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Abstract

In the first part of this dissertation, we study the dynamics of isolated and clean

quantum systems out of equilibrium. We initially address the Kibble-Zurek (KZ)

problem of determining the dynamical evolution of a system close to its critical point

under slow changes of a control parameter. We formulate a scaling limit in which

the nonequilibrium behavior is universal and discuss the universal content. We then

report computations of some scaling functions in model Gaussian and large-N prob-

lems. Next, we apply KZ scaling to topologically ordered systems with no local order

parameter. In the examples of the Ising gauge theory and the SU(2)k phases of the

Levin-Wen models, we observe a slow, coarsening dynamics for the string-net that un-

derlies the physics of the topological phase at late times for ramps across transitions

that reduce topological order. We conclude by studying quenches in the quantum

O(N) model in the infinite N limit in varying spatial dimensions. Despite the failure

to equilibrate owing to an infinite number of emergent conservation laws, the quali-

tative features of late time states following quenches is predicted by the equilibrium

phase diagram.

In the second part of this dissertation, we explore the relationship between entan-

glement and topological order in fractional quantum Hall (FQH) phases. In 2008, Li

and Haldane conjectured that the entanglement spectrum (ES), a presentation of the

Schmidt values of a real space cut, reflects the energy spectrum of the FQH chiral

edge. Specifically, both spectra should have the same quasi-degeneracy of eigenvalues

everywhere in the phase. We offer an analytic, microscopic proof of this conjecture

in the Read-Rezayi sequence of model states. We further identify a different ES that

reflects the bulk quasihole spectrum and prove a bulk-edge correspondence in the ES.

Finally, we show that the finite-size corrections of the ES of the Laughlin states reveal

the fractionalization of the underlying quasiparticles.
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Chapter 1

The Kibble-Zurek Problem:

Universality and the Scaling Limit

1.1 Introduction

The study of critical points and their associated continuum limits or field theories

has been a central and enormously productive exercise in statistical mechanics and

condensed matter physics.1 This study began with the problem of equilibrium finite

temperature transitions, was then extended to their dynamics and thereafter to the

interplay between criticality and finite size effects [72, 82]. This development has since

been replayed in the theory of zero temperature quantum phase transitions [172, 164].

Needless to say, the development of powerful field theoretic methods, most notably

conformal field theory in (1+1) dimensions [56] and most recently the gauge gravity

duality [1], have significantly advanced this line of work. In all these cases, the field

theoretic approach not only describes the critical point, but also the regions of the

phase diagram adjacent to it.

1Chapter based on work with Amir Erez, Steven S. Gubser and S. L Sondhi [39].
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Figure 2. Monte Carlo simulation of domain growth in the d = 2 Ising model at T = 0 (taken 
from Kissner [8]). The system size is 256 X 256, and the snapshots correspond to 5, 15, 
60 and 200 Monte Carlo steps per spin after a quench from T = ~.  

is illustrated in figure 2, which shows a Monte Carlo simulation of a two-dimensional 
Ising model, quenched from TI = ~ to TF = 0. Inspection of the time sequence may 
persuade the reader that domain growth is a scaling phenomenon; the domain patterns 
at later times look statistically similar to those at earlier times, apart from a global 
change of scale. This 'dynamic scaling hypothesis'  will be formalized below. 

For pedagogical reasons, we have introduced domain growth in the context of  the 
Ising model and shall continue to use magnetic language for simplicity. A related 
phenomenon that has been studied for many decades, however, by metallurgists, is the 
spinodal decomposition of binary alloys, where the late stages of  growth are known as 
Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
gravitational field, which severely limits the temporal duration of the scaling regime. 
The gravitational effect can be moderated by using density-matched binary liquids 
and/or performing the experiments under microgravity. All the above systems, 
however, contain an extra complication not present in the Ising ferromagnet. This is 
most simply seen by mapping an AB alloy onto an Ising model. I f  we represent an A 
atom by an up spin, and a B atom by a down spin, then the equilibrium properties of 
the alloy can be modelled very nicely by the Ising model. There is one important feature 
of  the alloy, however, that is not captured by the Ising model with conventional Monte 
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Ising model and shall continue to use magnetic language for simplicity. A related 
phenomenon that has been studied for many decades, however, by metallurgists, is the 
spinodal decomposition of binary alloys, where the late stages of  growth are known as 
Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
gravitational field, which severely limits the temporal duration of the scaling regime. 
The gravitational effect can be moderated by using density-matched binary liquids 
and/or performing the experiments under microgravity. All the above systems, 
however, contain an extra complication not present in the Ising ferromagnet. This is 
most simply seen by mapping an AB alloy onto an Ising model. I f  we represent an A 
atom by an up spin, and a B atom by a down spin, then the equilibrium properties of 
the alloy can be modelled very nicely by the Ising model. There is one important feature 
of  the alloy, however, that is not captured by the Ising model with conventional Monte 
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Figure 1.1: Monte Carlo simulation of domain growth in the d = 2 Ising model at
T = 0 after a quench from T =∞. The system size is 256× 256, and the snapshots
correspond to 15, 60 and 200 Monte Carlo steps per spin. Reproduced from Ref. [108].

A new dimension to the study of the passage through critical points was introduced

by Kibble [106] in the context of the expanding universe, since recast in the language

of critical phenomena by Zurek [208]. Their proposal, the “Kibble-Zurek mechanism,”

is a theory of the defects generated in a system being cooled through a continuous

symmetry-breaking phase transition at a small, but finite rate. Near the transition,

the equilibrium relaxation time of the system diverges. It is therefore inevitable that

a system being cooled at a finite rate fall out of equilibrium on the approach to

the transition. Consequently, the system arrives in the broken symmetry phase with

different spatial regions realizing different orientations of the broken symmetry, and

topological defects as a result. The mechanism predicts the scaling of the number of

these defects with ramp time [208, 209] and has been tested in a variety of systems

[43, 95, 162, 6, 129], although quantitative agreement has been established only in zero

dimensional annular Josephson junctions [133] and in pattern-forming steady-state

transitions [59, 33]. Two reasons for the disagreement between theory and experiment

are spatial inhomogeneities and the finite extent of the sample. The Kibble-Zurek

mechanism can be extended to account for both effects; recent experiments in ion

crystals [153, 192] that test these extensions are very promising2.

2Confirmation is still lacking in transitions in thermodynamic systems that are not described
within mean field theory.
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The Kibble-Zurek mechanism has also been generalized to the setting of quan-

tum phase transitions by Dziarmaga [61, 62], Polkovnikov [143] and Zurek et al.

[210], where the role of temperature is played by a non-symmetry breaking control

parameter, and to ramps across multi-critical points [58, 57]. The scaling of other

physical quantities like excess heat with quench time has also been investigated [51].

Polkovnikov and coworkers have further paid attention to the interplay between finite

system size and parameter velocity.

The general problem posed by the work of Kibble and Zurek is that of a slow

passage through a critical or multicritical point which we shall term the Kibble-

Zurek (KZ) problem (often referred to by the oxymoronic term “slow quench”). This

problem is then characterized by a critical point with its equilibrium physics and a

“protocol”, which is a particular path in the parameter space of the problem that

touches the critical point. In the limit of asymptotically slow motion in parameter

space, we expect that the physics is dominated by the critical point and hence is,

in an appropriate sense, universal. An important task of theory is then to isolate

this universal content and compute it. We should note that the study of universality

in the KZ problem, especially in the quantum setting, is a part of a wider current

study of non-equilibrium quantum dynamics; for a broader perspective, see the recent

colloquia [62, 147].

In previous studies of critical phenomena, two ideas have proven extremely useful.

The first is the idea of the scaling limit in which various quantities of interest, such

as thermodynamic densities and correlation functions, are postulated to obey certain

homogeneity relations. This set of scaling functions along with the critical exponents

captures the full universal content associated with a given critical point. The second

is the renormalization group which provides an understanding of the origin of this

universality and a full computation of its content.
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In this chapter and the next, we will make progress on the first front: we will

formulate a scaling limit for the KZ problem and report model computations of the

resulting scaling functions for a few classical and quantum problems. In appropri-

ate limits, these scaling functions will reduce to those in the equilibrium and the

coarsening problems. Except for recent work by Deng et al. [55], Biroli et al. [14]

and De-Grandi et al. [52] discussing scaling functions in specific cases, the need for

defining full scaling functions has been largely overlooked in the literature. Our con-

tribution is to formalize the idea as a scaling limit for all physical quantities for any

pairing of a critical point and a protocol.

The second part of the program, beyond our ambition at present, would be the

construction of a renormalization group flow. Such a program has been fruitfully pur-

sued in sudden quench studies in classical models with stochastic dynamics (see [31]

and references therein). We offer two modest steps in that direction in the next chap-

ter. First, in the classical context, we formulate the path-integral previously written

down only for sudden quenches to the KZ problem. This is, in principle, amenable to

analysis by standard equilibrium renormalization group techniques. Second, we will

prove universality with respect to protocol choice for some model classical and quan-

tum problems. Specifically, we will show that the expectation that only the behavior

of the protocols in the vicinity of the critical points is important is, in fact, correct.

In this chapter, we will also offer a tripartite classification of possible protocols

based on their “topology”—i.e. whether they cross, turn around at or end at the

critical point. The scaling of quantities such as the defect density and the excess

heat with quench time has been previously generalized [169, 51] to arbitrary positive

power-law behavior of the protocol on time near the critical point, that is, the first

two kinds of protocols in our classification. Our contribution is the definition of a

third class of power-law protocols that asymptotically end at the critical point and

the identification of an interesting member—the marginal end critical protocol—that
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generates a one parameter family of non-equilibrium deformations of the equilibrium

critical state worthy of further study.

Our presentation naturally splits into two chapters. In this chapter, we will intro-

duce the KZ scaling theory. In the next, we will report computations of KZ scaling

functions in model theories and prove universality with respect to protocol choice.

We begin, in Section 1.2, by defining the protocols of interest and introducing the

well known KZ time and length. In Section 1.4, we lay out the scaling formalism for

the KZ problem—the definition of the KZ scaling limit and the resulting scaling func-

tions. We also discuss how the KZ scaling functions universally interpolate between

the early equilibrium physics and the late time thermalization/coarsening physics.

We conclude with a few comments.

1.2 Classification of Protocols

1.2.1 Equilibrium description of the critical point

Consider a multicritical point in d spatial dimensions. Let {Oi} denote the set of

relevant operators that couple to conjugate fields {hi} and have scaling dimensions

{∆i}. At the critical point, we set 〈Oi〉eq = 0. The set of scaling dimensions {∆i} and

a host of scaling functions constitute the static universal equilibrium content of this

critical point. Along with the dynamical exponent z obtained from the time-dynamics,

they determine the universality class of the critical point. Let δ parameterize a path

in the space of conjugate fields {hi} such that δ is zero at the critical point. For every

such path, define the correlation length exponent ν to be 1/(d−∆), where ∆ is the

scaling dimension of the most relevant operator that has a projection along the path

near δ = 0. Along the path, the correlation length then diverges as δ−ν close to the

critical point.
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h

PMFM
Tc T

Figure 1.2: Phase diagram of an Ising Magnet (d > 1). PM denotes the paramagnetic
phase, while FM denotes the ferromagnetic one. The two ordered configurations are
shown in blue. The critical point is at h = 0, T = Tc. The red dashed line is the line
of first order points that terminates at the critical point.

A useful example to keep in mind, particularly for the next section, is the Ising

critical point. The phase diagram of an Ising magnet is shown in Fig. 1.2. The

relevant operators at the critical point (red dot) are the scalar energy operator and

the scalar magnetization, coupling to the conjugate fields of temperature (T ) and the

longitudinal magnetic field (h) respectively. The first order line in the phase diagram

(red dashed line) is of no relevance here.

Unless mentioned otherwise, all length/time-scales are dimensionless and are mea-

sured in units of some microscopic length/time.

1.2.2 Protocols in δ

Consider a system prepared in equilibrium at t = −∞ at some fixed distance δ− > 0

away from the critical coupling δ = 0 being evolved in time along the path δ(t)

in conjugate field space. For simplicity, we restrict ourselves to paths with a unique

tangent most relevant operator near δ = 0. The KZ dynamics refines the classification

of critical points discussed above using two pieces of data. The first is the symmetry of

the path. If the most relevant operator along the path respects all the symmetries of

the critical theory, the path is non-symmetry breaking, else it is symmetry-breaking.
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In the example in Fig. 1.2, only the paths along the temperature axis at h = 0 are

non-symmetry breaking. The second is the leading order behavior of δ(t) near the

critical point (strictly speaking, the critical coupling) which we classify below.

�
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Figure 1.3: Clockwise from top left: examples of Trans-Critical (TCP), Cis-Critical
(CCP) and End-Critical (ECP) protocols. The critical point (CP) is at δ = 0. The
TCP and CCP pass through the CP at t = 0, while the ECP asymptotically ap-
proaches the CP as t → ∞. The leading order expansion of δ is valid in the shaded
region.

• Trans-Critical Protocols (TCPs): These protocols take the system across the

critical point. They smoothly interpolate δ between δ− > 0 as t → −∞ and

δ+ < 0 as t→∞, crossing the critical point at t = 0. An example of a TCP is

δ(t; τ) = −δ0 tanh
t

τ
. (1.1)
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We will shortly show that the dynamic scaling functions are universal with

respect to the behavior of the protocol near t = 0. In anticipation of this result,

we classify the entire family of analytic TCPs by their leading order behavior

in a time-scale τ near t = 0 as

δ(t; τ) =





δ− t→ −∞

δ0

(
− t
τ

)a
t→ 0

δ+ t→∞

(1.2)

with a odd. a = 1 is the linear protocol, a = 3 the cubic and so on.

• Cis-Critical Protocols (CCPs): These protocols keep the system in a single phase

and touch the critical point at t = 0. They smoothly interpolate δ between δ−

as t → −∞ and δ+ > 0 as t → ∞ through the critical point at t = 0. An

example of a CCP is

δ(t; τ) = δ0 tanh2 t

τ
. (1.3)

Eq. (1.2) with a even classifies CCPs. a = 2 is the quadratic protocol, a = 4

the quartic and so on.

• End-Critical Protocols (ECPs): End-Critical-Protocols (ECPs) keep the system

in a single phase while asymptotically approaching the critical point. They

smoothly interpolate between δ− as t→ −∞ and 0 as t→∞. The asymptotic

approach to the critical point may be with or without a time-scale. Here we

restrict ourselves to the family of scale-free protocols:

δ(t) =





δ− t→ −∞

δ0

(
t
τ

)a
= δ0

(
τ
t

)|a|
t� τ ,

(1.4)
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where a < 0 and τ is the time-scale over which the protocol behavior smoothly

changes from being a constant to a power law. Unlike in the above two cases,

a is not required to be integer valued.

1.3 The Kibble-Zurek length and time

A system evolving from t = −∞ by a TCP, CCP or an ECP with large |a| must

fall out of equilibrium near the critical point due to critical slowing down. This is

signaled by a diverging relaxation time ξt
3. The time at which the system falls

out of equilibrium is defined to be the KZ time tK. The KZ time defines a KZ

length lK ∼ t
1/z
K . lK manifests in dynamic correlation functions as a crossover scale

between equilibrium and non-equilibrium correlations. More intuitively [106, 209], in

an ordering transition, order is unable to form on scales larger than lK due to the

finite quench rate, and domains of broken-symmetry phase of size lK persist in the

ordered phase (see Fig. 1.1). We now separately consider the cases of TCP/CCP and

ECP.

1.3.1 TCPs/CCPs

The scaling of the KZ length and time with τ follows essentially from considerations

in Refs. [210, 143, 169], which we recapitulate here. For pedagogical reasons, we

will first present Zurek’s original argument for a linear ramp [208] before the general

scaling law.

3Near a quantum phase transition, this implies a vanishing many-body gap.
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There are two time scales for a slow linear ramp through a critical point. The

first is the instantaneous equilibrium correlation time:

ξt(t; τ) ∼ δ(t; τ)−νz

∼
(−t
τ

)−νz

If the evolution of the system is adiabatic up to time t, then its correlation time t is

ξt(t; τ). The second time scale is the time interval to the critical point, χt(t):

χt(t) = −t

Initially (t ≈ −τ), χt � ξt. The system is far from the critical point, its correlation

time is small and the evolution is adiabatic. However, as the ramp proceeds, χt

decreases while ξt increases. At t = −tK, the two are equal and the evolution cannot

possibly remain adiabatic as the time that it would take to equilibrate at t = −tK is

the time interval to the critical point!

ξt(tK; τ) = χt(tK)

⇒ tK = τ
νz
νz+1

The time scale, tK, is known as the KZ time. We will soon see that it sets the scale

for universal non-equilibrium physics near the critical point.

The generalization to other protocols is straightforward. We define ξ(t; τ) and

ξt(t; τ) to be the instantaneous correlation length and time if the system were in

equilibrium at δ(t; τ). The crucial quantities that determine tK are the change in the

correlation time over a correlation time, ξ̇tξt, and ξt itself. When ξ̇tξt � ξt or ξ̇t � 1,

ξt is changing slowly enough for the system evolution to be adiabatic. This is the case

for t < −τ . As ξ̇t diverges at the critical point, there must come a time −tK > −τ
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when it is of order one.

ξ̇t(tK; τ) = 1

⇒ tK ≡
(

τ

δ
1/a
0

) aνz
aνz+1

. (1.5)

1.3.2 ECPs

The asymptotic behavior of ξ̇t categorizes the ECPs into three. |ac| ≡ 1/(νz) below.

• Non-adiabatic : When |a| > |ac|, ξ̇t diverges at the critical point. The system

falls out of equilibrium at tK given by Eq. (1.5) where a is now negative.

• Adiabatic : When |a| < |ac|, ξ̇t is zero at the critical point. When τ is large,

the evolution is adiabatic for all times.

• Marginal : When |a| = |ac|, ξ̇t is independent of t at the critical point and

the only length scale in the problem is t1/z. The system is marginally out of

equilibrium on this scale in a sense that will become clear soon.

As we are interested in universal behavior out of equilibrium, |a| ≥ |ac| henceforth.

1.4 The KZ Scaling limit

The introduction of tK and lK is reminiscent of the introduction of finite size cutoffs in

the theory of equilibrium critical behavior, and we are led to analogs of the finite size

scaling limit and finite size scaling functions. We define the KZ scaling limit to be the

limit τ →∞ when time and length scales are measured in units of the diverging KZ

scales, tK and lK. δ(t; τ) → 0 in this limit, and the system is arbitrarily close to the

critical point, evolving non-adiabatically for all t/tK (the shaded region in Fig. 1.4b).

The marginal ECP is special and we discuss it separately at the end of this section.
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We now turn to the definition of the scaling functions that arise in the KZ scal-

ing limit. We discuss the scaling functions of various physical quantities and their

asymptotic forms in specific cases. We initially consider classical critical points and

discuss asymptotic forms when the transition is ordering. We then comment on the

special features of quantum critical points.

Our notation is to denote the absolute value of any vector k by k, and to use x̂

and t̂ respectively to refer to the scaled length and time, x/lK and t/tK. We reserve

calligraphic lettering for scaling functions.

lco

ξ(t; τ)

t

(i) (ii) (iii)

CP

δ

t

(−tK2, δ(−tK2))

(−tK1,−δ(tK1))

Figure 1.4: Left: δ as a function of t close to t = 0 with KZ times shown for a
slow (2, dashed) and fast (1, solid) ramp. In the slower ramp, the system falls out
of equilibrium earlier (|tK2| > |tK1|) but at a smaller distance from the critical point
(δ(−tK2) < δ(−tK1)). Right: The correlation length of a system ramped at a finite
rate (solid) vs ξ(t; τ) (dashed). KZ split dynamics into (i) Adiabatic (ii) Sudden and
(iii) Post-quench (here coarsening) regimes. The KZ scaling limit describes (ii) with
(i) and (iii) as asymptotes.
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1.4.1 TCPs and CCPs

Scaling forms of correlation functions

Consider the scalar operator O with scaling dimension ∆. We assume that the theory

has translational and rotational invariance 4. The KZ scaling forms for the one and

two-point connected correlation functions are

〈O(x, t)〉τ ≡ GO(t; τ) ∼ 1

l∆K
GO
(
t

tK

)

〈O(x, t)O(x′, t′)〉τ ≡ GOO(|x− x′|, t, t′; τ)

∼ 1

l2∆
K

GOO
( |x− x′|

lK
,
t

tK
,
t′

tK

)
. (1.6)

When we use ∼ to indicate a scaling form of a correlation, as in (1.6), we have

a precise limiting statement in mind. For example, in the case of the two-point

connected correlator, what we mean is

lim
τ→∗∞

l2∆
K GOO(x, t, t′; τ) = GOO

(
x

lK
,
t

tK
,
t′

tK

)
, (1.7)

where τ →∗ ∞ means the limit where τ →∞ with x
lK

, t
tK

and t′

tK
held fixed.

The scaling forms of all higher order cumulants and cross-correlators with other

relevant operators are straightforward extensions of the form in Eq. (1.6). Note that

GO can be identically zero. This is the case, for instance, in a zero-field temperature

quench through the Ising critical point in Fig. 1.2 when O is the spin operator. The

finite ramp rate prevents order from forming on scales longer than the KZ length,

and 〈O〉τ , the average magnetization, remains zero at all times.

4With weak disorder, the KZ scaling forms apply to disorder averaged connected correlation
functions. When the disorder distributions are broad, the typical moments satisfy the proposed
scaling.
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Asymptotic form near equilibrium

By construction of the protocol, we should recover equilibrium scaling forms in certain

limits as t̂→ ±∞. However, the precise limits are subtle and we derive them below.

Recall that the equilibrium scaling limit is the limit of δ → 0 holding x/ξ and (t−t′)/ξz

fixed, wherein the two-point correlator has the scaling form,

〈O(x, t)O(0, t′)〉eq
δ ∼ ξ−2∆Geq

OO

(
x

ξ
,
t− t′
ξz

)
. (1.8)

The ∼ symbol here is distinct from that in the previous subsection.

We consider the limit in which the KZ scaling form Eq. (1.7) reduces to the

equilibrium scaling form Eq. (1.8). First, we observe that the relation,

x/lK
x/ξ(t; τ)

=
ξ(t; τ)

lK
=

∣∣∣∣
t

tK

∣∣∣∣
−aν

, (1.9)

implies that x/ξ is fixed whenever x̂ and t̂ are held fixed. Similarly, t/ξz and t′/ξz are

also fixed by t̂ and t̂′. Thus, an alternative to the KZ scaling form Eq. (1.7) involving

the same two arguments as the equilibrium scaling form may be given:

lim
τ→∗∞

ξ2∆GOO(x, t, t′; τ) = G(2)
OO

(
x

ξ
,
t− t′
ξz

,
t+ t′

tK

)
. (1.10)

When |t| � tK, the system is in instantaneous equilibrium on length and time-

scales, ξ and ξt respectively. This is the limit in which G(2)
OO must reduce to Geq

OO. Thus,

in the limit (t̂+ t̂′)→ ±∞ holding x/ξ and (t− t′)/ξz fixed:

G(2)
OO

(
x

ξ
,
t− t′
ξz

,
t+ t′

tK

)
∼ Geq

OO

(
x

ξ
,
t− t′
ξz

)
. (1.11)
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For the original KZ scaling form Eq. (1.7), this translates to the requirement,

GOO(x̂, t̂, t̂′) ∼ t̂2aν∆ Geq
OO(x̂ t̂νa, (t̂− t̂′) t̂zaν) . (1.12)

in the same limit. As expected, ξ(t; τ)/ξ(t′; τ) → 1 so that there is a single diverg-

ing length in the equilibrium system. Furthermore, time-translation invariance is

recovered.

In the example of a temperature ramp through the Ising critical point (Fig. 1.2),

the equilibrium equal-time connected spin-spin correlation function decays exponen-

tially on a length scale ξ on either side of the critical point; consequently, Eq. (1.12)

when t̂ = t̂′ must asymptote to

GOO(x̂, t̂, t̂) ∼ t̂2aν∆ exp(−x̂t̂νa) .

Asymptotic form for coarsening dynamics

It is generally believed5 that a system quenched to an ordered phase with multi-

ple vacua undergoes coarsening, whereby each local broken-symmetry region grows

in time and the system is asymptotically statistically self-similar on a characteristic

length scale, lco(t) � ξ. Put another way, the two point function heals to its equi-

librium value on the scale ξ within each “domain”, and is exponentially suppressed

between domains, each of growing length lco � ξ. It is very useful to visualize coars-

ening. In Fig. 1.1, we show snapshots of the evolution of the 2d Ising model with

Glauber dynamics [81]. The system is in contact with a heat bath, whose tempera-

ture is varied linearly: T−Tc
Tc

= −t
τ

. Domains of up (down) spins are shown in white

(black). At late times, both kinds of domains grow as the system attempts to establish

long-range order.

5For a recent dissent, see Olejarz et al. in Phys. Rev. E 83, 05144 (2011) who have noted that
the 3d Ising Model does not coarsen at zero temperature. More generally, the KZ scaling forms
asymptote to the long-time behavior in the sudden quench.
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In the late time regime, dynamical scaling is expected to hold when there are no

growing scales competing with the characteristic length scale of the domains, lco. For

example, as t, t′ →∞,

〈O(x, t)O(0, t′)〉δ ∼ ξ−2∆Gco
OO

(
x

lco(t)
,

x

lco(t′)

)
, (1.13)

where lco(t) ≡ tθ = t
−aν+aνz+1

zd .

zd is a dynamic exponent specific to coarsening. The coarsening scaling forms in

various models are reviewed in [22].

When present in the KZ problem, we expect coarsening physics to emerge deep

in the ordered phase, i.e. as t̂, t̂′ →∞, on the length scales lco(t), lco(t′). Proceeding

as in the previous sub-section, we conclude that as t̂, t̂′ → ∞ holding x/lco(t) and

x/lco(t′) fixed, the two-point function must have the limiting form:

GOO(x̂, t̂, t̂′) ∼ t̂2aν∆Gco
OO

(
x̂

t̂θ
,
x̂

t̂′
θ

)
.

Note that the limiting equilibrium form requires holding x/ξ(t) fixed and that

lco(t)/ξ(t) diverges as t̂→∞.

In the simplest case of Model A dynamics for spins withN -components, zd = z = 2

and lco(t) ∼
√
t in the infinite-N limit. Although this phenomenology holds for

systems with and without topological defects, the specific form of the equal-time

spin-spin correlation function depends on the presence of topological defects [22].

Scaling form of the non-equilibrium correlation length

The non-equilibrium correlation length ξne is defined to be the inverse of the decay

constant on the longest length scales of the two-point equal-time correlator in real

space. In equilibrium, this length is the cross-over scale in correlation functions
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between fluctuations dominated by one fixed point and another. A particularly simple

definition of ξne is,

ξne(t; τ) =

√∫
dxd x2GOO(x, t, t; τ)∫
dxdGOO(x, t, t; τ)

, (1.14)

and is useful when GOO is always positive. A more general definition is through the

smallest imaginary part of the poles of GOO(k, t, t; τ) in k-space; we will elaborate on

this when the necessity arises. Biroli and coauthors [14] recently discussed the KZ

scaling form of ξne in non-symmetry breaking TCPs. They observed that ξne must

asymptote to the equilibrium correlation length, ξ(t; τ), as t̂ → −∞; that it must

scale according to the critical coarsening form, t
1/z
K , when |t̂| ∼ O(1); and that it

must asymptote to the coarsening length lco as t̂→∞. Their proposed scaling form

can be derived from that of GOO and can be re-written as

ξne(t; τ) ∼ lKLne

(
t

tK

)
. (1.15)

The asymptotic behavior of ξne for t̂→ ±∞ formally translates to the limits

Lne(x) ∼




|x|−aν x→ −∞

|x|θ x→∞.
(1.16)

Absent coarsening physics, the right asymptote reproduces the instantaneous corre-

lation length.

Scaling form of the number of defects

An intuitively appealing picture of the lack of order on length scales greater than the

KZ length is through topologically protected point defects of characteristic separation

lK, and/or defects of dimension p with characteristic separation lK in any hyperplane
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of co-dimension p. This picture is really only meaningful if the separation between

defects is much larger than the equilibrium correlation length; a constraint met only

in the coarsening regime, t � tK. In the coarsening regime, the density of a defect

of dimension p in the hyperplane of co-dimension p should scale as 1/lco(t; τ)d−p. At

fixed positive t̂, this reproduces the celebrated scaling of the defect density with τ ,

Density of defects ∼
(

1

lK

)d−p
∼ τ

aν(d−p)
aνz+1 . (1.17)

The above scaling with τ has been verified in experiments in 0-dimensional annu-

lar Josephson junctions [133] and in non-linear optical and hydrodynamical systems

undergoing steady-state transitions [59, 33]. It is worth noting that the frequently

cited experiments [44, 19] in liquid crystal systems do not test this critical scaling,

but instead test the coarsening scaling forms. Although we have presented the above

as a natural scaling ansatz, it may be derivable from the known scaling of correla-

tion functions, for example, by the methods of Halperin-Liu-Mazenko for classical

transitions [90, 125].

Scaling forms of thermodynamic analogs

The dynamics of classical systems is typically modeled phenomenologically by stochas-

tic differential equations, possibly with conservation laws [99]. It is often useful to

reformulate the stochastic dynamics in d-dimensions in terms of a path integral in

(d+1) [98, 130]. For Gaussian noise, the generating functional of correlation functions

of the fundamental field O(x, t) is

Z[J ] =

∫
DO(x, t) exp

(
−
∫
ddxdt (L+ J(x, t)O(x, t))

)
.
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Here J is the source for O, and L is a local Lagrangian density in which parameters

of the protocol (like τ) appear as couplings. When hyper-scaling is obeyed, all KZ

scaling forms follow from the scaling of the associated free energy.

In this formulation, it is natural to define a time-dependent free energy density.

We divide the (d+1)-dimensional space-time into a stack of spatial slices with volume

Ld and temporal length ∆t. Neglecting boundary effects, we compute the free-energy

density of a slice:

f(t; τ) = lim
L→∞
∆t→0

− log(Z)

Ld∆t
(1.18)

where

Z(t) =

∫
DO exp

(
−
∫

x∈[−L,L]d

ddx

∫ t+∆t

t

dtL
)
.

For time-independent δ, f is also time-independent, and its leading non-analytic

dependence on δ is fna ∼ δνd. When δ varies with time, we conjecture a scaling form

for fna(t; τ) in the KZ limit :

fna(t; τ) ∼ 1

ldK
F
(
t

tK

)
. (1.19)

When t/tK � −1, the system is asymptotically in equilibrium. Thus,

F
(
t

tK

)
∼
(
t

tK

)aνd
when t/tK � −1. (1.20)

This is also the expected asymptotic form of F if the system does not coarsen for

t/tK � 1.
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1.4.2 ECPs

The definition of the scaling limit, the KZ scaling forms of various observables and

their asymptotic behavior when the system is subjected to a non-adiabatic ECP

closely follows the TCP discussion. Qualitatively:

• When t̂ → 0, the system evolution is adiabatic and equilibrium scaling forms

are recovered on the scale of the instantaneous correlation length and time.

• The long-time behavior of a sudden quench to the critical point is recovered in

the limit t̂ → ∞. On a growing length scale lco(t) = t1/z, the system appears

self-similar and satisfies dynamical scaling (Eq. (1.13)). On length scales x

much smaller than lco(t), correlations have relaxed to their critical form, while

for x� lco(t) the system coarsens.

• Scaled times near 1 probe a universal early-time regime of a sudden quench,

i.e. t � ξt,0 where ξt,0 is the relaxation time before the quench. In the sudden

quench, this regime is tied to boundary criticality [104].

When |a|νz = 1 in Eq. (1.4), ξ̇t is a constant for t > τ . By suitably re-defining

constants, Eq. (1.4) can be re-written as :

δ(t) =





δ− t→ −∞
(
θ
t

)1/νz
t� τ .

(1.21)

The key distinction between the marginal ECP and all the other protocols is that

there is only one growing length scale t1/z everywhere in the power-law regime. At

late times, we expect the system to appear self-similar on this scale. This leads us to

the scaling limit : x, t→∞ at fixed θ holding x/t1/z fixed.

GO(t) ∼ 1

t∆/z
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GOO(x, t, t′) ∼ 1

t2∆/z
GOO

(
x

t1/z
,
t

t′

)
. (1.22)

We emphasize that the scaling functions above do not connect to the adiabatic limit.

They are distinct from GeqOO. Unfortunately, this also implies that they necessarily

contain some non-universal data. The source of this non-universality will be clearer

in the example of the quantum Gaussian theory in the next chapter (Sec. 2.2.6), where

we are nevertheless able to identify interesting non-equilibrium behavior.

1.4.3 Quantum systems

We comment below on the major differences that arise in the treatment of quantum

systems.

• The scaling of the correlation functions proceeds as before. However, the analogs

of thermodynamic quantities of interest for protocols that begin with the system

at T = 0 are now the excitation energy density in excess of the energy density

in the adiabatic ground state, or “heat” density [51] 6, and the entropy density

for which plausible definitions can be constructed from the diagonal entropy

[145, 144] or the entanglement entropy of a macroscopic subregion. These are

respectively expected to exhibit the scaling forms

q(t; τ) ∼ 1

ld+z
K

Q
(
t

tK

)
(1.23)

s(t; τ) ∼ 1

ldK
S
(
t

tK

)
. (1.24)

For an isolated quantum system, by construction of the protocol, s and q are

constant as t→ −∞. As t̂→∞, s and q also tend to a constant provided the

system thermalizes to the Gibbs or the generalized Gibbs ensemble.

6See [144] for a discussion of why the total excitation energy is sensibly called heat. For infinite
systems where one needs to work with intensive quantities though, a heat density is not a useful
concept especially when macroscopic subregions exhibit thermal equilibration.

22



• For protocols that begin with the system in equilibrium at T > 0, a new dimen-

sionless parameter, kBT/(~/tK), now enters the quantum problem. Along with

the quantities held fixed as the quench time is taken to be arbitrarily large in

Sec. 1.4.1, we also hold TtK fixed. For example, the scaling form for the 2-point

unequal time correlation function is now

〈O(0, t)O(x′, t′)〉τ,T ∼
1

l2∆
K

GOO
(
x′

lK
,
t

tK
,
t′

tK
, T tK

)
.

The definition of the entropy goes through as before but the excitation en-

ergy density is now measured with respect to the energy density that would be

obtained in a strictly adiabatic evolution 7.

• The excess energy density in the system is vanishingly small in the limit of large

τ . Thus, the evolution of the system on the scales tK, lK is effectively in the

quantum critical region at non-zero temperature T . If the phase transition does

not persist at T 6= 0, the scaling phenomenology is as presented in the previous

section. However, if there is a transition, two diverging KZ time scales, one

associated with the classical transition and the other with the quantum, emerge

in the τ →∞ limit and a richer scaling limit can be formulated.

• Integrable quantum systems allow the existence of sharply defined quasiparti-

cle excitations; their density resolved by momentum can serve as a uniquely

quantum observable for CCPs and ECPs. When the vacuum is not unique, it

is not straightforward to define quasiparticles and separate them from domain

walls and other topological defects. Currently, we are not aware of an inte-

grable system above one dimension where this question can be properly posed

7For an isolated system at finite temperature, the dynamics involves starting with a typical state
with the thermodynamic limit energy density. At high temperatures, a typical state must look
“classical”; this suggests that the behavior of the entanglement entropy and issues of many-body
localization [5] need further examination.
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[191] (in one dimension there is no real distinction between quasiparticles and

domain walls). Note that the definition of the thermodynamic quantities of

heat and entropy do not rely on integrability. For instance, in a cyclic process

like a CCP, q(t; τ) when t� tK is the difference of the system’s energy density

between symmetric time points.

1.5 Comments

We conclude this chapter with four comments.

• The Kibble-Zurek picture was initially proposed for a linear ramp through a

thermal transition. The time-dynamics was decoupled into three regions: the

adiabatic regime for t < −tK, the diabatic or sudden or impulse region from −tK
to tK when the system is frozen, and the post-quench regime for t > tK when

the system is unfrozen and evolves through domain growth [209], defect-anti-

defect annihilation etc. Recently [14], this picture was extended to account for

evolution in the impulse regime using critical coarsening results. The KZ scaling

forms introduced in this article also probe dynamics in the impulse regime with

the adiabatic and the post-quench regimes acting as asymptotic limits.

• A finite system dimension L can be readily accommodated in our scaling forms

in the combination L/lK. The results obtained through adiabatic perturbation

theory [143, 146] can therefore be fitted within this framework.

• We expect that the KZ scaling forms are unchanged by the inclusion of inter-

action terms in the dynamics that are irrelevant to the critical theory8. In the

classical setting, the reformulation of the dynamical problem in d-dimensions as

an inhomogenous statistical problem in (d+1)-dimensions allows us to establish

8We exclude dangerously irrelevant operators from this discussion as they will modify the asymp-
totic behavior in the KZ scaling limit.
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this by standard power-counting arguments. The quantum case is more subtle

and needs to be treated case-by-case.

• As the free Gaussian theory is the stable critical point in d > 4, the KZ scal-

ing forms that we calculate below in that theory are universal for d > 4. In

the classical setting, interaction terms in the Gaussian theory can be treated

as perturbations to the action defined in Sec. 1.4.1 and will modify dynamics

only on time-scales tint that are parametrically larger than tK. In the quantum

case, these terms induce scattering between the free quasi-particles of the un-

perturbed theory on time-scales tint that are parametrically larger than tK. In

either case, tint/tK →∞ in the scaling limit and the effects of these terms drop

out.
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Chapter 2

KZ scaling functions in model

theories

Near a critical point, the equilibrium relaxation time of a system diverges and any

change of control/thermodynamic parameters leads to non-equilibrium behavior1.

The Kibble-Zurek problem is to determine the dynamical evolution of the system

parametrically close to its critical point when the change is parametrically slow. In

the previous chapter, we presented an extended and pedagogical discussion of the

universal content in the Kibble-Zurek problem. We argued that the non-equilibrium

behavior in the limit of an infinitely slow ramp is controlled entirely by the critical

point and the details of the trajectory of the system in parameter space (the proto-

col) close to the critical point. Together, they define a universality class consisting

of critical exponents—discussed in the seminal work by Kibble and Zurek—and scal-

ing functions for physical quantities, which have not been discussed hitherto. In the

previous chapter, we remedied this oversight in the literature by formally defining

a scaling limit for physical quantities near classical and quantum transitions for dif-

1Chapter based on work with Amir Erez, Steven S. Gubser and S. L Sondhi [39].
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ferent sets of protocols and discussing the physics that the scaling functions could

capture.

In this chapter, we discuss the physics that the scaling functions do capture in a

few model theories. We compute and discuss a few scaling functions in three model

theories: the classical O(N) vector model endowed with Model A dynamics in the

Gaussian and large-N approximations and the quantum O(N) model in the Gaussian

approximation. We further prove that the scaling functions are universal with respect

to protocol choice. We also show that the end-critical protocol (ECP) in which the

critical point is approached asymptotically at late times with the system marginally

out of equilibrium leads to logarithmic violations to scaling and anomalous dimensions

even in the simple Gaussian problem.

We note that a recent paper by Kolodrubetz et al. reports analogous results for the

transverse field Ising model in (1+1) dimensions [117]. This work complements our

own results on the quantum Ising universality class above the upper critical dimension

(3 + 1) where the critical theory is Gaussian2.

2.1 Classical Systems with Model A dynamics

We illustrate the universality of the KZ scaling limit and explicitly compute scaling

functions of a vector operator ~φ in the simplest setting: Model A [99] dynamics with

a Landau-Ginzburg-Wilson (LGW) free energy. Model A dynamics is dissipative

and obeys no conservation laws. Let ~φ be an N -component vector field in d = 3

dimensions. The dimensionless LGW free-energy and the equation of motion are,

2Anticipating our classification, this statement is strictly true only for the cis- and end-critical
protocols. The dangerously irrelevant interaction needs to be included to properly study the trans-
critical protocols.
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respectively,

F =

∫
d3x

[
1

2

(
|∇~φ|2 + r0|~φ|2 +

u

2N
|~φ|4
)
−
√
Nhαφα

]

∂φα
∂t

= − ∂F
∂φα

+ ζα . (2.1)

x and t are dimensionless and measured in units of the inverse cutoff Λ−1 and Λ−z

respectively. ζα is a zero-mean spatially uncorrelated white-noise stochastic variable

for every α. The variance of ζα is chosen to be 2 so that the long-time limit of the

structure factor computed from the equation of motion when F is time-independent

is equal to the equilibrium structure factor:

〈ζα(x, t)ζβ(x′, t′)〉 = 2δαβδ
3(x− x′)δ(t− t′) . (2.2)

2.1.1 Gaussian Limit

In this limit, we drop the φ4 term in F . The critical point is at r0 = 0, hα = 0,

i.e. at the origin in the (r0, h
α) parameter space. Let us restrict ourselves to paths

in this space that lie along the axes and include the origin. The equilibrium theory

is sensible only at the origin and when r0 > 0. We can therefore study CCPs and

ECPs along the non-negative r0 axis (δ = r0) . Luckily, we can also study TCPs

along the same axis as the time-dependent fields are finite even when r0 < 0. This

physically uninteresting protocol is pedagogically useful. The critical exponents for

all such paths are ν = 1/2, z = 2. In the remainder of the discussion, δ = r0 and

hα, u = 0.

Eq. (2.1) is linear in ~φ and hence diagonal in Fourier space. It can be explicitly

solved for any protocol δ(t; τ) = r0(t; τ) and a fixed noise realization:

φ(k, t) =

∫ t

−∞
dt′ e−

∫ t
t′ dt

′′(k2+r0(t′′;τ)) ζ(k, t′) . (2.3)
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We have dropped the component label of ~φ for brevity. Memory of the initial con-

dition at t = −∞ is lost on the time-scale 1/r0(−∞; τ) and is therefore absent in

the solution above. The equal time structure factor for each component, defined as

〈φ(k, t)φ(k′, t)〉 = (2π)3δ3(k + k′)Gφφ(k, t; τ), is

Gφφ(k, t; τ) = 2

∫ t

−∞
dt′ e−2

∫ t
t′ dt

′′(k2+r0(t′′;τ)) . (2.4)

Scaling limit for tanh TCP

The universality of the scaling limit with respect to details of the the protocol is

already apparent when we consider the simple TCP r0(t; τ) = − tanh(t/τ). This is

an example of a protocol that is linear near the critical point, i.e. a = 1 in Eq. (1.2).

Consequently, the KZ time and length scales are

tK =
√
τ , lK = τ 1/4.

Re-writing Eq. (2.4) in units k̂ = klK and t̂ = t/tK,

Gφφ(k, t; τ) = 2tK

∫ t̂

−∞
dt̂′e−2

∫ t̂
t̂′ dt̂

′′(k̂2−tK tanh(t̂′′/tK)) .

As τ →∞, tK tanh(t̂′′/tK)→ t̂′′ and the KZ scaling form of the two-point equal time

correlation function is

Gφφ(k, t; τ) ∼ l2KGφφ(k̂, t̂)

∼ l2K

∫ t̂

−∞
2dt̂′e−2

∫ t̂
t̂′ dt̂

′′(k̂2−t̂′′) . (2.5)

Observe that the scaling function only depends on the leading behavior of the protocol

near the critical point. For all protocols such that r0(t; τ) ∼ −t/τ in the vicinity of
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zero time, the scaling form of the structure factor is the expression that we have just

derived.

Scaling functions for all TCPs and CCPs

Wick’s theorem informs us that all higher order cumulants of φ only depend on

Gφφ. The details of the protocol enter the expression of Gφφ only in the combination

tKr0(t; τ). In the scaling limit, for any a in Eq. (1.2), it is easily seen that

tKr0(t; τ) ∼
(−t
tK

)a
. (2.6)

The scaling function of the equal time correlation function for any protocol with the

near-zero behavior in Eq. (1.2) is therefore

Gφφ(k̂, t̂) = 2

∫ t̂

−∞
dt̂′ e−2

∫ t̂
t̂′ dt̂

′′(k̂2+(−t̂′′)a) .

As seen from the Fig. 2.1 for the linear TCP, Gφφ and Lne match equilibrium forms

as t̂→ −∞ and k̂ � 1:

l2KGφφ(k̂, t̂) ∼ ξ2 Geq
φφ(kξ(t)) ≡

ξ(t)2

k2ξ(t)2 + 1

ξne ∼ lKLne ≡
1

(−t)1/2
. (2.7)

Observe that Gφφ(0, 0) is finite, indicating the suppression of order on length scales

longer than lK. As t̂ → ∞, the non-equilibrium correlation length grows without

bound for TCPs due to the inverted potential. For CCPs, on the other hand, all

scaling forms asymptote to the equilibrium forms at large positive times.

In Appendix 2.A, we compute the partition function in (3+1) dimensions and

demonstrate the validity of the scaling hypothesis for the free-energy density fna.
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Figure 2.1: Gφφ(k̂, t̂) vs k̂ at fixed time slices for the linear TCP. The blue, red and
green solid lines are respectively at t̂ = 0.2, 0 and −0.2. The green dashed line is
the correlator if the system were in equilibrium at t̂ = −0.2. Inset: The scaling
form of the non-equilibrium correlation length vs t̂ in solid. The dashed line is the
instantaneous correlation length in units of lK, ξ(t; τ)/lK.

Scaling functions for the ECPs

The scaling functions of the non-adiabatic ECPs is identical to that of the

TCPs/CCPs when a < −1/νz. Their asymptotic behavior may also be verified

to be in agreement with Sec. 1.4.2. The more interesting case is the marginal ECP

r0(t) = θ/t. Independent of the early-time regularization on the time-scale τ , Gφφ

has the asymptotic form in Eq. (1.22):

Gφφ(k, t) ∼ tGφφ(k
√
t)

Gφφ(x) ≡ 4e−2x2

x4θ+2

∫ x

0

dy e2y2

y4θ+1.
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As promised, Gφφ(x) is distinct from Geq
φφ(x) and the non-equilibrium correlation length

is a multiple of the instantaneous one ξ(t) =
√
t/θ at late times. The system exhibits

critical coarsening and relaxes to the critical point as t→∞.

2.1.2 Large-N limit

In the infinite N limit, the LGW theory is exactly solvable in terms of 1 and 2-point

correlators. All higher order correlators follow by the application of Wick’s theorem.

The 1 and 2 point correlators are known exactly in equilibrium and can be reduced

to quadrature with Model A dynamics. The theory in d = 3 that we discuss here

exhibits non-trivial critical behavior and affords us a probe of symmetry-breaking

paths and coarsening physics.

Assume in Eq. (2.1) that hi 6= 0 for i = 1 and zero otherwise. This specifies all

one-point correlators for i > 1 to be zero. The two-point connected correlator for

every component is the same and is a function of the variable m2 = r0 + u〈φ2
α〉. The

well-known self-consistency equations relating 〈φ1〉, Gφφ and m2 are

r0 + u

(∫ Λ d3k

(2π)3
Gφφ(k) +

〈φ1〉2
N

)
= m2 (2.8)

〈φ1〉 =

√
Nh1

m2
, (2.9)

where Λ is a cutoff on the maximum allowed |k|.

The third equation that completes the theory in equilibrium is,

Geq
φφ(k) =

1

k2 +m2
. (2.10)

The critical point in the equilibrium theory is at r0 = rc = −uΛ/2π2 and hα = 0.

The two relevant operators that couple to r0 and hα are respectively |~φ|2 and φα, with

scaling dimensions 1 and 5/2 in d = 3. They are respectively non-symmetry breaking
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and symmetry-breaking. Consequently, we can study all three kinds of protocols

along the r0 axis (ν = 1, z = 2) or along any of the hα axes (ν = 2/5, z = 2).

The equation of motion (2.1) for Model A dynamics is

∂φα(k, t)

∂t
= −(k2 +m2)φα(k, t) + hα(2π)3δ3(k) + ζα . (2.11)

This specifies the functional dependence of Gφφ(k, t; τ) on m2 and completes the

dynamical theory.

Scaling limit for TCPs and CCPs along the r0 axis

Here hα = 0 and δ(t; τ) = r0(t; τ)− rc. Eq. (2.9) implies that the one-point correlator

for all components is zero: 〈φα〉 = 0. We henceforth drop component subscripts. We

will make frequent use of the Gaussian result (2.4), which we reproduce here for the

reader’s convenience:

Gφφ(k, t; τ ; r0) = 2

∫ t

−∞
dt′ e−2

∫ t
t′ dt

′′(k2+r0(t′′;τ))

The notation Gφφ(k, t; τ ; r0) emphasizes that Gφφ depends on r0(t; τ).

Observe that the solution to Eq. (2.11) is exactly that of the free Gaussian case—

Eq. (2.3)—with r0(t; τ) replaced by m2(t; τ). Consequently, the third equation that

completes the dynamical theory is

Gφφ(k, t; τ) = Gφφ(k, t; τ ;m2) , (2.12)

where the right hand side refers to the Green’s function of (2.12) with r0(t; τ) replaced

by m2(t; τ). The critical value rc of r0 in this notation is,

rc = −u
∫ Λ d3k

(2π)3
Gφφ(k, t; τ ; 0) . (2.13)
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One can now re-express (2.8) as

m2(t; τ) = δ(t; τ) + u

∫ Λ d3k

(2π)3

[
Gφφ(k, t; τ ;m2)

−Gφφ(k, t; τ ; 0)
]
. (2.14)

Let us now take the scaling limit. The KZ length and time scales are tK =

(τa/δ0)
2

2a+1 and lK =
√
tK. Dimensional considerations imply that the scaling form

of m2(t; τ) is m2(t; τ) ∼ M2(t̂)/l2K. Using the leading order behavior of the protocol

near the critical point, δ(t; τ) ∼ (−t̂)a/lK, we derive the following scaled form of

Eq. (2.14):

(−t̂)a + 2u

∫ t̂

−∞
dt̂′
∫ ∞ d3k̂

(2π)3

(
e−2

∫ t̂
t̂′ dt̂

′′(k̂2+M2)

−e−2
∫ t̂
t̂′ dt̂

′′k̂2
)

= 0 (2.15)

We note the following points:

1. The cutoff Λ appears in the unscaled equation only as the upper limit on the

momentum integral. In the scaling limit, the upper limit ∼ ΛlK → ∞ and the

scaled relation is cutoff-independent.

2. The scaled relation, being a limiting form, is simpler than the unscaled one.

3. The relation above is unchanged by keeping higher order terms in r0(t; τ). This

is tantamount to proving the universality of all correlators with respect to details

of the protocol away from the critical point in the scaling limit.
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Figure 2.2: Gφφ(k̂, t̂) vs k̂ at fixed time slices for the linear TCP. The blue, red and
green solid lines are respectively at t̂ = 0.5, 0 and −0.5. The green dashed line is the
correlator if the system were in equilibrium at t̂ = −0.5. Inset: Lne vs t̂ (solid) and
ξ/lK (dashed).

Scaling forms for the linear TCP

Fortunately, Eq. (2.15) can be solved when a = 1. The choice u =
√

8π simplifies

pre-factors and makes apparent the form of the solution. Defining

f(t̂) ≡ e2
∫ t̂
0 dt̂
′M2(t̂′) or M2(t̂) =

f ′(t̂)

2f(t̂)
, (2.16)

the solution is

f(t̂) = −31/3Γ(1/3)e2t̂3/3(t̂Ai(t̂2) + Ai′(t̂2)) .
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Ai is the Airy function of the first kind and Γ is the gamma function. We may reduce

Gφφ to quadrature:

Gφφ(k̂, t̂) = 2

∫ t̂

−∞
dt̂′e−2

∫ t̂
t̂′ dt̂

′′(k̂2+M2(t̂′′)),

and compute all higher cumulants using Wick’s theorem.

As t̂ → −∞, we recover the equilibrium behavior in Eq. (2.7) with ξ ∼ 1/(−t).

The results from the coarsening literature [22] in this theory are :

lco(t) =
√
t

Gco
φφ(klco(t)) = exp(−2(klco(t))2).

We should therefore expect that Lne ∼
√
t̂ and Gφφ ∼ t̂5/2 exp(−2k̂2t̂) as t̂→∞. As is

seen from Fig. 2.2, both asymptotes are correctly predicted for Lne. We have checked

this for Gφφ as well. This verifies that the asymptotes predicted in Eq. (1.16) and in

Eq. (1.14) are correct in this theory.

Scaling limit for TCPs and CCPs along h1 axis

Setting r0 = rc, we can explore symmetry-breaking protocols along the h1 axis. The

implicit relation from the self-consistency equations for the linear TCP is




t̂∫

−∞

dt̂′ t̂′
√
f(t̂′)




2

=

t̂∫

−∞

dt̂′
f(t̂)− f(t̂′)

|t̂− t̂′|3/2
. (2.17)

Although scaling is guaranteed, we cannot proceed further as the solution to this

equation is not known.
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2.2 Gaussian Quantum Field Theories

We now turn to the KZ problem near quantum critical points. Again, it will prove

instructive to investigate the class of ferromagnetic critical points with O(N) sym-

metry. We will consider the simplest non-trivial case, that of Gaussian scalar fields.

The Lagrangian we consider is,

L =
1

2

[
∂µφ∂

µφ−m2φ2
]
, (2.18)

where we permit m2 to depend on time (δ ≡ m2) . Standard critical exponents include

z = 1 (owing to relativistic symmetry when m is a constant) and ν = 1/2 (owing to

the Yukawa form of the Green’s function for static sources when m is a constant).

2.2.1 Second quantization

The second quantized treatment of φ is based on the expansion

φ(x, t) =

∫
ddk

(2π)d
eik·xφk(t) , (2.19)

where we set

φk(t) = fk(t)ak + f ∗−k(t)a†−k (2.20)

and impose the commutation relations

[ak, a
†
k′ ] = (2π)dδd(k− k′) . (2.21)

Owing to rotational symmetry, the mode functions fk(t) and Green’s functions only

depend on the magnitude of the momentum k. The mode functions fk(t) satisfy the

mode equation [
d2

dt2
+ Ω2

k(t)

]
fk(t) = 0 , (2.22)
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where

Ω2
k(t) ≡ k2 +m2(t) . (2.23)

One must also impose the Wronskian condition

fkḟ
∗
k − ḟkf ∗k = i (2.24)

in order to obtain standard commutation relations between φk and its conjugate

πk = φ̇†k. Once the mode functions fk are specified, a Fock space vacuum |0〉 can be

defined through the conditions ak|0〉 = 0.

In general, Eq. (2.22) is hard to solve exactly. However, the techniques of WKB

provide an approximate solution when Ωk is real, positive and varying “slowly

enough”; to this end, let us define the oscillatory, positive frequency WKB solution:

f̃k(t) =
1√

2Ωk(t)
exp

{
−i
∫ t

dt′Ωk(t
′)

}
, (2.25)

where the lower limit of integration can be specified at our later convenience. If one

defines ãk(t) through the equations φk(t) = f̃k(t)ãk(t) + f̃ ∗k (t)ã†−k(t), and requires

[ãk(t), ã†−k(t)] = (2π)dδd(k − k′) for all t, then (f̃k(t), f̃
∗
k (t)) and (fk(t), f

∗
k (t)) are

related through the standard Bogoliubov transformation.

As m2 is slowly varying and positive at large negative times, the evolution is adi-

abatic and we require that the fk coincide asymptotically with the positive frequency

WKB solutions f̃k as t → −∞. Thus |0〉 is the “out” vacuum in the parlance of

[15, 113], and we assume that our system has been prepared in this vacuum. All

expectation values unless otherwise indicated are with respect to this state.
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2.2.2 The scaling limit

In the classical context, we first solved the complete dynamical problem for arbitrary

initial condition and protocol choice. We then established that all local physical

quantities reduced to universal forms independent of the details of the protocol away

from the critical point and the initial conditions in the KZ scaling limit. We repeat

the same exercise here by using WKB methods to solve Eq. (2.22) for a general

TCP/CCP in m2(t; τ).

Assume that the system is initially prepared in the vacuum state. The solution to

Eq. (2.22) is well-approximated by the positive oscillatory WKB solution f̃k at early

times, and by a linear combination of the WKB solutions, f̃k and f̃ ∗k , at late times,

as long as the frequency, 1/Ωk, is much larger than the rate at which the frequency

changes, |d log Ωk/dt|. This yields the condition, |dm−1/dt| � 1. Within the window

|t| < τ , we use the leading order expansion for m2(t; τ) in t/τ ,

m2(t; τ) = m2
0

(−t
τ

)a [
1 + a1

t

τ
+ . . .

]
, (2.26)

to conclude that the WKB solutions are valid as long as |t| � tK or |t̂| � 1. Note

that tK using Eq. (1.5) is,

tK = τ
a

2+a/m
2

2+a

0 . (2.27)

Directly solving the mode equation using the expansion in Eq. (2.26) yields a solution

valid in the region |t| � τ or |t̂| � τ/tK. Thus, the overlap in the ranges of the validity

of the direct solution and the WKB one is:

1� t̂� τ

tK
. (2.28)

We are now in a position to take the KZ scaling limit whereby τ → ∞ and all

quantities are measured in units of the KZ length and time. We first notice that the
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region of overlap in Eq. (2.28) diverges. The mode equation near t = 0 also simplifies

in scaled units. We see from Eq. (2.24) that fk carries dimensions of
√
t, so its scaling

form is

fk ∼
√
tK f̂k̂ , (2.29)

where k̂ = lKk as usual and lK = tK. The scaled mode equation in the window |t| < τ

before any limits are taken is

[
d2

dt̂2
+ Ω̂2

k̂
(t̂)

]
f̂k̂ = 0 , (2.30)

where Ω̂2
k = k̂2 + m̂2(t̂) and

m̂2(t̂) = (−t̂)a
[

1 + a1
tK t̂

τ
+ a2

(
tK t̂

τ

)2

+ . . .

]
. (2.31)

In the KZ scaling limit, tK/τ → 0 and the corrections in the square bracket vanish,

resulting in the simpler scaled mode equation,

[
d2

dt̂2
+ k̂2 + (−t̂)a

]
f̂k̂ = 0 . (2.32)

The goodness of the approximation is parametrically controlled by the smallness of

the parameter tK/τ . Corrections to the diverging overlap in the ranges of the validity

of the solution to the scaled equation above and the WKB one is also controlled

by the same small parameter tK/τ . Thus, the solution to Eq. (2.32) picked out by

starting with a positive frequency WKB solution at early times is the same as the

one picked out by applying the early-time positive frequency condition directly to the

solutions of the limiting equation, Eq. (2.32). This is the sense in which the mode

functions in the scaling limit are universal. It is worth noting that these considerations

are merely an elaboration of the standard arguments used to justify turning point
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formulas in standard WKB treatments of the time-independent Schrödinger equation

in the geometric optics limit.

Finally, let us note that the above considerations will not apply to the marginal

ECP. For a given non-universal regularization of the protocol at small time (t < τ),

the direct solution to the mode equation in the power-law regime (t � τ) has no

overlap with the positive frequency WKB solution at early times. As we discuss

later, this implies that some information about the short time regularization must

enter the scaling limit.

2.2.3 Quasi-particles, heat density and diagonal entropy

As the Gaussian problem is integrable, quasi-particles are well-defined and infinitely

long-lived. The quasi-particle number at momentum k, Nk, is defined as the expec-

tation value of the occupation of mode k and has the scaling form,

Nk̂(t̂) ≡ 〈ã†k(t)ãk(t)〉

=
1

2|Ω̂k̂|
|∂t̂f̂k̂ + iΩ̂k̂f̂k̂|2 . (2.33)

The excess energy density is given by q(t; τ) =
∫
ddk/(2π)dΩkNk and is easily seen to

obey the scaling form conjectured in Eq. (1.23). A definition of the entropy density

of the system at each instant of time is through the diagonal entropy density. The

diagonal entropy density, s, is the entropy density of the diagonal components of the

density matrix ρ(t; τ) in the many-body adiabatic basis. In the Gaussian problem, s

is additive in the label k and this definition simplifies to,

s(t; τ) = −
∫

ddk

(2π)d

∑

m

ρmk,mk log(ρmk,mk) .
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Here ρmk,mk is the absolute value squared of the overlap between the time-evolved

wave-function |ψ(t)〉, and the mth excited state of the harmonic oscillator labeled by

k. The integral only runs over half the volume in k-space as the modes, k and −k,

are coupled by the Hamiltonian. ρmk,mk can be directly computed in the Schrödinger

picture because the time-evolved wavefunction is known in terms of the mode func-

tions. In the eigenbasis of the operator φk defined in Eq. (2.20), the wavefunction is

a Gaussian [49],

〈φk|ψ〉 ∝ exp

[
−
∫

ddk

(2π)d

(
1

|fk(t)|2
− i ḟk(t)

fk(t)

)
φkφ−k

]

up to normalization and time-dependent phases. In the scaling limit, fk(t) ∼
√
tKfk̂(t̂)

and s has the scaling form predicted in Eq. (1.23). As all that is at issue is the scaling

of the mode functions fk(t), the scaling forms of correlation functions may also be

easily verified.

Gφφ(k, t; τ) ≡ |fk(t)|2 ∼ tK|f̂k̂(t̂)|2 ∼ tKGφφ(k̂, t̂) . (2.34)

2.2.4 Linear protocol

We now turn to a particular protocol, namely the linear quench, where the KZ time

is tK = (τ/m2
0)1/3. For this case the mode equation can be solved in closed form to

give

f̂k̂(t̂) =

√
π

2

[
Bi(t̂− k̂2) + iAi(t̂− k̂2)

]
, (2.35)
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where Ai and Bi are Airy functions of the first and second kind. The scaling function

of the two-point function from Eq. (2.34) is:

Gφφ(k̂, t̂) =
π

2

(
Ai2(t̂− k̂2) + Bi2(t̂− k̂2)

)
. (2.36)

As a check we may retrieve the equilibrium result when t̂→ −∞ holding kξ or k̂/
√
−t̂

fixed.

Gφφ(k̂, t̂) ∼ 1

2Ω̂k̂

. (2.37)

The equilibrium result is not retrieved when t̂→∞ because of the pathology of the

inverted φ2 term when t̂ > 0. Instead, Gφφ grows exponentially with t̂. From Gφφ we

can calculate the non-equilibrium correlation length,

ξne ∼ tK

√
∂t̂(Ai(t̂)2 + Bi(t̂)2)

Ai(t̂)2 + Bi(t̂)2
. (2.38)

whose scaling form Lne is plotted in Fig. 2.3(a). At large positive t, Lne grows poly-

nomially instead of exponentially with time, despite the instability of the adiabatic

theory with an inverted φ2 term. As the adiabatic problem is pathological for t̂ > 0,

we can only sensibly talk of quasiparticle occupations and thermodynamic quanti-

ties as long as t̂ ≤ 0. In Fig. 2.4, we plot Nk̂(t̂) and Sk̂(t̂) for various values of k̂

(the behavior of the excess energy density can be inferred from the number of quasi-

particle excitations). The contribution to the total quasi-particle density from the

high-wavenumber (k̂ �
√
−t̂) modes for t̂� −1 is finite only if d < 6:

∫ ∞
√
−t̂

ddk̂

(2π)d
Nk̂(t̂) ∼

1

(−t̂)3−d/2
if d < 6.
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Figure 2.3: Gφφ for the linear TCP. The blue, red and green solid lines are respectively
at t̂ = 0.5, 0 and −0.5. The green dashed line is the correlator if the system were in
equilibrium at t̂ = −0.5. Inset: Lne vs t̂ (solid) and ξ/lK (dashed).

The total quasi-particle density, and consequently the energy and entropy density, are

ill-defined in the scaling limit within this integrable model when d ≥ 6. Additionally,

observe that N0̂ diverges at t̂ = 0 because the gap, Ω0, between the ground and

excited state of the oscillator at k̂ = 0 closes at t̂ = 0.
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Figure 2.4: Left: Quasiparticle number Nk̂(t̂) for k̂ = 0, 0.25, 0.5. Right: Diagonal

entropy Sk̂ for k̂ = 0, 0.01, 0.1, 1 from top to bottom in the linear TCP.
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2.2.5 CCP - Quadratic protocol

We now turn to a case where the adiabatic problem is well-defined for all t̂ – the

quadratic CCP. The KZ time here is tK = (τ/m0)1/2. The scaling forms of the mode

functions and the equal-time two point function are :

f̂k̂(t̂) = 2−1/4e−
πk̂2

8 D−1+ik̂2

2

(−
√

2e−
iπ
4 t̂)

Gφφ(k̂, t̂) =
e−

πk̂2

4√
2
|D−1+ik̂2

2

(−
√

2e−
iπ
4 t̂)|2. (2.39)

Dν(z) is the parabolic cylinder function.

As t̂→ ±∞ holding kξ or k̂/t̂ fixed, we recover the equilibrium forms,

Gφφ(k̂, t̂) ∼ 1

2Ω̂k̂

. (2.40)

The retrieval of the equilibrium form as t̂ → ∞ is by no means guaranteed. Recent

work [117] suggests that this question is intimately tied to the de-phasing of the off-

diagonal terms in the time-averaged density matrix in the instantaneous eigenbasis.

If the off-diagonal terms do not de-phase, which would be the case for example for

the quartic quench, then equilibrium behavior is not expected as t̂→∞.

The Gaussian theory imposes further structure on correlators because each mo-

mentum mode evolves independently of the others. Consider the time-evolution of

the wavefunction of the harmonic oscillator labelled by k̂ in the Schrödinger picture.

Expanding it in the eigenbasis of the Hamiltonian at time t̂ and suppressing the label

k̂,

|ψ〉 ≈ A0|0(t̂)〉+ A1|1(t̂)〉 . . . .

The time-evolution is adiabatic when t̂� 1 and each |Ai| approaches a constant. The

relative phase between Ai+1 and Ai on the other hand grows as :
∫ t̂

Ω̂k̂(t̂
′)dt′ ∼ t̂2.
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Figure 2.5: Left: Gφφ for the quadratic CCP. The blue, red and green solid lines are
respectively at t̂ = 0.5, 0 and −0.5. The green dashed line is the correlator if the
system were in equilibrium at t̂ = −0.5. Right: Lne vs t̂ (solid) and ξ/lK (dashed).

This is the origin of the oscillations of period 1/t̂ at large positive t̂ at each k̂, seen

for example in Gφφ(k̂, t̂) in Fig. 2.5(a).

The simple definition of ξne in Sec. 1.4.1 has to be modified as Gφφ(k̂, t̂) has multiple

poles in the complex k̂-plane for late times. The pole with the smallest imaginary

part determines the decay constant (1/ξne) over the longest length scales in the two-

point function in real-space. The non-equilibrium correlation length is plotted in

Fig. 2.5(b). As t̂→ ±∞, the envelope of ξne behaves as,

ξne(t̂) ∼
1

|t̂| .

This confirms the prediction in Eq. (1.16) for CCPs with no coarsening physics. For

the reason discussed above, it also exhibits characteristic oscillations of period 1/t̂ at

long times.

Finally, we plot Nk̂(t̂) and Sk̂(t̂) for various values of k̂ in Fig. 2.6. In each

oscillator, the quasiparticles and entropy is essentially produced in the time-interval

|t̂| . 1. At late times, both quantities settle to a constant dependent on k̂. For
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Figure 2.6: Left: Quasiparticle number Nk̂(t̂) for k̂ = 0, 0.25, 0.5. Right: Diagonal

entropy Sk̂ for k̂ = 0, 0.01, 0.1, 1 from top to bottom in the quadratic CCP.

example,

Nk̂(t̂)→ e−πk̂
2

as t̂→∞.

As was the case for the linear quench, the total quasiparticle and entropy density is

finite only if d < 6.

2.2.6 The Marginal ECP

The relativistic Gaussian theory provides an ideal setting to study the new non-

equilibrium states that arise in the marginal ECP. The protocol is defined by

Eq. (1.21) – m(t) smoothly transitions from a constant to θ/t over the time-scale τ

and ξ̇t, the parameter that controls adiabaticity, equals 1/θ for t � τ . Our naive

expectation is that the mode function is of a universal scaling form, fk(t) =
√
tf̂(kt),

in the scaling limit t→∞, k → 0 with kt held fixed.

This expectation is violated on two fronts even in the Gaussian problem. The

first is that the marginal ECP is by construction unable to entire “forget” its early

time regularization. More precisely, observe that our choice of protocols implies that

|dm−1/dt| � 1 when t � τ while |dm−1/dt| = 1/θ when t � τ . The latter result
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shows that for small enough k, it is not possible to reach the power law regime while

remaining adiabatic, in contrast to our discussion of the TCP and CCP cases; thus

we should expect that some non-universal information must make its way into the

putative scaling regime. The second and more striking violation is that of scaling.

When θ > 1/2 and |dm−1/dt| is closer to obeying the condition of adiabaticity, scaling

is violated “mildly” and all physical quantities are periodic functions of log(t). When

θ = 1/2, scaling is violated logarithmically. The most dramatic violation of scaling is

when 0 < θ < 1/2. Here the adiabaticity condition is strongly broken and the scalar

field acquires an anomalous dimension.

Let us now describe how these features emerge in the long time, small momentum

form of the mode functions. The mode equation for t� τ :

(
d2

dt2
+ k2 +

θ2

t2

)
fk(t) = 0. (2.41)

Define λ ≡
∣∣∣
√

1
4
− θ2

∣∣∣ and

h(λ) =





iλ, if θ > 1/2

0, if θ = 1/2

λ, if θ < 1/2.

(2.42)

Setting k = 0, Eq. (2.41) is solved as:

f0(t) =





√
t
(

2−λu
Γ(1+λ)

(
t
τ

)h(λ)
+ −2λΓ(λ)v

π

(
t
τ

)−h(λ)
)
, if θ 6= 1/2

√
t (u+ v log

(
t
τ

)
), if θ = 1/2 .

The units of t are chosen such that f0(τ) ∼ √τ . The particular λ-dependent pre-

factors are chosen to simplify the solution at all k. v and u are non-universal constants

in the equation above. They depend on the detailed pre-asymptotic form of the
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protocol and are fixed by the solution to the differential equation with the full time

dependance of the mass.

Let us now turn to k 6= 0. For times greater than τ , the mode equation is solved

by the linear combination,

fk(t) =
√
t
[
cJ(k) Jh(λ)(kt) + cY (k)Yh(λ)(kt)

]
. (2.43)

Jν(x) and Yν(x) are the Bessel functions of order ν of the first and the second kind.

The functions cJ(k) and cY (k) are presently undetermined except for the requirement

of smoothness in k. However, if we examine the region t � τ at small kt, we can

obtain their leading order behavior by requiring that they match smoothly to the

k = 0 forms presented earlier. This localizes the non-universality to the constants

u, v discussed already. For θ < 1/2 and k smaller than some non-universal k0, this

leads to the leading behavior:

cY (k) = v(kτ)λ

cJ(k) = u(kτ)−λ − v (kτ)λ

π
cot πλ . (2.44)

For θ > 1/2, we simply replace λ by iλ. For θ = 1/2, we find

cY (k) =
π

2
v

cJ(k) = u− v log
kτeγ

2
. (2.45)

γ is the Euler-Mascheroni constant. We emphasize that the mode-function and con-

sequently all physical quantities are well-approximated by Eq. (2.43) with the forms

of cJ and cY above for t� τ and k � k0.

We now turn to the physical implications of these solutions for an arbitrary choice

of (u, v) that satisfy the constraint imposed by the Wronskian condition Eq. (2.24).
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Figure 2.7: Gφφ(kt) and N (kt) vs kt when λ = 0.1 and u/τλ = −2.5i.

First consider the case 0 < θ < 1/2, which is strongly non-adiabatic in the sense that

|dm−1/dt| = 1/θ is greater than 2 and may be large. The mode function in Eq. (2.43)

can be re-written in the form

fk(t) = t1/2
(
t

τ

)λ [
g+(kt) +

(
t

τ

)−2λ

g−(kt)

]
. (2.46)

g+ and g− are linear combinations of the two Bessel functions and involve the con-

stants u, v. Observe that in the limit of large t (t� τ) with kt fixed, the ratio of the

second to the first term in the expression above decreases as (t/τ)−2λ 3. Thus, in the

scaling limit, fk(t) simplifies to

fk(t) ∼ u′t1/2+λf̂(kt) ∼ u′t1/2+λJλ(kt)

(kt)λ
. (2.47)

u′ = u/τλ above. The scaling forms predicted in Sec. 1.4.2 do not hold. Instead, the

form above is the one expected when the field φ has an anomalous dimension λ. The

scaling form of Gφφ with the modified dimension of φ is

Gφφ(k, t) ∼ t1+2λGφφ(kt) . (2.48)

3The reader may worry about dropping the second term at the zeros of g+(kt). Fortunately, the
correction to fk(t) due to g−(kt) at these points decreases as t→∞.
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In real-space, this implies that the equal-time two-point correlator decays as 1/xd−1−2λ

at fixed x/t. Analogously, the quasi-particle number Nk(t) has the scaling form

t2λN (kt). The scaling functions are:

Gφφ(kt) = |u′|2f̂ 2

N (kt) = |u′|2 |(kt)∂ktf̂ + i
√

(kt)2 + (θ)2f̂ |2
2
√

(kt)2 + (θ)2
.

They are shown in Fig. 2.7. Three comments are in order. First, in the marginal

ECP, ξ ∼ t and the time-scale for a change in m is the same as ξ = ξt. We therefore

expect that the non-equilibrium correlation length ξne also grow linearly in time.

This is indeed the case; the oscillations in Gφφ(kt) ∼ t in Fig. 2.7 are of order one

period and indicate a peak at r ∼ t in the real-space correlator Gφφ(r/t). Second,

the excess energy density above the instantaneous vacuum decreases as 1/t1−2λ. The

marginal ECP thus leads the system to the critical point through a family of new,

non-equilibrium states. Finally, all scaling functions are known up to a multiplicative

constant (u′) in the scaling limit.
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Figure 2.8: Gφφ(k, t)/t and Nk(t) vs kt when λ = i plotted at three equally spaced
time on the log(t) scale : t = 10 (red), 10 eπ|λ|/3 (green) and 10 e2π|λ|/3 (blue). The
dashed line is the adiabatic response. (u, v, τ) are chosen to be (

√
3/2, 1, 1).
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Let us consider the case θ > 1/2, which is weakly non-adiabatic in the sense that

|dm−1/dt| = 1/θ is less than 2 and may be small. A re-writing of the mode function

informs us that the scaling is violated only by phases:

fk(t) =
√
t

[(
t

τ

)i|λ|
g+(kt) +

(
t

τ

)−i|λ|
g−(kt)

]
. (2.49)

These phases affect other physical quantities in the scaling limit, but in relatively

mild ways as compared to the previously seen factors of tλ. For instance, at late

times holding kt fixed,

Gφφ(k, t) ∼ tGφφ(kt, ei|λ| log(t/τ)) , (2.50)

where we have expressed ti|λ| = ei|λ| log t in order to emphasize that this quantity is

periodic in log t. The scaling function Nk is also periodic in log t. The two “almost-

scaling” functions Gφφ and Nk(t) are plotted in Fig. 2.2.6 for three equally spaced

values of log t within a decade. The late time behavior of Gφφ in the marginal ECP

differs markedly from the adiabatic response, show as a dashed line in the plot.

The period oscillations in the two-point correlator imply that ξne ∼ t. The smaller

excess energy density proportional to 1/t is an indicator that the system is closer

to being in equilibrium than for the strongly non-adiabatic case 0 < θ < 1/2. In a

sense, the factors of ti|λ| = ei|λ| log t can be regarded as introducing only “logarithmic”

modifications of scaling.

The case θ = 1/2 displays the properties of both the cases discussed above. The

relations in Eq. (2.45) imply the form

fk(t) =
√
t [g+(kt) + log(t/τ)g−(kt)] .

52



At late times with kt fixed, the second term dominates the first and the mode function

has the scaling form

fk(t) ∼ u
√
t log t J0(kt)

All scaling forms are thus modified by pre-factors of powers of log t. The logarithmic

violation of scaling is similar to the weakly non-adiabatic case θ > 1/2, while the

modification of the dimension of φ is similar to the strongly non-adiabatic case. The

quasi-particle number here diverges logarithmically in time.

The excess energy density injected into the system decreases as t increases in the

strictly Gaussian theory. The marginal ECPs thus define a family of non-equilibrium

states that lead to the critical point that are universal when the Gaussian fixed

point is stable. The vanishing excess energy density further suggests that the non-

equilibrium states generated by the marginal ECP survive even when the fixed point

is not Gaussian.

Finally, let us comment on the ECP in the transverse field Ising model in (1+1)

dimensions which is famously a model of free fermions. Here ν = 1 and z = 1 so the

relevant power is now a = 1. The explicit solution of the fermionic mode equations

exhibits the analogs of our weakly non-adiabatic regime with corrections to scaling

that are periodic in log t. Connecting this behavior to our Gaussian results discussed

above by continuation in the number of dimensions is an interesting challenge for

future work.

Analogies to dSd+1/CFTd

We showed above that in the long time limit of the solution to the mode-equation

in the strongly non-adiabatic case Eq. (2.46), the scalar field acquires an anomalous

dimension λ. If we instead took the opposite limit of small time (t ∼ τ), the second
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term is more important that the first and the anomalous dimension of the scalar field

is −λ. Thus, the effective scaling dimension of φ in dimension d is

∆̃± =
d− 1

2
± λ . (2.51)

at short and long times respectively. Readers familiar with the (A)dSd+1/(C)FTd

literature, in particular [178, 202], will note a similarity between the result Eq. (2.48)

and the d-dimensional field theory Green’s function obtained in the presence of a

double-trace deformation. We can make the analogy closer by noting that the modi-

fied scalar field

ϕ ≡ t
d−1

2 φ

obeys an equation of motion which follows from the Lagrangian

L =
1

2

√
− det gαβ

(
−gµν∂µϕ∂νϕ−M2ϕ2

)
, (2.52)

where gµν is the metric of de Sitter space, dSd+1:

ds2 =
L2

t2
(−dt2 + d~x2) . (2.53)

The length scale L is arbitrary. The de Sitter mass must be given by

M2L2 = θ2 +
d2 − 1

4
(2.54)

in order for the equation of motion from Eq. (2.53) to agree with Eq. (2.41). The

dimensions Eq. (2.51) are closely related to the usual ones in dS/CFT:

∆± =
d

2
±
√
d2

4
−M2L2 = ∆̃± +

1

2
. (2.55)
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The difference arises due to an important distinction between the late-time Green’s

function Eq. (2.48) and the d-dimensional field theory two-point function. Examples

of the latter could be computed in dSd+1 in terms of early time (that is, small t)

properties of mode functions associated to the “out” vacuum: that is, mode functions

which are purely positive frequency at late times. Our computation is the reverse of

this, in the sense that we investigate late-time properties of mode functions associated

with an “in” vacuum. Late time corresponds to the deep interior of dSd+1 (more

precisely, it is a corner of the global covering space far from the boundary at t = 0).

Another difference (of lesser consequence) is that in the normal parlance of dS/CFT

[178], time flow would be reversed, so that what we call t = 0 is the far future while

t→∞ is the far past.

In the window kt� 1, fk(t) is k-independent and equal to f0(t):

t
d−1

2 fk(t) ≈ aϕt
∆− + bϕt

∆+ , (2.56)

where bϕ, aϕ are known in terms of u, v, τ , and in particular have a definite ratio.

This setup now bears a strong resemblance to double-trace operator deformations in

AdS/CFT [202]. In AdS/CFT, the relativistic conformal symmetry of the boundary

theory is broken by the multi-trace deformation. The presence of different powers

of x in the real-space Green’s function dependent on the energy scale 1/τ signals a

similar breakdown of scaling. The same can be said of the weakly non-adiabatic case,

but comparisons with a boundary field theory are harder in this case because the

field theory would have to be non-unitary, similar to violations of the Breitenlohner-

Freedman bound [23] in AdS/CFT. However, the dSd+1 formulation (2.52) does offer

some further intuition regarding the weakly non-adiabatic case: Eq. (2.54) shows that

large θ implies large M2L2. This in turn implies that the Compton wavelength of the
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massive scalar is much smaller than the Hubble scale of dSd+1, which is precisely the

condition one needs in order to justify a geometric optics approximation.

2.3 Concluding Remarks

Our primary purpose in the previous two chapters has been to systematize the uni-

versal content of the KZ problem and to emphasize that all physical quantities give

rise to universal scaling functions that span the entire crossover from equilibrium at

early times to the late time state. We have presented model computations that bear

out this logic. Experiments directed towards observing this broader scaling picture

would be highly desirable. We note that the scaling ideas presented here do not rely

on the existence of a local order parameter and generalize straightforwardly to the

Rajantie-Hindmarsh mechanism [97] as we will discuss in the next chapter.

An obvious challenge is to extend such computations to more physically realizable

problems where the field theories are not as simple. Another obvious challenge is to

formulate a renormalization group procedure that makes the universality manifest—

beyond the case of stochastic classical models with the associated functional integral

formalism discussed here.

A byproduct of our analysis has been the identification of an especially inter-

esting ECP which is able to produce anomalous dimensions already at the Gaus-

sian level, through a mechanism similar to the way anomalous dimensions emerge

in (A)dS/CFT. A deeper understanding of this phenomenon and its examination in

interacting contexts is also a fit subject for further exploration.
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2.A Scaling form of f (t; τ ) in the Gaussian theory

with Model A dynamics

To determine the generating functional in one higher dimension, we follow the three

steps prescribed in [130, 98]:

• Define φζ as the solution of the equation of motion in Eq. (2.1) for a given noise

history ζ : J φζ(k, t) = ζ(k, t). J is a linear operator in the Gaussian theory.

• Rewrite Z as
∫
dζP (ζ) exp(Jφζ). The noise distribution, P (ζ), is Gaussian.

• Recognize that the probability distribution for φζ is related to the noise distri-

bution as Pφ(φζ) = P (J φζ)det(J ).

The generating functional of correlation functions of φ so obtained is

Z[J, τ ] =

∫
Dφ det(J ) e

∫
d3kdt (−2|Jφ(k,t)|2+J(k,t)φ(−k,t)) (2.57)

where

J =
∂

∂t
+ k2 + r0(t; τ) . (2.58)

The functional integral is Gaussian, and the free energy density is expressed in terms

of the structure factor in Eq. (2.4) as

f(t; τ) =

∫
d3k

(2π)3
log
[
G−1
φφ (k, t; τ)

]
.

The challenge in identifying fna, even in the time-independent setting, lies in subtract-

ing cut-off dependent terms from f that are analytic in δ. Here, it involves subtracting

the cut-off dependent equilibrium contribution at the critical point, f(0,∞), and two

terms that are linear and logarithmic in the cut-off. On taking the KZ scaling limit
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of the terms remaining, we confirm the scaling form in Eq. (1.19):

fna(t; τ) ∼ 1

ldK
F(t̂)

F(t̂) =
1

6π2

∫ ∞

0

dk̂

(
k̂2

(
2 +

k̂

Gφφ
dGφφ
dk

)
+ 2

(
−t̂
)a
)
.
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Chapter 3

String-Net Coarsening in

Topologically Ordered Systems

3.1 Introduction

The KZ scaling theory introduced in Chapter 1 provides an elegant framework within

which to investigate ramp dynamics of phase transitions beyond those of traditional

symmetry breaking.1 These transitions could involve the destruction of the topo-

logical order of states of matter like spin liquids and the fractional quantum Hall

phases. Topologically ordered phases are not locally distinguished by any order pa-

rameter, but are characterized by emergent gauge fields and fractionalized excitations.

Their non-local structure makes them particularly robust to local perturbations and

well-suited to perform “topological” quantum computation [136]. Despite their ro-

bustness, a strong enough perturbation can drive a transition from a topologically

ordered phase to a trivial or relatively trivial (i.e. one with a smaller gauge group)

phase. For appropriately selected perturbations, this transition will be continuous.

1Chapter based on work with F. J. Burnell, Vedika Khemani and S. L. Sondhi [38].
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This chapter addresses the KZ problem when a system is driven from a topologi-

cally ordered phase to a proximate trivial or relatively trivial phase. We do so for a

class of topological phases that possess lattice realizations where the gauge degrees

of freedom are manifest: these are the toric code/lattice Z2 gauge theory [116, 109]

and the string-net models of Levin and Wen [122] that realize doubled non-Abelian

Chern-Simons theories. By a combination of duality and perturbative arguments, we

show that KZ scaling in the generalized sense of Chapter 1 holds for various observ-

ables even though the canonical KZ signature of a density of topological defects is

not meaningful. We further provide strong arguments that the late time dynamics in

the scaling regime exhibits a slow coarsening of the string-net that is condensed in

the starting topologically ordered state. To our knowledge, this is the first treatment

of a quantum coarsening regime in the dynamics of an isolated quantum system. As

the extended string-nets are central to the topological character of the starting phase

2, their slow decay outside the phase is a (potential) signature of the physics of the

parent phase. The restriction to the scaling limit always brings simplification as par-

ticular gapped degrees of freedom are, at worst, dangerously irrelevant. That is, they

do not affect the scaling regime but do alter the asymptotically long time behavior

of the KZ process.

The most relevant precursor to our work is found in the cosmology literature in the

papers of Rajantie and Hindmarsh [97, 156]. They studied the non-equilibrium dy-

namics of ramps through the finite temperature phase transition in the non-compact

Abelian Higgs model; their protocol moves between the gapless Coulomb phase with

gapped matter to the fully gapped Higgs phase. However, there are three important

differences. First, their work involves finite temperature in an essential way. The

zero temperature limit of their protocol would involve exciting the system in the

gapless phase even before the transition is reached. Second, the non-compactness of

2Sensitivity to the topology of the lattice manifold requires extended degrees of freedom like
strings. The strings form nets as the phase is a liquid.
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their gauge field makes the physics of their Higgs phase qualitatively different from

that of the compact gauge models considered by us. This difference is quite visible

in our choice of observables. Third, we work on the lattice in the “electric flux”

representation, a natural choice in the condensed matter setting, while they work in

the continuum with the vector potential. Thus our discussion of string-net coarsen-

ing has no analog in their formulation. In the condensed matter literature, ramps

across topological transitions[54] in (1+1)D and sudden quenches in one of our model

systems, the perturbed toric code, have been studied before [155, 185]. The sudden

quenches are in a completely different limit from the slow ramps we study here as they

inject a large amount of energy into the system. Finally, low temperature spin ice

exhibits topological order in a classical limit [34] and its dynamics following quenches

is dominated by monopoles of the gauge field. However in this case, non-universal

lattice effects turn out to dominate the long time behavior [35] .

We turn now to the contents of this chapter. We begin in Sec. 3.2 by reviewing the

phase diagram of the Z2 gauge theory coupled to matter and describing the transitions

out of its topologically ordered phase. Readers literate in the canon of topological

phases can skim this section for our notation. Section 3.3 summarizes the results of

a KZ ramp across the pure matter sector of the Z2 theory which has a conventional

symmetry-breaking transition. This section also contains a new analysis of coarsening

in the (2+1)D transverse field Ising model. In 3.4, we discuss our results on the KZ

scaling functions and string-net coarsening for ramps in the pure gauge sector of the

theory, which has a confinement transition without a local order parameter. We then

generalize the scaling theory to a ramp across an arbitrary point on the critical line

in the phase diagram in 3.5. Finally, we turn to generalizations of these results

to phases with non-Abelian topological order in Sec. 3.6; specifically, we discuss a

particular transition from the SU(2)k ordered phases. We end with a discussion of

generalizations to other theories.
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Figure 3.1: A section of the toric-code lattice with operators in the magnetic (left)
and electric (right) bases. Matter (τ) and gauge (σ) variables are located on the
sites and links respectively. The Wm operator (3.4) flips a string of σz variables and
creates a pair of magnetic vortices at its endpoints, while the W e operator flips spins
in the x basis to create a pair of electric charges linked by electric flux.

3.2 Review of the phase diagram of the Z2 Gauge

Theory

The phase diagram of the (d + 1) dimensional Z2 gauge theory with matter [73]

contains a topologically non-trivial (deconfined) phase and a topologically trivial

(confined-Higgs) phase. The topological order in the deconfined phase is described

by the BF theory [93]. We work in d = 2 for which the Z2 theory is precisely (the

topologically ordered) Kitaev’s toric code with perturbations [109]. We start by re-

viewing the key features and the excitation spectrum of the toric code. For a good

set of lecture notes on the toric code, see [110]. We then discuss two perturbations

that drive a continuous transition to a topologically trivial phase.

3.2.1 The perturbed toric code

The toric code [109] is defined in terms of spin-1/2 degrees of freedom that live on

the links l of a 2D square lattice:

HTC = −K
∑

P

BP − ΓM
∑

s

As

62



≡ −K
∑

P

∏

l∈∂P

σzl − ΓM
∑

s

∏

l:s∈∂l

σxl (3.1)

where the As and BP are “star” and “plaquette” operators. s and P denote the

sites and elementary plaquettes of the lattice, while ∂P and ∂l are the boundaries

of plaquettes and links. HTC can be rewritten as a gauge theory with matter by

identifying the σl variables as the gauge degrees of freedom, and introducing new spin

1/2 ‘matter’ variables, τs, on the sites of the lattice. Upon restricting the expanded

Hilbert space to the ‘physical’ subspace of gauge-invariant states

Gs|ψ〉 = |ψ〉, Gs = τxs
∏

l:s∈∂l

σxl , (3.2)

the toric code Hamiltonian (3.1) is equivalent to the gauge-invariant Hamiltonian:

H0 = −K
∑

P

∏

l∈∂P

σzl − ΓM
∑

s

τxs . (3.3)

Note that Gs defines a set of local symmetries at each site since [H0, Gs] = 0 ∀ s.

In the x basis of the spin operators, it is useful to think of τ and σ as the electric

‘charges’ and ‘fluxes’ in the theory respectively: τxs = −1 (+1) if an electric charge is

present (absent) at site s, while σxl = −1 denotes the presence of electric flux on link

l. In this language, we recognize the gauge-invariant condition (3.2) as the lattice

Z2 version of Gauss’s law. In the conjugate z basis, the operator BP ≡
∏

l∈∂P σ
z
l

measures the magnetic flux through the plaquette P .

The model is exactly solvable as both terms in H0 commute with each other

and the gauge constraint Gs. The ground state is charge-free and vortex-free: a

simultaneous +1 eigenstate of τxs and BP for all s, P . As the ground state is free of

charge, it is a loop gas of electric flux. That is, it is an equal amplitude superposition

of configurations where links with σxl = −1 form closed loops. The degeneracy of

the ground state manifold depends on the topology of the lattice; on the torus, it is
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four-fold degenerate. The four ground states cannot be distinguished locally. They

are labelled by the eigenvalues ±1 of the non-local Wilson loop operators W nc ≡
∏

l∈Cnc σ
z
l along the two distinct non-contractible loops Cnc on the direct lattice.

The elementary excitations of the model are gapped and are of two types: e and

m. e denotes the presence of electric charge on site s, while m is a magnetic vortex

on plaquette P characterized by BP = −1. e and m are individually bosonic, but

have mutual semionic statistics. The non-local string operators

W e(s, s′) =
∏

l∈C:
s,s′∈∂C

τ zs σ
z
l τ

z
s′ , Wm(s̄, s̄′) =

∏

l∈C̄:
s̄,s̄′∈∂C̄

σxl (3.4)

defined respectively on the curves C and C̄ on the direct and the dual lattice, create

a pair of electric charges and vortices at their ends as shown in Fig. 3.1.

H0 is robust to small local perturbations and extends to a topological phase.

Nevertheless, a strong enough perturbation will eventually drive a transition into a

trivial phase. The toric code Hamiltonian perturbed by transverse fields is H =

HTC −
∑

l Γσ
x
l + Jσzl ; both perturbations drive continuous transitions to trivial

(spin-polarized) phases when made large. In the gauge-invariant formulation of the

Z2 gauge theory with matter, the perturbed Hamiltonian takes the form

−H = K
∑

P

BP + ΓM
∑

s

τxs + J
∑

l

σzl
∏

s∈∂l

τ zs + Γ
∑

l

σxl . (3.5)

The phase diagram of this theory was explained in detail in the seminal paper by

Fradkin and Shenker [73] and has more recently been confirmed in several numerical

studies [60, 187, 194, 182, 100]. We will now briefly review this model in different

parameter regimes.
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3.2.2 Pure matter theory (Γ = 0)

For Γ = 0, the gauge degrees of freedom are static and frozen into a vortex-free

configuration in the ground state sector. It is therefore convenient to diagonalize H

in the gauge-variant subspace where σzl = 1 for all l and project the eigenstates to

the gauge-invariant subspace afterwards. The Hamiltonian then maps to the (2+1)D

transverse field Ising model (TFIM) for the matter spins:

HTFIM = −J
∑

〈ss′〉

τ zs′τ
z
s − ΓM

∑

s

τxs . (3.6)

On tuning J , the TFIM undergoes a conventional ‘Higgs’ phase transition from a

paramagnetic phase to a symmetry-broken ferromagnetic phase. In a complementary

view, the static electric excitations e defined at the toric code point (Γ = J = 0)

acquire dynamics when J 6= 0 and eventually condense at a critical value of J . The

transition is in the 3D Ising universality class and is detected by the local order

parameter, 〈τ z〉 in the gauge-variant subspace. In the gauge-invariant subspace, τz

maps on to a non-local string operator.

After projection, the state with {σzl = 1} is the vortex-free configuration in the

topological sector defined by the Wilson loop W nc = 1 for both non-contractible

loops on the torus. This choice maps to a TFIM with periodic boundary condi-

tions in both directions of the torus; the remaining three topologically inequiva-

lent vortex-free configurations generate TFIMs with different boundary conditions

(periodic-antiperiodic etc.). The four-fold degeneracy of the topological phase van-

ishes in the Higgs/ferromagnetic phase.
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3.2.3 Pure Gauge Theory (J = 0)

In this case, matter is static. The ground state is in the charge-free sector (τxs = 1),

and the Hamiltonian for the gauge variables in this sector is:

HZ2 = −K
∑

P

BP − Γ
∑

l

σxl . (3.7)

When Γ/K is small, the gauge variables are weakly fluctuating and the elementary

excitations are well-described as vortex pairs. At some critical Γ/K, the vortices

condense and the gauge variables strongly fluctuate past this point. This transition

cannot be diagnosed by a local order parameter. Instead, the vortex condensate phase

is marked by the vortex pair creation operator, 〈Wm〉 6= 0 for vortices separated by

long distances. In the conjugate electric field basis, flux loops become costly as Γ is

increased; hence the transition is from a topological loop gas phase at the toric code

point to a phase in which flux loops become confined.

In a different language, the transition is understood as a deconfinement-

confinement transition for the static electric charge [73] and is diagnosed by

the free energy cost of creating a pair of (infinitely separated) charges. The cost is

finite in the deconfined phase, but infinite in the confined phase, and is equivalent to

the change in behavior of the expectation of the contractible Wilson loop:

W (L) ≡
〈∏

l∈C

σzl

〉
(3.8)

from a perimeter law (W (L) ∼ exp(−L)) to an area-law (W (L) ∼ exp(−L2)). C is a

contractible loop and L is its perimeter.

In d = 2, the Z2 Ising gauge theory is self dual [195, 116]. Thus the pure gauge

theory also maps to a (2+1)D TFIM and the confinement-deconfinement transition

belongs to the 3D Ising universality class. The details of this duality are explained
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in Ref. [116], and have been summarized in Fig. 3.3. We emphasize that despite the

duality, the transition is not described by a local order parameter, as will be even

clearer in Sec. 3.6.

3.2.4 The full phase diagram

The full T = 0 phase diagram of the Ising gauge theory in (2+1)D is shown in

Fig. 3.2. Fradkin and Shenker [73] have shown that the confinement/Higgs transitions

are stable on moving away from the pure gauge/matter axes. Further, the Higgs

and confined phases are smoothly connected. However the diagnostics previously

discussed, like the Wilson loop, no longer differentiate between the two phases. In a

recent paper [84], Gregor et. al. have shown that an appropriately defined line tension,

related to the Fredenhagen Marcu [75, 76] order parameter studied by lattice gauge

theorists, can be used to diagnose the transition everywhere in the phase diagram.

We will use this quantity in combination with the topological ground state degeneracy

to study ramps across generic points on the critical line in the phase diagram.

3.3 Kibble Zurek I - Ramp across the Higgs tran-

sition

The KZ formalism that we developed in Chapter 1 applies straightforwardly to the

linear ramp (a TCP) across the conventional 3D Ising transition along the pure matter

line (Γ = 0) if we identify the control parameter δ with ΓM−ΓMc

ΓMc
. The two exponents

that determine the KZ length and time are ν and z. Near the 3D Ising transition,

ν = 0.627 and z = 1 [68]. To avoid repetition, we only discuss the new analysis of

the scaling content at late times below. All the KZ notation below was introduced in

Chapter 1.
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Figure 3.2: T = 0 phase diagram of the Z2 theory in d = 2 dimensions. The matter
and gauge axes are dual, and the Higgs and charge confined phases are smoothly
connected.

3.3.1 Coarsening

We now address the late time dynamics of the KZ ramp. Recall that in Sec. 1.4.1,

we stated that a classical system quenched to an ordered phase with multiple vacua

undergoes coarsening. In Sec. 2.1.2, we checked this in the example of the classical

O(N) vector model in the large-N approximation. We now generalize this idea to the

KZ ramp in the quantum TFIM.

For simplicity, let us stop the ramp in the ordered phase at some t/tK = t̂s �

1, while continuing to measure time and length on the scales set by tK, lK. The

superscript s denotes stopping. The system initially appears disordered. At infinitely

long times however, we expect that the system is thermal and ordered, as the (2+1)D

TFIM is not known to be integrable. Further, we expect the approach to equilibrium

to be through domain growth or coarsening, driven by the lack of long range order at

late times. The system then locally breaks the symmetry but is globally disordered,
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with long domain walls past the growing length scale, lsco(t) � lK. Assuming local

equilibration, the physics of coarsening can be captured in a hydrodynamic theory

with two slow modes: the non-conserved, scalar order parameter and the conserved

energy density.3 We shall call this Model C in a slight abuse of language (properly it

refers to the theory with thermal noise included [99]). As t̂→∞ , we therefore predict

that the system obeys the dynamic scaling hypothesis, that is, it looks self-similar on

the scale of a growing length lsco(t; τ). Define the two-point function as:

〈τ zs (t)τ zs′(t)〉τ ≡ Gs
ττ(|s− s′|, t; τ), (3.9)

and denote its scaling function by Gsττ . At late times, the dynamical scaling hypothesis

predicts that:

Gsττ
(
x̂, t̂
)
∼ (t̂s)2ν∆Gcoττ (x̂lK/l

s
co) , (3.10)

where lsco(t; τ) = lK

(
t

tK

)1/zd

and zd = 2.

The value of the dynamic exponent, zd, quoted above is only known numerically[115,

114]. Gcoττ is a scaling function that can also be computed within Model C [115, 114,

205, 131] .

The above discussion hinges on two key assumptions. First, the infinite time state

of the system should have long-range order, that is, the late time evolution should

be in the ordered phase. More precisely, we require the excess energy density at the

stopping time q(t̂s; τ) to be smaller than critical energy density qc(t̂
s; τ), below which

the system will be ordered in equilibrium. The dominant contribution to q (at t̂s)

is from the defect density on the scale lK frozen in at t ≈ tK. Assuming that these

defects evolve adiabatically for t > tK, we may conservatively estimate q to scale as

3The momentum density appears as an additional conserved quantity in this field theory. It is
our current belief that this does not change the relevant power in the coarsening regime, but we are
investigating this.
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the single-particle gap 1/ξ(t̂s; τ)z. As promised, this density is much smaller than the

instantaneous critical density, qc ∼ 1/ξd+z:

q

qc
∼ ξd ∼

(
1

t̂s

)νd
� 1. (3.11)

For all t̂ > t̂s, the energy of the system is conserved and q and qc do not change in

time. Thus, the system evolves in the ordered phase at late times.

The second assumption is that of local equilibration over hydrodynamical time-

scales. In Model C, the latter is the time-scale for domain growth by lK. It can be

inferred from Eq. (3.10) to be δtco ∼ tK t̂
1−1/zd . On the other hand, the time-scale

for local equilibration processes on the scale lK is set by tK. The validity of Model

C as the late-time dynamical description relies on the equilibration time being much

smaller than δtco. As the inequality tK � δtco is parametrically controlled by t̂, the

coarsening behavior in Model C is a better and better approximation to the quantum

dynamics as t̂→∞.

Finally, in the original KZ problem (where we don’t stop the ramp), the late time

evolution is also in the finite-temperature ordered phase as the relation q/qc � 1

holds for every t/tK � 1. However, the continuously changing parameter in the

Hamiltonian affects the local equilibration argument in two important ways. First,

the characteristic size of the domains grows at a slower rate:

lco(t; τ) = lK

(
t

tK

)θ
where θ = ν

(
z

zd
− 1

)
+

1

zd
. (3.12)

In the (2+1)D TFIM, θ = (1 − ν)/2 and is smaller than 1/zd. This slowing down

can only help in the argument given above. The second effect is that the single

particle gap ∆ grows as 1/tK(t/tK)νz at late times. This, however, increases various

scattering times (and consequently various equilibration times) in the problem and

the applicability of hydrodynamics here becomes a delicate affair. In Appendix 3.A,
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we argue that the process that drives coarsening and increases entropy involves the

interaction of the long domain walls with the bulk quasiparticles within each domain.

As the bulk quasi-particles scatter off the walls parametrically many times before the

system parameters are changed, coarsening can at least self-consistently be justified.

We therefore conjecture that the two point function as t̂→∞ holding x/lco(t) fixed

obeys dynamic scaling:

Gττ
(
x̂, t̂
)
∼ t̂2ν∆Gcoττ (x̂lK/lco) . (3.13)

In this process, the entropy density increases weakly in time. The late time

asymptotes for the excess energy density and the entropy density reflect this:

Q(t̂) ∼ q0t̂
νz + q1t̂

νz−θ (3.14)

S(t̂) ∼ s0 − s1t̂
−θ.

The leading terms in S would be present even if the evolution were adiabatic. The

sub-leading term is the thermodynamic signature of coarsening. From this point,

every time we invoke results from coarsening, the reader should keep in mind the

subtleties presented in this section.

3.4 Kibble Zurek II - Ramp across the confine-

ment transition

We now ramp across the pure gauge theory Eq. (3.7) by tuning Γ. In this case, the

transition is from a topologically ordered deconfined phase to a confined one, and

there is no description in terms of a local order parameter. Nevertheless, we will

now show that the KZ mechanism for Landau transitions discussed in the previous
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Figure 3.3: Table summarizing the duality between the pure Z2 gauge theory (3.7)
and the TFIM in d = 2. Dark and light lines denote the direct and dual lattice
respectively.

section can be generalized to these transitions. Additionally, the loops and strings

characterizing the topological phase (string-nets) will coarsen.

Our main tool is the duality in (2 + 1)D between the pure gauge theory and the

TFIM summarized in Fig. 3.3. Importantly for us, the presence of electric flux on a

link (of the direct lattice) maps to a domain wall between the TFIM spins (on the dual

lattice), while the vortex operator BP maps to the dual transverse field. The duality

also ensures that a finite temperature confined phase exists, and that coarsening is

described by the hydrodynamics of Model C.

For specificity, we begin the ramp at the deconfined toric code point in one of the

ground state sectors. The ground state is a loop gas of the electric flux lines in the

σx basis. By duality, these are the domain walls of the paramagnetic phase of the

TFIM. The system falls out of equilibrium in the deconfined phase before it is taken
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through the transition, with a network of loops of minimum size lK. In the confined

phase, flux loops map to the costly domain walls of the dual ferromagnetic phase.

Post the diabatic regime in the confined phase, this network of loops (string-nets) is

diluted (average size increases as lco) as the system coarsens. More generally, we can

imagine string-nets being diluted in a generic topological theory and we will show

some examples of this in Section 3.6.

As before, energy conservation requires the decreasing electric flux density to

be compensated for by an increasing bulk energy density. Essentially, the system

arrives in the confined phase (which is a vortex condensate) with a greater electric

field density and a smaller magnetic vortex density as compared to the instantaneous

ground state. The subsequent evolution through coarsening increases the typical size

of the electric flux loops to lco(t), thereby decreasing the electric field density and

increasing the bulk energy density of the vortex condensate.

Next, the two-point correlator that detects long-range order in the dual TFIM,

〈τ zs̄ τ zs̄′〉, maps to the vortex pair creation operator (3.4), 〈Wm(s̄, s̄′)〉 that detects vor-

tex condensation. As the condensed phase is also a confining phase for charge, a

non-zero value of 〈Wm〉 for long strings detects charge confinement. The asymptotic

behavior of the scaling form for 〈Wm〉 is given by Eq. (3.13), identical to that of the

two-point function discussed in the pure-matter theory. In particular, in the coarsen-

ing regime, the dual TFIM is ordered on length scales less than lco(t). Correspond-

ingly, 〈Wm〉 is also non-zero on scales shorter than lco(t) but decays exponentially on

longer length scales. Thus, the non-local string operator 〈Wm〉 probes the crossover

scale from confinement to deconfinement as a function of time. Fig. 3.4(a) shows the

scaling for 〈Wm〉.

Finally, we can consider an interesting observable that we did not discuss in the

TFIM. This is the Wilson loop (3.8), W (R, t; τ) on a curve of radius R. Were the

evolution to be adiabatic, W (R, t; τ) for large R would obey a perimeter law when
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Figure 3.4: An illustration of two scaling functions showing adiabatic behavior in
the deconfined phase at early scaled times (black) and coarsening behavior in the
confined phase at late scaled times (red). The crossover on the scale l̂co ≡ lco/lK in
the red curves is a signature of string-net coarsening. The hat superscript denotes
scaled variables like t̂ = t/tK etc. (a) The scaling function of the string operator that
creates a pair of vortices at ŝ and ŝ′ (〈Wm〉 defined in Eq. (3.4)) as a function of the
scaled vortex separation |ŝ − ŝ′|. This operator is dual to the two-point correlator
〈τ zs τ zs̄′〉 in the TFIM. (b) The logarithm of the scaling function of the Wilson loop as

a function of the scaled radius illustrating Eq. (3.15). The time dependence of ξ̂ and
l̂co is respectively t̂−ν and t̂θ.

t < 0 and an area law when t > 0. In the KZ scaling limit, the scaling of the Wilson

loop takes the form W (R, t; τ) ∼ W(R̂, t̂), where R/lK = R̂. Its asymptotic behavior

is:

W(R̂, t̂) ∼





exp(−R̂ t̂ν), if t̂� −1

exp(−(R̂ t̂ν)2), if t̂� 1 and R̂� t̂θ

exp(−(R̂/t̂θ)), if t̂� 1 and R̂� t̂θ.

(3.15)

These scaling forms follow simply from the picture of adiabatic evolution when t̂ �

−1 and a growing length lco(t) separating confinement from deconfinement when

t̂ � 1. The Wilson loop therefore also probes the crossover scale from confinement

to deconfinement as a function of time. Fig. 3.4(b) shows the scaling of the Wilson

loop.
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3.5 Kibble Zurek III - Ramp across a generic tran-

sition in the Z2 theory

We will now see how the discussions of the previous two sections can be generalized

to ramps crossing any critical point in the full Z2 phase diagram. First, consider

moving off the pure gauge line by introducing a small, but non-zero J . The coupling

to matter is irrelevant to the T = 0 transition; hence, the confinement-deconfinement

transition in Fig. 3.2 persists for non-zero J and remains in the same universality

class. Since the gap to charge excitations does not close on making J non-zero, we

can re-write the Hamiltonian as one with no gauge-matter coupling (to any fixed

order in J) through a canonical unitary transformation. The transformation defines

“dressed” charge and gauge operators − in the dressed variables, the ground state is

charge-free and ∆c is the non-zero gap to charge excitations.

As we heat the system in the process of the ramp, we also need to consider the

finite temperature phase diagram and the excited spectrum when J 6= 0. Although

the ground state is (dressed) charge-free, the excited states have an exponentially

small density of charge, e−∆c/Teff , at any effective temperature Teff corresponding to

an excess energy density q. The presence of charge at finite temperatures is extremely

significant for the late-time coarsening picture for two reasons. First, it destroys the

finite temperature confined phase at any non-zero J , without which a coarsening de-

scription is not meaningful. Synergistically, a finite density of charge implies that the

electric field lines naturally end somewhere. Thus, the pictures of flux-loops/domain

walls coarsening are no longer sensible at the longest length scales.

Fortunately, the Kibble-Zurek scaling limit saves us from the problems raised

above. This is because the ratio q/qc goes to zero as t/tK → ∞ (Eq. (3.11)) or

equivalently, the effective local temperature, Teff , computed from q goes to zero in

the scaling limit (Teff is well-defined as the system is locally in equilibrium. See
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Sec. 3.3.1). ∆c, on the other hand, remains finite. This implies that the ratio of the

average distance between charges to the KZ length, e∆c/Teff/lK, is formally infinite in

the scaling limit. Thus, while the dressed charges modify the true long-time behavior

by ending coarsening, the scales on which they do so lie outside the KZ scaling

regime: in this way, the coupling to matter is a dangerously irrelevant variable in the

KZ problem (in the scaling limit).

While we can write scaling functions for dressed observables, the results are not

very elegant since the Hamiltonian dependent dressed operators are different at dif-

ferent points in time. A crisper solution is to use the line tension[84]/ Fredenhagen-

Marcu (FM) order parameter[75, 76] alluded to previously. This is defined as

R(L) =
W1/2(L)√
W (L)

=
〈τ zs (

∏
l∈C1/2

σzl )τ
z
s′〉√

〈∏l∈C σ
z
l 〉

, (3.16)

where C is a square loop of side L and C1/2 is the open rectangle of sides L and L/2

obtained by cutting C in half, s, s′ are the endpoints of C1/2 and W is the contractible

Wilson loop.

As L → ∞, R(L) is zero in the deconfined phase and non-zero otherwise. In

this way, R(L) acts as a test of long range “order”, and appropriately generalizes the

two-point spin correlator Gττ from the pure matter theory (3.9), and the vortex pair

creation operator Wm (3.4) from the pure gauge theory. In fact, in the gauge-variant

subspace {σzl = 1} on the pure matter line, R(L) exactly reduces to Gττ . The scaling

form and asymptotes of R(L) therefore follows from that of Gττ . Of course, by duality,

an identical analysis can be carried out by perturbing away from the pure-matter line

as long as we interchange the gauge and matter degrees of freedom.
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3.6 Extension to generalized Levin-Wen models

In this section, we generalize the Kibble-Zurek problem to transitions in which topo-

logical order is reduced as opposed to destroyed. Specifically, we consider transitions

out of a broader, non-Abelian, class of topological phases in lattice spin models of the

Levin-Wen [122] type. Along special lines in the phase diagram, we show that the dy-

namics and scaling properties are exactly equivalent to those of the Z2 gauge theory.

We identify analogous observables and the coarsening degrees of freedom of the string

net that is condensed in the starting topological phase. However, we will see that the

mapping of the dynamics is not an equivalence. We then consider perturbations away

from this line, finding that as for the Z2 gauge theory, in the scaling limit these other

perturbations do not alter the coarsening dynamics, but can be either irrelevant or

dangerously irrelevant perturbations.

We restrict our discussion to the subset of SU(2)k models whose topological order

is that of a doubled, achiral, Chern-Simons theory with gauge group SU(2) and a

coupling constant of k in appropriate units, though the construction of Ref. [122] is

more general. We also restrict to particular transitions that change the topological

order by condensing bosonic vortex defects; the transitions we consider here were

shown [25] to be dual (in a certain limit) to the TFIM.

3.6.1 Levin-Wen Hamiltonians with Ising transitions

The SU(2)k models we study live in a Hilbert space built from tensoring a finite set

of spin variables on each link of a honeycomb lattice, σl ∈ {0, 1
2
, 1, ..., k

2
}. These

are analogous to the set of possible electric fluxes (σxl = ±1) in the Z2 gauge theory.

The idealized Levin-Wen Hamiltonians are similar in spirit to the toric code, and are
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constructed from a set of commuting projectors

HLW = −K
∑

P

PP − ΓM
∑

s

Ps (3.17)

where P represents a plaquette, and s a site. These models can be viewed as deforma-

tions of lattice gauge theories with a continuous gauge group. They are ‘deformed’ in

the sense that their representation theory is truncated, even though the gauge group

is not discrete. In our context, a lattice SU(2) theory would have electric fluxes cor-

responding to all allowed spin values 0, 1/2, 1, ..., while the models in question have

a maximum spin k/2. (We refer to the link spins as ‘electric flux’ though, more ac-

curately, they are the representations of the lattice gauge/quantum group). Instead

of describing our analysis for general values of k, we will now specialize to k = 2 in

the interests of pedagogical simplicity and return to comment on the generalization

subsequently.

We now discuss the detailed form of the Hamiltonian (3.17) for SU(2)2. The vertex

projector Ps penalizes violations of angular momentum conservation, analogous to the

Gauss’s law constraint Gs = 1 in the Z2 theory. If the three links entering a vertex

have spins i, j and l, angular momentum conservation requires l ∈ i× j. The rules for

adding angular momentum have to be modified to be consistent with the truncation,

however. For the SU(2)2 model, the result is [17]:

Ps

∣∣∣∣∣∣
i j

k
〉

=





1
(0, 0, 0) (0, 1, 1)

(
1
2,

1
2, 1

) (
1
2 ,

1
2, 0

)

0 otherwise

(3.18)

where it is understood that the eigenvalue of Ps is independent of interchanging the

spins on the three links entering the vertex.
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The plaquette term PP projects onto states in which P has no magnetic flux, and

is written as a superposition of “raising operators”: PP = 1
D (1+

∑k/2
σ=1/2 aσB

σ
P ), where

Bσ
P raises all spins on the plaquette P by σ in the truncated spin space. By “raising”

, we mean a combination of raising and lowering angular momenta in the truncated

spin space. D is the total quantum dimension, equal to 2 here, while the coefficients

aσ depend on the quantum dimension[122] of the spin representation σ. In SU(2)2,

they are a0 = 1, a1/2 = −
√

2, a1 = 1. Bσ
P raises all spins in P by raising the spin on

each link l ∈ ∂P . The action of Bσ
l on a link l with spin i ∈ {0, 1/2, 1} is:

Bi
l |0〉 = |i〉

B
1/2
l |1/2〉 ∝ |0〉 ± |1〉 B

1/2
l |1〉 ∝ |1/2〉

B1
l |1/2〉 ∝ |1/2〉 B1

l |1〉 ∝ |0〉

The numerical coefficients are chosen such that the amplitude for creating any con-

figuration with a 0-eigenvalue under Ps is 0, ensuring that the vertex and plaquette

projectors commute. Their precise value is related to the 6j symbols of the quantum

group SU(2)2, but we will not require their detailed form here. Interested readers

can consult Ref. [122] for more details.

As PP and Ps commute, the spectrum of the Hamiltonian can be determined

exactly. The ground state is a generalization (a string-net) of the loop gas ground state

of the toric code, though there can be relative sign differences between terms in the

Levin-Wen ground state wavefunction. As in the toric code, the excited eigenstates

of (3.17) consist of “matter” excitations of energy ΓM , and “vortex” excitations, of

energy K. In the SU(2)2 model there are anyonic spin-1/2 charges, fermionic spin-1

charges, and spin-1/2 or spin-1 vortices, both of which have bosonic statistics. The

spectrum can be made to correspond exactly to that of the doubled SU(2)2 Chern-
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Simons theory. Accordingly the topological ground state degeneracy is known [100]

to be 9, as in the doubled Chern-Simons theory.

We can drive a phase transition in our system by perturbing the model (3.17)

with transverse fields which create pairs of charges or vortices, as we did for the toric

code by adding σxl and σzl . The vortex excitations have bosonic statistics and hence

transverse fields which create vortex pairs can drive a transition to a vortex condensed

phase in which string-nets are confined. On the other hand, the analogue of the Higgs

transition is not evident for our problem as both charges are non-bosonic.

To drive the Ising transition that we are interested in, we add a transverse field

which will condense spin-1 vortices. The Hamiltonian that we will tune through this

transition is

HSU(2)2
= −K

∑

P

1

2
(1 +B1

P )− ΓM
∑

s

Ps −K
∑

P

1√
2
B

1/2
P − Γ

∑

l

(−1)2σl (3.19)

where we have separated PP into operators that “raise” spins by integer and half-

integer amounts, and added a transverse field perturbation, Γ(−1)2σl . The transverse

field creates a pair of spin-1 vortices on the plaquettes adjacent to l, and has eigenvalue

1 on integer spin links, and −1 on half-integer spin links. Because the transverse field

term squares to the identity (and all vortex creation operators commute), the vortices

are Ising like.

On every plaquette P and site s, the eigenvalues of B1
P and Ps are conserved,

since these operators commute with HSU(2)2
. Thus, we can consider the transition

engendered by varying the ratio K/Γ in the subspace of the Hilbert space where the

conditions

Ps|Ψ〉 = |Ψ〉, B1
P |Ψ〉 = |Ψ〉 (3.20)
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are always satisfied. In this subspace, the transition can be mapped onto the transition

in the pure Z2 gauge theory discussed in Sect. 3.2.3, and is therefore in the 3D Ising

universality class as discussed in Ref. [25]. Here we give a different derivation of this

result which focuses on the ground state wavefunctions and is better adapted to our

purposes in this chapter.

To understand the mapping between HSU(2)2
and HZ2 (3.7), notice first that the

condition Ps|ψ〉 = |ψ〉 ensures that we are always working in the “charge-free” sector

where the (deformed) angular momentum is conserved at each vertex. This, together

with Eq. (3.18), stipulates that we only need to consider configurations where the

number of half-integer spins entering each vertex is even - or equivalently, configura-

tions in which half-integer spins form closed loops. Similarly, in the absence of charge

in the pure Z2 theory (3.7), the gauge constraint Gs in Eq. (3.2) ensures that links

with electric flux (σx = −1) form closed loops. The Levin-Wen transverse-field oper-

ator (−1)2σl assigns an energy penalty to the spin 1/2 edges that form these loops,

similar to the action of the transverse-field term σxl on links with electric flux in the

Z2 theory. Thus both models describe a transition in which loops (of half-integer spin

variables in the Levin-Wen case or σx = −1 variables in the Z2 gauge theory case)

become confined, and vortices become condensed as Γ/K increases.

There is, however, a qualitative difference between the operators
∏

l∈∂P σ
z
l and

B
1/2
P , both of which change the number of loops in a given configuration. While σzl

simply flips the spin on the link l, the operator B
1/2
P maps a spin 0 or 1 link to a spin

1/2 link, but a spin 1/2 link to a superposition of a link in the state 0 and a link in

the state 1. Thus one might worry that the two operators generate the same set of

configurations (after identifying s = 0, 1 with σx = 1, and s = 1/2 with σx = −1),

but with different statistical weights.

We show in Appendix 3.B that this is in fact not the case. Specifically, we prove

that for any Γ, the ground state wave-function of either model can be expressed in
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the form

|Ψ〉 =
∑

{l}

βΓ
{l}|Ψ{l}〉 (3.21)

where {l} denotes a set of links on which σl = 1/2 in the Levin-Wen model restricted

to (3.20), or σxl = −1 in the pure Z2 gauge theory. Crucially, we find that β{l}

is the same for each set {l} in both models. Operators in the Levin-Wen model

which commute with the conditions (3.20) are either diagonal in the vortex basis, or

diagonal in the spin basis and sensitive only to the spin on each edge modulo 1. The

expectation value of any such operator is therefore identical to that of its Z2 analogue,

cementing the equivalence of the two models.

We conclude that within the sub-sector (3.20), the transition is equivalent to

that of the pure Z2 gauge theory, and dual to that of the TFIM. It follows that

our previous discussion of string net coarsening, and the scaling of vortex creation

operators, applies mutatis mutandis to the model at hand.

Note, however, that the topological order of the initial and final phases of Eq.

(3.19) is not the same as in the Z2 gauge theory; there are additional deconfined

excitations on both sides of the transition. (In fact, the confined phase of HSU(2)2
is

a Z2 gauge theory [26]). There must therefore be some operators in the Levin-Wen

model whose behavior through the ramp is not captured by the mapping to the Ising

gauge theory.

To make this more explicit, we consider the fate of Wilson loop operators. In the

Levin-Wen model there are two of these:

W1/2(R, t; τ) =

〈∏

l∈C

B
1/2
l (t)

〉

W1(R, t; τ) =

〈∏

l∈C

B1
l (t)

〉
. (3.22)
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In order not to create vortices along the curve C, these raising operators must act

with appropriate configuration-dependent complex coefficients, as discussed in Refs.

[122, 24]. W1/2(R, t; τ) is clearly the analogue of the Wilson loop operator in the Z2

gauge theory; its expectation value obeys a perimeter law in the small Γ/K phase,

and an area law in the large Γ/K phase, and its universal scaling in a linear ramp is

given by Eq. (3.15). However, as the spin-1 variable remains deconfined throughout

the phase diagram, W1(R, t; τ) always obeys a perimeter law. Its expectation remains

constant in the scaling limit as the system passes through the critical point.

Though we have primarily discussed the SU(2)2 Levin-Wen model, the main re-

sults apply to a large family of models in which there is an excitation that behaves

like the Ising vortex [25]. Specifically, all the SU(2)k models exhibit Ising transitions

in which the half-integer spins (integer spins) can be mapped onto Z2 gauge configu-

rations with σx = −1 (σx = 1). They have two families of Wilson-line operators: the

half-integral Wilson line operators, which obey an area law in the confined phase, and

scaling relations analogous to those of Eq. (3.15); and the integral Wilson line oper-

ators, whose expectation values do not depend on t, τ and which remain perimeter

law throughout the ramp.4

It is worth mentioning that the Ising transition we have discussed here is but one of

a variety of confining transitions that can be realized in Levin-Wen models [25, 78].

In the SU(2)2 model discussed above, for example, we could also add a transverse

field term of the form cos πsl (which has eigenvalues (1, 0,−1) for sl = (0, 1/2, 1),

respectively). This confines both spin-1/2 and spin 1 labels, engendering a transition

to a completely confined phase where both Wilson loop operators in Eq. (3.22) obey

an area law. In this case the vortices that proliferate are not Ising-like, however, since

the operator cosπsl does not square to 1. Very little is known about the critical theory

in this case, and we expect that the transition is not in the 3D Ising universality class,

4The Higgs transition may survive when k is a multiple of 4 as some of the charges are bosons.
Little is known about these transitions.
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so that the scaling functions and coarsening behavior will be fundamentally different

from those of the Z2 gauge theory.

3.6.2 Away from the pure Z2 limit

Thus far, we did not concern ourselves with the other excitations in the SU(2)2

Levin-Wen model as their number was conserved in the ramp and we remained in

the subspace (25) at all times. However, the other excitations, charges of spin 1 and

1/2, and vortices of spin 1/2, will be created in a ramp if we perturb away from

the limit of Eq. (3.19) by adding terms to the Hamiltonian which break the local

conservation laws. In particular, the spin 1/2 charge has anyonic statistics relative to

the condensing vortices, so that a finite density of these destroys confinement (these

are analogous to the matter sources of the Ising gauge theory). Once again, the

KZ scaling limit saves the day. These spin 1/2 charges remain gapped throughout

the transition. Thus, as for the Ising gauge theory with matter, in the scaling limit

we expect that the density of all of these excitations is vanishingly small throughout

the coarsening regime; terms violating the conservation of the spin-1/2 charge at each

vertex then act as dangerously irrelevant variables in the manner described in Section

3.5.

Spin 1 charges and spin-1/2 vortices, however, have bosonic statistics relative to

the spin 1 vortex, and do not have analogues in the Z2 theory. Once again, for small

perturbations which violate the exact local conservation of these excitations, they

remain gapped throughout the transition and hence do not affect coarsening in the

KZ scaling limit. Since a dilute density of such charges does not destroy confinement,

however, we expect that they will not destroy coarsening even outside of the scaling

limit.

84



3.7 Concluding remarks

In this chapter, we have initiated the study of the Kibble-Zurek problem for topo-

logically ordered phases by studying the linear ramp across a transition that re-

duces/breaks topological order and written down a scaling theory for it. Interestingly,

unlike broken symmetry cases where it is natural to ramp from less to more order,

here it is more natural to ramp from more to less order. The latter leads to our

identification of the slow dynamics of string net coarsening much as the former leads

to defect coarsening à la Kibble and Zurek. Of course, one can study the reverse

protocol and the associated scaling although we have not done so here in the interests

of not taxing the reader’s patience unduly.

The basic framework here can be easily generalized to other transitions out of

topological phases; although for string-net coarsening to be visible, the gauge degrees

of freedom must have a ready identification. Examples are transitions out of Zn phases

with n ≥ 3 in d = 2+1 and with n ≥ 2 in d = 3+1. The Levin-Wen models also offer

a “target rich” domain, although the analysis is likely to prove more complicated for

more general condensation transitions. It will also be interesting to move to contexts

with conserved currents where one can study the temporal and spatial evolution of

transport coefficients, such as the Hall conductance.

Finally, for the statistical mechanically inclined, we would like to draw attention

to our identification of gapped matter as a dangerously irrelevant variable in the

dynamical KZ context. This is clearly a more general idea—e.g. irrelevant departures

from integrability will be similarly dangerous—and it suggests that in the KZ problem,

more couplings will be classified as such than in the standard equilibrium analysis.
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3.A Scattering times in coarsening

Here, we identify the dynamical process enabling coarsening at late times alluded to

in Sec. 3.3.1, and justify that it remains in equilibrium during the KZ ramp. The

criterion to remain in equilibrium is that the time-scale for such a process, tco, is

parametrically smaller than the time-scale for the change in the transverse-field tΓ.

Using (ΓM − ΓMc) = −t/τ , we estimate tΓ to be:

tΓ ≡
ΓM − ΓMc

dΓM/dt
= t.

The system at late times has two kinds of excitations that are remnants of the para-

magnetism at early times: 1) The long domain walls of average size lco and 2) The

bulk gapped quasi-particle excitations about each ferromagnetically ordered state.

As t/tK →∞, the latter can be treated as classical particles. The average density of

these particles and their momentum is essentially determined at t ∼ tK and is fixed

to be ∼ 1/l2K and 1/lK respectively. Their mass is determined by the gap ∆(t). The

growing mass and the long inter-particle distances as compared to the instantaneous

correlation length ξ justify the classical particle approximation. An average velocity

of these particles can be determined as

vp ∼
p

m
∼ 1/lK

∆
,

where p is the average momentum and m the mass. The mechanism of coarsening

proceeds through the transfer of energy between the long domain walls and these

particles. To wit, the relevant time-scale tco is the scattering time between these

particles and the wall:

tco ≡
lco
vp
.
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Recall that the growth law when ξ is a function of time is (Eq. (3.12)):

lco(t; τ) ∼ ξ(t; τ)

(
t

ξ(t; τ)z

)1/zd

∼ lK

(
t

tK

) 1−ν
2

,

where in the last step, we have substituted the critical exponents of the (2+1)D

TFIM, z = 1, zd = 2. Putting the pieces together, we see that tco � tΓ ⇒ ν < 1.

This certainly holds at the 3D Ising critical point where ν ≈ 0.6. Thus, we conclude

that coarsening described by Model C is indeed the correct long time asymptote for

the KZ scaling functions in a linear ramp.

Finally, we observe that all dynamical processes in the (2+1)D TFIM do not

remain in equilibrium in the KZ ramp at late times. The scattering time between

quasi-particles, tpp, grows as ∆2 in this limit and is parametrically larger than tΓ. A

hydrodynamical description, if it exists, is therefore more delicate than the case when

the ramp is stopped at some t/tK = t̂s.

3.B Mapping of general SU(2)k models to the Z2

gauge theory

In this Appendix, we will discuss in more detail the mapping from the confining

transition in the SU(2)2 Levin-Wen model to the pure Z2 gauge theory (3.7). As

discussed earlier, the transition in question involves varying K/Γ in Eq. (3.19), while

restricting the Hilbert space to states with eigenvalue 1 under the vertex projector,

and the integer part of the plaquette projector. In this subspace, links with half-

integer spins form closed loops. The mapping to the pure gauge Z2 theory involves

mapping half-integer (integer) spins to the presence (absence) of Z2 electric flux σx =

−1 (+1). The transverse field operator (−1)2σl maps to σxl , and B
1/2
P to BP =
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∏
l∈∂P σ

z
l . We will now show that the probability to be in any loop configuration is

the same in both theories for every choice of K/Γ.

We will begin with some notation. Let C denote the collection of links on the

lattice that form closed loops, and 〈α1/2(C)〉 the probability for a configuration in C.

We will work here in the restricted Hilbert space of states for which

Ps|Ψ〉 = |Ψ〉 B1
P |Ψ〉 = |Ψ〉 (3.23)

and assume that our lattice has no boundary. To make the analogy to the Z2 gauge

theory, we also define the analogous operator, αx(C), whose expectation value gives

the probability for a closed loop configuration of links with σxl = −1.

Our objective is to prove that, for every Γ and K, 〈α1/2(C)〉 = 〈αx(C)〉. Since

operators that commute with the conditions (3.23) are either diagonal in the spin

basis and sensitive only to sl mod 1, or diagonal in the vortex basis (dual to the basis

of spin-1/2 loops), this is sufficient to prove that their critical behavior is identical.

We will carry out the proof in two steps. First, we will show the equality for the

two solvable points Γ = 0, K > 0 and K = 0,Γ > 0, where we can construct exactly

the ground-states in both models. We will then use perturbation theory to argue that

the result holds throughout the phase diagram.

3.B.1 Equal weighting of loops in the ground states at the

solvable points

For K = 0,Γ > 0, the ground state has σxl ≡ 1 in the Z2 gauge theory, and σl ∈ {0, 1}

for the Levin-Wen model. In this limit, for any C we have trivially that 〈α1/2(C)〉 =

〈αx(C)〉 = 0 and the result holds.

Focusing on the opposite limit ( Γ = 0, K > 0), let us construct the exact ground

states in the two models. We begin with the Z2 gauge theory. Let |0〉 denote the
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state with σx = 1, τxs = 1 on all links and sites. This satisfies the Gauss law, but

is not an eigenstate of the plaquette projector. To construct such an eigenstate, we

take

|ΨTC〉 =
1√
N

NP∑

n=1

∑

∗Pn

∏

P∈∗Pn

BP |0〉 =
2√
N

∑

{C}

|ΨC〉 (3.24)

where ∗Pn runs over all possible distinct choices of n plaquettes on the lattice, and

N is a normalization. This sum generates all possible configurations C of loops

with σx = −1, weighted equally (each configuration is in fact generated twice, since
∏

P BP = 1). Since B2
P = 1, BPi

∏
P∈∗Pn BP =

∏
P∈∗P′n

BP , where ∗P′n is ∗Pn with Pi

either added (if it was not originally in the set) or deleted (if it was). It follows that

1√
N

NP∑

n=1

∑

∗Pn

BPi

∏

P∈∗Pn

BP |0〉 =
1√
N

NP∑

n=1

∑

∗Pn

∏

P∈∗Pn

BP |0〉

and |ΨTC〉 is a ground state.

A similar construction can be used in the Levin-Wen models. Let |Ψe〉 be a state

satisfying (3.23), with σl an integer for every link l (careful inspection of these two

conditions reveals that |Ψe〉 is a superposition of configurations of closed spin-1 loops).

Now consider:

|ΨLW 〉 =
1√
N

NP∑

n=1

∑

∗Pn

∏

P∈∗Pn

1√
2
B

1/2
P |Ψe〉 (3.25)

We will show presently that

(
B

1/2
P

)2

= 1 +B1
P B

1/2
P B1

P = B1
PB

1/2
P = B

1/2
P (3.26)

Using this fact, we have

B
1/2
Pi

∏

P∈∗Pn

B
1/2
P =





∏
P∈∗Pn¬Pi B

1/2
P

(
1 +B1

Pi

)
Pi ∈ ∗Pn

∏
P∈∗Pn∪Pi B

1/2
P Pi 6∈ ∗Pn
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It follows that

1√
2
B

1/2
Pi
|ΨLW 〉 = |ΨLW 〉 (3.27)

and |ΨLW 〉 is a ground state.

Now, for any closed loop L, we can generate a configuration with σl = 1/2 on

all links in L, and no other links, by acting on |Ψe〉 with the product of B
1/2
P on all

plaquettes inside the loop or all plaquettes outside the loop (these are the only such

configurations on the right-hand side of Eq. (3.25)). In the Z2 gauge theory the same

holds for closed loops of σx = −1. Hence given C, we have

〈α1/2(C)〉 =
1

N
〈Ψe|


 ∏

P∈∗P(C)

1√
2
B

1/2
P




2

|Ψe〉

=
1

N
〈Ψe|

∏

P∈∗P(C)

1

2

(
1 +B1

P

)
|Ψe〉

=
1

N
(3.28)

where ∗P(C) contains either all plaquettes inside, or all plaquettes outside, the closed

loops in configuration C, and the last equality is a result of imposing (3.23). Thus

for Γ = 0 all possible configurations of spin-1/2 loops occur with equal probability in

the ground state of the SU(2)2 Levin-Wen model.

We note that these results carry over directly to the more general case of an SU(2)k

Levin-Wen model, upon replacing spin-1/2 (spin-1) with the set of all half-integer

(integer) spins, and B
1/2
P (B1

P ) with the sum of all half-integer (integer) spin-raising

terms in the plaquette operator (weighted by their respective quantum dimensions).

It remains to show that Eq. (3.26) holds, which we will do for general k. We

let P1/2
P = 1

D
∑

σ=1/2,3/2,... aσB
σ
P denote all half-integer raising terms in the plaquette

operator, and P1
P = 1

D

(
1 +

∑
σ=1,2,... aσB

σ
P

)
denote all integer terms. Following Levin

and Wen, we choose the constant D such that PP ≡ 1
2

(
P1
P + P1/2

P

)
is a projector.
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We then have

(P1
P + P1/2

P )2 = (P1
P )2 + (P1/2

P )2 + P1/2
P P1

P + P1
PP1/2

P

= 2(P1
P + P1/2

P )

Now, (P1/2
P )2 and (P1

P )2 both contain only terms that raise the spins in P by an

integer amount, while P1
PP1/2

P = P1/2
P P1

P contains only half-integral raising operators.

It follows that

(P1
P )2 + (P1/2

P )2 = 2P1
P , P1

PP1/2
P = P1/2

P . (3.29)

We also have

(P1
P + P1/2

P )(P1
P − P1/2

P ) = 0 (3.30)

since it can be shown[25] that (P1
P +P1/2

P ) projects onto flux-free states, while (P1
P −

P1/2
P ) projects onto states with an Ising vortex. It follows that

(P1/2
P )2 = (P1

P )2 = P1
P (3.31)

This also implies that P1
P is a projector, and thus that the eigenvalues of P1

P are 0 and

1. (From Eq (3.31) and the fact that PP is a projector, it follows that the eigenvalues

of P1/2
P are 0,±1; when restricted to configurations where P1

P |Ψ〉 = |Ψ〉, they are ±1,

as one expects from the correspondence of P1/2
P to the plaquette term of the toric

code.)

3.B.2 Away from the solvable points

Next, we wish to show that the result of the previous section holds true throughout

the phase diagram. One way to do this is to invoke the result of Ref. [25], where

it was shown that within the subspace of states satisfying (3.23), the SU(2)k Levin-

Wen models are exactly dual to the transverse-field Ising model. We can identify all
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states in this Hilbert space by the configuration of dual Ising spins (together with

their topological ground-state sector, in periodic boundary conditions). The duality

relation— which also holds for the Z2 gauge theory — ensures that the probability

amplitude to be in a given vortex configuration is identical in both models. The

physical operators in this Ising subspace are either diagonal in the vortex (or dual

Ising spin) basis, or diagonal in the basis of spin-1/2 loops. (These are precisely

the operators that do not cause violations of (3.23), and cannot distinguish between

edges of spin 0 and spin 1). It follows that all expectation values of such operators —

including 〈α1/2(C)〉— must also be identical to their Z2 analogues (such as 〈αx(C)〉).

Here we will take an alternative, perturbative approach to prove the desired result.

We will begin at an arbitrary point in the deconfined phase, and consider constructing

the wave-functions in both theories to some finite order in perturbation theory. These

wave functions are linear combinations of the unperturbed (Levin-Wen or toric code)

ground state, together with excited states of the form

|Ψ{l}〉 =
∏

l∈{l}

hl|Ψ0〉 (3.32)

where we have defined the transverse field operator hl ≡ σxl for the toric code, and

(−1)2sl for the Levin-Wen model, and |Ψ0〉 denotes the unperturbed ground state. If

l1 and l2 are two links bordering plaquette P , we have

σxl1,2BP = −BPσ
x
l1,2

(−1)2sl1,2B
1/2
P = −B1/2

P (−1)2sl1,2

[
σxl1σ

x
l2
, BP

]
=
[
(−1)2sl1 (−1)2sl2 , B

1/2
P

]
= 0

Thus |Ψ{l}〉 is a state with vortices on each plaquette with an odd number of edges

in the set of links {l}. It also follows that choices of {l} which differ by a product
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∏
l∈C∗ hl, where C∗ is a set of closed curves on the dual lattice, create identical excited

states, as
∏

l∈C∗ hl|Ψ0〉 = |Ψ0〉. Finally, we have

〈Ψ{l}|Ψ{l′}〉 = δ{l}∪{l′},C∗ (3.33)

In other words, the inner product is 1 if the combination of the two sets {l} and {l′}

of links forms a set of closed curves on the dual lattice, so that |Ψ{l}〉 and |Ψ{l′}〉 have

vortices on the same plaquettes. Similarly, we may compute matrix elements of the

Hamiltonian within these excited states via:

〈Ψ{l}|
∏

l∈{l′′}

hl|Ψ{l′}〉 = δ{l}∪{l′}∪{l′′},C∗ (3.34)

The crucial point is that for any choice of {l}, {l′}, {l′′}, these matrix elements are

identical in both models. Since the weight of each unperturbed excited state in the

exact ground state can be constructed perturbatively using only matrix elements of

this form, it follows that

|Ψ〉 =
∑

{l}

βΓ
{l}|Ψ{l}〉 (3.35)

with β{l} the same for each set {l} in both models.

Finally, we observe that α1/2(C) and αx(C) both have the form

αν =
∏

l∈C

1

2
(1− hl) (3.36)

and, in particular, commute with hl on every link. (Here αν = α1/2(C), αx(C) as

appropriate). This, together with the relation (3.34), implies that

〈αν〉Γ =
∑

{l},{l′}

β
Γ

{l} β
Γ
{l′}〈Ψ0|

∏

l∈{l}

hl αν
∏

l∈{l′}

hl|Ψ0〉
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in both models. We have already shown that the coefficients βΓ
{l} are the same, and

the possible choices of {l}, {l′} on which the δ function has support are a geometric

property of the lattice. Invoking the result of the previous subsection, we can thus

conclude that for all Γ in the deconfined phase,

〈α1/2(C)〉Γ = 〈αx(C)〉Γ (3.37)

Our derivation has implicitly relied on the fact that we can construct the exact

ground state perturbatively, starting from the ground state of the toric code or Levin-

Wen solvable point. Thus the above argument fails at the critical point, and in the

phase where Γ/K is large. In this regime, however, we may make essentially the same

argument, by replacing hl with the plaquette operator, and |ΨLW 〉, |ΨTC〉 (denoted

by |Ψ0〉 in the derivation above) with |Ψe〉 and |0〉 respectively. In this case, the basis

of excited states generated will be an eigenstate of σx (toric code) or (−1)2s (Levin-

Wen). There is no need to define an analogue of C∗, since if two distinct products of

plaquette projectors produce the same loop configuration state, then their product is

the identity operator.

In each phase, we can thus argue that Eq. (3.37) holds to arbitrary order in

perturbation theory. It follows that as the phase transition is second order, it must

also hold at the critical point, proving the result.

94



Chapter 4

The quantum O(N) model at

infinite N

4.1 Introduction

The study of the out of equilibrium dynamics of closed quantum systems has in-

tensified greatly in recent years inspired in considerable measure by advances in the

experimental study of cold atomic systems [85, 86, 165, 183, 163, 16].1 We have

explored one important theme in this work through the study of the Kibble-Zurek

problem: the interplay between non-equilibrium dynamics and phase structure. A

second theme that we have not touched upon so far is the presence and nature of

equilibration starting from a non-equilibrium state and its relationship to integra-

bility. An interesting stream of work has postulated and examined the notion of a

generalized Gibbs ensemble (GGE) in which an integrable system relaxes to a maxi-

mum entropy state consistent with all of its constants of motion [161, 107].

A large fraction of this work has concerned itself, for natural reasons of tractability,

to systems in spatial dimension d = 1 where analytic [27, 36, 47, 51, 132, 30] and

1Chapter based on work with Arun Nanduri, Steven S. Gubser and S. L Sondhi [41].
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computational power [160, 117] can be readily brought to bear. This restriction to

d = 1 however does not allow the study of the impact of dimensionality, known to

be important for equilibrium behavior. In this chapter, we study a model where one

can move between dimensions while retaining tractability—the quantum O(N) vector

model in the infinite N limit (see Ref. [135] for a comprehensive introduction). This

model has much to commend it. It yields an equilibrium phase diagram in the Gibbs

ensemble in various dimensions whose topology is correct for N ≥ 3. It also yields

critical exponents which incorporate corrections beyond Gaussian critical behavior in

d < 3 and correctly locates the lower and upper critical dimension at d = 1 and d = 3

respectively.

The above results assume that the Gibbs ensemble is reached. In this chapter, we

study the late time states of the model starting out of equilibrium and ask to what

extent the equilibrium phase diagram is a guide to the late time behavior. We note

that the model has certainly been the object of prior study, in the first instance from

a cosmology inspired interest in non-equilibrium field theory [21, 46, 13, 20] and more

recently from the condensed matter/statistical mechanical viewpoint [173, 50, 168].

We build on this work but find that there are still new things to say on this problem,

largely due to asking some fresh questions from the condensed matter/statistical

mechanical perspective.

Our results organize themselves naturally into the two themes we noted at the

outset. First, we revisit the question of equilibration in the infinite N vector model.

If the model were to exhibit equilibration, the late time state could be inferred from

the finite temperature phase diagram. In the infinite N limit, we show that not only

does the model not lead to equilibration on account of an infinite number of conserved

quantities, it also does not relax to a generalized Gibbs ensemble (GGE) consistent

with these conserved quantities. Instead, an infinite number of new conservation laws

emerge at late times and the system relaxes to an emergent GGE consistent with
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these. The emergent GGE has the same conserved quantities as a non-interacting,

purely Gaussian, vector model [28, 4, 48]. Second, we examine spatially homogenous

quenches starting from ground states in the disordered phase to the critical coupling

and into the couplings in the ordered phase. For the latter, we show that the late time

state exhibits coarsening in the sense of a diverging equal time correlation length in

d > 2 for sufficiently gentle quenches. Our numerics further suggest that the system

coarsens towards a non-equilibrium critical state as t → ∞. For larger quenches in

d > 2 or for any quenches in d ≤ 2, we find that no coarsening is possible. Instead, the

late time state is disordered. For quenches to the critical point, we find no coarsening

for all d but coarsening in the scaling limit for d ≥ 3 consistent with the lack of

scattering at the Gaussian fixed point and previous results on the Gaussian theory

[28]. Interestingly, the results on quenches are qualitatively what one would predict

assuming equilibration following an injection of energy density and yet they hold for

a system that does not equilibrate.

In the following, we document these claims. We begin with a review of the infinite

N vector model and the equations that must be solved to determine its dynamics in

Section 4.2. In Section 4.3, we discuss the issue of ergodicity or equilibration. In

Section 4.4, we describe our results on global quenches into the ordered phase. In

Section 4.5, we discuss global quenches to the critical point and show that the stability

of the Gaussian fixed point for d ≥ 4 when it comes to equilibrium behavior also

shows up in the behavior of non-equilibrium quenches provided one takes a scaling

limit similar to the KZ scaling limit. We finish with some concluding remarks in

Section 4.6 and relegate some technical material to an appendix.
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Figure 4.1: Topology of the equilibrium
phase diagram of the O(N) model in
the infinite N limit in spatial dimen-
sions 1 < d ≤ 2. The dashed lines in-
dicate the different quenches that we
study.
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d > 2

Figure 4.2: ]
Topology of the equilibrium phase
diagram of the O(N) model in the

infinite N limit in spatial dimensions
d > 2. The dashed lines indicate the
different quenches that we study.

4.2 The model

4.2.1 Statics

The Hamiltonian of the quantum O(N) model in d spatial dimensions is

H =
1

2

∫
ddx

(
|~Π|2 + |~∇~Φ|2 + r|~Φ|2 +

λ

2N
|~Φ|4

)
, (4.1)

where ~Φ and ~Π are canonically conjugate N -component fields,

[Φi(~x),Πj(~x
′)] = iδd(~x− ~x′)δij. (4.2)

In the limit N → ∞, the equilibrium physics is soluble. In the disordered phase,

〈~Φ〉 = 0, the ground state of H is well-approximated by the ground state of a free

field theory with mass meff that is determined self-consistently:

m2
eff = r + λ

〈
|~Φ|2
N

〉
(4.3)

〈
|~Φ|2
N

〉
=

∫ Λ ddk

(2π)d
1

2

√
|~k|2 +m2

eff

, (4.4)
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where Λ is the cutoff. The effective mass meff is proportional to the single-particle

gap and controls the phase diagram (Figs. 4.1, 4.2). In the disordered phase, meff > 0,

while in the ordered phase, when suitably re-defined, meff is the mass of the Goldstone

bosons and equals zero. We describe the phase diagram in greater detail in Sec. 4.4.

The solubility in equilibrium can be traced to two related sources: 1) The ground

state is a (Gaussian) symmetric product state over component indices, and 2) the

expectation value:

〈
|~Φ|2
N

Φi

〉
=

〈
|~Φ|2
N

〉
〈Φi〉+O

(
1

N

)
(4.5)

factorizes to leading order in 1/N . These two features of the infinite N model in

equilibrium make the dynamical problem tractable as well.

4.2.2 Dynamics

Now consider preparing the system at t = 0 in a product state symmetric in the

component indices:2

|ψ(0)〉 =
N∏

i=1

|β〉i. (4.6)

The wavefunction of each component, |β〉, can be freely chosen. In particular, |ψ(0)〉

need not be Gaussian or be a ground state of the infinite N model anywhere in the

disordered phase. In general, it does not satisfy Wick’s theorem. The evolution of

the state |ψ(0)〉 for t > 0 is generated by H. The Heisenberg equations of motion are:

dΦi

dt
= Πi

2More generally any state, such as the ground state for some value of the bare parameters, which
is well approximated by such a product state for finite point correlation functions. The dynamics is
also tractable for the class of density matrices that have product structure in the component index.
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dΠi

dt
= ∇2Φi − rΦi −

λ

N
|~Φ|2Φi. (4.7)

For the rest of this article, we work in the Heisenberg picture. Remarkably, the

factorization in equilibrium in Eq. (4.5) holds out-of-equilibrium as well:

〈
|~Φ(t)|2
N

Φi(t)

〉
=

〈
|~Φ(t)|2
N

〉
〈Φi(t)〉+O

(
1

N

)
. (4.8)

As in equilibrium, this factorization leads to an effective mass in a free field the-

ory that is determined self-consistently. However, the effective mass is now time-

dependent. More formally, consider the Hamiltonian for a free field theory with the

time-dependent mass meff(t) determined self-consistently at each t:

Heff(t) =
1

2

∫ Λ ddk

(2π)d

[
|~Π~k|2 + ( |~k|2 +m2

eff(t) )|~Φ~k|2
]

(4.9)

m2
eff(t) ≡ r + λ

〈
|~Φ(t)|2
N

〉
. (4.10)

Above, Φj~k =
∫
ddxΦj(~x)e−i

~k·~x and Πj~k =
∫
ddxΠj(~x)ei

~k·~x so that [Φi~k,Πj~k′ ] =

i(2π)dδd(~k − ~k′)δij. We evolve the state |ψ(0)〉 with Heff . We also evolve |ψ(0)〉

with H in the limit N → ∞. The formal statement is that all correlation functions

involving a finite number of components are identical in the two cases at any fixed

t. Thus, to determine observables and correlation functions, we need only solve for

the dynamics in a free field theory with mass meff(t). As in equilibrium, the infi-

nite N model out-of-equilibrium goes beyond the free field theory through the single

self-consistency condition on meff(t) (Eq. (4.10)). Henceforth, we suppress the com-

ponent index when an expectation value is independent of it. Specifically, we replace

〈|~Φ(t)|2〉/N by the expectation 〈Φ2(t)〉 of a single component. When not indicated,

all operators in a correlation function are assumed to have the same component label.
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A convenient way to determine correlation functions from Heff(t) is to expand

Φ~k(t) and Π~k(t) in a fixed basis at t = 0:

Φ~k(t) =
f~k(t)√

2
a~k +

f ∗−~k(t)√
2

a†
−~k

Π~k(t) =
dΦ†~k(t)

dt
. (4.11)

Above, the (a~k, a
†
~k
) and (a−~k, a

†
−~k

) are two independent sets of fixed ladder opera-

tors with the usual commutation relations. The f~k(t) are complex-valued coefficients

known as mode functions. The commutation relations stipulate that:

f~k(t) = f−~k(t)

Im[f~k(t) ḟ
∗
~k
(t)] = 1. (4.12)

Given an initial state, we may choose any fixed basis to decompose the field operators

in. This is a coordinate choice; in this article, we pick the particular fixed basis in

which:

〈a~ka~k′〉 = 0, f~k(0) = f ∗~k (0). (4.13)

It is then easy to see that f~k(0) and |ḟ~k(0)| fix all the coefficients in Eq. (4.11) at

t = 0. For example, Eq. (4.12) determines the phase of ḟ~k(0) etc. Both functions

follow from the two-point functions in the initial state:

〈Φ~k(0)Φ†~k′(0)〉 =
f~k(0)2N~k

2
(2π)dδd(~k − ~k′)

〈Π~k(0)Π†~k′(0)〉 =
|ḟ~k(0)|2N~k

2
(2π)dδd(~k − ~k′)

Re[〈Φ~k(0)Π~k′(0)〉] = Re[ḟ~k(0)]f~k(0)N~k (2π)dδd(~k − ~k′). (4.14)
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if we substitute for the phase of ḟ~k(0) from Eq. (4.12). N~k above is related to the

sum of the occupations of the ±~k modes in the initial state:

N~k ≡ 1 + n~k + n−~k , 〈a†~ka~k′〉 = n~k(2π)dδd(~k − ~k′).

Finally, from Heff(t), the definition of m2
eff in Eq. (4.10), and Eq. (4.11) , we obtain

the equations of motion for the mode functions:

(
d2

dt2
+ |~k|2 +m2

eff(t)

)
f~k(t) = 0 (4.15)

m2
eff(t) = r +

λ

2

∫
ddk

(2π)d
|f~k|2N~k. (4.16)

Given the correlation functions in Eq. (4.14) and the condition in Eq. (4.12), we can

propagate this system of coupled second-order differential equations forward in time

to solve for f~k(t). We may then compute any correlation function of interest by means

of Eq. (4.11) and the solutions for the mode functions.

4.3 Ergodicity

To determine the nature of the late time state, we need to identify all the quantities

that are conserved in the dynamics (Eq. (4.15,4.16)). First, as the evolution is gen-

erated by a Hamiltonian, the total energy is conserved. This would be true for any

isolated quantum system. Additionally at infinite N , the operators Lz~k defined below

also commute with H in the class of states in Eq. (4.6).

Lz~k ≡
Φ†~kΠ

†
~k
− Φ~kΠ~k

i
. (4.17)
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Thus,

d〈Lz~k〉
dt

= 0. (4.18)

We use ~k > 0 to denote half the momenta; each ~k in the set labels the pair (~k,−~k).

Note that the component label has been suppressed in the definition of Lz~k; there is

actually one conserved quantity for every ~k > 0 and component label. However, for

our class of initial states (Eq. (4.6)), 〈Lz~k〉 is the same for every component and we

can safely drop the label. The conserved quantity 〈Lz~k〉 has two interpretations. One

is the angular momentum of the 2d harmonic oscillator at ~k > 0 in Heff(t). The

second is in the fixed basis in which 〈Lz~k〉 = n~k − n−~k. This difference is conserved as

the scattering processes that lead to exchange of momenta between pairs of bosons is

suppressed at infinite N . Finally, observe that Lz~k is not a local operator in real space.

However, a suitable linear combination of the Lz~k at different ~k is. Defining I−(~n) =
∫

ddk
(2π)d

Lz~k sin(~k · ~n) and using Eq. (4.17), we see that I−(~n) =
∫
ddx (Φ(~x)Π(~x− ~n)−

Φ(~x)Π(~x + ~n)). As promised, I−(~n) is a sum of local conserved densities. It is non-

zero only if the system is not inversion symmetric. It is worth noting that there is

a similar conserved quantity in the free Majorana field theory/ transverse field Ising

model [83, 152, 66].

There are therefore half as many conserved quantities as the number of degrees of

freedom. This is reminiscent of an integrable system in which the number of conserved

quantities equals the number of degrees of freedom. For example, the free field theory

(λ = 0) is integrable and has two conserved quantities for each (~k,−~k) pair: the energy

in the 2d oscillator and the angular momentum Lz~k. In such systems, the correlations

in the late time state are conjectured to be reproduced by the generalized Gibbs
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ensemble (GGE) [161, 62] :

ρGGE = exp(−
M∑

i=1

µiOi),

where the Oi commute with the Hamiltonian and the µi are fixed by 〈Oi〉 in the initial

state. In the free field theory, for some classes of initial states (including the ground

states of the free theory at any r > 0), this conjecture can be directly checked.

The collection of conserved quantities in the O(N) model at infinite N suggests

that the late time state should thermalize to the following GGE:

ρGGE = exp

(
−βH −

∫

~k>0

µ~kL
z
~k

)
. (4.19)

We argue in two (possibly related) ways below that the dynamics fails to relax to

this GGE.

First, note that Eq. (4.16) depends on a c-number associated with the initial

state. A reasonable expectation would be that correlation functions at late times

also depend on this c-number. However, correlation functions derived from the GGE

do not. This suggests that the GGE is not the correct description of the late-time

dynamics. In Appendix 4.A, we sharpen this intuition by showing that the structure

factor at late times depends on N~k. It follows that two-point function in real-space is

also a function of the N~k, thus proving the claim that the system does not relax to the

GGE for all local observables. We note that Ref. [13] arrived at the same conclusion by

constructing a particular non-linear combination of equal-time correlation functions

that were independent of time and involved N~k.

The second argument hinges on the numerical observation that m2
eff(t) generically

approaches a non-negative constant, m2
f , as t→∞. This implies that the different ~k

modes decouple and the theory is effectively free at late times. Thus, an extensive set

of conserved quantities (equal to the number of angular momenta) emerges at late
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times:

E~k = |~Π~k|2 + ( |~k|2 +m2
f )|~Φ~k|2 , ~k > 0 (4.20)

and the system appears integrable. As these extra conserved quantities are indepen-

dent of 〈Lz~k〉, it is clear that the system does not relax to the strict GGE in Eq. (4.19).

However, the system does relax to an emergent GGE with the E~k and Lz~k as conserved

quantities. The argument for the emergent GGE hinges on the theory being free once

m2
eff ≈ m2

f . Define tf so that m2
eff ≈ m2

f for t > tf . If the state of the system at t = tf

lies within the class of initial states that relaxes to a GGE under the evolution of the

free theory, then we are guaranteed that the emergent GGE is the correct description

for t� tf . It is known that all initial states that are physically relevant (exponentially

decaying spatial correlations, well-defined conserved densities in the thermodynamic

limit etc.) relax to a GGE under the evolution of a free bosonic theory. The state of

the O(N) model at t = tf is physical; thus the system always relaxes to the emergent

GGE. In particular, in the sudden quenches that we discuss in the following section,

the late time state is described by an emergent GGE whenever it is disordered. By

default, whenever we say GGE, we mean Eq. (4.19). The other GGE will always be

referred to as emergent GGE.

This leaves open the possibility that there is a more restrictive GGE that includes

some unknown additional conserved quantities that will describe the late time states.

While we cannot rule this out, we (and previous workers on this problem) have not

been able to find such quantities.
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4.4 Quenches to the ordered phase

4.4.1 Problem, methods and background

We now turn to the late time behavior of protocols starting from ground states in

the disordered phase wherein the coupling is changed to a value in which the ground

state is ordered (see Figs. 4.1 and 4.2). For specificity and because our interest

here is primarily in the late time behavior, we will take these protocols to be sudden

quenches, i.e. the coupling will be changed instantly to its new value. Our conclusions

will generalize mutatis mutandis to more elaborate protocols such as those of interest

in the Kibble-Zurek problem. Right after the quench, the system is in an excited state

for the new Hamiltonian, i.e. one with a non-zero energy density. For a system which

thermalizes, the late time state can be read off from the equilibrium phase diagram by

converting the energy density into an equivalent temperature. Interestingly, despite

the lack of relaxation in the quantum O(N) model at infinite N , we will find that the

phase diagram is still a good heuristic for the late time behavior when the system is

quenched, in a sense we will shortly make precise.

But first, let us describe the setup of the problem more precisely. Recall that

the mode functions are constrained by Eqs. (4.12) and (4.13). Polar coordinates

make these constraints more transparent. Define f~k ≡ |f~k| exp(iθ~k). Eq. (4.12) then

provides a relation between the amplitude and the phase of the mode function:

θ̇~k =
−1

|f~k|2
. (4.21)

Together with the initial condition θ~k(0) = 0, this allows us to reconstruct the mode

function at all t from |f~k(t)| alone. The equation of motion for |f~k(t)| follows from
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Eq. (4.15,4.16):

(
d2

dt2
+ |~k|2 +m2

eff(t)

)
|f~k| −

1

|f~k|3
= 0 (4.22)

m2
eff(t) = r +

λ

2

∫
ddk

(2π)d
|f~k|2N~k. (4.23)

It suffices to solve these equations subject to the initial conditions discussed below to

determine f~k(t).

We pick the initial state of the system for t < 0 to be the ground state in the

disordered phase. That is, we prepare the system in the ground state of H (Eq. (4.1))

with bare coupling r = r0 greater than the critical coupling rc. This state is the

ground state of a free field theory with the effective mass m0. The relation between

m0 and r0 is given by Eq. (4.4). In this state:

N~k = 1, Ωk0 =

√
|~k|2 +m2

0

f~k(t < 0) =
1√
Ωk0

, ḟ~k(t < 0) = −i
√

Ωk0. (4.24)

Ωk0 above is the frequency of the harmonic oscillator at ~k. At t = 0, we suddenly

quench to the ordered phase (r < rc). We note that in terms of our discussion earlier,

the conserved angular momenta are all zero so that the associated chemical potentials

µ~k in the GGE are all also zero.

For the most part we will rely on numerical solutions of the dynamical equations.

Specifically, we numerically solve Eqs. (4.22,4.23) subject to the initial conditions in

Eq. (4.24). We sample |f~k| on a grid of points in momentum space with the infra-

red spacing 1/L and the ultra-violet cut-off Λ; we present data only for the largest

system sizes L in which the finite-size effects are minimal.3 We have also ascertained

that the average energy is conserved at least to one part in 104. The dimensional

3Some of the data involved sampling the interval with quadratic spacing.
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dependence of the late time physics is easily accessible as the spatial dimension d can

be varied continuously in these simulations. As we employ a lattice in momentum

space, we drop the delta function factors in the continuum theory from this point on.

Correlation functions that appear in the rest of the article should rightly be thought

of as structure factors.

As advertised, we are looking to use the equilibrium phase diagram to rationalize

the behavior of our solutions. To this end, we quickly review the properties of the

finite T equilibrium phases (see Figs. 4.1 and 4.2). First, in d < 2, the system

is always disordered for all T > 0. Correlations decay to zero exponentially with

distance and the inverse of the effective mass, 1/meff plays the role of the correlation

length. meff > 0 in this phase. In d > 2, there are two phases for r < rc (rc is the

zero temperature quantum critical point). For T > Tc(r), the system is disordered.

As we just discussed, meff > 0 in this phase. For T < Tc(r), the system is ordered.

The magnetization 〈~Φ〉 is non-zero and the two-point function 〈~Φ(~x) · ~Φ(0)〉 decays as

a power law 1/|~x|d−2 to the positive constant |〈~Φ〉|2. A numerically useful property

of such a two-point function is that the volume under the curve on long length scales

|~r| scales as ∼ |〈~Φ〉|2|~r|d. The effective mass squared is zero in this phase and is,

physically, the mass of the (N − 1) Goldstone modes. At the critical temperature Tc,

m2
eff = 0 and the two-point function decays to zero as 1/|~x|d−2.

4.4.2 Results

Our first result is the one that we alluded to in Sec. 4.3: the late time effective

mass squared tends to a non-negative constant, m2
f ≥ 0. This is observed in all

our numerical solutions. Certainly, m2
f < 0 is ruled out on grounds of stability.

Heuristically, the result follows from the averaging over many momentum modes

which oscillate at different frequencies. Once the effective mass settles, the density

matrix in the eigenbasis of H dephases and is effectively diagonal.
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The limiting behavior of the effective mass divides into two classes with very

different physical content.

In the first case, the effective mass squared tends to a positive constant (m2
f > 0).

It is easily checked that this implies a finite correlation length at late times. The late

time behavior is then qualitatively the same as that of the equilibrium disordered

state. We emphasize that we are not implying thermalization: m2
f is not a function

of the excess energy density and the angular momenta 〈Lz~k〉 = 0 alone. It depends on

many properties of the initial state. Similarly, the form of the late time correlations

are not given by the appropriate GGE.

In the second case, m2
eff tends to zero as t→∞ and the correlation length diverges

in the same limit. We shall refer to this behavior as coarsening. This case subsumes

two cases—that of strict coarsening and that of coarsening to a critical state. By strict

coarsening, we mean the analog in our system of the process in an ergodic system

in which the system is quenched from the disordered to the ordered phase and the

symmetry is only broken locally [22]. The domains of broken symmetry grow with

time; their characteristic size at late times, lco(t), grows as t1/zd , where zd is a dynamic

exponent. Within each bubble, the two point function heals to its equilibrium value

|〈~Φ〉|2 on a length scale ξ � lco(t). On the longer length scale lco(t), it decays to zero.

In contrast, by coarsening to a critical state, we mean the analog of the the system

approaching a critical state with no length scale except lco(t) and hence no domains

exhibiting equilibrium magnetization. In either case, the system is self-similar on

the scale lco(t) and a dynamical scaling theory emerges in the limit t → ∞, |~k| → 0

holding |~k|zdt fixed. In this limit, the equal time structure factor has the scaling form:

〈Φ~k(t)Φ
†
~k
(t)〉 ∼ 1

|~k|δ
G(|~k|zdt), (4.25)

109



Figure 4.3: Plot of m2
eff(t) vs t for a sudden quench from the disordered phase to the

ordered phase in d = 1 + ε. The green line shows m2
GGE, the effective mass squared

predicted by the GGE. Inset shows late time. System parameters: ε = 0.1, L = 1200,
Λ = π, r0 = rc + 2, r = rc − 1, λ = 1.

where G is the scaling function. When the system is strictly coarsening, the volume

under the two-point function should grow as lco(t)
d. That is, the structure factor at

zero momentum should as lco(t)
d. Thus, δ = d for strict coarsening. On the other

hand, when the system is coarsening to a critical state, the growth of the volume

under the two-point function with time is slower. Thus, δ < d.

To numerically confirm that the system is coarsening, we will ask that the structure

factor at late times have the scaling form predicted by Eq. (4.25). We will then use

the value of δ to differentiate between the two possibilities. Let us now turn to the

amplitude and spatial dimension dependence of the late time behavior of our sudden

quenches.

Consider first sudden quenches in d ≤ 2. Relatively small system sizes are suf-

ficient to determine the late-time behavior near d = 1 rather than at d = 2. We

therefore work at d = 1 + ε. Fig. 4.3 shows m2
eff(t) for d = 1.1; the inset contains
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the longest time behavior. Observe that m2
eff can be negative in the course of the

evolution. This is not alarming because it is not the steady state behavior and does

not imply instantaneous imaginary correlation lengths. The negative values of m2
eff

merely indicates that 〈Φ2(t)〉 < (−r). The mode functions then grow exponentially,

causing m2
eff to become positive. This explains the initial oscillatory behavior of m2

eff .

However, at late times, m2
eff settles to the positive value m2

f (see inset). The green line

in both plots is the effective mass squared predicted by the GGE, m2
GEE. The system

definitely does not relax to the GGE as m2
GGE is almost two orders of magnitude

larger than m2
f . The equal time structure factor is plotted in Fig. 4.4 at different

times. By the Riemann-Lebesgue lemma, only the time-averaged structure factor

contributes to the two-point function in real-space. Thus, the green curve is sufficient

to understand the behavior of correlations in real-space. All three structure factors

lead to exponential correlations in real-space.

The positivity of m2
f is not specific to our choice of initial conditions. Recall that

stability arguments dictate that m2
f ≥ 0 if the effective mass goes to a constant as

t→∞. We now show analytically that m2
f = 0 is physically impossible in d ≤ 2. To

this end, suppose m2
f = 0. Then, the solution for f~k(t):

f~k = A~k cos(|~k|t) +
B~k

|~k|
sin(|~k|t), (4.26)

where A~k and B~k are complex valued functions that depend on the initial condi-

tions. Whatever the detailed form, their amplitude must be finite and non-zero and

Im[A~kB
∗
~k
] = 1 (from Eq. (4.12)). The above solution has to be consistent with m2

f

determined through Eq. (4.16) (or Eq. (4.23)). For d < 2, this is impossible as the

RHS is different from zero by an amount divergent in the long time limit:

r +
λ

2

∫
ddk

(2π)d
|f~k|2N~k ∼ t2−d. (4.27)
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Figure 4.4: Plots of 〈Φ~k(t)Φ
†
~k
(t)〉 vs |~k| at different times for a sudden quench from

the disordered phase to the ordered phase in d = 1 + ε. System parameters: ε = 0.1,
L = 1200, Λ = π, r0 = rc + 2, r = rc − 1, λ = 1.

Therefore, m2
f > 0 for d < 2 and the late time state is disordered. The argument at

d = 2 is more delicate; it involves showing that the RHS is different from zero by a

finite quantity.

The above proof suggests that for d > 2 different quenches can lead to a vanishing

m2
f and hence coarsening. Indeed, our numerical results for d > 2 confirm this

expectation and show two kinds of late time behaviors. Shown in Fig. 4.5 is the plot

of m2
eff(t) at late times for a sudden quench of “small amplitude” to the ordered phase

in d = 3. We define a “small amplitude” quench to be a sudden quench in which

the injected energy density is smaller than that in the critical ensemble at r. At late

times, the effective mass is seen to oscillate about zero with a decaying amplitude.

Thus, m2
f is indeed zero.
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In Fig. 4.6, we plot various structure factors: 1) at t = 0, 2) the averaged structure

factor at late times and 3) the connected structure factor predicted by the GGE.

We compute the averaged structure factor only for the wave numbers |~k| & 0.1.

For t > 25, their amplitudes, |f~k|, oscillate about the green curve. Again, by the

Riemann-Lebesgue lemma, the green curve is sufficient to compute the late time

two-point function in real-space at distances . 2π/0.1 in lattice units. Observe that

despite the lack of relaxation to the GGE, the tail of the green curve falls off as 1/|~k|2,

just like the curve computed from the GGE (black). In the inset in Fig. 4.6, we plot

|f0(t)| as a function of t. At early times, |f0(t)| is order one as in the initial state.

At late times, it grows linearly with t. This implies that the volume under the two

point function |f0|2 grows as t2. This is consistent with the scenario of coarsening to

a non-equilibrium critical state, as we will show now.

We now check if the structure factor has the scaling form predicted in Eq. (4.25).

Shown in Fig. 4.7 is the plot of the scaling function G vs |~k|t. The curves at different |~k|

collapse when zd = 1, δ = 2. As δ < d, the system is coarsening to a non-equilibrium

critical state, as opposed to strict coarsening (in agreement with Ref. [168]). Physi-

cally, when zd = 1, the size of a correlated region at time t is set by the horizon. This

is the fastest possible growth and is possibly too fast to establish long-range order.

An interesting avenue for future work is to investigate the nature of the coarsening

process in the O(N) model at infinite N limit in different spatial dimensions. Pre-

liminary results show that the system always coarsens to a non-equilibrium critical

state. However, the critical state itself varies with dimension.

On injecting an energy density greater than that in the critical ensemble at r, the

late time behavior is qualitatively the same in Figs. 4.3,4.4. Again, as was the case

for d ≤ 2, the GGE does not reproduce the late time behavior.

113



Figure 4.5: Plot of m2
eff(t) vs t for a sudden quench of small amplitude (see text for

definition) from the disordered phase to the ordered phase in d = 3. The ratio of
the injected excess energy density to the critical energy density is approximately 0.7.
System parameters: L = 700, Λ = π, r0 = rc + 2, r = rc − 4, λ = 1/2.

Figure 4.6: Plots of 〈Φ~k(t)Φ
†
~k
(t)〉 vs |~k| at different times for a quench of small am-

plitude from the disordered phase to the ordered phase in d = 3. The green curve is
the averaged structure factor for t > 25 (see text). Inset: The amplitude of the mode

function at |~k| = 0, |f0(t)|, vs t. See the label of Fig. 4.5 for system parameters.
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Figure 4.7: The structure factor multiplied by |~k|2 vs |~k|t for the quench of small
amplitude from the disordered phase to the ordered phase in d = 3. The six curves
that exhibit the scaling collapse predicted by Eq. (4.25) are at the six smallest values

of |~k|, |~k| = 2πm/L, where m = 1, . . . 6 and L = 700. We conclude that zd = 1, δ = 2.

4.4.3 The step approximation

The dimensional dependence of the late time physics is well captured by the step

approximation, first introduced in Ref. [173]. Here, one approximates m2
eff(t) by a

step function:

m2
eff(t) ≈





m2
0, t < 0

m2
s, t > 0.

(4.28)

The initial state fixes m2
0. This approximation is quite coarse in that it ignores the

intricate early-time behavior of m2
eff(t) visible in Fig. 4.3. However, it builds in the

late-time constancy of m2
eff(t), a key feature of the infinite N dynamics. Within this

approximation, the equations of motion can be solved analytically as the dynamical

problem is equivalent to a sudden quench in a free field theory. m2
s is a free parameter

in this solution. It is fixed by requiring that the self-consistency relation in Eq. (4.23)

hold at late times. For further details of the method, see Ref. [173].
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Although ms is numerically not equal to the actual late time effective mass, mf ,

the two share qualitative features. Specifically, the dimensional dependence of mf

discussed in the previous subsection is reflected by ms. First, we find that for d ≤ 2,

m2
s is always positive for any m0. Thus, the final state is always disordered. Second,

for d > 2, the value of m2
s depends on m2

0. For deep quenches or “large” m0, ms > 0

and the final state is disordered. On decreasing the amplitude of the quench, the

value of m2
s decreases, until m2

s = 0. After this point, we find no solutions to the

self-consistency relation and the approximation breaks down. This breakdown is

indicative of the new physics of coarsening at late times. Note though that coarsening

cannot be captured within this approximation as the precise way in which m2
eff(t)

approaches zero is important.

To summarize, the step approximation leads to a disordered state in d ≤ 2 for

any quench and in d > 2 for a deep quench. For shallow quenches in d > 2, the

approximation breaks down, indicating new late-time behavior.

4.5 Scaling and quenches to the critical point

Thus far we have focused on the dimensional dependence of the late time physics

upon quenching to the ordered phase. Now we turn to the question of scaling for

such quenches due to proximity to the critical point separating the ordered and disor-

dered phases. This aspect of the physics has an interesting dimensional dependence

of its own which is the non-equilibrium analog of the variation of equilibrium crit-

ical behavior with dimension. We will specifically be interested in the reversion to

Gaussian critical behavior in d ≥ 3. We will focus almost entirely on quenches to

the critical point and note at the end the generalization to quenches into the ordered

phase.
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As before, we prepare the system in the ground state in the disordered phase at

some r0 > rc. The initial conditions are once again as detailed in Eq. (4.24). At

t = 0, we quench the system to the critical point.

A first observation is that in any dimension the late time state is disordered,

i.e. m2
f > 0 for an initial non-zero m0. This is observed in our numerical solutions

but it can also be argued, on analytic grounds paralleling our demonstration that

coarsening is impossible upon quenching into the ordered phase. For d < 2, our

previous argument already suffices and for d > 2, one can extend it via a consideration

of a larger set of momenta at the critical coupling. We note that this result is again

consistent with reasoning based on the equilibrium phase diagram—injecting a non-

zero energy density at the critical coupling should lead to a finite correlation length.

However, this result hides an important difference between d < 3 and d ≥ 3 to which

we now turn. This difference is most sharply visible if we consider a scaling limit for

sudden quenches, a close cousin of the KZ scaling limit, which makes their universal

physics manifest.

Let us first consider 1 < d < 3 where the critical point is interacting even in the

infinite N theory. When the initial state is in the vicinity of this critical point, its

correlation length, 1/m
1/z
0 , diverges as (r0 − rc)−ν , where the critical exponents are

ν = 1/(d − 1), z = 1 at infinite N . On the length/time scale 1/m0, the equilibrium

physics is universal. On the same scale, the dynamics following a sudden quench

is also universal in an appropriate scaling limit. This is the limit of r0 → rc when

lengths/times are measured in units of the initial correlation length/time, 1/m0. In

this limit, the one and two point functions of an operator O have the scaling forms:

〈O(~x, t)〉m0 ∼ m∆
0 GO(tm0) (4.29)

〈O(~x, t)O(0, 0)〉m0 ∼ m2∆
0 GOO(|~x|m0, tm0), (4.30)
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Figure 4.8: Plots of m2
eff/m

2
0 vs tm0 at different values of Lm0 in d = 2. At each Lm0,

we show the behavior for three (small) values of m0. The scaling collapse provides
strong evidence for Eq. (4.31). System parameters: Λ = 1, r = rc, λ = 3.

where ∆ is the scaling dimension of the operator O and we have used the translational

and rotational invariance of the system. The out-of-equilibrium physics in this limit

is conjectured to be universal because the quench is very shallow – only the universal

low-energy long-wavelength part of the energy spectrum at the critical point is excited

for t > 0. Those readers familiar with the Kibble-Zurek mechanism will notice that

the above scaling limit is very similar to the one in slow ramps. The correlation length

and time in the initial state play the roles of the Kibble-Zurek length and time.

The previous computations of universal correlation functions in d = 1 are in

the scaling limit described above. For example, the two-point correlation functions

computed by Calabrese and Cardy[27, 28] using boundary conformal field theory have

the scaling form in Eq. (4.30). Finally, the formalism above can be easily generalized

to the cases when (a) the dynamic exponent z 6= 1, (b) when the system size is finite

and (c) when the quench is not exactly to the critical point.

To test the scaling hypothesis, we consider the one-point function, 〈|~Φ|2(t)〉m0/N .

Equivalently, consider the effective mass squared m2
eff . Accounting for the finite sys-
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Figure 4.9: M(∞) vs spatial dimension d computed for m−1
0 = 20, 40, 80 with Lm0 =

10. The solid line is M(∞) obtained in the step approximation (Sec. 4.4.3) at the
same system system sizes and initial conditions. System parameters: Λ = 1, r = rc, λ
is d-dependent and chosen to ensure that the initial state is in the equilibrium scaling
region.

tem size L in the numerics, the scaling form of m2
eff is:

m2
eff(t, L;m0) ∼ m2

0M(tm0, Lm0). (4.31)

We discuss the early and late time behavior of M below.

By construction in the thermodynamic limit, M(0−) = 1. At t = 0+, m2
eff is

negative. This reflects the finite correlations in the initial state, unlike the ground

state at the critical point. Using the form of f~k(0
−) in Eq. (4.23), it is easy to see

that:

M(0+) ∼ −md−3
0 . (4.32)

Thus, M(0+) is negative and divergent in the scaling limit.

The full scaling function can be determined numerically. In Fig. 4.8, we show M

for Lm0 = 6, 20 in d = 2. The data collapses for three different values of m0 at each

Lm0, providing strong evidence for Eq. (4.31). The negative divergence of M near
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0+ is not shown in order that the late time behavior be visible. Generically, we find

thatM tends to a positive constant at late times. Thus, the late time state is indeed

disordered.

In Fig. 4.9, M(∞) is plotted as a function of dimension for different values of

m0 at fixed Lm0 = 10. For all d < 3, the extrapolation to the thermodynamic limit

leads to a positive value of M as tm0 → ∞. The solid line is M(∞) in the step

approximation discussed in Sec. 4.4.3. In agreement with Eq. (4.31), M(∞) is finite

in the dynamic scaling limit. The close agreement with the numerical data points

appears fortunate rather than principled.

Now consider the case when d ≥ 3 where the fixed point is Gaussian. If we work

directly at the fixed point, we have a free field theory, and the time-dependent mode

functions can be calculated exactly for the sudden quench to the critical point (see,

for example Ref. [28]). In the language of this article, the computation amounts to

ignoring the self-consistency equation for the effective mass and assuming that it is

zero at all times. The result is that the correlation functions at late times have a

power-law behavior in real space at long distances (light cone effects are irrelevant

to this discussion). Now, this is at odds with the observation of a finite correlation

length in Fig. 4.9 at any non-zero m0. This discrepancy is resolved if we take proper

account of the irrelevant quartic term which is dangerously irrelevant already for the

equilibrium behavior, i.e. it cannot be neglected to get proper asymptotic results.

The same is true for the non-equilibrium dynamics. This is easy to see in the step

approximation. The dependence of the late time (finite) correlation length, ξf , on the

initial correlation length 1/m0 is given by:

ξfm0 ∼ m
−(d−3)/2
0 as m0 → 0. (4.33)
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In the marginal d = 3 case, ξf is only logarithmically greater than m0. Thus, if we take

the scaling limit keeping distances on the order of 1/m0 fixed as described in Ref. [39],

we will indeed find Gaussian behavior but this will no longer be a good description

of the truly long time asymptotics on the longest time and length scales. As in

typical problems with dangerously irrelevant variables, there are now two divergent

scales to contend with—a phenomenon likely to be much more common in the non-

equilibrium setting as has been noted already with a different example involving

string-net coarsening in Ref. [38]. Finally, we note that the dangerous irrelevance of

interactions is also germane to quenches into the ordered phase where again a scaling

limit can be defined as above. Again, we will find that in d ≥ 3 Gaussian results

hold in the scaling regime, which will exhibit an exponential growth of the local order

parameter before being cutoff at the parametrically longer scale by the coarsening

physics we described previously.

4.6 Concluding remarks

In our current understanding, as sketched in this paper, the quantum O(N = ∞)

vector model appears intermediate between generic systems that exhibit thermaliza-

tion starting out of equilibrium and integrable systems that do not. It does exhibit

stationary behavior at long times following parameter changes but it does not exhibit

thermalization. This behavior is consistent with it appearing to have only half the

number of conserved quantities appropriate for a fully integrable system. Interest-

ingly, the GGE constructed from the known conserved quantities does not describe

the late time stationary states which is inconsistent with the GGE conjecture [161].

A definitive resolution to the question of whether the GGE conjecture is false or

whether there are additional conserved quantities is desirable. In the absence of the

latter the O(N =∞) vector model would provide an example of a system exhibiting
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a large number of emergent conserved quantities at late times. In such a case, all local

properties of the system are captured by a modified emergent GGE which includes

chemical potentials for the emergent conserved quantities.

Interestingly, the late time states of the O(N = ∞) vector model following

quenches exhibit “knowledge” of its equilibrium phase diagram. They exhibit coars-

ening if and only if the model exhibits a finite temperature ordered phase, which in

turn depends on the dimensionality of the system. However, this coarsening process

appears to be to a state that is critical. That is, it does not show any signatures of

developing long range order on length scales smaller than the coarsening length scale.

Elucidating the nature of this critical coarsening and its precise dependence on initial

conditions is a fit subject for future work.

We note that the temporal structure of relaxation appears to be quite complicated

at large but finite N . The infinite N theory already exhibits finite times scales for the

appearance of stationary states in the absence of coarsening and algebraic relaxation

in the presence of coarsening. This behavior is initial state dependent. For large N

we expect this behavior to give way to genuine thermalization, at least for d > 1,

on a time scale that is parametrically large in N . How much of this intricate time

dependence survives to, say, N = 3 is an interesting question.

Finally we note that in d = 3 the critical fixed point is Gaussian. In its neighbor-

hood, the scaling limit will be described by the Gaussian theory as we illustrated in

this paper for quenches to the critical point. This is potentially amenable to exper-

imental work in cold atomic systems where the N = 2 case is the critical theory of

the Mott insulator to superfluid transition with particle hole symmetry.

122



4.A Lack of relaxation to the GGE

In this appendix, we show that the correlations in the late time state of the O(N)

model are not reproduced by the appropriate GGE Eq. (4.19). Define a new set of

variables linearly related to the mode functions f~k in Eq. (4.11):

g~k ≡ f~k
√
N~k. (4.34)

We interpret g~k as the complex coordinate of a 2d classical particle labelled by ~k > 0.

Next, define the momentum of each particle to be:

π = ġ∗. (4.35)

When absent, the momentum subscript is implied. Then, the condition in Eq. (4.12)

implies that the angular momentum of the particle at ~k > 0 is given by:

lz ≡ −Im[g(t)π(t)] = −N . (4.36)

This classical angular momentum should not be confused with the conserved angular

momentum Lz in Eq. (4.17). They are completely unrelated. The above equation

implies that lz is a constant of the motion for the classical system and is set by the

value of N . The dynamics of the classical particles is governed by the Hamiltonian:

Hcl =

∫

~k>0

|π|2 + (|~k|2 + r)|g|2 +
λ

4

(∫

~q>0

|g|2
)2

. (4.37)

It is easily checked that the equations of motion derived from Hcl reproduce

Eq. (4.15,4.16). On solving for the dynamics of the classical particles generated

by Hcl with fixed angular momentum lz and the initial conditions derived from

Eq. (4.14), we can compute any observable in the O(N) model through Eq. (4.11).

123



This classical interpretation is useful because it unambiguously identifies the role

of the c-number N in the solution. The radial coordinate of the classical particle,

|g(t)|, depends on the conserved angular momentum lz at late times. As the equal

time structure factor S(~k, t) is given by:

S(~k, t) =
|g~k(t)|2

2
(4.38)

where 〈Φ~kΦ
†
~k′
〉 = S(~k, t) (2π)dδd(~k − ~k′), (4.39)

the time-averaged structure factor at late times must depend on lz~k as well. The

structure factor in the GGE however is independent of this quantity. Thus, the

two do not agree and the dynamics in the O(N) model does not thermalize in the

generalized sense.
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Part II

Entanglement
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Chapter 5

Entanglement in the quantum Hall

phases

The quantum Hall effect is a centerpiece of modern condensed matter physics. Discov-

ered experimentally in the early 1980s [112, 186] in semiconductor heterostructures, it

is the remarkable appearance of gapped quantum liquid phases of electrons confined

to two dimensions in a strong perpendicular magnetic field. The classic signature

of these phases is shown in Fig. 5.1 (adapted from Refs. [63, 177]). If the electrons

behaved classically, then the Hall resistance Rxy would increase linearly with the

magnetic field B. Instead, Rxy exhibits plateaus quantized to one part in 108 of the

quantum of resistance whenever the longitudinal resistance, Rxx, vanishes. There are

two kinds of plateaus: ones at inverse integer values and others at rational fractional

values. The integer valued plateaus or the integer quantum Hall (IQH) effect can

be understood with single-particle quantum mechanics in the presence of disorder

[119, 91, 181, 184, 37, 150]. Each gapped IQH phase is characterized by a topological

invariant known as the Chern number in the bulk [181], C, and a corresponding collec-

tion of C massless chiral Dirac fermions on the boundary. The transverse conductivity

σxy is quantized to C in units of the quantum conductance.
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The FQH effect on the other hand, poses more of a puzzle as it would not ex-

ist if the electrons did not interact with one another. Further, Landau’s theory of

symmetry breaking is of no help as the various FQH liquids have the same sym-

metries. The theory behind the FQH phases developed over the last thirty years

[120, 88, 92, 102, 196] required a revolution in our understanding of collective phases

in which the topology of the manifold of the electron gas takes a central role [197].

These topological theories predict that the edge is gapless and a universal feature of

the phase, while the bulk is gapped and supports excitations with rational fractional

quantum numbers and exotic braiding statistics [3, 89]. Fractional charge has now

been directly observed in many experiments [53, 166, 200, 124, 193]; whether these

excitations have fractional statistics is still being settled [2, 201, 199]. Neverthe-

less, the particular phases that support non-Abelian excitations, like the Moore-Read

state[134] theoretically predicted to describe the ν = 5/2 plateau [198, 203, 138], have

been a great source of excitement recently because of their potential as platforms for

topological quantum computation [77, 109, 136].

Coincidentally, the idea of a quantum computer or a simulator was put forth by

Richard Feynman [69] at about the same time as the discovery of the QH effect (1982).

Quantum information theory has developed in parallel and essentially independent of

the theory of the QH effect since then. Unlike a classical computer, a quantum com-

puter uses quantum particles to represent information [137]. As a quantum computer

operates by the principles of quantum mechanics, it is probabilistic in nature. If we

manage to build one, we believe that such a machine will be more powerful than any

classical, probabilistic computer. Some of the power of a quantum computer stems

from entanglement. When a system is entangled, measurements on distant parts of

the system can be much more correlated than is classically allowed [7]. Thus, it be-

comes possible to teleport quantum bits [8, 18] and break public-key cryptography
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Application of a magnetic field normal to the plane
further quantizes the in-plane motion into Landau levels
at energies Ei5(i11/2)\vc , where vc5eB/m* repre-
sents the cyclotron frequency, B the magnetic field, and
m* the effective mass of electrons having charge e. The
number of available states in each Landau level, d
52eB/h , is linearly proportional to B. The electron spin
can further split the Landau level into two, each holding
eB/h states per unit area. Thus the energy spectrum of
the 2D electron system in a magnetic field is a series of
discrete levels, each having a degeneracy of eB/h (Ando
et al., 1983).

At low temperature (T!Landau/spin splitting) and in
a B field, the electron population of the 2D system is
given simply by the Landau-level filling factor n5n/d
5n/(eB/h). As it turns out, n is a parameter of central
importance to 2D electron physics in high magnetic
fields. Since h/e5f0 is the magnetic-flux quantum, n de-
notes the ratio of electron density to magnetic-flux den-
sity, or more succinctly, the number of electrons per flux
quantum. Much of the physics of 2D electrons in a B
field can be cast in terms of this filling factor.

Most of the experiments performed on 2D electron
systems are electrical resistance measurements, although
in recent years several more sophisticated experimental
tools have been successfully employed. In electrical
measurements, two characteristic voltages are measured
as a function of B, which, when divided by the applied
current, yield the magnetoresistance Rxx and the Hall
resistance Rxy (see insert Fig. 1). While the former, mea-
sured along the current path, reduces to the regular re-
sistance at zero field, the latter, measured across the cur-
rent path, vanishes at B50 and, in an ordinary
conductor, increases linearly with increasing B. This
Hall voltage is a simple consequence of the Lorentz
force’s acting on the moving carriers, deflecting them
into the direction normal to current and magnetic field.
According to this classical model, the Hall resistance is
Rxy5B/ne , which has made it, traditionally, a conve-
nient measure of n.

It is evident that in a B field current and voltage are
no longer collinear. Therefore the resistivity r̂ which is
simply derived from Rxx and Rxy by taking into account
geometrical factors and symmetry, is no longer a num-
ber but a tensor. Accordingly, conductivity ŝ and resis-
tivity are no longer simply inverse to each other, but
obey a tensor relationship ŝ5 r̂21. As a consequence,
for all cases of relevance to this review, the Hall conduc-
tance is indeed the inverse of the Hall resistance, but the
magnetoconductance is under most conditions propor-
tional to the magnetoresistance. Therefore, at vanishing
resistance (r!0), the system behaves like an insulator
(s!0) rather than like an ideal conductor. We hasten
to add that this relationship, although counterintuitive,
is a simple consequence of the Lorentz force’s acting on
the electrons and is not at the origin of any of the phe-
nomena to be reviewed.

Figure 1 shows a classical example of the characteris-
tic resistances of a 2D electron system as a function of
an intense magnetic field at a temperature of 85 mK.

The striking observation, peculiar to 2D, is the appear-
ance of steps in the Hall resistance Rxy and exception-
ally strong modulations of the magnetoresistance Rxx ,
dropping to vanishing values. These are the hallmarks of
the quantum Hall effects.

III. THE INTEGRAL QUANTUM HALL EFFECT

Integer numbers in Fig. 1 indicate the position of the
integral quantum Hall effect (IQHE) (Von Klitzing,
et al., 1980). The associated features are the result of the
discretization of the energy spectrum due to confine-
ment to two dimensions plus Landau/spin quantization.

At specific magnetic fields Bi , when the filling factor
n5n/(eB/h)5i is an integer, an exact number of these
levels is filled, and the Fermi level resides within one of
the energy gaps. There are no states available in the
vicinity of the Fermi energy. Therefore, at these singular
positions in the magnetic field, the electron system is
rendered incompressible, and its transport parameters
(Rxx ,Rxy) assume quantized values (Laughlin, 1981).
Localized states in the tails of each Landau/spin level,
which are a result of residual disorder in the 2D system,
extend the range of quantized transport from a set of
precise points in B to finite ranges of B, leading at inte-
ger filling factors to the observed plateaus in the Hall

FIG. 1. Composite view showing the Hall resistance Rxy

5Vy /Ix and the magnetoresistance Rxx5Vx /Ix of a two-
dimensional electron system of density n52.3331011 cm22 at a
temperature of 85 mK, vs magnetic field. Numbers identify the
filling factor n, which indicates the degree to which the se-
quence of Landau levels is filled with electrons. Instead of ris-
ing strictly linearly with magnetic field, Rxy exhibits plateaus,
quantized to h/(ne2) concomitant with minima of vanishing
Rxx . These are the hallmarks of the integral (n5i5integer)
quantum Hall effect (IQHE) and fractional (n5p/q) quantum
Hall effect (FQHE). While the features of the IQHE are the
results of the quantization conditions for individual electrons
in a magnetic field, the FQHE is of many-particle origin. The
insert shows the measurement geometry. B5magnetic field,
Ix5current, Vx5longitudinal voltage, and Vy5transverse or
Hall voltage. From Eisenstein and Stormer, 1990.

S299H. L. Stormer, D. C. Tsui, and A. C. Gossard: The fractional quantum Hall effect

Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999

Figure 5.1: Overlay of the Hall resistance Rxy = Vy/Ix and the longitudinal mag-
netoresistance Rxx = Vx/Ix vs magnetic field B of a two dimensional electron gas
of density n = 2.33 × 1011 cm−2 at temperature T = 85 mK. The numbers indicate
the filling factor ν, defined as the number of electrons per magnetic flux quantum
φ0 = hc/e. The vanishing of Rxx accompanied by the plateaus in Rxy at integer
and rational fractional values of ν are the hallmarks of the integer and the fractional
quantum Hall effect respectively. The inset shows the geometry of the measurement.
From Refs. [63, 177].

schemes [170, 80]. Entanglement is thus a resource for quantum computation. Its

role in the physics of the QH phases was not appreciated until relatively recently.

In 2006, Kitaev and Preskill [111] and Levin and Wen [121] independently observed

that a measure of entanglement known as the entanglement entropy in the FQH

ground states contained a universal signature of the order in the phase. Soon after,

in 2008, Li and Haldane [123] made a remarkable conjecture. They conjectured that

one of the signatures of the FQH liquids – the low energy theory at the edge – was

manifest in an organization of the Schmidt values under a real space decomposition

that they dubbed the entanglement spectrum (ES). The signs were now everywhere.
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Entanglement was more than just a resource for quantum computation. Instead, it

was perhaps a physical principle underlying collective quantum phases, much like

Landau’s symmetry breaking paradigm.

In the second part of this dissertation, we present evidence that entanglement

indeed deconstructs the physics of FQH phases. We begin with a brief review of the

IQH effect, with a focus towards understanding the edge. In this simple setting, we

do our first calculation of the real-space entanglement spectrum and demonstrate how

it uncovers the physics at the edge. This example will hopefully help the reader build

some intuition for the ES that will be invaluable in the more complicated FQH case.

We do not review the physics of the FQH phases in this chapter; we introduce the

necessary ideas in the introductory and background sections of the two subsequent

chapters. In Chapter 6, we offer microscopic evidence for the conjecture by Li and

Haldane at a sequence of exactly solvable representatives of FQH phases (the Read-

Rezayi sequence). En route, we introduce two entanglement spectra corresponding

to two different Schmidt cuts that reveal different facets of the physics of the FQH

phases. One is an approximation to the Schmidt cut in real space that probes edge

excitations (the orbital ES), while the other is a cut in particle space that probes the

bulk excitations (the particle ES). We then provide the first microscopic proof of the

bulk-edge correspondence in the ES between these two spectra. Thus, the bulk-edge

correspondence in the energy spectrum is reflected in the ES. Finally, in Chapter 7,

we investigate the effects of finite system size on the entanglement spectrum.

5.1 The Integer Quantum Hall Effect

An electron with effective mass m∗ and charge −e moving on a two-dimensional

surface of extent Lx×Ly under the influence of a uniform magnetic field B is described
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by the Hamiltonian:

H =
1

2m∗

∣∣∣p +
e

c
A
∣∣∣
2

. (5.1)

Following Landau, we choose the gauge A = Bxŷ. Assuming periodic boundary

conditions in the y direction, the momentum ky is a good quantum number and H

reduces to the Hamiltonian of a one dimensional harmonic oscillator with frequency

given by the cyclotron frequency, ωc = eB
m∗c

. As ωc is independent of ky, it follows

immediately that the energy spectrum is highly degenerate. Each degenerate manifold

is called a Landau level and is labeled by n, the occupation of the harmonic oscillator.1

The degeneracy is given by the total number of flux quanta piercing the system

Nφ = BLxLy
2πc/e

, where the denominator 2πc/e is the flux quantum φ0 = hc/e (~ = 1). Of

most interest to us is the lowest Landau level (LLL) n = 0, in which the wavefunctions

have the form:

ψ0,ky(x, y) =
1√
Ly
eikyyφ0(x+ kyl

2
B) (5.2)

φ0(x) =
1

(π l2B)1/4
e−x

2/2 l2B (5.3)

where lB =
√

c
eB

is the magnetic length. Pictorially, the wavefunction is a Gaussian

packet of width lB localized about the guiding center Xky = −kyl2B in the x-direction

and has uniform amplitude in the y-direction. The quantization of ky further implies

that the guiding center coordinate is quantized to be an integer multiple of 2πl2B/Ly.

On filling the single-particle spectrum described above with N electrons, we obtain

the many-body states of an N -electron gas in the presence of a magnetic field. The

first observation is that certain filling factors ν = N/Nφ are special. When ν is an

integer, we fill ν Landau levels and obtain a unique, gapped ground state. The gap to

1We address the issue of boundary conditions in the x-direction shortly.
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Figure 5.2: a. Classical orbits of electrons moving in a radially outward magnetic
field. In the bulk, the orbits are circular. When the electrons cannot complete
their circular orbits, they skip along the edge. b. Single particle energy spectrum in a
confining potential. There is a level for every value of the guiding centerXkY . Overlay:
single-particle wavefunctions centered at their respective guiding center coordinates.
Colors indicate the distribution of current density, j = jyŷ, within a wavefunction.
Green represents positive jy, while blue represents negative jy. Note the difference in
the ratio between green and blue in the bulk and near the edges.

adding a local charge about this state is finite. Thus, at zero temperature, we expect

the electron gas to be a featureless incompressible fluid. At first sight, this is a bit

disappointing. Do electrons in a magnetic field behave no differently from the trivial

band insulator at the same filling?

A closer look at the spatial distribution of charge currents in these states reveals

otherwise. The origin of the current imprint is classical. Classical electrons moving in

a magnetic field experience a Lorentz force that confines them to the circular orbitals

shown in Fig. 5.2a. How is this reflected in the quantum mechanical eigenstates? For

simplicity, let us restrict our attention to the lowest Landau level (LLL). The local

current density in the wavefunction ψ0,ky is given by:

jky =
−e
2m

(
ψ∗0,ky pψ0,ky − ψ0,ky pψ∗0,ky +

2eA

c
|ψ0,ky |2

)
. (5.4)
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The Landau orbital wavefunctions, Eq. (5.3), have current density:

jky(~r) = ŷ
−e ωc√
πLylB

(x−Xky) exp

(
−(x−Xky)

2

l2B

)
. (5.5)

The current density is uniform in the y-direction, but varies along x. To the left of

the guiding center, the current density is positive (green), while to the right, it is

negative (blue). See Fig. 5.2b near x = 0. This is the manifestation of the classical

clockwise currents in the Landau basis2. Unfortunately, the current patten in each

Landau orbital is invisible in the many-body ground state at ν = 1. The current

density in the ν = 1 state is given by the sum of the current densities in the LLL

orbitals and is zero up to exponentially small corrections in the size of the system

(assuming as Ly, Lx � lB). How do we expose each term in the sum?

5.2 Exposing the current imprint

5.2.1 Physical edge

There are two different ways of exposing the handedness of the current density in each

Landau orbital. The first is to create a physical edge. Again, we draw intuition from

the classical motion of electrons. When the electrons are confined to a finite region, the

classical electrons cannot complete their circular orbits at the boundaries and ‘skip’

along the edges (Fig. 5.2a.) We warn the reader that the analogy between classical and

quantum electrons comes with its dangers. It turns out that the net magnetic moment

of the classical (spinless) electrons is exactly zero as the moments of the anti-clockwise

moving electrons in the bulk and the clockwise skipping electrons on the boundary

exactly cancel. In contrast, the quantum fluid has a diamagnetic response due to the

2Had we chosen a different basis to parametrize the LLL (the coherent basis), we would have
discovered that the current density in each eigenfunction was circulating in the clockwise direction.
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oppositely moving edge currents that we discuss below. A beautiful exposition of this

physics can be found in Ref. [140].

To create boundaries in the quantum problem, we add a potential V (x) to H

that confines the electrons in the x direction. The single particle energy spectrum

is the curve in Fig. 5.2b. Near x = 0, the potential is a negative constant, and the

eigenstates have the form in Eq. (5.3). Near x = ±Lx/2, the eigenfunctions remain

approximately Gaussian (like in Eq. (5.3)), but with guiding centers shifted closer

to x = 0 by an amount proportional to the magnitude of the local electric field. It

is easy to check that the eigenfunctions at the edge then carry net current [79] as

shown in Fig. 5.2b. What about the ground state of the system with edges? In

the ground state, all single particle orbitals with E < 0 are occupied. This state

has local filling ν = 1. The edges have no effect on the current density in bulk–

the current density remains zero. At the boundaries however, there are oppositely

moving currents.3 Although the total current carried by the sample is zero, we have

identified a distinctive feature of the ν = 1 droplet: the localization of the “in” and

“out” currents at different edges.

A physical consequence of the currents at the edges is the IQH effect. Suppose

we apply a voltage Vx between the two edges4. Then, in steady state, there is a net

current Iy in the y direction. It is easy to work out that Iy is proportional to Vx, and

that the conductivity σxy is one (ν in general) in units of the quantum of conductance,

e2/(2π).

3The higher Landau levels play a crucial role in the derivation of this result. See for example
Ref. [157].

4In the clean limit, every eigenfunction in the Landau gauge carries a net current in the y direction
when subjected to a uniform electric field in the x direction. Disorder localizes many of these states.
See Ref. [79].
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5.2.2 Virtual edge

The second way to expose the handedness of the current density in each Landau

orbital involves creating a ‘virtual’ edge in the bulk through a Schmidt decomposition

and plotting the Schmidt values cleverly. To make this calculation transparent, let us

first simplify our description of the bulk. Imagine two semi-infinite IQH liquids: one

in the left half plane (L) and the other in the right- half plane (R). Both are infinite

in the x direction and of finite extent Ly in the y direction. The physical boundary

at x = 0 implies that the single particle energy spectrum of the two droplets has

the form in Fig. 5.3. The x-value of each level in Fig. 5.3 is its guiding center Xky .

All orbitals up to the Fermi point at zero energy are occupied in the ground state.

Excitations about the Fermi point are arbitrarily cheap in the thermodynamic limit

Ly → ∞; thus, the system is gapless. In a low-energy theory, we keep only those

states within 2∆ of the boundary in both droplets:

H =
∆∑

Xky=−∆

wXky [L†(Xky)L(Xky)−R†(Xky)R(Xky) ] (5.6)

where L†(Xky) creates an electron in the Landau orbital at x = Xky in the left droplet

and likewise for the right. On the length scale ∆ about x = 0, we assume that the

spectrum in Fig. 5.3 is linear with slope w. Using the relation between the guiding

center and y-momentum, Xk = −kl2B, we arrive at the more familiar Hamiltonian of

two uncoupled 1-d wires of free oppositely moving chiral fermions:

H =
Λ∑

k=−Λ

−vk [L†(k)L(k)−R†(k)R(k) ] (5.7)

where Λ is the momentum cutoff for the low-energy theory and v is the speed of the

electron. Note that the motion of electrons along +ŷ is equivalent to a current along

−ŷ, so the signs indeed agree with the currents shown in Fig. 5.3.
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Figure 5.3: Left: Two decoupled semi-infinite IQH droplets, L and R. The arrows
indicate the direction of the currents on both edges. Center: Single particle energies
vs x. The circles denote single particle levels; their color indicates the nature of
the corresponding eigenstate. Eigenstates with weight only in L (R) are colored red
(blue). The levels occupied in the many-body ground state are depicted as solid.
Right: Entanglement spectrum for a Schmidt cut at x = 0 in the NL = 1 sector.

Suppose we now allow the droplets to interact with each other. This couples the

edge theories and allows fermions to hop from L to R and vice-versa:

Hint = −λ
∑

k

L†(k)R(k) +R†(k)L(k) (5.8)

The interaction term opens a gap in the single particle spectrum shown in Fig. 5.4.

The energies of the two bands are E±k = ±
√
λ2 + (kv)2 with single-particle eigen-

states:

|k〉± =
(
u±k L

†(k) + v±k R
†(k)

)
|0〉 (5.9)

where |0〉 is the empty vacuum with no fermions and:

u±k =
1√

1 +
(
E±k +vk

λ

)2
(5.10)

v±k =
−(E±k + vk)

λ

√
1 +

(
E±k +vk

λ

)2
. (5.11)
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Figure 5.4: Left: Two coupled semi-infinite IQH droplets, L and R. The arrows
indicate the direction of the currents on both edges when λ = 0 (see text). Center:
Single particle energy spectrum with two bands. The circles denote single particle
levels; their color indicates the nature of the corresponding eigenstate. Eigenstates
with weight only in L (R) are colored red (blue). The levels occupied in the many-
body ground state are depicted as solid. Right: Entanglement spectrum for a Schmidt
cut at x = 0 in the NL = 1 sector.

When k � −λ/v, u−k → 0 while v−k → 1. The coupling can be neglected and

|k〉− ≈ R†(k) |0〉. Similarly, for k � λ/v, |k〉− ≈ L†(k) |0〉. Near k = 0, λ is

the only energy scale in the system and cannot be neglected. The eigenstates are

superpositions of k states on the left and right and the gap is order λ. The many-

body ground state obtained by filling the lowest band is clearly gapped and has no

net current. Thus, the line x = 0 will be no different than any other line in the bulk

of an IQH droplet. The information in the energy spectrum about the gapless and

chiral nature of the edge is lost.

The entanglement spectrum however has the opposite behavior! It is gapped when

λ = 0, but is gapless when λ 6= 0. Let us first define the entanglement spectrum [123]

in general terms. Any wavefunction of a system composed of two parts, L and R, can

be decomposed as:

|ψ〉 =
∑

LR

CLR |L〉 |R〉 (5.12)

where |L〉 , |R〉 form an orthonormal basis for the L and R subsystems respectively

and C is a matrix of complex numbers. The matrix C need not to be diagonal, but
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can be diagonalized through a singular value decomposition, C = U †DV . Here U, V

are unitary matrices and D is a diagonal matrix of real, positive numbers called the

Schmidt values. Substituting in Eq. (5.12):

|ψ〉 =
∑

i

Dii

(∑

L

U †Li |L〉
)(∑

R

ViR |R〉
)

=
∑

i

Dii |i〉L |i〉R (5.13)

This is the Schmidt decomposition of the state |ψ〉. The Schmidt vectors |i〉L and |i〉R
form an orthonormal basis in L and R respectively. Finally, we exploit the positivity

of the Schmidt values to write,

|ψ〉 =
∑

i

e−εi/2 |i〉L |i〉R (5.14)

where the values εi define the entanglement spectrum (ES).

What is the Schmidt decomposition of the ground state of the two coupled wires?

At any λ, the ground state is:

|GS〉 =
∏

k

(u−k L
†(k) + v−k R

†(k)) |0〉

∝
∏

k

(
u−k
v−k
L†(k) +R†(k)

)
|0〉 (5.15)

where we have dropped a global normalization factor. By expanding the above prod-

uct, we can bring Eq. (5.15) to the form of Eq. (5.12). The expansion is naturally

organized by NL, the number of fermions in L:

|GS〉 ∝
∏

q

R†(q) |0〉+
∑

k

u−k
v−k
L†(k)

∏

q 6=k

R†(q) |0〉+ . . . (5.16)
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The first term has zero fermions in L, the second has one and so on. As states

with different numbers of fermions are orthogonal in L, every Schmidt vector can be

labelled by NL. We say that NL is a good quantum number for the cut. Let’s focus

on the sector with one particle in L (NL = 1). As 〈0|L(q)L†(k) |0〉 ∝ δqk, the second

term in Eq. (5.16) is already of the Schmidt form Eq. (5.13). Thus, the entanglement

spectrum is further labeled by momentum k,

εk = −2 log

(
u−k
v−k

)
(5.17)

dropping a constant shift due to the global normalization. The momentum resolved

entanglement spectra are shown in Figs. 5.3 and 5.4. The uncoupled half-droplets

(λ = 0) exhibit gapless energy spectra but infinitely gapped entanglement spectra.

At non-zero coupling λ, the two switch character: the energy spectrum develops two

bands and a finite gap, but the entanglement spectrum is chiral and gapless 5. See

Fig. 5.4.

The bottom-line of the above analysis is that at a physical edge, the energy spectra

are gapless and exhibit chiral propagation, while at a “virtual” edge, the entangle-

ment spectra have these properties. The entanglement spectrum is therefore a bulk

property which encodes the physics forced upon the edge by the chiral nature of

the Hall state. There is a second type of entanglement spectrum that we have not

touched upon in this introduction: the particle ES. We will see that this ES en-

codes the physics of the bulk of the Hall state and complements the real-space ES

discussed above. In the next two chapters, we explore the remarkable connection

between the bulk/edge energy spectra and the different ES in greater detail in the

context of the more exotic cousins of the IQH phases: the fractional quantum Hall

(FQH) phases that occur at fractional fillings ν. These interacting phases are similar

5The ES in the NR = 1 sector has the opposite chirality, where NR is the number of fermions in
the right droplet. The energy spectrum of both edges is really the ES in the NL = 1 and NR = 1
sectors.
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to the IQH state insofar as they are incompressible electron liquids with gapless chiral

edge modes, but detailed properties of the bulk excitations and the associated edge

theories are more complicated than the free fermions of the IQH state. For example,

the bulk charged excitations can carry fractional quantum numbers and have non-

Abelian braiding statistics. Consequently, we will find that the entanglement spectra

of virtual edges of FQH states are more interesting than the IQH one.
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Chapter 6

Bulk-Edge Correspondence in the

Entanglement Spectra

6.1 Introduction

In 2008, Li and Haldane[123] made the remarkable conjecture that the entanglement

structure of the ground state wavefunctions of the fractional Quantum Hall (FQH)

phases reflects physical properties of the phases.1 Their work connected two dis-

parate streams of research: the study of QH, or more broadly, topologically ordered

phases and quantum information theory. In detail, they constructed the orbital en-

tanglement spectrum (OES), which is an organization of the Schmidt values under

a decomposition of the spatially localized orbitals of the lowest Landau level into

two parts.2 Based on a numerical study, they conjectured that the OES reflects the

universal features of the low energy spectrum of the FQH droplet with a physical

edge. In this chapter, we provide microscopic evidence for the Li-Haldane conjecture

1Chapter based on work with M. Hermanns, N. Regnault and B. A. Bernevig [40].
2Heuristically, the Schmidt cut in orbital space is the real-space cut restricted to the lowest

Landau level (LLL). The physics requiring Landau level mixing, like the physics at the IQH edge,
is invisible in the OES. The OES only probes the ‘interacting’ part of the wavefunction.
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by studying the entanglement properties of model wavefunctions (the Read-Rezayi

sequence) known to describe a family of FQH phases.

What are the features of the edge of a FQH droplet? Recall that the droplets are

gapped in the bulk, and therefore featureless at low energies. The edge is where all

the action at low energies is at. In fact, it is responsible for the singular transport

signature of the FQH droplets, first observed experimentally three decades ago[186]:

the quantization of σxy. The edge of the FQH droplet is a gapless, chiral, one-

dimensional liquid, and is typically described by a universal critical theory like a

conformal field theory. The simplest edge theory is that of the integer quantum Hall

fluid: a single chiral free fermion (see Chapter 5). A bit more complicated is the

edge theory of the Laughlin fluid at ν = 1/3: a chiral boson. The consequence of

the universality of the edge theory is that the the low energy spectrum has universal

features everywhere in the phase. For example, the counting of the number of energy

levels as a function of the total momentum along the edge is the same everywhere in a

given FQH phase and is different for different phases with different edge theories. For

the IQH/Laughlin phases, this counting is 1, 1, 2, 3, 5 . . ., while for the Moore-Read

phase at ν = 5/2, it is 1, 1, 3, 5, . . . 3. Thus, the counting of the low-energy spectrum

is a robust signature of a FQH phase. Li and Haldane provided numerical evidence

that the counting of the low-lying levels in the OES was also a robust signature of

the phase, as it was equal to the edge counting. In this chapter, we will analytically

prove this equality of counting at special points in a family of FQH phases where the

ground state is exactly known.

Another interesting feature of the FQH phases is the bulk-edge correspondence.

The Laughlin flux threading thought experiment [105, 79] provides some insight into

the meaning of this correspondence. Consider the Laughlin fluid on a disk at ν = 1/m

with m odd. Imagine drilling a tiny hole into the fluid and pushing a solenoid through

3The counting depends on where the Schmidt cut is in orbital space; for details, see [123].
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it. By varying the current through the solenoid, we may modify the flux piercing the

hole. Suppose we slowly increase it from 0 to 2π in units of the flux quantum. A time

varying magnetic field induces an electric field in the bulk in the azimuthal direction.

This in turn causes a current to flow in the radial direction as σxy 6= 0. The reader can

easily convince herself that the total charge transported to the edge in this process is

−e/m. The flux tube in the bulk that binds the charge +e/m is actually the quasi

hole, a charged bulk excitation about the FQH vacuum. We have just demonstrated

that the process of creating a bulk charged excitation necessarily transports charge

to the edge. More formally, there is a connection between the partition function of

the bulk (which is a topological field theory) and that of the edge (a conformal field

theory). A consequence is the equality of the quasi-degeneracies in the edge and

the bulk energy spectra when plotted against suitable quantum numbers. Is there a

similar correspondence in the entanglement spectra? We will demonstrate that there

is. To wit, we need to first identify the relevant entanglement spectra. The OES is the

conjectured analog of the edge energy spectrum; in this chapter, following Ref. [176],

we conjecture that a different ES, the particle entanglement spectrum (PES), is the

analog of the bulk energy spectrum. In the PES, the Schmidt cut is in particle space.

This simulates the presence of quasi-holes in the fluid, much like a cut in orbital space

simulates a physical edge. We will show that the counting of the PES matches that

of the bulk excitation spectrum, solidifying the connection. We will then show that

there is a bulk-edge correspondence in the ES by showing that the PES and the OES

have the same counting.

To summarize, we will provide analytic evidence for the Li-Haldane conjecture

in a family of microscopic FQH wavefunctions (the Read-Rezayi sequence) in the

thermodynamic limit in two ways. First, we prove that the bulk-edge correspondence

in energy spectra is reflected in the entanglement spectra. Second, we argue that the

PES does count the bulk quasi-hole excitations. Using the bulk-edge correspondence
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of the ES, we then have a proof that the OES has the same counting as the edge

energy spectrum. In this chapter, for simplicity, we restrict the discussion to the

bosonic Read-Rezayi wavefunctions. The generalizations to fermions and the Gaffnian

wavefunction are straightforward; we refer the reader to the published article for

details[40].

A complementary field theoretic view on the Li-Haldane conjecture is given in

Ref. [154]. In this article, the authors imagine that the bulk of a FQH fluid is con-

structed by turning on a coupling between the edges of two disconnected pieces of the

same fluid. They then Schmidt decompose the ground state of the coupled system

in terms of the low-energy subspace of each piece, that is, in terms of the degrees of

freedom on the edge of each piece, and argue that the Li-Haldane conjecture holds.

This approach is very different from the microscopic view of bulk FQH wavefunctions

that we take in this chapter. This is also a good place to note that the Li-Haldane

conjecture is relatively easy to prove in non-interacting systems, such as the Integer

Quantum Hall system and topological insulators[70, 190, 45, 141]. Interacting sys-

tems are harder to tackle. Finally, the entanglement spectra of many other systems

have also been explored; see Refs. [151, 71, 101, 189, 204, 65, 74, 188, 148, 149, 142,

179, 32, 118, 206, 139, 127, 167].

The chapter is organized as follows: first, we introduce the relevant technical

background in Sec. 6.2. This includes a description of the spherical geometry, the

Read-Rezayi sequence, clustering and Jack polynomials. We then define the two

entanglement spectra, the orbital and the particle, in Sec. 6.3 and discuss their prop-

erties. This leads us to our first rigorous result in Sec. 6.4 that the number of non-zero

levels in PES is bounded from above by the number of bulk quasi hole excitations.

On physical grounds, we then argue that the bound is saturated. In preparation for

the second result, we formulate the clustering properties of the model state in the

single-particle orbital basis in Sec. 6.5. Sec. 6.6 contains the second result of this
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chapter: the outline of the proof for the bulk-edge correspondence in the model wave-

functions. In the same section, we illustrate the ideas of the proof with two examples

and identify the parameter range of its validity at finite size. The details of the proof

itself are in the appendices.

6.2 Background

6.2.1 Geometry

In the previous chapter, we discussed the Landau problem at integer and fractional

filling on the infinite plane. At any finite size (a finite number of particles N), the QH

droplet has an edge on the plane. The edge complicates the study of bulk properties

like the entanglement spectrum. We therefore move to a geometry with no edge: the

surface of a sphere. This technical innovation was introduced by Haldane in 1983

[88]. There are many good textbooks that derive the results stated below carefully:

for example, see [103].

Consider a sphere of radius R pierced by a radial and uniform magnetic field

with Nφ flux quanta in it. The electrons are confined to be on the surface of the

sphere. On solving the Landau problem in this geometry in a certain gauge, we

find that the single-particle states of each Landau level are eigenstates of L̂z, the z-

component of angular momentum and |~L|2, the square of the magnitude of the total

angular momentum vector [88]. In the Lowest Landau Level (LLL), the degenerate

single-particle states belong to a multiplet of angular momentum L = Nφ/2 and

consequently, Lz ∈ [−Nφ/2, . . . , Nφ/2]. Note that the degeneracy of the LLL is

Nφ+1. Define the spinor coordinates u = eiφ/2 cos θ/2 and v = e−iφ/2 sin θ/2, where θ

and φ are spherical polar coordinates on the sphere. The LLL wavefunction labelled
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by Lz is most conveniently written in these coordinates:

YLz(u, v) =


Nφ + 1

4π




Nφ

Nφ
2
− Lz







1/2

(−1)Nφ/2−LzuNφ/2+Lz vNφ/2−Lz (6.1)

The amplitude is uniform in the azimuthal direction and varies only along the θ

direction. Lz controls the value of θ at which the |YLz | is maximum (θmax): as

Lz decreases from Nφ/2 to −Nφ/2, θmax increases from 0 (north pole) to π (south

pole). The wavefunctions are polynomially localized in the θ direction about θmax.

Compare this to what we found on the infinite plane in the Landau gauge: the LLL

wavefunctions were uniform in the y direction, but Gaussian localized about a point

in the x-direction determined by ky.

The parametrization in terms of u and v is redundant as the coordinates are

constrained by the relation |u|2 + |v|2 = 1. To rid ourselves of this redundancy, let us

map the surface of the sphere to the infinite plane through a stereographic projection.

This defines the complex coordinate: z = 2Rv/u. The unnormalized single-particle

wavefunctions are then given by:

zm
(

1 + |z|2
4R2

)Nφ/2 , where m =
Nφ

2
− Lz. (6.2)

Above m = 0, 1 . . . Nφ. The factor in the denominator is independent of m. Thus,

any wavefunction in the LLL has the form:

F (z)
1

(
1 + |z|2

4R2

)Nφ/2 (6.3)
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where F (z) is a polynomial of z of degree Nφ. Similarly, any two-particle wavefunction

in the LLL has the form:

F (z1, z2)
2∏

i=1

1
(

1 + |zi|2
4R2

)Nφ/2 (6.4)

It is clear that all the information about the wavefunction is in the polynomial F . It

is then simpler to not carry the extra factor along by defining single-particle orbitals

|m〉:

〈z|m〉 = zm , m = 0, 1 . . . Nφ (6.5)

We refer to these single-particle orbitals as the monomials as zm is a monomial. From

this point on, we use m as the ‘angular momentum’ to label single-particle orbitals in

the text. In the figures, we use Lz. The linear relation between the two is m =
Nφ
2
−Lz.

We hope that this dual notation does not confuse the reader.

6.2.2 From one to many

Let the coordinates of N bosons/fermions be z1, . . . zN . As the single-particle basis

of particle i is spanned by the monomials of zi, the many-body basis is spanned

by monomials of z1, . . . zN . Consider the many-body state |λ〉 in which the orbitals

λ = [λ1, . . . λN ] are occupied. The list λ is sorted in descending order. If the particles

were all distinguishable, then the wavefunction of the state in which particle i occupies

orbital λi is
∏N

i=1 z
λi
i . When the particles are identical, the wavefunction has to be

symmetrized (bosons) or anti-symmetrized (fermions):

〈z1, . . . , zN |λ〉 = S[zλ1
1 · . . . · zλNN ] (6.6)
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where S is the process of symmetrization/anti-symmetrization over all indices i, j.

Note that λi 6= λj for any i 6= j if the particles are fermions. Any bosonic/fermionic

many-body wavefunction is a polynomial of the above symmetrized/anti-symmetrized

monomials. Further, a many-body wavefunction of fixed total angular momentum

Ltotz is a homogenous polynomial of degree Ltotz . That is, each monomial in such a

wavefunction satisfies
∑N

i=1 λi = Ltotz .

Every Fock state |λ〉 can be labelled in two ways. We have already introduced the

first: the ordered list of occupied orbitals λ. When the degree of the monomial is fixed

to be Ltotz , λ is an ordered partition of Ltotz into N parts. We can also label the Fock

state by n(λ), the occupation number configuration. It is a string of length Nφ+1 and

contains the occupation numbers of the orbitals m = 0, 1 . . . Nφ in order. For example,

if Nφ = 2 and N = 2, orbitals 2 and 0 are occupied in the Fock state |2, 0〉 of the 3

available orbitals. Consequently, λ = [2, 0], n(λ) = {101} and 〈z1, z2|2, 0〉 = z2
1 + z2

2 .

Similarly, λ = [1, 1], n(λ) = {020} and 〈z1, z2|1, 1〉 = z1z2 for the other Fock state at

the same total angular momentum.

6.2.3 The Read-Rezayi sequence

We now briefly discuss the properties of particular many-body wavefunctions whose

entanglement properties we will study. The experimentally relevant FQH phases are

all composed of fermions. In this chapter, we however work with the bosonic analogs

of these phases for simplicity. The proof we present can be extended to the fermionic

phases– for details, we refer the reader to the published article [40].

The Read-Rezayi sequence is a family of wavefunctions at filling factors ν = k/2,

where k is an integer greater than zero 4 [159]. These wavefunctions are the exact

ground states of rotationally and translationally invariant Hamiltonians believed to be

in the bosonic ν = k/2 FQH phases. The ν = k/2 phases are bonafide FQH phases:

4For bosons, ν can exceed one in the LLL. The fermionic analogues are at filling factor ν =
k/(k + 2) smaller than one.
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the longitudinal conductivity is zero while σxy is quantized at ν e2/2π. They are

gapped in the bulk, but support gapless edge excitations. The gapped quasi-particles

carry fractional charge and could have non-Abelian statistics. And remarkably, all

this exotic many-body physics is captured by the Hamiltonians of the Read-Rezayi

sequence. Our goal in this chapter is to discover all this physics from the entanglement

properties of the ground state wavefunction alone. To this end, let us summarize the

properties of the Read-Rezayi wavefunctions.

The Read-Rezayi wavefunctions of N bosons are homogenous polynomials of

z1, . . . zN . As the wavefunctions live in the LLL, they are holomorphic functions

of the zi. Their defining property is (k, 2)-clustering. Whenever a cluster of k + 1

particles is formed at a point in real space (e.g: z1 = . . . zk+1), the wavefunction van-

ishes. Further, the wavefunction vanishes in a specific way as a particle approaches a

cluster of k particles: it vanishes as
∏

i>k(z− zi)2 when z = z1 = . . . zk. The smallest

degree polynomial that has this property is unique; this is why we call it defining.

The Hamiltonian that the wavefunction at k is the exact ground state of penalizes

(k + 1) clusters [159, 171]. The familiar Laughlin and Moore-Read wavefunctions

[120, 134] are a part of this sequence; they occur at k = 1 and k = 2 respectively.

There is a nice language in terms of partitions and Jack polynomials in which the

clustering property of these wavefunctions is explicit. We motivate this below and

refer the reader to Refs. [89, 10, 11, 12, 9] for more details.

6.2.4 (k, 2)-admissible configurations

Suppose we had to “guess” the Read-Rezayi wavefunction. How would we proceed?

We know that the wavefunction has the following two properties: 1) there need to

be k bosons for every two flux quanta (ν = k/2), and 2) it is the ground state

of a Hamiltonian that penalizes clusters of more than k bosons in real space. The

consequence of the second property in momentum space is that the Hamiltonian
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penalizes any configuration with more than k bosons in a single orbital. If a single

orbital is filled with k+1 bosons, then the probability that the k+1 bosons are in the

same area ∆ is proportional to (∆/2πl2B)k, where lB is the magnetic length. As this

is finite, the energy penalty is finite. 1) further limits the number of bosons in two

consecutive orbitals to be k. Thus, we would guess that the occupation configuration

with smallest total angular momentum satisfying 1) and 2) is5:

n(λ0) = {k0k0k0 . . . k0k} . (6.7)

However, this state cannot be the exact ground state as it is not translationally

invariant and the orbitals have finite overlap with one another, making the probability

of more than k bosons in a given area finite. Why then is it useful? It turns out

that it captures important correlations in the Read-Rezayi wavefunction because the

clusters of bosons maximally avoid each other in this configuration. We will sharpen

this connection in the next subsection.

A few comments are in order. First, note that n(λ0) is an example of a (k, 2)-

admissible configuration. There are no more that k particles in 2 consecutive orbitals

in a (k, 2)-admissible configuration. λ0 is the special unique (k, 2)-admissible config-

uration with the highest boson density. It is known as the root partition. Second, on

repeating the same “guessing” game for the quasi-hole states, the reader will end up

writing other (k, 2)-admissible configurations. For example, the quasi-hole state with

one extra unit of angular momentum as compared to the ground state would be:

{k0k0k0 . . . k0 k − 1 1}

etc.

5Another guess is {k2 k2 . . .}. On the torus, this configuration is permitted. On the sphere however,
as the overlap of neighboring orbitals is greater than that between next nearest neighbors, this
configuration pays a higher energy cost than Eq. (6.7).
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6.2.5 Jack polynomials

A well-known family of symmetric, homogenous polynomials with liquid-like correla-

tions and special clustering properties is the family of Jack polynomials [174, 128, 67].

These polynomials are denoted by Jαλ and are labelled by a partition λ and a parame-

ter α. Bernevig and Haldane first established a connection between these polynomials

and the Read-Rezayi wavefunctions[10]. They showed that the Read-Rezayi ground

states and quasi-hole states are all Jack polynomials with α = −(k + 1) and (k, 2)-

admissible partitions λ (corresponding to (k, 2) admissible occupation configurations

n(λ)). The (k, 2)-admissibility of the label λ is clearly no accident, but what does it

mean?

To understand the meaning of the partition label in the Jack polynomials, we need

to define ‘dominance’, ‘squeezing’ and ‘addition’. A partition µ dominates another

partition ν (µ > ν) iff
∑r

i=0 µi ≥
∑r

i=0 νi ∀r ∈ [0, . . . , N ]. An example for µ and ν at

k = 2 is:

n(µ) = {202}

n(ν) = {121}

A set of partitions may always be partially ordered by dominance, indicated by the

symbol ‘>’. Squeezing is a two-particle operation that connects n(µ) to n(ν). It

modifies the orbitals occupied by any two particles in n(µ) from m1 and m2 to m′1

and m′2 in n(ν), such that m1+m2 = m′1+m′2 and m1 < m′1 ≤ m′2 < m2 if the particles

are bosonic or m1 < m′1 < m′2 < m2 if they are fermionic. In the example above,

n(ν) is obtained from n(µ) by squeezing. Dominance and squeezing are identical

concepts: a partition µ dominates a partition ν iff ν can be squeezed from µ by a

series of squeezing operations. Finally, the ‘sum’ of two partitions µ+ ν is defined as

the partition with occupation configuration n(µ+ν) = {nj(µ) +nj(ν), j = 0, . . . Nφ}.
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Consider the ground state of the Read-Rezayi Hamiltonian: Jαλ0
. The Jack poly-

nomial cannot be a single monomial like our approximate ground state in Eq. (6.7).

Any monomial pays a finite energy cost, while the Jack polynomial is a zero energy

state. Thus, it is a linear combination of many monomials. The key property is

that the monomials with non-zero weight in Jαλ0
all correspond to partitions that are

dominated by λ0. That is, to improve upon our guess for the ground state in the

previous subsection, we need to allow for amplitude on monomials with partitions

dominated by λ0. In fact, we could imagine systematically improving Eq. (6.7) by

including configurations obtained systematically from λ0 by squeezing. λ0 thus gives

us a good starting point to build the actual ground state wavefunction Jαλ0
.

The amplitudes of the monomials in Jαλ0
are not arbitrary: they are heavily con-

strained by the clustering property discussed in Sec. 6.2.3. We will derive the linear

relations between amplitudes imposed by clustering in Sec. 6.5. Here, we merely

state the result that the clustering property completely specifies the amplitudes of all

monomials, given that of λ0.

Finally, the Jack polynomials at α = −(k + 1) indexed by all the other (k, 2)-

admissible root configurations are the quasi-hole wavefunctions. Together, with the

ground state, they span the entire zero-mode space of the Read-Rezayi Hamiltonian.

The quasi-hole wavefunctions are also (k, 2)-clustering polynomials, i.e. they vanish

as
∏

i>k(z − zi)
2 when z = z1 = . . . zk. They provide a natural description of the

particle entanglement spectrum as we shall see in Sec. 6.4.

6.3 Entanglement Matrices and Spectra

In this section, we define the two kinds of entanglement spectra that are the analogues

of the edge and bulk energy excitation spectrum. They are respectively the orbital

and the particle entanglement spectrum. We will also define their corresponding
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entanglement matrices and give an example of each. We then review some of their

properties and set the stage for the first important counting result in this chapter

about the particle entanglement spectrum.

6.3.1 The Orbital Entanglement Matrix (OEM)

The FQH model state |ψ〉 can be written as:

|ψ〉 =
∑

λ

bλ|λ〉 (6.8)

where bλ is a complex amplitude and |λ〉 is a Fock state. Suppose we divide the

single-particle orbitals into two parts, A and B. Let A contain the orbitals with m

values from 0 to lA − 1 and B the remaining (lB orbitals). As the single-particle

orbitals are polynomially localized in the θ̂ direction (Eq. (6.1)), this partition in the

single-particle momentum space roughly corresponds to an azimuthally symmetric

spatial cut.

Consider the Fock state |λ〉. Some of the occupied orbitals in this state belong to

A (call this set λA) and the remaining belong to B (this set is λB). Thus, the above

expression is equivalent to:

|ψ〉 =
∑

λ

bλA,λB |λA〉|λB〉 (6.9)

where bλ = bλA,λB . The matrix of coefficients bλA,λB is the ‘full’ orbital entanglement

matrix or the ‘full’ OEM, denoted by Cf .

Observe that not all entries of Cf can be non-zero. Take a 2-particle wavefunction

with Ltotz = 2. We see that bλA,λB can be non-zero only if λA,B satisfy two relations:

1) As the total number of particles is 2, the number of occupied orbitals in A and B

must be exactly 2. 2) As the total angular momentum is 2, the sum of the angular

momenta of the occupied orbitals in A and B must equal 2 as well. Thus, Cf can
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have non-zero entries only when the quantum numbers of |λA〉 and |λB〉 satisfy: 1)

NA + NB = N , and 2) LAz + LBz = Ltotz . In other words, Cf has a block-diagonal

structure labelled by two quantum numbers: the number of particles in A (NA) and

the total angular momentum of the particles in A (LAz ).

The notation we use henceforth for the block of Cf with labels NA, L
A
z is C.

Further, we label the Fock states in A (B) with these labels by |µi〉 (|νi〉). Thus,

|ψ〉 =
∑

NA,LAz

∑

i,j

Cij|µi〉|νj〉 (6.10)

An example

Let us consider the bosonic Laughlin wave function of N = 4 particles at filling

ν = 1/2. The number of flux quanta, Nφ is 6 and Ltotz = 12. The wave function |ψ〉

can be expanded in the unnormalized basis as:

|ψ〉 ≡
∑

λ

bλ|λ〉

= |6, 4, 2, 0〉 − 2|6, 4, 1, 1〉 − 2|5, 5, 2, 0〉+ 4|5, 5, 1, 1〉

+ 2|6, 3, 2, 1〉 − 2|5, 4, 2, 1〉+ 4|5, 3, 2, 2〉+ 4|4, 4, 2, 2〉

− 2|6, 3, 3, 0〉+ 2|5, 4, 3, 0〉 − 6|4, 4, 4, 0〉 − 4|5, 3, 3, 1〉

− 6|6, 2, 2, 2〉+ 4|4, 4, 3, 1〉 − 6|4, 3, 3, 2〉+ 24|3, 3, 3, 3〉.

(6.11)

We will use this wavefunction several times in the chapter for illustrative purposes.

Let us partition the orbitals into two by picking A to contain the m = 0, 1, 2

orbitals. We will construct C with NA = 2 at different values of LAz . The terms in
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|ψ〉 that would contribute to C at LAz = 2 are6:

|2, 0〉 |6, 4〉 − 2 |2, 0〉 |5, 5〉 − 2 |1, 1〉 |6, 4〉+ 4 |1, 1〉 |5, 5〉 (6.12)

C is just the arrangement of these coefficients as a matrix:




|6, 4〉 |5, 5〉

|2, 0〉 1 −2

|1, 1〉 −2 4


, (6.13)

where we have indicated the states labeling the rows and columns. Note that the

rank of this matrix is one. The block C with NA = 2, LAz = 3, also of rank one, is:

( |6, 3〉 |5, 4〉

|2, 1〉 2 −2

)
(6.14)

The block at NA = 2, LAz = 4 can be analogously determined. Fig. 6.1 shows the

numerically generated OES for the 4 particle Laughlin state in the sphere geometry

at 1/2 filling with NA = 2 and lA = 3. The counting of the entanglement levels in

the spectrum equals the ranks of C at each LAz .

Properties

We now discuss some of the general properties of Cf and C and introduce the orbital

entanglement spectrum (OES).

Any correlation function or observable of interest in A or B can be calculated

using Cf . This is not surprising at all: Cf is merely a matrix arrangement of all

the information in the full wavefunction. Suppose we wish to calculate some 2-point

6There is a minimum value of LAz for given NA. This is because all configurations of non-
zero weight in the Read-Rezayi wavefunctions are obtained by squeezing the special root partition
k0k0k0 . . ..
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Figure 6.1: Orbital entanglement spectrum of the ν = 1/2 Laughlin state with N = 4,
NA = 2, and orbital cut after lA = 3 orbitals. The number of non-zero entanglement
levels at each angular momentum is equal to the rank of the OEM at that angular
momentum.

function in A, 〈ψ|O(z)O(z′) |ψ〉 for z, z′ ∈ A. A few steps of algebra using the

definition in Eq. (6.9) lead us to the relation:

〈ψ|O(z)O(z′) |ψ〉 = TrA[CfCf
†O(z)O(z′)] (6.15)

where TrA is the trace over all configurations in A. The combination CfCf
† is better

known as the reduced density matrix of A. It plays the role of the partition function

for A. Similarly, the reduced density matrix of B is given by Cf
†Cf .

The singular value decomposition of C is given by:

∑

i,j

Cij|µi〉|νj〉 =

rank(C)∑

i=1

e−ξi/2|Ui〉|Vi〉. (6.16)

The kets on the left-hand-side of Eq. (6.16) are defined as in Eq. (6.10). |Ui〉 and |Vi〉

are the singular vectors in the Hilbert spaces of A and B restricted to a fixed particle

number and z-angular momentum. They are linear combinations of the occupation

number basis vectors |µi〉 and |νj〉. The ξi’s are the ‘energies’ plotted as a function of

LAz in the orbital entanglement spectrum (OES) introduced in [123].
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The number of finite energies (rank(C)) at each (NA, L
A
z ) is independent of the

geometry of the 2-d surface and the symmetrization factors arising due to multiple

particles occupying the same orbital. Let Cf
d and Cf

s be the full OEMs in the disc

and sphere geometry, or in any other two genus 0 geometries. Modifying the geometry

of the surface changes the normalization of the single-particle orbitals (the quantum

mechanical normalization); thus every bλ in the expansion of |ψ〉 in Eq. (6.9) in the

disc basis is multiplied by a factor N (λ) =
∏N

i=1N (λi) when expanded in the single-

particle orbital basis on the sphere. N (j) is a factor relating the normalization of

orbital j on the disc to that on the sphere. The OEM’s on the disc and the sphere

are thus related as:

|ψ〉 =
∑

i,j

(Cf
d)ij|µdi 〉|νdj 〉

=
∑

i,j

(Cf
d)ijN (µdi )N (νdj )|µsi 〉|νsj 〉, (6.17)

where the superscripts d and s refer to the disc and sphere geometries, or to any

other two genus 0 geometries. Cf
s is obtained from Cf

d by multiplying whole rows

and columns by normalization factors; thus rank(Cf
s) = rank(Cf

d). An identical

argument shows the rank of Cf to be independent of the symmetrization factors that

arise in the normalization of the many-body states constructed from normalized single-

particle orbitals. This is the promised justification for working in the unnormalized

single-particle basis.

OES of the Read-Rezayi states

We then specialize to the OEM/OES of the (k, 2)-clustering/Read-Rezayi states and

introduce the natural number of particles inA and the minimum z-angular momentum

in A. We also discuss the empirical numerical observations of the counting of the non-

zero entanglement energies of these states.
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For a given cut lA in orbital space, the maximum number of particles that can

form a (k, 2)-clustering droplet in A is defined to be the natural number of particles

NA,nat:

NA,nat = kb(lA + 1)/2c , (6.18)

where bxc is the integer part of x. Physically, NA,nat/lA is very close to the original

filling ν. We may think of the original, homogenous QH fluid as being composed of

two droplets in A and B of NA,nat and NB,nat = N −NA,nat particles each, interact-

ing via correlated excitations along their common edge. We would thus expect the

OES at NA,nat, called the natural spectrum, to be the low-energy sector of the full

entanglement energy spectrum and to contain information about the edge theory of

the model state. In the thermodynamic limit, the number of finite energies (level

counting) of the OES is conjectured to be identical to the counting of the modes of

the CFT describing the edge for values lA, NA → ∞ such that lA/Nφ → const.(> 0)

and NA/NA,nat → 1.

As the particles in A avoid each other in the (k, 2) clustering states, they have a

minimum total z-angular momentum. This is denoted by LAz,min and depends only

on NA:

LAz,min = bNA/kc(2NA − kbNA/kc − k). (6.19)

We stress that LAz,min is the maximum value on the x-axis of the numerically generated

entanglement spectra existing in the literature, due to the different indexing scheme

in the text and the figures. For instance, in Fig. 6.2, LAz,min describes the sector of

the OES at LAz = 20.

For an arbitrary pure bosonic state of N particles, the rank of the OEM Cf must

generically be the smaller of its dimensions. The model states are special because the

rank of the OEM block at given (NA, L
A
z ) is in general much smaller than its smaller
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Figure 6.2: Left: Sketch of the partition in orbital space (part B in grey). The tracing
procedure creates a virtual edge and the orbital entanglement spectrum (OES) probes
the chiral edge mode(s) of part A. Right: OES of the ν = 1/2 Laughlin state of N = 9
bosons, with orbital cut lA = 8 and NA = 4. The minimal angular momentum LAz,min
defined in the text is the LAz,min = 20 sector in the plot. The entanglement level
counting at ` = |LAz − LAz,min| = 0, 1, . . . , 4 is (1, 1, 2, 3, 5), which is the counting of
modes of a U(1) boson in the thermodynamic limit. Finite size effects appear at
LAz = 15.

dimension. The rank of the OEM block at given NA, as a function of ` = |LAz −LAz,min|7

is called the counting of the OES. See Fig. 6.2 for the OES of the Laughlin state. For

model states, it has been observed from small size numerical calculations that the

counting is universal for the first few values of `,[123] i.e. independent of N , NA, and

lA. The universal counting is distinct for each model state, which is why Li and Hal-

dane proposed it as a way to determine the topological order[196] of the FQH states.

For instance, for a Laughlin state the universal counting is {1, 1, 2, 3, 5, 7, 11, . . .},

while for the Moore-Read state it is {1, 1, 3, 5, 10, 16, . . .}. In the OES of the Laugh-

lin 1/2 state in Fig. 6.2, the counting is universal for ` = 0, . . . , 4: {1, 1, 2, 3, 5 . . .},

starting from the right edge of the spectrum. For larger `, finite-size corrections oc-

cur. The universal counting is identical to counting the modes of a massless, chiral

7We use absolute values to include both the convention in the pictures, where LAz − LAz,min ≤ 0,

and the convention in the text, where LAz − LAz,min ≥ 0.
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boson, which is the conformal field theory describing the edge of the Laughlin FQH

states.

6.3.2 The Particle Entanglement Matrix (PEM)

The orbital cut is an approximation to the real-space cut. As evident in Fig. 6.2,

the orbital cut probes the correlations across the virtual edge between A and B.

Thus, it might be expected to probe properties of a real edge. What about the

charged quasi holes in the bulk? Which entanglement spectrum is likely to probe these

excitations? The answer to this question is the particle entanglement spectrum (PES).

This spectrum was first introduced in Ref. [176] by generalizing ideas in Ref. [94, 207].

One way to create quasi holes in the bulk is to move away from the magic filling

ν = N/Nφ = k/2. On increasing Nφ by one flux quantum for fixed N , we would

create one charged quasi-hole that binds a flux quantum in the bulk. Another way to

arrive at the same physics (ν < k/2) is to decrease the number of particles N . This

is the guiding principle behind the particle cut. In the particle cut, we partition the

number of particles into groups A and B with NA and NB = N −NA particles. The

mathematical definitions will be given below. Physically, it is clear why this is the cut

of choice: the configurations in A involve NA particles in the background of Nφ flux

quanta, while those in B involve NB particles in the background of Nφ flux quanta.

As NA, NB < N , we might hope that this cut probes the quasi hole excitations of the

original fluid.

The particle cut is easiest to understand in the wavefunction language. Con-

sider the model state in the unnormalized real space basis, ψ(z1, . . . , zN) =
∑

λ bλ〈z1, . . . , zN |λ〉. For simplicity, we choose the particles at positions {z1, . . . , zNA}

as group A and the remaining particles {zNA+1, . . . , zN} as group B. Without loss

of generality, let NA ≤ NB. Each many-body basis state 〈z1, . . . , zN |λ〉 can be
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decomposed as

〈z1, . . . , zN |λ〉 =
∑

µ,ν

〈z1, . . . , zNA|µ〉 · 〈zNA+1, . . . , zN |ν〉 , (6.20)

where the sum runs over all possible orbital occupations µ and ν of NA and NB

particles respectively, such that µ+ ν = λ. Unlike the last section, there is no orbital

restriction. Then, ψ can be written as:

ψ(z1, . . . , zN) =
∑

λ

bλ〈z1, . . . , zN |λ〉 (6.21)

=
∑

λ

∑

µi+νj=λ

(Pf )ij〈z1, . . . , zNA|µi〉〈zNA+1, . . . , zN |νj〉, (6.22)

where the summation is over all partitions µi (νj) of NA (NB) particles in Nφ orbitals.

The matrix Pf is the full particle entanglement matrix (PEM). As was the case for

the OEM, the matrix elements of the PEM are directly related to the weights of the

model wave function by

(Pf )ij = bµi+νj . (6.23)

Pf also has a block-diagonal structure. This is imposed by the fixed total z-angular

momentum. (Pf )ij can be non-zero only if the angular momentum of A (B), LAz (LBz )

satisfy the relation LAz + LBz = Ltotz . We denote the block of Pf at fixed (LAz , NA) by

P.

An example

We work with the Laughlin wavefunction in Eq. (6.11) in real space to construct

the particle entanglement matrices for NA = 2. First, note that every basis state in
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Eq. (6.11) is actually a sum of terms in A and B. For example:

〈z1, . . . , z4|6, 4, 1, 1〉 = S[z6
1z

4
2z

1
3z

1
4 ]

= S[z6
1z

4
2 ]S[z1

3z
1
4 ] + S[z6

1z
1
2 ]S[z4

3z
1
4 ] + S[z4

1z
1
2 ]S[z6

3z
1
4 ] + S[z1

1z
1
2 ]S[z6

3z
4
4 ]

where S denotes symmetrization. On doing this decomposition for every basis state,

we can construct P at any LAz . At the smallest possible angular momentum LAz =

LAz,min = 2, the PEM and OEM are identical:




|6, 4〉 |5, 5〉

|2, 0〉 1 −2

|1, 1〉 −2 4


 . (6.24)

The Hilbert space of A at LAz = LAz,min + 1 = 3 is spanned by the occupation

number states |3, 0〉 and |2, 1〉. |3, 0〉 was not a member of the Hilbert space of A for

the orbital cut after lA = 3 orbitals (discussed in the previous section), because the

orbital with index 3 belonged to B. The PEM at LAz = 3 is given by:




|6, 3〉 |5, 4〉

|3, 0〉 −2 2

|2, 1〉 2 −2


. (6.25)

Observe that the OEM (6.14) for NA = 2, LAz = 2 is a sub-matrix of the PEM. We

discuss this connection in the next section.

Fig. 6.1 shows the numerically generated PES for the 4 particle 1/2 Laughlin state

for NA = 2. The number of non-zero entanglement energies at LAz is equal to be the

rank of the corresponding PEM.
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Figure 6.3: Particle entanglement spectrum of the ν = 1/2 Laughlin state with
particle cut NA = 2. The entanglement level counting at all angular momenta LAz is
equal to the rank of the PEM. LAz,min defined in the text is LAz = 4 in the plots.

Properties

The properties of the PEM follow by the same arguments as those presented for the

OEM. The reduced density matrices of part A and B are given by ρA = PfP
†
f and

ρB = P†fPf respectively. They are block-diagonal in LAz as well. The singular value

decomposition of the PEM by:

∑

i,j

(P)ij|µi〉|νj〉 =
∑

i

e−ξi/2|Ui〉|Vi〉, (6.26)

where the singular vectors |Ui〉 and |Vi〉 are orthonormal vectors in the Hilbert spaces

of A and B restricted to fixed angular momentum. The plot of the ‘energies’ ξi vs LAz

is called the particle entanglement spectrum (PES)[176]. In Fig. 6.4 is an example:

the PES of the 9 particle 1/2 Laughlin state for the particle cut NA = 4. The counting

of the PES is defined as the number of non-zero entanglement energies as a function

of ` = |LAz −LAz,min|. From numerical calculations, it has been observed[176] that the

counting of the PES is identical to the number of quasihole states of the model state

with NA particles in Nφ orbitals at all angular momenta LAz . In Fig. 6.4 for example,

the counting can be checked to be identical to the number of quasihole states of a
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Laughlin state with 4 particles in 16 orbitals. A universal result about the relation

between the counting of the PES and the number of quasi hole states will be presented

in Sec. 6.4. Further, we will find that the counting is universal (independent of N,NA

for the first few values of `.

Two final comments about the PEM are in order. The first is a feature of the

spherical geometry, resulting in the flatness of the spectrum in Fig. 6.4. The flatness

is reminiscent of a multiplet structure. Indeed, in the spherical geometry, the PEM is

labeled by an additional quantum number: the total angular momentum of A, (~LA)2.

Consequently, the eigenvalues of the block P with (~LA)2 = `(` + 1) are (2` + 1)-fold

degenerate. This multiplet structure does not play any role in our discussions about

the counting of the PES.

The second comment is that the PEM at fixed NA, L
A
z is ‘bigger’ than the corre-

sponding OEM at the same quantum numbers. That is, P has more rows and columns

as compared to C. It’s easy to see why: the particle cut places has no restriction on

which orbitals can be occupied. Therefore, even at fixed LAz , there are configurations

that contribute to P in which orbitals with m greater and lesser than lA are occupied.

For the same reason, C is a sub-matrix of P. It immediately follows that the counting

of the OES is always smaller or equal to that of the PES. The goal of this chapter is

to prove their equality.

Comparing Figs. 6.2,6.4, we see that the counting of the PES and the OES are

the same for the first four values of LAz near the left.

6.4 Result I: Counting of the PES

Our first important result is that the number of non-zero levels in the PES at LAz is

upper bounded by the number of the bulk quasi-hole excitations. We then argue that

the lack of further symmetry in the system must imply the bound is saturated.
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Figure 6.4: Left: Sketch of the partition in particle space. The particles of part
B that are traced out are denoted in grey. Right: particle entanglement spectrum
(PES) of the ν = 1/2 Laughlin state of N = 9 bosons, with particle cut NA = 4.
The minimum angular momentum LAz,min defined in the text is LAz,min = 20 in the
plot. The entanglement level counting is identical to the counting of quasiholes in
a Laughlin state of 4 particles with total flux Nφ = 16 at all angular momenta LAz .
For ` = |LAz − LAz,min| = 0, 1, . . . , 4, the counting is universal, i.e. independent of NA:
(1, 1, 2, 3, 5).

Recall that the property that defines the k-clustered model state ψ(z1, . . . , zN)

uniquely is that it is the lowest degree symmetric polynomial that vanishes when

(k + 1) particles are at the same position. Similar clustering conditions characterize

every ground-state of a pseudopotential Hamiltonian. This vanishing property must

persist when we divide the particles into two groups and re-write the model state in

Eq. (6.21) as:

ψ(z1, . . . , zN) =
∑

LAz

∑

i

e−ξi/2 〈z1, . . . , zNA|Ui〉 · 〈zNA+1, . . . , zN |Vi〉, (6.27)

using Eq. (6.26) at each LAz . If we choose (k+1) particles in group A, say z1, . . . , zk+1,

to be at the same position z, then the state must vanish at every LAz . Further, as the
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singular vectors in B form an orthonormal basis:

ψ(z, . . . , z, zk+2, . . . , zN) = 0 (6.28)

⇒ e−ξi/2〈z, . . . , z, zk+2, . . . , zNA|Ui〉 = 0, ∀i, LAz . (6.29)

A similar relation holds when A and B are interchanged. We conclude that the sin-

gular vectors, 〈z1, . . . , zNA|Ui〉 and 〈zNA+1, . . . , zN |Vi〉, must also be clustering poly-

nomials that vanish when (k + 1) particles are at the same position. A basis for

clustering polynomials is the set of Jack polynomials, Jαµ̃ , indexed by α = −(k + 1)

and the (k, 2)-admissible partition µ̃[174, 10, 9]. ψ can therefore be expanded in the

Jack basis as:

ψ(z1, . . . , zN) =
∑

i,j

(Mf )ijJ
α
µ̃i

(z1, . . . , zNA)Jαν̃j(zNA+1, . . . , zN), (6.30)

where µ̃i and ν̃j denote (k, 2)-admissible partitions of NA and NB particles respec-

tively. The matrix Mf is block-diagonal in angular momentum LAz ; let M refer to the

block of Mf at fixed value of LAz . The row and column dimensions of M are much

smaller than those of P because the (k, 2)-admissible partitions of NA and NB form

a small subset of the set of all partitions of with fixed LAz and LBz respectively. Nev-

ertheless, as Eq. (6.27) and (6.30) are equal, M and P must have the same rank. As

NA ≤ NB, the row dimension of M is smaller (or equal) than the column dimension

and bounds the rank of the PEM block from above at each LAz .

Let us reformulate what we have just shown in a more familiar language and argue

for the saturation of the bound. The row dimension of M is given by the number of

(k, 2)-admissible configurations of NA particles in Nφ orbitals, and thus is equal to

the number of distinct bulk quasi-hole excitations of the (k, 2)-clustering model state

of NA particles at angular momentum LAz on a sphere pierced by the number of fluxes

of the original state [87, 159]. Hence, we find that the rank of the PEM is bounded
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by the number of quasihole states for all angular momenta LAz . Without further

symmetry-induced constraints on the entanglement matrix (we have already used all

the symmetries available in the state), we expect this bound to be saturated. In the

thermodynamic limit (NA, N → ∞ such that NA/N > 0), we therefore argue that

the level counting of the entire PES is identical to the number of the bulk quasi-hole

excitations. This bound saturation can be proved exactly for the Laughlin states[64].

It is beneficial to identify a set of rows and columns in P with the same rank

as the full matrix. Consider the rows and columns labeled by the (k, 2)-admissible

partitions. This sub-matrix of P is denoted by P̃ and has the same dimensions

as M. In Appendix 6.A.1, we show that P̃ and M have the same rank. P̃ will

play a prominent role in the proof establishing the bulk-edge correspondence in the

entanglement spectra.
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Figure 6.5: A cartoon of the various sub-matrices in the PEM block labeled by
the angular momentum LAz . The block of the OEM labeled by (NA, L

A
z )— C in the

figure— is a sub-matrix of the PEM block P at LAz . P̃ is a sub-matrix of P containing
all rows and columns that are labeled by (k, 2)-admissible partitions of NA and NB

particles subject to total flux Nφ.
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6.5 Clustering Constraints

The second result of this chapter is a relation between the counting of the PES and

the OES, that is a bulk-edge correspondence in entanglement spectra. To relate

the two beasts, we appeal to the defining property of the FQH model states: clus-

tering. Clustering provides constraints on the coefficients of the wavefunctions and

consequently, can be used to relate the PEM and the OEM. But first, what are the

clustering constraints?

Recall that the Read-Rezayi model wave functions ψ(k,2)(z1, z2 . . . zN) are single

Jack polynomials labeled by a root partition λ0 (Eq. (6.7)), and a parameter α =

−(k + 1). They satisfy (k, 2)-clustering — they are non-zero when a cluster of k

particles is at the same point in space z = z1 = z2 = . . . zk, but vanish as the

second power of the distance between the (k+ 1)st particle and the cluster as zk+1 →

z. The clustering property imposes a rich structure on ψ(k,2)(z1, z2, . . . , zN). All

the partitions λ that arise in the expansion of |ψ〉 in the many-body occupation

basis (|ψ〉 =
∑

λ bλ|λ〉) are dominated by λ0. Furthermore, all the coefficients bλ

are known up to a multiplicative constant. In the Jacks, this constant is chosen

so that bλ0 = 1. In other words, the clustering property and the requirement to

be the densest possible wave function determine ψ(k,2)(z1, z2, . . . , zN) uniquely up to

an overall normalization constant. Here, we formulate the conditions imposed by

clustering on ψ(k,2)(z1, . . . , zN) as linear, homogeneous equations on the coefficients

bλ. These are called clustering constraints, and are the main tool to proof the rank

equality of the PEM and OEM in Section 6.6.

167



6.5.1 Derivation

Let us introduce a ‘deletion’ operator di for orbital i such that:

di|λ〉 =





0 , i /∈ λ

|λ\{i}〉 , i ∈ λ
(6.31)

λ\{i} is the partition with a single occurrence of the orbital i removed from it. The

‘deletion’ operators commute with each other.

We now separate the coordinates of k + 1 particles from the rest and rewrite

ψ(k,2)(z1, z2, . . . , zN) as:

ψ(k,2)(z1, . . . , zN) =

Nφ∑

l1...,lk+1=0

(
k+1∏

j=1

z
lj
j

)
〈zk+2, . . . , zN |

k+1∏

j=1

dlj |ψ〉 , (6.32)

and form a cluster by bringing the k particles with coordinates z1, . . . , zk to the same

position z. When zk+1 = z, the LHS vanishes and Eq.(6.32) becomes:

0 =

Nφ∑

l1,...,lk+1=0

z
∑k+1
j=1 lj〈zk+2, . . . , zN |

k+1∏

i=1

dli |ψ〉. (6.33)

The right-hand-side is a polynomial in an arbitrary complex number z, and has to

vanish for every power β =
∑k+1

j=1 lj of z to satisfy the above equation. Thus, the

constraints on |ψ〉 are:




Nφ∑

l1,...lk=0

dβ−
∑k
j=1 lj

k∏

j=1

dlj


 |ψ〉 = Dβ|ψ〉 = 0. (6.34)

β is the z-angular momentum of (k + 1)-particles; it ranges from 0 to Nφ(k + 1).

The equation above requires any clustering wave function |ψ〉 to be simultaneously

annihilated by the destruction operators {Di , i = 0 . . . Nφ(k + 1)}.
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...

Figure 6.6: The configurations in the PES can be related to those of the OES using
the clustering constraints. These constraints reveal the vanishing properties of the
FQH state as particles are brought closer together. They relate the long-wavelength
properties of the FQH state when two particles are far away from each other to the
short-wavelength properties of the state when particles are close together, and hence
can be used to ‘drag’ particles from the PES Hilbert space into the more restrictive
OES Hilbert space.

6.5.2 Properties

Every value of β in Eq. (6.34) yields, in general, a large number of linear relations

between the coefficients of |ψ〉. Let Sβ be the set of all partitions of N particles

such that the sum of the z-angular momentum of (k + 1) particles is β. For every

occupation configuration of N − (k + 1) particles, Eq. (6.34) relates the coefficients

of partitions λ ∈ Sβ in the expansion of |ψ〉. Examples of such relations are given in

Appendix 6.B.

The set of linear, homogeneous equations in Eq.(6.34) are linearly dependent.

The dimension of the null-space of the set is exactly one for the densest possible wave

function, i.e. the vector of coefficients {bλ} is uniquely determined up to an overall

multiplicative factor. Since the solution to Eq.(6.34) causes ψ to vanish when any

cluster of size greater than k is formed in real space, we conclude that the set in

Eq.(6.34) includes all constraints imposed on ψ(z1, . . . , zN) due to clustering.
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6.6 Result II: Bulk-edge correspondence in ES

We now have all the ingredients necessary to prove the bulk-edge correspondence

in the entanglement spectra. Let us first recap our findings so far. In Sec. 6.4, we

constructed the full PEM Pf for (k, 2)-clustering model states and argued that the

PES level counting is equal to the number of quasihole states of the same model state

with NA particles in Nφ orbitals. For angular momenta LAz ≤ LAz,min + bNA/kc, the

quasihole state counting is universal, and identical to the counting of modes of the

edge CFT.

For given LAz , we identified the sub-matrix P̃ of the PEM block P, with rows

and columns labeled by (k, 2) admissible partitions, which has the same rank as the

PEM block P. The block of the OEM C at (NA, L
A
z ) is a sub-matrix of the PEM

block, thus rank(P) ≥ rank(C). In order to show that the ranks are equal, we use

the clustering constraints derived in the previous section to express the row/column

vectors of P that constitute P̃ in terms of those that constitute the OEM block. In

the following, we will refer to this as ‘expressing the row/column vectors of P̃ in terms

of the row/column vectors of C’. One should always think of the linear relations we

derive as linear relations between rows and columns in the bigger matrix P, which

contains both P̃ and C. For finite system sizes, we show that the ranks are equal for

a certain range of angular momenta, which depends on NA and lA (see Eq. (6.38)).

This proves that the PES and the OES (at fixed NA) have the same level counting

for a finite range of angular momentum. In the thermodynamic limit, this procedure

establishes the equality of the level counting of the entire PES and OES when, roughly

speaking, NA ≈ NA,nat, thus proving a significant part of the Li-Haldane conjecture.

The argument below applies equally well to row and column vectors. To keep the

discussion concise, we formulate it using row vectors alone.
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6.6.1 Systemizing the constraints

The biggest challenge in relating the row vectors of the PEM to those in the OEM for

fixed (NA, L
A
z ) lies in identifying a set of linearly independent equations in the entire

set of clustering constraints. To this end, we introduce a few quantities characterizing

a partition µ. nm(µ) below refers to the occupation number of the mth orbital in

partition µ. The orbital cut is after lA orbitals.

The unit cell— We divide the single-particle orbital space such that the jth unit

cell contains the orbitals of z-angular momentum 2j and 2j+1, and j ∈ [0, . . . , Nφ/2).

As the total number of single-particle orbitals is odd for the bosonic (k, 2)-clustering

states, the orbital with angular momentum Nφ is its own unit cell with index Nφ/2.

Every orbital belongs to exactly one unit cell.

The intact unit cell— The jth unit cell of a partition µ is said to be intact if the

occupation numbers of the orbitals with angular momentum 0, . . . , 2j+1 are identical

to those in the root configuration Eq. (6.7), i.e. if ni(µ) = ni(λ0) for i = 0, ..., 2j + 1.

Clearly, the jth unit cell can only be intact if all unit cells 0, . . . , j − 1 are intact.

The number of intact unit cells in part A— The number of intact unit cells in

part A, ∆µ, is the number of intact unit cells to the left of the orbital cut in n(µ).

Distance from the cut— If we were to number the orbitals to the right of the cut

as 1, 2, . . ., then the distance from the cut is defined as the sum of the indices of the

occupied orbitals to the right of the orbital cut in n(µ). The distance from the cut,

Kµ, is given by:

Kµ =

Nφ∑

m=lA

nm(µ)(m− lA + 1). (6.35)

K(µ) = 0 for a partition µ labeling a row of the OEM; for a general partition, it

represents the distance in orbital units that all the particles to the right of the cut

need to traverse to cross the cut. In Fig. 6.7, we pick as an example a generic partition
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µ and identify the number of intact unit cells in A, ∆µ, and the distance from the

cut, Kµ, for two different orbital cuts.

Root configuration of part A— For given NA and LAz there is a unique (k, 2)-

admissible (root) configuration n(µ̃0), with the property that µ̃0 dominates all the

other partitions at angular momentum LAz that label rows of the PEM:

n(µ̃0) = { k0 . . . k0︸ ︷︷ ︸
2b(NA−1)/kc

x 0 . . . 0︸ ︷︷ ︸
`−1

10 . . . 0}. (6.36)

The value of x is fixed by the total particle number being NA (x = (NA − 1) −

kb(NA − 1)/kc). µ̃0 has the maximum (total) number of intact unit cells possible,

b(NA − 1)/kc.

k 0 k 0 k 0 k0 k 033 1n(µ) =
Unit cell index: 0 1 2 3 4 5 6

∆µ = 3

Kµ = k + 3, lA = 10

k 0 k 0 k 0 k0 k 033 1n(µ) =
Unit cell index: 0 1 2 3 4 5 6

∆µ = 3 Kµ = 2k + 7
lA = 9

Figure 6.7: The occupation configuration of a generic partition µ with the unit cells,
the number of intact unit cells ∆µ and the distance from cuts after lA = 9 (top) and
lA = 10 (bottom) shown. Nφ = 12 here.

6.6.2 The method

Consider P̃ at LAz and the OEM block C at (NA, L
A
z ) with LAz = LAz,min + `. We can

express all row vectors of P̃ in terms of row vectors in the OEM block if the root

configuration of part A satisfies:

∆µ̃0 ≥ Kµ̃0 . (6.37)

For fixed lA and NA, relation (6.37) is fulfilled for angular momenta LAz − LAz,min =

0, . . . , `max with:
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`max =





∆µ̃0 − k∆̄2
µ̃0
− (2∆̄µ̃0 + 1)(x+ 1) for lA even, lA ≤ 2b(NA − 1)/kc

∆µ̃0 − k∆̄µ̃0(∆̄µ̃0 − 1)− 2(x+ 1)∆̄µ̃0 for lA odd, lA ≤ 2b(NA − 1)/kc

lA −∆µ̃0 − 1 for lA > 2b(NA − 1)/kc ,

(6.38)

where we abbreviated the difference of the total number of unit cells and those

only in A by ∆̄µ̃0 = b(NA − 1)/kc − ∆µ̃0 . Note that ∆µ̃0 = min[blA/2c, b(NA −

1)/kc], ∆̄µ̃0 , and x = (NA − 1) − kb(NA − 1)/kc depend only on NA and lA. Thus,

for all combinations (NA, lA), Eq. (6.38) gives the range of angular momenta LAz =

LAz,min, . . . , L
A
z,min+`max for which all rows of the larger PEM block P can be expressed

as linear combinations of the rows of the OEM block C only.

For values of ` ≤ `max, the proof can be broken into two steps —

1. If ∆µ̃0 ≥ Kµ̃0 , then ∆µ̃ ≥ Kµ̃ for all (k, 2)-admissible partitions µ̃ < µ̃0.

2. If ∆µ ≥ Kµ for a partition µ, then the row vector labeled by µ in P can be

expressed as a linear combination of row vectors in the OEM C alone.

We prove these statements rigorously in the Appendices 6.C and 6.D. The first step

shows that the ∆µ̃ ≥ Kµ̃ for all partitions µ̃ labeling rows of P̃ ; the second assures

that all these rows can be written as linear combinations of rows in the OEM alone.

To establish the rank equality between the PEM block P and the OEM block C

with labels (NA, L
A
z ), we have to express both the rows and the columns of the PEM

block in terms of those of the OEM block. An identical argument as shown above

can be repeated for the column vectors. Let ν̃0 be the (k, 2)-admissible partition that

dominates all partitions of LBz into NB parts. For values of ` such that ∆µ̃0 ≥ Kµ̃0

and ∆ν̃0 ≥ Kν̃0 , the OEM and PEM have the same counting in finite-size and rank(P)

= rank(C).
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The heart of the proof lies in the use of the (k + 1)-clustering condition (6.34)

at the z-angular momentum of the k particles in the right-most intact unit cell in

part A and one particle occupying an orbital to the right of the cut. This relates a

single row vector belonging to the PEM block with ∆µ and Kµ to row vectors with

∆µ′ = ∆µ − 1 and Kµ′ ≤ Kµ − 1. This relation is obtained by using the clustering

operator Dβ with

β = 2k(∆µ − 1) + µ1 (6.39)

where µ1 is the angular momentum of the rightmost particle to the right of the

orbital cut. The clustering constraints thus allow us to replace a row vector whose

partition has distance Kµ with a linear combination of row vectors whose partitions

have distances reduced by at least one at the cost of using a single intact unit cell.

If ∆µ ≥ Kµ for a partition µ, then iterating this procedure provides a linear relation

between the row vector labeled by partition µ and row vectors with distance zero, i.e.

row vectors of the OEM block C.

To clarify our statements, we consider the special case of the natural spectrum,

NA = NA,nat = kb(lA + 1)/2c, for given lA. It is straightforward to see that lA >

2b(NA − 1)/kc and lB > 2b(NB − 1)/kc, so for both the rows and columns `max is

given by the third line in Eq. (6.38). For the natural spectrum, the number of intact

unit cells in part A is ∆µ̃0 = NA/k−1; for part B it is ∆ν̃0 = NB/k−1. Consequently,

we can express the rows of the PEM block in terms of rows of the OEM block for

values ` = 0, . . . , lA − b(lA + 1)/2c = blA/2c, and the columns for ` = 0, . . . , blB/2c.

Because we chose lA ≤ lB, the bound from B is always larger or equal to that of

A. For ` = 0, . . . , NA/k = b(lA + 1)/2c, we argued that the PES level counting is

universal and equal to the counting of modes of the edge CFT. Thus, we find that

rank(P) = rank(C) for LAz − LAz,min = 0, . . . , blA/2c and both are identical to the
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conformal field theory (CFT) mode counting. We can relate this range to the explicit

examples given in Figures 6.2 and 6.4, where the OES and PES level counting is

indeed identical for ` = 0, . . . , b8/2c = 4. The range of angular momenta, for which

the ranks are equal, grows linearly with system size, when the ratio lA/Nφ is kept

constant. Small deviations from the natural number of particles does not change this

picture qualitatively. In general, increasing lA, while keeping NA fixed, tends to raise

`max, while decreasing lA tends to lower it.

To analyze how the finite size results carry over to the thermodynamic limit, let

us fix the ratios NA/N and lA/Nφ and let N → ∞. Because in that case NA and

lA scale with N , the number of intact unit cells in A (B) in µ̃0 (ν̃0) denoted by ∆µ̃0

(∆ν̃0) scales with N as well. There are two different scenarios: (I) If ∆̄µ̃0 and/or ∆̄ν̃0

grow faster than
√
N , then a closer look at Eq. (6.38) shows that `max → −∞ in the

thermodynamic limit, i.e. our method is not applicable. (II) If both ∆̄µ̃0 and ∆̄ν̃0

grow slower than
√
N , then `max grows linear with system size.

As:

∆̄µ̃0 ∼ |NA −NA,nat| , ∆̄ν̃0 ∼ |NB −NB,nat| ,

|NA − NA,nat| must grow slower than
√
N . Thus, if we choose NA (for fixed lA/Nφ)

such that in the thermodynamic limit |NA − NA,nat|/
√
N → 0— or equivalently

NA/NA,nat → 1— then Eq. (6.37) is satisfied for all angular momenta and the counting

of the entire OES and PES is identical. This proves the bulk edge correspondence in

the (NA, lA) sectors that are most relevant in the thermodynamic limit. In particular,

this includes the usual hemisphere cut (lA = bNφ/2c) withNA = k·bN/(2k)c particles.

For this choice of (NA, lA), the counting of the OES and the PES is identical for

angular momenta range `max = N/k−bN/(2k)c− 1 ≈ N/(2k) for finite size systems.

Thus, in the thermodynamic limit, `max →∞, and the counting of the OES and the

PES are identical for all angular momenta.
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In this section, we outlined the main steps in the proof relating the level counting

of the PES and OES; the details of the proof can be found in the appendices. For

finite size systems, Eq. (6.38) (and its counterpart for the column vectors) specifies

the range of momenta at fixed (NA, L
A
z ) for which the level counting of the PES and

OES are equal. For NA/NA,nat → 1, when N → ∞, this range grows linearly with

system size. Hence, for this choice of (NA, lA), the entire level counting of the PES

and OES are identical in the thermodynamic limit. For Laughlin states one can prove

that the counting of the PES is equal to the mode counting of a chiral massless boson,

the CFT describing the edge[64]. Thus, the entire natural spectrum simply counts

the number of edge excitations in the thermodynamic limit. We argued in Sec. 6.4

that the same is true for the more complicated (k > 1) Read-Rezayi model states;

the PES counts the number of modes of the CFT describing the edge. Because of

the bulk-edge correspondence in the entanglement spectra shown above, we conclude

that the OES counting is equal to the number of modes of the edge CFT if we restrict

NA to be the natural number of particles in A, as specified above. This proves a

significant part of the Li-Haldane conjecture[123].

6.6.3 Illustrative examples

The proof of the full method is presented in the appendices; here we illustrate the

more formal ideas with examples of the general method at work for the k = 1, 2 wave

functions.

At k = 1:

Consider the ν = 1/2 Laughlin state of N = 7 bosons with Nφ = 12 and Ltotz = 42. Let

lA = 6 and the number of particles in A be the natural number NA = NA,nat = 3. We

consider the entanglement level counting of the OES and the PES at LAz = Lz,min+` =

Lz,min+3. We first verify that the conditions, ∆µ̃0 ≥ Kµ̃0 and ∆ν̃0 ≥ Kν̃0 , are satisfied.
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The occupation configurations of µ̃0 and ν̃0 are:

n(µ̃0) = {101000 | 0100000} Kµ̃0 = 2,∆µ̃0 = 2

n(ν̃0) = {000100 | 0010101} Kν̃0 = 3,∆ν̃0 = 3

The cut in orbital space is indicated in the occupation configurations by the ‘|’ symbol.

Hence, the method discussed in the previous section should prove the equality of the

ranks of the OEM and the PEM at this LAz .

The occupation configurations of the (1, 2)-admissible partitions labeling the rows

of P̃ are:

n(µ̃0) = {101000 | 010 . . . 0} Kµ̃0 = 2,∆µ̃0 = 2

n(µ̃1) = {100100 | 100 . . . 0} Kµ̃1 = 1,∆µ̃1 = 1

n(µ̃2) = {010101 | 000 . . . 0} Kµ̃2 = 0,∆µ̃2 = 0 .

µ̃2 labels a row that already belongs to the OEM block C. We now relate the row

labeled by the partition µ̃1 to rows of the OEM block. In n(µ̃1), only the 0th unit

cell is intact and the particle to the right of the cut occupies the orbital with index

6. Following Eq. (6.39) we pick the 2-body clustering constraint at β = 6 (the sum of

the z-angular momenta of the particle in the intact unit cell and the particle to the

right of the cut) in Eq. (6.34):

(2(d0d6 + d1d5 + d2d4) + d3d3)|ψ〉 = 0 (6.40)

For every occupation number configuration of (N−2) bosons with angular momentum

(Ltotz − β), Eq (6.40) gives one linear relation. The appropriate occupation number
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configuration for our purpose is n([3] + νj), as:

d0d6 (|µ̃1 + νj〉) = |[3] + νj〉 . (6.41)

The partitions νj of LBz into NB = 4 parts label the columns of the PEM P. Eq. (6.40)

then relates the row indexed by µ̃1 to row vectors indexed by following partitions:

n(µ1) = {010101 | 000 . . . 0} Kµ1 = 0,∆µ1 = 0

n(µ2) = {001110 | 000 . . . 0} Kµ2 = 0,∆µ2 = 0

n(µ3) = {000300 | 000 . . . 0} Kµ3 = 0,∆µ3 = 0 .

At every column index j, the explicit relation from Eq. (6.40) is:

2(P̃1j + P1j + P2j) + P3j = 0 , (6.42)

where Pij is the coefficient in P of the row labeled by µi and column labeled by νj.

We have thus related a row indexed by a partition µ̃1 with Kµ̃1 = 1 and ∆µ̃1 = 1

to rows indexed by partitions µ1, µ2, µ3 with distance from the cut reduced by 1 and

number of intact unit cells in A reduced by 1. These partitions label rows in the

OEM in this example. A similar procedure, using the additional clustering constraint

at β = 9, involving the particles in the orbitals of angular momenta 2 and 7, can be

used to relate the row of P̃ indexed by the partition µ̃0 to rows in the OEM.

At k = 2:

Let us now consider the Moore-Read state with N = 18, Nφ = 16, and Ltotz = 144 and

perform an orbital cut after lA = 7 orbitals. Here, we are interested in relating the

rows of the PEM block to the rows of the OEM block for NA = 8 at LAz = LAz,min+` =
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LAz,min + 3. The occupation number configurations of µ̃0 and ν̃0 are:

n(µ̃0) = {2020201 | 00100000} Kµ̃0 = 3,∆µ̃0 = 3

n(ν̃0) = {0000010 | 01020202} Kν̃0 = 2,∆ν̃0 = 3,

where we indicate the orbital cut by the ’|’ symbol. Thus, ∆µ̃0 ≥ Kµ̃0 and ∆ν̃0 ≥ Kν̃0 ,

and we can relate all rows and columns of the PEM to ones in the OEM.

The occupation configurations of the (2, 2)-admissible partitions labeling the rows

of P̃ are given by:

n(µ̃0) = {2020201 | 0010 . . . 0} Kµ̃0 = 3,∆µ̃0 = 3

n(µ̃1) = {2020200 | 1100 . . . 0} Kµ̃1 = 3,∆µ̃1 = 3

n(µ̃2) = {2020111 | 0100 . . . 0} Kµ̃2 = 2,∆µ̃2 = 2

n(µ̃3) = {2020110 | 2000 . . . 0} Kµ̃3 = 2,∆µ̃3 = 2

n(µ̃4) = {2011111 | 1000 . . . 0} Kµ̃4 = 1,∆µ̃4 = 1 .

The trailing 0′s in every occupation configuration indicate that the orbitals with

Lz = 10, . . . , 16 are unoccupied in the partitions labeling the rows of P̃. ∆µ̃i ≥ Kµ̃i

is satisfied for all i = 0, . . . , 4, as required in step 1 in Sec. 6.6.2.

We illustrate the use of the 3−body clustering constraints by relating the row

labeled by the partition µ̃3 to rows labeled by partitions µj with distance Kµj = 1

from the cut. The first unit cell is the rightmost intact unit cell in A in n(µ̃3).

Consider the 3-body clustering condition at β equal to the z-angular momentum of

the 2 particles in the rightmost intact unit cell and a particle to the right of the cut,

i.e. at β = 11 = 2 × 2 + 7 (see Eq. (6.39)). It is beneficial to divide the clustering
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condition (6.34) into two terms:

3
(
D

(1)
11 +D

(2)
11

)
|ψ〉 = 0 (6.43)

D
(1)
11 = d2d2d7 + 2d2d3d6 + 2d2d4d5 + d3d3d5 + d3d4d4

D
(2)
11 = d0d0d11 + 2d0d1d10 + 2d0d2d9 + . . . , (6.44)

where D
(2)
11 contains all terms involving angular momentum orbitals 0 and/or 1.

The clustering constraints in Eq. (6.43) yield a linear relation between certain

coefficients in |ψ〉, for each occupation number configuration of the remaining N − 3

particles. We choose the configurations n([7, 5, 4, 0, 0] + νj), as:

|[7, 5, 4, 0, 0] + νj〉 = d2d2d7(|µ̃3 + νj〉), (6.45)

where the |νj〉 label the column vectors of the PEM block. Note that d2d2d7 is the

only term in D
(1)
11 that contains the angular momentum 7 orbital; all other terms

have highest angular momentum less or equal 6, and thus smaller distance to the cut.

Equivalently we can note that as D1
11 annihilates any configuration with an occupied

orbital of z-angular momentum greater than 7, the first term in Eq. (6.43) relates the

row labeled by µ̃3 only to rows labeled by partitions that are dominated by µ̃3:

n(µ1) = {2011111 | 1000 . . . 0} Kµ1 = 1,∆µ1 = 1

n(µ2) = {2010220 | 1000 . . . 0} Kµ2 = 1,∆µ2 = 1

n(µ3) = {2002120 | 1000 . . . 0} Kµ3 = 1,∆µ3 = 1

n(µ4) = {2001310 | 1000 . . . 0} Kµ4 = 1,∆µ4 = 1 .

All the partitions above have one less intact unit cell, and smaller distance Kµj =

Kµ̃3 − 1 from the cut as compared to µ̃3.
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The second operator in the clustering condition Eq. (6.43) acts on states with

occupation number configurations such as:

{4000110 | 100010 . . . 0}

{3100110 | 100100 . . . 0}

{3010110 | 101000 . . . 0}

{3001110 | 110000 . . . 0} .
...

All the above configurations have distance from the cut larger than Kµ̃3 = 2, and

more than 2 particles in angular momentum orbitals 0 and 1. Hence, they are not

dominated by the root partition λ0, and have zero weight in the model wave function

(the corresponding row in the PEM is identically 0).

Thus, the clustering condition at β = 11 for the configuration of the remaining

particles being n([7, 5, 4, 0, 0] + νj), yields a linear relation between the row labeled

by µ̃3 and the rows labeled by the partitions µ1, . . . , µ4:

P̃3j + 2P1j + 2P2j + P3j + P4j = 0 , (6.46)

where Pij is the coefficient in P in the row labeled by µi and column labeled by νj.

The rows labeled by µ1, . . . , µ4 can in turn be related to rows in the OEM by using

the clustering constraints at β = 7.

6.7 Concluding remarks

In this chapter, we have provided a proof that the Li and Haldane natural entangle-

ment spectrum in the thermodynamic limit is bounded from above by the number of

levels in the edge energy spectrum. Barring the presence of extra accidental symme-
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tries in the system, we argue that the bound should be saturated. In addition, we

showed that the two different entanglement spectra we considered— the PES probing

the bulk excitations and the OES probing the edge excitations— are related. In fact,

they have the same entanglement level counting for a range of angular momenta,

specified by Eq. (6.38). The universal counting is different for each model state and

provides valuable information about the topological order in the FQH state. When

restricting to the natural spectrum, we have proved that in the thermodynamic limit,

the level counting of the entire OES and PES are identical. Thus, we established

the bulk-edge correspondence in the entanglement spectra. The main tool in proving

this are the clustering constraints, which enforce the defining clustering properties

of the model states in momentum space. Our method works for both unitary and

non-unitary states that are defined as unique highest density zero-modes of Haldane

pseudopotential Hamiltonians. In particular, it can be applied to the entire Read-

Rezayi series, as well as the Gaffnian state.

6.A Rank of P̃

6.A.1 (k, 2)-clustering states

The matrices P̃ and M were defined in Sec. 6.4 as the particle entanglement matrices

with label LAz in the (k, 2)-admissible occupation configuration basis and the Jack

basis. In Sec. 6.4, we showed that the PEM and M have the same counting; in this

appendix, we show that P̃ and M have the same rank. This proves that the counting

of the PEM equals the rank of P̃.

Suppose we are able to show that P̃ = DMD′, where DT and D′ are square

triangular matrices with 1’s on the diagonal and as such they have nonzero determi-

nant. A theorem in linear algebra states that pre/post multiplying a matrix by one of
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triangular form with nonzero determinant leaves its rank unchanged. Thus, we only

need to prove that P̃ = DMD′ to conclude that rank(P̃)=rank(M).

The row and column dimensions of P̃ and M are identical because every (k, 2)-

admissible partition µ labels the Jack Jαµ . We may use partial ordering by dominance

to order the (k, 2)-admissible row and column configurations such that if µ̃k > µ̃i,

then k ≤ i.

Consider a particular (k, 2)-admissible partition µ̃i (ν̃j) labeling the ith row (jth

column) of P̃ and M. Let the coefficient of |µ̃i〉 in |Jαµ̃k〉 be Dik and the coefficient of

|ν̃j〉 in |Jαν̃l〉 be D′lj. The partial ordering implies that:

Dik = 0 if k > i (6.47)

Dii = 1 (6.48)

D′lj = 0 if l > j (6.49)

D′jj = 1. (6.50)

In other normalizations of Jack polynomials, Dii is not necessarily one, but is always

non-zero. By the definition of a matrix with row-echelon form, DT and D′ in row-

echelon form. Recall that:

∑

i,j

Mij|Jαµ̃i〉 ⊗ |Jαν̃j〉 =
∑

i,j

Pij|µi〉 ⊗ |νj〉 (6.51)

in every block of the full PEM. |µi〉 and |νj〉 are the general occupation-basis states,

not just the (k, 2)-admissible configurations. P̃ is the sub-matrix of P labeled by

(k, 2)-admissible partitions; therefore:

P̃ij =
∑

k,l

Mkl〈µ̃i|Jαµ̃k〉〈ν̃j|J
α
ν̃l
〉 (6.52)

i.e. P̃ij =
∑

k,l

DikMklD
′
lj
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⇒ P̃ = DMD′ , (6.53)

which proves our statement that the rank of the PEM is given by the rank of the

matrix of the coefficients indexed by the (k, 2)-admissible partitions.

6.B Two examples of clustering constraints

We write down the explicit relations imposed by the (k+1)-body clustering constraints

discussed in Sec. 6.5 on the coefficients of small wave functions at k = 1, 2. Let us first

consider an example at k = 1, i.e. the 1/2 Laughlin states. The clustering constraints

are 2-body:

β∑

i=0

dβ−idi|ψ〉 = 0 , for β = 0, 1, . . . , Ltotz . (6.54)

Consider the N = 3 , Ltotz = 6 wave function in the infinite plane geometry in which

the number of orbitals is not restricted to Nφ + 1 = 5 as in the case of the sphere.

The Hilbert space is spanned by 7 partitions, {λi, i = . . . 7}. Their corresponding

coefficients in |ψ〉 are {bi, i = 1 . . . 7}:

|ψ〉 = b1|6, 0, 0〉+ b2|5, 1, 0〉+ b3|4, 2, 0〉+ b4|3, 3, 0〉+ b5|4, 1, 1〉+ b6|3, 2, 1〉+ b7|2, 2, 2〉 .

The relations at β = 0, 1 respectively are:

b1|6, 0, 0〉 = 0 ⇒ b1 = 0

b2|5, 1, 0〉 = 0 ⇒ b2 = 0 .

Thus, the clustering constraints assign zero weight to λ1 and λ2, which are not dom-

inated by the root partition λ3 = [4, 2, 0] (n(λ3) = {10101}). The values of β from
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2 to 6 generate a set of 5 linearly dependent equations that fix 4 out of the 5 re-

maining coefficients. All the relations obtained are shown in Table 6.1. The solu-

tion in terms of the coefficient of the root partition b3 is {b1, b2, b3, b4, b5, b6, b7} =

{0, 0, b3,−2b3,−2b3, 2b3,−6b3}.

Table 6.1: Possible occupation configurations and the clustering constraints for the
N = 3, ν = 1/2 Laughlin state at Ltotz = 6 on the infinite plane (no restriction to the
number of orbitals. On the sphere the first two configurations have zero weight and
the last two orbitals are missing as Nφ = 4

Coefficient of mµ n(µ) Constraint
b1 {2000001} β = 0: b1 = 0
b2 {1100010} β = 1: b2 = 0
b3 {1010100} β = 2: 2b3 + b5 = 0
b4 {1002000} β = 3: b4 + b6 = 0
b5 {0200100} β = 4: 2b6 + 2b3 + b7 = 0
b6 {0111000} β = 5: b5 + b6 = 0
b7 {0030000} β = 6: 2b3 + b4 = 0

The bosonic Moore-Read state is the clustering polynomial at k = 2. The clus-

tering constraints involve 3 particles:

β∑

i,j=0

dβ−i−jdidj|ψ〉 = 0 , for β = 0, 1, . . . , Ltotz . (6.55)

Consider the 6-particle wave function with Ltotz = 12. Eq. (6.55) for β = 0 ensures

that the weight of the partitions [4, 4, 4, 0, 0, 0], [5, 4, 3, 0, 0, 0] . . . [12, 0, 0, 0, 0, 0] not

dominated by [4, 4, 2, 2, 0, 0] is zero in the wave function. The number of such parti-

tions whose coefficients are set to zero at β = 0 is the number of partitions of 12 into

at most 3 parts. Similarly, the constraints at β = 1 set the weights of the partitions

[4, 4, 3, 1, 0, 0], [5, 4, 2, 1, 0, 0], . . . [11, 1, 0, 0, 0, 0] (the number of such partitions is the

number of partitions of 11 into at most 3 parts) in the wave function to zero. The

linear dependence of the set of constraints in Eq. (6.55) is apparent in the fact that

the coefficient of the partition [7, 4, 1, 0, 0, 0] is set to zero by a constraint at β = 0 and

one at β = 1. The constraints at β = 11, 12 are also seen to give identical relations to

those at β = 0, 1 for this example. The configurations [5, 4, 3, 0, 0, 0] . . . [12, 0, 0, 0, 0, 0]
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are only allowed in an infinite plane geometry. On the sphere, they would involve more

orbitals than Nφ + 1 = 5 existent ones and would not appear in the Hilbert space of

the decomposition of the Moore-Read ground-state. The configurations [4, 4, 4, 0, 0, 0]

and [4, 4, 3, 1, 0, 0] appear on the sphere but, due to the same reason as on the infinite

plane – that they are not squeezed from the root partition – have zero weight.

The 16 partitions dominated by the root partition [4, 4, 2, 2, 0, 0] and their cor-

responding coefficients in ψ are shown in the second and first column of Table 6.2

respectively. Let us discuss the 3-body clustering at β = 4 in more detail:

3(d4d0d0 + 2d3d1d0 + d2d2d0 + d2d1d1)|ψ〉 = 0 . (6.56)

The four terms in Eq. (6.56) individually are:

d4d0d0|ψ〉 = b1|4, 2, 2〉+ b3|3, 3, 2〉

d3d1d0|ψ〉 = b6|4, 3, 1〉+ b7|4, 2, 2〉+ b8|3, 3, 2〉

d2d2d0|ψ〉 = b1|4, 4, 0〉+ b7|4, 3, 1〉+ b12|4, 2, 2〉

+ b11|3, 3, 2〉

d2d1d1|ψ〉 = b2|4, 4, 0〉+ b9|4, 3, 1〉+ b10|4, 2, 2〉

+ b14|3, 3, 2〉 . (6.57)

The right-hand-side of each of the four terms above is a linear combination of different

occupation configurations of 3 bosons with total angular momentum Ltotz − β = 8.

Since different occupation configuration states are orthogonal to each other, Eq. (6.56)

can only be satisfied if the coefficient in front of every non-interacting many-body

state is zero. Thus, we obtain four constraints on the coefficients from each of the
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four occupation configurations in Eq. (6.57):

|4, 2, 2〉 : b1 + 2b7 + b12 + b10 = 0

|3, 3, 2〉 : b3 + 2b8 + b11 + b14 = 0

|4, 3, 1〉 : 2b6 + b7 + b9 = 0

|4, 4, 0〉 : b1 + b2 = 0. (6.58)

The last relation also arises from the clustering constraint at β = 2.

All the relations imposed by the clustering constraints at β = 2, . . . , 6 are shown

in Table 6.2. Although not obvious, in this case as in the previous, the dimension of

the null space of Eq. (6.55) is 1. This can be analytically proved by realizing that the

Moore-Read state is the densest unique ground-state of a Haldane pseudopotential

Hamiltonian which can be written in terms of the clustering operators

Table 6.2: Possible occupation configurations and the clustering constraints for the
N = 6 Moore-Read state at Ltotz = 12

n(µ) Constraint
b1 {20202}

β = 2:
b1 + b2 = 0

b2 {12102} b3 + b6 = 0
b3 {20121}

β = 3:
3b3 + 6b7 + b9 = 0

b4 {20040} 3b4 + 6b8 + b13 = 0
b5 {04002} 6b2 + b5 = 0
b6 {12021}

β = 4:
b1 + 2b7 + b10 + b12 = 0

b7 {11211} b3 + 2b8 + b11 + b14 = 0
b8 {11130} 2b6 + b7 + b9 = 0
b9 {03111}

β = 5:
2b2 + 2b7 + b9 + b10 = 0

b10 {02301} 2b7 + 2b11 + b14 + b15 = 0
b11 {10320} 2b6 + 2b8 + b13 + b14 = 0
b12 {10401} 2b3 + b6 + b7 = 0
b13 {03030}

β = 6:

6b1 + 3b2 + 6b7 + 3b3 + b12 = 0
b14 {02220} 6b2 + 3b5 + 6b9 + 3b6 + b10 = 0
b15 {01410} 6b3 + 3b6 + 6b8 + 3b4 + b11 = 0
b16 {00600} 6b7 + 3b9 + 6b14 + 3b8 + b15 = 0

6b12 + 3b10 + 6b15 + 3b11 + b16 = 0
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6.C Proof of step 1 Sec. 6.6.2

We now prove the statement in step 1 of Section 6.6.2– Kµ̃0 ≤ ∆µ̃0 implies that

Kµ̃ ≤ ∆µ̃ for all (k, 2)-admissible partitions µ̃ that are dominated by µ̃0. We defined

µ̃0 to be the partition that dominates all other (k, 2)-admissible partitions at given

NA, LAz , (Eq. (6.36)):

n(µ̃0) = k0 . . . k0︸ ︷︷ ︸
2b(NA−1)/kc

x 0 . . . 01︸ ︷︷ ︸
`

0 . . . 0, (6.59)

where 0 ≤ x < k is fixed by the total particle number being NA. We are given that

∆µ̃0 ≥ Kµ̃0 .

The main idea how to prove this statement is to reduce the distance from the

cut by squeezing particles across the cut. Squeezing with the particle just left to the

cut— at angular momentum (lA−1)— cannot reduce the distance, but squeezing with

any other particle to the left of the cut does. Let us in the following only consider

squeezing operations from orbitals with index m1 ≥ lA and m2 < lA − 1 to orbitals

with index m′1 = m1−1 and m′2 = m2 +1. Starting from a (k, 2)-admissible partition,

there are two choices to reduce the distance to the cut by one and still retain (k, 2)-

admissibility: either one squeezes with a particle of the rightmost unit cell, which

reduces the number of unit cells by one, or one squeezes with a particle that is not

in an intact unit cell. The latter may retain (k, 2)-admissibility, depending on the

occupation configuration of the remaining particles, and does not change the number

of intact unit cells. All (k, 2)-admissible configurations µ̃′ < µ̃0 can be obtained from

µ̃0 by such a series of squeezings. As Kµ̃0 ≤ ∆µ̃0 , they obey Kµ̃′ ≤ ∆µ̃′ . Let us make

this argument more rigorous in the following paragraphs.

The case when Kµ̃0 = 0 is trivial. All (k, 2)-admissible partitions have distance

from the cut 0 and at least 0 intact unit cells; therefore Kµ̃ ≤ ∆µ̃ for all (k, 2)-

admissible partitions µ̃.
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In order to prove the required statement for Kµ̃0 > 0, we consider all (k, 2)-

admissible partitions µ̃ < µ̃0 at given, but arbitrary Kµ̃ < Kµ̃0 . Let us construct

the partition µ (not necessarily (k, 2)-admissible) at the given distance Kµ̃ = Kµ > 0

that is dominated by all the (k, 2)-admissible partitions. This partition can always be

obtained by first reducing the distance to the cut Kµ̃0 −Kµ̃ times, by squeezing each

time with a particle from the rightmost intact unit cell, and afterwards squeezing all

the particles at angular momenta ≥ (lA − 1) to their maximally dense configuration.

The latter operation does not change the distance from the cut. Assume that the

orbital to the left of the cut is unoccupied, i.e. nlA−1(µ̃0) = 0. If the number of

particles to the right of the cut in µ̃0, Nr(µ̃0), is equal to one then the occupation

number configuration of µ is given by:

n(µ) = k0 . . . k0︸ ︷︷ ︸
2∆µ

(k − 1)1 . . . (k − 1)1︸ ︷︷ ︸
2(∆µ̃0

−∆µ)

x0 . . . 0︸ ︷︷ ︸
lA−2∆µ̃0

| 0 . . . 01︸ ︷︷ ︸
Kµ

, (6.60)

where we denote the orbital cut by ‘|’ in the occupation configuration. For Nr(µ̃0) > 1,

n(µ) is:

n(µ) = k0 . . . k0︸ ︷︷ ︸
2∆µ

(k − 1)1 . . . (k − 1)1(k − 1)0︸ ︷︷ ︸
2(∆µ̃0

−∆µ)

|X . . .X, (6.61)

where the sequence X . . .X denotes the occupation configuration of (Nr(µ̃0) + 1)

particles at distance Kµ that is maximally squeezed.

The configurations in Eq. (6.60) and (6.61) are such that the particles on the left

of the cut form the densest possible (k, 2)-admissible configuration, ie. squeezing any

two particles on the left of the cut yields a configurations that is not (k, 2)-admissible.

As the particles to the right are in their most squeezed configuration, we conclude

that any (k, 2)-admissible partition with distance to the cut Kµ dominates µ.
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As compared to n(µ̃0), the z-angular momentum of the particles to the left of the

cut in n(µ) is increased by ∆µ̃0 − ∆µ, while that of the particles to the right of the

cut is reduced by Kµ̃0 −Kµ̃. Since n(µ) has the same total z-angular momentum as

n(µ̃0):

∆µ̃0 −∆µ = Kµ̃0 −Kµ

∆µ̃0 ≥ Kµ̃0 ⇒ ∆µ ≥ Kµ.

As every (k, 2)-admissible partition µ̃ with distance Kµ̃ = Kµ that dominates µ has

at least ∆µ intact unit cells:

∆µ̃ ≥ ∆µ, Kµ̃ = Kµ ⇒ ∆µ̃ ≥ Kµ̃ (6.62)

at every distance from the cut.

The argument for nlA−1(µ̃0) 6= 0 is identical to the one described above. The only

difference lies in the form of n(µ):

n(µ) = k0 . . . k0︸ ︷︷ ︸
2∆µ

(k − 1)1 . . . (k − 1)1︸ ︷︷ ︸
2(∆µ̃0

−∆µ)

0|X . . .X, (6.63)

where the sequence X . . .X is the maximally squeezed configuration of x+1 particles

(for Nr(µ̃0) = 1) respectively k +Nr(µ̃0) (for Nr(µ̃0) > 1) at distance Kµ.

6.D Proof of step 2 in Sec. 6.6.2

6.D.1 Effect of dominance on the distance from the cut

We show that dominance, i.e. µ > µ′ implies that the distance to the cut Kµ ≥ Kµ′ , or

that squeezing cannot increase the distance from the cut. The property of dominance
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is defined by:

µ > µ′ ⇒
n∑

i=1

µi ≥
n∑

i=1

µ′i (6.64)

for all n ≤ N . Recall that µi ≥ µj for i < j, where µi and µj are the components of

the partition µ. Let us denote the number of particles to the right of the cut for any

partition µ by Nr(µ). The distance from the cut Kµ can then be rewritten as:

Kµ =

Nφ∑

m=lA

nm(µ)(m− lA + 1)

=

Nr(µ)∑

i=1

(µi − lA + 1) . (6.65)

When comparing the total distances for two partitions, µ and µ′, there are three

possibilities, Nr(µ) = Nr(µ
′), Nr(µ) > Nr(µ

′) and Nr(µ) < Nr(µ
′). We will discuss

them in that order:

• Nr(µ) = Nr(µ
′):

µ > µ′ ⇒
Nr(µ)∑

i=1

µi ≥
Nr(µ)∑

i=1

µ′i

⇒
Nr(µ)∑

i=1

(µi − lA + 1)

︸ ︷︷ ︸
=Kµ

≥
Nr(µ)∑

i=1

(µ′i − lA + 1)

︸ ︷︷ ︸
=Kµ′

(6.66)

Thus, Kµ ≥ Kµ′ .

• Nr(µ) > Nr(µ
′):

µ > µ′ ⇒
Nr(µ′)∑

i=1

µi ≥
Nr(µ′)∑

i=1

µ′i
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⇒
Nr(µ′)∑

i=1

(µi − lA + 1) ≥
Nr(µ′)∑

i=1

(µ′i − lA + 1)

︸ ︷︷ ︸
=Kµ′

. (6.67)

As µi ≥ lA for all particles to the right of the cut, Kµ =
∑Nr(µ)

i=1 (µi − lA + 1) >
∑Nr(µ′)

i=1 (µi − lA + 1). This shows that Kµ > Kµ′ .

• Nr(µ) < Nr(µ
′):

µ > µ′ ⇒
Nr(µ′)∑

i=1

µi ≥
Nr(µ′)∑

i=1

µ′i

⇒
Nr(µ)∑

i=1

(µi − lA + 1)

︸ ︷︷ ︸
=Kµ

+

Nr(µ′)∑

i=Nr(µ)+1

(µi − lA + 1)

︸ ︷︷ ︸
≤0

≥
Nr(µ′)∑

i=1

(µ′i − lA + 1) = Kµ′ . (6.68)

The second term must be ≤ 0, as the particles to the left of the cut have

angular momentum µi < lA. It is strictly negative if at least one of the µi for

Nr(µ) < i ≤ Nr(µ
′) is smaller that (lA − 1).

Thus, Kµ ≥ Kµ′ for every µ′ that is dominated by µ.

6.D.2 Effect of clustering constraints

We show that the (k + 1)-body clustering constraints presented in the body of the

paper (Eq. (6.34)) relate partitions µ with ∆µ > 0 intact unit cells and distance

Kµ > 0 from the cut to partitions µ′ with number of intact unit cells given by ∆µ− 1

and distance from the cut by Kµ′ < Kµ.

192



Let us consider an arbitrary partition µ with ∆µ intact unit cells (2∆µ orbitals)

and distance Kµ:

n(µ) ={k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

|x . . . x︸ ︷︷ ︸
≤Kµ

0 . . . 0} , (6.69)

where we placed the orbital cut after lA orbitals. In order to keep the discussion

general, we denote an arbitrary occupation number configuration by the sequence

x . . . x. 8 For the orbitals to the right of the cut (with angular momentum ≥ lA) two

examples of such configurations with distance from the cut, Kµ, are:

{k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

| 0 . . . 0︸ ︷︷ ︸
Kµ−1

10 . . . 0}

{k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

|Kµ 0 . . . 0} . (6.70)

Let us now analyze the clustering condition that involve the k particles of the

(∆µ−1)-th unit cell and the rightmost particle to the right of the cut in the partition

µ (6.69). Remember that we chose to number the intact unit cells starting from 0.

We choose β = 2k(∆µ − 1) + µ1 for the clustering operator (6.34) and require the

remaining NA− (k+1) particles to occupy the same orbitals as in n(µ). For instance,

for the configuration in the first line of (6.70), we choose β = 2k(∆µ−1)+(lA−1+Kµ)

and require the remaining NA− (k+ 1) particle to have the occupation configuration:

{k0 . . . k0︸ ︷︷ ︸
2∆µ−2

00 x . . . x︸ ︷︷ ︸
lA−2∆µ

| 0 . . . 0} . (6.71)

8The actual occupation number configuration is not generally known or important to the proof.
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While for the second line we choose β = 2k(∆µ− 1) + lA and the occupation number

configuration of the remaining NA − (k + 1) particles to be:

{k0 . . . k0︸ ︷︷ ︸
2∆µ−2

00 x . . . x︸ ︷︷ ︸
lA−2∆µ

| (Kµ − 1) 0 . . . 0} . (6.72)

In particular, the occupation configurations of the remaining particles have ∆µ − 1

intact unit cells.

The clustering condition relates µ only to partitions that are dominated by a

partition µ′ of the form 9:

n(µ′) ={k0 . . . k0︸ ︷︷ ︸
2∆µ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2∆µ

|x̃ . . . x̃0 . . . 0} (6.73)

where x̃ . . . x̃ is used to indicate an occupation number configuration where the right-

most particle to the right of the cut is moved to the left by one orbital. The distance

from the cut is reduced by one: Kµ′ = Kµ − 1. For our examples in Eq. (6.70), the

dominating partition is given by:

n(µ′) ={k0 . . . k0︸ ︷︷ ︸
2∆µ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2∆µ

| 0 . . . 0︸ ︷︷ ︸
Kµ−2

10 . . . 0} (6.74)

for the configuration of the first line of Eq. (6.70), and:

n(µ′) ={k0 . . . k0︸ ︷︷ ︸
2∆µ−2

(k − 1)1 x . . . x︸ ︷︷ ︸
lA−2∆µ

| (Kµ − 1) 0 . . . 0} (6.75)

for the configuration in the second line of Eq. (6.70).

Using the results from Appendix 6.D.1, we conclude that all partitions µ′ 6= µ

involved in the clustering condition have ∆µ′ = ∆µ − 1 intact unit cells and distance

9Any other configuration has zero weight in the model wave function, since it is not dominated
by the root partition (6.7)

194



from the cut Kµ′ ≤ Kµ−1. The (k+1)-body clustering condition yields one constraint

on the rows labeled by all the involved partitions. Thus we have shown that the row

labeled by µ can be written as a linear combination of the rows labeled by partitions

µ′ with Kµ′ < Kµ and one less intact unit cell.

6.D.3 Relating PEM rows to OEM rows

Let us assemble the results of the previous appendices to prove the following state-

ment: any PEM row labeled by a partition µ with Kµ ≤ ∆µ is linearly dependent on

rows labeled by partitions µ̂j with Kµ̂j = 0. The latter are partitions that label the

rows of the OEM. We prove this statement by induction, starting with a row partition

µ with Kµ = 1 and ∆µ ≥ 1. Such a row partition is necessarily of the form:

{k0 . . . k0︸ ︷︷ ︸
2∆µ

x . . . x︸ ︷︷ ︸
lA−2∆µ

|10 . . . 0} . (6.76)

Using the (k, 2) clustering constraint for β = 2k(∆µ−1)+lA and fixing the occupation

configuration of the remaining N − (k + 1) particles to be:

{k0 . . . k0︸ ︷︷ ︸
2∆µ−2

00 x . . . x︸ ︷︷ ︸
lA−2∆µ

|0 . . . 0} (6.77)

the row partition (6.76) can be related to rows labeled by µ̂j, which satisfying Kµ̂j = 0.

This result is independent on ∆µ as long as ∆µ ≥ 1.

For the induction hypothesis let us now assume that all row partitions λj with

Kλj ≤ Kλ (for given Kλ > 1) and ∆λj ≥ Kλj can be written as linear combinations

of rows labeled by partitions µ̂j with Kµ̂j = 0.

Now consider a row partition µ with Kµ = Kλ + 1 and Kµ ≤ ∆µ. In Ap-

pendix 6.D.2 we have showed that a clustering condition involving any of the particles

to the right of the cut and the k particles of the rightmost intact unit cell (to the left of
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the OEM cut) relates this partition to partitions µ′ with Kµ′ < Kµ and ∆µ′ = ∆µ−1.

This implies that the row partition µ is a linear combination of the row partitions

λj. Using the induction hypothesis yields that all partitions µ with distance to the

cut Kµ ≤ Kλ + 1 fulfilling Kµ ≤ ∆µ can be written as linear combinations of rows of

the OEM. This shows that any row partition µ fulfilling Kµ ≤ ∆µ can be written as

a linear combination of rows labeled by partitions µ̂j that have distance to the cut

Kµ̂j = 0. These are the partitions that label the rows of the OEM.
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Chapter 7

Haldane Statistics in the Finite

Size Entanglement Spectra of 1/m

FQH States

7.1 Introduction

For the Laughlin family of wavefunctions at filling ν = 1/m, two numbers characterize

the edge theory1. The first is the central charge, which is one for the whole family. The

physical meaning ascribed to this number is that it is the number of fields on the edge.

In the IQH phases, for example, it is just the number of current carrying channels on

the edge and equals ν. The central charge alone determines the counting of the many-

body energy spectrum, and by Chapter 6, the counting of the orbital entanglement

spectrum in the thermodynamic limit. The second number characterizing the edge

theory of the Laughlin fluid is the boson compactification radius. Physically, this

number determines the quantization of the charge carried by the excitations on the

edge, e/m. This fractional charge of an electron has been observed in shot noise

1Chapter based on work with M. Hermanns, N. Regnault and B. A. Bernevig [96].
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experiments [166, 53, 42]. The energy spectrum alone is agnostic about this number

in the thermodynamic limit. However, when the edge has a finite length, the counting

differs from the thermodynamic one in a distinctive way for each m. Is counting of

the OES at finite-size also distinctive? Can the value of m be extracted from it? In

this chapter, we will answer these questions in the affirmative by conjecturing and

numerically checking a counting principle for the finite-size OES of Laughlin states.

There is a second practical motivation to understand the finite-size counting of

entanglement spectra. The power of the entanglement spectrum lies in its ability to

numerically diagnose the topological order of any given wavefunction. The proce-

dure is as follows: compute the OES of the wavefunction of interest, for example, the

exact ground state of the Hamiltonian with Coulomb interaction at filling ν. Com-

pare the counting of the low-lying levels of the OES to the known counting of the

energy spectra of different edge theories. When you find a match, conclude that the

given wavefunction is in the FQH phase with that edge theory. Li and Haldane’s

conjecture[123] implies that this procedure is perfect in the thermodynamic limit.

However, at computationally accessible system sizes, “low-lying” is hard to define.

The universal part of the spectrum strongly mixes with the spurious levels higher in

the OES of the Coulomb ground state, making it hard to separate. Using a flat-band

procedure called the conformal limit, the non-universal part of the Coulomb spec-

trum can be completely separated from a low-lying part with the same counting as

the finite-size OES of the model FQH state at the same filling by a full entanglement

gap[180]. This also suggests a counting principle behind the finite-size level counting

of the model states.

The counting principle that we conjecture is intimately related to the counting of

the Hilbert space of the quasiholes of the Laughlin fluid. The Laughlin quasiholes are

anyons with 1/m self-statistics [3]. That is, when one quasiparticle is adiabatically

taken around the other, the wavefunction of the system picks up an Aharanov-Bohm
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phase of exp(±2πi/m). 2 Haldane [89] provided an alternate definition of statistics

as the change in the dimension of the single particle Hilbert space on the addition

of one particle. Thus, the Pauli exclusion principle implies the minus sign on the

interchange of two fermions. Turning this definition on its head, Haldane showed

that the statistics of the Laughlin quasiholes follows from a generalized Pauli exclusion

principle for these particles. It turns out that configurations with no more than one

particle in m consecutive orbitals counts the Hilbert space of particles with self-

statistics 1/m. As the counting of excitations of a Laughlin droplet about the edge

are in one-to-one correspondence with the counting of quasiholes in the bulk, the

Hilbert space dimension of the quasiholes and their statistics naturally enters our

story of the finite-size counting of the OES.

In this chapter, we conjecture a counting principle for the finite-size spectra of

Laughlin ν = 1/m states for any m ∈ Z+ (fermionic or bosonic). When the system

is cut in orbital space, the number of non-zero Schmidt values as a function of the

angular momentum of subsystem A exhibits Haldane exclusion statistics [89] of a

boson of compactification radius
√
m quantized in a box of finite orbital length. The

conjecture predicts the observed counting of the full entanglement spectrum of the

m = 2, 3 states and most of the counting of the spectra of the m > 3 states. The

existence of such a counting principle lends meaning to the OES at finite size and

suggests a new interpretation of the entanglement gap in the Coulomb spectrum,

known to be non-zero in the thermodynamic limit from numerical studies [180], as

protecting the Haldane statistics of the phase.

As promised, our counting principle shows that the finite-size OES resolves the

central charge of the edge theory, as well as the compactification radius
√
m or the

fractional charge at the edge e/m, previously determined by intricate scaling argu-

ments [175, 29]. The finite-size OES thus determines all the quantum numbers of the

2The statistical phase is defined only up to a sign.
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1/m Laughlin states, and thereby— as long as the entanglement gap is finite— all

the topological properties of the Coulomb state at the same filling.

The organization of the chapter is as follows: we first review the effects of finite

size on the counting of the edge energy spectrum of the Laughlin droplet in Sec. 7.2.

We then state the conjecture for the counting of the corresponding finite-size OES in

Sec. 7.3, illustrate the principle with an example and provide numerical evidence in

support of the conjecture. Finally, in Sec. 7.4, we demonstrate that the conjecture

predicts the correct finite-size counting of the OES away from the model state.

7.2 Effects of a finite bulk on the edge excitation

spectrum

The intimate connection between the OES and the edge excitation spectrum suggests

that the understanding of the finite-size effects in the latter transfers to the former.

Let us therefore investigate the effects of finite size in the energy spectrum in the

simplest case of m = 1, that is, the integer quantum Hall (IQH) droplet. Recall that

in Chapter 5, following Ref. [91], we presented the energy spectrum of the IQH droplet

with two edges in the Landau gauge in Fig. 5.2. For the reader’s convenience, we

reproduce the lowest Landau level in Fig. 7.1(a). The Fermi energy is set at zero and

the bulk filling is one. At the right edge of the droplet, a wave packet above the Fermi

level has positive group velocity and moves into the plane, while on the left edge, the

wave packet does the opposite. Again, this is the origin of the chirality at the edge.

What are the excitations above the ground state? They involve creating electron-

hole pairs about each of the Fermi points. For small momentum/energies above the

ground state (black arrows), the excitations are localized at the two edges. Thus, the

counting of the number of levels in the excitation spectrum is the same as the counting

of the excitation spectrum of two non-interacting one-dimensional wires of opposite
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Figure 7.1: The single particle energy spectrum of the (a) ν = 1, and (b) ν = 1/2
droplet (see text for interpretation) with edges (also see Fig. 5.2). The blue dots
indicate occupied orbitals in the ground state. The ground state has two Fermi points
and the allowed particle-hole excitations above it are indicated by the arrows. For
small momenta above the ground state (black arrows), the excitations are localized
at the two edges and the degeneracy is the same as in the thermodynamic limit. For
large momenta above the ground state (red arrow), the two edges interact and the
number of excitations is reduced.

chirality. Nothing changes as we take the thermodynamic limit at this stage. The

situation is different at large momenta/energy. At large momenta, the hole excitations

of the two edges are the same excitation. In contrast, in the thermodynamic limit,

the hole excitations of the two edges are always distinguishable. Thus, the number of

excitations at finite size is smaller than that in the thermodynamic limit. For a given

system size, the entire finite-size spectrum is easy to construct and the deviations from

the thermodynamic limit counting can be analytically determined at each momentum.

Thus, at least for the IQH phase with non-interacting spinless electrons, we under-

stand exactly how finite-size effects appear in the excitation spectrum. What bearing

does this knowledge have on the m > 1 Laughlin phases? There is a simple heuris-

tic picture arising from work by Haldane [89] that generalizes the IQH counting for

m > 1. The key insight is that for the purposes of counting of excitations, we can

work with free electrons even at ν = 1/m, if we impose that the allowed occupation

configurations are (1,m)-admissible. A configuration is (1,m) admissible if there is
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no more than one electron in m consecutive orbitals. In Fig. 7.1(b) is shown the con-

figuration corresponding to the ground state for m = 2, that is, the densest possible

(1,m) admissible configuration. We emphasize that the occupation configuration in

Fig. 7.1(b) is merely a caricature of the correlations in the actual Laughlin state and

is not to be literally interpreted as the many-body wavefunction. As we discussed

in Sec. 6.2.5, the (1,m) admissible configurations label wavefunctions with liquid-like

correlations given by Jack polynomials [10]. To count the number of excitations of the

ν = 1/m liquid at momentum δk above the ground state, all we have to do is to count

the number of (1,m) admissible configurations at that momentum. These are our al-

lowed ‘particle-hole’ excitations. For example, some excitations about Fig. 7.1(b) are

counted by:

δk = 0 : 0010101010100

δk = 1 : 0010101010010

((((((((
0010101001100

δk = 2 : 0010101010001

0010101001010

((((((((
0010011010010

...

The first orbital in all configurations above is denoted by the thick blue line in (b).

The crossed out configurations are not (1, 2)-admissible. The list is not complete

even at δk = 0, 1, 2 as we have only listed configurations with excitations about the

right edge. For example, at δk = 0, a (1, 2)-admissible configuration that should be

counted is:

0100101010010
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To connect to the m = 1 case discussed above, note that (1, 1) admissible configura-

tions are just valid fermionic configurations. Thus, counting the number of particle

hole excitations at some momentum is equivalent to the number of (1, 1) admissible

configurations at that momentum. Following the argument that we presented for

m = 1, we see that the counting of excitations will be reduced at sufficiently high

momenta/energy. The precise analytical formula that quantifies this reduction will

be presented for the OES in the next section.

To summarize, we have presented a cartoon of the effect of the finite size of the bulk

on the edge excitation spectrum in the 1/m Laughlin states (Fig. 7.1). At sufficiently

high momentum/energy above the ground state, the number of excitations is smaller

than that in the thermodynamic limit.

7.3 Effects of a finite bulk on the OES

Let us now investigate the effects of the finite bulk on the OES. For a description of

the geometry, the definition and properties of the OES and the special properties of

the Laughlin model states, we refer the reader to Sections 6.2.1-6.3 . Any undefined

symbols below refer to the same quantities as in Chapter 6. Briefly, we perform the

orbital cut after lA orbitals. A is assumed to be the smaller sub-system lA ≤ lB. The

block of the orbital entanglement matrix (OEM) at fixed number of particles in A

(NA) z-angular momentum in A, LAz is denoted by C.

We define ∆Lz = LAz,max − LAz , where LAz,max = mNA(N −NA)/2 is the z-angular

momentum of the configuration where the particles in A are maximally close to the

North pole. In the thermodynamic limit (lA → ∞ before NA → ∞), the number

of levels in the OES for any m grows as (1, 1, 2, 3, 5, 7, 11 . . .) for ∆Lz = 0, 1, 2 . . .,

matching the number of excitations of a chiral U(1) boson at each ∆Lz. Corrections

to this counting occur because of the finite number of particles or orbitals in A. The
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Figure 7.2: Schematic indicating the excitations above the ν = 1/2 ground state that
count the number of levels in the OES with NA = 3 in lenl = 7 orbitals. Haldane
statistics implies that each occupied orbital ‘blocks’ its two neighboring orbitals.
Thus, only the excited state in the right box contributes to the level counting of
the OES at ∆Lz = 1, while the configuration arising out of the transition (arrow) in
the left box does not.

OES counting for a finite NA as lA → ∞ is different from the above U(1) counting,

but remains the same for all 1/m Laughlin states. Dependence of the OES counting

on m arises only when lA is also finite.

Let us assume for the moment that B is infinite, i.e. lB, NB →∞. We argue that

the level counting of the OES exhibits Haldane exclusion statistics by identifying

all the configurations in A with a set of (1,m)-admissible configurations with the

same quantum numbers. The latter obey the generalized Pauli principle that there is

no more than one particle in m consecutive orbitals corresponding to the statistical

interaction g = m[89]. Observe that the orbital cut at lA imposes a ‘hard-wall’

potential on the subsystem A; it forbids the occupation of any orbital with Lz ≥ lA.

For values of lA and ∆Lz such that none of the configurations in A probe this wall, the

(1,m)-admissible configurations count the number of levels in the OES [40]. For all

other values, we conjecture that the (1,m)-admissible configurations of NA particles

continue to count the levels in the OES, if we move the hard wall and increase the

orbital size of A to lenl > lA. A schematic view of this counting principle is shown

in Fig. 7.2. To determine lenl, we use the fact that there is exactly one level in the

OES at the minimal possible angular momentum, LAz,min. This is because there is
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only one allowed configuration in A - {0 . . . 0NA | . . .} for bosonic Laughlin states

and {0 . . . 01 . . . 1 | . . .} for the fermionic ones, where ‘|’ denotes the orbital cut. We

therefore fix lenl such that there is exactly one (1,m)-admissible partition at angular

momentum LAz,min and none at smaller angular momenta: lenl = lA + m(NA − 1)/2

(bosons) and lenl = lA + (m− 1)(NA − 1)/2 (fermions).

In a numerically accessible system, both A and B are of finite size. The arguments

in the previous paragraph then apply to both subsystems. We thus conjecture an

upper bound Ns(lA, NA,∆Lz) to the level counting of the OES at given NA, lA, and

∆Lz, taking both subsystems into account:

Ns(lA, NA,∆Lz) = min[N (lA, NA,∆Lz),N (lB, NB,∆Lz)], (7.1)

where N (la, Na,∆Lz) for a = A,B is the number of (1,m)-admissible states of Na

particles in lenl,a = la+m(Na−1)/2 (bosons) or lenl,a = la+(m−1)(Na−1)/2 (fermions)

orbitals at angular momentum ∆Lz. It is defined by the generating function:

Na·Nh
a∑

∆Lz=0

N (la, Na,∆Lz)q
∆Lz =

(q)Na+Nh
a

(q)Na(q)Nh
a

, (7.2)

with (q)n =
∏n

i=1(1 − qi) and Nh
a = lenl,a − m(Na − 1) − 1. N (la, Na,∆Lz) is a

well-known quantity; it is the number of linearly independent Laughlin states of Na

particles with Nh
a added flux quanta at angular momentum ∆Lz [158]. For nearly all

values of NA, lA, and ∆Lz, the bound is saturated and the observed counting is given

by Ns(lA, NA,∆Lz). Specifically, Eq. (7.1) predicts the correct level counting for the

entire OES for m = 2, 3, and for most (NA, lA) sectors of the m > 3 states.

For given (NA, lA), Eq. (7.1) predicts the observed counting of the full spectrum

if Ns(lA, NA,∆Lz) simplifies to N (lA, NA,∆Lz) for all ∆Lz (or alternatively if it

simplifies to N (lB, NB,∆Lz) for all ∆Lz). In other words, Eq. (7.1) holds exactly

when the corrections to the thermodynamic counting are only due to the finite-size
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of a single subsystem. For the bosonic states, a necessary and sufficient condition

for this is (i) NB ≥ min(NA, N
h
A). For fermionic states, an additional condition

(ii) lA − NA ≤ (m − 1)(N − 1)/2 has to be imposed as a consequence of the Pauli

exclusion statistics of the fermions in part B. For m = 2, 3, restricting the orbital cut

to lA ≤ Nφ/2 ensures that these conditions are satisfied. For m > 3, both conditions

can always be satisfied by choosing the system size to be sufficiently large.

When NB < min(NA, N
h
A) ((i) does not hold), Ns(lA, NA,∆Lz) simplifies

to N (lB, NB,∆Lz) at small ∆Lz and to N (lA, NA,∆Lz) at large ∆Lz. If (ii)

is not satisfied, the situation is reversed— the level counting at small ∆Lz is

equal to N (lA, NA,∆Lz), while the number of levels at large ∆Lz is equal to

N (lB, NB,∆Lz). At both ends of the spectrum, the level counting of the OES is

equal to Ns(lA, NA,∆Lz). In fact, Eq. (7.1) is the observed level counting everywhere

except possibly at a few values around ∆L0
z, when N (lA, NA,∆L

0
z) ≈ N (lb, NB,∆L

0
z).

Near ∆L0
z, the counting is dependent on the finite sizes of A and B and Eq. (7.1) is

only an upper bound. We have tested our conjecture for all possible orbital cuts at

all numerically accessible system sizes, i.e up to N = (16, 15, 11, 11, 9, 9, 7, 7) particles

for m = (2, 3, . . . , 9).

7.3.1 An example

Let us illustrate Eq. (7.1), the counting principle behind the finite-size OES counting

of the 1/m Laughlin states, with a simple example at N = 8, m = 2. Consider the

sectors of the OES at lA = 5, NA = 3. As lA ≤ lB, condition (i) is satisfied and we

need only consider subsystem A. We fix lenl,A so that the single occupation number

configuration at LAz,min, {00003 | . . .}, is identified with exactly one (1, 2)-admissible

configuration at the same angular momentum:

000
←−
0 3|−→0 0↔ 00

←−
0 111|−→0 ↔ 0010101|. (7.3)
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Figure 7.3: OES of the bosonic m = 2 Laughlin state for N = 8 and (a) NA = 3,
lA = 7, (b) NA = 3, lA = 5, (c) NA = 3, lA = 4 and OES of the m = 2 state with
N = 12 and (d) NA=6 and lA = 11 in the conformal limit. The counting of plots
(a), (b) and (c) should be compared to the number of (1, 2)-admissible configurations
listed in Table 7.1 at each ∆Lz. In all cases, the full counting is predicted exactly by
N (lA, NA,∆Lz), defined by Eq. (7.2).

where the hard wall is indicated by ‘|’. The arrows indicate angular-momentum

conserving operations that result in a (1,2)-admissible configuration. Pushing the

hard wall further to the right allows for (1, 2)-admissible configurations at angular

momenta lower than LAz,min. Thus, lenl,A = lA+2 = 7. The conjectured counting of the

OES is therefore Ns(lA, NA,∆Lz) = N (5, 3,∆Lz). The middle column of Table 7.1

lists the possible (1, 2)-admissible configurations of 3 particles in lenl,A = 7 orbitals at

every ∆Lz. The resulting counting, (1, 1, 2, 2, 2, 1, 1), is identical to the counting of

the numerically generated OES, Fig. 7.3(b). We also list some of the (1, 2)-admissible

partitions of NA = 3 particles for orbital cuts lA = 7, 4 (lenl,A = 9, 6), in the first

and third column respectively. Their number is identical to the numerically observed

level counting shown in Fig. 7.3(a) and (c).
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lA = 7, NA = 3 lA = 5, NA = 3 lA = 4, NA = 3
∆Lz = 0: 101010000 ∆Lz = 0: 1010100 ∆Lz = 0: 101010
∆Lz = 1: 101001000 ∆Lz = 1: 1010010 ∆Lz = 1: 101001
∆Lz = 2: 101000100 ∆Lz = 2: 1010001 ∆Lz = 2: 100101

100101000 1001010 ∆Lz = 3: 010101
∆Lz = 3: 101000010 ∆Lz = 3: 1001001

100100100 0101010
010101000 ∆Lz = 4: 1000101

∆Lz = 4: 101000001 0101001
100100010 ∆Lz = 5: 0100101
100010100 ∆Lz = 6: 0010101
010100100
. . .

Table 7.1: Examples of the finite-size counting of the m = 2 Laughlin state. The
number of (1, 2)-admissible partitions in lA+2 orbitals at each ∆Lz equals the number
of levels in the OES for the cut with NA particles in lA orbitals in Fig. 7.3.

A few general remarks about the OES counting of the model FQH states are

in order. For a generic state, one expects the rank of the OEM to be equal to

the smaller of its dimensions. What makes the model FQH states special is the

factorially many linear dependencies in their OEMs that keep the rank finite even

in the thermodynamic limit. The finite-size counting conjectured in this article is

expected to be hard to prove in general, although the level counting at both high

and low angular momenta LAz can be analytically determined. The generic U(1) level

counting in the OES of NA particles at angular momenta ∆Lz = 0, 1, . . . , Nh
A has been

rigorously shown for certain orbital cuts [40]. At LAz,min, LAz,min + 1, . . . , LAz,min +Nh
A,

the rank of the OEM is the Hilbert space dimension of part A. For instance, in the

m = 2 Laughlin state with NA = 3, lA = 5, there is only one level in the OES at LAz,min

and LAz,min + 1 corresponding to the configurations {00003 | . . .} and {00012 | . . .} of

A. For values of LAz > LAz,min + 2, the OEM rank is less than the Hilbert space

dimension of A, indicative of the nontrivial structure of the OEM.
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Figure 7.4: Coulomb entanglement spectrum of N = 8 bosons at filling 1/2 in the
sector lA = 7, NA = 3 in the conformal limit. Left: The full entanglement spectrum
with a clear entanglement gap. Right: The low-‘energy’ part of the conformal en-
tanglement spectrum. The level counting is identical to the Laughlin entanglement
spectrum in Fig. 7.3(a).

7.4 Away from the model state

It is worthwhile to demonstrate the role of our conjecture for the Laughlin states in the

OES counting of Coulomb states at the same filling. Fig. 7.4 shows the entanglement

spectrum for the bosonic Coulomb state of N = 8 particles at filling fraction ν = 1/2

in the sector lA = 7, NA = 3 in the conformal limit. The low-‘energy’ part— shown

in the right figure— is separated from the levels higher in the spectrum by a gap

at all LAz . In contrast to the entanglement entropy calculations that rely on scaling

arguments, we can determine all the quantum numbers of the edge theory of the state

using the conjectured counting of the model OES at a single system size and a single

orbital cut. For instance, the level counting at high LAz in Fig. 7.4 is (1, 1, 2, 3, 5)

for ∆Lz = 0, . . . , 4, identical to the counting of 3 particles in any Laughlin state,

N (lA, 3,∆Lz), as lA → ∞. From Eq. (7.2), we observe that the first discrepancy

from the counting at lA → ∞ is at ∆Lz = Nh
A + 1. In Fig. 7.4, this occurs at

∆Lz = 5, which fixes Nh
A = 4. Inserting this value into the expression for Nh

A, we find

that m = 2(lA − 1−Nh
A)/(NA − 1) = 2. As the ∆Lz of the first finite-size correction

is the only information required, this analysis works equally well for the cases where

the conjecture only provides an upper bound to the counting.
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7.5 Concluding remarks

In this chapter, we explored the effect of the finite size of the system on the edge

excitation spectrum and the orbital entanglement spectrum. In both cases, we found

that the counting of the spectrum is reduced at large momentum above the ground

state. We showed that the physics leading to the reduced counting in both spectra

is related to the counting of the number of (1,m)-admissible configurations in a box

of finite size. This led us to conjecture that the counting of the finite-size OES

of the ν = 1/m Laughlin states exhibits Haldane exclusion statistics of a boson

with compactification radius
√
m in a box of known orbital length. We supported

our claim with extensive numerical evidence at many different system sizes. Our

conjecture shows that the OES determines all the quantum numbers of the Laughlin

state edge theory— its central charge through the thermodynamic limit counting, and

the compactification radius or quasi hole charge through the finite-size counting. It

suggests that the entanglement gap in the Coulomb spectrum protects the Haldane

statistics of the phase in the thermodynamic limit and thus provides us with a new

way of extracting the boson compactification radius for any state with a finite gap.

A natural direction for future research is understanding the counting of the non-

abelian states, which is complicated by more quantum numbers. More generally, we

can ask if all the quantum numbers of any chiral edge theory can be determined from

the entanglement spectrum alone. It would also be interesting to extend the analysis

in this article to two orbital cuts [29] on the torus [118, 126] or the sphere. The

resulting OES is expected to be the combination of the finite-size spectra of the two

edges if they are non-interacting.

210



Bibliography

[1] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz. Large N field
theories, string theory and gravity. Physics Reports, 323(3-4):183 – 386, 2000.

[2] S. An, P. Jiang, H. Choi, W. Kang, S. H. Simon, L. N. Pfeiffer, K. W. West, and
K. W. Baldwin. Braiding of Abelian and Non-Abelian Anyons in the Fractional
Quantum Hall Effect. ArXiv e-prints, Dec. 2011, e-print arXiv:1112.3400.

[3] D. Arovas, J. R. Schrieffer, and F. Wilczek. Fractional statistics and the quan-
tum hall effect. Phys. Rev. Lett., 53(7):722–723, Aug 1984.
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[175] J.-M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier. Shannon and en-
tanglement entropies of one- and two-dimensional critical wave functions. Phys.
Rev. B, 80(18):184421, 2009.

[176] A. Sterdyniak, N. Regnault, and B. A. Bernevig. Extracting excitations from
model state entanglement. Phys. Rev. Lett., 106:100405, Mar 2011.

[177] H. L. Stormer, D. C. Tsui, and A. C. Gossard. The fractional quantum hall
effect. Rev. Mod. Phys., 71:S298–S305, Mar 1999.

[178] A. Strominger. The dS/CFT correspondence. JHEP, 10:034, 2001.

[179] R. Thomale, D. P. Arovas, and B. A. Bernevig. Nonlocal order in gapless sys-
tems: Entanglement spectrum in spin chains. Phys. Rev. Lett., 105(11):116805,
2010.

[180] R. Thomale, A. Sterdyniak, N. Regnault, and B. A. Bernevig. Entanglement gap
and a new principle of adiabatic continuity. Phys. Rev. Lett., 104(18):180502,
2010.

[181] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized
hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett.,
49:405–408, Aug 1982.

[182] S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak. Breakdown of a
topological phase: Quantum phase transition in a loop gas model with tension.
Phys. Rev. Lett., 98:070602, Feb 2007.

[183] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwock, J. Eisert,
and I. Bloch. Probing the relaxation towards equilibrium in an isolated strongly
correlated one-dimensional bose gas. Nat Phys, 8(4):325–330, 04 2012.

[184] S. A. Trugman. Localization, percolation, and the quantum hall effect. Phys.
Rev. B, 27(12):7539–7546, Jun 1983.

[185] D. I. Tsomokos, A. Hamma, W. Zhang, S. Haas, and R. Fazio. Topological
order following a quantum quench. Phys. Rev. A, 80:060302, Dec 2009.

223



[186] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magneto-
transport in the extreme quantum limit. Phys. Rev. Lett., 48:1559–1562, May
1982.

[187] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C. E. Stamp. Topological
multicritical point in the phase diagram of the toric code model and three-
dimensional lattice gauge higgs model. Phys. Rev. B, 82:085114, Aug 2010.

[188] A. M. Turner, F. Pollmann, and E. Berg. Topological phases of one-dimensional
fermions: An entanglement point of view. Phys. Rev. B, 83:075102, Feb 2011.

[189] A. M. Turner, Y. Zhang, R. S. K. Mong, and A. Vishwanath. Quantized re-
sponse and topology of magnetic insulators with inversion symmetry. Phys.
Rev. B, 85:165120, Apr 2012.

[190] A. M. Turner, Y. Zhang, and A. Vishwanath. Entanglement and inversion
symmetry in topological insulators. Phys. Rev. B, 82(24):241102, 2010.
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