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A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

PHYSICS

ADVISER: FRANS PRETORIUS

JUNE 2012



c© Copyright by Fethi M Ramazanoğlu, 2012.
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Abstract

We present a detailed analysis of results from a new study of the quantum evaporation

of Callan-Giddings-Harvey-Strominger (CGHS) black holeswithin the mean-field approx-

imation. The CGHS model is a two dimensional model of quantumgravity which has

been extensively investigated in the last two decades. Moreover, Ashtekar, Taveras and

Varadarajan have recently proposed a solution to the information loss paradox within the

context of this model, which has rekindled the interest in it. However, many aspects of

black hole evaporation in this model has been overlooked because of lack of a solution

for black holes with macroscopic mass. We show that this was due to, in part, limited

numerical precision and, in part, misinterpretation of certain properties and symmetries of

the model. By addressing these issues, we were, for the first time, able to numerically

evolve macroscopic-mass black hole spacetimes of the CGHS model within the mean-field

approximation, up to the vicinity of the singularity.

Our calculations show that, while some of the assumptions underlying the standard

evaporation paradigm are borne out, several are not. One of the anticipated properties we

confirm is that the semi-classical space-time is asymptotically flat at right future null infin-

ity, I+
R , yet incomplete in the sense that null observers reach a future Cauchy horizon in

finite affine time. Unexpected behavior includes that the Bondi mass traditionally used in

the literature can become negative even when the area of the horizon is macroscopic; an
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improved Bondi mass remains positive until the end of semi-classical evaporation, yet the

final value can be arbitrarily large relative to the Planck mass; and the flux of the quantum

radiation atI+
R is non-thermal even when the horizon area is large compared to the Planck

scale. Furthermore, if the black hole is initially macroscopic, the evaporation process ex-

hibits remarkable universal properties, which offer problems to attack to the mathematical

relativity and geometric analysis communities. Our results also provide support for the full

quantum scenario developed by Ashtekar et al.
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Relation to Previous Work

Parts of Chapter 1 and Chapter 4, and most of Chapter 3 are based on [1], whose basic

results can also be found in [2]. Chapter 2 is based on [3].
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Chapter 1

Introduction

Here, we present the preliminary information that providesthe context for the following

chapters. We start with a summary of black hole evaporation and information loss as it

was introduced by Hawking. After a short section that demonstrates how results in two

dimensions can be related to the 4-dimensional case, we continue with the basics of the

Callan-Giddings-Harvey-Strominger (CGHS) model, the specific 2-dimensional model we

use to analyze black hole evaporation. We start with the classical action, and then have an

interlude in Sec. 1.3.2 to explain our motivations in examining this model, and to give a

summary of our results. This section is placed so that, readers from all backgrounds can

have an idea about the basics of the black hole evaporation and gravity in two dimensions

by this point. We continue our exposition of the CGHS model byproviding a combination

of previously known results and our novel contributions, toset the scene for the main

discussion. Lastly, we have a second look at black hole evaporation, this time from an

alternative direction that is better adapted to our work.

1.1 Black Hole Evaporation and Information Loss

Almost four decades ago, Hawking demonstrated that black holes can radiate particles with

a thermal spectrum and evaporate away [4]. This result was against the common intuition
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about black holes, and has led to tremendous amount of work inquantum mechanics, gen-

eral relativity, and many theories which aspire to combine the two. In this section, we

will give a summary of Hawking’s original results. Today, Hawking radiation and related

phenomena are standard parts of the curriculum of quantum field theory in curved space-

time courses, and pedagogical expositions can be found at introductory [5] or advanced [6]

levels. We direct the interested reader to these sources, and will give a mostly conceptual

explanation of the information loss problem.

collapsing matter

event horizon

I+

I−

i0

i+

i−

r = 0

r = 0

Figure 1.1: Penrose diagram of a black hole that forms from collapsing energy. The shaded
region is the collapsing energy, outside of which we have a Schwarzschild solution.i±

are the past and future time-like infinities,i0 is the spacelike infinity, andI± are the past
and future null infinities. The past image ofI+ does not cover all of the spacetime, which
means there are trapped surfaces. The event horizon, the boundary of the trapped region is
shown by a dashed line. Singularity atr = 0 is hidden behind the event horizon.

Following the original calculation [4], we begin by considering a spacetime where en-

ergy collapses to form a black hole. In the case of the spherically symmetric collapse,
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the Penrose diagram for this spacetime is given in Fig. 1.1. On this fixed curved space-

time, consider a quantum fieldφ satisfying∇a∇aφ = 0 (∇ being the covariant derivative),

which has a mode expansion

φ =
∑

i

(

fiai + f̄ia
†
i

)

(1.1)

wherefi satisfy the wave equation and form a complete orthonormal base at the past null

infinity I−. I− is a Cauchy surface, once we know the initial data on it, we know φ

everywhere. Hence, Eq. 1.1 can be used to expressφ everywhere.

We cannot repeat the exact same procedure forI+, since it is not a Cauchy surface.

This is because interior of the event horizon is not in the past image ofI+, hence we need

to know the data on the event horizon as well. If we choose the solutions of the wave

equationpi that are purely outgoing, i.e. with no Cauchy data on event horizon, andqi that

area purely ingoing, i.e. they have zero Cauchy data onI+, one can say

φ =
∑

i

(

pibi + p̄ib
†
i + qici + q̄ic

†
i

)

(1.2)

outside the horizon. Since either of the mode expansions is valid, we can expresspi in

terms offi, and

bi =
∑

j

(

αijaj − β̄ija
†
j

)

(1.3)

for someαij andβij. The state with no particles coming in fromI− is defined as

ai|0〉 = 0 for all i . (1.4)

On the other hand, this same state is not necessarily annihilated by other annihilation oper-

ators associated with a different mode expansion. Specifically,

〈0|b†ibi|0〉 =
∑

j

|βij|2 . (1.5)
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which is in general nonzero. Remember thatbi can be interpreted as the annihilation oper-

ator from the point of view ofI+, andb†ibi is the number counting operator for the mode

i. This has a simple interpretation: in curved spacetime, vacuum is observer dependent.

Even if we start with a vacuum state in the past, this may lead to a state with particles in

the asymptotic future.

When|βij |2 is calculated, the expected number of particles with frequencyω observed

in the distant future is given by,

〈n̂ω〉 =
Γ(ω)

e
2πω
~κ − 1

(1.6)

whereκ is the surface gravity of the black hole. This is the emissionspectrum of a black

body with temperature~κ
2π

. Γ(ω) is called thegreybody factorand can be thought of ac-

counting for the fact that the radiation can scatter from thespacetime curvature and fall

back into the black hole. The exact expression forΓ(ω) as well as slight modifications

to the formula when charge and angular momentum are introduced are not crucial for our

discussion and can be found in the detailed treatments we mentioned.

In 4 spacetime dimensionsκ is inversely proportional toM , the mass of the black hole.

Even though we fixed the background metric and ignored the backreaction, in a more real-

istic treatment, the black hole will lose mass due to Hawkingradiation, and its temperature

will rise. Radiated power will increase, leading to a runaway process where finally the

black hole and the event horizon disappears in finite proper time. At this point, we are left

with thermal radiation, which does not carry any information, however, in general, the mat-

ter that formed the black hole in the first place carried some information. Thus,information

is lost in the evolution of a black hole space time. In both quantum field theory and general

relativity, evolution is unitary, but something has been broken when we tried to combine

the two. This is the celebratedinformation loss problem, which is sometimes also known

as the information loss “paradox”.

Information may very well be lost since we do not have an exacttheory of quantum

gravity, but many physicists found this possibility hard todigest and have been looking for
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places where the missing information could have gone. Thereis no agreed upon resolution

so far.

We should perhaps mention one possible shortcoming of Hawking’s calculation: ignor-

ing the backreaction. After all, information loss arises when the black hole shrinks, which

is not explicitly captured in the fixed background calculation we summarized. However,

this was foreseen in [4], where it is argued that the semiclassical picture of a fixed curved

spacetime should hold until the curvature reaches the Planck scale. This would mean that,

if quantum gravity or beyond-the-leading semiclassical corrections are to resolve the issue,

they can do so only at the very last stages of the life of the black hole. By this point, almost

all of the mass is lost, hence it is hard to imagine how such a small remnant can hold all the

information about the matter that originally collapsed to form a macroscopic black hole.

We will give another short summary of black hole evaporationat the end of this chapter,

in Sec. 1.4, which will be adapted to the 2-dimensional case.

1.2 General Relativity in Spherical Symmetry

In two dimensions, the Riemann tensor has only one independent component (e.g.R1010)

due to its inherent symmetries, which can be captured by the Ricci scalar

Rabcd = R (gacgbd − gadgbc) (1.7)

A direct consequence of this fact is an Einstein tensor that vanishes identically

Gab = Rab −
1

2
Rgab = 0 . (1.8)

Hence, Einstein equations are not useful in two dimensions.However, there is no shortage

of work on gravity in two dimensions, which go back many decades (for example, see [7]

for a collection of different approaches).
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Our main aim in analyzing two dimensional models is gaining insight into the 4-

dimensional case, and an important case to connect the two isthe spherically symmetric

(S−wave) sector of the Einstein-Klein-Gordon system. Consider the spherical collapse of

a massless scalar fieldf in 4 space-time dimensions. Mathematically, it is convenient to

write the coordinater which measures the physical radius of metric 2-spheres asr = e−φ/κ

whereκ is a constant with dimensions of inverse length. The space-time metric 4gab can

then be expressed as

4gab = gab + r2sab := gab +
e−2φ

κ2
sab , (1.9)

wheresab is the unit 2-sphere metric and gab is the 2-metric in the r-t plane. In terms of

these fields, the action for this Einstein-Klein-Gordon sector can be written as

S̃(g, φ, f) =
1

8πG4

4π

κ2

∫

d2x
√

|g| e−2φ (R+ 2∇aφ∇aφ

+ 2e
−2φκ2)− 1

2

∫

d2x
√

|g| e−φ∇af∇af (1.10)

whereG4 is the 4-dimensional Newton’s constant,∇ is the derivative operator and Rthe

scalar curvature of the 2-metric gab. The significance of the bold faced terms will be ex-

plained in the next section. The gravitational field is now coded in a 2-metric gab and a

dilaton fieldφ, and the theory has a 2-dimensional gravitational constantG of dimension

[ML]−1 in addition to the constantκ of dimension[L]−1 (κ2 is sometimes regarded as the

cosmological constant).1

An important connection to four dimensions from this effectively two dimensional

model arises when we note thate−2φ measures the area of spheres. Hence, once can deduce

the location of the apparent horizon by the rate of change ofφ. We will use these facts in

the following analysis of the CGHS model as well.

1In this paper we setc = 1 but keep Newton’s constantG and Planck’s constant~ free. Note that since
G~ is aPlanck numberin 2 dimensions, setting both of them to 1 is a physical restriction.
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1.3 The Callan-Giddings-Harvey-Strominger Model

The Callan-Giddings-Harvey-Strominger (CGHS) model [8] is a 2-dimensional model of

quantum gravity which has attracted attention due to the fact that it has black hole solu-

tions with many of the qualitative features of four dimensional black holes, while being

technically easier to investigate. Various properties of black holes in this model, and other

models inspired by it, have been studied extensively using analytical and numerical meth-

ods [9, 10, 11]. Detailed pedagogical reviews can be found in[12].

In this section, we will start with the classical CGHS actionand continue with the

semiclassical results some of which were long known and someof which were dicovered

by us [1] . CGHS model has recently come to the forefront in theinvestigation of the black

hole information loss problem by Ashtekar, Taveras and Varadarajan [13], whose approach

we follow in our notation and definition of variables.

1.3.1 The Classical CGHS Model

The CGHS action is given by [8]:

S(g, φ, f) =
1

G

∫

d2x
√

|g| e−2φ (R+ 4∇aφ∇aφ+4κ2)

−
N
∑

i=1

1
2

∫

d2x
√

|g|∇af (i)∇af
(i) . (1.11)

where∇ and Rare the covariant derivative operator and the scalar curvature of the 2-metric

gab respectively,φ is a dilatonic field, andf i areN identical massless scalars. Note that this

action is closely related to the one for theS−wave sector of general relativity and some

comments are due on this similarity. The only difference is in some coefficients which

appear bold faced in Eq. 1.10. This is why one expects that analysis of the CGHS model

should provide useful intuition for evaporation of spherically symmetric black holes in 4

dimensions, which is confirmed by further study.
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On the other hand, the two theories do differ in some important ways, which will be

discussed in Sec. 3.5. Here, we only note one: since the dilaton field does not appear in

the scalar field action of Eq. 1.11, dynamics off decouples from that of the dilaton. This

leads to analytical solutions for the classical CGHS equations, which is one of the reasons

we investigate this model.

Now, since our space-time is topologicallyR2, the physical 2-metric gab is conformally

flat. We can thus fix a fiducial flat 2-metricηab and write gab = Ωηab, thereby encoding the

physical geometry in the conformal factorΩ and the dilaton fieldφ.

We start with the equation of motion for thef fields2, which is simply the wave equa-

tion. Since the wave equation is conformally invariant,

✷(g)f = 0 ⇔ ✷(η)f = 0 , (1.12)

f is only subject to the wave equation in the fiducial flat space which can be easily solved,

without any knowledge of the physical geometry governed by(Ω, φ). This is a key simpli-

fication which is not shared by the scalar fieldf in the spherically symmetric gravitational

collapse described by Eq. 1.10.Denote byz± the advanced and retarded null coordinates of

η so thatηab = 2∂(az
+ ∂b)z

−. Then a general solution to Eq. 1.12 on the fiducial Minkowski

space(Mo, η) is simply

f(z±) = f+(z
+) + f−(z

−) (1.13)

wheref± are arbitrary well behaved functions of their arguments. Inthe classical CGHS

theory, one setsf− = 0 and focuses on the gravitational collapse of the left movingmode

f+. As one might expect, the true degree of freedom lies only inf+, i.e., f+ completely

determines the geometry. But in the classical CGHS model, there is a further unexpected

simplification:the full solution can be expressed as an explicit integral involving f+!

2since allf (i) are identical, we will sometimes suppress the index
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For later purposes, following [13], let us set

Φ := e−2φ

and introduce a new fieldΘ via

Θ = Ω−1Φ so that gab = Θ−1Φ ηab

Then the geometry is completely determined by the pair of fieldsΘ,Φ. The field equations

obtained by varying Eq. 1.11 are given by

∂+ ∂− Φ+ κ2Θ = 0

Φ∂+ ∂− lnΘ = 0 . (1.14)

Moreover, we also have constraint equations

−∂2
+ Φ + ∂+ Φ∂+ lnΘ = GT++

−∂2
− Φ + ∂− Φ∂− lnΘ = GT−−, (1.15)

whereTab is the scalar field stress-energy tensor. Constraint equations can be viewed as

fixing the gauge conditiong++ = g−− = 0. They are only needed to be imposed for the

initial data, and are then preserved by the evolution equations.

These equations can be solved to expressΘ,Φ directly in terms off+. The resulting

expressions forΘ andΦ are simpler in terms of ‘Kruskal-like’ coordinatesx± given by

κx+ = eκz
+

, and κx− = −e−κz− . (1.16)

Given any regularf+, the full solution to the classical CGHS equations can now be

9



Figure 1.2: Penrose diagram of the CGHS black hole formed by the gravitational collapse
of a left moving fieldf+. The physical space-time is that part of the fiducial Minkowski
space which is to the past of the space-like singularity.

written as

Θ = −κ2x+ x−

Φ = Θ− NG

2

∫ x+

0
dx̄+

∫ x̄+

0
d¯̄x+ (∂f+/∂ ¯̄x

+)2 . (1.17)

Note that, given any regularf , the fields(Θ,Φ) of Eq. 1.17 that determine the geometry

are also regular everywhere on the fiducial Minkowski manifold Mo.

How can the solution then represent a black hole?It turns out that, for any regularf+,

the fieldΦ of Eq. 1.17 vanishes along a space-like lineℓs. Along ℓs then, gab vanishes,

whence the covariant metric gab fails to be well-defined. It is easy to verify that the Ricci

scalar of gab diverges there. This is the singularity of the physical metric g. The physical
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space-time(M, gab) occupies only that portion ofMo which is to the past of this singularity

(see Fig. 1.2).

But doesℓs represent ablack holesingularity? It is easy to check that(M, gab) admits

a smooth null infinityI which has 4 components. The reason for the diamond-like confor-

mal diagram rather than the triangular diagrams familiar from 4 dimensions is easy: In 4

dimensions, we usually suppress the angular coordinates, and the spatial coordinater is in

the interval[0∞), on the other hand, in an intrinsically two dimensional model, the spatial

coordinate is in the interval(−∞ ∞) and can reach to two different infinities.I−
L andI−

R

coincide with the correspondingIo−
L andIo−

R of Minkowski space-time(Mo, η) while I+
L

andI+
R are proper subsets of the MinkowskianIo+

L andIo+
R . Nonetheless,I+

R is complete

with respect to the physical metric gab and its past does not cover all ofM . Thus, there

is indeed an event horizon with respect toI+
R hiding a black hole singularity. However,

unfortunatelyI+
L is not complete with respect to gab. Therefore, strictly speaking we can-

not even ask3 if there is an event horizon —and hence a black hole— with respect toI+
L !

Fortunately, it turns out that for the analysis of black holeevaporation —and indeed for

the issue of information loss in full quantum theory— onlyI+
R is relevant.To summarize

then, even though our fundamental mathematical fields(Θ,Φ) are everywhere regular on

full Mo, a black hole emerges because physics is determined by the Lorentzian geometry

of g.

To make our case more concrete, let us examine the case of a shock wave pulse given

by
N

2
(∂f+/∂x

+)2 = Mδ(x+ − x+
0 ) (1.18)

which leads to

Φ = Θ− GM

κ

(

κx+ − 1
)

H
(

κx+ − 1
)

(1.19)

whereH is the step function and where we choseκx+
0 = 1 (simply by shifting the coordi-

3Even in 4 dimensions, the black hole region is defined asB := M \ J−(I+) providedI+ is complete.
If we drop the completeness requirement, even Minkowski space would admit a black hole! See, e.g., [14].
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nates such thatz+0 = 0). The conformal factorΩ vanishes when

κx+ =
GM

κ

(

1− 1

κx+

)

(1.20)

leading to the singularity in Fig. 1.2.

To analyze the Hawking evaporation, we once more change the coordinates to

eκy
+

= eκz
+

eκy
−

= eκz
− − GM

κ
(1.21)

which are the affine coordinates onI+
R , for which the metric is flat as y+ → ∞. We start

with the expression

〈0z| : T−− :z |0z〉 = 0 , (1.22)

where|0z〉 is the vacuum which is annihilated by the annihilation operators inz− coordi-

nates, and: T−− :z is the operator of the normal ordered energy-momentum tensor of thef

field. The effect of a change of coordinates is given by [12]

: T−− :y=

(

dz−

dy−

)2

: T−− :z −
N~

12

(

dz−

dy−

)3/2(
d

dz−

)2(
dz−

dy−

)1/2

(1.23)

which finally leads to

FHaw = 〈0z| : T−− :y |0z〉 =
N~κ2

48

[

1−
(

1 +
GM

κ
eκy

−

)−1
]

, (1.24)

The straightforward interpretation of this expression is that if we send in the vacuum

state, fromI−
L prepared with respect to the affine coordinates there,z±, this will be inter-

preted as a flux of energy by an observer onI+
R , the Hawking radiation. The details of

the fact that this flux is thermal and an alternative derivation of the expression for the flux

through the conformal anomaly can be found in [12]. Note thatthis flux is constant at late
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times due to the fact that the surface gravity of a black hole in our 2-dimensional model is

an absolute constant. This is in contrast to the case in 4 dimensions, where surface gravity

increases with decreasing black hole mass.

Although a black hole does result from gravitational collapse in the CGHS model, it

follows from the explicit solution Eq. 1.17 that one does notencounter all the rich behavior

associated with the classical spherical collapse in 4 dimensions. In particular there are

no critical phenomena [15, 16], essentially because there is no threshold of black hole

formation: a black hole results no matter how weak the infalling pulsef+ is. However, the

situation becomes more interesting even in this simple model once one allows for quantum

evaporation and takes into account its back reaction.

1.3.2 Motivation and Outline of the Results

Now that we have an idea of black hole evaporation and gravityin two dimensions, it is

a good time to give a summary of our results. The basic idea, aswe will show in the

next chapter, is adding the leading order corrections to thefixed-background evaporation

calculation of the CGHS model, and investigating the changes introduced by this. We will

see that, at this semiclassical level, also called the mean-field approximation (MFA) level,

our job is still solving two coupled partial differential equations similar to Eq. 1.14, but this

time with non-vanishing right hand sides, thus, we will not be working with quantum states

except for a few instances where we give some conceptual explanations.

No closed form solution is known for the CGHS evolution equations at the MFA level,

and we will be led to use numerical methods. Our work is the final one in a long line

of numerical studies, but all past work had the shortcoming of not being able to analyze

macroscopic-mass black holes, and for the most part, not being aware of the distinction be-

tween the macroscopic and microscopic-mass regimes, whichwe will explain shortly. To

make this distinction clear, we first give further analytic analysis of the CGHS equations,

and clarify certain misconception in the literature in sections 1.3.3, 1.3.4 and 1.3.5. In these
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sections, we also give some novel results that we later use toextract information about the

semiclassical spacetime, once we have our numerical solution. We have seen in the pre-

vious chapter that, the classical CGHS model is considerably simpler than the spherically

symmetric sector of the 3+1-dimensional Einstein-Klein-Gordon system, which was an ini-

tial motivation to work on it. Even with these simplifications, at the MFA level, solving the

equations numerically and capturing all the important physics is a very challenging task.

We spend a whole chapter, Chapter. 2, to give the details of our methods and explain why

we needed them.

Most of the the physical results that we extract from the numerical solution are in Chap-

ter. 3. One major result we should mention is the fact that, atthe MFA level, the standard

black hole evaporation paradigm seems to be broken (Sec. 3.3). The radiation from the

black hole is not thermal, even at times not close to the end-point of the singularity.I+
R

is not complete, which manifests itself with the fact that the affine parameter y+ is finite

at the end-point of the singularity (see Eq. 1.21 for contrast). Overall, the picture is in

close agreement with the information loss resolution scenario of Ashtekar et al [13], which

we summarize in Sec. 1.4. We have also discovered a phenomenawe nameduniversality,

which is the fact that as long as the black hole formspromptlyand the infalling energy is

macroscopic, the physics onI+
R , hence the radiated energy, is independent of the shape of

the infalling energy profile, and only depends on the total infalling mass. Moreover, physics

onI+
R is identical near the end-point of the singularity, even fordifferent initial-mass black

holes. In short, all macroscopic black holes eventually behave in the sameuniversalway

from the point of view of an observer onI+
R . Aside from these major points, we also clarify

the definition of the black hole mass and radiated energy in the CGHS model, and describe

the nature of the Cauchy horizon at the end-point of the singularity. We should mention that

not all of our findings are different from the expectations inthe field, and we also report,

for example, the asymptotic flatness of the metric near the future null infinity (Sec. 3.2)

In Chapter. 4, we will give a final summary and interpret our results further, specifically,
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we will try to establish connections to the 3+1-dimensionalcase. Universality, the way we

have just summarized it, gives the impression that the infalling information is indeed lost in

the radiated energy from the black hole. However, we also claimed that our results support

the resolution of the information loss paradox. A careful analysis of these two issues, and a

discussion of their separate nature in the CGHS model will bediscussed in Sec. 4.2. Here

we will only mention that, the analysis is based on the differences of the causal structures

of 1+1-dimensional (Fig.1.1) and 3+1-dimensional (Fig. 1.2) spacetimes. This discussion

also gives us a guide about how to approach the spherically symmetric sector of the 3+1-

dimensional spacetime in future studies.

1.3.3 The Semi-Classical CGHS Model

To incorporate back reaction, one can use semi-classical gravity where matter fields are

allowed to be quantum but geometry is kept classical. Here, we will implement this idea

using the mean field approximation of [13, 17] where one ignores the quantum fluctuations

of geometry —i.e., of quantum fields(Θ̂, Φ̂)— but keeps track of the quantum fluctuations

of matter fields. The validity of this approximation requires a large number of matter fields

f̂ (i), with i = 1, . . .N (whence it is essentially the largeN approximation [8, 12]). Then,

there is a large domain in space-time where quantum fluctuations of matter can dominate

over those of geometry. Back reaction of the quantum radiation modifies classical equations

with terms proportional toNG~. However, dynamics of the physical metricg is again

governed by PDEs on classical fields,(Θ,Φ), which we write without an under-bar to

differentiate them from solutions(Θ,Φ) to the classical equations (N~ = 0). In the domain

of applicability of the mean-field approximation, they are given by expectation values of

the quantum operator fields:Θ = 〈Θ̂〉 andΦ = 〈Φ̂〉. The difference from the classical case

is that the coefficients of the PDEs and components of the metric gab now contain~.

In the mean-field approximation, we capture the idea that it is only the left moving

modes off̂ (i) that undergo gravitational collapse by choosing the initial state appropriately:

15



Figure 1.3: Penrose diagram of an evaporating CGHS black hole in the mean field approx-
imation. Because of quantum radiation the singularity now ends in the space-time interior
and does not reachI+

L or I+
R (compare with Fig. 1.2.) Space-time admits a generalized

dynamical horizon whose area steadily decreases. It meets the singularity at its (right) end
point. The physical space-time in this approximation excludes a future portion of the fidu-
cial Minkowski space (bounded by the singularity, the last ray and the future part of the
collapsing matter).

we let this state be the vacuum state for the right moving modes f̂ (i)
− and a coherent state

peaked at any given classical profilef o
+ for eachof the N left moving fieldsf̂ (i)

+ . This

specification atI− defines a (Heisenberg) state|Ψ〉. Dynamical equations are obtained by

taking expectation values of the quantum evolution equations for (Heisenberg) fields in this

state|Ψ〉 and ignoring quantum fluctuations of geometry but not of matter. Technically, this

is accomplished by substituting polynomialsP (Θ̂, Φ̂) in the geometrical operators with

polynomialsP (〈Θ̂〉, 〈Φ̂〉) := P (Φ,Θ) of their expectation values. For the matter fields

f̂ (i), on the other hand, one does not make this substitution; one keeps track of the quantum
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fluctuations of matter. These lead to a conformal anomaly: While the trace of the stress-

tensor of scalar fields vanishes in the classical theory due to conformal invariance, the

expectation value of this trace now fails to vanish. Therefore equations of motion of the

geometry acquire new source terms of quantum origin which modify its evolution.

To summarize, then, in the mean-field approximation the dynamical objects are again

just smooth fieldsf (i),Θ,Φ (representing expectation values of the corresponding quantum

fields). While there areN matter fields, geometry is still encoded in the two basic fields

Θ,Φ which determine the space-time metricgab via gab = Ωηab := Θ−1Φ ηab. Dynamics

of f (i),Θ,Φ are again governed by PDEs but, because of the trace anomaly,equations

governingΘ,Φ acquire quantum corrections which encode the back reactionof quantum

radiation on geometry. More details can be found in [13].

The basic quantitative difference in the semiclassical case comes from the trace anomaly.

In the classical theory, the trace of the energy-momentum tensorT a
a vanishes. Due to one-

loop quantum contributions, however, it is nonzero at the semi-classical level, and forN

scalar fields is given by

〈T̂ a
a 〉 =

N~

24
R ⇒ 〈T̂+−〉 = N̄~ ∂+ ∂− ln ΦΘ−1 . (1.25)

whereR is the Ricci scalar and̄N = N/24.

As in 4-dimensional general relativity (and the classical CGHS model), there are two

sets of PDEs: Evolution equations and constraints which arepreserved in time. As in the

classical theory, it is simplest to fix the gauge and write these equations using the advanced

and retarded coordinatesz± of the fiducial Minkowski metric. The evolution equations are

given by

✷(η) f
(i) = 0 ⇔ ✷(g)f

(i) = 0 (1.26)

17



for matter fields and

∂+ ∂− Φ+ κ2Θ = G 〈T̂+−〉 ≡ N̄G~ ∂+ ∂− ln ΦΘ−1 (1.27)

Φ∂+ ∂−lnΘ = −G 〈T̂+−〉 ≡ −N̄G~ ∂+ ∂− ln ΦΘ−1

(1.28)

for the geometrical fields where,̄N = N/24. The constraint equations tie the geometrical

fieldsΘ,Φ to the matter fieldsf (i). They are preserved in time. Therefore we can impose

them just atI− where they take the form:

−∂2
− Φ+ ∂− Φ∂− lnΘ = G 〈T̂−−〉 =̂ 0 (1.29)

and

−∂2
+ Φ + ∂+ Φ∂+ lnΘ = G 〈T̂++〉 =̂ 12N̄G (∂+f

o
+)

2 (1.30)

where=̂ stands for ‘equality atI−.’

We should mention that for any given finiteN , there is nonetheless a region in which

the quantum fluctuations of geometry are simply too large forthe mean field approxima-

tion to hold. This is reflected in the fact that a singularity persists in this approximation,

although it is now weakened. Evolution equations cannot be solved in closed form any

more, hence devising numerical approaches to the solution was a major part of our analy-

sis. To demonstrate the weakening of the singularity, let usrecast the evolution equations

to give

(Φ− 2N̄G~)∂+ ∂− Φ = −κ2(Φ− N̄G~)Θ− N̄G~ Φ−1∂+Φ∂−Φ

∂+ ∂− lnΘ = − N̄G~

Φ− N̄G~
∂+ ∂− ln Φ . (1.31)

The mixed derivative of the fields diverges whenΦ now assumes anon-zerovalueNG~/12,
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unless the right hand side vanishes. The right hand side of the first equation does not vanish

at the critical value ofΦ, and the divergence indeed occurs which has been also seen inall

previous numerical studies [12]. However, at the singularity, the conformal factor does

not diverge, beingΘΦ−1, whencegab is invertible. Furthermore,gab is alsoC0 across this

singularity but notC1. Finally, because of back-reaction, the strength of the singularity

diminishes as the black hole evaporates and the singularityends in the interior of space-

time; in contrast to the classical singularity, it does not reachI+
R (see Fig. 1.3). It is the

dynamics ofgab that exhibit novel features.

We will conclude this discussion of the field equations with afew remarks, and a de-

scription of our initial conditions. Becausêf (i)
− are all in the vacuum state, it follows imme-

diately that, as in the classical theory, all the right moving fields vanish;f (i)
− = 0 also in the

mean-field theory. Similarly, becausêf (i)
+ are in a coherent state peaked at some classical

profile f o
+, it follows that, for alli, f (i)

+ (z+) = f o
+(z

+) (on the entire fiducial Minkowski

manifoldMo). Thus, as far as matter fields are concerned, there is no difference between

the classical and mean-field theory. Similarly, as in the classical theory, we can integrate

the constraint equations to obtain initial data on two null hypersurfaces. We will assume

thatf (o)
+ vanishes to the past of the linez+ = z+o . Let I−L denote the linez+ = z+o andI−R

the portion of the linez− = z−o ≪ −1/κ to the future ofz+ = z+o . We will specify initial

data on these two surfaces. The solution to the constraint equations along these lines is not

unique and, as in the classical theory we require additionalphysical input to select one. We

will again require thatΦ be in the dilaton vacuum to the past ofI−L and by continuity on

I−L . Following the CGHS literature, we will take it to beΦ = eκ(z
+−z−). 4 Thus, the initial

values of semi-classicalΘ,Φ coincide with those of classicalΘ,Φ:

Θ =̂ eκ(z
+
o −z−) on all of I−L andI−R (1.32)

4 Strictly, sinceΦ̂ is an operator on the tensor product ofN Fock spaces, one for eacĥf (i), the expectation
value isNeκ(z

+
−z

−). But this difference can be compensated by shiftingz−. We have chosen to use the
convention in the literature so as to make translation between our expressions and those in other papers easier.
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and

Φ =̂ Θ on I−L and,

Φ =̂ Θ− 12N̄G
∫ z+

−∞
dz̄+ eκz̄

+ ∫ z̄+

−∞
d¯̄z+ e−κ¯̄z+ (

∂f
(o)
+

∂ ¯̄z+
)2

on I−R (1.33)

(see Eq. 1.17). The difference in the classical and semi-classical theories lies entirely in

the evolution equations (1.27) and (1.28). In the classicaltheory, the right hand sides of

these equations vanish whence one can easily integrate them. In the mean-field theory,

this is not possible and one has to take recourse to numericalmethods. Finally, while our

analytical considerations hold for any regular profilef o
+, to begin with we will follow the

CGHS literature in Sec. 3.2 and Sec. 3.3 and specifyf o
+ to represent a collapsing shell as

we did for the classical equations:

12N̄

(

∂f o
+

∂z+

)2

= MADM δ(z+) (1.34)

so the shell is concentrated atz+ = 0. In the literature this profile is often expressed, using

x+ in place ofz+, as:

12N̄

(

∂f̃ o
+

∂x+

)2

= MADM δ(x+ − 1

κ
) (1.35)

wheref̃ (o)(x+) = f (o)(z+). In Sec. 3.4 we will also discuss results from a class of smooth

matter profiles.

1.3.4 Singularity, horizons and the Bondi mass

The classical solution Eq. 1.17 has a singularityℓs whereΦ vanishes. As remarked in

section 1.3.3 , in the mean-field theory, a singularity persists but it is shifted toΦ = 2N̄G~

[12]. The metricgab = Θ−1Φ ηab is invertible and continuous there but notC1. Thus the

singularity is weakened relative to the classical theory. Furthermore, its spatial extension is
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diminished. As indicated in Fig.1.3, the singularity now originates at a finite point on the

collapsing shell (i.e. does not extend toI+
L ) and it ends in the space-time interior (i.e., does

not extend toI+
R ).

What is the situation with horizons? Recall from Sec. 1.2 that, in the spherically sym-

metric reduction from 4 dimensions,r2 = e−2φ/κ2 := Φ/κ2 and each round 2-sphere in

4-dimensional space-time projects down to a single point onthe 2-manifoldM . Thus, in

the CGHS model we can think ofΦ as defining the ‘area’ associated with any point. (It is

dimensionless because inD space-time dimensions the area of spatial spheres has dimen-

sion [L]D−2.) Therefore it is natural to define a notion of trapped points: A point in the

CGHS space-time(M, g) is said to befuture trappedif ∂+Φ and∂−Φ are both negative

there andfuture marginally trappedif ∂+Φ vanishes and∂−Φ is negative there [12, 18].

In the classical solution resulting from the collapse of a shell Eq. 1.34, all the marginally

trapped points lie on the event horizon and their area is a constant; we only encounter an

isolated horizon [19] (see Fig.1.2). The mean-field theory is much richer because it incor-

porates the back reaction of quantum radiation. In the case of a shell collapse, the field

equations now imply that a marginally trapped point first forms at a point on the shell and

has area [2]

ainitial := (Φ− 2N̄G~)|initial

= −N̄G~+ N̄G~

(

1 +
M2

ADM

N̄2~2κ2

)

1
2

(1.36)

As time evolves, this areashrinksbecause of quantum radiation [12]. The world-line of

these marginally trapped points forms ageneralized dynamical horizon(GDH), ‘general-

ized’ because the world-line is time-like rather than space-like [19]. (In 4 dimensions these

are called marginally trapped tubes [20].) The area finally shrinks to zero. This is the point

at which the GDH meets the end-point of the (weak) singularity [10, 12, 21] (see Fig.1.3).

It is remarkable that all these interesting dynamics occur simply because, unlike in the
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classical theory, the right sides of the dynamical Eqs. 1.27, 1.28 are non-zero, given by the

trace-anomaly.

We will see in section 3.2 that while the solution is indeed asymptotically flat atI+
R , in

contrast to the classical solution,I+
R is no longer complete.More precisely, the space-time

(M, g) now has a future boundary at the last ray —the null line toI+
R from the point at

which the singularity ends— and the affine parameter alongI+
R with respect togab has a

finite valueat the point where the last ray meetsI+
R . Therefore, in the semi-classical theory,

we cannot even ask if this space-time admits an event horizon. While the notion of an event

horizon is global and teleological, the notion of trapped surfaces and GDHs is quasi-local.

As we have just argued, these continue to be meaningful in thesemi-classical theory. What

forms and evaporates is the GDH.

Next, let us discuss the structure at null infinity [13, 17]. As in the classical theory, we

assume that the semi-classical space-time is asymptotically flat at I+
R in the sense that, as

one takes the limitz+ → ∞ along the linesz− = const, the fieldsΦ,Θ have the following

behavior:

Φ = A(z−) eκz
+

+B(z−) +O(e−κz+)

Θ = A(z−) eκz
+

+ B(z−) +O(e−κz+) , (1.37)

whereA,B,A,B are some smooth functions ofz−. Note that the leading order behavior

in Eq. 1.37 is the same as that in the classical solution. The only difference is thatB,B

are not required to be constant alongI+
R because, in contrast to its classical counterpart,

the semi-classical space-time is non-stationary near nullinfinity due to quantum radiation.

Therefore, as in the classical theory,I+
R can be obtained by taking the limitz+ → ∞ along

the linesz− = const. The asymptotic conditions (1.37) onΘ,Φ imply that curvature —i.e.,

the Ricci scalar ofgab— goes to zero atI+
R . We will see in section 3.2 that these conditions

are indeed satisfied in semi-classical space-times that result from collapse of matter from
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I−
R .

Given this asymptotic fall-off, the field equations determine A and B in terms ofA

andB. The metricgab admits anasymptotictime translationta which is unique up to

a constant rescaling and the rescaling freedom can be eliminated by requiring that it be

(asymptotically) unit. The functionA(z−) determines the affine parametery− of ta via:

e−κy− = A(z−). (1.38)

Thusy− can be regarded as the unique asymptotic time parameter withrespect togab (up

to an additive constant). NearI+
R the mean-field metricg can be expanded as:

dS2 = −
(

1 +Beκ(y
−−y+) +O(e−2κy+)

)

dy+ dy− (1.39)

wherey+ = z+.

Finally, equations of the mean-field theory imply [13, 17] that there is a balance law at

I+
R :

d

dy−
[ dB

dy−
+ κB + N̄~G

(d2y−

dz−2
(
dy−

dz−
)−2
) ]

= −N̄~G

2

[d2y−

dz−2
(
dy−

dz−
)−2

]2
. (1.40)

In [13], this balance law was used to introduce a new notion ofBondi mass and flux. The

left side of (1.40) led to the definition of the Bondi mass:

MATV
Bondi =

dB

dy−
+ κB + N̄~G

(d2y−

dz−2
(
dy−

dz−
)−2
)

, (1.41)

while the right side provided the Bondi flux:

FATV =
N̄~G

2

[d2y−

dz−2
(
dy−

dz−
)−2

]2
, (1.42)
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so that we have:
dMATV

Bondi

dy−
= −FATV . (1.43)

By construction, as in 4 dimensions, the flux is manifestly positive so thatMATV
Bondi decreases

in time. Furthermore, it vanishes on an open region if and only if y− = C1z
− + C2 for

some constantsC1, C2, i.e. if and only if the asymptotic time translations definedby the

physical, mean field metricg and by the fiducial metricη agree atI+
R , or, equivalently,if

and only if the asymptotic time translations ofg on I−
L andI+

R agree. Finally, note that

gab = ηab, f± = 0, Φ = Θ = exp κ(z+−z−), is a solution to the full mean-field equations.

As one would expect, bothMATV
Bondi andFATV vanish for this solution.

The balance law is just a statement of conservation of energy. As one would expect,~

appears as an overall multiplicative constant in Eq. 1.42; in the classical theory, there is no

flux of energy atI+
R . If we set~ = 0, MATV

Bondi reduces to the standard Bondi mass formula

in the classical theory (see e.g., [18]). Previous literature [8, 12, 18, 21, 22, 23, 24] on the

CGHS model used this classical expression also in the semi-classical theory. Thus, in the

notation we have introduced here, the traditional definitions of mass and flux are given by

MTrad
Bondi =

dB

dy−
+ κB , (1.44)

and

FTrad = FATV + N̄~G
d

dy−
(d2y−

dz−2
(
dy−

dz−
)−2
)

. (1.45)

We will see in Sec. 3.3 that numerical simulations have shownthatMTrad
Bondi can become

negative and large even when the horizon area is large, whileMATV
Bondi remains positive

throughout the evaporation process.
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1.3.5 Scaling and the Planck regime

Finally, we note a scaling property of the mean-field theory,which Ori recently and inde-

pendently also uncovered [25] and which is also observed in other quantum gravitational

systems [26]. We were led to it while attempting to interpretnumerical results which at first

seemed very puzzling; it is thus a concrete example of how useful the interplay between

numerical and analytical studies can be. Let us fixz± and regard all fields as functions

of z±. Consider any solution(Θ,Φ, N, f
(i)
+ ) to our field equations, satisfying boundary

conditions (1.32) and (1.33). Then, given a positive numberλ, (Θ̃, Φ̃, Ñ , f̃
(i)
+ ) given by5

Θ̃(z+, z−) = λΘ(z+, z− +
lnλ

κ
), Ñ = λN

Φ̃(z+, z−) = λΦ(z+, z− +
lnλ

κ
), f̃

(i)
+ (z+) = f

(i)
+ (z+)

is also a solution satisfying our boundary conditions, where, as before, we have assumed

that all scalar fields have an identical profilef o
+. Note thatf o

+ is completely general; we

have not restricted ourselves, e.g., to shells. Under this transformation, we have

ḡab → ḡab

y− → y− − 1

κ
lnλ

MADM → λMADM

MATV
Bondi → λMATV

Bondi

FATV → λFATV

aGDH → λ aGDH (1.46)

whereaGDH denotes the area of the generalized dynamical horizon. Thissymmetry implies

that, as far as space-time geometry and energetics are concerned,only the ratiosM/N

5The shift inz− is needed because we chose to use the initial valueΘ = eκ(z+ − z−) on I−L as in the
literature rather thanΘ = Neκ(z

+
−z

−). See footnote 4.
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matter, not separate values ofM andN themselves(whereM can either be the ADM or

the Bondi mass). Thus, for example, whether for the evaporation process a black hole is

‘macroscopic’ or ‘Planck size’ depends on the ratiosM/N andaGDH/N rather than on the

values ofM or aGDH themselves.

We will set

M⋆ = MADM/N̄

M⋆
Bondi = MATV

Bondi/N̄, and

m⋆ = M⋆
Bondi|last ray (1.47)

(We useN̄ = N/24 in these definitions because the dynamical equations feature N̄ rather

thanN .) We will need to compare these quantities with the Planck mass. Now, in 2

dimensions,G, ~ andc do not suffice to determine Planck mass, Planck length and Planck

time uniquely becauseG~ is dimensionless. But in 4 dimensions we have unambiguous

definitions of these quantities and, conceptually, we can regard the 2-dimensional theory

as obtained by its spherical reduction. In 4 dimensions, (using the c=1 units used here)

the Planck mass is given byM2
Pl = ~/G4 and the Planck time byτ 2Pl = G4 ~. From

Eqs. 1.10 and 1.11, it follows thatG4 is related to the 2-dimensional Newton’s constantG

viaG = G4κ
2. Therefore we are led to set

M2
Pl =

~κ2

G
, and τ 2Pl =

G~

κ2
. (1.48)

When can we say that a black hole is macroscopic? One’s first instinct would be to say

that the ADM mass should be much larger thanMPl in (1.48). But this is not adequate

for the evaporation process because the process depends also on the number of fieldsN .

In the external field approximation where one ignores the back reaction, we know that at

late times the black hole radiates as a black body at a fixed temperatureTHaw = κ~. 6

6Note that this relation is the same as that in 4 dimensions because the classical CGHS black hole is
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The Hawking energy flux atI+
R is given byFHaw = N̄κ2

~/2. Therefore the evaporation

process will last much longer than 1 Planck time if and only if(MADM/F
Haw) ≫ τpl, or,

equivalently

M⋆ ≫ G~ MPl. (1.49)

(Recall thatG~ is the Planck number.) So, a necessary condition for a black hole to be

macroscopic is thatM⋆ should satisfy this inequality. In section 3.3 we will see that, in the

mean-field theory, quantum evaporation reveals universality already ifM⋆ & 4G~MPl.

1.4 Another Look at the Information Loss Problem

Here, we give an alternative view of black hole evaporation,that is well suited for 2 dimen-

sions. It originates from the work of Ashtekar, Taveras and Varadarajan (ATV from here

on).

Consider the spacetime in Fig. 1.2. In summary, we send some energy fromI−
R which

collapses and forms a singularity. We do not send any energy from I−
L , that is, quantum

mechanically, we send in the vacuum state. We are working with a curved spacetime, so

to be more specific, we send in a state which is annihilated with respect to the annihilation

operators associated with the affine coordinates onI−
L , namelyz± (we called it |0z〉 in

Sec. 1.3.1). However, once observers interpret this quantum state onI+
R , they use the

coordinatesy±. In these coordinates, there are different annihilation operators, which do

not annihilate|0z〉. This means, what was prepared as vacuum is now interpreted as a

state with particles which manifests itself as the Hawking radiation, Eq. 1.24. Even more

importantly for our case, note that the affine coordinatey− becomes infinite at the last ray,

meaning that the physical spacetime ends on the last ray. Theupper corner of the Penrose

diagram in Fig. 1.2 whose boundary are the dotted lines is notpart of the physical spacetime

stationary to the future of the collapsing matter with surface gravityκ. However, there is also akeydifference:
now κ is just a constant, independent of the mass of the black hole.Therefore, unlike in 4 dimensions, the
temperature of the CGHS black hole is a universal constant inthe external field approximation. Therefore,
when back reaction is included, one does not expect a CGHS black hole to get hotter as it shrinks.
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manifold, even though it is a part of the fiducial manifoldMo. However, part of the state

|0z〉 is related to the degrees of freedom living on this missing piece, hence, one needs to

take a partial trace over them to interpret|0z〉 onI+
R . Partial tracing turns the pure state into

a mixed state, hence information is lost, which can be seen from the thermal nature of the

Hawking radiation [12].

A possible scenario in a theory of exact quantum gravity would be the resolution of the

singularity. Even though there would possibly be strong quantum effects in the vicinity of

the classical singularity, the physical spacetime would continue beyond it. The physical

manifold would coincide withMo, that is, there is no “missing piece”, unlike the classical

case. The affine coordinates still would not agree, hence there would be Hawking radiation,

but since there is no partial tracing, the evolution would beunitary and there will be no

information loss.

Unfortunately, we do not have an exact quantum gravity theory for the CGHS model.

Our aim regarding the information loss problem is finding a middle ground with the MFA

equations as conjectured in [13]. We have already seen that there is still a singularity at

the semiclassical level, but it is weakened (see Fig. 1.3). On the singularity, the metric is

invertible and the fields are continuous, which means there is a possibility that the physical

spacetime manifold continues beyond the singularity and the last ray, that isI+
R coincides

with Io+
R (remember that the former is a proper subset of the latter in the classical case).

This means there is again no need for partial tracing, hence information is conserved, even

after the leading quantum contributions.

The quantitative manifestation of this scenario is having afinite value ofy− at the last

ray, which means the portion of the null infinity before the last ray is not complete. Hence,

an important piece of information we will try to discover in the following discussion will be

the finiteness ofy− at the last ray. This is a necessary but not sufficient condition, since we

also needy−(z−) to be a well behaved function for the Bogolubov transformations to also

be well behaved. Nevertheless, establishing the finitenessof y− is an important indication
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that the recipe of ATV resolves the information loss problem.
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Chapter 2

Numerical Methods

We have seen that, although the full quantum equations for the CGHS model are too com-

plicated to solve, in the mean field approximation (MFA) the model reduces to a coupled

set of non-linear partial differential equations, possessing a well-posed characteristic ini-

tial value formulation. Unfortunately, even for these equations, analytical solutions are not

known except in special limiting cases. Therefore, to explore black hole formation and

evaporation, numerical methods are essential.

Numerical studies of the CGHS model already had a quite rich literature before our

work [9, 10, 11]. These studies had elucidated the basic spacetime picture presented in

Fig. 1.3. However, they missed the crucial fact that the CGHSmodel has two distinct

regimes in the parameter space,M ≫ (N/24)MPl andM ≪ N/24MPl (see Sec. 1.3.5

), whereM is the initial mass of the black hole that forms andN is the number off

fields. These two regimes have radically different physicalproperties and interpretations,

their numerical analysis also presents considerably different levels of challenge. The basic

point is that, in the macroscopic mass case, all of the interesting physics is confined to

a tiny region in the vicinity of the last ray, where a high numerical accuracy is needed.

Existing numerical studies of the CGHS model focused on the intermediate mass range

M ∼ N/24, for example M
24N

= 1 in [10] and M
24N

= 2.5 in [11] (MPl set to1). This
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case is considerably easier to solve numerically, but the price is that many of the interesting

phenomena of the black hole evaporation cannot be observed.Even though our main aim

is solving the macroscopic mass black hole spacetimes, we also solve spacetimes with sub-

Planck masses for completeness, and also to present the contrast between the two cases.

Since macroscopic CGHS black holes were not numerically studied before, and due to

the challenges we summarized above, we had to use a combination of numerical techniques

to achieve roundoff level accuracy in our code. An outline ofthe rest of the chapter is as

follows. In Sec. 2.1 we describe the variable definitions andconventions we use, the ana-

lytical equations that we discretize, and the initial data we use for the numerical solution.

In Sec. 2.2, we describe some of the issues that would cause naive discretization of the

equations to fail to uncover the full spacetime, and how to overcome them; this includes

regularization of otherwise asymptotically-divergent field variables, compactification of the

coordinates, the particular discretization scheme, and use of Richardson extrapolation ideas

to increase the accuracy of the solution. In Sec. 2.2 we also discuss setting initial conditions

nearI, and how we extract the desired asymptotic properties of thesolution. In Sec. 2.3

we describe various tests to demonstrate we have a stable, convergent numerical scheme to

solve the CGHS equations.

2.1 CGHS Model in the MFA as an Initial Value Problem

Recall that at the semiclassical level, the analysis of the CGHS model is reduced to solving

the evolution equations

∂+ ∂− Φ + κ2Θ = N̄G~ ∂+ ∂− ln ΦΘ−1

Φ∂+ ∂−lnΘ = −N̄G~ ∂+ ∂− ln ΦΘ−1
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for the geometric fields together with theconstraint equations

−∂2
− Φ + ∂− Φ∂− lnΘ = G 〈T̂−−〉 =̂ 0

−∂2
+ Φ + ∂+ Φ∂+ lnΘ = G 〈T̂++〉 =̂ 12N̄G (∂+f

o
+)

2 (2.1)

In a characteristic initial value problem, we specify initial data on a pair of intersecting,

null hypersurfacesz+(z−) = z+0 andz−(z+) = z−0 , to the causal future of their intersec-

tion point(z+0 , z
−
0 ) as we mentioned in Sec. 1.3.3 (see [27] for a review). Thus onecan see

where the constraint equations Eq. 2.1 receive their name: for example, if we specify the

scalar fieldf (henceT++, T−−) and metric fieldΘ on these surfaces as initial data, we are

not free to chooseΦ, which is then given by integrating Eq. 2.1. The constraint equations

arepropagatedby the evolution equations Eq. 1.14, namely, if the constraints are satisfied

on the initial hypersurfaces, solving for the fields to the causal future using Eq. 1.14 guar-

antees the constraints are satisfied for all time.This is exactly true at the analytical level,

though in a numerical evolution this property of the field equations will in general only be

satisfied to within the truncation error of the discretization scheme.

To present our numerical methods, we will exclusively consider the case of the left-

moving shock wave we introduced in Sec. 1.3.1 and 1.3.3

12N̄

(

∂f o
+

∂z+

)2

= M δ(z+) (2.2)

and no incoming matter from the left (f− = 0). This choice reduces the problem to evolving

the fieldsΦ andΘ according to (1.14) with the asymptotic initial conditions

Θ(z±) = eκ(z
+−z−)

Φ(z±) = eκ(z
+−z−) − GM

κ
(eκz

+ − 1) , (2.3)

for z+ > 0, z− → −∞, which we had derived. Both fields are trivially given byeκ(z
+−z−)
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for z+ < 0. With these restrictions, any space-time is defined by the twoquantitiesM and

N .

In the next chapter, we will also be discussing initial data with extended profiles (rather

than aδ−function). In terms of numerical methods, this does not bring any other difficul-

ties, and we will not be elaborating on these calculations here.

Remember that when the evaporation has proceeded to the point where the dynamical

horizon meets the singularity (see Fig. 1.3), it becomes naked, i.e. visible to observers

at I+
R . The MFA equations cannot be solved beyond this Cauchy horizon, which we call

the last ray. It should be possible to mathematically extend the spacetime beyond the

last ray, in particular as the geometry does not appear to be singular here (except at the

point the dynamical horizon meets the last ray) as we showed in Sec. 1.3.3. However,

since the fields are not differentiable on the singularity, one needs a prescription about the

relationship between the derivative of the fields on the two sides of the singularity to have

such an extension. There is not a universally agreed upon prescription, hence currently

there is no unambiguous way to evolve the fields beyond the singularity and the last ray.

Even though we give this short discussion of what might happen beyond the last ray,we do

not explore this issue, and will only calculate the fields in the region before the last ray.

In all our simulations we useG = ~ = κ = 1. We showed the scaling symmetry of

the CGHS model in Sec. 1.3.5, hence we will only use a single value ofN = 24 (N̄ = 1),

which covers all the physical parameter space asM changes. Hence, by macroscopic mass,

we meanM ≫ 1, and by sub-Planck-scale mass, we meanM ≪ 1.

2.2 The Numerical Calculation

2.2.1 Compactification of the Coordinates

Rather than discretizing the equations with respect to thez+, z− coordinates, we introduce a

compactified coordinate systemz+c ∈ [0, 1
2
] andz−c ∈ [0, 1]. Use of compact coordinates is
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Figure 2.1: A schematic view of the positions of the grid lines on the uncompactified space.
Lines are concentrated near the last ray, where we need higher resolution. They become
distant as one approaches the null infinities.

important for a couple of reasons, and essential for theM ≫ 1 case. First, to understand the

asymptotic structure of the spacetime approachingI+
R , it is useful to have the computational

domain includeI+
R . We have seen that most of the physics of the CGHS black holes can be

extracted from the field values near this region (see Sec. 1.3.4). Second, the uncompactified

coordinatez− is adapted to the flat metric nearI−
L ; however, it turns out that most of

the interesting features of black hole evaporation near thedynamical horizon occur in an

exponentially small region∆z− ∼ κ−1e−GM/κ before the last ray. One can think of this

as essentially due to gravitational redshift. Classically(without evaporation), the redshift

causes arbitrarily small lengths scales near the horizon tobe expanded to large scales near

I+
R . This can be easily seen from Eq. 1.21 wheredy−

dz−
→ ∞ asy− → ∞.

Naively one might have expected that evaporation changes this pictures completely (as

suggested by the Penrose diagram in Fig. 1.3). Instead, whatwe find is that although there
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is not an arbitrarily large redshift once back-reaction is included, there is still an exponential

growth of scales, with the growth rate proportional to the mass of the black hole as indicated

above.

Thus, a uniform discretization inz− that is able to resolve both the early dynamics near

I−
R , yet can adequately uncover the exponentially small scales(as measured inz−) of the

late-time evaporation, will (for largeM) result in a mesh too large to be able to solve the

equations using contemporary computer systems. To overcome this problem, we introduce

a non-uniform compactification inz−, schematically illustrated in Fig. 2.1, that provides

sufficient resolution to resolve the spacetime near the lastray, yet does not over-resolve the

region nearI−
R . Specifically, the transformation fromz− to z−c we use is as follows. First,

we relate the uncompactifiedz− to an auxiliary (non-compact) coordinatez̄− by

z− = z̄−

(

z̄− − L
−1/2
R

z̄− − L
1/2
R

)

+ z−s,est (2.4)

wherez− ∈ (−∞, z−s,est] andz̄− ∈ (−∞, 0]. z−s,est is an estimate of thez− coordinate of the

last ray. This is also the earliest time inz− that we will encounter the spacetime singularity,

and at present we do not continue the computation past this point (the compactification

functions can readily be adjusted to coverz− ∈ (−∞,∞) ). In these coordinates, the

region near the last ray (z− ≈ z−s,est, z̄
− ≈ 0) is resolved by a factor ofLR more than the

regions away from the last ray. Next, we convert the auxiliary z̄− to a compact coordinate

z−c

z̄− = −e−S tan(πz−c −π/2) + Lc(z
−
c − 1), . (2.5)

whereS andLc are constants. This way, the last ray is located nearz−c = 1. The relation

between̄z− andz−c is forced to be linear near the last ray through theLc term, which we

will explain next.

Our grid is based on the compact coordinate∆z±c , and it is a uniform grid, i.e. it
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has a fixed step size∆z−c = h in the compactified coordinatez−c . This corresponds to

∆z− ≈ Lc/LR h in uncompactified coordinates nearz−c = 1. Hence, we can see that, in

order to resolve tiny scales inz−, we want a high value forLR and a very small one forLc.

Note that, if there is no linear term withLc in Eq. 2.5,∆z− would become arbitrarily small

near the last ray (nearz−c ≈ 1), which would make taking finite differences impossible due

to catastrophic cancellation.

For the highest mass macroscopic black hole discussed here,M = 16, we setLR = 109,

while for the lowest mass ofM = 2−10, we useLR = 102. We useLc = 4.096 × 10−9,

which can be adjusted together withLR to obtain the desired resolution near the last ray.

Note that∆z− ≈ 10−18h for the highest mass case; such a disparity in scales would have

been difficult to achieve if we had usedz− as our coordinate evenwith a standard adaptive

mesh refinement algorithm. We chooseS to be between1 and5, the particular value of

which is not essential.

In the+ direction, forM & 1, we compactify the coordinates using

z+ = M tan(πz+c ) M & 1 , (2.6)

with the factor ofM ensuring that the singularity is not too close to theI+
R edge of the mesh,

where the resolution inz+ is lower due to compactification. ForM ≪ 1, the singularity

appears very close toz+ = 0, so to resolve this region, we employ

z+ = Cz+c
tanp(πz+c ) M ≪ 1 , (2.7)

whereCz+c
andp are appropriate constants that again keep the singularity near the middle

of the range ofz+c . ForM = 2−10, we useCz+c
= 1

7000
andp = 7.

Even though we presented specific functions to relate the compactified and uncompact-

ified coordinates, none of these are essential. As long as theregion nearI+ (any other

region where length scales are small) are resolved, and numerical issues are avoided (as in
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the use ofLc), any compactification scheme would perform similarly.

2.2.2 Regularization of the Fields

It is clear from Eq. 2.3 that the fields diverge exponentiallyat I−
R and analytical results

show that they also diverge atI+
R (see Sec. 1.3.4). For a numerical solution then, we define

regularized field variables which are finite everywhere

Φ = eκ(z
+−z−) (1 + φ̄)−M(eκz

+ − 1)

= eκ(z
+−z−) (1 + φ̄+ φ̄0)

Θ = eκ(z
+−z−) (1 + θ̄) , (2.8)

with φ̄0 = −M eκz
−

(1−e−κz+). Aside from removing the divergent componenteκ(z
+−z−),

this definition also removes the exact classical solutionM(eκz
+ − 1) from Φ. The reason

for doing this came from preliminary studies which showed that deviations inΦ from its

classical values were small compared to the classical metric for macroscopic black holes in

most of the computational domain. In terms of the new variables, Eq. 1.14 read

(1 + θ̄)2(1 + φ̄+ φ̄0)
2

×
[

∂+∂−φ̄− κ∂+φ̄+ κ∂−φ̄− κ2φ̄+ κ2θ̄
]

−Q(φ̄, θ̄) = 0 (2.9)

and

(1 + φ̄+ φ̄0)
3
[

(1 + θ̄)∂+∂−θ̄ − ∂+θ̄∂−θ̄
]

+Q(φ̄, θ̄) = 0 (2.10)
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with

Q(φ̄, θ̄) =
NG~

24
eκ(z

−−z+)

×
{

(1 + θ̄)2
[

(1 + φ̄+ φ̄0) ∂+∂−(φ̄+ φ̄0)
]

− (1 + θ̄)2
[

∂+(φ̄+ φ̄0) ∂−(φ̄+ φ̄0)
]

(2.11)

− (1 + φ̄+ φ̄0)
2
[

(1 + θ̄)∂+∂−θ̄ − ∂+θ̄∂−θ̄
]

}

There have been numerical studies without regularization (for example [10]) where the

initial data was not specified onI−
R , but rather on a line ofz− = const ≪ − 1

κ
, where the

classical solution that we use onI−
R is still valid as initial data to high numerical accuracy,

and is finite. We wanted to represent as big a part of the physical spacetime as possible in

our computational grid, includingI−
R , hence chose to regularize the fields. This becomes

even more important when one tries to analyze the asymptoticquantities nearI+
R , since the

fields diverge there as well, which makes the extraction of the asymptotic quantities much

harder for the actualΦ andΘ.

2.2.3 Discretization and Algebraic Manipulation

We discretize the compactified coordinate domain as depicted in Fig. 2.2. A fieldα(z+c , z
−
c )

is represented by a discrete mesh of valuesαi,j , where the indicesi, j are integers, and

related to the null coordinates through

z−c = ih 0 ≤ i ≤ np

z+c = jh 0 ≤ j ≤ np

2
, (2.12)

whereh = n−1
p is the step size in both of the compactified null coordinates.In order to solve

the evolution equations numerically, we convert the differential equations to difference

38



equations by using standard, second order accurate (O(h2)), centered stencils:

α
∣

∣

i− 1
2
,j− 1

2

≈ αi,j + αi−1,j + αi,j−1 + αi−1,j−1

4

∂′
+α
∣

∣

i− 1
2
,j− 1

2

≈ αi,j + αi−1,j − αi,j−1 − αi−1,j−1

2h

∂′
−α
∣

∣

i− 1
2
,j− 1

2

≈ αi,j − αi−1,j + αi,j−1 − αi−1,j−1

2h

∂′
+∂

′
−α
∣

∣

i− 1
2
,j− 1

2

≈ αi,j − αi−1,j − αi,j−1 + αi−1,j−1

h2
,

(2.13)

where we have introduced the notation

∂′
± ≡ ∂

∂z±c
=

∂z±

∂z±c

∂

∂z±
=

∂z±

∂z±c
∂± . (2.14)

Once discretized, Eq. 2.9 and Eq. 2.10 give two polynomial equations which can be nu-

merically solved forθ̄i,j and φ̄i,j, if the field values are known at the grid points(i, j −

1), (i− 1, j), (i− 1, j − 1). This way, knowing the boundary conditions atz+ = 0 (j = 0)

andz− = −∞ (i = 0), we can calculate the field values at all points of the grid oneby

one, starting at(1, 1).

Instead of solving for the two variables simultaneously (e.g. using a two dimensional

Newton’s method), we sum the equations (2.9, 2.10), which allows us to explicitly express

φ̄i,j in terms of a rational function of̄θi,j. We then insert this expression for̄φi,j into

(2.9)1. This way, we obtain a single variable,10th order polynomial equation for̄θi,j . We

solve this equation numerically using Newton’s method, andthen calculatēφi,j directly

using the aforementioned rational function. One advantageof these analytic manipulations

before the numerical solution is that, more techniques are available for finding the roots

of a polynomial in one variable, compared to a set of generally nonlinear equations. For

instance, we also implemented Laguerre’s method, which gave similar results to Newton’s

1any other independent linear combination of the equations can also be used
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Figure 2.2: The grid structure for the numerical calculation. We use a fixed-step-size mesh
based on the compactified coordinatesz±c , where the step sizes in both directions are equal.
The emphasis on the regions where the fields rapidly change isattained using the compact-
ification of the coordinates (see Fig. 2.1). The flat region before the matter pulse and the
region beyond the last ray are not covered by the mesh.

method, in terms of robustness and computation time.

2.2.4 Richardson extrapolation with intermittent error re moval

For any functionα numerically calculated on a null mesh of step sizeh in both directions,

and with central differences as in Eq. 2.13, we have the Richardson expansion

αh = α + c2h
2 + c4h

4 + c6h
6 +O(h8) (2.15)

whereα is the exact solution,αh is the numerically obtained solution andci are error

functions. α,αh, andci are all functions ofz± (we omit the explicit dependence for clarity),

andα, ci are independent ofh. Note that we cannotprovesuch an expansion exists for
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the class of non-linear equations we are solving, in particular if no assumptions on the

smoothness of the initial data are made. Furthermore, we know the solutions generically

develop singularities, thus the above series can only have alimited radius of convergence

for generic initial data. Nevertheless, we willassumethe expansion exists, and then, via

convergence tests, check whether the solutions we obtain are consistent with the expansion.

The use of second order finite difference stencils is responsible for the leading order

quadratic convergence of the above expansion. However, using numerical solutions ob-

tained on meshes with different discretization scales, onecan obtain higher order conver-

gence by using the well known Richardson extrapolation. Forexample, a fourth order

convergent solutionαh,h/2 can be obtained from the following superposition of two ap-

proximate second order convergent solutionsαh/2 andαh : αh,h/2 = (4αh/2 − αh)/3 =

α + O(h4). In theory (for sufficiently smooth solutions),2n-th order convergence can be

obtained by an appropriate superposition ofn second order accurate solutions, each ob-

tained with a different mesh spacing. As we describe in more detail below, we use four

successively finer meshes to obtain solutions that convergeto O(h8) on the points of the

coarsest mesh.

Fields in the CGHS model present singular behavior, and since the position where the

singularity first appears on the grid is a (convergent) function of the mesh size, the method

of superposing solutions of different meshes breaks down atthe first time the singularity

appears onany of the superposed meshes. Typically, the singularity first appears on the

coarsest mesh, and thus our domain of integration is fundamentally restricted by our prox-

imity to the singularity on the coarsest mesh. Many of the physical phenomena we are

interested in occur in this region, thus a direct use of Richardson extrapolation for solutions

over the entire computational domain does not significantlyimprove our results. To cir-

cumvent this problem, as described in more detail in the nextfew paragraphs, we instead

break up the computational domain into a series of short strips inz−c (see Fig. 2.3). In each

strip we evolve 4 meshes, apply Richardson extrapolation tothe solution obtained at the
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end of the evolution, then use this corrected solution as initial data for all four meshes on

the next, adjacent strip. In this way the mismatch in the location of the singularity amongst

the four resolutions is confined to be less than the size of thestrip, which we can adjust as

needed.

Our Richardson extrapolation algorithm proceeds as follows. We divided the entire grid

intoL equal regions alongz−c such that grid pointsi along the corresponding direction with

l
L
np ≤ i ≤ l+1

L
np, 0 ≤ l ≤ L comprise thelth region. Note that regions coincide at the

boundaries, and here indicesi and the total number of pointsnp are relative to the coarsest

mesh—for finer meshes these numbers should be scaled as appropriate so that thelth strip

spans thesame coordinate volumefor each resolution. In thelth region

1. We evolve the fields independently on four successively finer meshes of step size

h, h/2, h/4 andh/8, and stop the evolution at the end of the region (i = l+1
L
np).

2. At points coincident with the coarsest resolution, we calculate the appropriate super-

position of the four meshes to giveO(h8) accurate values of the fields (φ̄ andθ̄), and

store these values on the coarsest mesh as our result.

3. On the last (i = l+1
L
np) line of the regionl, we also calculate the functionsck(z±) to

accuracyO(h8−k) on the coarsest mesh. We then interpolate the functionsck to the

three finer meshes using successive degree four Lagrange interpolating polynomials.

Using these interpolatedck values, we correct the field values on the finer meshes

using Eq. 2.15, that is we have the highest possible accuracy, not only on the coarsest

level, but on all four levels. A Lagrange polynomial of degree4 introduces an error

of orderO(h5), so through thec2 term an error ofO(h7) will be introduced into the

finer mesh solutions. A higher order interpolating polynomial could reduce the error,

though we found that a globalO(h7) scheme is sufficient for our purposes.

4. We use theO(h7) accurate field values on the last (i = l+1
L
np) line as the initial data

for the next ((l + 1)th) region, and repeat the procedure for this region starting from
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Step1.

By updating the fields to more accurate values at the end of each region, the accuracy of the

position of the singularity in the coarsest mesh is improvedsignificantly, and the problem

of the breakdown of the superposition near the singularity is overcome.

We are not aware of any studies on the theoretical stability and accuracy of this mod-

ified Richardson extrapolation method, though our convergence and independent residual

analysis, described in Sec. 2.3, shows that it works quite well, giving (for the most part) the

expected order of convergence.

Implementing this method, we are able to reduce the truncation error down to the level

of round-off error using “modest” resources on a single, desktop style CPU. More precisely,

we used80-bit long double precision, which theoretically has a round-off error at the level

of ∼ 10−19 with the compilers we used. However our Newton iteration only converged

if we set the accuracy of the iteration to∼ 10−16, which was the ultimate source of the

error in the calculated regularized field values. When we say“round-off error” then, we

will mean this latter value rather than the value of∼ 10−19 one might expect from80-bit

precision.

2.2.5 Evolution nearI

The boundary conditions onz+ = 0 are those of the vacuum and translate to

φ̄(z+ = 0, z−) = θ̄(z+ = 0, z−) = 0 . (2.16)

For theI−
R boundary, (2.3) translates to

φ̄(z+, z− = −∞) = θ̄(z+, z− = −∞) = 0 . (2.17)
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The eκz
−

factors in the evolution equations Eq. 2.12 are interpretedas 0 if eκz
−

is less

than the smallest magnitude floating point number allowed bymachine precision, which

occurs forz− < z−prec for somez−prec, thus, in the regionz− < z−prec, the evolution equations

are trivially solved by the initial conditions̄θ = φ̄ = 0. This means it would make no

difference if we imposed theI−
R boundary conditions on some other constantz− < z−prec

line rather than atz− = −∞. Moreover, even if we impose theI−
R boundary conditions

on a constantz− line with z− > z−prec, the error introduced is exponentially small [10]

and negligible compared to the truncation error for a certain range of|z−|. Our numerical

method described in Sec. 2.2.3 sometimes fails to produce a solution for the fields in the

early stages of the evolution nearI+
R if we begin the evolution in the regionz− < z−prec. We

surmise the failure occurs near the linez− = z−prec. In such cases of failure, we begin the

evolution atz− ∼ −5 × 103. This means we could not includeI−
R on our computational

domain, but as we explained, this introduces a completely negligible error.

A related problem is that Newton’s method also sometimes cannot converge to a solu-

tion for θ̄ nearI+
R , even well before the last ray. In such cases, we evolved the equations as

close toI+
R as possible.We were able to evolve the fields sufficiently close toI+

R to extract

all the important asymptotic behavior, as described in the next section.

2.2.6 Asymptotic Behavior

We have seen how to calculate various physical quantities from the values of the fields on

I+
R in Sec. 1.3.4. Asymptotic coefficients of Eq. 1.40 are related to the regularized fields

through

A(z−) = e−κz−
(

1 + φ̄(z+ = ∞, z−)
)

−M (2.18)

B(z−) = lim
z+→∞

eκz
+ (

φ̄(z+ = ∞, z−)− φ̄(z+, z−)
)

+M

As mentioned in the previous section, we are not able to calculate the fields exactly on
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I+
R , and evaluating the above on a line of constantz+ will introduce an error of the order

e−κz+. However, it is adequate to evaluate the above limits at sufficiently largez+ such

that this error is less than the truncation error. It turns out the Newton iteration only breaks

down well into the region where the truncation error dominates (see the end of the previous

section), which enables us to computeA to high accuracy.

To calculate the limit inB numerically, we need (at least) two values ofz+ for each

value ofz−. To minimize the error, naively, it is most desirable to pickas largez+ values

as possible . However,B is expressed as the asymptotically diverging factoreκz
+

multi-

plied by an asymptotically vanishing one, and calculating this via finite precision numerics

introduce a large relative round-off error for the vanishing factor, due to catastrophic can-

cellation. We thus evaluateB using twoz+ = const lines, one of them is the line we

calculatedA on, the other is chosen such thatκz+ is large enough that the fields are in

the asymptotic region but it is also sufficiently away from the otherz+ = const line that

catastrophic cancellation is not a major issue. Particularvalues ofz+ are not important.

Once we haveA andB, to obtainMB and the ATV Bondi flux through Eq. 1.40, we use

nine-point finite difference stencils to calculate the firstand second derivatives with respect

to z−c and apply the chain rule to obtain derivatives with respect to z−. Nine-point stencils

have an accuracy ofO(h8), keeping the theoretical accuracy of our numerical integration

scheme.

Note that sinceB is sub-leading relative toA in the asymptotic expansion Eq. 2.18,A,

hencey−, can be calculated more accurately. Thus, in practice we calculate the Bondi mass

MB by numerically integrating the ATV flux rather than directlyevaluating the left hand

side of Eq. 1.40.
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2.3 Numerical Tests

In this section we present a few sample solutions to the CGHS model in the mean field

approximation, and results from an array of tests we performed to ensure we are solving

the equations correctly.

2.3.1 Sample evolutions

We calculated numerical solutions for initial black hole massesM ranging from2−10 to 16

(Eq. 2.3). Here, we present the results forM = 8 as the macroscopic case for uniformity of

exposition. All cases show similar convergence behavior for the regularized fields, though

as we approachM = 16, derived physical quantities start to show irregular convergence

patterns due to catastrophic cancellation. This is expected, since we already mentioned

that there is a dilution of scales near the last ray that becomes exponentially stronger with

increasingM . The fact thatM = 8 is sufficiently large to be categorized as “macroscopic”

will be established in the next chapter, when we discuss the universality of the solutions.

Spacetimes withM > 16 cannot be numerically solved near the last ray in our scheme,

but we will again see in the next chapter that evenM ∼ 6 is adequate to understand all the

physics of CGHS black holes with MFA.

The regularized fields̄θ andφ̄ from solutions with two values ofM ≫ 1 andM ≪ 1

are shown in Figs. 2.4 and 2.5. As discussed before, a centralissue with the numerical

calculations is to ensure that we get close to the last ray andthe singularity, as many of

the interesting phenomena occur in this region. It is analytically known that the singularity

of the CGHS model occurs whenΦ = N
12

. Moreover,Φ − N
12

evaluated on the dynamical

horizon (determined by∂+Φ = 0) can be interpreted as the quantum corrected area of the

black hole [10]. This way, we can test our proximity to the singularity by checking the value

of the area near the singularity—see Fig.2.6. ForM ≫ 1, the part of our compactification

scheme which emphasizes the region near the last ray is crucial. In this case, the area when
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the GDH forms for the first time is roughlyM . If the region near the last ray is not properly

resolved, one sees onlya few percentof drop in the area, at which point the singularity is

encountered on the numerical grid. With our numerical methods, we could see the area of

the GDH decrease to a tiny fraction of unity, signaling that we are very close to the last ray

in terms of proper distances.

As explicitly seen in Fig.2.6, had we used a uniform mesh in uncompactifiedz± coor-

dinates, a mesh spacing of orderh . 10−M would have been needed. Covering a sufficient

region of the spacetime to reveal the asymptotics would require a net coordinate range

∆z± of order unity, implying a mesh of order10M points along both directions, which is

of course impractical to achieve on contemporary computersfor largerM . This important

aspect of the problem was not clear in earlier studies, as they usually focused onM ∼ 1

[10, 11]. We will see in the next chapter that theM < 1 solutions are drastically different

from theM > 1 solutions, in terms of their physical interpretation as well.

2.3.2 Convergence of the Fields

We compute convergence factors by comparing solutions thatare obtained using different

mesh spacings. Note that we are always using the Richardson extrapolation scheme de-

scribed in Sec. 2.2, thus in the following when we refer to a solution computed with mesh

spacingh, h is the step size of the coarsest one of the four meshes used in the numerical

integration.

First, we define

∆hf ≡ fh − fh/2 (2.19)

wherefh denotes the numerical solution of a functionf obtained on a grid with mesh

spacingh. ∆hf is thus an estimate, toO(hn), of the truncation error inf , wheren is the
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rate of convergence of the algorithm. From the Richardson expansion we then get

n = log2

[

∆2hf

∆hf
+O(h)

]

= log2

[

f2h − fh
fh − fh/2

+O(h)

]

, (2.20)

where the next-to-leading order term is ofO(h) because of the order of interpolating poly-

nomial we use. From the above, we define an estimated convergence factorne via

ne ≡ log2
f2h − fh
fh − fh/2

(2.21)

In Figs. 2.7 and 2.8, we show plots ofne for high and low mass cases respectively. An

“issue” we have with the convergence behavior of the CGHS equations is it seems arti-

ficially high for coarser meshes. One reason for this may be that the central difference

scheme Eq. 2.13 we use solves the homogeneous part of the waveequation (∂+∂−f = 0)

exactly(to within round-off), irrespective of the step size. Furthermore, with our choice

of variables and regularization scheme, it is only the non-linear quantum corrections that

introduce non-trivial evolution, and initially the effects of this will be small. Though re-

gardless, in the limit of zeroh we should approach the expected convergence behavior; as

shown in these figures, wedosee this trend, though we have not quite reached the limiting

behavior. This is because the truncation error becomes comparable to the machine roundoff

error, the case of highest accuracy achievable in numericalcomputation, before the limit is

reached.

As mentioned, reasons for the anomalous convergence behavior may be the compactifi-

cation and special initial data we choose, namely regularized fields that are initially adapted

to the classical solution. To check this, we evolved a test case where we imposed the initial

conditions forM = 11, N = 11 at z+c = 0.25 rather thanI−
R . Note that this is not a physi-

cally correct solution as it will violate the constraints, though it is mathematically perfectly

valid non-trivial initial data for the evolution equations. We set the domain of computation

to z−c ∈ [0.25, 0.5] andz+c ∈ [0.0, 0.25] to avoid any singular behavior. Using four meshes
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for the Richardson extrapolation in this test, the truncation error was again reduced down

to round-off level for even the coarser meshes, so for this test alone, we only employed

three successively finer meshes in the extrapolation scheme; hence the resulting truncation

error is expected to scale ash6. The result is shown in Fig. 2.9, where we see the expected

convergence. We also tested two-mesh Richardson extrapolation for the same case, and

obtained the expectedh4 convergence.

2.3.3 Convergence of Physical Quantities onI+
R

The physical quantities we are interested in, includingy−(z−), FATV andMB, are all

functions of the fields, thus in theory they should inherit the convergence behavior of the

fields. Some of these quantities require computing first and second derivatives of the fields,

and so to maintain the theoretical convergence factor of7, one should use9-point finite

difference stencils. However, catastrophic cancellationplagues the numerical derivatives

near the last ray, as the regularized fields vary extremely slowly in this region, and this

seems to be the limiting factor in the accuracy in which we cancompute physical quantities.

Though in general we do not need high order convergence of derived quantities to achieve

high accuracy. A case-and-point isMB, obtained by integratingFATV . FATV is dominated

by round-off near the last ray in most cases, though, once integrated overy−, this region

contributes insignificantly toMB. Furthermore, simple trapezoidal integration is adequate

to achieve quite accurate estimates ofMB, as illustrated in Fig. 2.10.

2.3.4 Independent Residuals

As a final test of the code, we compute independent residuals of the differential equations

(2.9) and (2.10). Specifically, we calculate the derivatives using three-point stencils cen-

tered at the mesh points, rather than the cell centered differences used for the solution.

Three- point stencils limit the convergence of the independent residual to quadratic order,

regardless of the convergence of the numerically calculated fields themselves. We observe
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the expected quadratic convergence in all cases.
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Figure 2.3: Richardson extropolation without (left) and with (right) intermittent error re-
moval for two meshes. The thick dashed line is the dynamical horizon, joining onto the last
ray (horizontal arrow) where it meets the spacetime singularity. Left: Numerical solutions
are evolved independently over the whole mesh (top two meshes) and the results are su-
perposed (bottom mesh) according to the Richardson extrapolation after all evolutions are
finished. The superposition is only meaningful where both ofthe meshes give meaningful
results, i.e. before the last ray. The calculated position of the last ray depends on the nu-
merical error, and typically occurs earlier inz− for coarser meshes. The final superposition
will also only be accurate where the truncation error is small on all meshes; approaching
the singularity the truncation error grows without bound, hence there is some finite region
(smaller with increasing resolution) before the last ray (light gray) where the Richardson
extrapolation breaks down. Right: We determine severalz− = constant error removal
lines(dark horizontal lines), that divide the computational domain into regions. We evolve
the fields in each mesh independently until the first error removal line is reached (at the end
of the first region) and stop. We apply Richardson extrapolation to this region and update
all the values on the coarsest mesh with the more accurate ones. Moreoever, on the error
removal line we also updated all finer meshes with the more accurate Richardson extrapo-
lated values, using polynomial interpolation. We then restart the numerical evolution from
the error removal line, continuing independently in each mesh until the next error removal
line is reached, where the the procedure is repeated. In the end, this effectively provides
a more accurate calculation of the position of the last ray onall meshes, enlarging the
region of spacetime where a more accurate solution can be obtained through Richardson
extrapolation.
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Figure 2.4:Φ for M = 8, N = 24. Left: Base-10 logarithm ofΦ − N
12

. Right: Φ − N
12

at
lines of constantz−sing − z− = 10−4, 10−6, 10−8. This shows thatΦ approachesN/12 at the
location of the spacetime singularity, from where the last ray emanates. Specifically, here
∆z− ∼ 10−8 of the last ray.
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Figure 2.5:Φ for M = 2−10, N = 24. Left: Base-10 logarithm ofΦ − N
12

Right: Φ − N
12

at lines of constantz−sing − z− = 10−2, 10−4, 10−6. Again, as in Fig. 2.4, this shows thatΦ
approachesN/12, and we are close to the location of the last ray. Note that thefield values
are generally quite different from theM = 8 case, and the singularity appears very close
to z+ = 0, which necessitated the special compactification scheme explained in Sec. 2.2.1.
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Figure 2.6: Area of the black hole (Φ − N
12

) vs. the uncompactified distance from the last
ray in a log-log plot forM = 8, 16 andN = 24. Note that in terms of the uncompactified
coordinates, we have to be within∆z− ∼ 10−8 of the last ray in order to be truly close to
the singularity forM = 8, and within∆z− ∼ 10−16 for M = 16. This exponential trend
is general and severely limits the upper value ofM we can use in numerical calculations if
we want to reach regions “close” to the singularity.
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Figure 2.7: Convergence of̄φ for theM = 8, N = 24 case:ne(z
±) for h = 2−10 (left) is

mostly in the range9− 10, and forh = 2−11 (middle) is around8. Forh = 2−12 (right) we
reach machine round-off, and thus lose convergence, hence the “noisy” pattern.
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Figure 2.8: Convergence of̄φ for theM = 2−10, N = 24 case:ne(z
±) for h = 2−10 (left)

is around10, and forh = 2−11 (middle) is around8. Again, as with theM = 8 case in
Fig. 2.7, forh = 2−12 (right) machine round-off error begins to dominate the error, hence
the “noisy” pattern. This effect is already visible in certain regions of theh = 2−11 case.
For lower mass black holes, round-off is reached with coarser meshes relative to the higher
mass black holes.
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Figure 2.9: The convergence factorne of φ̄ for h = 2−8 where as a test we imposed the
(unphysical) initial conditions forM = 11, N = 11 at z+c = 0.25 rather thanI−

R . We
only evolved the fields in the regionz−c ∈ [0.25, 0.5], z+c ∈ [0.0, 0.25]. This solution is not
physically relevant, though tests the behavior of the numerical code away from any of the
null infinities or singularities. Here, for each base resolution, three meshes where used in
the Richardson extrapolation scheme, which should giveO(h6) convergence, and does to
good approximation as shown in the figure.
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Figure 2.10:
∣

∣

∣

∆hMB

MB

∣

∣

∣
for various values ofh for M = 2−10 (left) andM = 8 (right). For

most of the range, there is clear quadratic convergence. Thedominant error here is from
the trapezoidal integration method, and not a reflection of the truncation error from the
numerical calculation of the fields.
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Chapter 3

Physics of the CGHS Black Hole

Evaporation

Recall that, all physical predictions of the mean-field theory arise from the set of 5 equa-

tions Eq. 1.26 – 1.30. The only difference from the classicaltheory lies in the fact that,

because of the trace anomaly, right hand sides of the dynamical equations Eq. 1.27) and

Eq. 1.28 are no longer zero. But this difference has very significant ramifications. In partic-

ular, it is no longer possible to obtain explicit analyticalsolutions; one has to take recourse

to numerics.1

We have established in Chap. 2 that our numerical methods solve the CGHS equation

with the mean-field approximation accurately and to a high precision. Now, we can start

answering questions about black hole evaporation.

1There are variants of the CGHS model that are explicitly soluble, for example the RST (Russo-Susskind-
Thorlacius) model [28], and the Bilal-Callan model [29]. However, results obtained in these models are not
likely to be generic even in 2 dimensions because of their extra symmetries [10, 24]. More importantly, it was
pointed out in [10, 12, 30] that the RST model is inconsistenteven in the largeN limit, and the Bilal-Callan
model has a Hamiltonian that is unbounded from below. Thus though they exhibit many features of general
2D semi-classical black hole evaporation, they are physically less interesting than the CGHS model.
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3.1 Overview

Let us first recall the standard paradigm. Literature on the quantum evaporation of CGHS

black holes uses a certain definition of Bondi massMTrad
Bondi. Essentially every preceding pa-

per assumed that: i) The semi-classical approximation is excellent until the horizon shrinks

to Planck size; ii) Throughout this long phase,MTrad
Bondi is non-negative and the process is

quasi-static; iii) Consequently, during this phase the quantum flux atI+
R is given by the

Hawking thermal flux and the semi-classical approximation holds; and iv) At the end of

this phase the Bondi mass is also of Planck size. This depiction is reminiscent of the argu-

ment we mentioned in Sec. 1.1, namely, the fixed background metric picture holds until the

mass of the black hole decreases to Planck scale. It is then difficult to imagine how purity

of the incoming quantum state could be preserved in the outgoing state. However, our re-

sults show that several features of this scenario fail to be borne out by detailed calculations

in the semi-classical theory. In particular, we will show the following results for a prompt2

collapse of data with large ADM mass:

• The traditional Bondi mass,MTrad
Bondi, in fact becomesnegative(and large) even while

the horizon area is macroscopic.

• The definition ofMTrad
Bondi is taken directly from the classical theory where the black

hole is static. Now, in 4 dimensions one knows [31] that the formula for the Bondi

mass has to be modified in non-stationary space-times (from
∮

Ψo
2 d

2V to
∮

(Ψo
2 −

σ ˙̄σ) d2V ). Indeed if one were to ignore this modification, one would find that neither

the Bondi mass nor the Bondi flux is always positive. We have already showed that a

quantum corrected Bondi mass,MATV
Bondi, is proposed in [13], in the CGHS mean-field

theory (which, in particular, reduces toMTrad
Bondi in the classical theory). This mass

remainspositivethroughout the evaporation process of the mean-field approximation.

• Although the horizon area goes to zero at the end of the evaporation process in the

2The meaning of a prompt collapse will be discussed in Chapter4
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mean-field approximation,MATV
Bondi is not of Planck size at that time (i.e., at the point

where the ‘last ray’ of Fig. 1.3 intersectsI+
R ). For all black holes with large ini-

tial ADM mass, as the horizon area shrinks to zeroMATV
Bondi approaches auniversal

value≈ 0.864N̄ in Planck units, withN̄ = N/24. This end point Bondi mass is

macroscopic sinceN is necessarily large in the semi-classical theory.

• Dynamicsduring the evolution process also shows auniversal behavior. For ex-

ample, one can calculateMATV
Bondi as a function of the horizon areaahor. There is a

transient phase immediately after the horizon is first formed, though after that the

plot ofMATV
Bondi againstahor joins a universal curve all the way to zero area.

• The flux of energy radiated acrossI+
R departs from the thermal flux whenMATV

Bondi and

evenahor are macroscopic.

• Although the Ricci scalar of the mean-field metricg diverges at the (weak) singular-

ity, it is regular on the last ray and goes to zero as one approachesI+
R along this ray.

Thus, contrary to a wide spread belief, there is no ‘thunderbolt’ curvature singularity

in the semi-classical theory.

We will see in Chap. 4 that our results strongly suggest that theS matrix fromI−
L to

I+
R is likely to be unitary. However,because of the universalityof physical quantities at

I+
R , it is very unlikely that information in the infalling matter at I−

R will be recovered in

the outgoing state atI+
R . This is in sharp contrast with a wide-spread expectation; indeed,

mechanisms for information recovery have been suggested inthe past (see e.g. [22]). This

expectation illustrates the degree to which universality was unanticipated in much of the

CGHS literature.

In the following two sections, we will consider a collapsingδ−function shock wave, as

in Eq. 1.34, which will be followed by a discussion on initialdata with extended profiles.
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3.2 Shell Collapse: Anticipated Behavior

Figure 3.1: The Ricci scalarR for M⋆ = 8. Left: 2D contour plot ofR1/5 showing the
increase inR as the singularity (dark vertical region near the middle) isapproached and the
asymptotically flat region (R → 0) nearI+

R (z+ → ∞). Right:R1/5 as a function ofz+ on
the linesz− − z−sing = −10−5,−10−6,−10−8 (marked on the left panel as horizontal lines),
showing a double peak, indicating the divergent behavior of∂+∂−Φ at the singularity. The
fact that the peak is narrow rules out a strong thunderbolt singularity. Note that the dark
color at the region of the singularity is due to the high density of contour lines, and not
directly due to negative values ofR. While naive numerical calculation ofR very close to
I+
R does not yield reliable results due to catastrophic cancelation, it is already very small in

the highz+ values shown here, and the trend towards0 is clear.

Asymptotic flatness atI+
R : First, Θ,Φ do indeed satisfy the asymptotic conditions

Eq. 1.37. This was also noted in the recent approximate solution to the CGHS equations by

Ori [25]. The simulations provide values of the functionsA(z−), B(z−) andy−(z−). As

a consistency check on the simulation, we verified the balance law Eq. 1.40 by calculating

separately the right and left sides of this equation as closeto the last ray as the numerical

solution gave reliable (convergent) results. We also computed the scalar curvatureR of the

mean-field metricg, and it does go to zero atI+
R—see Fig. 3.1 for an example.
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Figure 3.2: Left: Plot oflog10(dy
−/dz−) vs log10∆ for M⋆ = 8, N̄ = 1, where∆ =

(

z−sing − z−
)

. Right: Slope of the curve on the left. If locally the function on the left behaves
as∼ (κ∆)−p, the curve on the right shows−p. In the distant past (rightmost region in both
plots),y− tends toz−. The intermediate region is similar to that in the classicalsolution
where(dy−/dz−) ∼ (κ∆)−1. As the last ray is further approached (leftmost region), we
see that(dy−/dz−) increases much slower than(κ∆)−1, leading to a finite value fory− at
the last ray.

Finiteness ofy− at the last ray: In the classical solution, the affine parameters y− along

I+
R andz− alongI−

L defined by gare related by

e−κy−

= e−κz− − GM
κ

. (3.1)

Hence y− = ∞ atκz− = − ln(GM/κ). This is the point at which the singularity and the

event horizon meetI+
R (see Fig 1.2). Thus, in the classical solutionI+

R is complete but,

in a precise sense, smaller thanI−
L . For a test quantum field̂f− on the classical solution,

one then has to trace over modes residing on the part ofI−
L which is missing fromI+

R .

This fact is directly responsible for pure states onI−
L to evolve to mixed states onI+

R , i.e.,
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for the non-unitarity of theS-matrix [13, 17] of the test field (recall Sec. 1.4). What is

the situation in the mean-field theory? Our analysis shows that, as generally expected, the

affine parameter w.r.t. the mean field metricg takes afinite value at the last ray onI+
R ; a

necessary condition for unitarity of the S-matrix is met.

Our numerical solution cannot reach the last ray, since it isin the future of the singu-

larity. The best we can do is getting as close to it as possible, before the singularity causes

our numerical evolution to stop. To establish the finitenessof y−, we need to know the

functional behavior ofy−(z−) in the vicinity of the last ray3. Let us return to the classical

solution gand set

κz−sing,cl = − ln(GM/κ) and ∆cl = z−sing,cl − z− . (3.2)

(The subscript ‘sing,cl’ just highlights the fact that thisis the point at which the classical

singularity meetsI+
R .) Then we have

y− = z− − 1

κ
ln
(

1− e−κ∆cl
)

. (3.3)

When∆cl tends to zero, y− is dominated by the leading order term−(1/κ) ln(−κ∆cl)

which diverges at∆cl = 0. This logarithmic divergence is coded in the power−1 in the

expression of the derivative(dy−/dz−):

dy−

dz−
= (κ∆cl)

−1 + finite terms. (3.4)

If we had(κ∆cl)
−p on the right side rather than(κ∆cl)

−1, then y− would have been finite

at the future end ofI+
R of g for p < 1 (as then y− = (κ∆cl)

1−p/(1− p)+ finite terms).

In the mean-field theory, the last ray starts at the end point of the singularity and meets

I+
R of g at its future end point. We will denote it by the linez− = z−sing. Following the

3Note that quantities with an under bar are those of the the classical case, and the ones without it corre-
spond to the MFA calculation
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above discussion, to show that the affine parametery− w.r.t. g is finite atz− = z−sing we

focus on the behavior of(dy−/dz−) near this future end point ofI+
R . More precisely, we

analyze the functional behavior of(dy−/dz−) and determine a localp extracted from the

logarithmic derivative of(dy−/dz−) with respect to∆ ≡ z−sing − z−. Results in Fig. 3.2

show that(dy−/dz−) grows much slower near the last ray in the mean-field theory than it

does in the classical theory. In fact, over the entire range of I+
R the local estimate ofp is

strictly less that1, and asymptotes to0 approaching the last ray. This implies thaty− is

finite at the last ray in the mean-field theory.

Note that the above analysis is only valid if we have determined the location of the

singularity with sufficient accuracy such that the numerical uncertainty in its location is

much smaller than the range in∆ where we extract the asymptotic behavior of the function.

From convergence studies, we estimate our precision in determiningz−sing to be at the order

of 10−13, and hence all the values in Fig. 3.2 are sufficiently far fromthe last ray to provide

a reliable measure of the powerp.

3.3 Shell collapse: Unforeseen Behavior

The numerical calculations also revealed a number of surprises which we now discuss.

Bondi mass for largēN : Scaling properties discussed in section 1.3.5 imply that if the

Bondi mass at the last ray is non-zero, it will be macroscopicfor a sufficiently largeN . This

expectation is borne out (in particular the Bondi massis non-zero) in all our simulations

with largeMADM and largeN̄ . Fig. 3.3 summarizes the result of a simulation where

N = 720 andMADM = 360 (soN̄ = 30 andM⋆ = 12). The Bondi mass,MTrad
Bondi, that has

been commonly used in the literature [8, 12, 18, 21, 22, 23, 24] becomes negative even far

from the last ray when the horizon area is still macroscopic,and has a macroscopic negative

value at the last ray.4 On the other hand, the more recentMATV
Bondi [13, 17] remains strictly

4After this work was completed, Javad Taghizadeh Firouzjaeepointed out to us that the fact that the
traditional Bondi mass can become negative was already noticed in [23]. Again though, in our terminology
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Figure 3.3: The ATV Bondi massMATV
Bondi (solid lines) and the traditional Bondi mass

MTrad
Bondi (dashed lines) are plotted againstz− − z−sing (left) and the horizon area (right). This

simulation corresponds toMADM = 360, N = 720 (soM⋆ = 12). For high values ofN ,
both formulas give a large non-zero Bondi mass at the last ray. MTrad

Bondi becomes negative
when the area is still macroscopic. On the other handMATV

Bondi remains strictly positive all
the way to the last ray, where the generalized dynamical horizon (GDH) shrinks to zero
area.

positive. As one would expect from the scaling relations, becauseN is large,MATV
Bondi is also

macroscopic at the last ray.

Universality of the end state: Fig 3.4 shows a plot ofm⋆, the value of (MATV
Bondi/N̄) at

the last ray, againstM⋆ = (MADM/N̄), for several values of the initialM⋆ > 1. The curve

that fits the data, shown in the figure, is

m⋆ = α (1− e−β(M⋆)γ ) (3.5)

the numerical simulation in that work corresponds to a microscopic black hole withM⋆ = 1MPl.

66



Figure 3.4: The value ofm⋆ (i.e. MATV
Bondi/N̄ at the last ray) is plotted againstM⋆ (which

equalsMADM/N̄) for M⋆ ≥ 1. For MacroscopicM⋆ (actually, already forM⋆ & 4!) m⋆

has a universal value, approximately0.864.

with specific values for the constantsα, β, γ

α ≈ 0.864, β ≈ 1.42, γ ≈ 1.15 .

It is visually clear from the plot that there is a qualitativedifference betweenM⋆ & 4

andM⋆ . 4. Physically this can be understood in terms ofainitial, the area of the first

marginally trapped surface: Eq. 1.36 implies thata
⋆
initial = ainitial/N̄ can be greater than a

Planck unit only ifM⋆ is larger than3. It is therefore not surprising thatM⋆ = 4 should

serve as the boundary between macro and Planck regimes. Indeed, as Fig 3.4 shows, if

M⋆ & 4, the value of the end point Bondi mass is universal,m⋆ ≈ 0.864. ForM⋆ . 4

on the other hand, the value ofm⋆ depends sensitively onM⋆. This could have been

anticipated because ifM⋆ ≤ 3, what evaporates is a GDH whichstarts outwith one

Planck unit or less of areaa⋆. Thus, in the mean-field approximation it is natural to regard

CGHS black holes withM⋆ & 4 as macroscopic and those withM⋆ . 4 as microscopic.
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Finally, for macroscopic black holes, the end-value of the traditional Bondi-mass is also

universal:MTrad
Bondi < ahor and(MTrad

Bondi/N̄) → −2.0 asahor → 0.

As noted in Chap. 2, there have been a number of previous numerical studies of the

CGHS model [21, 10, 23, 24]. They clarified several importantdynamical issues. However

they could not unravel universality because they all focused on cases where the black hole

is microscopic already at its inception:M⋆ ≤ 2.5 in [21], M⋆ = 1 in [10] and [23] and

M⋆ = 0.72 in [24]. This limitation was not noticed because the scalingsymmetry and its

significance was not appreciated.

Figure 3.5: Left: The affine parametery− (defined in Eq. (1.38) of the physical metricg
is plotted against the rescaled areaa

⋆ := (aGDH/N̄) of the generalized dynamical horizon
(given by(Φ/N̄−2)) at the horizon for values ofM⋆ from 4 to 14. Even though the curves
are very similar in shape, they do not coincide. Right: Once the shifting freedom iny−

is utilized, we see that a properly shifted versiony−sh is universal with respect toa⋆ for all
macroscopicM⋆ values.y−sh can be used as a universal coordinate similar to the horizon
area.

Dynamical universality ofy−: The horizon areaaGDH (more precisely, its negative) pro-

vides an invariantly defined time coordinate to test dynamical universality of other physical
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quantities. Let us begin withy−, the affine parameter alongI+
R with respect to the physical

metricg defined in Eq. 1.38. Fig. 3.5, left, shows the plot ofy− againsta⋆ := (aGDH/N̄)

for various values ofM⋆. These plots show that the time dependence ofy− for various

values ofM∗ is very similar but not identical. Recall, however, that there is some freedom

in the definition of the affine parameter. In particular, in each space-time we can shift it

by a constant, and the particular value of the constant can vary from one space-time to the

next (e.g. depend on the ADM mass). This shift does not affectany of our considerations,

including the balance law Eq. 1.40.

Let us definey−sh by shifting eachy− so that each solution reaches the same small non-

zero value of the horizon area,a⋆ = ǫ, at the samey−sh. It turns out that this shift has

the remarkable feature that, for initially macroscopic black holes, all shifted curves now

coincide forall values ofa⋆. Thus, we have a universal, monotonic function ofa
⋆ plotted

in Fig. 3.5, right. Hencey−sh also serves as an invariant time coordinate. In fact it has an

advantage overaGDH: whereasa⋆ is defined only after the first marginally trapped surface

is formed (see Fig 1.3),y−sh is well defined throughout the mean-field space-time(M, g).

Dynamical Universality ofFATV andMATV
Bondi: We can repeat the procedure used above

for y− to investigate if dynamics of other physical quantities such as the Bondi fluxF ⋆ :=

(FATV/N̄) and the Bondi massM⋆
Bondi := (MATV

Bondi/N̄) are also universal. Note, however,

that unlikey−, there is no ‘shift’ (or indeed any other) freedom in the definitions ofFATV

andMATV
Bondi. So, if there is universality, it should emerge directly,without any adjustments,

in the plots ofF ⋆ andM⋆
Bondi againsta⋆ = (aGDH/N̄) or y−sh.

Let us begin with the Bondi flux. Recall, first, that in the external field approxima-

tion [12, 32], the energy flux is very small in the distant past, rises steeply atκy− ≈

− ln(GMADM/κ) and then quickly asymptotes to the Hawking valueFHaw = (N̄~κ2/2).

This constant flux is characteristic of thermal radiation attemperatureκ~ in two space-time

dimensions. In our simulations (withN = 24, or) N̄ = 1 and~ = κ = 1, it corresponds to

FHaw = 0.5.
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Figure 3.6:F ⋆ = (FATV/N̄) is plotted against the horizon areaa⋆ := (aGDH/N̄) (left)
andy−sh (right) for values ofM⋆ from 4 to 14. For allM⋆ values,F ⋆ starts at the value of
0 at the distant past (κy−sh ≪ −1), and then joins a universal curve ofF ⋆. Note that once
the GDH is formed, (the rightmost beginning of each curve on the left plot)F ⋆ is already
slightly larger in magnitude than the Hawking/thermal value 0.5 and it increases steadily
as one approaches the last ray (i.e. asaGDH andy−sh approach0.

In the mean-field theory, numerical simulations show that, for all initially macroscopic

black holes, the energy fluxF ⋆ := (FATV/N̄) is also negligibly small in the distant past

and then rises steeply. But this rise is now associated with aclearly identifiable dynamical

process: formation of the first marginally trapped surface.As we noted in section 1.3.4 ,

for a shell collapse, analytical calculations show that thearea of this first surface is given by

Eq. 1.36. Assuming that we have a macroscopic initial mass,M⋆ ≫
√
G~ MPl =: M̃PL,

Eq. 1.36 simplifies:

a
⋆
initial ≈ G~

[M⋆

M̃Pl

− 1 +
M̃Pl

2M⋆
+ . . .

]

(3.6)

This relation is borne out in simulations. Assuming that theblack hole is very large at this

stage, heuristically, one can equate the area of this new born GDH with the Bondi mass at
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Figure 3.7:M⋆
Bondi = (MATV

Bondi/N̄) is plotted against the horizon areaa⋆ := (aGDH/N̄)
(left) andy−sh (right) for values ofM⋆ from 4 to 14. For all these macroscopicM⋆, M⋆

Bondi

starts at the value ofMADM in the distant past (κy−sh ≪ −1), and then joins a universal
curve ofM⋆

Bondi. When the dynamical horizon first formsM⋆
Bondi is quite close to its initial

value ofM⋆, (This is difficult to see in the left plot where all the curvescrowd.) This means
that almost all of the evaporation occurs after the formation of the dynamical horizon.

the retarded instant of time, sayy− = y−o , at which it is born. This implies that, per scalar

field, only∼ 1 Planck unit ofM⋆
Bondi has been radiated over the long period of time from

y− = −∞ till y− = y−o . But once the GDH appears, the flux rises steeply to a value close

to but higher than0.5. Then, it joins a universal curve all the way to the last ray where

the areaa⋆ shrinks to zero. Thus, after a brief transient phase around the time the GDH is

first formed, the time-dependence of the Bondi flux is universal. Fig. 3.6, left shows this

universal time dependence witha⋆ as time and Fig. 3.6, right shows it withy−sh as time.

In virtue of the balance law (1.40) one would expect this universality to imply a uni-

versal time dependence also for the Bondi massM⋆
Bondi. This is indeed the case. At spatial

infinity ioR, we haveM⋆
Bondi = M⋆. There is a transient phase around the birth of the GDH
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in which the Bondi mass decreases steeply. Quickly after that, the time dependence of

M⋆
Bondi follows a universal trajectory until the last ray. Fig. 3.7,left shows this universality

with a
⋆ as time while Fig. 3.7, right shows it withy−sh as time.

To summarize, using eithera⋆ or y−sh as an invariant time coordinate, we can track the

dynamics ofF ⋆ andM⋆
Bondi. In each of the four cases, there is a universal curve describing

these dynamics. For definiteness let us usea
⋆ as time and focus onM⋆

Bondi (the situation

is the same in the other three cases). Since both quantities are positive, let us consider

the time-mass quadrant they span. Fix a very large initial black hole withM⋆ = M⋆
o and

denote byco the curve in the quadrant that describes its time evolution.Then, given any

other black hole withM⋆ < M⋆
o , the curvec describing the dynamical evolution of its

M⋆
Bondi starts out at a smaller value of time (i.e.a

⋆) marking the birth of the GDH of that

space-time and, after a brief transient phase, joins the curve co all the way until its horizon

shrinks to zero. Here we have focused on the ATV flux and mass because their properties

make them physically more relevant. But this universality holds also for the flux and mass

expressions,FTrad,MTrad
Bondi that have been traditionally used in the literature.

Curvature at the last ray: There has been considerable discussion on the nature of the

geometry at the last ray. Since this ray starts out at the singularity, a natural question is

whether a curvature singularity propagates out all along the last ray toI+
R . This would be a

‘thunderbolt’ representing a singular Cauchy horizon [24]. If it were to occur, the evolution

across the last ray would not just be ambiguous; it would be impossible. However,a priori

it is not clear that a thunderbolt would in fact occur. For, the ‘strength’ of the singularity

goes to zero at its right end point where the last ray originates.

Using numerical simulations, Hawking and Stewart [24] argued that a thunderbolt does

occur in the semi-classical theory. But they went on to suggest that it could be softened

by full quantum gravity, i.e., that full quantum gravity effects would tame it to produce

possibly a very intense but finite burst of high energy particles in the full theory.

Our calculation of the Ricci scalar very close to the last rayshows that, except for a
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small region near the singularity, the scalar curvature at the last ray isnot large (Fig. 3.1).

Thus, our more exhaustive and high precision calculations rule out a thunderbolt singularity

in the original sense of the term. This overall conclusion agrees with the later results in [21].

(Both these calculations were done only for initially microscopic black holes while results

hold also for macroscopic ones.) However, our calculationsshow that the fluxFATV does

increase very steeply near the last ray (see Fig. 3.6). Numerically, we could not conclude

whether the flux remains finite at the last ray or diverges. However, the integrated flux

which determines the change inMATV
Bondi is indeed finite and in factnot very significantin

the region very near the last ray. For macroscopicM⋆ values, the total radiated energy after

the point whenF ⋆ reaches the value1 is∼ 1 Planck mass. (see Figs. 3.6, 3.7). Thus, if we

were to associate the thunderbolt idea to the steep increaseof flux at the last ray, this would

have to be in quite a weak sense; in particular, there is no singular Cauchy horizon.

Nature of the Bondi flux: Recall that in the external field approximation, the energyflux

starts out very low, rapidly increases and approaches(FHaw/N̄) = ~κ2/2, the constant

thermal value (= 0.5 in our simulations), from below [32, 12] (see Eq. 1.24). In the mean-

field theory, the fluxFATV also starts out very small and suddenly increases when the GDH

is first formed. However, it overshoots the thermal value andceases to be constant much

before the black hole shrinks to Planck size (Fig. 3.6). During subsequent evolution,FATV

monotonically increases in magnitude and is about 70% greater than the constant thermal

valueFHaw whenMATV
Bondi ∼ 2N̄MPl: the standard assumption that the flux is thermal till

the black hole shrinks to Planck size is not borne out in the mean field theory. (One’s

4-dimensional intuition may lead one to think that the increase in the flux merely reflects

that the black hole gets hotter as it evaporates; but this is not so because the temperature

of a CGHS black hole is anabsolute constant, THaw = κ~). In the interval between the

formation of the GDH and the time whenMATV
Bondi approaches̄NMPl, the numerical flux is
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well approximated by

FATV = FHaw

[

1− ln

(

1− N̄MPl

MATV
Bondi

)]

. (3.7)

Thus, in this interval the flux is close to the constant thermal value only while the areaa of

the GDH is much greater than̄N Planck units.5 We will give the details of the derivation

of Eq. 3.7 in Appendix. A.

3.4 Universality beyond the shell collapse.

So far, we have focused our attention on a delta distributionshell collapse (Eq. 1.34). As

we will discuss more in the following section, we expect the results to be robust for a large

class of infalling profiles, so long as the GDH forms promptly. To test this conjecture, we

evolved a 2-parameter family of initial data, parameterized by a characteristic initial mass

M and widthw. Now, it is clear from the form Eq. 1.32), 1.33 of initial datathat what

matters is not the profilef (o)
+ itself but rather the integral of(∂+f

(o)
+ )2. We will specify it

using two parameters,M andw:

∫ x̄+

0
d¯̄x+ (

∂f
(o)
+

∂ ¯̄x+ )2 =















M
12N̄

(

1− e−
(κx̄+−1)

2

w2

)4

x̄+ > 1

0 x̄+ < 1

(3.8)

This choice is motivated by the following considerations. First, as in the shell collapse,

there is a neighborhood ofI−
L in which the solution represents the vacuum of the theory.

Second, the power4 on the right side is chosen to ensure high differentiabilityat x+ = 1

5The leading order correction+(N̄MPl/MBondi) to the Hawking flux was obtained by Ori by analytical
approximation methods and served as the point of departure for obtaining the fit (3.7). Note also that if
the fluxes differ over a significant time interval, it followsthat the quantum radiation is not thermal. But
the converse is not true as there arepure states in the outgoing Hilbert space for which the energy fluxat
I+
R is extremely well approximated by the constant thermal value. For quantum states, what matters is the

comparison between the functiony−sh(z
−) and its classical counterpart y−(z−) given by (3.1) [13, 17], and

these two functions are very different. Finally, non-thermal fluxes were also observed in a quantum model of
four-dimensional spherical shell collapse [33]
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Figure 3.8: The value ofm⋆ (i.e. MATV
Bondi/N̄ at the last ray) plotted againstM⋆ (which

equalsMADM/N̄) for M⋆ ≥ 1. In addition to points corresponding to shell collapse (w =
0) the plot now includes points with more general profiles withw = 0.25, 0.5, 1. The
universal valuem⋆ ≈ 0.864 persists forM⋆ ≥ 4.

(i.e. z+ = 0). Thus,f (o)
+ is C4 and furthermore decays faster thane−Cκz+ for anyC as

z+ → ∞. Third, the parameterw provides a measure of the width of the matter profile

in x+ coordinates, which is roughly the width inz+ for w . 1. Finally, note that we

recover the shell profile in the limitw → 0 and expect that the physical requirement of

a ‘prompt collapse’ will be met for sufficiently smallw. In the case of a shell profile

Eq. 1.34, the parameterM represents the ADM mass. A simple calculation shows that

for a general profile in family (3.8),MADM is given by a function of the two parameters:

MADM = M(1 + 1.39 w). Thus, within this family, the issue of universality of a physical

quantity boils down to the question of whether it depends only on the specific combination

M(1 + 1.39 w) of the two parameters.

Numerical evolutions were carried out forM⋆ ≈ 6, 9, 11, 13 andw = 0.25, 0.5, 1. We

find that universality is indeed retained for all these cases. Specifically, we repeated the

following analysis of section 3.3 for various values ofM andw:
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Figure 3.9:F ∗ (left) andM∗
Bondi (right) plotted againsty−sh, for various incoming matter

profiles (w andMADM values), including several shell (w = 0) cases. The time when the
dynamical horizon first forms is marked on each flux curve (which is later for largerw). All
the curves with the sameMADM (6 in this example) are on top of each other and cannot be
distinguished by the eye, showing that they have the same universal behavior throughout the
evolution, including the early times. More generally all the asymptotic physical quantities
depend only on the combinationMADM of the profile parametersM andw as long asκw
is small compared to the initial area of the GDH.

i) The relationship between the end-point valuesm⋆ of M⋆
Bondi againstM⋆; see Fig. 3.8.

ForM⋆ ≥ 4, we again findm⋆ has the same universal value,∼ .864MPl.

ii) The relationship ofy− vsa⋆ (once GDH becomes time-like). As before, by an appropri-

ate shift, we find ay−sh that can be used as a universal time coordinate for all cases.

iii) The dependence ofF ⋆ andM⋆
Bondi ona

∗ andy−sh; see Fig. 3.4. We still retain the same

notion of universality from the shell collapse, that is, thetime evolution ofF ⋆ (andM⋆
Bondi)

coincide for all values ofM andw at late times, as long asMADM is macroscopic, andw is

not too wide. Moreover, note that for a fixed value ofMADM the plots are indistinguishable

all the time, including the early times before the formationof the GDH.That is, asymptotic
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Figure 3.10: Plot ofdy−/dz against the separation inz− from the singularity for various
values ofM andw with a fixed ADM massM⋆ = 6. The functional dependencey−(z−)
determines the physics of the outgoing quantum state completely [13, 17]. Coincidence
of these curves in the mean-field theory suggests that the outgoing quantum state is likely
to be universal within the class of initial data with the sameADM mass, so long as the
collapse is prompt.

physics nearI+
R only cares about the “total mass”, not the shape of the collapsing energy

profile. So, even for this broader class of matter profiles, there are two universal curves,

one for the dynamics ofF ⋆ and the other forM⋆
Bondi. In particular, for a givenw > 0, the

time evolutionF ⋆ andM⋆
Bondi is identical to that obtained with the shell collapse (w = 0).

In the classical theory, if the collapsing matterf
(o)
+ is compactly supported onI−

R , to the

future of this support the geometry is universal, determined by the ADM massMADM. This

is because stationary, classical, CGHS black holes are characterized completely byMADM.

Whether the situation would have a direct counterpart in thesemi-classical theory is nota

priori clear because the semi-classical solutions are not stationary and there is no reason

to expect the solution to be characterized just by one or two parameters to the future of

77



the support off (o). Our results provide a precise sense in which universality does persist.

As long as the black hole is initially macroscopic and the collapse is prompt, we have :

i) a universal asymptotic time translation∂/∂y−sh (Fig 3.10); and, soon after the formation

of the GDH, ii) universal dynamics of physical observables with respect to the physical

asymptotic timey−sh.

3.5 Discussion

The CGHS model provides a useful arena to explore the formation and quantum evap-

oration of black holes. For, the classical action is closelyrelated to that governing the

spherically symmetric gravitational collapse in 4 dimensions and, at the same time, the

decoupling of matter and dilaton fields in the model introduces significant technical sim-

plification. However, in this paper, we were not concerned with thefull quantum theory of

the CGHS model. Rather, we restricted ourselves to the mean-field equations of [13, 17]

and explored their implications using high precision numerics.

Our analysis of universality was carried out in the same spirit that drove the inves-

tigation of critical phenomena in classical general relativity [15, 16]. There, one takes

equations of general relativity seriously and shows, for example, that black holes can form

with arbitrarily small mass. From a more complete physical perspective, these black holes

would have enormous Hawking temperature, whence quantum effects would be crucial. To

know whether black holes with arbitrarily small masses can form in Nature, one cannot

really rely on the classical Einstein equations. The viewpoint in those investigations was

rather that, since general relativity is a self-contained,well defined theory, it is interesting

to explore what it has to say about such conceptual issues. The results of those explorations

led to the discovery of critical behavior in gravitational collapse, which is of great interest

from a theoretical and mathematical physics perspective. In the same vein, in the CGHS

model, it is conceivable [17] that the relative quantum fluctuations of operatorŝΘ, Φ̂, may
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become of order1 once the horizon mass is of the order of, say,
√
M⋆MPl.6 Suppose

this were to happen at a pointp on the GDH. Then, to the future of the null ray fromp

to I+
R , solutionsΘ,Φ to the mean-field equations discussed in this paper would be poor

approximations of the expectation values ofΘ̂, Φ̂ that result from full quantum equations.

That is, our solutions to the mean-field equations would not be physicallyreliable in this

future region. The scope of this study did not include this issue of the physical domain of

validity of the mean-field approximation. As in much of the literature on semi-classical

gravity, we considered the entire space-time domain where the mean-field equations have

unambiguous solutions. And as in investigations of critical phenomena, our focus was on

exploring non-trivial consequences of these equations. Specifically, we wished to explore

two questions:Are standard expectations about predictions of semi-classical gravity borne

out? Do the mean-field dynamics exhibit any universal features?

6Note incidentally that in 4 dimensions, when a black hole with MADM = M⊙ has shrunk down through
quantum radiation to mass

√
MADMMPl, its horizon radius is less than a fermi, and for a super-massive black

hole withMADM = 109M⊙, this radius is a tenth of an angstrom.
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Chapter 4

Further Discussions and Conclusion

4.1 Semiclassical Theory

We found that some of the standard expectations of semi-classical gravity are indeed borne

out: The semi-classical space-time is asymptotically flat at I+
R as in the classical theory,

but in contrast to the classical caseI+
R is now incomplete. Thus, the expectation [4] that

the full quantum space-time would be an extension of the semi-classical one is viable.

However, a number of other expectations underlying the standard evaporation paradigm

turned out to be incorrect. Specifically:

a) The traditional Bondi massMTrad
Bondi is large and negative at the end of the semi-classical

evaporation rather than of Planck size and positive;

b) The recently introduced Bondi massMATV
Bondi remains positive but is large, rather than of

Planck size at the end of evaporation;

c) The energy fluxFATV of quantum radiation deviates from the Hawking flux correspond-

ing to thermal radiation even when the black hole is macroscopic, the deviation becoming

larger as the evaporation progresses; and,

d) Along the ‘last ray’ from the end of the singularity toI+
R , curvature remains finite; there

is no ‘thunderbolt singularity’ in the metric extending toI+
R .
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The analysis also brought out some unforeseen universalities. The most striking among

them are:

i) If M∗ = MADM/N̄ is macroscopic, at the end of semi-classical evaporationm⋆ :=

MATV
Bondi/N̄ assumes a universal value,m⋆ ≈ .864MPl;

ii) As long asM⋆ is greater thanMpl, there is a universal relation:m⋆ = α(1−e−β(M⋆)γ )MPl,

with α ≈ 0.864, β ≈ 1.42, γ ≈ 1.15;

iii) An appropriately defined affine parametery−sh alongI+
R is a universal function of the

areaaGDH of the generalized dynamical horizon;

iv) The evolution of the Bondi massMATV
Bondi with respect to an invariantly defined time

parameteraGDH (or y−sh) follows a universal curve (and same is true for the energy flux

FATV).

These results bring out a point that has not drawn the attention it deserves: the number

N of fields plays an important role in distinguishing between macroscopic and Planck size

quantities. If semi-classical gravity is to be valid in an interesting regime, we must have

N ≫ 1 and the ADM mass and horizon area are macroscopic ifMADM/N̄ ≥ 4G~Mpl

anda/N̄ ≥ G~. (By contrast, it has generally been assumed that the external field ap-

proximation should hold so long asMADM > MPl or a > G~.) Of course the ADM

masses can be much larger and for analogs of astrophysical black holes we would have

MADM/(N̄Mpl) ≫ G~. After a brief transient period around the time the GDH is born,

dynamics of various physical quantities exhibit universalbehavior till the horizon areaa

goes to zero. IfMADM/(N̄Mpl) ≫ 1, the universal behavior spans a huge interval of time,

as measured by the physical affine parametery−sh onI+
R or the horizon areaa.

All these features are direct consequences of the dynamicalequations Eq. 1.26 and

Eq. 1.27 for infalling profiles Eq. 3.8 characterized by two parametersM,w. Of course,

with numerical analysis one cannot exhaustively cover the full range of solutions, and given

the complete freedom to specify the incoming flux fromI−
R one can always construct initial

data that will not exhibit our universal dynamics —for example, after the GDH is formed,
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send in a steady stream of energy with magnitude comparable to FATV. Here we have

restricted attention to initial data for which theGDH forms promptly, and is then left to

decay quantum mechanically without further intervention.Our intuition is that universality

is associated with apure quantum decayof a GDH, pure in the sense that the decay is

uncontaminated by continued infall of classical matter carrying positive energy. Therefore,

we conjecture that for macroscopic black holes formed by smooth infalling matter profiles

of compact support, these universalities will continue to hold soon after the GDH turns

time-like. More generally, for profiles in which the positive energy flux carried across the

GDH by the classical fieldsf (i)
+ is negligible compared to the negative quantum flux to the

future of some rayz+ = z+o , the universality should also hold in the future regionz+ > z+o .

Our extended matter profile Eq. 3.8 was of this nature.

This scenario provides a number of concrete and interestingproblems for the geometric

analysis community. Start with initial data Eq. 1.32, Eq. 1.33 atI− with f
(i)
− = 0 and a

smooth profilef o
+ with compact support for each of theN fieldsf (i)

+ . Evolve them using

Eq. 1.26 and Eq. 1.27. Then, we are led to conjecture that the resulting solution has the

following properties:

1) The maximal solution is asymptotically flat at right future null infinity I+
R ;

2) I+
R is future incomplete;

3) A positive mass theorem holds: The Bondi massMATV
Bondi is non-negative everywhere on

I+
R ;

4) So long asMADM ≫ N̄
√

~/Gκ, the final Bondi mass (evaluated at the last ray) is given

by Mfinal
Bondi ≈ 0.864N̄

√

~/Gκ;

5) Fix a solutionso with MADM = Mo ≫ No

√

~/Gκ and consider the curveco describing

the time evolution of the Bondi mass in theaGDH/No – MBondi/No plane it defines. Then

the corresponding curvec for a solution withM/N < Mo/No coincides withco soon after

its GDH becomes time-like.
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4.2 Quantum Theory

Although the mean-field approximation ignores quantum fluctuations of geometry, nonethe-

less our results provide some intuition on what is likely to happen nearI+
R in the full

quantum theory. First, because there is no thunderbolt singularity along the last ray, the

semi-classical solution admits extensions in a large neighborhood ofI+
R to the future of

the last ray. In the mean-field approximation the extension is ambiguous because of the

presence of a singularity along which the metric isC0 but notC1. But it is plausible that

these ambiguities will be resolved in the full quantum theory and there is some evidence

supporting this expectation [17, 34]. What features would this quantum extension have?

Recall that the model hasN scalar fields and the black hole emits quantum radiation in each

of these channels. The Bondi mass that is left over at the lastray isMBondi ≈ 0.864N̄MPl.

So we have(0.864/24)MPl units of mass left overper channel. It is generally assumed that

this tiny remainder will be quickly radiated away acrossĪ+
R , the right future null infinity of

the quantum space-time that extends beyond the last ray. Suppose it is radiated in a finite

affine time. Then, there is a pointp on Ī+
R beyond whichMATV

Bondi andFATV both vanish.

The expression Eq. 1.42 ofFATV now implies that̄I+
R is ‘as long as’I−

L . This is sufficient

to conclude that the vacuum state (of right moving fieldsf̂
(i)
− ) onI−

L evolves to a pure state

on Ī+
R (because there are no modes to trace over). This is preciselythe paradigm proposed

in [13]. Thus, the semi-classical results obtained in this paper provide concrete support for

that paradigm and re-enforce the analogous 4-dimensional paradigm of [35] (which was

later shown to be borne out also in the asymptotically AdS context in string theory [36]).

All our analysis was restricted to the 2-dimensional, CGHS black holes. As we men-

tioned in Sec. 1.3, while they mimic several features of 4-dimensional black holes formed

by a spherical symmetric collapse of scalar fields, there arealso some key differences. We

will conclude with a list of the most important of these differences and briefly discuss their

consequences. (For a more detailed discussion, see [17].)

First, for CGHS black holes, surface gravityκ and hence, in the external field approx-
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imation, the Hawking temperatureTHaw, is a constant of the theory; it does not depend

on the specific black hole under consideration. In 4 dimensions, by contrast,κ andTHaw

depend on the black hole. In the spherical case, they go inversely as the mass so one is led

to conclude that the black hole gets hotter as it evaporates.A second important difference

is that, in the CGHS black hole, matter fieldsf (i) are decoupled from the dilaton and their

propagation is therefore decoupled from the dynamics of thegeometric sector. This then

implies that the right and left moving modes do not talk to oneanother. In 4 dimensions,

thef (i) are directly coupled to the dilaton and their dynamics cannot be neatly separated

from those of geometric fieldsΦ,Θ. Hence technically the problem is much more diffi-

cult. Finally, in 4 dimensions there is only oneI+ and only oneI− while in 2 dimensions

each of them has two distinct components, right and left. Conceptually, this difference is

extremely important. In 2 dimensions the infalling matter is only in the plus modes,f (i)
+ ,

and its initial state is specified just onI−
R while the outgoing quantum radiation refers to

the minus modes,f (i)
− , and its final state has support only onI+

R . In 4 dimensions, there is

no such clean separation.

What are the implications of these differences?

Because of the first two differences, analysis of CGHS black holes is technically sim-

pler and this simplicity brings out some features of the evaporation process that can be

masked by technical complications in 4 dimensions. For instance, since the Hawking tem-

peratureTHaw is an absolute constant (~κ) for CGHS black holes, the standard paradigm

that the quantum radiation is thermal till the black hole hasshrunk to Planck size leads

to a clean prediction that the energy flux should be constant,FHaw = ~κ2/48. We tested

this simple prediction in the mean field approximation and found that it does not hold even

when the horizon area is macroscopic. In 4 dimensions, sincethe temperature varies as

the black hole evaporates, testing the standard paradigm ismuch more delicate. Similarly,

thanks to the underlying technical simplicity in the CGHS case, we were able to discover

scaling properties and universalities. We believe that some of them, such as the ‘end point
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universality’, will have counterparts in 4 dimensions but they will be harder to unravel. The

CGHS results provide hints to uncover them.

The third difference has deeper conceptual implications which we will now discuss in

some detail. In 4 dimensions, since there is a singleI− and a singleI+, unitarity of the

quantum S-matrix immediately implies that all the information in the incoming state can be

recovered in the outgoing state. In 2 dimensions, on the other hand, there are two distinct

questions: i) is the S-matrix fromI−
L to I+

R unitary? and ii) is the information about the

infalling matter onI−
R recovered in the outgoing state atI+

R? As discussed above, results

of this paper strongly support the paradigm of [13, 17] in which the answer to the first

question is in the affirmative; information onI−
L is faithfully recovered onI+

R . However,

this doesnot imply that all the infalling information atI−
R is imprinted on the outgoing

state atI+
R .

In the early CGHS literature, this second issue was often mixed with the first one.

Because it was assumed that all (or at least most) of the ADM mass is evaporated away

through quantum radiation, it seemed natural to consider seriously the possibility that all the

information in the infalling matter atI−
R can be recovered from the outgoing quantum state

atI+
R . The key question was then to find mechanisms that make it possible to transfer the

information in theright-movinginfalling modesf (i)
+ to theleft-movingmodesf (i)

− going out

to I+
R . In [22], for example, the 2-dimensional Schwinger model with a position dependent

coupling constant was discussed in some detail to suggest a possible mechanism.

However, our universality results strongly suggest that these attempts were misdirected.

The physical content of the outgoingquantumstate is encoded entirely in the function

y−sh(z
−) [13, 17] onĪ+

R , the right future null infinity of the quantum extension of the semi-

classical space-time. In the family of profile functionsf
(o)
+ we analyzed in detail, the func-

tion y−sh(z
−) onI+

R has universal behavior, determined just by the total ADM mass. Since

only a tiny fraction of Planck mass is radiated per channel inthe portion ofĪ+
R that is not

already inI+
R , it seems highly unlikely that the remaining information can be encoded in
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the functional form ofy−sh(z
−) in that portion. Thus, at least for largeM⋆ we expect the

answer to question ii) to be in the negative: information contained in the general infalling

matter profile onI−
R will not be fully recovered atI+

R . From our perspective, this is not

surprising because the structure of null infinity in the CGHSmodel is rather peculiar from

the standpoint of 4 dimensions where much of our intuition isrooted. In 2-dimensional

models,Ī+
R is not thefull future boundary of space-time. Yet discussions of CGHS black

holes generally ignoreIo+
L because, as we saw in section 1.3.4, even in the classical theory

the black hole interpretation holds only with reference toI+
R . Indeed, for this reason, in-

vestigations of quantum CGHS black holes have generally focused on the Hawking effect

and question i) of unitarity, both of which involve dynamicsonly of f̂ (i)
− for which Ī+

R does

effectively serve as the complete future boundary.

In 4 dimensions, the situation is qualitatively different in this regard: in particular, the

outgoing state is specified on all of future null infinityI+, not just on half of it. Therefore,

if the singularity is resolved in the full quantum theory,Ī+
R would be the complete future

boundary of the quantum space-time and there would be no obstruction for theS matrix to

be unitary and hence for the full information onI− to be imprinted in the outgoing state on

I+.

86



Appendix A

Mass dependence of the energy flux

A.1 Flux-Mass Relationship

In Sec. 3.3, we gave a formula that connects theATV definition of the energy flux with the

Bondi mass, namely

FATV = FHaw

[

1− ln

(

1− N̄MPl

MATV
Bondi

)]

. (A.1)

Recall that Eq. A.1 only holds in the interval between the formation of the GDH and the

time whenMATV
Bondi approaches̄NMPl, that is not too early on and not too close to the last

ray. Let us briefly explain how this formula, or rather, conjecture, was devised.

We start with the idea thatFATV can be expressed as a series in inverse Bondi mass

FATV = FHaw

[

1 +
∞
∑

i=1

ai

(

N̄MPl

MATV
Bondi

)i
]

. (A.2)

The i = 1 term was suggested to us by Amos Ori in a private communication, and

was soon confirmed by our numerical results. We found the higher order coefficients

term by term. Once thenth order term (in the expansion parameterN̄MPl

MATV
Bondi

) is deter-

mined, let us call the approximation toFATV that contains thesen termsFATV
n . We plot

87



āi =
(

N̄MPl

MATV
Bondi

)n+1 [

FATV − FATV
(n)

]

, which should be roughly constant in the range where

the series expansion holds, and this was confirmed in our numerical studies.

For up toi = 4 we made the observation thatāi ≈ 1
i
. Based on this, rather than going

through a detailed numerical analysis, which is further complicated by the fact that the

formula holds only in a certain interval, we conjectured that ai = 1
i
, not only for the first

few terms, but in general. This is simply the series expansion of Eq. A.1. In summary,

Eq. A.1 is a combination of concrete numerical results up toi = 4, and a conjecture based

on these results for the full series expansion. We should note that relative error grows as

one tries to determineai for higheri. i = 4 was the highest value where we could discern

ai.

A.2 Flux-Mass Relationship for the “Traditional” Defini-

tions

Dori and Ori (DO from here on) recently gave a series expansion very similar to eq. A.2,

but instead of the ATV definitions, they used the traditionaldefinitions of the Bondi mass

and the energy flux [37]. In this section, we show that their results can be analytically

obtained from Eq. A.1

Before we proceed, let us simplify our notation to avoid any confusion that might arise

due to the differences between our approach and that of DO. Wewill work with dimension-

less quantities and also scale them with the number of quantum fields present,̄N = N/24,
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as before

m = MATV
Bondi/(N̄MPl),

f = FATV/(N̄FPl),

mTrad = MTrad
Bondi/(N̄MPl),

fTrad = FTrad/(N̄FPl), (A.3)

whereFPl is the Planck flux given by~κ2. Using these quantities, eq. A.1 now reads as

f =
1

2

[

1− ln
(

1−m−1
)]

=
1

2

[

1 +

∞
∑

i=1

1

i mi

]

. (A.4)

The result of DO is given by

fTrad =
1

2

[

1 +

∞
∑

i=1

ci

(

1

mTrad

)i
]

(A.5)

where they numerically found thatc2 = 0 andc3 ≈ −0.4, the latter with25% error. We

will call this the DO formula.

Since the “traditional” and ATV definitions of the Bondi massand the energy flux are

related by analytic expressions, anyci in A.5 can be, in principle, calculated from A.4. At

the base of converting the DO formula to ours is the formula

fTrad = f +
√
2
d
√
f

dy−

= f − 1√
2

√

f
df

dm

= f +
1

23/2

√

f

(

1− e1−2f
)2

e1−2f
. (A.6)

The first line is a trivial observation on Eq.1.42 and Eq. 1.45, on the second line we used

eq. 1.43.
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Since in both cases, the Bondi mass is given by integrating the corresponding flux, and

both the “Traditional” and ATV Bondi masses agree at the infinite past (z− → −∞), simple

integration of the first line of Eq. A.6 gives

mTrad = m−
√
2
√

f

= m−
[

1− ln
(

1−m−1
)]1/2

, (A.7)

where we used Eq. A.1 in the second line. Thus, “Traditional”quantities can be expressed

in terms of their ATV versions by inverting Eq. A.6 and Eq. A.7. Functions that relate the

traditional and ATV quantities do not have trivial inverses, so we will invert their series

expansion order by order up tom−4
Trad.

We first expressm−1 in terms ofm−1
Trad, using Eq. A.7

m−1 = m−1
Trad −m−2

Trad +
3

8
m−3

Trad −
53

48
m−4

Trad +O(m−5
Trad) (A.8)

Using Eq. A.6, we can writefTrad in terms ofm, sincef is known in terms ofm:

fTrad =
1

2

[

1 +m−1 +m−2 +
13

12
m−3 +

17

16
m−4 +O(m−5)

]

. (A.9)

Inserting Eq. A.8 into Eq. A.9, we finally reach

fTrad =
1

2

[

1 +m−1
Trad −

5

12
m−3

Trad +
3

16
m−4

Trad +O(m−5
Trad)

]

, (A.10)

which recoversc2 = 0 andc3 = −5/12 ≈ −0.4, results of DO. We should emphasize

that, even though we only performed our calculation up to the4th order, the coefficient at

any order can be calculated with ease. On the other hand, one should also remember that

only terms up to the4th order are based on numerical results, higher terms are part of a

conjecture.
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Quantitative relations between the energy flux and the mass is important in establishing

the fact that the energy flux is not thermal, and might be useful in finding quantitative

measures of the difference from the thermal case in the mean-field approximation.
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2-Dimensional Black Holes,Phys. Rev. Lett.106:161303 (2011)
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