
Cosmological Perturbations in Inflation and in de

Sitter space

Guilherme Leite Pimentel

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Physics

Adviser: Juan Martin Maldacena

September 2014



c© Copyright by Guilherme Leite Pimentel, 2014.

All Rights Reserved



Abstract

This thesis focuses on various aspects of inflationary fluctuations. First, we study gravitational wave fluctu-

ations in de Sitter space. The isometries of the spacetime constrain to a few parameters the Wheeler-DeWitt

wavefunctional of the universe, to cubic order in fluctuations. At cubic order, there are three independent

terms in the wavefunctional. From the point of view of the bulk action, one term corresponds to Einstein

gravity, and a new term comes from a cubic term in the curvature tensor. The third term is a pure phase and

does not give rise to a new shape for expectation values of graviton fluctuations. These results can be seen

as the leading order non-gaussian contributions in a slow-roll expansion for inflationary observables. We also

use the wavefunctional approach to explain a universal consistency condition of n-point expectation values

in single field inflation. This consistency condition relates a soft limit of an n-point expectation value to

n−1-point expectation values. We show how these conditions can be easily derived from the wavefunctional

point of view. Namely, they follow from the momentum constraint of general relativity, which is equivalent

to the constraint of spatial diffeomorphism invariance.

We also study expectation values beyond tree level. We show that subhorizon fluctuations in loop

diagrams do not generate a mass term for superhorizon fluctuations. Such a mass term could spoil the

predictivity of inflation, which is based on the existence of properly defined field variables that become

constant once their wavelength is bigger than the size of the horizon. Such a mass term would be seen in

the two point expectation value as a contribution that grows linearly with time at late times. The absence

of this mass term is closely related to the soft limits studied in previous chapters. It is analogous to the

absence of a mass term for the photon in quantum electrodynamics, due to gauge symmetry.

Finally, we use the tools of holography and entanglement entropy to study superhorizon correlations in

quantum field theories in de Sitter space. The entropy has interesting terms that have no equivalent in flat

space field theories. These new terms are due to particle creation in an expanding universe. The entropy

is calculated directly for free massive scalar theories. For theories with holographic duals, it is determined

by the area of some extremal surface in the bulk geometry. We calculate the entropy for different classes

of holographic duals. For one of these classes, the holographic dual geometry is an asymptotically Anti-de

Sitter space that decays into a crunching cosmology, an open Friedmann-Robertson-Walker universe. The

extremal surface used in the calculation of the entropy lies almost entirely on the slice of maximal scale

factor of the crunching cosmology.
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Thank you, mom. My father, José Ricardo, will always be my first and best teacher. Dad, I hope you never

forget that. As much as I learn, I will always have something new to learn from you. Thanks to my sisters,
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Chapter 1

Introduction

Our current understanding of the universe at its most fundamental level is based on Quantum Mechanics and

General Relativity. The former is responsible for the physics of particles and its interactions, and dominates

our understanding of short distance physics, when materials cease to be homogeneous and atomic structure

becomes relevant. The latter explains the motions of planets, stars, galaxies and the universe as a whole,

and dominates our understanding of physics at very large distances.

The early universe is a remarkable example of a situation that requires both General Relativity and

Quantum Mechanics to be used simultaneously. This happens for the following reason. At large distance

scales, the universe looks very homogeneous. This raised a puzzle, given that the universe is not old enough

for regions far from each other to have ever been in causal contact. To solve this problem, the inflationary

paradigm was proposed [1, 2, 3]. It is the proposal that the universe undergoes exponential expansion in

its very early stages, thus making our visible universe arise from a small region. An alternative scenario

which is described by similar equations is the following. Our universe was in a false vacuum, namely, a local

minimum of a potential, and then tunnels to the true vacuum. A bubble nucleation follows in the region

that was previously in a false vacuum. Inside of this bubble we have an expanding universe. Both of these

scenarios solve the puzzle as the visible universe arises from a region small enough to be homogeneous and

in causal contact.

One beautiful outcome of the inflationary idea is that it does more than solving the problem for which

it was designed. As we are dealing with a small region that expands, quantum mechanical effects become

important. We can visualize the local rate of expansion of the universe by the value of the potential for

a certain quantum field. We can track how much a region of spacetime expands by using this fluctuating

field in the resulting geometry as a clock. The small quantum fluctuations of this field dictate how long
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inflation lasts in each region of the universe. In the end we have an inhomogeneous “reheating” surface,

which indicates the end of inflation. This means that different regions inflated more or less than an average

value, due to the quantum fluctuations of the clock. So, at the end of the inflationary period we are left

with a large universe with small inhomogeneities [4, 5, 6, 7, 8]. These inhomogeneities eventually source

anisotropies in the Cosmic Microwave Background [9], and dictate the Large Scale Structure of the universe

[10, 11]. The formation of visible structure in the universe is due to quantum fluctuations of the inflationary

epoch.

1.1 Inflation and small fluctuations

To study the inflationary paradigm in more detail, we need a toy model. There are two simple models that

capture most of the features we see in the data.

The first model is de Sitter space (dS). dS is a solution of Einstein’s equations with positive cosmological

constant. The dS background captures the essential idea of inflation, as it can be noted by writing its line

element in flat coordinates:

ds2 = −dt2 + e2Htdxidx
i, i = 1, 2, 3. (1.1)

The curvature of dS is set by the parameter H, which is its intrinsic Hubble constant. It enjoys as many

symmetries as Minkowski space, thus allowing one to make exact statements about its quantum fluctuations.

In dS inflation goes on forever, at least semiclassically. In that sense, there is no transition to a radiation or

matter dominated universe in dS. However most of the basic features of inflationary perturbations can be

understood in this simplified setting.

When we study the dynamics of quantum fluctuations on this background, we have to distinguish between

distance scales bigger or smaller than the dS “radius”, RdS = H−1. Consider a fluctuation with a given

“comoving” wavelength. This corresponds to a Fourier mode ki conjugate to the coordinates xi in (1.1).

Its physical wavelength grows with time, as k−1
phys = eHtk−1. For distances shorter than RdS there is little

difference between the time evolution of a field in flat space and a field in dS, as it can not feel the effects of

curvature. For distances larger than RdS , the fluctuations feel the influence of the curved spacetime. Now

consider a free massless scalar field in this background. By solving its equations of motion, one finds out

that fluctuations of this field freeze after their wavelength becomes bigger than RdS . When treating the case

with dynamical gravity, it will turn out that the fluctuations can be written as massless fields in a quasi-dS

background.

The overall picture is the following. If we keep track of a given comoving wavelength mode, it fluctuates

2



in the same way as we expect in flat space, with some oscillatory behavior. As the mode’s wavelength

becomes bigger than RdS , these fluctuations freeze. Technically, this means that the power spectrum for the

fluctuations becomes time independent. This intuitive picture of the evolution is important, so that we refer

to RdS as the “horizon”, and we distinguish the dynamics of a mode depending on whether it has “crossed

the horizon” or it is “inside the horizon”1.

From the isometries of the background, it turns out that the two point function of massless fields is fixed

up to the choice of vacuum state. There is a well motivated vacuum state, called Bunch-Davies vacuum,

which reproduces the expected behavior of fluctuations at subhorizon distances[12, 13, 14]. It turns out that

the quantum fluctuations at superhorizon distances enjoy two remarkable properties. First, their amplitude

is proportional to Hubble’s constant. Second, their spectrum is scale invariant, i.e. Pk ∝ k−3.

These are predictions of any inflationary scenario. As inflation has to end, some mechanism has to kick

in to stop it. This will produce symmetry breaking effects, thus inflationary perturbations are near scale

invariant[4, 5, 6, 7, 8].

To model the stoppage of inflation, we consider a scalar field rolling down a potential V (φ), with the

initial condition that φ has a non-zero expectation value in the vacuum[2, 3]. This model is called Single

Field Inflation, and contains the basic features shared by all inflationary models.

The breaking of dS symmetry is parametrized by the slope of the inflationary potential - if it is a flat

potential, the model is equivalent to a massless scalar in dS - and we assume that this scale breaking is

very small. The intuitive picture is easy to follow if we consider surfaces of constant φ. The value of φ

decreases as it rolls down the potential. Because of quantum fluctuations, in some regions the field moves

down in the potential more than in others. The net effect is that inflation lasts longer in regions where the

roll is slower. Inhomogeneities are generated due to quantum fluctuations of this “inflaton” field. Surfaces

of constant φ set constant time surfaces in a certain gauge. A fluctuation in φ is a time delay or advance.

This fluctuation can be written as a local change in the scale factor; thus, it is a fluctuation in the local

curvature. This curvature variable behaves like a massless field in this background, and its fluctuations are

quasi scale invariant, as the dS symmetry is slightly broken.

In both scenarios, the gravitational field itself is a quantum field, and thus gravitational fluctuations are

produced, with an almost scale invariant spectrum in single field inflation, and exact scale invariance in dS

[15, 16, 17]. Any inflationary model will generate quantum fluctuations of the gravitational field itself, with

a scale invariant spectrum. Once we consider fluctuations in the gravitational field, the metric becomes a

dynamical variable, and its gauge symmetry needs to be treated properly. Gauge invariant observables can

1The technical reason why RdS is referred as the horizon size is related to the description of dS from a free falling observer,
who sees a cosmological horizon at distance RdS from its position.

3



be defined order by order in perturbation theory2 [18, 19, 20].

The gravitational wave fluctuations behave as a massless tensor field, or as two free massless scalar fields

in the background geometry, one for each polarization mode of the graviton. The inflaton perturbations,

written as curvature perturbations, behave as a massless scalar field. Because the scalar mode is tied to

the dS symmetry breaking, its action is weighted by this factor. Thus, its fluctuations are enhanced by the

dS-breaking factor, with respect to the tensor fluctuations. This is the origin of a small tensor-to-scalar ratio,

which complicates the detection of primordial gravitational waves in the features of the Cosmic Microwave

Background (CMB) radiation.

In summary, the inflationary paradigm - which consists of a phase of quasi-de Sitter expansion - produces

quasi scale invariant scalar and tensor fluctuations, due to the inflaton and graviton fields. These fluctuations

freeze at the horizon scale, and remain frozen until their physical wavelength becomes comparable to the

size of the horizon, later in the history of the universe.

1.2 Probing details of the inflationary scenario

In the previous section we highlighted universal features of inflationary theories. To understand the infla-

tionary period better, we need to look for features that are model dependent. The two point function was

determined in a free field approximation. Properly defined field variables behave roughly as massless fields in

a quasi-dS background. However, the non-linearity of gravity automatically introduces interactions. In a free

theory, the spectrum of perturbations is Gaussian. In other words, it is fixed by the two point expectation

value of fluctuations. For example, the three point expectation value is zero, and the four point expectation

value is fixed by Wick’s theorem.

The simplest observable that carries new information about inflation beyond the free field approximation

is the three point function of inflationary perturbations. It gives rise to the so-called bispectrum in the

CMB[21, 22, 23, 24]. This is a function of two momentum variables and thus can be affected in different

ways depending on the shape of the potential. Current experiments, like the PLANCK satellite, are looking

for a non-gaussian signature in the CMB data[25]. If there exists a non-zero three point function - as the

non-linearity of gravity predicts - we will probe details of the inflationary scenario.

Defining gauge-invariant observables is a hard problem in gravitational theories. One candidate for

that are the late-time expectation values of fields. As we have to fix a gauge, in principle we compute

some gauge-invariant object. However, they are not fully gauge-invariant, as some large diffeomorphisms

2Local observables can not be gauge invariant in gravity. So, when dealing with gauge invariance in cosmological pertur-
bation theory, one should either fix the gauge a priori or talk about gauge invariance to a certain order in the generator of
diffeomorphisms.
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are still allowed that maintain the metric unchanged. At the level of the three point function, this effect

translates to some “consistency conditions” that fixes a piece of the expectation values in terms of lower-

point expectation values. They arise in the same fashion as Ward identities appear in gauge theories, fixing

correlation functions that involve the longitudinal part of the gauge field. It is important to understand these

consistency conditions in detail, as they carry information about the frame dependence of our observable.

A more technical issue, not directly related to observations of the CMB, is the following. Most inflationary

calculations are done at tree level. Due to the non-linearity of gravity, an infinite tower of interaction vertices

appear in the Feynman diagrams. As a non-renormalizable theory, one should interpret computations done

in this setting as effective field theory calculations, with the cutoff set by the Planck scale. One could then

wonder whether loop diagrams can spoil the tree level prediction for inflationary observables. In other words,

we stated previously that, in a certain gauge, the inflaton field is massless. In principle, a mass term can be

generated dynamically, by loop diagrams. It is important to check whether this is possible in inflation, and

if not, what protects the effective action from having such a term. In the cause of quantum electrodynamics,

gauge symmetry forbids the appearance of a mass term for the photon. If the inflaton remains massless

beyond the tree approximation, some symmetry must protect it.

The purpose of this thesis is to explore some of these questions in specific models in detail, with the hope

to understand general features of inflationary theories and of dS space.

1.3 Overview of the thesis

The thesis is based on already published work by myself with collaborators. The goal is to understand

quantum fluctuations in the inflationary setting, from various points of view. The focus is in two and three

point expectation values, at tree level and one loop. In the last chapter we use a different probe of these

superhorizon correlations using entanglement entropy.

Chapter 2, based on [26], was written with Juan Maldacena. We study non-gaussianities in a dS back-

ground. The isometries of dS constrain the possible shapes for the three point function. As discussed in

the previous section, the inflationary scalar mode is associated to the breaking of dS symmetry, so we focus

on gravitational fluctuations, which persist in the limit of exact dS. In a slow-roll expansion, we write the

most general three point function to order O(ε0) for three graviton fluctuations. We also analyze the general

constraints of dS symmetry on more general correlation functions.

Chapter 3 is based on [27]. I argue that the non-gaussian consistency conditions, which relate soft limits

of n-point functions to n− 1-point functions, are a general consequence of diffeomorphism invariance of the

Wheeler-De Witt wavefunctional of the universe. In this language the consistency conditions are very easy
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to derive, to arbitrary order in the soft leg expansion. The focus is on three point functions of single field

inflation and Einstein gravity in dS, but the construction is easily extensible to other settings.

Chapter 4, based on [28], was written with Leonardo Senatore and Matias Zaldarriaga. We study loop

effects in the two point function of scalar fluctuations in dS. By examining in detail all the Schwinger-Keldysh

diagrams, we show that there is no backreaction of modes running in the loop at late times, inducing some

late time dependence on the power spectrum. In other words, we rule out that the one loop contribution from

short wavelength modes can produce a mass term in the effective action for a long wavelength mode. This

is a direct consequence of diffeomorphism invariance of the action, and is closely related to the soft limits

discussed in chapter 3. It is crucial that we can trust the tree level calculation to believe in the inflationary

paradigm, as we rely on the fact that fluctuations remain frozen after they exit the horizon. Such an effect

would jeopardize such an important property of the inflationary perturbations.

Chapter 5, based on [29], was written with Juan Maldacena. We study superhorizon correlations by

calculating the entanglement entropy of spherical regions. These spheres are of size much bigger than the

horizon scale. It turns out that this entropy has an interesting contribution, that grows with the number of

inflationary e-folds. We calculate this contribution for free massive scalars and for theories with holographic

duals. A curious observation is that for theories dual to crunching cosmologies, the entropy computation

is related to a specific property of the crunching cosmology. This maybe a hint to an FRW/CFT type of

duality.
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Chapter 2

On graviton non-gaussianities during

inflation

2.1 Introduction

Recently there has been some effort in understanding the non-gaussian corrections to primordial fluctuations

generated during inflation. The simplest correction is a contribution to the three point functions of scalar

and tensor fluctuations. For scalar fluctuations there is a classification of the possible shapes for the three

point function that appear to the leading orders in the derivative expansion for the scalar field [30, 31, 32, 33].

In this chapter we consider tensor fluctuations. We work in the de Sitter approximation and we argue

that there are only three possible shapes for the three point function to all orders in the derivative expansion.

Thus the de Sitter approximation allows us to consider arbitrarily high order corrections in the derivative

expansion. The idea is simply that the three point function is constrained by the de Sitter isometries. At

late times, the interesting part of the wavefunction becomes time independent and the de Sitter isometries

act as the conformal group on the spatial boundary. We are familiar with the exact scale invariance, but, in

addition, we also have conformal invariance. The conformal invariance fixes the three point functions almost

uniquely. By “almost”, we simply mean that there are three possible shapes allowed, two that preserve parity

and one that violates parity. We compute explicitly these shapes and we show that they are the only ones

consistent with the conformal symmetry. In particular, we analyze in detail the constraints from conformal

invariance. In order to compute these three shapes it is enough to compute them for a simple Lagrangian

that is general enough to produce them. The Einstein gravity Lagrangian produces one of these three shapes

[34, 22]. The other parity conserving shape can be obtained by adding a
∫
W 3 term to the action, where W
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is the Weyl tensor. Finally, the parity violating shape can be obtained by adding
∫
W 2W̃ , where W̃ is the

Weyl tensor with two indices contracted with an ε tensor. The fact that the gravitational wave expectation

value is determined by the symmetries is intimately connected with the following fact: in four dimensional

flat space there are also three possible three point graviton scattering amplitudes [35] 1. Though the parity

violating shape is contained in the wavefunction of the universe (or in related AdS partition functions), it

does not arise for expectation values [36, 37]. Thus for gravitational wave correlators in dS we only have

two possible shapes, both parity conserving.

We show that, under general principles, the higher derivative corrections can be as large as the term that

comes from the Einstein term, though still very small compared to the two point function. In fact, we expect

that the ratio of 〈γγγ〉/〈γγ〉2 is of order one for the ordinary gravity case, and can be as big as one for the

other shape. When it becomes one for the other shape it means that the derivative expansion is breaking

down. This happens when the scale controlling the higher derivative corrections becomes close to the Hubble

scale. For example, the string scale can get close to the Hubble scale. Even though ordinary Einstein gravity

is breaking down, we can still compute this three point function from symmetry considerations, indicating

the power of the symmetry based approach for the three point function. This gravity three point function

appears to be outside the reach of the experiments occurring in the near future. We find it interesting

that by measuring the gravitational wave three point function we can directly assess the size of the higher

derivative corrections in the gravity sector of the theory. Of course, there are models of inflation where higher

derivatives are important in the scalar sector [38, 39] and in that case too, the non-gaussian corrections are

a direct way to test those models [40, 41, 32]. The simplicity of the results we find here is no longer present

when we go from de Sitter to an inflationary background. However, the results we find are still the leading

approximation in the slow roll expansion. Once we are away from the de Sitter approximation, one can still

study the higher derivative corrections in a systematic fashion as explained in [30, 33, 42].

Our results have also a “dual” use. The computation of the three point function for gravitational waves

is mathematically equivalent to the computation of the three point function of the stress tensor in a three

dimensional conformal field theory. This is most clear when we consider the wavefunction of the universe as

a function of the metric, expanded around de Sitter space at late times [22]. This is a simple consequence

of the symmetries, we are not invoking any duality here, but making a simple statement 2. From this point

of view it is clear why conformal symmetry restricts the answer. If one were dealing with scalar operators,

there would be only one possible three point function. For the stress tensor, we have three possibilities, two

1In flat space, one has to complexify the momenta to have nonvanishing three point amplitudes. In de Sitter, they are the
natural observables.

2Of course, this statement is consistent with the idea that such a wavefunction can be computed in terms of a dual field
theory. Here we are not making any assumption about the existence of a dual field theory. Discussions of a possible dual theory
in the de Sitter context can be found in [43, 44].
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parity conserving and one parity violating. The parity conserving three point functions were computed in

[45]. Here we present these three point functions in momentum space. Momentum space is convenient to

take into account the conservation laws, since one can easily focus on the transverse components of the stress

tensor. However, the constraints from special conformal symmetry are a little cumbersome, but manageable.

We derived the explicit form of the special conformal generators in momentum space and we checked that

the correlators we computed are the only solutions. In fact, we found it convenient to introduce a spinor

helicity formalism, which is similar to the one used in flat four dimensional space. This formalism simplifies

the algebra involving the spin indices and it is a convenient way to describe gravitational waves in de Sitter,

or stress tensor correlators in a three dimensional conformal field theory. In Fourier space the stress tensor

has a three momentum ~k, whose square is non-zero. The longitudinal components are determined by the

Ward identities. So the non-trivial information is in the transverse, traceless components. The transverse

space is two dimensional and we can classify the transverse indices in terms of their helicity. Thus we have

two operators with definite helicity, T±(~k). In terms of gravitational waves, we are considering gravitational

waves that have circular polarization. These can be described in a convenient way by defining two spinors

λ and λ̄, such that λaλ̄ḃ = (~k, |~k|)aḃ. In other words, we form a null four vector, and we proceed as in

the four dimensional case. We only have SO(3) symmetry, rather than SO(1, 3), which allows us to mix

dotted and undotted indices. We can then write the polarization vectors as ξi ∝ σi
aḃ
λaλḃ (no bar), etc.

This leads to simpler expressions for the three point correlation functions of the stress tensor in momentum

space. We have expressed the special conformal generator in terms of these variables. One interesting aspect

is that this formalism makes the three point function completely algebraic (up to the delta function for

momentum conservation). As such, it might be a useful starting point for computing higher point functions

in a recursive fashion, both in dS and AdS. This Fourier representation might also help in the construction of

conformal blocks. The connection between bulk symmetries and the conformal symmetry on the boundary

was discussed in the inflationary context in [46, 47, 48, 49, 50].

The idea of using conformal symmetry to constrain cosmological correlators was also discussed in [51].

Though the point of view is similar, some of the details differ. In that paper, scalar fluctuations were

considered. However, scalar fluctuations, and their three point function, crucially depend on departures

from conformal symmetry. It is likely that a systematic treatment of such a breaking could lead also to

constraints, specially at leading order in slow roll. On the other hand, the gravitational wave case, which is

discussed here, directly gives us the leading term in the slow roll expansion.

The chapter is organized as follows. In section 2.2 we perform the computation of the most general three

point function from a bulk perspective. We also discuss the possible size of the higher derivative corrections.

In section 2.3 we review the spinor helicity formalism in 4D flat spacetime, and propose a similar formalism
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that is useful for describing correlators of CFTs and expectation values in dS and AdS. We then write the

previously computed three point functions using these variables. In section 2.4 we review the idea of viewing

the wavefunction of the universe in terms of objects that have the same symmetries as correlators of stress

tensors in CFT. We also emphasize how conformal symmetry constrains the possible shapes of the three

point function. In section 2.5 we explicitly compute the three point function for the stress tensor for free

field theories in 3D, and show that, up to contact terms, they have the same shapes as the ones that do not

violate parity, computed from the bulk perspective. The appendices contain various technical points and

side comments.

2.2 Direct computation of general three point functions

In this section we compute the three point function for gravitational waves in de Sitter space. We do

the computation in a fairly straightforward fashion. In the next section we will discuss in more detail the

symmetries of the problem and the constraints on the three point function.

2.2.1 Setup and review of the computation of the gravitational wave spectrum

The gravitational wave spectrum in single-field slow roll inflation was derived in [16]. Here we will compute

the non-gaussian corrections to that result. As we discussed above, we will do all our computations in the de

Sitter approximation. Namely, we assume that we have a cosmological constant term so that the background

spacetime is de Sitter. There is no inflaton or scalar perturbation in this context. This approximation

correctly gives the leading terms in the slow roll expansion. We leave a more complete analysis to the future.

It is convenient to write the metric in the ADM form

g00 = −N2 + gijN
iN j , g0i = gijN

j , gij = e2Ht exp(γ)ij (2.1)

Where H is Hubble’s constant. N and Ni are Lagrange multipliers (their equations of motion will not be

dynamical), and γij parametrizes gravitational degrees of freedom. The action can be expressed as

S =
M2
Pl

2

∫ √
−g(R− 6H2) =

M2
Pl

2

∫
√
g3

(
NR(3) − 6NH2 +N−1(EijE

ij − (Eii)
2)
)

(2.2)

Where Eij = 1
2 (ġij − ∇iNj − ∇jNi) and we define M−2

Pl ≡ 8πGN . We fix the gauge by imposing that

gravity fluctuations are transverse traceless, γii = 0 and ∂iγij = 0. Up to third order in the action, we only

need to compute the first order values of the Lagrange multipliers N and Ni [22]. By our gauge choice, these
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are N = 1 and Ni = 0 as there cannot be a first order dependence on the gravity fluctuations. Expanding

the action up to second order in perturbations we find

S2 =
M2
Pl

8

∫ (
e3Htγ̇ij γ̇ij − eHt∂lγij∂lγij

)
(2.3)

We can expand the gravitational waves in terms of polarization tensors and a suitable choice of solutions of

the classical equations of motion. If we write

γij(x, t) =

∫
d3k

(2π)3

∑
s=+,−

εsije
ik.xγcl(t)a

†
s,~k

+ h.c. (2.4)

the gauge fixing conditions imply that the polarization tensors are traceless, εii = 0, and transverse kiεij = 0.

The helicities can be normalized by εAijε
∗B
ij = 4δAB . The equations of motion are then given by

0 =γ′′cl(η)− 2

η
γ′cl(η) + k2γcl(η) , η = −e

−Ht

H
(2.5)

where we introduced conformal time, η. We take the classical solutions to be those that correspond to the

Bunch-Davies vacuum [13], so γcl(η) = H√
2k3

eikη(1 − ikη). Here we have denoted by k = |~k| the absolute

value of the 3-momentum of the wave. We are interested in the late time contribution to the two-point

function, so we take the limit where η → 0. After Fourier transforming the late-time dependence of the

two-point function and contracting it with polarization tensors of same helicities we find:

〈γs1k γ
s2
k′ 〉 = (2π)3δ3(k + k′)

1

2k3

(
H

MPl

)2

4δs1s2 (2.6)

In the inflationary context (with a scalar field), higher derivative terms could give rise to a parity breaking

contribution to the two point function. This arises from terms in the effective action of the form
∫
f(φ)WW̃

[52, 53]. This parity breaking term leads to a different amplitude for positive and negative helicity gravita-

tional waves, leading to a net circular polarization for gravitational waves. If f is constant this term is a

total derivative and it does not contribute. Thus, in de Sitter there is no contribution from this term. In

other words, the parity breaking contribution is proportional to the time derivative of f . Some authors have

claimed that one can get such parity breaking terms even in pure de Sitter [54]. However, such a contribution

would break CPT. Naively, we would expect that CPT is spontaneously broken because of the expansion

of the universe. However, in de Sitter we can go to the static patch coordinates where the metric is static.

For such an observer we expect CPT to be a symmetry. A different value of the left versus right circular

polarization for gravitational waves would then violate CPT.
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In the AdS case, or in a general CFT, there can be parity violating contact terms in the two point

function3. This is discussed in more detail in appendix 2.9.

2.2.2 Three point amplitudes in flat space

In order to motivate the form of the four dimensional action that we will consider, let us discuss some aspects

of the scattering of three gravitational waves in flat space. This is relevant for our problem since at short

distances the spacetime becomes close to flat space.

In flat space we can consider the on shell scattering amplitude between three gravitational waves. Due

to the momentum conservation condition we cannot form any non-zero Mandelstam invariant from the three

momenta. Thus, all the possible forms for the amplitude are exhausted by listing all the possible ways of

contracting the polarization tensors of the gravitational waves and their momenta, [35]4. There are only two

possible ways of doing this, in a parity conserving manner. One corresponds to the amplitude that comes

from the Einstein action. The other corresponds to the amplitude we would get from a term in the action

that has the form W 3, where W is the Weyl tensor. In addition, we can write down a parity violating

amplitude that comes from a term of the form W̃W 2, where W̃abcd = εabefW
ef
cd. These terms involving

the Weyl tensor are expected to arise from higher derivative corrections in a generic gravity theory. By

using field redefinitions, any other higher derivative interaction can be written in such a way that it does

not contribute to the three point amplitude.

By analogy, in our de Sitter computation we will consider only the following terms in the gravity action

Seff =

∫
d4x

[√
−g
(
M2
Pl

2

(
−6H2 +R

)
+ Λ−2

(
a W ab

cdW
cd
mnW

mn
ab

))
+

+ Λ−2
(
b εabefWefcdW

cd
mnW

mn
ab

)] (2.7)

Here Λ is a scale that sets the value of the higher derivative corrections. We will discuss its possible values

later. This form of the action is enough for generating the most general gravity three point function that is

consistent with de Sitter invariance. This will be shown in more detail in section 2.4, by using the action

of the special conformal generators. For the time being we can accept it in analogy to the flat space result.

Instead of the Weyl tensor in (2.7) we could have used the Riemann tensor. The disadvantage would be that

the R3 term would not have vanished in a pure de Sitter background and it would also have contributed to the

two point function. However, these extra contributions are trivial and can be removed by field redefinitions.

So it is convenient to consider just the W 3 term.

3A contact term is a contribution proportional to a delta function of the operator positions.
4In flat space, the three point amplitude is non-trivial only after analytically continuing to complex values of the momentum.
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2.2.3 Three-point function calculations

In this subsection we compute the three point functions that emerge from the action in (2.7). First we

compute the three point function coming from the Einstein term, and then the one from the W 3 term.

2.2.4 Three point function from the Einstein term

This was done in [34, 22]5. For completeness, we review the calculation and give some further details. To

cubic order we can set N = 1, Ni = 0 in (2.1). Then the only cubic contribution from (2.2) comes from the

term involving the curvature of the three dimensional slices, R(3). Let us see more explicitly why this is the

case. On the three dimensional slices we define g = e2Htĝ, with ĝij = (eγ)ij . All indices will be raised and

lowered with ĝ. The action has the form

S
(3)
R =

1

2

∫
dtd3x

[
eHtR̂(3) + e−Ht(ÊijÊ

ij − (Êii)
2)
]

(2.8)

Now we prove that the second term does not contribute any third order term to the action. To second order

in γ we have Êij = (γ̇ + 1
2 [γ̇, γ])ij . Then we find

ÊijÊ
ij − (Êii)

2 = γ̇ij γ̇ij + o(γ4) (2.9)

which does not have any third order term. Thus, the third order action is proportional to the curvature of

the three-metric. This is then integrated over time, with the appropriate prefactor in (2.8). Of course, if we

were doing the computation of the flat space three point amplitude, we could also use a similar argument.

The only difference would be the absence of the eHt factor in the action (2.8). Thus, the algebra involving

the contraction of the polarization tensors and the momenta is the same as the one we would do in flat

space (in a gauge where the polarization tensors are zero in the time direction). Thus the de Sitter answer

is proportional to the flat space result, multiplied by a function of |~ki| only, which comes from the fact that

the time dependent part of the wavefunctions is different.

We want to calculate the tree level three-point function that arises from this third-order action. In order

to do that, we use the in-in formalism. The general prescription is that any correlator is given by the time

evolution from the “in” vacuum up to the operator insertion and then time evolved backwards, to the “in”

vacuum again, 〈O(t)〉 =
〈

in
∣∣∣T̄ e−i ∫ Hint(t′)dt′O(t)Tei

∫
Hint(t

′)dt′
∣∣∣ in〉. We are only interested in the late-time

5In [34] the AdS case was considered.
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limit of the expectation value. We find

〈γs1(x1, t)γ
s2(x2, t)γ

s3(x3, t)〉t→+∞ = −i
∫ +∞

−∞
dt′ [Hint(t

′), γs1(x1,+∞)γs2(x2,+∞)γs3(x3,+∞)] (2.10)

We write the gravitational waves in terms of oscillators as in (2.4). We calculate correlators for gravitons

of specific helicities and 3-momenta. Note that, because there are no time derivatives in the interaction

Lagrangian, then it follows that H3
int = −L3

int. Once we put in the wavefunctions, the time integral that we

need to compute is of the form Im[
∫ 0

−∞ dη 1
η2 (1− ik1η)(1− ik2η)(1− ik3η)ei(k1+k2+k3)η] (in conformal time).

Two aspects of the calculation are emphasized here. One is that we need to rotate the contour to damp

the exponential factor at early times, which physically corresponds to finding the vacuum of the interacting

theory [22], as is done in the analogous flat space computation. Another aspect is that, around zero, the

primitive is of the form − e
i(k1+k2+k3)ε

ε = − 1
ε − i(k1 + k2 + k3) + O(ε), where ε is our late-time cutoff. This

divergent contribution is real and it drops out from the imaginary part. We get

〈γs1k1γ
s2
k2
γs3k3〉R = (2π)3δ3 (k1 + k2 + k3)

(
H

MPl

)4
4

(2k1k2k3)3
×

[
(k2
i k

2
j ε

1
ij)ε

2
klε

3
kl − 2ε1ij(k

3
l ε

2
li)(k

2
mε

3
mj) + cyclic

]
×(

k1 + k2 + k3 −
k1k2 + k1k3 + k2k3

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

) (2.11)

The second line is the one that is the same as in the flat space amplitude. The third line comes from the

details of the time integral. Below we will see how this form for the expectation value is determined by the

de Sitter isometries, or the conformal symmetry.

2.2.5 Three point amplitude from W 3 in flat space

Let us calculate the following term in flat space, to which we will refer as W 3: Wαβ
γδW

γδ
σρW

σρ
αβ . We

can write the following first order expressions for the components of the Weyl tensor

W 0i
0j =

1

2
γ̈ij

W ij
0k =

1

2
(γ̇ki,j − γ̇kj,i)

W 0i
jk =

1

2
(γ̇ik,j − γ̇ij,k) (2.12)

W ij
kl =

1

2
(−δikγ̈jl + δilγ̈jk + δjkγ̈il − δjlγ̈ik)
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where we used that γ is an on shell gravitational wave. i.e. γ obeys the flat space equations of motion. We

also used that γii = ∂iγij = 0, Ni = 0, N = 1. We can then write

Wαβ
γδW

γδ
σρW

σρ
αβ = W ij

klW
kl
mnW

mn
ij + 6W 0i

jkW
jk
lmW

lm
0i+

+12W 0i
0jW

0j
klW

kl
0i + 8W 0i

0jW
0j

0kW
0k

0i

(2.13)

Evaluating these terms leads us to

S(3) =

∫
Λ−2 [2γ̈ij γ̈jkγ̈ki + 3γ̈ij γ̇kl,iγ̇kl,j + 3γ̈ij γ̇ik,lγ̇jl,k − 6γ̈ij γ̇ik,lγ̇kl,j ] (2.14)

Plugging γij = ε1ije
ik1·x + ε2ije

ik2·x + ε3ije
ik3·x where k · x = kixi − kt, we get the following expression for the

vertex due to the W 3 term:

VW 3,flat = 6 k1k2k3

[
k1 k

i
2k
j
2ε

1
ijε

2
klε

3
kl + cyclic −

(k1 + k2 + k3)(ε1ijk
k
3 ε

2
kik

l
2ε

3
lj + cyclic)− 2 k1k2k3ε

1
ijε

2
jkε

3
ki

] (2.15)

By choosing a suitable basis for the polarization tensors, one can show that this agrees with the gauge

invariant covariant expression VW 3,flat = 6kµ1 k
ν
1 ε

1
ρσk

ρ
2k
σ
2 ε

2
ητk

η
3k

τ
3 ε

3
µν .

2.2.6 Three point function from W 3 in dS

The straightforward way of performing the computation would be to insert now the expressions for the

wavefunctions in the W 3 term in de Sitter space, etc. There is a simple observation that allows us to

perform the de Sitter computation. First we observe that the Weyl tensor is designed so that it transforms

in a simple way under overall Weyl rescaling of the metric. Thus the Weyl tensor for the metric in conformal

time is simply given by Wµνδσ(g) = 1
H2η2Wµνδσ(ĝ = eγ). Note also that, for this reason, the Weyl tensor

vanishes in the pure de Sitter background. Thus, we only need to evaluate the Weyl tensor at linearized

order6. For on shell wavefunctions γ = (1− ikη)eikη+i~k.~x we can show that

Wµνδσ(γ) = −i|~k|ηW flat
µνδσ(eikη+i~k.~x) (2.16)

where W flat is the expression for the flat space Weyl tensor that we computed in the previous section,

computed at linearized order for a plane wave around flat space. Thus, when we insert these expressions in

6Note that the W 3 term does not contribute to the two point function.
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the action we have

S =

∫
W 3 =

∫ 0

−∞
dηd3x(k1k2k3η

3)(H2η2)(W flat)3 (2.17)

The whole algebra involving polarization tensors and momenta is exactly the same as in flat space. The

only difference is the time integral, which now involves a factor of the form
∫
dηη5eiEη ∝ 1/E6, where we

have defined E = k1 + k2 + k3, and we rotated the contour appropriately. Putting all this together, we get

the following result for the three-point function due to the W 3 term

〈γs1k1γ
s2
k2
γs3k3〉W 3 = (2π)3δ3 (k1 + k2 + k3)×(

H

MPl

)6(
H

Λ

)2

a
(−30)

(k1 + k2 + k3)6(k1k2k3)2
VW 3,flat

(2.18)

where VW 3,flat was introduced in (2.15). There are also factors of 1/k3
i that were included to get this result.

The parity violating piece will be discussed after we introduce spinor variables, because they will make the

calculation much simpler.

2.2.7 Estimating the size of the corrections

Let us write the effective action in the schematic form

S =
M2
Pl

2

[∫
[
√
gR− 6H2√g] + L4

∫
W 3

]
+ · · · (2.19)

where the dots denote other terms that do not contribute to the three point function. Here L is a constant

of dimensions of length. We have pulled out an overall power of M2
Pl for convenience. The gravitational

wave expectation values coming from this Lagrangian have the following orders of magnitude

〈γγ〉 ∼ H2

M2
Pl

, 〈γγγ〉R =
H4

M4
Pl

〈γγγ〉W 3 =
H4

M4
Pl

(LH)4 (2.20)

Thus the ratio between the two types of non-gaussian corrections is

〈γγγ〉W 3

〈γγγ〉R
∼ L4H4 (2.21)

We know that H2/M2
Pl is small. This parameter controls the size of the fluctuations. In the AdS context, we

know that when the right hand side in (2.21) becomes of order one we have causality problems [55, 56, 57, 58].

We expect that the same is true in dS, but we have not computed the precise value of the numerical coefficient
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where such causality violation would occur. So we expect that

HL . 1 (2.22)

In a string theory context we expect L to be of the order of the string scale, or the Kaluza Klein scale.

Thus the four dimensional gravity description is appropriate when HL � 1. In fact, in string theory we

expect important corrections when H`s ∼ 1. In that case, the string length is comparable to the Hubble

scale and we expect to have important stringy corrections to the gravity expansion. Note that in the string

theory context we can still have H2/M2
Pl ∼ g2

s being quite small. So we see that there are scenarios where

the higher derivative corrections are as important as the Einstein contribution, while we still have a small

two point function, or small expansion parameter H2/M2
Pl. In general, in such a situation we would not

have any good argument for neglecting higher curvature corrections, beyond the W 3 term. However, in the

particular case of the three point function, we can just consider these two terms and that is enough, since

these two terms (the Einstein term and the W 3 term) are enough to parametrize all the possible three point

functions consistent with de Sitter invariance. If we define an fNL−gravity = 〈γγγ〉/〈γγ〉2, then we find that

the Einstein gravity contribution of fNL−gravity is of order one. This is in contrast to the fNL for scalar

fluctuations which, for the simplest models, is suppressed by an extra slow roll factor7.

In an inflationary situation we know that the fact that the fluctuations are small is an indication that

the theory was weakly coupled when the fluctuations were generated. However, it could also be that the

stringy corrections, or higher derivative corrections were sizable. In that case, we see that the gravitational

wave three point function (or bispectrum) gives a direct measure of the size of higher derivative corrections.

Other ways of trying to see these corrections, discussed in [59], involves a full reconstruction of the potential,

etc. In an inflationary context terms involving the scalar field and its time variation could give rise to new

shapes for the three point function since conformal symmetry would then be broken. However, one expects

such terms to be suppressed by slow roll factors relative to the ones we have considered here. However a

model specific analysis is necessary to see whether terms that contain slow roll factors, but less powers of LH

dominate over the ones we discussed. For example, a term of the form M2
PlL

2f(φ)W 2 is generically present

in the effective action[33]. Such a term could give a correction of the order 〈γγγ〉fW 2/〈γγγ〉R ∼ εf (HL)2.

Here εf is a small quantity of the order of a slow roll parameter, involving the time derivatives of f . Whether

this dominates or not relative to (2.21) depends on the details of the inflationary scenario. In most cases,

one indeed expects it to dominate. It would be very interesting if (2.21) dominates because it is a direct

signature of higher derivative corrections in the gravitational sector during inflation.

7Note that we have divided by the gravity two point function to define fNL−gravity . If we had divided by scalar correlators,
we would have obtained a factor of ε2.
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Notice that the upper bound (2.22) is actually smaller than the naive expectation from the point of view

of the validity of the effective theory. From that point of view we would simply demand that the correction

due to W 3 at the de Sitter scale H should be smaller than one. This requires the weaker bound H4L4 < MPl

H .

This condition is certainly too lax in the AdS context, where one can argue for the more restrictive condition

(2.22).

In summary, we can make the higher derivative contribution to the gravity three point function of the

same order as the Einstein Gravity contribution. Any of these two terms are, of course, fairly small to begin

with.

2.3 Spinor helicity variables for de Sitter computations

In this section we introduce a technical tool that simplifies the description of gravitons in de Sitter. The

same technique works for anti-de Sitter and it can also be applied for conformal field theories, as we will

explain later.

The spinor helicity formalism is a convenient way to describe scattering amplitudes of massless particles

with spin in four dimensions. We review the basic ideas here. For a more detailed description, see [60, 35, 61,

62]. In four dimensions the Lorentz group is SO(1, 3) ∼ SL(2)× SL(2). A vector such as kµ can be viewed

as having two SL(2) indices, kaḃ. The new indices run over two values. A 4-momentum that obeys the mass

shell condition, k2 = 0 can be represented as a product of two (bosonic) spinors kaḃ = λaλ̄ḃ. Note that if we

rescale λ → wλ and λ̄ → 1
w λ̄ we get the same four vector. We shall call this the “helicity” transformation.

Similarly, the polarization vector of a spin one particle ξµ with negative helicity can be represented as

ξ−aḃ =
λaµ̄ḃ

〈λ̄, µ̄〉
(2.23)

where we used the SL(2) invariant contraction of indices 〈λ, µ〉 ≡ εabλ
aµb, where εab is the SL(2) invariant

epsilon tensor. We have a similar tensor εȧḃ to contract the dotted indices. We cannot contract an undotted

index with a dotted index. Note that this polarization vector (2.23) is not invariant under the helicity

transformation. In fact, we can assign it a definite helicity weight, which we call minus one. This polarization

tensor (2.23) is independent of the choice of µ̄. More precisely, different choices of µ̄ correspond to gauge

transformations on the external particles. For negative helicity we exchange λ, η̄ ↔ λ̄, η in (2.23). For the

graviton we can write the polarization tensor as a “square” of that of the vector

ξ+abȧḃ =
µaµbλ̄ȧλ̄ḃ

〈µ, λ〉2
, ξ−abȧḃ =

λaλbµ̄ȧµ̄ḃ

〈λ̄, µ̄〉2
(2.24)
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The product of two four vectors can be written as k.k′ = −2〈λ, λ′〉〈λ̄, λ̄′〉.

Now let us turn to our problem. We are interested in computing properties of gravitational waves at

late time. We still have the three momentum ~k. This is not null. However, we can just define a null four

momentum (|~k|,~k). This is just a definition. We can now introduce λ and λ̄ as we have done above for the

flat space case. In other words, given a three momentum ~k we define λ, λ̄ via

(|~k|,~k)aḃ = (|k|σ0 aḃ + ~k.~σaḃ) = λaλ̄ḃ (2.25)

In the de Sitter problem we do not have full SL(2)× SL(2) symmetry. We only have one SL(2) symmetry

which corresponds to the SO(3) rotation group in three dimensions. This group is diagonally embedded into

the SL(2) × SL(2) group we discussed above. In other words, as we perform a spatial rotation we change

both the a and ȧ indices in the same way. This means that we now have one more invariant tensor, εḃa which

allows us to contract the dotted with the undotted indices. For example, out of λa and λ̄ḃ we can construct

〈λ, λ̄〉 by contracting with εḃa. This is proportional to |~k|. Thus, this contraction is equivalent to picking out

the zero component of the null vector. When we construct the polarization tensors of gravitational waves,

or of vectors, it is convenient to choose them so that their zero component vanishes. But, we have already

seen that extracting the zero component involves contracting dotted and undotted indices. We can now then

choose a special µ̄ in (2.23) which makes sure that the zero component vanishes. Namely, we choose µ̄ḃ = λb.

This would not be allowed under the four dimensional rules, but it is perfectly fine in our context. In other

words, we choose polarization vectors of the form

ξ+aḃ =
λ̄aλ̄ḃ

〈λ̄, λ〉
, ξ−aḃ =

λaλḃ

〈λ, λ̄〉
(2.26)

Notice that the denominator is just what we were calling k = |~k|. Note also that the zero component of ξ is

zero, since this involves contracting the a and ḃ indices. This gives a vanishing result due to the antisymmetry

of the inner product. In our case we have a delta function for momentum conservation due to translation

invariance, but we do not have one for energy conservation. The delta function for momentum conservation

can be written by contracting
∑
I λ

a
I λ̄

ḃ
I with σi aḃ in order to get the spatial momentum. Alternatively we

can say that
∑
I λ

a
I λ̄

ḃ
I ∝ εaḃ. This is just saying that the fourvector has only a time component.

For the graviton, we likewise take µ = λ̄ and µ̄ = λ in (2.24). With these choices we make sure that the

polarization vector has zero time components and that it is transverse to the momentum.

Everything we said here also applies for correlation function of the stress tensor in three dimensional

field theories. If we have the stress tensor operator Tij(k) in Fourier space, we can then contract it with

19



a polarization vector transverse to k constructed from λ and λ̄. In other words, we construct operators of

the form T+ = ξ+
i ξ

+
j Tij with ξ+ as in (2.26). This formalism applies for any case where we have a four

dimensional bulk and a three dimensional boundary, de Sitter, Anti-de Sitter, Hyperbolic space, Euclidean

boundary, Lorentzian boundary, etc. The only difference between various cases are the reality conditions.

For example, in the de Sitter case that we are discussing now, the reality condition is (λ̄ȧ)∗ = εȧbλ
b.

In summary, we can use the spinor helicity formalism tyo describe gravitational waves in de Sitter, or

any inflationary background. It is a convenient way to take into account the rotational symmetry of the

problem. One can rewrite the expressions we had above in terms of these variables.

2.3.1 Gravitational wave correlators in the spinor helicity variables

Let us first note the form of the two point function. The only non-vanishing two point functions are the ++

and −− two point functions. This is dictated simply by angular momentum conservation along the direction

of the momentum. Since the momenta of the two insertions are opposite to each other, their spins are also

opposite and sum to zero as they should. The two point functions are then

〈γ+γ+〉 = δ3(k + k′)
〈λ, λ′〉2

〈λ, λ̄〉5
= δ3(k + k′)

1

〈λ, λ̄〉3
(2.27)

where in the last formula we have used a particular expression for λ′ in terms of λ̄. More precisely, if the

momentum of one wave if ~k, with its associated λ and λ̄, then for ~k′ = −~k we can choose λ′ = λ̄ and λ̄′ = −λ.

Here we have used that the matrices σi
aḃ

are symmetric. In the first expression we can clearly see the helicity

weights of the expression. For the −− one we get a similar expression.

We can now consider the three point functions. The simplest to describe are the ones coming from the

W 3 interaction. In fact, these contribute only to the + + + and − − − correlators, but not to the + + −

correlators. This is a feature which is also present in the flat space case. These non vanishing correlators

can be rewritten as

〈γ+
k1
γ+
k2
γ+
k3
〉W 3 =M (−28 × 32 × 5)

(k1 + k2 + k3)6(k1k2k3)2
[〈1̄, 2̄〉〈2̄, 3̄〉〈3̄, 1̄〉]2

〈γ−k1γ
−
k2
γ−k3〉W 3 =M (−28 × 32 × 5)

(k1 + k2 + k3)6(k1k2k3)2
[〈1, 2〉〈2, 3〉〈3, 1〉]2 (2.28)

M = (2π)3δ3 (k1 + k2 + k3)

(
H

MPl

)6(
H

Λ

)2

where the kn in the denominators can also be written in terms of brackets such as kn = −〈n, n̄〉, if so desired.

Note that, when rewritten in terms of the λn and λ̄n, the above expressions are just rational functions of
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the spinor helicity variables (up to the overall momentum conservation delta function). One can check that

indeed the ++− and −−+ vertices vanish for the W 3 term, which is straightforward by using the expressions

in appendix 2.8. Note that this is not trivial because we do not have four-momentum conservation, only the

three-momenta are conserved. The parity violating interaction W 2W̃ does not contribute to the de Sitter

expectation values [36, 37].

The Einstein term contributes to all polarization components

〈γ+
k1
γ+
k2
γ+
k3
〉R = (2π)3δ3

(∑
i

ki

)(
H

MPl

)4
2

(k1k2k3)5

[
(k1 + k2 + k3)3−

−(k1k2 + k1k3 + k2k3)(k1 + k2 + k3)− k1k2k3] [〈1̄, 2̄〉〈2̄, 3̄〉〈3̄, 1̄〉]2 (2.29)

〈γ+
k1
γ+
k2
γ−k3〉R = (2π)3δ3

(∑
i

ki

)(
H

MPl

)4
1

8(k1k2k3)5
[(k1 + k2 − k3)(k1 − k2 + k3)(k2 + k3 − k1)]

2

(
k1 + k2 + k3 −

k1k2 + k1k3 + k2k3

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

)[
〈1̄, 2̄〉3

〈1̄, 3̄〉〈3̄, 2̄〉

]2

(2.30)

and similar expressions for −−+ and −−−. Note that the Einstein gravity contribution to + + + or −−−

is non-vanishing. This is in contradistinction to what happens in flat space, where it does not contribute to

the + + + or −−− cases. This might seem surprising, given that we had said before that the polarization

tensor contribution to the time integrand is the same as the flat space one. After doing the time integral,

in flat space we get energy conservation, which we do not have here. This explains why we got a non-

vanishing answer. In fact, the flat space amplitude is recovered from the above expressions by focusing on

the coefficients of the double poles in E = k1 + k2 + k3. The fact that (2.29) does not have a double pole

ensures that the flat space answer is zero for those polarizations8. Similarly, the flat space answers for W 3

are obtained by looking at the coefficient of the 6th order pole in E in (2.28).

The expressions (2.29) can also be written in a form that shows explicitly the effect of changing the

helicity of one particle:

〈γ+
k1
γ+
k2
γ+
k3
〉R = N (k1 + k2 + k3)2(〈1̄, 2̄〉〈2̄, 3̄〉〈3̄, 1̄〉)2 (2.31)

〈γ+
k1
γ+
k2
γ−k3〉R = N (k1 + k2 − k3)2(〈1̄, 2̄〉〈2̄, 3〉〈3, 1̄〉)2 (2.32)

N = (2π)3δ3

(∑
i

ki

)(
H

MPl

)4
2

(k1k2k3)5
×

×
(
k1 + k2 + k3 −

k1k2 + k1k3 + k2k3

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

)
(2.33)

In the next section we will show that the forms of these results follow from demanding conformal sym-

8In comparing to the flat space result, there are also factors of (k1k2k3) that come from the normalization of the wavefunction.
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metry.

2.4 Gravitational wave correlation function and conformal sym-

metry

In this section we will show how the three point functions we discussed above are constrained by conformal

symmetry.

2.4.1 Wavefunction of the universe point of view

In order to express the constraints of conformal symmetry it is convenient to take the following point

of view on the computation of the gravity expectation values. Instead of computing expectation values

for the gravitational waves, we can compute the probability to observe a certain gravitational wave, or

almost equivalently, the wavefunction Ψ(γ). The expectation values are given by simply taking |Ψ(γ)|2 and

integrating over γ. This point of view is totally equivalent to the usual one, where one computes expectation

values of γ. It is useful because it makes the connection to AdS very transparent9. It also makes the action

of the symmetries more similar to the action of the symmetries in a conformal field theory. This is explained

in more detail in [22] (see also [63]).

One writes the wavefunction in the form:

Ψ = exp

(
1

2

∫
d3xd3y〈T s(x)T s

′
(y)〉γs(x)γs

′
(y)+

+
1

6

∫
d3xd3yd3z〈T s(x)T s

′
(y)T s

′′
(z)〉γs(x)γs

′
(y)γs

′′
(z) + · · ·

) (2.34)

The first term expresses the simple fact that the wavefunction is gaussian. From this point of view, the

quantity 〈T s(x)T s
′
(y)〉 is just setting the variance of the gaussian. Namely, this is just a convenient name

that we give to this variance. Similarly for the cubic term, which is responsible for the first non-gaussian

correction, etc. Here we have ignored local terms that are purely imaginary and which drop out when we

take the absolute value of the wavefunction. From this expression for the wavefunction one can derive the

9In fact, the perturbative de Sitter computation is simply an analytic continuation of the perturbative Anti-de Sitter
computation [22].
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following forms for the two and three point functions [22], to leading order in the loop expansion,

〈γs1k1γ
s2
k2
〉 = − 1

2〈T s1k1 T
s2
k2
〉

(2.35)

〈γs1k1γ
s2
k2
γs3k3〉 = −

〈T s1k1 T
s2
k2
T s3k3 〉+ 〈T s1−k1T

s2
−k2T

s3
−k3〉

∗

Πi(2〈T siki T
si
−ki〉)

(2.36)

So we see that it is easy to go from the description in terms of a wavefunction to the description in

terms of expectation values of the metric. The complex conjugate arises from doing |Ψ|2 and we used that

γs(−~k)∗ = γs(~k). However, if the wavefunction contains terms that are pure phases, we can loose this

information when we consider expectation values of the metric. Precisely this happens when we have the

parity violating interaction
∫
W 2W̃ . It contributes to a term that is a pure phase.

Here Ψ is the usual Wheeler de Witt wavefunction of the universe, evaluated in perturbation theory.

It is expressed in a particular gauge, because we have imposed the N = 1, Ni = 0 conditions. The usual

reparametrization constraints and Hamiltonian constraints boil down to some identities on the functions

appearing in (2.34). These identities are precisely the Ward identities obeyed by the stress tensor in a three

dimensional conformal field theory10. In the AdS case, this is of course familiar from the AdS/CFT point of

view. In the de Sitter case, it is also true since this wavefunction is a simple analytic continuation of the AdS

one. It is an analytic continuation where the radius is changed by i times the radius. In any case, one can

just derive directly these Ward identities from the constraints of General Relativity. These identities express

the fact that the wavefunction is reparametrization invariant. For the case that we have scalar operators

(and corresponding scalar fields in dS) we get an identity of the form ∂i〈Tij(x)
∏
k O(xk)〉 = −

∑
l δ

3(x −

xl)∂xjl
〈
∏
k O(xk)〉. These are derived by starting with the reparametrization constraint, taking multiple

derivatives with respect to the arguments of the wavefunction, and setting all fluctuations to zero after

taking the derivatives. There is also another identity coming from the Hamiltonian constraint. This involves

the trace of T and it takes into account the dimension of the operator. Namely we have 〈Tii(x)
∏
k O(xk)〉 =

−
∑
l δ

3(x−xl)∆l〈
∏
k O(xk)〉. From these two identities, we can derive equations for the correlation functions

if we have a conformal Killing vector 11. Alternatively, we can derive these equations simply by noticing that

a conformal reparametrization does not change the metric on the boundary, up to a rescaling (or a shift of

time in the bulk). Thus, this leaves the wavefunction explicitly invariant, without even changing the metric,

which is why we get equations on correlation functions for each isometry of the background space. From the

10Though the Ward identities are the same, some of the positivity constraints of ordinary CFT’s are not obeyed. For example,
the 〈TT 〉 two point function is negative. Thus, if there is a dual CFT, it should have this unusual property.

11If vj is the conformal Killing vector, then we can multiply the ∂iTij · · · equation by vj , integrate over x, integrate by parts,

use the conformal Killing vector equation ∂(ivj) = 1
3
ηij(∂.v), use the Tii equation and obtain the equations

∑
s[v

i(xs)∂xis
+

∂.v(xs)
3

∆s]〈
∏
k O(xk)〉 = 0. These encode all the equations obeyed by correlators that are a consequence of the de Sitter

isometries at late times. For the metric, or stress tensors, the equations contain more indices and we write them in detail below.
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general relativity point of view, this is just the statement that each isometry of the background leads to a

constraint on the wavefunction. In our case, the operators are other insertions of the stress tensor. Thus, we

can think of the coefficients 〈TT 〉 and 〈TTT 〉 appearing in (2.34) as correlation functions of “stress tensors”.

We are not assuming the existence of a dual CFT, we are simply saying that these quantities obey the same

Ward identities as the ones for the stress tensor in a CFT. A more precise discussion of these identities can

be found in appendix 2.11 and in section 2.4.2.

The isometries of de Sitter translate into symmetries of the wavefunction. Some of these are simple, like

translation invariance. A less trivial one is dilatation invariance, or scale invariance. This simply determines

the overall scaling of the three point function in terms of the momentum. If we think of γ as a dimensionless

variable, then its Fourier components have dimension minus three. Thus the total dimension of any n point

function is −3n. The delta function of momentum conservation takes into account a −3, and the remainder

is the overall degree of homogeneity in the momentum. For the two point function it is −3 and for the three

point function it is −6. It is a simple matter to count powers of momenta in the expressions we have given

in order to check that this is indeed the case.

If instead we look at correlators of the stress tensor, then in position space, we have that the operator

has dimension three, while in momentum space it has dimension zero.

The constraints from special conformal transformation are harder to implement and we discuss them in

the next section. The results of the following section are also valid in any three dimensional conformal field

theory. The general form for the three point function in position space was given in [45]. Here we study the

same problem in momentum space. The expressions we find seem a bit simpler to us than the ones in [45],

but the reader can judge by him or herself.

2.4.2 Constraints from special conformal transformations

de Sitter space is invariant under a full SO(1, 4) symmetry group. The metric ds2 = −dη2+dx2

η2 makes some

of these isometries manifest. In particular the scaling symmetry changes xi → αxi and η → αη. There are

also three more isometries that are given in infinitesimal form by

xi → xi + bi(−η2 + ~x.~x)− 2xi(~b.~x) , η → η − 2η(~b.~x) (2.37)

where ~b is infinitesimal. When η → 0, which is the future boundary of the space, the time rescaling acts in

a simple way on the wavefunction. In addition we can drop the η2 in the space part. The transformation

then becomes what is called a “special conformal” transformation on the boundary parametrized by ~x. In

this section we study the action of these transformations in detail.
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Now we work with coordinates on the three dimensional boundary. A special conformal transformation

is given by

δxi = x2bi − 2xi(x.b) (2.38)

Σi j ≡
∂δxi

∂xj
= 2(xjbi − xibj)− 2δij(x.b) ≡ 2M̂ j

i − 2δij(x.b) (2.39)

J = det(1 + Σ)1/3 ∼ 1 +
1

3

3∑
ν=1

Σν ν = 1− 2(x.b) (2.40)

where bi is an infinitesimal parameter. The transformation law for a tensor is

T ′ν′1···ν′n(x′) =
1

J∆−n

(
∂xσ1

∂x′ν
′
1

· · · ∂x
σn

∂x′ν
′
n

)
Tσ1···σn(x) (2.41)

where ∆ is the conformal dimension. For a current or the stress tensor we have ∆ = 2, 3 respectively.

These transformation laws describe the (infinitesimal) action of the de Sitter isometries on the comoving

coordinates at late time.

Now, in order to compute the variation of a correlator, we are interested in its change as a function. This

means that the transformed correlator, as a function of the new variables, x′ should be the same as the old

correlator as a function of x. Thus we can evaluate T ′(x) (and not x′). Then we write x = x′ − δx. In that

way we find that the change is

δTσ1···σn =∆2(x.b)Tσ1···σn − 2

n∑
l=1

M̂νl
σl
Tσ1···νl···σn −DTσ1···σn

D ≡ x2(b.∂)− 2(b.x)(x.∂) (2.42)

The matrix M̂ was defined in (2.39). We now Fourier transform (2.42) . The terms that contain a single

power of x are easy to transform. They are given simply by inserting factors of x → −i∂k. For the term

involving a D, it is important that we first replace the x → −i∂k and then we change the derivatives by

factors of k, ∂x → −ik. Thus a term like

x2∂i →i~∂2
kki = i(ki~∂

2
k + 2∂ki) (2.43)

xi(x.∂x)→i(∂ki(∂kjkj)) = i[4∂ki + kj∂kj∂ki ] (2.44)
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We then find that the special conformal generator (up to an overall i), now has the form

δTi1···in(k) =− (∆− 3)2(b.∂k)Ti1···in(k) + 2

n∑
l=1

M̃ jl
il
Ti1···jl···in(k)− D̃Ti1···in(k)

M̃ i
j ≡(bi∂kj − bj∂ki)

D̃ ≡(b.k)~∂2
k − 2kj∂kj (b.∂k) (2.45)

Where the (−3) in ∆− 3 comes from the commutators we had in (2.43) .

In momentum space any generator has an overall momentum conserving delta function δ(
∑
I
~ki). It is

possible to pull the momentum space operator through the delta function. One can show that all terms

involving derivatives of the delta function vanish. This is argued in detail in appendix 2.10. The final result

is that we can simply act with the operator (2.45) on the coefficient of the delta function.

We would now like to express the action of the special conformal generator in terms of the spinor helicity

variables. This problem is very similar to the one analyzed for amplitudes in [60]. There it was shown that

the special conformal generator is given by

b.Ô ≡ biσiaȧ ∂2

∂λa∂λ̄ȧ
(2.46)

The closure of the algebra implies that this simple form can only be consistent when it is applied to objects

of scaling dimension minus one (in Fourier space). In our case, we will see that (2.46) differs from the

special conformal generator only by terms proportional to the Ward identity for the corresponding tensor

(the current or the stress tensor). This will be discussed in more detail below.

2.4.3 Constraints of special conformal invariance on scalar operators

The correlation function of three scalar operators is very simple in position space and it is given by a well

known formula. In momentum space, it is hard to find an explicit expression because it is hard to do the

Fourier transform. For the case of the three point function, the answer is a function of the |~kI |. In that case

we can rewrite the special conformal generator as

~b.~k

[
−2(∆− 2)

1

|k|
∂|k| +

∂2

∂|k|2

]
(2.47)

We see that the case of ∆ = 2 is particularly simple12. So we consider a situation with three scalar

12Note that in this case the Fourier transform has dimension minus one, and then the special conformal generator is given
by the simple expression in (2.46).
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operators of dimension ∆ = 2. Invariance under special conformal transformations then implies

ki1∂
2
k1f + ki2∂

2
k2f + ki3∂

2
k3f = 0 (2.48)

where f is the Fourier transform of the correlator. Using momentum conservation we can conclude that all

second derivatives should be equal, for any m 6= n:

(∂2
km − ∂

2
kn)f(k1, k2, k3) = 0 (2.49)

For each pair of variables this looks like a two dimensional wave equation. Thus the general solution is given

by f(k1, k2, k3) = g(k1 + k2 + k3) + h(k1 − k2 − k3) + l(k2 − k3 − k1) +m(k3 − k1 − k2). To fix the form of

these functions we look at the dilatation constraint:

(k1∂k1 + k2∂k2 + k3∂k3)f(k1, k2, k3) = c (2.50)

In principle, c = 0. We would be tempted to conclude that this implies that each of the functions in f

should be scaling invariant. This would leave only a constant solution. One can see that a logarithm is also

allowed. The variation of a logarithm is a constant, and in position space, this is just a contact term. In

other words, we can allow c 6= 0 in the right hand side of (2.50). Another way to see this is to consider the

Fourier transform of the dilatation constraint. When we substitute x→ i∂k we are implicitly integrating by

parts. In general we neglect the surface terms because they are not singular. In the case we are considering,

one can see that these terms are non-zero, hence c 6= 0.

In order to fix the combination of logarithms we can impose permutation symmetry as well as a good OPE

expansion. The OPE expansion in position space says that 〈OOO〉 ∼ 1
x2
23

1
x4
12

as x23 → 0. This translates

into 〈OOO〉 ∼ |~k1|
|~k3|

as ~k1 → 0 13. We then find that only the following solution is allowed

f(k1, k2, k3) ∼ log(k1 + k2 + k3) (2.51)

It is possible to check that this is also the Fourier transform of the usual position space expression, 1
x2
12x

2
13x

2
23

.

It is also possible to show that one has simple solutions when operators of ∆ = 2, 1 are involved. This is

done as follows. After we obtain (2.51) we can express the Fourier transform of the three point function as

13This OPE requirement is imposed up to contact terms. Thus, for example, a term of the form log k2, in this limit gives
us a δ2(x12) (since it is independent of k1) and is consistent with the OPE requirement, which is only imposed at separated

points. In other words, when we expand (2.51) for small ~k1 we get 2 log k2 + k1
2k2

+ · · · , we drop the first term and the second

leads to the correct OPE.
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f =
∏3
I=1 k

∆I−2
I g. Then g has scaling dimension zero, and the special conformal generator on each particle

acquires the form (
3∏
I=1

k∆I−2
I

)
~b.~k

[
−(∆− 2)(∆− 1)

|k|2
+

∂2

∂|k|2

]
g (2.52)

We then see that for ∆ = 1, 2 the computation is the same as what we have done above. If all operators

have ∆ = 1, then the answer is g = 1 or f∆=1 = 1
k1k2k3

. When some operators have ∆ = 1 and some ∆ = 2

we cannot use permutation symmetry to select the solution, but it should be simple to find it.

2.4.4 Constraints of special conformal invariance on conserved currents

The constraints for special conformal invariance in momentum space are given by (2.45). Here we would like

to express the constraint of special conformal invariance in the spinor helicity variables. We would like to

express the special conformal generator in terms of a simple operator such as (2.46). The operator we want

to consider is the current in Fourier space, multiplied by a polarization vector proportional to ξ−aḃ = λaλḃ

〈λ,λ̄〉 .

In fact, just multiplying by this vector has a nice property, it leads to an operator of dimension minus one,

since the Fourier transform of a conserved current has dimension minus one, and this choice of polarization

vector does not modify the scaling dimension. If J is the conserved current, we take ξ−.J and we act with

the operator (2.46). The lambda derivatives can act on ξ and also on J , when they act on J , we can express

them in terms of ~k derivatives. After a somewhat lengthy calculation, one can rearrange all terms so that

we get the action of (2.45) on the current, plus a term proportional to the divergence of J , or ~k. ~J . More

explicitly, we find14

biσiβα̇
∂

∂λβ
∂

∂λ̄α̇
(ξ−.J) = ξ−i (δij2b.

~∂ + 2M̃ i
j − δijD̃)Jj − (b.ξ−)

ki

|~k|2
J i (2.53)

The first term in the right hand side vanishes due to the special conformal generator. The second term in

the right hand side involves a longitudinal component of the current. One is tempted to set that to zero.

However, we should recall that, inside a correlation function, we get contact terms at the positions of other

charged operators. These terms are simply given by (the Fourier transform of) the Ward identity

ki1〈J i(k1)O2(k2) · · ·On(kn)〉 = −
n∑
l=2

Ql〈O2(k2) · · ·Ol(kl + k1) · · ·On(kn)〉 (2.54)

Where Ql is the charge of the operator Ol. These are lower point functions. The conclusion is that there

is a simple equation we can write down, by acting with the special conformal generator in spinor helicity

variables, (2.46).

14M̃ i
j − δij and D̃ are defined in (2.45).
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Note that in position space, we normally impose the special conformal transformation at separated points.

In other words, we do not consider local terms. A local term will contribute to the three point function in

position space as

〈O(x)O(y)O(z)〉Local ∼ D[δ3(x− y)]f(x− z) + cyclic (2.55)

D is an arbitrary differential operator, which, when integrated by parts, will just yield an analytic func-

tion of the ks (like ki1, k4
1k
i
3, ...). Upon Fourier transforming the first term, we see that its form will be

[analytic piece] × F (k3) + cyclic, where F is the Fourier transform of f . So, any piece in the three point

function that is analytic in two of its variables, like k1, k1k
2
2, k4

3/k1, corresponds to a local term. Something

like k1k2 is analytic in k3 but not in k1 and k2, so it is non-local.

Let us see how this works more explicitly. We can start with the −− two point function

〈ξ−.J(k1)ξ−.J(k2)〉 = δ3(k1 + k2)
〈1, 2〉2

〈1, 1̄〉
(2.56)

Here the right hand side of the Ward identity vanishes and indeed, this function is annihilated by (2.46).

Now we consider the three point functions of currents Ja which are associated to a non-abelian symmetry.

In the bulk they arise from a non-abelian gauge theory. The Ward identity is given by

ki1〈Jai (k1)Jbj (k2)Jcl (k3)〉 = fabc[〈Jj(k1 + k2)Jl(k3)〉 − 〈Jj(k2)Jl(k3 + k1)〉] (2.57)

Where the color factor was stripped off the two point correlators 15.

Just as a check, let us compute the three point function for a gauge theory with a Yang Mills action in

the bulk. Since the gauge field is conformally coupled, we can do the computation in flat space. We compute

this correlator between three gauge fields in flat space, all set at t = 0 and Fourier transformed in the spatial

directions. We have the usual fabc non-abelian coupling in the bulk. In Feynman gauge, the final answer is

〈Aa1µ1
(k1)Aa2µ2

(k2)Aa3µ3
(k3)〉 ∝ δ3(~k1 + ~k2 + ~k3)

fa1a2a3

|k1||k2||k3|
1

E
[δµ1µ2(kµ3

1 − k
µ3

2 ) + cyclic] (2.58)

where E =
∑
I |kI |.16

15One unpleasant feature of this equation, (2.57), is that the currents in the right hand side are evaluated at a shifted
momentum, so it is not trivial to express this in terms of the λ and λ̄ variables. In this particular case, this is not a problem
since the two point functions can be explicitly computed, but this might lead to a more complicated story in the case of higher
point functions.

16This is done as follows. The three point function in the bulk is the term in square brackets. We attach the propagators. We

write the energy conservation condition as
∫
dt′eit

′∑ k0n . Then we integrate over k0
n to localize things at t = 0. We can deform

the integration contour and we only pick the residues of each of the poles of the propagators which give rise to the factor in the
denominator. We close the contour up or down depending on the sign of t′. In each case, integrating over t′ gives us the factor
of 1/E.
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We now multiply by ξ− for each particle to compute the −−− correlator and we get

〈ξ−1 .Aa1(k1)ξ−2 .A
a2(k2)ξ−3 .A

a3(k3)〉 ∝ δ3(~k1 + k2 + k3)fa1a2a3
〈1, 2〉〈2, 3〉〈1, 3〉

[〈1, 1̄〉〈2, 2̄〉〈3, 3̄〉]2
(2.59)

Note that the expectation value we started from, (2.58), is not gauge invariant. On the other hand, once we

put in the polarization vectors and we compute the transverse part, as in (2.59), we get a gauge invariant

result (under linearized gauge transformations). Note now that this expectation value is related to the

currents, via a formula similar to (2.36), which introduces extra factors of the two point function, which here

are simply factors of |~k|. Thus we find

〈ξ1.Ja1(k1)ξ2.J
a2(k2)ξ3.J

a3(k3)〉 ∝ k1k2k3〈ξ1.Aa1(k1)ξ2.A
a2(k2)ξ3.A

a3(k3)〉 (2.60)

Now let us check that this expectation value obeys the conformal Ward identity, with the operator (2.46).

The action of (2.46) on the first current is

biσiaȧ
∂2

∂λa1∂λ̄
ȧ
1

[
〈1, 2〉〈2, 3〉〈1, 3〉
〈1, 1̄〉〈2, 2̄〉〈3, 3̄〉

]
=biσiaȧ

[
λ2aλ1ȧ〈2, 3〉〈3, 1〉
〈1, 1̄〉2〈2, 2̄〉〈3, 3̄〉

− λ3aλ1ȧ〈1, 2〉〈2, 3〉
〈1, 1̄〉2〈2, 2̄〉〈3, 3̄〉

−

−2λ̄1aλ1ȧ〈1, 2〉〈2, 3〉〈3, 1〉
〈1, 1̄〉3〈2, 2̄〉〈3, 3̄〉

]
(2.61)

We now use the Schouten identity - a consequence of the fact that the spinors live in a 2D space - to

simplify this further. Expressing λ2a in terms of λ1a and λ̄1a we have 〈1, 1̄〉λ2a = −〈1̄, 2〉λ1a + 〈1, 2〉λ̄1a and

thus:

λ2aλ1ȧ〈2, 3〉〈3, 1〉
〈1, 1̄〉2〈2, 2̄〉〈3, 3̄〉

=
λ̄1aλ1ȧ〈1, 2〉〈2, 3〉〈3, 1〉
〈1, 1̄〉3〈2, 2̄〉〈3, 3̄〉

− λ1aλ1ȧ〈1̄, 2〉〈2, 3〉〈3, 1〉
〈1, 1̄〉3〈2, 2̄〉〈3, 3̄〉

(2.62)

We can do the same for λ3a and then all that remains is a term proportional to λ1ȧλ1a, given by

biσiaȧ
∂2

∂λa1∂λ̄
ȧ
1

[
〈1, 2〉〈2, 3〉〈1, 3〉
〈1, 1̄〉〈2, 2̄〉〈3, 3̄〉

]
=− b.ξ−1

〈1, 1̄〉2〈2, 2̄〉〈3, 3̄〉
[〈1̄, 2〉〈2, 3〉〈3, 1〉 − 〈1̄, 3)〈1, 2〉〈2, 3〉] (2.63)

Using the momentum conservation condition we can express “cross-products” of the form 〈m, n̄〉 for

m 6= n in terms of other brackets (the details are worked out in an appendix) through (k1 +k2 +k3)〈m, n̄〉 =

−2〈m, o〉〈ō, n̄〉, where m 6= n 6= o and then the term in (2.63) is

〈1̄, 2〉〈2, 3〉〈3, 1〉 − 〈1̄, 3〉〈1, 2〉〈2, 3〉 = −〈2, 3〉2(k2 − k3) (2.64)
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Putting the pieces together, this is the expected contribution from the Ward identity

3∑
I=1

biÔiI
[
〈ξ1.Ja(k1)ξ2.J

b(k2)ξ3.J
c(k3)〉

]
=

=fabc
{

b.ξ1
〈1, 1̄〉2

〈2, 3〉2

〈2, 2̄〉〈3, 3̄〉
[〈2, 2̄〉 − 〈3, 3̄〉] + cyclic

}
=fabc

{
b.ξ1
k2

1

ξ2.ξ3[k2 − k3] + cyclic

} (2.65)

The expectation values that we have computed for gauge fields in de Sitter can also be computed in

flat space, since gauge fields are conformal invariant17. So, we are simply computing correlation function of

gauge invariant field strengths in R4 but on a particular spatial slice. We are putting all operators at t = 0.

We can think in momentum space and consider the operators Fab(t = 0,~k), Fȧḃ(t = 0,~k) where we Fourier

transformed in the spatial coordinates but not in the time coordinate. Given ~k for each operator, we can

define λ and λ̄ via (2.25). We then can write the operators we considered above as:

2ξ−.A = −1

k
λaλb(F+

ab + F−
ȧḃ

) = −iξ−i Fjlε
ijl , 2ξ+.A =

1

k
λ̄ȧλ̄ḃ(F+

ab + F−
ȧḃ

) = iξ+
i Fjlε

ijl

In both of these expressions, when we write Fab, or Fȧḃ we mean the self dual and anti-self dual parts, but

the indices are summed over with the indices of the indicated λ’s. These expressions involve contractions

that are not natural in flat space, but are reasonable once we break the full Lorentz symmetry to the rotation

group. These operators are set at t = 0, and in Fourier space in the spatial section, with momentum ~k.18

One can write higher derivative operators that give rise to three point functions that are annihilated

by the special conformal generator (2.46). These operators would be aTr[F 3] and bTr[F̃F 2]. Now it is

important to put in the dS metric. The wavefunctions for A are still the same as those in flat space, if we

compute the three point functions perturbatively. These give the following three point functions19

〈Ja,+(1)Jb,+(2)Jc,+(3)〉 ∝ (2π)3δ3(
∑

ki)(a+ i b)fabc
〈1̄, 2̄〉〈2̄, 3̄〉〈3̄, 1̄〉

(〈1, 1̄〉+ 〈2, 2̄〉+ 〈3, 3̄〉)3
(2.66)

〈Ja,−(1)Jb,−(2)Jc,−(3)〉 ∝ (2π)3δ3(
∑

ki)(a− i b)fabc
〈1, 2〉〈2, 3〉〈3, 1〉

(〈1, 1̄〉+ 〈2, 2̄〉+ 〈3, 3̄〉)3
(2.67)

The result (2.59), which comes from the usual Yang Mills term can be converted into a correlator of

17This is true for the tree correlators we are discussing but it is not true if loop corrections are taken into account.
18Note that both the self dual and anti-self dual parts of F contribute to each of the helicities. The reason is that we have

defined a four momentum (|k|, ~k) in order to define λ, λ̄. (We could also have reversed the sign of the zeroth component to
|k| → −|k|, which exchanges λ̄↔ λ). With this definition, the time component of this four momentum is not necessarily equal
to the total four momentum of on shell waves coming in or out of the F insertions (it can differ by a sign).

19These couplings do not require a non-abelian theory. They are antisymmetric in the Lorentz indices, thus they require an
antisymmetric tensor. Thus, we could have three abelian gauge fields F I and then the cubic couplings εIJLtr[F

IFJFL], where
the trace is over the Lorentz indices.
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curents of the form

〈Ja,+(1)Jb,+(2)Jc,+(3)〉 =
δ3Ψ[A]

δAa,+(1)δAb,+(2)δAc,+(3)

∣∣∣∣
A=0

∝ δ3(~k1 + ~k2 + ~k3)fa1a2a3
〈1, 2〉〈2, 3〉〈1, 3〉
〈1, 1̄〉〈2, 2̄〉〈3, 3̄〉

(2.68)

is completely analytic in momentum space, and could be viewed as arising from a factor in the wavefunction

of the form Ψ ∼ eTr[A∧A∧A]. However, we would need a term in the wavefunction with the opposite sign to

remove the −−− correlator. Thus, although it looks like a local term, it does not seem possible to remove

both the + + + and the −−− correlator with the same factor. On the other hand, (2.66) is definitely non

analytic in momentum, due to the 1/E3 singularity.

The current correlators are derivatives of the wavefunction. The expectation values of A can be obtained

from them. In that case the parity violating b term in (2.66) drops out.

2.4.5 Constraints of special conformal invariance on the stress tensor

In this section we consider the constraints of conformal invariance in momentum space for the stress tensor.

We multiply the stress tensor by a convenient polarization tensor ε−ijTij(k), with ε−ij = ξ−i ξ
−
j . In order

to study the action of the special conformal generator it is convenient to define an operator containing an

extra power of k as

T̂− =
ε−ijTij(k)

k
, ε−ij ≡ ξ

−
i ξ
−
j =

λaλbλȧλḃ

〈λ, λ̄〉2
(2.69)

The power of k was chosen so that the special conformal generator has the simple expression given by (2.46).

The expression for εij is that one that would give a naturally normalized tensor, when we take the reality

conditions into account. Again, this operator does not quite annihilate the correlator, but it produces a term

involving the Ward identity in the right hand side. Although more laborious in terms of manipulations, the

general ideas are the same as in the current case so we will be more brief in the details of the conformal

symmetry check.

We find that (2.46) acts on the stress tensor as

b.ÔT̂− = b.Ô

[
ε−ijTij

k

]
=
ε−ij
k

[4M̃ j
l − δj lD̃]Til − 3

1

k3
biε
−
ijkl(Tlj + Tjl) (2.70)

The first term is what we expect from (2.45) for the stress tensor, and it vanishes. The second term can be

computed by using the Ward identity. Again, such terms are analytic in some of the momenta. So if we

disregard terms that are analytic in the momenta, we can drop also the term involving the Ward identity.
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Let us first ignore this Ward identity terms and compute homogeneous solutions of the equation. Let us

consider first a general −−− three point function of the stress tensor. Such a general three point function

is given by

〈T̂−T̂−T̂−〉 = δ3(
∑

~kI)[〈1, 2〉〈2, 3〉〈3, 1〉]2f(k1, k2, k3) (2.71)

With f a symmetric function of dimension minus six. After some algebra, using Schouten identities, we get

∑
n

(σi)aȧ
∂2

∂λan∂λ̄
ȧ
n

[
(〈1, 2〉〈2, 3〉〈3, 1〉)2f(k1, k2, k3)

]
= −2

ξi1
k1
〈1, 2〉〈2, 3〉3〈3, 1〉[k3 − k2]∂k1f+

+ [〈1, 2〉〈2, 3〉〈3, 1〉]2
[

4

k1
∂k1f + ∂2

k1f

]
ki1 + cyclic (2.72)

Although the ξs are linearly independent, the ks are not. A convenient way to rewrite (2.72) is to choose

special conformal transformation parameters bi to project out a few components. Let us take bi ∼ (λa2λ
ḃ
3 +

λa3λ
ḃ
2)i, for example. This combination was chosen so that the time component of b is zero. We find

(λ2λ3).Ô[(−−−)f ] = 〈1, 2〉2〈2, 3〉3〈3, 1〉2
{

4(∂k2 − ∂k3)f + k3(∂2
k1 − ∂

2
k3)f − k2(∂2

k1 − ∂
2
k2)f

}
→ 0 = 4(∂k2 − ∂k3)f + k3(∂2

k1 − ∂
2
k3)f − k2(∂2

k1 − ∂
2
k2)f (2.73)

It is straightforward to check that the gravity result we obtained from a W 3 in interaction contribution gets

annihilated by this operator. Such a contribution is simply f = (k1 + k2 + k3)−6. The Einstein contribution

is not annihilated. It gives a nonzero answer that matches the expected answer from the Ward identity.

One can solve the equation (2.73) and its two other cyclic cousins by brute force. One finds the expected

solution, mentioned above, plus a new solution that has the form

f =
1

[(k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)]2
(2.74)

This new solution does not have the right limit when ~k1 → 0. Namely, if we start with Tij(~k1), when the

momentum goes to zero we do not expect any singular term when ~k → 0. In fact, an insertion of Tij(~k = 0)

corresponds to a constant metric or a change of coordinates. So, in fact this limit has a precise form. On

the other hand if we look at this limit in (2.74), we find that f ∼ 1/k4
1, which is too singular compared to

the expected behavior.

Let us now turn our attention to the −−+ correlator. We first write an ansatz of the form

〈T̂−T̂−T̂+〉 = δ3(
∑

~kn)[〈1, 2〉〈2, 3̄〉〈1, 3̄〉]2g(k1, k2, k3) (2.75)
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where g is a homogeneous function of degree six 20. We can now use a trick to get the homogeneous solutions

of the special conformal generator. We note that if we exchange λ ↔ λ̄, then the sign of |k| is changed,

but ~k does not change. Now, the ansatz for (2.75) differs from (2.71) precisely by such a change in the

third particle. Thus, the two solutions for g in (2.75) are simply given by the two solutions for f but with

k3 → −k3. More explicitly, the two solutions are

g =
1

(k1 + k2 − k3)6
(2.76)

g =
1

[(k1 + k2 + k3)(k2 + k3 − k1)(k3 + k1 − k2)]2
(2.77)

However, now both solutions are inconsistent with the small ~ki limit. The first solution has a problem when

~k1 → 0 and the second when ~k3 → 0. Thus, both are discarded since these limits are too singular. Even

though this trick of exchanging λ↔ λ̄ was useful for generating solutions of the homogeneous equation, the

full results for the correlators are not given by such a simple exchange.

In conclusion, we have shown that there are no other solution of the conformal Ward identities beyond

the ones we have already considered. It remains to be shown that the Einstein gravity answer obeys the

conformal Ward identity. One can check that the Einstein gravity answer is not annihilated by the operator

(2.46). It gives a nonzero term. This term is indeed what is expected from the Ward identity for the stress

tensor, which is the second term in (2.70). Of course, this is expected since Einstein gravity has these

symmetries. The relevant expressions are left to appendix 2.11.

2.5 Remarks on field theory correlators

In this section we compute the free field theory three point correlation function for scalars and fermions.

This is very similar to what was done in [45] in position space. Here we work in momentum space. We will

compare these expressions to the gravity ones computed above. The idea is that by considering a theory of

a free scalar and a theory with a free fermion we obtain two independent shapes for the three point function

of the stress tensor. Since we have computed the most general shapes above, this will serve as a check of our

previous arguments. In addition, the momentum space expressions for the correlators might be useful for

further studies. The two correlation functions that we obtain for scalars or fermions are parity conserving.

Our results indicate that there can be field theories that give rise to the parity breaking contribution. Such

field theories are not free, and it would be interesting to find the field theories that produce such correlators

20In analogy to flat space, one is tempted to write this in terms of [
〈1,2〉3
〈2,3〉〈1,3〉 ]

2. This is easy to do using the identities in

appendix 2.8, but we found simpler expressions in terms of (2.75).
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21. We will concentrate here on the free theory case22.

The computation is in principle straightforward, one simple has to compute a one loop diagram with

three stress tensor insertions. The only minor complication is the proliferation of indices. To compute the

diagram itself one needs to use the standard Feynman parametrization of the loop integral. In particular, it

is convenient to use the following Feynman parametrization:

1

ABC
=

∫ ∞
0

2 dα dβ

(A+ αB + βC)3
(2.78)

The final expression will have several contractions of polarization tensors with 3-momenta, e.g. ε1ijε
2
jkε

3
ki,

k2
i k

2
j ε

1
ijk

3
l ε

2
lmk

2
nε

3
nm, etc. Then one needs to use the expressions presented in the appendix to convert these

to spinor brackets. The final answers have a simpler form than the ones with the polarization tensors.

We treat first the scalar case and then the fermion case.

2.5.1 Three point correlators for a free scalar

The stress-energy tensor for a real, canonically normalized scalar field is

Tij(x) =
3

4
∂iφ(x)∂jφ(x)− 1

4
φ∂i∂jφ(x)− 1

8
δij∂

2φ2(x) (2.79)

The two point function is, up to the delta function:

〈T+T+〉φ =
k3

256
(2.80)

The three point functions are

〈T+(k1)T+(k2)T+(k3)〉φ =

[
−k

3
1 + k3

2 + k3
3

64
+

(k1k2k3)3

2(k1 + k2 + k3)6
−

− (k1 + k2 + k3)2

128

(
(k1 + k2 + k3)− (k1k2 + k1k3 + k2k3)

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2

)]
(〈1̄, 2̄〉〈2̄, 3̄〉〈3̄, 1̄〉)2

k2
1k

2
2k

2
3

(2.81)

〈T+(k1)T+(k2)T−(k3)〉φ =

[
−k

3
1 + k3

2 + k3
3

64
−

− (k1 + k2 − k3)2

128

(
(k1 + k2 + k3)− (k1k2 + k1k3 + k2k3)

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2

)]
(〈1̄, 2̄〉〈2̄, 3〉〈1̄, 3〉)2

k2
1k

2
2k

2
3

(2.82)

21There are bounds similar to the ones derived in [58] for the parity breaking and parity conserving coefficients that appear
in a three point function. The parity conserving bounds were considered in [64]. These bounds can be derived by considering a
thought experiment where we insert a stress tensor at the origin with some energy and then we look at the angular dependence of
the energy one point function, as measured by calorimeters placed at infinity. The stress tensor at the origin has spin ±2 under
the SO(2) rotation group of the spatial plane. The energy one point function as a function of the angle is 〈E(θ)〉 ∼ ei4θ+1+e−i4θ,
with coefficients that depend on the parts of the stress tensor three point functions that we have characterized as coming from
(W+)3, R, (W−)3.

22Similar calculations involving the trace of the stress tensor were considered in [50].
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2.5.2 Three point correlators for a free spinor

The stress tensor for a complex Dirac spinor is given by

Tij(x) =
1

4
(Ψ̄γi∂jΨ− ∂jΨ̄γiΨ) + (i↔ j) (2.83)

The two point function is

〈T+T+〉ψ =
k3

128
(2.84)

The three point function is given by:

〈T+(k1)T+(k2)T+(k3)〉ψ =

[
−k

3
1 + k3

2 + k3
3

64
− (k1k2k3)3

(k1 + k2 + k3)6
−

− (k1 + k2 + k3)2

64

(
(k1 + k2 + k3)− (k1k2 + k1k3 + k2k3)

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2

)]
(〈1̄, 2̄〉〈2̄, 3̄〉〈3̄, 1̄〉)2

k2
1k

2
2k

2
3

(2.85)

〈T+(k1)T+(k2)T−(k3)〉ψ =

[
−k

3
1 + k3

2 + k3
3

64
+

− (k1 + k2 − k3)2

64

(
(k1 + k2 + k3)− (k1k2 + k1k3 + k2k3)

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2

)]
(〈1̄, 2̄〉〈2̄, 3〉〈1̄, 3〉)2

k2
1k

2
2k

2
3

(2.86)

2.5.3 Comparison with the gravity computation

We see that these results contain the general shapes discussed in gravity, but they also have an extra term

proportional to
∑
k3
i . This is a contact term. Namely, it is non-zero only when some operators are on top

of each other. In position space we get a delta function of the relative displacement between two of the

insertions. These terms are easily recognized in momentum space because they are analytic in two of the

momenta. These contact terms represent an ambiguity in the definition of the stress tensor. There is no

ambiguity in taking the first derivative with respect to the metric. However, these contact terms involve a

second derivative with respect to the metric. So if we define the metric as g = eγ and we take derivatives

with respect to γ we are going to get one answer. If we took g = 1 + γ′ and took derivatives with respect to

γ′ we would get a different answer. In fact, we have the same ambiguity in the gravity results if we define

γ′ij = γij + 1
2γilγlj . In that case the two results will differ precisely by such a term. It is interesting to note

that the non-gaussian consistency condition discussed in [22] does depend on this precise definition of the

metric, since a constant γ gives rise to different coordinate transformations depending on how we defined γ.

The one derived in [22] holds when the metric is defined in terms of g = eγ .

We can note that if we have nφ scalars and nψ dirac fermions, then we have to sum the two contributions

to the three point functions that we have written above . If nφ = 2nψ , then we see that the term going

like 1/E6 cancels. This is the contribution that comes from a W 3 term in the bulk. This combination is
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also the one that appears in a supersymmetric theory. In fact, in a supersymmetric theory the three point

function of the stress tensor does not have any free parameters23. It is the same as the one given by the pure

Einstein theory in the bulk, which does not contain any 1/E6 terms. This is related to the fact that in four

flat dimensions supersymmetry forces the + + + and −−− amplitudes to vanish [65].

2.6 Discussion

In this chapter we have computed the possible shapes for non-gaussianity for gravitational waves in the de

Sitter approximation. Though three possible shapes are allowed by the isometries, only two arise in de-Sitter

expectation values. The parity violating shape contributes with a pure phase to the wavefunction and it

drops out from expectation values. The two parity conserving shapes were given in equations (2.11), (2.18).

One of these shapes is given by the Einstein theory. The other shape arise from higher derivative terms.

Under general principles the other contribution can be as big as the Einstein term contribution. Of course,

in such a case the derivative expansion is breaking down. However, the symmetries allow us to compute

the three point function despite this breakdown. This is expected for an inflationary scenario where the

string scale is close to the Hubble scale. This requires a weak string coupling, so that we get a small value of

H2/M2
Pl ∼ g2

s . One of these shapes is parity breaking. These three point functions of gravitational waves are

expected to be small, having an fNL−gravity = 〈γγγ〉
〈γγ〉2 of order one. In a more realistic inflationary scenario,

which includes a slow rolling scalar field, then we expect that these results give the answer to leading order

in the slow roll expansion. It would be interesting to classify the general leading corrections to the graviton

three point function in a general inflationary scenario. This can probably be done using the methods of

[30, 31, 32, 33]. Here by assuming exact de Sitter symmetry we have managed to compute the correction to

all orders in the derivative expansion.

We have presented the result in terms of the three point function for circularly polarized gravitational

waves. We used a convenient spinor helicity description of the kinematics. These spinor helicity formulas are

somewhat similar to the ones describing flat space amplitudes. It would be interesting to see if this formalism

helps in computing higher order amplitudes in de Sitter space. The problem of computing gravitational wave

correlators in de Sitter is intimately related with the corresponding problem in Anti-de Sitter. (The two are

formally related by taking R2
dS → −R2

AdS , where R are the corresponding radii of curvature). Thus, all that

we have discussed here also applies to the AdS situation. The dS wavefunction is related to the AdS partition

function. In this case all three shapes can arise. The parity violating shape arises from the
∫
W 2W̃ term in

the action. These three point correlators, for Einstein gravity in AdS, were computed in [34]. It would be

23Of course, to have supersymmetry we need to consider an AdS, rather than a dS bulk.
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interesting to see if the spinor helicity formalism is useful for computing higher point tree level correlation

functions. It is likely to be useful if one uses an on shell method like the one proposed in [66, 67] 24. In the

spinor helicity formalism that we have introduced, we have defined the “time” component of the momentum

to be |~k|. The choice of sign here was somewhat arbitrary. When we are in four dimensional flat space, there

is a simple physical interpretation for the results we get by analytically continuing to −|~k|, as exchanging

an incoming into an outgoing particle. It would be interesting to understand better the interpretation for

this analytic continuation of the correlators we have been discussing. This continuation was important in

[66, 67].

These computations of three point functions in de Sitter or anti-de Sitter are intimately related to the

computation of stress tensor correlators in a three dimensional field theory. In fact, the symmetries are

the same in both cases. Therefore the constraints of conformal symmetry are the same. The physical

requirements are also very similar. The only minor difference is whether we require the two point function

to be positive or not, etc. But in terms of possible shapes that are allowed the discussion is identical. Thus,

our results can also be viewed as giving the three point correlation functions for a three dimensional field

theory. The position space version of these three point functions was discussed in [34, 68, 69, 70]. For some

three point functions the position space version is much simpler. On the other hand, for the stress tensor,

the position space correlator has many terms due to the different ways of contracting the indices [45]. The

momentum space versions we have written here are definitely shorter than the position space ones. They are

a bit convention dependent due to the contact terms. Thus, they depend on precisely how we are defining

the metric to non-linear orders. Here we have made a definite choice. An elegant and simple way to write

correlation functions is to go to the embedding space formalism [71, 72, 73]. It is likely that one can obtain

relatively simple expressions for the three point correlators using that formalism. On the other hand, the

momentum space formalism might be useful for constructing conformal blocks, since, in momentum space,

there is only one state propagating in the intermediate channel.

2.7 Appendix A: Expression for the three point function in terms

of an explicit choice for polarization tensors

As we are studying three point functions, there is a way to define polarization tensors that are similar to the

usual “×” and “+” of General relativity. We call them X and P here, so as not to cause confusion with the

helicity labels + and −. The choice of helicity states is based on the little group of an Euclidean 3D CFT.

24Raju’s proposal [66, 67] is only for D > 4 dimensions, but it might be possible that something similar exists in D = 4.
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Basically, one takes two possible polarizations, P and X, as functions of a vector orthogonal to the plane

of the triangle and of a vector orthogonal to one of the momenta we are looking at. So, using the notation

defined in figure 2.1, we have that

εP,mij = 2(zizj − umi umj ) (2.87)

εX,mij = 2(umi zj + ziu
m
j ) (2.88)

And the previously discussed + and − polarizations will be given by ± = P ± iX. P and X are the

polarizations known as + and × in general relativity, but we choose to use different labels so that the former

is not interpreted as positive helicity by mistake.

Figure 2.1: The 3-momenta and the auxiliary vectors used to define the polarizations.

We list here the results for the non-gaussianities due to the Einstein term and the Weyl term. The

relevant pieces are labeled by the polarization choices PPP and XXP . We always take particle three to

have polarization P . The other structures are obtained by cyclic permutation. There are no PPX and

XXX structures because they break parity, since z flips under parity so that X is odd and P is even. We

use here the notation J(k1, k2, k3) ≡ 2(k2
1k

2
2 + k2

1k
2
3 + k2

2k
2
3)− (k4

1 + k4
2 + k4

3).
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〈γPk1γ
P
k2γ

P
k3〉R = (2π)3δ3

(∑
i

ki

)(
H

MPl

)4 −1

4(k1k2k3)5

J(k1, k2, k3)

 3∑
i=1

k4
i + 6

∑
i<j

k2
i k

2
j


(
k1 + k2 + k3 −

k1k2 + k1k3 + k2k3

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

)
(2.89)

〈γXk1γ
X
k2γ

P
k3〉R = (2π)3δ3

(∑
i

ki

)(
H

MPl

)4
1

(k1k2k3)4

[
J(k1, k2, k3)

k2
1 + k2

2 + 3k2
3

k3

]
(
k1 + k2 + k3 −

k1k2 + k1k3 + k2k3

k1 + k2 + k3
− k1k2k3

(k1 + k2 + k3)2

)
(2.90)

〈γPk1γ
P
k2γ

P
k3〉W 3 = (2π)3δ3

(∑
i

ki

)(
H

MPl

)6(
H

Λ

)2

a
2160

(k1 + k2 + k3)4(k1k2k3)2
J(k1, k2, k3) =

= (2π)3δ3

(∑
i

ki

)(
H

MPl

)6(
H

Λ

)2

a
270(k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

(k1 + k2 + k3)3(k1k2k3)2
(2.91)

〈γXk1γ
X
k2γ

P
k3〉W 3 = −〈γPk1γ

P
k2γ

P
k3〉W 3 (2.92)

2.8 Appendix B: Details on the spinor helicity formalism

Here we summarize some conventions that we have used.

• Metric: ηµν = diag(−1,+1,+1,+1); εȧa =

0 −1

1 0

; εaȧ =

 0 1

−1 0


• Sigma matrices: σµab = (−δab, σiab);

• Scalar product: p.q = −2〈λp, λq〉〈λ̄p, λ̄q〉; Energies: p0 ≡ p = −〈λp, λ̄p〉 = −εabλapλ̄bp

• Polarization vectors used for the expressions in the appendix (normalization is not the same as the one

used in the previous sections for the stress tensor): ξ−aȧ = −λ
aλȧ

k
and ξ+aȧ =

λ̄aλ̄ȧ

k

Starting from a three momentum ~k, we define a four momentum kµ = (|k|,~k). This obeys kµkµ = 0.

This defintion can be done for dS, AdS, or a three dimensional CFT. Note that ki = σ̂iȧbλ
bλ̄ȧ, where σ̂i are

the Pauli matrices with an index lowered by εȧc. These matrices are symmetric. Thus we conclude that if we

exchange λa ↔ λ̄a we keep the value of ~k, but we change the sign of the energy k0 ≡ k. This change is not

consistent with the reality conditions which are (λ∗)a = εḃaλ̄
ḃ, (λ̄∗)ḃ = −εḃaλa. However, if we just forget
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about the reality condition, then the exchange of λ↔ λ̄ is allowed. Note also that the following symmetry is

consistent with the reality conditions and it reverses the sign of ~k but does not change the sign of k. Namely,

the exchange λ′ = λ̄, λ̄′ = −λ. This is useful for the two point function, where the momentum conservation

condition forces the spatial momenta to be opposite. Note that in some formulas we write ki, which means

|~k|. This can also be written in terms of ki = −〈λ, λ̄〉.

For a given 3-momentum ~k = (k1, k2, k3) if we define |~k| ≡ k0 then one can for example take the following

explicit choice of spinors, assuming that the reality condition is satisfied:

λa =

(√
k0 + k3

2
,
−k1 + ik2√
2(k0 + k3)

)T
; λ̄ȧ =

(
−k1 − ik2√
2(k0 + k3)

,−
√
k0 + k3

2

)
(2.93)

Let us now summarize a few identities that are useful for the treatment of the three point function. For

the case of the three point function the 3-momentum conservation condition reads

λa1λ̄
ȧ
1 + λa2λ̄

ȧ
2 + λa3λ̄

ȧ
3 = −E

2
εaȧ , E ≡ k1 + k2 + k3 = −

3∑
n=1

〈λn, λ̄n〉 (2.94)

Where the coefficient two is determined from contracting the a and ȧ. We can contract this expression with,

say, λ1 and λ̄2. The purpose of that is to derive an expression for an object of the form (m, n̄), which has

no interpretation as an energy, if m 6= n. By doing that we find that 2〈1, 3〉〈3̄, 2̄〉 = E(1, 2̄) and hence, we

can write the general expression:

〈m, n̄〉 = −
∑
o 6=m,n

2〈m, o〉〈ō, n̄〉
E

(2.95)

Where m 6= n 6= o. Also, note that the 4-momentum product of two distinct 4-momenta, in terms of the

three energies and the total energy, is given by:

−2〈m,n〉〈m̄, n̄〉 = kmµk
nµ = −kmkn + km.kn =

1

2
(ko − km − kn)E (2.96)

And we also use the Schouten identity, which is useful to write a given spinor λ in terms of two reference

spinors µ and ξ

〈ξ, µ〉λa = 〈ξ, λ〉µa − 〈µ, λ〉ξa (2.97)
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Whenever we have an expression in terms of angle brackets we can write it completely in terms of 〈m,n〉

brackets and the km = −〈m, m̄〉 brackets. Useful identities to do so are (for m 6= n)

〈m, n̄〉 =
〈m, o〉
〈n, o〉

(ko + kn − km)

2
, 〈m̄, n̄〉 = − (ko − km − kn)E

4〈m,n〉
(2.98)

2.8.1 Some expressions involving polarization vectors

Now, let us calculate all the possible contractions of polarization vectors and momenta of different helicities:

ξ+
m.ξ

+
n = −2

〈m̄, n̄〉2

kmkn
(2.99)

ξ−m.ξ
−
n = −2

〈m,n〉2

kmkn
(2.100)

ξ+
m.ξ
−
n = 2

〈m̄, n〉2

kmkn
(2.101)

As for contractions of momenta with polarization vectors, we have 25

km.ξ
+
n = −2〈m, n̄〉〈m̄, n̄〉

kn
(2.102)

km.ξ
−
n =

2〈m,n〉〈m̄, n〉
kn

(2.103)

These can also be used to convert the gravity expressions into expressions in the spinor helicity variables

since the gravity polarization tensor is εij ∼ ξiξj .

2.9 Appendix C: Comments on the parity breaking piece of the

two point function

As pointed out in [52] , the gravitational wave two point correlation function (or gravitational wave spectrum)

can be different for the two circularly polarized waves without breaking rotation symmetry. In fact, a bulk

coupling of the form
∫
f(φ)WW̃ is enough to produce this. This mechanism requires an inflaton. One

can ask whether a parity breaking two point function is possible in de Sitter space, as some authors have

suggested [54]. Here we make some comments on the parity breaking pieces of the two point function of the

stress tensor.

The summary is that parity breaking terms are allowed in the gaussian part of the wavefunction of the

25As there is no time component of the polarization vector, kaȧεȧa ∼ kµεµ = kiεi so we are only taking the space components
into account.
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universe, or in the two point function of CFT’s. However, such terms are local, and contribute with a phase

to the wavefunction. Thus they do not lead to different amplitudes for left and right circular polarizations.

Let us start by discussing this from the wavefunction of the universe point of view. From that point of

view the question is whether there can be a parity breaking two point function for the stress tensor. One

is tempted to say that the answer is no. The argument is the following. The stress tensor is in a single

representation of the conformal group, thus its two point function should be uniquely fixed. In fact, this

is correct if we consider the two point function at different spatial points. However, there can be a parity

breaking contact term. In order to understand this, let us discuss first the case of a current, or a gauge field

in the bulk, and then discuss the case of the graviton or the stress tensor.

2.9.1 Parity breaking terms in the two point functions for currents

These were discussed in the AdS context in [74]. We just summarize the discussion here. The Fourier

transform of the conserved current two point function is (in a 3D CFT)

〈Ji(k1)Jj(k2)〉 = δ3(k1 + k2)
[
(δijk

2 − kikj)|k|−1 + θεijlk1,l

]
(2.104)

This is consistent with conformal symmetry. It is annihilated by (2.45). The θ term breaks parity. Since

this term is analytic in the momentum, it gives rise to a contact term in position space, a term proportional

to iεijl∂xlδ
3(x − y). If we couple the current to an external source Aµ and compute Ψ[A] = Z[A.J ], then

we are just adding a local term to the wavefunction of the Chern-Simons form ψθ(A) = eiθ
∫
d3xAdAψθ=0(A)

26. This is what we would get in a dS situation if we have an ordinary θ term in the bulk. In other words,

if we have a gauge field in the bulk with an interaction θ
∫
Tr[F ∧ F ], then the wavefunction contains a

term proportional to the Chern-Simons action on the spatial slice. In a unitary (and gauge invariant) bulk

theory this term has a real value of θ, so that it contributes as a phase in the wavefunction. Thus, when

we compute the square of the wavefunction, this terms drops out. More explicitly, we can now compute the

wavefunction in momentum space

ψ(A) = exp{−Ai(k)Aj(−k)(δij |k| −
kikj
|k|

+ θεijsks)} (2.105)

We see that the θ term is imaginary if we take θ to be real. (We use that A(k)∗ = A(−k)). Then, if we

compute |ψ(A)|2 we find that the θ term drops out if θ is real.

Now we can ask, could it be that some unknown unitary Hamiltonian produces a wavefunction that

26For the non abelian case, we can complete this quadratic action into the full cubic one.
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contains a Chern-Simons part with a purely imaginary θ? The arguments leading to the Chern-Simons

term in the wavefunction were based purely on demanding conformal symmetry and did not rely on any

assumptions about the bulk Hamiltonian, or even its existence. All we are assuming is that we have a

wavefunction that is conformal invariant. In particular, purely from conformal symmetry, the θ term could

be imaginary. An imaginary θ leads to different amplitudes for the two circular polarization states of the

gauge field27.

One problem with this is that the resulting probability amplitude is now not invariant under large gauge

transformations. This is due to the fact that the Chern-Simons action shifts by a certain real factor under a

large gauge transformation. Thus the wavefunctions produced in this way are not gauge invariant 28. This

argument is most clear in a non-abelian situation.

However, if we ignore this problem, then we should also point out another issue. A different amplitude

for left and right circularly polarized waves violates CPT invariance29. This is most clear if we think about

the observer in static patch coordinates. This observers sees de Sitter as static. For this observer CPT

is a symmetry, it is not spontaneously broken by the background. However, CPT transforms + circular

polarization into −. Thus these amplitudes cannot be different. Note that the wavefunctions that we

discussed are the late times ones, the wavefunctions for fluctuations outside the horizon. On the other

hand, the static patch observer probes the wavefunction inside the horizon. So, here we have assumed, by

continuity, that if we get a parity breaking effect outside the horizon, then we should also see some effect

inside the horizon.

2.9.2 Parity breaking two point functions for the stress tensor

Similar arguments can be used for the two point function of the stress tensor in momentum space. The only

term we can write that breaks parity, by power counting, is

〈Tij(k)Tmn(−k)〉odd ∼ [(εimlklδjnk
2 + (i↔ j)) + (m↔ n)] (2.106)

This is a function of ki and k2, hence, it is analytic and corresponds to a local term in position space.

In gravity, an analog of the θ term is the topological invariant

∫
Tr[R ∧R] =

∫
εµνρσRabµνR

ab
ρσ =

∫
εµνρσRγδ µνR

γδ
ρσ =

∫
WW̃ (2.107)

27We are not assuming that we have an ordinary θ term in the bulk, but simply that some unknown dynamics gives rise to
a θ term in the wavefunction as in (2.105).

28This argument was suggested to us by E. Witten.
29It is not known whether CPT invariance holds in quantum gravity. In theories that have a dual CFT description, like the

ones in AdS, CPT is a good symmetry, so it seems reasonable to assume that CPT will still be a symmetry of dS.
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The last equality follows from the symmetries of the Riemann curvature. Adding this term as θ
∫
WW̃ to

the bulk action we get a contribution to the wavefunction of the form

eiθSCS(ω) (2.108)

where ω is the spin connection. It can also be written in terms of the Christoffel connection 30. Let us check

that this term indeed produces (2.106). We expand the Chern-Simons term to quadratic order and obtain

SCS ∼
∫
εijkΓris∂kΓsjr (2.109)

Using the first order expressions of the connection we find

SCS ∝ εijl(∂rγsi − ∂sγri)∂l∂rγsj → εijlk
2γ(k)siklγ(−k)si (2.110)

where we used that γ is transverse, ksγsi = 0. This indeed reproduces (2.106).

As in the gauge field case, if θ is real, this term disappears from |Ψ|2. On the other hand, if θ is

imaginary, we do get an extra contribution to |Ψ|2 which leads to a different amplitude for left and right

circularly polarized gravitational waves, as pointed out in [54].

Note that SCS in (2.108) is not invariant under large gauge transformations of the local Lorentz indices

of the spin connection.

Again CPT invariance forbids a different amplitude for left and right circular polarization.

Note that all the remarks in this section apply to the case of pure de Sitter. In the case that we have

an inflationary background, time reversal symmetry is broken by the inflaton and we can certainly have a

parity violating two point function [52].

2.10 Appendix D: Commuting through the delta function

In this appendix we show that the action of the special conformal generator (2.45) on a correlator or

expectation value of the form δ(P )M is equal to the action of the operator on M. In other words, (2.45)

commutes with the momentum conserving delta function. The point is to understand how to get all the

momentum derivatives through the momentum conserving δ function. From now on all derivatives will be k

derivatives.

30In fact, we can use the relation between the two connections that comes from demanding that Dµεaν = 0, which is
ωabµ = eaαΓαµνE

νb − ∂µeaνEνb In this form it has the form of a GL(N) gauge transformation, ωµ = gΓµg−1 − ∂µgg−1 with
g = eaα. Of course, gauge transformations are a symmetry of the CS action. Thus we get the same action in terms of both
connections. The first (upper) and last indices of Γ are viewed as the “internal” GL(N) indices of the connection.
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The delta function depends only on the sum of all momenta, let us call that P . Then the sum over all

particles of Da where a runs over particle number has the form

(∑
a

D̃aδ
3(P )

)
M = 6[(b.∂~P )δ3]M (2.111)

In order to derive this we have done the following. In each term the derivatives are with respect to ka, which

end up ∂P when acting on the δ function. Then the ka in D̃ all sum up to P . Thus we have a term of the

form P (∂P∂P δ)M. We then integrate by parts the derivatives to act onM in such a way that we get terms

of the form in (2.111) and also terms of the form Pδ(P )∂P∂PM. Such terms vanish. Thus (2.111) is the

total contribution from terms with two derivatives on the delta function.

We can now consider terms which have only one derivative on the delta functions. There are terms

coming from D̃. Let us consider those first. The first term in D̃ contributes with

2[∂Pjδ](2b
i.kia)∂kja (2.112)

The second term gives

2[∂Pjδ]
{

(−2kja)(b.∂ka)− 2bj(k.∂k)
}

(2.113)

The (3.46) and the first term in (2.113) give the action of the rotation generators on the term multiplying

the δ function. These would make the correlator vanish if it was rotational invariant. On the other hand, we

have indices, thus the correlator is rotational covariant. The action of the rotation generators has to results

in some action on the indices. These must arise from the action of M̃ on the δ function, producing the spin

generators. Finally we have the last term, which adds up to the dilatation generator. Such terms combine

with a derivative of a δ function in (2.111) and also a derivative that comes from the first term in (2.45) .

They altogether sum up to

−(b.∂P δ)2

{∑
a

(∆a − 3) + 3−
∑
a

ka.∂ka

}
(2.114)

The last term is computing the overall dimension of the term that multiplies the δ function, the +3 is taking

into account the dimensions of the δ function. And the first term is the total dimension of the (Fourier

transform) of the external states. Thus, if the answer is dilatation covariant these terms will vanish. The

total dilatation eigenvalue k∂k of the coefficient of the delta function is then 3 +
∑
a(∆a − 3).
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2.11 Appendix E: Checking the Ward identities for the stress ten-

sor

The Ward identities come from the statement that the wavefunction of the universe is reparametrization

invariant Ψ[gij ] = Ψ[gij +∇(ivj)]. This then implies that

∇i
[

1
√
g

δΨ

δgij

]
= 0 (2.115)

The stress tensor correlators are defined by taking multiple derivatives of the wavefunction and then setting

g to the flat metric. By taking multiple derivatives of (2.115) we get the Ward identity which looks like

∂i〈Tij(x)Tl1,m1(y1) · · ·Tln,mn(yr)〉 =

r∑
s=1

D
l′sm
′
s

lsms
δ3(x− ys)〈Tl1,m1(y1) · · ·Tl′s,m′s(ys) · · ·Tln,mn(yr)〉 (2.116)

where D is a first order derivative (acting on x or ys) and the indices are contracted in some way. These terms

come from acting with the metric derivatives on the explicit metric dependence in the covariant derivative,

etc. Notice that if all the points in the left hand side are different from each other, then the right hand

side is zero. In this section we will assume that all the points y1, · · · , yr are different from each other. The

precise form of the contact terms in the right hand side depends on the precise definition of the “derivative

with respect to the metric”. If we define the stress tensor as derivatives of the from δ
δgij , then the Ward

identities can be found in [45]. However, in our case, we defined the stress tensor correlators as derivatives of

the wavefunction with respect to γij , where we write the metric as g = eγ , see (2.34). This leads to slightly

different expressions. The difference is only present as extra contact terms that arise when we use the chain

rule T ours
ij = δ

δγij = δglm

δγij
δ

δglm
.

One can keep track of these extra terms and write the precise version of the Ward identity.

For the case of the three point function, after going to Fourier space, we get the simple expression 31

〈[k1ξ
1T (k1)][ξ2ξ2T (k2)][ξ3ξ3T (k3)]〉 = ξ2.ξ3 {ξ1.k3ξ2.ξ3 + ξ2.k1ξ1.ξ3 + ξ3.k2ξ1.ξ2}

[
2k3

2 − 2k3
3

]
(2.117)

Which, for −−− is given by:

〈[k1ξ
1T (k1)][ξ2ξ2T (k2)][ξ3ξ3T (k3)]〉 = 8〈1, 2〉〈2, 3〉3〈3, 1〉 (k1 + k2 + k3)(k3

2 − k3
3)

(k1k2k3)2
(2.118)

From the point of view of the operator (2.46), this expression (2.118) should be multiplying a term that

31This gets simplified thanks to the fact that 〈Tij(−k)[ξξT (k)]〉 = 2ξiξjk3.
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goes like (k−3
1 )ξ1(...). The coefficient of the three point function is then fixed by comparing this with the

result of acting on the three point functions of Einstein gravity with (2.46).

For a general −−− three point function, given by (〈1, 2〉〈2, 3〉〈3, 1〉)2f(k1, k2, k3), the action of (2.46) is

32

(σi)aȧ
∂2

∂λa1∂λ̄
ȧ
1

[
(〈1, 2〉〈2, 3〉〈3, 1〉)2f(k1, k2, k3)

]
=

= [〈1, 2〉〈2, 3〉〈3, 1〉]2
[
(6 + 2km1 ∂km1 )∂ki1f − k

i
1∂kl1∂kl1f

]
+

+ iεijk
ξk1k

j
1

k1
[2〈1, 2〉〈2, 3〉2〈3, 1〉[〈2, 1̄〉〈3, 1〉 − 〈3, 1̄〉〈1, 2〉]]∂k1f (2.119)

In order to derive this, we used Schouten to express λ2
a, λ

3
a each as a function of λ1

a and λ̄1
a. As ξ1 is a

complex vector, one can show that iεijkξk1
kj1
k1

= ξi1. Then the third line is proportional to ξ1. The next step

is to write the first piece as a function of k1 and not of its components. The final result is:

∑
n

(σi)aȧ
∂2

∂λan∂λ̄
ȧ
n

[
(〈1, 2〉〈2, 3〉〈3, 1〉)2f(k1, k2, k3)

]
= −2ξi1(1, 2)(2, 3)3(3, 1)[k3 − k2]∂k1f+

+ [〈1, 2〉〈2, 3〉〈3, 1〉]2
[

4

k1
∂k1f + ∂2

k1f

]
ki1 + cyclic (2.120)

Although the ξs are linearly independent, the ks are not. A convenient way to rewrite (2.120) is to choose

special conformal transformation parameters bi to project out a few components. Let us take bi ∼ (λ2λ3 +

λ3λ2)i for example. The constraint is

(λ2λ3).Ô[(−−−)f ] = 〈1, 2〉2〈2, 3〉3〈3, 1〉2
{

4(∂k2 − ∂k3)f + k3(∂2
k1 − ∂

2
k3)f − k2(∂2

k1 − ∂
2
k2)f

}
(2.121)

For the −−+ correlator, the derivation is similar.

32When there is no index in the derivative, it is understood that we are taking the derivative with respect to the energy, or
|k|. We hope this does not cause confusion in the expressions here.
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Chapter 3

Inflationary Consistency Conditions

from a Wavefunctional Perspective

3.1 Introduction

Recently, there has been much interest in calculating non-gaussian deviations for the statistics of primordial

perturbations generated by inflation. Signatures of primordial non-gaussianity could falsify various models

of the early universe. One is in general interested in computing three point expectation values of fields,

evaluated at late times, when all modes have exited the horizon.

Maldacena pointed out [22] that there is a nice consistency check for the three point function of (single

field) inflation. Namely, when one considers a “squeezed” triangle shape, where one of the momenta is much

smaller than the others (their sum needs to be zero due to translational invariance), the three point function

can be written in terms of the tilt of the spectrum of the two point function.

The intuition behind this consistency condition is as follows. In the squeezed regime, the long wavelength

mode has exited the horizon earlier than the other modes, so its effect is to rescale the coordinates at which

one computes the power spectrum for the other, shorter wavelength fluctuations. This intuition turns out

to be correct for all models with a single field setting the natural “clock” for the inflationary period [75] ,

and is thus a way to falsify single field inflation.

The consistency condition has been checked in many different models, and was derived in various different

ways. An incomplete list of references is [75, 32, 31]. The original consistency condition concerns only the

leading term on the momentum of the long wavelength mode. Considerable progress has been made since,

by several groups, on studying subleading corrections to the squeezed limit. Also, consistency conditions
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coming from soft internal momenta were found, relevant to squeezed limits of expectation values with four

or more legs [76, 77, 78, 79, 80, 81, 82]. The derivations attack the problem from various perspectives. They

either explore the broken symmetries of the (quasi-de Sitter) background, or some residual diffeomorphism

invariance of the metric that was not completely fixed. There are also approaches that take the long mode

as a classical background perturbation over which the shorter modes evolve.

In this chapter, a different derivation of these results is provided. The object of primary interest will be

the wavefunction of the universe, Ψ[h, φ], which has information on the probability for spacetime to have a

spacelike slice with a given 3-metric and additional field profiles (for single field inflation, we also specify the

profile of the inflaton on the slice). In this formalism, the wavefunction is specified by the so-called Wheeler-

DeWitt equation [83]. We will show that coordinate reparametrization invariance of the three slice, also

known as the momentum constraint, has all the information on squeezed limits of inflationary expectation

values. In other words, all known consistency conditions follow from a symmetry of the wavefunction of the

universe, or a constraint on its form. The wavefunctional perspective was also used to derive consistency

conditions in [82].

Our situation here is analogous to the following in a gauge theory. We can compute Feynman diagrams

and find correlation functions for the gauge fields Aµ. These correlation functions satisfy some transver-

sality condition, which basically removes the unphysical longitudinal modes from physical observables, like

scattering amplitudes, and preserve unitarity etc. These are the Ward identities satisfied by the correlation

functions. In gauge theory, we know what the good, gauge invariant observables should be (for example,

correlations of field strengths Fµν , or Wilson loops). In gravity, a good observable should be diffeomorphism

invariant.

When we compute the expectation values, there are still “longitudinal modes”, or unphysical informa-

tion, in these functions. The consistency condition basically tells us that the leading and next to leading

order terms in the squeezed limit are fixed by this pure gauge information. From the point of view of a

“metaobserver” that sees our universe from outside, these would be unphysical modes. Because we have to

pick a frame to make observations in cosmology, we would measure a squeezed non-gaussianity. The point is

that it is fixed basically by the field content of the inflationary theory, and not from the details of the field

interactions etc. This effect was recently computed and discussed in [84], in the context of translating the

inflationary expectation values to CMB fluctuations in the sky.

In [85], it was pointed out that, in fact there is an infinite number of such consistency conditions, and, at

each order in the long mode Taylor series, there should be terms fixed by diffeomorphism invariance. With

the wavefunctional approach, that becomes very clear, as the consistency conditions can be extracted from
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a power series expansion of an expression of the schematic form:

kiL
δnΨ

δhij(kL)δh(k1)δh(k2)...
= −kj1

δn−1Ψ

δh(k1 + kL)δh(k2)...
− kj2

δn−1Ψ

δh(k1)δh(k2 + kL)...
− · · · (3.1)

Where we omit indices of the other metric insertions for simplicity. These functional derivatives can be

mapped to tree level expectation values of the fluctuating fields (metric, inflaton etc.). We can expand (3.1)

around kL = 0 and, at each order, it will provide a consistency condition. In fact, (3.1) totally determines

the form of the derivative of the wavefunction to leading and subleading orders. From quadratic order on,

we cannot fully constrain this functional derivative, and that is when the truly physical contributions to the

squeezed limit appear [84, 86].

One nice feature of this wavefunctional formalism is that it is easily extended to theories with more

fluctuating fields. Also, tracking the consequences of other symmetries of the wavefunction, like some flavor

symmetry of the scalar sector, seems to be straightforward in this language.

The chapter is structured as follows. In section 2, we review the Wheeler-DeWitt formalism, in particular

for Einstein gravity in de Sitter space, and for single field inflation. In section 3, we briefly treat the

Hamiltonian constraints and comment on their implications. In section 4, we write the consistency condition

from the wavefunctional perspective. In section 5, we derive the consequences for expectation values of fields,

focusing on three point functions. In section 6, we make a few observations on gauge/gravity duality. In

section 7 we discuss our results, followed by a few appendices on technical details. In particular, appendix B

shows a somewhat simple but still interesting extension of the consistency condition to a single field inflation

model with an additional massless scalar.

3.2 Gravity in the Schrodinger picture: the Wheeler-DeWitt equa-

tions

In the Wheeler-DeWitt approach to perturbative quantum gravity, the object of interest is the wavefunction

of the universe. It gives the probability that the spacetime has a spatial slice with given 3-metric and field

profile. The equations express the time and space reparametrization invariance of the wavefunction. The

spatial reparametrization invariance implies the so-called momentum constraint on the wavefunction, and is

an expression analogous to Gauss’ law in electromagnetism. The time reparametrization invariance encodes

the dynamics of the theory. These are properly described in the 3 + 1 decomposition of the metric, or the

ADM formalism.

In this section we review how to obtain the Wheeler-DeWitt equations from the ADM decomposition
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of the metric. We analyze two particular cases of interest, namely, Einstein gravity in de Sitter space and

single field inflation.

3.2.1 Einstein Gravity with positive Cosmological constant

Start from the action:

S = κ

∫ √
−g((4)R− 2Λ) (3.2)

With κ ≡ (16πGN )−1 =
M2
Pl

2 . Then, in the ADM decomposition, ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+

dxj), the action reads:

S = κ

∫
N
√
h
[
KijK

ij −K2 +R− 2Λ
]
, Kij ≡

1

2N
(ḣij −∇iNj −∇jNi) (3.3)

Indices in (3.3) and from now on are raised with hij instead of the 4D metric. We are omitting some boundary

contributions which were subtracted by the Gibbons-Hawking-York term. The conjugate momenta to the

metric are:

π ≡ δL

δṄ
= 0, πi ≡ δL

δṄi
= 0

πij ≡ δL

δḣij
= κ
√
h(Kij − hijK)

(3.4)

So the Hamiltonian will be of the form:

H =

∫ {
N

[
1

2κ
√
h
Gij,klπ

ijπkl − κ
√
h(R− 2Λ)

]
+ 2∇iNjπij

}
Gij,kl ≡ (hikhjl + hilhjk − hijhkl)

(3.5)

Gij,kl is called the DeWitt metric1. Quantization on a basis that is diagonal in the three metric hij corre-

sponds to promoting πij → −i~ δ
δhij

. Then, variation with respect to the lapse and shift yields the equations:

[
~2

2κ
√
h
Gij,kl

δ

δhij

δ

δhkl
+ κ
√
h(R− 2Λ)

]
Ψ = 0

− 2i~∇i
[

1√
h

δΨ

δhij

]
= 0

(3.6)

1In the literature, the factor of 1/
√
h is usually absorbed in the definition of G, so Ghere =

√
hGDeWitt
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3.2.2 Gravity plus a Scalar field

Now write the action as follows:

S = κ

∫
(R− (∇φ)2 − 2V (φ)) (3.7)

Again, using the ADM decomposition, the action reads:

S = κ

∫ √
h

[
N(KijK

ij −K2 +R) +
1

N
(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ− 2NV (φ)

]
(3.8)

The conjugate momentum for the metric is the same, and the gravitational Hamiltonian is the same, but for

the cosmological constant. The conjugate momentum for the scalar field is:

πφ =
2κ
√
h

N
(φ̇−N i∂iφ) (3.9)

The total Hamiltonian will be:

H =

∫ {
N

[
1

2κ
√
h
Gij,klπ

ijπkl − κ
√
hR+

1

4κ
√
h
π2
φ + κ

√
h
(
hij∂iφ∂jφ+ 2V (φ)

)]
+

+2∇iNjπij + hijNj∂iφπφ
} (3.10)

Now, the wavefunction Ψ[h, φ] is subject to the constraints:

[
~2

2κ
√
h
Gij,kl

δ

δhij

δ

δhkl
+ κ
√
hR+

~2

4κ
√
h

δ2

δφ2
− κ
√
h
(
hij∂iφ∂jφ+ 2V (φ)

)]
Ψ = 0

− 2i~∇i
[

1√
h

δΨ

δhij

]
+ i~

1√
h
hij∂iφ

δΨ

δφ
= 0

(3.11)

3.2.3 Tree level Wheeler-DeWitt equation

Write Ψ = Exp{iW/~} and expand the equations (3.6), (3.11) to zeroth order in ~. We get Hamilton-Jacobi

equations for W , of the form:

[
− 1

2κ
√
h
Gij,kl

δW

δhij

δW

δhkl
+ κ
√
h(R− 2Λ)

]
= 0

2∇i
[

1√
h

δW

δhij

]
= 0

(3.12)
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And, for single field inflation, of the form:

[
− 1

2κ
√
h
Gij,kl

δW

δhij

δW

δhkl
+ κ
√
hR− 1

4κ
√
h

(
δW

δφ

)2

− κ
√
h
(
hij∂iφ∂jφ+ 2V (φ)

)]
= 0

2∇i
[

1√
h

δW

δhij

]
− 1√

h
hij∂iφ

δW

δφ
= 0

(3.13)

3.3 Structure of the Wavefunction at large “volume” and time

independence

We are interested in computing the wavefunction at late times. Time is absent in the Wheeler-DeWitt

approach to quantum gravity, so, in the context of inflation, we will be looking at the wavefunction for a

spatial slice with large “volume”. In other words, take the spatial metric and redefine it as hij = a2ĥij . We

can then consider the asymptotics of (3.12) and (3.13) as a→∞.

The time reparametrization constraint of general relativity is encoded in the Hamiltonian constraint. In

principle, it will fix the wavefunction, given suitable boundary conditions. Here we just want to point out

that there is a “time-independent” piece of the wavefunction, which is nonlocal and encodes the superhorizon

fluctuations in inflation.

3.3.1 Pure gravity

Begin by substituting hij = a2ĥij to (3.12). The Hamiltonian constraint becomes:

[
− 1

2κa3
√
ĥ
Ĝij,kl

δW

δĥij

δW

δĥkl
+ κ
√
ĥ(aR̂− a3(2Λ))

]
= 0 (3.14)

Now write W = a3α
∫ √

ĥ+ aβ
∫ √

ĥR̂+W0 +O(1/a). Solving (3.14) order by order in a, we get:

α = 4κ

√
Λ

3

β = −κ
√

3

Λ

ĥij
δW0

δĥij
= 0

(3.15)

So (3.15) tells us that W0 is scale invariant, or a independent. Note that, as we consider the a → ∞ limit

and compute expectation values, only W0 is important, as the local terms are imaginary, so they will not

appear in |Ψ[h]|2 = Exp[2Re
(
i
~W0

)
].
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3.3.2 Single Field Inflation

Here the method is essentially the same, though the structure of the wavefunction is more complicated. A

similar construction was carried for an arbitrary number of scalars, for a 5-D spacetime, in [63]. See also

[47, 48] for a detailed analysis of the Hamilton-Jacobi equation for single field inflation. The Hamiltonian

constraint is:

[
− 1

2κa3
√
h
Ĝij,kl

δW

δĥij

δW

δĥkl
+ κ
√
ĥaR− 1

4κa3
√
ĥ

(
δW

δφ

)2

− κ
√
ĥ
(
aĥij∂iφ∂jφ+ 2a3V (φ)

)]
= 0 (3.16)

Now write W = a3
∫ √

ĥU(φ) +a
∫ √

ĥ
[
Φ(φ)R̂+ Θ(φ)(hij∂iφ∂jφ)

]
+W0 +O(1/a). Solving (3.16) order

by order in a, we get:

V =
1

8κ2

[
3U2

2
− U ′2

]
UΦ

2
− U ′Φ′ = −2κ2

U ′Θ′

2
− U

(
Φ′′ − Θ

4

)
= κ2

U ′

U
=

Φ′

Θ

ĥij
δW0

δĥij
=
U ′

U

δW0

δφ

(3.17)

The auxiliary potential U is related to the potential V via (3.17). The variation of W0 with respect to the

trace of the metric is related to a variation of W0 with respect to the scalar field. This relates two different

gauge choices, one in which the trace of the metric is a fluctuating degree of freedom (ζ gauge) and the

other where the scalar field fluctuates (δφ gauge). The factor that relates one to the other is related to the

slow-roll parameter of single field inflation[46, 22, 48].

The existence of a “time-independent” piece of the wavefunction, for large volume (late times), is equiv-

alent to the statement that there are fluctuations of the metric that freeze at late times [87] . Those are the

fluctuating fields whose correlations are calculated using the in-in formalism in inflation.

With Hartle-Hawking boundary conditions, W0 can be computed explicitly. One evaluates the classical

action with a solution for the equations of motion that obeys these boundary conditions. At very early

times, the modes are in their flat space vacuum, as their physical wavelength is too small to probe any

curvature effects of spacetime. W0 has an imaginary piece that gives the tree level contribution to inflationary

expectation values [22, 14].
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3.4 Consistency condition as a Ward Identity for derivatives of

the Wavefunction

In the previous section, we showed that the wavefunction has a piece that is late time independent. Now we

want to show that the consistency condition for the cosmological correlators arises from reparametrization

invariance of the wavefunction of the universe, in particular, of W0. We write hij = a2(δij+pij) and consider

the limit of a→∞, which would correspond to a late time slice in the semiclassical approximation.

Now we impose that the wavefunction is invariant under spatial diffeomorphisms. This means that

Ψ[hij +∇(ivj)] = Ψ[hij ]. This implies that:

δΨ[hij ] = 2

∫
d3x∇avb(x)

δΨ[hij ]

δhab(x)
= 0⇒ ∇i

[
1√
h(x)

δΨ

δhij(x)
= 0

]
(3.18)

Equation (3.18) is the Ward identity for the wavefunction of the universe. It is a statement on its

reparametrization invariance. Of course, this is the same as equation (3.6). Specializing to W0, the scale

invariant piece of the wavefunction, as in (3.15), we see that it also satisfies (3.18) with Ψ → W0, as the

other terms that survive in the a→∞ limit automatically satisfy (3.18), as they are invariant under spatial

reparametrizations.

Let us now perform a perturbative expansion in W0. We take the perturbations to be around the flat

metric, as δij +pij . Of course, this is due to what we know about the universe being approximately flat after

inflation. The consistency conditions can be easily generalized to expansions around different backgrounds,

as the WdW equations are invariant under the choice of background metric.

As we are interested in the non-local piece of the wavefunction, we start quadratic in the metric2:

W0[ĥ] =
1

2!

∫
d3xd3y

(
δ2W0[δ]

δĥab(x)δĥcd(y)

)
pab(x)pcd(y)+

+
1

3!

∫
d3xd3yd3z

(
δ3W0[δ]

δĥab(x)δĥcd(y)ĥef (z)

)
pab(x)pcd(y)pef (z)+

+
1

4!

∫
d3xd3yd3zd3w

δ4W0[δ]

δĥab(x)δĥcd(y)δĥef (z)δĥij(w)
pab(x)pcd(y)pef (z)pij(w) + · · ·

(3.19)

We are Taylor expanding around the flat metric. Square brackets in the derivatives mean that we calculate

the derivative at the background metric. As we will be mostly dealing with W0 from here on, we will omit

the hat on ĥij .

2In principle there can be a scale invariant, local contribution to the wavefunction, proportional to the gravitational Chern-
Simons term. It can be argued that this term is a pure phase [26], and thus will not contribute to the sort of correlators we
consider here. In any case, even if it were real, it would contribute a local term to expectation values, and we are interested in
consistency conditions for the nonlocal terms.
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We now work out the consequences of (3.18) to the coefficients in the perturbative expansion (3.19). The

idea is to commute an insertion of δ/δĥij into (3.18) and then evaluate the resultant expression for hij = δij .

We rewrite (3.18) as:

∇i
[
δW0

δhij(x)

]
= ∂i

(
δW0

δhij(x)

)
+ Γjik(x)

δW0

δhik(x)
= 0 (3.20)

The only issue here is how to commute through the Christoffel symbol. Writing Γabc = hadΓdbc the following

expressions are useful:

δnΓabc(x)

δhi1j1(y1) · · · δhinjn(yn)
=

δnhad(x)

δhi1j1(y1) · · · δhinjn(yn)
Γdbc(x) + · · ·

· · ·+
n∑
k=1

δn−1had(x)

δhi1j1(y1) · · · δhinjn(yn)

δΓdbc(x)

δhikjk(yk)

δhab(x)

δhcd(y)
= −ham(x)hbn(x)δcdmnδ(x− y), δcdmn ≡

1

2
(δcmδ

d
n + δcnδ

d
m)

δΓdbc(x)

δhij(y)
=

1

2

(
δijbd ∂

x
c δ(x− y) + δijcd ∂

x
b δ(x− y)− δijbc ∂

x
d δ(x− y)

)
(3.21)

Second derivative

First let us just commute one insertion of δ/δhij through (3.18). We get:

∂

∂xi

(
δ2W0[δ]

δhij(x)δhkl(y)

)
= 0 (3.22)

Third derivative

We now commute two insertions of δ/δhij through (3.18) . We get:

∂

∂xi

(
δ3W0[δ]

δhij(x)δhkl(y)δhmn(z)

)
= −1

2

[(
δjk

δ2W0[δ]

δhil(x)δhmn(z)

∂

∂xi
δ(x− y) + {k ↔ l}

)
+

+

(
δjm

δ2W0[δ]

δhkl(y)δhin(x)

∂

∂xi
δ(x− z) + {m↔ n}

)
−
(

δ2W0[δ]

δhkl(x)δhmn(z)

∂

∂xj
δ(x− y)+

+
δ2W0[δ]

δhkl(y)δhmn(x)

∂

∂xj
δ(x− z)

)] (3.23)

3.5 Consequences for expectation values

The expectation values of insertions of the metric is given by:

〈hij(x)hkl(y) · · · 〉 =

∫
dh|Ψ[h]|2hij(x)hkl(y) · · · (3.24)

It is convenient to do the following before moving on. We want to write the expectation values of operators
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in momentum space. We also use a basis of polarization tensors that is traceless and transverse with respect

to the flat metric:

εsijε
s′

ij = 2δss
′
, kiε

s
ij = 0 (3.25)

Indices are contracted with δij . We call the helicity modes + and −. Angular momentum conservation and

momentum conservation tells us that the only two point functions allowed are 〈p+p+〉 and 〈p−p−〉, with the

perturbation being pij ≡ hij − δij . Now write the wavefunction as follows:

Ψ = Ψlocal × Exp

{∑
n

∫
dk1 · · · dkn

1

n!

δnW0[δ]

δhs1(k1) · · · δhsn(kn)
ps1(k1) · · · psn(kn)

}
(3.26)

In terms of (3.26), the two point expectation value for gravitational wave perturbations is given by:

〈ps1(k1)ps2(k2)〉 = − 1

2Re δ2W0[δ]
δhs1 (k1)δhs2 (k2)

(3.27)

Three Point Function

In terms of (3.26), the three point expectation value for gravitational wave perturbations is given by:

〈ps1(k1)ps2(k2)ps3(k3)〉 = −
2Re

(
δ3W0[δ]

δhs1 (k1)δhs2 (k2)δhs3 (k3)

)
ΠiRe

(
2 δ2W0[δ]
δhsi (ki)δhsi (−ki)

) (3.28)

Let us now understand how (3.23) constrains the shape of the three point function in the squeezed limit.

Start from looking at (3.22) and (3.23) in momentum space. As the background is translation invariant,

the derivatives of the wavefunction should only depend on distances between points. In momentum space,

this means that there is always a subtended momentum conserving delta function in front of an expectation

value3. Thus, an n-point expectation value will explicitly depend on n − 1 momenta, the last momentum

dependence removed by translation invariance.

Before giving the final forms for (3.22) and (3.23), we need to do one more thing. The variable we actually

use in the bulk computations is γij , such that hij = Exp(γ)ij . To cubic order, hij = δij + γij + 1
2γikγkj .

Translating the relation for the three point derivative (3.23) will induce new contact terms in the Ward

identity, due to the use of the chain rule. In momentum space, (3.22) and (3.23) will read:

k1,i
δ2W0[δ]

δγij(k1)δγkl(k2)
= 0 (3.29)

3The notation used in [22] and in many papers in the literature is to use a ′ in front of the expectation value, e. g.
〈h(k1)h(k2)〉 = δ(k1 + k2)〈h(k1)h(−k1)〉′. We will always assume that the delta function is taken care of, and use it to
eliminate one momentum variable in the various expectation values.
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k1,a
δ3W0[δ]

δγaj(k1)δγkl(k2)δγmn(k3)
=

=
1

2

[
δjkk2,a

δ2W0[δ]

δγal(−k3)δγmn(k3)
+ δjlk2,a

δ2W0[δ]

δγak(−k3)δγmn(k3)
+

+δjmk3,a
δ2W0[δ]

δγkl(k2)δγan(−k2)
+ δjnk3,a

δ2W0[δ]

δγkl(k2)δγma(−k2)
−

−k2,j
δ2W0[δ]

δγkl(−k3)δγmn(k3)
− k3,j

δ2W0[δ]

δγkl(k2)δγmn(−k2)

]
+

+ k1,a

[
δklbdδ

aj
dc

δ2W0[δ]

δγbc(−k3)δγmn(k3)
+ δmnbd δ

ij
dc

δ2W0[δ]

δγkl(k2)δγbc(−k2)

]
(3.30)

The last line of (3.30) comes from the change of variables p → γ. The derivatives are evaluated around

the flat background, meaning that we set γ = 0 after taking the derivative. Dummy indices are a, · · · , d in

(3.30). (3.30) encodes all consistency conditions for the three point function of inflationary perturbations.

3.5.1 Extracting the consistency condition

To get the consistency conditions of inflation, we need to consider the squeezed limit, or k1 → 0. We want

to show that (3.30) implies an infinite number of such consistency conditions, as recently discussed by [85]

. The leading correction to the consistency condition, which is also completely fixed by the longitudinal

modes, was first discussed in [78] . Now, all one needs to do is to Taylor expand (3.30) around k1 = 0. Let

us introduce the simplified notation:

Dij
k W0 ≡

δW0[δ]

δγij(k)
(3.31)

Then, the three point function for gravitational waves is given by:

〈γs1k1γ
s2
k2
γs3k3〉 = −

2Re
[
Ds1
k1
Ds2
k2
Ds3
k3
W0

]
2Re

[
Ds1
k1
Ds1
−k1W0

]
2Re

[
Ds2
k2
Ds2
−k2W0

]
2Re

[
Ds3
k3
Ds3
−k3W0

] (3.32)

And the consistency condition is encoded in the identity:

ka1D
aj
k1
Dkl
k2D

mn
k3 W0 =

=
1

2

[
δjkka2D

al
−k3D

mn
k3 W0 + δjlka2D

ak
−k3D

mn
k3 W0 + δjmka3D

kl
k2D

an
−k2W0 + δjnka3D

kl
k2D

ma
−k2W0−

−kj2Dkl
−k3D

mn
k3 W0 − kj3Dkl

k2D
mn
−k2W0

]
+ ka1

[
δklbdδ

aj
dcD

bc
−k3D

mn
k3 W0 + δmnbd δ

aj
dcD

kl
k2D

bc
−k2W0

] (3.33)

Now we expand (3.32) and (3.33) around k1 = 0. Assuming that limk1→0 k
a
1D

aj
k1
Dkl
k2
Dmn
k3
W0 = 0, which

is true if there are no terms of the form log k1 in the three point function of cosmological perturbations, we
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get:

lim
k1→0

Dij
k1
Dkl
k2D

mn
−k1−k2W0 =

= −1

2

[
δjkDil

−k2D
mn
k2 W0 + δjlDik

−k2D
mn
k2 W0 + δjmDkl

−k2D
in
k2W0 + δjnDkl

−k2D
mi
k2 W0+

+k2,j
∂

∂k2,i
Dkl
−k2D

mn
k2 W0 − δijDkl

−k2D
mn
k2 W0

]
+
[
δklbdδ

ij
cdD

bc
−k2D

mn
k2 W0 + δmnbd δ

ij
cdD

kl
−k2D

bc
k2W0

] (3.34)

Now, we contract (3.34) with polarization tensors for the fluctuations. We obtain:

lim
k1→0

Ds1
k1
Ds2
k2
Ds2
−k1−k2W0 = −1

2
εij1 k

i
2

∂

∂kj2
Ds2
−k2D

s2
k2
W0 = −εij1 ki2k

j
2

∂

∂k2
2

Ds2
−k2D

s2
k2
W0 (3.35)

We now see that the leading order contribution to the squeezed limit of the three point function of gravita-

tional waves is:

lim
k1→0

〈γs1k1γ
s2
k2
γs3k3〉 = −

2Re limk1→0

[
Ds1
k1
Ds2
k2
Ds3
k3
W0

]
δs2s3

2Re
[
Ds1
k1
Ds1
−k1W0

] (
2Re

[
Ds2
k2
Ds2
−k2W0

])2 =

= −

[
− 1

2Re[Ds1
k1
Ds1
−k1W0]

][
−εij1 ki2k

j
2

∂

∂k2
2

(
1

2Re[Ds2
k2
Ds2
−k2W0]

)]
δs2s3 =

= −〈γs1k1γ
s1
−k1〉ε

ij
1 k

i
2k
j
2

∂

∂k2
2

〈γs2k2γ
s2
−k2〉δ

s2s3

(3.36)

Which is the standard consistency condition for the gravitational wave three point function [22].

3.5.2 Scalar Fluctuations

Although there is no scalar mode in pure gravity in de Sitter space, (as is illustrated by equation (3.15))

we can still make use of (3.33) to extract the consistency condition for the inflaton, ζ. The reason is that

we evaluate the wavefunction at a surface of constant background field, W0[h, φ] with ∂iφ = 0. Then, the

momentum constraint (3.11) reduces to the one in pure gravity, and thus (3.33) applies. As the ζ mode is

also taken as the exponential of the metric, but of its trace, instead of its traceless transverse component, all

we need to do is to contract (3.33) with δij , etc. At the level of the three point function, we take our metric

to be hij = δij(1 + 2ζ + 2ζ2). That corresponds to the substitution γij → 2ζδij . In (3.33) that corresponds

to 2Dij
k δ

ij → Dk, where Dk ≡ δ/δζk. We obtain:

lim
k1→0

Dk1Dk2D−k1−k2W0 =

[(
3− ki2

∂

∂ki2

)
D−k2Dk2W0

]
=

[(
3− k2

∂

∂k2

)
D−k2Dk2W0

]
(3.37)
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Thus, for the three point function, we obtain:

lim
k1→0

〈ζk1ζk2ζk3〉 = − 2Re limk1→0 [Dk1Dk2Dk3W0]

2Re [Dk1D−k1W0] (2Re [Dk2D−k2W0])
2 =

= −
[
− 1

2Re[Dk1D−k1W0]

] [
− 1

2Re[Dk2D−k2W0]

][
−
d log

(
−2Re

[
Dk2D−k2W0k

−3
2

])
d log k

]
=

= −〈ζk1ζ−k1〉〈ζk2ζ−k2〉
∂ log

[
k3

2〈ζk2ζ−k2〉
]

∂ log k2

(3.38)

3.5.3 Mixed three point functions

For three point functions of one long scalar and two short tensor fluctuations, and vice-versa, the derivation

is essentially the same. One just needs to contract (3.33) with the proper polarization tensors etc. We just

quote the final results. For a long scalar mode and short tensor modes we have:

lim
k1→0

〈ζk1γ
s2
k2
γs3k3〉 = −

2Re limk1→0

[
Dk1D

s2
k2
Ds3
k3
W0

]
δs2s3

2Re [Dk1D−k1W0]
(
2Re

[
Ds2
k2
Ds2
−k2W0

])2 =

= −
[
− 1

2Re[Dk1D−k1W0]

] [
− δs2s3

2Re[Ds2
k2
Ds2
−k2W0]

][
−
d log

(
−2Re

[
Ds2
k2
Ds2
−k2W0k

−3
2

])
d log k

]
=

= −〈ζk1ζ−k1〉〈γ
s2
k2
γs2−k2〉δ

s2s3
∂ log

[
k3

2〈γ
s2
k2
γs2−k2〉

]
∂ log k2

(3.39)

While, for a long tensor mode and two short scalar modes, we get:

lim
k1→0

〈γs1k1ζk2ζk3〉 = −
2Re limk1→0

[
Ds1
k1
Dk2Dk3W0

]
2Re

[
Ds1
k1
Ds1
−k1W0

]
(2Re [Dk2D−k2W0])

2 =

= −

[
− 1

2Re[Ds1
k1
Ds1
−k1W0]

] [
−εij1 ki2k

j
2

∂

∂k2
2

(
1

2Re[Dk2D−k2W0]

)]
=

= −〈γs1k1γ
s1
−k1〉ε

ij
1 k

i
2k
j
2

∂

∂k2
2

〈ζk2ζ−k2〉

(3.40)

3.5.4 Higher order consistency conditions

Let us expand the three point function of fluctuations in a Taylor series around k1 = 0. For simplicity, we

consider scalar fluctuations:

〈ζk1ζk2ζ−k1−k2〉 = 〈ζk1ζ−k1〉
[
Z(k2) + ka1F

a(k2) +
1

2
ka1k

b
1S

ab(k2) + · · ·
]

(3.41)

It was already pointed out in [22] that the leading order term Z(k2) is fixed by the two point function,

which is what we call the inflationary consistency condition. In [78] it was argued that the first order term

F a(k2) is also completely fixed by some residual conformal symmetry of the background. Reference [85]
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studied constraints to the higher order terms in (3.41), and found general Ward identities that should be

obeyed by some combinations of gravitational wave and inflaton expectation values.

All of these consistency conditions follow from a Taylor expansion of the longitudinal mode Ward identities

(3.33). So the inflationary consistency conditions can be explained by the reparametrization invariance, or

momentum constraint, of the wavefunction of the universe. The terms that have physical content, and are

probing the primordial non-gaussianity of inflationary perturbations, start quadratic in k1 in (3.41). In [84]

it was pointed out that the squeezed three point function of single field inflation gives rise to no effect in a

physical observable. This is of course consistent with the picture that the squeezed limit is totally fixed by

diffeomorphism invariance, as physical observables are diff-invariant. In other words, there is residual gauge

symmetry in the squeezed limit of expectation values of inflationary fluctuations, and these can be tracked

down from the original symmetry.

Here we derive the consistency condition discussed in [78], which completely fixes the linear term in k1

in (3.41). We also discuss the generalized consistency conditions of [85], pointing out why from quadratic

order on, the longitudinal modes do not fix completely the three point function. Note that our derivation

makes no use of conformal symmetry; we rely purely on reparametrization invariance of the wavefunction.

First, contract (3.33) with 4δklδmn. We get4:

ka1D
aj
k1
Dk2Dk3W0 =

1

2

[
−kj2Dk3D−k3W0 − kj3Dk2D−k2W0

]
(3.42)

Now, take the first order correction to the three point function in the squeezed limit. We Taylor expand

(3.32), for scalar fluctuations, to first order in k1. Comparing with the formula (3.41) we get:

Z(k2) =
1

2

Re limk1→0Dk1Dk2Dk3W0

(Re [Dk2D−k2W0])2
= −〈ζk2ζ−k2〉

∂ log
[
k3

2〈ζk2ζ−k2〉
]

∂ log k2

F a(k2) =
1

2

(
limk1→0 ∂ka1 ReDk1Dk2Dk3W0

(Re [Dk2D−k2W0])2
− Re limk1→0Dk1Dk2Dk3W0

(Re [Dk2D−k2W0])3
∂ka2 Re [Dk2D−k2W0]

) (3.43)

Now we take two derivatives of (3.33) with respect to k1 and take k1 → 0. That will give:

∂

∂kl1
Dij
k1
Dk2Dk3W0 +

∂

∂ki1
Dlj
k1
Dk2Dk3W0 = −1

2
kj2

∂2

∂kl2∂k
i
2

Dk2D−k2W0 (3.44)

Note that the index j in (3.44) is singled out, and the left hand side is symmetric in i, l. We contract (3.44)

4In general, the Ward identity will look like ki1D
ij
k1
Dk2 · · ·DknW0 = −kj2Dk1+k2 · · ·DknW0 − · · · − kjnDk2 · · ·Dkn+k1W0,

i.e., it relates the n-derivative to the n− 1-derivative of the wavefunction, evaluated at shifted momenta [26].
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with 2δij and δil and subtract the equations we obtain, getting:

lim
k1→0

∂

∂ki1
Dk1Dk2Dk3W0 = −ka2

∂2

∂ka2∂k
i
2

Dk2D−k2W0 +
1

2
ki2

∂2

∂ka2∂k
a
2

Dk2D−k2W0 =

= −ki2
(

1

k2

∂

∂k2
− 1

2

∂2

∂k2
2

)
Dk2D−k2W0

(3.45)

Where we used that the second derivative of the wavefunction depends only on the absolute value of k2.

Then, plugging this back in (3.43) we get:

F a(k2) = −1

2
∂ka2Z(k2) =

1

2
∂ka2

[
〈ζk2ζ−k2〉

∂ log
[
k3

2〈ζk2ζ−k2〉
]

∂ log k2

]
(3.46)

It was observed in [77] that under the substitution k1 → kL, k2 → kS−kL/2, the linear term in (3.41), F a(kS)

is absent. One can check that changing variables from k2 to kS such is the case, so (3.46) is compatible with

the claims made in [77, 78].

We can also study the case of one long tensor mode and two short scalar modes, as in [78]5. There is

a small point to be made, which is the following. We obtain from our method the object ∂kaD
bc
k DDW0.

Then, we need to contract this with a polarization tensor. But the expectation value we consider is already

contracted with the polarization tensor, so we could be neglecting a term where the derivative acts on the

polarization tensor, and the resulting tensor is contracted with the expectation value. In other words, we do

not calculate the contribution coming from (∂kaε
bc)Dbc

k DDW0. We show in appendix C that this contribution

is zero, and so we capture the entire linear term in the long momentum. The consistency condition to linear

order will be:

lim
k1→0

〈γsk1ζk2ζk3〉 = 〈γsk1γ
s
k1〉
{
Zγ(k2) +

k1.k2

4k2
2

k2.ε1.k2

k2
2

[
k2∂k2 − k2

2∂
2
k2

]
〈ζk2ζk2〉

}
(3.47)

With Zγ(k2) can be read out from (3.40). This result agrees with the prescription given in [78], and, in

particular, with the case of single field inflation[22].

To obtain the higher order consistency conditions described in [85] , note the following. It is clear that,

taking multiple derivatives with respect to the momentum being squeezed, the best we can do is obtain

an expression for the symmetrized derivative ∂(i1∂i2 · · · ∂in−1D
in) j
k1

Dk2Dk3W0. We can project out some

components of this symmetrized derivative, and relate it to linear combinations of three point functions, as

is done in [85]. Of course, one would not expect to be able to obtain all derivatives of the wavefunction from

the Ward identity, as we are just finding the parts of the expectation value fixed by gauge invariance.

5In particular, we want to check equations (66) and (67) of [78].
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Let us study in more detail the case of the second derivative. We obtain:

lim
k1→0

[
∂2

∂ka1∂k
b
1

Dcj
k1

+
∂2

∂kc1∂k
a
1

Dbj
k1

+
∂2

∂kb1∂k
c
1

Daj
k1

]
Dk2Dk3W0 = −1

2
kj2

∂3

∂ka2∂k
b
2∂k

c
2

Dk2D−k2W0 (3.48)

There are two types of indices in some sense here, the index that is not symmetrized and the symmetrized

ones. Just as we did for the first derivative, we can either contract symmetrized indices or one symmetrized

index with the separate one. Take δab and δac, and after some manipulation, the best one can obtain is (we

write explicitly Dcc, so there is no confusion with derivatives with respect to the scalar, D ≡ 2Dcc):

lim
k1→0

[
∂2

∂ka1∂k
b
1

Dcc
k1 −

∂2

∂kc1∂k
c
1

Dab
k1

]
Dk2Dk3W0 =

=− 1

2

[
kc2

∂3

∂kc2∂k
a
2∂k

b
2

− ka2
∂3

∂kb2∂k
c
2∂k

c
2

]
Dk2D−k2W0

(3.49)

Which is not good enough to isolate what we would like, limk1→0
∂2

∂ka1∂k
b
1
Dk1Dk2Dk3W0.

3.6 Comment on gauge/gravity duality

In gauge/gravity duality, dS/CFT [44, 43, 22] is the proposal that an asymptotically de Sitter space can

be described by a dual field theory. In the approach of [22], the proposal is that the wavefunction of the

universe with a certain 3-metric profile is equal to the partition function of a CFT, where this 3-metric is a

parameter of the partition function.

Then, the stress tensor of the dual field theory, T ij , is given by functional derivatives of the partition

function with respect to the metric. So, when we take functional derivatives of Ψ with respect to the flat

background, in the dual picture we are computing correlation functions of the stress tensor in the vacuum of

the field theory. So, from the field theory perspective, the functional derivatives of the metric we considered

throughout the chapter, DijDkl · · ·Ψ are equal to correlation functions of the stress tensor, 〈T ijT kl · · · 〉.

From this point of view, the consistency condition has a simple interpretation. (3.18) expresses the

conservation of the stress tensor of the dual theory, ∇i〈T ij〉 = 0. So, (3.18) is equivalent to Ward identities

obeyed by the stress tensor, which can be found in [45]. Note, though, that we do NOT need anything like

dS/CFT or gauge/gravity duality to use the Ward identities that the T ij satisfy. These have a pure bulk

interpretation from diffeomorphism invariance.

Note also that the final equations in (3.15) and (3.17) can be interpreted as identities obeyed by the

trace of the stress tensor. (3.15) states that an insertion of the trace of the stress tensor should render any

correlation function to be zero. This means that 〈T ii · · · 〉 = 0. This is expected, as de Sitter has isometries
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at late times that are isomorphic to the conformal group [26] . For the single field case, there is no conformal

symmetry, due to the presence of the inflaton. It corresponds to the insertion of an operator that deforms

the CFT [22, 46, 47, 48]. This operator breaks the conformal symmetry, and induces a trace to the stress

tensor. The relation between the operator and the trace is given by the last equation of (3.17).

3.7 Discussion

In this chapter, we gave a different perspective on how to derive inflationary consistency conditions. The

objectives of this approach were two-fold. First, to show that the origin of these conditions stems from

diffeomorphism invariance of the wavefunction. Second, this approach seems to be generalizable to other

inflationary theories, and thus could be exploited in more generality, in the same fashion that Ward identities

are derived from symmetries of the path integral.

It is important to notice that we are always dealing with the “mathematical” squeezed limit, in the sense

of taking the long mode wave number to zero. There are several models where the consistency condition is

violated, in the sense of the ratio of the sides of the triangle being small, but not zero. This physical squeezed

limit can probe different scales in the theory, and is usually associated to the long modes not freezing at this

scale. It would be interesting to use the methods in [86] to see if one can say something in general about the

leading order term in theories that violate the consistency condition. Let us also observe that, throughout

the chapter, we used a technical assumption, namely, that limk→0
d

d log kDkD · · ·DΨ = 0 6.

The consistency condition can be also stated in terms of modes that are still inside the horizon. In

our language we are always dealing with the superhorizon wavefunction. In a semiclassical setup, where

cosmology is treated as an effective field theory, we can evaluate the semiclassical wave function at a given

time slice, Ψ[h, φ, η]. It is not clear that this object makes sense beyond effective field theory, but for the

purposes of studying inflation as an effective theory, it is well defined and one can follow the same steps

of the previous sections. The long mode would still correspond to taking k → 0, but the other modes in

the expectation value will be inside the horizon and the same consistency conditions would follow. The

novelty here is that expectation values with derivatives in the subhorizon modes are non-zero, and thus one

can derive new consistency conditions for those. Still, they should follow from the same diffeomorphism

invariance constraint.

6This assumption seems to have no drawbacks for the following reason: a term that violates it would have to be an analytic
function of one of the soft momenta. Thus, it is a contact term in position space and is not the piece fixed by these consistency
conditions. Also, note that if we have a field theory that produces an almost scale invariant spectrum, either the logarithm is
the indicator of an anomalous dimension coming from loop effects, or it should be discarded as it comes from a contact term
in the expectation value. Note that a term of the form log(k1 + k2 + k3) is allowed on a three point function, as it satisfies the
assumption we made. An argument based on analyticity was made in [88] that such terms would violate the attractor structure
of single field models.
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The leading terms of these inflationary expectation values are thus fixed by gauge invariance. Of course,

it would be nice if we could compute observables free of these pure gauge pieces. In gauge theory we know the

answer to this question. In gravitational theories the answer is not so clear, unless there is a dual description

in terms of a field theory. From the wavefunctional point of view, this would be equivalent to regarding its

derivatives as the fundamental observables. In gauge gravity duality, these would translate to expectation

values of the stress tensor of the theory. There, the consistency condition has the interpretation that, at

zero momentum, there is an ambiguity related to the definition of the stress tensor [89].

The analysis carried in this note involved tree level expectation values. But the general structure of

the Ward Identities coming from coordinate reparametrization invariance are valid to any loop order. The

Hamiltonian constraint would necessarily involve some UV regularization, which leads to renormalization

of observables etc. (this has been already carried out for gauge theories in [90] ). But for the one-loop

cosmology and beyond, the momentum constraint remain unchanged. So there might be some generalized

consistency condition to n-loops. Maybe it can be generated recursively, just like in the recent proofs of

conservation of the inflaton ζ outside of the horizon, which rely on the consistency condition [91, 92, 28, 93].

3.8 Appendix A: Four point functions and beyond

The procedure in the chapter can be generalized to higher order expectation values. Here we outline the

general features of this procedure. The main difference is that there are two different squeezed limits.

Namely, the limit when an external leg has zero momentum, or when an internal leg has zero momentum -

a collinear limit.

Let us illustrate that point by considering a four point expectation value of scalar fluctuations in single

field inflation. Its form, in terms of derivatives of the wavefunction, is given by7:

〈ζk1ζk2ζk3ζk4〉 =
1

Πi2Re [DkiD−kiW0]
{2Re[Dk1Dk2Dk3Dk4W0]+

+
∑
a

2Re[Dk1Dk2D
a
−k1−k2W0]2Re[Da

−k3−k4Dk3Dk4W0]

2Re
[
Da
k1+k2

Da
−k1−k2W0

] + permutations

} (3.50)

Where the
∑
a represents the sum over all degrees of freedom (two graviton polarizations and one scalar).

The permutations account for the different exchange channels for the internal leg, like the s, t and u channels

in four particle scattering.

7We consider only the connected part of the four point expectation value. There is an additional contribution coming from
disconnected diagrams, which is present in the free theory, which is thus Gaussian.
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The external squeezed limit is completely analogous to the one in the main text. One needs to commute

three functional derivatives through the momentum constraint and take the limit of an external momentum

to zero etc. We analyze the internal momentum squeezed limit in detail, as it has no analogue for the three

point expectation value.

Consider the limit k1 → −k2. Of course, due to translation invariance, k4 → −k3. We see that the overall

denominator in (3.50) does not diverge. The only singular piece comes from the exchange diagrams that

involve two vertices, as its denominator involves a second derivative of W0 evaluated at k1 + k2 momentum.

The contributions from the four-derivative term and other exchange terms are thus subleading. For the

leading term, its numerator is the square of the squeezed limit of a third derivative, so we use (3.34)to relate

these to two point expectation values. Thus, to leading order in k1 + k2, we obtain:

lim
k2→−k1

〈ζk1ζk2ζk3ζk4〉 =

= 〈ζk1+k2ζk1+k2〉

(
〈ζk1ζ−k1〉

∂ log
[
k3

1〈ζk1ζ−k1〉
]

∂ log k1

)(
〈ζk3ζ−k3〉

∂ log
[
k3

3〈ζk3ζ−k3〉
]

∂ log k3

)
+

+
∑
s

〈γsk1+k2γ
s
k1+k2〉

(
εs, ijk1+k2

ki1k
j
1

∂

∂k2
1

〈ζk1ζ−k1〉
)(

εs, ijk1+k2
ki3k

j
3

∂

∂k2
3

〈ζk3ζ−k3〉
) (3.51)

Which is consistent with the results described in [76, 79, 80].

Note that this procedure can be extended to an n-point expectation value, but the amount of diagrams

contributing beyond leading order makes the general expressions become cumbersome. This problem is

treated in detail in [85] . There, a prescription to calculate the contribution from diagrams with exchanged

particles, like the one we consider for the collinear limit, is given in detail.

3.9 Appendix B: Massless scalar spectator field

Let us analyze an example of an inflationary theory with an inflaton plus a massless scalar field, similar

to the example discussed in [94]. We have the metric, hij , the inflaton φ and the spectator field σ. The

condition of reparametrization invariance of the wavefunction is a simple extension of (3.13):

2∇i
[

1√
h

δW0

δhij

]
− 1√

h
hij∂iφ

δW0

δφ
− 1√

h
hij∂iσ

δW0

δσ
= 0 (3.52)

As in the single field case, we are interested on the wavefunction calculated on a slice of constant inflaton
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field. So we are effectively treating a momentum constraint of the form:

2∇i
[

1√
h

δW [h(x), φ, σ(x)]

δhij

]
− 1√

h
hij∂iσ

δW [h(x), φ, σ(x)]

δσ
= 0 (3.53)

Now, we take two functional derivatives with respect to the massless field, say, δ2/δσ(y)δσ(z). They

commute through the covariant derivative, and each one may hit the ∂iσ(x) term in (3.53). Because we are

dealing with a scalar operator, it should be no surprise that we obtain a Ward identity identical to (3.42).

After going to momentum space, and using the D notation for the functional derivatives, we finally obtain:

ka1D
aj
k1
Dσ
k2D

σ
k3W0 =

1

2

[
−kj2Dσ

k3D
σ
−k3W0 − kj3Dσ

k2D
σ
−k2W0

]
(3.54)

So we have the same consistency condition as the one for scalar operators, namely:

lim
k1→0

〈ζk1σk2σk3〉 = 〈ζk1ζ−k1〉
∂ log

[
k3

2〈σk2σ−k2〉
]

∂ log k2
= −nσ〈ζk1ζ−k1〉〈σk2σ−k2〉 (3.55)

The field σ behaves as a free field in (quasi) de Sitter space, so its spectral index is the same as that of a

gravitational wave, given by nσ = −2ε [22], where the slow roll factor is related to the variation of Hubble’s

constant, εH2 = −Ḣ. In fact, the computation of the three point function and the check for the squeezed

limit is quite similar to the case of two gravitons and one scalar studied in [22].

To check (3.55) we need to compute the three point expectation value using the in-in formalism. We just

state the main equations here. The quadratic actions, with corresponding (late time) two point functions

are given by:

Sζζ =
1

2

∫
dtd3x(2ε)

[
a3ζ̇2 − a(∂ζ)2

]
, 〈ζk1ζk2〉 = (2π)3δ3(k1 + k2)

H2

4εk3

Sσσ =
1

2

∫
dtd3x

[
a3σ̇2 − a(∂σ)2

]
, 〈σk1σk2〉 = (2π)3δ3(k1 + k2)

H2

2k3

(3.56)

The cubic action is given by equation (27) of [94] . We can integrate it by parts, following the strategy

in [22], to see that the interaction is of order ε, the slow roll parameter:

Sζσσ =

∫ [
−a

2
ζ(∂σ)2 − a

2H
ζ̇(∂σ)2 + a∂i

(
ζ

H
− εa2∂−2ζ̇

)
σ̇∂iσ−

− a3

2H
ζ̇σ̇2 +

3a3

2
ζσ̇2

]
=

∫ {
ε
[
−ζLσσ − a3∂i∂

−2ζ̇σ̇∂iσ
]

+
ζσ̇

H

δLσσ
δσ

} (3.57)

The last term is proportional to the quadratic equations of motion, and can be removed from the action

by a proper σ field redefinition[22]. This redefinition does not alter the final three point expectation value
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though, as it vanishes outside the horizon. What is left are the terms in square brackets. It is clear that,

when the ζ mode becomes very long in wavelength, it is simply rescaling the two point Lagrangian for the σ

field. This is the standard bulk intuition to justify the consistency relation. In fact, one can check that the

second term in square brackets is subleading in the squeezed limit, thus making this intuition rigorous. To

leading order in slow roll, the squeezed three point expectation value is given by:

lim
k1→0

〈ζk1σk2σk3〉 =
H4

4k3
1k

3
2

= −(−2ε)
H2

4εk3
1

H2

2k3
2

= −nσ〈ζk1ζ−k1〉〈σk2σ−k2〉 (3.58)

An important observation is the following. Because the massless σ field is free to fluctuate, it can convert

itself into ζ fluctuations during reheating and other phases beyond inflation. Also, we assumed that there

is a quasi-de Sitter background over which the fluctuations evolve. Thus, it is not necessarily true that the

three point expectation values computed here are kept frozen and will induce temperature correlations in

the CMB.

3.10 Appendix C: Derivative of the polarization tensor

Take a three point expectation value that involves a long tensor mode. If we expand it to linear order in the

long mode, we obtain:

〈γsk1ζk2ζk3〉 = 〈γs0ζk2ζ−k2〉+ ka1

[
〈γbck1ζk2ζk3〉

∂

∂ka1
ε1bc + ε1bc

∂

∂ka1
〈γbck1ζk2ζk3〉

]
+ · · · (3.59)

We want to show that the first term does not contribute in brackets does not contribute to (3.59). In order

to do that, we take derivatives of the defining expressions for the polarization tensor (3.25) and obtain:

(
∂

∂ka
εbc

)
εbc = 0, εab + kc

∂

∂ka
εbc = 0⇒ ∂

∂ka
εbc = −kbεac + kcεab

k2
(3.60)

Which, when contracted with ka1 , will give zero. This is why we are free to contract the polarization tensor

directly with ∂
∂ka1
〈γbck1ζk2ζk3〉 to derive the linear consistency condition.
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Chapter 4

Time Independence of ζ in Single

Field Inflation

4.1 Introduction

4.1.1 Motivation

The purpose of this chapter is to prove that in single clock inflation, where there is only one relevant degree

of freedom during inflation, the correlation function of the curvature perturbation ζ for separations outside

the horizon is time independent at one loop level. We believe this to be a very important result to prove

for several reasons. As it becomes more and more likely that Inflation was part of the early history of our

Universe it becomes more and more important to understand how the theory behaves at quantum level, even

if the expected corrections are small. We could make an analogy with the 1950s when QED was studied to

all orders in perturbation theory. Similarly to what happened in that case, it is not so obvious that quantum

corrections are as small as one might expect. While a simple parametric analysis tells that the corrections

to the curvature perturbation should be of order

〈ζ2〉1−loop ∼ 〈ζ2〉2tree ∼ 10−9〈ζ2〉tree , (4.1)

no symmetry forbids the presence of potentially large infrared factors, such as

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2tree log(kL) , (4.2)
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where L is the comoving size of the inflationary space, or of the form

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2treeHt , (4.3)

where H is the Hubble constant during inflation and t is time. All these terms have appeared in partial

calculations of the one-loop corrections to the power spectrum [94].

Log(H/µ) effects: Additionally, infrared effects of the form

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2tree log(k/µ) , (4.4)

with µ being the renormalization scale of the theory, have been found in several papers (see references in [91]).

Strictly speaking, a correction of the form log(k/µ) is not allowed by symmetries, representing a breaking of

zero-mode gauge invariance x → λx, a → a/λ, where a is the scale factor of the FRW metric. Its presence

was due to a mistake in the implementation of a diff. invariant regularization, and this issue is addressed

in [91], where it was shown that the logarithmic running takes the form

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2 log(H/µ) . (4.5)

Notice that if a result of the form log(k/µ) were to be correct, then the effect could have been potentially

very large when k → 0.

Contrary to the case of log(k/µ), logarithmic corrections of the form log(kL) or log(a(t)) ∼ Ht are

allowed by symmetries.

Log(kL) effects. The factor of log(kL) can be potentially very large, as log(kL) is of order Nbeginning, the

number of e-foldings of Inflation that have occurred before the mode k has crossed the horizon. Even for the

standard inflation that we might have in our past, Nbeginning can be a large enhancement factor. Furthermore

in situations where Nbeginning might be large, 〈ζ2〉 for modes exiting the horizon at the beginning of inflation

might also be significantly larger as one could be near an eternal inflation regime. The infrared factor log(kL)

does appear in the one-loop correction to the power spectrum [95, 96], and in [92] it was shown that it is

simply a projection effect that is completely removed when one computes observable quantities and that

does not affect our ability to extract predictions from inflation.

Log(a(t)) effects and the predictivity of Inflation. In this chapter we try to address the question of

whether the one-loop correction to the power spectrum is time dependent, or in other words if at loop level

ζk is constant after the mode k has crossed the horizon. We notice that for our current inflationary patch,

since we observe around 50 e-foldings of inflation and ζ ∼ 3× 10−5, such a correction factor, even if present,
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would represent a correction at most of order 50×10−9 ∼ 5×10−8. From an observational perspective this is

a very small correction. Regardless of this fact, as a matter of principle if such a time-dependent factor were

to be present the consequences for the inflationary theory would be profound. Such a result would imply that

short scale fluctuations, say of the size of the horizon, can change the amplitude of a mode after it has crossed

the horizon. In standard inflation the amplitude of the short perturbations is very small and the duration of

inflation is relatively short so the resulting evolution of the long modes is negligible. However, fluctuations

might not be small during other epochs of the evolution of the universe, such as reheating and baryogenesis

or if the dynamics of inflation changes dramatically at some point. We know little about these epochs, but

if perturbations were to be large on Hubble scales during those times, the time-dependence induced on long,

observable, modes could change their amplitude significantly. We would lose the predictions of Inflation

unless we know the details of the physics governing reheating or baryogenesis, which we hardly do.

The potential for a time dependence of the power spectrum at loop level was pointed out by Weinberg

in [94]. He noticed that many diagrams naively induce a time-dependence of ζ 1. The question of weather

a time dependence persists after we sum all the diagrams has remained open. [91] addressed this issue in

certain simplified examples involving spectator fields running in the loops. Although the physics identified in

that paper will basically apply unchanged in this study, the fact of the matter is that no proper calculation in

the context of single clock inflation has been presented. Ref. [99] claims to have done this and to have found

a time dependence. In reality they only presented results for a severely truncated and simplified Lagrangian

and of course they did not recover the cancellations we identify in this chapter and thus claimed a spurious

time dependence.

Slow Roll Eternal Inflation. From a more theoretical point of view, a time-dependence of ζ would

have important consequences for slow-roll eternal inflation. In recent years [100, 101, 102, 104], there has

been remarkable progress in understanding slow roll eternal inflation at a quantitative level. The study of

eternal inflation (usually of the false vacuum type) has been largely motivated by the fact that the universe

is currently accelerating and by the apparent existence of a landscape of vacua in String Theory which put

together suggest that the current acceleration can be understood as resulting from an anthropic selection of

the vacuum energy made possible by an epoch of eternal inflation in our past. Another piece of motivation to

study eternal inflation relies on the perhaps mysterious connections between gravity and quantum mechanics

in the presence of a horizon. De Sitter space, with its supposedly finite entropy, represents a mystery, and

slow roll (eternal) inflation represents a natural regularization of de Sitter space. In [100] it was shown that

1Such a result would not be in contradiction with the many proofs available in the literature on the conservation of ζ outside
of the horizon (see for example [22, 97, 98]). The fact that the constant solution is the attractor one, and not simply one of
the two solutions, was proven in [31]. All these proofs work in the limit in which all modes are longer than the horizon, so that
gradients of all fluctuations can be neglected.
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slow roll inflation undergoes a phase transition when a parameter

Ω =
2π2

3

φ̇2

H4
, (4.6)

becomes less than one. At that point, the probability to develop an infinite volume goes from being strictly

zero to non-zero. This is the phase transition to eternal inflation. Subsequently, in [101], it was found that

there is a sharp upper bound to how large a finite volume can be created: the probability to produce a finite

volume larger than e6Nc , with Nc representing the classical number of e-foldings, is non-perturbatively small

from the point of view of quantum gravity:

P
(
Vfinite > e6Nc

)
< e−M

2
Pl/H

2

. (4.7)

By connecting the classical number of e-foldings to the the entropy of de Sitter space SdS at the end of

inflation, this bound can be recast as

P
(
Vfinite > eSdS/2

)
< e−M

2
Pl/H

2

. (4.8)

This bound is a generalization to the quantum and eternal regime of the bound found in [103], that was

much stronger than the one in (4.8). Further, in [102], it was shown that this bound is actually universal:

it holds for any number of spacetime dimensions and for any number of inflating fields. Moreover it holds

unchanged also when considering higher-order corrections to the theory of gravity and of the inflaton, and it

does so to all orders in perturbation theory. In [104], it is shown that it holds also when including slow-roll

corrections. All of these results strongly suggest that the bound in (4.8) is a true fact of nature connected

to the holographic interpretation of de Sitter space.

All these new results on Eternal Inflation assumed that the ζ two-point function at coincidence takes the

form2

〈ζ(x)2〉 ∼ H3t , (4.9)

which is a direct consequence of its scale invariance and time-independence in Fourier space

〈ζ2
k〉 ∼

H2

k3
. (4.10)

2Studies of the phase transition to slow-roll eternal inflation have only been done at lowest order in slow-roll, where there is
basically no distinction between ζ and δφ.
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If the two point function of the inflaton in Fourier space were to go as

〈ζ2
k〉 ∼

H2

k3
log(kL) , or 〈ζ2

k〉 ∼
H2

k3
Ht (4.11)

then in real space it would go as

〈ζ(x)2〉 ∼ H4t2 , (4.12)

and all the above-mentioned new results on slow roll eternal inflation would fail 3. Depending on the sign

of the loop correction, we would be lead to conclude that all inflationary models are either eternal or never-

eternal. This motivates us to study the possible time-dependence of ζ at loop level.

4.1.2 Simple Arguments

There are several simple intuitive arguments that suggest that short scale fluctuations cannot induce a time

dependence on a long wavelength ζ mode that is much longer than the horizon. The simplest and most

intuitive argument relies on the fact that at long wavelengths a ζ mode is indistinguishable in practice from

a rescaling of the scale factor a → a eζ . This means that a time dependent ζ is more or less equivalent to

a change in the local value of the expansion rate H: ζ̇ ∼ δH. In order for short-scale fluctuations to create

a time-dependent long wavelength ζ, the short scale fluctuations should create a modulation of the Hubble

parameter that is coherent over a very large scale, the scale of the long wavelength ζ mode.

One could imagine two mechanisms through which this could happen. The random small scale fluctuations

could lead by chance to a large scale fluctuation, but simple ‘square root of N ’ type of arguments show that

this is not the case. Another option is that the short modes are sensitive to the long wavelength fluctuations

through tidal-type effects and thus their expectation values, their energy density say, varies over the long

scales and leads to a modulation in the expansion rate. This last possibility also sounds quite unreasonable.

Because of the attractor nature of the inflationary background, a long wavelength ζ fluctuation is locally

almost indistinguishable from a rescaling of the background, with corrections that rapidly redshift to zero.

This means that short wavelength fluctuations should behave in very much the same way in the presence of

a long ζ mode as they do in its absence (apart for a trivial rescaling of the coordinates). This is what the

so-called Maldacena consistency condition of curvature fluctuations actually states [22, 75, 31], and it has

been shown to work at tree-level in several calculations.

Perhaps a better way to illustrate the point we are trying to make is the following. Assume that short

wavelength modes running in the loop lead to a time dependence of the two point function of a long wave-

3We acknowledge David Gross for pointing this out to us.
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length mode. This one loop calculation is just giving the change of the long modes produced by the short

modes when averaged over the short ones. If the short modes can be observed directly the effect of the

short modes on the long should lead to an observable correlation between short and long modes. In other

words, it should lead for example to a non-zero three point function in the squeezed limit. However, since

the work of Maldacena [22] we know that there is no such effect in the squeezed three point function. It is

hard to imagine that one would not be able to detect a correlation between short and long modes when both

short and long modes are measured, but that on average the short modes do lead to an evolution of the long

modes.

All of this suggests that it would be quite surprising if short modes were to induce time-dependence in a

long wavelength ζ fluctuation 4. We note that the essence of these arguments were already given by some of

us in [91].

4.1.3 Summary of the Strategy

Let us make the simple arguments above a bit more precise highlighting our strategy to prove the time-

independence of ζ. Since we are interested in a late time-dependence of ζ, we can restrict ourselves to the

case in which we let only short wavelength modes run in the loops. The constancy of ζ when all modes

are outside the horizon was already proved in [22]. In the present case, computing one-loop effects can be

thought as solving the non-linear evolution equations for a long wavelength ζ operator, ζL, up to cubic order

in the fluctuations. This will take the form

Ô [ζL] = S [ζS , ζS , ζL] , (4.13)

where S represent a generic sum of operators that are quadratic in the short wavelength ζ, ζS , and that

can also eventually depend on ζL both explicitly and implicitly through a dependence of ζS on ζL. Each

monomial in S can contain derivatives acting on the various ζ’s. The solution is schematically of the form

ζL = Ô−1 [S [ζS , ζS , ζL]] . (4.14)

It should be noted the 〈S [ζS , ζS , ζL]〉 is in general not zero. There are tadpole contributions for ζ because at

loop level we are expanding around the incorrect background history. We will add tadpole counterterms to

the action to ensure that the background solution we started with satisfies the equations of motion. These

4There is one subtlety which has to do with the renormalization of the background. Short wavelength fluctuations do
renormalize the background, so that H(t) is different from its value at tree level when the short fluctuations are neglected. It
is important to take this fact into account properly in order for ζ not to have a time-dependence.
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counterterms lead to additional diagrams that will cancel many of the one loop diagrams in our power

spectrum calculation.

The one loop power spectrum will be given by

〈ζLζL〉 ∼ 〈Ô−1 [S [ζS , ζS , ζL]] ζL〉+ 〈Ô−1 [S [ζS , ζS , ζL = 0]] Ô−1 [S [ζS , ζS , ζL = 0]]〉 . (4.15)

We call the first contribution on the right the cut-in-the-side (CIS) diagrams, while the second contribution

on the right cut-in-the-middle (CIM) diagrams.

The CIM diagrams represent the effect of the short scale modes in their unperturbed state directly on

the power spectrum of the long wavelength modes. These diagrams will not lead to any time-dependence of

the long modes simply because it is very hard for short mode fluctuations to be coherent over long scales.

Many of the CIS diagrams cancel with diagrams coming from the tadpole counterterms. The remaining

CIS diagrams represent instead the evolution of ζL due to the effect that ζL itself has on the expectation

value of quadratic operators made of short modes. These diagrams involve the correlation between this

short-mode expectation value and the long wavelength mode itself 5. This short-mode long-mode correlation

sources ζL.

The Maldacena consistency condition implies that this short-mode long-mode correlation actually van-

ishes,

〈Ô−1 [S [ζS , ζS , ζL]] ζL〉 = 0. (4.16)

This is so because the consistency condition means that in the limit in which the long mode has a wavelength

much longer than the horizon, it simply acts as a rescaling of the coordinates. So the correlation function

between short and long modes can be understood in terms of the power spectrum of the short modes

computed in a rescaled background. Since in the loop the short-mode expectation value is integrated over

all the short-mode momenta the rescaling is irrelevant and as a result there is no correlation between the

short scale power and the long mode.

Even though the former arguments are quite compelling, the calculation is very complex, and many

subtleties are hidden in the above equations. They include the identification of the Lagrangian of the ζ

zero-mode, that will turn out to be delicate and to affect the definition of the tadpole counterterms. Because

of diff. invariance, these counterterms will play a role even for the finite momentum correlation functions.

Additionally, it will be non-trivial to see how the Maldacena consistency condition works when dealing with

operators involving derivatives.

In summary, since the interactions are dominated by the gravitational ones, our one-loop computation

5It will become clear later that this remaining CIS diagrams depend both on the cubic and quartic Hamiltonians.
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amounts to doing a one loop calculation in gravity in an accelerating universe. This is quite a hard task, at

least for us! In particular, there are many many many diagrams involved, and many many of these naively

induce a time-dependence on ζ. The time independence will result from cancellations among diagrams. We

will now try to move step by step to make our arguments explicit and precise, finally proving that ζ is

constant outside of the horizon also at one-loop level.

4.2 An Intuitive Organization of the Diagrams

It is possible to organize the one-loop diagrams in a way that is particularly close to our intuition. This

approach was originally developed in [105] for a restricted set of theories, and it was noted in [106] that

the derivation was not consistent with the i ε prescription for choosing the interacting vacuum in the past.

This approach has been generalized in [91] to more generic theories and a correct i ε prescription has been

implemented. Here we will see that the implementation of the i ε prescription can be performed in a very

simple way.

For concreteness let us specialize to the ζ two-point function. We have to compute

〈Ω|ζ2(t)|Ω〉 = 〈0|Uint(t,−∞+)†ζ2
I (t)Uint(t,−∞+)|0〉 , (4.17)

where |Ω〉 is the vacuum of the interacting theory, |0〉 is the one of the free theory,

Uint(t,−∞+) = Te
−i

∫ t
−∞+

dt′ Hint(t
′)
, (4.18)

and the subscript I stays for interaction picture. Finally, the symbol −∞+ represents the fact that the

time-integration contour has been rotated so as to project the free vacuum on the interacting vacuum. In

practice, this amounts to choosing the contour that suppresses the oscillatory terms in the infinite past.

We start by taking expression (4.17) and inserting the unit operator

1 = Uint(t,−∞)U†int(t,−∞) , (4.19)

between the two ζ’s, to obtain

〈ζ2(t)〉 = 〈
(
U†int(t,−∞−)ζI(t)Uint(t,−∞)

)(
U†int(t,−∞)ζI(t)Uint(t,−∞+)

)
〉 , (4.20)

where we have ignored to specify the state upon which we compute the correlation function, either |Ω〉 or
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|0〉, as it is clear from the context. Ignoring for a moment the issue of the i ε prescription, we have written

the expectation of the operator ζ(t)2 as the product of two interaction picture ζI(t)’s, each evolved with

the interaction picture time evolution operator Uint. In other words, the ζ(t)2 correlation function is simply

given by the correlation function of the evolved ζ(t)’s. We can Taylor expand in Hint to obtain

〈ζ2(t)〉 = (4.21)

= 〈

( ∞∑
N=0

iN
∫ t

−∞
dtN

∫ tN

−∞
dtN−1 . . .

∫ t2

−∞
dt1 [Hint(t1), [Hint(t2), . . . [Hint(tN ), ζI(t)] . . .]]

)

×

( ∞∑
N=0

iN
∫ t

−∞
dt′N

∫ tN

−∞
dt′N−1 . . .

∫ t2

−∞
dt′1 [Hint(t

′
1), [Hint(t

′
2), . . . [Hint(t

′
N ), ζI(t)] . . .]]

)†
〉 .

Expanding (4.21) up to second order in Hint, we obtain

〈ζ2(t)〉 = 〈ζ2(t)〉CIS + 〈ζ2(t)〉CIM , (4.22)

where we have defined

〈ζ2(t)〉CIS = −2 Re

[(∫ t

−∞
dt2

∫ t2

−∞
dt1〈[H3(t1), [H3(t2), ζI(t)]]

)
ζI(t)〉

−i
(∫ t

−∞
dt1〈[H4(t1), ζI(t)]

)
ζI(t)〉

]
,

〈ζ2(t)〉CIM = −
(∫ t

−∞
dt1〈[H3(t1), ζI(t)]

)(∫ t

−∞
dt′1 [H3(t′1), ζI(t)]〉

)
. (4.23)

The subscript CIS denotes what we call cut-in-the-side diagrams, while CIM denotes cut-in-the-middle

diagrams. Here by H3, H4, . . . we mean the cubic, quartic, . . . interaction Hamiltonians. We see that

the CIM diagrams are made up by evolving each of the two ζ’s to first order in the cubic interactions. The

CIS diagrams corresponds to evolving only one of the two ζ’s, either twice with cubic interactions or once

with a quartic interaction.

This form of organizing the diagrams is particularly intuitive. If we remind ourselves that the ζ retarded

Green’s function is given by

GRζ (x, x′) = iθ(t− t′) [ζI(x), ζI(x
′)] , (4.24)

we have that

[H
(3)
int, ζ] ∼ GR δL3

δζ
. (4.25)

Then the CIM diagrams approximately correspond to considering the sourcing of ζ from the vacuum cor-

relation function of δL3/δζ. This is very similar to the case when we try to solve some equations of motion
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perturbatively. We can define the solution of order n in the perturbation as ζ(n). If we have schematically:

Dζ(2) = ζ(1)2 ⇒ ζ(2) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)2 (4.26)

where D is the differential operator of the free equations of motion, of which the Green’s function is the

inverse, then the CIM diagram is represented by the following

CIM = 〈ζ(2)ζ(2)〉 . (4.27)

The CIM diagram is diagrammatically represented in Fig. 4.1. Intuitively, it can be thought of as taking

into account of the backreaction on ζ from the quantum variance of the operator δL3/δζ.

On the other hand, the CIS diagrams correspond to two sort of diagrams. The ones involving the quartic

interactions, CIS4, correspond to considering the effect of the expectation value of the vacuum fluctuations

of two fluctuations on the external ζ. Schematically, it is given by

Dζ = ζ(1)3 ⇒ ζ(3) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)3 ⇒ CIS4 = 〈ζ(3)ζ(1)〉 , (4.28)

and it is represented in Fig. 4.2.

The CIS diagrams that involve two cubic interactions can in turn be divided in two subclasses. The first

are of the non-1PI form, CISnon−1PI , and describe the effect of the expectation value of two fluctuations on

the ζ zero mode, ζ0, and how then the zero mode affects the ζ propagation. Schematically, this is given by

Dζ0 = ζ(1)2 ⇒ 〈ζ(2)
0 〉 =

∫
dt′Gζ(t, t

′)〈ζ(1)(t′)2〉 (4.29)

Dζ(3) = ζ(1)〈ζ(2)
0 〉 ⇒ ζ(3) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)〈ζ(2)
0 〉(t′) ⇒ CISnon−1PI = 〈ζ(3)ζ(1)〉 ,

and it is represented in Fig. 4.3. This diagram intuitively represents how a perturbation to the background

(the zero mode) affects the evolution of the finite-k modes.

The second kind of CIS diagram, CIS1PI is 1PI and corresponds to considering the sourcing on ζ from

two fluctuations, one of which has been perturbed by an initial ζ fluctuation.

Dζ(2) = ζ(1)2 ⇒ ζ(2) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)2 (4.30)

Dζ(3) = ζ(1)ζ(2) ⇒ ζ(3) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)ζ(2)(t′) ⇒ CIS1PI = 〈ζ(3)ζ(1)〉 ,

and it is represented in Fig. 4.4. Physically, this represents how a fluctuation is affected by two fluctuations,
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ζ(1)

x

x1 x2 t = tfinal

ζ(2)
ζ(2)

ζ(1) ζ(1) ζ(1)

t

Figure 4.1: Cut-in-the-middle (CIM) diagrams. Green continuous lines represent Green’s functions, red
dashed lines represent free fields, and red crosses circled by a blue dotted line represent correlations of
free fields. Two crosses have to be contracted together in order for the diagram not to be zero. This dia-
gram represents how vacuum correlation functions of quadratic operators ζ(1)2, 〈ζ(1)2ζ(1)2〉 source perturbed
correlation functions for ζ(2): 〈ζ(2)ζ(2)〉.

one of which has been already perturbed. If we imagine for a moment that only short fluctuations run in

the loop, this diagram would represent how a long mode affects through tidal effects the dynamics of the

short modes, and how these backreact on the long mode.

Let us finally comment on how to implement the i ε prescription. When we insert the unit operator

in (4.20), we should keep in mind that the integration contours of the time evolutors on the sides of the

expectation value are rotated, while the ones in the middle are not. This means that when we Taylor expand

in Hint, the various terms do not really regroup and form commutators, because they are evaluated on

different contours. A solution to this problem was provided in [91] where the rotation was performed only

at very early times and the commutator form applied only at late time. Here we implement the correct i ε

rotation in a different way. We perform no contour rotation, but we multiply our expression by eiε(
∑
ki)t,

where the sum runs over all the momenta involved in the loops and ε > 0, so that the time integrals are

convergent in the far past, and then take the limit ε → 0+. While the multiplication by eiε(
∑
ki)t is not a

rotation of the contour of integration, it converges to one in the limit ε→ 0+. It can be easily checked that

this procedure agrees with the rotation of the contour.
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t = tfinal

ζ(3)

t

x

x1 x2

ζ(1) ζ(1) ζ(1)

ζ(1)

Figure 4.2: Cut-in-the-side quartic (CIS4) diagrams. These diagrams represent how vacuum expectation
values of quadratic operators 〈ζ(1)2〉 affect the propagation of a mode ζ(3), and therefore the ζ correlation
function: 〈ζ(3)ζ(1)〉

ζ
(2)
0

ζ(1)

ζ(1)

ζ(3)

t

x

x1 x2

ζ(1)

t = tfinal

ζ(1)

Figure 4.3: Non-1PI cut-in-the-side quartic (CISnon−1PI) diagrams. These diagrams represent how vacuum

expectation values of quadratic operators 〈ζ(1)2〉 affect the propagation of the zero mode ζ
(2)
0 , and therefore

the evolution of a mode by a non linear coupling ζ(3) ∼ ζ(1)ζ
(2)
0 . This sources a correlation function of the

form: 〈ζ(3)ζ(1)〉
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t = tfinal

ζ(3)

ζ(2)

t

x

x1 x2

ζ(1) ζ(1) ζ(1)

ζ(1)

Figure 4.4: 1PI cut-in-the-side quartic (CIS1PI) diagrams. These diagrams represent how the propagation
of a mode is perturbed at two different times by two fluctuations that are correlated among themselves. This
sources a correlation function of the form: 〈ζ(1)ζ(3)〉

4.3 Loops as the integral of the three-point function

Let us consider a cubic Lagrangian of the form

L3 =
∑
n

L(n)
3 (4.31)

where the sum over n runs over all possible monomials constituting L3. We will schematically write

L(n)
3 ∝ D(n)

1 ζD(n)
2 ζD(n)

3 ζ, (4.32)

where D(n)
a , a = 1, 2, 3 are the differential operator acting on ζ(x) in position a. It includes both time and

spatial derivatives, as well as the identity operator.

There are certain quartic diagrams which we call Quartic3,∂t . They are the quartic diagrams with the

quartic vertices that arise because the cubic Lagrangian contains ζ̇, H4 ⊃ H4,32 = δζ̇/δP × (δL3/δζ̇)2/2. We

want to prove that we can write the sum of CIS1PI + CIM +Quartic3,∂t diagrams as:

〈ζkζk〉CIS1PI+CIM+Quartic3,∂t
= lim
ε→0

∫ t

−∞
dt1 a(t1)3+δ (4.33)

∑
a,n

D(n)
a Gζk(t, t1)2Re〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U†int(t1,−∞)ζk,I(t)Uint(t1,−∞)〉 eεkt1 .
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In this formula [
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

(4.34)

represents the k-Fourier component of what is left of the the cubic Lagrangian term L(n)
3 after the removal

of a(t1)3+δ D(n)
a ζa(t1). ζI is again the interaction picture field.

Eq. (4.33) is a remarkably simple formula given that it sums up a very large number of diagrams. It

shows that the sum of all these diagrams can be written as a sum of integrals of three-point functions. Since

we are interested in the case in which the fluctuations running in the loop are much shorter-wavelength

than the one in the external fields, the three-point functions are computed in the squeezed limit, a fact that

simplifies largely their behavior and makes them describable using the consistency condition of three-point

functions. This will turn out to be very useful.

4.3.1 Quasi 3-point function

In order to prove the master eq. (4.33), let us start by considering the 3-point function appearing there:

2Re〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U†int(t1,−∞)ζI,k(t)Uint(t1,−∞)〉 =

2Re

〈Uint(t1,−∞)†

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
I,k

Uint(t1,−∞)U†int(t1,−∞)ζI,k(t)Uint(t1,−∞)〉+

∑
b

i

2
〈

[
D(n,out)
b [H3(t1), ζ(t1)]

(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
+(

1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
D(n,out)
b [H3(t1), ζ(t1)]

]
k

ζk(t)〉

}
, (4.35)

where (
δ2L(n)

3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
(4.36)

represents the removal of ζ̇(t1) in position b from the quadratic term
(
δL(n)

3 (t1)/δD(n)
a ζa(t1)

)
. Finally

D(n,out)
b is the derivative operator acting on ζb outstripped of the time derivative. For example if Dbζb = ∂ζ̇b,

then D(out)
b = ∂. The last contact terms are due to the fact that ζ̇ is not the momentum conjugate to ζ.

The simplest way to obtain its time evolution is using ∂t(U
†
int(t)ζI(t)Uint(t)). When the time derivative acts

on the Uints it results in contact terms. We have also symmetrized its expression because L3 is hermitian.
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Straightforward manipulations lead to

2Re〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U†int(t1,−∞)ζI,k(t)Uint(t1,−∞)〉 = (4.37)

2Re

{
〈

[
i

∫ t1

−∞
dt2 H3(t2),

1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)〉 (4.38)

+
∑
m,b

〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t1

−∞
dt2 D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD̃(m)
b ζb(t2)

]
k

〉 (4.39)

−1

2

∑
b

〈

[
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
(4.40)

+

(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)]
k

ζk(t)〉

}
,

where

Gζ(t, t1) = iθ(t− t1)[ζ(t), ζ(t1)] (4.41)

is the ζ Green’s function from t1 to t. The second term is obtained upon noticing that

[

∫ t

−∞
dt2 H3(t2), ζk(t)] = −i

∫ t

−∞
dt2

∑
m,b

D(m)
b Gζk(t, t2)

[
δL(m)

3 (t2)

δD(m)
b ζb(t2)

]
k

, (4.42)

and the third term through the following

[H3(t1), ζ(t1)] = −i δH̃3

δP
= i

δL̃3

δP
, (4.43)

where P is the momentum conjugate to ζ in the interaction picture: P = δL2/δζ̇, and we introduced H̃3

because any additional (spatial) derivatives acting on P have been integrated by parts and now act on H3.

Let us label the term in line (4.38) by I(n)
1 , the one in line (4.39) by I(n)

2 and the one in line (4.40) by I(n)
3 :

I(n,a)
1 (t1) = 2Re

{
〈

[
i

∫ t1

−∞
dt2 H3(t2),

1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)〉

}
, (4.44)

I(n,a)
2 (t1) = 2

∑
m,b

Re

{
〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t1

−∞
dt2 D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD̃(m)
b ζb(t2)

]
k

〉

}
,

I(n,a)
3 (t1) = −

∑
b

Re

{
〈

[
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)

+

(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)]
k

ζk(t)〉

}
,
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so that

2Re〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)〉 = I(n,a)
1 (t1) + I(n,a)

2 (t1) + I(n,a)
3 (t1) . (4.45)

We are now going to see that the CIS diagrams reduce to the sum over a and n of the integral of the Green’s

function times I(n,a)
1 , the CIM diagrams reduce to the integral of Green’s function or of its derivatives times

I(n,a)
2 , and finally the quartic diagrams using the quartic vertices associated to the cubic Lagrangian reduce

to the integral of Green’s function times the sum over a and n of I(n,a)
3 .

4.3.2 CIS1PI diagrams

The CIS1PI diagrams read

CIS1PI = −2 Re

∫ t

−∞
dt1

∫ t1

−∞
dt2〈[H3(t2), [ H3(t1), ζk(t)]] ζk(t)〉 = (4.46)

2 Re
∑
n,a

i

∫ t

−∞
dt1

∫ t1

−∞
dt2〈

[
H3(t2),

δL(n)
3 (t1)

δD(n)
a ζa(t1)

D(n)
a Gζk(t, t1)

]
k

ζk(t)〉 =

2 Re
∑
n,a

∫ t

−∞
dt1D(n)

a Gζk(t, t1)〈

[
i

∫ t1

−∞
dt2H3(t2),

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)〉

=
∑
n,a

∫ t

−∞
dt1 a(t1)3+δ D(n)

a G
(n)
ζk

(t, t1) I(n,a)
1 (t1) .

So the CIS diagrams are the integral of the Green’s function times the sum over a and n of I(n,a)
1 .

4.3.3 CIM diagrams

The CIM diagrams read

CIM = −〈
[∫ t

−∞
dt1 H3(t1), ζk(t)

] [∫ t

−∞
dt2 H3(t2), ζk(t)

]
〉 (4.47)

=
∑

n,m,a,b

∫ t

−∞
dt1 D(n)

a G
(n)
ζk

(t, t1)〈

[
δL(n)

3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t

−∞
dt2D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD(m)
b ζb(t2)

]
k

〉

= 2
∑

n,m,a,b

∫ t

−∞
dt1 D(n)

a G
(n)
ζk

(t, t1)〈

[
δL(n)

3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t1

−∞
dt2D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD(m)
b ζb(t2)

]
k

〉

=
∑
n,a

∫ t

−∞
dt1 a(t1)3+δ D(n)

a Gζk(t, t1) I(n,a)
2 (t1)

so the CIM diagrams are the integral of the Green’s function times the sum over a and n of I(n,a)
2 .
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4.3.4 Quartic Diagrams from Cubic Lagrangian

The fact that the cubic Lagrangian depends on ζ̇ means that the interaction picture quartic Hamiltonian

receives a contribution that we call H4,32 , equal to

H4,32 =
1

2

δP

δζ̇

(
δL̃3

δP

)2

=
1

2

δP

δζ̇

∑
b,n

D(n,out)
b

(
δL̃3

δP

)(
δL(n)

3

δPb

)
, (4.48)

where in the second term we have explicitly stressed the sum over b and we have integrated by parts any

possible residual derivative (notice that the sign is re-absorbed in the definition of L̃3). The resulting quartic

diagram is

Quartic3,∂t = (4.49)

2 Re

{
〈
[
i

∫ t

−∞
dt1H4,32(t1), ζ(t)

]
k

ζk(t)〉
}

= Re

〈
i ∫ t

∞
dt1

δP

δζ̇

(
δL̃3

δP

)2

, ζ(t)


k

ζk(t)〉


= −Re

∑
n,a

{∫ t

−∞
dt1 D(n)

a Gζk(t, t1) ×

〈

[(
δ2L(n)

3 (t1)

δD(n)
a ζaδζ̇b

)
D(n,out)
b

(
δL̃3(t1)

δP

)
+D(n,out)

b

(
δL̃3(t1)

δP

)(
δ2L(n)

3 (t1)

δD(n)
a ζaδζ̇b

)]
k

ζk(t)〉

}

=
∑
n,a

∫ t

−∞
dt1 a(t1)3+δ D(n)

a Gζk(t, t1) I(n,a)
3 (t1) .

So the Quartic3,∂t diagrams are the integral of the Green’s function times the sum over a and n of I(n,a)
3 .

By summing the final expressions from the CIS1PI , CIM and Quartic3,∂t , we obtain the remarkably simple

formula in eq. (4.33), as we wanted to show.

4.4 Time-(in)dependence of ζ from cubic diagrams

We can now ask ourselves if the contribution from the diagrams considered in the former section can lead

to a time dependence on the ζk correlation function after the comoving mode k has crossed the horizon.

4.4.1 Quartic∂i diagrams

To understand wether the diagrams considered so far can lead to a time dependence, it will turn out to be

useful to first add the quartic diagrams that are associated to the rescaling of the spatial derivatives in the
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cubic vertices. We call these Quartic∂i . They take the form

Quartic∂i = −
∑
n

∂i∂
n
t ζ

∫
dζ

∂L3

∂(∂i∂nt ζ)
, (4.50)

The symbol
∫
dζ represents the fact that we multiply ∂L3/∂(∂i∂

n
t ζ) by ζ if there is no ζ without any

derivative acting on it in ∂L3/∂(∂i∂
n
t ζ), we multiply by ζ/2 if there is one ζ without any derivative acting

on it 6. The reason why we wish to include these quartic diagrams with the former is due to the fact

that whenever an operator contains a spatial derivative, we expect that in the presence of long ζ mode the

coordinates are effectively rescaled in a form ∂i → e−ζ∂i. As we will explain more in detail, the former

interactions do not take into account of this rescaling, which is instead implemented by the quartic terms

we are singling out. More formally, we can understand the presence of these terms in the following way. In

the ADM parametrization

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (4.51)

ζ gauge and the ζ perturbation are defined by fixing the spatial diff.s by imposing the spatial metric to take

the form

hij = a(t)2e2ζ(~x,t)δij , (4.52)

and the time diff.s are fixed by imposing the inflaton perturbations to be zero. This gauge choice leaves

some zero-mode spatial diff.s unfixed. For example those that are associated to a time dependent rescaling

and translation of the spatial coordinates:

xi → xi = eβ(t)x̃i + Ci(t) , (4.53)

with β(t), Ci(t) generic functions of time. Under this rescaling, ζ and N i transform as

ζ → ζ̃ = ζ + β(t) , (4.54)

N i → Ñ i = N ie−β + β̇(t)x̃i + e−βĊi(t).

Thus the ζ zero mode has not been gauge fixed. For our purposes, we therefore learn that the ζ action must

be diff. invariant under this restricted group of diff.s. Therefore, any combination of ∂i must actually take

the form e−ζ∂i to be diff. invariant. By Taylor expanding this exponential, we clearly see that there is a

6The last remaining option, two ζ’s in ∂L3/∂(∂i∂
n
t ζ) without any derivatives acting on them, is forbidden by rotational

invariance.
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connection between linear and quadratic terms, or from cubic and quartic terms.

To be even more explicit, let us give some examples. Given a vertex in the cubic Lagrangian, we identify

the necessary vertex to be considered from the quartic Lagrangian in the following way

L3 ⊃ ζ(∂iζ)2 → L4 ⊃ −ζ2(∂iζ)2 , (4.55)

L3 ⊃ ζ̇(∂iζ)2 → L4 ⊃ −2ζζ̇(∂iζ)2 .

4.4.2 Time independence and the consistency condition

It is useful to split formula (4.33) into the sum of two terms. Let us introduce a time tkout quite after the

mode k has crossed the horizon k/a(tkout) = εoutH(tkout), with εout � 1. Eq. (4.33) can be written as

〈ζkζk〉CIS1PI+CIM+Quartic3,∂t
= lim
ε→0

(∫ tkout

−∞
dt1 +

∫ t

tkout

dt1

)
(4.56)[

a(t1)3+δ
∑
a,n

D(n)
a Gζk(t, t1)2Re〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U†int(t1,−∞)ζk,I(t)Uint(t1,−∞)〉 eεkt1
]
.

The contribution from the first term represents the case where the three-point function is evaluated at a time

before the time tkout , while the second integral represents the contribution from evaluating the contribution

of the three-point function from time tkout up to the present time t.

Clearly, the first term is time-independent. The only dependence on t appears in the last term ζI(t),

the interaction picture field that is constant at t � tkout . Let us therefore concentrate on the second term.

Since we are considering times when the mode k is very outside of the horizon, we can expand the Green’s

function at late times k/a(t1)� H. In conformal time, we have

Gζk(η, η1) ' H2

3

(
η3 − η3

1

)
θ(η − η1) , (4.57)

obtaining

〈ζkζk〉CISint+CIM+Quartic3,∂t ,t
' lim
ε→0

∫ η

ηkout

dη1

(
− 1

Hη1

)4+δ∑
a,n

D(n,out)
a

H2

3

(
η3 − η3

1

)
θ(η − η1)

2 Re〈

[
1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
k

U†(η1,−∞)ζk,I(η)U(η1,−∞)〉 eε k log(a(η1))/H ,

(4.58)

where the subscript t in 〈ζkζk〉CIS1PI+CIM+Quartic3,∂t ,t
refers to the fact that we are concentrating only on
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the time dependent part, and where the appearance of D(n,out)
a is due to the fact that the commutators of

[ζk, ζ̇k] and [ζk, ζk] scale in the same way at late times. Neglecting any possible time dependence from the

terms in the second line, we see that naively the time integral diverges as

∫ η

dη1
1

η1+δ
1

∼ 1

ηδ1
→ log(−η) ∼ Ht as δ → 0 . (4.59)

We see the potential risk of linear infrared divergencies in cosmic time t (logarithmic in conformal time η)

in the case the three-point function’s contribution, that we have neglected in this formula, does not decay in

time. Contributions from terms with D(n,out)
a being non-unity are clearly more convergent by powers of η1.

Let us therefore concentrate on the three point function, which can be schematically written as a convo-

lution:

∼
∫
d3+δq 〈D1ζ~q(t1)D2ζ~k−~q(t1) U(t1,−∞)†ζk,I(t)U(t1,−∞)〉 (4.60)

where D1,2 represent generic differential operators (including the identity operator) that could be present.

The integral in q runs from very small wavenumbers (much smaller than k) up to infinity because we are

working in dimensional regularization.

The contribution from momenta smaller than k/εout cannot give a time dependence. This is so because

as these modes are longer than k/εout, the three-point function is evaluated when all the Fourier modes are

very outside of the horizon. A remarkable property of the cubic interaction Lagrangian of ζ, which can be

traced back to the original diff. invariance of the Lagrangian, is the fact that it can be written in a form

where there are no operators with either no derivative or just a time derivative [22]. This means that if

we decide to consider the contribution from terms where D(n,out)
a is absent, so that they are potentially IR

divergent, we are forced to consider an operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k
∼ ζ~q(t1)ζ~k−~q(t1) with at least a

derivative acting on one of the two operators. This therefore leads to a time-convergent integral 7.

We are finally lead to consider the remaining part of the integral where we include modes q & k/εout.

These modes are at horizon crossing or well inside the horizon when the three-point function is evaluated,

and so, contrary to what happens in the former regime q . k/εout, there is no suppression for derivatives

acting on these modes. However, in this regime we can use a remarkable property of the three-point function

in the regime k � q, the so called ‘consistency condition’ of the three-point function, which states that at

7Similar conclusion applies also to the case where we consider the operator

∂i

∂2
ζ̇∂iζζ̇ . (4.61)

as even if we remove first non-local term by inserting it in the Green’s function, we are left with ∂iζζ̇ that has enough derivatives
to compensate for the non local term.
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leading order in k/q � 1, k/(aH)� 1, the three-point function has the following form

〈

[
1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
k, (q�k)

ζk,I(η1)〉 ' (4.62)

' 1

q3+δ

∂〈
[
q3+δ 1

a(η1)3+δ
δL(n)

3 (η1)

δD(n)
a ζa(η1)

]
q

〉

∂ log q
〈ζk(η1)2〉+O

(
Max

[(
k

a(η1)H(η1)

)2

,

(
k

q

)2
])

.

The last term represents the subleading correction to the squeezed limit. Let us understand the Max
[

k
a(η1)H(η1) ,

k
q

]
term. If we expand in gradients in the long wavelength fluctuation, the natural quantity to consider is

clearly the physical wavenumber k/(aH). So, this is the natural size of the correction in the squeezed limit.

The calculation of the three-point function in this limit involves a time integral in a variable that we can

call η2. Subleading corrections in the squeezed limit are contained in the integrand are proportional to

k/(a(η2)H(η2)). If the short modes q are longer than the horizon at the time η1, then the time integral is

peaked at the time η2 when the modes q crossed the horizon. This gives q/(a(η2)H(η2)) ∼ 1, which gives a

correction of the form k/q. If the modes q are instead still inside the horizon at η1, the integral is peaked at

η2 ∼ η1, giving a correction of the form k/(a(η1)H(η1)).

There are two subtleties to discuss about the above formula (4.62). The first regards the case in which

the operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k

contains spatial derivatives of the short modes, for example if it is

of the form (∂iζ)2. In this case the consistency condition does not hold. The consistency condition implies

that in the squeezed limit the 3-point function follows directly from the fact that in this limit the long

mode acts as a rescaling of the spatial coordinates ~x → e−ζ~x. However, when we compute the 3-point

function with the usual formulas ∼ [
∫
dtHint, ζ

3], we are evolving in the interaction picture the operators

ζ, not the spatial coordinates themselves. This means that evaluation of the 3-point function amounts to

effectively rescaling the argument of the operators ζ(~x)→ ζ(e−ζ~x). The computation does not implement the

rescaling of the spatial derivatives, simply because they ‘go along with the ride’, unaffected by the interacting

Hamiltonian. Formula (4.62) does not hold. Although this seems to challenge the very intuitive result that

a long wavelength ζ acts as a rescaling of the coordinates, diff. invariance provides a solution. The quartic

vertex Quartic∂i in eq. (4.50) provides precisely the contact term necessary to rescale the coordinates in the

spatial derivative. So, eq. (4.62) holds after we add to all the diagrams considered so far also the Quartic∂i .

In App. 4.8, we discuss examples of three-point functions in the squeezed limit in which one of the modes

has much longer wavelength than the others, involving short modes that are still inside the horizon and that

are acted upon by space and time derivatives. There we show that the consistency condition holds after the

addition of the relevant contact operators.
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The second subtlety in using (4.62) is that in the three-point function we are computing the last term

should be

Uint(η1,−∞)†ζk,I(η)Uint(η1,−∞) ,

which is different from ζk,I(η1). This is equivalent to the situation where we were to arbitrarily shut down

Hint at t1 and the theory become free after that. Even though this is not the case in the actual physical

system, it can be straightforwardly realized that this difference does not matter, because at the time t1 the

k-mode is already well outside the horizon. We therefore are free to use (4.62) at leading order in k/(aH).

By substituting (4.62) into (4.58), we obtain:

〈ζkζk〉CIS1PI+CIM+Quartic3,∂t+Quartic∂i ,t
' lim
ε→0

∫ η

ηkout

dη1

(
− 1

Hη1

)4+δ

(4.63)

∑
a,n

D(n,out)
a

H2

3

(
η3 − η3

1

)
θ(η − η1)2 Re

∫ +∞

k/εout

d3+δq
1

q3+δ

∂〈
[
q3+δ 1

a(η1)3+δ
δL(n)

3 (η1)

δD(n)
a ζa(η1)

]
q

〉

∂ log q
〈ζk(t)2〉 .

The rotational integral is trivially performed, and the remaining momentum q-integral is a total derivative.

This leads to

〈ζkζk〉CIS+CIM+Quartic3,∂t+Quartic∂i ,t
' lim

ε→0

∫ η

ηkout

dη1

(
− 1

Hη1

)4+δ∑
a,n

D(n,out)
a

H2

3

(
η3 − η3

1

)
θ(η − η1)

8π 〈

[
1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
q

〉

∣∣∣∣∣∣
q=k/εout

〈ζk(t)2〉 , (4.64)

where the contribution from q = ∞ is zero as the integral is made convergent in dim-reg. As we evaluate

the term

〈

[
q3+δ 1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
q

〉

∣∣∣∣∣∣
q=k/εout

(4.65)

and we take the limit η1 → 0 as η → 0, we notice the property of the cubic ζ-Lagrangian that we men-

tioned before: there is no operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k

that does not vanish as some power of

k/(a(η1)H(η1)) ∼ kη1 → 0. This is so because in order for this term to have any chance to contribute

at late times we had to restrict ourselves to choosing an operator that had at least one derivative acting on

one of the two ζ operators. Since this terms is evaluated when momenta are outside the horizon, it vanishes

as η1 → 0. This means that the resulting time integral is convergent.

We stress that there is no time dependence because, as a result of the consistency condition, the integrand

in the internal momenta q becomes a total derivative. If this had not been the case, it would have been less
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trivial to show that the result of the integration leads to a time independent answer 8.

This result can probably be stated more intuitively by simply noticing that the consistency condition

implies that in the extreme squeezed limit k � q the effect of the long mode on the dynamics is to do nothing:

its effect is simply a trivial rescaling of the comoving momenta. Since we compute the integrals over the

whole high momentum modes, this rescaling has no effect apart for changing the boundary of integration for

the most infrared modes of order k/εout. But the integral has no support in that region. This is a simple

explanation of the reason why the loop integral becomes a total derivative in the squeezed limit.

This is enough to make the subleading corrections time convergent. We have at this point gone through

the whole phase space in CIM + CIS +Quartic3,∂t +Quartic∂i diagrams, finding that their sum leads to

no time dependence.

A note on the counterterms: It is important to realize that (4.64) is the result of the full loops

integrals in the squeezed limit k � q, k/(aH) � 1. The integral is therefore UV finite, even in the limit

in which we send the number of spatial dimensions to three, or the regulator to infinity. This is a very

important consistency check. If the integral in this regime were to be UV divergent we would have had

a divergent time dependence piece and we would have needed a counterterm that cancelled the divergent

time-dependence of ζ. But there are no counterterms in the action that induce a time-dependence for ζ

because that is equivalent to inducing at quadratic level a mass for ζ which does not happen for the terms

allowed by the symmetries. As we will see in the next section, the only quadratic counterterms that induce

a mass for ζ are the ones associated to the tadpole terms, that induce also a linear tadpole for ζ. We will

verify they will exactly cancel the time-dependence from the diagrams built with the quartic vertices.

4.4.3 Example

It is instructive to find a simple example where this can be seen explicitly. Thanks to the Effective Field

Theory of Inflation [30, 42], it is possible to find a consistent inflationary Lagrangian which has the properties

8Let us comment on the contribution of the subleading corrections in eq. (4.62), which do not take the form of a total
derivative. Those contributions are not scale invariant in the external wavenumber k, having one additional factor of k in the
numerator with respect to the leading, scale invariant contribution. This means that the resulting contribution goes to zero
at late times as (kη1)2 and so they lead to a time-convergent contribution as η → 0. The fact that the contribution to the
subleading corrections in eq. (4.62) is not scale invariant comes from the following. If we consider the contribution from any
fixed momentum shell in q between q ∼ k/εout to q ∼ γk with γ � 1/εout, with γ a time independent number small enough
so that q is outside the horizon, the contribution from that shell of momenta goes to zero as some power of kη1. This is so

because the operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k

contains some derivatives of the fields. This means that the contributions

in the integrand coming from momenta outside of the horizon is peaked at those momenta at horizon crossing q ∼ aH, which
meanS that the subleading corrections are of the form k/q ∼ k/(aH) and so the integrand goes to zero as η1 → 0. Finally,
the contribution from momenta q that are inside the horizon is explicitly down by powers of k/(aH) and so they are as well
convergent.
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we discussed 9. By parametrizing the fluctuations in terms of the Goldstone boson π and going to the

decoupling limit, the algebra becomes very simple. Let us take for example the following Lagrangian in the

decoupling limit

S =

∫
d4x
√
−g

[
−ḢM2

Pl

(
π̇2 − 1

a2
(∂iπ)

)
+M4(t+ π)

(
π̇2 + . . .

)]
(4.66)

where . . . represent cubic or quartic terms in π that have one derivative acting on each fluctuation. Those

terms do not lead to any diagram with an explicit time dependence, and we neglect them here. For illustrative

purposes, let us suppose now that the function M4(t) depends linearly on time. By Taylor expanding in π,

we notice that we have the cubic interaction

L3 = ∂t
(
M4(t)

)
ππ̇2 . (4.67)

This interaction in very dangerous. If we imagine forming a loop with two of these vertices and using a π in

the first vertex to contract with the external leg, the resulting diagram will become time-dependent. This

means that time-independence can come only from a quartic interaction. Indeed, this is exactly the kind of

cubic Lagrangians that leads to a non-trivial H4,3.

Bu concentrating only on the effects proportional to (∂tM
4)2, the action can be recast as

S =

∫
d4x
√
−g

[
−ḢM2

Pl

c2s

(
π̇2 − c2s

a2
(∂iπ)2

)
+
(
∂t
(
M4(t)

)
ππ̇2

)]
. (4.68)

The speed of sound is c2s = −ḢM2
Pl/(−ḢM2

Pl +M4(t)). The momentum conjugate to π, P , is given by

P =
δL
δπ̇

= 2a3

(
−ḢM2

Pl

c2s
+ ∂t

(
M4(t)

)
π

)
π̇ , (4.69)

and the Hamiltonian is therefore

H = P π̇(π, P )− L(π, π̇(π, P )) =
P 2

4a3
(
−ḢM2

Pl

c2s
+ ∂t (M4(t))π

) + a3
(
−ḢM2

Pl

) 1

a2
(∂iπ)2 . (4.70)

We can identify the quartic Hamiltonian of order (∂tM
4)2 to be

H4,3 =

[
∂t
(
M4(t)

)]2
4a3

(
−ḢM2

Pl

c2s

)3P
2π2 = a3

[
∂t
(
M4(t)

)]2
−ḢM2

Pl

c2s

π̇2
Iπ

2
I . (4.71)

9The Effective Field Theory of Inflation is a quite powerful new formalism to describe the theory of inflation in very general
terms. A sample of recent works that have been developing it is given by [30, 42, 31, 91, 107]
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where in the second passage we have written the expression in terms of the interaction picture fields. It can be

easily checked that this agrees with (4.48). Quartic diagrams built with H4,3 lead also to time dependence,

a time-dependence that indeed cancels the one from the cubic diagrams built with (∂t(M
4(t))ππ̇2. This

example is discussed in detail in appendix 4.8.2.

4.5 Time-(in)dependence of ζ from quartic diagrams

In order to complete the study of the possible infrared effects we need to look at the contribution from

the remaining quartic interactions H4 ⊃ H4,4 = −L4 − L4,∂i , where L4,∂i represents the terms that were

borrowed in the former section to give the Quartic∂i diagrams. These remaining diagrams contribute to the

two point function as

〈ζkζk〉Quartic4 = (4.72)

− lim
ε→0

∫ t

−∞
dt1 a(t)3+δ

∑
a,n

D(n)
a Gζk(t, t1)2Re〈

[
1

a(t1)3+δ

δL(n)
4 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t1)〉 eεkt1 .

Like in the former section, it is straightforward to see that the factor before the four-point function on

the left of the above formula leads to a time dependence proportional to Ht if the four-point function does

not have a suppression at late time. Contrary to what happened in the former section with the three-point

function after it was integrated over comoving monenta, there is no such a cancellation from diagrams within

H4. So there is a subset of diagrams that naively lead to a time-dependence. We are now going to show

that there is a cancellation that leads to absence of a time dependence of ζ at late times after adding a new

set of diagrams. These new diagrams come from effectively quartic vertices that arise when we insert the

couterterms for the tadpoles.

Let us see this in detail. At one loop order the first diagrams we should consider are the tadpole diagrams,

that can be written as

〈ζk〉Tad = lim
ε→0

∫ t

−∞
dt1 a(t)3+δ

∑
a,n

D(n)
a Gζk(t, t1)〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
〉 eεkt1 . (4.73)

Very simple counting arguments shows that these diagrams can lead to a time dependence of the zero mode

ζk=0. If these diagrams are not zero it is because we are expanding around the wrong unperturbed history.

Indeed, by translation invariance, only the k = 0 mode is directly affected, and the zero mode can be totally

reabsorbed in the definition of the unperturbed history. However this does not mean that these diagrams

affect only the zero mode: they can be attached with a cubic vertex to a propagator to affect the two point
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function of modes at finite k in a non-1PI diagram (Fig. 4.3), and possibly induce a time dependence even

there. The fact that this diagrams is not zero is clearly a nuisance.

Fortunately, these diagrams can be set to zero by inserting proper counterterms. In order to cancel tadpole

diagrams, they must start linear in the fluctuations. In principle, there are many possible operators of this

form, but luckily we can use a theorem proved in the context of the Effective Field Theory of inflation [30, 42].

It states that all the possible tadpole counterterms can be reduced to just two operators 10. In unitary gauge,

these are

Stad,counter =

∫
d4x
√
−g

[
g00δM4(t) + δΛ(t)

]
. (4.74)

Up to one loop level, the terms starting linear in the fluctuations take the form

Stad =

∫
d4x
√
−g

[
g00
(
M2

PlḢ + δM4
)
−M2

Pl

((
3H2 + Ḣ

)
+ δΛ

)]
, (4.75)

The coefficients ḢM2
Pl and −M2

Pl(3H
2 + Ḣ) are uniquely fixed by the background, as proven in [30, 42],

while the terms δM4 and δΛ represent the one-loop counterterms that are chosen to cancel the tadpole

diagrams. The most important point that we need to realize is that these operators that start linear in

the fluctuations necessarily contain higher order terms. This is so because of the non-linear realization of

time diffs. In particular this means that there will be quadratic terms that can contribute to the two-point

function effectively as one-loop terms. In this section we are going to prove that they exactly cancel the

quartic diagrams constructed with H4 that would lead to a time dependence.

4.5.1 Example:

Since the algebra quickly becomes very complicated, we use the Effective Field Theory of Inflation [30, 42]

to find a consistent inflationary model where this cancellation can be studied in the simplest context. Let

us consider the following Lagrangian in unitary gauge

S =

∫
d4x
√
−g

[
g00
(
M2

PlḢ + δM4
)
−M2

Pl

((
3H2 + Ḣ

)
+ δΛ

)
+M4

3

(
δg00

)3]
(4.76)

and let us imagine that M4
3 depends rapidly linearly in time. This means that we can concentrate on that

interaction and study it in the decoupling limit. Upon reinserting the Goldstone boson π by performing a

10We stress that this is one of the advantages of using the Effective Field Theory of Inflation: by concentrating directly on
the fluctuations, it allows immediately to identify the operators with the correct number of fluctuating fields to be tadpole
counterterms.
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time-diff t→ t+ π, the Lagrangian reduces to

S =

∫
d4x
√
−g

[
(−1− π̇ + (∂π)2)

(
M2

PlḢ + δM4(t+ π)
)
−M2

Pl

((
3H2 + Ḣ

)
+ δΛ

)
+

M4
3 (t+ π)π̇3

]
, (4.77)

where we have stopped at quartic level and we have kept only the interactions proportional to M3(t). By

Taylor expanding the last term, we have a vertex of the form Ṁ4
3ππ̇

3 which, if we contract π̇ as the final leg

in the Green’s function, leads to a quartic diagram that naively induces a time-dependence. Let us see how it

cancels with the operators induced by the tadpole counterterms. By the non-linear realization of time diffs.,

this same operator starts cubic, and it therefore induces a tadpole. All diagrams with only one vertex can be

most simply studied directly in the Lagrangian by taking the expectation value of the quadratic operators

contracted in the loop, and studying the resulting quadratic Lagrangian. This is equivalent to resuming

all the non-1PI diagrams obtained by multiple insertion of the same loop. So we notice that the last term

induces a tadpole term of the form

δS3→1 =

∫
d4x
√
−g
[
3M4

3 (t)δg00〈(δg00)2〉
]
. (4.78)

This means that in order to cancel this diagram we have to choose δM4 as

δM(t)4 = −3M4
3 (t)〈(δg00)2〉 . (4.79)

This is shown diagrammatically in Fig. 4.5 where we call the variables directly ζ. The cancellation of the

tadpole terms automatically guarantees the cancellation of the non-1PI diagrams, that otherwise should be

included (see Fig. 4.6).

ζ
(3)
0

x

t = tfinal

ζ(1)

t

x

t = tfinal

δM 4, δΛ

ζ
(3)
0

ζ(1)

Figure 4.5: Cancellation between the tadpole diagram and the tadpole counterterm.
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δM 4, δΛ

ζ(1) ζ(1)

ζ(3)

x

t = tfinal

ζ
(2)
0

x1

ζ(1)

x2

ζ(1)

tx2

ζ(1)

x1

ζ(3)

x

t = tfinal

ζ
(2)
0

ζ(1)

t

Figure 4.6: Cancellation of the CISnon−1PI diagrams with the CISnon−1PI diagrams constructed with the
tadpole counterterms

In unitary gauge, the resulting tadpole operator in δg00 is of the form

STad,counter =

∫
d4x
√
−g

[
−δg003M4

3 (t)〈(δg00)2〉
]
, (4.80)

But since this has the same form as the induced tadpole operator that we have from
(
δg00

)3
, then the

resulting quadratic (and higher order) terms that we obtain by expanding
√
−gM4

3 (t) will also cancel. This

removes the contribution from the quartic operators that would induce a time dependence.

This can also be checked directly at the level of π. The dangerous term Ṁ4
3ππ̇

3 effectively gives a

contribution that in the action can be represented as

δS4→2 =

∫
d4x
√
−g

[
3Ṁ4

3ππ̇〈π̇2〉
]
, (4.81)

which is exactly cancelled by the tadpole term at second order

S(2)
Tad,counter =

∫
d4x
√
−g

[
−π̇3M4

3 (t+ π)〈π̇2〉
]
⊃
∫
d4x
√
−g

[
−3Ṁ4

3 (t)ππ̇〈π̇2〉
]
. (4.82)

This is represented in Fig. 4.7. Other quadratic terms induced by this tadpole operator are of the form π̇2

and (∂iπ)2 and so do not induce time-dependent effects.

This cancellation can be intuitively summarized by noticing that the ζ action at tree-level cannot have

any mass term once expressed around the correct background. This is so because ζ constant must be a

solution of the equations of motion when the mode is outside the horizon. The counterterms for tadpole

diagrams ensure that we are around the correct history, and so the quartic diagrams must cancel with the

induced-quadratic diagrams from the tadpoles counterterms.
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δM 4, δΛ

t = tfinal

ζ(1)

ζ(3)

t

x

x1 x2

ζ(1) ζ(1)

ζ(1)

ζ(3)

t

x

x1 x2

ζ(1)

t = tfinal

ζ(1)

Figure 4.7: Cancellation of some quartic diagrams with the tree diagrams with an insertion of a counterterm-
induced quadratic vertex.

4.6 Quartic diagrams: Verification for purely gravitational inter-

actions

Let us now move on and consider the most generic example for H4 where we take generic coefficients and

we do not neglect interactions mediated by gravity. Because of the complexity of this kind of interactions,

the discussion becomes quite complicated even though all the essential points have already been highlighted

using the Effective Field Theory of Inflation in the former section. We will therefore perform the study in

several steps.

The first step will be to study the induced time dependence on the ζ zero mode, ζ0. As we discussed in

eq. (4.53) and (4.54), the zero mode is not gauge fixed in the ordinary ζ gauge. We can fix the two functions

in eq. (4.54) in the following way: first we impose periodic boundary conditions. We imagine that the system

is in a very large periodic box of comoving size L. In this way we forbid any dependence proportional to

xi. This fixes β(t). Second, we can fix Ci(t) by imposing that the zero mode component of N i vanishes:

N i
~k=0

(t) = 0.

4.6.1 On the gauge choice for the zero mode

Before proceeding, it is very interesting to notice the following. At finite k, N i is determined by being the

solution of a constraint equation. At linear level, for example, the equation reads:

∂iN
i ∼ ζ̇ (4.83)

which can be solved at finite k to give

N i ∼ ki

k2
ζ̇ . (4.84)
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In real space this term is often reported in a non-local fashion as N i ∼ ∂i
∂2 ζ̇. The zero momentum limit of

that expression gives something that in real space reads as

N i(t) ∼ ζ̇xi . (4.85)

By using our freedom in choosing the function β, we decided to set this term to zero. Therefore our solution

for N i is not the k → 0 limit of the solution for N i at finite k. We choose to work in a gauge where the limit

is discontinuous. Of course any gauge choice should be as good as any other one.

Working within the gauge where the limit k → 0 of N i is continuous, that we can call ‘continuous gauge’,

raises several complications that we prefer to avoid. First of all, the continous gauge looks very unfamiliar

when there is only a zero mode present. In this case the spacetime is described by an FRW metric but

the gauge choice makes us use unusual coordinates where g0i 6= 0. But the situation becomes even more

complicated. For example if in the continuous gauge we naively Taylor expand the action at linear level, we

find that there is a tadpole term for the zero mode. The action starts linear, proportional to

S =
M2

Pl

2

∫
d4x
√
−g

[
R+ Ḣδg00 + 3H2 + Ḣ + . . .

]
⊃ (4.86)

∼M2
Pl

∫
d4x a3H∂iN

i ∼M2
Pl

∫
d4x a3 Ḣ

H
ζ̇ .

where . . . stands for terms that start explicitly quadratic in the fluctuations. This is of course a wrong

result, as the action for the fluctuations should start at quadratic order if we expand around a solution to

the classical equations of motion, as we are doing. The reason for the mistake is that in this case the action

has a boundary term that does not decouple in the limit in which we send the boundary to infinity. This is

due to the behavior of N i ∝ xi. Indeed the boundary term is the Gibbons-Hawking-York one:

SGHY = M2
Pl

∫
∂V (4)

d3x̃
√
−hK , (4.87)

where h is the induced metric on the boundary described by coordinates x̃ and K the trace of the extrinsic

curvature. It is easy to check that this boundary term cancels the tadpole for the zero mode that we obtain

from the bulk action.

The situation is instead much simpler in the ‘discontinuous gauge’ where the limit k → 0 of Ni is

discontinuous. In this case, for a fixed comoving box, the boundary terms become irrelevant as we send the

boundary to infinity, and indeed the bulk action starts quadratic in the fluctuations. Furthermore, zero mode

fluctuations appear to be directly in a standard FRW slicing. We will therefore work with this discontinuous
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gauge.

4.6.2 Time-independence for the zero-mode

We are now going to prove that the zero-mode is time-independent at one-loop. In order to do this, we need

to expand the action to quadratic order in the zero-mode and independently up to quadratic order in the

non-zero-modes. We count them as independent parameters. Since we expand only up to second order in

each of the parameters, we need to solve the constraint solutions in the zero and in the short modes only at

linear level in each of those. We work in Fourier space directly, and write

N = 1 + δNk(t) + δN0(t) , (4.88)

N i
k = ∂iψk(t) .

We start from the action

S =

∫
d3x dt

√
h (4.89){

1

2
M2

Pl

(
EijE

ij − Eii2

N
+NR

)
− M2

PlḢ

N
−NM2

Pl

(
3H2 + Ḣ

)
−NδΛ(t)− δM4(t)

N

}
,

where the δM4 and δΛ terms represent the only two tadpole counterterms allowed by symmetries (all other

possible choices are equivalent to those [30, 42]), and should be intended as objects that are of order ζ2
k . The

constraint equations read

M2
Pl

2

[
R− 1

N2

(
EijE

j
i − Ell

)2]
+

1

N2

(
M2

PlḢ + δM4
)
−
[
M2

Pl

(
3H2 + Ḣ

)
+ δΛ

]
= 0 ,

∇̂i
[

1

N

(
Eij − δijEll

)]
= 0 , (4.90)

and are solved by

δN0(t) =
3H

Ḣ + 3H2
ζ̇0 , (4.91)

δNk =
(1 + δN0)

H + ζ̇0
ζ̇k ,

ψk =
e−2(ζ0+ρ(t))

k2
(
H + ζ̇0

)2

(
Ḣζ̇ke

2(ζ0+ρ(t)) − (H + ζ̇0)k2ζk(t)(1 + δN0)2
)
.
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We plug back the above solutions into the action. At linear order the action is a total derivative, as it should

be. At quadratic order, the zero-mode action reads

Sζ20 =

∫
d3x dt e3ρ(t)

(
− 3M2

PlḢ

3H2 + Ḣ

)
ζ̇0(t)2 , (4.92)

where we are writing a(t) = eρ(t). It is interesting to notice that the quadratic action for the zero-mode is

not the k → 0 limit of the finite k ζ action, the prefactor of ζ̇2
k being different. This is indeed

Sζ2k =

∫
d3k dt e3ρ(t)

(
−M

2
PlḢ

H2

) (
ζ̇~k(t)ζ̇−~k(t)− e−2ρ(t)k2ζ−~kζ~k

)
. (4.93)

Tadpole Counterterms’ Coefficients

At this point we need to find the expressions for the tadpole counterterms δΛ and δM4 that ensure the

cancellation of the tadpoles for ζ0. This is done by finding the cubic action at order ζ0ζ
2
k , taking the

expectation value on the short modes and canceling the resulting tadpole coefficients 11. Leaving out the

simple algebra, the solution for the tadpole counterterms reads

δM4 =
M2

Ple
−2ρ(t)

3H4

(
H
(
−2〈∂iζ∂iζ̇〉Ḣ +H(〈∂iζ̇∂iζ̇〉+ 〈∂iζ∂iζ̈〉)−H2〈∂iζ∂iζ̇〉+H3(−〈∂iζ∂iζ〉)

)
−e2ρ(t)

(
6H2〈ζ̇ ζ̇〉Ḣ − 3〈ζ̇ ζ̇〉Ḣ2 − 9H3〈ζζ̇〉Ḣ +H

(
〈ζ̇ ζ̇〉Ḧ + 2〈ζ̇ ζ̈〉Ḣ

)
+

6H4(〈ζ̇ ζ̇〉+ 〈ζζ̈〉)
))

, (4.94)

δΛ =
M2

Ple
−2ρ(t)

3H4

(
H
(
H(H(2H〈∂iζ∂iζ〉+ 5〈∂iζ∂iζ̇〉) + 〈∂iζ̇∂iζ̇〉+ 〈∂iζ∂iζ̈〉)− 2〈∂iζ∂iζ̇〉Ḣ

)
−e2ρ(t)

(
3H2〈ζ̇ ζ̇〉Ḣ − 3〈ζ̇ ζ̇〉Ḣ2 + 9H3〈ζζ̇〉Ḣ +H

(
〈ζ̇ ζ̇〉Ḧ + 2〈ζ̇ ζ̈〉Ḣ

)
+6H4(〈ζ̇ ζ̇〉+ 〈ζζ̈〉) + 36H5〈ζζ̇〉

))
.

In these expressions, a term such as 〈∂iζ∂iζ〉 stands for 〈∂iζ(~x, t)∂iζ(~x, t)〉. A term like 〈ζζ̇〉 stays for

〈ζζ̇ + ζ̇ζ〉/2. No slow roll approximation has been performed nor it has ever been performed in this chapter.

There are three subtleties to stress here. The first is that the cubic action of order ζ0ζ
2
k is not the cubic action

ζ3
k with one of the momenta taken to zero. As before, the limit is discontinuous and the action is different.

We do not report it here because it is very long and comes from trivial substitution of the solutions of the

constraint equations into the action. Second, in taking expectation values 〈ζ2〉, one might worry about the

contribution of the zero-mode, which has a different action than ζ0ζ
2
k . This is irrelevant because the zero

mode has measure zero when we perform the expectation value. The difference in the action is important

11Notice that since we are working in the gauge N i
0 = 0 and we choose a fixed comoving box in this gauge, there is no need

to introduce boundary counterterms.
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for the tadpole terms and for the non 1-PI diagrams because the ζ0 propagator is the only one singled out by

translation invariance. Finally, the third subtlety is about the expectation values involving two derivatives

of ζ: 〈ζζ̈〉. Here one can use the linear equation of motion for the short modes as derived from (4.93) to

relate it to expectation values of the form 〈ζ∂2ζ〉 or 〈ζζ̇〉.

Cancellation between quartic diagrams and diff.-enhanced tadpole counterterms

At this point we are able to address the time (in)dependence of the zero mode two-point function. In the

former section we have discussed the contribution of the diagrams involving two cubic terms. We saw that

upon the addition of some quartic diagrams, they induced no time dependence on ζ. We have now to deal

with the remaining quartic diagrams, that in this case come from the action of the form ζ2
0ζ

2
k .

The simplest way to evaluate the contribution of these diagrams to the ζ0 two-point function is to derive

the quartic action and substitute directly the quadratic pieces in the short modes with their expectation

value. For example ∫
d3k dt e3ρ(t) ζ0(t)2ζ~kζ−~k →

∫
dt e3ρ(t) ζ0(t)2〈ζ2〉 , (4.95)

and then derive the resulting linear equation of motion for ζ0. In this way we can incorporate the effect of

this quartic diagrams by simply studying the corrections to the quadratic action. The symmetries of the

problem imply that the quadratic action will have a kinetic term ζ̇2
0 and a mass terms ζ2

0 . There is also a

term proportional to ζ̇0ζ0 that can be reduced to a mass term upon integration by parts. Clearly a time

dependence on 〈ζ2
0 〉 can come only from a non vanishing mass term. These terms read

S
(4)

ζ20 , ζ0ζ̇0
= (4.96)∫

dt

[
ζ2
0

2H2

(
M2

PlHe
ρ(t)(H〈∂iζ∂iζ〉+ 2〈∂iζ∂iζ̇〉)− 9e3ρ(t)

(
M2

PlḢ
(

3H2〈ζζ〉+ 〈ζ̇ ζ̇〉
)

+H2
(

3M2
PlH

(
3H〈ζζ〉+ 2〈ζζ̇〉

)
+ 2(δΛ + δM4)

)))
+

ζ0ζ̇0

H3
(
Ḣ + 3H2

) (M2
PlHe

ρ(t)
(

3H3〈∂iζ∂iζ〉 − 2〈∂iζ∂iζ̇〉Ḣ
)

−3e3ρ(t)
(

3M2
PlH

2Ḣ
(

2H〈ζζ̇〉+ 3H2〈ζζ〉 − 3〈ζ̇ ζ̇〉
)

−2M2
Pl〈ζ̇ ζ̇〉Ḣ2 + 3H4

(
9M2

PlH
2〈ζζ〉+ 2(δΛ− δM4)

)))]
.

After we substitute in the counterterm solutions from (4.94), and we integrate by parts the term ζ0ζ̇0, the
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above expression simplifies to

S
(4)

ζ20
=

∫
dt

M2
Ple
−ρ(t)

H2
(
Ḣ + 3H2

)2 ζ2
0 (4.97)

(
2〈∂i∂jζ∂i∂jζ〉Ḣ

(
Ḣ + 3H2

)
+ e2ρ(t)

(
2Ḣ
(
Ḣ(H(H〈∂iζ∂iζ〉+ 7〈∂iζ∂iζ̇〉)− 〈∂iζ̇∂iζ̇〉)

−3H2(H(2H〈∂iζ∂iζ〉 − 〈∂iζ∂iζ̇〉) + 〈∂iζ̇∂iζ̇〉)
)

+ Ḧ
(

2〈∂iζ∂iζ̇〉Ḣ − 3H3〈∂iζ∂iζ〉
)))

.

Clearly, a mass term seems to have survived after we have taken into account of the quadratic terms generated

by the counterterm solutions. Unless these remaining terms are exactly those quartic terms of eq. (4.50),

the terms associated with a rescaling of the spatial coordinates in cubic vertices, we would have a time-

dependence for the ζ0 two point function. Luckily 12, this is exactly what happens. It is indeed indicative

that all the surviving terms have spatial derivatives acting on the ζ’s inside the expectation values, suggesting

that they are indeed associated to a rescaling of the spatial coordinates. Let us therefore discover what are

those terms in (4.50) by first finding the cubic Lagrangian of order ζ0ζ
2
k and then taking the expectation

value of the finite-k modes. With the usual procedure, we obtain

S
(3)

ζ0ζ2k
=

∫
d3x dt

− eρ(t)

H3
(
Ḣ + 3H2

)
 (4.98)

(
H3Ḣ

(
M2

Pl

(
ζ0

(
−
(
〈∂iζ∂iζ〉 − 9e2ρ(t)〈ζζ〉Ḣ

)
+ 12e2ρ(t)Ḣ + 9〈ζ̇ ζ̇〉e2ρ(t)

)
+ 6〈ζζ̇〉e2ρ(t)ζ̇0

)
+6δΛ(t)ζ0e

2ρ(t) + 6δM4ζ0e
2ρ(t)

)
− 3H4

(
ζ̇0

(
M2

Pl

((
〈∂iζ∂iζ〉 − 3e2ρ(t)〈ζζ〉Ḣ

)
− 4e2ρ(t)Ḣ

)
−2δΛe2ρ(t) + 2δM4e2ρ(t)

)
+ 2M2

Plζ0

(
〈∂iζ∂iζ̇〉 − 3e2ρ(t)〈ζζ̇〉Ḣ

))
+3H5ζ0

(
M2

Pl

(
−
((
〈∂iζ∂iζ〉 − 18e2ρ(t)〈ζζ〉Ḣ

)
− 24e2ρ(t)Ḣ

))
+ 6δΛe2ρ(t) + 6δM4e2ρ(t)

)
−M2

PlH
2Ḣ
(

2ζ0〈∂iζ∂iζ̇〉+ 9〈ζ̇ ζ̇〉e2ρ(t)ζ̇0

)
+M2

PlHḢ
(

3ζ0〈ζ̇ ζ̇〉e2ρ(t)Ḣ + 2k2〈ζζ̇〉ζ̇0
)

−2M2
Pl〈ζ̇ ζ̇〉e2ρ(t)Ḣ2ζ̇0 + 9M2

PlH
6e2ρ(t)

(
3〈ζζ〉ζ̇0 + 6ζ0〈ζζ̇〉

)
+ 81M2

PlH
7ζ0〈ζζ〉e2ρ(t)

)
.

According to the results of sec. 4.4, loops formed with cubic operators that contain spatial derivatives would

induce time dependence unless we combine them with quartic loops constructed with the operators derived

12Or obviously, depending on the point of view.
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from formula (4.50). Applying it to the cubic action above, we obtain

SQuartic,∂i =

∫
d3x dt

− M2
Ple

ρ(t)

H2
(
Ḣ + 3H2

)ζ0
 (4.99)

(
−4〈∂iζ∂iζ̇〉Ḣζ̇0 + 2Hζ0〈∂iζ∂iζ̇〉Ḣ +H2ζ0〈∂iζ∂iζ〉Ḣ + 6H3〈∂iζ∂iζ〉ζ̇0

+6H3ζ0〈∂iζ∂iζ̇〉+ 3H4ζ0〈∂iζ∂iζ〉
)
.

Upon integration by parts, and after using the equation of motions in terms of the form 〈ζ̈ζ〉, it is easy to

see that these terms are exactly the ones left out in (4.97). Notice that we do not even need to compute

explicitly the value of 〈∂ζ∂ζ〉: it cancels with the corresponding terms. This shows that one can combine

the terms in (4.97) with the diagrams built with cubic interactions to see that all those diagrams do not give

a time dependence to ζ0. The remaining quartic diagrams cancel with the quadratic terms induced by the

tadpole terms.

This concludes all the diagrams that appear at one loop. We see that both the 1-PI and non 1-PI

diagrams are important to cancel each other so that, even though naively many diagrams are dangerous and

can potentially give a time dependence to the ζ0 correlation function, the time-dependence cancels in the

sum, and we conclude that the ζ0 two-point function is time independent.

4.6.3 Time-independence for the non-zero-modes

We are now ready to begin the study of the case in which the external momentum is finite. This task is very

challenging 13, as the interactions are even more complicated than for the case of the zero mode. Luckily

we will be able to do it by employing a trick. As we discussed, the time-dependence we are interested in

ruling out is the one that appears when the wavelength of the mode is much longer than the horizon, and

the loop effect is due to short wavelength modes running in the loop (modes longer than our mode clearly

cannot induce a time dependence). For this reason, we can simplify the action by taking the leading term

in the smallness of the derivatives of the external mode.

In ζ-gauge, this simplification is not trivial at all. After substituting the solutions to the constraint

equations, N i becomes larger and larger as we move to finite but smaller and smaller k’s. This is due to the

fact that at finite k, N i has the non-local-looking expression N i ∼ kiζ̇/k2 14. Armed with the experience

of the zero-mode, we realize that it would probably be much better if we could find a gauge where N i does

13At least for our standards.
14We stress that since we are trying to investigate if ζk becomes time-dependent, we cannot assume that ζ̇ ∼ k2ζ/a2 out of

the horizon, as it happens in the free theory. Indeed time derivatives do not count as a suppression when the mode is part of a
commutator in a Green’s function.
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not have this bad behavior at low momenta. Since at finite k all gauge freedoms are completely fixed by

the ζ-gauge conditions, this is globally impossible. However, we can do this locally. Indeed, we can find a

frame valid in a region of space very small compared to the wavelength of the mode, where the universe

looks like an anisotropic flat universe. Corrections to the results obtained in this frame will be down by

powers of k/(aH) and so will lead to a contribution that is convergent with time. Since we are dealing with

a time-dependent finite-k Fourier mode, the local frame is not a local FRW universe as it was for the zero

mode, but it is an anisotropic universe. For simplicity, we can choose to work directly with a single Fourier

mode

ζk(~x, t) = Re
[
ζ̃0(t) ei

~k·~x
]
, Re

[
ζ̃0

]
= ζ0 . (4.100)

Using rotational invariance, we can take the momentum ~k to be along the ẑ direction without loss of

generality. The resulting spatial metric in the ADM parametrization is given by the following:

ĥ11 = ĥ22 = e2ρ(t)+2ζ0(t)+2λ0(t)e2ζ(~x,t) , (4.101)

ĥ33 = e2ρ(t)+2ζ0(t)−4λ0(t)e2ζ(~x,t) ,

Ni = ∂iψ(~x, t) + Ñi(~x, t) , ∂iÑi(~x, t) = 0

N = 1 + δN0(t) + δN(~x, t) .

Here the fields with the argument ~x represent short wavelength fields that will be integrated over in the

loops. We see that there is no Ni,0(t) component. This is so because we can make N i
0 and ∂iN

j
0 vanish. The

field λ0 is the (traceless) anisotropic component of the metric, related to ζ0 by

λ0(t) = −1

3

∫ t

dt′
Ḣ

H2
ζ̇0 , (4.102)

up to an irrelevant constant that can be set to zero using a constant rescaling of the spatial coordinates.

The details of this change of coordinates are given in App. 4.9.

Apart from the terms proportional to λ0, the treatment is very parallel to the one of the former subsection.

First we find the solution to the tadpole counterterms δM4 and δΛ. As expected, there is no tadpole for the

terms in λ0 because of rotational invariance: the free vacuum expectation value of product of fields must be

rotational invariant and cannot source any anisotropy. This is indeed the case, and the solutions for δM4

and δΛ are exactly the same as before eq. (4.94) 15.

15There is only one subtlety here that distinguishes this case from the former one. In the former section we were studying the
effect of loops on the zero mode, and therefore loop integrals whose range is over momenta that are shorter than the external
one, were basically running over all momenta. Here instead, since we are Taylor expanding in derivatives of the long external
mode, loops should formally include only modes that are shorter than the external one. This is hardly a problem however

105



At this point we proceed to find the action for the short modes in this background. We start with the

solution to the constraint equations, that read:

δN0(t) =
3H

3H2 + Ḣ
ζ̇0 , (4.103)

δNk =
ζ̇k
H2

(
HδN0 +H − ζ̇0

)
+

k2
ani

2k2H2

(
ζ̇k − 3Hζk

)
λ̇0 ,

ψk =
e2ρ(t)

2k4H3

[
2Ḣζ̇k

(
H
(
2k2

aniλ0 + 2k2ζ0 + k2
)
− 2k2ζ̇0

)
+

λ̇0

(
−3Hζk

(
3H2 + Ḣ

)
+
(

3H2 + 2Ḣ
)
ζ̇k

)
+

k2Hζk

(
−k2

aniλ̇0 − 2k2
(

2HδN0 +H − ζ̇0
))]

,

Ñi =
kie

2ρ(t)

k4H
2
(
k2 − k2

ani

)
λ̇0

(
3Hζk − ζ̇k

)
, i = 1, 2 ,

Ñ3 =
k3e

2ρ(t)

k4H
2
(
2k2 − k2

ani

)
λ̇0

(
3Hζk − ζ̇k

)
,

where k2 = k2
x + k2

y + k2
z and k2

ani = k2
x + k2

y − 2k2
z . kani has the nice property that

∫
d2k̂ k2

ani = 0. After

substitution of the above solutions in the action, we obtain the quartic action at order ζ2
0ζ

2
k . As before

we evaluate the expectation value on the ζk-modes and isolate the terms in ζ0 (and λ0) that could lead to

a time-dependence for ζ0. Clearly, we need to keep track only of the terms that contain at least one λ0,

the terms quadratic in ζ0 will cancel exactly as in the former section. Furthermore, because of rotational

invariance, terms proportional to λ0ζ0 are absent. We are left with

S
(4)

λ2
0

=

∫
d3x dt eρ(t)λ2

0

4M2
Pl

H

(
H〈∂iζ∂iζ〉+ 2〈∂iζ∂iζ̇〉

)
, (4.104)

S
(4)

λ0λ̇0
=

∫
d3x dt

(
−2eρ(t)

M2
Pl

H3

)(
−3H

(
〈∂

2
ani

∂2
ζ
∂2

ani

∂2
ζ̇〉 − 2〈ζζ̇〉

)
e2ρ(t)Ḣ − 6H2〈∂iζ∂iζ〉

+

(
〈∂

2
ani

∂2
ζ̇
∂2

ani

∂2
ζ̇〉 − 2〈ζ̇ ζ̇〉

)
e2ρ(t)Ḣ + 2H〈∂iζ∂iζ̇〉

)
.

Here ∂2 = ∂2
x + ∂2

y + ∂2
z while ∂2

ani = ∂2
x + ∂2

y − 2∂2
z . The second expression above can be further simplified

by noticing that by rotational invariance

〈∂
2
ani

∂2
ζ̇
∂2

ani

∂2
ζ̇〉 =

4

5
〈ζ̇ ζ̇〉 , (4.105)

and similar for similar terms. After integrating by parts the term in λ0λ̇0 and summing with the term in

because in order to prove that there is no induced time-dependence, we are interested in the case where the external mode k is
outside of the horizon. The contribution from modes longer than the horizon is equivalent to the contribution of modes that are
all out of the horizon. At this point, a nice property of the ζ action tells that there are no vertices without at least a derivative
acting on one ζ fluctuation [22]. This guarantees that when all the modes are outside of the horizon each vertex is suppress by
powers of k/(aH). So those contributions would give rise to a time-convergent contribution and can be safely ignored.
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λ2
0, we obtain the final expression

S
(4)

λ2
0

=

∫
d3x dt e−ρ(t) λ2

0

2M2
Pl

5H4Ḣ
(4.106)(

−20H3e2ρ(t)Ḣ〈∂iζ∂iζ̇〉 − 5H4〈∂iζ∂iζ〉e2ρ(t)Ḣ − 3e4ρ(t)Ḣ3〈ζ̇ ζ̇〉

+H2
(
−5e2ρ(t)Ḧ〈∂iζ∂iζ̇〉+ e2ρ(t)Ḣ

(
18e2ρ(t)Ḣ〈ζ̇ ζ̇〉+ 5〈∂iζ̇∂iζ̇〉

)
−Ḣ

(
5〈∂j∂iζ∂j∂iζ〉 − 6e2ρ(t)Ḣ〈∂iζ∂iζ〉

))
+ 3He2ρ(t)Ḣ

(
e2ρ(t)Ḧ〈ζ̇ ζ̇〉+ 2〈∂iζ∂iζ̇〉Ḣ

))
.

As in the former section, if these terms were not to be exactly the ones in Quartic∂i then we will have a time

dependence for the ζ correlation function. To check for this, we move to the cubic action. Again, we need

simply to investigate terms proportional to λ0ζ
2
k . We have

S
(3)

λ0ζ2k
=

∫
d3x dt 2

M2
Ple

ρ(t)

H3
(4.107)(

e2ρ(t)Ḣλ̇0

(
3H

∂2
ani

∂2
ζζ̇ − ∂2

ani

∂2
ζ̇ ζ̇

)
−H

(
λ̇0

(
∂2

aniζζ̇ − 3H∂2
aniζζ

)
−2Hλ0

(
H∂2

aniζζ + 2∂2
aniζζ̇

)))
.

The identification of the quartic vertices starting from the cubic vertices is slightly more complicated due to

the anisotropy. In practice, everytime in the cubic Lagrangian there are two derivatives that are contracted,

they should be thought of as originating from being contracted with the spatial metric ĥij , and we take the

resulting relevant quartic operator. Let us give a few examples:

L3 ⊃ ζ0(∂iζ)2 → L4 ⊃ −ζ2
0 (∂iζ)2 − 2λ0ζ0(∂aniζ)2 , (4.108)

L3 ⊃ ζ̇0(∂iζ)2 → L4 ⊃ −2ζ0ζ̇0(∂iζ)2 − 2λ0ζ̇0(∂aniζ)2 ,

L3 ⊃ λ0(∂iζ)2 → L4 ⊃ −2ζ0λ0(∂iζ)2 − λ2
0(∂aniζ)2 ,

L3 ⊃ λ̇0(∂iζ)2 → L4 ⊃ −2ζ0λ̇0(∂iζ)2 − 2λ0λ̇0(∂aniζ)2,

L3 ⊃ ζ0(∂aniζ)2 → L4 ⊃ (−ζ0 + 2λ0)ζ0(∂aniζ)2 − 4λ0ζ0(∂iζ)2 ,

L3 ⊃ ζ̇0(∂aniζ)2 → L4 ⊃ (−2ζ0 + 2λ0)ζ̇0(∂aniζ)2 − 4λ0ζ̇0(∂iζ)2 ,

L3 ⊃ λ0(∂aniζ)2 → L4 ⊃ (−2ζ0 + λ0)λ0(∂aniζ)2 − 2λ2
0(∂iζ)2 ,

L3 ⊃ λ̇0(∂aniζ)2 → L4 ⊃ (−2ζ0 + 2λ0)λ̇0(∂aniζ)2 − 4λ0λ̇0(∂iζ)2 ,

where ~∂ani = (∂x, ∂y, i
√

2∂z). Upon implementing the promotion of the spatial derivative to include the ζ0
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and λ0 factors, we have

SQuartic,∂i =

∫
d3x dt eρ(t) λ0

4M2
Pl

5H(t)3
(4.109)(

5H
(
λ̇0

(
3H〈∂iζ∂iζ〉 − 〈∂iζ∂iζ̇〉

)
+Hλ0

(
H〈∂iζ∂iζ〉+ 2〈∂iζ∂iζ̇〉

))
−

3e2ρ(t)Ḣλ̇0

(
3H〈ζζ̇〉 − 〈ζ̇ ζ̇〉

))
=

=

∫
d3x dt e−ρ(t) λ2

0

M2
Pl

5H4Ḣ(
−20H3e2ρ(t)Ḣ〈∂iζ∂iζ̇〉 − 5H4〈∂iζ∂iζ〉e2ρ(t)Ḣ − 3e4ρ(t)Ḣ3〈ζ̇ ζ̇〉

+H2
(
−5e2ρ(t)Ḧ〈∂iζ∂iζ̇〉+ e2ρ(t)Ḣ

(
18e2ρ(t)Ḣ〈ζ̇ ζ̇〉+ 5〈∂iζ̇∂iζ̇〉

)
−Ḣ

(
5〈∂j∂iζ∂j∂iζ〉 − 6e2ρ(t)Ḣ〈∂iζ∂iζ〉

))
+ 3He2ρ(t)Ḣ

(
e2ρ(t)Ḧ〈ζ̇ ζ̇〉+ 2〈∂iζ∂iζ̇〉Ḣ

))
.

where in the first passage we have used that by rotational invariance terms involving ∂2
ani are zero and those

involving ∂4
ani are equal to the same expression with (∂2

ani)
2 → 4(∂2)2/5, and in the second passage we have

performed an integration by parts. We see that this Quartic∂i term is exactly the one being left out from

the loops with the quartic diagrams, and so its time-dependent contribution will cancel the one coming from

the CIS1PI + CIM + Quartic∂t diagrams. This completes the exploration of all the diagrams entering at

one-loop, proving that the ζk correlator does not have a time-dependence even at finite momentum k.

A note on tensor modes: Since in this section we have dealt with gravitational interactions, it is

logical to wonder on the contribution of the tensor modes. Indeed, for standard slow roll inflation, at one-

loop the contribution from tensor modes is parametrically the same as the one from the ζ short modes. One

might wonder why we could neglect them, or alternatively why time-dependent effects from loops of ζ modes

cancel independently of the ones from loops of tensor modes. It is easy to realize that the contribution from

tensor modes must cancel independently. Let us analyze the various diagrams. It is pretty clear that the

diagrams built with cubic vertices will cancel independently in the same way as they independently did for

the ζ modes. This cancellation in fact relies on the consistency condition, that holds for tensor modes as

well as for ζ modes. A bit less obvious is to understand why the graviton and ζ contribution from quartic

and tadpole terms cancel independently. The fact that the contribution of tensor modes and scalar modes is

parametrically the same is an accident of standard slow roll inflation. It is possible to engineer inflationary

models where the contribution is parametrically different. If for example we add to the Effective Field Theory

of Inflation an operator of the form (δg00)2, we change the speed of sound of the ζ fluctuations, without

changing the ones of the tensor modes. Since the tadpoles and the quartic loops are evaluated on the linear

solutions, this shows that those loops are parametrically different, and they have to cancel independently.
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We have explicitly verified that this is the case for the effect on the ζ zero-mode.

4.7 Conclusions

Understanding the behavior of the theory of inflationary fluctuations at one-loop order, with particular

attention to the possible infrared factors, is a very important task. We have stressed how this is important

for the predictivity of inflation as well as for slow roll eternal inflation and its universal volume bound. In

general, it is also important to understand how the theory we believe to be the strongest contender for

describing the first instants in the history of our universe behaves at quantum level.

In this chapter we have proven that the ζk correlation function does not receive corrections that grow

with time ∼ Ht after the mode has crossed the horizon. This result is achieved by proving that there is

a cancellation among the various diagrams that would naively induce a time-dependence, if taken alone.

While this cancellation happens in an intricate way, its physical origin can be stated in a very simple form.

First, since there is a vacuum contribution to the stress tensor due to the fluctuations, it is important to

define the ζ fluctuations around the correct one-loop spacetime background. This can be achieved either by

automatically including non−1PI diagrams in the calculation, or, as we do here, by inserting diff. invariant

counterterms that cancel the tadpole correction. Because of diff. invariance, these tadpole counterterms

contain terms quadratic in the fluctuations that modify the ζ propagator and account for a cancellation of

the time-dependence induced by many of the diagrams built from quartic vertex. Some of these quartic

diagrams indeed look very much like coming from a renormalization of the background, as they involve

vacuum expectation values of quadratic operators on the unperturbed background. It is not so surprising

that they cancel with the tadpole counterterms.

The remaining quartic vertices, that we have called Quartic∂t and Quartic∂i , induce a time dependence

that cancels with the one from the cubic diagrams that we call CIS1PI + CIM . The sum of all these

diagrams describes how the vacuum expectation value of the short-wavelength modes is affected by the

presence of a long-wavelength mode, and how the perturbation in this expectation value in turn backreacts

on the long-wavelength mode. Because of the attractor nature of the inflationary solution, a long wavelength

ζ fluctuation is equivalent to a trivial rescaling of the coordinates in the unperturbed background. So the

vacuum expectation value of the short-wavelength modes should not be affected at all by the presence of a

long wavelength mode making this effect disappear.

Since the ζ fluctuations are not derivatively coupled, a feature shared also by the graviton, showing

this is not easy. In order to do it we wrote the sum of these diagrams as the three-point function between

two short-wavelength modes and one long-wavelength mode, integrated over the short-wavelength Fourier
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components. In this way, after adding the terms from Quartic∂t and Quartic∂i , we could use the consistency

condition to show that the presence of a long-wavelength ζ does not change the expectation value of short

modes in a way that correlates with the long mode and therefore that these diagrams do not give any time

dependence.

By accounting for all the diagrams at one loop order we proved that ζ is a constant at this order.

There are many possible generalizations to our results. In the introduction we gave arguments that could

be easily generalized to arbitrary loops. Furthermore it would be nice to include in the treatment gravitons

both inside the loops as well as in the external legs. All of this seems doable. The physical principles

responsible for the cancellations we found should hold unchanged also for these more general cases.

4.8 Appendix A: Consistency Condition inside the Horizon

In this Appendix we discuss the three-point function in the squeezed limit in which one of the modes is

much longer than the other two. While so far the literature has always concentrated in the limit in which

the two short modes are outside of the horizon, as this is the relevant limit for observed modes in tree-level

correlation functions, at loop level we are also interested in the case in which the two short modes are inside

the horizon. We will verify that the consistency condition also holds in this regime. We will do this at

leading order in slow roll parameters.

For the case in which the short modes are still inside the horizon, the proof at leading order in slow

roll parameters is very easy. In fact, contrary to what happens when we are interested in computing the

correlation function of modes at a time when they are outside the horizon, in this case the leading interaction

is of zeroth order in the slow roll parameters. Indeed, it is not true that the ζ cubic action starts at first order

in slow roll parameters (relative to the quadratic action). This is so only up to terms that can be removed

by a field redefinition and that can therefore be evaluated at the final time. For modes that are outside of

the horizon at the time of evaluation, these vanish. For modes that are not yet outside of the horizon, they

do not, and they therefore represent the leading contribution in the slow roll expansion.

Following [22], the term we are discussing comes from the field redefinition:

ζ = ζn +
ζζ̇

H
+ . . . , (4.110)

where . . . represent terms suppressed by slow roll parameters. The variable ζn has a cubic action that is

suppressed by slow roll parameters, and so negligible. At this point computing the three-point function is

very straightforward. In the limit in which the long mode k3 is much longer than the horizon k3/a(η)� H
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and k3 � k2 ' k1, we have

〈ζk1(η)ζk2(η)ζk3(η)〉 ' (2π)3δ(3)(~k1 + ~k2 + ~k3)
1

H
〈ζ̇k1ζk1 + ζk1 ζ̇k1〉′ 〈ζ2

k3〉
′ (4.111)

= (2π)3δ(3)(~k1 + ~k2 + ~k3)
1

H
∂t〈ζ2

k1〉
′ 〈ζ2

k3〉
′ , k1 � k3 ,

where the 〈〉′ symbol stays for the fact that we have removed the delta function from the expectation value.

Using the wavefunction of the modes at leading order in slow roll parameters

ζclk (η) =
H

2
√
εMPl

1

k3/2
(1− ikη) eikη , (4.112)

where ε is the slow roll parameter ε = −Ḣ/H2, we obtain

〈ζk1(η)ζk2(η)ζk3(η)〉 ' − H4

8M4
Plε

2
· η2

k1k3
3

. (4.113)

In order to satisfy the consistency condition, the above result should be equal to

〈ζk1(η)ζk2(η)ζk3(η)〉 ' −(2π)3δ(3)(~k1 + ~k2 + ~k3)
∂
[
k3

1〈ζ2
k1
〉′
]

∂ log k1
〈ζ2
k1〉
′〈ζ2

k3〉
′ . (4.114)

Notice that since the short modes are still inside the horizon, their power spectrum is not yet scale invariant,

so ∂
[
k3

1〈ζ2
k1
〉′
]
/∂ log k1 is not slow-roll suppressed. Upon substitution of (4.112), this is indeed equal to

(4.113), verifying the consistency condition for modes inside the horizon.

4.8.1 Consistency condition for operators with spatial derivatives

Let us now consider the three-point function in the same regime of momenta as above for a derivative

operator of the form 〈
1

a(η)2
∂iζk1(η)∂iζk2(η)ζk3(η)

〉
. (4.115)

Since when we compute the three-point function we simply evolve the operators and not their spatial deriva-

tives, the result can be trivially obtained from the one above in eq. (4.113) to be

〈
1

a(η)2
(∂iζ)k1 (η) (∂iζ)k2 (η)ζk3(η)

〉
' (2π)3δ(3)(~k1 + ~k2 + ~k3)

k2
1

a(η)2

1

H
∂t〈ζ2

k1〉
′ 〈ζ2

k3〉
′

= − H6

8M4
Plε

2
· η

4 k1

k3
3

, k1 � k3 . (4.116)
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This operator does not satisfy the consistency condition, that reads

〈
1

a(η)2
(∂iζ)k1 (η) (∂iζ)k2 (η)ζk3(η)

〉
' −(2π)3δ(3)(~k1 + ~k2 + ~k3)

1

a(η)2

∂
[
k5

1〈ζ2
k1
〉′
]

∂ log k1
〈ζ2
k1〉
′〈ζ2

k3〉
′

= − H6

8M4
Plε

2

η2
(
1 + η2k2

1

)
k1k3

3

. (4.117)

The reason for this mismatch is that in the consistency condition we are rescaling all the momenta, including

the ones representing the external derivatives.

An operator that instead satisfies the consistency condition (4.117) is one in which the derivatives go

together with factors of e−ζk3 . In the squeezed limit we have

〈
1

a(η)2e2ζk3 (~x,η)
(∂iζ)k1 (η) (∂iζ)k2 (η)ζk3(η)

〉
= (4.118)〈

1

a(η)2
(∂iζ)k1 (η)(∂iζ)−k1(η)ζk3'0(η)

〉
− 2

〈
1

a(η)2
(∂iζ)k1 (η) (∂iζ)−k1 (η)ζk3'0(η)ζ−k3'0(η)

〉
,

as it can be readily verified.

We see that the consistency condition is satisfied by considering the sum of the operator we considered

initially (∂iζ)k1 (∂iζ)k2 ζk3 plus a contact quartic operator of the form −2 (∂iζ)k1 (∂iζ)k2 ζk3
2. As we argued

in the main text, this additional contact operator comes automatically in the quartic Lagrangian, its presence

being indeed guaranteed by the residual diff. invariance that we have in ζ gauge. The factor of 2 apparent

mismatch in the contact operator we insert in (4.118) and the one we identify in the quartic Lagrangian

in (4.55) takes into account the combinatorial factor that we have when we contract the operator with the

external wavefunctions. This is the kind of combination of operators we consider in sec. 4.4 when we use the

consistency condition to show that some combination of diagrams do not lead to time dependence in the ζ

correlators.

4.8.2 Consistency condition for operators with time derivatives

Here we want to show that time derivatives of operators, even when inside the horizon, will obey the

consistency condition, when correlated with a long wavelength mode. In particular, we want to study a

correlation function of the form 〈ζ̇k1(η)ζ̇k2(η)ζk3(η)〉 in the regime k3 � k1 ≈ k2, and the long mode has

exited the horizon.

As discussed in Sec. 4.4.3, there is a contribution from contact terms that is essential for the consistency

condition to be satisfied. For operators that involved spatial derivatives, we had to borrow terms from the

quartic Hamiltonian. Here, we have a very similar situation. For operators with time derivatives, these
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operators came naturally from H4,3, i.e., the quartic Hamiltonian induced by the cubic Lagrangian. A more

rigorous parallel between these cases is made at the end of this subsection.

We will study an example in the Effective Field Theory of inflation where the speed of sound deviates

from the speed of light, and the other background quantities, like H and Ḣ, are assumed to be constant,

for effects of computing the tilt of the spectrum. The action was written in (4.66) but let us write it before

taking the decoupling limit:

S =

∫
d4x
√
−g
[
ḢM2

Plg
00 +M4(t)(δg00)2

]
. (4.119)

Let us further assume that M4(t) has a linear dependence in time and we will concentrate only on the

effects that are proportional to ∂t(M
4). That is, we imagine that M4(t) varies on time scales that are slow

with respect to H−1, but fast with respect to εH−1. Using the Stueckelberg procedure to recover gauge

invariance, we perform a diffeomorphism t → t + π and consider the limit where the longitudinal mode

decouples from the graviton. The action, up to cubic order, reads:

S =

∫
dtd3xa3

{
−ḢM2

Pl

c2s

[
π̇2 − c2s

(
∂iπ

a

)2
]

+ 4∂t(M
4(t))ππ̇2 + 4M4(t)π̇3 − 4M4(t)π̇

(
∂iπ

a

)2
}

.

(4.120)

The speed of sound breaks the equivalent footing of time and space derivatives in the quadratic term, and

is given by

c2s =
−ḢM2

Pl

4M4(t)− ḢM2
Pl

. (4.121)

To write 〈ζ̇k1 ζ̇k2ζk3〉 we first compute 〈π̇k1 π̇k2πk3〉. In order to do it, we need the following operator

equation, in Heisemberg picture:

π̇(t) = ∂t(U
†
int(t,−∞+πI(t)Uint(t,−∞+)) =

iU†int(t,−∞+)[Hint(t), πI(t)]Uint(t,−∞+) + U†int(t,−∞+)π̇I(t)Uint(t,−∞+) . (4.122)

The quantum field π can be written as πk(η) = a−kπ
cl(k, η) + a†kπ

cl(k, η)∗, with the classical wavefunction

given by:

πcl(k, η) = − i

2
√
εcsk3MPl

(1− icskη)eicskη . (4.123)
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Then the three point function 〈π̇k1(η)π̇k2(η)πk3(η)〉 is given by:

〈π̇k1(η)π̇k2(η)πk3(η)〉 = i

∫ η

−∞+

dτ〈[H3(τ), π̇k1(η)π̇k2(η)πk3(η)]〉+

+ i〈[H3(η), πk1(η)]π̇k2(η)πk3(η)〉+ i〈π̇k1(η)[H3(η), πk2(η)]πk3(η)〉 . (4.124)

The first term in the right hand side is the usual in-in expression, and the terms in the second line are the

extra contact terms that come from using (4.122). A straightforward computation of the three terms yields,

in the squeezed limit:

i

∫ η

−∞+

dτ〈[H3(τ), π̇k1(η)π̇k2(η)πk3(η)]〉 = (2π)3δ(3)
(∑

ki

) 1

8

c4s∂t(M
4(t))

M6
Plε

3

(k1η)4

k3
1k

3
3

,

i〈[H3(η), πk1(η)]π̇k2(η)πk3(η)〉 = (4.125)

= i〈π̇k1(η)[H3(η), πk2(η)]πk3(η)〉 = −(2π)3δ(3)
(∑

ki

) 1

4

c4s∂t(M
4(t))

M6
Plε

3

(k1η)4

k3
1k

3
3

.

So adding these terms will give us 〈π̇k1(η)π̇k2(η)πk3(η)〉. Now, we are interested in 〈ζ̇k1(η)ζ̇k2(η)ζk3(η)〉. But

the ζ and π fields are related through ζ = −Hπ +Hπ̇π [31]16, so we can write our desired correlator:

〈ζ̇k1(η)ζ̇k2(η)ζk3(η)〉 = (4.126)

(2π)3δ(3) (k1 + k2 + k3)

[
3

8

c4s∂t(M
4(t))H3

M6
Plε

3

(k1η)4

k3
1k

3
3

+
1

H

∂〈ζ̇2
k1
〉′

∂t
〈ζ2
k3〉
′

]

= −(2π)3δ(3) (k1 + k2 + k3)
c3sH

4

4εM2
Pl

4
(k1η)4

k3
1

〈ζ2
k3〉
′ =

= −(2π)3δ(3) (k1 + k2 + k3)
1

k3
1

d

d log k1

(
k3

1〈ζ̇2
k1〉
′
)
〈ζ2
k3〉
′ , k3 � k1 ≈ k2 ,

where we have used that

〈ζk1(η)ζk2(η)〉 = (2π)3δ(3)(k1 + k2)
H2(1 + c2sk

2
1η

2)

4csεM2
Plk

3
1

, (4.127)

〈ζ̇k1(η)ζ̇k2(η)〉 = (2π)3δ(3)(k1 + k2)
c3sH

4(k1η)4

4εM2
Pl k

3
1

.

Notice that the effect of the field redefinition is to remove the time derivatives associated to terms that do

not depend explicitly on kη, such as cs, so that the consistency condition works. This concludes our check

of the consistency condition for modes inside the horizon, with time derivative operators.

As a last remark, we now discuss the relation between the contact terms that contributed to 〈π̇π̇π〉, and

16There are additional quadratic corrections to this expression, but they will give corrections to the three point function that
are subleading when at least one of the modes is outside of the horizon or that are slow roll suppressed.
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the contact terms arising from the quartic Hamiltonian H4,3, which is discussed in the main text. They are

playing the exact same role: accounting for the action of the time derivative on Uint. The results of this

subsection can be cast in a form that makes this connection more manifest. We use here the notation “S,

L” for short and long modes.

In the main text, we are computing a three point function of the following schematic form:

∑
a

∫ η

dη′
〈(

δL3

δDaζa

)
S

(η′)ζL(η)

〉
DaGζ(η′, η) ∼

∫ η

dη′
〈
i[HS,S,L,L

4,3 (η′), ζL(η)]ζL(η)
〉

+ . . . , (4.128)

where . . . are contributions to the one-loop two point function coming from other diagrams. Now, we can

recast the three point function 〈π̇π̇π〉 as:

〈π̇S(η)π̇S(η)πL(η)〉 =

〈(
δLππ̇

2

3

δπ̇

)
S

(η) πL(η)

〉
, (4.129)

and the contact term as:

i〈[H3(η), πS(η)]π̇S(η)πL(η)〉 ∼ −

〈(
δL3

δP

)
S,L

(η)

(
δLππ̇

2

3

δπ̇

)
S,L

(η)

〉
. (4.130)

So we see that if the three point function involved the full Lagrangian, the contact term would be proportional

to the squeezed quartic Hamiltonian, 〈HS,S,L,L
4,3 〉. As the one loop diagram involves a commutator instead of

a tree level four point function, we need to insert the Green’s function on the left hand side of (4.128), thus

seeing how both three point functions are affected by contact terms coming from H4,3.

4.9 Appendix B: Local Anisotropic Universe

We aim here to provide the change of coordinates that locally takes us from the metric written in standard

ζ gauge to a form that is locally of the form of (4.101). We need to work only at linear order in the long

wavelength fluctuations ζL, because in the loop we integrate over the short wavelength fluctuations ζS . We

start from the metric in ADM parametrization

ds2 = −N2dt2 +
∑
ij

δija(t)2e2ζ
(
dxi +N idt

) (
dxj +N jdt

)
, (4.131)

where in this appendix we suspend the convention of summing over repeated indices. We can perform the

following change of coordinates

xi = eβij(t)x̃j + Ci(t) , (4.132)

115



without introducing perturbations in the field that is driving inflation. Since we can work at linear order in

the long modes, we can use rotational invariance to consider a long mode with wavenumber only along the

ẑ direction,

ζL(~x, t) = Re
[
ζ̃0(t) eikz

]
, Re

[
ζ̃0

]
= ζ0 . (4.133)

It will be enough to take βij = β(t)δi3δj3. The only subtle point in this change of variables is that at linear

order in the long modes, we have

~NL =

{
0, 0,Re

[
i
Ḣ

H2

1

k
˙̃
ζ0 e

ik eβ z̃

]}
+O(k2ζ̃0) , (4.134)

which does not have a nice behavior for k → 0. We need therefore to enforce that our change of coordinates

not only fixes to zero N i at one point, say the origin, N i
0 = 0, but also it must set to zero ∂iN

j at the origin,

(∂iN
j)0 = 0. This will guarantee that neglected terms are suppressed in the limit k → 0.

Simple algebra shows that the solution is

~C =

∫
dt

{
0, 0,

Ḣ

H2

1

k
Im
[

˙̃
ζ0

]}
, (4.135)

β =

∫
dt

Ḣ

H2
ζ̇0 . (4.136)

The metric then takes the form of (4.101), with, in the new coordinates

Ñ i
0 = 0 ,

(
∂jÑ

i
)

0
= 0 , ζ̃(~̃x, t) = ζ

(
~x(~̃x, t), t

)
+

2

3

∫ t

dt
Ḣ

H2
ζ̇0(t) . (4.137)

Notice that the short mode fluctuations ζS transform as a scalar under this change of coordinates

ζ̃S(~̃x, t) = ζS

(
~x(~̃x, t), t

)
. (4.138)

The same procedure can be clearly performed at non-linear level in ζL using a generic matrix βij , but this

is not necessary for a one-loop calculation.
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Chapter 5

Entanglement entropy in de Sitter

space

5.1 Introduction

Entanglement entropy is a useful tool to characterize states with long range quantum order in condensed

matter physics (see [108, 109] and references therein). It is also useful in quantum field theory to characterize

the nature of the long range correlations that we have in the vacuum (see e.g. [110, 111, 112] and references

therein).

We study the entanglement entropy for quantum field theories in de Sitter space. We choose the standard

vacuum state [13, 12, 14] (the Euclidean, Hartle-Hawking/Bunch-Davies/Chernikov-Tagirov vacuum). We

do not include dynamical gravity. In particular, the entropy we compute should not be confused with the

gravitational de Sitter entropy.

Our motivation is to quantify the degree of superhorizon correlations that are generated by the cosmo-

logical expansion.

We consider a spherical surface that divides the spatial slice into the interior and exterior. We compute

the entanglement entropy by tracing over the exterior. We take the size of this sphere, R, to be much bigger

than the de Sitter radius, R� RdS = H−1, where H is Hubble’s constant. Of course, for R� RdS we expect

the same result as in flat space. If R = RdS , then we would have the usual thermal density matrix in the

static patch and its associated entropy1. As usual, the entanglement entropy has a UV divergent contribution

which we ignore, since it comes from local physics. For very large spheres, and in four dimensions, the finite

1This can be regarded as a (UV divergent) O(G0
N ) correction to the gravitational entropy of de Sitter space [113].
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piece has a term that goes like the area of the sphere and one that goes like the logarithm of the area. We

focus on the coefficient of the logarithmic piece. In odd spacetime dimensions there are finite terms that go

like positive powers of the area and a constant term. We then focus on the constant term.

We first calculate the entanglement entropy for a free massive scalar field. To determine it, one needs to

find the density matrix from tracing out the degrees of freedom outside of the surface. When the spherical

surface is taken all the way to the boundary of de Sitter space the problem develops an SO(1, 3) symmetry.

This symmetry is very helpful for computing the density matrix and the associated entropy. Since we have

the density matrix, it is also easy to compute the Rényi entropies.

We then study the entanglement entropy of field theories with a gravity dual. When the dual is known,

we use the proposal of [114, 115] to calculate the entropy. It boils down to an extremal area problem. The

answer for the entanglement entropy depends drastically on the properties of the gravity dual. In particular,

if the gravity dual has a hyperbolic Friedman-Robertson-Walker spacetime inside, then there is a non-zero

contribution at order N2 for the “interesting” piece of the entanglement entropy. Otherwise, the order N2

contribution vanishes.

This provides some further hints that the FRW region is indeed somehow contained in the field theory

in de Sitter space [116]. More precisely, it should be contained in the superhorizon correlations of colored

fields2.

The chapter is organized as follows. In section 2, we discuss general features of entanglement entropy in

de Sitter. In section 3, we consider a free scalar field and compute its entanglement entropy. In section 4, we

write holographic duals of field theories in de Sitter, and compute the entropy of spherical surfaces in these

theories. We end with a discussion. Some more technical details are presented in the appendices.

5.2 General features of entanglement entropy in de Sitter

Entanglement entropy is defined as follows [113]. At some given time slice, we consider a closed surface

Σ which separates the slice into a region inside the surface and a region outside. In a local quantum field

theory we expect to have an approximate decomposition of the Hilbert space into H = Hin × Hout where

Hin contains modes localized inside the surface and Hout modes localized outside. One can then define a

density matrix ρin = TrHout |ψ〉〈ψ| obtained by tracing over the outside Hilbert space. The entanglement

2A holographic calculation of the entanglement entropy associated to a quantum quench is presented in [117]. A quantum
quench is the sudden perturbation of a pure state. The subsequent relaxation back to equilibrium can be understood in terms
of the entanglement entropy of the quenched region. There, one has a contribution to the (time dependent) entropy coming
from the region behind the horizon of the holographic dual.
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entropy is the von Neumann entropy obtained from this density matrix:

S = −Trρin log ρin (5.1)

5.2.1 Four dimensions

We consider de Sitter space in the flat slicing

ds2 =
1

(Hη)2
(−dη2 + dx2

1 + dx2
2 + dx2

3) (5.2)

where H is the Hubble scale and η is conformal time. We consider surfaces that sit at constant η slices. We

consider a free, minimally coupled, scalar field of mass m in the usual vacuum state [13, 12, 14].

As in any quantum field theory, the entanglement entropy is UV divergent

S = SUV−divergent + SUV−finite (5.3)

The UV divergencies are due to local effects and have the the form

SUV−divergent = c1
A

ε2
+ log(εH)(c2 + c3Am

2 + c4AH
2) (5.4)

where ε is the UV cutoff. The first term is the well known area contribution to the entropy [110, 111],

coming from entanglement of particles close to the surface considered. The logarithmic terms involving c2

and c3 also arise in flat space. Finally, the last term involves the curvature of the bulk space3. All these UV

divergent terms arise from local effects and their coefficients are the same as what we would have obtained

in flat space. We have included H as a scale inside the logarithm. This is just an arbitrary definition, we

could also have used m [118], when m is non-zero.

Our focus is on the UV finite terms that contain information about the long range correlations of the

quantum state in de Sitter space. The entropy is invariant under the isometries of dS. This is true for both

pieces in (5.3). In addition, we expect that the long distance part of the state becomes time independent.

More precisely, the long range entanglement was established when these distances were subhorizon size. Once

3In de Sitter there is only one curvature scale, but in general we could write terms as

Slog εH =

∫
Σ

(
aRµνρσn

µ
i n

ρ
i n
ν
j n
σ
j + bRµνn

µ
i n

ν
i + cR+ dKµν

i Kiµν + eKµ
iµK

ν
iν + · · ·

)
(5.5)

where K are the extrinsic curvatures and i, j label the two normal directions and µ, ν, · · · are spacetime indices The extrinsic
curvatures also contribute to c2 in (5.4). One could also write a term that depends on the intrinsic curvature of the surface,
RΣ, but the Gauss-Codazzi relations can be used to relate it to the other terms in (5.5).
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they moved outside the horizon we do not expect to be able to modify this entanglement by subsequent

evolution. Thus, we expect that the long range part of the entanglement entropy should be constant as we

go to late times. So, if we fix a surface in comoving x coordinates in (5.2), and we keep this surface fixed

as we move to late times, η → 0, then we naively expect that the entanglement should be constant. This

expectation is not quite right because new modes are coming in at late times. However, all these modes only

give rise to entanglement at short distances in comoving coordinates. The effects of this entanglement could

be written in a local fashion.

In conclusion, we expect that the UV-finite piece of the entropy is given by

SUV−Finite = c5AH
2 +

c6
2

log(AH2) + finite = c5
Ac
η2

+ c6 log η + finite (5.6)

where A is the proper area of the surface and Ac is the area in comoving coordinates (A = Ac
H2η2 ). The finite

piece is a bit ambiguous due to the presence of the logarithmic term.

The coefficient of the logarithmic term, c6, contains information about the long range entanglement of

the state. This term looks similar to the UV divergent logarithmic term in (5.4), but they should not be

confused with each other. If we had a conformal field theory in de Sitter they would be equal. However, in

a non-conformal theory they are not equal (c6 6= c2). For general surfaces, the coefficient of the logarithm

will depend on two combinations of the extrinsic curvature of the surface in comoving coordinates. For

simplicity we consider a sphere here4. This general form of the entropy, (5.6), will be confirmed by our

explicit computations below.

We define the “interesting” part of the entropy to be the coefficient of the logarithm, Sintr ≡ c6. The UV -

finite area term, with coefficient c5, though physically interesting, is not easily calculable with our method. It

receives contributions from the entanglement at distances of a few Hubble radii from the entangling surface.

It would be nice to find a way to isolate this contribution and compute c5 exactly. We could only do that in

the case where the theory has a gravity dual.

5.2.2 Three dimensions

For three dimensional de Sitter space we can have a similar discussion.

S = d1
A

ε
+ SUV−finite

SUV−finite = d2AH + d3 = d2
Ac
η

+ d3

(5.7)

4It is enough to do the computation for another surface, say a cylinder, to determine the second coefficient and have a result
that is valid for general surfaces [119]. In other words, for a general surface we have c6 = f1

∫
KabKab + f2

∫
(Kaa)2 where

f1, f2 are some constants and Kab is the extrinsic curvature of the surface within the spatial slice.
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Here there is no logarithmic term. The interesting term is d3 which is the finite piece. So we define Sintr ≡ d3.

A similar discussion exists in all other dimensions. For even spacetime dimensions the interesting term

is the logarithmic one and for odd dimensions it is the constant. One can isolate these interesting terms by

taking appropriate derivatives with respect to the physical area, as done in [120] in a similar context5.

Note that we are considering quantum fields in a fixed spacetime. We have no gravity. And we are

making no contact with the gravitational de Sitter entropy which is the area of the horizon in Planck units.

5.3 Entanglement entropy for a free massive scalar field in de

Sitter

Here we compute the entropy of a free massive scalar field for a spherical entangling surface.

5.3.1 Setup of the problem

Consider, in flat coordinates, a spherical surface S2 defined by x2
1 + x2

2 + x2
3 = R2

c . We consider Rc � η.

This means that the surface is much bigger than the horizon.

Figure 5.1: Setup of the problem: (a) We consider a sphere with radius much greater than the horizon size,
at late conformal time η, in flat slices. (b) This problem can be mapped to half of a 3-sphere S3, also with
boundary S2, but now the equator, at late global time τB . (c) We can also describe this problem using
hyperbolic slices. The interior of the sphere maps to the “left” (L) hyperbolic slice. The Penrose diagrams
for all situations are depicted below the geometric sketches.

If we could neglect the η dependent terms, we can take the limit η → 0, keeping Rc fixed. This then

becomes a surface on the boundary. This surface is left invariant by an SO(1, 3) subgroup of the SO(1, 4)

de Sitter isometry group. We expect that the coefficient of the logarithmic term that we discussed above is

5See formula (1.1) of [120].

121



also invariant under this group. It is therefore convenient to choose a coordinate system where SO(1, 3) is

realized more manifestly. This is done in two steps. First we can consider de Sitter in global coordinates,

where the equal time slices are three-spheres. Then we can choose the entangling surface to be the two-sphere

equator of the three-sphere. In fact, at η = 0, we can certainly map any two sphere on the boundary of de

Sitter to the equator of S3 by a de Sitter isometry. Finally, to regularize this problem we can then move

back the two sphere to a very late fixed global time surface.

We can then choose a coordinate system where the SO(1,3) symmetry is realized geometrically in a simple

way. Namely, this SO(1,3) is the symmetry group acting on hyperbolic slices in some coordinate system that

we describe below.

5.3.2 Wavefunctions of free fields in hyperbolic slices and the Euclidean vacuum

The hyperbolic/open slicing of de Sitter space was studied in detail in [121, 122]. It can be obtained by

analytic continuation of the sphere S4 metric, sliced by S3s. The S4 is described in embedding coordinates

by X2
1 + ...+X2

5 = H−2. The coordinates are parametrized by angles in the following way:

X5 = H−1 cos τE cos ρE , X4 = H−1 sin τE , X1,2,3 = H−1 cos τE sin ρEn1,2,3 (5.8)

where ni are the components of a unit vector in R3. The metric in Euclidean signature is given by:

ds2
E = H−2(dτ2

E + cos2 τE(dρ2
E + sin2 ρE dΩ2

2)) (5.9)

We analytically continue X5 → iX0. Then the Lorentzian manifold is divided in three parts, related to the

Euclidean coordinates by:

R :


τE = π

2 − itR tR ≥ 0

ρE = −irR rR ≥ 0

C :


τE = τC −π/2 ≤ tC ≤ π/2

ρE = π
2 − irC −∞ < rC <∞

L :


τE = −π2 + itL tL ≥ 0

ρE = −irL rL ≥ 0

(5.10)
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The metric in each region is given by:

ds2
R = H−2(−dt2R + sinh2 tR(dr2

R + sinh2 rRdΩ2
2))

ds2
C = H−2(dt2C + cos2 tC(−dr2

C + cosh2 rCdΩ2
2))

ds2
L = H−2(−dt2L + sinh2 tL(dr2

L + sinh2 rLdΩ2
2))

(5.11)

We now consider a minimally coupled6 massive scalar field in dS4, with action given by S = 1
2

∫ √
−g(−(∇φ)2−

m2φ2). The equations of motion for the mode functions in the R or L regions are

[
1

sinh3 t

∂

∂t
sinh3 t

∂

∂t
− 1

sinh2 t
L2
H3 +

9

4
− ν2

]
u(t, r,Ω) = 0 (5.12)

Where L2
H3 is the Laplacian in the unit hyperboloid, and the parameter ν is

ν =

√
9

4
− m2

H2
(5.13)

When ν = 1
2 (or m2

H2 = 2) we have a conformally coupled massless scalar. In this case we should recover

the flat space answer for the entanglement entropy, since de Sitter is conformally flat. We will consider

first situations where m2

H2 ≥ 2, so that 0 ≤ ν ≤ 1/2 or ν imaginary. The minimally coupled massless case

corresponds to ν = 3/2. We will later comment on the low mass region, m2

H2 < 2 or 1/2 < ν ≤ 3/2.

The wavefunctions are labeled by quantum numbers corresponding to the Casimir on H3 and angular

momentum on S2:

uplm ∼
H

sinh t
χp(t)Yplm(r,Ω2) , − LH3Yplm = (1 + p2)Yplm (5.14)

The Yplm are eigenfunctions on the hyperboloid, analogous to the standard spherical harmonics. Their

expressions can be found in [122].

The time dependence (other than the 1/ sinh t factor) is contained in the functions χp(t). The equation

of motion (5.12) is a Legendre equation and the solutions are given in terms of Legendre functions P ba(x).

In order to pick the “positive frequency” wavefunctions corresponding to the Euclidean vacuum we need to

demand that they are analytic when they are continued to the lower hemisphere. These wavefunctions have

6If we had a coupling to the scalar curvature ξRφ2, we can simply shift the mass m2
eff = m2 + 6ξH2 and consider the

minimally coupled one.
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support on both the Left and Right regions. This gives [122]

χp,σ =


1

2 sinhπp

(
eπp − iσe−iπν

Γ(ν + ip+ 1/2)
P ipν−1/2(cosh tR)− e−πp − iσe−iπν

Γ(ν − ip+ 1/2)
P−ipν−1/2(cosh tR)

)
σ

2 sinhπp

(
eπp − iσe−iπν

Γ(ν + ip+ 1/2)
P ipν−1/2(cosh tL)− e−πp − iσe−iπν

Γ(ν − ip+ 1/2)
P−ipν−1/2(cosh tL)

) (5.15)

The index σ can take the values ±1. For each σ the top line gives the function on the R hyperboloid and

the bottom line gives the value of the function on the L hyperboloid. There are two solutions (two values of

σ) because we started from two hyperboloids.

The field operator is written in terms of these mode functions as

φ̂(x) =

∫
dp
∑
σ,l,m

(aσplmuσplm(x) + a†σplmuσplm(x)) (5.16)

To trace out the degrees of freedom in, say, the R space, we change basis to functions that have support

on either the R or L regions. It does not matter which functions we choose to describe the Hilbert space.

The crucial simplification of this coordinate system is that the entangling surface, when taken to the de

Sitter boundary, preserves all the isometries of the H3 slices. This implies that the entanglement is diagonal

in the p, l,m indices since these are all eigenvalues of some symmetry generator. Thus, to compute this

entanglement we only need to look at the analytic properties of (5.15) for each value of p.

Let us first consider the case that ν is real. For the R region we take basis functions equal to the

Legendre functions P ipν−1/2(cosh tR) and P−ipν−1/2(cosh tR), and zero in the L region. These are the positive

and negative frequency wavefunctions in the R region. We do the same in the L region. These should be

properly normalized with respect to the Klein-Gordon norm, which would yield a normalization factor Np.

We can write the original mode functions, (5.15), in terms of these new ones in matricial form:


χσ = N−1

p

∑
q=R,L(ασqP

q + βσq P
q
)

χσ = N−1
p

∑
q=R,L(β

σ

qP
q + ασq P̄

q)

⇒ χI = M I
JP

JN−1
p

σ = ±1, PR,L ≡ P ipν−1/2(cosh tR,L), χI ≡

χσ
χσ


(5.17)

The capital indices (I, J) run from 1 to 4, as we are grouping both the χσ and χσ. The coefficients α and β

are simply the terms multiplying the corresponding P functions in (5.15), see appendix A for their explicit
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values. As the field operator should be the same under this change of basis, then it follows that:

φ = aIχ
I = bJP

JN−1
p ⇒ aJ = bI(M

−1)IJ

M =

α β

β α

 , M−1 =

γ δ

δ γ

⇒ aσ =
∑
q=R,L

γqσbq + δqσb
†
q

(5.18)

Here aI = (aσ, a
†
σ), bJ = (bL,R, b

†
L,R), and P J = (PL,R, P̄L,R). M is a 2× 2 matrix whose elements are 2× 2

matrices. The expression for M−1 is the definition of δ, γ, etc. The vacuum is defined so that aσ|Ψ〉 = 0.

We want to write |Ψ〉 in terms of the bR,L oscillators and the vacua associated to each of these oscillators,

bR|R〉 = 0 and bL|L〉 = 0. As we are dealing with free fields, their Gaussian structure suggests the ansatz

|Ψ〉 = e
1
2

∑
i,j=R,Lmijb

†
i b
†
j |R〉|L〉 (5.19)

and one can solve for mij demanding that aσ|Ψ〉 = 0. This gives

mijγjσ + δiσ = 0⇒ mij = −δiσ(γ−1)σj (5.20)

Using the expressions in (5.15) (see appendix A) we find for m:

mij = eiθ
√

2e−pπ√
cosh 2πp+ cos 2πν

 cosπν i sinh pπ

i sinh pπ cosπν

 (5.21)

Where θ is an unimportant phase factor, which can be absorbed in the definition of the b† oscillators. In

mij the normalization factors Np drop out, so they never need to be computed.

The expression (5.19), with (5.21), needs to be simplified more before we can easily trace out the R

degrees of freedom. We would like to introduce new oscillators cL and cR (and their adjoints) so that the

original state Ψ has the form

|Ψ〉 = eγc
†
Rc
†
L |R〉′|L〉′ (5.22)

where |R〉′|L〉′ are annihilated by cR, cL. The details on the transformation are in appendix A. Here we

state the result. The b’s and c’s are related by:

cR = ubR + vb†R

cL = ūbL + v̄b†L, |u|2 − |v|2 = 1

(5.23)
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Requiring that cR|Ψ〉 = γc†L|Ψ〉 and cL|Ψ〉 = γc†R|Ψ〉 imposes constraints on u and v. The system of equations

has a solution with γ given by

γ = i

√
2√

cosh 2πp+ cos 2πν +
√

cosh 2πp+ cos 2πν + 2
(5.24)

We have considered the case of 0 ≤ ν ≤ 1/2. For ν imaginary, (5.24) is analytic under the substitution

ν → iν, which corresponds to substituting cos 2πν → cosh 2πiν, so (5.24) is also valid for this range of

masses. One can check directly, by redoing all the steps in the above derivation, that the same final answer

is obtained if we had assumed that ν was purely imaginary.

5.3.3 The density matrix

The full vacuum state is the product of the vacuum state for each oscillator. Each oscillator is labelled by

p, l,m. For each oscillator we can write the vacuum state as in (5.22). Expanding (5.22) and tracing over

the right Hilbert space we get

ρp,l,m = TrHR(|Ψ〉〈Ψ|) ∝
∞∑
n=0

|γp|2|n; p, l,m〉〈n; p, l,m| (5.25)

So, for given quantum numbers, the density matrix is diagonal. It takes the form ρL(p) = (1−|γp|2)diag(1, |γp|2, |γp|4, · · · ),

normalized to TrρL = 1. The full density matrix is simply the product of the density matrix for each value

of p, l,m. This reflects the fact that there is no entanglement among states with different SO(1, 3) quantum

numbers. The density matrix for the conformally coupled case was computed before in [123].

Here, one can write the resulting density matrix as ρL = e−βHent with Hent called the entanglement

hamiltonian. Here it seems natural to choose β = 2π as the inverse temperature of dS. Because the density

matrix is diagonal, the entanglement Hamiltonian should be that of a gas of free particles, with the energy

of each excitation a function of the H3 Casimir and the mass of the scalar field. This does not appear to be

related to any ordinary dynamical Hamiltonian in de Sitter. In other words, take ρL ∝ diag(1, |γp|2, |γp|4, ...)

then the entanglement Hamiltonian for each particles is Hp = Epc
†
pcp, with Ep = − 1

2π log |γp|2. For the

conformally coupled scalar then Ep = p and we have the entropy of a free gas in H3. In other words, in the

conformal case the entanglement Hamiltonian coincides with the Hamiltonian of the field theory on R×H3

[124, 125].
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5.3.4 Computing the Entropy

With the density matrix (5.25) we can calculate the entropy associated to each particular set of SO(1, 3)

quantum numbers

S(p, ν) = −TrρL(p) log ρL(p) = − log(1− |γp|2)− |γp|2

1− |γp|2
log |γp|2 (5.26)

The final entropy is then computed by summing (5.26) over all the states. This sum translates into an

integral over p and a volume integral over the hyperboloid. In other words, we use the density of states on

the hyperboloid:

S(ν) = VH3

∫
dpD(p)S(p, ν) (5.27)

The density of states for radial functions on the hyperboloid is known for any dimensions [126]. For example,

for H3, D(p) = p2

2π2 . Here VH3 is the volume of the hyperboloid. This is of course infinite. This infinity is

arising because we are taking the entangling surface all the way to η = 0. We can regularize the volume

with a large radial cutoff in H3. This should roughly correspond to putting the entangling surface at a finite

time. Since we are only interested in the coefficient of the logarithm, the precise way we do the cutoff at

large volumes should not matter. The volume of a unit size H3 for radius less that rc is given by

VH3 = VS2

∫ rc

0

dr sinh2 r ∼ 4π

(
e2rc

8
− rc

2

)
(5.28)

The first term goes like the area of the entangling surface. The second one involves the logarithm of this

area. We can also identify rc → − log η. This can be understood more precisely as follows. If we fix a

large tL and we go to large rL, then we see from (5.8)(5.10) that the corresponding surface would be at an

η ∝ e−rL , for large rL. Thus, we can confidently extract the coefficient c6 in (5.6). For such purposes we can

define VH3,reg = 2π. The leading area term , proportional to e2rc depends on the details of the matching of

this IR cutoff to the proper UV cutoff. These details can change its coefficient. In appendix B, we compute

in detail the regularized volume of the hyperboloid in any dimension.

Thus, the final answer for the logarithmic term of the entanglement entropy is

S = c6 log η + other terms

Sintr ≡ c6 =
1

π

∫ ∞
0

dp p2S(p, ν)
(5.29)

with S(p, ν) given in (5.26), (5.24). This is plotted in figure 5.2.
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Figure 5.2: Plot of the entropy Sintr/Sintr,ν=1/2 of the free scalar field, normalized to the conformally coupled
scalar, versus its mass parameter squared. The minimally coupled massless case corresponds to ν2 = 9/4,
the conformally coupled scalar to ν2 = 1/4 and for large mass (negative ν2) the entropy has a decaying
exponential behavior.

5.3.5 Extension to general dimensions

These results can be easily extended to a real massive scalar field in any number of dimensions D. Again

we have hyperbolic HD−1 slices and the decomposition of the time dependent part of the wavefunctions is

identical, provided that we replace ν by the corresponding expression in D dimensions

ν2 =
(D − 1)2

4
− m2

H2
(5.30)

Then the whole computation is identical and we get exactly the same function S(p, ν) for each mode. The

final result involves integrating with the right density of states for hyperboloids in D − 1 dimensions which

is [126]

D2(p) =
p

2π
thπp, D3(p) =

p2

2π2

DD−1(p) =
p2 +

(
D−4

2

)2
2π(D − 3)

DD−3(p) =
2

(4π)
D−1

2 Γ(D−1
2 )

|Γ(ip+ D
2 − 1)|2

|Γ(ip)|2
,

− LHD−1Yp =

(
p2 +

(
D − 2

2

)2
)
Yp

(5.31)
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We also need to define the regularized volumes of hyperbolic space in D − 1 dimensions. They are related

to the volume of spheres

VHD−1,reg =


(−1)

D
2 VSD−1

π
Deven

(−1)
D−1

2 VSD−1

2
Dodd

, VSD−1 =
2π

D
2

Γ(D2 )
(5.32)

When D is even, we defined this regularized volume as minus the coefficient of log η. When D is odd, we

defined it to be the finite part after we extract the divergent terms. A derivation of these volume formulas

is given in appendix B. Then the final expression for any dimension is

Sintr = VHD−1,reg

∫ ∞
0

dpDD−1(p)S(p, ν) (5.33)

with the expressions in (5.32), (5.31), (5.26), (5.24), (5.30). We have defined Sreg as

S =Sintr log η + · · · for D even

S =Sintr + · · · for D odd

(5.34)

where the dots denote terms that are UV divergent or that go like powers of η for small η.

5.3.6 Rényi Entropies

We can also use the density matrix to compute the Rényi entropies, defined as:

Sq =
1

1− q
log Trρq, q > 0 (5.35)

We first calculate the Rényi entropy associated to each SO(1, 3) quantum number. It is given by:

Sq(p, ν) =
q

1− q
log(1− |γp|2)− 1

1− q
log(1− |γp|2q) (5.36)

Then, just like we did for the entanglement entropy (which corresponds to q → 1), one integrates (5.36) with

the density of states for D − 1 hyperboloids:

Sq,intr = VHD−1,reg

∫ ∞
0

dpDD−1(p)Sq(p, ν) (5.37)

With Sq,intr being the finite term in the entropy, for odd dimensions, and the term that multiplies log η, for

even dimensions.
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5.3.7 Negativity

A measure of the quantum entanglement between two regions is the so called negativity of a system[127, 128,

129]. It is defined as follows. Take the density matrix ρ = |Ψ〉〈Ψ| of a system (in our case, R ∪ L). Note

that no tracing is made to write ρ, so it is the density matrix of a pure state for the case we consider.

If we write a basis of states for the R and L spaces and denote them as Ri and Li, we define the transposed

matrix ρTL as follows:

〈RiLj |ρTL |RkLm〉 = 〈RiLm|ρ|RkLj〉 (5.38)

Then, the negativity is defined as E ≡ ln Tr|ρTL |, where Tr|ρTL | is the sum of the absolute value of the

eigenvalues of ρTL . For a pure state [127] , the negativity is equal to the q = 1/2 Rényi entropy from tracing

out the L states. So it follows that:

Eintr = VHD−1,reg

∫ ∞
0

dpDD−1(p)S1/2(p, ν) (5.39)

With Eintr being the finite term in the negativity, for odd dimensions, and the term that multiplies log η, for

even dimensions. S1/2(p, ν) is given by (5.36) with q = 1/2.

5.3.8 Consistency checks: conformally coupled scalar and large mass limit

As a consistency check of (5.27), we analyze the cases of the conformally coupled scalar, and of masses much

bigger than the Hubble scale.

Conformally coupled scalar

For the conformally coupled scalar in any dimensions we need to set the mass parameter to ν = 1/2.

The entropy should be the same as that of flat space. For a spherical entangling surface, the universal

term is ge log εUV /R for even dimensions, and is a finite number, go, for odd dimensions [124, 125]. The

only difference here is that we are following a surface of constant comoving area, so its radius is given by

R = Rc/(Hη). So, one sees that the term that goes like log η, in even dimensions, has the exact same origin

as the UV divergent one; in particular, we expect c6 = ge for the four dimensional case, and go is the finite

piece in the three dimensional case.

Four dimensions:

The entropy is given by (5.29)

Sintr =
1

π

∫ ∞
0

dp
p2

2π2
S

(
p,

1

2

)
=

1

90
(5.40)
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This indeed coincides with the coefficient of the logarithm in the flat space result [124].

Three dimensions:

The entropy is given by:

Sintr =VH2,reg

∫
d2p

(2π)2
thπpS

(
p,

1

2

)
= −

∫ ∞
0

pdp thπpS

(
p,

1

2

)
=

=
3ζ(3)

16π2
− log(2)

8

(5.41)

This corresponds to half the value computed in [130] , because there a complex scalar is considered, and also

matches to half the value of the Barnes functions in [125].

Conformally coupled scalar in other dimensions

For even dimensions, Sintr has been reported for dimensions up to d = 14 in [124], and for odd dimensions,

numerical values were reported up to d = 11 [125]. Using (5.33) we checked that the entropies agree for all

the results in [124, 125].

Large mass limit

Here we show the behavior of the entanglement entropy for very large mass, in three and four dimensions.

The eigenvalues of the density matrix as a function of the SO(1,3) Casimir are given in terms of (5.24). For

large mass, there are basically two regimes, 0 < p < |ν| and p > |ν|

|γp|2 =


e−2π|ν| 0 < p < |ν|

e−2πp |ν| < p

(5.42)

In this regime we can approximate |γ| � 1 everywhere and the entropy per mode is

S(p) ∼ −|γp|2 log |γp|2 (5.43)

Most of the contribution will come from the region p < |ν|, up to 1/ν corrections. This gives

Sintr

VHD−1,reg

∼
∫ ν

0

dpD(p)S(p) ∼ (2πνe−2πν)

∫ ν

0

dpD(p) =


ν3

2 e
−2πν d=3

ν4

3π e
−2πν d=4

(5.44)

which is accurate up to multiplicative factors of order (1 +O(1/ν)).
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5.3.9 Low mass range: 1/2 < ν ≤ 3/2

In this low mass range the expansion of the field involves an extra mode besides the ones we discussed so

far [122]. This is a mode with a special value of p. Namely p = i(ν − 1
2 ). This mode is necessary because all

the other modes, which have real p, have wavefunctions whose leading asymptotics vanish on the S2 equator

of the S3 future boundary. This mode has a different value for the Casimir (a different value of p) than all

other modes, so it cannot be entangled with them. So we think that this mode does not contribute to the

long range entanglement. It would be nice to verify this more explicitly.

Note that we can analytically continue the answer we obtained for ν ≤ 1/2 to larger values. We obtain

an answer which has no obvious problems, so we suspect that this is the right answer for the entanglement

entropy, even in this low mass range. The full result is plotted in Figure 5.2, and we find that for ν = 3/2,

which is the massless scalar, we get exactly the same result as for a conformally coupled scalar.

5.4 Entanglement entropy from gravity duals.

After studying free field theories in the previous section, we now consider strongly coupled field theories in

de Sitter. We consider theories that have a gravity dual. Gauge gravity duality in de Sitter was studied in

[131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145], and references there in. When a

field theory has a gravity dual, it was proposed in [114] that the entanglement entropy is proportional to

the area of a minimal surface that ends on the entangling surface at the AdS boundary. This formula has

passed many consistency checks. It is certainly valid in simple cases such as spherical entangling surfaces

[146]. Here we are considering a time dependent situation. It is then natural to use extremal surfaces but

now in the full time dependent geometry [115]. This extremality condition tells us how the surface moves in

the time direction as it goes into the bulk.

First, we study a CFT in de Sitter. This is a trivial case since de Sitter is conformally flat, so we can

go to a conformal frame that is not time dependent and obtain the answer [114, 147]. Nevertheless we

will describe it in some detail because it is useful as a stepping stone for the non-conformal case. We then

consider non-conformal field theories in some generality. We relegate to appendix C the discussion of a

special case corresponding to a non-conformal field theory in four dimensions that comes from compactifying

a five dimensional conformal field theory on a circle.
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Figure 5.3: The gravity dual of a CFT living on dS4. We slice AdS5 with dS4 slices. Inside the horizon we
have an FRW universe with H4 slices. The minimal surface is an H3 that lies on a constant global time
surface. The red line represents the radial direction of this H3, and the S2 shrinks smoothly at the tip.

5.4.1 Conformal field theories in de Sitter

As the field theory is defined in dS4, it is convenient to choose a dS4 slicing of AdS5. These slices cover only

part of the spacetime, see Figure 5.3. They cover the region outside the lightcone of a point in the bulk.

The interior region of this lightcone can be viewed as an FRW cosmology with hyperbolic spatial slices.

We then introduce the following coordinate systems:

1. Embedding coordinates:

− Y 2
−1 − Y 2

0 + Y 2
1 + ...+ Y 2

4 = −1

ds2 = −dY 2
−1 − dY 2

0 + dY 2
1 + ...+ dY 2

4

(5.45)

2. dS4 and FRW coordinates:

(a) dS slices:

Y−1 = cosh ρ, Y0 = sinh ρ sinh τ, Yi = sinh ρ cosh τni

ds2 = dρ2 + sinh2 ρ(−dτ2 + cosh2 τ(dα2 + cos2 αdΩ2))

(5.46)

(b) FRW slices. We substitute ρ = iσ and τ = −iπ2 + χ in (5.46).

Y−1 = cosσ, Y0 = sinσ coshχ, Yi = sinσ sinhχni

ds2 = −dσ2 + sin2 σ(dχ2 + sinh2 χ(dα2 + cos2 αdΩ2))

(5.47)
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3. Global coordinates

Y−1 = cosh ρg cos τg, Y0 = cosh ρg sin τg, Yi = sinh ρgni

ds2 = dρ2
g − cosh2 ρgdτ

2
g + sinh2 ρg(dα

2 + cos2 αdΩ2)

(5.48)

As the entangling surface we choose the S2 at α = 0, at a large time τB and at ρ = ∞. In terms of global

coordinates the surface lies at a constant τg, or at

Y0

Y−1
= sinh τB = tan τgB , Y4 = 0 (5.49)

Its area is

A = 4π

∫ ρgc

0

sinh2 ρgdρg ∼ 4π

(
e2ρgc

8
− ρgc

2

)
(5.50)

where ρgc is the cutoff in the global coordinates. It is convenient to express this in terms of the radial

coordinate in the dS slicing using sinh ρg = sinh ρ cosh τ . In the large ρgc, ρc, τB limit we find ρgc ≈

ρc + τB − log 2. Then (5.50) becomes

A ∼ 4π

(
e2ρc+2τB

16
− 1

2
(ρc + τB)

)
∼ 4π

(
1

16(η εUV )2
+

1

2
(log εUV + log η )

)
(5.51)

We see that the coefficients of the two logarithmic terms are the same, as is expected in any CFT. Here

εUV = e−ρc is the cutoff in the de Sitter frame and η ∼ e−τB is de Sitter conformal time.

5.4.2 Non-conformal theories

A simple way to get a non-conformal theory is to add a relevant perturbation to a conformal field theory.

Let us first discuss the possible Euclidean geometries. Thus we consider theories on a sphere. In the interior

we obtain a spherically symmetric metric and profile for the scalar field of the form

ds2 = dρ2 + a2(ρ)dΩ2
D , φ = φ(ρ) (5.52)

Some examples were discussed in [148, 133, 149] 7. If the mass scale of the relevant perturbation is small

compared to the inverse size of the sphere, the dual geometry will be a small deformation of Euclidean

AdSD+1. Then we find that, at the origin, a = ρ+O(ρ3), and the sphere shrinks smoothly. In this case we

will say that we have the “ungapped” phase. For very large ρ we expect that log a ∝ ρ, if we have a CFT as

7We are interpreting the solutions of [149] as explained in appendix A of [116]. This geometry also appears in decays of AdS
space [150, 149].
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the UV fixed point description.

ρ2

a2

Crunch                                Horizon

Saddle

Point

FRW dS

-ãm
2

Figure 5.4: The typical shape for the scale factor for the gravity dual of a CFT perturbed by a relevant
operator in the “ungapped” phase. The region with negative ρ2 corresponds to the FRW region. In that
region, we see that ã2 = −a2 reaches a maximum value, ãm, and then contracts again into a big crunch.

On the other hand, if the mass scale of the relevant perturbation is large compared to the inverse size

of the sphere then the boundary sphere does not have to shrink when we go to the interior. For example,

the space can end before we get to a = 0. This can happen in multiple ways. We could have an end of the

world brane at a non-zero value of a. Or some extra dimension could shrink to zero at this position. This

typically happens for the holographic duals of theories with a mass gap, especially if the mass gap is much

bigger than H. We call this the “gapped” phase. See [135, 137, 138, 140, 145, 151, 152] for some examples.

In principle, the same field theory could display both phases as we vary the mass parameter of the relevant

perturbation. Then, there is a large N phase transition between the two regimes8.

As we go to lorentzian signature, the ungapped case leads to a horizon, located at ρ = 0. The metric

is smooth if a = ρ + O(ρ3). The region behind this horizon is obtained by setting ρ = iσ in (5.52) and

dΩ2
D → −ds2

HD
. This region looks like a Friedman-Robertson-Walker cosmology with hyperbolic spatial

sections.

ds2 = −dσ2 + (ã(σ))2ds2
HD , ã(σ) ≡ −ia(iρ) (5.53)

If the scalar field is non-zero at ρ = 0 we typically find that a singularity develops at a non-zero value of σ,

with the scale factor growing from zero at σ = 0 and then decreasing again at the big crunch singularity.

The scale factor then achieves a maximum somewhere in between, say at σm. See Figure 5.4.

8Since we are at finite volume we might not have a true phase transition. In de Sitter, thermal effects will mix the two
phases. We will nevertheless restrict our attention to one of these phases at a time.
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We can choose global coordinates for dSD

dsdSD = −dτ2 + cosh2 τ(cos2 αdΩD−2 + dα2) (5.54)

We pick the entangling surface to be the SD−2 at α = 0 and some late time τB . We assume that the surface

stays at α = 0 as it goes into the bulk. In that case we simply need to find how τ varies as a function of ρ

as we go into the interior. We need to minimize the following action

S =
VSD−2

4GN

∫
(a cosh τ)D−2

√
dρ2 − a2dτ2 (5.55)

The equations of motion simplify if we assume τ is very large and we can approximate cosh τ ∼ 1
2e
τ . In

that case the equations of motion give a first order equation for y ≡ dτ
dρ .

5.4.3 Non-conformal theories - gapped phase

In the gapped phase, we can solve the equation for y. Inserting that back into the action will give an answer

that will go like e(D−2)τB times some function which depends on the details of the solution. Thus, this

produces just an area term. We can expand the action in powers of e−2τ and obtain corrections to this

answer. However, if the solution is such that the range of variation of τ is finite in the the interior, then we

do not expect that any of these corrections gives a logarithmic term (for even D) or a finite term (for odd

D). Thus, in the gapped phase we get that

Sintr = 0 (5.56)

to leading order. The discussion is similar to the one in [153, 154] for a large entangling surface.

5.4.4 Non conformal theories - ungapped phase

In the ungapped phase, something more interesting occurs. The surface goes all the way to the horizon at

ρ = 0. Up to that point the previous argument still applies and we expect no contributions to the interesting

piece of the entropy from the region ρ > 0.

When the surface goes into the FRW region note that the SD−2 can shrink to zero at the origin of the

hyperbolic slices. If we call ρ = iσ and τ = χ − iπ/2, then we see that the metric of the full space has the

form

ds2 = −dσ2 + (ã(σ))2[dχ2 + sinh2 χ(cos2 αdΩD−2 + dα2)] (5.57)

where ã(σ) = −ia(iσ) is the analytic continuation of a(ρ). We expect that the surface extends up to χ = 0
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where the SD−1 shrinks smoothly. Clearly this is what was happening in the conformal case discussed in

the previous subsection. Thus, by continuity we expect that this also happens in this case.

More explicitly, in this region we can write the action (5.55),

S =
VSD−2

4GN

∫
(ã sinhχ)D−2

√
−
(
dσ

dχ

)2

+ ã2 (5.58)

If we first set dσ
dχ = 0, we can extremize the area by sitting at σm where ã = ãm, which is the maximum value

Figure 5.5: The typical shape for the scale factor for the gravity dual of a CFT perturbed by a relevant
operator in the “ungapped” phase. The region with negative ρ2 corresponds to the FRW region. In that
region, we see that ã2 = −a2 reaches a maximum value, ãm, and then contracts again into a big crunch.

for ã. We can then include small variations around this point. We find that we get exponentially increasing

or decreasing solutions as we go away from σm. Since the solution needs to join into a solution with a very

large value of τB , we expect that it will start with a value of σ at χ = 0 which is exponentially close to σm.

Then the solution stays close to σm up to χ ∼ τB and then it moves away and approaches σ ∼ 0. Namely,

we expect that for σ ∼ 0 the solution will behave as χ = τB − log σ+rest, where the rest has an expansion in

powers of e−2τB . This then joins with the solution of the form τ = τB − log ρ+rest in the ρ > 0 region. The

part of the solution which we denote as “rest”, has a simple expansion in powers of e−2τB , with the leading

term being independent of τB . All those terms are not expected to contribute to the interesting part of the

entanglement entropy. The qualitative form of the solution can be found in figure 5.5.

The interesting part of the entanglement entropy comes from the region of the surface that sits near σm.

In this region the entropy behaves as

S =
ãD−1
m

4GN
VHD−1 −→ Sintr =

ãD−1
m

4GN
VHD−1reg (5.59)
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Here we got an answer which basically goes like the volume of the hyperbolic slice HD−1. This should be

cutoff at some value χ ∼ τB . We have extracted the log term or the finite term, defined as the regularized

volume.

Thus (5.59) gives the final expression for the entanglement entropy computed using the gravity dual. We

see that the final expression is very simple. It depends only on the maximum value, ãm, of the scale factor

in the FRW region.

Using this holographic method, and finding the precise solution for the extremal surface one can also

compute the coefficient c5 in (5.6) (or analogous terms in general dimensions). But we will not do that here.

In appendix C we discuss a particular example in more detail. The results agree with the general

discussion we had here.

5.5 Discussion

In this chapter we have computed the entanglement entropy of some quantum field theories in de Sitter

space. There are interesting features that are not present in the flat space case. In flat space, a massive

theory does not lead to any long range entanglement. On the other hand, in de Sitter space particle creation

gives rise to a long range contribution to the entanglement. This contribution is specific to de Sitter space

and does not have a flat space counterpart. We isolated this interesting part by considering a very large

surface and focusing on the terms that were either logarithmic (for even dimensions) or constant (for odd

dimensions) as we took the large area limit.

In the large area limit the computation can be done with relative ease thanks to a special SO(1,D-1)

symmetry that arises as we take the entangling surface to the boundary of dSD. For a free field, this symmetry

allowed us to separate the field modes so that the entanglement involves only two harmonic oscillator degrees

of freedom at a time. So the density matrix factorizes into a product of density matrices for each pair of

harmonic oscillators. The final expression for the entanglement entropy for a free field was given in (5.33).

We checked that it reproduces the known answer for the case of a conformally coupled scalar. We also saw

that in the large mass limit the entanglement goes as e−m/H which is due to the pair creation of massive

particles. Since these pairs are rare, they do not produce much entanglement.

We have also studied the entanglement entropy in theories that have gravity duals. The interesting

contribution to the entropy only arises when the bulk dual has a horizon. Behind the horizon there is an

FRW region with hyperbolic cross sections. The scale factor of these hyperbolic cross sections grows, has

a maximum, and then decreases again. The entanglement entropy comes from a surface that sits within

the hyperbolic slice at the time of maximum expansion. This gives a simple formula for the holographic
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entanglement entropy (5.59). From the field theory point of view, it is an N2 term. Thus, it comes from

the long range entanglement of colored fields. It is particularly interesting that the long range entanglement

comes from the FRW cosmological region behind the horizon. This suggests that this FRW cosmology is

indeed somehow contained in the field theory on de Sitter space [116, 155] . More precisely, it is contained

in colored modes that are correlated over superhorizon distances.

In the gapped phase the order N2 contribution to the long range entanglement entropy vanishes. We

expect to have an order one contribution that comes from bulk excitations which can be viewed as color

singlet massive excitations in the boundary theory. From such contributions we expect an order one answer

which is qualitatively similar to what we found for free massive scalar fields above.

5.6 Appendix A: Bogoliubov coefficients

Here we give the explicit form of the coefficients in (5.17).

ασR =
eπp − iσe−iπν

Γ(ν + ip+ 1/2)
, ασL = σ

eπp − iσe−iπν

Γ(ν + ip+ 1/2)

βσR =− e−πp − iσe−iπν

Γ(ν − ip+ 1/2)
, βσL = −σ e

−πp − iσe−iπν

Γ(ν − ip+ 1/2)

(5.60)

We also find

γjσ =
Γ(ν + ip+ 1

2 )ieπp+iπν

4 sinhπp

 1
ieπp+iπν+1

1
ieπp+iπν−1

1
ieπp+iπν+1 − 1

ieπp+iπν−1


jσ

δ̄jσ =
Γ(ν − ip+ 1

2 )ieπp+iπν

4 sinhπp

 1
ieπp+iπν+e2πp

1
ieπp+iπν−e2πp

1
ieπp+iπν+e2πp − 1

ieπp+iπν−e2πp


jσ

(5.61)

these were used to obtain (5.21).

We define cR and cL via (5.23) and the state in (5.22). We demand that cR|Ψ〉 = γc†L|Ψ〉, cL|Ψ〉 = γc†R|Ψ〉.

Using (5.23) and denoting mRR = mLL = ρ, mRL = ζ these two conditions become

(uρ+ v − γvζ)b†R + (uζ − γvρ− γu)b†L = 0

(ūζ − γū− γv̄ρ)b†R + (ūρ+ v̄ − γv̄ζ)b†L = 0

(5.62)

which imply that each of the coefficients is zero.

From the structure of (5.62), one sees that under the substitution u→ ū, v → v̄ we have the same set of

equations. If one tries to solve them together then u
v = ū

v̄ ; hence this ratio must be real. One can show that
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this is indeed the case and γ is given by (5.24).

5.7 Appendix B: Regularized volume of the Hyperboloid

Here we calculate the regularized volume of a hyperboloid in D − 1 dimensions. We have to consider the

cases of D even and D odd separately. First, note that the volume is given by the integral:

VHD−1 = VSD−2

∫ ρc

0

dρ(sinh ρ)D−2 (5.63)

Now we expand the integrand:

VHD−1

VSD−2

=
1

2D−2

∫ ρc

0

dρ

D−2∑
n=0

(
D − 2

n

)
(−1)ne(D−2−2n)ρ (5.64)

But the integral of any exponential is given by:

∫ ρc

0

dρ eaρ = −1

a
+


0, a¡0

divergent, a¿0

(5.65)

Now we treat even or odd dimensions separately.

Even D: Here, the integrand of (5.64) contains a term independent of ρ in the summation, which gives

rise to the logarithm (a term linear in ρc). The term we are interested in corresponds to setting n = D/2−1:

VHD−1,reg =
(−1)

D
2

D−2
2

(
D − 2
D−2

2

)
VSD−2 =

(−1)
D
2 π

D−2
2

D−2
2

(D − 2)!(
D−2

2

)
!3

=
(−1)

D
2

π
VSD−1 (5.66)

Odd D: Now, there is no constant term in the integrand of (5.64). Performing the summation in (5.64),

and using (5.65), we get:

VHD−1,reg = − 1

2D−2

D−2∑
n=0

(
D − 2

n

)
(−1)n

D − 2− 2n
VSD−2 = π

D−2
2 Γ

[
−D − 2

2

]
=

(−1)
D−1

2

2
VSD−1 (5.67)

A more direct way to relate the regularized volumes of hyperbolic space to volume of the corresponding

spheres is by a shift of the integration contour. We change ρc → ρc + iπ. This does not change the constant

term, but we get an iπ from the log term. We then shift the contour to run from ρ = 0 along ρ = iθ, with

0 ≤ θ ≤ π and then from iπ to iπ + ρc. The θ integral gives the volume of a sphere and the new integral

with Im(ρ) = π gives an answer which is either the same or minus the original integral. The fact that these
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regularized volumes are given by volume of spheres is related to the analytic continuation between AdS and

dS wavefunctions [22, 156].

5.8 Appendix C: Entanglement entropy for conformal field theo-

ries on dS4 × S1

Let us first discuss the gravity dual in the Euclidean case. The boundary is S4×S1. This boundary also arises

when we consider a thermal configuration for the field theory on S4. We will consider antiperiodic boundary

conditions for the fermions along the S1. There are two solutions. One is AdS with time compactified on a

circle. The other is the Schwarzschild AdS black hole. Depending on the size of the circle one or the other

solution is favored [157, 158]. Here we want to continue S4 → dS4. An incomplete list of references where

these geometries were explored is [135, 137, 138, 140, 145, 151, 152] .

As a theory on dS4 we have a scale set by the radius of the extra spatial circle. At large N we have

a sharp phase transition. At finite N we can have tunneling back and forth between these phases. Here

we restrict attention to one of the phases, ignoring this tunneling. The Schwarzschild AdS solution looks

basically like the gapped solutions we discussed in general above. Here, the S4, or the dS4, never shrinks to

zero. It can be viewed as a bubble of nothing. On the other hand, the periodically identified AdS6 solution

gives the ungapped case, with the S4 or dS4 shrinking, which leads to a hyperbolic FRW region behind the

horizon.

Gapped phase - Cigar geometry

We now consider the cigar geometry. In the UV we expect to see the divergence structure to be that of

a 5D CFT, but in the IR it should behave like a gapped 4D non-conformal theory. The metric is given by

ds2 = fdφ2 + r2ds2
dS4 +

dr2

f
, f = 1 + r2 − m

r3
(5.68)

The period β of the φ circle is given in terms of rh, the largest root of f(rh) = 0, by

β =
4π

f ′(rh)
=

4πrh
2 + 4r2

h

(5.69)

Note that βmax = π/
√

2. This solution only exists for β ≤ βmax. This geometry is shown in Figure 5.6. We

consider an entangling surface which is an S2 at a large value of τB .
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AdS-Schw5

dS4
r=∞

r=rh

r=∞ r=rh

B

Figure 5.6: The gravity dual of a 5D CFT on dS4 × S1. The spacetime ends at r = rh, where the circle
shrinks in a smooth fashion. We display an extremal surface going from τB to the interior.

We need to consider the action

A ∝
∫
drr2 cosh2 τ

√
1− fr2τ ′2 (5.70)

This problem was also discussed in [115]. Since we are interested in large τB we can approximate this by

Aapprox =

∫
drr2e2τ

√
1− fr2(τ ′)2 (5.71)

If the large tau approximation is valid throughout the solution then we see that the dependence on τB drops

out from the equation and it only appears normalizing the action. In that case the full result is proportional

to the area, e2τB , with no logarithmic term. In the approximation (5.71), the equation of motion involves

only τ ′ and τ ′′. So we can define a new variable y ≡ τ ′ and the equation becomes first order. One can expand

the equation for y and get that y has an expansion of the form y = [−2/(3r3) + 10/(27r5) − 4m/(14r6) +

· · · ] + a(1/r6 + · · · ) where a is an arbitrary coefficient representing the fact that we have one integration

constant.

This undetermined coefficient should be set by requiring that the solution is smooth at r = rh. If one

expands the equation around r = rh, assuming the solution has a power series expansion around rh, then we

get that y should have a certain fixed value at rh and then all its powers are fixed around that point. Notice

that if y = yh + y′h(r − rh) + · · · , implies that τ is regular around that point, since (r − rh) ∝ x2 where x is

the proper distance from the tip.
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The full solution can be written as

τ = τB −
∫ ∞
rh

y(r)dr (5.72)

where y is independent of τB .

2 4 6 8 10

rh

-250

-200

-150

-100

-50

50

Areg

Figure 5.7: The regulated area Areg is defined by Atotal = e2τBAreg +Adiv.

At large r we get τ − τB = 1
3r2 +O(1/r4) and the action (5.71) evaluates to

Aapprox ∝ e2τB

∫
dr

[
r2 +

4

9
+O

(
1

r2

)]
∼ e2τB

(
r3
c

3
+

4

9
rc + finite

)
= e2τBAreg +Adiv (5.73)

We see that we get the kind of UV divergencies we expect in a five dimensional theory, as expected.

These can be subtracted and we can compute the finite terms. These are plotted in Figure 5.7 as a

function of rh.

So far, we have computed the finite term that grows like the area. By expanding (5.70) to the next order

in the e−2τ expansion we can get the next term. The next term will give a constant value, independent of

the area. In particular, it will not produce a logarithmic contribution. In other words, there will not be a

contribution proportional to τB .

In conclusion, in this phase, there is no logarithmic contribution to the entanglement entropy, at order

1/GN or N2.

Ungapped phase - Crunching geometry

Now the geometry is simply AdS6 with an identification. This construction is described in detail in

[151, 152]. The resulting geometry has a big crunch singularity where the radius of the spatial circle shrinks

to zero. This geometry is sometimes called “ topological black hole”, as a higher dimensional generalization

of the BTZ solution in 3D gravity.

It is more convenient to use a similar coordinate system as the one used to describe the cigar geometry

in the previous case. The metric is given by (5.68), with m = 0. Those coordinates only cover the region
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outside of the lightcone at the origin, r = 0. To continue into the FRW region, one needs to use r = iσ and

τ = −iπ/2 + χ in (5.68).

The equation in the r > 0 region is such that we can make the large τ approximation and it thus reduces

to a first order equation for y = τ ′ = dτ
dr . For small r, an analysis of the differential equation tells us that

y ∼ −1

r
− 2r3 + · · ·+ b

(
r +

10− 7b

2
r3 + · · ·

)
(5.74)

where there is only one undetermined coefficient (or integration constant) which is b (it is really non-linear

in b). This leads to a τ which is

τ ∼ − log r − r4

2
+ · · ·+ c+ b

(
r2

2
+

10− 7b

8
r4 + · · ·

)
(5.75)

where c is a new integration constant. We expect that the evolution from this near horizon region to infinity

only gives a constant shift. In other words, we expect that c = τB+constant. This constant appears to

depend on the value of b that is yet to be determined. We find that b should be positive in order to get a

solution that goes to infinity and is non-singular.

We are now supposed to analytically continue into the FRW region. For that purpose we set r = iσ and

τ = −iπ/2 + χ. Thus the equation (5.75) goes into

χ ∼ − log σ − σ4

2
+ · · ·+ c+ b

(
−σ

2

2
+

10− 7b

8
σ4 + · · ·

)
(5.76)

Then we are supposed to evolve the equation. It is convenient to change variables and write the Lagrangian

in terms of σ(χ) as:

A ∼
∫
dχσ2 sinh2 χ

√
−(σ′)2 + σ2(1− σ2) (5.77)

In this case, at χ = 0 we can set any starting point value for σ(χ = 0) and we have to impose that σ′ = 0.

Then we get only one integration constant which is σ(0), as the second derivative is fixed by regularity of

the solution to be σ′′(0) = −σ(0)(3− 4σ(0)2). We see that its sign depends on the starting value of σ(0).

Since we want our critical surface to have a “large” constant value when we get to σ → 0 as χ→∞, we

need to tune the value of σ(0) so that it gives rise to this large constant. This can be obtained by tuning the

coefficient in front of σ(0). This critical value of σ(0) is easy to understand. It is a solution of the equations

of motion with σ′(ρ) = 0 (for a constant σ), it is a saddle point for the solution, located at σ =
√

3/2. If

σ is slightly bigger than the critical value, the minimal surface will collapse into the singularity, so we tune

this value to be slightly less than the critical point.
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So, in conclusion, we see that the surface stays for a while at σ ≈
√

3/2 which is the critical point stated

above. The value of the action (5.77) in this region is then

3
√

3

16

∫ χc

0

dχ sinh2 χ =
3
√

3

16

[
e2χc

8
− χc

2
+ · · ·

]
(5.78)

Here χc ∼ τB ∼ log η is the value of χ at the transition region. Thus, we find that the interesting contribution

to the entanglement entropy is coming from the FRW region.

The transition region and the solution all the way to the AdS boundary is expected to be universal and

its action is not expected to contribute further logarithmic terms.

In conclusion, the logarithmic term gives

Sintr =
R4
AdS6

4GN
β

4π3
√

3

32
(5.79)

Here we repeat this computation in another coordinate system which is non-singular at the horizon. We

use Kruskal-like coordinates [151, 152, 137] . It also makes the numerical analysis much simpler. In terms

of embedding coordinates for AdS6:

− Y 2
−1 − Y 2

0 + Y 2
1 + ...+ Y 2

5 = −1

ds2 = −dY 2
−1 − dY 2

0 + dY 2
1 + ...+ dY 2

5

(5.80)

The Kruskal coordinates are given by:

Y−1 =
1 + y2

1− y2
coshφ, Y5 =

1 + y2

1− y2
sinhφ, Y0,...,4 =

2y0,...4

1− y2
, y2 ≡ −y2

0 + y2
1 + ...+ y2

4

ds2 =
4

(1− y2)2
(−dy2

0 + ...+ dy2
4) +

(
1 + y2

1− y2

)2

dφ2

(5.81)

In these coordinates, the dS region corresponds to 0 < y2 < 1 and the FRW region to −1 < y2 < 0, with

the singularity located at y2 = −1. The AdS boundary is at y2 = 1. We can relate the pair (r, τ) and (χ, σ),

connected by the analytic continuation (r = iσ, τ = −iπ/2 + χ) to (y2, y0) by the formulas:

r =
2
√
y2

1− y2
, sinh τ =

y0√
y2

σ =
2
√
−y2

1− y2
, coshχ =

y0√
−y2

(5.82)
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The area functional gets simplified to:

A =

∫ √
16(1 + y2)2

(1− y2)8
(y2

0 + y2) [(d(y2))2 + 4y0dy0d(y2)− 4y2(dy0)2] (5.83)

10 100 1000 10
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y0
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y
2

Boundary

Singularity

Figure 5.8: We plot here the value of y2 versus y0. For small y0 the solution starts very close to the surface
of maximum expansion at y2 = −1/3, stays there for a while and then they go into the AdS boundary at
y2 = 1. The closer y0 is to the saddle point ỹ2

m = −1/3, the longer the solution will stay on this slice, giving
a contribution that goes like the volume of an H3. Then, at a time y0 of the order of the time the surface
reaches the boundary, it exits the FRW region. The interesting (logarithmic) contribution to the entropy is
coming from the volume of the H3 surface along the FRW slice at y2 = −1/3.

If one looks for the saddle point described in the FRW coordinates, then one obtains y2 = −1/3. The

same situation can be described in simple fashion in terms of these coordinates. So y2 ∼ −1/3 for a large

range of y0, and it crosses to the dS-sliced region at a time of order τB , in dS coordinates, so part of the

surface just gives the volume of an H3, as in (5.78):

A ∼ 9

16

∫ coshχc√
3

0

√
3y2

0 − 1 dy0 =
3
√

3

16

[
e2χc

8
− χc

2
+ · · ·

]
(5.84)

Some plots for the minimal surfaces are shown in Figure 5.8.
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