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Abstract

In my thesis, I study intact and bulging Escherichia coli cells using atomic force

microscopy to separate the contributions of the cell wall and turgor pressure to the

overall cell stiffness. I find strong evidence of power–law stress–stiffening in the E. coli

cell wall, with an exponent of 1.22 ± 0.12, such that the wall is significantly stiffer

in intact cells (E = 23 ± 8 MPa and 49 ± 20 MPa in the axial and circumferential

directions) than in unpressurized sacculi. These measurements also indicate that the

turgor pressure in living cells E. coli is 29± 3 kPa. The nonlinearity in cell elasticity

serves as a plausible mechanism to balance the mechanical protection and tension

measurement sensitivity of the cell envelope. I also study the growth dynamics of the

Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal

order of inserting new cell wall material. High density fluorescent markers are used

to label the entire cell surface to capture the morphological changes of the cell sur-

face at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal

resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and

twist in a highly heterogeneous fashion both spatially and temporally. Regions of

high growth and twisting activity have a typical length scale of 5 µm, and last for

10-40 minutes.

Motivated by the quantification of the cell wall growth dynamics, two microscopy

and image analysis techniques are developed and applied to broader applications

beyond resolving bacterial growth. To resolve densely distributed quantum dots,

we present a fast and efficient image analysis algorithm, namely Spatial Covariance

Reconstruction (SCORE) microscopy that takes into account the blinking statistics of

the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from

5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-

particle localization based methods such as STORM and PALM. SCORE is insensitive

to background and can be applied to different types of fluorescence sources, including
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but not limited to organic dye and quantum dot that are tested experimentally in

this thesis. The second development is an extension from tracking single quantum dot

to the more general cases of moving objects at high density based on active contour

model. I add a repulsive interaction between open contours to the original model

and treat the trajectories as extrusions in the temporal dimension. This technique

is applicable to a broad range of problems and two specific tracking problems are

chosen as illustrations: (i) the quantification of walking and chasing behaviors of

Drosophila and (ii) the study of trajectories of gliding bacteria Myxococcus xanthus on

flat surface. I demonstrate the capability of this high-through and highly automated

analysis method for studying social and group behaviors in interacting organisms.
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Chapter 1

Introduction

Prokaryotic microorganisms, or bacteria, are the oldest, simplest and smallest life

form on our planet. Through four billion years of evolution, bacteria acquired a

wide range of diversity that grants adaptations to the environment including extreme

temperature, chemical composition, and pressure that no other higher life form on

earth manage to live, as well as surviving other animal, plants, fungi and bacteria

in the game of survival. As a matter of fact, both the bacterial biomass and the

genetic diversity far exceed their eukaryotic descendants that take more sophisticate

approaches to adaptation. Bacteria diverse in biochemical characteristics such as ge-

netics, metabolism, life cycle as well as physical characteristics such as morphology,

motility, and other mechanical properties. These properties are closely intercon-

nected.

1.1 Bacterial morphological diversity and fitness

The morphological diversity of bacteria is displayed as a large variety of both size and

shape. The smallest known bacteria Mycoplasma takes a radius of a merely 100 nm,

while the largest bacteria Thiomargarita namibiensis, or sulfur pearl of Namibia has

a radius of 100-750 micrometers, clearly visible to naked eye. The great majority of
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bacteria has a dimension from 1 to 10 micrometers, typically an order of magnitude

smaller than eukaryotic cells. Although a library of various shapes are observed

across species, the cell shape is usually well conserved among individual cells of one

bacterial specie. Bacterial cells most commonly take shapes of spheres or rods, namely

cocci and bacilli respectively[24]. These highly symmetric and thus simple shapes

require minimal control effort both genetically and energetically, while the essential

cell functions are still fulfilled by these simple shapes. More complex shapes can be

found in bacteria that usually exhibit unique cell functions, or that live in specific

habitat. For instances, vibrio is a class of bacteria that takes curved rod or comma

shape. Spirilla and spirochaetes take spiral or coiled shapes[25, 54]. In rarer cases,

bacteria shapes can be tetrahedral, planar, or star-shaped[47, 157].

Bacterial cell morphology is not randomly determined. It is closely regulated in

coordination with other cell functions and specific living environment, which impose

heavy selective pressure on cell shape. Bacterial cell motility in relation to the cell

morphology is one of the most extensively studied and well understood demonstration

on selection and adaptation. A tiny perturbation on radius of a merely 0.1 µm costs

5 orders of magnitude more energy for chemotaxis[99, 167]. In addition, the aspect

ratio of a rod-shaped bacteria or the curvature of a curved bacteria will determine

the radius of the swimming trajectory near the interface between water and solid

surface or air, thus alter the ability of a cell to hover around a potential nutrient-rich

zone. As another example of cell morphology determining cell function, the division of

many rod-shaped bacteria including the model organism Escherichia coli relies on the

min oscillation, a reaction-diffusion process taking place on the inner surface of the

cell[100]. The length scale of the min-oscillation set by the min protein concentration

matches the size of the cell, so that a high concentration of the diffusion front traverses

along the cell axis back and forth, and this oscillation determines the mid-cell where

the division takes place. However, while the cell shape is disturbed by a faulty growth,
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the min oscillation no longer creates a robust concentration distribution and the cell

mid plane localization fails, leading to fatal division or inability to divide. In the case

of more complicated cell shape, such as spiral or coiled shape, the cell can exhibit

more sophisticated behavior or function. Experimental observations show that spiral

bacteria Arthrospira can escape from predation by quickly alternate the handedness

or pitch of the spiral[101]. It has also been shown that spiral shape is more efficient

in swimming through viscous than rod or spherical shapes[146].

While bacteria regulate and maintain the shape, certain flexibility enable them to

perform more complex motion than simple diffusing and swimming in fluid. E. coli

can swim through a gap as thin as only 30% of its diameter, and is able to grow

into even narrower spaces to reach nutrient rich area[103]. Rod-shaped gliding bac-

terium Myxococcus xanthus can make steep turns to its cell body while changing

gliding direction[131]. This flexibility further allows Myxococcus xanthus to glide in

large groups of thousands of cells collectively and eventually form a fruiting body, a

higher order structure at millimeter scale, because rigid cell shape disables them to

form compact slugs that move in large groups. The overall mechanical property of

a bacterial cell appears more elastic at short time scales, and actively adaptive and

self-organized at longer time scales of cell cycle during cell growth.

1.2 Cell envelope structure and mechanics

The cell morphology is constantly under challenges from the external environment.

Solute osmolarity imposes a mechanical stress on the bacterial envelope, with a mag-

nitude that may vary depending on the environment, which can be a freshwater lake

or the intestine of an animal, and the osmotic pressure differs by orders of magni-

tude. Direct mechanical perturbations also act on the isolated cells or the ones in

biofilms, an aggregate of bacterial cells that are held together by extracellular poly-
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meric substance (EPS). Bacterial cells almost always have to deal with the changing

environment and withstand a variable stress and external mechanical perturbation.

Bacterial have particular structural elements to maintain cell shape. In a simpli-

fied picture of bacterial cell structure, DNA, which is the main genetic material, and

viscous cytoplasm that contains certain composition of salts, small organic molecules

and enzymes are enclosed in a semi-permeable cell envelope. The selective perme-

ability is maintained by cytoplasmic membrane that functions as a barrier to main-

tain a proper internal environment for essential biochemical functions. Outside the

cell membrane, most bacteria have a relatively rigid exoskeleton that acts as the key

structural role to define the cell shape. The space between the cell wall and cell mem-

brane is called periplasmic space. A class of bacteria have another membrane outside

the cell wall, and many have flagella and pili as surface appendages (figure 1.1) .

DNA

Cell wall

Cytoplasm

Periplasmic space

Cytoplasmic 

membrane

Outer membrane

Pili

Flagella

Gram-negative Gram-positive

Figure 1.1: Gram-negative and gram-

positive bacterial structure shown in car-

toons.

Cell wall

Similar to plant cells and many kinds

of fungi, bacteria use cell wall to define

and maintain cell shape. Bacterial cell

wall is a polymer mesh network enclos-

ing the entire cell body as a relatively

rigid shell[158]. The chemical compo-

sition of bacterial cell wall is known as

peptidoglycan (PG), also called murein,

and is well conserved among almost

all bacteria. The saccharide (poly-N-

acetylglucosamine and N-acetylmuramic

acid) polymerize into the backbone of the
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PG, while the peptide containing special D-alanine crosslinks the sugar backbones.

Bacteria can be broadly categorized to two classes, Gram-positive and Gram-negative

bacteria based on the result of the Gram stain[7] (figure 1.1) . The difference in Gram

stain is resulted from the difference of the cell envelope architecture: Gram-negative

cells have an outer membrane outside the cell wall, whereas it is absent in gram-

positive cells. Outer membrane mainly serves as an initial selective barrier to screen

potentially harmful chemicals or biomolecules[104, 117]. Gram-positive and -negative

bacterial cell wall are also different in the thickness, Gram-positive being thicker (20-

80 nm) than Gram-negative (5-8 nm)[97]. Moreover, Gram-positive bacterial cell

wall contains teichoic acids that are not found in Gram-negative cells, but the bulk of

Gram positive bacterial cell wall is identical[97]. Since cell wall allows small chemicals

and proteins to freely travel through, its main function is narrowed down to providing

mechanical protection to the inner membrane from lysing due to the turgor pressure,

and to define the cell shape. Consequently, the disruption of cell wall will cause inner

membrane bulges[32], abnormal cell morphology[53], spheroplasts[16] or cell lysis.

Turgor pressure and osmoregulation

The cytoplasm is enclosed by the semi-permeable cytoplasmic membrane under-

neath the cell wall (figure 1.1). The transporters on the bacterial cytoplasmic mem-

brane are essential to the membrane selective permeability, and consequently the cell

viability[161]. From a mechanics point of view, the cytoplasmic membrane maintains

a higher concentration of solute in the cytoplasm than the external environment.

The difference in osmotic pressure, namely the turgor pressure, pushes the membrane

against the cell wall. The turgor pressure and the cell wall together define the over

mechanical and geometric property of a bacterial cell.

Instead of passively keeping a high turgor and relying on a strong cell wall, bac-

terial cells are able to regulate the turgor pressure according to the changing envi-
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ronment. Maintaining a proper turgor pressure is vital to cell viability. For example,

the osmolarity that E. coli can tolerate ranges from 0.015 to 3.0 Osm[10, 115], which

corresponds to osmotic pressures ranging from 0.4 atm to 74 atm. Without active

adaptation, the cytoplasm hydration and the tension on the cell envelope would vary

depending on the environmental osmolality in large magnitudes. Under abnormal

hydration conditions, harsh concentration of the cytoplasmic solutes, especially salts

threats the confirmation and function of essential enzymes by denaturing them, thus

conditioning the internal environment is essential. Bacteria achieve the adaptation to

the changes in osmotic pressure by uptaking or exporting specific solutes[161], or by

internally synthesizing and breaking down larger molecules, usually polysaccharide in

the cytoplasm[136, 80]. The adaptation requires the coordination of a set of osmo-

sensitive regulatory proteins and channels residing on the cytoplasmic membrane.

The major response to the osmotic up-shock is to activate the transporters to import

osmolytes to bring up the turgor pressure. Compatible solute covers a wide range

of chemicals, including potassium salt, amino acids such as proline and amino acid

derivatives such as betaine, choline and ectoine[161]. Under osmotic down-shocks,

the fast influx of water can result in an increase of turgor pressure at the scale of 10

atm in a few milliseconds. Mechanical sensitive channels MscS and MscL undergoes

conformational changes to release osmolytes to induce water efflux thereafter deflates

the cell[29, 18]. The activation is directly gated by the membrane tension caused by

the high turgor pressure[121, 58]. The mechanosensitivity of these exporters are con-

firmed in patch-clamp experiments in vitro[171, 14] and viability assay in vivo[85, 93].

A fundamental question: how is tension distributed between

wall and membrane?

The roles of the semi-permeable membrane and the rigid cell wall appear well charac-

terized and separated: the former maintains an ideal turgor pressure, which transfers
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to the latter by a normal force between the two, and becomes a lateral surface tension

on the cell wall. The fact that cell wall, if a bacteria specie has it, is vital suggests

that the tension baring function of cell wall is necessary, and the membrane itself can

not withstand the turgor pressure. However, if the mechanosensitive channels and

transporters function based on the membrane surface tension, the cell wall must not

take all the surface tension. A fundamental question regarding bacterial cell mechan-

ics that one shall ask is how the surface tension generated by the turgor pressure is

distributed between cell wall and cell membrane, to give rise to overall good protection

against the turgor pressure, while allowing channels and transporters that reside on

cell membrane regulate turgor through mechanical cues on the membrane. If the

membrane surface area is larger than that of a rigid cell wall, tension sensory proteins

will have no tension to measure, leading to zero sensitivity to the change of turgor

pressure. On the other hand, the cell wall area must not exceed membrane surface

area, or it will no long take tension to protect the cell membrane from rupture. This

argument suggests that the surface area of the cell wall and cell membrane must be

almost equal at their physiological tension respectively. Under this assumption, the

distribution of the surface tension on both the cell wall and cell membrane depends

on their elastic property respectively, and balances the protection of the cell wall and

the tension measurement sensitivity.

Membrane tension

Turgor

Cell shape

Wall elasticity

Wall tension

Figure 1.2: Osmotic regulation

scheme through mechanical and ge-

ometric cues in bacteria.

I propose a feedback mechanism how bac-

terial cells respond to the external osmotic

changes by changing the shape, tension and

turgor pressure, qualitatively explained as the

following. Given that the cell wall is the major

tension baring structure, turgor pressure de-

termines how much tension is applied on the

cell wall. Together with a specific elasticity of
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the wall, the tension sets an equilibrium sur-

face area. As a weaker structural element, the

area of the membrane follows the cell wall, and in turn governs the membrane tension.

The mechanosensitive channels and transporters then act according to the membrane

tension. One goal of this thesis is to quantitatively characterize the elasticity of cell

wall and turgor to address the tension distribution question, and to validate this

feedback scheme.

Previous works

Both cell wall elasticity and turgor have been experimentally studied in the literature

by directly applying mechanical perturbations or indirectly evaluating the chemi-

cal concentration in the cytoplasm. Special types of bacteria such as cyanobacteria

and halobacteria contain gas vesicles that can reflect the magnitude of the turgor

pressure[153, 68]. These vesicles connect the pressure to the optical observables. By

comparing the collapsing fraction of the gas vesicles in different media and external

pressure, the turgor pressure was measured to be in the range of mega-pascal. The

major limitations of this method lay in the fact that only a small portion of bacteria

contains gas vesicle, and cells may active adapt to the change of the pressure. Another

type of direct quantification of the turgor pressure is achieved with the Atomic Force

Microscopy (AFM). AFM is capable of applying a localized force to the surface of an

object and to quantify the substrate stiffness, which is related to the turgor, and from

the stiffness measurement, proper mechanical model of the deformation is required

to extract turgor pressure. Arnoldi[5] and Yao [166] had modeled the Gram-negative

cells as inflated spheres or tubes enclosed by elastic membrane that is free to bend.

From their models and measurement on cell stiffness, the turgor pressure was mea-

sured as 85-150 kPa in Magnetospirillum gryphiswaldense and 10-20 kPa in E. coli.

These values are smaller than the typical measurements from the gas vesicle, even
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though the effect of the cell wall bending is already neglected. Although mechanical

experiments, such as AFM indentation, are the most direct probes, separating the

mechanical contributions of the wall and pressure has not been previously possible

and thus these experiments may only provide an upper bound on the true turgor pres-

sure. Turgor pressure can be estimated by evaluating the total solute concentration

and water activity in a range between 50 kPa to 310 kPa[26].

The other mechanical component, the cell wall elasticity has been difficult to probe

in individual, live cells. Most previous mechanical measurements on the cell wall have

been performed using chemically isolated walls, termed sacculi, that may be altered

from the native state, or on large bundles of cells. Yao et al. reported an anisotropic

elasticity of 25 MPa and 45 MPa in the axial and circumferential directions relative

to a cell’s rod-shape using single flattened E. coli sacculi[165] measured with AFM.

Thwaites et al probed the elastic modulus of macroscopic threads of many Bacillus

subtilis sacculi in humid air and found that the modulus varied from 10 to 30 MPa

depending on the humidity and salt concentration[142, 143, 96]. Mendelson et al

measured the relaxation of single bent Bacillus subtilis filaments and determined the

modulus to be 50 MPa[95]. Attempts to probe whole–cell elasticity have also been

made using AFM indentation of Myxococcus xanthus cells[112] and optical–tweezer

bending of Borrelia burgdorferi cells[41].

Cross-linked polymer meshes, especially ones that play structural rules are ex-

pected to exhibit novel nonlinear mechanical properties such as stress–stiffening[50,

82, 140, 22, 78]. Unpressurized sacculi thus provide a poor platform for estimating

the wall elasticity in live cells. Boulbitchet al modeled the cell wall as a deformable

hexagonal mesh and predicted a load-dependent elasticity with a power–law stress–

stiffening exponent of about one[19]. Thwaites and coauthors found about an order

of magnitude change in the thread modulus upon loading, although it is unclear how
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to interpret measurements from these very large, multi–sacculus objects performed

in air[142, 143, 96].

Mechanical indentation of live cells is likely the most direct method for probing

these sorts of mechanical properties. Under external perturbation, however, the cell

wall and turgor pressure have mixed contributions to the response, making it hard

to independently estimate these two quantities. By studying a bulging strain of

E. coli, we are able to simultaneously determine both the wall elasticity and the

turgor pressure and reveal their dependence as discussed in details in Chapter 3. We

argue that this nonlinear elasticity of cell wall serves as a passive-adaptation strategy

to balance the membrane tension measurement sensitivity and cell wall protection

against hypoosmotic shocks.

1.3 Dynamics of cell wall growth

Bacterial cell wall is not a static structure, but undergoes constant remodeling dur-

ing cell growth because the shape that the cell wall defines changes as cells grow.

The growth of cell wall is established by inserting the subunits of peptidoglycan into

the existing wall with enzymes that reside on the inner cell membrane. The pepti-

doglycan biosynthesis is a set of complex pathways that involves approximately 20

enzyme reactions, with the details discussed in a recent review[89]. In brief, PG

biosynthesis is a three-stage process. As the first stage, the precursors of peptidogly-

can, UDP-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) and UDP-

N-acetylglucosamine (UDP-GlcNAc) are synthesized in the cytoplasm. In the second

stage, phospho-MurNAc-pentapeptide assembles with undecaprenyl phosphate carrier

on the inner surface of the cell membrane to form lipid I, which is modified to lipid II

by adding GlcNAc, and then translocated through the membrane to the periplasm.

In the last stage, the peptidoglycan subunit carried by lipid II is incorporated into
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the existing cell wall by transglycozylation and transpeptidation. The peptidoglycan

biosynthesis mechanism is conserved among almost all bacterial species, yet this uni-

versal mechanism is able to give rise to a collection of different shapes, and the shapes

are maintained with high accuracy during cell growth. This remarkable observation

brings up the second fundamental question that I will address in my thesis: How is the

material inserted to the existing cell wall to give rise a robust growth? Biologically,

the answer is recapitulated above as a series of biosynthesis processes. Physically

and geometrically, we are interested in what the specific insertion rule is for the new

material, in terms of the insertion location and rate. In this thesis, I mainly focus on

the mechanism that generates rod shapes as in model organism E. coli and B. subtilis.

Peptidoglycan insertion machinery and architecture

The polymerization of single peptidoglycan subunits in the third stage of PG synthesis

takes place on the outer surface of the cell membrane. Broadly speaking, the growth

for a rod shaped bacterial cell wall can be categorized into two kinds: elongation

and division, which typically happens in the mid-cell plane. Asymmetric division

is frequently adopted by rod-shaped bacteria as well, such as in the sporulation of

B. subtilis. The major enzymes that facilitate the PG insertion are called penicillin-

binding proteins (PBPs). Even though PBPs are usually specialized in elongation

and division, for example PBP2 for elongation and PBP3 for division in E. coli, in

each bacterial specie, many different types of PBPs coexists and carrie redundant

function. For instance, E. coli has 12 known types of PBPs while B. subtilis has as

least 16 types[123]. Because of the functional redundancy, and the fact that they

usually form complexes that contain multiple types of PBPs, the specific roles of

many types of PBPs are difficult to investigate individually and thus remain largely

unclear.
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While PBPs are shown to facilitate peptidoglycan polymerization directly, bac-

terial cytoskeleton proteins are also involved in determining cell shape. An actin

homologue in bacteria, MreB is an essential protein that maintains the shape of

many rod-shaped bacteria including E. coli and B. subtilis[160]. Depletion of MreB

by treating with a drug A22, or a gene knockout will cause abnormal morphology.

Certain bacteria have multiple set of MreB-like proteins[76], and sometimes carry

redundant function in regulating cell shape. Specifically, cell will gradually grow into

lemon shape after a few generations, and eventually lyse[53]. The MreB associate

proteins, MreC, MreD, and other transmembrane proteins that interact with PBPs

also have significant roles in determining rod cell shape, and are believed to be part

of, or associated with the cell wall synthesis complexes.

Experimental observations suggest that PBPs and cytoskeletal protein MreB are

not diffusively distributed on the cell membrane, but rather localize into organized

features. Early studies of the MreB organization using fluorescent fusion with green

fluorescence protein (GFP) tags suggested that MreB formed long (≥ 1µm), contin-

uous helixes encircling the cell on the surface. However, a recent studies on MreB

configuration challenged this view. Images of functional fluorescent fusions showed

that MreB, as well as several kinds of PBPs form foci that distributed randomly on

the cell envelope instead of long filaments in both B. subtilis [42, 51] and E. coli [150].

Moreover, these foci progressively translocate along the circumferential direction on

the cell envelope, and the translocation depends on both transpeptidation and trans-

glocylation activities[51, 150]. These results imply that the motion of the PBP com-

plexes and MreB may correlate with the insertion of the peptidoglycan subunits. This

hypothesis is supported by the agreement between the measured motion speed, foci

density and growth rate in a quantitative model. Using electron cryotomography,

Swulius et al argued that the native MreB in V. cholerae did not form long filaments

longer than 80 nm[138]. The actual configuration of the cytoskeletal proteins and the
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cell wall synthesis proteins are under debate. Concrete evidences for either hypothesis

is still lacking

Since PBPs are recognized as the main cell wall insertion machinery, and they

are observed to randomly distributed on the cell surface in E. coli and B. subtilis,

the cell wall growth is expected to be dispersed as well. Experimental observations

indeed show consistent results with the characteristic PBP distribution and motion

patterns. The visualization of the peptidoglycan incorporation is first realized by

labeling the PG precursors. Heavy isotope pulse-labeling[108] and D-Cys-labeling[35]

showed a diffusive or patchy growth pattern in E. coli, while fluorescent labeling using

ramoplanin-fluorescein and vancomycin-fluorescein in B. subtilis showed patchy or

segmented helical pattern[145]. These insertion patterns support the picture that

the moving PBP complexes facilitate new PG insertion, although direct correlation

between growth and PBP localization is not available due to the limitations in spatial

and temporal resolution of these techniques.

Even though the chemical component of the bacterial cell wall is known, the spe-

cific three-dimensional architecture how the peptidoglycan is organized geometrically

remains elusive. For Gram-negative bacteria, the cell wall is less than 10 nm in thick-

ness while the averaged glycan chain length is 20-35 nm in the case of E. coli [152], and

therefore the configuration is likely a layered structure, where glycan strands align

parallelly to the membrane. This glycan configuration is supported by NMR studies

on short synthetic fragment[98], and further confirmed by electron cryotomography

on isolated E. coli and C. crescentus sacculi[49]. This parallel arrangement appears

to be consistent to the observation of lateral motion of MreB in E. coli, and the orig-

inal “three-for-one” growth model proposed by Holtje et al, where three pre-made

nascent strands replace an old strand on the cell wall mediated by a multi-enzyme

complex[70] (figure 1.3). The high turnover rate of PG favors the “three-for-one”
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Figure 1.3: Two possible peptidoglycan architecture in thick cell wall of gram-positive
bacteria. In the layered model shown on the left, glycan strands (red lines) align
parallel to the cell membrane, whereas in the scaffold model in the right panel, glycan
strands protrude perpendicularly to the cell membrane.

model over a simpler insertion scheme that one new strand is inserted between two

strands on the wall[55, 107].

Gram-positive bacterial cell wall architecture is particularly elusive because of its

larger thickness allows more possibilities to organize the peptidoglycan. It is both

possible that glycan strands align parallel (layered) or perpendicular (scaffold) to the

cell membrane (figure 1.3). NMR study on S. aureus sacculi showed that the glycan

strands align parallelly one another, and peptide cross-linkers are nearly perpendicu-

lar to the glycan strands[125]. However, this result can not rule out either layered or

scaffold configuration. While it is difficult to resolve the PG architecture using elec-

tron microscopy and NMR, limited information has been provided by AFM imaging

on cell division planes[148], purified sacculi of B. subtilis [59], live Lactococcus lactis [4]

and Bacillus atrophaeus spors[114]. These observations hinted that peptidoglycan

on the surface of the cell wall organized into a banded structure parallel to the cell

surface but perpendicular to the cell long-axis. Although whether peptidoglycan form

hierarchical organization in these banded structure is still under debate.

Up to date, the scheme of inserting new PG into the thick gram-negative cell wall

remains hypothetical. The most plausible picture is the “inside-to-outside” model

proposed nearly three decades ago[81] based on the assumption that new PG insertion

could only take place at the wall-membrane interface where the PBPs reside (figure

1.4). In this model, new material is inserted at the inner-most surface of the thick
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Figure 1.4: Peptidoglycan insertion models for both gram-negative and -positive bac-
teria. (a) “Three-for-one” insertion in single-layered gram-negative bacteria, where
three nascent glycan strands replace one old strand in the PG network. (b) “Inside-
to-outside” scheme for multi-layered cell wall. New PG is inserted at the innermost
layer, pushing the old PG outwards while stretching more. (c) Schematic plot of PG
density and tension distribution at various cell wall depth.

wall, and subsequently the old inner layers are pushed outward. During elongation,

the nascent PG has a higher density than the existing PG, thus takes less or no

tension, whereas the middle layers are fully stretched and bares the majority of the

cell wall tension. As the layers are pushed outwards and the mesh is more stretched

with increasing tension, more cross-lining peptides break due to autolytic activity or

spontaneous hydrolysis. In the outermost layer, the cross-linking degree is minimum

and cell wall bares no tension. The “inside-to-outside” growth model is consistent

with the layered configuration, but again does not exclude scaffold configuration.

Quantitative growth models

Based on the proposed cell wall architecture and the localization of cell wall syn-

thesis machinery, several quantitative growth models have been proposed recently in

attempts to reenact cell wall growth of rod-shaped bacteria in silico. Jiang and Sun

took a mean field approach, taking into account the balance between the chemical

energy gain from incorporating new PG and stretching energy of the wall[73]. Their

work predicted a mechanism that is able to maintain a robust radius during elonga-

tion, although mean field calculation can not provide insights to the local stability
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against perturbation to the shape. Detailed heterogeneous growth dynamics was sim-

ulated on a down-scaled single-layered frame network[69]. There the peptidoglycan

was described as a set of nearly parallel glycan hoops along the cell surface, and the

strands were connected by peptide linkers to form a network. All bonds and joints

are elastic, and are stretched under the turgor pressure. Insertion of new PG followed

particular rules and gave rise to different types of growth. In summary, a random

insertion with a insertion rate independent on the local cell wall density will cause

positive feedback in growth upon small perturbation, and thus generate shape de-

fects such as bending and bulging. Uniform insertion, however is able to maintain

radius for several doubling cycles in length. Insertion that is spatially inhomogeneous

instantaneously, but averages to a uniform distribution following larger-scale spacial

order has similar shape effect to uniform insertion[48, 156]. Such spatial order can be

an intact helix or several helical segments along the cell surface about the cell axis.

Circumferential rotation can also serve as a global order to ensure uniform insertion

in the averaged sense[150, 150], where long helical filaments are not required.

Observing cell wall growth in live cells

Insertion under spatial order at cellular length scale can give rise to ordered global

growth pattern beyond simple elongation. For instance, when following helical inser-

tion patter, the whole cell wall twists during elongation as shown in simulations[48].

Microscopically, the ordered helical insertion will also shear the growth of peptido-

glycan at an angle to the circumferential direction. Even though recent observations

question on the classical helical picture of cytoskeletal proteins such as MreB[138,

42, 51, 150], a local order such a preferred specific insertion angle is also able to

give rise to global chiral growth pattern. The predictions of helical, or segmental

helical insertion are experimentally verified by Wang et al [156], where two beads are

attached on the surface of E. coli, and the motion of the two beads confirmed the
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growth twist and turgor twist that indicate the chiral order of E. coli peptidoglycan.

Similar growth twist was also found in gram-positive bacteria B. subtilis [156]. How-

ever, when working with the growth models of different bacteria, caution must be

taken in distinguishing gram-positive and -negative bacteria, because the cell wall

structure are essentially different even though related.

Although two-bead assay is able to reveal cell wall growth twist as opposed to a

simple elongation, to understand the PG insertion rules better beyond the whole-cell

scale, it is necessary to obtain a more detailed live cell growth map that pin points

where material is inserted. With growth maps, cell wall growth dynamics can be

studied at different levels. At sub-cellular scale, the growth rate is previously shown

to be heterogeneous[17], with a more active growth in the mid-cell and inert polar

caps. We want to ask the question how the growth rate distributes along the cell,

in terms of both elongation rate and twist rate. At molecular level, the distribution

and motion of cell wall synthesis complexes and cytoskeletal proteins are believed

to directly relate to the cell wall growth, but it has not been directly proved. The

colocalization of growth and the PBPs or cytoskeletal proteins would strongly support

the above assumption. In addition, current quantitative cell wall growth models omit

the PG turnover, which is also important in remodeling the cell wall architecture. The

turnover can be indicated as negative growth in growth map, and that information

will shed new light to correct the quantitative growth models.

In order to obtain detailed growth, I develop a novel fluorescent marker assay using

nano-motion capture. High density of quantum dots (QDots) are covalently attached

to the surface amine groups of the cell wall on gram-positive bacteria B. subtilis up to

2 QDots per square micrometer, comparable to the observed density of the PBPs and

MreB. [51, 150]The motion of the fluorescent markers are resolved in three dimensions

to reconstruct the material insertion and turnover pattern. Our results suggest that

B. subtilis cell wall growth is twisted, compartmentalized and highly heterogeneous
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in both space and time at sub-cellular level. We expect this assay to bridge the

macroscopic cellular cell wall growth and microscopic molecular mechanism of PG

insertion.

1.4 Summary and thesis outline

In Chapter 1, I introduce the background of bacterial cell mechanics, specifically cell

turgor pressure and surface tension, and cell cell growth dynamics with current growth

models. Two fundamental questions are brought regarding tension distribution and

growth dynamics. Chapter 2 introduces the instrumentation of the tool, a home-built

atomic force microscope I used to probe the cell mechanics. The work in this chapter

is published as [38]. In Chapter 3, a special bulging E. coli strain was studied with

AFM to show the results of the nonlinear elasticity and turgor pressure measure-

ments. In Chapter 4, I introduce a novel assay to illustrate and quantify bacterial

cell growth on gram-positive bacteria Bacillus Subtilis. The growth displays highly

heterogeneous patterns in both space and time. Chapter 5 and Chapter 6 introduce

new super-resolution optical microscopy technique and image analysis tools that are

not only used in assisting the work in this study, but also find broader applications

in biophysics, biology and neuroscience.

18



Chapter 2

Building Atomic Force Microscope

to Probe cell Mechanics

Generally speaking, the mechanical property of an object can be obtained mostly

directly from its geometric or rheological response to external mechanical perturba-

tions. For biomolecules and cells, the mechanical interaction with the surrounding

environment can be intrinsically generated by the cells themselves as those measured

in traction force microscopy[13], or exerted externally by entropic force[74], optical

force[23], viscous force of the surrounding media[120], or direct normal force from

force probes[165]. Specifically in my study, the cell mechanical properties that I in-

vestigate, turgor and cell wall elasticity, both contribute to the overall cell stiffness

under external bending force as discussed in [155] or compressive force[165]. Atomic

force microscope (AFM) is a suitable tool to apply such forces while probing the ge-

ometric responses. Although AFM is mostly appreciated as an imaging tool to gain

insights to micro- and nano-structures at both cellular and molecular levels[11], it is

also a handy tool to manipulate micro-objects, and to apply a local force of typically

10−9 N to 10−7 N, which is relevant in biological processes at cellular level, onto

19



an area with a spatial scale of 10 nm, making it an ideal tool to probe mechanical

properties such as object stiffness both in vivo and in vitro.

In this chapter, I describe the design and realization of the AFM I built for E. coli

cell indentation experiments. Our AFM is specialized in the application to probe

cell shape and stiffness, and one feature is that the AFM is built compatible with

an inverted microscope and the probe has freedom in full three-dimensional motion.

Since this AFM is not designed mainly for imaging, I followed [12] to design a digital

feedback controller that is realized by computer and an analogue-to-digital converter

instead of a faster hardware interface.

2.1 AFM construction

The key element of an AFM is a elastic cantilever arm, usually rectangular- or

triangular- shaped, with a probe at the end. The tip can be made into different

shapes and sharpness to fit in various applications. When subjected to external

force, the cantilever arm will bend at a certain angle, which is optically amplified into

a linear displacement and detected by a position detector, usually a quadrant photo-

diode (QPD) or a position-sensitive photodetector (PSD). The cantilever is mounted

on a Z- or XYZ-piezoelectric state to control the position of tip and to apply force.

Our AFM was built in compatible with an inverted microscope (Nikon TE2000)

for the combined functionality of both force microscopy and optical microscopy. It

enables us to mechanically probe the sample while imaging it in optically simulta-

neously. The information from mechanical measurements can be obtained together

with protein localization observations to precisely identify the mechanical structure

in relation to the distribution of particular cellular component such as cytoskeleton.

In addition to the combination of AFM and fluorescence imaging, both AFM tip and

the sample stage have independent degrees of freedom to move in three dimensions.
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The complete control over both specimen and AFM probe allows us to independently

perform force measurement and take images with scanning techniques such as con-

focal microscopy or Stimulated-Emission-Depletion (STED) microscopy. Lastly, I

developed our own control and analysis software package for maximum flexibility and

extensibility. Beyond the basic indentation and imaging at any specific location, we

are able to program complex and automated probing sequences in combination with

computer vision analysis in realtime.

Motion Control

The major compromise of additional degrees of freedom to position the tip is the more

demanding controlling effort due to the mechanical complexity. A simpler AFM design

typically has a laterally fixed vertical scanner and the specimen stage is built on an

x-y piezoelectric stage. The bandwidth of the cantilever vertical motion reaches kHz

range, making it possible to probe sample in the tapping mode and to scan fast in the

contact mode. In our setup, the full 3-D motion of the AFM cantilever is provided

by three single-axis piezoelectric stages (Mad City Labs, OP-30). On top of that, I

use a 3-axis manual stage to adjust the position in large scales (figure 2.1), which is

useful to place the tip approximately above the specimen and in the field of view of

the inverted microscope before fine positioning using piezoelectric stages. The mass

on the piezoelectric stages and the mechanical stiffness set the upper limit for the

bandwidth of the z-piezoelectric feedback loop at about 70 Hz. Even though slower

than commercial AFMs, it is sufficiently fast for our purpose to investigate whole cell

mechanics.

The motion of the MCL piezoelectric stages can be controlled in two methods

at the same time. The stage controller has an internal digital to analogue (D/A)

converter which is able to take digital controlling signal through USB port. One

drawback of the USB control is that the exact time the computer writes USB port
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Figure 2.1: Schematic drawing of the construction of the AFM. (a) The cantilever
is loaded on a commercial cantilever holder, which is mounted on the Z-piezoelectric
stage. The Z-stage, detection laser diode, QPD and a kinematic mirror are fixed on
the X&Y piezoelectric stage by a L-shaped adaptor and the whole setup is mounted
on a XYZ manual stage for big-range adjustments. (b) The bending angle of the
AFM cantilever can be optically detected. The laser diode and the mirror each has
two degrees of freedom to rotate to align the detection beam paths.

is determined by the operating system and it is variable. The stage controller also

takes direct control signal by an analogue input port and I connect it to the analogue

output channel of the data acquisition board (National Instruments, PCIe-6251) to

achieve timing precision in position control. The exact position of the cantilever

can be monitored by a built-in sensor on the stage controller and is sent to the

computer through an A/D converter on the NI-DAQ acquisition board. Sample stage

positioning does not require precise timing in the applications in my thesis, thus USB

port is sufficient for moving the sample slide.

Deflection Detection

The data collection and cantilever/sample stage control diagram is shown in figure

2.2. To detect the cantilever deformation, I use an optical lever to amplify the motion

of the tip. The detection part includes a fiber-coupled diode laser (Bluesky Research,

781 nm wavelength, 28 mW maximum power), and a quadrant photodiode with built-
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Figure 2.2: Schematic drawing of the control and data collection. Both specimen stage
and AFM stage positions are controlled by USB ports, and an additional analogue
signal is generated from the data acquisition interface and sent to the AFM tip z-
position control for fast movement. The AFM tip height and the quadrant photodiode
signals are collected by the same DAQ interface and are sent to the computer.

in amplifiers (Pacific Silicon Sensors, QP50-6-SD2). The laser from the fiber coupled

diode is tuned to focus at onto the cantilever tip and the focused laser is reflected

onto the QPD (figure 2.1). Because the exact cantilever tip location and angle may

vary every time a new cantilever is loaded, the laser head is mounted on a kinematic

mirror mount (Thorlabs VM05), and a kinematic mirror directs the reflected laser to

the center of the QPD. Data I/O interface between computer and the instrument is

achieved through a data acquisition board (National Instruments, PCIe-6251), and

the signal is processed by the customized control software written in LabVIEW.

Sample chamber

The specimen is placed in a home-made sample chamber. The top of the chamber is

left open for the cantilever access to the specimen, and I use a glass coverslip as the
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bottom of the chamber, which is held above the objective of the inverted microscope

by an aluminum chamber holder. An aluminum ring with rubber sealing serves as the

wall to prevent leakage so that the coverslip is disposed and can be easily replaced

after each use. The microscope stage also has a set of manual and piezoelectric x-y

positioners, which enables the coarse and fine control of the specimen position. In

our application, it is mainly used to select and place the specimen in place. Due to

its large movement range of 200 µm, more than 7 times larger than the width of the

field of view of the camera, it is also used to automatically switch fields in automated

cell indentation experiments.

Optical Imaging

The fluorescence microscope base that the AFM is built on is fully capable for regular

epi-fluorescence and total internal reflection fluorescent (TIRF) microscopy. The

fluorescence excitation light source can be selected to be a halogen lamp or diode

lasers with home-built controllers. Laser beam profile is cleaned with a 30 µm pinhole

placed at the focal point of the beam expansion telescope. Fluorescence or bright-

field optical images are acquired by an Electron Multiplying Charge Coupled Device

(Andor Technology, iXon+ 897E EMCCD camera) with single photon sensitivity. If

required, scanning imaging techniques, for example confocal or STED microscopy, can

be implemented without changing the existing AFM setup. Since the space above

specimen plane is occupied by the AFM, it is not applicable to use any imaging

method that requires a condenser lens, such as differential interference contrast (DIC)

or phase contrast microscopy. I use an LED as the illumination source to obtain bright

field image.
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Figure 2.3: Fluorescence imaging diagram to show the combination of two-color flu-
orescence imaging and AFM force probing/imaging capability. Two laser beams at
532 nm and 633 nm wavelengths are expanded and collimated at the image plane.
Total internal reflection fluorescence (TIRF) microscopy can be realized by moving
lens L2. The laser excitation in the dashed line box can be switched to halogen lamp.

Control software

The controlling software of the AFM is written in LabVIEW based on the lower

level hardware drivers of piezoelectric stages, NI-DAQ board and the iXon+ camera

control. Higher level applications include feedback control of the deflection (force),

cantilever landing, video tracking of the cantilever tip, automatic cell detection, scan-

ning for topographical and stiffness map. The controlling software is particularly

specialized in cell indentation related functions, including detecting the contact point

(height of the surface), executing pre-programed or adaptive indentation sequence

based on the surface topology and fluorescence images. These functions can be easily

combined or extended to carry the specific tasks in various experiments.
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Figure 2.4: Pictures of the AFM. a) The whole setup including the AFM, the optical
microscope and the EMCCD camera. b) AFM head including the translational stages
and optical deflection detection elements. c) A close look of the specimen chamber,
chamber holder and the cantilever holder.

In summary, the AFM consists of the following modules: mechanical-motion con-

trol, cantilever deformation detection, data acquisition, data processing (PC) and

optical imaging. Pictures of The AFM at various levels of details are shown in figure

2.4.

2.2 Closed-loop feedback for constant force mode

An imaging AFM mainly operates in two modes: open-loop mode and constant force

closed-loop mode. In the open-loop mode, a fixed height signal is sent to the z-

positioner of the cantilever, so that the deflection or the force that cantilever applies

to the substrate varies based on the surface topography. In contrast, closed-loop

mode holds constant the force or equivalently the cantilever deflection by varying the

z-position of the cantilever. Although open-loop mode is easy to implement and offers

higher bandwidth, closed-loop mode is preferred in imaging the substrate topography,

because it allows large height variation range and constrains the contact force at an

optimal value to avoid damaging the sample or the cantilever tip.
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Many feedback control applications adopt simple proportion-integral-differential

(PID), but for our task, PID controller is not specially optimized to our instrument

and will greatly limit the speed, and thus I seek more specific controller for better

performance. The design of our controller mainly follows [12], a detailed “cookbook”

for designing useful yet simple feedback controllers. More sophisticated approaches

such as robust controller and adaptive controller may further improve the controller

performance, but they are beyond the main functional requirements of our AFM and

are not discussed in my thesis.

Control algorithm

In linear systems where different frequency components do not interfere, it is con-

venient to work in the frequency domain. Instead of the Fourier transform, Laplace

transform

L[y(t)] =

∞∫
0

e−sty(t)dt (2.1)

is conventionally used in control theory to convert signals in the time domain to the

frequency domain. The two transforms are connected by setting s = iω. A signal y(t)

in the time domain is equivalently expressed in the frequency domain by its Laplace

transformation y(s). Here I have used the same symbol for the representations in

two domains, since the argument of the function indicates the domain of the function

without confusion. The behavior of a linear dynamical system can be fully character-

ized by its response to sinusoidal signals at all frequencies, namely the complex gain

G(s). For example, if the response of a system is given by G(s), then for an input r(s),

the output y(s) can be simply expressed as y(s) = G(s)r(s). This relation is usually

visualized by engineers as block diagrams shown in figure 2.5(a). The magnitude and

phase of G as functions of frequency are called the Bode plots.
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Figure 2.5: Block diagrams of (a) an open-loop system and (b) closed-loop feedback
system. G(s), K(s) stand for system response and the controller response; r(s), y(s),
e(s) and u(s) are the input signal, output signal, the error signal, and the controller
output signal.

For our AFM working in the open-loop mode, the input is a position signal sent

by the user (application), and the output is the deflection of the cantilever which

depends on the height of the cantilever when it is in contact with the substrate. The

deflection signal is related to the substrate topography in a nonlinear fashion due to

the nontrivial interaction between the cantilever tip and the substrate. In contrast,

for the closed-loop feedback mode, the input is a force, or cantilever deflection signal.

A controller is inserted before the AFM to decide a proper position signal to sent to

the AFM so that the force or cantilever deflection has desired dynamics with respect

to the input force signal, for example a constant value in the contact scanning mode.

Consider the block diagram shown in figure 2.5(b), where the output signal y(s) from

the system G(s) is compared with the input signal r(s) and the difference e(s) is used

to compute the proper input u(s) for G(s). The conversion from the error signal e(s)

to the actual driving signal u(s) is what I need to design, namely the controller K(s).

It can be shown that the response of the closed loop is

y(s) =
K(s)G(s)

1 +K(s)G(s)
r(s). (2.2)
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Define the open-loop gain as L(s) ≡ K(s)G(s), and the closed-loop gain becomes

T (s) =
L(s)

1 + L(s)
. (2.3)

From this expression, it is apparent that a large ‖L‖ in general results in a T close

to identity, which is essentially the goal of the closed-loop feedback in constant force

mode. However, if L(s) approaches to -1 on the complex plane at a particular fre-

quency s, T (s) diverges and the system becomes unstable at L(s) = −1. The rules

of designing a controller K(s) becomes clear: to have ‖L‖ large while keeping it far

away from -1 on the complex plane.

According to equation (2.3), I can construct the controller K(s) given the system

response G(s) and the desired closed-loop response T (s):

K(s) =
T (s)

1− T (s)
G−1(s). (2.4)

If I choose the open-loop response T (s) to have a simple single-pole low-pass form

T (s) =
1

1 + s/ω0

, (2.5)

the controller becomes

K(s) =
ω0

s
G−1(s). (2.6)

The next step is to convert the analytical form of K(s) into digitized form to

apply on the computer, which is achieved by the “z-transform” defined as z ≡ esTs ,

where Ts is the sampling interval of a continuous signal. Multiplying a transform by

z correspond to a shift of Ts in the time domain, and multiplying z−1 means delay

by Ts. The conversion from s to z is given by Tustin’s transformation[43]

s→ 2

T

(
1− z−1

1 + z−1

)
. (2.7)
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Consider the delay caused by the zero-order hold[12], the digitized controller is written

as

D(z) = (1− z−1)K[s(z)]

s(z)
(2.8)

=
B0 +B1z

−1 +B2z
−2 + · · ·

1− A1z−1 − A2z−2 − · · ·
. (2.9)

Also note that D(z) = u(z)/e(z), I obtain the final form of the controller

un = A1un−1 + A2un−2 + · · ·+B0en +B1en−1 +B2en−2 + · · · , (2.10)

where un is the nth output (newest) and un−i are the previous outputs, and ej is the

jth error.

Measuring the transfer function

Since the controller is designed based on how the system responds to the control signal,

we need to know the specific transfer function of the system, G(s). The measurement

of the complex transfer function is normally done with a lock-in amplifier. Since

the typical time scale is much slower than milliseconds, it is possible to measure

the transfer function directly with the NI-DAQ board at sufficient accuracy. To

measure the complex gain at a frequency f , a sinusoidal waveform at frequency f is

uploaded to the A/O channel, which writes to the analogue input of the piezoelectric

stage controller. At the same time, both the deflection signal from the QPD and

the control signal are measured and recorded by A/I channels. The two signals are

Fourier transformed, and the ratio of the complex amplitudes gives the magnitude

gain and the phase lag of the output signal with respect to the input control signal.

This procedure is repeated at various frequencies to quantify the response in a wide
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range of spectra. The resulted magnitude and phase Bode plots are shown as the red

dotted lines in figure 2.8.

The profile of the complex gain captures the common feature of a low-pass (LP)

filter where the output magnitude decreases with increasing phase lags as the fre-

quency of the input signal increases. It is expected to observe an overall low-pass

type of profile because the piezoelectric stage internally runs a closed-loop feedback

that is tuned as a LP filter. On top of the overall LP feature, I observe two major and

one minor resonance peaks, with the lowest resonance peak centered around 72Hz.

Experimentally I observed that increasing the mass of the moving parts on the AFM

head will shift the resonance peak to lower frequency. The mechanical stability could

be improved by decreasing movable parts at costs of flexibility usability. I compro-

mised the stability, and thus limited the bandwidth for the full three-dimensional

motion of the AFM head.

Model of the Mechanical Vibration

To parameterize the transfer function, first consider a simple mechanical setup where

a massive block m is attached on another base block M , which is connected to a

fixed point by a spring of force constant k and damping coefficient γ (figure 2.6). The

positions of the two blocks are labeled as x1 and x2. In this model, the input is the

relative displacement between the two blocks x1 − x2, in analogous to piezoelectric

in the z-axis driving the relative motion between the AFM head and the cantilever.

The output is the absolute displacement of the small block x1, in analogous to the

distance between the tip and the spatially fixed sample. The equations of motion of

the two blocks are written as the following:

Mẍ2 = −γẋ2 − kx2 + f ; (2.11)

mẍ1 = −f, (2.12)
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Figure 2.6: Schematic drawing of the mechanical model. The mass of the two blocks
are labeled as m and M , with displacements x1 and x2. M is attached to a fixed point
by an elastic spring with spring constant k. The dynamics of M and m is driven by
the relative motion between them.

where f is the force block m exerted on M . Write the stable oscillatory solution as

xj = Aje
iωt, (2.13)

where j takes value of 1 or 2. Substitute in the equation (2.12), we can show that

the two complex amplitudes are in the following relation:

A1 =
1

mω2
(−Mω2 + iγω + k)A2. (2.14)

The transfer function G(s) can be calculated as

G =
A1

A1 − A2

(2.15)

=
−Mω2 + iγω + k

−(M +m)ω2 + iγω + k
(2.16)

=
α(s/ω0)

2 + βs/ω0 + 1

(s/ω0)2 + βs/ω0 + 1
, (2.17)

where I have defined new parameters ω0 =
√
k/(M +m), α = M/(M + m) and

β = γω0/k in addition to s = iω. Now the transfer function is fully characterized

by three parameters α, β and ω0 resembling the reduced load, the damping, and

the resonance frequency. Figure 2.2 shows the Bode plot of a typical parameter set

{α = 0.9, β = 0.05} as a function of the scaled frequency |s/ω0|.
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Figure 2.7: Typical Bode plots of the dynamical model in equation (2.12). The
parameters are set as α = 0.9, β = 0.05. The magnitude has a clear resonance peak
and the phase has a lag at the resonance frequency but is flat away from the resonance
frequency.

Compare the Bode plot of the model with the transfer function I measured previ-

ously, we can see that the model captures the feature of the resonances, except that

more than one resonance peak exists. The two major and one minor peaks are gen-

erated because the piezoelectric stages in x- and y-direction are built on top of each

other, and each of them has a resonance mode as described above, and the coupling

between the two eigen modes gives rise to new modes at new frequencies. I assume

that for each mixed mode, the expression in equation (2.17) still holds but with dif-

ferent parameter values. The base line of the system transfer function is captured by

a second order roll-off function. The overall transfer function therefore can be written

as

G(s) = G0
1

(1 + s/ωa)(1 + s/ωb)
·
∏
j

αj(s/ωj)
2 + βjs/ωj + 1

(s/ωj)2 + βjs/ωj + 1
. (2.18)

To simplify the controller, I only include the two major resonance peaks and the

minor peak is omitted. It is a reasonable simplification because simpler controller

is more robust against changes in the mechanical character, such as mass, damping

and spring constants. I fit the measured transfer function shown in the Bode plot

with the functional form in equation (2.18), and list the fitting parameters of the
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Table 2.1: Fitting parameters in the second order low-pass, two-resonance model of
the transfer function.

G0 6.18
ωa 447.0 rad/s
ωb 447.0 rad/s
ω1 449.9 rad/s
α1 0.9308
β1 0.03309
ω2 917.8 rad/s
α2 0.9552
β2 0.02269

model in table 2.1. Figure 2.8 shows the modeled transfer function (blue line) and

the measured transfer function (red dots).

Controller realization

After the functional form of the transfer function G(s) is obtained, the controller

is realized following the procedure stated in the previous sections. Since I placed

two extra poles to capture the low-pass feature in G(s), the form of K(s) calculated

by equation (2.6) diverges at s → ∞. To address this, I also add two poles to the

controller:

K(s) =
ω0

s
G−1(s)

1

1 + s/ωa

1

1 + s/ωb
. (2.19)

To simplify the controller, I chose ωa = ω1 and ωb = ω2. The new poles cancel

the zeros brought in by G−1(s) term and they put an upper limit of the controller

bandwidth roughly at 70Hz. This bandwidth is good enough to meet our requirement

in simple linear scan and locating the surface height of the substrate. Finally, equation

(2.9) converts it to the digitized version. Considering the bandwidth limit of our

controller and the reliable output rate of the NI-DAQ board, I set the digital sampling-

control loop rate at 1kHz, or equivalently Ts = 1 ms. The form of the controller is
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Figure 2.8: Experimental transfer function shown in the Bode plots (red dots) and
the fit with two eigen modes (blue curves). The transfer function is characterized by
a second-order low-pass profile and two major resonance peaks at 72 Hz and 133 Hz.

Table 2.2: The calculated constants used in the digitized controller of loop rate 1kHz.
A1 4.046 B0 1.796× 10−4

A2 -7.268 B1 −5.546× 10−4

A3 7.217 B2 7.704× 10−4

A4 -3.963 B3 −5.458× 10−4

A5 0.968 B4 1.741× 10−4

expressed as follows:

un =
5∑
i=1

Aiun−i + ω0

4∑
j=0

Bjen−j, (2.20)

The parameters of the digitized controller are listed in table 2.2. The parameter ω0

is left out from the table because in experiment it can be used as a quick adjustment

to balance between bandwidth and stability. In practice this value is set to values

between 200 and 500, corresponding to a bandwidth of 31 Hz to 80 Hz.
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m)μ

Figure 2.9: A typical indentation curve on hard surface (blue circles) and on E. coli
(red circles). The indentation speed is set to 200nm/s and the indentation range is
400nm. Both curves show linear force-indentation relation, and the difference in the
slopes measures the stiffness of the cell given cantilever stiffness.

2.3 Cell Indentation

The main function of our AFM is to probe the cell stiffness by indenting the cell

body, and correlate the indentation force and the deformation of the cell following the

sequence described below. First, the cantilever is moved above the substrate or a cell,

then is lowered until the deformation of the cantilever reaches a threshold (typically

10 nm). After the height of the surface is detected, the cantilever is programmed to

drop and then rise at constant speed (typically 100-1000 nm/s) around the surface

height, while the height of the cantilever and the deflection signal are recorded at 1

kHz.

The QPD deflection signal as a function of the cantilever height is called the inden-

tation curve. The typical indentation curves on hard surface, usually glass substrate,

and on E. coli are shown in figure 2.3. Before the cantilever is in contact with the

surface, the deflection remains constant. After contact, the deflection is linear with

the height of the cantilever for linear elastic material. The deformation of the hard
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surface is negligible compared with the cantilever bending, thus the hard surface in-

dentation curve serves as deflection-deformation calibration to give displace-deflection

conversion factor in unit of µm/V. On the other hand, because the indentation force

is proportional to the cantilever deformation or the deflection signal on the QPD,

the slope of the indentation curve on a elastic substrate consequently measures the

effective spring constant of the cantilever and the substrate in series. Denote the

spring constants of the cantilever and the substrate as kc and ks, and the effective

spring constant of the two in series ke. From the relation k−1e = k−1c + k−1s , ks in unit

of kc can be written as

ks =
1

kc/ke − 1
kc. (2.21)

In this relationship, kc/ke can be conveniently replaced by the ratio of the indentation

curve slope on the hard surface κsurf and the slope on the sample κsmpl, because the

deflection measurement sensitivity does not depend on the substrate stiffness. In

summary, given the cantilever stiffness kc, sample indentation slope κsmpl and hard

surface indentation slope κsurf , the linear indentation stiffness ks is

ks =
kc

κsurf/κsmpl − 1
. (2.22)

The interpretation of the stiffness information obtained from the indentation

curves depends on the specific cell stiffness model. A popular quantification of

both eukaryotic and bacterial cell stiffness is the Hertz model, where the cell is ap-

proximated as a solid elastic object with Young’s modulus E as the only stiffness

parameter[106]. The linear indentation stiffness depends on both E and the geome-

try of the cantilever tip, and is predicted to be a nonlinear power law relationship.

Another model assumes that the cell shape is maintained mainly by the turgor pres-

sure and the cell membrane and cell wall serves as a elastic envelope[165, 5]. The

indentation stiffness in this model is mainly determined by the turgor pressure, and
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the geometry of the cantilever is also essential in determining the functional form of

the indentation curve[5]. In chapter 3, I discuss the limitations of the above models

in details, and introduce a new mechanical model for bacterial cells. With a spe-

cial bulging strain of E. coli, we overcome the difficulties that previous models have

addressed poorly.
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Chapter 3

A Passive Adaptive Strategy to

Distribute Tension: Nonlinear

Elasticity of Bacterial Cell Wall

Bacterial mechanics and morphology is essential to many physiological function in-

cluding motility, division, nutrient access as discussed in Chapter 1. To recapitulate,

the major mechanical elements in a bacterial consist of a relatively rigid cell wall,

also called murein, or sacculi if purified from cell culture, and the turgor pressure

that pushes the cytoplasmic membrane against the cell wall to inflate it. The cell

wall is made of cross-linked peptidoglycan polymer, and is essential to define the cell

shape and to maintain the physical integrity of the cell. Turgor pressure is the os-

motic pressure generated by the solute concentration difference across the cytoplasmic

membrane. Bacteria have a set of transporters and channels to regulate a positive

turgor pressure, in order to maintain certain internal chemical environment. In ad-

dition, higher than normal pressure endangers the cell integrity. On the other hand,

plasmolisis can take place at lower pressure, and potentially damage the membrane

and periplasmic proteins.
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Cell wall is built strong to serve as the main tension baring element, yet many

channels and transporters operate based on the membrane tension. The distribution

of the tension among cell wall and tension is a delicate balance between cell wall

protection and membrane tension measurement sensitivity. The specific cell wall and

membrane elasticity, together with the turgor pressure determine how much tension

each layer of the cell envelope takes. In this chapter, I introduce our measurement of

the cell wall elasticity and bacterial turgor pressure in E. coli, and discuss how the

nonlinear elasticity serve as a passive adaptation strategy to distribute tension on cell

wall and cytoplasmic membrane.

Both cell wall elasticity of different bacteria and turgor pressure have been mea-

sured in various ways. As the most straightforward approach, pure murein sacculi can

be extracted and purified for mechanical measurements. In the bulk studies, large

amount of murein sacculi was extracted from cell culture and form a thread in the

macroscopic scale for mechanical studies in classical methods[144]. The purification

of murein sacculi involves boiling in detergent SDS and ultra centrifugation. Usu-

ally after intensive centrifugation the sacculi are compressed into double-layered thin

sheets. Yao et al. measured the Young’s modulus of single sacculus sheet deposited on

grids at hydrated condition as 25 MPa, similar to that of rubber, and a significantly

higher value of 300 to 400 MPa under dry condition[165].

Cell mechanical property can be studied under more relevant conditions on live

cells. At the spatial scale of a bacterial cell, optical tweezers and atomic force mi-

croscope are able to exert localized force onto single cells. Because forces generated

by optical tweezers are usually below 100 pN, it has been only applied to stretched a

helical-shaped bacteria without cell wall[95]. AFM instead is more suitable in terms of

applying larger forces on the cell to generate observable deformation. Several studies

have successfully measured the whole cell stiffness with AFM and are briefly reviewed

in the next section.
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3.1 Models of cell surface stiffness

When AFM is used to probe the stiffness of a substrate, the cantilever tip is pushed

against the substrate. The normal force will both bend the cantilever and deform the

substrate. Given the cantilever stiffness kc, the substrate stiffness for that particular

tip shape can be calculated from the relative change in the shape of the cantilever and

the substrate. Typically when such stiffness measurement is performed, the bending

angle of the cantilever is recorded as a function of the controlled position of the can-

tilever in Z. The height of the contact point and the relative stiffness can be extracted

from the turn point and the slope of the indentation curve. One special indentation

curve is obtained from the hard-surface indentation where the deformation of the

substrate is negligible. From this trace, the relation between the cantilever optical

deflection and the actual tip movement in Z is calibrated, and therefore the force

can be calculated from the cantilever force constant (figure 2.3). Let the slope of

the hard-surface indentation curve be s0, and the slope on an soft substrate s, the

substrate force constant is

ks =
kc

s0/s− 1
. (3.1)

The force constant on the substrate, a cell or part of a cell in our case, gives the

relative quantification of the mechanical property. However, the stiffness strongly

depends on the shape of the probe. More general properties of the cell such as cell

wall elasticity and turgor pressure are not explicitly indicated from the force constant.

Several mechanical models of bacterial cell have been proposed to extract these more

general parameters.

3.1.1 Elastic solid model

A model that is frequently referred to in the AFM literature is the Hertz model[83].

It originally describes the deformation of two elastic spheres when they are pushed
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Figure 3.1: In the Hertz model, the cantilever tip is represented by a rigid sphere and
the the cell is modeled as an infinitely large flat substrate filled with elastic material.
The Hertz model is originally aimed to solve the deformation of two elastic spheres
pressed into each other.

against each other. When applied in AFM system, the Young’s modulus of one sphere

is taken as infinity to represent the cantilever tip and the radius of the other one is

assumed to be infinity to represent the soft substrate (figure 3.1). The applied force

F and the deformation δ are nonlinearly related as

F =
4E

3(1− ν2)
√
Rδ3/2, (3.2)

where E is the Young’s modulus and ν is the Poisson ratio. The limitation of Hertz

model is readily seen: the interior of a cell is viscous rather than elastic. The strain

is uniformly distributed as the turgor pressure instead of elastic strain.

3.1.2 Inflated thin shell

More realistically, the cell structure is viewed as an inflated thin shell. The force

resulted from the deformation have three main contributors: the intrinsic surface

tension due to the positive turgor pressure P , the local stretching deformation, and

the bending of the cell wall. In Gram-negative cells, the cell wall thickness is less

than 10 nm. For this reason, the bending rigidity of the cell wall is neglected. The

shape of the indenter is usually modeled as a cone with a spherical tip of finite radius

rt.
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Yao’s model

Yao et al. modeled the shape of the indentation curve in the framework of the inflated

thin shell[166]. In their model, the indentation is shallow and the tip radius rt is

large so that the radius of the contact area between the tip to the cell wall rc is small.

Under the applied force F , the depth of the indentation created by the tip from the

bottom to the edge of the bowl is

h =
F

2πPRb

{
ln(γ) +

1

γ
− 1

}
, (3.3)

where Rb is the effective radius of the bacterium and γ = (Rb/rt)+1 (figure 3.2). From

this relation, it is apparent that the deformation is proportional to the applied force,

therefore yield a linear force-indentation relation different from the Hertz model. Yao

et al. also argued that because the Young’s Modulus of the cell wall is relatively large,

the global effect of the flattened top and bottom is minor compared to h. Nonetheless,

they approximate the top and bottom deformation f as F
2πPRb

. They then further

omitted the flattened deformation at the bottom because it was assumed to attach

to the substrate before the AFM tip compressed the cell, and therefore the height

change was even smaller. The overall effective force constant is

k =
F

h+ f
=

2πPRb

ln(γ) + 1/γ
. (3.4)

Arnoldi’s model

Another analytical result of the local indentation caused by the cone-shaped cantilever

tip on the inflated thin shell was made by Arnoldi et al.[5]. The energy functional

was minimized so that the profile of the shell was solved under particular force. For
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Figure 3.2: The cell is modeled as an inflated thin shell[5] or a fluidic membrane[165],
and the AFM indentation created by a conical indenter under external force F has
contributions from the global deformation f and the dent depth h.

small force, the indentation is linear with the applied force with a force constant

k =
3π

2
PRbφ(ρ/d), (3.5)

where ρ is the radius of contact area between the cantilever tip and the cell, and d

is the length scale on which the deformation relaxes to zero. φ is a geometric factor

φ(ρ/d) = ρK1(ρ/d)/(dK0(ρ/d)), where K0 and K1 are modified Bessel’s functions.

In this model, Arnoldi et al specifically discussed that the bending energy was

negligible compared with the work against the membrane tension and the stretching

energy, when the turgor pressure generated a large surface tension and the indentation

was small. In fact, the ratio of the tension energy and the bending energy in their

model was estimated as κ = PR2
b/Et

2, where t is the thickness of the cell wall. In

the case of a live E. coli cell, κ is in the order of 50. In some of our experimental

conditions such as under a high external osmotic pressure or in bulging cells, these

requirements are not always satisfied. Even in live cells, due to the possible stress

stiffening effect, the Young’s modulus can be substantially bigger than the strain-free

values; therefore the bending energy may be underestimated in all conditions.
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3.1.3 Hollow tube compression

In both Arnoldi and Yao’s models, the bending energy was ignored. In the other

extreme case when the turgor pressure reduces to zero, the cell wall forms a hollow

tube and the compressibility falls to another category. For a long tube of radius Rb,

wall thickness t, and Young’s modulus E, the effective force constant under a point

force is

k ∝ Et5/2/R3/2, (3.6)

with a proportional constant approximated equal to 1. This model was used to obtain

the microtubule rigidity[34] and is suitable to describe a deflated bacterial cell wall.

3.1.4 Elastic filament

The mechanisms that eukaryotes use to maintain the shape are different from prokary-

otes in principle. Actin network, microtubules and other cytoskeletal structures de-

fine the eukaryotic cell shape and provide cell motility and intracellular trafficking.

Recently, cytoskeletal proteins in the bacterial world are identified and speculated to

play a direct role in cell mechanics. It has been shown that fluorescently labeled actin

homologue MreB assembles into helices in most rod-shaped cells including E. coli.

The in vitro polymerization of MreB yields long and straight filaments or bundles

of filaments[149]; similar assembly was observed for the MreB expressed in fission

yeast[132]. These observations suggest that MreB form bundles that may act like its

eukaryotic homologue actin. Wang et al showed that MreB could contribute up to

50% of the whole bending rigidity in filamentous E. coli [155]. It is also argued that

MreB must bind to the cell envelope in order to create such dramatic change in cell

bending stiffness.

The helical MreB configuration is challenged by several observations with fluo-

rescence microscopy and electron microscopy[138] (also discussed in Chapter 1). In
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accordance, our experiments on specifying the contribution of MreB had negative re-

sults. In our measurement, cells treated with A22, a drug that is able to disassemble

MreB within minutes, had no observable effect on the cell indentation stiffness. How

bacterial cytoskeletal proteins alter the indentation stiffness remains elusive, and its

contribution is omit in the following analysis in this chapter.

3.1.5 Cell wall stiffness and turgor pressure are not indepen-

dent

A realistic bacterial cell is far from a solid elastic body, an inflated fluid bubble, or

a hollow elastic tube. The closest picture is close to an inflated bubble, but enclosed

with an elastic shell. Under external mechanical perturbation, both turgor and cell

wall contribute to the overall restoring reaction, e.g. linear cell stiffness in case of

AFM indentation. Two technical difficulties must be resolved in order to quantify

cell wall elasticity and turgor pressure: firstly, their contributions need to be separated

somehow using only linear indentation; and secondly a realistic indentation model on

the inflated shall is required.

Moreover, cell wall elasticity may not be independent from the turgor pressure,

which is why studying purified sacculi is not sufficient to resemble the mechanics

in live cells. It is well known in polymer physics that the elastic modulus of the

material depends on the loaded strain[135]. As early as the 19 century, it has been

documented that the elastic moduli of blood vessel wall increases as it is strained.

Similar behavior can be observed in blood vessels[6], cornea[65], blood clots[124],

neuronal filaments[84] and actin networks at cellular scale[71, 162, 90]. The nonlinear

relation between elastic modulus and strain is named stress stiffening, strain stiffening

or strain hardening. It is natural to speculate that the peptidoglycan polymer has this

property; i.e. the stiffness of the cell wall depends on the stress caused by the turgor

pressure. This idea was examined on B. subtilis by Thwaites et al [144], where the
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nominal stress was measured on a bulk of B. subtilis murein sacculi as the applied

stress changes. Thwaites et al pointed out that the nominal stress does not grow

linearly with the applied strain. There is no direct evidence of the stress stiffening of

PG in live cells under physiological conditions.

Stress stiffening can be resulted from several mechanisms at different spatial scales.

In a thermal environment, the competition between external stress and entropy re-

sults in a highly nonlinear force-extension relation that has been modeled as worm-like

chain (WLC) or freely-jointed chain (FJC)[23, 46]. The nonlinearity in these build-

ing blocks is a microscopic mechanism of stress stiffening. Consequently at a more

macroscopic scale, the the geometric configuration or the cross-linking polymer net-

work may change depending on the overall strain, thus change global elasticity. Even

if all the chains still remain in the linear regime, the structural configuration of these

linear springs is still able to generate a macroscopically nonlinear elasticity. Boul-

bitch et. al. modeled the PG network as a hexagonal mesh of rigid glycan subunits

and elastic peptide cross-links. They predicted a power–law relationship between the

axial elastic modulus and stress with a stiffening exponent of ∼ 1 [19].

3.2 Indentation on bulging E. coli

3.2.1 Cell bulges separate the turgor and cell wall

In a live cell where both turgor pressure and cell wall support the cell shape, it is hard

to quantify them separately from one indentation trace. This difficulty is solved in a

E. coli strain with mutated gene imp4213 that is sensitive to vancomycin and able to

form spherical inner membrane bulges[118] (figure 3.3). The bulging cell brings the

unique capability to quantify the turgor pressure and the cell wall separately. The

idea is that the inner membrane bulge is not armored with the cell wall, whereas the

combined contribution of the cell wall and turgor can be obtained from cell measure-
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(a) (b) (d)(c)

Figure 3.3: The images of a typical inner membrane on a vancomycin treated imp4213
strain of E. coli carrying plasmid pWR20 to show the cytoplasm. Cells were treated in
vancomycin for 40 minutes under 37◦C and a 10-20% population of the cells form inner
membrane bulges. a) differential interference contrast (DIC) image of a bulging cell,
b) cytoplasmic GFP, c) FM4-64 membrane staining images indicate the cytoplasm
and the cell membrane.

ments. Briefly, we first obtain the turgor pressure of individual bulging cells from the

bulge radius and indentation stiffness using AFM and fluorescence microscopy [Fig.

3.4(a-e)]. Then, from the size and stiffness of the cell body, we are able to extract the

elasticity of the cell wall under tension using numerical methods. The variation in

turgor pressure among bulging cells allows us to probe the mechanical properties of

the PG over a broad range of stresses. Additional experiments using non–bulging cells

yields the turgor pressure and wall modulus of E. coli under physiological conditions.

The bulging E. coli strain we use is derived from the K12 wild-type strain and

contains a mutation, imp4213, that increases the outer membrane permeability to

allow small molecules to enter the periplasmic space [122, 44, 69]. lptD (imp) gene

codes for a outer membrane protein that selectively transport material to the periplas-

mic space, while providing some drug resistance. imp4213 is a frame deletion of a

transmembrane alpha helix motif from lptD, resulting in an increased membrane per-

meability. We then use vancomycin, a drug that inhibits PG subunits from forming

peptide cross-links, to generate a small number of local fractures in the cell wall.

Under turgor pressure, the cytoplasm pushes the inner membrane through the frac-
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ture and forms a membrane bulge outside the cell wall [Fig. 1(a), (c-e)]. Evidences

showed that E. coli has large amount of extra outer membrane that will not apply

significant constraints on the inner membrane bulge formation[130]. Figure 3.3 shows

the image of a typical bulging cell. A plasmid pWR20 encoding EGFP was expressed

to indicate the cytoplasmic volume. The uniform fluorescence in the bulge and the

cell suggests that cytoplasm in the bulge and in the cell is connected. GFP molecules

are able to move between the bulge and the cell interiors, indicating that cytoplasmic

objects smaller than at least 3–4 nm are free to exchange between these compart-

ments. Because the turgor pressure overwhelmingly results from the concentration of

small solutes, the pressure in the cell and bulge can be considered the same.

Several lines of evidence indicate that the cell wall in bulged cells is not signif-

icantly different than in non–bulged cells. First, bulging is a discrete event that is

completed within a few seconds. Second, the cell stiffness remains constant in the

presence of vancomycin until the sudden bulging event when the stiffness drops dra-

matically [Fig. 3.4(f)]. Taken together, these indicate that the mechanical properties

of the cell wall as a whole are unaffected by drug treatment except at the precise

location of fracture and bulging.
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Figure 3.4: (a) Schematic cartoon illustrating the bulging E. coli and AFM stiffness
measurement. The magnified region shows the details of the inner membrane (IM),
peptidoglycan (PG) network in yellow mesh and the outer membrane (OM). (b)
Typical force-indentation traces obtained by indenting a cell and bulge.
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3.2.2 Surface appendages affect AFM probes

Wild type E. coli has a full set of surface appendages of pilus and flagellum. Since

AFM probes the surface property, flexible surface appendages will severely compro-

mise the stiffness quantification. Pili form a soft “cushion” that keeps the cantilever

approaching the outer membrane, and the adhesive property of pili is particularly

undesirable. Flagella can also disturb AFM tip to create extra noise. To remove

the complication caused by the surface appendages, I constructed strain YD133

(∆flgE ∆fimA ∆fliC) from the Keio collection. fimA encodes the P pilus as-

sembly protein. filC and flgE encode the flagella filament and the hook. We did

not remove the outer membrane subunit of pilus and the the basal body of the flagella

motor because they do not seem to interfere with the stiffness measurement. YD143

strain (YD133 imp4213 ) was made based on YD133 for the bulging experiments. The

detailed protocols of the strain constructions are listed in Appendix A.

3.2.3 Experimental procedure

YD143 Cells are grown in LB medium containing 50 µg/ml kanamycin at 37◦C to OD

0.3, followed by the addition of vancomycin (20 µg/ml) and a 10 minute incubation

under 37◦C. Cells are then immobilized on poly-l-lysine (PL) coated glass coverslips.

In the presence of the drug, cells stochastically form bulges along the cell cylinder.

We probe the stiffness of the cell and bulge with a custom-built AFM/fluorescence

microscope [Fig. 1(a)].

Mechanical stiffness is measured by comparing the slope of indentation on the cell,

bulge and glass surface as stated above. On each cell, a line is drawn across the cell so

that cell body, cell wall and glass substrate are all covered. Then a number of points,

typically 40, will be chosen on this line and the indentation is taken on each point.

Figure 3.5 shows a typical trace of these measurements. The height profile clearly

shows the boundaries of the bulge and cell body. To exclude the effect of viscosity on
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Figure 3.5: Stiffness and height along a line across the glass substrate, bulge and cell
body of E. coli strain imp4213 pWR20. a) Height profile shows the geometry of the
bulge and the cell. The height of the bulge indicates the approximate diameter of
the bulge. b) The effective stiffness of the spring and substrate in series. The hard
surface indentation stiffness is calibrated to be the cantilever stiffness 11 pN/nm. The
insert is the cytoplasmic GFP image of this bulging cell, and a red line indicates the
scan line, along which the indentation points distributesThe scale bar is 1 µm.

the stiffness, we tested the stiffness at several indentation speeds and found similar

results. All measurements used a pyramidal-tipped cantilever (stiffness = 11 pN/nm,

manufacture nominal value) and an indentation speed of 3 µm/s. The cell radius is

obtained from the point of contact between the tip and the cell. The bulge radius is

obtained from fluorescence microscopy.

3.2.4 Bulge stiffness under conical indenter

The shape of a deformed, pressurized membrane bulge indented by a conical indenter

of half cone–angle α with force F can be solved analytically. Let P be the pressure

in the bulge and σb the surface tension. Note that σb is uniform on the entire liq-
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uid membrane bulge. From the force balance condition in the axial direction, the

indentation force in cylindrical coordinates (r, φ, z) is given by

πPr2 + 2πrσb sin θ = F, (3.7)

where θ is the elevation angle of the bulge tangential direction in the axial cross-

section [166]. The radial coordinate of the bulge contour r and it’s derivative are

r =
σb
P

(√
sin2 θ + a− sin θ

)
, (3.8)

and

dr

dθ
= − rσb cos θ

Pr + σb sin θ
, (3.9)

where a =
PF

πσ2
b

. At θ = −π/2, r reaches the bulge radius Rb and the surface tension

σb can be solved from Equation (3.7):

σb =
PRb

2
− F

2πRb

(3.10)

Substituting Equations (3.8) and (3.9) into
dz

dr
= tan θ, we obtain

dz = tan θdr

= tan θ
dr

dθ
dθ

=
σb
P

(
σb sin2 θ√
sin2 θ + a

− sin θ

)
dθ.

(3.11)

Integrating over z, the shape of the bulge is solved as a function of the elevation angle

θ. Here, we separate the total indentation into three parts: h = hgobal + hdent + hcone

(Fig. 2). These are the distance from the highest point on the deformed bulge to
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Figure 3.6: Model of a fluidic membrane bulge under a force F exerted by a conical
indenter. (a) The total deformation of the bulge consists of a global deformation,
hglobal, a local dent hdent and the contact height hcone. The dashed line is a sphere of
radius equal to the bulge waist. (b) The dimensionless force–indentation relation is
nearly linear. Inset: dimensionless stiffness vs. indentation.

the undeformed bulge pole, hglobal; the height from the indenter contact point to the

highest point on the bulge, hdent; and the depth of the contact region between the

cone and bulge, hcone. We further define the elliptical integral

I(ξ, a) =

∫ ξ

0

sin2 ζ√
sin2 ζ + a

dζ, (3.12)

The first two parts of the indentation can be easily solved

hglobal = Rb − [z(0)− z(π/2)]

= Rb −
σb
P

[
1 + I

(π
2
, a
)]

;

hdent = z(0)− z(π/2− α)

=
σb
P

[1− sinα− I(π/2− α, a)] .

(3.13)

hcone is determined by the radius of the contact circle where the normal force between

the membrane bulge and the indenter vanishes. From Equation (3.8), setting θ =
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π/2− α, the radius of the contact circle is

rcone =
σb
P

(√
cos2 α + a− cosα

)
, (3.14)

so that

hcone =
σb
P

(√
cos2 α + a− cosα

)
cotα. (3.15)

The total indentation size for an indentation force F , a bulge of radius Rb, an

indenter half–conical angle of α and pressure P is given by

h = hgobal + hdent + hcone; (3.16)

The indentation, h, has a nearly linear dependence on the indentation force [Fig.

3.6(b)]. Under experimental conditions where α = π/12, Rb ∼ 0.5µm, P ∼ 1 kPa

and F ∼ 0.01 − 0.1 nN, the dimensionless spring constant kb/PRb varies from 0.35

to 0.38 [Fig. 3.6 (b) inset ].

For each bulging cell, we measure h/Rb and use the model to obtain the reduced

stiffness kb/PRb as shown in the inset of Fig. 3.6(b). From the mechanical measure-

ments of the bulge stiffness and radius, we then calculate the turgor pressure P in

that particular cell. We then use this value to estimate the circumferential surface

tension experienced by the cell wall, σ⊥ = PRc, where Rc is the cell radius 1.

Figure 3.7 shows the cell radius, Rc, and stiffness, kc, as functions of the pressure

derived from bulge indentation. Both radius and stiffness are positively correlated

with the turgor pressure. We further determined the size and stiffness of non–bulging

cells to be 0.55± 0.02 µm and 0.017± 0.002 N/m, respectively 2.

1Circumferential quantities are denoted as ⊥ while axial quantities are denoted as ‖.
2The size and stiffness of a similar strain of E. coli that does not carry the imp4213 mutation was

within 10% of the values for the imp- strain, indicating that increased outer membrane permeability
does not have a large effect on the turgor pressure or cell wall elasticity.
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Figure 3.7: Bulging cell radius Rc and indentation stiffness kc are plotted against
cell turgor pressure P obtained from the individual bulge indentation stiffness mea-
surements. Data from 72 bulged cells are binned in 10 logarithmically–spaced bins
using weights from the relative error estimates of the individual indentation traces
and fluorescent images (blue crosses). Data from 42 non-bulged cells are plotted as
black open circles. Red lines indicate the best fit of the stress–stiffening model along
with 68% confidence intervals.

3.2.5 Finite element simulations of cell indentation

The indentation stiffness of the cell wall is governed by terms associated with stretch-

ing and bending of the PG as well as terms related to the surface tension. While

the bending energy of the wall has been shown to be negligibly small [5], we can-

not ignore the stretching energy of the PG network and thus analysis of the cell

indentation data is more complicated than for bulge indentation. The deformation

of a elastic tube under external force and internal pressure is a classical 3D static

linear elasticity problem. In biological applications, Zhao et al. probed rod-shaped

fungus Aspergillus nidulans with AFM and made an attempt to construct a complete

picture with cell wall mechanics and turgor pressure together analyzed with finite

element methods[169]. In my study, we also used finite–element calculations of the

force–indentation relation for an inflated cylindrical shell [Fig. 3.8 inset ].

In our simulation, the cell wall is modeled as a tube with 2 µm length, and

terminated with spherical endcaps (Fig. 4 inset). The simulation was performed on

a quadrant of the endcapped cylinder with symmetric boundary condition. We adopt
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elasticity in the axial direction to the circumferential directions, E‖/E⊥. (inset) The
result of a single simulation. One quadrant of the indented cylinder is shown, with
color labeling the displacement in the indentation direction. The black wireframe
shows the undeformed, unpressurized capsule.

the convention of natural, or engineering, stress and strain to define the Young’s

modulus E and set the poisson ratio to zero. The elastic modulus is set to 20 MPa,

the thickness to 6 nm (yielding a combined parameter Et = .12 N/m), the cell radius

in the absense of pressure to 500 nm and the cone angle of the indenter to π/12 with

a spherical tip of radius 7.5 nm. The turgor pressure is chosen to be the independent

variable, and the indentation stiffness is obtained from the force required to create an

indentation of 1/20 of the cell radius. Rather than attempting to estimate the elastic

parameters for each measured cell, we generated a numerical model for the radius,

Rc, and stiffness, kc, in the presence of stress–stiffening and performed a global fit to

all the cellular indentation data.

We incorporate stress–stiffening in the cell wall by describing the nonlinear elas-

ticity of the PG network as a power law in the turgor pressure, E⊥ = E0(P/P0)
γ. E0

is the Young’s Modulus at reference pressure P0 (fixed at 5 kPa, in the middle of the
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range of measured bulge pressures), and γ is the stress–stiffening exponent. Here, the

nonlinearity is only dependent on the pressure in a given cell and we ignore the much

smaller change in stress caused by AFM indentation. The independent parameters γ

and E0t, where t is the thickness of the cell wall, fully define the nonlinear elasticity.

These two quantities, combined with the radius of a cell at the reference pressure,

R0, make up the fitting parameters for interpreting bulged cells. Our global fit addi-

tionally includes the radius and stiffness data from the non–bulged, intact cells which

introduces one additional free parameter: the physiological turgor pressure.

3.2.6 Radial expansion of an inflated cylinder with stress-

stiffening

Here, we model the radius Rc of an elastic cylinder under variable internal pressure

P . Radial expansion of a cylinder under pressure is governed by the elasticity of the

cylinder wall in the circumferential direction, E⊥. In the follow discussion, we set the

Poisson’s ratio to zero. The circumferential surface tension on the wall

σ⊥ = PRc, (3.17)

and the natural stress is σ⊥/t, where t is the thickness of the wall. E⊥ is defined

using the natural stress and the incremental strain, dRc/Rc:

E⊥
dRc

Rc

=
dσ⊥
t
. (3.18)

We also assume that E⊥ depends on the internal pressure P and follows a power

law

E⊥ = E0

(
P

P0

)γ
, (3.19)
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where E0 and P0 can be combined to one single free parameter, E0/P
γ
0 . Without loss

of generality, we choose E0 as the free parameter and fix P0 = 5 kPa, a typical turgor

pressure in a bulging cell. Let R0 be the radius of the cylinder at pressure P0. We

define the following dimensionless quantities

P̂ = P/P0;

Ê = E⊥/E0;

R̂ = Rc/R0;

σ̂ =
σ⊥
P0R0

;

p =
P0R0

E0t
.

(3.20)

Equations (3.17), (3.18) and (3.19) can then be rewritten as

σ̂ = P̂ R̂, (3.21)

Ê
dR̂

R̂
= pdσ̂, (3.22)

Ê = P̂ γ, (3.23)

Equations (3.21-3.23) can be combined and solved to yield

dR̂

R̂γ+1
= p

dσ̂

σ̂γ
, (3.24)

and

σ̂ =

[
1 +

1− γ
pγ

(
1− R̂−γ

)] 1
1−γ

(3.25)
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In the limit of linear stress stiffening, i.e. γ → 1, the dimensionless tension reduces

to

σ̂ = exp

[
1

p

(
1− 1

R̂

)]
(3.26)

Using Equation (3.21), we obtain the desired relationship between the pressure and

the inflated radius

P

P0

=
R0

Rc

[
(γ − 1)E0t

γP0R0

[
(
R0

Rc

)γ − 1

]
+ 1

] 1
1−γ

(3.27)

Again, this is simplified in the limit γ → 1:

P

P0

=
R0

Rc

exp

[
E0t

P0R0

(1− R0

Rc

)

]
(3.28)

The radial expansion, Rc(P ;E0t, γ, R0), can be solved implicitly from the following

equation as derived in the supplemental materials 1

P

P0

=
R0

Rc

[
(γ − 1)E0t

γP0R0

[
(
R0

Rc

)γ − 1

]
+ 1

] 1
1−γ

. (3.29)

The dimensionless quantity PRc/E⊥t describes the magnitude of inflation under pres-

sure.

3.2.7 Anisotropy of the elastic modulus in the presence of

stress-stiffening

For a cylinder, the surface tension is anisotropic. The tension in the circumferential

direction is twice that along the axial direction. For a stress-stiffening material, this

results in an anisotropic elasticity. Here, we find the ratio of the axial elasticity to

the circumferential elasticity at a given pressure.
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Equations (3.21) and (3.25) can be combined to give the dimensionless pressure

at a given surface tension

P̂ (σ̂) = σ̂

[
1− pγ

1− γ
(
σ̂1−γ − 1

)] 1
γ

(3.30)

which reduces to

P̂ (σ̂) = σ̂ (1− p ln σ̂) (3.31)

in the limit that γ → 1. The elastic modulus is found by taking this expressions to

the power γ:

Ê(σ̂) = σ̂γ
[
1− pγ

1− γ
(
σ̂1−γ − 1

)]
(3.32)

Note that Equation (3.32) is a general expression that applies in both the circum-

ferential and axial directions, where the surface tension differs by a factor of two.

Therefore, the anisotropic ratio of the two elasticities can be found as

E‖(P̂ )

E⊥(P̂ )
=
Ê
[
σ̂c(P̂ )/2

]
Ê
[
σ̂c(P̂ )

] . (3.33)

3.2.8 Scaling laws

When an inflated cylinder is indented by a conical indenter, the force F required to

generate an indentation h can be written as

F = F(h;E,P,R, t, δ), (3.34)

where E and P are mechanical parameters corresponding to stiffness and pressure and

R, t, and δ, are geometric parameters corresponding to the cylinder radius, cylinder

thickness and indenter tip radius. The inflated cylinder radius can be written as

R = R(E,P,R0, t), (3.35)
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where R0 is the radius at any given reference pressure P0. The functions F and R are

determined by the material properties of the material under consideration. Due to

the linearity of solid mechanics, scaling the mechanical parameters results in a scaling

of the function F but leaves R unchanged:

F(h;λE, λP,R, t, δ) = λF(h;E,P,R, t, δ); (3.36)

R(λE, λP,R0, t) = R(E,P,R0, t). (3.37)

Similarly, when all spatial dimensions scale we have

F(µh;E,P, µR, µt, µδ) = µ2F(h;E,P,R, t, δ); (3.38)

R(E,P, µR0, µt) = µR(E,P,R0, t). (3.39)

For thin shells, one additional scaling rule applies according to Kirchhoff–Love theory

[88]:

F(h; ηE, P,R, η−1t, δ) = F(h;E,P,R, t, δ); (3.40)

R(ηE, P,R0, η
−1t) = R(E,P,R0, t). (3.41)

The three scaling laws together reduce the total number of independent parameters

in the cylinder–indentation problem:

F(h;E,P,R, t, δ) = PR2 · F(h/R;Et/PR, 1, 1, 1, δ/R); (3.42)

1 = R(Et/PR, 1, R0/R, 1). (3.43)

From Equation (3.42), we obtain the scaling rule for the stiffness:

dF(h;E,P,R, t, δ)

dh
= PR · F ′(h/R;Et/PR, 1, 1, 1, δ/R). (3.44)
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For small indentations, where the stiffness of the material can be considered to be

nearly linear, F ′ is independent of the indentation depth h. Therefore, k/PR only

depends on PR/Et and the scaled indenter size δ/R. In addition, from Equation

(3.43), the dependence of R/R0 on PR/Et can be implicitly solved.

Calculation of the cell stiffness under pressure, kc(P ;E0t, γ, R0), is significantly

more complicated. The dimensionless stiffness, kc/PRc, depends only on PRc/E⊥t as

can be found from scaling arguments, and monotonically decreases as the cylinder is

inflated due to the relative magnitudes of surface tension and shell bending [Fig. 3.8

green line]. However, stress stiffening adds an extra complication due to an anisotropy

inherent in a cylindrical geometry; the surface tension in the circumferential and axial

directions of a cylinder are different by a factor of 2. Therefore, the Young’s modulus,

which is a function of surface tension, is orthotropic. We simulated indentation of

pressurized cylinders with several different values for the elastic anisotropy, E‖/E⊥

[Fig. 3.8]. For a given pressure, the anisotropy can be calculated 1 and the correct

relationship between the dimensionless stiffness and the radial inflation can be in-

terpolated using the curves shown in Fig. 3.8. Combined with the radial expansion

function, this is sufficient to solve for kc(P ;E0t, γ, R0).

The results of a global fit of the functions Rc(P ;E0t, γ, R0) and kc(P ;E0t, γ, R0) to

the experimental data are shown in Fig. 3.7. The best fit yields parameter estimates

of E0t = 0.026 ± 0.001 N/m, γ = 1.22 ± 0.12, R0 = 464.2 ± 0.9 nm and a turgor

pressure P = 29 ± 3 kPa. At this turgor pressure, using the estimated cell wall

thickness 4.5± 1.5 nm [166], the cell wall Young’s moduli are E⊥ = 49± 20 MPa and

E‖ = 23± 8 MPa.
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Table 3.1: List of constants and symbols
symbol description value

α indenter half–cone angle π/12
a normalized indentation force PF/πσ2

b

P0 normalization constant for pressure 5000 Pa
t cell wall thickness 4.5± 1.5 nm
E0 circumferential Young’s modulus of the cell wall at pressure P0

E⊥ circumferential Young’s modulus of the cell wall
E‖ axial Young’s modulus of the cell wall
F indentation force
γ stress–stiffening exponent
h total deformation
kb bulge indentation stiffness
kc cell indentation stiffness
P turgor pressure
Rb bulge radius
Rc cell radius
σb surface tension of the bulge
σ⊥ cell wall circumferential surface tension
σ‖ cell wall axial surface tension
θ elevation angle along bulge

(r, z) cylindrical coordinates in bulge calculation
R0 cell radius at pressure P0

IM inner membrane
OM outer membrane
PG peptidoglycan

3.2.9 List of symbols

3.3 Discussions

Previous work using AFM indentation of bacteria has been used to quantify turgor

pressure and cell wall elasticity [5, 166]. In that work, the relationship between linear

indentation and surface tension was established, but the stretching of the cell wall

was neglected or at most underestimated. Our study, which independently measures

the turgor pressure and cell stiffness, suggests that cell wall stretching and surface

tension contribute similar amounts to the indentation stiffness. This is most evident in
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the difference in the k/PR ratio for membrane bulges, ∼ 0.36, and cells, ∼ 0.9. This

difference arises from the fluidity of lipid membranes; while the bulge can redistribute

material to minimize stress, the rigid cell wall can not. For the cell wall, therefore,

the overall stiffness depends on stretching even in a tension-dominated regime.

Mendelson and others introduced a pressure–independent, tube–bending method

to quantify cell wall elasticity [95]. Wang et al. bent live E. coli cells and found their

flexural rigidity to be 2.0±0.4×10−20 Nm2 [155]. This result yields an axial cell wall

Young’s modulus, including uncertainties in the wall thickness, of E‖ = 11± 4 MPa,

in agreement with our measurements. Using our numerical model, we combined this

value of the axial modulus with the stiffness of intact cells measured using AFM

indentation and estimate the turgor pressure in intact cells to be 35 ± 7 kPa. This

bulge–free measurement further validates our estimate of the turgor pressure and cell

wall stress–stiffening.

Polymer networks often exhibit a nonlinear stress-strain relation due to intrinsic

geometric nonlinearities and a potential nonlinear force-extension relation of the indi-

vidual polymers at finite temperature [50]. Boulbitch et. al. modeled the PG network

as a hexagonal mesh of rigid glycan subunits and elastic peptide cross-links. They

predicted a power–law relationship between the axial elastic modulus and stress with

a stiffening exponent of ∼ 1 [19]. We find a stiffening exponent of 1.22± 0.12 in the

E. coli cell wall in quantitative agreement with the model and similar to observations

from gram–positive Bacillus sacculus threads [143].

The main function of cell wall is to bare tension created from the turgor pressure,

especially under hypoosmotic shocks that can dramatically increase the turgor pres-

sure. Even though it is the cytoplasmic membrane that generates the turgor pressure,

the expansion of the membrane is counter-balanced by the normal restricting force

from the cell wall. On the other hand, the channels and transporters that regulate the

solute importation and exportation sense membrane tension that is generated from
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the turgor pressure as discussed in Chapter 1. It appears contradictory that cell mem-

brane transfers the tension to the cell wall but meanwhile still able to measure surface

tension. This “paradox” can be solved by the difference in elasticity of cell wall and

cell membrane. Elasticity of lipid membrane has been recently measured by Picas et

al using AFM[113]. Their results suggest that cell membrane also has a nonlinear

elasticity similar to cell wall, However at certain strain, the elastic modulus reaches 40

MPa, a value surprisingly in accordance with our measurement with peptidoglycan at

slightly turgid pressure, and seized to grow at higher strain. At lower turgor pressure,

both cell wall and cell membrane are soft and flexible. Enabled by the flexible cell

envelope, a change in turgor pressure will cause significant change in cell shape, thus

membrane tension, and allow mechanosensitive channels to respond to the change.

Whereas at high turgor pressure, the cell wall elastic modulus increases faster than

that of the cell membrane, bearing more tension and restraining volume inflation.

The nonlinear elasticity of lipid membrane, together with stress-stiffening of cell wall

works as a passive adaptation mechanism to balance surface tension measurement

and cell wall protection.

The fact that the cell wall and the cell membrane together takes surface tension

implies that the surface area of the two are always the same unless plasmolysis takes

place. Experimental results on E. coli also show the surface area of spheroplast is

identical to intact cells within error (unpublished data by Miller and Shaevitz). Even

during cell growth, the cell surface area constantly increases, which brings up the

question how the wall and the membrane manage to grow at the same rate, or how

these two completely different biochemical process couple together. Hinted by the

mechanism of mechanosensitive channels, I hypothesize that the membrane tension

possibly participates not only in regulating turgor pressure, but also in synchronizing

cell wall and membrane growth (figure 3.9). Upon cell wall growth, the surface area of

cell wall increases, causing the membrane to expand and increase tension. The minor
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tension can boost the fusion of lipid into the membrane as shown experimentally by

Staykova et al [133], or trigger membrane production. So far there is no evidence to

connect bacterial membrane tension and lipid production, but it is well known in

eukaryotic cells, cortical tension directly regulate endocytosis, exocytosis, which is a

mechanism to modify surface area[31]. More generally, cell mechanics may play a

key role in the information flow between global cellular property such as size, shape,

macromolecule organization such as DNA, and formation of sub-cellular structure,

and microscopic molecular scale biochemistry.

Cell wall

grows

Membrane tension

increses

MS channels

open

Turgor pressure

drops

Lipid insertion and

membrane snthesis

boosted

Unknown

signals

Figure 3.9: Schematic figure to show the proposed roles of mechanical parameters to
regulate cell physiological functions such as material transportation, membrane syn-
thesis and growth. As the cell wall area increases, the tension on the key mechanical
parameter, the surface tension increases, which can trigger the mechanical sensitive
(MS) channels to regulate the turgor pressure, and accelerate the insertion rate or
synthesis of the cell membrane.

To summarize, we used AFM and fluorescent microscopy to probe the elastic

properties of live E. coli cells using a system that allows us to separately probe

pressure and elasticity. Our results indicate that the turgor pressure in live cells

is ∼ 30 kPa, or ∼ 0.3 atm. This value is lower than previous chemical estimates

of the pressure but similar to other mechanical measurements. Our data further

indicate that the cell wall stress-stiffens. Stress–stiffening affords a unique mechanical

advantage to cells by preventing abrupt cell shape changes during changes in external
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pressure or osmolarity while maintaining a relatively compliant cell elasticity under

normal conditions.
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Chapter 4

Rod-shaped Bacterial Cell Wall

Growth Dynamics Revealed by

Nano-motion Capturing

4.1 Background of Bacterial Cell Wall Growth

As the major tension bearing element, the building blocks of bacterial cell wall, pep-

tidoglycan units form a high cross-linking density covalently linked polymer network.

As discussed in the previous chapter, cell wall has a novel static mechanical property,

and may participate in the regulation of bacterial physiology in addition to providing

protection against turgor pressure. However in order for a cell to grow, the cell wall

has to be remodeled by inserting new material into the existing wall, and also remov-

ing material by autolysis (also called cell wall turnover). Peptidoglycan insertion is

the final stage of the whole PG synthesis process and takes places in the periplasmic

space at the interface between cytoplasmic membrane and cell wall. PG precursor

Lipid II is harvested by the penicillin binding protein (PBP) complexes, which ac-
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complish to incorporate PG subunit by transpeptidation and transglycosylation. The

details of this process how lipid II enters each PBP complex remain elusive.

Peptidoglycan subunit has an asymmetric cross-linking nature, which is disac-

charide connecting to form relatively longer stands over 100 nm, while the peptide

side chains to form short cross-linkers of typically a few animo acids, 10 in the case

of E. coli between glycan strands. NMR studies showed that instead of a random

orientation, the glycan strands align roughly in parallel, whereas the cross-linking

peptides are nearly perpendicular to the glycan strands[151]. In single-layered rod-

shaped gram-negative bacterial cell wall, the plausible organization of PG is such

that glycan strands run in parallel with the cell surface approximately along the cir-

cumferential direction. For gram-positive bacteria, because the cell wall is generally

thicker (20-80 nm), more possibility exists as to how PG is organized. It is favored

that the gram-positive wall is simply a stack of the single-layered gram-negative cell

wall, although the extremely experimental results can not rule out other possibilities

such as the scaffold architecture (figure 1.3).

The knowledge of PG biochemistry helps understand what participates in syn-

thesizing cell wall and what their relationships are, it does not provide a mechanism

for the formation of a particularly well defined shape. In addition, geometrical and

dynamical information are required to answer the question how PG subunits self-

organize into an ordered structure with a spatial scale mediated at micrometer scale

by molecular machinery at nanometer scale. To give rise to an asymmetric, highly

ordered bacterial cell wall, the enzymatic machinery that facilitates material insertion

must be organized following certain rules. It is indeed observed that bacterial cells

have non-diffusive sub-cellular structures that are closely related to the cell morphol-

ogy. The structure of actin homolog in bacteria MreB was first resolved by van den

Ent et al [149], and identified to have a role in governing cell shape: depletion of MreB

leads to lemon-shaped defect and cell lysis after a few generations. GFP and YFP
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fluorescent fusion of MreB appeared helical in many species of bacteria, or filamentous

in fission yeast and in vitro. Recent studies challenged this MreB configuration[138],

and proposed that MreB formed translocating foci along the circumferential direction,

in parallel to the glycan strands in gram-negative bacteria, or in the layered model of

gram-positive bacteria[42, 51, 150]. More directly, PBP II itself was found undergo-

ing similar motion in gram-positive bacterium B. subtilis. The translocation of these

protein complexes requires the activity of PBP, as when treated with PBP inhibitory

antibiotics, both MreB and PBP motion seized[51, 150], strongly suggesting that the

motion itself is driven by, and facilitating PG insertion.

4.1.1 Growth models

In the past few years, several quantitative growth models for rod-shaped bacteria

have been proposed based on mean field or the observations of PBPs and MreB fam-

ily proteins localization and motion, with the goal to resemble a robust cylindrical

growth mechanism to maintain cell radius. On the global scale without considering

the detailed microscopic growth, Jiang et al built a mean field model to recapitulate

the balance between the free energy gain from forming new bonds in the PG during

growth, and the energy cost to stretch the newly inserted PG patches[73]. They de-

fined a general forces of growth as the net free energy gain per unit change in the cell

radius and length, and set the growth rates on the two directions proportional to the

general forces. With experimentally determined parameters such as cell turgor pres-

sure, wall stretching stiffness, their energy argument successfully predicted a optimal

radius for rod-shaped bacteria to minimize the free energy during growth.

At the microscopic scale, Furchtgott et al numerically simulated the dynamics of

the cell wall under different insertion rules of the new material in terms of the selection

of the insertion locations[48]. The PG network was modeled as a mesh network with

cross-linked glycan strands as the building blocks. New glycan strands with a variable
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length were inserted between two existing strands at a location selected based on

certain insertion rule. If following a self-similar random insertion meaning that the

any peptide cross-linker had equal chance to be selected as the insertion site, the

mesh network would develop bulges, bends, large holes, and the radius was not kept.

In contrast, a uniform insertion did not cause positive feedback on the perturbations

of the local PG density. Interestingly, a global insertion order had similar effect as

the uniform insertion. These order are in the form of inserting at a finite processivity

along a circumferential hoop, of intact or segmented helical tracks[150].

Another microscopic model quantitatively addressed the motion of the growing

end of the glycan strands responsible for active cell wall growth[2]. It was assumed

that the experimentally observed moving PBP and MreB was exactly where glycan

strand tips grew, and these tips were the dislocations, or topological charges in a

crystalline peptidoglycan similar as defects in regular crystals (figure 1.4(a)). The

motion of the dislocations were driven by the Peach-Koehler force exerted by both

the turgor pressure [111] and chemical energy released by forming bonds. Apart from

the active dislocations that were moving, many more dislocations were not associated

with PBPs or not actively moving, stayed stationary, and did not contribution to

the cell elongation. The active and inactive dislocations convert back and forth,

and interact with each other through surface tension of the cell wall. Even tough

it is difficult to associate experimentally observable properties of the cell with the

parameters in the dislocation model, it nonetheless provides a plausible microscopic

view to quantitatively bridge the microscopic molecular mechanism to the global

growth at cellular scale.

4.1.2 Observations of rod-shaped cell wall growth

Long before the quantitative models for cell wall growth were proposed, experimen-

talists had been trying various ways to depict the insertion rules. The visualiza-
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tion of the peptidoglycan incorporation is first realized by labeling the PG precur-

sors. Isotope pulse-labeling[108] and D-Cys-labeling[35] showed a diffusive or patchy

growth pattern in E. coli, while fluorescent labeling using ramoplanin-fluorescein and

vancomycin-fluorescein in B. subtilis showed patchy or segmented helical pattern[145].

These insertion patterns support the picture that the moving PBP complexes facilitate

new PG insertion, although direct correlation between growth and PBP localization

is not available due to the limitations in spatial and temporal resolution of these

techniques. More macroscopically at the cellular level, Want et al attached two fluo-

rescent beads as fiducial markers on the surface of E. coli and B. subtilis to observe

the growth of the whole cell[156]. It was found that both E. coli and B. subtilis rotate

as the cells are elongating, suggesting a global chiral order of the PG organization,

possibly due to the helical insertion guided by the cytoskeletal proteins.

4.2 Labeling cell wall with high density quantum

dots

In order to obtain a high-resolution, high accuracy growth map, several considerations

must be taken into account. Firstly, the cells need to stay viable during the decoration,

and are able to grow afterwards. Secondly, the markers must be small enough that

they don’t affect, or are not affect by the growth. Because we seek high density

decoration, the bead assay developed by Wang et al is not suitable because of the

size of the beads are typically hundreds of nanometers, and thus will interact with

the surface when the cell is immobilized. Thirdly, accurate determination of growth

requires high contrast in the surface labeling. For instance, organic fluorescent dyes

are small molecules that can be used to label cell wall as shown in [145, 59]. However,

the labeling density is usually so high that the features in the fluorescence signal

is at the scale of micrometers. Tracking these features during growth can only give
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information at very limited resolution. Reducing labeling density can increase labeling

heterogeneity, at the cost of weaker signals and severe photobleaching. Fourthly, the

decoration must faithfully indicate the cell wall movement. Labeling the membrane,

membrane associated protein, or flexible appendages of the cell are not proper for our

purpose.

With all the requirements listed above, I choose quantum dots (QD) as the marker

to decorate the surface of the cell. Quantum dots are semiconductor nano-crystals

of size typically 3-5 nanometers in diameter for the core. The surface of a quantum

dot is usually covered with organic coating and can be chemically functionalized

at will. Quantum dots have substantially better resistant to photobleaching than

fluorescent protein and organic dyes, making it possible to withstand long-lasting

imaging during cell growth. The high brightness also allows resolving individual

dispersively distributed quantum dots from fluorescence images, thus improves the

resolution of grow map from micrometer to diffraction limit of the images.

Gram-positive and gram-negative bacterial have different envelope structure.

Gram-negative bacteria have an outer membrane that selectively transports material

to the periplamic space, thus providing protection against toxic molecules. Due to the

outer membrane, it is hard to get direct access to the cell wall and fluorescently label

it. Surface structure of gram-negative bacteria, such as the s-layer or lipopolysac-

charide (LPS) can be stained[129, 52], but it provides little information regarding

the cell wall growth due to the fluidity of the outer membrane. On the contrary,

gram-positive bacteria lack the outer membrane, therefore the peptidoglycan is

directly exposed to the external environment available for modification. Although a

high portion of the surface area is still covered by the s-layer[139], the direct and firm

linkage between s-layer and the PG layer makes the surface of gram-positive bacteria

a transiently solid substrate for labeling, while the fluidity is solely contributed from

the PG insertion at slow temporal scales. For these reasons, I choose the model
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organism for gram-positive bacteria, B. subtilis as the model organism to study cell

wall growth dynamics.

The fluorescent markers can be attached to the B. subtilis cell wall by an in-

termediate molecule that binds to the subunits of PG, or they can be covalently

linked to PG directly. Both methods are shown to be effective. In the first approach,

wheat germ agglutinin (WGA) is chosen to be the intermediate molecule because it

binds preferentially to N-acetyl glucosamine (GlcNAc), one of the primary subunits

of PG[128, 45]. Specifically, carboxylated quantum dots are first functionalized with

1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC), a standard cross-linker to

couple carboxyl groups to primary amine, then the functionalized QD are incubated

with WGA to react with the primary amine on the surface of WGA. Finally, the

labeled WGA are then incubated with bacillus cells to bind to the PG. WGA-QD

conjugate achieves a nearly uniform labeling at a density of greater than 10 QD per

micrometer cell length, or 3 per square micrometer, high enough that the limiting

factor to the growth map resolution is the optical diffraction at typically 100-150 nm.

Because the peptide cross-linking fraction in peptidoglycan is only 30-50 %[152], a

high density of amine groups at the termini of the peptides are available for chemical

modifications, thus EDC activated QD can directly link to the surface amine groups

on PG. Cautions must be taken for the following reasons. Because EDC cross-links

all amine and carboxyl groups, it is extremely toxic to live cells. Unbound excess

EDC must be removed before reacting with the PG amine, and it was achieved by

dialysis. Also because the functionalized QD reacts with all primary amine groups,

the incubation media must not contain amine group. I used a phosphate buffer

with Mg2+ and SO2−
4 and glucose as the incubation media to reduce the stress to the

cells.The density of quantum labeling reaches 10 µm−1 in length, or an area density of

3 µm−2. Even tough lower than WGA mediated labeling, directly labeling provides
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shorter and stronger linkage. The detailed protocols of WGA labeling and direct

labeling are listed in the Appendix B.

To show the surface decoration by quantum dots, we took transmission electron

microscopy (TEM) images of the labeled B. subtilis (figure 4.1). The negatively

stained cells appear overall dark, thus only the quantum dots resides on the side are

visible under TEM. These quantum dots appear as cylinders of 5 to 10 nanometers,

sometimes in clusters. A light gray halo is usually visible, presumably due to the

polymer cross-linker surrounding the quantum dots. On the surface of the cell wall,

quantum dots typically are closely attached, sometimes embedded into the PG at high

density (≥ 10µm−1). The height of the bump caused by the dots is typically smaller

than 5 nm. In order to immobilize cells on the surface for fluorescence imaging,

I press the labeled cells between glass coverslip and buffered LB (without Sodium

Cloride) 0.3% agarose gel. The soft gel allows cells to grow freely, and in contrast,

cells pressed between stiffer 1% agarose gel will buckle during elongation and seize to

grow presumably due to the stress built on the cell wall. Since we study the growth

of cell wall in three-dimensions as oposed to the 2-D projection, I take a series of

z-sectioning at each time point of observation.

The effectiveness of directly labeling at the surface amine groups strongly depends

on the cell density in liquid culture. I test the labeling first on the lab strain PY79 of

B. subtilis. In the early exponential phase of growth, PY79 cells form long chaining

cells of length over 50 to 100 µm. These chaining cells have segmented cytoplasm and

closed septa between cells, yet the PG between cells is still connected. When reaching

stationary phase, PY79 cells start separating and expressing genes responsible for

motility, chemotaxis and other stress responses[21]. I find that the labeling works well

on the chaining cells, but the short cells at late growth stage have very low labeling

density following the same procedure. Wild type strain 3610 on the other hand does

not form chaining cells even at early exponential phase, and consistently hard to
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Figure 4.1: TEM images of quantum dot decorated B. subtilis cells on the primary
amine groups on the cell surface. (a) Quantum dots appears as bright bulges that
attach on the cell surface, indicated by the black arrows. The white arrow points
at the septum between two daughter cells that are not separated. (b) The zoomed-
in image of the edge of the cell surface indicated by the black box in (a). Several
quantum dots form a cluster that attaches to the cell surface. The imaging focus has
been adjusted so that quantum dots appear as dark particles of size 4×10 nm

label. It was found in [77] that swrA, a gene that is required for swarming behavior

in B. subtilis is directly related to the chaining phenotype, and PY79 indeed contains

a unique mutation in swrA[77]. The swrA knockout mutant, DS2151 shows similar

chaining phenotype and the labeling property as PY79 at different growth stages.

The reasons of the correlation between swarming, chaining and surface labeling is

unclear. I hypothesis that flagella may contribute to the connection.

B. subtilis in the wild spends most of the time in the soil underground, and thus

it develops sensitivity to light. It is known that ytvA in B. subtilis is responsible for

sensing blue light through the LOV (light, oxygen and voltage) domain on YtvA pho-

toreceptor. The activation of YtvA then triggers the general stress factor σB, which

then induces the activation of over 100 genes that prepare the cells to deal with the

stress (see review [60]). In addition to blue light, it is later reported that red light also

triggered the stress signal factor at lower sensitivity than blue light through energy

stress branch of the σB activation, yet the specific receptor responsible for sensing

1We thank the Losick Lab at Harvard University for helping with this strain.
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(a) (b) (c) (d) (e) (f ) (g) (h) (i) (j) (k) (l)

PB2 PB605 DS215

Figure 4.2: Fluorescent images of B. subtilis labeled with QDot655 on the surface
amine groups. Bright field images (a, c, e, g, i, k) and maximum intensity projection
of z-stacks (b, d, f, h, j, l) are shown for three different strains: PB2 (wild type, a-d),
PB605 (∆rsbQ, e-h) and DS215 (∆swrA, i-l) grown to optical density 0.1. Chaining
cells in all three strains have higher labeling density than short separated cells. All
panels share the same magnifications indicated by the 1 µm scale bar in (l).

red light was not identified[8]. The sensitivity to blue and red light limits the fluores-

cence excitation wavelength and power, as well as the exposure to excitation light per

unit time. Under blue or strong green illumination, I observe that initially growing

B. subtilis cells stop growing in 5 minutes time scale and start shrinking if the illumi-

nation intensity is strong. Blue light illumination directly inhibit the PBP and MreB

motion (personal communication with Ethan Garner at Harvard University), which

indicates the microscopic mechanism of the overall inhibition of cell wall growth. For

the photosensitivity reason, even tough quantum dots have better quantum efficiency

at ultraviolet and blue wavelengths, I use green 532 nm laser illumination. To further

reduce the photosensitivity, I used a background strain PB6052 that has a knockout

of rsbQ, which is responsible to trigger the energy stress[8].

Taking considerations of cell labeling, immobilization and photosensitivity into

the account, I design the experimental protocol as the following. Quantum dot with

emission maxima at 655 nm is chosen as the fluorescence marker to decorate B. subtilis

strain PB605←DS215, using either WGA mediated labeling or direct amine labeling

2We also thank the Price Lab at University of California, Davis for helping with the strain
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in phosphate-MgSO4-glucose buffer. Cells are pressed between coverslip and 0.3%

agarose gel in LB without NaCl before fluorescence imaging. To correct stage drift,

a bright field z-stack image series is taken every 30 seconds, and the pixel value

variance is used to correct for the z-drift, while direct image correlation corrects the

translational drift. Typically, a fluorescence image stack of 15 images are taken at

every 180 seconds with inter-frame distance of 150 nm, which translates to 133 nm in

imaging plane because of the index of refraction difference between glass and water.

The exposure time of each section is 0.2 seconds at an illumination intensity 1 W/cm2

at a wavelength of 532 nm. Images are taken on the same AFM-microscope setup

described in Chapter 2. 532 nm excitation laser is given by a 20 mW home-built

diode laser system. Green laser is sent to the specimen by a single edge dichroic

mirror (Semrock FF560-Di01). Appendix C lists the details of the laser controller

design.

4.3 Extracting growth map from three-dimensional

fluorescence movie

4.3.1 Unwrapping long B. subtilis cells

To show that we only label the surface of the cells, the fluorescence intensity pro-

jection along the cell axial direction is shown in figure 4.3, which indeed results in a

hollow ring. With a high density labeling on the cell surface, and three-dimensional

image stack, the distribution of the quantum dots can be extracted. The motion of

the quantum dots in 3D contains information of the cell wall growth pattern. In prin-

ciple, it is possible to extract the motion of each quantum dot in 3D followed by the

reconstruction of the growth map. However, in the case of normal cylindrical growth,

the deformation of the wall is constraint on the two-dimensional surface. Therefore,
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it is practical to only look at the two-dimensional cylindrical surface assuming that

cell radius is a constant.

(a)

(d) (e) (f )

(b) (c)

(d)

(e)

(f )

Figure 4.3: The three-dimensional distribution of the quantum dots that label the
surface of B. subtilis cells can be indicated by the set of fluorescence images taken at
multiple focal depths. (a) The maximum intensity projection along the optical axis (z
direction) of all frames in a z-stack. (b) The maximum intensity projection along the
cell axis indicated by the red dashed line in (a). (c) A cartoon to show the position
of individual sections in (d)-(f). All panels have the same magnifications indicated
by the 1 µm scale bar in (f)

Because the cell shape is a curved cylinder, it is natural to build a curved cylindri-

cal coordinate around the cell, which requires to first locate the cell centerline. From

the image stacks of dense quantum dots, I use an active contour model to detect

the cell centerline. In brief, the centerline of a cell is modeled as an elastic open

contour, and the images are treated as an external potential field that exerts force

to the contour. The minimum-energy configuration of the contour is the detected

position of the centerline. To convert the image to a potential field, I convolve the

raw image stack with the Laplacian of the Gaussian (LoG!!!FIX!!!) kernel in 3D:

− r2−2σ2

σ4 exp(−r2/2σ2), where r is the distance to the origin in a spherical coordinate,

and σ is the length scale of the Gaussian, and I assign it as the cell radius so that the

cell centerline is a minimum potential if the quantum dots are densely distributed. In

practice, combined with a proper contour stiffness, the LoG kernel correctly converge
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the contour to the centerline of the cell in 3D. More details and examples of the open

active model can be found in Chapter 7.

(a)

(b)

(c)

2π

0

θ

s

Figure 4.4: The cell centerline is detected using active contour model, and the fluores-
cence intensity of the surface markers are projected along the radial direction to give
an unwrapped two-dimensional image. (a) A long chaining B. subtilis cell centerline
is detected and labeled by a red line. (b) To track the cell centerline, the original
z-stack is convolved with a “Mexican-hat” shaped kernel. The centerline and the
cell surface where the quantum dots locate have the maximum contrast. Inset: the
convolution kernel. (c) The fluorescence intensity in 3D is projected along the radial
direction of the curved cylindrical coordinate about the cell centerline. Scale bar is 5
µm.

After the centerline is obtained, I build a curvilinear cylindrical coordinate (s, θ, r)

about the centerline of the cell, where s is the axial arc position, θ is the polar

angle, and r is the radial distance from the centerline. In my observations, normal

B. subtilis cell curvature is typically greater than 50 µm, much greater than the

cell radius of 1 µm, and because the cells are confined between glass coverslip and

agarose gel, the height variation is negligible. Thus, it is a good approximation

that (θ, r) plane up to r ∼ rcell is still locally flat, and one can use an undistorted

cylindrical coordinate with a fixed θ = 0 direction parallel to the image plane to

describe the three-dimensional position near the cell centerline (figure 4.4). In this

coordinate system, the fluorescence intensity is a function of (s, θ, r), and I project the

intensity along the r direction with a Gaussian weight function peaked at r = rcell:
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r exp[(r− rcell)2/2σ2], taking into account the metric of a cylindrical coordinate. The

projection on the r = rcell surface effectively “unwraps” the intensity distribution on

the cell surface into a flat two-dimensional plane (figure 4.4).

4.3.2 Mathematical description of cell growth

The growth of the cell wall indicated by the 3D motion of the quantum dot markers

can be represented by the morphological deformation of the unwrapped intensity map

and the motion of the centerline, whose curvature remains small in the beginning of

the growth, typically hours before buckling becomes significant. Under the constraint

of normal growth that the cell radius remains constant, the cell wall has two possible

kinds of allowed deformations: elongation and twisting. In the representation of

the unwrapped surface, elongation and twisting become stretching and shearing. In

general, the instantaneous velocity of a point on the surface can be written as v(s, θ)

with two components vs(s, θ) and vθ(s, θ). The growth rate tensor is the spatial

gradient of the velocity:

R = ∇v(s, θ), (4.1)

which has four components with physical meaning of axial elongation rate, circum-

ferential growth rate, twisting rate, and axial shearing rate. Note that the velocity

gradient tensor R is not the strain rate tensor, which is defined as

D =
1

2
(R + RT ). (4.2)

Limited by the imaging and labeling resolution practically, the velocity gradient along

the circumferential direction and the shearing along the cell axis are too small to

detect, or

∂θv(s, θ) ≈ 0. (4.3)
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With this constraint, I effectively consider only two types of growth: circular insertion

along the entire circumference of the cylindrical cell, and plain shear corresponding

to twisting during growth, and vs and vθ do not have θ dependence. Thus in this

section, it is more convenient to study the velocity gradient R instead of the strain

rate tensor D. The elongation and twisting rates are

Re =
∂vs(s, θ)

∂s
, (4.4)

and

Rt =
∂vθ(s, θ)

∂s
. (4.5)

In general, if one zooms in and look at the insertion at microscopic scale, the tip of a

∂θvs ∂θvθ
∂svs ∂svθ ∂svs

s

θ

∂svθ

undistorted

Figure 4.5: Demonstration of the effect of the four components of the growth rate
tensor indicated by the deformation of a wireframe along the axial direction s and
circumferential direction θ. ∂svs and ∂svθ are the elongation and twisting, and the
combinations with ∂θvs and ∂θvθ correspond to the insertion along axial and the
circumferential direction indicated by the red dashed lines.

newly inserted strand forms a dislocation, and the insertion of a finite length strand

causes shear velocity gradient along the axial direction at the tip of the new strand,

thus ∂θvs(s, θ) is not strictly zero, as long as the dislocations exist. I will neglect

shearing along the axis, and only consider the circumferentially averaged growth and

twist for experimental data.
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4.3.3 Tracking single quantum dots for cell wall morphology

dynamics

Each 3D stack at every time point can be unwrapped, and the collection of the

unwrapped intensity can be visualized in the from of a kymograph of the intensity

projection along the circumferential θ direction (figure 4.6(a)). It is readily clear that

the growth of the cell wall is shown as the diverging traces, and similarly, the twisting

during growth is shown as the nonparallel traces in the θ−t projection. Qualitatively,

the elongation distributed all along the cell length, which is consistent with previous

results that like many other rod-shaped bacteria, B. subtilis cell wall material insertion

is distributed. In the growth kymograph, two groups of motion emerges, one being

Kymograph

Clustering

Corrected with linear growth model

Corrected with nonlinear growth model

2µm

4
0

 m
in

Figure 4.6: The projection of intensity kymograph of the unwrapped quantum dot flu-
orescence intensity on the surface of a growing B. subtilis cell along the circumferential
direction, showing only the dynamics along the axial direction. (a) The kymograph
in the Eulerian specification. Overlaid is the streamlines of originally equally spaced
positions along the cell axis following the detected nonuniform growth. (b) Wall-
attached quantum dots and detached dots move in two distinctive groups as shown
in the kymograph (a). The probability distribution of traces of the dots belonging
to the attached or the detached group of dots is shown in red and green respectively.
(c) A spatially uniform but temporally nonuniform growth model can approximately
describe the growth. In the Lagrangian specification where the coordinate follows the
uniform growth model, the traces appear as nearly straight lines, and the deviation
from straight lines suggests heterogeneous growth. (d) The kymograph in the La-
grangian specification under the heterogeneous growth model in both space and time.
The stream lines following the heterogeneous growth model shown in (a) tracks the
motion of individual dots better, as indicated by more parallely aligned traces in the
kymograph in the Lagrangian specification.
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the diverging growth traces, the other being non-diverging and pure translational.

The presence of the second group is because the cells are in physical contact with

the glass coverslip and the agarose gel, and the attached quantum dot can fall off

the surface and stay stationary with the substrate rather than the cell wall. When

extracting growth from the unwrapped movie, these detached quantum dots must be

excluded.

In order to obtain the growth map, I first approximate the growth as a linear

function of the position on the surface, where Re and Rt are constants, or equivalently

vs(s) = Res+ vs0 (4.6)

vθ(s) = Rts+ vt0. (4.7)

The linear growth approximation is applied to both the attached and detached quan-

tum dots with different growth rates. The separation of the two groups is achieved

iteratively following an expectation-maximization (EM) approach. Briefly, each loca-

tion in each frame has a clustering probability of morphing with the attached group

or the detached group, and it is calculated based on the difference between the local

velocity and the predicted velocity of that location from the two linear growth groups

using recently estimated growth rates. Since the attached and detached markers

move continuously in time instead of reappearing randomly among the frames, the

clustering probability distribution also has continuity in time that depends on the

two linear growth respectively. After each location is associated with the two groups

probabilistically, the growth rates are updated from least square fits with weights

calculated from the image intensity and the grouping probability. This procedure is

repeated till convergence.

More generally, even with the constraints in equation (4.3), the growth can be

deviated from the linear growth as listed in equation (4.7). The deviation from
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linear growth is clearly shown in figure 4.6(c) where the traces in the kymograph

after correction with a linear elongation still appear locally converging or diverging.

This observation suggests that the cell growth rate is not uniform along the cell, and

linear growth model is not sufficient given the resolution achieved in our experiments.

To refine the growth rates, I slice the unwrapped images into stripes spanning from

θ = 0 to 2π, corresponding to rings along the cell, and obtain the shift in both axial

and circumferential directions using sub-pixel image registration routines[56]. The

nonlinear, nonuniform growth is shown in figure 4.6(a), where the traces of locations

with equal distance are shown in red on top of the kymograph.

In figure 4.6(a), the kymograph of the unwrapped intensity is described in a co-

ordinate system that has the same metric as the lab frame, where the trajectories of

the quantum dots appear as diverging traces. If the growth is treated as a fluid flow,

such description of the dynamics of the flow field is called the Eulerian specification.

The flow quantities in Eulerian specification are written as a function of the axial

coordinate s and time t as used in the previous sections. It is also applicable to

build a coordinate system that is attached to the motion of the flow namely the “La-

grangian specification”, where the position is labeled with a time-independent vector,

usually the position at an initial time t0, in our case the initial arc position s0. It is

particularly useful to describe the morphological changes because in the Lagrangian

specification, the kymograph of the quantum dots appears straight lines parallel to

the time axis, and particular locations fixed on the cell, for example the locations of

the septa, remain stationary (figure 4.6(c), (d)). Note that the Lagrangian specifica-

tion is a non-flat metric, and thus the time derivative of a vector includes the change

of the coordinate:

D

Dt
=

∂

∂t
+ (v · ∇), (4.8)
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where D
Dt

is the total time derivative. As a trivial example, the speed of a point fixed

on the cell wall at location s(s0, t) is

Ds(s0, t)

Dt
=

∂s(s0, t)

∂t
+ (v · ∇)s(s0, t) (4.9)

= vs
∂s

∂s
(4.10)

= vs. (4.11)

The coordinate in the Lagrangian specification does not have temporal dependence,

and thus the first term vanishes, and the velocity is included in the time dependent

metric. In practice, the transformation between the two specifications is achieved

with numerical interpolation.

4.4 Cell wall growth is heterogeneous

Following the routines of tracking the cell wall deformation, we obtain a velocity field

in the Eulerian specification v(s, t), which can be transformed into the Lagrangian

representation. To illustrate the morphological changes that a long B. subtilis chain

undergoes, a set of constant s(s0, t) and θ(s0, t, θ0) at equal distance is displayed as

time progresses (figure 4.7). Effectively, the equally spaced grid lines act as fiducial

markers that resembles the motion of the quantum dots but appear in more regular

patterns. Note that due to the intrinsic blinking of quantum dots, only a portion

of the quantum dots are visible in each frame. The elongation is indicated by the

horizontal expansion, which settles at an unevenly distributed spacing between grids,

suggesting that the elongation rate is also uneven along the cell length. Meanwhile,

the grid is sheared along the circumference to both positive and negative directions,

suggesting that the local shearing or twisting is highly active and variable.
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Figure 4.7: The temporal evolution of fiducial grid lines generated based on the growth
map of a B. subtilis cell chain shows the morphological changes of the unwrapped
cell surface at different time when the cell is growing. Both axial elongation and
circumferential distortion due to twisting are observed.

The heterogeneous growth and twist of the cell unwrapped in figure 4.7 are better

shown in the strain rate distribution as functions of the arc position along the cell

and time. Figure 4.8 (a) and (b) shows the elongation rate ∂svs(s, θ) and twisting

rate ∂svθ(s, θ) in the Lagrangian specification, so that the values at a constant arc

position represent strain rates at a fixed position relative to the cell instead of a fixed

point in space. Due to the finite labeling density in this specific example, the spatial

resolution is limited to a sub-cellular length of 1 µm. The growth maps show that the

elongation rate and twisting rate are highly heterogeneous in both space and time.

The elongation rate is overall positive, but fluctuates at typical spatial scale of 5 µm.

The cause of this variability is possibly due to the intracellular growth heterogeneity,

or the differentiation among individual compartmentalized cells in a long chain. The

high growth or twisting activity on these “islands” persists in time typically for 10

to 30 minutes, which is the relevant time scale of the formation of new septa in these

chaining cells. How the pauses between active growth relate to the septa formation,

or whether other factors cause the pause remain unidentified.
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Figure 4.8: Growth map of the same B. subtilis cell chain as in figure 4.7. (a)
Elongation rate as a function of time and arc position along the cell length in the
Lagrangian specification. (b) Twisting rate as a function of time and arc position.
(c) The time average of the elongation (blue) and twisting (red) rates as functions of
the arc position. (d) Overall strain rates across the entire length of the chaining cells
as functions of time.

When the cell growth is described in the Lagrangian specification as in figure 4.8(a)

and (b), the dependence of growth rate only on the arc position can be obtained by

simply averaging over the time as shown in figure 4.8(c). Both elongation and twisting

rates show strong periodic pattern in the temporal average, suggesting that the active

and inactive growth regions remain relative stationary relative to the cell at cellular

spatial scale, in contrary to the proposed uniform insertion model at molecular and

sub-cellular level. The spatial average of the growth and twisting rates are shown in

figure 4.8(d). The overall twisting has a much small variability if averaged over 50

µm than at shorter cellular length scales, indicating that both left-handed and right-

handed helical growth are present at nearly equal probability. The elongation rate

has three major peaks of growth, but slows down due to the stress response caused

by the excitation illumination.
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4.5 Discussions and outlooks

In this chapter, I introduce a framework to quantitatively study the cell wall insertion

dynamics in live B. subtilis cells using fluorescence nano-motion capture. The mor-

phological changes of the cell wall is indicated by high density of fluorescence markers,

and is determined to better than sub-micrometer resolution at tens of nanometer ac-

curacy, and with minute temporal resolution. The spatial and temporal resolution

far exceed existing method that attempted to resolve the growth dynamics of the

bacterial cells, and for the first time provide the complete three-dimensional infor-

mation. By projecting the fluorescence intensity on the curved cylindrical surface of

the cell onto a plain, the problem is simplified to tracking the morphology of a two

dimensional membrane. The dynamics of the morphology is described by the normal

and shearing strain rates, corresponding to elongation and twisting. I show that both

elongation and twisting are highly heterogeneous at sub-cellular spatial scale, and

vary temporarily at a time scale of 5 minutes. Spatially, both elongation and twisting

appear compartmentalized at a typical scale of 5 µm, which is in accordance with the

length of single B. subtilis cells.

Several reasons can give rise to this heterogeneity in growth rate along the cell

length. It is well known that in many rod-shaped bacteria such as E. coli and B. sub-

tilis, the old poles are inert, meanwhile the density of PBPs at the old poles is lower

than the mid-cell for unclear reasons[17]. In chainning B. subtilis, even thought

remaining attached, the cells are separately by complete septa and intact cell mem-

branes between one another. Near the septa, the growth rate can be slower than

the mid cells, and thus a heterogeneous growth is expected. It is also possible that

the segregated cells have independent and different growth rates due to the intrinsic

noise in gene expression[91]. In filamentous cyanobacteria, cells are able to undergo

heterocyst differentiation that forms spatial patterns spontaneously or in accordance

with environmental signals[94]. The differentiation between individual cells can be
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another reason to give rise to the micrometer-scale growth heterogeneity. Different

from chaining but segregated cells, another type of filamentous cell morphology can

be obtained by inhibiting the septum-forming protein PBP-3 (FtsI) with cephalexin

or aztreonam in E. coli, in which case the PBP-3 protein is recruited periodically to

form ring structures along the cell length[159], but unable to close the PG to form

septa. In this case, the cytoplasm is connected, and inter-cellular differentiation is

suppressed. However, the recruitment of the septal proteins such as FstZ and FtsI

is still present in filamentous cells[159]. Is the periodic growth pattern expected in

the filamentous cells? In other words, is the spatial localization of the Z-ring, the

existence of a closed septum, or the cellular differentiation what causes the nonuni-

form growth? By looking at the growth pattern at sub-cellular scale resolved by the

growth map, these question can be addressed to help understand the spatial distri-

bution of the cell wall synthesis complexes and their roles in growing cell wall and

forming septum.

The localization of the PG synthesis complexes ultimately determines the pattern

the cell wall grows[51, 48, 150], and the former has been observed experimentally that

the PBP complexes form diffraction-limited spots on the membrane of the cells, both

in gram-positive and gram-negative bacteria, and translocate approximately along

the circumferential direction. This processive motion is the basis for providing a

global PG insertion order, which is suggested to be essential for a robust elongation

where the radius of the cell and PG cross-linking density remain constant along the

cell. However, the correlation between the PG synthesis complex locomotion and the

growth pattern has never been directly shown. The quantum dot labeling density can

be well above 10 µm−1, whereas the distance between fluorescently labeled PBP-2 in

B. subtilis [51] and MreB in E. coli [150] is typically over 500 nm. The sub-minute tem-

poral resolution of the growth map is sufficient to capture the cell wall morphological

changes given that the translocation speed of these protein complexes is typically
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600 nm/min. Our framework of quantitatively study cell wall growth dynamics is

a platform potentially capable of bridging the molecular growth mechanism and the

global cell morphology.

As the work in this thesis is in progress, the Huang Lab is investigating growth

pattern in gram-negative bacteria E. coli also by fluorescently label cell wall and ob-

serve the growth. In their work, they use WGA tagged with organic dye to create

a nonuniform staining pattern on the cell envelope, and track the motion of these

features on the circumference of the cell envelope in two-dimensional projection. Due

to the limitations of using continuous labeling instead of individual marker as dis-

cussed in the previous section, the spatial resolution of their approach is typically

above micrometer. Also, the 2D projection drops all motion information in 3D, thus

unable to resolve twisting during cell growth. In fact, in case of a helical growth,

the elongation and twisting will have a mixed contribution to the 2D projection of

intensity on the circumference, and cause complication to the motion tracking.

One limitation of our experimental setup is the requirement to immobilize cells

on the surface for imaging. I used agarose gel as a physical constraint to press

cell on the glass coverslip, where I observe two major drawbacks. Firstly, the cell

elongation involves deforming agarose gel at the tips of the cells, which effectively

forms a resistive force to cell elongation. I have observed that for higher agarose gel

stiffness or higher pressing force over the cell, the cell tend to grow into more s-shaped

curves with an averaged curvature of 5-10 µm, and eventually stalled. Secondly, the

physical contact between cell and glass coverslip increases the probability of quantum

dots detaching from the cell wall, and the detached quantum dots stay stationary to

the coverslip, complicate the motion tracking, and reduce the density of the moving

quantum dots. Purposely designed microfluidic devices potentially provide a solution

to the immobilization problem. For instance, the “mother machine” developed by

Wang et al has been used to observe rod-shaped E. coli growth[154] and to measure
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the mechanical property of the filamentous cells. In such setup, the free end of the cell

does not experience any mechanical constraint and is free to elongate and twist. The

detachment due to the turnover of the PG will not complicate the analysis because

the detached quantum dots will quickly diffuse away. It is also applicable to apply

the labeling and washing all on the same device, or to restore the labeling density

after the dilation due to PG insertion. It is plausible that the combination of the

nano-motion capture assay with microfluidic techniques will help provide cell wall

growth map at higher resolution and at more natural conditions.

The choice of quantum dot as the marker allows to observe cell growth with little

photobleaching, and sub-diffraction limit density can be achieved on live cells, while

dimmer quantum dots requires brighter excitation intensity. The outstanding resis-

tance to photobleaching makes photons cheap, granting higher signal-to-noise ratio in

each frame, better z-resolution by having more sections in each stack, and better tem-

poral resolution. However, the total photons obtained per unit time is then limited

by the tolerance of B. sutbilis to light instead of the fluorescence marker. Even with

the introduction of the rsbQ deletion as suggested in [8], the cells are still only able

to grow with an already compromised rate under 1 W/cm2 532 nm light illuminated

during exposures that take 1% time, and more intensive illumination will generally

inhibit growth. To address this issue, I developed an optically selective mutagenesis

assay, where bacteria in a droplet of growth medium grow under nonuniform green

light illumination at an averaged intensity of 0.2 W/cm2 (figure 4.9). It is reported

that for accelerated selective mutagenesis requires both gradient of selective pressure

and cell motility[168], which are satisfied in the “droplet under light gradient” de-

sign, although a more ideal configuration would be similar to the “death galaxy” as

described in [168] under a nonuniform illumination. After around hundreds of cell

cycles, a mutated strain of parent strain PB605←DS215 develops significantly higher

resistance to green light and is able to grow under 10 times brighter 532 nm laser
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Figure 4.9: A schematic figure of the green-light resistance mutagenesis setup. A
5 microliter drop of growth media containing B. subtilis is placed under constant
illumination at 0.2 W/cm2 from a high brightness green LED. The high tolerance
to green light allows taking fluorescence images at higher intensity, finer z-sectioning
and better temporal resolution.

illumination than its parent strain. I did not observe apparent morphological differ-

ence from the parent strain, nor the growth rate had any difference. The sequence of

this new strain is to be investigated yet, and it is likely to improve both spatial and

temporal resolution of the growth and finally reach molecular scale.
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Chapter 5

Breaking the Diffraction Barrier by

Spatial Covariance Reconstruction

(SCORE) Microscopy

5.1 Diffraction Limit and Super-resolution Imag-

ing Techniques

In Chapter 4, I describe a new method to observe bacterial cell wall growth dynamics

using fluorescence microscopy. Due to the small size of bacteria and the high labeling

density, it is a technical challenge to resolve the spatial distribution of all the indi-

vidual fluorescence marker. More generally, far-field light microscopy is an essential

non-invasive probing tool in many fields of biology and biophysics, especially for life

imaging in vivo and in vitro, yet it is the intrinsic physical property of light that

determines how much one sees through any kind of optical microscopy technique.

The information provided by fluorescence imaging is essentially limited by the res-

olution, defined as the finest structure that the imaging technique is able to resolve,

and the resolution is critically limited by the diffraction of the objective aperture.
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Recently, several novel imaging techniques has been developed aiming to break the

diffraction limit. These super-resolution techniques can be roughly categorized into

three different types. The first type utilizes a spatially or temporally engineered illu-

mination pattern to either reduce the volume of the detected target in a controllable

way such as in stimulated emission depletion (STED) microscopy[61, 79, 62] or using

reversible saturable optical fluorescence transitions (RESOLFT)[66], or encode the

spatial information into other low-frequency signals such as in saturated structural il-

lumination microscopy (SSIM) where angular or temporal responses of the fluorophore

s were used as spatial information carriers[57]. These types of imaging techniques

usually require much higher excitation or switching power than conventional epi- or

confocal fluorescence microscopy, and may cause phototoxicity and photodamage in

certain biological systems. The optical complexity and cost are other factors that

also limit the application of these methods.

The second group of methods resolves the distribution of fluorescent sources

based on single particle localization. Stochastic optical reconstruction microscopy

(STORM) [119] and photo-activated localization microscopy (PALM) [15, 64] were

developed and achieved a resolution of 10 nm by sequentially activate single emit-

ters and localize them individually at a precision beyond diffraction[163]. However,

the limitation of STORM/PALM lies in the fact that the resolving ability is based

critically on the spatial separation of emitters, thus limiting the number of emitters

resolved in each frame. A reconstructed image usually requires a minimum of 104

images, or tens of minutes of imaging time [37]. Live cell imaging still remains chal-

lenging to all approaches mentioned above. Aiming at obtaining high information

density by looking at more densely distributed bright emitters, Holden et al ap-

plied the principle of an astronomy software package that was capable of separating

closely located Gaussians to super-resolution imaging and introduced DAOSTORM

[67]. Compressed sensing STORM (CSSTORM) and deconSTORM also address the
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same overlapping PSF problem and are able to work with 5 to 10 times higher density

of switched on emitters[170, 102] Higher emitter density remains challenging for these

essentially single emitter localization based methods.

Instead of resolving the localization of emitters based on single switching events,

the third group of approaches extracts the localization information from the statistics

of the pixel intensities, therefore overlapping is no longer a limiting factor but rather

preferred since higher density of emitter provides higher intensity variance. Many

different kinds of emitters including fluorescent protein, organic dye[37] and nano

crystal[105, 126] have particular temporal intensity fluctuation patterns, or fluores-

cence intermittency (FI). Super-resolution optical fluctuation imaging (SOFI) was

developed based on the independence of the emitter intensity fluctuation, and effec-

tively reduced the PSF width by taking the simple temporal cumulant of the pixel

intensities[39]. SOFI was then improved by including spatial cross-cumulant in in-

tensity fluctuation[40]. For the same principles, Lidke et al. resolved the location of

densely distributed individual quantum dots from the spatial covariance of the pixel

intensity fluctuation and independent component analysis (ICA)[87]. This method

is shown to be applicable to a small number of sources but becomes intractable if

the number of emitter reaches 10, and thus is not applicable to resolving continuous

structures. A realistic model that optimizes the location and blinking of emitters was

built by Cox et al to give super-resolution images at a greatly improved temporal

performance of seconds[30]. The computation complexity of this global optimization

is however extremely high, making it unideal to use. These statistical methods in

practice reaches a resolution of 100 nm, slightly poorer than the single particle local-

ization techniques but requires much less number of frames, typically in the range of

hundreds to thousands.

In this chapter, I introduce an image reconstruction algorithm in the third cate-

gory named spatial covariance reconstructive (SCORE) microscopy. I start from the
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fluorescent intensity covariance between pixels of a stack of images, combine the prior

knowledge of the shape of the point spread function (PSF) to map the distribution

probability of individual emitters. Our method inherits the advantages of previous

statistical approaches including insensitivity to background, no upper limit to the

fluorescent emitter on-time thus allowing higher information density per frame and

much lower requirements on number of frames, and easiness of implementation from

standard epi-fluorescence setups. Through principle component data compression, I

only consider components that have significant contribution to the variance of pixel

intensities, and thus reduces the noise and computational cost. I quantitatively com-

pare the results of STORM and SCORE in simulations, where the quality is defined

as the Kullback-Leibler divergence from the ground truth to the resulted images. As

demonstrations, I applied SCORE on microtubule in HeLa cells labeled with organic

dye and quantum dots, and in both cases I am able to achieve sub-diffraction reso-

lution of 100 nm within a few seconds of imaging. The resolution is limited by our

labeling quality, and better imaging quality can be obtained using existing selections

of fluorophore that have more robust intensity fluctuation.

5.2 Image reconstruction model

In a series of fluorescence images of a specimen taken at different time, I assume that

the fluorescent emitters locate at a finite number of fixed locations in space xm, where

m is the index of the position: m = 1, 2, . . . ,M . Here I do not place constraints on

the distribution of xm, thus they can be arbitrarily dense locally or even overlap.

Each emitter undergoes statistically independent fluctuation in intensity that follows

particular statistics depending on the nature of the emitters, which can be organic

dye, fluorescent protein or nanocrystal. Let one record a sequence of T images of these

flickering or blinking emitters, in which the instantaneous intensity of each emitter is
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sm,t with t = 1, 2, . . . , T . The independence condition of the intensities from different

emitters is equivalent to P (sm,t, sn,t) = P (sm,t)P (sn,t) for m 6= n. Each emitter is

imaged as a diffraction limited spot described as the point spread function (PSF),

which can be approximated as a Gaussian function in two dimensions. The width of

the PSF depends on the imaging wavelength, the numerical aperture of the objective

and the axial distance from the focal point. In our model, I assume the PSFs are

identical, or equivalently demand that the sources are localized in a 2D plane. The

more general three dimensional case will be discussed later. Let the individual PSF be

f(xi−xm), which is the intensity value of the ith pixel at location xi of a 2D Gaussian

function centered at the mth source location xm. The temporal sequence of image

pixel intensity in the noise free case is It(xi) =
∑

m f(xi − xm)sm,t. It can be written

in vector notation It(xi) = fT s, where f = (f(xi − x1), f(xi − x2), . . . , f(xi − xM))T ,

and s = (s1,t, s2,t, . . . , sM,t)
T . The observed pixel intensity recorded by a camera is

corrupted by the photon arriving shot noise and the measurement noise.

The problem of reconstructing image is to fine the best estimate of the collection of

the centers of the PSF xm from Ît(xi), assuming that f is a known Gaussian and sm,t

follows mutually independent and identical statistics (figure 5.1). The difficulty of

globally optimizing the emitter locations and intensity sequences lies in the fact that

the number of emitter m is unknown and the parameter space is high-dimensional. It

helps to reduce the dimension of the problem by truncating the principle component

of the data set above the noise level as suggested in [87]. Instead of seeking the

solution in terms of the location of each emitter as done in [87], I coarse-grain the

set of center locations xm onto a finite mesh grid at xk, k = 1, 2, ..., K, usually an

up-sampled mesh of the camera pixel array, and on each grid resides an emitter with

fluctuating amplitude ak. Statistically, ak scales with the square root of the local

emitter density to resemble the identical covariance.
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Figure 5.1: The principle of SCORE is illustrated in a simulated data. (a) Each
of the two emitters gives a Gaussian shaped point spread function f(x), associated
with a temporal blinking sequence s(t) that is independent one another. The product
of the spatial profiles and temporal sequences is the observable images, which can
be transformed into a set of orthonormal eigen modes g(x) and associated mixed
fluctuation sequences y(t). The distribution of the emitters can be found by measuring
the distance between a Gaussian and the subspace span by the eigen modes that have
sufficient energy above noise. (b) First 6 eigen modes of an ellipse. (c) The sorted
variances of all the 64 eigen modes.

Specifically, the covariance matrix between pixels of an image stack is defined as

Cij = 〈(It(xi)− 〈It(xi)〉t)(It(xj)− 〈It(xj)〉t)〉t (5.1)

where 〈 〉t takes the average over time index t. The normalized eigenvectors of Cij

forms a set of orthonormal basis that explains the variations of pixels in groups, while
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the corresponding eigenvalues are the variance explained by these eigen modes. In

the principle component analysis, eigenvectors with variance greater than a threshold

are usually kept as meaningful signals while the rest are treated as noise and are

omitted. The sorted variance typically shows a kink clearly separating signal from

the noise background (figure 5.1). I take the threshold at the kink of the variance, and

let N be the number of eigenvectors that have significant variances, and eigenvectors

be gn(xi), n = 1, 2, . . . N , or g in the vector notation. Note that N is typically

much smaller than the true value of number of emitter M due to the noise. The

truncated set of eigen modes is a compressed representation of the original pixel

intensity covariance. Gaussian modes centered at emitters with the correct width

can be recovered from the truncated set ĝ = (g1, g1, ..., gi0)
T , whereas falsely located

Gaussian modes is far from the linear space spanned by the truncated set, because

these mis-placed modes do not contribute variance to the covariance, and therefore are

dropped in the compression process. As an extremely example, in the noise free case,

the eigen subspace of a small number of individual fluctuating Gaussians intersects

with the whole set of Gaussian function precisely at the true locations of the sources.

I generalize this property into higher number of individual emitters in presence of

noise to estimate the likelihood based on the Euclidean distance from the eigen mode

subspace to a Gaussian function:

D(x0; ĝ) =
‖G(x0, σ)−

[
G(x0, σ)ĝT

]
ĝ‖

‖G(x0, σ)‖
, (5.2)

where
[
G(x0, σ)ĝT

]
ĝ is the projection of a Gaussian function centered at x0 on the

compressed subspace ĝ, and ‖ · ‖ takes the L-2 norm. This distance distribution is

mapped to a probability-like distribution by treating the distance as the residual of
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the maximum-likelihood fit:

ak = exp

(
−D

2(xk; ĝ)

2h2

)
, (5.3)

where h is an imperial parameter that can be determined by the scale of maximum

gradient allowed in the reconstructed image. This parameter can be determined if a

desired maximum gradient magnitude of the reconstructed image is given:

∇2
kak =

I2D2

4h4
∇2
kD(xk), (5.4)

from which h can be implicitly solved. In this emitter distribution reconstruction

method, the truncation of eigen modes plays the key role in rejecting Gaussian func-

tions that do not contribute to the variances. The resulted image is however insen-

sitive to the precise choice of the truncation threshold. One can apply other criteria

to determine the likelihood of a Gaussian from the whole set of eigen modes, but a

simple truncation at the noise floor is a proper approach.

To further refine the image reconstructed based on the distance between Gaussian

function and subspace of the eigenvectors, I compare the variances of the eigenvectors

obtained from the PCA of the observed images and the variances calculated from the

reconstructed emitter distribution assuming emitters have independent but identical

fluctuation statistics, and optimize the emitter distribution to make the two similar.

I show that this refinement is able to improve the quality of reconstructed images

from simulated data. However for experimental data I will include the details of the

variance shaping in future works.
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5.3 Results

5.3.1 Quantitative comparison of STORM and SCORE

The quality of single emitter localization based imaging method such as STORM/PALM

is determined by many factors including emitter brightness, switching duty cycle

and number of frames in an ideal drift-free case. The localization precision of a

single emitter scales with the width the width of the point spread function (PSF)

and inverse square root of the photons received by the camera. The on-off duty cycle

of the emitters places an upper bound of the allowed emitter labeling density to

achieve single emitter localization in a diffraction-limited area, which in turn defines

the maximum spatial frequency of the resolvable feature according to the Nyquist

criteria. However, the actual density of localized emitters in the reconstructed image

is proportional to the number of frames and the emitter duty cycle. It has been

shown experimentally that the limiting factor of the image reconstruction quality

can be either localization precision or sampling density, depending on the choice of

the specific fluorophore[37]. In conventional single-frame based image reconstruction

algorithms, the two factors independently determine the limit. Harvesting more

photons in one switch-on event does not increase the allowed emitter density, and for

a fixed emitter brightness, accumulating more frames does not improve localization

precision either.

In contrast, by making use of the pixel intensity covariance, SCORE breaks the

limits of the emitter density upper bound. Regardless of the overlapping, a higher

duty cycle means higher variance of each emitter brightness and higher signal-to-noise

ratio in the covariance matrix. Accumulating more frames provides better statistics

of the pixel covariance, thus also improves the ability to resolve smaller features. To

show the effect of higher duty cycle and number of frames on SCORE, I quantitatively

test the performance in the simulation as follows. The width of the PSF σ is set to
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1 pixel, where the pixel size is in the range of 100 nm to 150 nm in realistic cases

(figure 5.2(a)). I place 100 emitters at equal distances on a sub-diffraction-sized

ellipse with long axis being σ and short axis 0.8σ (red oval in figure 5.2(a)). The

averaged number of photons collected in one switch-on event depends on the specific

fluorophore. Here I choose a typical value of an averaged 1000 photon per switch,

following an exponential distribution to simulate the variability of photons emitted

in each switching event. The switching follows a two-state model with poff = 0.9 for

switching from on-state to off-state in the next frame, and pon varies to give different

duty cycles (dc). A Gaussian white noise with standard deviation of 2 is added to

the generated images to simulate image read out noise, which is typically below 1-2

photons on an EMCCD camera. A set of reconstructed images using STORM and

SCORE are collected at a series of variable pon from 0.0005 to 0.5, and total number

of frames from 100 to 10000.

To quantitatively describe the quality of a reconstructed image, I interpret it as a

probability density distribution of finding an emitter, and use KullbackLeibler (KL)

divergence to describe the distance between ground truth and the images. The KL

divergence is defined as

DKL(P‖Q) =
∑
k

Pk ln(
Pk
Qk

), (5.5)

where Pk and Qk are the intensity (probability distribution) of the true emitter posi-

tions and the resolved STORM or SCORE images respectively. Since the simulated

emitters reside on a discrete set of points, I convolve the discrete distribution with

a Gaussian function of the size of a up-sampled grid size xk to avoid aliasing. The

KL divergence for STORM and SCORE images are calculated and the median values

of 20 to 40 repeats are shown in figure 5.2(b) and (c). Sample images at 300 frames

and 2000 frames and various duty cycles are shown in figure 5.2(d), along with the
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Figure 5.2: Comparisons of STORM and SCORE using a simulated emitters dis-
tributed on an ellipse. (a) A Typical image of an emitter giving 1000 photons, with
an PSF width of 1 pixel. An in scale ellipse is shown at the bottom right. (b,c)
The logarithm of KullbackLeibler (KL) divergence of reconstructed STORM (b) and
SCORE (c) images with the ground truth distribution at various duty cycle and
number of frames. (d) KL divergence of two methods at stack size of 336 and 1833
frames as a function of duty cycle. (e) Sample images of STORM, deconSTORM and
SCORE at various duty cycle and stack size.

comparison with standard STORM method and deconSTORM. At high stack size

and low duty cycle below the critical value of 0.01, both STORM and deconSTORM

are able to reconstruct the ellipse at good accuracy, but SCORE has lower accuracy

due to low emitter intensity variance at low duty cycle. One major artifact I ob-

serve is a systematically reduced radius of the oval, causing a large deviation from

the true locations, even tough the hollow structure of the oval was correctly resolved.

With variance shaping, the radius can be more accurately restored, and a lower KL
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divergence better than STORM is achieved. Above the critical duty cycle, STORM

quickly failed to resolve the hollow structure and collapse to a single point, and de-

conSTORM has a better tolerance to overlapping emitter but is still unable to resolve

the ellipse if more than 10 emitters are switched on in average. One can decrease the

labeling density to allow higher duty cycle, in which case the localized emitter density

is limited by the number of frames, and the best quality image is always obtained near

the critical labeling density/duty cycle. In contrast, SCORE consistently performs

better at higher duty cycles, reaching a lower KL divergence than the optimal result

of STORM. At a lower image stack size of 300 frames, STORM and deconSTORM

behave qualitatively similarly to the previous 2000-frame stack size, except that the

images are more discontinuous. However, SCORE is still able to perform reasonably

well, resulting in a consistently smoother and more accurate result as the duty cycle

increases to an optimal value of 0.1, which is much higher than the acceptable maxima

of STORM and deconSTORM (figure 5.2(e)).

Another limiting factor of the reconstructed image quality is the localization pre-

cision of each emitter, determined by its brightness and the level of background

noise[141]. In single emitter localization type of techniques, the uncertainty in deter-

mining emitter location effectively blurs the true emitter localization configuration,

and this blurring effect can not be easily corrected by accumulating frames. To study

the effect of localization precision on imaging quality, I increase the background noise

in our simulation to a higher level of 15 photons on each pixel, and vary the signal-to-

noise ratio by tuning the number of photons received from a switched-on emitter in a

range of 100 to 3000 per frame. The KL divergence of STORM and SCORE images

from the ground truth is calculated at their corresponding sub-optimal duty cycle of

0.002 for STORM and 0.05 for SCORE, and at various number of frames and emitter

brightness as shown in figure 5.3(a) and (b). In the low SNR regime, the STORM

image quality is limited by the photon shot noise and background noise, accumulat-
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ing frames indeed has little effect decreasing the KL divergence (figure 5.3 (c)), and

only increasing emitter brightness helps. Different from STORM, the KL divergence

of SCORE images from the true distribution decreases as more frames are collected

(figure 5.3 (c)), because the covariance of noise decreases as the inverse-square-root

of the stack size whereas the covariance of the true signal is independent of the stack

given that the flickering statistics remains stable. For fixed number of frames, a

higher number of photons increases the SNR, thus improves the imaging quality of

both STORM and SCORE, and the latter benefits more dramatically from brighter

emission. This is because by allowing overlapping source images, SCORE effectively

increases SNR at a fixed background noise level, thus outperforms STORM at high

background noise conditions. I also observe that variance shaping further improves

the image quality comparing with SCORE, in that it restored the radius of the ellipse

more accurately.

5.3.2 SCORE images of fluorescently labeled Microtubule

As experimental demonstrations, I apply SCORE imaging on microtubule fluores-

cently labeled with either organic dye or quantum dots (QD) at short time scale of a

few seconds and compare with STORM when applicable. Microtubule in fixed HeLa

cells are stained with antibodies conjugated with Alexa Fluor 647 fluorescent dye,

and imaged through epi-fluorescence microscopy because the microtubules are far

from the glass-buffer interface. A 50 mW 643 nm diode was kept on during the entire

image acquisition that gives around 10 kW/cm2 excitation and switching-off light,

and after the brief exposure of a few seconds under the red laser, the majority of the

fluorophores are switched off. Then at the gaps between the camera exposure, I add a

short laser pulse with 50 mW power at 405 nm wavelength to switch on Alexa Fluor

647 fluorophore to achieve higher duty cycle. A bright and nonuniform background

signal degrades the image, but does not significantly impact the SCORE analysis
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Figure 5.3: low photonComparison of STORM and SCORE at lower signal-to-noise
ratio where the number of photons per switch-on is low and background noise is
high. (a) The dependence of KL divergence of STORM images on the number of
accumulated frames and photons per frame at high level of background noise (σ = 15).
(b) Same test as (a) on SCORE. (c) A slice of KL divergence at 256 photons per frame,
indicated as the dashed lines in (a) and (b). (d) Samples of reconstructed images from
the two methods at 256 photons per frame and selected number for frames.

since covariance calculation only takes the variation into account. After the initial

burst of the switching-on that last 3-5 seconds, the duty cycle relaxes to a low value

under the 405 nm activation for minutes, when regular STORM image is suitable.

The images are acquired at 100 frames per second to capture the fast dynamics of

the fluorophore switching dynamics.

I analyzed the first 5 seconds of data using SCORE after the UV activation laser

was turned on when the duty cycle of Alexa Fluor 647 was the highest, shown in

figure 5.4(c) next to the epi-fluorescence image (a) and the variance (second-order

SOFI) (b) of all 500 frames. Since the background intensity is high and nonuniform,

the displayed mean is high-pass filtered for better illustration of the features with

lower dynamic range than the background. The same set of 500 frames are also an-

alyzed with standard STORM (figure 5.4(d)). From only 5 seconds of data, SCORE
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Figure 5.4: low photon Microtubule of Hela cells is labeled with Alexa Fluor 647
and analyzed with SCORE and STORM at various number of frames. (a) The epi-
fluorescence image of the labeled microtubule before the dye is switched off. (b) The
variance of 500 frames where the 405 nm laser activates high density of fluorophore
with overlapping PSF. (c) and (d): SCORE and STORM analysis of the 500 frames.
(e) STORM analysis of a total 10000 frames with low density of switched-on emitters.
(f) Intensity profile of a line in SCORE image indicated by the arrow and yellow line
in (c). (g)-(n) Two zoomed portion of the variance, SCORE, 500 frame STORM and
10000 frame STORM. Scale bars: (a-e) 2 µm, (g-n) 500 nm.

is already able to resolve sub-diffraction limited structure at sub-diffraction scale of

120 nm where our PSF width is 150 nm. In comparison, the high duty cycle and

overlapping images of close emitters cause STORM to reject many activated emit-

ters, resulting in a low density of resolved centers (figure 5.4(d,i,m)). The next 10000

frames have sufficiently low duty cycle and suitable for standard STORM analysis,

with the result shown in figure 5.4(e). Higher number of resolved emitters provides a

better representation of the labeled microtubule, although still discontinuous ((e,j,n)).

Two selected regions indicated by the arrows in (c) and (d) are zoomed in as demon-

strations in panel (g-n).
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The performance of organic dyes suffers from photobleaching after several switch-

ing cycles, and the condition I performed our experiment was optimized for STORM

imaging so that the flickering was not fully promoted. It has been reported that

mixing both oxidant and reductant with dyes increases both switching-on and off

rates[27], thus one can anticipate faster and more robust switching dynamics for bet-

ter statistical analysis. Another type of fluorescent source that is bright and intrinsi-

cally fluctuate the emission intensity is quantum dot. Its variability in brightness is

often considered as a negative factor in imaging applications, although this fluores-

cent intermittence is ideal for fluctuation statistics based super-resolution techniques

as shown in recent works[87, 40] and for SCORE. I label microtubule in HeLa cells

with antibody conjugated with QD655, use a 20 mW 532 nm wavelength laser as ex-

citation light, and image at oblique illumination condition with a NA 1.46 objective

at 135 frames per second to capture the fast intensity fluctuation of quantum dots

(figure 5.5).
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Figure 5.5: Quantum dot labeled microtubule in HeLa cells is imaged and analyzed
with SCORE. (a) An averaged image of 1000 frames (7.4 seconds) of quantum dot
labeled microtubule (cyan), overlaid with SCORE image of the same 1000 frames
(red). (b) Intensity line profile of he labeled portion of the wide field image (indicated
by the arrow in (a)) and SCORE image (blue line). Scale bar: 1 µm.

Quantum dots have much better resistance to photobleaching than organic dyes.

The power-law distribution of the on and off time of quantum dots over a broad time
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scale suggests that there is no typical time scale[126], thus I chose to image at a

fast frame rate of 135 frames per second limited by the camera bandwidth, which

still provided sufficiently fast dynamics and intensity variation for SCORE analysis.

However, compared to Alexa Fluor 647 labeled microtubule, quantum dot labeling is

more nonuniform and discontinuous along the microtubule (figure 5.5(a)) presumably

due to the larger size and the quality of our sample. Figure 5.5(a) shows an overlay of

the SCORE image (red) and the average (cyan) for comparison. SCORE image clearly

shows the breaks between labeled segments (figure 5.5(b)), and is able to resolve fine

structures near the junctions of two microtubules at 90 nm spatial resolution (figure

5.5(b)).

5.4 Discussion

Super-resolution imaging has become available on a conventional epi-fluorescence mi-

croscope with little to no modification to the optical design. The fine structural

information embedded in a sequence of images can be restored in two groups of

methods: single particle localization method as in STORM and PALM, and inten-

sity fluctuation statistical approaches as in SOFI, ICA and SCORE. STORM/PALM

and their variant localization methods have becoming increasingly popular due to the

outstanding resolution. The quality of the reconstructed images are limited by es-

sentially two factors: the localization precision determined by the emitter brightness

and background noise, and sampling density that is set by the fluorophore duty cycle,

labeling density and acquisition time. Either factor can be the bottleneck of the final

image quality, and improving the other has little effect. Moreover, STORM/PALM

typically requires thousands or more images for dense enough sampling due to the

non-overlapping condition, and thus greatly limits the use in capturing dynamics

faster than minute scale. By looking at the covariances between the intensities of
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pixels statistically, SCORE is no longer limited by the non-overlapping condition,

and is able to reconstruct images with comparable quality from less frames that con-

tain denser information. In addition, any improvements in emitter brightness and its

variation, number of frames, higher labeling density, and lowered background noise

all contribute to better statistics, therefore the imaging quality is no longer limited by

one single bottleneck. In particular, a higher labeling density is preferably chosen for

SCORE instead of carefully limited in STORM. However, in the case of low emitter

density where emitters are known to separate well, single particle localization meth-

ods make use of this information that the statistical methods ignores, and are able

to resolve the locations at much better accuracy at the cost of substantially higher

acquisition time.

SCORE is closely related, but different from the other two methods that resolves

emitter distribution from intensity fluctuation, SOFI[39, 40] and ICA method[87].

All three methods share the common advantages of analyzing intensity statistics over

single particle localization methods discussed above. SOFI and its later improvement

XC-SOFI primarily takes the temporal fluctuation of individual pixels into account.

The spatial correlation (cross cumulant) information is used to interpolate estimation

between pixels to achieve finer resolution. SCORE considers the covariance between

all pairs of pixels to estimate the distribution of emitters, and by sorting and truncat-

ing the eigen modes, SCORE efficiently resolves the distribution in the linear subspace

that contains the majority of the information contained in the original image stack in

a much higher dimensional space. Also from the eigen modes obtained from the prin-

ciple component analysis (PCA), Lidke et al resolved the localization of finite number

of quantum dots from the temporal sequence of the eigen modes using independent

component analysis (ICA), however the ability to resolve individual emitters quickly

becomes intractable if more than several emitters are packed in one PSF area. Instead

of attempting to resolve individual emitters with their specific temporal blinking se-
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quence, I use the distance between the eigen modes and Gaussian functions, and our

method is capable of estimating continuous distribution rather than finite discrete

point distribution.

Because the covariance matrix does not depend on the basal intensity at each

pixel, SCORE will reject any temporally non-drifting background, such as nonspecific

autofluorescence signal. This property allows SCORE to analyze images with only

a portion of emitters switching while the rest remains on. Since the fluorescence

intermittence takes place at much faster time scale than the photobleaching, it is

applicable to temporally high-pass filter the intensity sequence at each pixel before

processing to remove the slowly varying background signal. The out of focus light

can also be treated as background light since the intensity correlation of defocused

light is delocalized and spatially convolved into more uniform signals in time, thus

contribute less to the covariance.

Many different types of fluorescent sources undergoes intensity fluctuations at fast

time scale, thus serve as possible candidates for SCORE as well as SOFI. In this thesis,

I used organic dye and quantum dots as demonstrations for SCORE imaging. Organic

dye can switch between activated and dark states in proper chemical environment, but

relatively small number of switching cycles before bleaching limits the SCORE image

quality. For quantum dots, the high brightness, robust fluorescence intermittence

and resistance to photobleaching are the major advantages as fluorescent sources.

However, the slightly larger size and toxicity are the limiting factors for using it as

probes in live systems. In the past decade, a library of fluorescent proteins are also

reported to have stochastic or controllable intensity fluctuation or switchablility in

emission spectra at fast time scales, such as mTFP0.7[63], Dronpa[3], rsCherry[134],

IrisFP[1], rsTagRFP[137]. Dedecker et al have applied intensity-fluctuation based

super-resolution technique SOFI to imaging structures labeled with Dronpa labeled

Lyn kinase[36] and resolved structure at 100-200 nm spatial scale. Their work sug-
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gested the possibility to use fluorescent protein in statistical super-resolution methods

including SCORE.

Covariance calculation can be extended to three-dimensional imaging, where im-

ages at various focal depths are collected simultaneously. In this case, photons from

the a bright emitter are distributed on multiple fields focusing at different axial depths

simultaneously, and the covariances between pixels generate a set of three-dimensional

eigen modes. Following exactly the same principle, the emitter distribution in 3D can

be estimated by measuring the distance from the PSF in 3D to the subset of the eigen

modes. The inhomogeneity of the 3D PSF in the axial direction is critical for the

axial resolution. The double-elliptical[69] and double-helix PSF[109, 110] are both

potential candidates for SCORE application in 3D.

5.5 Materials and Methods

5.5.1 Cell Culture and Immunostaining

Human HeLa cells were cultured as described in [92]. Cells were fixed in formaldehyde

followed by permeablization[92]. Fixed cells were washed in PBS 3 times, incubated

with mouse anti-tubulin (Sigma-Alderich) 24 hours at 4◦C, then washed with PBS 3

times and incubated with 20 nM anti-mouse IgG fused with Alexa Fluor 647 (Life

Technology) in PBS and 6% w/v BSA for 30 minutes. Stained cells were washed

in PBS and replaced with imaging buffer containing 50 mM Tris at pH 8.0, 10 mM

NaCl, 10% glucose w/v, 5 mg/ml glucose oxidase, 100 ug/ml catalase and 100 mM

βme [37]. All chemicals were purchased from Sigma-Alderich unless noted otherwise.

Quantum labeled cells were prepared and treated in the same way described above.

Cells incubated with primary antibody were washed with PBS 3 times, and incubated

with 20 nM anti-mouse IgG fused with QDot 655 (Life Technology) in PBS and 6%
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w/v BSA for 30 minutes. Stained cells were washed in PBS and directly mounted to

the microscope for imaging.

5.5.2 Microscopy and Imaging

Microtubule in vivo images were taken on a home-built microscope with Olympus

NA 1.4 objective. A 50 mW 643 nm laser was used as the excitation and deactivation

source, and 50 mW 405 diode laser was used as the activation laser. Both lasers were

sent to the objective with a multi-band dichroic mirror, and the a multi-band emission

filter was used to clean the emission. Images were collected using an EMCCD camera

(Andor).

Quantum dot labeled microtubule images were taken on a Nikon TE-2000 inverted

microscope. A home-built 20 mW 532 nm diode laser was used as the excitation

source, and a dichroic mirror (FF560, Semrock) and long-pass filter (XF3089, Omega)

were used as the beam-splitter and the emission filter. The images were collected with

an EMCCD camera (iXon+ 897E, Andor Technology).

5.5.3 Image Analysis

For SCORE analysis, image stacks of Alexa Fluor 647 labeled microtubule were as-

sumed to have a fixed background with a decaying intensity. The decaying background

was subtracted from the raw images before SCORE analysis. The image field is di-

vided into overlapping regions of interest with size of 8× 8 pixels, and the processed

ROIs are stitched with pyramidal weight masks (2D equivalent of triangle window

function in 1D). Quantum dot images do not have observable photobleaching, thus

background correction is not necessary. The entire image was divided into 10 × 10

ROIs and stitched in the same way described above.

STORM images in the simulations are reconstructed from the Gaussian fit of

the individual frames, since all emitters are located with 1 PSF width, no sepa-
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rate or Gaussian mixture fit is necessary. I discarded all frames that contains less

than 300 photons prior to Gaussian fit. The STORM images were rendered from

the localization results, and each detected emitter is displayed as a Gaussian whose

width scales with the inverse square root of the emitter intensity as described in

[37]. Images of Alexa dye was first processed using QuickPalm plug-in of ImageJ

to obtain the center and width information, which are used to render the STORM

image as described above. All simulations, Gaussian fit in STORM simulations, and

STORM image rendering and SCORE analysis were performed in MATLAB (The-

MathWorks,Natick,MA).
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Chapter 6

Developing Tracking Algorithm for

Mutually Exclusive Objects

6.1 Introduction

A broad range of biological problems on many length scales, from cells to whole

animals, require the ability to track moving individuals with a group. Advances

in computer vision in the past two decades had enabled computed-aided automatic

or semi-automatic tracking programs to greatly boost the capacity to analyze large

amount of data and reduce the involvement of human observers. However, many

traditional tracking algorithms struggle when the objects come into physical contact

or even overlap within an image. Recent work addressed this problem by separat-

ing objects using a Gaussian mixture model with an area prior followed by identity

matching and successfully applied this approach to track walking Drosophila with

minimal human supervision [20]. Tsai and Huang further extended this approach by

refining the segmentation of the Drosophila images into different body parts which

enables more detailed measurements to be made [147]. A non-Bayesian frame work

was used by Chaumont et al. to track multiple mice by modeling the animal body
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with a series of physical “primitives” connected by joints and elastic springs that can

interact with each other [33]. All of these algorithms are capable of handling large

amounts of images, > 104 frames, with relatively little tracking error that is then

corrected manually. However, this error rate increases with reduced image quality or

when the objects move close to one another more frequently.

In most tracking solutions, image segmentation is performed on each frame to

identify individual objects. This is then followed by an identity matching scheme

between frames based on distance, object birth and death probabilities and other

estimated parameters [72, 20]. Active contours (snakes) are a popular image segmen-

tation approach that is widely applied in analyzing biological and medical images.

The contour of the compartment boundary is treated as an elastic band that inter-

acts with the image and exhibits a damped relaxation to the minimum energy state

[75]. In addition to closed-contour uses for measuring parameters like object area,

open active contours can be used to detect filamentous objects such single actin fila-

ments [86] and actin networks [164]. In these approaches, active snakes can be allowed

to merge, break, fork and recombine.

In this work, we solve the tracking problem using a deformable membrane model

which is an extension of the active contour model to higher dimensions. In order

to prevent merging of multiple objects, we added a repulsive interaction between

neighboring contours. I test this method on two practical examples from neuroscience

and microbial ecology: walking Drosophila and gliding bacteria Myxococcus xanthus

are tracked at high density with low error rate (¡ 5× 10−6 per fly per second, or 10−5

per cell per second), and at high efficiency (better than 50 frames per second when

tracking 5 flies). Finally, we discuss the close connection between Bayesian techniques

the energy minimization approach.
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6.2 Repulsive open active contour model

6.2.1 The classical active contour model

In the classical active contour model, a feature in an image, usually a line, boundary

or edge, is found by relaxing an elastic contour that interacts with the image to its

minimum energy state. The energy of the snake consists of the internal elastic energy

of the contour and the image energy based on the location of the contour in the image

Eim, calculated along the contour x(s), in N dimensional space

E =

∫ B

A

(
1

2

(
α|x′(s)|2 + β|x′′(s)|2

)
+ Eim(x)

)
ds, (6.1)

where α penalizes the energy when the contour is deviated from a uniform straight

line and β adds an additional cost to bending. A and B are the termini of an open

contour, which we define as 0 and 1, or in case of a closed contour, the integral path

is closed. Minimizing E is equivalent to solving

αx′′ − βx′′′′ −∇xEim(x) = 0. (6.2)

Equation 6.2 can be written discretely as

A∗xi +
∂Eim
∂xi

= 0, i = 1, 2, ..., N, (6.3)

where each xi is an M -element vector that defines the contour using M discrete points

that are equally spaced along s. A∗ is the M ×M circular pentadiagonal discrete
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equivalent of the operator −αd2/ds2 + βd4/ds4

A∗ =



a0 + b0 a1 + b1 b2 0 ... 0 b2 a1 + b1

a1 + b1 a0 + b0 a1 + b1 b2 0 ... 0 b2

b2 a1 + b1 a0 + b0 a1 + b1 b2 0 ... 0

... ...

0 ... 0 b2 a1 + b1 a0 + b0 a1 + b1 b2

b2 0 ... 0 b2 a1 + b1 a0 + b0 a1 + b1

a1 + b1 b2 0 ... 0 b2 a1 + b1 a0 + b0



,

(6.4)

with a0 = 2α, a1 = −α, b0 = 6β, b1 = −4β, b2 = β. Equation 6.3 can then be solved

iteratively via

xτi = (A∗ + γI)−1
(
γxτ−1i −∇iEim(xτ−1i )

)
, (6.5)

where τ is the iteration index, γ sets the time step, and ∇i denies the spatial deriva-

tives ∂/∂xi. Additional forces can be conveniently incorporated into the model by

adding a force term Fi

xτi = (A∗ + γI)−1
(
γxτ−1i −∇iEim(xτ−1i ) + Fi

)
, (6.6)

Numerous variations of this active contour model have been developed for specific

image-analysis and tracking problems, including the use of variable stretching and

bending stiffnesses α and β, sophisticated image potentials Eim, and the inclusion

of additional forces for specific purposes. Here, we aim to solve the multiple object

tracking problem in time-lapsed movies.
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6.2.2 Open contours

While a circular pentadiagonal matrix A∗ is suitable for dealing with a closed contour,

for open contours, the motion of the two tips needs to be considered separately. I

modify the first and last two rows of A∗ such that the internal force acting on the

tips is equal to half of the internal force on the nearest neighbor, but in the opposite

direction

A =



−a1/2 −a0/2 −a1/2 0 ... 0

a1 a0 a1 0 ... 0

... ...

0 ... 0 a1 a0 a1

0 ... 0 −a1/2 −a0/2 −a1/2


. (6.7)

I also set β = 0 in all the open-contour examples because penalizing the contour

length adds an effective energetic cost to path curvature. I find that a non-zero value

for beta does not qualitatively change the behavior of the open contours analyses.

Without an additional constraint, the tips are left free to interact with the image.

Tip forces can be added to elongate or shorten the contour in order to control the con-

tour length. In many multiple object time-lapse tracking problems, the characteristic

spatial scale of the underlying objects is known and does not change, even though

the objects can change position, orientation, and twist over time. In this work, we

fix the length of the contours by adding a harmonic tip-stretching force, Fstr, based

on the length of the contour, l0,

Fstr = −κ(l − l0)ρ̂, (6.8)
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where ρ̂ is the tangential direction of the contour at the tip pointing outwards,

ρ̂ =


− dx/ds
|dx/ds| : s = 0

dx/ds
|dx/ds| : s = 1

0 : otherwise

, (6.9)

l is the length of the contour, l =
∫ 1

0
|dx/ds| ds, and κ governs the relative magnitude

of the stretching force.

6.2.3 Track contour motion over time

The kymograph of a contour that moves in N -dimensional space over time is a con-

tinuous surface in N + 1 dimensions. In certain types of problems where the objects

undergo Brownian motion, a global optimization strategy such as the framework to

solve the linear assignment problem (LAP) is usually necessary. However, in many

other cases where the trajectories are smooth, local optimization is sufficient and more

efficient. Here we apply the concept of active contours to the temporal dimension as

well as the spatial dimension within each frame, and optimize the localization of the

two-dimensional active membrane in the N + 1-dimensional kymograph. Different

from freely moving contours in all spatial dimensions, the object has one unique lo-

cation at each time point, and no localization information is carried at times between

frames. For these reasons, we require the control points of the active surface to move

within each time slice but do not allow along the temporal axis. For active surface,

xit is a M × T matrix that determines the location of the contour at all time, where

M is the number of control points along the contour, and T is the number of frames.

I seek the solution of

Axit + xitB
T +

∂Eim
∂xit

− Fit = 0, i = 1, 2, ..., N, t = 1, 2, ..., T, (6.10)
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where T × T pentadiagonal matrix B that calculates the derivatives in time has the

same structure as A. This equation can also be solved iteratively as

(A+ γI)xτit + xτitB
T +∇iEim(xτ−1it )− γxτ−1it − Fit = 0, (6.11)

which is in the form of a Sylvester equation.

In practice, instead of optimizing the active surface on all frames, we slice the

kymograph into overlapping blocks in the temporal dimension and sequentially obtain

the optimized short localization segments in accordance with the results from previous

blocks in time. When the temporal projection of the kymograph of one or multiple

objects has overlaps, incorrect initial condition will cause slow convergence or trap the

solution at local minimums where the registration of traces to image potential minima

is swapped. By solving the problem in a block-wise manner, we avoid incorrect initial

placement of the contours and greatly reduce the computation time using the local

initial guess based on previous results.

6.2.4 Repulsion between multiple contours

Active contour and surface models can be applied to an image or time-lapse movie of

multiple objects by starting at different initial locations. However, when the objects

are in close proximity to one another, the barrier that separates the two objects

in the image energy landscape can diminish below a significant level due to noise

and other image-based effects (Fig. 6.1). As a result, two contours or surfaces with

different initial locations can converge to the same image energy minima. To avoid this

collapse, we optimize the energy of multiple snakes simultaneously with the addition

of a mutual repulsive force between the contours or surfaces. Because the repulsive

force resembles physical exclusion, we limit the range of this force to the approximate
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Figure 6.1: Schematic illustration of the principle of the repelling active contour.
(a) While objects are far away and the attractive image potential fields (blue solid
line) don’t interact, two active objects (red and cyan circles) fall to the minimum
image energy correctly. (b) When objects get close, the potential fields (blue dashed
lines) overlap and causes dislocation of the minima, or merged minimum. Two active
objects fall into the same minimum. (c) With the repulsive potential added (red solid
line), the total field the other object is in is recovered (cyan solid line). (d) This same
principle can be easily applied to two and higher dimensions as shown.

size of the objects being tracked, and set the force magnitude to match the depth of

the typical image energy minima.

In our model, we choose the force to have a quadratic form with the cutoff distance

x0, the same as the typical width of an object:

F repel
lm (sl) =

∫ 1

0

[
1− |xl(sl)− xm(sm)|

x0

]
xl(sl)− xm(sm)

x0
dsm, (6.12)
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where F repel
lm (sl) is the unit arc length density of the repulsive force acted on the lth

contour due to the presence of the mth contour. A discretized version of Eq. 6.12

takes the form

F repel
it;lm =

N∑
j=1

[
1− |xit;l − xjt;m|

x0

]
xit;l − xjt;m

x0
, (6.13)

where xit;l is the coordinate of the ith control point of the lth contour at the tth frame.

Here, the repulsive force is not normalized by to the actual length of the contour, but

this is not a significant problem if all contours have similar lengths. A cubic potential

is a sufficiently close approximation to the overall shape of the attractive potential

generated by Gaussian smoothing of the original image.

6.3 Implimentation to object tracking problems

6.3.1 Drosophila walking behavior

I first demonstrate the repulsive, active membrane model on movies of walking fruit

flies. Drosophila melanogaster has become a popular model system for studying

complex behaviors such as courtship, aggression, and learning through the analysis

of time-lapse movies of fly position. In these experiments, individual flies often come

physically close to each other causing their images to merge. The repulsive-snake

model is particularly adept at resolving the position of flies during these events.

I recorded a 30-Hz movie of five male flies walking in a circular, 2.5-cm diameter,

arena, a density of 1 fly/cm2. Camera magnification was set such that a fly subtends

a 7-by-15 pixel area in the image. Our tracking algorithm models each fly as an

open contour, length 12 pixels, with 3 control points (Fig. 6.2). Our tracker is able

to follow five flies correctly in all 20,203 frames (a total time of 673 seconds). An

oval shaped image potential constraints the orientation of the open snakes, so that

body direction is correctly resolved. Occasionally, a fly exhibits an escape behavior
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Figure 6.2: The velocity exacted from the tracking results of five male flies. The
velocity is decomposed to the parallel and perpendicular components according to the
direction of the fly pointing direction. (a) A sample image of five flies in the circular
arena. The historical trajectories of the flies are labeled in different colors. (b) The
raw parallel component is plot as a function of time. When fly jumps (indicated
by arrows), the tracker may reverse the orientation and negate the velocity. (c-g)
Velocity histograms of five individual flies. The color indicates the logarithm of the
counts in each bin.
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that causes a quick change in location and head direction. Because our algorithm

does not currently consider image details other than the second-spatial moment, we

do not attempt to distinguish head from tail although this is possible using purely

image-based metrics in certain circumstances. Consequently, jumps may reverse the

head-tail orientation (Fig. 6.2b). However, because flies mostly move forward, in the

direction of the head, and the jumping frequency is small, on the order of 0.1 min−1, a

Hidden Markov method is suitable for the detection of jumps. I use this information

and adopt the Viterbi algorithm to determine the forward-backward head direction

as the last step of our fly tracking software [28]. Figure 6.2 (c-g) shows the 2D,

log-probability distribution function of walking velocity for each of the five flies.

To increase the number of fly-fly encounters and test the ability of the repulsive

algorithm to distinguish individuals, we placed one female and two male flies in the

arena. Both male flies spend a large amount of time attempting to court the female

fly, resulting in frequent merging of the fly images. 85% of the time at least one

of the male flies is within 6 mm of the female fly and 31% of time both male flies

are with this distance (Fig. 6.3a). Images are analyzed with our tracking algorithm

with 100% correct registration of flies and only one orientation reversal caused by

a jumping event (Fig. 6.3b). I calculated the position of a fly relative to another

for all pairs of flies. Similar to previous analyses [20], we find that male flies tend

to approach the female fly from the ear (Fig. 6.3 c, d), while maintaining a head

direction oriented towards the female (Fig. 6.3 e, g). I compared the performance

of our algorithm to the output of the CTRAX fly tracker [20] using the 5-male assay,

the one female, two male (1F2M) assay, and a high density movie with 16 flies in

a 5 cm2 arena (Table 6.1). At high densities, flies frequently come in contact with

each other and jumping is more frequent. Because CTRAX allows the number of

objects to vary, it has three types of tracking error: identity swap, lost and spurious

detection. In our repulsive contour model, where the number of flies is fixed, identity
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Figure 6.3: Tracking results of touching and jumping Drosophila are shown in the
three dimensional kymograph, where the contours of the binary fly mask are indicated
in false color according to time. The positions of the objects are shown in the same
color and connected by lines as visual aid. (a) Two flies move in proximity of each
other and then apart, causing the mask and contours to merge and split again. (b)
A missing frame is caused by the a fly jumping event, followed by re-orientation.
(c) -(h) The distribution of the relative position between two flies is shown as the
logarithm of the count. The displacement is measured relative to the first fly on the
perpendicular (x) direction and parallel (y) or the head direction.
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Assay
Length of Movie Fly-fly CTRAX Repulsive Contours

(frames) contacts Error Speed (fps) Error Speed (fps)
5 males 20203 1427 0 4.4 0 40
1F2M 9000 12956 25 3.5 0 70
16 flies 4581 8717 9 3.1 3 10

Table 6.1: Comparison between CTRAX and the repulsive snake model. For all three
movies tested, the number of fly pairs that have a distance closer than twice the fly
width is counted as a fly-fly contact. In speed comparisons, both trackers were run
on a single CPU core.

swap is the only kind of error. In addition, we compare the speed of the two tracking

packages when run on an Intel i5 processor.

In the 5-male movie, where flies rarely come in close proximity to each other (3%

of the time), both trackers are able to track all the flies without error. At higher fly

density however, 3 flies cm−2, both trackers are still able to distinguish individual

flies although CTRAX has a small portion of spurious detections and fly jumping

becomes the primary source of identity swap error. When the images flies constantly

stay in close proximity, our model is still able to locate the flies from the boundary

contour, but CTRAX suffers from overlapping detections. Moreover, we observe

that the tracking quality of CTRAX is crucially sensitive to value of user-defined

input parameters such as the image threshold and the Gaussian oval shape prior that

requires multiple trials to optimize. In comparison, the repulsive snake model only

requires the knowledge of the spatial scale, either the fly length or width, and the

number of flies. The repulsive snake tracker is also 3-20 times faster than CTRAX.

6.3.2 Myxococcus xanthus gliding motility

Top highlight the ability of the repulsive contour technique to track densely packed

objects, we analyzed movies of 2D swarms of Myxococcus xanthus cells. Myxococcus

xanthus is a soil bacterium that forms complex, 3D group structures by gliding along

solid surfaces (ref a review of myxo!). We immobilized Myxococcus xanthus cells
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between an agarose gel and a glass surface such that cells form a single layer at the

interface. Using bright field microscopy, the bacterial cell body appears dark and is

surrounded by a bright halo. Cells are often tightly packed and the image contrast

between the neighboring cells is poor.

I preprocessed the raw microscopy images before calculating the image-based po-

tential for contour relaxation. I first calculated the eigenvalues and eigenvectors of the

Hessian of the images to quantify features such as valleys (the cell bodies) and ridges

(the cell halos). Because the background of the image is uniform, the two eigenvalues

of the Hessian are linearly correlated with the pixel value. Hence, the first two prin-

ciple components of the two eigenvalues and the image intensity are used to quantify

image features. Qualitatively, the pixels are distributed in two clusters within this

two-dimensional projection, with valley pixels residing in one cluster and the ridge

pixels in the other. All background pixels lie within the small region between the

clusters. In areas of high cell density and low image contrast, the projected distribu-

tion of individual pixels is similar to the background, however the alignment of the

Hessian eigenvectors is more locally ordered than the background. The correlation

length of the cell alignment typically extends to a few cell widths. Analogous to

the quantification of the order in magnetization, each pixel carries an effective dipole

that points along the direction of lager eigenvalue with an magnitude defined as the

difference of the two eigenvalues, and the locally averaged dipole moment is the or-

der parameter that describes how well nearby features are aligned. The alignment

order parameter, together with the two principle components of the eigenvalue-image

intensity space, forms a three-dimensional space in which the valley, ridge and back-

ground pixels are clearly separated. The orientation of the three sets is determined

using an expectation-maximization algorithm and the pixels are simply clustered into

three types by the coordinates along the major direction of each set of pixels (Fig.

6.4). I undersegment the valley and the background to prevent areas of too-high im-
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age potential as the repulsive contour model is robust against undersegmented ridges

but prone to errors caused by oversegmented valleys. The enhanced image used to

calculate the image potential is computed using

I = pb + 0.5pr, (6.14)

with

pb + pr + pv = 1, (6.15)

where pb is the probability of a pixel being the background, pr being the ridge, and pv

being the valley. I is Gaussian blurred with σ = 1.5 pixels before taking the gradient

to give a smooth image force field (Fig. 6.4d).

Snakes of 25 control points are evolved in an image gradient calculated from the

preprocessed images (Fig. 6.4d). The repulsive force between control points on nearby

cells is taken to be a quadratic function of the distance

Frep =


(1− ‖xit‖/d0)x̂ij : |xit‖ < d0

0 : |xit‖ ≥ d0

, (6.16)

where xij is the distance vector between two control points on two different contours

and x̂ij is the unit direction vector. d0 is a cut-off distance that sets the length scale

of the repulsive force. I set d0 to be 70% of the averaged cell width, about 7 pixels.

To prevent contours from starting the relaxation procedure at an initial position

that crosses a ridge in the image (Fig. 6.5 ), we reduce the initial length of each

contour to eliminate possible crossings, and let the lengths of the snakes grow back

to their normal length during relaxation. This growth is implemented by adjusting

the targeted snake length l0 in equation 6.8 during each iteration by an amount

∆lτ0 = tanh(l0 − lτ−1), (6.17)
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Figure 6.4: Raw image of Myxococcus xanthus cells is take under a bright field mi-
croscope, and the image is transformed into the probability map that is then used to
generate the image potential to interact with the snakes. (a) A complete field of view
of 41 µm× 41 µm (512×512 pixels) contains about 200 Myxococcus xanthus cells.
The relaxed position of the contours are overlaid on top of the grayscale image. (b)
Zoomed in image of a portion in (a). (c,d) The large and the small eigenvalues of the
Hessian matrix in (b). (e) The averaged eigenvectors can indicate the magnitude of
alignment of eigenvectors. (f) The distribution of pixels in the classifier coordinate.
Pixels are categorized into three groups along the three axes, and color-coded in red
(ridge), green (valley) and blue (background). The projections along three axises are
shown to assist vision. (g) After classification, each pixel in the image is color coded
in the same way as in (f) according to the probability of being ridge, valley or back-
ground. (h) The enhanced image is calculated from the classification probability map
shown in (g). (i) Image intensity profile on a line segment illustrates the nonuniform
contrast at the edge and at the inside of a cell cluster.
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where lτ and lτ0 are the actual length and target length at iteration τ , and l0 is the

normal length. The increased length is split between the two ends of the contour

according to the resistant force exerted on the termini:

∆lτhead =
Ftail

|Fhead|+ |Ftail|
∆lτ0 (6.18)

∆lτtail =
Fhead

|Fhead|+ |Ftail|
∆lτ0 , (6.19)

where Fhead > 0 and Ftail < 0 are the tangential components of the image and

repulsive forces exerted on the termini. Figure 6.5 demonstrates how this inchworm-

like motion corrects misplacement of the contours. With the length initially shortened,

the initial crossing configuration is eliminated (Fig. 6.5b). The upper tip grows until

it hits the ridge and is unable to grow further due to steric constraints (Fig. 6.5c,

d). The lower tip keeps growing along a narrower valley until the length reaches the

target length (Fig. 6.5e, f).

Fhead

Ftail

Δlhead

Δltail(a) (b) (c) (d) (e) (f )

Figure 6.5: A snake can ride across a ridge and cause a marginally stable configuration,
and allowing tips to grow solves this problem. (a) The total growth of the two ends of
a contour is determined by the current length and the normal length of the contour.
The growth is distributed unevenly to two ends according to the tangential resistance
force. Dashed line indicates a hypothetical contour and the two ends are indicated
by the round dots. (b) Without the growing ends, the contours are trapped in a
marginally stable configuration, where the right contour leaks to the left pocket and
squeezed left contour short. (c-f) The length of the contours are shortened initially
and let grow. The white arrow indicates the direction of the tip growth, and the
white dashed lines are the visual guide to help illustrate the growth.
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I have also included several non-essential optimizations to the dynamics of the

contours. The tangential component of the force exerted on each control point is

individually calculated and the average value is applied on each control point. The arc

distance between control points is also uniformly redistributed after a certain number

of iterations. These optimizations improve the axial relaxation without qualitatively

changing the behavior of the contours.

I used the repulsive snake model as described above to detect Myxococcus xanthus

motion within a 41 µm×41 µm field consisting of 512×512 pixels (Fig. 6.4a). 205 cells

are initially within the field of view and we tracked these cells for 400 frames at a rate

of 12 frames/min. During the time course of the movie, cells move a distance about

equal to 10 times their cell length and the local adjacency order is completely altered

for most of the cells. Our algorithm successfully tracks 204 cells of the total 205

cells with one cell leaking into a neighboring cell image that entered the field in the

middle of the movie. Figure 6.6a shows the projected traces of all 205 cells, labeled in

different colors and overlaid on the first frame of the movie. These traces indicate that

cells are capable of smoothly turning while gliding and reversing direction of motion.

The tangential speed of one highly motile cell shows accurate velocity estimation and

directional reversals approximately every 7 minutes (Fig. 6.6b). Figure 6.6(c) shows

a histogram of the smoothed tangential speed of all 205 tracked cells. The speed

roughly follows an exponential distribution with a mean and variance of ∼ 2µm/min,

in agreement with a previously reported values (REF!!!!).

6.4 Discussion

Active contour models are widely applied in detecting features with high contrast

such as boundaries in an image and is shown to be successful especially for closed

contours. Several studies applied the concept of active snake in detecting open con-
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(a)
(b)

(c)

Figure 6.6: Tracking results of Myxococcus xanthus cells. (a) Trajectories of 202 cells
are indicated in different colors, overlaid with the first frame of the movie. (b) The
tangential gliding speed along the cell is plot against time. Raw speed trace (light red)
is smoothed by Gaussian kernel with σ = 72 seconds (dark red). Six reversions are
identified by the zero-crossings of the smoothed speed curve (indicated by arrows). (c)
The histogram of gliding speed magnitude of 205 cells roughly follows an exponential
distribution with mean and variance of 2 µm/min.

tours with finite length, for instance actin filaments. On the other hand, along with

other machine vision techniques that segments targets from an image, active contour

can be applied on individual images in time-lapsed movie in particle tracking prob-

lems. The solution is usually separated into two stages. The objects or particles are

first identified in each frame individually, then the correspondence is assigned between

objects in different frames. Merging/disappearing or splitting/emerging are allowed

with specific statistical properties, usually in a maximum-likelihood fashion based on

the intensity level, shape changes or moving distance. In this two-stage approach,

the object assignment is limited by the object detection quality while it is not readily

easy to use the inter-frame object assignment information to assist particle detection.

Optimizing assignments across multiple frames can deal with single frame tracking

error but dramatically increases computational expenses. In our approach, we treat
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the temporal dimension as an extrusion of the spatial dimension of the images and the

object trajectories as elastic continuum that interacts with both the stacked images

and themselves as repulsive forces. Similar to the penalty based on moving distance

in the linear assignment problem, the elastic energy in temporal dimension penalizes

trajectories that deviates from linear motion, but different from the two-stage solu-

tions, the correspondence assignment is part of the localization of the objects using

image intensities.

Level set method is insensitive to the topology of the contours, and therefore

ideal in dealing with contours with unspecified topological features. One drawback

that limits the application of active contour and level set methods is the difficulty

in applying shape constrains to the contours. This problem can be partly solved by

using shape prior in level set approaches at the cost of computation time. However in

many cases, the characteristic topological and geometrical features remain conserved

through the entire movie, for instance the fly shape and size in the first example,

cell length in the second example and the number of objects (flies, cells) in the two

examples above. These conserved geometric characters are predetermined and placed

as constraints to the solution in terms of the snake length in the first two examples

and serves as explicit shape prior. In addition to resembling the physical shapes

with geometric constrains in size and shape, our model also captures the mutually

exclusive nature of these objects by adding the repulsive force, which effectively pre-

vents trajectories from crossing or collapsing into one image potential minima as the

physical repulsion prevents overlapping of the objects.

Another drawback of active contour methods is its sensitivity to the initial position

and local minima in image potential. In the second example, ambiguous segmenta-

tion of cells takes place frequently due to the poor quality of the raw images, causing

faulty gaps between cells and bumps along the cell body, especially in area of high

cell density. Upon sudden cell acceleration, the linear prediction may place the ini-
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tial position into a faulty local minimum as shown in figure 6.5(b). Among various

segmentation algorithms, watershed is particularly suitable in dealing with varying

boundary values, at the cost of the convenience to control the geometric properties

of the segmented area. I adopt the idea of watershed algorithm in our active snake

model in terms of dynamic contour length, and the tip growth are governed by the

resistant forces on the two termini. This tip growth scheme is in directly analogy

to the case in one dimensional watershed method, where the expansion of the two

boundary points is inversely proportional to the steepness of the potential well. The

combination of active contour and tip growth is essentially a watershed algorithm

with an explicit shape prior that has the capability to correct mistakes caused by

improper initial positions (figure 6.5(c-f)).

Image preprocessing is usually beneficial, sometimes essential in order for the ac-

tive contours to relax into the correct potential minima. Because efficient dynamics

of the contours requires a smooth potential landscape with slowly varying gradients,

in our examples the raw images are all Gaussian smoothed before taking the gradient,

or equivalently convolved by the derivative of gaussian (DoG) kernel. Several factor

determines the blurring radius, including the spatial scale of the objects (fly width,

cell width) and the distance between prediction and the true position of the objects,

usually at the same scale of the moving distance between frames. The blurring kernel

can be set variable depending on the motion of the objects, such as in the fly track-

ing case where fly undergoes normal walking behavior and occasional large distance

jumps. I use a Gaussian kernel with the radius the same as the fly width for the

former case to achieve fast performance, and if a jump is detected, a global linear

attractive potential that is only visible to the jumping flies is added on top of the

original kernel. The image preprocessing is more essential and subtle in the second

example. Comparing to the raw images, the pixel intensity at the cell body, cell

boundary and background is more uniform after we convert the pixel intensity into
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assignment probability of three pixel categories. The elevated background intensity

prevents contours from leaking to the outside, which is a severe problem if the im-

age is not processed (data not shown). Pixel classification also enhances the barrier

between cells and normalizes the pixel values on the cells.

Since the evolution of the contours follows explicit dynamics indicated in equation

6.3, it is convenient to implement additional factors that affects the tracking results

in terms of explicit forces, or modify the elastic property to fit particular shape

requirements. The length constraints and tip growth are applied in the form of

explicit force in the case of tracking flies and Myxococcus xanthus cells. In the first

example, we also add energy costs to penalize sharp turns, which is observed to cause

identity swaps in rare ambiguous frames. In addition to applying explicit forces to the

contours, the internal degrees of freedom of the contour curvature allows flexibility

in modeling more complex shapes. For instance, the bending elasticity can be set

as a variable along the contour instead of a constant, therefore allowing parts of the

contour to act as soft joints and the rest as hard stems. This is especially suitable in

tracking objects with internal motion such as head turning for mice.

Because the image information in adjacent frames are considered as a whole in the

localization, minor corruptions in images can be corrected by the adjacent frames.

On the other hand, major corruption can cause propagating errors in the following

frames. The relaxation to the right image potential minimum suffers especially when

the image potential energy landscape is highly curved with a large number of local

minima, such as in the case of Myxococcus xanthus images where cells are bent and

intertwined with identical local statistical character of pixel intensities. Inchworm tip

growth has the ability to correct initial misplacement given that the cells only moves

tangentially in a small amount (20%) relative to the cell length within two frames.

Our algorithm also does not consider the case new objects entering the image. New
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objects can be detected using other methods such level set and then treated as a

regular repulsive active snake.

Comparing our active snake tracking model that uses the explicit dynamics of

the contours with the Bayesian approaches such as in [20], the essential principles

are correspondingly similar to model the physical properties of the objects. Active

contour model treats images as a potential energy landscape, and the objects are

described by a set of contours with specific lengths and bending properties to define

the shape. Contours move according to the image potential with certain damping

factor until relaxing at a minimum, and we add repulsion forces between objects to

prevent merging. Correspondingly in Bayesian approaches, each image is treated as

a spatial distribution of pixel vales, and an object is a parameterized distribution

model with particular shape priors, such as the covariance and centroid of a Gaussian

distribution. Tracking is essentially maximizing the posterior likelihood of the mod-

eled distribution explaining the image, which involves a particular numerical gradient

descending scheme similar to the damped dynamics of contours. A Gaussian mixture

model is adopted in case of multiple object tracking, which clusters pixels into groups

with small or no overlaps resembling repulsion between Gaussian mixtures.

138



Chapter 7

Conclusions

Mechanical cues are known to be important to cellular physiological function in both

eukyreotes and prokyreotes. For bacteria, the key mechanical parameter, the mem-

brane tension regulates the turgor pressure and cell growth rate. I used AFM and

fluorescent microscopy to probe the elastic properties of live E. coli cells in a system

that allows us to separately probe pressure and elasticity. Our results indicate that

the turgor pressure in live cells is ∼ 30 kPa, or ∼ 0.3 atm. My data further indicate

that the cell wall stress-stiffens. Stress–stiffening affords a unique mechanical advan-

tage to cells by preventing abrupt cell shape changes against perturbations of external

osmolarity while maintaining a relatively compliant cell elasticity under normal condi-

tions. In combination with more compliant cytoplamic membrane, the nonlinear cell

wall elasticity provides a passive adaptation strategy that balances between tension

measurement sensitivity and protection against osmotic shocks.

The bacterial cell wall undergoes highly active remodeling during cell growth. For

most bacteria, maintaining a specific shape is essential for many cell functions inter-

nally and externally when interacting with the environment. The shape of the bacteria

cell wall is determined by the spatial and temporal order of the material insertion

along the cell wall, yet the specific insertion rules are elusive. To depict the temporal-
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spatial growth order, I developed a novel platform that used high density fluorescent

labeling over the entire rod-shaped gram-positive bacteria B. subtilis cell surface to

capture the morphological changes of the cell wall at sub-cellular to diffraction-limited

spatial resolution and minute temporal resolution. Assisted by this approach, I found

that chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both

spatially and temporally. Regions of high growth and twisting activity have a typical

length scale of 5 µm, and the growth rate persists for 10-40 minutes. Whether this

heterogeneity of growth is caused by the distribution of the peptidoglycan synthesis

complexes internally, or by inter-cellular differentiation among individual segregated

cells remains unknown. This platform is also able to connect the distribution and

motion of the PG synthesis complexes to the actual material insertion to help under-

stand how microscopic molecular process self-organizes to give rise to a global order

in the cell shape.

Motivated by the need to resolve densely distributed quantum dots on the surface

of the cells at high temporal resolution for cell wall growth map measurements, I de-

veloped a super-resolution imaging technique based on the statistics of the intrinsic

fluorescence intermittence of quantum dots, namely the Spatial Covariance Recon-

struction (SCORE) microscopy. It makes use of the intensity fluctuation variation

correlation between all pairs of pixels and the known point spread function (PSF)

to reconstruct a probability density map for the fluorophore distribution. It achieves

sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Compar-

ing with the single particle localization based techniques such as STORM, PALM and

FIONA, SCORE is typically 10 to 100 times faster. SCORE microscopy is insensitive

to background and can be applied to different types of fluorescence sources, including

but not limited to organic dye and quantum dot that we have tested experimentally in

this work. It is also easy to implement experimentally with virtually no change to the
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existing imaging setup, and can be extended to three-dimensional super-resolution

imaging.

Also initiated from the cell wall growth map project, I developed a multiple-object

tracking algorithm for time-lapsed movie based on the active contour model, taking

into account the physical exclusion of the objects. In our model, multiple oval-shaped

or elongated curved objects are represented by open elastic contours with individually

fixed length in each frame, and the motion of objects in time is treated as an extru-

sion in the temporal dimension, thus the spatio-temporal kymograph are modeled as

mutually repulsive elastic membranes. We illustrated the application of the repulsive

active membrane model on two sets of realistic experimental data, tracking multi-

ple Drosophila walking and chasing, and tracking individual curved gliding bacteria

Myxococcus xanthus at high density. Individual objects are successfully tracked at

high efficiency at video frequency with low error rate (10−4) that can be conveniently

corrected in additional separate steps.
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Appendix A

E. coli strain YD133 and YD143

construction

A.1 Introducing gene knockouts from the Keio

Collection

E. coli strain YD133 (∆fimA∆fliC∆flgE) is constructed from strain K-12, and the

deletions are introduced from the Keio Collection by P1 transduction following the

protocols described in [9]. The Keio collection is a library of E. coli nonessential gene

knockouts, specifically replaced with a cassette of kanamycin resistance gene and FLP

recognition target (FRT) sites. The cassette can be easily introduced to a recipient

strain by transduction to delete any target gene, and then the cassette can be removed

by FLP recombinase. In this protocol, the FLP recombinase is carried by a plasmid

pCP20 that also has a temperature sensitive replicon. After the cassette is removed,

the plasmid curing is achieved by growing the cells at a specific temperature.
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A.2 Construction of YD133

To construct E. coli strain YD133, I started from the flgE::kan strain from the Keio

Collection. Plasmid pCP20 is transformed into strain K-12 flgE::kan by electropora-

tion. The transformants are grown on LB agar plates containing 10 µg/ml chloram-

phenicol and 50 µg/ml ampicillin at 30◦C overnight. Transformants picked from the

resulted colonies are grown in LB liquid media containing 10 µg/ml chloramphenicol

and 50 µg/ml ampicillin at 30◦C overnight to pop out the kanamycin resistance cas-

sette in the recipient strain, then subcultured and grown at 37◦C to cure the pCP20

plasmid. The deletion of the kan cassette and the plasmid curing can be verified

according to the sensitivity of kanamycin, chloramphenicol and ampicillin.

To introduce new gene deletion to a strain, the recipient strain is transfected

with the P1vir lysates of the donor strain from the Keio Collection. The detailed

protocol of preparing lysates and transduction is listed in the following sections. The

transductants are grown on LB agar plates containing 50 µg/ml kanamycin to select

for the kan cassette from the donor strain. After the target gene is replaced, the

cassette can be removed by the procedure described above using plasmid pCP20.

Following this protocol, I sequentially deleted flgE and fimA to finally obtain strain

YD133.

A.3 Construction of YD143

E. coli strain YD143 (∆fimA∆fliC∆flgE imp4213 ) was constructed for the bulging

experiment probed with AFM. This strain carries a frame deletion in the lptD gene,

that gives imp4213 strain a higher permeability than the wild type cells. YD143

was built by introduction lptD mutation into strain YD133 that had no surface ap-

pendages by P1 transduction following the procedure in [116]. Briefly, lysate of E. coli

strain NR693 (MC4100 carB::Tn10 imp4213 ) was prepared in advance, and was used
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to transfect the recipient strain YD133. The transductant was grown on selective

LB plate containing 12.5 µg/ml tetracycline. The carB :: Tn10 allele is 20%-25%

linked to the imp locus, thus the around one fifth of the transductants contains the

imp4213 mutation, which is verified by the inability to grow on MacConkey agar.

The carB :: Tn10 allele was then removed by a transduction with the imp4213 lysate

to make strain YD143 by selective growth on the M63 minimal plates because carB

null mutants cannot grow on minimal media. The YD143 is verified by its sensitivity

to vancomycin, tetracycline, MocConkey agar, and the ability to grow in minimal

media.

A.4 Preparation of and Transduction Using P1vir

Lysates

The protocol listed here are the same as described in [127]. For reader’s reference,

the protocol is repeated here:

1. Inoculate a single colony of the donor strain in 5 ml LB medium and shake at 37◦C

overnight.

2. Inoculate 0.05 ml of the overnight culture in 5 ml of LB medium containing 0.2%

glucose and 5 mM CaCl2.

3. Incubate for 30 minutes at 37◦C with aeration.

4. Add 0.1 ml of a P1vir lysate ( 5× 108 phage/ml).

5. Shake or rotate at 37◦C for 2-3 hours until the cell lyse.

6. Add 0.1 ml of chloroform and vortex.

7. Centrifuge at 4500g for 10 minutes to pellet the debris.

8. Carefully transfer the supernatant to a sterile, screw-capped tube. Add 0.1 ml of

chloroform and vortex to mix. Store the lysate at 4◦C.
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To introduce a gene into the recipient strain by transduction, follow the following

protocol:

1. Inoculate a single colony of the recipient strain in 5 ml LB medium and shake at

37◦C overnight.

2. Centrifuge the overnight culture at 1500g for 10 minutes and resuspend the cell

pellet in 2.5 ml of 10 mM MgSO4 containing 5ml CaCl2.

3. To 0.1 ml of resuspend cells in tubes, add variable amount of P1 lysate, usually

from 10 µl to 0.1 ml. Also prepare a tube of just the P1 lysate as a negative control.

4. Incubate the tubes for 30 minutes at 30◦C without shaking.

5. Add 1m of LB with 10 mM sodium citrate.

6. Incubate 30 minutes at 30-37◦C without shaking.

7. Centrifuge 1500g for 10 minute to pellet. Discard the supernatant.

8. Add 0.1 ml of 1 M sodium citrate.

9. Plate onto selective medium. For introducing the kan cassette from the Keio

Collection, use 50 µg/ml kanamycin.
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Appendix B

Labeling Bacillus Subtilis Surface

Amine Groups

In order to visualize the cell wall growth, the surface of B. subtilis is decorated

with high density of fluorescence markers. In brief, carboxyl quantum dots are co-

valently conjugated to the surface amine groups by N-ethyl-N-dimethylaminopropyl-

carbodiimide (EDC). Since EDC is toxic, the conditions that cells are exposed to are

carefully designed and controlled.

Labeling protocol:

1. Grow B. subtilis in the modified LB medium at 37◦C in the shaker till optical

density 0.1. Do not over grow cells or labeling will fail. The modified LB medium

contains no sodium chloride but buffered by 20 mM potassium phosphate salts to pH

7.5-7.8

2. Prepare fresh 4 mg/ml EDC and 11 mg/ml sulfo-NHS (N-hydroxy sulfosuccin-

imide) solution in 10 mM pH 5.8-6.0 MES buffer. Sulfo-NHS is added to increase the

stability of active intermediates.

3. Mix 2.5 ul 10 mM pH 5.8-6.0 MES buffer, 2.5 ul EDC solution in MES, 2.5 ul

sulfo-NHS solution and 1-2.5 ul 8 uM carboxyl quantum dots (Invitrogen). React on
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roter for 15 minutes at room temperature.

4. Dialyze the active quantum dots in at least 200 ml 10 mM MES buffer with a 20K

MWCO mini dialysis tube (Fisher Scientific) for 15 minutes to remove the excess

EDC and sulfo-NHS.

5. During this time, harvest cells, wash them in the incubation buffer three times.

The incubation buffer contains 50 mM potassium phosphate buffer at pH 7.5-7.8,

0.1% w/v glucose and 2 mM MgSO4. The final density of cells should be set to equiv-

alent to OD 1-10.

6. Mix the dialyzed quantum dots with washed cells. Incubate at room temperature

for 20 to 90 minutes.

7. Wash the labeled cells in the incubation buffer 3 times to remove the floating

quantum dots.

Notes:

1. Overgrown B. subtilis are much harder to label, even under the optimized condi-

tions.

2. EDC and Sulfo-NHS hydrolyzes in hours. Do not store the solution.

3. High salt concentration will cause quantum dots to aggregate. In practice, avoid

total salt concentration that is greater than 60 mM. 4. Glucose and magnesium sul-

phate are added to the incubation buffer to keep the stress level to the minimum.

Stressed cells usually do not grow under excitation light.
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Appendix C

Controller for the Home-built

Laser

The excitation laser used in the B subtilis experiment is a 532 nm wavelength diode

laser powered by a home-built controller. The controller is required to output up to

500 mA constant current at 2.5-3.1 V, and to switch on and off at millisecond time

scale. The controller takes two input signals, one from the camera exposure signal, the

other from the digital output of the data acquisition board, and the output current

is given only both of the signals are at high. For the convenience of driving the diode

without input signal, when the input signals are unplugged, the input is set to high.

For future reference, the circuit diagram is listed below.
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