus the estimated pressure p from (4.18), which agree with a
straight line.
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a several-Hz jump near 4 Torr, which disappeared after replacing the controller. Fi-

nally, we note that the uncertainties reported for the fit parameters in this chapter

include numerical estimates of the contributions from the 0.25% gauge inaccuracy

and the uncertainty in the value of α.

We observed anomalous frequency shifts in some measurements at very low pres-

sures, below about 1 Torr, with gases other than Xe. These shifts were most noticeable

with the Cs system, where they could be as large as −25 Hz at 0.7 Torr for He, Ne,

or N2. The shifts were less reproducible in the Rb system, where they were typically

less than 5 Hz at 0.5 Torr for 87Rb in Ar, Kr, Ne, or N2, but were not observed in

He. Except for 87Rb in Ar, where they were of either sign, these shifts were negative.

We observed similar shifts with 85Rb. The origin of these anomalous shifts seems to

be a systematic effect, perhaps associated with the very poor signal-to-noise ratios at

very low pressures. Further investigation is needed to identify their cause.

Finally, we note that we were unable to detect any pressure difference between the

heated and unheated portions of the vapor cell due to thermal transpiration [119, 120,

121, 122, 123, 124], which we investigated by measuring the pressure p and frequency

ν while varying the spatial temperature gradient along the 87Rb vapor cell, using very

low pressures of He buffer gas.

4.5 Modeling

To derive the fit functions used to analyze the nonlinear pressure shifts in Sections 4.2

and 4.3, we will model the effects of van der Waals molecules using a density matrix,

which was introduced in Section 2.4.2. We begin with a general treatment before

obtaining the specific fit functions.
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In the time between collisions, a free alkali-metal atom evolves under the influence

of the common ground-state spin Hamiltonian H{g} of (2.1),

H{g} = A I · S− µ ·B. (4.23)

As before, we assume that a static applied fieldB = |B| is oriented along the Cartesian

unit vector z. During the time spent in a molecule, the alkali-metal atom evolves

under the influence of a perturbed Hamiltonian,

H = H{g} +Hm, (4.24)

where Hm is the contribution from the molecule, to be discussed below. The sublevel

energies Eµ and Eµ̄ of free and bound atoms, respectively, and the corresponding spin

eigenvectors |µ〉 and |µ̄〉 are given by

H{g}|µ〉 = Eµ|µ〉 and H|µ̄〉 = Eµ̄|µ̄〉. (4.25)

These spin eigenvectors are complete,

∑
µ

|µ〉〈µ| =
∑
µ̄

|µ̄〉〈µ̄| = 1, (4.26)

and orthonormal

〈µ|ν〉 = δµν and 〈µ̄|ν̄〉 = δµ̄ν̄ . (4.27)

If we assume that sticking collisions occur at a characteristic rate 1/T , then the

density operator ρ = ρ(t) for ground-state alkali-metal atoms will evolve according to

∂

∂t
ρ = − i

~
[
H{g}, ρ

]
+

1

T

〈
SρS† − ρ

〉
, (4.28)
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where for simplicity we ignore the effects of optical pumping and binary collisions.

Here, the first term on the right describes the free-atom evolution according to the

H{g} of (4.23). Following Chapter 10 of Ref. [21], the second term describes the

bound-atom evolution with a scattering matrix (or S-matrix) S, which is the unitary

operator that evolves a free-atom wave function |ψ〉 into the perturbed wave function

|ψ′〉 of a free atom that has just undergone a collisional perturbation,

|ψ′〉 = S|ψ〉. (4.29)

For a particular van der Waals molecule with lifetime τ , we may use (4.23) and (4.24)

to write the S-matrix (4.29) as

S = e−iHτ/~eiH
{g}τ/~. (4.30)

However, van der Waals molecules may exist in many different vibration-rotation

states, each with different formation rates and lifetimes. To account for this variation,

the angle brackets in (4.28) denote a statistical average over all sticking collisions and

resulting molecular states.

Consider a hyperfine transition between the two different ground-state sublevels

|α〉 and |β〉. Following Section 2.1.1, we may write these sublevels in the low-field

basis |F m〉 as

|α〉 = |aα〉 and |β〉 = |b β〉, (4.31)

where the total spin angular momentum quantum numbers are F = a = I + 1/2 and

F = b = I − 1/2 for the upper and lower hyperfine manifolds, respectively. From
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(4.28), the coherence ραβ = 〈α|ρ|β〉 for this “α–β” transition will evolve according to

∂

∂t
ραβ = −iωαβραβ +

1

T

〈∑
µν

〈α|S|µ〉ρµν〈ν|S†|β〉 − ραβ

〉
, (4.32)

where the free-atom Bohr frequency ωαβ = (Eα − Eβ)/~.

In an ideal experiment, the measured hyperfine frequency ν for the α–β transition

is equal to the precession frequency of the coherence ραβ. Without any collisions,

1/T −→ 0, the measured value of ν would be the zero-pressure frequency

ν0 =
ωαβ
2π

, (4.33)

which for the 0–0 transition is given by (2.20). With collisions, the measured value

of ν will be shifted by an amount

∆ν = ν − ν0 =
∆ω

2π
. (4.34)

This is clear if we collect the terms for each density-matrix component ρµν = 〈µ|ρ|ν〉

on the right hand side of (4.32), and write

∂

∂t
ραβ = −[i(ωαβ + ∆ω) + ∆γ]ραβ +

1

T

∑
µ 6=α,ν 6=β

〈
SαµS

†
νβ

〉
ρµν , (4.35)

where ∆ω is the same frequency shift as (4.34). Here, we introduced the notation

Sµν = 〈µ|S|ν〉 (4.36)

for the components of the S-matrix S in Schrödinger space. With this notation, we

may write the frequency shift ∆ω and damping rate ∆γ due to molecules in the
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evolution (4.35) as

∆ω = 2π∆ν = − 1

T
Im
〈
SααS

†
ββ

〉
, and (4.37)

∆γ =
1

T
Re
〈

1− SααS
†
ββ

〉
. (4.38)

Once again, the angle brackets denote the same statistical average as in (4.28). In

this form, we see that the shift and damping are determined by how sticking collisions

preserve the states |α〉 and |β〉, as described by the diagonal S-matrix components Sαα

and S†ββ, or alternatively, by how molecules preserve the coherence ραβ, as described

by the product SααS
†
ββ. Note that if we had considered a population (α = β) instead

of a coherence (α 6= β), then the shift and damping would be zero since the S-matrix

is unitary, S† = S−1.

In addition to the frequency shift (4.37) and damping rate (4.38), the sticking

collisions also introduce couplings with the other density-matrix components in (4.35).

To understand the effects of these couplings, it is useful to transform the density

operator ρ = ρ(t) into the interaction picture,

ρ̃ = eiH
{g}t/~ ρ e−iH

{g}t/~, (4.39)

where the transformed operator ρ̃ has the components ρ̃µν = 〈µ| ρ̃ |ν〉 = eiωµνtρµν . In

this picture, the evolution (4.35) becomes

∂

∂t
ρ̃αβ = −(i∆ω + ∆γ)ρ̃αβ +

1

T

∑
µ6=α,ν 6=β

ei(ωαβ−ωµν)t
〈
SαµS

†
νβ

〉
ρ̃µν . (4.40)

Comparing with (4.35), we see that the interaction picture conveniently removes the

oscillation of the density-matrix components at their respective Bohr frequencies.

Instead, each coupling with a different component in (4.40) now oscillates at the

difference of the two respective Bohr frequencies. At minimum, these Bohr frequencies
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will be separated by a Zeeman transition, which for a typical applied field B is on

the order of 1 MHz. In the secular approximation we expect the interaction-picture

components ρ̃µν to evolve slowly in time, so we see from (4.40) that the couplings

between the different components should be negligible.

4.5.1 Molecular vibration-rotation states

Before we determine the nonlinear pressure shift ∆2ν from the frequency shift ∆ω

of (4.37), we first need to consider the statistical average denoted by angle brackets.

In equilibrium, molecules will exist in many different vibration-rotation states, which

we can characterize with the label v, the rotational quantum number Nv, and the

statistical weight gv = [Nv] = 2Nv + 1. For example, consider the case of RbXe

molecules, such as described in Section 4.1.1. The total number density of molecules,

[RbXe], will be the sum of the densities for each state v,

[RbXe] =
∑
v

[RbXe]v. (4.41)

Each state v will have a different characteristic lifetime τv and formation rate 1/Tv.

In equilibrium, the formation and breakup of molecules in each state must balance,

1

Tv
[Rb] =

1

τv
[RbXe]v. (4.42)

As a result, we see that the fraction of Rb atoms bound in a molecule of state v is

fv =
[RbXe]v

[Rb]
=
τv
Tv
. (4.43)
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Comparing (4.42) with (4.3), we also see that the characteristic rate 1/T of sticking

collisions introduced in (4.28) is the sum

1

T
=
∑
v

1

Tv
. (4.44)

We expect the lifetimes τ of molecules in a given vibration-rotation state v to follow

an exponential distribution with mean τv and probability density Pv(τ) = e−τ/τv/τv.

At minimum, we need to average over this distribution. For a particular molecule

with lifetime τ , we may use (4.36) with (4.30), (4.26), and (4.25) to write the quantity

SααS
†
ββ =

∑
µ̄ν̄

ei(ωαβ−ωµ̄ν̄)τ |〈α|µ̄〉〈ν̄|β〉|2, (4.45)

where the bound-atom Bohr frequencies ωµ̄ν̄ = (Eµ̄ − Eν̄)/~. Averaging (4.45) over

the distribution of lifetimes for the state v gives

〈
SααS

†
ββ

〉
τv

=

∫ ∞
0

SααS
†
ββPv(τ)dτ =

∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2

1 + i(ωµ̄ν̄ − ωαβ)τv
. (4.46)

Using this average with (4.43) and (4.44), we can write the frequency shift (4.37) and

damping rate (4.38) as the sums over vibration-rotation states

∆ω =
∑
v

fv

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)

1 + (ωµ̄ν̄ − ωαβ)2τ 2
v

〉
v

, and (4.47)

∆γ =
∑
v

fv

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)2τv
1 + (ωµ̄ν̄ − ωαβ)2τ 2

v

〉
v

. (4.48)

Here, the angle brackets 〈 〉v denote an expectation value for a given vibration-

rotation state v. To simplify (4.48), we used completeness (4.26) to write 1 =∑
µ̄ν̄ |〈α|µ̄〉〈ν̄|β〉|2.
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We can now determine the (temporal) nonlinear shift ∆2ν from the (angular)

frequency shift ∆ω of (4.47). In the limit of high buffer-gas pressures, p −→ ∞, the

molecular lifetimes τv −→ 0. Noting that the bound fractions fv = τv/Tv ∝ p, we see

that the shift ∆ω becomes proportional to the pressure in this limit. If we define the

limiting slope

sm = lim
p→∞

∆ω

2πp
= − lim

p→∞

1

2πTp
Im
〈
SααS

†
ββ

〉
, (4.49)

then we may define the nonlinear pressure shift to be

∆2ν = ∆ν − smp = − 1

2πT
Im

{〈
SααS

†
ββ

〉
− p lim

p→∞

1

p

〈
SααS

†
ββ

〉}
. (4.50)

Using (4.47), the limiting slope (4.49) is

sm =
1

2πp

∑
v

fv

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)

〉
v

=
1

hp

∑
v

fv
〈
〈α|Hm|α〉 − 〈β|Hm|β〉

〉
v
, (4.51)

where we used (4.24)–(4.26) in the last step, and the nonlinear shift (4.50) is

∆2ν = − 1

2π

∑
v

fv

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)3τ 2
v

1 + (ωµ̄ν̄ − ωαβ)2τ 2
v

〉
v

. (4.52)

This nonlinear shift is more convenient for analysis than the total frequency shift ∆ω

since it has a finite area when graphed versus pressure, and since it is more easily

distinguishable from the linear pressure shift due to binary collisions.

It is important to note that the nonlinear shift ∆2ν is not a direct frequency

shift from van der Waals molecules. The actual frequency shift from the molecules is

∆ν = ∆ω/(2π). Instead, the nonlinear shift ∆2ν is only the apparent nonlinearity of

the pressure shift from the molecules, due to the gradual “turning on” of the linear,
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limiting molecular shift smp in ∆ν with increasing pressure p. This distinction is clear

if we examine the nonlinear shift ∆2ν in the limit of low buffer-gas pressures, p −→ 0,

where the lifetimes τv −→∞. From (4.52) and (4.51), we see that

lim
p→0

∆2ν = −smp. (4.53)

However, we know that molecules do not contribute any shift in this limit, since there

are so few molecules, fv −→ 0, and since the molecules formed last so long that their

contributions wash out. This is clear from inspecting the actual shift (4.47), where

we see that

lim
p→0

∆ω ∝ p3. (4.54)

The distinction is also clear in the high-pressure limit, where the molecules produce

the shift ∆ν −→ smp, but where the nonlinear shift ∆2ν −→ 0 by construction.

Relatedly, we note that the maximum size of the nonlinear shift ∆2ν may increase

as the result of either a larger limiting slope sm, a more gradual “turning on” of the

slope sm with increasing buffer-gas pressure p, or both.

Unfortunately, we do not have enough information to accurately model the effects

of the distribution of molecular vibration-rotation states, even though the rotational

angular momentum N of the molecules is usually large enough that this distribution

may be modeled classically [37, 109, 110]. The main difficulty is the lack of information

about the poorly known interaction potentials, such as the V (R) of Chapter 3, and the

poorly known interaction coefficients from the molecular contribution Hm of (4.24). In

particular, not much is known yet about the potential δA = δA(R) in the hyperfine-

shift interaction (4.1), which was the subject of Chapter 3. Although much more is

known about the shape of the potential γ = γ(R) in the spin-rotation interaction
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(4.2) than δA(R), the resulting coefficients are still poorly known since they are very

sensitive to the shape of the interaction potentials [42, 101, 102].

Fortunately, the frequency shift from van der Waals molecules may be modeled

quite well by assuming that there is only a single vibration-rotation state. In this

case, we may let τv −→ τ and Tv −→ T . The shift (4.47) and damping (4.48) become

∆ω =
1

T

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)τ

1 + (ωµ̄ν̄ − ωαβ)2τ 2

〉
, and (4.55)

∆γ =
1

T

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)2τ 2

1 + (ωµ̄ν̄ − ωαβ)2τ 2

〉
, (4.56)

and the limiting slope (4.51) and nonlinear shift (4.52) become

sm =
1

2πTp

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)τ

〉

=
τ

hTp

〈
〈α|Hm|α〉 − 〈β|Hm|β〉

〉
, and (4.57)

∆2ν = − 1

2πT

〈∑
µ̄ν̄

|〈α|µ̄〉〈ν̄|β〉|2(ωµ̄ν̄ − ωαβ)3τ 3

1 + (ωµ̄ν̄ − ωαβ)2τ 2

〉
. (4.58)

For these expressions, the angle brackets denote an expectation value for the hypo-

thetical single vibration-rotation state.

In the next sections we derive specific fit functions for the nonlinear shift, after first

specifying the molecular contribution Hm to the bound-atom Hamiltonian H of (4.24).

Before we begin, we note that we do not expect light shifts from the pumping light to

be significant in the molecules. As mentioned in Section 4.1.1, the optical transitions

are strongly perturbed in the molecule, so the pumping light will be effectively far

off-resonance. From Section 2.1.3, we see that any AC Stark shifts should be common

mode and thus cancel for the differential shifts of hyperfine transitions. Additionally,

for the typical pumping light intensities in vapor-cell clocks, we do not expect the

light to significantly affect the molecular dynamics [58].
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4.5.2 Single state with hyperfine-shift interaction

Here, we derive the previous model ∆2
0ν of (4.7) from Gong et al. [39, 40, 34]. We

assume a single bound vibration-rotation state, and that the molecular contribution

Hm of (4.24) is only due to the hyperfine-shift interaction (4.1),

Hm ≈ Hhfs = δA I · S. (4.59)

In this case, the quantization axis is the same for free and bound alkali-metal atoms,

and we may take the free and bound spin eigenvectors to be the same, |µ〉 = |µ̄〉. As

a result, only the term with µ̄ = ᾱ and ν̄ = β̄ contributes in the sum (4.58). If we

define the phase shift

φ = 〈ωᾱβ̄ − ωαβ〉τ, (4.60)

then we may write the nonlinear shift (4.58) as

∆2ν ≈ ∆2
0ν = −

(
1

2πT

)
φ3

1 + φ2
, (4.61)

which is the same form as the fit function ∆2
0ν of (4.7). Similarly, we see from (4.57)

that we may write the limiting slope (4.57) as

sm =
φ

2πTp
. (4.62)

For the low-field basis |µ〉 = |F m〉 of Section 2.1.1, the bound-atom Bohr fre-

quencies are then

ωµ̄ν̄ = ωµν +
δA[I]

2~
, (4.63)
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so the phase shift (4.60) is

φ =
δA[I]τ

2~
, (4.64)

as given in Section 4.2. Here, as stated earlier in the chapter, it is understood that

δA is really an expectation value, 〈δA〉, of the potential δA = δA(R) of Chapter 3.

Since the phase shift (4.64) is independent of the choice of hyperfine transition, we

see that the nonlinear shift (4.61) and limiting slope (4.62) are too.

The explicit dependence of the nonlinear shift on the buffer-gas pressure p is clear

if we use the pressure-independent parameters Tp2 and φp to write (4.61) as

∆2
0ν = −

(
1

2π(Tp2)

)
(φp)3p

p2 + (φp)2
. (4.65)

Similarly, we see that the limiting slope (4.62) is independent of pressure,

sm =
(φp)

2π(Tp2)
. (4.66)

We note that the shift (4.61) is maximized when p = |φp|, or |φ| = 1, where it has

the value ∆2
0ν|φ→1 = −sgn(φ)/(4πT ).

4.5.3 Single quasibound state with hyperfine-shift interac-

tion

Here, we derive the model ∆2
qν of (4.17). The derivation of this model is identical to

that of the last section, with the exception that we now assume that the molecules

form in a single quasibound state instead of a bound vibration-rotation state.

As mentioned in Section 4.1.1, a quasibound state may also form in two-body

collisions, and breakup by spontaneous dissociation. We can account for these extra
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processes by making the substitutions

1

T
−→ 1

Tq

=
1

T

(
1 +

pq

p

)
=

1

(Tp2)
(p2 + pqp), and (4.67)

1

τ
−→ 1

τq

=
1

τ

(
1 +

pq

p

)
=

1

(τp)
(p+ pq). (4.68)

Here, the additional parameter pq is a characteristic pressure at which the bound

and quasibound contributions are equal in both the molecular formation rate or the

breakup rate. As constructed, the quasibound formation rate 1/Tq and lifetime τq

still satisfy the equilibrium constraint that the formation and breakup of molecules

must balance, as in (4.42).

Making the substitutions (4.67) and (4.68) in (4.61), the nonlinear shift becomes

∆2ν ≈ ∆2
qν = −

(
1

2π(Tp2)

)
(φp)3p

(p+ pq)2 + (φp)2
, (4.69)

which is the same as the fit function ∆2
qν of (4.17). Here, the phase shift φ is still

defined by (4.64). For pq = 0, we recover the previous single-bound-state model,

∆2
qν −→ ∆2

0ν of (4.61). For all values of pq, the limiting slope sm is unchanged from

the previous result (4.62).

4.5.4 Single state with hyperfine-shift and spin-rotation in-

teractions

Here, we derive the improved model ∆2
1ν of (4.12) from Section 4.2 and its general-

izations. We assume a single bound vibration-rotation state, and that the molecular

contribution Hm of (4.24) includes both the hyperfine-shift interaction (4.1) and the

spin-rotation interaction (4.2),

Hm ≈ Hhfs +Hsr = δA I · S + γN · S. (4.70)
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To a good approximation, the spin-rotation interaction is equivalent to an inter-

action with a static magnetic field,

γN · S ≈ −µ ·B1, (4.71)

where µ is the total atomic dipole moment (2.4), and the effective magnetic field is

B1 =
γN

gSµB
= B1(x sin θ cosχ+ y sin θ sinχ+ z cos θ). (4.72)

The effective field B1 is oriented along the direction of the rotational angular momen-

tum N of a given molecule, which we take to have a colatitude angle θ and azimuthal

angle χ. In a statistical average over sticking collisions and molecules, we expect

the direction of the momenta N to follow an isotropic distribution with no preferred

direction. Tables 4.1 and 4.6 list characteristic values of B1 measured by Bouchiat et

al. [38, 106], which are isotope independent and often denoted as H∗1 .

With this approximation, the bound-atom Hamiltonian (4.24) becomes

H = (A+ δA) I · S− µ ·B, (4.73)

where now the total effective field in the molecule is the sum

B = B0 + B1 = B(x sinψ cosχ+ y sinψ sinχ+ z cosψ). (4.74)

Here, we changed the notation of the applied external field, previously denoted B, to

B0 = B0z, (4.75)
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to avoid potential confusion with B. The magnitude of the molecular field (4.74) is

B =
√
B2

0 +B2
1 + 2B0B1 cos θ, (4.76)

and the colatitude angle ψ in (4.74) is

ψ = sin−1

(
B1

B
sin θ

)
. (4.77)

Because of the spin-rotation interaction (4.2), the quantization axis for bound

alkali-metal atoms, which is defined by the molecular field B of (4.74), will in general

be different than that for free atoms, which is defined by the applied field B0 of (4.75).

We can account for this difference by introducing a unitary rotation operator,

R = e−iχFze−iψFy , (4.78)

to change between the two quantization axes. Using the rotation operator (4.78), we

can write the molecular Hamiltonian (4.73) as

H = RHrR
†, (4.79)

where the reference Hamiltonian in the rotated frame is

Hr = (A+ δA) I · S− µzB, (4.80)

and where µz = µ · z is the projection of µ along the z axis. To verify this result, we

note that the dot product I · S is a scalar under simultaneous rotations of I and S,

R(A+ δA) I · SR† = (A+ δA) I · S, (4.81)
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and that the Zeeman interaction satisfies

−RµzBR† = −e−iχFze−iψFyµzeiψFyeiχFzB

= −e−iχFz(µz cosψ + µx sinψ)eiχFzB

= −(µx sinψ cosχ+ µy sinψ sinχ+ µz cosψ)B

= −µ ·B, (4.82)

where we used (4.74) in the last step. Using (4.25) with (4.79), we see the spin

eigenstates of the reference Hamiltonian are rotated spin eigenstates of the molecular

Hamiltonian,

HrR
†|µ̄〉 = Eµ̄R

†|µ̄〉. (4.83)

We expect the molecular field B of (4.74) to be sufficiently small that we may still

write the spin eigenstates of the reference Hamiltonian Hr of (4.80) in the low-field

basis |F m〉 of Section 2.1.1,

Hr|F m〉 = EFm|F m〉. (4.84)

Here, it should be a good approximation to keep only the first-order Zeeman interac-

tion in the energies EFm. Again, the total spin angular momentum quantum numbers

are F = a = I+1/2 and F = b = I−1/2 for the upper and lower hyperfine manifolds,

respectively.

For what follows, it will be convenient to return to the averaged quantity 〈SααS
†
ββ〉τ

of (4.46). Considering (4.84) and (4.83), and using Eqs. 1.4.5(31) and 4.1(1) of the

book Quantum Theory of Angular Momentum [54], which we will refer to subsequently

as Varshalovich, we see that the only terms in the sum (4.46) that contribute to the
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frequency shift satisfy

|µ̄〉 = R|a µ〉 and |ν̄〉 = R|b ν〉. (4.85)

Following (2.19), the bound-atom Bohr frequencies in (4.46) are

ωµ̄ν̄ ≈
(A+ δA)[I]

2~
+
gSµBB

~[I]
(µ+ ν), (4.86)

and the free-atom Bohr frequencies are

ωαβ ≈
A[I]

2~
+
gSµBB0

~[I]
(α + β). (4.87)

If we introduce the parameter

r = r(cos θ) =
2gSµBB

δA[I]2
=
√
r2

0 + r2
1 + 2r0r1 cos θ, (4.88)

where we used (4.76) to define the components

r0 =
2gSµBB0

δA[I]2
and r1 =

2gSµBB1

δA[I]2
, (4.89)

which correspond to the applied magnetic field and the effective spin-rotation field,

respectively, then we may use (4.86)–(4.89) write the Bohr frequency differences in

(4.46) as

(ωµ̄ν̄ − ωαβ)τ ≈ [1 + r(µ+ ν)− r0(α + β)]φ. (4.90)
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Table 4.6: Estimates of the parameters r1φp and r0φp for Rb–noble-gas van der
Waals molecules using the characteristic values 〈B1〉 = 〈γN〉/(gSµB) = H∗1 measured
by Bouchiat et al. [38, 106] at room temperature (300 K). These values assume either
a pure Ar, Kr, or Xe buffer gas. The values of r0φp depend on the applied field B0,
and are estimates for B0 = 1 G.

Molecule 〈B1〉 = H∗1 (G) r1φp (rad Torr) r0φp (rad Torr) for B0 = 1 G

87RbAr 1.19± 0.05 0.254 0.213
87RbKr 9.59± 0.28 2.40 0.250
87RbXe 38.1± 1.6 7.97 0.209

85RbAr 1.19± 0.05 0.169 0.142
85RbKr 9.59± 0.28 1.60 0.167
85RbXe 38.1± 1.6 5.31 0.142

Here, φ is the same phase shift from the previous sections, as defined by (4.64).

Finally, we may write the quantity 〈SααS
†
ββ〉τ of (4.46) as the sum

〈
SααS

†
ββ

〉
τ
≈
∑
µν

|〈aα|R|a µ〉〈b ν|R†|b β〉|2

1 + i[1 + r(µ+ ν)− r0(α + β)]φ
, (4.91)

where we used (4.31).

Before we continue, we note that the combined pressure-independent parameters

r0φp and r1φp are conveniently independent of δA, unlike the separate parameters φ

of (4.64) or r0 and r1 of (4.89). We may estimate these parameters from measurements

of 〈B1〉, 〈γN〉, and 〈τp〉 by Bouchiat et al. [38, 106] as

〈r1φp〉 =
〈γN〉〈τp〉

~[I]
=
gsµB〈B1〉〈τp〉

~[I]
, and 〈r0φp〉 =

gsµBB0〈τp〉
~[I]

, (4.92)

which give the values listed in Table 4.6. Note that these values assume a pure,

single-component buffer gas. We used the estimates of r1φp with Xe in Sections 4.2

and 4.3 as constraints during fits to measurements.
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The quantity (4.91) has already been averaged over an exponential distribution

of molecular lifetimes with mean value τ . However, to determine the frequency shift,

we also need to perform an average over an isotropic distribution of directions for the

momenta N, or equivalently, for the effective field B1 of (4.72). Averaging (4.91) over

all directions for B1 gives

〈
SααS

†
ββ

〉
τ,N

=
1

4π

∫ 2π

0

dχ

∫ π

0

sin θdθ
〈
SααS

†
ββ

〉
τ

≈ 1

2

∑
σ

∫ π

0

sin θdθ
fαβσ (cosψ)

1 + i[1 + rσ − r0(α + β)]φ
, (4.93)

where we introduced the index σ = µ + ν, which can take the values −2I, 1 −

2I, . . . , 2I − 1, 2I, and the angular functions

fαβσ (cosψ) =
1

2π

∑
µ

∫ 2π

0

dχ |〈aα|R|a µ〉〈b, σ − µ|R†|b β〉|2

=
1

2π

∑
µ

∫ 2π

0

dχ |Da
αµ(χ, ψ, 0)Db

σ−µ,β(χ, ψ, 0)|2

=
∑
µ

|daαµ(ψ)dbσ−µ,β(ψ)|2, (4.94)

which depend on the colatitude angle θ through the relation (4.77). To go from

the first to the second line, which uses Wigner D–functions, we used (4.78) and

Eqs. 1.4.5(31) and 4.1(1) of Varshalovich [54]. To go from the second to the third

line, which uses Wigner d–functions, we used Eq. 4.3(1) of Varshalovich [54]. The

angular functions (4.94) sum to unity:

∑
σ

fαβσ (cosψ) =
1

2π

∑
σµ

∫ 2π

0

dχ |〈aα|R|a µ〉〈b, σ − µ|R†|b β〉|2

=
1

2π

∑
µ̄ν̄

∫ 2π

0

dχ |〈α|µ̄〉〈ν̄|β〉|2

= 1 (4.95)
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Here, we used the identities (4.31) and (4.85) to go from the first to the second line,

and completeness (4.26) to go from the second to the third.

Before we further analyze the functions fαβσ (cosψ), we can use the result (4.93)

to write the molecular frequency shift (4.37) of the α–β hyperfine transition as

∆ω ≈ 1

2T

∑
σ

∫ π

0

sin θdθ
fαβσ (cosψ)[1 + rσ − r0(α + β)]φ

1 + [1 + rσ − r0(α + β)]2φ2
. (4.96)

Noting that φ ∝ τ ∝ 1/p, we see that the linear, limiting slope (4.49) is

sm ≈
φ

4πTp

∑
σ

∫ π

0

sin θdθ fαβσ (cosψ)[1 + rσ − r0(α + β)], (4.97)

and the nonlinear shift (4.50) is

∆2ν ≈ − 1

2T

∑
σ

∫ π

0

sin θdθ
fαβσ (cosψ)[1 + rσ − r0(α + β)]3φ3

1 + [1 + rσ − r0(α + β)]2φ2
. (4.98)

In all three quantities above, both the angular functions fαβσ (cosψ) of (4.94) and the

angular parameter r = r(cos θ) of (4.88) depend on the colatitude angle θ.

To verify these results, we note that in the limit of a large applied field, B0 � B1,

we expect to recover the relatively simple results of Section 4.5.2, since the quanti-

zation axis would then be defined by the direction of B0. In this limit, we see from

(4.77) and (4.76) that cosψ −→ 1, and from (4.88) and (4.89) that r −→ r0. Us-

ing Eq. 4.16(2) of Varshalovich [54], we find that the angular functions fαβσ (cosψ) of

(4.94) become a Kronecker delta function,

fαβσ (1) = δσ,α+β. (4.99)

Together, we see that in this high-field limit, the nonlinear shift (4.98) and the limiting

slope (4.97) simplify to the previous results (4.61) and (4.62), respectively. Alterna-
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tively, we would recover the same results in the limit of a negligible spin-rotation

interaction (4.2) compared to the hyperfine-shift interaction (4.1), r1 −→ 0.

By inspection, we see that the nonlinear shift (4.98) and the limiting slope (4.97)

depend on the choice of hyperfine transition. For the particular case of the 0–0

(or clock) transition, with α = β = 0, we can further reduce the angular functions

fαβσ (cosψ) of (4.94) as follows:

f 00
σ (cosψ) =

1

2π

∑
µ

∫ 2π

0

dχ |Da
0µ(χ, ψ, 0)Db

σ−µ,0(χ, ψ, 0)|2

=
8π

[a][b]

∑
µ

∫ 2π

0

dχ |Yaµ(ψ, χ)Yb,σ−µ(ψ, χ)|2

=
∑
µ

(a− µ)!(b− σ + µ)!

(a+ µ)!(b+ σ − µ)!
|P µ
a (cosψ)P σ−µ

b (cosψ)|2. (4.100)

To go from the first to the second line, which uses spherical harmonics, we used

Eq. 4.17(1) of Varshalovich [54], and from the second to the third line, which uses

associated Legendre polynomials, we used Eq. 5.2(1). Using the identities P−mn (x) =

(−1)m(l−m)!Pm
n (x)/(l+m)! and Pm

n (−x) = (−1)n+mPm
n (x) [65], one can show that

this particular function is even in both arguments,

f 00
−σ(x) = f 00

σ (x) and f 00
σ (−x) = f 00

σ (x). (4.101)

The final expression on the third line of (4.100) is relatively straightforward to evaluate

numerically, for example, with the function legendre() in MATLAB [94].

For the improved model ∆2
1ν of (4.12) from Section 4.2, we considered the limit

of a negligible applied field, B0 � B1. In this low-field limit, we see from (4.88) and

(4.89) that the parameter r −→ r1, and that the quantity (4.93) simplifies to

lim
B0�B1

〈
SααS

†
ββ

〉
τ,N
≈
∑
σ

Wαβ
σ

1 + i[1 + r1σ − r0(α + β)]φ
, (4.102)
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where we introduced the weight coefficients

Wαβ
σ =

1

2

∫ π

0

sin θdθ fαβσ (cosψ). (4.103)

Using the result (4.102), we may write the low-field molecular frequency shift (4.37)

of the α–β hyperfine transition as

∆ω ≈ 1

T

∑
σ

Wαβ
σ [1 + r1σ − r0(α + β)]φ

1 + [1 + r1σ − r0(α + β)]2φ2
. (4.104)

In this low-field limit, the linear, limiting slope (4.97) simplifies to

sm ≈
1

2πTp

∑
σ

Wαβ
σ [1 + r1σ − r0(α + β)]φ, (4.105)

and the nonlinear shift (4.98) simplifies to

∆2ν ≈ − 1

2πT

∑
σ

Wαβ
σ [1 + r1σ − r0(α + β)]3φ3

1 + [1 + r1σ − r0(α + β)]2φ2
. (4.106)

We can write the low-field weights Wαβ
σ of (4.103) in terms of Clebsch–Gordon

coefficients as follows:

Wαβ
σ =

1

4π

∑
µ

∫ 2π

0

dχ

∫ π

0

sin θdθ |daαµ(θ)dbσ−µ,β(θ)|2

=
1

8π2

∑
µ

∫
dΩDa

αµD
a∗
αµD

b
σ−µ,βD

b∗
σ−µ,β

=
(−1)σ+α+β

8π2

∑
µ

∫
dΩDa

αµD
a
−α,−µD

b
σ−µ,βD

b
µ−σ,−β

=
(−1)σ+α+β

8π2

∑
µjk

Cj0
aα;a,−αC

j0
aµ;a,−µC

k0
bβ;b,−βC

k0
b,σ−µ;b,µ−σ

∫
dΩDj

00D
k
00

= (−1)σ+α+β
∑
µk

1

[k]
Ck0
aα;a,−αC

k0
aµ;a,−µC

k0
bβ;b,−βC

k0
b,σ−µ;b,µ−σ. (4.107)
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The first line is the definition (4.103) using (4.94), where we noted from (4.77) that

ψ −→ θ in the low-field limit. To go from the first to the second line we used

Eq. 4.3(1) of Varshalovich [54], and wrote the angular average in terms of Euler

angles,
∫ 2π

0
dχ
∫ π

0
sin θdθ −→

∫ 2π

0
dα
∫ 2π

0
dχ
∫ π

0
sin θdθ/(2π) =

∫
dΩ/(2π). To go from

the second line to the third line we used Eqs. 4.4(2) and 4.4(3) of Varshalovich [54],

from the third to the fourth, Eq. 4.6.1(1), and from the fourth to the fifth, the

orthogonality relation Eq. 4.11.1(2). In simplifying the power of the pre-factor −1, we

assumed that the nuclear spin I is half-integer, which is required for a 0–0 transition

to exist, and which is the case for the most common alkali-metal isotopes, as shown

in Section 2.1.1. The final expression on the fifth line of (4.107) may be evaluated

numerically, for example, with the code available in Ref. [21].

By inspection, the weights Wαβ
σ of (4.103) depend on the choice of hyperfine tran-

sition. From the symmetry properties of Clebsch–Gordon coefficients, Eq. 8.4.3(10)

of Varshalovich [54], one can show that

Wαβ
−σ = Wαβ

σ and Wαβ
σ = W−α,−β

σ . (4.108)

As a result, out of the [a][b] = [I]2−1 = 4I(I+1) possible hyperfine transitions, there

are only ([a][b] + 1)/2 = [I]2/2 unique sets of weights Wαβ
σ versus σ. For example,

for 87Rb, which has 15 possible hyperfine transitions, there are 8 unique sets of Wαβ
σ .

Regardless of the choice of hyperfine transition, the set of weighs (4.103) sum to unity,

∑
σ

Wαβ
σ = 1, (4.109)
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because the angular functions fαβσ (cosψ) sum to unity, as in (4.95). From (4.108) we

see that

∑
σ

Wαβ
σ σ = 0. (4.110)

Using this with (4.109), we can further simplify the linear, limiting slope (4.105) to

sm ≈
[1− r0(α + β)]φ

2πTp
. (4.111)

For the particular case of the 0–0 transition in the low-field limit, B0 � B1, we

recover the fit function ∆2
1ν of (4.12) for the nonlinear shift from (4.106),

∆2ν ≈ ∆2
1ν = −

(
1

2πT

) 2I∑
σ=−2I

Wσ(1 + r1σ)3φ3

1 + (1 + r1σ)2φ2
, (4.112)

the expression (4.14) for the weights Wσ from (4.107),

Wσ = W 00
σ =

∑
µk

(−1)σ

[k]
Ck0
a0;a0C

k0
a,µ;a,−µC

k0
b0;b0C

k0
b,σ−µ;b,µ−σ, (4.113)

and the previous result (4.62) for the limiting slope sm from (4.111). For the first few

half-integer values of I, the weights (4.113) form the sets:

I =
1

2
: [W1, . . . ,W−1] =

[1, 1, 1]

3
, (4.114)

(87Rb) I =
3

2
: [W3, . . . ,W−3] =

[9, 9, 23, 23, 23, 9, 9]

105
, (4.115)

(85Rb) I =
5

2
: [W5, . . . ,W−5] =

[50, 50, 94, 94, 193, 193, 193, 94, 94, 50, 50]

1155
, (4.116)

(133Cs) I =
7

2
: [W7, . . . ,W−7] =

[245, 245, 425, 425, 659, 659, 1231, 1231, 1231, 659, 659, 425, 425, 245, 245]

9009
. (4.117)
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In summary, the effect of the spin-rotation interaction (4.2) is to split the frequency

shift (4.98) into a discrete sum of frequency shifts indexed by σ. Physically, the

discrete sum results from the spin-rotation interaction tilting the quantization axis for

a bound alkali-metal atom, by introducing the effective magnetic field B1 of (4.72).

In general, the frequency shift (4.98) from molecules will depend on the applied

magnetic field B0, and the choice of hyperfine transition. For a large enough applied

field, B0 � B1, the spin-rotation interaction becomes negligible, and we recover

the previous model of Section 4.5.2. For smaller applied fields, the spin-rotation

interaction generally increases the size of the nonlinear shift ∆2ν compared to the

previous model ∆2
0ν of Section 4.5.2, for the same values of the parameters φ and T .

For a small enough applied field, B0 � B1, we obtain the relatively simple expres-

sion (4.104) for the molecular frequency shift, which recovers the fit function ∆2
1ν of

(4.12) for the particular case of the 0–0 transition. Here, averaging over all orienta-

tions for van der Waals molecules produced the weights Wσ of (4.113) for the discrete

frequency shifts. Finally, we note that the oscillatory fit residuals δν3 displayed in

Fig. 4.2 may be though of as an interference pattern produced by the superposition

of the different, discrete frequency shifts indexed by σ in the nonlinear shift ∆2
1ν of

(4.12) as the molecular lifetime τ ∝ 1/p varies.

4.6 Summary and discussion

In summary, we report relatively large nonlinear pressure shifts of 87Rb, 85Rb, and

133Cs in Xe, which are opposite in sign to the nonlinear shifts with Ar and Kr.

Discrepancies with the previous model (4.6) demonstrate the importance of the spin-

rotation interaction (4.2) to nonlinear pressure shifts and to the status of vapor-cell

clocks as secondary frequency standards. We provide an improved model (4.11) of the

shifts for 87Rb and 133Cs in Xe, and report improved measurements of the nonlinear
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shifts of 87Rb in Ar and Kr. We provide the first measurement of these shifts of 85Rb

in Ar, Kr, and Xe, which suggest that the remaining discrepancy between theory

and experiment is most likely due to still-smaller spin interactions in the molecules,

other than the hyperfine-shift interaction (4.1) and the spin-rotation interaction (4.2),

though not with the nuclear spin of the buffer gas. To the limit of our experimental

accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. Further

precision measurement of nonlinear shifts should give a better understanding of the

detailed physics of van der Waals molecules.

127



Chapter 5

Prospects for pressure-shift

suppression

5.1 Introduction

Vapor-cell clocks require a chemically inert buffer gas to prevent the clock atoms

from diffusing too quickly to the cell walls, where collisions broaden the resonance

lines and seriously degrade the clock performance. Unfortunately, as discussed in the

last two chapters, the buffer gas introduces a pressure shift of the clock frequency.

This pressure shift is the main reason why vapor-cell clocks are secondary, not primary

frequency standards, and require calibration [11, 15, 16]. In this chapter, we consider

the prospects for suppressing the pressure shift in vapor-cell clocks.

A simple technique to suppress the pressure shift is to use a mixture of buffer gases

with opposing shifts that cancel. For example, a mixture of Ar and N2, similar to that

typically used in conventional clocks, can be adjusted to give no pressure shift. How-

ever, such zero-shift mixtures will only produce a zero pressure shift at a particular

zero-shift temperature, which depends on the exact composition and pressure of the

buffer gas. In the next section, we demonstrate a zero-shift mixture of Ar and N2 for
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a 87Rb vapor-cell clock. We then propose a few possible implementations for feedback

to adjust the cell temperature to suppress the pressure shift. One advantage of this

feedback is that it can compensate for significant changes to the buffer gas, for exam-

ple, from the accumulation of contaminant gas over time, or for the irreproducibility

in filling cells. We simulate this by adding He as an intentional contaminant in the

next section. Unfortunately, the pressure shifts from van der Waals molecules, as

discussed in Chapter 4, can introduce a significant error in this approach to suppress

the pressure shift. We model this error in Section 5.4 for conditions similar to those

of the experimental demonstration in Section 5.2.

Before we begin, we first provide some background on the accuracy of conventional

vapor-cell clocks.

5.1.1 Accuracy of conventional vapor-cell clocks

As mentioned in Section 3.1.1, conventional 87Rb vapor-cell clocks typically use mix-

tures of buffer gases, such as N2 and Ar, that are optimized to reduce any change

in the pressure shift with temperature. These mixtures still produce a net pressure

shift, which is on the order of 200 Hz per Torr of buffer gas [16]. In practice, the

irreproducibility of filling vapor cells with buffer gas leads to a fractional inaccuracy

of the clock frequency on the order of 10−9, or roughly 7 Hz for the 0–0 frequency

ν of 87Rb [16]. After an initial calibration by the manufacturer, this inaccuracy is

typically reduced to within 5× 10−11, or roughly 1/3 Hz for ν [125].

Unfortunately, conventional vapor-cell clocks drift during use, with a typical re-

duction in accuracy of 5 × 10−11 per month and 5 × 10−10 per year [125]. This long

term drift is not yet completely understood [14, 16], though changes in the pressure

shift, for example, due to the accumulation of contaminant gas [126], are known to

contribute significantly in miniature clocks [127]. As a result, conventional vapor-cell

clocks require repeated calibration to maintain their initial accuracy, for example, by
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monitoring signals from the Global Positioning System. In contrast, typical commer-

cial Cs beam clocks are accurate to within 10−12 without calibration, and so serve as

working primary standards [125].

Ideally, one would like a vapor-cell clock that has a significantly reduced drift

and does not require calibration to maintain its accuracy, like a Cs beam clock [128].

One way to do this might be to suppress the two dominant frequency shifts in these

clocks, the light shift and the pressure shift. While there is an important second-

order Zeeman shift of the 0–0 transition, it may be precisely controlled, as is done in

primary standards. We discussed how to suppress the light shift in Chapter 2, and

so this chapter describes how one might similarly suppress the pressure shift.

5.2 Experiment

To demonstrate the properties of a zero-shift buffer-gas mixture, we measured the 0–0

hyperfine frequency ν of 87Rb using the experimental setup of Chapter 4. We sup-

Figure 5.1: Experimental setup with adjustable vacuum bellows (left, on stool) at-
tached to the 87Rb vapor cell of Fig. 4.10 (right, inside Helmholtz coils). By adjusting
the bellows, we could manually vary the buffer-gas pressure by roughly ±13%.
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pressed the light shift with the conventional, intensity-modulation method of Chap-

ter 2. The applied magnetic field B ≈ 0.14 G. To vary the buffer-gas pressure in a

controlled manner, we modified the 87Rb vapor cell of Chapter 4, shown in Fig. 4.10,

by attaching a section of vacuum bellows (Huntington PM-275), as shown in Fig. 5.1.

Initially, we filled the vapor cell with a 30 Torr mixture of Ar and N2 at 50.0◦ C.

The ratio of partial pressures of Ar:N2 was roughly 9.170:1. By manually adjusting

the bellows, we could vary the buffer-gas pressure between 23–30 Torr. For a given

bellows configuration, we measured the actual buffer-gas pressure with a capacitance

manometer (MKS Instruments Baratron), and the 0–0 frequency ν with a frequency

counter referenced to a rubidium frequency standard (Stanford Research Systems

FS725).

700

650
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550

30282624

 
 
 

Figure 5.2: Demonstration of a zero-shift buffer-gas mixture for 87Rb with applied
field B ≈ 0.14 G. Each point is a measurement of the clock frequency ν for a given
buffer-gas pressure and oven temperature. The buffer-gas pressure was varied by ad-
justing the vacuum bellows shown in Fig. 5.1. The curves are straight line fits to the
data for a given temperature. The solid points and curves are measurements with
a 9.170:1 mixture of Ar and N2. The open points and dashed curves are measure-
ments after adding roughly 0.1 Torr of He to the mixture, which raised the zero-slope
temperature by about 12◦ C.
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Fig. 5.2 is a summary of measurements at three different oven temperatures. As

the data show, when the temperature is increased from 40.0◦ C to 57.0◦ C, the change

of the clock frequency ν with the buffer-gas pressure, or the slope in the figure,

transitions from positive to negative. Therefore, there is an intermediate “zero-slope”

temperature at which the clock frequency ν is independent of the buffer-gas pressure.

For small deviations away from this zero-slope temperature, there will be a residual

pressure dependence, or slope, whose sign and amplitude are proportional to the sign

and amplitude of the temperature deviation. Therefore, this residual slope can be

used as an error signal for feedback to servo the oven temperature to the zero-slope

temperature. For buffer gases with linear pressure shifts, this zero-slope temperature

is equivalent to a zero-shift temperature, at which there is no pressure shift.

By manually performing this feedback, we estimated the zero-slope temperature

of the Ar and N2 mixture to be nearly 49.5◦ C, as shown in Fig. 5.2. A linear fit to the

data estimates a residual pressure dependence, or slope, of −0.052±0.035 Hz Torr−1,

which could be reduced further by active feedback. An average of the data points at

49.5◦ C gives a zero-slope clock frequency ν ≈ 6,834,682,611.5 ± 0.3 Hz.

Next, we simulated the effects of a contaminant gas by adding about 0.1 Torr of

He to the cell, which increased the clock frequency ν by about 70 Hz. This quantity of

contaminant gas is significantly larger than would be expected to accumulate during

the working life of a vapor-cell clock. As shown in Fig. 5.2, the contaminant did not

drastically alter the properties of the gas mixture. Instead, the net effect was to raise

the zero-slope temperature by roughly 12◦ C. Performing manual feedback again, we

estimated the zero-slope temperature of the Ar, N2, and He mixture to be nearly

61.9◦ C. A linear fit to the data estimates a residual slope of 0.100±0.014 Hz Torr−1,

which again could be further reduced by active feedback. An average of the data

points at 61.9◦ C gives a zero-slope frequency ν ≈ 6,834,682,610.0 ± 0.2 Hz.
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The similarity of both zero-slope frequencies, from before and after adding He,

suggests that these frequencies are very close to the zero-shift frequency. We chose

the applied field B ≈ 0.14 G so that this zero-shift frequency was close to the free-

atom, zero-field frequency ν00 ≈ 6, 834, 682, 610.9 Hz for 87Rb, given in Chapter 2.1.1.

It is important to note that we were only able to do this because of two sources of

error:

(i) the long-term drift of the rubidium frequency standard used as a reference, and

(ii) a nonlinear pressure shift from RbAr van der Waals molecules.

Without these two errors, the inferred zero-shift frequency must be at least ∼ 11.3 Hz

above the free-atom, zero-field frequency ν00, because of the quadratic Zeeman shift

(≈ 575.15 Hz G−2 [52]). Instead, we see that these frequencies agree to within 1 Hz.

Most of this discrepancy is due to error (i), which offsets each measured frequency

ν from its true value. We can estimate this offset from the manufacturer specifications

for the rubidium frequency standard, which list an expected fractional drift below

5 × 10−10 per year [129]. A period of about 4.25 years elapsed between the latest

calibration in April 2004 and the measurement in July 2008, so we should expect an

offset between ± 14.5 Hz. Since the long-term drift of a conventional vapor-cell clock

is mostly linear and cumulative with time [14], this error seems likely to account for

most, if not all of the 11.3 Hz discrepancy.

We will estimate error (ii) in Section 5.4. In short, for zero-shift buffer-gas mix-

tures that can form van der Waals molecules with akali-metal atoms, such as RbAr,

the zero-shift temperature may not equal the zero-slope temperature. As a result,

there may be a significant pressure shift at the zero-slope temperature, even though

the clock frequency is insensitive to small changes in the buffer-gas pressure.
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Finally, we note that we repeated this process of manually suppressing the pressure

shift with the same cell and bellows, but a new buffer-gas mixture in order to measure

the clock performance data in Fig. 2.7 of Chapter 2.

5.3 Possible implementations

We now describe a few possible implementations of active feedback to servo the cell

temperature to the zero-slope temperature, which are sketched in Fig. 5.3. In all

implementations, it is assumed that the light shift is suppressed, for example, by a

method described in Chapter 2.

The first implementation, sketched in Fig. 5.3(a), directly modulates the buffer-gas

pressure in a sealed vapor cell [128]. A slow, isothermal modulation of the pressure will

produce a resulting modulation of the clock frequency for temperatures other than the

L PD

T

p(t) LA1

(a) Direct pressure modulation, single cell

L PD

LA1

T

LA2

p1

p2

+
-

(c) Modulationless, two parallel cells

L PD

LA1

T

p1 p2

x   y

(d) Modulationless, two series cells

(b) Error signal from modulation
p p(t)0

0

Figure 5.3: Possible implementations of pressure-shift suppression in a vapor-cell
clock described in Section 5.3. (a) Direct modulation of the buffer-gas pressure in
a single vapor cell. (b) The error signal from pressure modulation is due to the
resulting modulation of the clock frequency for temperatures other than the zero-
slope temperature. (c) Two vapor cells interrogated in parallel, without pressure
modulation. (d) Two vapor cells interrogated in series, without pressure modulation.
L, lens; PD, photodiode; LA, lock-in amplifier; T, oven temperature;
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zero-slope temperature, as sketched in Fig. 5.3(b). An error signal may be produced

by detecting this resulting clock-frequency modulation in the microwave feedback loop

with a lock-in amplifier, just as in the conventional, intensity-modulation method of

light-shift suppression described in Chapter 2. Feedback with this error signal will

servo the cell temperature to the zero-slope temperature.

Possible means of producing such pressure modulation include using an actuated

vacuum bellows, a separate chamber with a thermally cycled filament, a micro-electro-

mechanical systems (MEMS) pump [130, 131], an electrowetted liquid-metal piston

[132], or a nozzle-shaped acoustic rectifier [133] based on acoustic streaming [134, 135,

136, 137]. For example, a long glass stem could connect the cell to an external pressure

modulator. We note that long glass stems have been used in high-performance vapor-

cell clocks [138]. Unfortunately, none of these means seem particularly well suited for

compact or miniature vapor-cell clocks.

Alternatively, to avoid the difficulty of pressure modulation, one could use two

vapor cells (or one partitioned cell) with exactly the same buffer-gas mixture and

temperature, but two slightly different buffer-gas pressures. Two such schemes are

sketched in Fig. 5.3. In both, the error signal comes directly from the microwave

feedback loop, as a result of the microwave frequency modulation, which is at a much

faster rate than would be achievable with pressure modulation. We note that the use

of two vapor cells is common in conventional, lamp-pumped vapor-cell clocks based

on the “separated filter” approach [11], and that extra “clone” cells have been used

in laser-pumped clocks to improve the short-term performance [16].

In Fig. 5.3(c), the two cells are interrogated in parallel. The pumping beam may

be from the same source, or two different sources. The same microwaves probe both

cells, either directly, for example, in a cavity, or indirectly through modulating the

pumping light, as in coherent population trapping. Here, each cell produces its own

error signal for the microwave carrier frequency. The sum of these two error signals
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may be used to lock the microwave carrier frequency. The difference of the two then

serves as an error signal to servo the temperature to a zero-slope temperature, at which

both cells have the same microwave resonant frequency, the zero-slope frequency.

In Fig. 5.3(d), the two cells are interrogated in series by the same pumping beam.

Here, the same lock-in amplifier provides the error signals for the microwave carrier

frequency and the temperature, just as in the quadrature method of light-shift sup-

pression described in Chapter 2. The same arguments in Section 2.2.1 apply here,

where now the difference in resonant frequencies is due to the pressure shift, instead

of the light shift. The microwave linewidths for the two cells will be different because

of a difference in power broadening from the pumping light, and also in pressure

broadening from the buffer gas.

While these two “proxy” modulation schemes avoid the difficulty of implementing

pressure modulation, in the long-term, they might require a similarly difficult means

of circulating gas between the two cells to maintain identical buffer-gas compositions.

A two-cell design may also require a better control of spatial temperature gradients.

In addition, too large of a pressure difference between the cells might require two

separate pumping lasers to suppress the light shift for each cell independently, adding

complexity.

Despite the implementation, the accuracy of pressure-shift suppression will greatly

depend on the choice of buffer-gas mixture. This is because the most common buffer

gases with negative pressure shifts — Ar, Kr, and Xe — all have nonlinear pressure

shifts, as described in Chapter 4. These nonlinear shifts can lead to a residual pressure

shift at the zero-slope temperature, as will be shown in the next section. Further

precision measurement is required to find a negative-shifting gas with a sufficiently

linear pressure shift. Possible candidates include molecular hydrocarbon gases, such

as CH4, which have been successfully used as buffer gases [11]. We note that Strumia

et al. [139] have demonstrated how to reduce the temperature sensitivity of a zero-
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shift buffer-gas mixture by using three or more components, for example, a mixture

of He, N2, and C2H6.

With a proper zero-shift buffer-gas mixture, each of the implementations shown

in Fig. 5.3 would be able to correct for changes in the buffer-gas composition over

time, for example, from He permeation or residual chemical reactions. They would

also be insensitive to the irreproducibility of sealing vapor cells with a known buffer-

gas pressure, as mentioned in Section 5.1.1. Finally, we note that depending on the

desired degree of pressure-shift suppression, even smaller frequency shifts than the

light shift may be important, such as the spin-exchange shift [16].

5.4 Modeling of error from van der Waals

molecules

To demonstrate how a nonlinear pressure shift from van der Waals molecules may

lead to an error in pressure-shift suppression, we will estimate this error for 87Rb

in the Ar and N2 mixture demonstrated in Section 5.2. There, the vapor cell was

initially filled to a pressure pfill = 30.0 Torr at a temperature Tfill = 50.0◦ C. Let pp

be the partial pressure at Tfill of the positive-shift gas N2, and let pn be the same for

the negative-shift gas Ar, such that pfill = pp + pn. We can then write the pressure

shift for the sealed cell as the sum

δν = ν − ν0 = sppp + snpn + ∆2ν, (5.1)

which depends on the actual cell temperature T . The first two terms are linear

pressure shifts, and the third is a nonlinear pressure shift.

As discussed in Chapter 4, RbAr molecules contribute to both the linear shift snpn

and the nonlinear shift ∆2ν in (5.1). Since the formation rate and lifetime of RbAr
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molecules depend on the composition of the buffer gas, both of these contributions will

too. For simplicity, we will ignore this composition dependence. Since the mixture is

mostly Ar, we will overestimate the nonlinear shift to be the same as that of pure Ar,

∆2ν ≈ −
(

1

2π(Tp2)

)
(φp)3pfill

p2
fill + (φp)2

, (5.2)

where the parameters (Tp2) and (φp) are given in Table 4.3. In reality, the actual

nonlinear shift is likely smaller, since the addition of N2 should reduce the number of

RbAr molecules. We will also ignore the weak dependence of the parameters (Tp2)

and (φp) on temperature [39, 140].

To model the linear pressure shifts, sppp and snpn in (5.1), we will use the mea-

surements of Bean and Lambert [75]. Using (3.29) of Chapter 3, we may write each

of the linear slopes, sp and sn, in the form

s = s(T ) ≈ 2.2514

(
Ts

Tfill

) D∑
n=0

cn (δT )n . (5.3)

Here, the measured coefficients cn are for 85Rb in Ar or in N2, the temperature

Ts = 0◦ C, and the variable δT = (T − 0◦ C)/103. The ratio of absolute temperatures

Ts/Tfill in Kelvin adjusts for the change in reference temperature, Ts −→ Tfill. The

factor of 2.2514, which is approximately the ratio of the 0–0 frequencies of 87Rb and

85Rb, adjusts for the change in Rb isotope.

We numerically simulated active pressure-shift suppression in IGOR Pro [61] as

follows. First, we determined the ratio of partial pressures pn:pp (or Ar:N2) required

to give a zero pressure shift, δν = 0, according to (5.1). For the initial conditions of

pfill = 30.0 Torr and Tfill = 50.0◦ C, this ratio is roughly 9.2974:1, which is close to

the experimental value of 9.170:1 from Section 5.2. To simulate feedback with this

mixture, we numerically determined the zero-slope temperature to be the temperature

T where the pressure shift δν of (5.1) is unchanged after an increase in pfill by 0.1 Torr.
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As shown in Fig. 5.4, the value of the shift (5.1) at this zero-shift temperature is not

zero. Instead, this value is an estimate of the error in pressure-shift suppression due

to the nonlinear shift ∆2ν. To obtain a curve similar to those in Fig. 5.2, we repeated

the simulated feedback for filling pressures over the range of 23–30 Torr, as used in

Section 5.2. The residual slope in Fig. 5.4(a) is roughly 0.072 Hz Torr−1, and not zero.

The zero-slope temperature also depends slightly on the filling pressure, as shown in

Fig. 5.4(b).

As Fig. 5.4 shows, a nonlinear shift from van der Waals molecules may lead to a

difference between the zero-slope and zero-shift temperatures. In this case, none of the

implementations of pressure-shift suppression described in Section 5.3 will completely

suppress the pressure shift. For the Ar and N2 mixture simulated here for 87Rb, there

will be a residual pressure shift of roughly −2 Hz, or an inaccuracy of 3×10−10. This
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Figure 5.4: Numerical simulation of pressure-shift suppression error for 87Rb in a
mixture of Ar and N2. The black dots represent the initial condition of a 9.2974:1
Ar:N2 mixture adjusted to give zero pressure shift for a filling pressure of 30 Torr
and temperature of 50.0◦ C. The arrows indicate how feedback would servo the tem-
perature to the zero-slope temperature, by removing any dependence of the clock
frequency on small changes in pressure. (a) At the locked, zero-slope temperature,
there is a small clock error δν = ν − ν0. (b) This error is due to a nonlinear pressure
shift from RbAr van der Waals molecules, which make the zero-slope temperature
slightly different from the zero-shift temperature of 50.0◦ C. The curves in both pan-
els trace out how the clock error and zero-slope temperature change as the filling
pressure (given for 50.0◦ C) is varied, for the same buffer-gas mixture.
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error depends on the composition of the buffer gas and the filling pressure, and may

be reduced with the proper choice of both. This error can only be eliminated by using

a buffer gas that does not form van der Waals molecules with alkali-metal atoms.

5.5 Summary and discussion

In summary, we have proposed a simple technique to suppress the pressure shift in

vapor-cell clocks. We demonstrated the properties of zero-shift buffer-gas mixtures,

and proposed some possible implementations of this technique. Such suppression

might be useful in the search for the mechanisms behind the long-term drift of vapor-

cell clocks, and the study of smaller frequency shifts, such as the spin-exchange shift

[16]. Unfortunately, we show that van der Waals molecules are expected to limit

the accuracy of pressure-shift suppression. Further work is required to find a buffer

gas with a negative pressure shift that does not form van der Waals molecules with

alkali-metal atoms.

Even with the expected error from van der Waals molecules, it might be possible

to construct a vapor-cell clock with pressure-shift suppression that serves as a working

primary standard. In practice, this error might be predictable, reproducible, and sta-

ble enough, like the quadratic Zeeman shift, to maintain the typical desired accuracy

of 5× 10−11 without calibration. For example, the simulated pressure dependence of

this error was 0.072 Hz Torr−1 in Section 5.4, which is over three orders of magnitude

smaller than the typical pressure shift of 200 Hz Torr−1 in conventional clocks [16].

As a result, a vapor-cell clock with the simulated mixture would no longer require

an initial calibration to account for the irreproducibility in filling vapor cells, which

should be 10−12 or below. Active pressure-shift suppression should maintain this level

of error, even against small changes to the buffer-gas composition over time. However,
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there is still the possibility that additional, smaller frequency-shift mechanisms will

produce enough drift to eventually require calibration.
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Chapter 6

Integrating-sphere alkali-metal

vapor cells

6.1 Introduction

Integrating spheres (or Ulbricht spheres) are optical cavities that use diffuse reflection

to multi-pass light through an interior volume. Typically applied in radiometry and

photometry, integrating spheres have previously been used to detect trace gases [141]

and to cool and trap alkali-metal atoms [142, 143], for example, in a compact, cold

cesium atomic clock [144, 145]. Here, we report on an investigation of the potential

for integrating spheres to enhance the absorption of light in optically thin alkali-metal

vapor cells [43].

Miniaturized vapor cells for atomic clocks and magnetometers have shortened

optical path lengths. To compensate, miniature cells usually operate at higher tem-

peratures to increase the density of alkali-metal atoms, which in turn leads to reduced

performance from spin-exchange broadening of the microwave resonance lines [44] and

to an increased power demand from heating the cell. Another way to enhance absorp-

tion is to pass light through the cell multiple times with a cavity, without increasing
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the temperature or alkali-metal density. Integrating spheres are an attractive candi-

date since they are simple and robust optical cavities that do not require the precise

alignment of specular-reflectance cavities with mirrors, which can misalign over time.

We demonstrate up to a roughly ten-fold enhancement of optical absorption, which

seems to be limited by the effects of the glass cell required to contain the alkali-metal

vapor. We were surprised to find that the most common diffuse-reflectance paint,

sold for use in integrating spheres, is no longer a good diffuse reflector when applied

to glass, and can lead to significant light-piping effects in a painted alkali-metal vapor

cell. These effects could be important to the light-trapping enhancement of solar cells

with diffuse reflectors [146, 147], and to other applications of integrating spheres that

use internal glass bulbs [148, 149, 150, 151].

Before we begin, we first provide some background on integrating spheres.

6.1.1 Integrating spheres

An integrating sphere consists of a spherical cavity with diffusely reflecting walls and

small ports for light entry and exit, as sketched in Fig. 6.1. Multiple diffuse reflections

spread the input light into a uniform (unidirectional) irradiance E (W m−2) over the

entire inner sphere surface with area A (m2). The enhancement of this irradiance

due to reflections is described by a “sphere multiplier” M (dimensionless), which

quantifies the effective number of “bounces” of light within the cavity. For a total

input light power (or radiant flux) of P0 (W), the inner surface irradiance is

E = M

(
P0

A

)
, (6.1)

which we derive below. For commercial integrating spheres, the multiplier M is

usually in the range of 10–30 [152].
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Ideally, the inner wall of the sphere acts as a Lambertian surface, or an ideal diffuse

reflector, and reflects light with an equal radiance L (W m−2 sr−1) in all directions

above the surface. Radiance is constant along any ray path, so a Lambertian surface

can be thought of as reflecting light equally in all directions [153, 154]. This property

is usually summarized by Lambert’s cosine law, which states that the radiant intensity

I (W sr−1) of the reflected light obeys

I(θ) = I(0) cos(θ), (6.2)

where the colatitude angle θ is 0 for reflection normal to the surface and π/2 for

reflection along the surface. To understand (6.2), note that I(θ) = LdA(θ), and that

the apparent surface area dA(θ) of the source area dA with unit normal vector n̂

as seen by a reflection propagating along the unit vector r̂ is dA(θ) = (r̂ · n̂)dA =

cos(θ)dA.

A spherical geometry is convenient because a diffuse reflection from any point on

the sphere contributes a uniform irradiance over the entire inner surface of the sphere.

For example, consider the irradiance of the surface area dA2 with unit normal n̂2 at

the point r2 due to reflection from the point r1 on the surface with unit normal n̂1.

If we write the chord r21 = r2 − r1, then this irradiance is given by an inverse-square

Detector
Port

Di�user

Input 
Light

Integrating 
Sphere

Figure 6.1: Sketch of the cross section of an integrating sphere with two ports. Light
enters one port after first passing through an initial diffuser. Multi-passed light is
sampled by a detector at an orthogonal port.
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law,

E21 =
(r21 · n̂2)I1

|r21|3
, (6.3)

where I1 = I1(θ) is the radiant intensity of a ray with solid angle dΩ1 originating

from the point r1. For a sphere of diameter D, we have r21 · n̂2 = r21 · n̂1 = |r21| cos(θ)

and |r21| = D cos(θ). If we write the total power reflected from the point r1 as

P1 =

∫
I1dΩ1 = 2πI1(0)

∫ π/2

0

cos(θ) sin(θ)dθ = πI1(0), (6.4)

then using Lambert’s cosine law (6.2), we find that the irradiance (6.3) is the total

power divided by the surface area A = πD2 of the sphere,

E21 =
P1

A
, (6.5)

which is independent of the location of r2. Since it will be important later, we note

that average path length for all reflections from the point r1 is

L =

∫
|r21|dΩ1∫
dΩ1

=
2πD

∫ π/2
0

cos(θ)2 sin(θ)dθ

2π
∫ π/2

0
cos(θ) sin(θ)dθ

=
2

3
D, (6.6)

where L is not to be confused with a radiance L.

A Lambertian surface is described only by a reflectance ρ, also known as an

albedo or hemispherical reflectance, which satisfies 0 < ρ < 1. We can calculate the

sphere multiplier M from this reflectivity ρ by summing over reflections as follows.

Introducing light of total power P0 into the sphere, let a fraction ρ0 of this power

survive a first reflection off the inner sphere surface. From (6.5) we see that a total

power P1 = ρ0P0 from this first reflection will be spread uniformly over the inner

sphere surface. Let h be the fraction of the surface area A that is covered by ports
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Table 6.1: Example values of the sphere multiplier M of (6.9) as a function of the
reflectivity ρ and port fraction h.

ρ
h

0% 1% 2% 3% 4% 5% 10% 20%

0.99 99.0 49.3 32.6 24.2 19.2 15.8 8.2 3.8
0.98 49.0 32.6 24.3 19.2 15.9 13.5 7.5 3.6
0.97 32.3 24.2 19.2 15.9 13.5 11.7 6.9 3.5
0.95 19.0 15.8 13.5 11.7 10.4 9.3 5.9 3.2
0.90 9.0 8.2 7.5 6.9 6.4 5.9 4.3 2.6
0.85 5.7 5.3 5.0 4.7 4.4 4.1 3.3 2.1
0.80 4.0 3.8 3.6 3.5 3.3 3.2 2.6 1.8

(or holes), and for simplicity, assume that all light incident on a port is lost. Then a

second reflection will spread a total power P2 = ρ(1−h)P1 uniformly over the sphere

surface. Likewise, each subsequent n-th reflection spreads a power Pn = ρ(1−h)Pn−1

over the sphere surface. The total surface irradiance is then the sum

E =
1

A

∞∑
n=1

Pn = ρ0[1 + ρ(1− h) + ρ2(1− h)2 + . . .]

(
P0

A

)
. (6.7)

Comparing this with (6.1), we see that the sphere multiplier is

M =
ρ0

1− ρ(1− h)
. (6.8)

If we assume that the initial beam is perfectly diffused at entry, such as sketched in

Fig. 6.1, then we may simplify (6.8) to

M =
ρ

1− ρ
, (6.9)

where we have introduced an average reflectivity for the sphere wall,

ρ = ρ(1− h). (6.10)
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Example values of M as a function of the reflectivity ρ and port fraction h are listed in

Table 6.1. Typical parameters for commercial integrating spheres are 0.94 < ρ < 0.99

and 0.02 < h < 0.05 [152].

The multiple reflections inside an integrating sphere fill the interior with a nearly

isotropic bath of diffuse light. One consequence is that the number of bounces, or

the sphere multiplier M , is sensitive to the average reflectivity (6.10) for the entire

sphere wall. In other words, the performance is very sensitive to all surface losses,

such as the ports required for light input and output, since the entire inner surface is

sampled by the diffuse light. In contrast, some specular-reflectance cavities may be

adjusted to avoid lossy imperfections on mirror surfaces.

For additional information about integrating spheres and radiometric terminol-

ogy, we recommend Whitehead and Mossman [153] and Ref. [152]. For additional

information about diffusers and Lambertian surfaces, we recommend Carrascosa et

al. [154] and Section 5.7 of Ref. [155].

6.2 Modeling absorption inside integrating spheres

In this section, we derive models for the effects of absorption in integrating spheres,

and measures of performance that we will use to analyze the experiments in the next

section. We will ignore the effects of the glass cell, which we return to in Section 6.4.

At the end of this section, we discuss other important concerns for integrating-sphere

alkali-metal vapor cells.

As sketched in Fig. 6.1, a detector gathering light at a port measures the irradiance

E of (6.1), and thus the sphere multiplier M . Due to the multi-passing of the light,

the detector signal is very sensitive to absorption in the interior volume of the sphere.

Let the sphere interior be filled with a weak absorber described by an absorption

coefficient α (m−1). In general, the coefficient α will depend on the optical frequency
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ω of the light, α = α(ω). However, for simplicity, we will let α denote the maximum

value of α(ω) that occurs as the frequency ω is swept across a resonance line.

If we assume that the maximum value α of the absorption coefficient α(ω) is weak

enough that e−αD ≈ 1 − αD, where D is the sphere diameter, then the light inside

the integrating sphere may still be described by a sphere multiplier M = M(α). In

this case, we may write the maximum optical contrast measured by a detector for

light that is swept across an optical resonance as

∆(α) = 1− M(α)

M(0)
, (6.11)

where M(α) is the sphere multiplier for light tuned on resonance (α(ω) → α), and

M(0) is the multiplier for light tuned off resonance (α(ω)→ 0). We can calculate the

dependence of the sphere multiplier M(α) on the absorption coefficient α using the

following two approaches.

6.2.1 Ray-tracing approach

The first method is a ray-tracing approach [141, 156, 157]. Due to diffuse reflection

and spherical geometry, the light reflected by any point on the sphere wall deposits

a uniform irradiance over the entire wall, as described in Section 6.1.1. Assuming a

diffused initial beam, we will treat the introduction of the beam as a reflection. In

this case, the sum (6.7) becomes

E ≈
[
ρ(1− αL) + ρ2(1− αL)2 + ρ3(1− αL)3 + . . .

] P0

A
, (6.12)
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where the average path length (6.6) is L = 2D/3. Comparing this with (6.1), we see

that the sphere multiplier is

M(α) ≈ ρ(1− αL)

1− ρ(1− αL)
. (6.13)

The maximum optical contrast (6.11) measured by a detector is then

∆(α) ≈ αL

1− ρ(1− αL)
, (6.14)

according to this ray-tracing approach.

6.2.2 Photon-gas approach

We will refer to the second method as the “photon-gas” approach [158]. In an ideal

integrating sphere, the interior is filled with diffuse light much like monochromatic

blackbody radiation. Instead of summing the total surface irradiance, we can calculate

M(α) by balancing the optical power input P0 with the power loss in the cavity,

P0 = P0(1− ρ0)︸ ︷︷ ︸
input loss

+EA(1− ρ)︸ ︷︷ ︸
wall loss

+Pα. (6.15)

For simplicity, we describe the introductory loss with (1− ρ0), and we ignore absorp-

tion of the input beam in the sphere interior, which is a small correction.

To calculate the power loss Pα from absorption in the sphere interior, we will

describe the diffuse light by a local radiant energy density w (W m−3). For light

propagating along the unit vector r̂, absorption is described by the Beer-Lambert law

∇w = −αw r̂. (6.16)
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For a given point, we can calculate the power loss per unit volume pα (W m−3) by

averaging over all rays of solid angle dΩ and direction r̂ passing through the point,

pα = −dw
dt

= − 1

4π

∫
∇w · (vgr̂) dΩ = α vgw, (6.17)

where vg is the group velocity of the light. Similarly, we can calculate the (unidirec-

tional) irradiance E along the unit vector n̂ for a given point as

E =
1

4π

∫
(w vgr̂) · n̂ dΩ =

w vg

2

∫ π/2

0

cos(θ) sin(θ)dθ =
w vg

4
. (6.18)

For weak absorption, the radiant density w is nearly constant throughout the sphere

interior. In this case, both (6.17) and (6.18) are independent of position, and we can

write the power loss Pα of (6.15) over the volume V = πD3/6 of the sphere as

Pα = pαV = (αL)EA, (6.19)

where L = 4V/A = 2D/3 is the average path length of (6.6). Note that if the absorber

does not completely fill the sphere interior, then the effective path length in (6.19)

would be less than 2D/3.

Using (6.19) with (6.15), we find the sphere multiplier

M(α) ≈ ρ0

1− ρ+ αL
. (6.20)

The maximum optical contrast (6.11) measured by a detector is then

∆(α) ≈ αL

1− ρ+ αL
, (6.21)

according to this photon-gas approach.
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6.2.3 Measures of performance

Using the results of the two approaches above, we can define four measures to gauge

the enhancement of optical absorption in an integrating sphere over the single-pass

case. In an experiment, we can measure both the maximum multi-pass contrast

∆(α) of (6.11) and an analogous maximum single-pass contrast ∆1(α) for comparison.

From the Beer-Lambert law, we can write the maximum single-pass contrast along

the sphere diameter D as

∆1(α;D) = 1− e−αD. (6.22)

While it is experimentally convenient to measure the single-pass absorption along

the diameter D, it will be more convenient for analysis to use an estimate of the

single-pass contrast along the average diffuse-reflectance length L = 2D/3 of (6.6),

∆1(α;L) = 1− e2 ln[1−∆1(α;D)]/3 = 1− e−αL. (6.23)

A first measure of performance is the ratio of contrasts

N1 =
∆(α)

∆1(α;L)
. (6.24)

The is a convenient metric since for weak absorption it is very nearly equal to the

sphere multiplier, N1 ≈ M(α), which is the traditional definition of a number of

“bounces” in an integrating sphere. A second measure of performance is the ratio of

effective path lengths

N2 =
ln[1−∆(α)]

ln[1−∆1(α;L)]
. (6.25)
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This is clear if we use the Beer-Lambert law to write the multi-pass contrast ∆(α) as

∆(α) = 1− e−αN2L, (6.26)

which shows that the metric N2 describes an effective path-length enhancement for

multi-pass absorption compared to the single-pass contrast ∆1(α;L) of (6.23). As we

will see, the two metrics N1 and N2 give similar results, though N2 tends to be a

more optimistic measure of performance. Both N1 and N2 decrease as the value of α

increases.

Finally, we may estimate two performance limits from the measured contrasts.

From the results of both models, (6.14) and (6.21), we see that the measure N1 of

(6.24) is limited below a maximum value,

N1 ≤ Nmax
1 =

1

1− ρ
, (6.27)

which depends only on the average reflectivity ρ of (6.10). We may estimate this limit

for N1 as follows. Assuming weak absorption, we may approximate

αL ≈ ∆1(α;L). (6.28)

Then from (6.14) and (6.21), we may estimate the maximum value of (6.27) to be

Nmax
1,rt =

1

1− ρ
≈ 1−∆1(α;L)

1/N1 −∆1(α;L)
or (6.29)

Nmax
1,pg =

1

1− ρ
≈ 1

1/N1 −∆1(α;L)
, (6.30)

for the ray-tracing (“rt”) and photon-gas (“pg”) approaches, respectively. As we will

see, these two estimates for the maximum value of the measure N1 of (6.24) give

similar results for weak absorption.
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6.2.4 Additional concerns for alkali-metal vapor cells

The analysis in this section has ignored several additional concerns that are important

if alkali-metal vapor cells are used in integrating spheres, which we describe here.

First, we have assumed that a detector only measures the light multi-passed

through the sphere interior. In practice, care must be taken to avoid any bias from

the initial input of light. In traditional integrating spheres, this is usually done with

internal baffles [152]. For alkali-metal vapor cells, this can be done by diffusing the

input light before it enters the sphere, and recessing the detector to avoid a direct

view of the input port.

Second, the glass bulb of the alkali-metal vapor cell may affect the performance.

At minimum, the bulb will introduce additional absorption, due to both the glass itself

and to imperfections from fabrication, such as dark discolorations. As we discuss in

Section 6.4, the glass bulb may also introduce significant light-trapping and light-

piping effects, as well as non-Lambertian behavior. In addition, the excess of alkali

metal in the cell required to produce a vapor will introduce scattering and absorption.

These effects may be reduced by confining this excess in a more desirable portion of

the cell through selective heating and cooling.

Finally, for simplicity, we have assumed that the absorption of light by an alkali-

metal vapor may be described by an absorption coefficient α(ω) that is only a function

of the optical frequency ω of the light. However, because of optical pumping, the

absorption will also depend on the input light intensity and possibly its polarization.

For our measurements, we can avoid this complication by using unpolarized input light

with a sufficiently low power. We cannot avoid this complication in some applications,

such as vapor-cell clocks, where the light must provide optical pumping to allow the

absorption of microwaves, as described in Section 2.1.2. For example, this would

lead to a reduced maximum optical contrast for microwave resonances, since there is

optical absorption even when the microwaves are off resonance. In addition, if the

153



buffer gas does not provide enough quenching, the integrating sphere may lead to

significant radiation trapping from the multi-passing of fluorescence [159].

6.3 Experiment

We performed two experiments with different alkali-metal vapor cells, a 85Rb cell

and a 133Cs cell, as described below. For each cell, we measured the maximum single-

pass optical contrast ∆1(α;D) of (6.22) and the maximum multi-pass optical contrast

∆(α) of (6.11) for different values of the absorption coefficient α. Fig. 6.2 is a sketch

of the setup for both experiments, as described below.

In the first experiment, we used a small Pyrex cell filled with an excess of 85Rb

and 60 Torr of N2 buffer gas for quenching. As shown in Fig. 6.3(a), the cell was

mostly a spherical bulb, with an outer diameter D ≈ 3.1 cm, except for a stem

with an outer diameter of roughly 9 mm at the bulb. We probed optical absorption

of the D1 transition with weak, unpolarized 795 nm light from a diode laser (DL).

Figure 6.2: Experimental setup for measurements with integrating-sphere alkali-
metal vapor cells. For the painted 133Cs cell, a moveable diffuser (D) was used to
switch between single-pass and multi-pass measurements in situ. DL, diode laser;
FR, Faraday rotator; PE, pellicle; NDF, neutral density filter; I, iris; D, diffuser; O,
oven; HC, Helmholtz coils; L, lens; PD1, single-pass photodetector; PD2, multi-pass
photodetector; FS, frequency synthesizer; H, microwave horn;
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Table 6.2: Measured optical contrasts for the 85Rb vapor cell. The approximate
values of the Rb number density were estimated from the oven temperature [52].

Temp. Rb density Single-pass contrast Multi-pass contrast ∆(α)
(◦ C) (cm−3) ∆1(α;D) ∆1(α;L) Spectralon Paint

21.5 8.9× 109 0.0410 0.0275 0.1930 0.2450
30.0 2.2× 1010 0.0961 0.0651 0.3672 0.4200
40.0 6.0× 1010 0.2220 0.1541 0.6017 0.5885
50.0 1.5× 1011 0.4167 0.3019 0.7480 0.7600

An air-heated, nonmagnetic oven (O) regulated the cell temperature, and thus the

alkali-metal density and maximum absorption coefficient α. We initially measured

the single-pass maximum contrast ∆1(α;D) for the D1 optical transition with a beam

through the cell diameter, and estimated the contrast ∆1(α;L) using (6.23). We then

measured the multi-pass contrast ∆(α) in two configurations, described below. The

results of these measurements are summarized in Table 6.2.

In the first configuration (“Spectralon”), we placed the cell inside a commercial

integrating sphere (Ocean Optics FOIS-1) made of Labsphere Spectralon, which has

a diffuse reflectivity ρ & 0.99 for the near infrared [161]. This integrating sphere had

Figure 6.3: Integrating-sphere alkali-metal vapor cells painted with Labsphere 6080
white reflectance coating [160]. (a) 85Rb vapor cell with diameter D ≈ 3.1 cm and
port fraction h ≈ 0.02–0.03. Roughly half the short cell stem is painted. (b) 133Cs
vapor cell with diameter D ≈ 2.0 cm and port fraction h ≈ 0.05–0.07. Most of the
relatively large cell stem is unpainted, and instead is immersed in a white, thermally
conductive grease during use.
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Table 6.3: Performance measures for the 85Rb vapor cell using the data of Table 6.2.
The metrics N1 and N2 are actual performance, and the metrics Nmax

1,rt and Nmax
1,pg are

estimates of the maximum possible value of N1, as described in Section 6.2.3.

Spectralon Paint
Temp. (◦ C) N1 N2 Nmax

1,rt Nmax
1,pg N1 N2 Nmax

1,rt Nmax
1,pg

21.5 7.02 7.69 8.46 8.70 8.91 10.08 11.48 11.80
30.0 5.64 6.79 8.33 8.91 6.45 8.09 10.39 11.12
40.0 3.90 5.50 8.29 9.80 3.82 5.31 7.85 9.28
50.0 2.48 3.84 6.86 9.83 2.52 3.97 7.32 10.49

a port fraction h ≈ 0.02 and an inner diameter of roughly 3.8 cm. The cell did not

completely fill the sphere interior, but was positioned to cover a port hole monitored

by a photodetector (PD2). The light was introduced in a different port, and was

diffused either by an external diffuser or by directing it to initially reflect off the

sphere interior.

In the second configuration (“Paint”), we painted most of the cell with a commer-

cial integrating-sphere paint, Labsphere 6080 white reflectance coating, which has a

reflectivity ρ ≈ 0.975 for the near infrared [160]. Fig. 6.3(a) shows the painted cell.

We painted only half of the short cell stem, and we introduced two orthogonal port

holes with diameters of roughly 3 mm. We estimate the port fraction h ≈ 0.02–0.03

for the painted cell, which is mostly due to the stem.

Table 6.3 gives the calculated performance measures of Section 6.2.3 using the

data in Table 6.2. The measures show an improvement in the optical contrast of up

to roughly 9–10 with the painted cell, corresponding to around 9–10 “bounces” of light

within the cell. This performance is close to the estimated maximum values, Nmax
1,rt

and Nmax
1,pg from Section 6.2.3, so significantly better performance is not expected with

this cell. The best results came with the painted-cell configuration, likely because the

cell did not completely fill the Spectralon cavity in the external integrating-sphere

configuration — see the comment after (6.19).
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We also examined the microwave contrast for the painted-cell configuration, using

Helmholtz coils (HCs), a microwave horn (H), and a frequency synthesizer (FS). Be-

cause of the difficulty in performing a quantitative comparison between the single-pass

and multi-pass configurations, which are very sensitive to the optical and microwave

powers, we do not report quantitative results. Instead, we note that the microwave

contrast did show a similar enhancement from multi-passing. Additionally, we note

that attempts to observe coherent population trapping by frequency modulating the

light with a fiber-based electro-optic modulator were unsuccessful, likely because the

diffuse reflection inside the cell made this modulation effectively incoherent.

For a second experiment, we chose to use 133Cs to demonstrate how an integrating

sphere might reduce the power budget of miniature vapor-cell devices: due to the

higher vapor pressure of Cs than of Rb for the same temperature, we had to cool

below room temperature to reach a weak absorption regime. Instead of cooling the

entire cell, we cooled only the portion of the cell containing the excess of Cs metal,

the stem, as sketched in Fig. 6.4. This method failed with several new cells that

we fabricated, but functioned with one existing Pyrex cell filled with 20 Torr of a

4:1 mixture of Ar:N2 buffer gas. As shown in Fig. 6.3(b), this cell has an unusual

shape. The middle spherical bulb with outer diameter D ≈ 2.0 cm is connected to

Figure 6.4: Stem-cooling setup for the 133Cs cell. (Left) A copper cell holder is
attached to a Peltier element on top of a copper base plate for heatsinking. (Right)
The cell (unpainted) with its stem in the cell holder, during a preliminary single-pass
measurement. The air-heated oven (green) is open for the picture.
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Table 6.4: Measured optical contrast for the 133Cs vapor cell. The approximate
values of the Cs number density were estimated from the measured area of the optical
absorption line shape [162, 21].

Stem temp. Cs density Single-pass contrast Multi-pass contrast
(◦ C) (cm−3) ∆1(α;D) ∆1(α;L) ∆(α)

15.1 1.9× 109 0.086± 0.02 0.0582 0.191± 0.02
0.067± 0.02 0.0452 0.166± 0.02

15.1 3.9× 109 0.146± 0.02 0.0999 0.322± 0.05
0.122± 0.02 0.0831 0.303± 0.05

10.0 5.6× 109 0.173± 0.02 0.1189 0.360± 0.02
0.140± 0.02 0.0956 0.304± 0.02

an upper “pancake” extension, with outer diameter of roughly 6 mm at the bulb,

and a relatively long cell stem with outer diameter of roughly 7 mm at the bulb. We

painted most of the cell with Labsphere 6080, including the pancake region, as shown

in Fig. 6.3(b). Most of the exposed portion of the stem was immersed in a white,

thermally conductive grease during use, which reduced the optical loss from the stem.

While the stem-cooling method worked, it proved unreliable for precise control of

the alkali-metal vapor density, due to the eventual migration of alkali metal out of the

stem, which could be temporarily reversed by baking with the oven (O) while cooling

the stem. As a result, we used 3 port holes, of roughly 3 mm diameter each, and a

moveable diffuser (D) to switch between single-pass and multi-pass measurements in

situ with the painted cell, as sketched in Fig. 6.2. We estimate the port fraction h ≈

0.05–0.07, which assumes some attenuation of the loss from the pancake and stem

portions of the cell by the paint and thermal grease, respectively.

We probed optical absorption of the D2 transition with weak, unpolarized 895 nm

light from a diode laser (DL). For 133Cs, the D2 transition is split into two peaks by the

ground-state hyperfine structure, so we report two values, corresponding to these two

resolved peaks, for each alkali-metal density in Table 6.4. The calculated performance
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Table 6.5: Performance measures for the 133Cs vapor cell using the data of Table 6.4.
The metrics N1 and N2 are actual performance, and the metrics Nmax

1,rt and Nmax
1,pg are

estimates of the maximum possible value of N1, as described in Section 6.2.3.

Stem temp. (◦ C) Cs tensity (cm−3) N1 N2 Nmax
1,rt Nmax

1,pg

15.1 1.9× 109 3.28 3.54 3.82 4.06
3.67 3.93 4.21 4.41

15.1 3.9× 109 3.22 3.69 4.28 4.76
3.65 4.16 4.80 5.23

10.0 5.6× 109 3.03 3.52 4.17 4.73
3.18 3.60 4.13 4.57

average − − − 4.24 4.63

measures of Section 6.2.3 are summarized in Table 6.5. Compared to the 85Rb cell, the

133Cs cell performed poorly. The improvement in the optical contrast was less than a

factor of 4. Repainting the cell did not change the results. The estimated maximum

performance was similar, so significantly better performance is not expected with

this cell. Surprisingly, these performance values were much worse than expected,

even given the unusual shape of the cell, and prohibited further quantitative study.

One possible explanation is that the undesirable effects of the glass are enhanced for

the smaller 133Cs cell because of the relatively thicker walls, which we estimate to be

roughly 1 mm thick, and the relatively large pancake and stem portions. We explore

the effects of the glass in the next section.

6.4 Modeling of glass effects

Attempts to understand the poor performance of the 133Cs cell with a Monte Carlo

simulation of photon trajectories in MATLAB [94] pointed out the importance of the

glass cell, which we ignored in the modeling of Section 6.2. Here, we first provide some

simple demonstrations of a few important properties of the reflection inside glass off
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of a flat interface with Labsphere 6080. We then consider how to model the effects of

the glass in integrating-sphere alkali-metal vapor cells.

Fig. 6.5 shows a flat interface between Pyrex glass and Labsphere 6080 that is

illuminated by a collimated green laser beam. Fig. 6.5(Left) displays multiple rings

due to the total internal reflection off of the upper, parallel glass-air interface, which

demonstrate that Labsphere 6080 reflects the laser light in a diffuse-like manner inside

the glass. As a result, we should expect some light-trapping and light-piping effects

inside the glass bulb of our cells, which we will model with a photon-gas approach in

Section 6.4.1.

However, Fig. 6.5(Right) shows that, in addition to diffuse-like reflection, there is

still a specular reflection from the 6080-glass interface. This non-Lambertian behav-

ior is not present for a typical Labsphere 6080 surface in air, perhaps due to surface

roughness. In addition, Fig. 6.6 demonstrates that a flat 6080-glass interface under-

goes a gradual transition towards total internal reflection with an increasing angle of

incidence. In contrast, a Lambertian surface should appear “white” at all angles of

incidence, with a constant brightness by eye (for the same illumination), and give no

Figure 6.5: Reflection of a green laser pointer inside Pyrex glass, off of a rear interface
with Labsphere 6080 paint. (Left) Multiple rings from total internal reflection at the
front Pyrex-air interface. The Pyrex block is 1” × 2” in size and 0.125” thick, with
polished sides. The ring radii are multiples of roughly 6 mm. (Right) Specular
reflection of a tilted laser beam off the rear Pyrex-6080 interface. The Pyrex block is
1” × 2” in size and 0.75” thick, with ground sides.

160



Figure 6.6: Gradual transition to total internal reflection for the hypotenuse of an
N-BK7 right-angle prism (Thorlabs PS908L-B) painted with Labsphere 6080. Illu-
mination with a green laser beam in the third panel demonstrates frustration of the
total internal reflection when viewed with an angle of incidence of roughly 45◦ with
an external prism face, which corresponds to an angle of incidence with the painted
hypotenuse of roughly 73◦ inside the prism.

specular reflection. External illumination with a green laser pointer shows that this

total internal reflection is frustrated [163], because of the optical contact with the

Labsphere 6080 [164]. Therefore, we cannot assume that Labsphere 6080 is nearly

Lambertian when it is applied to glass, so we consider how to model the 6080-glass

interface in Section 6.4.2.
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6.4.1 Light trapping and light piping

In this section, we consider the painted-cell configuration sketched in Fig. 6.7. For

simplicity, we assume that the paint-glass interface is still Lambertian, with a diffuse

reflectivity ρg for reflection inside the glass. We will ignore absorption by the bulk

glass, and approximate the inner and outer glass surface areas of the integrating

sphere, in the absence of a stem, to have approximately the same surface area A.

Following the photon-gas approach [158] of Section 6.2.2, we can model the effects of

the glass by balancing the power input and loss,

P0 = P0(1− ρ0)︸ ︷︷ ︸
input loss

+EgA(1− h)(1− ρg)︸ ︷︷ ︸
paint loss

+ Ph︸︷︷︸
port loss

+ EcA(αL).︸ ︷︷ ︸
cell absorption

(6.31)

Here, ρ0 describes the loss during the introduction of the light, Eg is the (unidi-

rectional) irradiance inside the glass, Ec is the (unidirectional) irradiance inside the

sphere interior (or cell), h is the port fraction, and Ph is the loss from the ports.

To calculate the multi-pass contrast ∆(α), we first need to relate the irradiance

Eg inside the glass to the irradiance Ec inside the cell. We can do this by writing the

radiant energy density w of an equilibrium photon gas as an integral over the photon

energy ε with a density of states g(ε) and a probability distribution (or occupation

Paint

Glass Alkali Metal

Normal Port

Stem Port

Stem

Figure 6.7: Sketch of the cross section of an integrating-sphere alkali-metal vapor cell
with Labsphere 6080 paint. The glass required to contain the alkali-metal vapor may
lead to significant light-trapping and light-piping effects, reducing the performance of
the cell as an integrating sphere.
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function) f(ε),

w =

∫
εf(ε)g(ε)dε. (6.32)

For blackbody radiation, f(ε) would be the Planck distribution. For an integrating

sphere, f(ε) is determined by both the spectrum of the input light, for example,

narrowband laser light, and any extinction (absorption and scattering) inside the

sphere. For weak absorption, the distribution f(ε) should be nearly the same in both

the glass and the cell.

However, the density of states g(ε) depends on the refractive index n of the local

medium. For photons with energy ε = ~ω, wavenumber k = nω/c, and group

velocity vg = dω/dk = c/n, where c is the speed of light in vacuum, we can calculate

the density of states by summing over modes in k-space:

g(ε)dε =
(2 polarizations per mode)(surface area of k-sphere)

(unit volume per mode in k-space)

(
dk

dω

)(
dω

dε

)
dε

=
(2)(4πk2)

(2π)3

(
1

vg

)(
1

~

)
dε =

n3ω2

π2~c3
dε. (6.33)

Using (6.33) with (6.32), we see that the equilibrium radiant energy density

w ∝ n3. (6.34)

For simplicity, let the refractive index for the cell interior n −→ 1, and let ng denote

the refractive index of the cell glass. Using (6.34), (6.18), and vg = c/n, we obtain

the relation

Eg = n2
gEc (6.35)

between the equilibrium irradiances in the glass and the cell interior [158].
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Next, we need to determine the port loss Ph in (6.31). From Fig. 6.7, we see that

for integrating-sphere alkali-metal vapor cells, there are at least two different types

of ports, “normal” ports and “stem” ports. A normal port is simply a hole in the

paint, which exposes part of the outer surface of the glass bulb to the surrounding

air, which we take to have an index n = 1. However, a “stem” port is a tube-like

extension of the glass bulb, away from its spherical shape. We may treat both types

of ports in a simple manner if we approximate the light as still being an equilibrium

photon gas as it exits a port. Let hi be the fractional area for the i-th port, such that

the total port fraction h =
∑

i hi. For each port, let pi be a reflectivity that describes

how much of Eg is reflected back by the port. For example, if pi were equal to ρg,

then the i-th port would be indistinguishable from the rest of the painted wall. Then

we can write the port loss in (6.31) as

Ph = EgA
∑
i

(1− pi)hi. (6.36)

We can determine the port reflectivities pi as follows. Let fi be the fractional

area of the cross section of a port that is composed of glass, taken just exterior to

the sphere. For normal ports, fi = 0 since the hole in the paint is filled with air.

Here, the reflectivity would be pi ≈ (1 − Ea/Eg), where Ea is an (unidirectional)

irradiance in the air just exterior to the sphere. From the derivation of (6.35), we see

that Ea ≈ Ec. However, for a port that resembles a glass rod attached to the cell,

fi = 1. Here, the reflectivity would be pi = 0, since there is no physical interface

between different media to reflect the light. For a typical stem port that resembles

a glass tube, such as in Fig. 6.7, we would have an intermediate value, 0 < fi < 1.

Combining these cases, the port reflectivity for arbitrary fi is

pi ≈ (1− fi)(1− Ec/Eg) = (1− fi)(1− 1/n2
g), (6.37)
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where we used the relation (6.35).

Using (6.35), (6.36), and (6.37), the power balance (6.31) becomes

P0 = P0A(1− ρ0) + EcA[n2
g(1− ρ̃g) + αL], (6.38)

where we introduced an average reflectivity inside the glass,

ρ̃g = ρg(1− h) +
∑
i

pihi. (6.39)

Using (6.38) with (6.1), we find the sphere multiplier for the irradiance Ec is

M(α) ≈ ρ0

n2
g(1− ρ̃g ) + αL

. (6.40)

The maximum optical contrast (6.11) measured by a detector is then

∆(α) ≈ αL

n2
g(1− ρ̃g ) + αL

, (6.41)

according to this photon-gas approach with the glass effects described above.

While the expression (6.41) for the contrast ∆(α) is similar to the previous photon-

gas expression (6.21), it exhibits two new and important effects because of the glass.

The first effect is “light trapping.” Since the refractive index ng > 1 for glass, with a

typical value ng ≈ 1.47 for Pyrex, the effect of ng is to enhance the wall loss in (6.41)

for a given value of ρ̃g. This effect is due to the dependence (6.34) of the radiant

energy density w of an equilibrium photon gas on the local refractive index n, which

leads to a stronger radiant energy density w in the glass bulb than in the cell interior.

This effect is analogous to the concentration of static electric fields by dielectrics,

such as glass, inside capacitors. Such light trapping has been used to increase the
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performance of solar cells with diffusers [146]. A similar effect occurs with reflective

powders immersed in liquid [165].

The second effect is “light piping” out of ports with glass attachments, such as a

stem port. This effect is due to the dependence of the average reflectivity ρ̃g of (6.39)

on the glass fractions fi in the port reflectivity pi of (6.37). For normal ports with

fi = 0, the port loss Ph does not change with ng. This is because any light trapping is

counterbalanced by the port reflectivity pi, which is clear if we use (6.35) and (6.37)

to write the port loss Ph of (6.36) as

Ph = EcA
∑
i

[
1 + fi(n

2
g − 1)

]
hi. (6.42)

Here, we see that there would be no dependence on ng for the i-th port loss if fi = 0.

However, for stem ports with non-negligible glass fractions, fi > 0, we see that the

light trapping in the glass bulb leads to an enhanced light-piping loss through any

glass extensions attached to the port.

This analysis suggests that the relatively poor performance of the 133Cs cell com-

pared to the 85Rb cell might be explained by an enhanced light-piping loss due to

the relatively thicker glass and the unusual cell shape, in particular, the relatively

large pancake and stem portions of the cell. Light trapping likely played an similar

role in both of the painted integrating-sphere alkali-metal vapor cells. This section,

however, has assumed that the Labsphere 6080 is nearly Lambertian when applied

to glass. From Fig. 6.6 in the previous section, we know that this is probably not

a good approximation. In the next section we consider how to model the 6080-glass

interface.
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6.4.2 6080-glass interface

High-quality diffuse reflectors are usually assumed to be Lambertian, and modeled

by only a single parameter, a diffuse reflectivity ρ. These materials seem to be almost

exclusively characterized for reflection into air (ρ = ρair). There seems to be a lack of

information about the properties of their reflection inside other media, such as glass or

plastic. In this section, we consider a flat interface between glass and Labsphere 6080,

which we suspect to be non-Lambertian. We begin with a description of Labsphere

6080, and end with a suggestion of a possible model for this interface.

Labsphere 6080 is a coating made of barium sulfate (BaSO4) particles suspended

in a polyvinyl alcohol (PVA) binder [160]. It is sold as a paint diluted in ethanol,

and must be applied by airbrush. The optimal coating thickness is 0.5–0.6 mm.

When properly applied, the diffuse reflectivity in air (ρair) is between 95–98% for

wavelengths in the range of 300–1200 nm. The same “6080” coating has been sold by

different manufacturers in the past: Kodak, Eastman, and Munsell before Labsphere.

According to Grum and Luckey [166], who were employees at Eastman, the optimal

particle diameter is roughly 0.3–3.0 µm, and the sizes of most particles in the Eastman

white reflectance coating were between roughly 0.05–3.0 µm. The ratio of PVA:BaSO4

in the paint is stated as 1:100 “by parts,” which was chosen to optimize the tradeoff of

reduced performance for enhanced mechanical strength from the PVA binder, which

most likely does not fill the voids between the particles. The volume packing fraction

probably depends on how the paint is applied. However, it should be close to the

fraction for pressed barium sulfate powders, which has been measured to be roughly

52% [167]. For comparison, a body-centered cubic crystal has a volume packing

fraction of roughly 68%, so the pressed powder and 6080 paint are very tightly packed,

perhaps nearly as tight as possible while still retaining a random structure.

As described, Labsphere 6080 is a highly reflective, random (or turbid), and het-

erogeneous (or porous) media. Though the study of scattering by such materials has
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a long history, research is still ongoing [168, 169]. In particular, Labsphere 6080 is

very difficult to model for three reason:

(i) it is densely-packed (the barium sulfate particles touch),

(ii) it is a strong multiple-scatterer, and

(iii) the particle size is of the same order as the wavelengths of interest.

Unfortunately, the traditional models for Labsphere 6080 and pressed barium sulfate

powder — Kubelka–Munk, photon-diffusion, and radiative-transfer models [170, 171,

172, 173, 174, 169, 154] — do not appear to predict how the reflectance properties

should change with the target medium.

One potentially elegant way to model an interface with Labsphere 6080, or a

similar diffuse material, such as Spectralon, might be to use a complex refractive

index for the coating. This approach has been recently used with some highly turbid

media, where a complex refractive index was inferred from the measurement of a

gradual transition to total internal reflection using a prism, such as displayed in

Fig. 6.6 [175]. In addition, Egan and Hilgeman [167] measured the real part of an

effective refractive index for pressed barium sulfate powder in air to be n ≈ 1.415

at 800 nm, which is surprisingly a little less than that of typical glass [167]. This

measurement, together with Figs. 6.5 and 6.6, provide some support for this idea.

Such knowledge would be important to the understanding of how high-quality diffuse

reflectors work as coatings for internal reflection inside media other than air. In

particular, it would be valuable for Labsphere 6080 since that it is one of the most

widely used diffuse reflectance coatings [155]. For example, this information could be

important to the light-trapping enhancement of solar cells [146, 147], and to other

applications of integrating spheres that use internal glass bulbs [148, 149, 150, 151].

It might even be useful to standard integrating spheres, which can suffer from internal

specular reflection [176, 177].
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6.5 Summary and discussion

In summary, we investigated the use of integrating spheres to enhance optical absorp-

tion in optically thin alkali-metal vapor cells. With one vapor cell, we demonstrated

an enhancement of up to roughly a factor of 10. However, difficulty with another va-

por cell highlighted the important effects of the glass cell required to contain the alkali

metal. An improved performance should be possible with optimized cell designs, since

neither vapor cell was designed for use with integrating spheres. However, we do not

anticipate a significantly improved performance, for example, above an enhancement

of roughly 20, due to the nature of integrating spheres and the effects of the glass cell.

Though integrating-sphere alkali-metal vapor cells may be used in vapor-cell clocks,

their inapplicability with coherent population trapping makes them unattractive for

miniature clocks.

Future work would benefit from an improved modeling of the interface between

glass and Labsphere 6080. For example, we suggest that it might be possible to model

high-quality diffuse reflectors, such as Labsphere 6080, with a complex refractive

index, which is an approach that has been recently used with other highly turbid

materials [175]. In practice, surface roughening of the glass bulb might be able to

improve the Lambertian quality of the 6080-glass interface, which has been applied

with the light-trapping enhancement of solar cells [146, 147] and other applications

of integrating spheres that use internal glass bulbs [148, 149, 150, 151].
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