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ABSTRACT 

PREVENTION AND TREATMENT OF LUNG CANCER 

BY GREEN TEA POL YPHENOLS 

Pengxiao Cao 

June 6, 2011 

Green tea polyphenols (GTPs) are gaining increasing attention because of their 

potential anti-tumor effects. However, poor oral bioavailability limits their efficacy in 

vivo. In this dissertation, two hypotheses were tested: 1) GTPs administered systemically 

by a sustained release system will circumvent the problem of limited bioavailability and 

lower the effective dose compared to the traditional oral route, and 2) adjuvant treatment 

of GTPs with a standard chemotherapeutic agent (e.g. cisplatin) will enhance efficacy of 

the therapeutic agent. 

In our lab, a polymeric implant delivery system was developed, in which GTPs 

were uniformly embedded within a polycaprolactone matrix to provide sustained release 

of GTPs. The release profile of GTP implants was further investigated both in vitro and 

in vivo. 

To test the first hypothesis, polyphenon E (poly E), a standardized green tea extract, 

was administered by PCL implants grafted subcutaneously or via the drinking water to 
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SID rats. The animals were challenged by benzo[a]pyrene (BP) Via subcutaneous 

implant. Results showed a significant reduction of BP-induced DNA adducts III the 

implant group; however, only a modest but insignificant reduction occurred III the 

drinking water group. Notably, the total dose of poly E administered was> lOO-fold lower 

in the implant group. Analysis of selected phase I, phase II, and DNA repair enzymes at 

the mRNA, protein levels and enzymatic activity showed no significant modulation by 

poly E. The effect of poly E on DNA adduct formation was presumably due to 

scavenging of the reactive intermediates of BP by GTPs, which was illustrated by other 

experiments in this dissertation. 

To test the second hypothesis, the combined effects of the GTPs, anthocyanidins 

and cisplatin on the growth of lung cancer H1299 cells in cell culture and also a xenograft 

nude mouse model were investigated. In both studies, combination of GTPs

anthocyanidins with cisplatin exerted a more dramatic anti-cancer effect. However, 

systemic toxicity was found in the animals receiving the combination treatment. Possible 

mechanism of action was investigated. 

Together, these data demonstrated that sustained systemic delivery of poly E lower 

the effective dose by overcoming oral bioavailability and combination of GTPs

anthocyanidins and suboptimal doses of cisplatin may be effective in neo-adjuvant 

chemotherapy. 
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CHAPTER I: GENERAL INTRODUCTION 

Epidemiology of lung cancer 

Data from the National Cancer Institute, the Center for Disease Control and 

Prevention, the North American Association of Central Cancer Registries and the 

National Center for Health Statistics indicate that, in the United States, lung cancer is the 

second most common cancer diagnosed in 2010, only less than prostate cancer in men 

and breast cancer in women. Numerically, this translates to 116,750 males and 105,770 

females diagnosed with lung cancer in 2010, which accounts for 15% and 14% of all the 

cancer types respectively (1). Moreover, lung cancer also accounts for the highest cancer

related death rate, 29% death in men and 26% in women, which corresponds to the death 

of 86,220 male patients and 71,080 female patients (1). 

Worldwide estimates of the incidence and mortality of lung cancer provided by the 

International Agency for Research on Cancer (IARC) indicated that lung cancer 

contributed to 13% of the total cancer cases and 18% of cancer-related deaths in 2008, 

which represents 1.6 and 1.4 million cases respectively. Worldwide, lung cancer is the 

leading cancer type diagnosed in males, accounting for 17% of the total new cancer cases 

and 23% of the cancer-related deaths. In females, it's the fourth most commonly 

diagnosed cancer only less than breast, colon & rectum and cervical cancers, and the 

second leading cause of cancer-related deaths (2). 



Treatment of lung cancer 

The treatment regimens for lung cancer are based on the type and stage of lung 

cancer and the patients' overall health. To date, standard treatment options include 

surgical resection, chemotherapy and radiation therapy with chemotherapy comprising 

the backbone of the treatment strategies. Despite the development of various 

chemotherapeutic agents in 1980s and 1990s, platinum containing therapy was the most 

commonly selected regimen largely a result of its efficacy, yielding a responsive rate of 

30-40% and a median survival time estimated to be one year for patients in advanced 

stages (3). 

The standard chemotherapeutic treatments discussed above have a somewhat non 

selective mechanism, i.e. both cancer and non cancer cells can be affected by these 

treatments. However, the recent appearance of molecular target therapy has provided an 

opportunity to more selectively target cancer cells. Cancer cells acquire some common 

phenotypes including unlimited proliferation, resistance to apoptotic signals and 

metastasis through the accumulation of a variety of genetic and epigenetic changes. 

Advancements in molecular biology and biochemistry make it possible to identify and 

target these molecular mechanisms. One such promising class of therapeutics is inhibitors 

of epidermal growth factor receptor (EGFR) such as gefitinib and erlotinub which have 

been found to exert dramatic clinical effects, resulting in a prolonged (approximately 4 

months) progression-free survival time of patients with lung cancer compared with 

patients treated with platinum doublet therapy. Several other molecular-targeting drugs 

have also demonstrated significant promise towards lung cancer treatment or are 

currently under investigation in clinical trials including the anti-angiogenetic drug 
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bevacizumab, the anti-epidermal growth factor receptor antibody cetuximab and theanti

vascular endothelial growth factor antibody bevacizumab (4, 5). 

Lung cancer prognosis 

Despite the progress in cancer research and cancer treatment strategies, the 

prognosis of lung cancer remains relatively poor as reflected in the mortality rate. In 

developed countries, the overall 5-year relative survival rate for lung cancer patients was 

12-18%, in comparison with other most commonly diagnosed malignancies including 73-

89% for breast cancer, 50-99% for prostate cancer and 43-63% for colorectal cancer (6). 

Furthermore, this prognosis has improved only marginally over the last few decades. 

Clearly, more effective therapeutic strategies are urgently needed. 

Risk factors for lung cancer 

The majority of lung cancers have been attributed to environmental factors. The 

incidence of lung cancer strongly correlates with cigarette smoking, with 90% of lung 

cancers associated with tobacco use (7). Kentucky has the highest adult smoking rates in 

the U.S., with 30% or more of the population identified as smokers; a number that greatly 

surpasses other states (8). Not surprisingly, lung cancer incidence and mortality rates in 

Kentucky are among the highest in United States (9). 

Although tobacco smoke contains more than 5,000 chemicals, several dozens of 

them are carcinogenic, mutagenic or tumor promoters. Two classes of compounds have 

been identified and most investigated as animal carcinogens, namely nitrosamines and 

polycyclic aromatic hydrocarbons (PARs) (l0, 11). 
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Another significant source of these environmental carcinogens, predominantly 

found in developing countries, is the emission from coal combustion associated with 

cooking and heating, particularly in rural areas of China. These combustion processes 

result in higher P AH levels in air indoor and outdoor and have been associated with an 

elevated lung cancer risk to populations in these regions (12, 13). 

Benzo[a]pyrene and carcinogenesis 

Benzo[a]pyrene (BP) is a model PAH, and also one of the most potent 

environmental carcinogens found ubiquitously in tobacco smoke, automobile exhaust 

emissions and grilled foods (14, 15). Numerous studies have demonstrated the 

association of BP exposure and induction of carcinogensis in many organs including 

lung, skin, mammary gland and others (16-18). 

Enzymatic activation is needed before BP can be metabolized to its ultimate 

carcinogenic metabolite, anti-benzo[ a ]pyrene-7 ,8-diol-9, lO-epoxide (anti-BPDE) and 

other potentially carcinogenic and/or mutagenic agents. Certain types of cytochrome 

P450s (CYPs) found in the subcellular microsomal fraction, especially CYPIAl, 

CYPIB 1 are involved in this process (19). Anti-BPDE exerts its carcinogenic activity by 

alkylating nucleosides in DNA molecules at the structurally named bay region of the 

anti-BPDE moiety. The reaction predominates with the purine bases, particularly 

deoxyguanosine in DNA (20). As a result, both bulky stable and depurinating DNA 

adducts are formed (21, 22). Insufficient removal of stable DNA adducts prior to 

replication can create mutational hot spots in the gene which may result in deactivation of 

tumor suppressor genes or activation of oncogenes leading to tumor initiation (23-26). 
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Need for prevention 

In the United States, annual age-adjusted incidence rates for lung and bronchus 

cancer has reportedly decreased from 1984 through 2006 in males. However, this 

observation has not been found in females. One of the most significant reasons for this 

disparity is believed to be the historical differences in cigarette smoking between men 

and women. Cigarette smoking by women appeared to peak approximately 20 years later 

than men (1). This peak pattern coupled with widespread and significant lung cancer 

incidence, substantial mortality and poor prognosis strongly suggest the importance of 

developing prevention strategies, including tobacco control, in the control of lung cancer 

development. As previously discussed, current treatment strategies for lung cancer only 

have limited effects in improving the prognosis of lung cancer patients. Therefore, cancer 

prevention should be put in a more prominent position which could dramatically 

influence the incidence and death rate of lung cancer. Further, for high-risk individuals 

including heavy smokers (e.g., people with 50-100 pack-year history) and long term 

workers expose to smoke or fumes occupationally, specific chemopreventive intervention 

may be necessary. 

Natural products with chemopreventive/chemotherapeutic activity 

One promising pathway towards preventing cancers including those of the lung is 

the use of natural products. Natural products are part of human lives historically and 

currently. Many of them have been found to bear medicinal functions. Studies have 

demonstrated the chemopreventive/chemotherapeutic effects of many natural compounds, 

e.g. green tea and tea catechins, curcumin in the yellow spice turmeric, resveratrol in the 
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skin of red grapes, isoflavones and soy preparations from beans, tanshinone in the 

Chinese folklore tanshen, the red carotenoid pigment lycopene in tomatoes, water melon, 

etc., quercetin from apples and other fruits, etc. These compounds are able to inhibit 

tumor cell proliferation, induce cell apoptosis in cell culture and inhibit the formation and 

development of tumors at various stages in animal studies, suggesting their potential use 

in cancer patients or cancer survivors (27-32). For example, pomegranate fruit extracts 

inhibited the growth of colon, prostate and lung cancer cells in culture and also in animal 

models (28). Apple juice and apple extracts can modulate signaling transduction 

pathways and prevent skin, mammary and colon carcinogenesis (30). 

Some natural compounds have been tested or are under investigation in clinical 

trials with promising results. For example, administration of green tea catechins was 

found to be very effective for treating premalignant lesions of prostate in a double

blinded, placebo-controlled study. The incidence of prostate cancer in treatment group is 

3% verse 30% in the placebo group (33). In another clinical trial, the combination of 

curcumin and quercetin reduced the size and number of intestinal adenomas in patients 

with familial adenomatous polyposis (34). 

Other possible applications of these natural compounds include, but are not limited 

to, use as adjuvants to standard chemotherapeutic agents for the purpose of decreasing 

toxicity of standard chemotherapeutic agents or increasing efficacy, which will be 

discussed in the section of "dilemma of chemotherapy" in this chapter (35-39). 

Green tea polyphenols' antitumor effects and safety profile 
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Green tea is one of the most popular drinks in the world. Studies are now 

suggesting that green tea has many health benefits, which are attributed to its bioactive 

components, including epicatechin (EC), epigallocatechin (EGC), epicatechin gallate 

(ECG) and epigallocatechin gallate (EGCG) (40, 41). GTPs are highly potent 

antioxidants and may help prevent atherosclerosis, particularly coronary artery disease 

(42, 43). Also, using a murine model, GTPs have been found to have beneficial effects in 

the treatment of neurodegenerative diseases (44). 

More recently, green tea has been attracting attention because of its possible 

application in cancer prevention. The anticarcinogenic effects of GTPs have been tested 

using a variety of cancer cell lines in vitro (45-49). More importantly, in the majority, but 

not all, of published animal studies, green tea preparations were found to decrease lung 

tumor incidence and tumor multiplicity in chemically-induced lung tumor models, 

including both PAHs (e.g., BP) and nitrosamines (e.g., N-nitrosodiethylamine (NDEA) 

and 4-(methylnitrosamino)- 1 -(3-pyridyl)- 1- butanone (NNK) (41, 50-54). Green tea 

preparations were found to be effective when administered to mice either during or after 

carcinogen exposure to reduce tumor incidence and multiplicity (50, 51). Studies also 

showed that green tea extracts are effective in decreasing tumor multiplicity and tumor 

incidence by approximately 60% and 25% in animal models of esophageal and gastric 

carcinogesis (41).These results suggest the anti-tumor potential of GTPs. 

GTPs are usually not perceived as "medicine" by people who drink tea or even 

those who don't drink tea. One reason is because of the level of safety of GTPs. The 

adverse events in humans are mild after daily administration of 800 mg EGCG for four 

weeks, which are no different with those reported in the placebo group. Additionally, 
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repeated administration of GTPs has no significant impact on blood counts and blood 

chemistry profiles (55). The systemic review performed by US Pharmacopeia (USP) 

Dietary Supplement Information Expert Committee (DSI EC) showed that no significant 

safety issues were found when dietary supplement products containing green tea extracts 

are used and formulated (56). 

Mechanisms of action of green tea polyphenols 

The possible mechanisms of action of green tea catechins have been extensively 

studied in vitro. GTPs were found to induce apoptosis in cancer cells and inhibit the 

proliferation of a variety of cancer cells types in vitro, including lung cancer cells (45-

49). GTPs have also been shown to inhibit epidermal growth factor (EGF), hepatocyte 

growth factor (HGF) and fibroblast growth factor 2 (FGF2) dependent signaling 

pathways, and interfere with enzyme activities of JUK, JUN, MEKl, MEK2, EKl, EK2, 

CDK2 (57). They are also highly potent antioxidants (58). In the presence of transition 

metal ions or alkalis, GTPs can generate reactive oxygen species, including hydrogen 

peroxides which are believed to help to kill cancer cells (59, 60). However, the broad in 

vitro and in vivo anti-cancer effects of GTPs are not attributed to a single mechanism but 

most likely are due to a combination of mechanisms that results in the efficacy of GTPs. 

The translation of mechanisms of action found from in vitro studies to in vivo studies, 

however, remains inconclusive. 

Inconsistent data 
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Although GTPs have exhibited chemopreventive effects in most published animal 

studies, these data have been somewhat inconsistent. In some studies, GTPs failed to 

show beneficial effects in the prevention of lung tumorgenesis in tobacco smoke-induced 

lung tumor models in All mice (61, 62). It is also reasonable to speculate that even more 

studies have not been published due to negative results. Furthermore, reviews of 

epidemiological and clinical studies indicate only a marginal beneficial association 

between green tea consumption and lung cancer risk (63, 64). Similarly, green tea did not 

show definitive effects on other cancer types, including gastric, colorectal and breast 

cancer (65-69). 

Bioavailability of green tea polyphenols 

One likely reason for the inconsistency of these studies with GTPs is their lack of 

bioavailability following oral exposure, which ultimately results in low blood levels of 

the bioactive components (70-74). EGCG and ECG are the most abundant and active 

compounds in GTPs. However, only about 0.1 % of EGCG was bioavailable in rats 

following intragastric (i. g.) administration, resulting in a maximum plasma concentration 

(Cmax) of EGCG only at ng/ml level (13.2 - 16.3 ng/ml) (72). Bioavailability for ECG 

ranged from 1 to 3.3% in rats following oral administration. Again, the Cmax of ECG 

was also only determined to be at the ng/ml level (49.6 - 464.0 ng/ml) (73). In clinical 

studies, the blood levels of EGCG were found to range from pg/ml to ng/ml, even after 

large doses (75, 76). The lack of bioavailability indicated from these studies coupled with 

the demonstrable efficacy, low toxicity and known chemoprotective mechanisms of 

GTPs in several animal studies strongly suggests that these agents may exhibit greater 
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efficacy under conditions in which bioavailability can be increased by avoiding oral 

dosing routes. 

The dilemma of chemotherapy 

The basic principle of chemotherapy is to kill as many tumor cells as possible by 

treatment with chemicals in order to minimize the tumor burden. However, the majority 

of these drugs also affect normal cells such that each drug has its maximum tolerable 

dosage considering the toxicity and side effects. In practice, usually two or more 

chemotherapeutic agents with a lower dose in combination are needed in order to 

maximize efficacies and minimize toxicities and side effects (77, 78). The principle for 

combination of these therapeutics is to choose drugs with differing molecular targets, 

mechanisms of action and side effects (78). The most commonly used chemotherapeutic 

drugs in lung cancer treatment and their mechanisms of action and molecular targets are 

as follows: cisplatin, carboplatin (crosslinking with DNA) (79, 80); paclitaxel, docetaxel 

(anti-microtubule) (81, 82); doxorubicin (interact with DNA by intercalation) (83); 

gemcitabin (nucleoside analog, anti-metabolite) (84); vinorelbin (anti-mitotic, anti

microtubule) (85); etoposide (topoisomerase II inhibitor) (86); irinotecan and topotecan 

(topoisomerase I inhibitor) (87, 88). As noted previously, GTPs bear many mechanisms 

of action which are different from traditional chemotherapeutic agents, such as induction 

of ROS production and interference with signal transduction (57). Clearly, the molecular 

targets of GTPs are different from the chemotherapeutic drugs mentioned above (57). 

Additionally, as noted previously, GTPs are relatively safe as phytochemicals (56). 
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Therefore, it's reasonable to hypothesize that GTPs can be used as a neo-adjuvant 

treatment in the prevention and treatment of lung cancer. 

In limited studies, it has been shown that green tea catechins enhanced the effect of 

gemcitabin, dacarbazine, doxorubicin or taxol in different cancer cell lines both in vitro 

and in xenograft animal models (37, 89-91). The combination of EGCG or ECG with 

doxorubicin increased intracellular doxorubicin accumulation in the chemoresistant 

hepatocellular carcinoma cell line BEL-7404IDOX, significantly inhibited cell 

proliferation in vitro, and hepatoma growth in a xenograft mouse model (37). EGCG was 

found to be able to sensitize human cholangiocarcinoma cell line Mz-ChA-l to 

gemcitabine-induced apoptosis in vitro and in vivo (89). Similarly, the enhanced effects 

of EGCG and dacarbazine on B16-F3m melanoma cells and those of EGCG and 

paclitaxel on 4Tl breast cancinoma were observed (90, 91). No chemosenstizing effect of 

GTPs seem to have been reported in a lung cancer cell line and/or lung cancer animal 

model. 

Hypotheses 

My first hypothesis is that GTPs administered systemically, by a sustained-release 

system, will circumvent the problem of limited bioavailability and lower the effective 

dose compared to the traditional oral route. We have developed a novel delivery system 

in which GTPs are uniformly embedded with a polymer matrix to provide sustained 

release of GTPs. In the following studies, I will test this delivery system both in vitro and 

in vivo, and eventually test the hypothesis. 
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My second hypothesis is that adjuvant treatment of GTPs with a standard cancer 

chemotherapeutic agent (e.g. cisplatin) will enhance efficacy of the drug and lower its 

toxicity. 

Specific Aims 

The following specific aims will be pursued to achieve my goals: 

Aim l: To characterize and optimize the delivery of green tea polyphenols by 

polymeric implants. Polymer formulations will be developed using biodegradable 

polymers and GTPs and tested to determine the rate of release of GTPs in vitro and in 

VIVO. 

Aim 2: To determine the efficacy of green tea polyphenols against carcinogen

induced DNA adducts in vitro. Microsomal and microsome-free systems will be 

employed to determine the relative efficacy of green tea catechins (EC, EGC, ECG and 

EGCG) to inhibit DNA adducts induced by BP as measured by 32P-postlabeling. 

Spectroscopic methods will be used to determine scavenging of electrophilic metabolites 

of BP by GTPs. 

Aim 3: To determine short-term chemoprotective effects of green tea polyphenols 

administered by subcutaneous polymeric implants or orally in vivo. Rats will be treated 

with BP by subcutaneous implants alone or with BP co-administered with GTPs by 

polymeric implants or by oral. Animals will be euthanized at different intervals to 

determine the effects of GTPs on tissue BP-DNA adducts as measured by 32p_ 

postlabeling. Effects on selected phase I, phase II enzymes and other related enzymes 
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will be measured by quantitative RT-PCR and protein levels by Western blotting. The 

plasma and tissue levels of the GTPs will be determined by LC/MS. 

Aim 4: To determine efficacy and potential mechanisms of adjuvant treatment of 

green tea polyphenols and a standard chemotherapeutic drug on lung cancer development 

using rodent models. Human lung cancer cell lines (H1299 and A549) will be used in cell 

culture studies first to test whether EGCG can enhance the effect of a standard 

chemotherapeutic drug. Nude mice will then be injected with human lung cancer cells 

and then subcutaneously treated with GTPs and the chemotherapeutic agent individually 

and as an adjuvant. Efficacy of the various treatments will be determined by measuring 

tumor indices and modulation of selected biomarkers. 

Significance of the studies 

Data resulting from these studies will identify the potential role of GTPs in lung 

cancer intervention and the possible mechanisms by which these agents mediate the 

carcinogenic process. Importantly, these studies provide an alternative approach to oral 

exposure that can circumvent bioavailability problems following oral administration of 

prospective chemopreventive or chemotherapeutic agents as well as lower the effective 

dose compared with the traditional oral route. Furthermore, adjuvant treatment of GTPs 

and a chemotherapeutic drug may increase the drug's efficacy by lowering its effective 

dose, reducing its toxicity and/or circumventing drug resistance. Future prospects of 

positive results of this proposed work include clinical trials using polymeric devices 

trapped with GTPs in the treatment of human lung cancer with standard 

chemotherapeutic drugs. 
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CHAPTER II: CHARACTERIZATION AND OPTIMIZATION OF THE 

DELIVERY OF GREEN TEA POL YPHENOLS BY POLYMERIC IMPLANTS 

Introduction: 

The concept of drug delivery by implants has been applied in a clinical setting for 

many years. One of the most successful applications of drug delivery by this method to 

date is sub-dermal contraceptive implants. These implant types have been accepted by 

millions of women over the past 30 years due to their long lasting efficacy and moderate 

side effects. However, insertion and removal of the implants has proven to be the greatest 

barrier to their clinical applications (92). One method to eliminate the necessity of 

removal of these implants is to use biodegradable materials. This concept has been tested 

in animal models in recent studies to deliver sex-related hormones and has been proven to 

be very promising (93, 94). However, biodegradable materials for sub-dermal delivery 

have not been tested to deliver chemopreventive agents. 

The exceptionally low bioavailability of epigallocatechin gallate (EGCG) and 

epicatechin gallate (ECG), which are also the most active components of green tea 

polyphenols (GTPs), following oral administration, substantially limits their efficacy in 

vivo as discussed (Chapter I) (70, 72, 74). The use of subcutaneous biodegradeable 

polymeric implants for delivery of GTPs to circumvent low bioavailability following oral 

exposure is explored here. 
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Poly (epsilon-caprolactone) (PCL) is one of most common biodegradable materials 

used in sub-dermal implant and importantly, its medical application has been approved 

by the FDA (95, 96). In vivo, the hydrolytic degradation of PCL polymer molecules into a 

smaller molecular weight polymer will lead to conversion of the implant to small 

particles which will then be excreted. This process usually takes few months to years 

based on the molecular weight of polymer. Polycaprolactone implants with 65,000 

molecular weight are expected to take two or more years before they will degrade 

completely and be excreted (97). The drug is released in concert with the physical erosion 

of the implant, and more importantly, up taken into the blood and tissues as interstitial 

fluid penetrates into the polymer (98). PCL is ideally suitable for long-term delivery 

because of its slow degradation rate (96). 

In our laboratory, we successfully prepared PCL implants containing GTPs, and 

these implants can be administered subcutaneously (99). This dosing method is 

hypothesized to eliminate the poor bioavailability of GTPs following oral administration 

found in previously published studies (72-74). I expect that in these studies the 

pharmacological effects of GTPs will be greatly enhanced due to their expected increase 

in plasma and tissue levels. The studies performed in this chapter were conducted to 

characterize and optimize the delivery of GTPs from PCL implants. 

Materials and Methods: 

Chemicals 

PCL, GTPs, F68, cyclodextrin, polyethylene glycol, molecular weight 8000 (PEG 

8000), ECG, EC, EGC and GTP60 (a green tea extract preparation containing 60% 
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catechins) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used for all in 

vitro studies in this chapter unless mentioned otherwise. EGCG was purchased from LKT 

laboratories, Inc. (St. Paul, MN, USA). Polyphenon E (a standard green tea extract 

preparation containing approximately 90% catechins) was obtained from National Cancer 

Institute and used for the in vivo study. 

Preparation of GTP-PCL implants 

Polymeric implants were prepared using the methodology described elsewhere (99). 

Briefly, PCL and GTPs were dissolved in dichloromethane and ethanol respectively 

before mixing, followed by removal of the solvents under reduced pressure (Savant 

SpeedVac) overnight. The polymeric material was then filled in a disposable syringe 

attached to silastic tubing (I.D. 3.2 mm), heated at 70°C and extruded. The implants were 

removed from the silastic tubing mould and excised to desired length (0.5-3 cm length). 

Polymer composition (PCLs with different molecular weights), supplements in the 

implant (F68, cyclodextrin, PEG8000) and GTP load were variable based on the purpose 

of studies. 

Calibration curves of GTP60 in vitro 

A calibration curve of GTP60 in phosphate-buffered-saline (PBS) with 10% bovine 

serum was established by spiking the medium with a series of known concentrations of 

GTP60 and measuring the O.D. values spectrophotometric ally at 540 nm after reaction 

with a dying solution containing 0.1 % ferrous sulfate and 0.5% potassium sodium tartrate 
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tetrahydrate (l00). The O.D. values were plotted against the concentration of GTPs. At 

least three individual experiments were performed to generate a calibration curve. 

The effect of polymer composition on G TP release in vitro 

Implants of PCL of mol. wt. 65,000 (P65) and 15,000 (PI5) with different 

compositions (0%, 10%, 30% or 50% P65) and 10% GTPs were prepared. Release of 

GTPs from I cm implants was investigated by stirring the implants in 5 ml phosphate

buffered-saline (PBS) with 10% bovine serum, pH 7.4 at 37°C to mimic the in vivo 

environment. The amount of catechins released was measured spectrometric ally as 

mentioned above. 

Overall degradation rate of G TP60 and poly E in vitro 

The overall degradation rate of GTP60 in an in vitro environment was measured as 

follows. GTP60, with a known concentration was dissolved in PBS containing 10% 

serum and kept in amber colored vials at 37°C. An aliquot of this GTP60 solution was 

sampled and measured spectrophotometric ally at different time points. 

The overall degradation rate of poly E was obtained in the same method as above. 

Degradation of GTPs determined by HPLC 

Poly E solution in pure water, PBS or PBS with KOH (pH 12.4) was prepared and 

analyzed by HPLC (Shimadzu Corp., Columbia, MD) coupled with a CI8 Sonoma 

column, 25 cmx4.6 mm, particle size of 5 !-!m (ES industries, West Berlin" NJ) and 

detected using a UV detector. Mobile Phase A was water with 0.05% trifluoroacetic acid 
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(TFA), Phase B was acetonitrile with 0.05% TFA. The column was eluted with a linear 

gradient from 12% to 21 % mobile Phase B in 25 min, and increased to 29% for another 

10 min at a flow rate of 1 mllmin. 

The effect of water soluble polymeric supplements (F68, Cyclodextrin, 

PEG8000) in the PCL implants on GTP release in vitro 

In order to determine whether incorporation of water-soluble polymeric 

supplements into peL implants can modify GTP release into the medium, a total of four 

groups were assigned. Implants containing 90% P65 and 10% GTP served as controls. 

The other three groups employed implants containing 81 % P65, 10% GTP and 9% of 

either F68, cyclodextrin or PEG8000. Release of GTPs from 1 cm implants in vitro was 

measured as mentioned above. 

The effects of drug load and implant surface area on GTP release in vitro 

In order to determine the effects of the level of GTPs embedded in the implants as 

well as variable levels of implant surface areas on GTP release into the medium, I tested 

GTP release from 0.5-2 cm implants (corresponding to a surface areas of 2.30-1.075 

mm2/mg) with 5-20% of drug loads. A total of 9 groups were assigned containing 20% 

GTPs of 0.5, 1.0 or 2.0 cm in length; 10 or 5 % GTPs of 1.0, 1.5 or 2.0 cm in length. All 

test implants contained P65 and F68 with a ratio of 9: 1. Release of GTPs from implants 

in vitro was measured spectrophotometrically as described previously. 

G TP release in vivo 
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In this study, I aimed to determine the rate of GTP release from subcutaneous 

implants in ACI rats. The implants were composed of the active component, 20% poly E 

(total of 40 mg), and the inert ingredients P65 and F68 with a ratio of 9: 1. A 2-cm 

implant was surgically placed onto the back of the rat subcutaneously. At 1,2,3,5,8 and 

19 wks, rats were euthanized and the implants were removed for further analysis. The 

residual amounts of poly E in the implants were measured by dissolving the implant in a 

mixture of dichloromethane and ethanol, extraction of the poly E in PBS, followed by 

reaction with a dying solution and spectrophotometric detection described above and 

back calculated based on the calibration curve generated by poly E in PBS without 

serum. The amount of poly E released at selected time points was calculated by 

subtracting the residual amounts of poly E from the initial amount. 

GTP release from implant with PCL coating in vitro 

In order to determine whether coating implants with a thin layer of blank PCL can 

improve the sustained release profile of GTP from implants, the following experiment 

was performed. GTP-PCL implants were prepared as described above. Then these 

implants were dipped in 8% PCL solution in dichloromethane for 1 sec followed by air 

dry and repeated sequentially six times. The release profile of these implants was tested 

in vitro comparing with the release profile from implants without PCL coating. 

Results: 

Calibration curve of GTPs in PBS with 10% serum 
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The calibration curve of O.D. versus GTP concentration (0 to 250 Ilg/ml) was found 

to be linear at the given range with a correlation factor greater than 0.999 (Figure 2-1). 

Effect of polymer composition on G TP release in vitro 

Release of GTPs from the implants showed a continuous release of the GTPs as a 

function of time (Fig. 2-2A). For example, the release of the GTPs from the implants 

containing 50% P65 fits very well to a mathematic equation y = 547.02x-O.8637, with a R2 

equal to 0.9781, in which y is the daily GTP release and x is the time expressed in days 

(Fig. 2-2B). Initially, the observed release of the GTPs is comparatively high during the 

early time points, while the drug release is much slower at the later time points. A 

theoretical cumulative release of GTPs was obtained by summing up the daily release 

calculated by the equation above (Fig. 2-2C), however, only approximately 50% of the 

initial amount of the drug infused in the implant was released during the 9 month study. 

The plot of cumulative GTP release versus the square root of time was expressed as 

Figure 2-2D. In this study, the PCL implants remained intact during the entire nine 

months duration. A higher percentage of P65 was also found to increase the plasticity of 

the implants which makes them less fragile. For these reasons, implants with a higher 

percentage of P65 were used in all subsequent experiments. 

Overall degradation rate of G TP60 and poly E in vitro 

Degradation of GTPs varied as a function of time, faster initially and slower at later 

time point (Fig. 2-3). The rate of degradation of GTP60 in PBS with 10% serum was 
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found to be approximately 50% in 24 h. Under the same conditions, the degradation of 

poly E was similar with degradation levels of 58% in a 24 h duration (Fig. 2-3). 

Degradation of GTPs determined by HPLC 

The degradation rate of GTPs was confirmed by HPLC (Fig. 2-4). The four 

catechins clearly separated in the elution profile (Fig. 2-4A). The degradation of 

catechins in PBS occurred within 1 h (Fig. 2-4B) and faster rates were observed in PBS 

with potassium hydroperoxide (Fig. 2-4C). Results also showed EGCG and EGC were 

more labile to degradation than EC and ECG (Fig. 2-4). 

Effect of implant supplements (F68, Cyclodextrin, PEG8000) on GTP release 

in vitro 

In this study, I tested GTP release from implants with different supplement 

compositions. The purpose of adding these water-soluble polymers was to facilitate the 

preparation of the implants as well as obtain more sustained release of GTP. Our results 

indicate that these supplements do not significantly alter the GTP release pattern from the 

implants (Fig. 2-5) although the presence of these supplemented did facilitate extrusion 

of the polymeric material into silastic tubing mould. 

Effects of drug load and implant surface area on GTP release in vitro 

The results showed that drug load is the determining factor of GTP release (Figure 

2-6). One cm implants with 20% GTP load released more GTP than implants with 10% 

and 5% drug load (Figure 2-6A). Similarly, two cm implants with 20% GTP load 
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released more GTP than implants with 10% and 5% drug load (Figure 2-6B). The drug 

release is proportional to the drug load, and the correlation is high (data not shown). 

Comparison of implant sizes, 0.5, 1 and 2 cm containing 20% GTP load resulted in 

higher release of GTPs initially from the smaller implants, but then the release declined 

for the next several days (Fig. 2-7). Similar results were observed in 1, 1.5 and 2 cm 

implants with lower drug loads of GTPs (Fig. 2-7). It should be noted that these data have 

been normalized by implant weight, therefore, the shorter the implants are, the larger the 

surface area of the implants. I found that the implants with a larger surface area initially 

resulted in higher release. However, subsequently, the rate of GTP release was dictated 

by the drug load. 

GTP release from subcutaneous implants in vivo 

Our results showed that in vivo release of GTPs from the implants follows a similar 

pattern as found in vitro, initially a burst release followed by a decreased but continuous 

release (Fig. 2-8). The total amount of poly E released following 1,2,3,5,8,19 weekes) 

was approximately 18%,30%,38%,42%,47% and 60%, respectively. 

GTP release from implants with blank peL coating 

The result showed that the release of GTPs from implants with a PCL coating was 

much less initially as compared with implants without the coating, dropping from 

approximately 4.8% to l.9% on the 1st day and 2.5% to l.2% on the 2nd day. In fact, the 

GTP release from these two groups was almost identical after 9 days, with levels of 0.6% 

and 0.5% respectively, which indicates that the implants coated with a blank layer of 
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PCL released GTP at more constant rate than those implants without the PCL coating 

(Figure 2-9). 

Discussion: 

The studies in this chapter were conducted to characterize and optimize the release 

of GTPs from polymeric implants both in vitro and in vivo. In vitro studies were 

conducted using a mock environment to mimic the in vivo situation in order to establish a 

baseline for further in vivo evaluation. In vitro release of the GTPs from the GTP60 

implant, as measured spectrophotometric ally, showed a continuous decline with time. 

Interestingly the release of GTPs from implants can be expressed as y = AxB, in which y 

is the daily GTP release, x is the time expressed in days and A and B are constants (Fig. 

2-2B). This mathematical expression of GTP release describes firstly that the release of 

GTPs from the implant is comparatively high during the early time points, while the drug 

release is much slower at the later time points. Secondly, it suggests that release is a 

simple diffusion mediated, in which the readiness of GTP molecules released from implants is 

inversely proportional to the square of the distance between the molecules and the implant 

surface. Thus, a plot between the cumulative GTP release versus square root of time should 

result in a straight line, which is indeed the case as illustrated in Fig. 2-2D. The deviation 

of the initial time points from the straight line are presumably due to the elapsed time 

needed for water to penetrate into the implants thoroughly to flush out the GTPs. 

Another interesting finding is that the cumulative release of the GTPs measured 

spectrophotometric ally was approximately 50% of drug load (Fig. 2-2C) suggesting 

degradation of the GTPs may be occurring once they are released into an aqueous 

environment. The loss of GTPs can be attributed to many environmental factors, 
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including light and aIr exposure, which make the accurate determination of the 

degradation rate of these compounds problematic. A preliminary study was therefore 

conducted to determine the rate of degradation of GTPs. The result indicates that 

approximately 50% of GTPs are degraded within 24 hrs (Fig. 2-3), which explains our 

previous result that approximately 50% of the total GTPs were released from the implant 

following a 9 month exposure to an aqueous environment at biological pH. It also 

indicates that the daily release of GTPs from the implant is actually double the value 

initially found in the previous experiment. The degradation of GTPs is confirmed by 

HPLC, in which EGCG is more labile to degrade (Fig. 2-4). 

Other factors that may affect GTP release, including polymer composition, 

supplements (F68, cyclodextrin, PEG8000), drug load and surface area of the implants 

have been studied here, and indicate only drug load plays a key role. Polymer 

composition and use of supplements (F68, cyclodextrin, PEG8000) do not significantly 

affect the drug release. The surface area of the implants exhibited some effect on GTP 

release only during the first several days. At later time points, the drug load appeared to 

dictate the release. Although F68 does not have significant effect on GTP release, it 

facilitates the preparation of the implants because it is a surfactant and aids the molding 

process by decreasing the viscosity of the polymers. In the animal study, 10% F68 was 

included in the formulations for these reasons. 

The release of GTP in vivo follows the same pattern as in vitro. Although some 

differences of GTP60 used for in vitro studies and poly E used for the in vivo study were 

observed, it is still reasonable to compare the in vitro and in vivo release. Essentially it 
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can be concluded that the in vitro studies correlated well with the in vivo situation and are 

thus reasonable predictors of the rate of drug release in vivo. 

In these studies, one drawback of the GTP polymeric implants is that the release of 

the GTPs is comparatively high during the early time points, while the drug release 

diminishes significantly at the later time points. The variation in drug concentration could 

possibly result in either toxicity or lack of efficacy in future animal studies. In order to 

improve the release profile of the implants, a PCL coating was used to limit the initial 

burst release. Therefore, it was hypothesized that the initial burst rate of GTP release be 

lower resulting in an overall more uniform release rate. In the last experiment in this 

chapter, I demonstrated that release profile of GTPs can be modified by coating GTP

PCL implants with blank PCL and that indeed resulted in a more uniform rate of GTP 

release (Fig. 2-9). 

In conclusion, my studies showed that GTPs are released from these PCL implants 

in a continuous fashion and the in vitro and in vivo release rates follow a similar fashion 

and the release profile of GTPs can be optimized by coating GTP-PCL implants with 

blank PCL. 
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CHAPTER III: EFFECT OF GREEN TEA CATECHINS AND HYDROL YSABLE 

TANNINS ON BENZO[a]PYRENE-INDUCED DNA ADDUCTS AND 

STRUCTURE ACTIVITY RELATIONSHIP 

Introduction: 

Benzo[a]pyrene (BP) is a polycyclic aromatic hydrocarbon (101), which is present 

ubiquitously in tobacco smoke, automobile exhaust emissions and grilled foods (14, 15). 

It is one of the most potent environmental carcinogens. Numerous studies have 

demonstrated the association of BP exposure and induction of carcinogensis in many 

organs including lung, skin, mammary gland and others (16-18). 

Enzymatic activation of BP by certain types of cytochrome P450s (CYPs) found in 

the subcellular microsomal fraction, especially CYPIAl, are needed to produce the 

ultimate carcinogen anti-benzo[a]pyrene-7,8-diol-9,1O-epoxide (anti-BPDE) (19). anti

BPDE exerts its carcinogenic activity by alkylating nucleosides on DNA molecules at the 

bay region of anti-BPDE. The reaction primarily happens with the purine bases, 

deoxyguanosine and deoxyadenosine in DNA (20). As a result, bulky stable and 

depurinating DNA adducts are formed (21, 22). Insufficient removal of these DNA 

adducts prior to replication creates hot spots in the gene and can result in deactivation of 

tumor suppressor genes or activation of oncogenes leading to tumor initiation (23). 

Green tea is one of the most popular drinks in the world with some beneficial 

effects on cardiovascular (42, 43) and neurodegenerative diseases (44). Green tea is now 

35 



drawing increasing attention because of its possible application in cancer prevention 

(102, 103). Green tea preparations were found to decrease tumor incidence and tumor 

multiplicity in chemically-induced tumor models, including BP and other PAHs (41, 50-

54, 104). Interestingly, green tea preparations were effective when administered to mice 

either during or after carcinogen exposure (50, 51), suggesting their chemopreventive 

effects in different phases of carcinogenesis. 

The catechins in green tea are thought to be the bioactive components, including 

epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and 

epigallocatechin gallate (EGCG), which bear close structural similarities (Fig. 3-IA). 

EGCG is the predominant catechin (105). Many mechanisms of action of green tea 

catechins have been proposed based on studies in vitro. Green tea catechins were found 

to induce apoptosis and inhibit the proliferation of a variety of cancer cell types (45-49). 

Green tea catechins can generate reactive oxygen species (ROS), including hydrogen 

peroxides which are responsible for death of cancer cells (59, 60). However, these 

mechanisms of action are more relevant to the chemotherapeutic effects of green tea 

catechins, rather than their chemopreventive effects (57). 

As noted above, DNA adduct formation is the initial key step in the BP-induced 

carcinogenisis process. Since green tea manifests its chemopreventive effects in almost 

all the animal studies conducted, I hypothesize that green tea should be able to inhibit the 

DNA adduct formation induced by BP. This notion has been supported by a limited 

number of studies, in which green tea components decreased BP-induced DNA damage 

in the Chang liver cell line evaluated by the comet assay (106) and EGCG inhibited the 
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formation of eH]-BP-derived DNA adducts in a cell-free system (107). However, the 

mechanism behind these effects is not known. 

Back in the early 80s, Conney and co-workers showed that the plant phenolic 

ellagic acid was highly potent in inhibiting the mutagenesis by anti-BPDE (108). 

Subsequently this group demonstrated that this inhibition occurred due to covalent 

interaction of ellagic acid with anti-BPDE (109). This finding was later supported by 

inhibition of anti-BPDE-induced DNA adducts (110). Green tea extract which contains 

several catechins with cis-diol groups, like in ellagic acid, was reported to decrease anti

BPDE-induced DNA strand breaks (111), presumably by the same mechanistic action of 

ellagic acid reported by Sayer et al. (109). Additionally, Bors and Michel (112) and Rice

Evans et al. (113) demonstrated that the cis-diol groups in green tea catechins could 

scavenge free radicals such as hydroxyl radicals, azide radicals and superoxide anions, 

thus correlate with their antioxidant activities. 

I hypothesized that green tea catechins will inhibit BP-induced DNA adduct 

formation by direct quenching of anti-BPDE produced in the metabolism of BP, and that 

the potency of different catechins will vary with the number of their cis-diol groups. This 

structure activity relationship (SAR) study will help to further identify the mechanism of 

action of green tea catechins. It might also be beneficial for drug modification and drug 

development based on catechins or compounds bearing similar groups. 

This hypothesis cannot be readily tested in a whole cell system because many 

factors such as the lipid solubility of the catechins, etc. could bias the interpretation. I 

therefore used a microsomal system to assess the capacity of various catechins in green 

tea to inhibit DNA adduct formation and determine SAR. Two hydrolysable tannins, 
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pentagalloylglucose (5GG) and tannic acid (penta-m-digalloyl-glucose), which have 

more number of cis-diol in their structures (Fig. 3-1B) than the catechins were also 

included to further test the SAR. 

Materials and Methods: 

Caution: Both BP and anti-BPDE are mutagenic and carcinogenic. Protective 

clothing should be worn, and appropriate safety procedures should be followed when 

working with these compounds. 

Chemicals. EC, EGC, ECG, tannic acid, glucose-6-phosphate, glucose-6-phosphate 

dehydrogenase from baker's yeast (G6PDH), NADP+, BP and salmon testis (st)-DNA 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). EGCG was from LKT 

laboratories, Inc. (St. Paul, MN, USA). 5GG was obtained from Sinova, Inc. (Bethesda, 

MD, USA). Anti-BPDE was kindly provided by Dr. Subodh Kumar, State University of 

New York College at Buffalo. Chemicals used in 32P-postlabeling DNA adduct analysis 

were the same as described previously (114). 

Microsomal BP-induced DNA Adducts. Green tea catechins and hydrolysable 

tannins were dissolved in Me2S0 and prepared freshly. St-DNA (300 !Ag/ml) was pre

incubated with 50 mM Tris-HCI (pH 7.5), 1 mM MgCh, 2.5 mM glucose-6-phosphate, 1 

Ulml G6PDH, 0.5 mM NADP+, ~-naphthflavone-induced microsomal proteins (1 mg/ml) 

in Iml for 10 min, in the presence of vehicle alone or green tea catechins or hydrolysable 

tannins (1-200 !AM). BP dissolved in Me2S0 was added at a final concentration of 1 !AM, 
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and incubation was continued for another 30 min at 37°C. The reaction was terminated by 

addition of EDTA and centrifugation (7500 rpm; 10 min). DNA was isolated from the 

supernatant by removal of RNA and proteins by digestions with RNases A and Tl and 

proteinase K, and a series of extractions with phenol, phenol:Sevag (chloroform:isoamyl 

alcohol, 24: 1) and Sevag, followed by precipitation of the DNA with ethanol (J 14). The 

DNA concentration was estimated spectrophotometrically. 

Reaction of st-DNA with anti-BPDE. St-DNA (200 !Ag/ml) was pre-incubated 

with 50 mM Tris-HCI (pH 7.S) in a total of 0.2 ml solution for 10 min, in the presence of 

vehicle or green tea catechins or hydrolysable tannins. Then, anti-BPDE was added at a 

final concentration of O.S !AM and incubated at 37°C for another 30 min. The reaction was 

terminated by precipitating DNA with ethanol, and the DNA concentration was measured 

spectrophotometricall y. 

Analysis of DNA Adducts. DNA adducts were analyzed by 32P-postlabeling as 

described (J 14). Briefly, 10 !Ag DNA was digested with micrococcal nuclease and spleen 

phosphodiesterase (MN/SPD). Before further treatment with nuclease PI to enrich DNA 

adducts, an aliquot was used for evaluation of normal nucleotide levels. DNA adducts 

and normal nucleotides were labeled with [y_32p]ATP and T4 polynucleotide kinase. 

Labeled DNA adducts were separated by multi-directional polyethyleneimine (PEI)

cellulose TLC in the following solvents: D 1 = 1.0 M sodium phosphate, pH, 6.0; D3 = 4 

M lithium formatel7 M urea, pH 3.S; D4 = 4 M ammonium hydroxide/isopropanol 

(1.1:1), DS = 1.7 M sodium phosphate, pH 6.0. Normal nucleotides were resolved in 180 
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mM sodium phosphate, pH 6.0 by one-directional PEl-cellulose TLC. DNA adducts and 

normal nucleotides were detected and quantified by Packard InstantImager. 

ESI/MS and ESI/MS/MS Study. Anti-BPDE and test compounds (green tea 

catechins and hydrolyzable tannins) were incubated at 37°C at equimolar concentration 

(500 [,tM) in H20 and acetonitrile (9: 1) for 40 min. Reaction products were diluted with 

50% acetonitrile/O.l % formic acid and analyzed by ESIIMS in positive ion mode and 

mass resolution of 10,000 with a Q-TOF API-US mass spectrometer from Waters 

(Milford, MA). Samples were infused with a syringe pump at 1 [,tUmin. Data acquisition 

lasted for at least 1 min after the signal was stabilized and the spectra were summed, 

smoothed, and stored. For MSIMS analysis, the collision energy was adjusted to a level 

such that the intensities of the precursor ions were decreased by 80 to 90%. 

LC/MS and LC/MS/MS Study. Anti-BPDE and EGCG were incubated at 37°C at 

equimolar concentration (100 [,tM) in H20 and acetonitrile (9: 1) for 40 min. DNA adduct 

separation was performed by Accela LC from Thermo Scientific (San Jose, CA) with a 

Hypersil GOLD 50 x 2.1 mm C 18 column. A 15 min gradient with 5% acetonitrile/O.l % 

formic acid (Solvent A) and 95% acetonitrile/O.l % formic acid (Solvent B) at 0.1 

mUmin was used. The gradient started from 5% Solvent B that increased linearly to 50% 

in 12 min and then increased linearly to 75% in 3 min. Elute from LC was coupled to a 

LTQ Orbitrap XL mass spectrometer from Thermo Scientific (San Jose, CA) via an ESI 

source. MS and MSIMS spectra were acquired in positive ion mode at 30,000 mass 

resolution. 
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Statistical Analysis. Results were reported as means ± SEM. The Students t-test 

was used for the determination of statistical significance between two individual groups. 

A p-value less than 0.05 with a 95% confidence interval was considered to give the level 

of significance. 

Results: 

Before testing the efficacy of these various phenolic compounds, I first determined 

the lowest concentration of BP in a microsomal reaction that would produce measurable 

levels of DNA adducts detected by the highly sensitive 32P-postlabeling assay. Incubation 

of st-DNA with ~-naphthaflavone-induced rat liver microsomes, which exhibit increased 

expression of CYPIAI and CYPIB1, in the presence of varying concentrations of BP 

(0.5 to 10 flM) and co-factors resulted in the formation of two major DNA adducts (Fig. 

3-2). These DNA adducts have previously been characterized as the products of the 

interaction of anti-BPDE (DNA adduct 1) and 9-0H-BP-4,5-epoxide (9-0H-BPE) (DNA 

adduct 2) with dG (20, 115). 

Total DNA adduct levels increased with increasing concentration of BP (l5±6 to 

467±49 DNA adducts/l07 nucleotides). The relative levels of DNA adducts 1 and 2 

varied with BP concentrations. At the highest concentration of BP (10 flM), 9-0H-BPE

dG levels were slightly greater than anti-BPDE-dG levels (9-0H-BPE-dGlanti-BPDE-dG 

=1.6). However, the ratio of the two DNA adducts increased with decreasing BP 

concentrations (9-0H-BPE-dGlanti-BPDE-dG= 4.5 at 0.5 flM BP), indicating that 

metabolism of BP to DNA-reactive metabolites is dose-dependent and reflective of the 
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relative amount of substrate. All subsequent reactions in the presence of the phenolic 

compounds were performed using relatively low concentration of BP (1 ~M). 

Effect of Green Tea Catechins on Microsomal BP-DNA Adducts 

Incubation of st-DNA with BP (l ~M) in the absence or presence of varying 

concentrations (l - 200 ~M) of EC, EGC, ECG and EGCG produced qualitatively the 

same DNA adduct profile (data not shown). Quantitatively, however, BP-DNA adduct 

levels varied with the type of catechin (Fig. 3-3A). Compared with BP alone (25.2 ± 1.8 

DNA adducts/l07 nucleotides; n = 4), each catechin tested (100 ~M) resulted in 

significant inhibition of BP-induced DNA adducts, with EGCG (75%) > ECG (66%) > 

EGC (39%) > EC (27%). Further, the DNA adduct inhibition observed with each 

compound was dose dependent (Fig. 3-3A). 

When the percent DNA adduct inhibition was plotted against the various catechin 

concentrations, a clear dose-response was observed in the form of a sigmoid curve (Fig. 

3-3B). EGCG and ECG were the most potent components of green tea catechins, with 

half maximal inhibitory concentration (ICso) values of 16 and 24 ~M, respectively. The 

other two compounds, EGC and EC were least effective showing ICso values of 146 and 

462 ~M, respectively. 

To determine the structure-activity relationship, VICso was plotted against the 

number of adjacent OR groups in their molecular structure. A clear relationship was 

evident (Fig. 3-3C), suggesting that the activity may reside in the cis-diol groups. 

Effect of Hydrolysable Tannins on Microsomal BP-DNA Adducts 
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In order to further prove that the activity lies in the cis-diol groups, I investigated 

the effect of SGG and tannic acid, which are hydrolysable tannins. The rationale for the 

use of these compounds is that they contain a higher number of adjacent OH groups in 

their molecular structure, as compared to the green tea catechins, IS for SGG and 2S for 

tannic acid (see Fig. 3-1B). Therefore, it is reasonable to expect that these compounds 

may be more efficacious than green tea catechins against BP-DNA adduction. As shown 

in Figures 3-4A and 3-4B, both of these compounds showed effective inhibition of 

microsomal BP-DNA adducts, and the inhibition was dose-dependent. Both SGG and 

tannic acid elicited almost complete DNA adduct inhibition, with tannic acid being much 

more potent than SGG (ICso <4 and 26 !!M, respectively). It is also interesting to note that 

the dose-response sigmoid curves were parallel to each other presumably due to their 

extreme structural similarities. 

Effect of Green Tea Catechins and Hydrolysable Tannins on anti-BPDE-DNA 

Adducts 

To determine the mechanism by which the test cis-diol-containing green tea 

catechins and the hydrolyzable tannins inhibit microsomal BP-DNA adduction, these 

compounds were studied in a non-enzymatic reaction, i.e., anti-BPDE (O.S !!M), the 

ultimate carcinogenic metabolite of BP was incubated with st-DNA (200 !!g/ml) in the 

presence of vehicle alone or EGCG, ECG, SGG and tannic acid (200 !!M each), followed 

by analysis of the DNA adduct levels by 32P-postlabeling. As shown in Figure 3-S, all 

compounds showed effective inhibition of anti-BPDE-dG. However, the degree of 

inhibition with the test compounds varied: tannic acid (98% inhibition) > SGG (68%) > 
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EGCG (64%) > ECG (39%). These data further support our earlier conclusion that the 

higher the number of adjacent OH groups, the greater the DNA adduct inhibition. These 

data also suggest that inhibition of microsomal BP-DNA adducts by the catechins and 

test hydrolyzable tannins is at least, in part, due to their direct interaction with the 

electrophilic metabolites of BP. 

Detection of anti-BPDE-catechin Complex by ESI/MS/MS 

This analysis was performed to detect the reaction products in the reaction mixtures 

of anti-BPDE and test compounds (green tea catechins and hydrolysable tannins). All 

showed clear peaks with the expected mass for the complexes formed. For example, a 

peak with a mlz ratio of 761 corresponding to anti-BPDE-EGCG complex was found in 

the anti-BPDE-EGCG reaction mixture; MSIMS spectrum of the complex further 

suggested a direct covalent interaction of anti-BPDE and EGCG (data not shown). 

Investigation of Fragmentation Pattern of anti-BPDE-EGCG Complex by 

LC/MS/MS 

LCIMSIMS analysis was performed to further rule out the possibility of non

covalent interaction between EGCG and anti-BPDE, and also to investigate the 

fragmentation pattern of anti-BPDE-EGCG complex. Several peaks with mlz ratio of 761 

in the spectrum, which corresponding to anti-BPDE-EGCG complex, were found. Their 

retention times were 5.70,8.51,9.56,10.17,10.51,10.59,11.30,11.47,11.66 and 11.96 

min (Fig. 3-6A). The MS/MS studies of each peak were performed and two major 

fragmentation patterns were found in the spectrum. The peaks with retention times of 
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8.51, 9.56, 10.17, 11.30, 11.47, 11.66 and 11.96 all generated a fragmentation pattern in 

which a fragment with rn/z ratio of 591 and another fragment with rn/z ratio of 303 exist 

suggesting anti-BPDE attacks the hydroxyl groups on the B ring of EGCG molecules 

(Fig. 3-6B). The peaks with retention times of 10.51 or 10.59 min generated a different 

fragmentation pattern in which a fragment with rn/z ratio of 455 and another fragment 

with rn/z ratio of 307 exist suggesting anti-BPDE attacks the hydroxyl groups on the D 

ring of EGCG molecules (Fig. 3-6C). Based on the data gathered, two possible anti

BPDE-EGCG complexes are proposed (Figs. 3-6B, 3-6C). 

Discussion: 

In this study, I used a range of EGCG (116) and other catechins and hydrolysable 

tannins to show dose-dependent inhibition of microsome-mediated BP-induced DNA 

adducts. Some of the catechins (e.g., EGCG) and hydrolysable tannins (tannic acid) 

showed nearly 50% inhibition of the adduct formation at as low as 16 and 4 !J,M 

concentrations, respectively. The higher concentrations of test agents were necessary to 

combat the somewhat high concentration of BP used in order to be able to reliably 

quantify the resultant DNA adducts. The plasma concentration of EGCG in rodents and 

in human volunteers is reported to vary with the dosing of green tea extracts. For 

example, when high pharmacological doses of EGCG was given to mice (2000 mg/kg) 

(117) or polyphenon E (containing 1200 mg EGCG) given to human volunteers (118) 

orally, peak plasma concentrations found were approximately 9 !J,M and 7.5 !J,M in mice 

and humans, respectively. Typical achievable plasma EGCG concentration of sub micro 

molar has also been reported after two or three cups of tea consumption in humans (74). 
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A study by Bors and Michel found the reaction rates of green tea catechins and 

gallate esters against hydroxyl radicals, azide radicals or superoxide anions correlate 

with catechol and pyrogallol groups in their molecular structures (112), which may 

explain the antioxidant properties of these compounds. In this study, I demonstrate a clear 

correlation of adjacent aromatic hydroxyl groups in the molecular structure of green tea 

catechins and hydrolysable tannins with the inhibitory effects of these compounds on 

DNA adduct formation induced by BP. Interestingly, it is nearly an exponential 

relationship between the number of adjacent aromatic hydroxyl groups and ICso of these 

catechins. There are at least two possible mechanisms through which these compounds 

can decrease BP-DNA adduct formation, either through interacting with reactive 

intermediates or interfering with microsomal enzyme activities (eg. CYPIAl). Green tea 

catechins have inhibitory effects on CYPIA1 activity with the following descending 

order: ECG::::; EGCG > EC ::::; EGC (119). In our study, all the catechins interacted with 

anti-BPDE directly, indicating an exponential relationship with EGCG and ECG being 

much more potent than the other two catechins studied. 

The higher efficacy of the two hydrolysable tannins is due to a greater number of 

functional hydroxyl groups in their molecular structures. With regards to the potency, the 

more functional hydroxyl groups in green tea catechins correspond to lower ICso values. 

This conclusion also holds true in hydrolysable tannins with tannic acid being more 

potent than 5GG. However, the problem arises when we compare the ICso of EGCG and 

5GG, which are about 16 f!M and 26 f!M, respectively, while apparently 5GG has more 

functional hydroxyl groups than EGCG. This is probably because the potency of the 

compounds could also be affected by the basic structures. The molecular structure of 
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green tea catechins and hydrolysable tannins are quite different although some 

similarities exist, so the comparison of these two compounds may not be appropriate. 

In this study, the covalent reaction of anti-BPDE and EGCG was demonstrated 

through ESIIMSIMS and LCIMSIMS. The hydroxyl groups on either B ring or D ring of 

EGCG molecules (Figs. 3-6B, 3-6C), but not both, were found to react with anti-BPDE 

thus sequestering anti-BPDE. This finding suggests that EGCG share the same 

mechanism of action with ellagic acid which also interacts directly with anti-BPDE and 

lead to sequestration of anti-BPDE (109). 

Our MS studies on anti-BPDE-EGCG complex did not provide information on the 

exact position of the hydroxyl groups which react with anti-BPDE. The hydroxyl group 

on EGCG could be the 3' ,4' or 5' on the B ring or the 3",4" or 5" on the Dring (see Fig 

3-1A). NMR studies may be necessary to address this question. It is interesting to note 

that there are several peaks corresponding to rnJz ratio of 761 in LC-MS spectrum in anti

BPDE-EGCG reaction (Fig. 3-6A). This is probably because anti-BPDE has two optical 

enantiomers and also anti-BPDE can attack different positions on B ring or D ring of 

EGCG molecules, which produce different complexes with different retention times as 

shown in our results. 

The significance of the present study is to demonstrate a new mechanism of action 

of test catechins. Structure activity relationship of green tea catechins and hydrolysable 

tannins illustrated in this study may help us discover other chemopreventive reagents. It 

will also be useful in drug modification and development based on these compounds or 

compounds with similar molecular structures. 
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In conclusion, our data demonstrate that green tea catechins and the hydrolysable 

tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due 

to direct interaction of adjacent hydroxyl groups in their structures, and that the activity is 

higher with an increasing number of functional hydroxyl groups. 
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Fig. 3-1. Chemical structures of catechins and two hydrolysable tannins. A: (-)-

epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-

epigallocatechin gallate (EGCG). B: pentagalloylglucose (R=H) and tannic acid 

(R=galloyl group as shown on the right). 
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Fig. 3-2. Representative autoradiographs of 32p-postlabeling analysis of microsome

mediated BP induced DNA adducts. (a) vehicle (2% DMSO) and (b) 1 !AM BP. OR, 

origin. DNA adducts were resolved by multi-directional polyethyleneimine (PEI)

cellulose TLC using the following solvents: D 1 = 1.0 M sodium phosphate, pH, 6.0; D3 = 

4 M lithium formate17 M urea, pH 3.5; D4 = 4 M ammonium hydroxide/isopropanol 

(l.1:1), D5 = l.7 M sodium phosphate, pH 6.0. DNA adducts were detected by Packard 

Instan tImager. 
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Fig. 3-3. Effect of indicated green tea catechins on microsomal BP-DNA adducts. A: 

Dose response of test catechins. Data are expressed as mean ± SEM (n=4). EGCG, (-)-

epigallocatechin gallate; ECG, (-)-epicatechin gallate; EGC, (-)-epigallocatechin; EC, (-)-

epicatechin. B: Estimation of IC50 of green tea catechins. C: The correlation between 

l/IC50 with the number of adjacent aromatic hydroxyl groups. 
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Fig. 3-6. The LC/MS and LC/MS/MS spectrum. A: LC/MS spectrum of anti-BPDE

EGCG complex. Band C: LC/MS/MS spectrum of anti-BPDE-EGCG complex. 
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CHAPTER IV: SUSTAINED SYSTEMIC DELIVERY OF GREEN TEA 

POLYPHENOLS BY POLYMERIC IMPLANTS SIGNIFICANTLY DIMINISHES 

BENZO[a]PYRENE-INDUCED DNA ADDUCTS 

Introduction: 

Lung cancer is the second most common cancer type in men and women, only less 

than prostate cancer in men and breast cancer in women. However, lung cancer accounts 

for the highest cancer-related deaths, 31 % in men and 26% in women (120). Effective 

prevention and treatment strategies are therefore urgently needed. 

Green tea is one of the most popular drinks in the world. It is now drawing more 

attention because of its possible chemoprotective effects. Green tea polyphenols (GTPs), 

including epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and 

epigallocatechin gallate (EGCG) are believed to be the active components. These 

bioactive components of green tea along with green tea preparations have been shown to 

exert their chemopreventive effects in vitro (58, 103). 

In vivo, green tea consumption decreased lung tumor incidence and tumor 

multiplicity in chemically-induced lung tumor models, including polycyclic aromatic 

hydrocarbon (101)- and nitrosamine-induced tumor models (41, 50-54). However, 

reviews on epidemiological and clinical studies indicated only a marginal beneficial 

association between green tea consumption and lung cancer risk (63, 64). Similarly, 
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green tea did not show definite effects on other cancer types, including gastric, colorectal 

and breast cancer (65-69). One major reason for the lack of consistent protection with 

GTPs is their lack of bioavailability following oral intake, which ultimately affects their 

blood levels (70, 74). Studies have shown that only about 0.1 %-3% of EGCG and ECG 

were bioavailable following oral administration (72, 73, 75). In an effort to circumvent 

the lack of bioavailability associated with oral delivery of GTPs as well as many other 

chemopreventive agents, this laboratory has developed a novel delivery approach. In this 

approach, test agents are embedded in cylindrical polymeric implants, which upon 

subcutaneously grafting provide continuous systemic delivery of the test agents for an 

extended duration (99). 

Benzo[a]pyrene (BP) represents a model PAH to study lung cancer. It is also one of 

the most potent and environmental carcinogens present ubiquitously in tobacco smoke, 

automobile exhaust emissions, grilled foods and other sources (14, 15). In this study, 

polyphenon E (poly E), a standardized green tea extract, was administered by polymeric 

implants or via drinking water to female Sprague-Dawley (SID) rats. Animals were 

challenged with continuous low-dose BP via subcutaneous polymeric implants (121). 

Effects of poly E administered by the two routes were compared to determine its efficacy 

against DNA adducts induced by continuous exposure to BP. Potential mechanisms of 

action of poly E were also investigated by analysis of mRNA and enzyme activity of 

several phase I, phase II and nucleotide excision repair enzymes. 

Materials and Methods: 
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Chemicals. Poly E was a generous gift from Pharma Foods International Co., LTD 

(Kyoto, Japan). EC, EGC and ECG were purchased from Sigma-Aldrich (St. Louis, MO). 

EGCG was from LKT laboratories, Inc. (St. Paul, MN). Chemicals used in 32p_ 

postlabeling DNA adduct analysis were the same as described previously (114). All other 

chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO). Anti-CYPIAI 

rabbit polyclonal IgG, GSTMI rabbit polyclonal IgG, UGTIA mouse monoclonal IgG, 

goat anti-rabbit secondary antibody were purchased from Santa Cruz Biotech (Santa 

Cruz, CA). Anti-B-actin mouse monoclonal antibody was from Sigma-Aldrich (St. Louis, 

MO). Anti-CYPIBI rabbit polyclonal IgG was obtained from BD Biosciences (San Jose, 

CA). Horse anti-mouse secondary antibody was from Cell Signaling Technology 

(Danvers, MA). Other reagents used were from the following sources: Trizol (Invitrogen 

Corporation, Carlsbad, CA), high capacity reverse transcription kit and Power SYBR 

Green PCR master mix (Applied Biosystems, Foster City, CA), Pierce® BCA Protein 

Assay Kit (Thermo Fisher Scientific, Rockford, IL.), and ECL plus detection kit 

(Amersham Biosciences, Piscataway, NJ). 

Polymeric implants. Polymeric implants of poly E and BP were prepared by 

embedding them in a polymeric matrix comprised of a water-insoluble polymer, 

polycaprolactone (P65) (mol. wt. 65,000) using the methodology described elsewhere 

(99). Briefly, the polymer P65 was dissolved in dichloromethane and added to a solution 

of poly E in ethanol. For BP implants, the polymer and BP were both dissolved in 

dichloromethane. Following evaporation of the solvent(s) at 70°C with agitation with a 

glass rod, the polymer matrix was completely freed of the solvents under reduced 
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pressure overnight. The polymeric material was then filled in a disposable synnge 

attached to a silastic tubing (LD. 3.2 mm), heated at 70°C and extruded. The implants 

were removed from the silastic tubing mould and excised to desired length. 

In vitro release of poly E from the implants. Release of poly E was investigated 

by stirring the implants (2 cm, 200 mg implant containing 40 mg poly E) in phosphate

buffered-saline (PBS) supplemented with 10% bovine serum, pH 7.4 at 3rC to simulate 

the in vivo environment. The amount of catechins released was measured 

spectrophotometrically at 540 nm after reaction with a dyeing solution containing 0.1 % 

ferrous sulfate and 0.5% potassium sodium tartrate tetrahydrate (l00). 

Animal handling. Six week-old female SID rats were purchased from Harland

Sprague-Dawley (Indianapolis, IN). After acclimation for 3 d, animals were randomized 

into six groups and provided 4% Teklad diet. One week later, animals were treated with 

BP, poly E or sham treatments as follows: 

Group 1, No treatment 

Group 2, Sham implants 

Group 3, BP implant (2 cm, 200 mg implant containing 20 mg BP) 

Group 4, BP implant + poly E implants (two, 2-cm 200 mg implant containing a 40 

mg poly E/implant) 

Group 5, BP implant + poly E in drinking water (0.8% w/v) 

Group 6, Poly E implants 
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Sham, BP and poly E implants were grafted subcutaneously under anesthesia as 

described previously (122). Poly E was given in drinking water two days prior to BP 

implantation. Poly E solution was prepared in deionized water every other day by heating 

the solution at 90°C with stirring for 3 min. This solution was cooled and stored at 4°C 

until use. Animals from Groups 1-6 (n = 5) were euthanized one week following BP 

implantation (Group 6 had only 2 animals) . Additional animals in Groups 1-4 (n = 5) 

were euthanized 4 weeks following BP implantation. Lung and liver tissues were 

collected and stored at -80°C until use. Blood was collected by cardiac puncture and 

plasma was collected by mixing with heparin and centrifugation. One ml plasma sample 

was mixed with 20 III of 0.4 M NaH2P04 containing 20% ascorbic acid and 0.1 % EDT A 

(pH 3.6) and stored at -80°C until analysis as described (76). All animal experiments 

were performed after seeking approval from the Institutional Animal Care and Use 

Committee (IACUC). 

Stability of GTPs in polymeric implants. GTPs were released from the implants 

by dissolving them in 10 ml of dichloromethane and ethanol (1: 1), followed by extraction 

with water and centrifugation. The supernatant containing poly E catechins was filtered 

by passing through a 0.22 Ilm centrifugal filter (Millipore Corp., Billerica, MA). Finally, 

the eluate was analyzed by HPLC (Shimadzu Corp., Columbia, MD) coupled with a C18 

Sonoma column, 25 cmx4.6 mm, particle size of 5 Ilm (ES industries, West Berlin, NJ) 

and detected by a diode array detector. Mobile Phase A was water containing 0.05% 

trifluoroacetic acid (TFA), and Phase B was acetonitrile Containing 0.05% TFA. The 

column was eluted with a linear gradient from 12% to 21 % mobile Phase B in 25 min, 
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and increased to 29% for another 10 min at a flow rate of 1 ml/min. Unused implants and 

implants recovered from the animals were stored under argon until analysis of poly E 

catechin levels. 

Measurement of poly E doses. The total doses of poly E administered by the 

implants or via drinking water were calculated as follows: 

The dose of poly E in the implant group = initial amount of poly E per two implants 

- residual amounts in two implants 

The initial and residual amounts of poly E in the implants were measured by 

dissolving implants in a dichloromethane:ethanol mixture and extraction of the mixture 

with water as described above, followed by derivatization of the poly E catechins and 

spectrophotometric measurements (100). 

The total dose of poly E in the drinking water group = the concentration of poly E 

(0.8%) x the amount of water consumed daily per animal x duration of the study in days. 

Isolation of DNA, RNA, and microsomes and cytosolic fractions 

DNA isolation. DNA from lung tissue was isolated by a solvent extraction 

procedure involving isolation of crude nuclei, removal of RNA and protein by sequential 

treatments with RNases and proteinase K, respectively, extractions with phenol, 

phenol:Sevag and Sevag and finally precipitation of DNA with ethanol (114). DNA 

concentration was estimated spectrophotometric ally. 
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RNA isolation. RNA from lung tissue was isolated using Trizol reagent following 

the Vendor's protocol. The quantity and purity of RNA was tested by Nanodrop. The 

integrity of RNA was tested by agrose gel. 

Microsome and cytosolic fractions. Lung tissue (300 mg) was homogenized in 0.25 

M sucrose buffer with 0.1 mM EDTA (pH 7.4), centrifuged at 11,000xg for 20 min, 

followed by centrifugation of the supernatant at 100,000xg for 60 min. The supernatant 

was collected as cytosolic fraction. The pellet containing micro somes was resuspended in 

sucrose buffer. Protein concentrations of microsomal and cytosolic fractions were 

determined by using a BCA protein assay kit. 

Analysis of DNA adducts. DNA adducts were analyzed by 32P-postlabeling as 

described (114). Briefly, 10 Ilg DNA was digested with a mixture of micrococcal 

nuclease and spleen phosphodiesterase. Before further treatment with nuclease PI to 

enrich adducts, an aliquot was used for evaluation of normal nucleotide levels. Adducts 

and normal nucleotides were labeled in parallel with [i 32p]ATP and T4 polynucleotide 

kinase. Labeled adducts were separated by multi-directional polyethyleneirnine (PEI)

cellulose TLC in the following solvents: Dl = 1.0 M sodium phosphate, pH, 6.0; D3 = 4 

M lithium formatel7 M urea, pH 3.5; D4 = 4 M ammonium hydroxide/isopropanol 

(1.1: 1), D5 = 1.7 M sodium phosphate, pH 6.0; D2 development was omitted. Normal 

nucleotides were resolved in 0.18 M sodium phosphate, pH 6.0 by one-directional PEI

cellulose TLC. Adducts and normal nucleotides were detected and quantified by Packard 

InstantImager. The adduct levels were calculated as relative adduct labeling (RAL), i.e., 
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RAL = cpm of adduct/cpm of normal nucleotides x lIdilution factor. The levels were 

expressed as adducts/1Q9 nucleotides. 

mRNA expression. mRNA levels in the lung tissues were determined by qPCR. 

Briefly, cDNA was synthesized by using High Capacity Reverse Transcription kit 

(Applied Biosystems, Foster City, CA). Polymerase Chain Reaction primers for 

CYPIAI, CYPIBI, EphxI, UGTIAI, UGTIA6, SULTIAI, GSTMI, ERCC5, ERCC6, 

XPC and ~-Actin were designed using Primer Express (Version 3.0, Applied Biosystems, 

Foster City, CA). Primer sequences for 18S RNA was obtained from literature (123). The 

primer sequences were as follows: 

Amp 

Forward primer Reverse primer (bpJ 

CYPIAI 5'-TGGAGACCTTCCGACATTCAT-3' 5'-GGGATATAGAAGCCATTCAGACTTG-3' 88 

CYPIBI 5' -AACCCAGAGGACTTTGA TCCG-3' 5' -CGTCGTTTGCCCACTGAAAA-3' 101 

Ephxl 5'-ACTTACACATCCAAGCCACCAA-3' 5'-GGCCCACGGGAGAGTCA-3' 66 

UGTlAI 5' -ACACAGA TCGCA TGAACTTCCTG-3' 5' -AGGACTCAGAAGGTCCTTGACAGTC-3' 151 

UGTlA6 5' -AGACCACATGACATTTCCCCAA-3' 5' -AGAGTTCTGGTGTAAGGCAGGTAGG-3' 151 

SULTIAI 5' -AGCTGAGACACACTCACCCTGTT-3' 5' -ATCCACAGTCTCCTCGGGTAGA-3' 122 

GSTMI 5' -TCTTGACCAGTACCACA TTTTTGAG-3' 5'-TCGAAAATATAGGTGTTGAGAGGTAGTG-3' 143 

ERCC5 5' -GCCGTGGATATTAGCA TTTGG-3' 5'-GGAGCATCACCATCAAATACAAAA-3' 161 

ERCC6 5'-CTCCAATGCTTCCCCAGTACA-3' 5'-CGGGTTTATCGTGTCTCTCAAGA-3' 73 

XPC 5' -GGAGGAGGTGGAAGAACTT ACTGA-3' 5'-CCGCGAGGTAGCAGAATTTT-3' 64 

18S-RNA 5'-GGGAGGTAGTGACGAAAAATAACAAT-3' 5'-TTGCCCTCCAATGGATCCT-3' 101 

p-Actin 5' -GCCAACCGTGAAAAGATGAC-3' 5'-ACCCTCATAGATGGGCACAG-3' 165 

All primer pairs have been tested for their amplification efficiency. ~-Actin and I8S 

RNA were determined to be good reference genes in this study. Polymerase chain 

reaction was performed with a 7500 Fast Real-time PCR System (Applied Biosystems, 

Foster City, CA). The comparative CT method was used to determine the difference in 

mRNA expression between samples by normalizing to housekeeping genes (~-actin and 

I8S-RNA). The fold differences were calculated as (2'MCt). 
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Western blotting. 10% SDS polyacrylamide gel was used for separation of 

microsomal and cytosolic proteins (12 J-lg each)/well. Proteins were transferred to 

polyvinylidene difluoride (PVDF) membranes. After co-incubation with primary and 

secondary antibodies, detection of proteins was performed using an ECL plus detection 

kit (Amersham Biosciences, Piscataway, NJ). Primary antibodies were anti-CYPIAI 

rabbit polyclonal IgG (1:2000), anti-CYPIBI rabbit polyclonal IgG (1:2000), GSTMI 

rabbit polyclonal IgG (1:400), UGTIA mouse monoclonal IgG (1:2000) and anti-beta

actin mouse monoclonal antibody (1 :4,000). All secondary antibodies were used at 

1:3,000. 

Enzymatic activities 

CYPIAI and CYPIBl. The assay was performed using the conditions described 

(124, 125). Briefly, the reaction mixture contained 100 mM potassium phosphate, pH 7.6, 

5 J-lM ethoxyresorufin, 25 J-lg of microsomal protein and 250 J-lM NADPH. Excitation 

wavelength of spectrometer was set at 530 nm and emission at 585 nm. Readings were 

taken immediately after the addition of NADPH and continued for over 30 min. The 

activity was calculated from the linear portion of the plot. 

GST activity. The activity was measured spectrophotometric ally as described (125, 

126). Briefly, the reaction mixture contained 100 mM potassium phosphate, pH 6.5, 1 

mM l-chloro-2,4-dinitrobenzene, 5 J-lg of cytosolic protein and 5 mM reduced 

glutathione. Absorbance was measured at 340 nm. Readings were taken immediately 

after the addition of reduced glutathione and continued for over 40 min. The activity was 

calculated from the linear portion of the plot. 
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Plasma levels of Poly E catechins by LCIMS. Quantification of poly E catechins 

was performed using LC/MS. Plasma sample preparation followed the literature (76). 

Briefly, 200 III plasma was mixed with 10.5 III of glacial acetic acid and 20 III of a 

mixture of ~-glucuronidase (2,000 units) and sulfatase (43 units) (Sigma-Aldrich, St. 

Louis, MO) and incubated at 37°C for 45 min. The reaction mixture was extracted with 

dichloromethane followed by ethyl acetate extraction twice. Ten III of 2.5% ascorbic acid 

was added to the combined ethyl acetate extracts. The mixture was lyophilized and the 

residue was dissolved in 40 III 8% acetonitrile. LCIMS was performed by Accela LC 

from Thermo Scientific (San Jose, CA) with a Hypersil GOLD 50 x 2.1 mm C18 column. 

A 15 min gradient with 5% acetonitrile/O.l % formic acid (Solvent A) and 95% 

acetonitrile/O.l % formic acid (Solvent B) at 0.1 ml/min was used. The gradient started 

from 5% Solvent B that increased linearly to 50% in 12 min and then increased linearly 

to 75% in 3 min. Elute from LC was coupled to a LTQ Orbitrap XL mass spectrometer 

(Thermo Scientific, San Jose, CA) via an ESI source. MS and MSIMS spectra were 

acquired in positive ion mode at 30,000 mass resolution. Plasma from untreated animals 

served as blank. Blank plasma spiked with 1,2,5,10,25,50, 100,200,400 pmol of each 

catechin standards (EGC, EC, EGCG and ECG), along with 50 pmol quercetin as an 

internal standard, were used to generate a calibration curve. 

Tissue levels of GTPs by LCIMS. Lung tissue (200 mg) was mixed with 0.84 ml 

of PBS and 40 III of glacial acetic acid and homogenized. After centrifugation (16,000g, 6 

min), 0.62 ml of the supernatant was processed essentially as described above for plasma 

GTP levels. 
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Statistical analysis. Results are reported as mean ± SD. Generalized linear model 

(GLM) was used to investigate the effect of treatment and time. SARS v.9.2 was used for 

statistical analyses. A p-value less than 0.05 was considered statistically significant. 

Results: 

In vitro release of poly E from the implants. Agitation of poly E polymeric 

implants in PBS in the presence of serum showed a continuous release of the poly E 

catechins from the implants. There was a burst release initially and then it declined 

slowly but continuously. For example, more than 3.6 mg catechins were released on day 

1 before declining to nearly 0.27 mg daily release on day 7, thus an exponential decrease 

occurred as a function of time (Figure 4-1). The cumulative release after 7, 28 and 56 

days were 19%, 26% and 29% of the initial amount, respectively. In a separate study I 

determined that poly E was unstable in the aqueous environment degrading by 58% over 

24-h period. Therefore, the above data of catechin release have been corrected by 

multiplying with the factor 2.38. 

Effect of poly E on BP-induced DNA adduct levels and its rate of release and 

stability in vivo. Treatment of SID rats with a subcutaneous BP implants produced two 

major DNA adducts in the lung (Figure 4-2A-b); no adducts spots were detectable in 

sham-treated animals (Figure 4-2A-a). These adducts have been characterized previously 

as derived by interaction of deoxyguanosine (127) with anti-BP-7 ,8-diol-9, lO-epoxide 

(anti-BPDE) (adduct 1) (20) and 9-0H-BP-3,4-epoxide (9-0H-BP) (adduct 2) (115). 

Both adducts were found to have similar adduct levels in lung tissue following 1 week of 
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BP treatment, 11.8 ± 5.2 adducts/1Q9 nucleotides for BPDE-derived and 13.8 ± 4.5 

adducts/l09 nucleotides for 9-0H-BP-derived adducts. The total adduct levels increased 

modestly by 20% from 1 week (25.6 ± 3.9 adducts/1Q9 nucleotides) through 4 weeks 

(31.1 ± 5.2 adducts/1Q9 nucleotides) of BP treatment (Figure 4-2). Adduct levels of both 

BPDE- and 9-0H-BP-derived adducts increased proportionately with time indicating that 

both adducts accumulated at similar rates. 

Intervention with Poly E administered by the implant route (12.9 ± 2.3 adducts/l09 

nucleotides) resulted in a significant reduction (50% decrease; p=0.023) of total adduct 

levels after 1 week of BP treatment (Figure 4-2Bl); the levels of both adducts were 

diminished similarly. The implant route of poly E administration was also effective in 

reducing the adduct burden after 4 weeks. Anti-BPDE-dG adduct levels were 

significantly reduced (35%) while 9-0H-BP-dG adduct levels were decreased (20%) but 

the reduction was statistically insignificant (Figure 4-2B2). Poly E administered via the 

drinking water modestly (34%) diminished the total adduct burden after 1 week, with 

similar effects on both adduct levels, however, this decline was not significant (p=0.20) 

(Figure 4-2Bl); the effect of poly E via the drinking water route after 4 weeks was not 

investigated. 

There was no significant difference in either the body weight or the lung and liver 

weights between any of the groups (data not shown) suggesting that BP or poly E 

administration, irrespective of the route of administration, had no detectable adverse 

effects. 

To determine if poly E catechins embedded in the polymeric matrix were stable 

during the course of the treatment, extracts of the implants recovered from the animals 
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were analyzed by HPLC. Analysis of the extracts from implants before and after the 

animal treatment and their comparison with reference catechins at a wide range from 250 

to 650 nm UV absorption showed no qualitative difference in the major catechins 

detected in the implant extracts (Figure 4-3), indicating that the catechins remained stable 

in the implant during the preparation of implants as well as during the course of the study 

in vivo. 

To determine the total dose of poly E administered via the implants, I measured the 

residual amount of poly E in the implants recovered from the animals. The total dose 

administered via the drinking water was estimated based on the approximate daily water 

intake. Comparison of the total dose administered during the course of the 1 week study 

via the implants (15.7 mg) and the drinking water (1,632 mg) indicated that the oral dose 

was over 100-fold higher than the implant route. Additionally, the doses of poly E 

released from implants in vivo (15.7 mg) and in vitro (15.2 mg) at 1 week time point are 

in excellent agreement, indicating that the in vitro release system can predict the in vivo 

rate of release of poly E catechins. 

Plasma levels of GTPs. The calibration curve generated by spiking plasma from 

untreated animals with 1, 2, 5, 10, 25, 50, 100, 200,400 pmol of each reference catechin 

(EGCG, ECG, EGC, EC) and 50 pmol of quercetin as an internal standard was found to 

be linear in this range (R2 > 0.997 for all compounds tested). 

There were no detectable GTPs in animals (groups 1, 2 and 3) without any poly E 

treatment based on the LC/MS analysis of the plasma samples. However, animals treated 

with poly E implants for 1 week clearly showed the presence of all the four GTPs in the 
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plasma samples (Figure 4-4), with EGCG predominating (Table 4-1). In the drinking 

water group, however, EGC and EC were found at significantly higher levels (Table 4-1). 

The plasma levels of EGCG in the implant (60.6 ± 25.4 ng/ml) and drinking water (96.9 

± 43.9 ng/ml) groups were not significantly different. EGCG was also the most 

prominent GTP detected after 4 weeks of poly E implantation; however, the levels were 

lower compared with one week treatment (Table 4-1). 

Tissue levels of GTPs. The detection limits for EGCG, EGC, EC and ECG were 

established first in the lung tissue environment and found to be approximately 1, 3, 3 and 

4 ng/g, respectively. Lung levels of EGCG at 1 week time point were found to be 17.2 ± 

8.50 and 19.8 ± 6.87 ng/g tissue in animals treated with poly E via implants (Group 4) 

and drinking water (Group 5), respectively. However, none of the other catechins EGC, 

EC and ECG were detected in the lung tissue presumably they were below the detection 

limits. 

Effect of poly E on xenobiotic-metabolizing and DNA repair enzymes in lung 

tissue. Compared with sham treatment, BP treatment by low-dose continuous exposure 

resulted in substantial overexpression of CYPIAI (192 ± 8.5 fold) and CYPIBI (15 ± 

1.2 fold) after I week as determined by qPCR. The effect on CYPIAI expression after 4 

weeks was even more pronounced (852 ± 25.9 fold) though the effect on CYPIBI 

expression (8 ± 0.68 fold) was less pronounced (Figure 4-5). Poly E administration alone 

or together with BP treatment showed no significant effect on the expression of the 

selected phase I enzymes (CYPIAI, CYPIBI and Epxhl), phase II enzymes (UGTIAI, 
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UGTlA6, SULTlAl and GSTMl) or DNA repair enzymes (XPC, ERCC5 and ERCC6) 

(Figure 4-5). 

Consistent with the findings at the mRNA level, sham implant treatment did not 

affect the expression of CYPlAl, CYPlBl, UGTlA and GSTMl at the protein levels. 

However, treatment with BP implants showed higher levels of CYPlAl and CYPlB 1 

after 1 week of BP treatment consistent with their overexpression at the mRNA levels. 

These proteins still remained overexpressed following 4 weeks of BP treatment 

compared with sham treatment, though the levels were less pronounced; poly E 

administration alone (group 6) showed no significant effects on any of the phase I and 

Phase II enzymes studied (Figure 4-6). 

At the activity level also, BP treatment greatly induced the activity of CYPlAl and 

CYP 1 B 1 compared with sham treatment in the lung microsomes consistent with their 

overexpression at the mRNA and protein levels. However, no significant inhibition of the 

activity was observed by poly E administered by implants together with BP. The 

enzymatic activity was, in fact, significantly increased (p=O.035) by poly E when 

administered via the drinking water together with BP implant (Table 4-2). No significant 

change in the GST activity was observed following any of the treatment given 

individually or in combination (Table 4-2). 

Discussion: 

GTPs have been shown to have significant chemoprotective activity using in vitro 

models, however, their efficacy in vivo is inconsistent. A primary limiting factor of this 

discrepancy is believed to be lack of oral bioavailability of GTPs. In this study we have 
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investigated the application of a novel sustained-release system Via subcutaneous 

polymeric implants in rats by poly E containing a mixture of GTPs as an alternative to the 

oral administration of these chemoprotective compounds to increase their bioavailability 

and efficacy in vivo. The rate of release of GTPs from these polymeric implants was first 

studied in vitro using a mock environment to mimic the in vivo situation in order to 

establish a baseline for further in vivo evaluation. In vitro release of the GTPs from the 

poly E implant, as measured spectrophotometric ally, showed a continuous decline with 

time. This observation in the initial release appears to be a simple diffusion process. The 

surface-bound GTP molecules were readily released from the implant as the rate of 

release was inversely proportional to the square of the distance between the molecules 

and the implant surface. In this sense, surface-bound drug of the implants is released 

more readily compared with the drug molecules embedded in the inner layers of the 

implant. Further, GTPs are not stable under alkaline or near neutral pH, mainly because 

of oxidation at these pHs. In the in vitro release experiment, degradation of the GTPs 

occurs as they are released from the implants and enter into in the surrounding medium 

(PBS with 10% bovine serum). In this study the rate of degradation of the GTPs was 

determined separately and the rate of release was adjusted using a correction factor. 

Although degradation of the GTPs occurs following their release from the implant, no 

degradation was observed during preparation of the implant due to the stability of GTPs 

in the organic solvents used in the preparation process. Once the GTPs are embedded in 

the polymeric matrix, they are sheltered from any aerobic oxidation. 

BP treatment was also provided by subcutaneous polymeric implants in order to 

71 



provide a continuous low-dose carcinogen exposure instead of a bolus dose as this would 

represent a more realistic in vivo exposure situation. 

Previous studies have indicated that green tea and its bioactive components have 

protective effects against PAH-mediated DNA damage and carcinogenesis, including BP. 

Preparations of green tea, administered during or after P AH exposure, have been shown 

to decrease tumor incidence and multiplicity in animal models including mouse 

forestomach and lung (50), mouse transplacental lung tumors (128), mouse skin (129) 

and hamster buccal pouch (130). Inhibition of PAH-mediated DNA damage (106, 129), 

including my own studies (131) and mutagenesis (132) have been shown to mediate 

green tea's antitumorigenic and anticarcinogenic effects. In this study, the GTP

containing poly E implants were found to be more effective in reducing BP-induced 

DNA adducts in rat lung tissue following a 1 week exposure, compared to poly E 

administered via the drinking water (50% versus 34% reduction). More importantly, I 

determined that the total dose of poly E administered via the implants was > 100 times 

lower than that administered by the oral route (15.7 mg versus 1,632 mg). This 

observation strongly supports my hypothesis that delivery of GTPs by subcutaneous 

polymeric implants decreases the effective dose dramatically while eliciting an equal to 

or greater biological effect. Bioavailability of EGCG was also found to be improved by 

transdermal delivery compared to oral dosing (133). Poly E implants also continued to be 

an effective inhibitor of BP-induced DNA adduct formation following 4 weeks of 

exposure of the rats to continuous low doses of BP. However, the DNA adduct inhibition 

activity was reduced compared to the 1 week treatment, presumably due to decreased 
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release of the GTPs from the implants; the poly E effect via the drinking water route after 

4 weeks was not investigated. 

In order to further investigate the mechanism(s) of poly E's observed BP-induced 

DNA adduct inhibition, analysis of several enzymes involved in PAH metabolic 

activation (CYPIAI, CYPIBI and Ephxl) and detoxification (UGTIAl, UGTIA6, 

SULTIAI, GSTMl) as well as others involved in nucleotide excision repair (ERCC5, 

ERCC6, XPC) was conducted. Reports from cell culture studies have shown that green 

tea extracts can act as an agonist of the AhR and induce the expression of CYPIA at the 

mRNA and protein levels (134, 135), while simultaneously as an antagonist to inhibit 

CYPlA expression induced by TCDD (134). GTPs are also known to inhibit the activity 

of CYPIA in liver micro somes isolated from phenobarbital and 3-methylcholanthrene 

treated rats (136). However, other studies suggested that the effect of GTPs on P450 

monooxygenase varies with cell type (137) and tissue type (138). Many confounding 

factors, including but not limited to, the differences in composition of GTP preparations 

in various studies, in vitro versus in vivo administration routes and dosage may contribute 

to the observed inconsistence. Presumably due to similar reasons, there were conflicting 

reports of the effect of GTPs effects on phase II enzymes such as GST (130, 139, 140). 

In this study, continuous exposure to low dose BP via polymeric implants dramatically 

increased the expression of CYPlAl and lBl at both mRNA and protein levels, while 

having no effect on GSTM 1 expression. In agreement with this, the enzyme activity of 

CYPl, but not GST was significantly higher following BP implant treatment. Poly E, 

administered via the drinking water, but not by the implants, was found to further 

increase CYPI enzymatic activity induced by BP, which may, in part, account for the 
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decreased efficacy of the oral exposure route as compared to the implant route regarding 

the inhibition of DNA adduct formation between these two groups. However, with the 

exception of CYPI enzymatic activity, poly E, administered either by implant or orally, 

had no effects on the expression or activity of any of the metabolizing or DNA repair 

enzymes studied, suggesting that poly E inhibits BP-induced DNA adduct formation 

through non-enzymatic pathways. One likely pathway for the inhibition of BP-induced 

DNA damage is direct binding of the electrophillic metabolite of BP with the adjacent 

hydroxyl groups of the green tea polyphenols. In a recent study published from this 

laboratory (131), a correlation between the number of adjacent aromatic hydroxyl groups 

in the structure of various GTPs and hydrolyzable tannins and their potencies for 

inhibiting BP-induced DNA adduction was found. Further, electospray ionization mass 

spectrometry and liquid chromatography-mass spectrometry analysis confirmed the direct 

covalent interaction of the hydroxyl groups of a model GTP, EGCG, with anti-BPDE, the 

ultimate carcinogenic metabolite of BP. EGCG is the most active and also the most 

abundant component in poly E. The biological effects in this experiment are hypothesized 

to be predominantly mediated by EGCG and possibly ECG albeit to a lesser degree. The 

dramatic difference in plasma levels of EC and EGC in the poly E implant group and 

drinking water group at the 1 week time point reflects the large difference (> 1 00 times 

fold) in the total dose administered, as noted previously, while the absorption of EC and 

EGC from the digestive tract is relatively high (31.2% and 13.7%, respectively as 

reported) (72). The plasma level of EGCG is comparable between these two groups 

despite the large dose difference, presumably due to the relatively poor digestive 

absorption of EGCG (0.1 %) (72). Considering the short half lives «3-4 h) of these 
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catechins in vivo (72), the plasma level of the catechins primarily reflects the poly E 

released into blood stream by the implant or absorbed from the digestive tract on the last 

day or even a shorter time duration. The release profile from the implants in vitro might 

mimic the in vivo release pattern, so it is reasonable to speculate that the plasma 

concentration of GTPs in the implant group may be higher initially. In the drinking water 

group, the plasma concentration of GTPs somewhat fluctuated based on the water intake. 

The significant reduction in the DNA adduct levels observed after 7 d by poly E implants 

seem to result from its cumulative release during the 7 day period, not from just the i h 

day. This notion may also explain the higher degree of adduct inhibition observed in the 

implant versus the drinking water groups. 

In conclusion, my study demonstrates that sustained systemic delivery of GTPs by 

subcutatneous polymeric implants decreases the effective dose dramatically while 

eliciting a greater biological effect as compared to the traditional oral route. Further, 

mechanistic studies of poly E, at submicromolar plasma levels achieved in this study, 

suggest that its efficacy at inhibiting BP-induced DNA damage was not a result of 

modulation of metabolic or DNA repair pathways but from direct scavenging of the 

electrophillic metabolites. Thus, subcutaneous polymeric implants may provide a novel 

viable sustained release system for chemopreventive/chemotherapeutic agents with poor 

oral bioavailability such as GTPs. 
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Table 4-1. Plasma concentrations of individuals GTPs in SID rats treated with 

polyphenon E (poly E) via polymeric implants or the drinking water together with 

benzo[a]pyrene implant for indicated periods. Poly E catechin levels were measured by 

LC-MS. 

Poly E 

catechins 

P<0.05 

EGC 

EC 

EGCG 

ECG 

BP implant + poly E 

implants (1 wk) 

13.3 ± 3.8 

8.8 ± 2.6 

60.6 ± 25.4 

8.2 ± 4.3 

Plasma poly E catechin levels (ng/rnl) 

BP implant + poly E in BP implant + poly E 

drinking water (1 wk) implants (4 wk) 

277.8 ± 225.3* 7.2± 1.5 

336.5 ± 300.9* 3.4 ± 0.3 

96.9 ± 43.9 15.2 ± 6.3 

15.8 ± 8.3 0.9 ± 0.9 

76 



Table 4-2. Enzymatic activity of CYPI and GST following treatment of SID rats with 

benzo[a]pyrene (BP) implant or polyphenon E (poly E) implants or combination. 

Treatment 

1 week BP implant 

BP implant + Poly E implant 

BP implant + Poly E in drinking 

water 

Poly E implant 

4 week BP implant 

BP implant + Poly E implants 

CYPI activity 

(fold change) 

38.74 ± 7.69 

41.21 ± 6.37 

51.15 ± 8.89a 

0.61 ±0.11 

33.72 ± 12.39 

23.28 ± 7.88b 

Enzymatic activity was expressed as fold change of sham treatment. 

GST activity 

(fold change) 

1.17 ± 0.14 

1.18±0.17 

1.21 ±0.11 

1.23 ± 0.03 

1.34 ± 0.20 

1.23 ± 0.22 

a p<0.05 (BP implant + Poly E in drinking water group versus BP implant group at 1 

week) 

b p<0.05 (BP implant + Poly E implant 1 week versus 4 week) 
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Fig. 4-1. Release of polyphenon E from polymeric implants in vitro. Implants (2 cm, 200 

mg containing 40 mg polyphenon E) were suspended in 5 ml phosphate-buffered saline 

containing 10% bovine serum in a shaking water bath at 37°C. The release medium was 

changed daily and the amount of polyphenon E catechins released was measured as 

described in text. 
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Fig. 4-2. DNA adducts in lung tissue. A, Representative autoradiographs of 32p_ 

postlabeling analysis of benzo[a]pyrene (BP)-induced DNA adducts: a, one-week sham 

implant; b, one-week BP implant; c, one-week BP implant + polyphenon E implants; d, 

one-week BP implant + polyphenon E in drinking water; e, four-week BP implant; f, 
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four-week BP implant + polyphenon E implants. 1, anti-benzo[a]pyrene-7,8-diol-9,10-

epoxide-dG; and 2, 9-0H-benzo[a]pyrene-4,5-epoxide-dG. B 1: DNA adduct levels after 

1 week; and B2, DNA adduct levels after 4 weeks. *p<O.05. 
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Fig. 4-5. rnRNA expreSSIOn of CYPIAl, IBI, EphxI, UGTIAI, UGTIA6, 

SULTIAl,GSTMl, ERCC5, ERCC6 and XPC in lung tissue of SID rats treated with 

benzo[a]pyrene or polyphenon E or combination and indicated controls. Relative 

expression after 1 (A) or 4 (B) weeks of benzo[a]pyrene treatment. Group 1, No 
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treatment; Group 2, Sham implants; Group 3, BP implant; Group 4, BP implant + poly E 

implants; Group 5, BP implant + poly E in drinking water; and Group 6, Poly E implants. 
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Fig. 4-6. Protein expression of CYPIAl , CYPIBl , UGTIA and GSTMI in the lung of 

SID rat treated with benzo[a]pyrene and polyphenon E as analyzed by western blotting. 

Group 1, No treatment; Group 2, Sham implants; Group 3, BP implant; Group 4, BP 

implant + poly E implants; Group 5, BP implant + poly E in drinking water; and Group 6, 

Poly E implants. 
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CHAPTER V: EFFICACY AND POTENTIAL MECHANISMS OF GREEN TEA 

POLYPHENOLS AS AN ADJUVANT TREATMENT TO CISPLATIN·BASED 

LUNG CANCER THERAPY 

Introduction: 

In the United States, lung cancer is the second most common cancer type in men 

and women, only less than prostate cancer in men and breast cancer in women. However, 

lung cancer accounts for the highest cancer-related deaths (120). Effective prevention and 

treatment strategies are therefore urgently needed. 

Currently, chemotherapy is one of the most import strategies in the treatment of 

lung cancer. To maximize the efficacy and minimize the side effects and toxicity of 

chemotherapeutic drugs, a combination of two or more chemotherapeutic drugs is often 

necessary. Based on multiple randomized clinical trials and meta-analyses, cisplatin

based chemotherapy is more preferred over other combinations if it is effective (141). 

The basic principle of combination chemotherapy is to select drugs with differing 

mechanisms of action, toxicity and side effect profiles in order to augment their efficacy 

and decrease their toxicity (78). 

Green tea is one of the most popular drinks in the world. It is now drawing more 

attention because of its possible chemoprotective effects (41, 50-54). The possible 

mechanisms of action of green tea catechins have been extensively studied in vitro. GTPs 
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were found to induce apoptosis in cancer cells and inhibit the proliferation of a variety of 

cancer cells types in vitro, including lung cancer cells (45-49). GTPs can inhibit 

epidermal growth factor (EGF), hepatocyte growth factor (HGF) and fibroblast growth 

factor 2 (FGF2) dependent signaling pathway, and interfere with enzyme activities of 

JUK, JUN, MEKl, MEK2, EKl, EK2, CDK2 (57). They have also been shown to be 

highly potent antioxidants (58). Under certain conditions, GTPs can generate some types 

of reactive oxygen species, including hydrogen peroxides which are believed to help to 

kill cancer cells (59, 60). 

Edible berries have demonstrated many biological effects in cardiovascular 

disorder, degenerative diseases, inflammatory responses and cancer intervention (142-

144). Anthocyanidins presented in berries are responsible for the red, purple and blue 

color of these fruits. Studies have shown that diet supplemented with black raspberry 

powder inhibit azoxymethane-induced colon cancer and N-nitrosomethylbenzylamine 

(NMBA)-induced esophageal tumorigenesis (145, 146). Cherry anthocyanidins were 

able to inhibit tumor development in APC (min) mice (147, 148). These anthocyanidins 

are potent antioxidants as GTPs. They were found to inhibit proliferation and promote 

apoptosis of various cancer cell lines (149), decrease the expression of matrix 

matalloprotinase (MMP-2) and urokinase-plasminogen activator (u-PA), inhibit 

activation of c-Jun and NF-kappaB (150). 

Based on these studies the mechanisms of action of GTPs and anthocyanidins 

appear to be different from known chemotherapeutics including but not limited to 

cisplatin, carboplatin, paclitaxel, docetaxel, doxorubicin, gemcitabine and vinorelbine 

(79-85). For example, cisplatin and carboplatin exert their effects through crosslinking 
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with DNA and form DNA adducts (79, 80); paclitaxel and docetaxel are anti-microtubule 

agents (81, 82); gemcitabin is a nucleoside analog and an anti-metabolite (84); etoposide 

is a topoisomerase II inhibitor (86); irinotecan and topotecan are topoisomerase I 

inhibitors (87, 88). This mechanistic difference between GTPs, anthocyanidins and the 

standard chemotherapeutics currently used to treat lung cancer follows the principle of 

combination treatment. Importantly, the application of GTPs and anthocyanidins is 

relatively safe since it exhibits little to no toxicity or deleterious side effects in vivo (55). 

In this study, I investigated the effects of these natural compounds as a neo

adjuvant treatment in combination with known chemotherapeutics including cisplatin, 

carboplatin, paclitaxel, docetaxel, doxorubicin, gemcitabin, vinorelbin, etoposide and 

topotecan in cell culture. The effects of these combinations are various. One of the most 

promising combinations, which is GTPs, anthocyanidins and cisplatin, was further tested 

in vivo using a xenograft nude mouse model. The possible mechanisms of action of the 

combination therapy were also studied. 

Materials and Methods: 

Chemicals 

EGCG was purchased from LKT laboratories, Inc. (St. Paul, MN, USA). 

Polyphenone E (poly E) was a gift from Pharma Foods International Co., Ltd (Kyoto, 

Japan). Anthocyanidins used in cell culture including delphinidin, cyanidin, malvidin, 

peonidin, petunidin were obtained from ChromaDex Inc. (Irvine, CA, USA). 

Anthocyanidins used in animal study were isolated from highly enriched bilberry extract 

by the laboratory of Dr. Inder Pal Singh, NIPER, Mohali, Punjab, India under a 
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collaborative arrangement. The anthocyanidins isolated contained 32.5% delphinidin, 

28.6% cyanidin, 15.4% malvidin, 15% petunidin and 5% peonidin as analyzed by HPLC. 

Cisplatin, carboplatin, paclitaxel, docetaxel, doxorubicin, gemcitabine, vinorelbine, 

etoposide, topotecan, quercetin, withaferin A, plumbagin, curcumin, resveratrol, 

cucurbitacin B, celastrol, ethidium bromide and acridine orange were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Apoptosis kit with Annexin V Alexa Fluor 488 

and PI for flow cytometry was purchased from Invitrogen Corporation (Carlsbad, 

California, USA). Rabbit anti-Bcl-2, anti-Bax, anti-cyclin Bl, anti-cyclin Dl, anti-cdc2, 

anti-p21 primary antibody and anti-rabbit HRP-linked secondary antibody were 

purchased from Santa Cruz Biotech (Santa Cruz, CA). Rabbit anti-PARP antibody was 

from Cell Signaling Technology, Inc. (Danvers, MA, USA). Mouse anti-B-actin antibody 

was from Sigma-Aldrich (St. Louis, MO). Mouse anti-PCNA primary antibody and anti

mouse secondary antibody was from Cell Signaling Technology (Danvers, MA). Other 

reagents used were from the following sources: Pierce® BCA Protein Assay Kit (Thermo 

Fisher Scientific, Rockford, IL.), and ECL plus detection kit (Amersham Biosciences, 

Piscataway, NJ). 

Cell culture 

The human non-small cell lung cancer cell line, H1299, was obtained from ATCC. 

Cells between 5-20 passages were used and cultured in Glutamax medium containing 

10% fetal bovine serum (FBS) and 1 % penicillin-streptomycin. Cell cultures were 

incubated at 37°C in a humidified atmosphere with 5% CO2• 
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MTT assay 

H1299 cells (5 x 103
) were seeded in 96-well plate and received EGCG, 

anthocyanidins, EGCG plus anthocyanidins, cisplatin or EGCG/anthocyanidins/cisplatin 

the second day following seeding. After incubation for 48 hrs, the culture medium was 

replaced and 10 III of MTT (5 mg/ml in PBS) was added in each well for additional 3 hrs 

at 37°C, the medium was discarded and replaced by 100 III of DMSO. Absorbance was 

determined by a SpectrMax M2 (Molecular Devices, Sunnyvale, CA) at 570 nm (151). 

Cell cycle and apoptosis analysis by flow cytometry 

2 x 105 cells were seeded in 60 mm culture dishes and received either vehicle, 

cisplatin, EGCG plus anthocyanidins (delphinidin, cyanidin, malvidin, peonidin, 

petunidin) alone, or cisplatin in combination with EGCG and anthocyanidins the second 

day. Cells were lifted after incubation for 48 hrs and washed with PBS. For cell cycle 

analysis, cells were fixed in 70% ethanol and stained with PI only and measured by BD 

FACSCalibur flow cytometer (BD Biosciences, San Jose, CA). For apoptosis analysis, 

cells were re-suspended in binding buffer and stained with 5 III of Annexin Alexa Fluor 

488 (Invitrogen Corporation, Carlsbad, California) and 1 III of PI for 15 min at room 

temperature and diluted with binding buffer before being measured by flow cytometry. 

Data were analyzed using FlowJo software (Tree Star Inc., Ashland, OR, USA). 

Ethidium bromide/acridine orange staining 

1 x 105 cells/well were seeded in a 6-well plate culture dish and received either 

vehicle, 7.5 flM of cisplatin, EGCG plus anthocyanidins (delphinidin, o cyanidin, 
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malvidin, peonidin, petunidin) alone (7.5 ~M each) or cisplatin in combination with 

EGCG and anthocyanidins (7.5 ~M each) the second day. After 48 h, cells were 

detached and washed with PBS and re-suspended in 25 ~l of PBS followed by staining 

with 2 ~l of ethidium bromide (100 I-lg/ml) and acridine orange (100 I-lg/ml). Cells were 

viewed using a Nikon Eclipse 80i microscope (Nikon Instruments Inc., Melville, NY ) 

and pictures were taken with a Nikon Digital Sight camera (152). 

Western blotting 

5 x 105 cells were seeded in a 100 mm culture dishes and received either vehicle, 

7.5 ~M of cisplatin, EGCG plus anthocyanidins (delphinidin, cyanidin, malvidin, 

peonidin, petunidin) alone (7.5 ~M each) or cisplatin in combination with EGCG and 

anthocyanidins (7.5 ~M each) the second day. After 48 h, cells were harvested using 

RIP A buffer. Protein was quantified with Pierce® BCA Protein Assay Kit (Thermo 

Fisher Scientific, Rockford, IL.). 10% SDS polyacrylamide gel was used for protein 

separation (30 ~g/well). Proteins were then transferred to polyvinylidene difluoride 

(PVDF) membranes. After co-incubation with primary and secondary antibodies, 

detection of proteins was performed using an ECL plus detection kit (Amersham 

Biosciences, Piscataway, NJ). The concentration of anti-cyclin Bl and anti-p21 primary 

antibodies was 1 :500, anti-~ actin was 1: 3000, and all others were 1: 1000. The 

concentration of secondary antibodies was 1: 1000 for detection of cyclin B I, p21, 1 :5000 

for ~ actin and 1 :2000 for the rest. 

Animal handling 
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Six week-old female nude mice were purchased from Charles (Indianapolis, IN). 

After acclimation for 7 d, animals were inoculated with 1 x 106 H 1299 cells with matrigel 

on the left flank side. After tumor size reached approximately 30 mm3
, animals were 

randomized and treated with poly E, anthocyanidins, cisplatin alone or in combination as 

in Table 5-1. Poly E was administered by intraperitoneal injection (O.lml of 10 mg/ml 

poly E solution in H20 containing 1.0% DMSO, every other day) or by polymeric 

implants (one, 1.5 cm implant containing 20% polyE). Anthocyanidins were given i.p. 

(O.lml of 5 mg/ml bilberry extract solution in H20 containing 1.0% DMSO, every other 

day). Cisplatin was administered i.p. (0.1 ml of lmg/ml solution in PBS) once a week for 

5 times. Body weights and tumors were measured weekly. Animals were euthanized after 

5 weeks. Blood was taken by cardiac puncture. Skin tissue was fixed in 10% 

formaldehyde and removed to 70% ethanol before further processing. Tumor tissues were 

harvested for western blotting following the same protocol mentioned previously in the 

western blotting section except the protein loading is 50 Ilg/well. The concentrations of 

primary antibody and secondary antibody remained the same. 

All animal experiments were performed after seeking approval from the 

Institutional Animal Care and Use Committee (IACUC). 

Results: 

MTT assay for EGCG in combination with other phytochemicals 

The MTT assay was conducted in order to assess the effects of various treatments 

on cell viability and proliferative activity in human lung cancer cells H1299. Firstly, a 

serial concentration of EGCG was used to determine the ICso of EGCG, which was found 

92 



to be approximately 20 IlM. At 10 IlM, EGCG showed only a moderate effect (10% 

antiproliferative activity). Secondly, a serial concentration of anthocyanidins (comprised 

of an equal molar concentration of the following: delphinidin, cyanidin, malvidin, 

peonidin, petunidin), quercetin, withaferin A, plumbagin, curcumin, resveratrol, 

cucurbitacin B, celastrol alone or in combination with 10 IlM of EGCG were tested for 

their effect on cell proliferation and viability. The results showed that EGCG enhanced 

the antiproliferative activity of the anthocyanidin mixture and plumbagin, but not the 

others (Figure 5-1). The antiproliferative activity of EGCG-anthocyanidins was 

determined to have an ICso concentration of 6 !AM. This value was found to be 2- and 

3.3-fold lower compared with anthocyanidins (12 IlM) and EGCG (20 IlM) alone, 

respectively. 

MTT assay for EGCG in combination with chemotherapeutics 

A serial concentration of cisplatin, carboplatin, paclitaxel, docetaxel, doxorubicin, 

gemcitabine, vinorelbine, etoposide and topotecan alone or in combination with 10 IlM of 

EGCG were tested using MTT assay to assess cell viability of the human lung cancer 

cells H 1299 following combination treatment with EGCG and these chemotherapeutics. 

The results showed that EGCG does not enhance the antiproliferative activity of any of 

these chemotherapeutics (data not shown). 

However, when the mixture of EGCG and anthocyanidins (delphinidin, cyanidin, 

malvidin, peonidin and petunidin) was combined with cisplatin, the anitproliferative 

activity of cisplatin was found to be enhanced significantly. The ICso of cisplatin alone 

was found to be :::::50 IlM. However, when combined with the EGCG-anthocyanindin 
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mixture (10 flM each), the ICso of cisplatin was significantly reduced «3 flM) (Figure 5-

2). 

Cell cycle analysis of cisplatin in combination with EGCG plus anthocyanidins 

Cell cycle analysis was conducted in order to assess the effects of various 

treatments on cell cycle in human lung cancer cells H1299. Cells were treated with either 

vehicle (0.5% DMSO), 10 IlM of cisplatin, 10 IlM of EGCG- anthocyanidins or 10 IlM 

of cisplatin plus EGCG- anthocyanidins. The result showed that 46.7% of the cells 

treated with the vehicle alone were in G 1 phase and 31.1 % and 21.5% of the cells were in 

S or G2 phase, respectively. After treatment with cisplatin, the number of cells in the G 1 

phase dropped to 25.8% while the number of cells in the G2 phase increased to 53.7%, 

suggesting that the cisplatin initiated a G21M arrest. In contrast, cells treated with the 

EGCG-anthocyanidin mixture, exhibited no significant change in cell cycle distribution 

compared with vehicle treated cells, 50%, 26.9% and 21.2% in Gl, Sand G2 phase 

respectively. The effect of cisplatin in combination with EGCG plus anthocyanidins was 

similar to the effect of cisplatin alone, 24.5% in Gland 56.5% in G2 phase (Figure 5-3). 

Apoptosis analysis of cisplatin in combination with EGCG plus anthocyanidins 

Apoptosis analysis was conducted in order to assess the effects of various 

treatments on apoptosis in human lung cancer cells H1299. In initial analysis, 10 IlM 

cisplatin did not cause significant apoptosis, therefore, cells were treated with either 

vehicle (0.5% DMSO), 25 IlM of cisplatin, 10 IlM of EGCG- anthocyanidins or 25 IlM 

of cisplatin plus EGCG- anthocyanidins. The results are depicted in Figure 5-4. In the 
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vehicle treated group the apoptotic cells and dead cells were 6.67% and 3.04% 

respectively, total of 9.71 %. These levels increased following treatment with cisplatin to 

12.9% apoptotic cells and 17% dead cells yielding a total of 29.9%. In the EGCG plus 

anthocyanidins group, the apoptotic cells accounted for 17.4% and dead cells, 9.48%, for 

a total of 26.88%. Treatment with the combination of cisplatin and EGCG

anthocyanidins resulted in a significant increase in apoptotic cells to 36.9% and dead 

cells to 22.8%, for a total of 59.7%. These data indicate that the combination treatment of 

cisplatinlEGCG/anthocyandins was resulted in higher levels of apoptosis and cell death 

than treatment with cisplatin or EGCG-anthocyanidins alone. 

Ethidium bromide I acridine orange staining 

EB/AO staining was conducted to confirm the finding in flow cytometric study. No 

dead or apoptotic cells were found in vehicle (0.5% DMSO) treated samples (Figure 5-5). 

Further, cisplatin treatment (7.5 ~M) did not induce cell death or apoptosis. However, the 

size of cells appeared to be larger than those observed following vehicle treatment, 

suggesting that cisplatin may interfere with the cell cycle and cause cell cycle arrest. 

EGCG plus anthocyanidins (7.5 ~M) resulted in significant apoptosis which exhibited 

fragmented DNA staining with bright green or yellow. This effect was even more 

pronounced in the cisplatin and EGCG plus anthocyanidins combination treatment group, 

which confirms the finding in apoptosis analysis using flow cytometer. 

Western blotting 
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Western blotting was conducted in order to assess the effects of various treatments 

on protein expression in human lung cancer cells H1299. Several molecular markers 

related to cell cycle (PCNA, p21, cdc2, cyclin Bl, cyclin Dl) and apoptosis (Bax, Bcl-2, 

P ARP) have been investigated. The results showed that EGCG plus anthocyanidins 

down-regulated the expression of PCNA, cyclin Bl, cyclin Dl and BCL-2, which are 

associated with the cell survival and proliferation; while up-regulated the expression of 

p21, which functions otherwise (Figure 5-6). Cisplatin treatment also decreased PCNA, 

cyclin Dl and BCL-2 expression, while increasing p21 expression. However, cisplatin 

treatment resulted in a significant increase of cyclin B 1 expression. The combination 

treatment of cisplatin and EGCG plus anthocyanidins further decreased the expression of 

cyclin Dl and Bcl-2 compared with cisplatin alone or EGCG-anthocyanidins alone 

(Figure 5-6). 

Xenograft nude mouse study An animal study was conducted in order to 

investigate whether the findings in cell culture can be translated to in vivo. A combination 

of poly E, anthocyanidins and cisplatin administered by i.p. (Group 6) significantly 

decreased the tumor volume compared to that of vehicle treatment group starting from 

the 1 st week through the end of the study. At the 5th week, the tumor volume was 

decreased by 73% (p<O.OOI) (Figure 5-7). Similarly, the combination of cisplatin-poly E

anthocyanidins in which poly E was given by polymeric implants (Group 7) decreased 

tumor volume by 73% (p<O.OOI). Interestingly, other groups including poly E alone 

(15% reduction, p>O.05), anthocyanidins (10% reduction, p>O.05), poly E

anthocyanidins (6% reduction, p>O.05) and cisplatin alone group (31 %, p>O.05) did not 
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show statistically significant reductions in tumor volume until the end of the study, 

suggesting the efficacy of cisplatin/poly E/anthocyanidins observed from the combination 

treatment may be synergistic not purely additive (Figure 5-7). Photographs of selected 

animials representing each of the treatment group are shown in Figure 5-8. 

All the animals in Groups 1 - 5 were active and gaining body weight throughought 

the duration of the experiment. However the animals in Groups 6 and 7 appeared to 

exhibit decreased activity following i.p. injections and were losing body weight (Figure 

5-9). The diet intake for these animals was measured. Groups 1-5 consumed, on average, 

3.9, 3.4 3.9, 3.4 and 3.6 g/animal/day, respectively. Animals in Groups 6 and 7 consumed 

less diets compared with other groups, which were 2.9 and 2.6 g/animal/day, 

respectively, suggesting the possible toxicity of the combination treatment. 

The blood chemistry was measured as shown in Table 5-2. The blood cells were 

counted as in Table 5-3. The blood analyses were conducted by Antech Dignostics (New 

Hyde Park, NY). The combination treatment (Group 6) resulted in increased levels of 

ALT and WBe counts in the animals tested. Also, lower glucose levels and dramatic 

increased blood level of amylase and lipase were observed in these animals as well. 

The skin samples of the animals in Groups 1 and 6 were fixed and HE staining was 

performed thereafter. The results showed that dramatic damage of the whole layers of the 

skin, including epidermis, dermis and also the subcutaneous tissue for Group 6 animals 

(Figure 5-10). Fewer hair follicles and shattered fat tissues cells were also observed in 

this group. Further, subcutaneous muscle layer was thinner in Group 6 comparing with 

that in Group 1. 
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The western blotting results of tumor tissue were consistent with the cell culture 

results. Specifically, cyclin Dl decreased in the combination treatment group compared 

with the vehicle treated group and other groups. Bcl-2 increased after combination 

treatment (Figure 5-11). 

Discussion: 

The studies in this chapter were conducted to test the feasibility of using GTPs as a 

neo-adjuvant treatment in the treatment of lung cancer. The MTT assay was used to study 

the effects of EGCG on cell viability and proliferation in human lung cancer cells. Quite 

surprisingly, we found that EGCG enhanced the antiproliferative effects of 

anthocyanidins and plumbagin, but not the other phytochemicals tested, including 

quercetin, withaferin A, curcumin, resveratrol, cucurbitacin B or celastrol. The reasons 

can be very complicated because these phytochemicals have been shown to interfere with 

many signal transduction pathways and molecular targets (153-162). Anthocyanidins, 

plumbagin and EGCG have all been shown to induce ROS production at specific dose 

ranges which results, subsequently, in cell death (60, 163, 164). This supports my 

observation that the combination of EGCG with either anthocyandins or plumbagin 

results in greater loss of cell viability in lung cancer cells than either phytochemical 

alone. 

Unexpectedly, EGCG was not found to enhance the antiproliferative effects of all 

the tested chemotherapeutics commonly used in lung cancer treatment, including 

cisplatin, carboplatin, paclitaxel, docetaxel, doxorubicin, gemcitabine, vinorelbine, 

etoposide and topotecan. The reasons remain unknown. Importantly, the antiproliferative 
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effects of cisplatin were significantly enhance when this chemotherapeutic was combined 

with EGCG-anthocyanidins. The ICso of cisplatin decreasesd approximately 20 fold 

(from 50 IlM to < 3 IlM) in the presence of EGCG-anthocyanidins. Cisplatin is a model 

drug in the treatment of lung cancer based on its efficacy as mentioned in the 

Introduction. Therefore, I aimed to further investigate the mechanisms of action of 

EGCG-anthocyanidins-cisplatin combination treatment and to determine if these effects 

were demonstrable using a xenograft nude mouse model. 

Cell cycle analysis in the human lung cancer cells H1299 revealed that cisplatin 

induces cell cycle arrest at the G2/M phase. This observation corresponded to its 

significant increase of cyclin Blat the protein level. Additionally, cisplatin was found to 

modulate other cell cycle or cell death related proteins including cyclin D 1 and Bcl-2. 

Treatment of the cells with EGCG-anthocyanidins did not result in cell cycle arrest at the 

tested concentration. Further, the distribution of cells in cell cycle did not differ from 

that of the vehicle treatment. It's presumably because EGCG-anthocyanidins non

specifically inhibit the expression of cell cycle related protein (Figure 5-6). Both cisplatin 

and EGCG-anthocyanidins were found to induce cell death at the concentrations tested 

(Figure 5-4), and these effects on cell death appear to be additive in these in vitro studies. 

The morphological changes and apoptosis induced by cisplatin, EGCG-anthocyanidins 

alone or in combination further confirm these findings in flow cytometric analysis. 

Using a xenograft nude mouse model, a combination of poly E, anthocyanidins and 

cisplatin was found to substantially decrease the tumor volume (73%), while poly E, 

anthocyanidins, poly E-anthocyanidins and cisplatin alone group had no observable 

effect. Regrettably, the toxicity caused by the combination treatment was also 
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noteworthy. The body weight of the animals in the combination treatment group was 

significantly lower than other treatment groups (p<O.Ol). This observation was 

concurrent with a moderate glucose decrease, which correlated to lower diet consumption 

in the combination group. Additionally, amylase and lipase levels were also found to be 

increased in the combination group, indicating the animals are mobilizing their lipid and 

polysaccharides in the body or the possibility of pancreatitis caused by the treatment. 

Further, the animals in the combination groups were also observed to be less active 

compared with the animals in other groups. Elevated ALT, a liver specific enzyme, and 

WBC counts were also observed. AST, alkaline phosphatase and GGT which are not 

liver specific, however, were unaffected. These results suggest that the toxicity of the 

combination treatment is most likely a result of liver cell damage. The combination 

treatment also resulted in damage to the GI tract and disruption of the barrier function of 

GI tract causing the pathogens in the digestive tract to enter the blood stream. Pathogens 

in the blood can result in an elevated WBC count or possibly increased stress as a result 

of the increased handling during the combination treatment lead to the observed increase 

in WBC count, or both. In summary, the blood chemistry and blood count correlate with 

the toxicity found in the animal study. 

Both, efficacy and toxicity were observed only in the cisplatin-poly E

anthocyanidins combination treatment group, suggesting the effects are a result of the 

interaction between cisplatin, poly E and anthocyanidins. Although the mechanism(s) of 

action through which the combination of these compounds exert their effect are 

unknown, indeed effects of cisplatin-poly E-anthocyanidins combination are arguably not 

possible to be explained by only one or two mechanisms considering the combination 
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mixture could interfere with a multitude of signaling transduction pathways and 

molecular targets. A Pubmed literature search on the interaction of cisplatin, green tea 

polypheols and anthocyanidins found no similar studies have been conducted. Two 

publications were found in which green tea extracts showed protective effects of 

cisplatin-induced nephrotoxicity (165, 166). In this study, I investigated the effects of 

these drugs on the proteins involved in cell cycle regulation and cell apoptosis. Western 

blotting results in cell culture and in the xenograft animal study showed consistent 

findings. The combination treatment significantly inhibited the expression of cyclin Dl, 

which is almost undetectable in cell culture and dramatically decreased in tumor tissues. 

eyclin D 1 is essential for cell proliferation and growth. The extreme low expression of 

cyclin Dl will most likely interfere with tumor cell proliferation and growth which was 

observable as a therapeutic effect as well as toxicity to normal cell growth which was 

reflected in decreased body weight of the treated animals. The expression of Bcl-2, which 

is an anti-apoptotic protein, increased after combination treatment both in cell culture and 

also in tumor tissue of the animals. Other cell cycle and cell apoptotic related proteins are 

also modulated by the combination treatment, which may partially explain the results I 

observed. All these results suggest that cisplatin-poly E-anthocyanidins combination has 

greater effects in terms of inhibiting cell proliferation and inducing cell apoptosis 

compared with individual treatments, thus decreasing the tumor volume. Howerver, it is 

apparent that there is no selectivity of this combination treatment in that although it is 

efficacious against lung tumor growth, it is concurrently toxic to the host as well. This 

conundrum, however, is not uncommon of chemotherapeutic agents and requires a 

necessary optimization of treatment protocol for weighted beneficial versus toxic effects. 
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In conclusion, my data suggest that combination of EGCG-anthocyanidins may be 

effective as adjuvant chemotherapy in combination with cisplatin. However we must pay 

special attention to the toxicity caused by the combination treatment. The optimal dosage 

of each compound targeting to a moderate efficacy and minimal toxicity needs to be 

further studied. Further, the mechanisms of action of this combination therapy need to be 

further clarified. 
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Table 5-1: Grouping and treatment of the animals. 

Group Cisplatin PolyE anthocyanidins 
1 
2 +, i.p. 
3 +, i.p. 
4 +, i.p. +, i.p. 
5 +, i.p. 
6 +, i.p. +, i.p. +, i.p. 
7 +, i.p. +, implant +, i.p. 

+, treatment; -, no treatment; i.p., intraperitoneal injection; 
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No. of animals 
12 
10 
10 
10 
10 
10 
10 



Table 5-2. Blood chemistry test. 

Group 1 2 3 4 5 6 
(veh.) (poly E) (anthos) (poly E+ (cisplatin) (combination) 

anthos) 
Total Protein 6.0 ±0.3 5.4 ± 0.2 5.7 ± 0.5 5.3 ±0.2 5.8 ± 0.4 5.6 ±0.2 
Albumin 3.7 ± 0.3 3.2 ± 0.1 3.5 ± 0.3 3.3 ± 0.3 3.5 ± 0.5 3.3 ± 0.1 
Globulin 2.3 ± 0.3 2.2 ±0.3 2.2 ± 0.2 2.1 ± 0.1 2.3 ± 0.2 2.3 ± 0.1 
A1G Ratio 1.7 ± 0.3 1.5 ± 0.2 1.6 ± 0.1 1.6 ± 0.2 1.5 ± 0.3 1.4±0.1 

216.3 ± 185.0 ± 227.5 ± 178.5 ± 242.0 ± 
AST (SGOT) 53.3 68.1 88.6 42.1 158.2 234.5 ± 43.9 

39.3 ± 
ALT (SGPT) 36.5 ± 6.4 13.4 33.5 ± 7.9 35.3 ± 7.3 35.0 ± 8.4 64.3 ± 24.1 
Alkaline 79.8 ± 
phosphatase 57.8 ± 18.6 17.0 59.8 ± 19.3 70.8 ± 21.0 68.5 ± 13.5 69.3 ± 22.2 
GGT 15.8 ± 8.8 8.3 ± 2.9 18.0 ± 17.5 9.3 ±4.3 11.0 ± 12.7 9.0 ± 2.6 
Total Bilirubin 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.0 
BUN 28.0 ± 2.8 25.3 ± 2.2 23.8 ± 2.6 24.0 ± 3.6 22.0 ± 2.9 31.5±3.1 
Creatinine 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 0.4 ± 0.2 
BUN/Creatinine 95.0 ± 
Ratio 87.5 ± 35.7 38.9 82.5 ± 37.5 86.3 ± 45.9 82.5 ± 34.3 105.0 ± 62.3 
Phosphorus 15.8 ± 1.2 13.6 ± 0.9 12.8±1.8 13.9 ± 1.5 11.2 ± 1.4 10.9 ± 1.9 

75.0 ± 102.8 ± 137.0 ± 
Glucose 94.5 ± 50.9 25.9 27.4 82.5 ± 35.2 61.4 77.3 ± 18.4 
Calcium 10.1 ± 0.3 9.2 ± 0.5 9.8 ±0.2 9.6 ± 0.4 10.3 ± 0.3 7.2 ± 4.4 
Magnesium 3.9 ±0.2 3.4 ± 0.2 3.5 ±0.2 3.6 ± 0.1 3.1 ±0.3 2.9 ± 0.3 

149.0 ± 147.3 ± 151.0± 
Sodium 154.8 ± 9.4 12.1 11.0 11.6 152.0 ± 6.7 157.5 ± 7.7 
Potassium 10.9 ± 1.0 7.7 ± 2.8 6.9 ±4.8 7.1 ± 4.9 9.7 ± 0.9 10.2 ± 1.4 

22.0± 
Na/K Ratio 14.3 ± 1.3 10.0 31.5 ± 20.2 30.5 ± 18.1 16.0 ± 2.2 15.8 ± 1.7 

105.8 ± 104.8 ± 
Chloride 107.5 ± 6.6 7.5 108.0 ± 8.0 10.0 107.0 ± 3.5 109.5 ± 4.4 

146.5 ± 127.0 ± 128.8 ± 140.0 ± 
Cholesterol 10.2 3.2 20.6 129.5 ± 7.8 10.8 152.0 ± 17.7 

134.5 ± 112.3 ± 104.8 ± 
Triglyceride 41.4 14.5 97.3 ± 11.2 36.1 116.5 ± 5.7 92.0 ± 31.3 

691.0 ± 623.0 ± 644.3 ± 700.8 ± 758.8 ± 1459.8 ± 
Amylase 91.3 108.1 102.5 112.5 83.8 918.2 

85.5 ± 660.3 ± 
Lipase 93.8 ± 18.2 23.4 90.0 ± 9.1 98.0 ± 11.2 98.8 ± 8.4 1125.2 

816.0 ± 630.5 ± 1088.5 ± 607.5 ± 1358.3 ± 
CPK 492.0 422.5 655.8 203.3 1316.6 522.8 ± 131.4 
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Table 5-3. Blood cell counts. 

Group 1 2 3 4 5 6 
(veh.) (poly E) (anthos) (poly E+ ( cisplatin) (combination) 

anthos) 
WBC 2.3 ± 1.5 1.7 ± 0.5 3.6 ±2.8 4.7 ± 1.3 3.5 ± 3.1 6.0 ± 1.3 
RBC 7.3 ± 0.5 7.3 ±0.8 7.8 ± 0.3 7.7±0.1 7.0 ±0.2 
HOB 11.9 ± 0.5 12.4 ± 0.8 13.0±0.4 13.1 ± 0.4 11.9 ± 0.3 
HCT 39.8 ± 3.0 33.7 ± 2.5 38.3 ± 6.9 43.5 ± 2.9 36.3 ± 7.3 38.3 ± 1.7 
MCV 56.0 ± 2.6 56.7 ± 1.5 55.8 ± 1.3 55.5 ± 0.7 54.8 ± 2.4 
MCH 16.5 ± 0.4 17.2 ± 0.9 16.6 ± 0.5 17.0±0.1 17.0 ± 0.4 
MCHC 29.7 ± 1.2 30.7 ± 2.1 29.8 ± 1.5 30.5 ± 0.7 31.3±1.0 

Differential 
452.8 ± 640.5 ± 686.3 ± 1448.8 ± 534.8 ± 2018.0 ± 

Neutrophils 263.2 119.5 442.4 784.0 421.7 1101.9 
1601.3 ± 864.0 ± 2559.0 ± 2968.8 ± 2594.3 ± 3591.5 ± 

Lymphocytes 1070.4 326.6 2068.4 798.0 2430.5 707.9 
234.8 ± 102.0 ± 322.0 ± 240.0 ± 343.5 ± 

Monocytes 169.1 112.0 366.5 232.4 385.0 390.5 ± 193.6 
43.5 ± 

Eosinophils 28.8 ± 9.1 37.1 43.0 ± 26.3 67.5 ± 52.4 38.3 ± 28.1 0.0 ± 0.0 
Basophils 7.5 ± 15.0 0.0 ± 0.0 14.8 ± 29.5 0.0 ± 0.0 14.3 ± 28.5 0.0 ± 0.0 
Platelet Estimate 

1101.3 ± 1001.0 ± 1105.0 ± 925.0 ± 1199.5 ± 
Platelet Count 185.8 325.7 189.4 240.4 301.3 

Differential {% 1 
Neutrophils 20.5 ± 7.2 40.0 ± 6.6 20.3 ± 8.5 29.8 ± 11.3 24.5 ± 17.6 32.8 ± 12.1 
Lymphocytes 68.0 ± 4.2 52.0 ± 6.2 71.0 ± 7.7 63.5 ± 7.9 67.0 ± 12.7 60.8 ± 10.2 
Monocytes 9.8 ± 3.6 5.3 ±4.3 7.0 ± 4.8 5.5 ±4.8 7.0 ± 5.3 6.5 ± 3.0 
Eosinophils 1.5 ± 0.6 2.8 ± 2.5 1.5 ± 0.6 1.3 ± 1.0 1.3 ± 0.5 0.0 ±O.O 
Basorhils 0.3 ± 0.5 0.0 ±O.O 0.3 ±0.5 0.0 ± 0.0 0.3 ± 0.5 0.0 ±O.O 
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Fig. 5-1. MTT assay of anthocyanidins (delphinidin, cyanidin, malvidin, peonidin, 

petunidin with equal molar concentration) at the presence/absence of EGCG. 
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Fig. 5-2. MTT assay of cisplatin at the presence/absence of EGCG and anthocyanidins 

(delphinidin, cyanidin, malvidin, peonidin, petunidin with equal molar concentration). 
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Fig. 5-3. The effects of vehicle, cisplatin, EGCG+anthocyanidins alone or in combination 

on cell cycle. A. vehicle; B. 10 !!M of cisplatin; C. 10 !!M of EGCG- anthocyanidins 

(delphinidin, cyanidin, malvidin, peonidin, petunidin with equal molar concentration); D. 

10 !!M of cisplatin plus 10 !!M of EGCG-anthocyanidins. 
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Fig. 5-4. The effects of vehicle, cisplatin, EGCG-anthocyanidins alone or in combination 

on cell apoptosis. A. vehicle; B. 25 flM of cisplatin; C. 10 flM of EGCG- anthocyanidins 

(delphinidin, cyanidin, malvidin, peonidin, petunidin with equal molar concentration); D. 

25 flM of cisplatin plus 10 flM of EGCG-anthocyanidins. 
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Fig. 5-5. Ethidium bromide/acridine orange staining of the cells treated with vehicle, 

cisplatin, EGCG-anthocyanidins alone or in combination. A. vehicle; B. 7.5 !!M of 

cisplatin; C. 7.5 !!M ofEGCG-anthocyanidins (delphinidin, cyanidin, malvidin, peonidin, 

petunidin with equal molar concentration); D. 7.5 !!M of cisplatin plus 7.5 !!M of EGCG

anthocyanidins. 
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Fig. 5-6. Protein expression of H1299 lung cancer cells treated with treated with vehicle, 

cisplatin, EGCG-anthocyanidins alone or in combination. A. vehicle; B. 7.5 !AM of 

cisplatin; C. 7.5 !AM of EGCG-anthocyanidins (delphinidin, cyanidin, malvidin, peonidin, 

petunidin with equal molar concentration); D. 7.5 !AM of cisplatin plus 7.5 !AM of EGCG-

anthocyanidins. 
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Fig. 5-8. Pictures of nude mice treated with vehicle, poly E alone, anthocyanidins alone, 

poly E + anthocyanidins alone, cisplatin alone, cisplatin+poly E+anthocyanidins by i.p. 

and cisplatin+anthocyanidins i.p. combined with poly E implant. 
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Fig. 5-10. HE staining of animal skins. Upper panel: vehicle treated group; lower panel: 

cisplatin+poly E+anthocyanidins i.p. group. 
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Fig. 5-11. Protein expression in the tumor tissues. 1-6 represents the group number. 
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CHAPTER VI: SUMMARY 

Green tea is one of the most popular drinks in the world. It's drawing increasing 

attention because of its potential chemopreventive effects. Green tea polyphenols (GTPs), 

induding EGCG, ECG, EGC and EC are believed to be the active components, in which 

EGCG is the most active catechin. 

Although numerous in vitro studies have demonstrated the anti-cancer effects of 

GTPs, epidemiological and clinic data showed mixed results. One major reason is due to 

lack of oral bioavailability of GTPs limits their efficacy in vivo. 

In our laboratory, we developed a novel delivery system In which GTPs are 

uniformly embedded with a polymer matrix to provide sustained release of GTPs. I 

hypothesized that administration of these GTPs via subcutaneous polymeric implants will 

circumvent the problem of limited bioavailability of GTPs and lower the effective dose 

compared to the traditional oral route. 

The release profile of these implants was investigated both in vitro and in vivo 

(Chapter 11). The results showed that GTPs were released from these PCL implants in a 

continuous fashion and the in vitro and in vivo release follows a similar fashion. More 

importantly, GTPs remain stable during preparation of the implants and in vivo within the 

time duration tested (Chapter IV), although they are not stable at alkaline or near neutral 

condition once released from implants (Chapter II). 
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In animal study, polyphenon E (poly E), a standardized green tea extract, was 

administered by PCL implants grafted subcutaneously or via the drinking water. When 

challenged by continuous low dose of benzo[a]pyrene (BP) via subcutaneous polymeric 

implants, the GTP-polymeric implants showed a significant reduction of BP-induced 

DNA adducts; however, only a modest but insignificant reduction occurred when GTPs 

were administered via the drinking water. The implant delivery system also showed 

significant reduction of the known BP diolepoxide-derived DNA adduct after 4 weeks. 

Notably, the total dose of poly E administered was> IOO-fold lower in the implant group 

than the drinking water group (Chapter IV). This supports my hypothesis that sustained 

systemic delivery of poly E significantly reduced BP-induced DNA adducts by 

overcoming oral bioavailability issue and that the effective dose of poly E was 

substantially lower than oral delivery. 

Mechanistic studies of poly E, at submicromolar plasma levels achieved in this 

study, suggest that its efficacy at inhibiting BP-induced DNA damage was not a result of 

modulation of metabolic or DNA repair pathways (Chapter IV) but from direct 

scavenging of the electrophillic metabolites, which has been detailed in my microsomal 

studies and LCIMS study in Chapter III. In the microsomal experiments, BP was 

incubated with rat liver micro somes and DNA in the presence of the green tea catechins 

or vehicle. DNA adduct formation was analyzed. The inhibitory activity of the catechins 

was in the following descending order: epigallocatechin gallate > epicatechin gallate > 

epigallocatechin > epicatechin, suggesting a correlation between the number of adjacent 

aromatic hydroxyl groups in the molecular structure and their potencies. To determine if 

the activity of these compounds was due to direct interaction of phenolic groups with 
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electrophilic metabolite(s) ofBP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-

9,1O-epoxide (anti-BPDE). Significant inhibition of DNA adduct formation was found in 

the same order as shown above. Data from ESI/MS and LCIMS study confirmed and 

characterized the anti-BPDE-EGCG adduct. The hydroxyl groups on the B ring or Dring 

of EGCG molecule can interact with anti-BPDE. My data demonstrate that green tea 

catechins are highly effective in inhibiting BP-DNA adduct formation at least, in part, 

due to direct interaction of adjacent hydroxyl groups in their structures, and that the 

activity is higher with an increasing number of functional hydroxyl groups. 

My second hypothesis is that adjuvant treatment of GTPs with a standard cancer 

chemotherapeutic agent will enhance efficacy of the drug because GTPs bear some 

distinct mechanisms of action which are different from other drugs. 

To test the second hypothesis, I investigated the combined effect of EGCG and the 

berry anthocyanidins (EGCG-ANTHOS) alone and in combination with a common 

chemotherapeutic drug cisplatin on lung cancer Hl299 cell using the MTT assay and also 

the combined effect of poly E, bilberry extract and cisplatin in xenograft nude mouse 

model. In vitro, the antiproliferative activity of EGCG-ANTHOS was found to be better 

than ANTHOS and EGCG alone. The combination of EGCG-ANTHOS and cisplatin 

increase the efficacy of cisplatin. Flow cytometric analysis for cell cycle distribution and 

apoptosis revealed cell cycle arrest and enhanced apoptosis induced by the combination 

mixture. Western blot analysis for the involved molecular targets showed that selected 

proteins (cyclin Dl, BI, p2I, PCNA, Bcl-2, PARP, etc.) associated with either cell cycle 

or apoptosis were more significantly modulated by the combination. In vivo, the 

combined effect of poly E-anthocyanidins and cisplatin caused significant inhibition on 
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tumor volume (73% reduction), which was significantly better than poly E, 

anthocyanidins and cisplatin alone groups, all of which do not show significant effect. 

However, concurrent with the efficacy from the combination treatment, toxicity is also 

obvious, manifested as the less activity of animals, body weight, elevated ALT and WBC 

count as well as the histological finding in skin. Clearly, no one generalized mechanism 

of action can explain the effects including both the efficacy and the toxicity effects. I 

investigated the effects of these compounds on the expression of cell cycle and cell 

apoptosis related proteins and the results showed the enhanced expression on some 

proteins including cyclin Dl, Bcl-2 etc. which may explain the dramatic effects of the 

combination treatment in one respect. Taken together, my data suggest that EGCG

ANTHOS may be effective as adjuvant chemotherapy in combination with suboptimal 

doses of cisplatin. However, the potential toxicity effect of the combination treatment 

should be further addressed. 
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CHAPTER VII: IMPACT OF THE RESEARCH FINDINGS AND FUTURE 

PERSPECTIVES 

We developed subcutaneous biodegradable polymeric implants which may provide 

a viable sustained release system for chemopreventive/chemotherapeutic agents with 

poor oral bioavailability. Chemopreventives are generally administered orally. On the 

other hand chemotherapeutic agents due to their poor bioavailability are usually given 

intravenously. For cancer patients, chemotherapy needs to be performed during a 

relatively long period of time. Therefore, oral administration appears to be burdensome 

and not cost-effective. Through this sustained systemic delivery system, not only can 

enhance the bioavailability but also be cost-effective. Further, patients with cancer might 

have a better compliance. One important thing for the success of cancer treatment is to 

prevent the growth of residual cancer cells after the surgery locally as well as 

systemically. Polymeric implants containing chemotherapeutic drugs will be a good 

choice to kill the possible residual cancer cells after surgery and also the floating cancer 

cells in the body. One approach is to leave the polymeric implants containing 

chemotherapeutic drugs at the surgical site, which might have residual cancer cells left 

before closing the wound. In that respect, no separate surgery needs to be done and the 

cost will be minimal. Before this sustained delivery system can be used in cancer 

patients, more work need to be performed. First, the release profile of these polymeric 
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implants is not optimized. Theoretically, a zero-order or near zero-order release profile 

will be more attractive. Second, an acceptable toxicity profile including both systemic 

and local toxicity should be the minimal requirement before any clinical application. 

Third, the dose of drugs can be precisely controlled for the purpose of efficacy and 

toxicity. 

I also illustrated a new mechanism of action of green tea polyphenols, i.e. GTPs 

inhibit BP-induced DNA adduct formation through direct quenching of the electrophilic 

metabolites of BP, which partially closed the gap between the knowledge of 

chemopreventive effects of GTPs and the way they might work. It may help the 

mechanism studies of many other phytochemicals. Some phytochemicals bearing similar 

molecular structure may work in the same way, which will be a direction for future 

studies. 

In addition, I found the synergistic effects of GTPs, anthocyanidins and cisplatin, 

suggesting the possibility of using GTPs and anthocyanidins as adjuvant treatment in 

combination with cisplatin. However, more studies need to be performed in order to 

figure out the components responding to the efficacy as well as the toxicity. The purpose 

of these studies is to find a more rational combination of these reagents which improves 

the response rate and/or reduces toxicity. The ultimate goal will be a clinical application. 
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