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ABSTRACT 

FUNCTIONAL ANALYSIS OF N-ACETYL TRANSFERASE (NAT1 *148 AND 
NAT1*10) IN COMPLETE NATb AND NATa mRNA 

Lori Millner 
August 8, 2011 

N-acetyltransferase 1 (NAT1) is a phase II metabolic enzyme responsible for the 

biotransformation of aromatic and heterocyclic amine carcinogens such as 4-

aminobiphenyl (ASP). NAT1 catalyzes N-acetylation of arylamines as well as the 0-

acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of 

electrophilic intermediates that result in DNA adducts and mutations. NAT1 is 

transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting 

in mRNAs with distinct 5'-untranslated regions (UTR). NATa mRNA is expressed 

primarily in the kidney, liver, trachea and lung while NATb mRNA has been detected in 

all tissues studied. To determine if differences in 5'-UTR have functional effect upon 

NAT1 activity and DNA adducts or mutations following exposure to ASP, pcDNA5/FRT 

plasmid constructs were prepared for transfection of full length human mRNAs including 

the 5'-UTR derived from NATa or NATb, the open reading frame, and 888 nucleotides of 

the 3'-UTR. Following stable transfection of NATb/NAT1*4 or NATa/NAT1*4 into 

nucleotide excision repair (NER) deficient Chinese hamster ovary cells, N- and 0-

acetyltransferase activity (in vitro and in situ), mRNA, and protein expression were 

higher in NATb/NAT1*4 than NATa/NAT1*4 transfected cells (p<O.05). Consistent with 

NAT1 expression and activity, ASP-induced DNA adducts and hypoxanthine 

phosphoribosy/ transferase mutants were higher (p<O.05) in NATb/NA T1 *4 than in 
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NAT alNA T1 *4 transfected cells following exposure to ABP. These NATa and NA Tb 

mRNA constructs have also been used to study variant NAT1 alleles, including 

NA T1 *14B and NA T1 *10. NA T1 *14B is the most common allele associated with 

reduced N-acetylation activity and has been associated with increased risk for smoking 

induced lung cancer. NA Tbl NA T1 *14B transfected cells resulted in lower V max for PABA, 

ABP, and N-OH-ABP compared to cells transfected with NATb/NAT1*4. However, cells 

transfected with NATblNA T1*14B resulted in increased VmaxfKm for ABP and N-OH-ABP. 

Cells transfected with NATblNA T1 *14B also resulted in increased ABP-induced DNA­

adducts compared to cells transfected with NATblNA T1 *4 transfected cell. This 

indicates that NAT1 14B has lowered capacity for N- and 0- ABP acetylation at high 

substrate concentrations but higher capacity at low substrate concentration when 

compared to NAT1 4. NAT1 14B VmaxfKm compared to NAT1 4 was lower for PABA but 

higher for ABP and N-OH-ABP. This indicates that NAT1 14B is not simply associated 

with lowered acetylation, but is substrate dependent. Another variant allele, NA T1 *10 is 

the most common variant allele in many populations and has been characterized by 

increased acetylation activity in colon and bladder. NA T1 *10 has been associated with 

increased cancer risk for prostate, breast, urinary bladder cancer, gastric 

adenocarcinoma, colon cancers and non-Hodgkin's lymphoma. Following sequencing of 

NAT1*10 genomic sources, additional polymorphisms (A1642C, f1CT1647, C1716T, and 

A 1735T) were observed in one source. This allele is referred to as NA T1 *1 OB in this 

dissertation. Cells transfected with NA Tbl NA T1 *10 and NA Tbl NA T1 *1 OB resulted in 

higher NAT1 activity, protein, mRNA, ABP-induced mutants and DNA adducts than cells 

transfected with NATblNA T1 *4. Differences between NAT1 4, NAT1 10, and NAT1 10B 

were also observed in NATa constructs. These studies illustrate the importance of 

determining NAT1 phenotypes and cancer risk based on mRNA type, substrate type and 

concentration. 
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CHAPTER 1 

ARYLAMINE N-ACETYL TRANSFERASE: AN INTRODUCTION 

Arylamine N-acetyltransferases (NAT1 and NAT2) are an important family of 

cytosolic, phase II xenobiotic metabolizing enzymes. They are found in most species 

from prokaryotes to eukaryotes (Boukouvala and Fakis, 2005). The N-acetyltransferase 

(NAT) genes were among the first polymorphic genes to be identified, over 40 years 

ago. The discovery occurred in the 1950s when a new drug, isoniazid, was introduced 

to treat tuberculosis. Isoniazid was largely successful in treating tuberculosis, however a 

small percentage of patients experienced severe side effects including peripheral 

neuropathy and liver toxicity during treatment (Biehl and Sklavem, 1953). Following 

publication of biomodal distribution histograms measuring the amount of unchanged 

isoniazid in urine, it was determined that two groups of acetylators (rapid and slow) 

existed (Evans et aI., 1960). It was also determined that the patients with the highest 

plasma isoniazid levels were generally slow acetylators (Evans et aI., 1960) and that 

slow acetylators were most likely to develop side effects (Clark, 1985). It was later 

discovered that NAT2 was responsible for the metabolism of not only isoniazid, but also 

other hydrazine drugs including the monoamine oxidase inhibitor, phenelzine, and the 

anti-hypertensive drug, hydralazine (Weber and Hein, 1985). NAT is also responsible for 

the detoxification of many arylamine drugs such as antibacterial sulfonamides the 

antiarrhythmic drug procainamide, the antibiotic dapsone, and the aromatase inhibitor 

aminoglutethimide (Weber and Hein, 1985) (Figure 1-1). 
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Figure 1-1: Drugs metabolized by NAT2 

Drugs metabolized by NAT2 include the antitubercular drug isoniazid, the anti­
hypertensive drug hydralazine, the monoamine oxidase inhibitor phenelzine, the 
aromatase inhibitor aminoglutethimide, the antibiotic dapsone, the antiarrhythmic 
drug procainamide, and the antibacterial drug sulfamethazine. 
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In addition to drug metabolism, NAT1 and NAT2 are responsible for the 

metabolism of many arylamine carcinogens. Common environmental arylamine 

carcinogens metabolized by NAT include aromatic amines such as 4-aminobiphenyl 

(ASP) and 2-aminofluorene (AF) that are components of cigarette smoke and 

contaminants in many products including hair and textile dyes. Heterocyclic amines 

include 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-

methylimidazo[4,5-f]quinoline (10), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline 

(Mel Ox) which are found in meats cooked at high temperatures (Refer to Figure1-2). 

Heterocyclic amines form when amino acids come into contact with creatine at high 

temperatures (Keating and Sogen, 2004; Schut and Snyderwine, 1999). 

PhlP 10 

< > < >-N~ 
ABP 

Figure 1-2: Common environmental arylamine carcinogens metabolized by NAT. 

These include 4-aminobiphenyl (ASP), 2-aminofluorene (AF), 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (10), 2-
amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIOx). 
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Role of human N-acetyltransferases in Carcinogen Metabolism 

Carcinogens may react directly with important biological components such as 

DNA, protein, or lipids, but many carcinogens only exert an effect when metabolically 

activated by phase I or phase II enzymes. Aromatic amines such as ASP contain 

exocyclic amines and may be directly N-acetylated by NAT. NATs catalyze N-acetylation 

(Figure 1-3) by transferring an acetyl group from acetyl-CoA to the exocyclic nitrogen of 

an aromatic or heterocyclic amine. These compounds can then be excreted from the 

body. Arylamine carcinogens are primarily activated in the body by a two step process. 

The first step is N-hydroxylation carried out by the phase I metabolic enzymes, 

cytochrome p450s (Schut and Snyderwine, 1999). These N-hydroxy metabolites can be 

activated further by phase II enzymes such as NAT, sulfotransferases, or tRNA 

synthetases. NAT is an extremely important phase II enzyme. It was found to have the 

highest activity in mammary tissue when compared to the other most common phase II 

enzymes (Ghoshal et aI., 1995). NAT1 and NAT2 further activate N-hydroxy metabolites 

via O-acetylation to form nitreum ions. These acetoxy metabolites quickly form highly 

electrophilic intermediates that react with DNA to form bulky adducts. If these lesions are 

not repaired, mutagenesis and carcinogenesis may result (Schut and Snyderwine, 

1999). The interaction between environmental carcinogen exposure and genes coding 

for these metabolic enzymes may further modulate cancer risk. 
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Figure 1-3: Possible Metabolic Pathways for 4-aminobiphenyl (ABP) 

If the amine group is first N-acetylated creating N-acetyl-ASP, the compound can then 
be excreted. However, If ASP is first hydroxylated by cytochrome p450, creating N­
hydroxy-ASP, NAT can further activate the compound by O-acetylation creating N­
acetoxy-ASP. N-acetoxy-ASP is an extremely unstable compound which spontaneously 
breaks down to form acetic acid and a highly electrophilic arylnitrenium ion that binds 
covalently with nucleophilic moieties such as protein or DNA to form adducts. 
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In addition to activation of environmental carcinogens, NAT1 may serve in a 

more profound role affecting tumor development and progression. NAT1 overexpression 

has been implicated in enhanced density dependent cell growth and resistance to 

chemotherapy. In a recent study conducted in the colon adenocarcinoma cell line HT-

29, a marked change in cell morphology, an increase in cell-cell contact growth inhibition 

and a loss of cell viability at confluence was observed when NAT1 was knocked down 

(Tiang et aI., 2011). Additionally, knock-down of NAT1 resulted in up-regulation of E­

cadherin in both HT-29 cells and in the prostate cancer cell line 22Rv1 (Tiang et aI., 

2011). The overexpression of NAT1 in a normal human mammary luminal epithelial cell 

line (HB4a) allowed those cells to continue proliferation far beyond the density of normal 

HB4a cells (Adam et aI., 2003). The overexpressing HB4a cells also showed resistance 

to etoposide compared to normal HB4a cells, but it is unknown how NAT1 affects 

etoposide resistance (Adam et aI., 2003). It has recently been demonstrated that 

cisplatin interacts with and inhibits NAT1 with the highest second-order rate constant 

among cisplatin targets (Ragunathan et aI., 2008). Therefore, NAT1 up-regulation may 

affect chemotherapeutic tumor sensitivity. Additionally, NAT1 has been identified as one 

of the top three most overexpressed genes in estrogen receptor positive breast tumor 

tissues (Wakefield et aI., 2008). Because NAT1 expression may have far reaching 

effects on tumor growth, progression and chemotherapeutic sensitivity, it is important to 

understand regulation of NA T1 expression. 

NA T1 Gene and Regulation 

The human genome encodes two isoforms of N-acetyltransferase, NAT1 and 

NAT2 located on the short arm of chromosome 8 (Matas et al. 1997). Both are encoded 

by a single intronless coding exon containing an open reading frame (ORF) of 870 base 

pairs. The NAT1 and NAT2 ORFs have 87% nucleotide sequence identity (Sim et aI., 
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2000). Although NAT1 and NAT2 enzymes are similar in sequence, they possess 

different substrate selectivities and structural stabilities (Blum et aL, 1990; Grant et aL, 

1989). 

..-
'<t N 

NATa 0 NATb 
lO 

0) lO 

Ct-2J 
C") 

i_~c..SJ-itiiH.zr----'L.8.I 
N 

iJ iJ '-.... 3 ___ 

NATa 

~~ ~ ~/~ 
(Type I transcripts) ~ ~ 

L..lJ '-2.J i3J ~ i 

NATb (Type II transcripts) 

Figure 1-4: NAT1 gene structure and common transcripts 

The NAT1 promoters (NATa and NATb) produce several mRNA variants with different 
combinations of 5'-UTR exons. All splice variants identified to date contain both exons 8 
and 9. The NATa promoter drives transcription of Type 1 transcripts, whereas NATb 
drives transcription of Type II transcripts. Modified from Butcher et aL, 2005. 

The NA T1 gene is approximately 53 kb in length and contains at least nine exons 

(Husain et aL, 2004). Many NAT1 transcripts have been identified containing different 

combinations of the 5' UTR exons originating from two separate promoters (Husain et 

aL, 2004; Butcher et aL, 2005). Differences in translational efficiencies exist between 

transcripts originating at each promoter, but the biological importance of this remains 
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unclear (Butcher et aL, 2005). Six different mRNAs have been identified to begin at the 

first promoter, NATa (also known as P3), which is located 50.1 kb upstream of the NAT1 

ORF (Barker et aL, 2006). Five different mRNAs have been identified which begin at the 

second promoter, NA Tb (also known at P 1), located just upstream of exon 4 (11.8 kb of 

the NAT1 ORF) (Butcher et aL, 2005; Husain et aL, 2004) (Figure 1-4). 

The NATb promoter has been mapped to a 213 bp region upstream of exon 4 in 

MCF-7 cells or a 257 bp region in HT-29 cells (Butcher et aL, 2005; Husain et aL, 2007). 

Alignment with promoter sequences of NATs derived from other species revealed a 

conserved 16 bp palindrome and a functional Sp1 element (Husain et aL, 2007). The 

NATb promoter lacks a TATA-box and is therefore likely a TATA-Iess Inr type promoter 

(Smale,1997). Less is known about the alternative, NATa promoter. The NATa 

promoter region has been mapped to a 435 bp region upstream of exon 1 (Barker et aL, 

2006). The relative strength of the NATa promoter was low compared to the NATb 

promoter and pGL3-control (containing the strong SV40 promoter) in HepG2 cells 

(Barker et aL, 2006; Husain et aL, 2004). However, the relative contribution of transcripts 

derived from the NATa promoter is not known. Transcripts derived from the NATb 

promoter have been found in all tissues studied but transcripts derived from the NATa 

promoter have been found in liver, kidney, lung, and trachea (Barker et aL, 2006; Husain 

et aL, 2004). It is possible that NATa transcripts are expressed in a wider range of 

tissues, but only when the cell is under specific environmental stress or in a disease 

state. For example, expression of NATa transcripts has recently been reported in 

several ER-positive breast cancer cell lines where NA T1 overexpression is observed 

(Wakefield et aL, 2008). 
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NA T1 Population Frequencies 

NA T1*4 is present at high frequencies in most populations. The highest NA T1 *4 

allelic frequencies have been reported in the American, French, Canadian, Lebanese, 

Chinese and German populations (Table 1-1). NAT1*4 is not the most frequent allele in 

the South African population, where NAT1*10 has the highest allelic frequency. In the 

Lebanese population, allelic frequency for NAT1*14B is 23.8%, while in most other 

populations the allelic frequency is less than 5% (Table 1). Although the NAT1 allele 

population frequencies included here are not exhaustive, they represent populations 

found on four different continents. 

Table 1-1: NAT1 allelic frequencies in selected populations 

USA South 
(Iowa) France Canada Germany Lebanon China Africa 

Allele (Blacks) 

NATl*4 74.2 74.7 70.3 72.4 56 49.6 48.5 

NATl *10 17.4 17.8 25 20.4 10.7 40 50.5 

NATl *148 2 3.7 2.6 0.6 23.8 ND ND 

(NAT1 allele frequencies from Cascorbi et aI., 2001; Dhaini and Levy et aI., 2001; Lo­
Guidice et aI., 2000; Loktionov et aI., 2002; Vaziri et aI., 2001; Zhangwei et aI., 2006; 
Zheng et aI., 1999). 

NAT1*14B 

NA T1 *14B is the most common NAT1 allele associated with reduced acetylation 

activity. NAT1*14B is characterized by a SNP found in the ORF (560G>A) which causes 

an amino acid substitution (R 187Q). Evidence suggests that NA T1 148 is a slow 

acetylator due to the R187Q substitution which causes decreased or no acetylation 

activity in NAT1 148 (Grant et aI., 1997; Hughes et aI., 1998). In addition to a decrease 
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in N- and O-acetyltransferase activity, there is also decreased protein level (Zhu and 

Hein, 2007). The R 187Q substitution is believed to interfere with the ability of the NAT1 

protein to be acetylated, therefore NAT1 14B is unstable, ubiquitinated, and then 

degraded by the 26 S proteasome (Butcher et aI., 2004). 

NA T1 *148 is associated with an increased risk of smoking-induced lung cancer. 

The OR for smoking induced lung cancer was 4.0 (95% confidence interval 0.8-19.6) for 

homozygous rapid (NA T1 *4 or NA T1 *3) acetylators, whereas the risk was found to be 

11.0 (95% confidence interval 1.3-106.5) for heterozygous slow (NAT1*148 or 

NA T1 *15) acetylators (Bouchardy et aI., 1998) compared to non-smokers. NA T1 *148 is 

present at low frequencies in many populations with the exception of the Lebanese 

population where the NA T1 *148 allelic frequency was reported to be 23.8% (Ohaini and 

Levy, 2000). 

NAT1*1O 

NA T1 *10 is characterized by two SNPs located in the region 3' to the open 

reading frame including T1088A and C1095A. There are no amino acid changes due to 

the polymorphisms, but the T1088A causes a change in the second potential 

polyadenylation signal (ATTAAA). The signal is not destroyed, but it is shifted 3' three 

nucleotides. It has been speculated that this change in polyadenylation signal may give 

rise to a difference in mRNA stability and modulated acetylation activity of NAT1 10 (Bell 

etal.,1995a). 

NA T1 *10 is putatively considered to be a rapid acetylator, however there are 

many conflicting results about the acetylator phenotype of NA T1 *10. Bell et al. reported 

significantly higher enzyme activity in urinary bladder and colon tissue for individuals 

heterozygous for NA T1 *10/1 *4 compared to those individuals homozygous for NA T1 *4. 

Similar findings were reported in colorectal tissue. In contrast, another study employing 
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recombinantly expressed alleles reported no difference between NAT1 10 and NAT1 4 

activities (de Leon et aI., 2000). 

NA T1 *10 is of great interest because it has been associated with increased risk 

of so many different forms of cancer, however the molecular contribution remains 

unclear. Specifically, NAT1*10 heterozygous genotype is associated with an odds ratio 

(OR) of 1.60 for non-Hodgkin lymphoma (Morton et aI., 2006), an OR of 2.2 for gastric 

adenocarcinoma (Boissy et aI., 2000), and an OR of 2.17 for prostate cancer (Hein et aI., 

2002) when compared to the homozygous NA T1 *4 genotype. It is clear that cancer risk 

associated with NA T1 *10 is further modulated by exposure to environmental 

carcinogens found in cigarette smoke, meats cooked at high temperatures, and hair dye. 

Frequent consumption of red meat in combination with the NA T1 *10 allele is associated 

with increased risk for colorectal cancer (Lilla et aI., 2006). The use of dark, permanent 

hair dye in combination with NA T1 *10 increases the risk for non-Hodgkin lymphoma 

(Morton et aI., 2007). Heavy smokers possessing the NAT1*10 allele have increased 

risk for pancreatic cancer compared to non-smokers (Li et aI., 2006) and an as well as 

increased risk for breast cancer (Zheng et aI., 1999). 

Although the contribution of NA T1 *10 to increased cancer risk is not well 

understood, molecular epidemiological studies have given us some clues. This study 

focuses on the association between cancer risk and the combination of NA T1 *10 and 

exposure to amine carcinogens. It is imperative that the phenotype of NAT1*10 be 

clearly defined in order to understand the association of NA T1 *10 genotype with 

increased cancer risk. 
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DNA Repair Deficient Chinese Hamster Ovary Cells 

The experiments described in this dissertation employ a strain of Chinese 

hamster ovary (CHO) cells referred to as UV5 cells that are deficient in the DNA 

nucleotide excision repair (NER) pathway. UV5 cells are deficient in transcription factor 

IIH (TFIIH), a multisubunit protein complex required for both transcription catalyzed by 

RNA polymerase II and NER (Drapkin et aL, 1994). Specifically, UV5 cells have a 

mutation in ERCC2 which is linked to excision repair deficiency and results in the genetic 

disease xeroderma pigmentosum group D (XPD) (Schaeffer et aL, 1994). This cell line 

is used to detect endpoints caused by mutagenesis and adduct formation because bulky 

adduct removal is compromised. This cell line was chosen to facilitate studying the 

genotoxic effects of aromatic amines due to metabolism by cytochrome p450 and NA T1 

alleles. In addition to NER deficiency, the UV5 cell line is commonly used because of its 

robust growth, ease in mutagenesis studies, and its ability to be transfected without 

affecting plating efficiencies (Li et aL, 1987). 

The UV5 cells that are employed in this study have been stably transfected with 

human cytochrome p450 (CYP1A1). This cell line allows genotoxic effects to be studied 

that require metabolic activation by CYP1A1 and NAT1. UV5 cells expressing CYP1A2 

and various NAT2 alleles have been used to compare the genotoxic effects of PhlP and 

MelQx (8endaly et aL, 2007; Metry et aL, 2007;). The experiments described in this 

dissertation express human CYP1A1 because, like human NAT1, it is expressed 

extrahepatically. These experiments employed NER-deficient CHO cells expressing 

human CYP1 A 1 and various NA T1 alleles to compare NA T1 polymorphism effects on 

aromatic amine metabolism, DNA adduct formation and mutation frequency. 
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4-amincbiphenyl 

This study uses the arcmatic amine 4-amicbiphenyl (ASP). ASP is a ccmmcn 

envircnmental carcincgen and a pctent bladder carcincgen (IARC, 1987). NA T1 is 

expressed extrahepatically, including bladder tissue (Sadawi et aI., 1995), therefcre, 

NA T1 metabclism is likely impcrtant fcr ASP-induced bladder cancer. 

ASP was widely used as an anticxidant in the rubber industry (IARC, 1987). 

Once its carcincgenic properties were disccvered, it was strictly prohibited by federal 

regulaticn. Hcwever, ASP can still be fcund as a ccntaminant in cclcr additives, paints, 

fccd cclcrs, leather, textile dyes, diesel-exhaust particles, cccking cil fumes and 

ccmmercial hair dyes (Nauwelaers et aI., 2011). ASP is also. still fcund in the aluminum 

industry (Guzzo. et aI., 2008). Cigarette smcke is a majcr scurce cf ASP expcsure. 

Mainstream smcke has been repcrted to. ccntain up to. 23 ng per cigarette and 

sidestream smcke has been repcrted to. ccntain up to. 140 ng per cigarette (Hcffmann et 

aI., 1997). Fcllcwing expcsure, ASP is metabclized in the liver by N-acetylaticn, N­

glucurcnidaticn, cr hydroxylaticn (Seyler et aI., 2010). Hemcglcbin (Hb) adducts have 

been repcrted to. be 75.8 pg/g Hb (66.5-86.5) in smckers and 29.9 pg/g Hb (24.7-36.2) in 

ncnsmckers (Seyler et aI., 2010). 

Flp-In System™ 

To. create a mcdel system to. investigate the carcincgenic effect cf ASP expcsure 

with different NAT1 alleles, Invitrcgen's Flp_ln™ System was used to. create a CHO cell 

line stably expressing a single ccpy cf NAT1. The Flp_ln™ system utilizes a 

Saccharcmyces cerevisiae-derived DNA reccmbinaticn system. NAT1 was integrated 

into. a specific site in the CHO gencme by a reccmbinase (Flp) and site-specific 
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recombination (Craig, 1988; Sauer, 1994). The NA T1 alleles were cloned into an 

expression vector, the pcDNA5/FRT (Figure 1-5) which utilizes the CMV promoter to 

drive constitutive expression of NA T1. The pcDNA5/FRT expression vector was co-

transfected with the pOG44 vector, which constitutively expresses the Flp recombinase. 

Figure 1-5: pcDNA5/FRT Expression Vector 

The pcDNA5/FRT is the chosen expression vector into which the 
NA T1 DNA was ligated. The polyadenylation signal was removed 
prior to ligation of NA T1 DNA. The vector contains one FRT site 
which allows it to be stably integrated into the CHO cell genome. 
(Modified from invitrogen. com) 

The human 
cytomegalovi 
rus (CMV) 
immediate­
early 
promoter 
allows high 
level 
constitutive 
expression of 
NAT1 

pcDNA5/FRT 
5070 bp 

14 

Polyadenylation 
signal was 
removed from 
vector using 
restriction 
endonucleases 
Sph I and Apa I. 

Hygromycin 
resistance gene 
allows for selection 
of stable cell lines 



SPECIFIC AIMS 

Specific Aim I 

Create pcDNA5/FRT vector constructs which contain the human NA T1 alleles 

including NATa and NATb 5'-UTR exons, the open reading frame, and 885 base pairs of 

the region 3' to the open reading frame (with 6 potential polyadenylation signals). In 

addition to the reference NA T1 *4, constructs containing individual or combinations of 

genetic polymorphisms present in NA T1 *10, NA T1 *11, and NA T1 *14 will be constructed. 

Specific Aim II 

Prepare and characterize nucleotide excision repair deficient Chinese hamster 

ovary cells expressing human CYP1A1 transfected with pcDNA5/FRT vectors containing 

human NA T1 constructs. The functional effects of genetic polymorphisms in NA T1 *10, 

NA T1 *11, and NA T1 *14 will be compared to the reference allele NA T1 *4 in transient 

transfection experiments. Functional assays will include determinations of N- and 0-

acetylation catalytic activities (HPLC assays), mRNA levels (Taqman assays) and 

protein levels (Western blot assays). 
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Specific Aim III 

Test effects of NAT1 polymorph isms in stable CHO cell transfectants after 

exposure to various aromatic and heterocyclic amine carcinogens on levels of covalent 

DNA adduct formation (liquid chromatography-mass spectrometry assays) and 

mutagenicity (hprt mutants). 
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CHAPTER 2 

NATbINAT1*4 PROMOTES GREATER ARYLAMINE N-

ACETYL TRANSFERASE 1 MEDIATED DNA ADDUCTS AND MUTATIONS 

THAN NATaINAT1*4 FOLLOWING EXPOSURE TO 4-AMINOBIPHENYL 

INTRODUCTION 

Human arylamine N-acetyltransferase 1 (NAT1) is a phase II cytosolic enzyme 

responsible for the biotransformation of many arylamine compounds including 

pharmaceuticals and environmental carcinogens. A common environmental carcinogen 

found in cigarette smoke is an aromatic amine, 4-aminobiphenyl (ASP) (Internation 

Agency for Research on Cancer, 1987). Arylamines such as ASP can be inactivated via 

N-acetylation (Hein et aI., 1993). However, if ASP is first hydroxylated by cytochrome 

p4501A1 (CYP1A1), the hydroxyl-ASP then can be further activated by NAT1-catalyzed 

O-acetylation resulting in N-acetoxy-ASP (Hein et aI., 1993). This compound is very 

unstable and spontaneously degrades to form a nitrenium ion that can react with DNA to 

produce bulky adducts. If these adducts are not repaired, mutagenesis can occur and 

result in cancer initiation. 

The only known endogenous NAT1 substrate is p-aminobenzoylglutamate (PASG), 

a catabolite of folate (Wakefield et aI., 2007). NAT1 has been associated with various 

birth defects (Jensen et aI., 2005; Lammer et aI., 2004) that may be related to 

deficiencies in folate metabolism. NA T1 polymorphisms and maternal smoking have 

been associated with increased incidence of oral clefts, spina bifidia and increased limb 
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deficiency defects (Carmichael et aI. , 2006; Jensen et aI. , 2006). NAT1 polymorph isms 

have also been associated with increased risk for breast (Ambrosone et aI. , 2007; 

Millikan et aI. , 1998), pancreatic (Li et aI. , 2006; Suzuki et aI., 2008), urinary bladder 

(Gago-Dominguez et aI. , 2003; Sanderson et aI., 2007) and colorectal cancers (8ell et 

aI. , 1995a; Shin et aI. , 2008) , non-Hodgkin lymphoma (Kilfoy et aI. , 2010; Morton et aI. , 

2006), mammary cell growth (Adam et aI. , 2003) and breast cancer survival (Ring et aI. , 

2006). However, other studies have concluded that NAT1 polymorphism status is not 

associated with increased risk to bladder, esophageal , prostate or gastric cancers (Kidd 

et aI. , 2011 ; McGrath et aI. , 2006; Wideroff et aI. , 2007). NAT1 has also been implicated 

in cell growth and survival. Studies have shown that overexpression of NAT1 increased 

density dependent cell proliferation, and knock-down of NAT1 resulted in marked 

change in cell morphology, an increase in cell-cell contact inhibition and a loss of cell 

viability at confluence (Adam et aI. , 2003; Tiang et aI. , 2011). NA T1 *4 is referred to as 

the referent allele because it was the most common allele in the population in which it 

was first identified (Vats is and Weber, 1993). To date, 26 human NAT1 alleles have 

been identified (http://iouisville .edu/medschool/pharmacology/consensus-human­

arylamine-n-acetyltransferase-gene-nomenclature/). Although the effects of NAT1 

polymorphisms on catalytic activity have been studied, the results are ambiguous. 

Within single NAT1 genotypes, conflicting phenotypes have been reported , and the 

relationship between phenotype and genotype remains poorly understood. Since factors 

other than genotype are likely affecting phenotype, it is important to understand 

transcriptional and translational control of NA T1. 

The NAT1 gene spans 53 kb and contains nine exons (Figure 2-1a). Several NAT1 

transcripts have been identified containing various combinations of 5'-untranslated 

region (UTR) exons and are known to originate from two distinct promoters, NATa and 
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NATb. NATb, the major promoter, is located 11.8 kb upstream of the open reading 

frame (ORF). NATb promotes transcription of Type II transcripts and the major 

transcript, Type riA, has been detected in all tissues studied to date (Boukouvala and 

Sim, 2005; Husain et aI., 2004). An alternative promoter, NATa, originates 51.5 kb 

upstream of the NA T1 ORF and promotes transcription of Type I transcripts expressed 

primarily in kidney, lung, liver, and trachea (Barker et aI., 2006; Boukouvala and Sim, 

2005). The NAT1 gene is induced following exposure to androgens and NAT1 protein 

stability is affected by the presence of substrates (Minchin et aI., 2007). 

Recent analyses of genome-wide Pol II distribution in Drosophila and mammalian 

systems have reported that regulation of many genes occurs after transcription initiation 

(Aida et aI., 2006; Nechaev et aI., 2010) providing evidence for regulatory control in the 

5'-UTR that is distinct from promoter regulatory control. Recent studies have shown that 

between 30-50% of all human genes utilize alternative promoters (Cooper et aI., 2006; 

Takeda et aI., 2007) to allow for cell, tissue and disease specific expression. To 

determine if differences in 5'-UTR have functional effect upon NAT1 activity, DNA 

adducts or mutations following exposure to ABP, pcDNA5/FRT plasmid constructs were 

prepared for transfection of full length human mRNAs including the 5'-UTR derived from 

NATa or NATb, the NA T1 *4 open reading frame, and 888 nucleotides of the 3'-UTR. 

The constructs were cloned into two expression vectors utilizing two different constitutive 

promoters, (CMV and the EF1a promoters) to examine regulatory control located in the 

5'-UTR. The cells transfected with NATa/NAT1*4 and NATb/NAT1*4 constructs were 

characterized for NAT1 mRNA and protein expression, N- and O-acetyltransferase 

activity (in vitro and in situ), ABP-induced DNA adducts and hypoxanthine 

phosphoribosy/ transferase (hprt) mutations following exposure to ABP. 
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METHODS 

Polyadenylation Site Removal 

The bovine growth hormone (BGH) polyadenylation site from the pcDNA5/FRT 

(Invitrogen, Carlsbad, CA) vector was removed to allow the endogenous NA T1 

polyadenylation sites to be active. This was accomplished by digestion at 37°C with 

restriction endonucleases, Apal and Sphl (New England Biolabs, Ipswich, MA), followed 

by overhang digestion with T4 DNA polymerase (Invitrogen) and ligation with T4 Ligase 

(Invitrogen). 

NATb/NA T1*4 and NATalNA T1*4 Constructs 

NATb/NAT1*4 and NATalNA T1*4 constructs were created utilizing gene splicing via 

overlap extension (Horton et aL, 1989) by amplifying the 5'-UTR and the coding 

region/3'-UTR separately and then fusing the two regions together. Beginning with 

frequently used transcription start sites, the 5'-UTRs (Barker et aL, 2006; Husain et aL, 

2004) were amplified from cDNA prepared from RNA isolated from homozygous NAT1*4 

HepG2 cells. All primer sequences used are shown in Table 1. The primers used to 

amplify the NATb 5'-UTR region were Lkm40P1 and NAT1 (3') ORF Rev while the 

primers used to amplify the NATa 5'-UTR region were Lkm41P1 and NAT1 (3') ORF 

Rev. The coding region and 3' -UTR were amplified as one piece from NA T1 *4 human 

genomic DNA with NA T1 *4INA T1 *4 genotype. The forward primer used to amplify the 

coding region/3'-UTR was NAT1 (3') ORF Forward while the reverse primer was 

pcDNA5distai Reverse. The two sections, the 5'-UTR and the coding region/3'UTR, were 

fused together via overlap extention and amplification of the entire product using nested 

primers. The forward nested primer for NATb was P1 Fwd Inr Nhel while the forward 

nested primer for NATa was P3 Fwd Inr Nhel. The reverse nested primer for both NATa 
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and NATb constructs was NAT1 Kpn Rev. Both forward nested primers included the 

Kpnl endonuclease restriction site and both reverse nested primers contained the Nhel 

endonuclease restriction site to facilitate cloning. The pcDNA5/FRT vector and 

NATa/NAT1*4 and NATbINAT1*4 allelic segments were digested at 37°C with restriction 

endonucleases Kpnl and Nhel (New England Biolabs). The NA T1 constructs were then 

ligated into pcDNA5/FRT using T4 ligase (Invitrogen). These same NAT1 constructs 

were also cloned into a second expression vector, pEF1/5V-His (Invitrogen). The 

NATblNA T1*4 construct was amplified using the forward primer, NATb Forward pEF1, 

while the NATalNAT1 *4 construct was amplified using the forward primer NATa Forward 

pEF1. Both forward primers contained the BamHI restriction site. Both constructs were 

amplified using the reverse primer NATa/b Reverse pEF1 which contained the EcoRV 

restriction site. Both NATalNAT1 *4 and NATbINAT1*4 and pEF1/5V-His were digested 

with the restriction endonucleases, BamHI and EcoRV (New England Biolabs), followed 

by ligation into the vector using T4 ligase (Invitrogen). All constructs were sequenced to 

ensure integrity of allelic segments and junction sites. 

Cell Culture 

UV5-CHO cells, a nuclease excision repair (NER)-deficient derivative of AA8 which 

are hypersensitive to bulky DNA lesions, were obtained from the ATCC (catalog number: 

CRL-1865). Unless otherwise noted, cells were incubated at 37DC in 5% CO2 in 

complete alpha-modified minimal essential medium (a-MEM, Lanza, Walkersville, MD) 

without L-glutamine, ribosides, and deoxyribosides supplemented with 10% fetal bovine 

serum (Hyclone, Logan, UT), 100 units/mL penicillin (Lanza), 100 IJg/mL streptomycin 

(Lanza), and 2 mM L-glutamine (Lanza). The UV5/CHO cells used in this study were 

previously stably transfected with a single Flp Recombination Target (FRT) integration 

site (Metry et aI., 2007). The FRT site allowed stable transfecions to utilize the Flp-In 
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System (Invitrogen). When co-transfected with pOG44 (Invitrogen), a Flp recombinase 

expression plasmid, a site-specific, conserved recombination event of pcDNA5/FRT 

(containing either NATalNAT1 *4 or NATblNA T1 *4) occurs at the FRT site. The FRT site 

allows recombination to occur immediately downstream of the hygromycin resistance 

gene, allowing for hygromycin selectivity only after Flp-recombinase mediated 

integration. The UV5/FRT cells were further modified by stable integration of human 

CYP1A1 and NADPH-cytochrome P450 reductase gene (POR) (Metry et aI., 2007). 

They are referred to in this manuscript as UV511A1 cells. 

Transient Transfection 

UV511A1 cells were transiently transfected with pcDNA5/FRT (Invitrogen) or 

pEF1 N5-His (Invitrogen) containing NATalNA T1 *4 and NATblNA T1 *4 constructs using 

Lipofectamine reagent (Invitrogen) following the manufacturer's recommendations. 

UV5/1A 1 cells were co-transfected with pCMV-SPORT-J3gal (J3-galactosidase 

transfection control plasmid, Invitrogen). The cells were harvested the next day. Lysate 

was prepared by centrifuging the cells and resuspending pellet in homogenization buffer 

(20 mM NaP04 pH 7.4, 1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, 2 jJg/mL aprotinin and 

2 mM pepstatin A). The resuspended cell pellet was subjected to 3 rounds of freezing at 

-80°C and thawing at 37°C and then centrifuged at 15,000xg for 10 min. The 

supernatant was used to measure N-acetyltransferase activity and J3-galactosidase 

activity. 

Stable Transfections 

Stable transfections were carried out using the Flp-In System (Invitrogen) into 

UV511A 1 cells that were previously stably transfected with a FRT site (as noted above). 

22 



The pcDNAS/FRT plasm ids containing human NATa/NA T1 *4 or NATb/NAT1*4 were co­

transfected with pOG44 (Invitrogen), a Flp recombinase expression plasmid. UVS/1A1 

cells were stably transfected with pcDNAS/FRT containing NATa/NA T1 *4 and 

NATb/NA T1*4 constructs using Effectene transfection reagent (Qiagen, Valencia, CA) 

following the manufacturer's recommendations. Since the pcDNAS/FRT vector contains 

a hygromycin resistance cassette, cells were passaged in complete a-MEM containing 

600 ~g/mL hygromycin (Invitrogen) to select for cells containing the pcDNAS/FRT 

plasmid. Hygromycin resistant colonies were selected approximately 10 days after 

transfection and isolated with cloning cylinders. 

Measurement of N-Acetyltransferase Enzymatic Activity 

In vitro assays using the NAT1 specific substrate para-aminobenzoic acid (PABA) or 

4-aminobiphenyl (ABP) were conducted and acetylated products were separated 

utilizing HPLC (Hein et aI., 2006). Reactions containing SO ~L cell lysate, PABA or ABP 

(300 ~M) and acetyl coenzyme A (1 mM) were incubated at 3TC for 10 min. Reactions 

were terminated by the addition of 1/10 volume of 1 M acetic acid and centrifuged at 

1S,000Xg for 10 min. Supernatant was injected into a (12S mm X 4 mm; S ~M pore size) 

reverse phase C18 column. Reactants and products were eluted using a Beckman 

System Gold high performance liquid chromatograph (HPLC) system. HPLC separation 

of N-acetyl-PABA was achieved using a gradient of 96:4 sodium perchlorate pH 

2.S:acetonitrile (ACN) to 88:12 sodium perchlorate pH 2.S: ACN over 3 min and was 

quantitated by absorbance at 280 nm. HPLC separation of N-acetyl-ABP was achieved 

using a gradient of 8S:1S sodium perchlorate pH 2.S:ACN to 3S:6S sodium perchlorate 

pH 2.S:ACN over 10 min and was quantitated by absorbance at 260 nm. Measurements 

were adjusted according to baseline measurements using Iysates of the UVS/CYP1 A 1 

cell line. Both stably and transiently transfected cells were normalized by the amount of 
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total protein. Assays involving transiently transfected cells and PABA used [3-

galactosidase activity to control for transfection efficiency. To correct for transfection 

efficiency, [3-galactosidase plasm ids (pCMV-sport-[3gal) were co-transfected with 

pcDNA5/FRT or pEF1/5V-His. [3-galactosidase activity was measured in reactions 

containing 30 IJL cell lysate, 70 IJL of 4 mg/mL ortho-nitrophenyl-[3-D-galactopyranoside 

(ONPG), and 200 IJL of cleavage buffer (60 mM Na2HP04, 40 mM NaH2P04, and 1 mM 

MgS04, pH 7.0). The reaction was incubated for 30 min at 3rC. The reaction was 

terminated by the addition of 500 IJL of 1 M sodium carbonate and absorbance at 420 

nm was measured. Protein concentrations were measured using the method of 

Bradford (Bio-Rad, Hercules, CA). The [3-galactosidase activities were normalized to 

total protein and the resulting values were used to correct for the effect of any 

differences in transfection efficiency. In situ N-acetyltransferase activity was studied in a 

whole cell assay using media spiked with differing concentrations of PABA (10 - 300 

IJM). The cells were incubated at 37°C and media was collected after 5 h, 1/10 volume 

of 1 M acetic acid was added, and the mixture was centrifuged at 13,000xg for 10 min. 

The supernatant was injected into the reverse phase HPLC column and N-acetyl-PABA 

was separated and quantitated as described above. 

Measurement of O-Acetyltransferase Enzymatic Activity 

N-hydroxy-4-aminobiphenyl (N-OH-ABP) O-acetyltransferase assays were 

conducted as previously described (Metry et aI., 2007). Assays containing 100 IJg total 

protein, 1 mM acetyl coenzyme A, 1 mg/mL deoxyguanosine (dG), and 100 IJM N-OH­

ABP were incubated at 37°C for 10 min. Reactions were stopped with the addition of 

100 IJL of water saturated ethyl acetate and centrifuged at 13,000xg for 10 min. The 

organic phase was removed, evaporated to dryness and the residue was dissolved in 

100 IJL of 10% ACN. HPLC separation was achieved using a gradient of 80:20 sodium 

24 



perchlorate pH 2.5:ACN to 50:50 sodium perchlorate pH 2.5:ACN over 3 min and dG­

C8-ABP adduct was detected at 300 nm. 

Measurement of NAT1 Protein 

The amount of NAT1 produced in UV511A1 cells stably transfected with 

NATalNA T1 *4 or NATblNA T1 *4 was determined by western blot. Ceillysates were 

isolated as described above. Varying amounts of lysate were mixed 1: 1 with 5% 13-

mercaptoethanol in Laemmli buffer (Bio-Rad), boiled for 5 min, and resolved by 12% 

SDS-PAGE. The proteins were then transferred by semi-dry electroblotting to 

polyvinylidene fluoride (PVDF) membranes. The membranes were probed with a 

polyclonal rabbit anti-hNAT1 ES195 (1:1000) kindly provided by Edith Sim (Stanley et 

aI., 1996) and with horseradish peroxidase (HRP)-conjugated secondary goat anti-rabbit 

IgG antibody (1 :20,000) (Pierce, Rockford, IL). Supersignal West Pico 

Chemiluminescent Substrate was used for detection (Pierce) and densitometric analysis 

was performed using Quantity One Software (Bio-Rad). 

Measurement of NAT1 mRNA 

Total RNA was isolated from cells using the RNeasy kit (Qiagen) followed by 

removal of contaminating DNA by treatment with TurboDNase Free (Ambion, Austin, 

TX). Synthesis of cDNA was performed using qScript cDNA Synthesis Kit (Quanta 

Biosciences, Gaithersburg, MD) using 1 I-Ig of total RNA in a 20 I-IL reaction per the 

manufacturer's protocol. Quantitative RT-PCR (RT-qPCR) assays were used to assess 

the relative amount of NA T1 mRNA in cells stably transfected with NATalNA T1 *4 

compared to cells stably transfected with NATbINAT1*4. The Step One Plus (Applied 

Biosystems, Foster City, CA) was used to perform qRT-PCR in reactions containing 1x 

final concentration of qScript One-Step Fast mix (Quanta Biosciences), 300 nM of each 
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primer and 100 nM of probe in a total volume of 20 IJL. For qRT -PCR of NA T1 mRNA, a 

TaqMan probe was used with NAT1 Total Splice Forward and NAT1 Total Splice 

Reverse primers (Table 1) designed using Primer Express 1.5 software (Applied 

Biosystems). An initial incubation at 50°C was carried out for 2 min and at 94°C for 10 

min followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. TaqMan® 

Ribosomal RNA Control Reagents for quantitation of the endogenous control, 18S rRNA, 

(Applied Biosystems) were used to determine ~Ct (NA T1 Ct -18S rRNA Ct). ~~Ct was 

determined by subtraction of the smallest ~Ct and relative amounts of NA T1 mRNA 

were calculated using 2-MC1 as previously described (Barker et aI., 2006). 

Measurement of NAT1 mRNA Stability 

Dishes (100 x 20 mm) containing 8 x 106 stably transfected NATaINAT1*4 and 

NATblNA T1 *4 cells were treated with complete a-MEM media spiked with 10 ug/mL of 

the transcription inhibitor, Actinomycin D (Sigma, St. Louis, MO). Cells were collected at 

0, 2, 4, 6, and 8 hour time points and total RNA was isolated as described above. 

Relative NAT1 mRNA levels were determined from cells transfected with NATaINAT1*4 

or NATblNA T1*4 utilizing qRT-PCR assays as described above. The first-order rate 

decay constant (slope) of NA T1 mRNA was determined by linear regression. 

DNA Isolation and dG-C8-ABP Quantitation 

DNA was isolated and dG-C8-ABP adducts were quantitated with modifications to a 

previously described method (Metry et aI., 2007). Cells grown to approximately 80% 

confluency in 15 cm dishes were incubated in complete a-MEM media containing 1.56, 

3.13,6.25,12.5 IJM ABP or vehicle alone (0.5% DMSO) at 37°C. The cells were 

collected following 24 h of treatment, centrifuged for 5 min at 13,OOOxg, and the pellet 

was resuspended in 2 volumes of homogenization buffer (20 mM sodium phosphate pH 
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7.4, 1 mM EDT A), 0.1 volumes of 10% SDS and 0.1 volume of 20 mg/mL Proteinase K 

and allowed to incubate overnight at 37nC. The DNA was extracted using 

phenol/chloroform:isoamyl alcohol and precipitated with isopropanol. The pellet was 

dried and resuspended in 500 j.JL of DNA adduct buffer (5 mM Tris pH 7.4, 1 mM CaCI2, 

1 mM ZnCb, and 10 mM MgCI2). The DNA was quantitated by spectrophotometry at 

A260. Five hundred pg of internal standard (dG-C8-ABP-d5, Toronto Research 

Chemicals, North York, Ontario, Canada) was added to 30 j.Jg of sample DNA, treated 

with 10 units DNase I (US Biological, Swampscott, MA) for 1 h at 37°C followed by 

treatment with 10 units nuclease P1 (Sigma) for 6 h. The reactions were then treated 

with 10 units of alkaline phosphatase (Sigma) overnight at 37°C. The samples were 

then loaded onto PepClean C-18 Spin Columns (Thermo Fisher Scientific), washed with 

10% acetonitrile (ACN), eluted with 50% ACN by centrifugation at 2000xg and dried. 

The samples were reconstituted with 25 j.JL 5% ACN in 2.5 mM NH4HC03 just before 

analysis and 10 j.JL of the sample was analyzed by Accela LC System (Thermo 

Scientific, San Jose, CA) coupled with a L TQ-Orbitrap XL mass spectrometer (Thermo 

Scientific, San Jose, CA). Samples were loaded onto a 30 x 1 mm x 1.9 j.Jm Hypersil 

GOLD column (Thermo Scientific, San Jose, CA) and eluted with a 12.5 minute binary 

solvent gradient (Solvent A: 5% ACN/0.1 % formic acid and Solvent B: 95% ACN/0.1 % 

formic acid) at 50 j.Jl/min. The gradient started from 5% Solvent B, increased linearly to 

75% Solvent B in 10 min, and then remained at 75% B for 2.5 min. The eluates were 

ionized by electrospray isonization and dG-C8-ABP and dG-C8-ABP-d5 were detected 

with linear ion trap and detected by multiple reaction monitoring using the transitions of 

m/z 435.2 to m/z 319.2 (dG-C8-ABP) and m/z 440.2 to m/z 324.2 (dG-C8-ABP-d5). 

Concentrations of dG-C8-ABP were calculated from peak areas of dG-C8-ABP and dG­

C8-ABP-d5 with a calibration curve from synthetic dG-C8-ABP and dG-C8-ABP-d5. 
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Measurement of Cytotoxicity and Mutagenesis 

Assays for cell cytoxicity and mutagenesis were carried as previously described 0Nu 

et aI., 1997) with slight modifications. Cells were grown in HAT medium (30 mM 

hypoxanthine, 0.1 mM aminopterin, and 30 mM thymidine) for 12 doublings. Cells 

(1x106
) were plated, allowed to grow for 24 h and were then treated with 1.56,3.13,6.25 

or 12.5 !-1M ASP (Sigma) or vehicle alone (0.5% DMSO) in media. After 48 h, cells were 

plated to determine survival and mutagenic response to ASP. To determine cloning 

efficiency following each dose of ASP, 100 cells were plated in triplicate in 6 well-plates 

and allowed to grow for 7 days in non-selective media. Colonies were counted and 

expressed as percent of vehicle control. To determine mutagenic response following 

ASP exposure, 5x1 05 cells were plated and sub-cultured for 7 days and then seeded 

with 1x105 cells/100 x 20 mm dish (10 replicates) in complete aMEM containing 40 mM 

6-thioguanine (Sigma). Mutant hprt cells were allowed to grow for 7 days and colonies 

were counted to determine ASP-induced mutants and corrected by cloning efficiency. 

Statistical Analysis 

Statistical differences were determined using either an unpaired student's t-test or 

one-way ANOVA using Prism Software by Graphpad (La Jolla, CA). 
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RESULTS 

PABA N-Acetylation Following Transfection of NATb/NAT1 *4 or NATaINAT1*4 

PABA N-acetylation activity was 9- to 12-fold (p<O.05) higher in CHO cells 

transfected with NATb/NAT1*4 than NATa/NAT1*4 following both transient and stable 

transfections (Figure 2-2 a,b) utilizing the CMV promoter. Figure 2-2b shows average 

PABA N-acetylation for 3 stable clones of each NATb/NA T1*4 and NATalNA T1 *4. One 

clone representative was selected from each group to conduct all further assays. To 

ensure that the difference was not promoter specific, N-acetylation activity was also 

measured following transfection with constructs utilizing the EF1a promoter. PABA N­

acetylation activity was 6-fold (p<O.0001) higher in CHO cells transiently transfected with 

NATb/NA T1 *4 than NATalNA T1 *4 (Figure 2-2c) utilizing the EF1 a promoter. To more 

accurately model in vivo N-acetylation and to confirm the in vitro results, an in situ assay 

was performed using PABA as the substrate in a dose response experiment (Figure 2-

2d). The in situ assay showed that significantly (p<O.05) more PABA N-acetylation 

activity was observed in cells stably transfected with NATb/NAT1*4 than NATa/NA T1*4 

at all concentrations tested (Figure 2-2d) utilizing the CMV promoter. As shown in figure 

2-3, PABA N-acetylation activity also was significantly higher in COS-1 cells transiently 

transfected with NATb/NA T1 *4 than with NATalNA T1 *4 utilizing either the CMV 

(p<O.005) or EF1a (p<O.0001) promoters. 

ABP N-Acetylation and N-hydroxy-ABP O-acetylation Following Transfection of 

NATb/NAT1*4 or NATaINAT1*4 
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Cells stably transfected with NATblNA T1 *4 were found to have 7 -fold (p<0.0001) 

higher ABP N-acetylation activity than cells stably transfected with NATalNA T1 *4 (Figure 

2-4a) utilizing the CMV promoter. O-acetyltransferase activity using N-OH-ABP as the 

substrate also was found to be 7-fold (p<0.05) higher in cells stably transfected with 

NATbINAT1*4 than NATa/NAT1*4 (Figure 2-4b) utilizing CMV promoter. 

Expression of NAT1 Protein Following Transfection of NATbINAT1*4 or NATaINAT1*4 

NAT1 expression was determined by western blot in cells stably transfected with 

NATbINAT1*4 and NATa/NAT1*4 utilizing the CMV promoter. Four-fold (p<0.05) more 

NAT1 was found in cells stably transfected with NATbINAT1*4 than cells transfected 

with NATa/NA T1 *4 following densitometric analysis (Figure 2-5). 

Expression of NAT1 mRNA Following Transfection of NATblNA T1*4 or NATaINAT1*4 

As shown in Figure 2-6a, 4-fold more NAT1 mRNA was detected in cells stably 

transfected with NATblNA T1*4 than in cells transfected with NATa/NAT1*4 (p<0.05) 

utilizing the CMV promoter. To determine the cause of the difference in NAT1 steady­

state mRNA between cells stably transfected with NATblNA T1 *4 and in cells transfected 

with NATa/NAT1*4, an mRNA stability assay was performed in the presence of 

actinomycin-D. No significant (p>0.05) difference in the NAT1 mRNA first-order decay 

constant was observed between NAT1 mRNA derived from cells stably transfected with 

NATblNA T1*4 versus NATa/NAT1*4 (Figure 2-6b). 
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Cytoxicity, dG-C8-ASP Adduct and hprt Mutations from ASP in UV5/1A 1 Cells Stably 

Transfected With NATb/NAT1*4 or NATa/NAT1*4 

CYP1A1 mediated hydroxylation and NAT1 O-acetylation result in DNA adducts and 

mutations, if not repaired. Significantly (p<O.05) greater cytoxicity (Figure 2-7a), dG-C8-

ASP adducts (Figure 2-7b) and hprt mutants (Figure 2-7c) were detected in cells stably 

transfected with NATb/NA T1*4 than NATalNAT1*4 utilizing the CMV promoter at each 

ASP concentration tested up to 12.5 !-1M. 
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Figure 2-1: Genomic Organization of NA T1 gene 

(a) Genomic organization of NAT1 gene; (b) Type IIA and Type IA NAT1 RNA (c) and 
representative NATb/NA T1 *4 and NATa/NA T1 *4 constructs. (modified from 41). 
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Figure 2-2: NATb and NATa N-acetylation of PABA 

* 
NATa 
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N-acetylation of PABA in UV5/1A1 cells expressing CYP1A1 and NATbINAT1*4 (solid 
bars) or NATalNA T1*4 (open bars). (a) PABA N-acetylation activity following transient 
transfection with pcDNA5/FRT; (b) PABA NAT1 catalytic activity following stable 
transfection with pcDNA5/FRT of 3 different clones of each NATblNA T1 *4 and 
NATaINAT1*4; (c) PABA N-acetylation activity following transient transfection with 
pEF1N5-His; (d) PABA N-acetylation in situ following stable transfection of 
pcDNA5/FRT. Each bar represents mean ± S.E.M. for three transient transfections (a, 
c), 3 separate collections of 3 clones (b) or 3 separate collections of 1 clone (d). 
Asterisks (*) represent a significant difference (p<O.05) (a, b, d) or (p<O.0001) (c) 
following a student's t-test. 
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Figure 2-3: NATb and NATa N-acetylation of PABA in COS-1 cells 

N-acetylation of PABA in COS-1 cells transiently transfected with (a) pcDNAS/FRT or 
pEF1NS-His (b) containing NATb/NAT1*4 or NATa/NAT1*4. Each bar represents mean 
± S.E.M. for three transient transfections. Asterisks represent a significant difference 
either (p<.OOS) (a) or (p<.0001) (b) following a student's t-test. 
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Figure 2-4: NATb and NATa N- and O-acetylation of ABP 

(a) N-acetylation of ASP and (b) O-acetylation of N-hydroxy-ASP in UV5/1A1 cells stably 
expressing CYP1A 1 and either NATblNA T1*4 (solid bars) or NATaINAT1*4 (open bars) 
in pcDNA5/FRT. Each bar represents mean ± S.E.M. for three separate collections. 
Asterisks (*) represent a significant difference (p<O.0001) (a) or (p<O.05) (b) following a 
student's t-test. 
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Figure 2-5: NATb and NATa protein expression 

NAT1 protein expression in UVS/1 A 1 cells stably expressing CYP1 A 1 and 
NATb/NA T1*4 (solid bars) or NATa/NA T1*4 (open bars) in pcDNAS/FRT. (a) 
Representative western blot of 20 IJg of total protein loaded; (b) Percent intensity units 
(NATb defined as 100%) of densitometric analysis perfomed on three independent 
Western blots. Asterisks (*) represent a significant difference (p<O.OS) following a 
student's t-test. 

36 



(a) 

II) 
C) 
c 

"' .c 
U 
't:J 
"0 
LL 
II) 

.j;!: .. 

.!!! 
II) 

0:: 

~ ... 
.c 

... -
~ 1: 
... "' cUi 

c 
.. 0 
~ u 
i.L >-

"' to) 
II) 

c 

(b) 

NATb NATa 

Figure 2-6: NATb and NATa mRNA levels 

(a) NAT1 mRNA expression levels; (b) mRNA stability in UV5/1A1 cells stably 
expressing CYP1A 1 and NATbINAT1*4 (solid bars) or NATalNA T1*4 (open bars) in 
pcDNA5/FRT. Each bar represents mean ± S.E.M. for (a) three or (b) nine 
determinations. Asterisks (*) represent a significant difference (p<O.05) following a 
student's t-test. 
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Figure 2-7: ABP-induced cytoxicity, mutagenesis and DNA adducts 

ASP-induced cytotoxicity, mutagenesis, and DNA adduct formation in CHO cells stably 
expressing CYP1A1 only (triangles) and NATbINAT1*4 (circles) or NATaINAT1*4 

(squares) in pcDNA5/FRT. Each data point represents mean ± S.E.M. for three 
determinations. (a) ASP-induced cytotoxicity; (b) ASP-induced dG-C8-ASP adducts/108 

nucleosides; (c) ASP-induced hprt mutant levels. 
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DISCUSSION 

As outlined in the introduction, numerous studies report that NA T1 genetic 

polymorphisms increase cancer risk following exposure to heterocyclic and aromatic 

amines. Due to the large variability in NAT1 activity that has been reported within a 

single genotype, it is becoming increasingly more apparent that factors other than 

genetic polymorph isms are affecting gene expression and cancer risk. One such factor 

is the use of alternative promoters to produce mRNAs with distinct 5'-UTRs. Recent 

studies have shown that between 30-50% of all human genes utilize alternative 

promoters (Cooper et aI., 2006; Takeda et aI., 2007) to allow for cell, tissue and disease 

specific expression. NAT1 has two promoters, NATa and NATb, which differ in promoter 

strength and tissue specificity (Barker et aI., 2006; Husain et aI., 2007). Transcripts 

derived from NATa are found primarily in liver, lung, trachea and kidney, while 

transcripts derived from NATb are found in all tissues studied to date (Barker et aI., 

2006; Husain et aI., 2007). It is possible that NATa transcripts are expressed in a wider 

range of tissues, but only when the cell is under specific environmental stress or disease 

states. For example, expression of NATa transcripts has recently been reported in 

several ER-positive breast cancer cell lines (Wakefield et aI., 2008). NATa transcripts 

may be selectively up-regulated following certain environmental exposures or in specific 

tissues, such as breast, during certain disease states. 

In the current study, two referent NA T1 *4 constructs were cloned to mimic the most 

common transcripts originating from each of the two alternative NAT1 promoters, NATa 

and NATb (Figure 3-1a). Beginning with frequently used transcription start sites, the 

constructs include all exons found in the most common NA T1 transcripts originating at 

the NATa or NATb promoters and represent Type la or Type IIa transcripts (Barker et 

aI., 2006; Butcher et aI., 2005; Husain et aI., 2004). The NATa/NA T1*4 and 
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NATb/NAT1*4 constructs have identical open reading frames (ORFs) and 3'-UTRs. 80th 

constructs include the entire ORF comprised of 870 nucleotides and 888 nucleotides of 

the 3'-UTR. The only difference between the two constructs is the 5'-UTR. The NATb 5'­

UTR contains 117 nts and includes exon 4 and exon 8 while the NATa 5'-UTR contains 

371 nts and includes exons 1, 2, 3, and 8 (Figure 3-1 b, c). 

Two constitutive promoters, the CMV and the EF10 promoter, were used to drive 

transcription of either the NATb/NA T1 *4 or NATa/NA T1 *4 full length transcripts to 

examine regulatory control located in the 5'-UTRs. In this study, we report that cells 

transfected with NATb/NA T1 *4 had approximately 4-times greater NAT1 expression than 

cells transfected with NATa/NA T1 *4. A 4-fold difference in NAT1 mRNA expression also 

was observed, suggesting that transcriptional control is largely responsible for the 

functional differences observed between NATb/NA T1 *4 and NATa/NA T1 *4. Recent 

studies have elucidated a large number of tissue- and cell-type specific isoforms of 

transcription factors and cis-acting factors. Alternative 5'-UTRs contribute to this 

intricate control of transcription allowing for very specific altered expression in tissues, 

cells and even disease states (Davuluri et al., 2008). The differences we observed were 

not caused by a specific interaction between the promoter and one of the 5'-UTRs 

because results were confirmed using two different constitutive promoters, CMV and 

EF10. 

There are many regulatory mechanisms that could be responsible for the 

observed differences in expression and functional effects including polymerase pausing, 

microRNA binding, and the presence of upstream open reading frames and stem loops. 

A recent genome wide study has provided evidence that many genes are controlled after 

transcription initiation has occurred (Nechaev et aI., 2010) and another such study 
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reveals that polymerase pausing may be a widespread genetic control of gene 

expression (Core et aL, 2008). Elongation of transcription is known to be non-uniform 

and RNA polymerases are prone to transient pausing that is sequence dependent 

(Adelman et aL, 2002). Polymerase pausing could be examined in the NATa- and NATb­

transfected cell lines by nuclear run-on or RIP-chip assays. A second possible 

mechanism of regulation is microRNA (miRNA) binding which regulates gene expression 

by catalyzing mRNA cleavage (Ambros, 2004; Doench and Sharp, 2004). 

Microlnspector (miRNA target software) predicted only 2 miRNA binding sites in the 

NATb 5'-UTR located at positions 7 (has-miR-3937) and 46 (has-miR-198) while 54 

miRNA binding sites were predicted throughout the NATa 5'-UTR. Regulation by these 

miRNAs could be analyzed by such methods as northern hybridization or microarray 

analysis. A third possible mechanism is regulation by upstream open reading frames 

(uORFs) which have been shown to reduce protein and mRNA expression (Calvo et aL, 

2009). Both NATa and NATb 5'-UTRs were examined for uORFs by the NCB I ORF 

Finder. The NATa 5'-UTR was predicted to have 2 uORFs, while the NATb 5'-UTR was 

predicted to have none. Studies including a luciferase reporter assay could be 

conducted to determine the transcriptional effects on the NATa 5'-UTR due to uORFs. 

Lastly, differential regulation of the NATa and NATb 5'-UTRs could be due to the 

presence of stem-loops (Malys and McCarthy, 2011). NATa and NATb 5'-UTRs were 

both examined for the presence of stem-loops by OligoCalc (Northwestern University, 

Evanston, IL) with a constraint of 5 base pair minimum. The NATa 5'-UTR has 42 

potential stem-loop structures while the NATb 5'-UTR has only 7 potential stem-loop 

structures. Real time observation of transcription initiation and elongation (Larson et aL, 

2011) could be useful to determine the mechanism of the differential regulation observed 

between NATa and NATb 5'-UTRs. 
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Significantly more NAT1 activity, protein, mRNA, ABP-induced cytoxicity, DNA 

adducts and mutagenesis were detected in cells stably transfected with NATbINAT1*4 

than in cells transfected with NATaiNA T1*4 (p<0.05). DNA adduct and mutant levels 

following exposure to ABP are biological endpoints that are very relevant to cancer risk. 

The findings that ABP-mediated DNA adduct and mutant levels were significantly higher 

in cells transfected with elevated NAT1 catalytic activity emphasizes the relative 

importance of NAT1-catalyzed O-acetylation of N-hydroxy-ABP in cancer risk. 

Associations between higher N-acetyltransferase 2 catalytic activity with higher ABP­

mediated cytoxicity, DNA adduct formation, and mutagenesis also were recently 

reported (Bendaly et aI., 2009). The finding that these cancer risk indicators were higher 

in cells transfected with NA Tbl NA T1 *4 than cells transfected with NATal NA T1 *4 suggest 

that differential regulation in the NA T1 5'-UTR also may modify ABP-mediated cancer 

risk. Because NATb transcripts are expressed ubiquitously, the minor transcript, NATa, 

may be expressed following environmental exposures or under certain disease states 

resulting in increased mutagenesis, enhanced tumor growth, and decreased 

chemotherapeutic sensitivity. For example, expression of NATa transcripts have 

recently been reported in several ER-positive breast cancer cell lines (Wakefield et aI., 

2008). 

The findings of this study are significant due to their relevance to ABP-mediated 

carcinogenesis. However, translation of our results obtained in cell culture to human 

subjects will require additional studies to investigate tissue specificity. Although our 

study focused only on the referent allele, NA T1 *4, future studies should investigate 5'­

UTR control with other NA T1 alleles, particularly those associated with increased cancer 

risk. Future investigations to determine mechanism(s) and location(s) of the differential 

regulation in the NAT1 5'-UTR also are needed. 
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CHAPTER 3 

PHENOTYPE OF THE MOST COMMON "SLOW ACETYLA TOR" ARYLAMINE 

N-ACETYL TRANSFERASE 1 GENETIC VARIANT (NAT1*14B) IS SUBSTRATE 

DEPENDENT 

INTRODUCTION 

Human arylamine N-acetyltransferase 1 (NAT1) is a phase II cytosolic enzyme 

responsible for the biotransformation of many arylamine compounds including 

pharmaceuticals and environmental carcinogens (Hein et aI., 2000). NAT1 catalyzes 

both arylamine N-acetylation and O-acetylation. Genetic polymorphisms in NAT1 can 

alter the amount of NAT1 protein and result in modified enzymatic activity. In addition to 

bioactivation of arylamines, recent studies have provided evidence that NAT1 is involved 

in density dependent cell growth and survival. Studies have shown that overexpression 

of NAT1 increased density dependent cell proliferation, whereas knock-down of NAT1 

resulted in marked change in cell morphology, an increase in cell-cell contact inhibition 

and a loss of cell viability at confluence (Adam et aI., 2003; Tiang et aI., 2011). 

Molecular epidemiological studies have reported associations between NAT1 genetic 

polymorphisms and altered risk for developing several types of cancer including urinary 

bladder (Gago-Dominguez et aI., 2003), breast (Ambrosone et aI., 2007; Millikan et aI., 

1998; Zheng et aI., 1999), colorectal (8ell et aI., 1995b; Lilla et aI., 2006), lung (Wikman 

et aI., 2001), non-Hodgkin lymphoma (Morton et aI., 2006) and pancreatic (Li et aI., 

2006). The only known endogenous NAT1 substrate is p-aminobenzoylglutamate 
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(PABG), a catabolite of folate. late (Wakefield et aI., 2007). NA T1 has been associated 

with various birth defects (Jensen et aI., 2005; Lammer et aI., 2004) that may be related 

to deficiencies in folate metabolism. The most common NAT1 variant allele associated 

with reduced acetylator phenotype is NA T1 *148. The allelic frequency for NA T1 *14B in 

the Lebanese population was determined to be 23.8% (Ohaini and Levy, 2000). 

NA T1 *148 is likely to be very prevalent in other countries in the middle east, however 

allelic frequencies for many of those populations are not available. NA T1 *148 has been 

associated with an increased risk of smoking-induced lung cancer (Bouchardy et aI., 

1998). 

NA T1 *148 is characterized by a single nucleotide polymorphism (SNP) G560A 

(rs4986782) located in the open reading frame (ORF). G560A results in an amino acid 

substitution R1870. Computational homology modeling based on the NAT1 crystal 

structure indicate that the side chain of R 187 is partially exposed to the domain II beta 

barrel, the protein surface, and the active site pocket (Walraven et aI., 2008). 

Interactions with these domains serve to stabilize the protein and help shape the active 

site pocket. The substitution of arginine for glutamine results in at least partial loss of 

these stabilizing hydrogen bonds resulting in destabilization of the NAT1 structure. 

Therefore, homology modeling predicts that NAT1 binding of acetyl coenzyme A 

(AcCoA), active site acetylation, substrate specificity and catalytic activity could be 

affected by the R 1870 substitution (Walraven et al., 2008). 

Previous studies have reported NA T1 *148 to be associated with a reduced N­

acetylation phenotype. For example, in peripheral blood mononuclear cells, NAT1 14B 

was reported to result in reduced N-acetyltransferase activities and protein levels 

(Hughes et aI., 1998). Recombinant NAT1 14B expression in yeast demonstrated 

reduced N- and O-acetylation, protein levels and increased proteasomal degradation 

(Butcher et aI., 2004; Fretland et aI., 2001; Fretland et aI., 2002). NAT114 expressed in 
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mammalian cells also resulted in decreased in reduced V max but increased substrate Km 

towards p-aminobenzoic acid (PABA). 

Modifications in NAT1 protein activity are biologically relevant because formation 

of DNA adducts, tumor growth and drug resistance could be altered by differences in 

enzymatic activity. This study reports findings in constructs that completely mimic NAT1 

mRNA by including the 5'- and 3'-UTRs and ORF of the referent, NAT1*4, and of the 

most common allele associated with reduced acetylation, NA T1 *148. This report 

describes NAT1 14B N- and O-acetylation of the urinary bladder carcinogen 4-

aminobiphenyl (ABP). Initial pilot experiments were conducted following recombinant 

expression in yeast (Schizosaccaromyces pombe) followed by more detailed studies 

utilizing recombinant expression in Chinese hamster ovary (CHO) cells. ABP is a 

confirmed bladder carcinogen (Feng et aI., 2002) and strict federal regulations have 

banned industrial uses of ABP (IARC, 1987). However, ABP can still be found as a 

contaminant in color additives, paints, food colors, leather, textile dyes, diesel-exhaust 

particles, cooking oil fumes and commercial hair dyes (Nauwelaers et aI., 2011). 

Mainstream cigarette smoke has been reported to contain up to 23 ng per cigarette and 

sidestream smoke has been reported to contain up to 140 ng per cigarette (Hoffmann et 

aI., 1997). 
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METHODS 

Experiments in Yeast 

In situ N-acetylation following recombinant expression of human NAT1 in yeast 

The ORFs of NA T1 *148 and NA T1 *4 were recombinantly expressed in the 

pESP-3 yeast (Schizosaccaromyces pombe) expression system (Stratagene, La Jolla, 

CA). They were cultured in YES media (Teknova, Hollister, CA, 0.5% yeast extract, 

3.0% glucose, 0.0225% adenine, 0.0225% histidine, 0.0225% leucine, 0.0225% uracil, 

and 0.0225% lysine) and grown to an optical density (00) of OAO. Aliquots (10 mL) 

from both the NA T1 *4 and NA T1 *148 expressing cultures were each treated with ASP to 

make total volume concentrations of 10,50 and 100 I-IM ASP. Samples (100 1-11) were 

collected following 30 minute incubation with ASP. 

Acetyl-ASP was separated and quantitated by HPLC as described previously (Hein et 

aI., 2006). 

Experiments in CHO cells 

Polyadenylation site removal 

The bovine growth hormone (SGH) polyadenylation site from the pcDNA5/FRT 

(Invitrogen, Carlsbad, CA) vector was removed to allow the endogenous NAT1 

polyadenylation sites to be active. This was accomplished by digestion of pcDNA5/FRT 

at 37°C with restriction endonucleases, Apal and Sphl (New England Siolabs, Ipswich, 

MA), followed by overhang digestion with T4 DNA polymerase (New England Siolabs) 

and ligation with T4 Ligase (New England Siolabs). 

Preparation of NA Tb/ NA T1 *4 construct 

NATb/NA T1 *4 construct was created utilizing gene splicing via overlap extension 

(Horton et aI., 1989) by amplifying the 5'-UTR and the coding region/3'-UTR separately 
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and then fusing the two regions together. Beginning with a frequently used transcription 

start site of the NATb promoter, the 5'-UTR (Barker et aI., 2006; Husain et aI., 2004) was 

amplified from cDNA prepared from RNA isolated from homozygous NAT1*4 HepG2 

cells. All primer sequences used are shown in Table 1. The primers used to amplify the 

NATb 5'-UTR region were Lkm40P1 and NAT1 (3') ORF Rev. The coding region and 3'­

UTR were amplified as one piece from NA T1 *4 human genomic DNA with 

NA T1 *4INA T1 *4 genotype. The forward primer used to amplify the coding region/3' -UTR 

was NAT1 (3') ORF Forward while the reverse primer was pcDNA5distai Reverse. The 

two sections, the 5'-UTR and the coding region/3'UTR, were fused together via overlap 

extention and amplification of the entire product using nested primers. The forward 

nested primer was P1 Fwd Inr Nhel and the reverse nested primer was NAT1 Kpn Rev. 

The forward nested primer included the Kpnl endonuclease restriction site and the 

reverse nested primer contained the Nhel endonuclease restriction site to facilitate 

cloning. The pcDNA5/FRT vector and NATbINAT1*4 allelic segments were digested at 

37°C with restriction endonucleases Kpnl and Nhel (New England Biolabs). The 

NATblNA T1 *4 construct was then ligated into pcDNA5/FRT using T 4 ligase (New 

England Biolabs). 

Preparation of NATblNA T1 *148 

To construct the NATblNA T1*148 pcDNA5/FRT plasmid, the NATbINAT1*4 

pcDNA5/FRT and a previously constucted NA T1 *148 allelic contruct expressed in a 

yeast vector, pESP-3 (Stratagene, La Jolla, CA) (Fretland et aI., 2001), were both 

incubated at 37° with restriction enzymes, Sbfl and Aflll (NEB). Following restriction 

digestion, the NATblNA T1 *4 pcDNA5/FRT and the 476 bp segment of NA T1 *148 

(including G560A) were gel purified and ligated utilizing T 4 ligase (New England 

Biolabs). All constructs were sequenced to ensure integrity of allelic segments and 
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junction sites. These constructs that contain NATb 5'-UTR, coding region of NA T1 *4 or 

NAT1*14B, and 3'-UTR are illustrated in Figure 3-1 and referred to as NAT1*4 and 

NA T1 *14B throughout this manuscript. 

Cell culture 

UV5-CHO cells, a nuclease excision repair (NER)-deficient derivative of M8 which 

are hypersensitive to bulky DNA lesions, were obtained from the ATCC (catalog number: 

CRL-1865). Unless otherwise noted, cells were incubated at 37°C in 5% CO2 in 

complete alpha-modified minimal essential medium (a-MEM, Lonza, Walkersville, MD) 

without L-glutamine, ribosides, and deoxyribosides supplemented with 10% fetal bovine 

serum (Hyclone, Logan, UT), 100 units/mL penicillin (Lonza), 100 jJg/mL streptomycin 

(Lonza), and 2 mM L-glutamine (Lonza). The UV5/CHO cells used in this study were 

previously stably transfected with a single Flp Recombination Target (FRT) integration 

site (Metry et aI., 2007). The FRT site allowed stable transfections to utilize·the Flp-In 

System (Invitrogen). When co-transfected with pOG44 (Invitrogen), a Flp recombinase 

expression plasmid, a site-specific, conserved recombination event of pcDNA5/FRT 

(containing either NATalNAT1 *4 or NATbINAT1*4) occurs at the FRT site. The FRT site 

allows recombination to occur immediately downstream of the hygromycin resistance 

gene, allowing for hygromycin selectivity only after Flp-recombinase mediated 

integration. The UV5/FRT cells were further modified by stable integration of human 

CYP1A1 and NADPH-cytochrome P450 reductase gene (POR) (Metry et aI., 2007). 

They are referred to in this manuscript as UV511 A 1 cells. 
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Stable transfections 

Stable transfections were carried out using the Flp-In System (Invitrogen) into 

UV511A1 cells that were previously stably transfected with a FRT site (as noted above). 

The pcDNA5/FRT plasm ids containing human NATblNA T1 *4 or NATblNA T1 *148 were 

co-transfected with pOG44 (Invitrogen), a Flp recombinase expression plasmid. 

UV511A 1 cells were stably transfected with pcDNA5/FRT containing NATbINAT1*4 and 

NATblNA T1 *148 constructs using Effectene transfection reagent (Qiagen, Valencia, 

CA) following the manufacturer's recommendations. Since the pcDNA5/FRT vector 

contains a hygromycin resistance cassette, cells were passaged in complete a-MEM 

containing 600 IJg/mL hygromycin (Invitrogen) to select for cells containing the 

pcDNA5/FRT plasmid. Hygromycin resistant colonies were selected approximately 10 

days after transfection and isolated with cloning cylinders. 

Determination of in vitro (in-solution biochemistry) kinetic parameters of N-acetylation for 

NAT1 4 and NAT1 14B 

Lysate was prepared by centrifuging the cells and resuspending pellet in 

homogenization buffer (20 mM NaP04 pH 7.4, 1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, 

2 IJg/mL aprotinin and 2 mM pepstatin A). The resuspended cell pellet was subjected to 

3 rounds of freezing at -80°C and thawing at 37°C and then centrifuged at 15,000xg for 

10 min. In vitro assays using PABA or ABP were conducted and acetylated products 

were separated utilizing HPLC as previously described (Hein et aI., 2006). Preliminary 

studies optimized reactions with respect to linearity of time and protein concentration. 

PABA and ABP kinetic constants were determined at a fixed concentration of 100 IJM 

acetyl coenzyme A (AcCoA). PABA kinetic constants were determined using varying 

PABA concentrations between 11.7 - 3000 IJM. ABP kinetic constants were determined 
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using varying ABP concentrations between 11.7 - 3000 jJM. Reactions containing 

substrate, AcCoA and enzyme were incubated at 3TC for 10 min. Reactions were 

terminated by the addition of 1/10 volume of 1 M acetic acid and centrifuged at 15,OOOXg 

for 10 min. Measurements were adjusted according to baseline measurements using 

Iysates of the UV5/CYP1A 1 cell line and normalized by the amount of total protein. 

Protein concentrations were measured using the method of Bradford (Bio-Rad, 

Hercules, CA). Vmax, Km, and Kcat were determined by fitting substrate concentration and 

velocity data to the hyperbolic Michaelis-Menten model. All calculations were 

determined using GraphPad Prism Software (Graphpad Software, La Jolla, California). 

Determination of in situ (whole-cell assay) kinetic parameters of NAT1 4 and NAT1 14B 

In situ kinetic parameters were determined by in a whole cell assay using media 

spiked with varying concentrations of PABA or ABP. PABA kinetic constants were 

determined using varying PABA concentrations between 2.25 - 300 jJM. ABP kinetic 

constants were determined using varying ABP concentrations between 0.19 and 25 jJM. 

The cells were incubated at 37°C and media was collected after 1 h (PABA) or 22 min 

(ABP), 1/10 volume of 1M acetic acid was added, and the mixture was centrifuged at 

13,OOOxg for 10 min. Values were normalized to the amount of cells present at time of 

media removal. The supernatant was injected into the reverse phase HPLC column and 

N-acetyl-PABA was separated and quantitated as described above. Vmax and Km were 

determined as described above. 

Determination of in vitro kinetic parameters of O-acetylation for NAT1 4 and NAT1 14B 

N-hydroxy-4-aminobiphenyl (N-OH-ABP) O-acetyltransferase assays were 

conducted and product was separated from substrate using HPLC as previously 

described (Metry et aI., 2007). Assays containing 50 jJg total protein, N-OH-ABP, 
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AcCoA, and 1 mg/mL deoxyguanosine (dG) were incubated at 37°C for 10 min. N-OH­

ABP kinetic constants were determined at a fixed concentration of 100 IJM AcCoA and 

N-OH-ABP concentrations between 0.78 and 200 IJM. Reactions were stopped with the 

addition of 100 IJL of water saturated ethyl acetate and centrifuged at 13,000xg for 10 

min. The organic phase was removed, evaporated to dryness, redissolved in 100 IJL of 

10% ACN and injected onto the HPLC. Vmax, Km, and !<cat were determined as described 

above. 

Measurement of NAT1 Protein 

The amount of NAT1 produced in UV511A1 cells stably transfected with NAT1*4 or 

NA T1 *14B was determined by western blot. Cell Iysates were isolated as described 

above. Varying amounts of lysate were mixed 1: 1 with 5% l3-mercaptoethanol in 

Laemmli buffer (Bio-Rad), boiled for 5 min, and resolved by 12% SDS-PAGE. The 

proteins were then transferred by semi-dry electroblotting to polyvinylidene fluoride 

(PVDF) membranes. The membranes were probed with G5, a monoclonal mouse anti­

NAT1 (1 :200) Santa Cruz Biotechnology, Santa Cruz, CA) and with horseradish 

peroxidase (HRP)-conjugated secondary donkey anti-mouse IgG antibody (1 :2,000) 

(Santa Cruz). Supersignal West Pico Chemiluminescent Substrate was used for 

detection (Pierce). To determine a quantitative amount of NAT1 protein in lysate 

collected from cells stably transfected with NAT1*4 or NAT1*14B, a standard curve was 

obtained from loading 0.14 IJg - 1.09 ng of purified NAT1 (Abnova, Taipei, Taiwan). 

Intensities of varying amounts of lysate (55, 28, and 14 IJg) from NAT1 4 and NAT1 14B 

were compared to intensities of the standard curve to determine the amount of NAT1 

protein in the lysate. Kinetic properties of the NA T1 antibody binding of the purified 

protein and to NAT1 from sample lysate were assumed to be the same. Densitometric 

analysis was performed using Quantity One Software (Bio-Rad). 
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DNA Isolation and dG-C8-ABP Quantitation 

DNA was isolated and dG-C8-ABP adducts were quantitated with modifications to a 

previously described method (Metry et aI., 2007). Stably transfected cells grown to 

approximately 80% confluency in 15 cm dishes were incubated in complete a-MEM 

media containing 1.56, 3.13, 6.25, 12.5 IJM ABP or vehicle alone (0.5% DMSO) at 37°C. 

The cells were collected following 24 h of treatment, centrifuged for 5 min at 260xg, and 

the pellet was resuspended in 2 volumes of homogenization buffer (20 mM sodium 

phosphate pH 7.4, 1 mM EDTA), 0.1 volumes of 10% SDS and 0.1 volume of 20 mg/mL 

Proteinase K and allowed to incubate overnight at 37°C. The DNA was extracted using 

phenol/chloroform:isoamyl alcohol and precipitated with isopropanol. The pellet was 

dried and resuspended in 500 IJL of DNA adduct buffer (5 mM Tris pH 7.4, 1 mM CaCI2, 

1 mM ZnCI2, and 10 mM MgCI2)' The DNA was quantitated by spectrophotometry at 

A260 . Five hundred pg of internal standard (dG-C8-ABP-d5, Toronto Research 

Chemicals, North York, Ontario, Canada) was added to 30 IJg of sample DNA, treated 

with 10 units DNase I (Sigma) for 1 h at 37°C followed by treatment with 10 units 

nuclease P1 (Sigma) for 6 h. The reactions were then treated with 10 units of alkaline 

phosphatase (Sigma) overnight at 37°C. The samples were then loaded onto PepClean 

C-18 Spin Columns (Thermo Fisher Scientific), washed with 10% acetonitrile (ACN), 

eluted with 50% ACN by centrifugation at 2000xg and dried. The samples were 

reconstituted with 25 IJL 5% ACN in 2.5 mM NH4HC03 just before analysis and 10 IJL of 

the sample was analyzed by Accela LC System (Thermo Scientific, San Jose, CA) 

coupled with a L TQ-Orbitrap XL mass spectrometer (Thermo Scientific, San Jose, CA). 

Samples were loaded onto a 30 x 1 mm x 1.9 IJm Hypersil GOLD column (Thermo 

Scientific, San Jose, CA) and eluted with a 12.5 min binary solvent gradient (Solvent A: 

5% ACN/0.1 % formic acid and Solvent B: 95% ACN/0.1 % formic acid) at 50 IJllmin. The 
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gradient started from 5% Solvent B, increased linearly to 75% Solvent B in 10 min, and 

then remained at 75% B for 2.5 min. The eluates were ionized byelectrospray 

isonization and dG-C8-ABP and dG-C8-ABP-d5were detected with linear ion trap and 

detected by multiple reaction monitoring using the transitions of m/z 435.2 to m/z 319.2 

(dG-C8-ABP) and m/z 440.2 to m/z 324.2 (dG-C8-ABP-d5). Concentrations of dG-C8-

ABP were calculated from peak areas of dG-C8-ABP and dG-C8-ABP-d5 with a 

calibration curve from synthetic dG-C8-ABP and dG-C8-ABP-d5. 

Measurement of Cytotoxicity 

Assays for cell cytoxicity were carried as previously described cyJu et aI., 1997) with 

slight modifications. Cells were grown in HAT medium (30 mM hypoxanthine, 0.1 mM 

aminopterin, and 30 mM thymidine) for 12 doublings. Cells (1x106
) were plated, allowed 

to grow for 24 h and were then treated with 1.56, 3.13, 6.25 or 12.5 IJM ABP (Sigma) or 

vehicle alone (0.5% DMSO) in media. After 48 h, cells were plated to determine survival 

following exposure to ABP. To determine cloning efficiency following each dose of ABP, 

100 cells were plated in triplicate in 6 well-plates and allowed to grow for 7 days in non­

selective media. Colonies were counted and expressed as percent of vehicle control. 
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RESULTS 

Initial experiments performed in yeast (in situ) resulted in higher NAT1 14B N­

acetylation at 10 IJM (p<0.001) and 50 IJM ABP (p<0.05) compared to NAT1 4. There 

was no difference in N-acetylation between NAT1 14B and NAT1 4 following exposure to 

100 IJM ABP (Figure 3-2). The results of subsequent experiments performed in CHO 

cells are described below. 

Kinetic parameters of the referent, NA T1 4, and the variant, NAT1 14B in vitro 

(per mg total protein in-solution biochemistry) are shown in Table 3-2. The apparent Km 

of NAT1 14B was higher for PABA (p<0.0001) compared to NAT1 4 whereas the 

apparent Km of NAT114B was lower for ABP (p<0.0001) and N-OH-ABP (p<0.0001) 

when compared to NAT1 4. The apparent Vmax of NAT1 14B was lower for PABA 

(p<O.OOO1), ABP (p<.OOO1), and N-OH-ABP (p<0.0001) when compared to NAT1 4. The 

apparent VmaxlKm of NAT1 14B was lower for PABA (p<O.OOO1), higher for N-OH-ABP 

(p<O.OOO1), and not significantly different for ABP (p>0.05) when compared to NAT1 4. 

The kinetic parameters, apparent Km and Kcat also were determined in vitro (per 

mg NAT1 protein in solution biochemistry) for the referent, NAT1 4 and the variant, 

NAT1 14B (Table 3-2). The apparent Kcat of NAT1 14B was lower for PABA (p<0.0001) 

but higher for N-OH-ABP (p<0.0001) when compared to NAT1 4. There was no 

significant difference in apparent Kcat for ABP between NAT1 14B and NAT1 4 (p>0.05). 

The apparent KcatfKm of NAT1 14B was lower for PABA (p<0.0001) but higher for ABP 

(p<0.05) and N-OH-ABP (p<0.0001) when compared to NAT1 4. 

Apparent Km and Vmax for PABA and ABP also were determined in situ (per 

million cells in a whole cell based assay) for the referent, NAT1 4, and the variant, NAT1 

14B (Table 3-3). The apparent Km of NAT1 14B was not significantly different for PABA 

(p>0.05) but was significantly lower for ABP (p<0.0001) when compared to NAT1 4. The 

apparent Vmaxof NAT1 14B was lower for PABA (p<0.05) and ABP (p<0.0001) when 
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compared to NAT1 4. The apparent VmaxfKm of NAT1 14B for PABA was significantly 

less (p<0.05) but was significantly higher for ABP (p<0.05) when compared to NAT1 4. 

Expression of NAT1 14B and NAT1 4 was determined by western blot (Figure 3-

3). Based on intensities determined from the standard curve, after loading 55, 28, or 14 

j.Jg of total protein lysate, there were 154, 77, and 38 ng of NAT1 4 protein and 38, 19, 

and 10 ng of NAT1 14B protein. Overall, NAT1 14B resulted in a 4-fold reduction in 

NAT1 protein compared to NAT1 4 (p<0.001). 

ABP-induced cytotoxicity was also determined in cells stably transfected with 

NA T1 *4 and NA T1 *148 (Figure 3-4a). Significantly more ABP-induced cytotoxicity was 

observed in NA T1 *148 transfected cells following exposures to each ABP concentration. 

ABP-induced dG-C8-ABP adducts in cells stably transfected with NA T1 *4 and 

NA T1 *148 were determined (Figure 3-4b). Significantly more dG-C8-ABP adducts were 

observed following exposures between 1.56 - 12.5 j.JM ABP in cells transfected with 

NA T1 *148 than in cells transfected with NA T1 *4. 
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NATb 
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Figure 3-1: NATb/NAT1*4 and NATb/NAT1*14B constructs 

N 
l.() 
l.() 
N 

(a) Schematic of NAT1 genomic structure and most common RNA transcribed by 
the NATb promoter. (b) Constructs including 5'-UTR, open reading frame (exon 9) 
and the 3'-UTR. 
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Figure 3-2: ABP N-acetylation by NAT1 4 and NAT114B expressed in yeast 

In situ ASP N-acetylation assay of yeast cultures recombinantly 
expressingNA T1 *4 and NA T1 *148 per million cells. Error bars represent mean 
of 3 separate collections ± SEM. Difference determined following a Student's t­
test and significance denoted by **p<O.001 and *p<.OS. 
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Primer Name Use Sequence 

Lkm40P1 NATb 5-'UTR forward specific peR 5'-GGCCGCGGCAITCAGTCTAGITCCTGGITGCC-3' 

P1 Fwd Inr Nhel NATb 5'-UTR forward specific nested peR 5'-TIT AAAGCTAGCA ITCAGTCTAGTCTAGITCCTGGITGCCGGCT-3' 

NAT1 (3') ORF Rev NATaiNATb 5'-UTR reverse peR 5'-ITCCTCACTCAGAGTCITGAACTCTAIT-3' 

NAT1 (3') ORF For NAT1 coding region forward peR 5'-AGACATCTCCATCATCTGTGTITACTAGT-3' 

pcDNA5 FRTdistal Rev NAT1 3'-UTR reverse peR 5'-CGTGGGGATACCCCCTAGA-3' 

NAT1 KPN-Rev NAT1 3'-UTR reverse nested peR 5'-ATAGTAGGTACCTCTGAAITATAGATAAGCAAAGAITCAGAITCT-3' 

Table 3-1: Primers used to amplify NATb/NAT1*4 construct 

58 



Allele Substrate Km{app) Vmax{app) Vmax/Km Kcat{app) KcatlKm 

J.lM nmole min-1 mg-1 mL min-1 mg-1 min-1 min-1 J.lM-1 

NAT1*4 PABA 42.9±3.3 116±3 2.72±0.21 2399±57 56.5±4.3 

430±1 a 18.5±1.5 b 0.043±0.002 b 1552±97 3.61±0.20 
NAT1*14B 

b b 

NAT1*4 ABP 273±46 57.7±5.8 0.218±0.018 1200±122 4.52±0.38 
65.6±3.9 

18.0±4.3 b 0.280±.031 1760±128 22.9±0.23c 
NAT1*14B 

b 

NAT1*4 N-OH-ABP 141±1.1 2.97±0.19 0.0211 ±0.0014 35.1±68 0.250±0.02 
46.8±1.3 1.76±0.03 b 0.038±0.001 c 147±7 a 3.15±0.23 

NAT1*14B 
b c 

NAT1*4 AcCoA 6.23±0.75 1.25±0.04 0.204±0.019 25.9±0.7 4.24±0.38 

16.8±2.2 c 1.50±0.29 0.087±0.005 b 126±24c 7.31±0.45 
NAT1*14B 

a 

Table 3-2: NAT1 4 and NAT1 148 kinetic constants determined in vitro 

NAT1 4 and NAT1 14B kinetic constants determined in vitro (per mg total protein). 
PABA, ABP, and N-OH-ABP constants were determined at a fixed concentration of 100 
IJM AcCoA. AcCoA kinetic constants were determined at a fixed concentration of 100 
IJM N-OH-ABP. Table values represent mean ± SEM for 3-6 individual determinations. 
Differences were tested for significance by Student's t-test. aSignificantly higher than 
NAT1 4 (p<0.0001); bsignificantly lower than NAT1 4 (p<0.0001); Csignificantly higher 
than NAT1 4 (p<0.05). 
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Allele Substrate Km(app) Vmax(app) Vmax/Km 

nmole min-1 million nmole min-' 
IJM cells-1 million cells-1 

~M-1 

NAT1*4 PABA 
9S.S±1.1 0.16±0.01 1.71±0.08 

NAT1*14B 
72.1±11.1 0.101±0.018a 1.1±0.09a 

NA T1 *4 ABP 
10.S±0.6 0.024±.0007 2.4±0.1 

NAT1*14B 
2.3±0.2b 0.0063±0.000Sb 2.9±0.1c 

Table 3-3: NAT1 4 and NAT1 148 kinetic constants determined in situ 

NAT1 4 and NAT1 14B kinetic constants determined in situ (per million cells). Table 
values represent mean ± SEM for 3-6 individual determinations. Differences were tested 
for significance by Student's t-test. asignificantly lower than NAT1 4 (p<O.OS); 
bsignificantly lower than NAT1 4 (p<0.0001); Csignificantly higher than NAT1 4 (p<O.OS). 
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Figure 3-3: NAT1 4 and NAT1 148 protein expression 

Western blot to determine relative protein expression of NAT1 4 and NAT1 14B. (a) 
representative western blot and (b) densitometric analysis. Loading either 28 or 14 I-Ig of 
total protein from lysate, NAT1 14B resulted in approximately 4-fold less NA T1 protein 
than NAT1 4. In 28 I-Ig of total protein from lysate, 77 I-Ig of NAT1 4 and 18 I-Ig of NAT1 
14B protein were detected (p<O.001). One clone stably expressing NA T1 *4 and two 
clones stably expressing NA T1 *148 were evaluated. Bars represent mean ± SEM for 3 
western blots and significance was determined by Student's t-test. 
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Figure 3-4: ABP-induced cytotoxicity and DNA adducts 

ABP-induced cytotoxicity (a) and dG-C8-ABP adducts (b) in cells stably transfected with 
NA T1 *4 and NA T1 *148. Significantly more cytotoxicity was observed for NAT1 14B than 
NAT1 4 following all ABP exposures between 1.56 - 12.5 IJM. Significantly more adducts 
were observed following all exposures examined in cells expressing NAT1 14B than in 
cells expressing NAT1 4. Values were adjusted for baseline values of UV511A1 cells. 
Bars represent mean ± SEM for 3 determinations and significance was determined by 
Student's t-test. ("*) p<O.05, ("**) p<O.001, and (***) p<O.0001. 
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DISCUSSION 

Smokers possessing NA T1 *148 have been associated with increased risk for 

lung cancer compared to individuals possessing NA T1 *4 (Bouchardy et aI., 1998). 

Previous studies have reported that NA T1 *148 is associated with reduced N- and 0-

acetylation of various substrates including PABA, p-aminosalisylic acid, and various 

arylamine carcinogens (Fretland et aI., 2001; Fretland et aI., 2002; Hughes et aI., 1998; 

Zhu and Hein, 2008). Recombinant NAT1 14B expression in yeast demonstrated lower 

N- and O-acetylation, NAT1-specific protein levels and increased NAT1 proteasomal 

degradation (Butcher et aI., 2004; Fretland et aI., 2001; Fretland et aI., 2002). Similarly, 

NAT1 14B expressed in COS-1 cells also resulted in less NAT1 N- and O-acetylation, 

NAT1 protein level, and NAT1 Vmax, but higher PABA Km when compared to the referent, 

NAT1 4 (Zhu and Hein, 2008). Our kinetic constant determinations performed in CHO 

cells confirmed that NAT1 14B results in a lower apparent Vmax (both in vitro and in situ) 

for PABA when compared to the referent, NAT1 4. We also confirmed the higher PABA 

apparent Km in NAT1 14B determined in vitro when compared to NAT1 4. In addition to 

PABA acetylation, we also report on N- and O-acetylation of ABP and N-OH-ABP. ABP 

is a human urinary bladder carcinogen found as a contaminant in cigarette smoke, food 

dyes, paints, textile dyes, engine exhaust, and commercial hair dyes (Nauwelaers et aI., 

2011 ). 

The arylamine substrate Km of NAT1 is dependent on the AcCoA concentration 

because acetylation proceeds via a 'ping-pong bi-bi' reaction (Weber and Hein, 1985). 

Because AcCoA concentrations have been measured in vivo in the low micromolar 

range (Reeves et aI., 1988), we chose an in vitro AcCoA concentration of 100 jJM. In 

order to better mimic NAT1 catalyzed acetylation in vivo, kinetic constants were 

determined in situ (when possible) allowing the concentration of AcCoA to be provided 

by the cell. 
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Studies performed in situ using NAT1 14B and NAT1 4 produced in yeast did not 

result in lowered NAT1 14B N-acetylation of ABP (Figure 4-2) as previous studies had 

shown in vitro (Fretland et aI., 2002). This result was surprising as previous studies 

reported NAT1 14B activity and protein expression to be lower than NAT1 4. To further 

explore the NAT1 14B acetylation status, studies were conducted in stably transfected 

CHO cells. 

When comparing apparent Vmax (in vitro), the NAT1 14B apparent Vmax was lower 

than the NAT1 4 for all substrates studied. The apparent Vmax describes the maximum 

enzyme velocity extrapolated to maximum substrate concentrations. The lower apparent 

Vmax for PABA, ABP, and N-OH-ABP indicate that at high substrate concentrations, 

NAT1 14B has a decreased ability to metabolize the substrate when compared to NAT1 

4. The apparent VmaxfKm, or intrinsic clearance, describes an enzyme's ability to 

metabolize a substrate at substrate concentrations well below the Km and has also been 

shown to correlate well to human liver clearance (Chen et aI., 2011; Northrop, 1999). 

Although there are limitations in using VmaxfKm as a comparator of two enzymes, we 

determined apparent Vmax for comparison at high substrate concentrations and apparent 

VmaxfKm for comparison at low substrate concentrations (Eisenthal et aI., 2007). For 

PABA, the NAT1 14B apparent VmaxfKm was lower than NAT1 4. In contrast, no 

significant difference was observed between NA T1 14B and NA T1 4 apparent V maxfKm 

towards the N-acetylation of ABP. Surprisingly, the NAT1 14B apparent VmaxfKm for the 

O-acetylation of N-OH-ABP was higher in NA T1 *148 CHO cells compared to NA T1 *4. 

This indicates that the status of NAT1 14B intrinsic clearance compared to NAT1 4 

intrinsic clearance is substrate dependent. 

Transfection of NA T1 *148 resulted in approximately a 4-fold less NA T1 protein 

expression compared to NA T1 *4. When the amount of NAT1 protein was used to 

calculate apparent Kcat (determined in vitro), the results suggested that the lower NAT1 
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14B apparent Vmax for these substrates is due to a reduction in NAT1 protein, not a 

reduction in the acetylation rate of the NAT1 14B enzyme. For example, although the 

NAT1 14B apparent Vmax for N-OH-ABP was lower than the NAT1 4, the NAT114B 

apparent !<cat for N-OH-ABP was higher than NAT1 4. This difference in Vmaxcompared 

to Kcat indicates that the lowered NAT1 14B apparent Vmax is caused by a reduction in 

protein expression. Butcher et. al (2004) reported that NAT1 14B and other NAT1 

genetic variants associated with reduced enzymatic activity have reduced ability to be 

acetylated which resulted in an unstable NAT1 protein. Therefore, NAT1 14B was 

reported to be less stable and have increased proteasomal degradation compared to 

NAT1 4 (Butcher et aI., 2004). Our study confirmed that NAT1 14B resulted in reduction 

of NAT1 protein. 

Because determination of kinetic parameters is dependent upon AcCoA 

concentration, acetylation was measured in situ to allow the concentration of AcCoA to 

be provided by the cell. When comparing Vmax (in situ), the NAT1 14B apparent Vmax was 

lower than the NAT1 14B for all substrates studied. When evaluated in situ, PABA NAT1 

14B apparent VmaxfKm or intrinsic clearance was lower when compared to NAT1 4 In 

contrast, for ABP, the in situ NAT1 14B apparent VmaxlKm was higher when compared to 

NAT1 4. Because kinetic parameters of N-OH-ABP could not be determined in situ, an 

in vitro determination was performed. Like ABP, the NAT1 14B apparent VmaxlKm for N­

OH-ABP was higher compared to NA T1 4. These findings indicate that differences in 

apparent VmaxfKm between NAT1 14B and NAT1 4 are substrate dependent. Risk for 

individuals possessing NAT1*14B is also likely exposure dependent. Increased 

apparent VmaxlKm indicates that NAT1 14B has an increased ability to metabolize ABP 

and N-OH-ABP at low substrate concentrations compared to NAT1 4 (Northrop, 1999). 

Since low substrate concentrations are relevant in vivo, the higher NA T1 14B apparent 

VmaxlKm suggests that differences between NAT1 14B and NAT1 4 catalyzed ABP 
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acetylation should be observed in vivo. Therefore, risk for individuals possessing 

NA T1 *14B is dependent on exposure type and can also be altered depending on 

exposure level. 

NAT1 homology modeling predicted that the R1870 could affect NAT1 active site 

acetylation and enzymatic activity (Walraven et aI., 2008). Because changes in binding 

of AcCoA and substrate specificity are likely altered due to the R 1870, it is not surprising 

that differences in intrinsic clearance between NAT1 14B and NAT1 4 were observed. 

We confirmed that R 1870 modifies substrate affinity, albeit in opposite directions 

depending on substrate. Further epidemiological studies are necessary to determine 

which carcinogen exposures result in increased risk for individuals possessing 

NA T1 *14B. Exposure dependent risk has been previously reported for an N­

acetyltransferase 2 (NAT2) (Hickman et aI., 1995; Zang et aI., 2007). The NA T2*7B 

allozyme exhibits altered kinetic parameters of substrates including sulfamethazine and 

dapsone but not for other substrates such as 2-aminofluorene and isoniazid when 

compared to the referent, NAT2*4 (Hickman et aI., 1995; Zang et aI., 2007). Our study 

is the first report of exposure dependent behavior for a variant of NAT1. 

In addition to higher apparent VmaxfKm for NAT1 14B towards ABP and N-OH­

ABP when compared to NAT1 4, ABP-induced DNA-adducts and cytoxicity were higher 

for NAT1 14B compared to NAT1 4. Measurement of DNA adduct levels following 

exposure to ABP is a biological endpoint very relevant to cancer risk. Because NAT1 

14B resulted in increased ABP-induced DNA adducts, our results suggest that 

individuals possessing the NA T1 *14B allele likely have increased risk compared to those 

who are homozygous for NA T1 *4 following low (environmental) dose exposure to ABP. 

NAT1 14B is not simply associated with "slow acetylation" but rather is substrate 

dependent, since NAT1 14B exhibits lower N-acetylation catalytic efficiency of PABA but 
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higher N- and O-acetylation catalytic efficiency as well as DNA adducts following 

exposure to the human carcinogen ABP. 
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CHAPTER 4 

FUNCTIONAL ANALYSIS OF NAT1*10VS NAT1*4IN COMPLETE NATbAND 
NATa mRNA CONSTRUCTS 

INTRODUCTION 

Human arylamine N-acetyltransferase 1 (NAT1) is a phase II cytosolic isozyme 

responsible for the biotransformation of many arylamine compounds including 

pharmaceuticals and environmental carcinogens (Hein et aI., 2000). NAT1 has been 

implicated in several types of cancer due to its role in metabolic activation of arylamine 

carcinogens, and recent findings report NAT1 may be important for cell growth and 

survival of cancer cells (Tiang et aI., 2011) NAT1 has been found in nearly all tissues 

studied including fetal tissue (Boukouvala and Sim, 2005; Grant et aI., 1989; Pacifici et 

aI., 1986). NAT1 is capable of both N-acetylation and O-acetylation. Following N-

acetylation (inactivation) the innocuous acetylated compounds can be excreted from the 

body. However, following O-acetylation (activation) the compound forms an unstable N-

acetoxyarylamine which undergoes heterolytic cleavage to yield a highly reactive 

nitrenium ion. These nitrenium ions are highly electrophilic and can react with proteins 

or DNA to form adducts. Therefore, following exposure to arylamine carcinogens, the 

acetylator phenotype may modulate individual susceptibility to cancer. 

NAT1 and NAT2 are known to be highly polymorphic with over 20 alleles 

identified for each. Polymorphic variations of NAT1 and NAT2 can result in altered 

acetylation capacity. The functional effects of NAT2 polymorphisms have been well 

characterized in relationship to their phenotype, but the functional effects of NAT1 
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polymorphisms remain poorly understood. The most common NAT1 polymorphisms are 

located in the region 3' to the open reading frame; however conflicting results about their 

effect on acetylation capacity have been reported. NA T1 *1 0 is the most common NAT1 

variant allele in many populations and is characterized by two SNPs in the 3'-UTR, 

T1088A (rs1057126) and C1095A (rs15561). One study suggested that NAT1*10 has 

higher acetylation capacity than the referent allele, NA T1 *4, (Bell et aL, 1995a), while 

another have reported no difference (de Leon et aL, 2000). There are no amino acid 

changes due to these polymorph isms, but the T1088A causes a change in the second 

consensus polyadenylation signal (AAIAAA - AA8.AAA). It has been speculated that 

this change in polyadenylation signal may give rise to a difference in mRNA stability and 

modulated acetylation activity of NAT1 10 (Bell et aL, 1995a). The 3'-UTR of a gene 

contains binding sites for important translational regulatory elements that include 

microRNAs, proteins or protein complexes, cytoplasmic polyadenylation elements (CPE) 

and polyadenylation signals (AAUAAA) (Mishra et aL, 2008). It has been shown that 

SNPs in 3'-UTRs of dihydrofolate reductase (DHFR), thrombin and resistin genes cause 

functional affects and alter disease risk (Gehring et aL, 2001; Mishra et aL, 2008; Pizzuti 

et aL, 2002). 

In addition to the high allelic frequency in many populations, NA T1*10 is also of 

great interest because it has been associated with increased risk of so many different 

forms of cancer. NA T1 *10 heterozygous genotype is associated with increased odds 

ratios for non-Hodgkin lymphoma (Morton et aL, 2006), gastric adenocarcinoma (Boissy 

et aL, 2000), prostate cancer (Hein et aL, 2002) and breast cancer (Stephenson et aL, 

2010) when compared to the homozygous NA T1 *4 genotype. It has also been reported 

that cancer risk associated with NA T1 *10 is further modulated by exposure to 

environmental carcinogens found in cigarette smoke, meats cooked at high 
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temperatures, and the use of hair dye. For example, frequent consumption of red meat 

in combination with NA T1 *10 is associated with an increased odds ratio for colorectal 

cancer (Lilla et aI., 2006) and the use of dark, permanent hair dye in combination with 

NA T1*10 is associated with an increased risk for non-Hodgkin lymphoma (Morton et aI., 

2007). Heavy smokers possessing the NA T1*10 allele have an increased risk for 

developing pancreatic cancer compared to non-smokers (Li et aI., 2006) and for 

developing breast cancer (Zheng et al., 1999). The contribution of NA T1 *10 to 

increased cancer risk is not well understood. It is imperative that the phenotype of 

NA T1 *10 be clearly defined in order to resolve the association of NA T1 *10 genotype 

with increased cancer risk. 

The NAT1 gene is located on the small arm of chromosome 8 (Blum et aI., 1990) 

and spans 53 kb. NAT1 is encoded by a single intronless coding exon containing an 

open reading frame (ORF) of 870 base pairs (bp). Several NAT1 transcripts have been 

identified containing various combinations of the 9 noncoding 5'-untranslated region 

(UTR) exons and are known to originate from two distinct promoters, NATa and NATb. 

NATa originates 51.5 kb upstream of the single NAT1 ORF while NATb originates 11.8 

kb upstream of the NAT1 ORF (Barker et aI., 2006; Boukouvala and Sim, 2005; Husain 

et aI., 2004). The reason for the two promoters and the resulting distinct transcripts 

remains unclear. However, there is tissue specific expression between transcripts 

derived from the two major promoters. NA Tb transcripts are expressed in all tissues 

studied, while NATa transcripts are located in kidney, liver, lung and trachea (Barker et 

aI., 2006). Because the NATa transcripts are found only in areas of high environmental 

exposure, differences in transcriptional regulation may necessitate two separate 

promoters. 
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Differences in transcripts derived from the NATb and NATa promoters have been 

reported both in translation and transcription (Butcher et aI., 2005; Millner, 2011). 

Transcripts derived from the NATb promoter are translated more efficiently than 

transcripts derived from the NATa promoter (Butcher et aI., 2005). Chinese hamster 

ovary cells stably transfected with Cytochrome p450 1A1 and NATb/NAT1*4 (mRNA 

type/allele) resulted in lower NAT1 protein, mRNA as wells as N- and 0- acetylation 

compared to cells transfected with NATa/NA T1 *4 (Millner, 2011). Following treatment 

with 4-aminobiphenyl, NATb/NA T1 *4 transfected cells also resulted in higher DNA 

adducts, cytotoxicity and mutants compared to NATa/NAT1 *4 transfected cells (Millner, 

2011 ). 

In addition to polymorphic variation, it may be necessary to consider 

transcriptional and translational regulation to further understand the variation associated 

with NA T1 *10 acetylation activity and effect on cancer risk. I n contrast to previous 

studies which included only the NA T1 open reading frame (ORF), this study employs 

constructs that mimic the most common transcripts originating from the NATb and the 

NATa promoters. In this study, the constructs are referred to as NATb/NA T1 *X or 

NATa/NAT1*X. NATb or NATa refers to the 5' non-coding exons (NCEs) while NAT1*X 

refers to the specific allele. The constructs contain the ORF, the 3'-UTR and all 5' NCEs 

found in the most common NAT1 transcripts originating at the NATb and NATa promoter 

(Figure 4-1) (Barker et aI., 2006; Husain et aI., 2004; Husain et aI., 2007). The 

NATb/NAT1*X construct contains exons 4 and 8 (5' NCEs) and exon 9 (ORF) which has 

been termed transcript Type IIA by Butcher et aI., 2005. The NATa/NA T1*X construct 

contains exons 1, 2, 3, 8 (5' NCEs) and 9 (ORF) which has been termed transcript Type 

1A by Butcher et aI., 2005. In addition to the 5' NCEs and the ORF, the NATb/NA T1*X 

and NATa/NA T1*X constructs also contain 888 nucleotides of the 3'-UTR. The 

71 



NATblNA T1*X and NATaINAT1*X constructs were employed to provide a more 

comprehensive model of in vivo metabolism and to study any allele specific interactions 

between the 5' -UTR and NA T1 *10 polymorph isms. These constructs were utilized to 

determine N- and 0- acetylation, mRNA levels, protein levels, and polyadenylation 

patterns between cells transfected with NATbINAT1*4 and NATaINAT1*4 as well as 

variants of NA T1 *10 in both mRNA constructs. 
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METHODS 

Polyadenylation site removal 

The bovine growth hormone (BGH) polyadenylation site from the pcDNAS/FRT 

(Invitrogen, Carlsbad, CA) vector was removed to allow the endogenous NA T1 

polyadenylation sites to be active. This was accomplished by digestion of pcDNAS/FRT 

at 37°C with restriction endonucleases, Apal and Sphl (New England Biolabs, Ipswich, 

MA), followed by overhang digestion with T4 DNA polymerase (New England Biolabs) 

and ligation with T4 Ligase (New England Biolabs). 

NATb/NAT1*4, NATb/NAT1*10 NATb/NAT1*10B, NATaINAT1*4, NATaINAT1*10, 

and NATal NA T1 *1 OB construct 

The constructs were created utilizing gene splicing via overlap extension (Horton et 

aI., 1989) by amplifying the S'-UTR and the coding region/3'-UTR separately and then 

fusing the two regions together. Beginning with frequently used transcription start sites 

(Barker et aI., 2006; Husain et aI., 2004), the S'-UTRs were amplified from cDNA 

prepared from RNA isolated from homozygous NA T1 *4 HepG2 cells. All primer 

sequences used are shown in Table 1. The primers used to amplify the NATb S'-UTR 

region were Lkm40P1 and NAT1 (3') ORF Rev while the primers used to amplify the 

NATa S'-UTR region were Lkm41P1 and NAT1 (3') ORF Rev. The coding region and 3'­

UTR were amplified as one piece from homozygous NA T1 *4 or homozygous NA T1 *10 

human genomic DNA. The forward primer used to amplify the coding region/3'-UTR was 

NAT1 (3') ORF Forward while the reverse primer was pcDNASdistal Reverse. The two 

sections, the S'-UTR and the coding region/3'UTR, were fused together via overlap and 

amplification of the entire product using nested primers. The forward nested primer for 

NATb was P1 Fwd Inr Nhel while the forward nested primer for NATa was P3 Fwd Inr 

73 



Nhel. The reverse nested primer for both NATa and NATb constructs was NAT1 Kpn 

Rev (NAT1*4 and NAT1*10) or NAT1 Kpn Rev 10B (NA T1*10B). Both forward nested 

primers included the Nhe1 endonuclease restriction site and both reverse nested 

primers contained the Kpn1 endonuclease restriction site to facilitate cloning. The 

pcDNA5/FRT vector and NATalNAT1*4 and NATb/NAT1*4 allelic segments were 

digested at 37°C with restriction endonucleases Kpnl and Nhel (New England Biolabs). 

The NA T1 constructs were then ligated into pcDNA5/FRT using T41igase (Invitrogen). 

All constructs were sequenced to ensure integrity of allelic segments and junction sites. 

NATb/NA T1 *10 Construction 

NATb/NAT1*10 constructs were created using the same NATb 5'-UTRs amplified 

from cDNA prepared from NA T1 *4 homozygous RNA isolated from HepG2 cells, while 

the ORF (open reading frame) and region 3' to the ORF were amplified as one piece 

from NA T1 *1 OINA T1 *10 homozygous human genomic DNA. These two sections, the 5' 

UTR and the ORF/region 3' to the ORF were fused together using nested primers. Upon 

sequencing to ensure allelic and junction site integrity, it was discovered that one of the 

NA T1 *10 clones had 4 additional polymorphisms located in the region 3' to the ORF 

including 1571T>C, 1642A>C, 1647 !lCT, and 1716C>T (Table 1). The presence of 

these polymorph isms in NA T1 was verified against NCBI databases. This study refers to 

this allele as NATb/NAT1*10B and was used to compare N-acetylation activity along 

with NATb/NAT1*10 and NATb/NAT1*4. 
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Cell culture 

UV5-CHO cells, a nuclease excision repair (NER)-deficient derivative of M8 which 

are hypersensitive to bulky DNA lesions, were obtained from the ATCC (catalog number: 

CRL-1865). Unless otherwise noted, cells were incubated at 37°C in 5% CO2 in 

complete alpha-modified minimal essential medium (a-MEM, Lonza, Walkersville, MD) 

without L-glutamine, ribosides, and deoxyribosides supplemented with 10% fetal bovine 

serum (Hyclone, Logan, UT), 100 units/mL penicillin (Lonza), 100 IJg/mL streptomycin 

(Lonza), and 2 mM L-glutamine (Lonza). The UV5/CHO cells used in this study were 

previously stably transfected with a single Flp Recombination Target (FRT) integration 

site (Metry et aI., 2007). The FRT site allowed stable transfections to utilize the Flp-In 

System (Invitrogen). When co-transfected with pOG44 (Invitrogen), a Flp recombinase 

expression plasmid, a site-specific, conserved recombination event of pcDNA5/FRT 

(containing either NATaINAT1*4 or NATb/NAT1*4) occurs at the FRT site. The FRT site 

allows recombination to occur immediately downstream of the hygromycin resistance 

gene, allowing for hygromycin selectivity only after Flp-recombinase mediated 

integration. The UV5/FRT cells were further modified by stable integration of human 

CYP1A1 and NADPH-cytochrome P450 reductase gene (POR) (Metry et aI., 2007). 

They are referred to in this manuscript as UV511 A 1 cells. 

Transient Transfection 

UV511A 1 cells were transiently transfected with pcDNA5/FRT (Invitrogen) or 

pEF1N5-His (Invitrogen) containing NATb/NA T1*4, NATb/NA T1*10, and 

NATb/NAT1*10B constructs using Lipofectamine reagent (Invitrogen) following the 

manufacturer's recommendations. UV5/1A1 cells were co-transfected with pCMV­

SPORT-l3gal (l3-galactosidase transfection control plasmid, Invitrogen). The cells were 

harvested the next day. Lysate was prepared by centrifuging the cells and resuspending 
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pellet in lysis buffer (0.2% triton-X 100, 20 mM NaP04 pH 7.4, 1 mM EDTA, 1 mM DTT, 

0.1 mM PMSF, 2 IJg/mL aprotinin and 2 mM pepstatin A). The resuspended cell pellet 

was centrifuged at 13,000xg for 10 min. The supernatant was used to measure N­

acetyltransferase activity and l3-galactosidase activity. 

Stable transfections 

Stable transfections were carried out using the Flp-In System (Invitrogen) into 

UV511A1 cells that were previously stably transfected with a FRT site (as noted above). 

The pcDNA5/FRT plasm ids containing human NATbINAT1*Xand NATaINAT1*Xwere 

co-transfected with pOG44 (Invitrogen), a Flp recombinase expression plasmid. 

UV511 A 1 cells were stably transfected with pcDNA5/FRT containing NATbl NA T1 *4 and 

NATblNA T1 *148 constructs using Effectene transfection reagent (Qiagen, Valencia, 

CA) following the manufacturer's recommendations. Since the pcDNA5/FRT vector 

contains a hygromycin resistance cassette, cells were passaged in complete a-MEM 

containing 600 IJg/mL hygromycin (Invitrogen) to select for cells containing the 

pcDNA5/FRT plasmid. Hygromycin resistant colonies were selected approximately 10 

days after transfection and isolated with cloning cylinders. 

Determination of in vitro N-acetylation for NAT1 4, NAT1 10, and NAT1 10B 

Lysate was prepared as described above. In vitro assays using the NAT1 specific 

substrate para-aminobenzoic acid (PABA, 300 IJM) or 4-aminobiphenyl (ABP, 100 IJM) 

were conducted and acetylated products were separated utilizing HPLC as previously 

described (Hein et aI., 2006). N-acetylation activity was determined at a fixed 

concentration of 1 mM acetyl coenzyme A (AcCoA). Reactions containing substrate, 

AcCoA and enzyme were incubated at 3TC for 10 min. Reactions were terminated by 
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the addition of 1/10 volume of 1 M acetic acid and centrifuged at 15,000Xg for 10 min. 

Measurements were adjusted according to baseline measurements using Iysates of the 

UV5/CYP1 A 1 cell line and normalized by the amount of total protein. Protein 

concentrations were measured using the method of Bradford (Bio-Rad, Hercules, CA). 

All calculations were determined using GraphPad Prism Software (Graphpad Software, 

La Jolla, California). 

In situ N-acetylation by NAT1 4, NAT1 10, and NAT1 10B 

In situ N-acetylation activities were determined by a whole cell assay using 

media spiked with varying concentrations of PABA or ABP. N-acetylation activities were 

determined using varying concentrations of PABA and ABP between 10 and 300 IJM. 

The cells were incubated at 37°C and media was collected after 1 h (PABA) or 22 min 

(ABP), 1/10 volume of 1M acetic acid was added, and the mixture was centrifuged at 

13,000xg for 10 min. Values were normalized to the amount of cells present at time of 

media removal. The supernatant was injected into the reverse phase HPLC column and 

N-acetyl-PABA or N-acetyl-ABP was separated and quantitated as described above. 

Determination of in vitro O-acetylation for NAT1 4 and NAT1 10 and NAT1 10B 

N-hydroxy-4-aminobiphenyl (N-OH-ABP) O-acetyltransferase assays were 

conducted and product was separated from substrate using HPLC as previously 

described (Metry et aI., 2007). Assays containing 50 IJg total protein, N-OH-ABP (100 

IJM), AcCoA (1 mM), and 1 mg/mL deoxyguanosine (dG) were incubated at 37°C for 10 

min. Reactions were stopped with the addition of 100 IJL of water saturated ethyl acetate 

and centrifuged at 13,000xg for 10 min. The organic phase was removed, evaporated to 

dryness, redissolved in 100 IJL of 10% ACN and injected onto the HPLC. 
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Measurement of NAT1 Protein 

The amount of NA T1 produced in UV511 A 1 cells stably transfected with 

NA TblNA T1 *X or NATalNA T1 *X was determined by western blot Cell Iysates were 

isolated as described above. Varying amounts of lysate were mixed 1: 1 with 5% 13-

mercaptoethanol in Laemmli buffer (Bio-Rad), boiled for 5 min, and resolved by 12% 

SDS-PAGE. The proteins were then transferred by semi-dry electroblotting to 

polyvinylidene fluoride (PVDF) membranes. The membranes were probed with G5, a 

monoclonal mouse anti-NAT1 (1 :200) Santa Cruz Biotechnology, Santa Cruz, CA) and 

with horseradish peroxidase (HRP)-conjugated secondary donkey anti-mouse IgG 

antibody (1 :2,000) (Santa Cruz). Supersignal West Pico Chemiluminescent Substrate 

was used for detection (Pierce). Densitometric analysis was performed using Quantity 

One Software (Bio-Rad). 

Measurement of NAT1 mRNA 

Total RNA was isolated from cells using the RNeasy kit (Qiagen) followed by 

removal of contaminating DNA by treatment with TurboDNase Free (Ambion, Austin, 

TX). Synthesis of cDNA was performed using qScript cDNA Synthesis Kit (Quanta 

Biosciences, Gaithersburg, MD) using 1 IJg of total RNA in a 20 IJL reaction per the 

manufacturer's protocol. Quantitative RT-PCR (qRT-PCR) assays were used to assess 

the relative amount of NA T1 mRNA in cells stably transfected cells. The Step One Plus 

(Applied Biosystems, Foster City, CA) was used to perform qRT-PCR in reactions 

containing 1x final concentration of qScript One-Step Fast mix (Quanta Biosciences), 

300 nM of each primer and 100 nM of probe in a total volume of 20 IJL. For qRT-PCR of 

NAT1 mRNA, a TaqMan probe was used with NAT1 Total Splice Forward and NAT1 

Total Splice Reverse primers (Table 2) designed using Primer Express 1.5 software 

(Applied Biosystems). An initial incubation at 50°C was carried out for 2 minutes and at 

78 



94°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute. TaqMan® Ribosomal RNA Control Reagents for quantitation of the endogenous 

control, 18S rRNA, (Applied Biosystems) were used to determine b.Ct (NAn ct -18S 

rRNA Ct). b.b.Ct was determined by subtraction of the smallest b.Ct and relative 

amounts of NAT1 mRNA were calculated using zMCt as previously described (Barker et 

aI., 2006). 

RNase Protection Assay 

Biotinylated RNA probes were constructed to span the region 3' to the NAT1 

ORF using the MAXlscript In Vitro Transcription kit (Applied Biosystems/Ambion, Austin, 

TX). RNase Protection Assays (RNAPs) were carried out using RPAIII Kits (Applied 

Biosystems/Ambion) according to the manufacturer's protocols. Briefly, total RNA was 

collected from transiently transfected cells CHO cells and treated with Turbo DNase 

Free kit (Applied Biosystems/Ambion). Five ~g of total RNA was allowed to hybridize 

overnight in molar excess of biotinylated RNA probes. The resulting RNA-probe mixture 

was treated with RNase AlTI (kit) to degrade any non-hybridized RNA and any 

remaining probe. The RNased hybridized mixture was then separated on a 

polyacrylamide gel and transferred to a nitrocellulose membrane. The membrane was 

detected with Chemiluminescent Nucleic Acid Detection Module (ThermoScientific) and 

exposed to x-ray film to visualize. 

Measurement of Cytotoxicity and Mutagenesis 

Assays for cell cytoxicity and mutagenesis were carried as previously described (Wu 

et aI., 1997) with slight modifications. Cells were grown in HAT medium (30 mM 
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hypoxanthine, 0.1 mM aminopterin, and 30 mM thymidine) for 12 doublings. Cells 

(1 x1 06
) were plated, allowed to grow for 24 h and were then treated with 1.56, 3.13, 6.25 

or 12.5 IJM ASP (Sigma) or vehicle alone (0.5% DMSO) in media. After 48 h, cells were· 

plated to determine survival and mutagenic response to ASP. To determine cloning 

efficiency following each dose of ASP, 100 cells were plated in triplicate in 6 well-plates 

and allowed to grow for 7 days in non-selective media. Colonies were counted and 

expressed as percent of vehicle control. To determine mutagenic response following 

ASP exposure, 5x1 05 cells were plated and sub-cultured for 7 days and then seeded 

with 1x105 cells/100 x 20 mm dish (10 replicates) in complete DMEM containing 40 IJM 

6-thioguanine (Sigma). Mutant hprt cells were allowed to grow for 7 days and colonies 

were counted to determine ASP-induced mutants and corrected by cloning efficiency. 

Removal of the SV40 polyadenylation signal from NATa and NATb NAT1*10B 

Constructs 

The SV40 polyadenylation signal was removed from the NATa and NATb 

NA T1 *1 OB pcDNA5/FRT constructs by incubation at 37° with restriction enzymes, Sacll 

and Sap!. The overhangs were filled in using T 4 DNA polymerase (New England 

Siolabs) and then ligated back together using T4 DNA ligase (New England Siolabs). 

Transient transfections and PASA in vitro N-acetylation assays were performed as 

described above. 

Statistical Analysis 

Statistical differences were determined using either an unpaired Student's t-test 

or one-way ANOVA using Prism Software by Graphpad (La Jolla, CA). 
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RESULTS 

Upon sequencing two sources of NA T1 *10 genomic DNA used to create the 

NA T1 *10 constructs, 4 additional polymorph isms were found in the 3' -UTR of one of the 

sources (Table 1). In addition to T1088A (rs1057126), C1095A (rs15561), and G1191T 

(rs4986993), A1642C (rs8190865) a deletion boCT1647, and C1716T (rs8190870) and 

A 1735T. These were validated by their inclusion in the NCBI dbSNP database. 

NATblNA T1 enzymatic activity was examined with PABA, ABP, or N-OH-ABP. 

Significantly more N-acetylation activity towards PABA (Figure 4-2) and ABP (Figure 4-

3) was detected in NATbINAT1*10 and NATbINAT1*10B than in NATbINAT1*4 (p<O.05) 

in transiently and stably transfected cells. Significantly more O-acetylation of N-OH-ABP 

was detected in NATbINAT1*10 and NATbINAT1*10B than in NATbINAT1*4 (p<O.05) in 

stably transfected UV5/1A1 cells (Figure 4-3). NATaINAT1 activity was also examined 

using PABA, ABP and N-OH-ABP. Significantly more NATaINAT1*10B N-acetylation of 

PABA (Figure 4-4), ABP (Figure 4-5), and O-acetylation of N-OH-ABP (Figure 5) was 

observed when compared to NATaINAT1*4 (p<O.05) both in vitro and in situ. No 

difference was observed between NATaINAT1*10 and NATaINAT1*4 stably transfected 

cells towards the N-acetylation of PABA (Figure 4-4), ABP (Figure 4-5) or the 0-

acetylation of N-OH-ABP (Figure 4-5). 

The pcDNA5/FRT (Invitrogen) utilized in these experiments contained an SV40 

polyadenylation signal for the hygromycin cassette. To ensure there was no artifactual 

use of the SV40 polyadenylation signal, it was removed to ensure that the presence of 

NATa and NATb NAT1*10B transcripts beyond the 3rd probe was not vector induced. 

Following removal of the SV40 polyadenylation site from the pcDNA5/FRT, no difference 

was observed in PABA N-acetylation between NA T1*10B and NAT1*10B LlSV40 

81 



polyadenylation site in NATb (Figure 4-6a) or NATa (Figure 4-6b) transiently transfected 

UVS/1A1 cells. 

Western blots were performed to examine NAT1 protein expression in stably 

transfected UVS/1 A 1 cells (Figure 4-7). Equal amounts of total protein were loaded and 

densitometric analysis was performed using Quantity One 1-D Analysis Software (Sio 

Rad). Significantly more protein (p<O.OS) was detected in NATbINAT1*10 and 

NATblNA T1*10B than in NATbINAT1*4 transfected cells (Figure 4-7b). Significantly 

more protein was observed in NATaINAT1*10B when compared to NATalNA T1*4 

(p<O.OS) stably transfected cells (Figure 4-7c). No difference in protein (p>O.OS) was 

observed between NATalNA T1*10 and NATaINAT1*4 stably transfected cells (Figure 4-

7c). 

mRNA levels in stably transfected CHO cells were determined by RT-PCR 

(Figure 4-8). Significantly more mRNA was observed in NATbINAT1*10 and 

NA TblNA T1 *1 OB than NATblNA T1 *4 transfected cells (Figure 4-8b). Significantly more 

mRNAwas observed in NATaINAT1*10B but not NATaINAT1*10when compared to 

NATalNA T1*4 stably transfected cells. 

Stable transfection of NATbINAT1*4 and NATbINAT1*10 increased ASP-induced 

cytotoxicity (Figure 4-9a) and hprt mutants (Figure 4-9b) compared to non-transfected 

cells. Significant differences between NATblNA T1 *4 and NA Tb/NA T1 *10 were not 

observed, although, NATbINAT1*10 ASP-induced hprt mutants were higher than 

NATbINAT1*4 (Figure 4-9b). 

Three biotinylated RNA probes were used to determine the polyadenylation 

pattern of NA T1 *4, NAT1*10, and NAT1*10B (NATa and NATb constructs) in transiently 

transfected UVS/1 A 1 cells in an RNase Protection assay (Figure 4-10). RNase 
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Protection assays detected no difference in polyadenylation site usage between RNA 

isolated from CHO cells transfected with NATbINAT1*4 or NATblNA T1*10 (Figure 4-10 

b-d). Bands were detected that correspond to mRNAs utilizing polyadenylation signals 

located at positions 1028, 1088, 1209, 1248, and 1613 nts. As expected, bands 

corresponding to PolyA Signal 1 located at position 1028 (215 nucleotides), PolyA Signal 

2 located at position 1088 (284 nucleotides), PolyA Signal 3 located at position 1209 

(118 nucleotides), PolyA Signal 4 located at position 1248 (163 nucleotides) and PolyA 

Signal 5 located at position 1613 (252 nucleotides) were observed for all constructs. Full 

length probe 1 (371 nucleotides) and full length probe 2 (388 nucleotides) was observed 

for NAT1*4, NAT1*10, and NAT1*10B (NATa and NATb) (Figure 4-10 b, c). Full length 

protection of probe 3 was observed only in NA T1 *1 OB (NATa and NA Tb constructs) 

transfected cells (369 nucleotides) (Figure 4-10d). No band was observed in the lane 

with Yeast RNA (negative control) for any probe. 
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Figure 4-1 Genomic organization of NAT1 gene 

(a) Genomic organization of NAT1 gene (b) Type I and Type II NAT1 transcripts (c) 

NATb and NATa NAT1 *4, NAT1 *10, and NAT1 *10B constructs . (Adapted from Butcher 

et aI. , 2005) . NAT1*10 SNPs include T1088A, C1095A, and T1191G. Additional 

NAT1*10B polymorphisms include A1642C, b.CT1647, C1716T and A1735T. 
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Figure 4-2: N-acetylation of PABA by NAT1 4 and NAT110 in NATb constructs 

NATb activity. N-acetylation of PABA in UV5/1A1 cells expressing NAT1 *4 (open bars) , 

NAT1 *10 (closed bars) and NA T1*10B (grey bars). (a) PABA N-acetylation (in vitro) 
activity following transient transfection with pcDNA5/FRT; (b) PABA N-acetylation activity 

(in vitro) following stable transfection with pcDNA5/FRT; (c) PABA N-acetylation (in situ) 
following stable transfection with pcDNA5/FRT. Each bar represents mean ± S.E.M. for 
three transient transfections (a) or three separate collections performed in triplicate (b 
and c) Significantly higher than NAT1 4 denoted by *p<O.05 and ***p<O.0001 following 

analysis with one-way ANOV A. 
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Figure 4-3: N- and 0- ABP acetylation by NA T1 4 and NA T1 10 in NATb constructs 

NATb activity. N- and O-acetylation of ABP and N-OH-ABP following stable transfection 

in UVS/1A1 cells transfected with NAT1 *4 (open bars), NAT1*10 (closed bars) and 

NAT1*10B (grey bars) in NATb constructs . (a) ABP N-acetylation activity (in vitro) ; (b) 
ABP N-acetylation (in situ) ; (c) O-acetylation of N-OH-ABP (in vitro) . Each bar 

represents mean ± S.E.M. for three separate collections performed in triplicate . 
Significantly higher than NAT1 4 denoted by *p<O.OS and ***p<O.0001 following analysis 

with one-way ANOV A. 
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Figure 4-4: N-acetylation by NAT1 4 and NAT1 10 in NATa constructs 

NATa activity. N-acetylation of PABA UV5/1A1 cells stably transfected with NAT1*4 

(open bars) , NAT1*10 (closed bars) and NAT1*10B (grey bars) in NATa. (a) PABA N­

acetylation activity (in vitro) and (b) PABA N-acetylation (in situ) . Each bar represents 
mean ± S.E.M. for three separate collections performed in triplicate. Significantly higher 
than NAT1 4 denoted by ***p<O.0001 following analysis with one-way ANOVA. 
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Figure 4-5: N- and 0- ABP acetylation by NAT1 4 and NAT1 10 in NATa constructs 

NATa activity. N- and O-acetylation of ASP and N-OH-ASP following stable transfection 
in UVS/1A1 cells transfected with NAT1*4 (open bars) , NAT1*10 (closed bars) and 
NAT1*10B (grey bars) in NATa constructs. (a) ASP N-acetylation activity (in vitro) ; (b) 
ASP N-acetylation (in situ) ; (c) O-acetylation of N-OH-ASP (in vitro) . Each bar 
represents mean ± S.E.M. for three separate collections performed in triplicate. 
Significantly higher than NAT1 4 denoted by *p<O.05 and ***p<O.0001 following analysis 
with one-way ANOVA. 
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Figure 4-6: NAT1 1 o BflSV40 N-acetylation in transiently transfected cells 

PABA N-acetylation in vitro of UVS/1A1 cells transiently transfected with NAT1*10B 
(open bars) or NAT1*10B f1SV40 polyadenylation site (closed bars) in NATb constructs 
(a) or NATa constructs (b)" Error bars represent one collection performed in triplicate 
and significance testing was done using a student's t-test. 
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Figure 4-7: NAT1 protein expression of NAT1 4 and NAT1 10 

lOB 

Representative western blot of NAT1 4, NA T1 10, and NAT1 10B expression in NATb 
constructs (a) and densitometric analysis of NATb constructs (b) and NATa constructs 
(c). Each bar represents mean ± SEM of 1 or 2 western blots performed in triplicate. 
Analysis done with Quantity One software (BioRad) . Significantly higher than NAT1 4 
denoted by *p<0.05 and ***p<0.0001 following analysis with one-way ANOVA. 
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Figure 4-8: NAT1 mRNA levels of NAT1*4 and NAT1*10 

NAT1 mRNA expression levels of UVS/1A1 cells stably transfected with NAT1*4 (open 
bars) , NAT1 *10 (closed bars) or NAT1*10B (grey bars) in NATb (a) or in NATa (b) 
constructs. Each bar represents mean ± S.E.M. for 3 determinations. Significantly higher 
than NAT1 4 denoted by *p<O.OS or **p<O.001 following analysis by one-way ANOVA. 
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Figure 4-9: ABP-induced cytotoxicity and mutants 

(a) ABP-induced cytotoxicity and (b) ABP-induced hprt mutants per million cells in 
UV5/1A1 cells stably expressing CYP1A1 only (e), CYP1A11NA T1*4 (.), and CYP1A1 

INA T1*10 ( .... ) in NATb constructs. Each data point represents mean ± S.E.M. for three 
determinations. 
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Figure 4-10: RNase protection assay of NAT1*4, NAT1*10, and NAT1*10B 

An RNase protection assay examining pattern of polyadenylation usage. (a) Schematic 

representation of NAT1 3'-UTR and the probes used for the RNase protection assay. 

Lane 1 contains a biotinylated marker, lane 2 contains RNA isolated from transiently 

transfected with lane 2 NAT1 *4, lane 3 NAT1*10, lane 4 NAT1 *10B in NATb constructs, 

lane 5 with NA T1 *4, lane 6 with NAT1 *10, and lane 7 with NAT1 *10B in NATa 

constructs. Lanes 8-10 are control lanes; lane 8 contains yeast (no target) RNA, lane 9 

contains no RNase and lane 10 is probe alone. Lanes 2 - 8 were all hybridized to probe 

and treated with RNAse. (b) The 1st and 2nd polyadenylation sites were mapped with 

probe 1. (c) The 3rd and 4 th polyadenylation sites were mapped with probe 2. (d) The 5th 

and 6th polyadenylation sites were mapped with probe 3. 
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Table 4-1: NA T1*10 and NAT1*10B Polymorphisms 

Nucleotide Position 

Allele 1088 1095 1191 1642 1647 1716 1735 
NAT1*4 T C G A CT C A 

NAT1*10 A A T A CT C A 

NAT1*10B A A T C ~CT T T 
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Primer Use Sequence 
Lkm40P1 NATb 5-'UTR forward specific PCR 5'-GGCCGCGGCA TTCAGTCTAGTTCCTGGTTGCC-3' 

P1 Fwd Inr Nhel NATb 5'-UTR forward specific nested PCR 5'TTT AAAGCTAGCA TTCAGTCTAGTCTAGTTCCTGGTTGCCGGCT-3' 

Lkm41P3 NATa 5'-UTR forward SQ8cifc PCR 5' -GGCCGCGGAACACA TTCTGCTCAAA T AAGCCT -3' 

P3 Fwd Inr Nhel NATa 5'-UTR forward specific nested PCR 5'TT AA TGCTAGCAACACATTCTGCTCAAA T AAAGCCTAGG-3' 

NAT1 (3') ORF Rev NATa/NATb 5'-UTR reverse PCR 5'-TTCCTCACTCAGAGTCTTGAACTCTA TT -3' 

NAT1 (3') ORF For NAT1 codingregion forward PCR 5'-AGACATCTCCATCATCTGTGTTT ACTAGT-3' 

-"cDNA5 FRTdlstal Rev NAT1 3' -UTR reverse PCR 5'-CGTGGGGATACCCCCTAGA 

NAT1 KPN-Rev NAT1 3'-UTR reverse nested PCR 5'-ATAGTAGGTACCTCTGAATTATAGATAAGCAAAGATTCAGATTCT-3' 

NAT1 KPN-Rev'10B NAT1 3'-UTR reverse nested PCR 5'-ATAGTAGGTACCTCTGAATTATAGATAAGCAAAGATACAGATTCT-3' 

NAT1 total ~-'iced Forward NAT1 SQ8cific forward o-RT-PCR 5' -GAATTCAAGCCAGGAAGAAGCA-3' 

NAT1 total spliced Reverse NAT1 specific reverse q-RT -PCR 5'-TCCAAGTCCAA TTTGTTCCTAGACT -3' 

NAT1 TAO MAN probe TAO MAN probe for NAT1 total splice 6FAM-5' -CAA TCTGTCTTCTGGA TT AA-3'MGBNFO 

Table 4-2: Primers used to construct NAT1*4, NAT1*10, and NAT1*10B 

Primers used to construct NAT1*4, NAT1*10, and NAT1*10B in NATa and NATb Type 
transcript constructs and for RT -peR. These allelic constructs were then ligated into 
pcDNAS/FRT expression vectors, 
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DISCUSSION 

NA T1 *10 has been associated with higher risk for many different forms of cancer 

including breast, colorectal, prostate and urinary bladder cancers, gastric 

adenocarcinoma, and non-Hodgkins lymphoma. Several studies suggest that NAT1*10 

has higher acetylation capacity than the referent allele, NA T1 *4, (Bell et aI., 1995a), 

while others have reported no difference (de Leon et aI., 2000). Increased 0-

acetylation activity could result in an increased amount of unstable intermediates able to 

form DNA adducts. Because NA T1 *10 has a high allelic frequency in so many 

populations (Cascorbi et aI., 2001; Lo-Guidice et aI., 2000; Vaziri et aI., 2001; Zhangwei 

et aI., 2006), it is important to identify the risk that is associated with NAT1*10. To better 

understand the risk associated with NA T1 *1 0 and cancer, NA T1 *10 acetylation activity 

was studied (in vitro and in situ) using complete NATb and NATa mRNA constructs to 

better mimic in vivo acetylation. 

Differences between the referent protein, NAT1 4, and the variants, NAT1 10 and 

NAT1 10B, have been studied in UV5/1A1 CHO cells transiently and stably transfected 

with NATb and NATa type mRNA. The effect that NAT1*10 polymorph isms exert on 

mRNA and protein expression and enzymatic activity appears to be transcript 

dependent. We have shown increased N- and 0- acetylation and increased mRNA and 

protein expression for NAT1 10 and NAT1 10B when compared to NAT1 4 in cells 

transfected in the NATb type mRNA. This was observed in both transiently and stably 

transfected cells. In contrast, no significant difference was observed between NAT1 10 

and NAT1 4 in cells transfected with the NATa type mRNA. However, a significant 

difference was observed between NAT1 4 and NAT1 10B in cells transfected with the 

NATa mRNA. This effect of mRNA type on NA T1*10 polymorphisms is a novel finding. 

It is possible that mRNA type may be partly responsible for discrepancies concerning 
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NA T1 *10 phenotype. Studies have reported allele-specific differences in transcription 

factor binding levels (McDaniell et aI., 2010). It is possible that allele specific 

transcription differences could be dependent on transcript type as well. 

In addition to importance of transcript type on NA T1 *1 0 phenotype, we also 

report on additional polymorphisms located in the 3'-UTR in an allele referred to in this 

dissertation as NA T1 *1 OB. NA T1 *1 OB has 4 polymorphisms in addition to the T>A 1088, 

C>A 1095 and G> T1191 that characterize NA T1 *10. NA T1 *1 OB also includes 

A>C1642, flCT1647, C>1716, and A>T1735. Cells transfected with NAT1*10B resulted 

in increased enzymatic activity, mRNA and protein expression compared to NA T1*10. 

Because the additional polymorph isms found in NA T1 *1 OB are not routinely screened 

for, it is possible that some of the discrepancies concerning NA T1 *10 phenotype could 

also be attributed to misidentification of NA T1 *1 OB as NA T1 *10. 

There are 6 potential polyadenylation signals located in the region 3' to the NAT1 

ORF. NAT1 transcripts have been identified that utilize the first 5 of the 6 potential 

polyadenylation signals using dbSNP. The T1088A SNP present in NAT1*10 alters the 2nd 

polyadenylation signal (AAIAAA - AA8.AAA). It has been suggested (Boukouvala and 

Sim, 2005) that this change in polyadenylation signal may increase the stability of the 

NA T1 *1 0 RNA which could be responsible for any differences seen between NA T1 *1 0 

and NA T1*4 in acetylation capacity. To examine the NAT1*10 polyadenylation pattern, 

RNase Protection Assays (RNAP) were conducted. RNAP assays were carried out in 

cells transfected with NA T1 *4, NAT1*10, and NAT1*10B in both NATb and NATa 

constructs. Bands were observed corresponding to the first 5 potential polyadenylation 

signals and no qualitative differences were observed between NA T1 *4 and NA T1 *10 in 

either the NATb or NATa construct. However, there was a difference in NAT1*10B in 

both NATb and NATa constructs using probe 3. Full length protection of probe 3 was 

98 



observed for NA T1 *1 OB but not for NA T1 *10 or NA T1 *4 in cells transfected with both 

NATb and NATa constructs. This indicates the presence of NA T1 *1 OB transcripts that 

extend beyond probe 3. Other bands present may be due to either RNA cruciform 

structures or probe-probe interactions. While there were no quantitative differences 

observed, there could be some quantitative differences that were not large enough to be 

detected by RNAP. 

To ensure that differences in NAT1*10B activity compared to NAT1*4 and 

NA T1 *10 were not caused by the presence of the strong SV40 polyadenylation signal in 

the pcDNA5/FRT expression vector, it was removed from the vector and then ligated 

together. Transient transfections confirmed that there were no differences in NA T1 *1 OB 

with or without the presence of the SV40 polyadenylation signal. 

Because the NA T1 *10 allele has high allelic frequency in many populations, 

clearly defining the NA T1 *10 phenotype would allow cancer risk and other toxicities 

related to environmental arylamine exposure to be better understood. We have shown 

that NATblNA T1 *10 has higher enzymatic activity and mRNA and protein expression 

compared to NATblNA T1 *4. NA T1 *10 has been associated with increased risk for many 

cancers. This higher activity could be partly responsible for the increased risk 

associated for individuals possessing NA T1*10. Butcher et al. suggests that there may 

be cell-type specific expression of an RNA-binding protein that would allow increased 

mRNA stability in some cell types (Butcher et aI., 2008). It has also been suggested that 

NA T1 *10 transcripts have enhanced stability compared to NA T1 *4 in some cell lines and 

not in others. This could be reflective of cell-type specific expression of RNA-binding 

proteins that affect stability of the NAT1 transcript. Cell-type may also be important for 

differences between 5'-UTR and allele interactions. Therefore, cell-type may play an 

important role in NAT1*10 expression and activity. Future studies should be done to 
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determine in what cell types NA T1 *10 has higher levels of steady-state mRNA, protein 

and activity. Interaction of RNA-binding protein is also likely to be different between 

NATa and NATb transcripts so cell-types expressing both transcript types likely have 

complicated NA T1 *10 regulation. 
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CHAPTER 5: GENERAL DISCUSSION 

Previous studies have failed to elucidate a clear correlation between genotype 

and phenotype of NAT1 alleles. The experiments in this dissertation have examined the 

phenotype of NA T1 variant alleles, NA T1 *10, NA T1 *1 OB and NA T1 *14B compared to 

the referent, NA T1 *4. This was accomplished utilizing constructs that mimic full length 

NAT1 mRNA including the 5'-UTR, ORF, and 3'-UTR. In contrast to utilizing constructs 

that contain only the ORF, the experiments in this dissertation have allowed natural 

mRNA folding and stability to occur by utilizing full length mRNA constructs. 

Differences in NATa and NATb transcripts containing the referent allele, NA T1 *4, 

were observed. Transient and stable transfections of NATb/NA T1 *4 resulted in 

significantly more N- and 0- acetylation, protein and mRNA expression, ASP-induced 

DNA adducts and ASP-induced hprt mutants. Following studies comparing the two 

mRNA of NAT1*4, variant alleles were studied in the same NATa and NATb constructs. 

Differences in NA T1 *10 compared to NA T1 *4 were mRNA-type dependent. In 

the NATb mRNA, NA T1 *10 and NA T1 *1 OB both had higher N- and 0- acetylation, 

protein and mRNA expression than NAT1*4. In the NATa mRNA, NA T1*10B had higher 

N- and 0- acetylation, protein and mRNA expression than NA T1 *10 and NA T1 *4. There 

was no difference between NA T1 *10 and NA T1 *4 in the NATa mRNA. This finding 

emphasizes the importance of studying each allele in combination with full length mRNA. 

Failure to study mRNA type in combination with alleles may have contributed to some of 

the ambiguous results of NA T1 *10 phenotype in previous literature. Also, the additional 
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polymorphisms included in the NA T1 *108 genotype may further complicate NA T1 *1 0 

phenotype . To com prehensively study the correlation between NA T1 *10 genotype and 

phenotype, the 'studies in this dissertation reveal the need to genotype additional 

polymorph isms in the NA T1 *10 3'-UTR. 

Differences between NA T1 *4 and NA T1 *148 were observed in NATb mRNA. 

Lower Vmax for NAT1 14B toward all substrates was observed when compared with 

NAT1 4. This indicates that at high substrate concentrations, NAT1 14B has lowered 

acetylation capacity compared to NAT1 4. Lower VmaxfKm (catalytic efficiency) for NAT1 

14B toward PABA was observed when compared to NAT1 4. In contrast, higher VmaxfKm 

for NAT1 14B toward ABP and N-OH-ABP was observed when compared to NAT1 4. 

This indicates that at low substrate concentrations (concentrations well below Km) NAT1 

14B has higher acetylation capacity compared to NAT1 4. These studies revealed that 

NA T1 *148 acetylator phenotype is dependent on both substrate and substrate 

concentration. Because NAT1 14B resulted in increased ABP-induced DNA adducts, 

our results suggest that individuals possessing the NA T1 *148 allele likely have 

increased risk compared to those who are homozygous for NA T1 *4 following low 

(environmental) dose exposure to ABP. NAT1 14B is not simply associated with "slow 

acetylation" but rather is substrate dependent, since NA T1 14B exhibits lower N­

acetylation catalytic efficiency of PABA but higher N- and O-acetylation catalytic 

efficiency as well as DNA adducts following exposure to the human carcinogen ABP. 
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Limitations and recommended future studies 

The UV5 cell line is a good model for many reasons. It is a mammalian cell line, 

appropriate for studying DNA damage due to its nucleotide excision repair deficiency 

and does not endogenously express NAT1 or NAT2. However, because the 5'-UTR 

regulation reported here could be cell type specific, this regulation should be studied in 

human cell lines. Also, real-time RT-PCR on human cell lines and human tissues should 

be utilized to determine relative amounts of NATa and NATb type transcripts. This 

should be done in healthy and cancerous tissue to determine if NATa transcripts are 

upregulated differentially from NATb transcripts. This would be a start to determining the 

role of two types of transcripts. 

Efficient N-acetyltransferase purification methods would permit a more complete 

evaluation of human enzyme kinetics. All kinetic studies described in this dissertation 

were carried out with whole cell lysate. The ability to purify the NAT1 protein would 

result in more accurate characterizations. NA T1 *14B studies were only conducted in 

NATb mRNA. Future studies should be performed using NAT1*14B expressed in NATa 

mRNA. 

The only known NAT1 substrate is para-aminobenzoylglutamate (PABG), which 

is a catabolite of folate. It has been suggested that NAT1 polymorphisms are associated 

with birth defects due to the metabolism of PABG. Kinetic parameters of PABG were 

not able to be determined using current methods of HPLC separation. More sensitive 

methods of measurement are required to determine NAT1 PABG acetylation by NAT1 

expressed in UV5/1A1 cells. A colorimetric assay such as the serotonin N­

acetyltransferase (De Angelis et aI., 1998) could be adapted or developed for this 

purpose. NAT1 4 and NAT1 14B kinetic parameters for PABG should be determined as 

well as NAT1 10 and NAT1 10B PABG acetylation. 

103 



The in vitro kinetics were determined at 100 IJM acetyl CoA. The cellular 

concentration of acetyl CoA should be determined to better mimic in vivo kinetic 

behavior. This could be examined using an indirect detection method such as 

conversion of acetyl CoA to CoA and then reacting the CoA to NADH which can then 

react with a fluorescent probe (Abnova, Tapei, Taiwan). 

The RNase protection assays were performed with RNA from transiently 

transfected cells. More assays should be performed using stably transfected cells and 

RNA from other sources, including human tissue. Although miRNA binding sites were 

not predicted to be located on any NA T1*10 SNPs using predictive software, miRNA 

regulation of NAT1*10 should still be examined. Regulation by miRNA could be analyzed 

by northern hybridization (Lim et aI., 2003), microarray analysis (Krichevsky et aI., 2003; 

Liu et aI., 2004) or stem-loop RT-PCR (Chen et aI., 2005). 

Transcription factors associated with each transcript should also be examined. 

Because transcription factors have been shown to be allele specific (McDaniell et aI., 

2010), differences in transcription factors should be examined for each allele and in each 

transcript form. This study used NATb (type IIA) and NATa (type IA) only. Future studies 

should examine other NAT1 mRNA types in combination with variant alleles. Future 

studies should also genotype for NA T1 *1 OB separately from NA T1 *10. Because the 

NA T1*10B SNPs occur with linkage disequilibrium, this could be accomplished by 

designing an RT-PCR assay to detect C1642A as a flag SNP. 
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