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ABSTRACT 

ADRIAMYCIN NEPHROTOXICITY IS REDUCED BY MET ALLOTHIONEIN 

OVER-EXPRESSION AND KIDNEY GENE EXPRESSION IS MODIFIED BY 

DIABETES IN THE OVE26 DIABETIC MODEL 

Lu Yang 

December 3,2010 

This thesis is divided into two parts below. 

Part I 

Adriamycin (ADR) can produce nephrotoxicity in rodents. The underlying mechanism 

may relate to ADR induced oxidative stress. In this study, we used transgenic mice 

(NMT3), which over-expressed the antioxidant protein metallothionein (MT) in 

podocytes, to study MT's protective potential on ADR nephrotoxicity. Urine and kidney 

samples were collected from control and transgenic mice at multiple time points after 

ADR injection, whose results showed that MT transgene alleviated ADR damage by 

reducing albuminuria, decreasing podocyte loss and protecting podocyte ultra-structure. 

Part II 

OVE26 mice are a good model of severe diabetic nephropathy (DN). We examined 

progressive changes in renal gene and protein expression in OVE26 and control mice. 

Inflammatory genes were most affected by diabetes, especially at oldest ages tested, 
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which correlated with increasingly severe albuminuria. Vitamin D metabolism was also 

changed by DN. 
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CHAPTER I 

METALLOTHIONEIN OVER-EXPRESSION IN PODOCYTES REDUCES 

ADRIAMYCIN NEPHROTOXICITY 

INTRODUCTION 

Adriamycin Induced Nephrotoxicity and Potential Mechanisms 

Adriamycin (ADR) is commonly used to treat leukemia, lymphoma and 

other cancers. However, clinical use of ADR is limited due to its toxicity to kidney, 

heart and other organs. Its complex cytotoxic mechanisms [1] are known to include 

enzyme inhibition, DNA intercalation, reactive oxygen species generation [2] and 

inductions of apoptosis. ADR-induced nephropathy has been well characterized in 

rodents and demonstrated to include albuminuria, impaired glomerular function, 

glomerulosclerosis, morphological changes and other features[3,4]. In mice ADR 

nephropathy varies among strains, with BALB/C mice being highly susceptible while 

C57BLl6J mice and most other strains are resistant [5]. 

Reactive oxygen species (ROS) are thought to be involved in the mechanism 

of ADR-induced kidney damage. ADR undergoes one-electron reduction catalyzed by 

flavin-containing enzymes [6] such as NADPH-cytochrome-P-450 reductase [7]. This 

reduction generates a semiquinone free-radical. In the presence of molecular oxygen, 



the semiquinone reduces oxygen to superoxide and regenerates intact ADR. The ADR 

semiquinone can also react with hydrogen peroxide to yield hydroxyl radical [8]. These 

toxic ROS react with cellular molecules, including nucleic acids, protein and lipids, 

causing cell damage. Most evidence for this free radical hypothesis comes from in vitro 

studies on cell lines, including reports that: (1) ADR increases ROS levels and lipid 

peroxidation [9] and (2) the finding that free radical scavengers such as N-acetylcysteine 

[10], vitamin E [11] and superoxide dismutase [11] decrease the severity of 

ADR-induced damage. The free radical mechanism of ADR toxicity has been shown to 

apply to kidney cells. In cultured glomerular epithelial cells, ADR increased ROS 

production and produced cytoxicity [12]. ADR damage to cultured glomerular 

epithelial cells could be reduced by prior incubation with an ROS scavenger [12]. 

Podocytes and Glomeruli 

The nephron is the basic structure and functional unit of kidney. Each normal 

human kidney contains approximately one million nephrons, which help regulate the 

amount of water, salts, glucose, urea and other minerals in the human body. Each nephron 

consists of a filtering component (renal corpuscle) and a tubule that functions in 

reabsorption and secretion (renal tubule) (Figure IA). The glomerulus surrounded by 

Bowman's capsule, constitutes a renal corpuscle and is essential for the filtering function 

of the nephron (Figure IB). It is a capillary tuft resembling a twisted mass of tiny tubes 

through which the blood passes, exchanges water and waste, then has passed out of the 
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Bowman's capsule as urine. Injury to gomeruli can interfere with its normal function and 

cause protein leakage into urine. 

Glomeruli contain several cell types, endothelial cells, mesangial cells and 

podocyte cells. Podocytes surround the glomerular capillaries and are a component of the 

glomerular filtration barrier which prevents leakage of protein in the urine. Podocytes are 

needed to maintain a functional glomerular basement membrane [13] and healthy 

glomerular capillaries [14]. Destruction ofpodocytes can lead to massive proteinuria, 

which shows up in many nephropathy models including ADR [15] and diabetic 

nephropathy (DN) [16,17]. Therefore many studies have focused on podocytes damage 

to investigate their role in causing nephropathy. 

Adriamycin Damage to Podocytes 

In rodents model, ADR is rapidly cleared from the plasma after intravenous 

injection, deposited in tissue, mainly in kidney, which probably contributes to its great 

nephrotoxicity [18]. As described at the beginning of this Introduction, ADR promotes 

free radical generation. Animal studies had indicated that adriamycin induced 

nephrotoxicity is related to free radical generation and lipid peroxidation [19]. 

Supplement with antioxidants or increasing renal antioxidant levels such as GSH, could 

protect against adriamycin induced renal injury [10,11,20]. 

Adriamycin could produce toxic effect to podocytes [21]. There are many in 

vitro and in vivo results demonstrating that Adriamycin treatment caused podocyte 
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apoptosis [22], podocyte cytoskeleton structural reorganization [15] and loss of podocyte 

foot process [23]. 

We proposed that if podocyte damage of Adriamycin is direct and related to free 

radical formation then supplementation of podocyte with an antioxidant may reduce 

Adriamycin toxicity in kidney. 

Function of Metallothionein as an Antioxidant 

Metallothionein (MT) is a low molecular weight (mammalian form is 

6000-7000 Da), cysteine-rich, metal-binding (Zinc, Copper, Cadmium, Mercury, etc.) 

and highly inducible protein [24]. The induction ofMT by oxidative stress has led to 

the speculation that MT might play roles in scavenging free radicals. There are many in 

vitro experiments demonstrating that MT can scavenge superoxide anions or hydroxyl 

radicals [25], phenoxyl radicals [26] and nitric oxide [27]. In yeast, increased MT levels 

are able to functionally substitute for antioxidant functions of copper/zinc superoxide 

dismutase [28]. During in vivo animal studies, MT is capable of scavenging many 

different types of ROS in pancreatic islets based on many laboratories previous findings 

[29,30]. MT also attenuates the cardiotoxicity of doxorubicin mainly due to its 

free-radical-scavenging properties [31]. Further, acute hepatic toxicity and hepatic 

oxidative stress have been reduced in MT transgenic mice. Conversely, increased 

intracellular oxidation and sensitivity to oxides has been observed in cells derived from 

mice lacking functional MT genes [32,33]. 
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Mechanisms underlying the antioxidant function ofMT are controversial. 

Some think that MT might function as an expendable target for oxidants due to its 

enriched cysteine residue structure. This was verified by Quesada and co-workers 

[34]showing that the sulfhydryl groups ofMT isolated from HL-60 cells were oxidized 

by exposure of cells to H20 2. 

Other investigators have suggested different antioxidant mechanisms for 

MT. The alternative proposed mechanisms underlying MT function might include its 

ability to complex transition metal (Cu) [35], or altered Zinc and copper homeostasis [32]. 

Thomas et al reported that in the erythrocyte ghosts system, the primary determinant of 

MT protection from oxidants appeared to be metal dependent [36]. In addition, Zhou et 

al have shown that Zn protects from several organ injuries including alcoholic hepatic 

damage [37] independently ofMT. 

Overall, whether MT functions as a direct antioxidant due to its 

cysteine-enriched structure, or as an antioxidant indirectly by affecting two important 

metals, Zn and Cu, or other possible mechanisms including conjunction with GSH [38,39] 

is still uncertain. However, based on a number of in vitro and in vivo experiments, the 

antioxidant role of MT is well documented. 

Prior Development and Studies of 

Transgenic Mice Over-expressing MT in Podocytes 
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Our lab developed a transgenic line of mice (called NMT mice) with the 

antioxidant protein metallothionein (MT) over-expressed in podocytes [40]. We 

demonstrated that this line of mice was significantly protected from diabetic nephropathy. 

In severely diabetic mice at 4 month age, MT over-expression produced a 70-90% 

reduction in 24 hour albumin excretion and also reduced podocyte damage, as indicated 

by more podocytes per glomerulus and a higher density of podocyte foot processes. 

Since MT possesses potent antioxidant action and ROS are thought to be the 

cause of ADR induced kidney damage, we elected to test whether MT could also reduce 

ADR nephrotoxicity. MT protects from ROS due to its very high thiol content. Our 

prior work in pancreatic beta cells [30] and cardiomyocytes [41] indicated that transgenic 

over-expression ofMT scavenges a broad range ofROS. Importantly, we previously 

demonstrated that cardiac over-expression ofMT protected the heart against 

ADR-induced cardiotoxicity [42]. These results indicated that MT would be a good 

antioxidant to protect against ADR nephropathy. 

Podocytes are a glomerular cell-type sensitive to ADR cytotoxicity [15] and 

podocytes are critical to maintaining normal glomerular structure and function. 

Therefore, in this project we tested whether targeted over-expression ofMT protein in 

podocytes could both reduce podocyte damage and decrease ADR nephropathy. 
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METHODS AND MATERIALS 

Animals 

Our lab produced transgenic mice with podocyte-specific over-expression of 

MT on the FVB background. The transgene designated Nmt contained 8300 bp of the 

podocyte-specific mouse nephrin promoter (Dr Moeller, University of Michigan) ligated 

to a 2400 bp fragment containing the human MTII gene [29]. Podocyte-specific 

over-expression of MT was evaluated by immunohistochemistry and western blotting of 

glomerular protein with an MT-specific antibody. All mice were housed in ventilated 

cages at the University of Louisville Research Resource Center with free access to water 

and standard mice diet. All animal procedures adhered to the guidelines of the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the University of Louisville Institutional Animal Care and Use Committee. 

Chemicals 

Adriamycin (Doxorubicin hydrochloride, 2mg/ml) was purchased from 

Sigma-Aldrich (St. Louis, MO). WT -1 antibody (1 :50; rabbit polyclonal) was purchase 

from Santa Cruz Biotechnology (Santa Cruz, CA). MT antibody (1:40; mouse 

monoclonal) was purchased from DAKO (Glostrup, Denmark). Oregon Green 488 

phalloidin was purchased from Invitrogen (Carlsbad, CA). Urine albumin ELISA kit 
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was purchased from Bethyl Laboratories (Montgomery, TX). All other chemicals and 

solvents were of analytical grade. 

Experimental protocol 

To induce adriamycin (ADR) nephropathy on FVB background mice, the 

first step was to choose an appropriate ADR dose because ADR's effect is different from 

strain to strain. We tested three doses, 9mg/kg body weight, 11 mg/kg body weight and 

13mg/kg body weight. These tests indicated that 9mg and 11 mg could induce 

microalbuminuria on the FVB strain whereas the 13mg dose killed some mice right after 

injection. Therefore we chose the Ilmg/body weight dosage for our experiments. 

Two groups of mice, the FVB control group and the NMT transgenic group 

(15 male in each group), received the Ilmg/kg body weight dosage of ADR through tail 

vein injection. Twenty-four hour urine albumin excretion was measured and compared 

between the two groups at fixed time points; 5days, 1 week, 2 weeks, 3 weeks and 

4weeks. Four mice in both groups were sacrificed at the 5th day after ADR treatment for 

renal pathology and immunohistochemistry studies. For control samples, we sacrificed 

four untreated FVB mice and four untreated NMT transgenic mice. 

Tail Vein injection of ADR 

Prepares the Adriamycin solution in saline solution to a final concentration 

of 2mg/ml. The mouse is placed into the barrel of a mouse restrainer and the restrainer 

is adjusted to make sure that mouse cannot move. The mouse tail is placed into a 50°C 
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water bath to make it swollen. After 2~3 min, one of the two lateral veins of the tail is 

located and a syringe needle is inserted into the vein. The required amount of dosage is 

smoothly injected. 

Urine collection and measurement of albuminuria 

Twenty-four hour urine was collected using mouse metabolic cages at 

selected time points after ADR injection (5days, 1 week, 2 weeks, 3 weeks and 4 weeks). 

Mouse urine volume was increased by including 10% Glucema (Abbott Laboratories) in 

the drinking water. This produces a larger urine volume and allows for a more complete 

recovery of24 hour urine samples. 

Urine albumin was measured by commercial ELISA kit from Bethyl 

company. Urine albumin levels were also assayed before ADR injection as the zero day 

control point, from which we can see how much effect ADR has on urine albumin 

excretion. 

F-actin immunofluorescence assay of hydrogen peroxide injury to podocytes 

Cultured glomeruli were used in order to directly expose podocytes to 

oxidative injury and to be able to identify podocytes. In brief, cultured glomeruli were 

obtained by the following procedure: Glomeruli were purified from normal or transgenic 

mice by the Dynal beads perfusion procedure [43]. Glomeruli were then plated on glass 

coverslips in DMEM/F12 media for 4-5 days at 37°C in 95% air, 5% C02. During this 

period podocytes extended out as mono layers from the centre of the glomerular tuft. 
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After 16 hours treatment with 880uM hydrogen peroxide cells were fixed in 3.7% 

formaldehyde in sodium phosphate buffer for 10 min at room temperature and then 

permeabilized with 0.1 % Triton X-lOO in sodium phosphate buffer for 3-5 min. 

Podocytes were stained with antibody to the podocyte-specific marker WTl (1 :50; rabbit 

polyclonal, Santa Cruz Biotechnology, Santa Cruz, CA). F-actin was detected using 

Oregon Green 488 phalloidin (Invitrogen, Carlsbad, CA) diluted 1 :40 in sodium 

phosphate buffer. The mounted cells were then photographed on a Nikon E600 

fluorescent microscope. Images were rated by a blind observer for location and 

sharpness ofF-actin filaments. This part of work was done by shirong zheng in Dr Paul. 

N Epstein's lab. 

Histopathological studies 

Kidneys removed from anesthetized mice were immediately cut in half and 

fixed in 10% formaldehyde in 0.1 M PBS (pH 7.2), and then transferred to 70% ethanol 

after 24 hours. The kidney tissue was then dehydrated in ascending concentrations of 

isopropanol and finally cleared in xylene and then embedded in paraffin. Blocks were 

sectioned at 5 ~m thickness. Prior to histochemical staining sections were cleared in 

xylene and rehydrated. Sections stained with hemotoxylin and eosin (HE), periodic acid 

Schiff (PAS) and trichrome were used to evaluate the general structural changes in 

glomeruli and tubules and for calculation of glomerular volume. 

Stained sections were viewed under a light microscope and images were 

recorded at 400X magnification. The cross-sectional area of the glomerular tuft (AG) 

was determined from outlines of the tuft using the program Adobe Photoshop 7.0. 
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Glomerular volume (VG) was calculated from the cross-sectional area using the formula 

VG = Wk (AG)3/2, where p= 1.38 is the shape coefficient for a sphere and k=1.1 is the 

size distribution coefficient [44,45]. 

Immunohistochemistry analysis 

Formalin-fixed-paraffin-embedded sections were stained with antibody to 

the podocyte specific marker WT -1 (1 :50; rabbit polyclonal, Santa Cruz Biotechnology, 

Santa Cruz, CA) and for MT (1 :40, mouse, monoclonal, DAKO). To quantify podocyte 

numbers, on each section we picked 20 glomeruli randomly and counted the WT-l 

positive cells under the light microscope. Podocyte staining and quantification were 

performed on 4 groups of mice: FVB mice 5 days after ADR-treatment, NMT mice 5 

days after ADR-treatment, FVB mice without ADR treatment and NMT mice without 

ADR treatment. Each group consisted of 4 mice. These counting studies were done by 

an observer blind to the identity of the sections. 

Electron microscopy 

Tissues from ADR treated mice and control FVB mice were used. Mice 

were deeply anaesthetized with intraperitoneal injection ofketamine (100 mg/kg) and 

xylazine (32 mg/kg) then perfused through the heart with Tyrode solution, followed by a 

fixative of 1% paraformaldehyde and 3% glutaraldehyde in 0.1 m sodium phosphate 

buffer, pH 7.4 (PB). The kidneys were removed, weighed and decapsulated. They 

were then sliced longitudinally and the medulla from each slice was removed and cortical 

strips were cut into 1 mm3 tissue blocks. The blocks from each kidney were selected by 
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unbiased technical personnel and placed into cold fixative overnight and then the selected 

blocks were post-fixed in 2% osmium tetroxide, dehydrated with an ethanol series and 

embedded in Durcupan resin (Ted Pella Co.). Thick sections (250 nm) were cut and 

stained by toluidine blue for light microscope observation, ultra-thin sections (70-80 nm, 

silver-gray interference colour) were cut serially using a diamond knife. To avoid 

examining the same cells on multiple sections, every 10th section was collected on 

F ormvar-coated copper slot grids. Sections were then stained with 10% uranyl acetate 

in methanol for 30 min before examination with the transmission electron microscope. 

Statistical analysis 

Values are expressed as mean ± SE. Statistical analysis was performed 

using Microsoft-Excel and Sigma-Stat software. Significance of differences was 

determined by two-tail t test for single comparisons. Two way analysis of variance 

(ANOV A) with Holm-Sidak post-hoc test was used for multiple comparisons with 

genotype and ADR injection used as the two factors. P-values less than 0.05 were 

considered statistically significant. 
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RESULTS 

Changes of Urinary albumin excretion in FVB mouse after ADR treatment 

Initial dose- testing experiments between 9 and 13 mg/kg bodyweight ADR 

in wild-type FVB male mice suggested that a dose of 11 mg/kg adriamycin produced 

renal injury characterized by albuminuria and abnormal glomerular morphology. The 

lower dose of 9mg/kg bodyweight produced less nephropathy while a higher dose of 

13mg/kg bodyweight produced more than 50% death rate. Therefore we chose llmg/kg 

bodyweight as the right dose for establishing ADR-injected nephropathy in FVB mice. 

We checked 24-h urine excretion of albumin in FVB mice 5 days after ADR 

injection. This time point was chosen based on the results of Wang et al. [3], who 

reported that albuminuria increases 5 days after ADR injection. There was a 2-3- fold, 

significant elevation of urine albumin 5 days after ADR treatment (shown in Figure 1). 

This showed that ADR treatment injured kidneys ofFVB mice. 

Expression ofMT in Nmt transgenic and FVB control mice 

Oxidative stress has been reported to play an important role in Adriamycin 

(ADR)-induced nephropathy; and some antioxidant treatments have shown efficacy 

against ADR nephrotoxicity. Metallothionein is a low molecular weight, cysteine-rich, 

inducible protein, which is capable of scavenging many different types of ROS. Our lab 

developed a transgenic mouse line in FVB mice designated Nmt, which we have recently 

described [40]. In Nmt mice MT is over-expressed in podocytes using the 

podocyte-specific nephrin promoter (a more complete description of the Nmt trans gene is 
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contained in Zheng et al. [40]). The morphology ofNmt glomeruli appears normal and 

MT staining is clearly increased in Nmt glomeruli compared to FVB glomeruli, as shown 

in Figure 2. Also, elevated MT staining appears to be in the same cells that stain for 

WTl, illustrating that the increase in MT content is in podocytes. Using Nmt mice we 

demonstrated that over-expression ofMT in podocytes protects the diabetic mouse model 

OVE26 from albuminuria and reduces injury to podocytes and glomeruli [40]. 

In vitro protection of podocytes against ROS by MT overexpression 

We next determined ifMT over-expression protected transgenic podocytes 

from oxidative damage. Because podocytes are less than 20% of glomerular cells we 

needed a histological procedure that would allow us to identify both injury to cells and 

which cells were podocytes. To achieve this we examined the effect ofH202 on 

cultured glomeruli from transgenic and control mice. Cultured glomeruli were exposed 

to 880 f..lm H20 2 for 16 h. They were then stained for F-actin using Oregon Green 488 

phalloidin to examine cell injury. 

The morphology and fragmentation state ofF-actin filaments provides a 

marker for the health of many cultured cell-types [46,47], including podocytes [48]. 

The podocytes in the cell population were identified by staining for the podocyte marker 

WT 1. Both F -actin filaments and WT 1 were then examined by fluorescence 

mICroscopy. In podocytes, we observed that F-actin filaments were less sharply defined 

after H202 treatment (Figure 3). Also the filaments were localized less along the cell 

boundary and more towards the nucleus, which is similar to the findings of Huot et al. 

[46]. Figure 3 also shows that most Nmt podocytes were less susceptible to the 
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disruption by hydrogen peroxide than control podocytes. More Nmt podocytes retained 

well-organized longitudinal stress fibre structure. Semi-quantitive studies ofF-actin 

morphology after H20 2 treatment confirmed our observations that podocytes 

over-expressing MT were protected against H20 2-induced oxidative injury at the F-actin 

level. 

MT over-expression reduces ADR-induced albuminuria 

Based on our hypothesis that ADR nephrotoxicity would be attenuated by 

the MT -transgene, we measured 24-h urine albumin excretion following ADR injection 

in a group of non-transgenic FVB mice and a group of transgenic Nmt mice (Figure 4). 

In FVB mice, urinary albumin excretion (UAE) was elevated by the 5th day after ADR 

injection and tended to increase out to 21 days post-injection. Nmt mice also had 

elevated UAE by 5 days post-injection, but they tended towards recovery much more 

rapidly than FVB mice. UAE in Nmt mice was significantly lower than in the FVB 

mice at 5, 21 and 28 days after ADR injection. 

Podocyte staining and quantification 

In order to see ifMT over-expression helped maintain podocyte numbers, we 

counted the number of podocytes per glomerular cross-section in untreated and 

ADR-treated FVB and Nmt mice (Figure 5). Podocytes were identified by staining with 

an antibody against the podocyte marker WTl. Mice were sacrificed 5 days after ADR 

injection for podocyte counting. As shown in Figure 5, ADR treatment produced a 

significant (p <0.05) reduction in podocyte number in FVB mice of ~20%. However, 
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in Nmt mice ADR treatment did not significantly reduce podocyte number and the 

Nmt-ADR mice had significantly more podocytes per glomerulus than FVB-ADR mice. 

Podocytes ultra-structure by electron microscopy 

Podocytes ultra-structure was further examined using electronic microscopy. 

Compared to the distinct brush-like structure ofpodocytes foot processes shown in 

control mice (Figure 6A and D), fusion of podocytes foot processes developed in FVB 

mice at 5 days after ADR injection (Figure 6B and E). Nmt mice podocytes tended to 

retain relatively normal ultra-structures (Figure 6C and F), which means the NMT 

podoctes retained the relatively clearly defined brush like structures after ADR treatment. 

These results were representative of two Nmt and two FVB mice treated with ADR. 

Glomerular volume calculation 

Glomerular volume was estimated by light microscopy on H&E stained 

kidney sections according to the mathematical model of Weibel and Gomez [44,45]. FVB 

mice receiving ADR showed a trend towards reduced glomerular volume compared to 

control FVB mice (Figure 7), though the difference did not reach significance (p=O.117). 

In Nmt mice glomerular volume was not reduced at all by ADR injection and the 

glomerular volume ofNMT-ADR mice was significantly greater than that ofFVB-ADR 

mice (p<O.05) (Figure 7). 
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DISCUSSION 

In this study, we demonstrated that inbred FVB mice are susceptible to 

ADR-induced renal damage. This was evident as decreased podocyte number, reduced 

glomerular volume and significantly increased albuminuria. Furthermore, when we 

tested ADR toxicity in Nmt transgenic mice [40] that over-express MT specifically in 

podocytes, all parameters tested for ADR-induced nephropathy were significantly 

reduced. These findings show that podocytes are a direct target of ADR damage and 

that protection ofpodocytes by increasing expression ofMT reduces ADR nephropathy. 

The FVB strain of mice was selected for this study because it is the strain 

that Nmt transgenic mice was developed on. However, Zheng et aL [40] reported that 

among many strains tested, including FVB, only BALB/C mice were susceptible to ADR 

nephropathy. In contrast to their findings we observed that FVB mice were sensitive to 

ADR: ADR treatment increased albuminuria more than 2-fold, to~0.75 mg124 h. ADR 

also affected glomerular structure: Glomeruli tended to be smaller, as has been reported 

in ADR treated rats [49], and podocyte number per glomerular section was reduced. We 

believe that the reason our conclusion about ADR toxicity to FVB mice was different 

from that of Zheng et al. is that BALB/C mice are much more sensitive: ADR treatment 

increases albuminuria more than 20-times in BALB/C mice [50] but only two times in 

FVB mice. Also, ADR-induced morphological changes in FVB mice are less obvious 

and more difficult to measure than morphological changes in BALB/C mice. Both our 

morphological and albuminuria studies show that FVB mice are damaged by ADR, albeit 
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to a lesser extent than in BALB/C mice. The methods we used to detect ADR damage 

by albumin ELISA were more sensitive than the methods used by Zheng et al. and we 

believe that is why we observed ADR-induced injury to FVB mice when Zheng et al. did 

not. Zheng et al. identified the DOXNPH haplotype of BALB/C mice as critical to this 

strain's sensitivity to ADR. FVB mice do not carry this haplotype. It is possible that 

other strains of mice, in addition to FVB, that do not have the BALB/C haplotype also 

exhibit modest sensitivity to ADR. 

The renal cell-type(s) sensitive to ADR are uncertain. A number of renal 

cells are damaged by ADR treatment, including tubular epithelial cells [49] and 

glomerular cells[ 51]. Since different renal cell-types interact in vivo it is difficult to 

determine which cells are damaged directly and which are damaged indirectly. 

Glomerular podocytes are an important determinant of proteinuria. They are an 

essential component of the normal glomerular filtration barrier and injury to podocytes 

produces albuminuria. If ADR damages podocytes in vivo then this could cause the 

prominent proteinuria of ADR nephropathy. In vitro experiments with cultured 

podocytes indicate that they are sensitive to ADR toxicity [52]. To assess whether 

podocytes are a direct site of ADR injury in vivo, we protected them by targeted 

over-expression ofMT using the transgene Nmt, which uses the podocyte-specific 

nephrin promoter. Our results show that podocytes are a direct target of ADR toxicity, 

since the trans gene was not expressed in any other cell type. 

The mechanism oftoxicity by ADR has not been clearly established in the 

kidney. It is widely supposed that a major cytotoxic mechanism of ADR is to increase 
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ROS generation. MT is a potent antioxidant and our prior work demonstrated that 

transgenic over-expression ofMT in pancreatic beta cells and cardiomyocytes [30,41] 

increases scavenging of a broad range of ROS including peroxynitrite, superoxide and 

hydrogen peroxide. The in vitro experiments needed in this study to specifically 

examine podocyte damage showed that MT over-expression protected podocytes from 

oxidative injury. Therefore, MT protection against nephrotoxicity induced by ADR 

provides stronger evidence that ROS are a cause of ADR toxicity. However, because 

MT has actions in addition to scavenging ROS [53] and because we did not demonstrate 

changes in oxidative damage in podocytes, it is possible that MT reduced ADR toxicity 

by mechanisms other than reduced oxidative stress. 

Protective effects of MT over-expression were evident by morphological 

analysis. Five days after ADR treatment, Nmt glomeruli were larger and had more 

podocytes than FVB glomeruli. The ADR-induced decline in podocyte number was 

completely eliminated by the Nmt transgene. This action of MT may have been due to 

preventing ADR-induced podocyte death or it may have been due to reducing podocyte 

detachment. ADR also produced injury to podocytes' ultra-structure. Electronic 

microscopy studies showed that adriamycin caused podocyte foot process effacement in 

FVB mice and this damage appeared to be reduced by the NMT trans gene. The fact that 

MT over-expression in podocytes provided protection indicates that the injury was a 

direct action of ADR on the podocyte and that the damage was mediated through ROS 

toxicity. The mechanism behind the trend to reduced glomerular volume after ADR 

treatment is less clear. It is an abnormality that has also been observed in glomeruli of 

ADR-treated rats [49]. The reduction in podocyte number is not sufficient to explain 
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the reduction in total glomerular volume, because podocytes represent too small a 

fraction of the glomerulus. Since MT podocyte protection eliminated the reduction in 

volume, it is probable that the decrease in glomerular volume developed secondary to 

podocyte injury. Podocyte damage has been shown to have significant effects on other 

glomerular cells in vivo, such as mesanagial cells [54,55]. 

The clearest effect ofMT over-expression was that Nmt mice had less 

albuminuria after ADR injection. The initial rise in albuminuria at 5 days 

post-treatment was significantly less in Nmt mice and albuminuria rapidly declined in 

Nmt mice, whereas it continued to rise in FVB mice. This result is consistent with the 

protection observed for podocyte number and demonstrates that the cause of 

ADR-induced albuminuria in FVB mice is injury to the podocyte. 

In summary, our results show that ADR produce nephropathy in FVB mice 

and that MT protection of one glomerular cell type, the podocyte, is sufficient to protect 

all components from ADR nephrotoxicity. 
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Figure 1. Schematic diagram of Nephron. A) A nephron consists of glomerular 

capsule, proximal convoluted tubule, loop of Henle, distal convoluted tubule and 

collecting duct. B) Glomerulus is located within the Bowman's capsule. Blood is 

transported into the Bowman's capsule from the afferent arteriole, filtered through the 

glomerulus and passed out via the efferent arteriole. While not shown in this diagram, 

the glomerular capillaries are completely surrounded by podocytes that form a layer of 

the filtration barrier. 
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Figure 2. ADR increases urine albumin (UAE) and total protein excretion in FVB 

mice. The graph shows 24-h urine albumin excretion from FVB mice before (untreated) 

and 5 days after ADR treatment (values are the means±SE of 15 mice, # indicates p 

<0.01). 
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Figure 3. Expression of MT in Nmt transgenic and FVB control mice. Light 

microscopy images at left show normal morphology in Nmt glomeruli. MT staining 

with DAB chromogen is indicated by brown colour in these panels. The fluorescent 

images show double-staining for MT (red) and WTl (green). In the merged image 

(yellow) indicates colocalization ofMT and WTl. Original light micrographs were 

taken at 40x and fluorescent images were taken at 100x magnification. 
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Figure 4. F-actin filaments are resistant to H 20 2 in Nmt podocytes. Green is 

Oregon green phalloidin staining for F -actin. Red is WTl staining for identification of 

podocyte nuclei. (A and D) Untreated Nmt and FVB podocytes. (B and C) Two 

examples of Nmt podocytes after 16 h of 880 ~m H20 2 exposure. (E and F) Two 

examples of FVB podocytes after H20 2 exposure. In many Nmt podocytes (B) the 

F -actin filaments retained their distinct structure and peripheral location after H20 2 

exposure. (G) Semi-quantitative analysis ofF-actin morphology after H20 2 exposure. 

F -actin fibres were rated by a blind observer whether they did or did not retain peripheral 

localization and whether or not the fibres were clearly defined (distinct). Scoring is of 

20 podocytes from three separate glomerular preparations per group. # indicates that 

Nmt is higher that FVB (p <0.02) by Chi-square test. 
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Figure 5. MT over-expression reduces ADR-induced albuminuria. Twenty-four 

hour urine albumin excretion plotted against time after ADR injection. Values are the 

mean±SE. # indicates p<0.05 for the difference between Nmt and FVB at that time 

point by two-way ANOVA (n:=::6 mice for FVB group, n>8 mice for Nmt group). 
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Figure 6. The NMT transgene preserves podocyte number. (A) FVB-control and 

(B) FVB-ADR show typical WTl staining of control and ADR-treated FVB glomeruli. 

Brown staining indicates podocyte nuclei. (C) Quantitative comparison ofpodocyte 

number among different groups. Kidney samples were taken 5 days after ADR injection. 

The asterisks indicate that podocyte number in ADR-treated FVB mice is lower than in 

either ADR-treated Nmt or non-treated FVB glomeruli (p<O.05 by two-way ANOV A, 

n~:4 mice per group). Vertical bars are the SEM. 
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Figure 7. The Nmt transgene improves podocyte ultrastructure of ADR-injected 

mice. (A and D) Normal structure ofpodocytes foot processes in a FVB mouse without 

ADR injection at low (5600 x) and high (9800x) magnification, respectively. (B) 4900x 

and (E) 8800x show effacement of podocytes foot processes in FVB mice 5 days after 

ADR injection. (C) 4900x and (F) 8800x show relatively normal foot processes in Nmt 

mice 5 days after ADR injection. (The scale bars on each panel represent I /lm.) ADR 

results are representative of two mice per group. 
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Figure 8. Comparison of glomerular volume in ADR-treated FVB mice 

(FVB-ADR), ADR-treated Nmt mice (Nmt-ADR), control FVB mice (FVB-ControI) 

and control Nmt mice (Nmt-Control). The average volume of ADR treated FVB 

glomeruli was significantly less than the volume of ADR-treated Nmt glomeruli (# 

indicates p<0.05 by two way ANOVA). Kidney samples were fixed 5 days after ADR 

injection. Average glomerular volumes for each group were determined from 

measurement of 80 glomerular cross-sections measured in four different mice of that 

group. Values are the mean±SEM. 
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CHAPTER II 

GENE EXPRESSION DURING PROGRESSION OF DIABETIC 

NEPHROPATHY 

INTRODUCTION 

Diabetes and Diabetic Nephropathy (DN) 

Diabetes is a group of metabolic diseases marked by high blood glucose 

levels, resulting from defects in insulin production, insulin action or both. Diabetes is 

one of the leading causes of death in the United States and the world, it affects 7.8% of 

the population in the United States. About 1.6 million new cases of diabetes are 

diagnosed in people aged 20 years and older each year (fig 9A). Diabetes is a group of 

metabolic diseases marked by high blood glucose levels, resulting from defects in insulin 

production, insulin action or both. Diabetes can lead to serious complications such as 

heart attack (diabetic cardiomyopathy), kidney failure (diabetic nephropathy), blindness 

and nerve problems etc. 

Diabetes is the most common cause of end stage renal disease (ESRD) [56], 

accounting for about 44 percent of new cases of kidney failure (fig 9B). In 2007, 

48,871 people with diabetes began treatment for end-stage kidney disease in the United 

States. The basic mechanisms of Diabetic nephropathy (DN) are not well understood 
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and research is restricted by limitations in available diabetic models. Current animal 

models of DN do not exhibit many of the key clinical features of advanced human DN 

such as severely reduced GFR and extensive interstitial fibrosis [57]. However it is 

possible that the processes leading to advanced DN are already underway in these 

diabetic animals but they fail to reach renal failure due to the many years required to 

produce the damage seen in diabetic patients. 

Diabetic Nephropathy and Inflammation 

Diabetic nephropathy has become the major cause of end stage renal failure, 

however the mechanism underlying the progression of renal injury still remains unclear. 

There is increasing evidence that links inflammation with development ofDN. Recent 

data suggest that inflammatory markers such as interleukins and tumor necrosis factor 

(TNF)-alpha in the serum of patient with DN are increased [58,59]. Frederik et al has 

reported that inflammation marker (IL-6, fibrinogen, hs-CRP) were found as independent 

predictors of progression to DN in patients with diabetes and microalbuminuria [60]. 

In animal models ofDN, there are also studies that suggest that inflammation 

plays an important role in the development of renal injuries in diabetes. Chow and 

co-workers [61] indicated that the inflammation marker ICAM-l is a critical promoter of 

nephropathy in db/db mice, which is a mouse model of type 2 diabetes, by facilitating 

kidney macrophage recruitment. In OVE26 mice model of diabetes and DN, produced 

by our lab, an increase of inflammation markers such as interleukins and chemokines in 

renal gene expression is also observed in the diabetic kidneys. 
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These clinical findings and experimental studies support the role of 

inflammation in the development of DN. A further investigation of inflammatory 

pathways activated in DN may help discover important therapeutic targets for diagnosis 

and treatments for DN. 

Vitamin D and renal inflammation in Chronic Kidney Disease 

Vitamin D has now been recognized to possess immunomodulatory 

properties that are mediated by vitamin D receptor (VDR), which is found to be 

expressed on several immune cells, especially antigen-presenting cells such as 

macrophages, dendritic cells and both CD4+ and CD8+ T-cells [62,63]. Active vitamin 

D has also been reported to down-regulate the production of several inflammatory 

cytokines [64], the regulation is mediated through interference with nuclear transcription 

factor such as NF-kB [65]. 

Renal inflammation, characterized by the inflammatory cells infiltrating into 

glomerulus and tubulointerstitium, plays a role in the evolution of chronic kidney 

diseases (CKD) [66]. Several clinical studies discovered the declining renal function is 

closely related to the extent of inflammation in CKD patients [67]. Vitamin D 

deficiency is observed as an early pathological feature ofCKD [68]. In nephropathy 

patients, there is a significant correlation between expression of CYP27B 1, the rating 

limiting enzyme for formation of active vitamin D and renal inflammation [69]. 

Conversely, in CKD patients, active vitamin D treatment reduced proteinuria and 

all-cause mortality [70,71,72]. It has been proposed that the potential mechanism is 

related to the anti-inflammatory effect of vitamin D in CKD. 

39 



Several lines of evidences support the anti-inflammatory role of vitamin Din 

CKD. In mouse models of type I diabetes (TID) and type 2 diabetes (T2D), 

supplementary vitamin D reduces renal inflammation and DN [73]. In mouse model of 

obstructive nephropathy, active vitamin D analogue inhibited renal inflammatory 

infiltration and expressions of pro inflammatory cytokines [68]. Zehnder et al found in 

patients with kidney disease, there's a inverse correlation between renal inflammation 

and serum active vitamin D level [69]. The underlying mechanisms of vitamin D's 

anti-inflammatory activity is still needing further investigation, it has been suggested that 

the mechanism is through VDR mediated sequestration ofNF-kB signaling [68]. 

OVE26 Diabetic Mouse Model 

OVE26 mice were produced by introduction of a calmodulin transgene 

regulated by rat insulin promoter into FVBINJ mice, which caused beta cell specific 

damage[74]. This beta cell impairment in OVE26 mice causes the mice to become 

diabetic within a week of birth and eventually develop severe hyperglycemia. The mice 

can survive over a year without insulin treatment because of sufficient residual insulin 

secretion. According to the criteria established by the NIDDK, our OVE26 mice show 

great potential to be a good model for type I diabetes. Compared to non-diabetic 

controls, OVE26 mice also exhibit albuminuria by 2 months of age and progress to 

significant albuminuria as the age goes up [16]. Severe interstitial fibrosis, mesangial 
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expansion and glomerular basement membrane (GBM) thickness are also observed in the 

OVE26 model. GFR also shows a small reduction at 9 months age. For all of the 

reasons above, OVE26 mice seem to be a suitable model for us to investigate gene 

expression changes during the development ofDN. 

Our OVE26 mice survive at least one year so it provides an ideal model for 

analyzing the gene expression change during the chronic progression of the disease. 

Analyzing diabetic kidneys at different time points will be helpful to understand how the 

disease progresses, which changes are primary and what time points are most important. 

Currently we have run the microarray gene expression assay on whole kidney from 2 

month old, 4 month old and 8 month old diabetic mice and FVB control mice. 

Microarray and DN 

Microarray technology evolved from Southern blotting, where fragmented 

DNA is attached to a substrate and then probed with a known gene or fragment. It is 

increasingly used by biologists to measure changes of gene expression level, to detect 

single nucleotide polymorphisms (SNPs), to genotype or resequence mutant genomes. 

The process of measuring gene expression via cDNAlcRNA is called expression analysis 

or expression profiling. 

Chronic diseases like diabetes are likely to affect the gene expression 

profiles. Surrogate end points, such as changes in renal gene expression are needed to 

evaluate the progression of disease in animals. Gene expression studies can be used to 

identify individual protein targets or they can be used to recognize major signaling 
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pathways activated in diabetic tissues. A number of genes and pathways have been 

identified in advanced DN of human kidney samples and also in kidneys from the Type 2 

diabetic db/db mouse model [75,76]. Studies on gene expressions will be useful for 

investigating the molecular pathways involved in development ofDN. New gene chips 

available from Affymetrix allow for analysis of all the genes produced by DN mouse 

model. 
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METHODS AND MATERIALS 

Animals 

Our lab developed OVE26 transgenic mice on the FVB background by using 

a transgene to over-express calmodulin in pancreatic beta cells [74]. Normal female 

FVB mice and diabetic female OVE26 mice were sacrificed at 2, 4 and 8 months of age. 

Kidneys, serum and urine samples were harvested. Mice were housed in HEAP-filtered 

ventilated cages in the University of Louisville Research Resources Center under barrier 

conditions, with free access to water and Purina Mills #5001 Laboratory Rodent chow. 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee, which is certified by the American Association of Accreditation of 

Laboratory Animal Care. 

Chemicals 

RNA extracting reagent Trizol was purchased from Invitrogen Life 

Technologies (Carlsbad, CA); High-Capacity cDNA Archive Kit was purchased from 

Applied Biosystems (Foster City, CA); Taqman pre-made probes and reagents were 

purchased from Applied Biosystems (Foster City, CA); rabbit polyclonal anti-mouse 

CD44 was purchased from Abcam Inc (Cambridge, MA); biotinylated secondary 

antibodies and Vectastain ABC kit were purchased from Vector Labs Inc (Burlingame, 

CA); rabbit anti-mouse albumin antibody was purchased from Bethyl Laboratories 

(Montgomery, TX); FITC-conjugated goat anti-mouse C3 was purchased from MP 

Biomedicals (Cleveland, OH), rat monoclonal anti-mouse F4/80 was purchased from Cell 
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Sciences (Canton, MA), goat anti-mouse VCAMI was purchased from R&D Systems 

(Minneapolis, MN); 1 ,25-dihydroxyvitamin D ELISA kit was purchased from 

Immunodiagnostic System (Scottsdale, AZ). 

RNA isolation and Microarray procedures 

Total RNA was prepared from flash frozen left kidney, excised from 

ketamine/xylazine anesthetized mice. The kidney was pulverized under liquid nitrogen 

and RNA extracted using Trizol reagent (Invitrogen, CA) following the manufacturer's 

protocol. The quantity of cellular RNA was determined by UV absorbance, and 

integrity monitored with an Agilent BioAnalyzer 2100 using nano- or pico-chips. 

Preparation of cDNA was carried out using the one-cycle cDNA synthesis kit with 

0Iigo-dT-T7 promoter primers (Affymetrix, Inc.). The cDNA served as template for T7 

RNA polymerase transcription in the presence of biotin-labeled CTP and UTP. The 

cRNA was fragmented to a size range of 50-200 nucleotides. Probes were hybridized to 

Affymetrix MG-430 2.0 GeneChips. 

Signal intensity data comparisons between control and diabetic samples at 

each age were compared using SAM 3.0 [77] and a minimal false discovery rate of 

P<0.05. For comparison of multiple factors (age and diabetes) a two-way ANOVA of 

signal intensity was done with Partek Genomic Suite v5.2 (St.Louis, MO). Lists of 

significantly altered genes and fold change data were imported into Ingenuity Pathway 

Analysis (Redwood City, CA) for biological interpretation. 

RT-PCR 
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Single strand cDNA was synthesized from the extracted RNA using 

High-Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA) following the 

manufacturer's instructions. The cDNA was then amplified on a thermo cycler (7300 

Real time PCR system, Applied Biosystem) using commercially available Taqman 

reagents (Assay on demand, Applied Biosystem) for C3, Fasn and Hmgcr. 18S 

ribosomal RNA was used for results normalization. The amplification profile used 40 

cycles of denaturation at 95°C for 15 sec, primer annealing/extension at 60°C for 1 min. 

The mRNA expression levels of the selected genes were normalized to 18s ribosomal 

RNA in each sample. Relative expression ratio was calculated according to the 2-MCT 

method. Duplicate runs were performed on each sample. 

Immunohistochemistry 

Kidneys removed from anesthetized mice were immediately cut in half and 

fixed in 10% formaldehyde in 0.1 M phosphate buffered saline (PB S, pH 7.2), and 

transferred to 70% ethanol after 24 hours in fixative. The kidney was then embedded in 

paraffin and sectioned at 5 )lm. Following deparaffinization and hydration, the sections 

were subjected to antigen retrieval using 10mM citrate buffer (pH 6.0) in a decloaking 

chamber (Biocare Medical, Concord, CA) at 125"C for 5 minutes, then washed in PBS. 

For labeling ofCD44, endogenous peroxidases were first blocked with 3% hydrogen 

peroxide in water, then nonspecific binding was blocked with normal serum for 20 

minutes at room temperature. The sections were then incubated 1 hour at RT with 

rabbit polyclonal anti-mouse CD44 (1: 100, Abcam, Inc, MA), washed and then incubated 

with the biotinylated secondary antibody (Vectastain ABC kit, Vector Labs Inc, CA). 
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Peroxidase activity was identified by reaction with 3,3' -diaminobenzidine (Vector Labs 

Inc, CA). 

For immunofluorescence labeling, sections were first blocked with normal 

serum, then incubated overnight at 4°C with the following primary antibodies: rabbit 

anti-mouse albumin (1 :500, Bethyl Laboratories, TX), FITC-conjugated goat anti-mouse 

C3 (1: 1 00, MP Biomedicals, OR), rat monoclonal anti-mouse F4/80 (1 :40, Cell Sciences, 

MA), rabbit polyclonal anti-mouse CD44 (1 :100, Abcam, Inc, MA) or goat anti-mouse 

VCAMI (1 :10, R&D Systems, MN). After washing in PBS, the sections (except for 

those with FITC-Iabeled C3) were incubated with the following secondary antibodies 

(1: 100) for 1 hour at RT: anti-rabbit FITC or Cy3, anti-rat Cy3, anti-rabbit AMCA or 

anti-goat Cy3. Images were captured using a Nikon DS-Fil camera system with a 

Nikon E600 microscope. 

Generation of complement C3 RNA probe and in situ hybridization 

A probe designated pC3-l-4l4 was prepared from a plasmid containing a 

5088bp cDNA insert of complement C3 in the multiple cloning site of the vector 

pCMV-SPORT6 (American Type Culture Collection, VA). The probe plasmid 

pC3-l-414 was constructed by cutting the original C3 plasmid with RindIII (RindIII cuts 

the C3 cDNA at position 414, 5056 and in the multiple cloning site of the 

pCMV-SPORT6 vector at position 743). The cut plasmid was religated leaving the first 

414 bp of the C3 eDNA in the plasmid. Antisense digoxigenin-Iabeled C3 transcripts 

were produced by linearizing pC3-1-414 with SalI and transcribing with T7 RNA 

polymerase. Sense transcripts were produced by linearizing with HindIII and 
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transcribing with SP6 RNA polymerase. Labeling was performed according to the 

manufacturer's instruction (Roche) and hybridization was done essentially as described 

[78]. After frozen sections were dried at 50°C for 15min, they were fixed in 4% 

paraformaldehyde, then treated with 2ug/ml proteinase Kat RT for 5 min. Following a 

1 hour prehybridization step, sections were then hybridized overnight at 65°C with 100ui 

hybridization buffer (5xSSC, 5xDenharts, 250ug/ml bakers yeast RNA, 500ug/ml herring 

sperm DNA, 50% formamide) containing 100-200ng/ml of digoxigenin-Iabeled probes. 

After washing three times in pre-warmed 0.2xSSC at 6YC and once with 0.2xSSC at RT, 

the sections were blocked in buffer (O.1M Tris, 0.15M NaCI, pH 7.5) containing 10% 

sheep serum for 1 hour at RT, then incubated with an alkaline phosphatase-conjugated 

anti-digoxigenin Ab (Roche) diluted 1 :5000 in the blocking buffer at 4°C overnight. 

After subsequent washes, sections were developed with NBT/5-bromo-4-chloro-3-indolyl 

phosphate (Roche), dried in air, mounted and examined under light microscopy. 

Measurements from urine and serum 

For determination of urinary albumin excretion, mice were placed 

individually in metabolic cages with free access to chow and 10% liquid diet (Glucerna, 

Abbot Laboratories). Urine was collected for 24 h and albuminuria was measured using 

a mouse albumin ELISA kit (Bethyl Laboratories). The dilution of sample urine was 

adjusted to place the albumin concentrations within the linear range of the ELISA assay. 

Blood was collected by cardiac puncture. Serum 1,25-dihydroxyvitamin D levels were 

measured by the commercial ELISA kit (Immunodiagnostic System, UK). Serum 
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calcium levels were measured using calcein as a calcium indicator relative to calcium 

standards on a Hitachi F-2500 fluorescence spectrometer. 
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RESULTS 

Progression of DN and Altered Gene Expression in OVE26 Diabetic Mice 

In OVE26 mice diabetes begins within a few days of birth indicated by 

high blood glucose. Blood glucose climbs up to 2 months of age and then drops 

gradually thereafter (82S±37, 760±36, 71O±41 at 2,4 and 8 months of age, respectively 

P>O.OS versus FVB). Figure lOA shows that albuminuria in the female OVE26 mice 

used in this study became much worse with age, averaging 800 ug per day at 2 months, 

climbing to 10,000 ug by 4 months and averaging over 100,000 ug at 8 months. At all 

ages non-diabetic mice averaged less than 2S0ug per day. 

Kidney RNA was made from OVE26 mice and control FVB mice at 2, 4 and 

8 months of age (n~6 per group). Gene expression profiles were determined on 

Affymetrix MG-430 2.0 arrays and analyzed using SAM 3.0 [78] with a minimal false 

discovery rate ofP<O.OS. The number of genes altered in expression by diabetes 

increased (Figure lOB) from 348 genes at 2 months to 6172 genes at 8 months. 

To identify genes and pathways that changed as a function of the duration of 

diabetes we ran a two-way ANOV A (Partek Genomic Suite) using age and diabetes as 

factors. This analysis combined the control and diabetic data at all ages and found 380 

genes significantly altered by both age and diabetes. This gene set was then uploaded to 

the online database Ingenuity. Figure 11 shows the 10 most significant biological 

functions identified by Ingenuity. Three of the top five biological functions and/or 

diseases are directly related to inflammation. The number of inflammatory response 

genes (identified by Ingenuity data base program) up-regulated by diabetes (Figure 12) 
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increased with age more than the overall change in gene expression. Some of the 

specific inflammatory response pathways upregulated are shown in Table 1. Of all 

pathways for all functions Ingenuity identified leucocyte extravasation and NfkappaB as 

the two most significant pathways at 8 months of age. Specific inflammatory genes 

elevated over 1.5 fold at 8 month diabetic kidney are shown in Table 2, arranged by 

category. 

Inflammatory Genes Expressed in Diabetic Mouse Kidney 

Complement component 3 (C3): 

e3 was the only inflammatory response gene elevated at 2 months of age. 

e3 was increased two-fold (Figure 13A) at 2 months and this progressed to almost 9-fold 

at 8 months. Within the diabetic 8 month group there was positive correlation of 0.82 

(P<0.05) between albuminuria and e3 signal intensity (P<0.05). Quantitative RT-peR 

validated the e3 array results (Figure 13B and C). e3 immunohistochemistry staining 

was increased, primarily in tubules with excessive albumin accumulation (Figure 13D-F). 

No e3 or albumin staining was seen in FVB tubules (Figure 13G-I). Since tubular e3 

can come from leakage through the glomerulus or from expression within the tubule, we 

assessed e3 gene expression by in situ hybridization (Figure 13J-L). Only minor 

staining was present in 8 month FVB mice (Figure 13J) but hybridization to 8 month 

diabetic kidney labeled most tubules and strongly labeled some tubules (Figure 13L). 

The sense probe did not hybridize to any tissue (not shown). To determine ifthere was 
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a relation between albumin accumulation and C3 mRNA, serial sections were stained for 

albumin by immunofluorescence and for C3 mRNA. As shown in Figures 13L and 

13M the tubule with the highest level of C3 hybridization had the strongest accumulation 

of albumin. 

VCAMl: 

VCAMI promotes the adhesion of infiltrating cells. VCAMI mRNA was 

elevated more than 4 fold at 8 months of age but not at earlier ages (Figure 14A). 

Pearson correlation analysis ofVCAMI signal intensity versus albumin excretion (Figure 

14B) demonstrated a correlation of 0.93 (P<O.OOl) within the group of 8 month diabetic 

mIce. Antibody staining (Figure 14C,D) showed that VCAMI expression was elevated 

in a fraction of the diabetic tubule population, but unlike C3 staining, the positive stained 

VCAMI tubules did not stain for albumin (Figure 14E,F). Since VCAMI is a 

membrane bound protein it is unlikely that glomerular leakage ofVCAMI contributed to 

tubular staining, unlike serum proteins such as albumin and C3. 

CD44: 

CD44 is an inflammatory response, membrane bound protein with multiple 

functions including regulation of VCAM 1 expression [79] and promotion of macrophage 

infiltration. Compared to FVB control, the average microarray signal was increased 8.9 

fold in OVE26 kidney at 8 months of age (Figure 15A). Pearson correlation analysis on 
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expression of CD44 versus albumin excretion (Figure 15B) indicated a highly significant 

correlation (coefficient=O.982, P<O.0005). Immunohistochemistry (Figure 15C-F) 

confirmed the microarray results and showed that increased staining was in tubular 

epithelial cells of OVE26 mice, as was seen for C3 and VCAM 1. However, CD44 

staining was more common and many CD44 stained tubules were partially or grossly 

dilated (Figure 15E) Age-matched controls had weak staining (Figure 15C). Also, 

diabetic kidneys with lower urinary albumin (Figure 15D) had weaker staining than those 

with higher urinary albumin (Figure 15E,F). And, as was observed for C3 staining, 

strong CD44 staining was associated with albumin accumulation (Figure 15G,H). 

Macrophage infiltration: 

The up-regulated genes described so far are implicated in inflammatory cell 

infiltration such as macrophages. Therefore we examined microarray results for the 

macrophage marker CD68 (Figure 16A). Elevated diabetic expression ofCD68 was 

evident only at 8 months of age. Also there was a clear correlation (Figure 16B) 

between albuminuria and expression of CD68 in 8 month diabetic mice (correlation 

coefficient=O.98, P<O.0005). To assess whether there was a physical association 

between macrophage and albumin accumulation we double stained kidneys with F4/80 

macrophage antibody and antibody to mouse albumin (Figure 16C, D). Macrophages 

were found in diabetic kidney but rarely in control kidney. In this example the 

macrophages were in close proximity to tubules that had accumulated albumin, though 

this was not always the case. 
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Relative localization of inflammatory gene products: 

Individual staining for C3, CD44 and VCAMI gave the impression that the 

prevalence of tubules staining for each protein was different. To test this directly, we 

triple stained OVE26 sections for each of these markers (Figure 17). Consistent with 

separate staining results (Figure 17) the most prevalent staining was for CD44 and in 

some cases the same tubules stained for C3. VCAM1 stained tubules did not stain for 

CD44 or C3 and VCAMI was not induced in dilated tubules (Figures 14 and 17). 

Based on thickness, brush border and megalin staining (not shown), most stained tubules 

were proximal tubules. 

Expression of CYP27B 1 and Vitamin D Level in OVE26 Diabetic Kidney 

Renal inflammation induces CYP27B1 [69], the rate limiting enzyme 

catalyzing synthesis of active vitamin D (1 ,25-dihydroxy vitamin D). In 2 and 4 month 

old OVE26 mice CYP27B 1 mRNA level was increased 3 to 4 fold above control mice 

and this rose to 9 fold at 8 months age (Figure 18A). Unlike other inflammatory 

proteins, its mRNA expression did not correlate with albuminuria (data not shown). 

Immunohistochemistry confirmed the diabetes induced elevation of CYP27B 1 expression 

(Figures 18C,D). As reported [80] CYP27B1 protein was present in most kidney cells. 

Given both altered mRNA and protein expression of this enzyme in diabetic mice, we 
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measured serum level of its hydroxylation product 1 ,25-dihydroxy vitamin D. Serum 

1 ,25-dihydroxy vitamin D was increased 2.4 fold in diabetic mice (Figure ISB). Since 

vitamin D is a regulator of in vivo calcium homeostasis, we also measured serum Ca2
+ 

levels and found that serum Ca2
+ levels were reduced in diabetic mice (S.6±O.3 mg/dl for 

OVE26 and 9.S ±O.1 mg/dl for FVB, P<O.OI, n=5) (Figure ISE). A correction analysis 

were performed to adjust the effect of reduced serum albumin level on total serum 

calcium measurement in OVE26 mice and the adjusted results showed similar reduction 

of serum calcium levels in diabetic mice. (data not shown) 

Expression of Fat Metabolism Genes in OVE26 Diabetic Kidneys 

We found one prior paper that examined changes in gene expression in 

OVE26 kidney [SI]. That study used syber green rtPCR to identify 2 to 3 fold changes 

in expression of 14 genes of fat metabolism or their transcriptional regulatory genes 

SREBPs I and 2 and PP ARs a and ( They proposed that increased OVE26 renal fatty 

acid and cholesterol content were due to combined reductions in transcription of mRNA 

for fatty acid oxidation genes and cholesterol efflux genes plus increased transcription of 

mRNA of fatty acid and cholesterol synthesis genes. In this study, using gene array, we 

found none of the changes previously reported for these 14 genes (Table 3). Five genes 

for fatty acid synthesis or transcriptional regulators were reported to be up-regulated in 

the previous study, but we did not find these genes up-regulated. In fact three were 

down-regulated. Two genes of fatty acid synthesis and two genes of cholesterol efflux 
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were previously reported to be increased but all were unchanged in the present study. 

Two genes of cholesterol synthesis were reported to be up-regulated, but we found them 

to be essentially unchanged. These results at 4 months of age were consistent with our 

results at 2 months and 8 months of age (data not shown). 

As shown in figure 19, the reduction in expression found for F ASN was 

confirmed by Taqman RT peR (fold change 0.43+0.07 ,respectively, P<0.05 by t-test). 

The most notable aspect of the current results is that the 4 genes that were significantly 

down-regulated are all induced by nuclear receptor SREBFl [82,83]. (Figure 20) 
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DISCUSSION 

This study provides the initial microarray analysis of the OVE26 kidney and 

thus the first study of gene expression changes of whole kidney during the development 

from mild to very severe diabetic albuminuria. Future studies will assess changes in 

gene expression of isolated glomeruli and podocytes. In OVE26 mice the daily albumin 

excretion progressed from lmg at 2 months to profound albuminuria of almost 100mg at 

8 months. The progression of albuminuria was paralleled by a significant alteration in 

gene expression of over 6000 kidney genes. Ingenuity pathway analysis indicated that 

the inflammatory response pathway was the most overrepresented biological pathway, 

and expression in this pathway increased almost exponentially with the progression of 

albuminuria. Inflammatory genes of the complement pathway that have not been shown 

to be up-regulated in other animal models of diabetes were greatly elevated in OVE26 

kidneys. 

Albuminuria, NF -kappa B and The Inflammatory Gene Response 

Human renal gene expression profiles have also linked inflammatory 

pathways to DN [76,84]. In animal models ofDN, some papers reported up-regulation 

of several inflammatory genes [85] but others did not [86]. We proposed that the 

stimulus for the increase in 300 inflammatory response genes in older OVE26 kidneys 

was due to their extreme albuminuria, which by 8 months was more than 500 fold higher 
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than in non-diabetic mice. This is in contrast to a 34-fold or lower increase in 

albuminuria in other diabetic models [5,87,88]. In fact the OVE26 inflammatory 

response at 4 months of age, when albuminuria was induced only 30 fold, was not 

especially prominent and included less than 25 genes. The association between severe 

albuminuria and gene expression does not prove that protein leakage caused the observed 

changes in inflammatory gene expression. However the role of albumin leakage is 

supported by the fact that there was a very strong correlation to albuminuria between 

individual diabetic mice of the same age and by the co-localization of albumin staining 

and staining for several inflammatory genes. 

The pro-inflammatory role of proteinuria is consistent with numerous in vitro 

studies where protein exposure of tubule epithelial cells activated Nf-kappa Band 

induced inflammation (reviewed in [89]). Ingenuity pathway analysis (Table 1) showed 

that the NF-kappa B pathway was significantly upregulated in 8 month diabetic kidneys. 

Schmid et al [76] proposed that the NF-kappa B promoter module NFKB_IRFF _01 was a 

marker of advanced human DN since they found induction of 8 of 9 genes controlled by 

this promoter module in progressive human DN samples. Of the 8 genes identified by 

Schmid et aI, we found 6 (VCAM1, CXCLlO, CCL5, HLA-B, EDNI and B2M) were 

upregulated in our oldest age diabetic group but none in our younger age diabetic groups. 

Analagous to the activation of the NFKB _ IRFF _ ° 1 module in advanced human DN, our 

results suggest that progressive DN develops between 4 and 8 months of age in OVE26 

mIce. 

Complement Component C3 
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C3 mRNA was the only inflammatory response gene up-regulated in 2 

month old diabetic mice and the expression level increased markedly with age and 

albuminuria. C3 over-expression was confirmed by RT-PCR and in situ hybridization. 

In vitro studies have demonstrated that exposure of cultured tubular cells to serum 

proteins increases C3 expression [90]. Urinary C3 induction has been reported in 

human diabetic nephropathies [91] but not to our knowledge in tubules of any other 

diabetic animal models. Again, this may be because other diabetic models have less 

proteinuria than OVE26 mice. In situ results showed that C3 mRNA was increased in 

most OVE26 tubules and serial section analysis showed that the strongest C3 reaction 

co-localized with the most intense albumin immunostaining, providing further evidence 

that C3 induction in diabetic mouse tubular cells is secondary to excessive albumin 

leakage into the proximal tubules. 

C3 can produce direct tissue damage and promote inflammation. Renal 

accumulation of C3 has been shown to be a major component of the pathology of several 

non-diabetic nephropathies [92,93] and inhibition ofC3 has been shown to be highly 

beneficial to mouse models of nephropathy [93,94] though this has not been tested in 

diabetic models. Chronic activation of C3 promotes further inflammation and activation 

of C3 expression in tubules of young OVE26 mice may have contributed to the further 

stimulation of additional inflammatory response genes. Since OVE26 mice are the first 

diabetic model to demonstrate C3 accumulation in the kidney, they provide the first 

opportunity to examine the importance of C3 in the progression of DN. It is notable that 

the background strain for OVE26 mice, FVB is deficient in C5, which prevents formation 
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of the membrane attack complex. Complement mediated damage in FVB mice is 

largely limited to cleavage products ofC3. Crossbreeding to add a functional C5 gene 

should result in more severe DN more closely mimicking human DN. 

Adhesion molecules and macrophage infiltration 

Two inflammatory response genes that were up-regulated more than 4-fold at 

8 months of age but not at earlier ages were VCAMI and CD44. Among other activities, 

both proteins increase adhesion of infiltrating cells. In normal control tissue 

VCAM-l was present on some (but not all) parietal epithelial cells lining Bowman's 

capsule, additional presence ofVCAM-l on proximal tubular cells was observed in 

clinical biopsy specimens from patients with diabetic nephropathy. Tubule VCAMI 

expression is induced by the NF-kappa B transcriptional pathway [76,95]. In diabetic 

patients, induction ofVCAMI expression may serve as a marker for progressive DN with 

2.5 fold higher expression in advanced DN samples compared to samples from patients 

with early DN or minimal change disease [76]. We did not find reports ofVCAMl 

induction in other animal models ofDN. CD44 is induced in kidneys injured by 

ischemia [96] or autoimmunity [97] and CD44 contributes to renal neutrophil and 

macrophage infiltration [98]. Induction of CD44 has not been reported in diabetic 

kidneys and CD44 is not induced in proximal tubule cell lines by high glucose [99]. 
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Expression of both VCAM 1 and CD44 genes displayed correlation 

coefficients greater than 0.9 versus the level of albuminuria. As shown by 

immunohistochemistry both proteins localized to tubule epithelial cells within what 

appeared to be proximal tubules, as indicated by the thickness of the tubule wall and the 

presence of a brush border and megalin. This localization is consistent with prior 

reports for CD44 [97] and VCAMI [95]. However, despite the fact that both CD44 and 

VCAMI were induced in proximal tubule cells at the same age, 8 months, they were 

induced in different tubules. Several characteristics differentiated CD44 and VCAM I 

positive tubules. CD44 cells were much more abundant than VCAMI cells. CD44 

stained tubules were often positive for albumin and C3 staining and CD44 positive 

tubules were often grossly dilated. In contrast VCAMI positive tubules did not stain for 

albumin or C3 and they never exhibited grossly dilated lumen. We recently reported 

[100] that tubules that accumulate albumin have a damaged brush border and abnormal 

epithelial cell protrusions extending into the tubular lumen, indicating that albumin 

accumulation produces significant proximal tubule cell injury. The greater damage, 

evident in CD44 positive cells as suggested by dilation and albumin accumulation, 

suggests that CD44 and VCAMI expression are associated with different stages of tubule 

pathology. 

Macrophage infiltration is commonly observed in diabetic and non-diabetic 

renal disease and is widely considered to contribute to chronic renal damage. CD68 is a 

macrophage protein used as a marker for macrophage infiltration. In OVE26 kidneys, 

CD68 expression followed the common inflammatory response pattern of not increasing 
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significantly until 8 months of age, at which time it was elevated 5.6-fold. A search of 

the Ingenuity database for the term macrophage returned six genes, of which 5 were 

significantly increased in the diabetic 8 month dataset. It is likely that the late increase 

in the renal leukocyte extravasation pathway genes (Table 2) such as CD44 and VCAMI 

paralleled the time course of macrophage infiltration and CD68 gene expression. 

CYP27B 1 and serum vitamin D levels 

Vitamin D is now recognized as a modulator of the immune system [101]. 

There are also findings that low vitamin D levels are related to increased inflammation in 

human renal diseases [69]. In mouse models of Type 1 and 2 diabetes, supplementary 

vitamin D reduces diabetic nephropathy and renal inflammation [73]. In nephropathy 

patients [69] there is a significant correlation between expression of CYP27B I, the rate 

limiting enzyme for formation of active vitamin D and renal inflammation. Elevated 

serum vitamin D and CYP27Bl expression have been reported in the dbdb Type 2 model 

ofDN [73]. 

In OVE26 mice CYP27B 1 was the third most upregulated gene at 2 months 

of age. At this age OVE26 mice have already attained extremely high blood glucose 

levels [16] but they do not exhibit renal inflammation or significant albuminuria. This 

suggests that severe hyperglycemia is sufficient to induce the CYP27B 1 gene. 

Alternatively, low serum calcium in OVE26 mice, is also known to stimulate CYP27BI 

expression [102]. The fact that CYP27Bl expression increased another 3-fold at 8 
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months of age, when albuminuria and inflammation increased indicates that these factors 

produce further induction of gene expression. Presumably as a result of increased 

expression of CYP27B 1 protein, serum levels of vitamin D were two fold elevated in 8 

month old OVE26 mice. While this may have partially ameliorated renal and systemic 

inflammation it was clearly not sufficient to prevent the inflammatory response of the 

OVE26 kidney. 

Fat metabolism gene expression 

This analysis of diabetes effects on fat metabolism genes revealed 

significant reductions in expression of 4 genes of fatty acid or cholesterol synthesis, 

SREBF 1, F ASN ACACA and HMGCR. SREBF I is a transcription factor that induces 

its own expression as well as expression of many enzymes of fat synthesis including 

HMGCR, FASN and ACACA. Further analysis showed many other SREBFl regulated 

genes were reduced at 4 and/or 8 months of age (Figure 20) and UCP2 and SLC2A2 

genes that are repressed by SREBF 1 were significantly increased. Thus the reduction in 

SREBF 1 plays a large role in these changes of gene expression. The SREBF 1 gene is 

responsive to insulin, therefore the virtual absence of insulin in OVE26 mice can explain 

the decline in SREBF 1 expression. 

Procotor et al [81] proposed that diabetes induces coordinate changes in 

mRNA expression for genes integral to fat metabolism resulting in increased fatty acid 

and cholesterol content in diabetic kidney. This then accelerates nephropathy. We 
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have also observed elevated renal cholesterol content in OVE26 kidney [103] however in 

the current study we did not confirm the changes reported for expression of 14 genes of 

fatty metabolism in OVE26 kidneys. In fact where expression changes were observed 

they were in the opposite direction to what was reported by Proctor et al. Our findings 

do not support the previous hypothesis that diabetes induced changes in renal nuclear 

transcription factors for genes of fatty acid metabolism promotes DN. The reliability of 

our results are supported by the fact that they were consistent at multiple ages and they 

were confirmed for the F ASN gene by probe based rtPCR. They are also supported by 

comparison of our data to a very recent publication [104] that found elevations in the 

mRNA levels for 3 genes in OVE26 kidney cortex of 7 month old mice by rtPCR. That 

studied found increases for serpine1, TGF~l and TGF~ induced mRNAs of 4.3, l.9 and 

1.4 fold, respectively, while we found by gene array analysis similar increases of 2.8, 1.7 

and 1.8 fold for the same genes at 8 months of age. 

Summary 

Microarray expression analysis shows that OVE26 mice develop features of 

advanced DN between 4 and 8 months of age. Overall inflammatory gene expression 

increases dramatically in association with increasing albuminuria and activation of 

NF-kappa B dependent pathways. As shown in Figure 21, OVE26 mice display 

elevated expression of C3 at an early stage of diabetes, which is possibly induced by the 

moderate protein leakage. When OVE26 mice aged and entered late stage of diabetes, 
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they exhibited excessive protein leakage. At this stage, C3 expression elevation may be 

reinforced by increased pro-inflammatory cytokines expression (indicated in table 2) and 

induced by accumulated albumin in tubules. Increased urinary albumin level was 

associated with elevated expression of adhesion molecules, VCAM I and CD44. The 

Nf-kB inflammatory pathway was up-regulated in late stage diabetes and positively 

regulated VCAM-I expression [76,95]. The expression of these genes (C3, VCAM-I, 

CD44) appears to be regulated differentially in different OVE26 tubules depending on the 

level of pathology in each nephron. These proteins have been shown to playa role in 

kidney injury in non-diabetic animal models of nephropathy but that have not been 

shown to be elevated in other models of diabetic kidney disease. Figure 21 provides a 

visual scheme for this proposed pathway for progression of diabetic nephropathy. 

Based on our immunohistochemistry results, increased macrophage infiltration was also 

related to tubular albumin leakage. Expression of CYP27B 1, the regulator of active 

vitamin D synthesis was elevated early in diabetes but increased further when 

inflammation peaked at 8 months of age. 
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Table 1. Inflammatory pathways activated by diabetes based on ingenuity analysis. 

Columns show the number of genes altered with FDR< 5% by SAM at each age. 

Pathway name (number of genes in pathway) 2m 4m 8m P value at 8m 

Leukocyte Extravasation signaling (191 genes) 0 16 80 4.99E-14 

NF-kB Signaling (143 genes) 3 0 61 7.6SE-ll 

IL-4 signaling (68 genes) 4 7 33 1.24E-08 

IL-2 signaling (S3 genes) 0 3 24 l.71E-OS 

IL-6 signaling (91 genes) 0 3 29 3.0SE-03 

Complement system (36 genes) 2 3 12 7.8SE-03 
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Table 2. Pro-inflammatory genes up-regulated at least 1.5 fold in 8 month diabetic 

kidney 

Gene Title Gene Symbol p-value fold change 
TNF & receptor 
tumor necrosis factor receptor superfamily, member 1 b Tnfrsf1 b 2. 32E-04 1.89 
tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 2.35E-03 2.53 
tumor necrosis factor, alpha-induced protein 3 Tnfaip3 2.31 E-03 2.00 
tumor necrosis factor (ligand) superfamily, member 13b Tnfsf13b 2.36E-02 1.70 

Interleukin family 
interleukin 1 family, member 6 111f6 9.19E-03 2.58 

TLRs 
toll-like receptor 1 Tlr1 1.94E-03 1.86 
toll-like receptor 13 Tlr13 7.06E-03 1.60 
toll-like receptor 2 Tlr2 2.13E-02 1.99 
toll-like receptor 4 Tlr4 5.05E-02 1.64 

chemokine 
chemokine (C-C motif) ligand 7 Ccl7 2.00E-03 1.52 
chemokine (C-C motif) ligand 12 Ccl12 5.50E-03 5.48 
chemokine (C-C motif) ligand 2 Ccl2 9.65E-03 4.25 
chemokine (C-C motif) ligand 5 Ccl5 1.49E-02 3.36 
chemokine (C-C motif) ligand 9 Ccl9 1.89E-02 3.83 
chemokine (C-C motif) ligand 6 Ccl6 2. 77E-02 3.36 
chemokine (C-C motif) ligand 8 Ccl8 3.69E-02 3.33 
chemokine (C-X-C motif) ligand 11 Cxcl11 2. 38E-04 2.99 
chemokine (C-X-C motif) ligand 16 Cxcl16 6.09E-04 1.89 
chemokine (C-X-C motif) ligand 10 Cxcl10 5.05E-04 3.81 
chemokine (C-X-C motif) ligand 2 Cxcl2 1.03E-02 3.41 
chemokine (C-X-C motif) ligand 13 Cxcl13 1.58E-02 2.45 
chemokine (C-X-C motif) ligand 1 Cxcl1 1.35E-02 2.65 

Adhesion molecules 
intercellular adhesion molecule Icam1 7.21E-03 2.04 
vascular cell adhesion molecule 1 Vcam1 4.98E-03 4.58 
CD44 antigen Cd44 1.02E-02 8.01 
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Table 3. Fold change in fat metabolism mRNA expression 

Gene Gene metabolic OVE26/FVB Symbol functions 
SREBP1 Fatty acid synthesis O.53±O.O4 
FASN Fatty acid synthesis O.49±O.O5 
L-PK Fatty acid synthesis 1.12±O.O3 
ACC Fatty acid synthesis O.64±O.O4 
PPAR-o Fatty acid oxidation 1.0B±O.13 
PPAR-~ Fatty acid oxidation O.9B±O.04 
ACO Fatty acid oxidation O.91±O.OB 
SREBP2 Cholesterol synthesis O.B6±O.04 
HMGCR Cholesterol synthesis O.71±O.O4 
ABCA1 Cholesterol efflux 1.02±O.15 
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Figure 9: Diabetes Statistics. A) Estimated prevalence of diagnosed and undiagnosed 

diabetes in people aged 20 years or older, by age group, United States, 2007; B) 

Primary causes of kidney failure (2005). 
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Figure 10. Developmental changes in albuminuria and gene expressions: Panel A 

shows the increase in 24hr urine albumin excretion in female OVE26 mice with age. At 

each age diabetic albuminuria was greater than the next youngest group (P<O.Ol by 

ANOVA) and greater than control mice of the same age (P<0.05 by T-test). (Values are 

the means ± SE of 6 or more mice for each age group). Panel B shows the number of 

genes significantly up or down-regulated in OVE26 mice at each age. Results were 

based on SAM adjusted FDR level of 0.05. 
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Figure 11: Top 10 biological functions and/or diseases altered by both age and 

diabetes: Three of the top five top biological functions identified by Ingenuity are 

related to inflammation. 
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Figure 12: Expression of inflammatory response genes identified by Ingenuity 

online database increased by age in diabetic kidneys: Gray bar stands for 

down-regulated genes (OVE26 Vs FVB), white bar stands for up-regulated genes. 
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Figure 13. Complement component 3 (C3) mRNA and protein are up-regulated in 

diabetic mouse kidney. A) e3 mRNA is increased in diabetic mice at all ages based on 

Affymetrix array results. Y axis shows the fold change of OVE26 over FVB (P<O.002 

for each age by T-test). Microarray results were validated by real-time peR at 4 months 

(B) and 8 months (C). Immunofluorescent staining of e3 on sections of (D) diabetic or 

(G) control kidneys. Dual labeling for albumin on the same sections is shown in Panels 

E and H. Merged pictures of both stains are shown in panels F and I for diabetic and 

control kidneys, respectively. Original magnification X400. In situ hybridization shows 

e3 mRNA in tubular cells of diabetic mouse. J) Kidney from 8 month old control FVB 

mouse showed weak staining. K) Kidney from an age-matched OVE26 mouse showed 

positive (dark blue) staining in many tubules. Serial sections of OVE26 kidney reveal 

the strongest e3 hybridization (L lower arrow) in a tubule that stained strongly for 

albumin (M lower arrow). The upper arrows in panels Land M point to a common 

glomerulus used for aligning the sections. Original magnification X200. 
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Figure 14. Increased VCAMI expression in 8 month old diabetic kidney. A) 

VCAM 1 RNA expression level is up-regulated by diabetes only at 8 months of age 

according to microarray results. Y axis shows the fold increase of OVE26 relative to 

FVB. The asterisk indicates that VCAMI elevation is significant at that age (P<O.Ol, 

T-test). B) Pearson correlation analysis ofVCAMl gene array signal versus 24 hour 

urinary albumin excretion (R2=0.933, P<O.Ol). Immunohistochemical staining of 

VCAMI on paraffin sections ofC) control or D) diabetic kidney. Panels E and F show 

serial sections of diabetic kidney stained for albumin (green) or for VCAMI (red). The 

white arrows indicate landmarks that allow rapid visual alignment of the serial sections. 

The staining shows that OVE26 tubules that stain strongly for VCAM 1 do not stain 

strongly for albumin. Original magnification X200 
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Figure 15. Increased CD44 expression in 8 month old diabetic kidney. A) 

Microarray results show that CD44 mRNA levels are up-regulated significantly only at 8 

months of age. The asterisk indicates that the elevation of gene expression level is 

significant (P<O.OOOl, t-test) between control and diabetic 8 month old mice. B) 

Correlation analysis of CD44 expression versus albuminuria in diabetic 8 month mice 

(Pearson correlation coefficient=O.982, P<O.0005). Immunohistochemical staining for 

CD44 on sections of FVB (C) or diabetic kidney with moderate (D) or severe (E,F) 

albuminuria. Panels G (albumin) and H (CD44) show that many tubules, especially 

dilated tubules, stain for both albumin and CD44. All original magnification X200 

except F, X400 

82 



6 
18 700 

CD 

* > A C 
l!::5 0 600 
:El .. 

0 

~4 ~500 
to 

co c: 400 
i~P ! 

.E 0 
ii 

300 
~2 c: 
c: ~200 .. to • '5 1 

~loo 31 
~O 0 

2 month 4 month 8 month 100000 200000 300000 400000 500000 

24hr Urine albumin (ug) 

83 



Figure 16. Increased CD68 expression and macrophage infiltration in 8 month 

diabetic kidney. A) Gene array results show that the macrophage marker CD68 mRNA 

increased significantly in 8 month diabetic kidney. Asterisk indicates that the elevation 

of gene expression level is significant (P<O.O I, t-test) at that age. B) Correlation 

analysis ofCD68 expression and 24 hour urine albumin excretion (R2=O.965, P<O.005). 

C) Immunofluorescent staining of macrophage with F4/80 antibody (red) on 

tubulointerstitial area of 8 month diabetic kidney section merged with albumin staining 

on the same section (green). D) FVB sections presented no staining of macrophage. 

Original magnification X400. 

84 



85 



Figure 17. CD44 and VCAMI are induced in different OVE26 tubules. Kidney 

sections from 8 month old OVE26 mice were stained for the indicated antigens in panels 

A-C and the merged image is shown in panel D. Original magnification X400. 
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Figure 18. Increased CYP27B1 expression in diabetic mouse kidney and increased 

serum level of 1,25-dihydroxy vitamin D in diabetic mouse. A) CYP27Bl mRNA is 

increased in diabetic mouse kidney at all ages based on Affymetrix array results. Y axis 

indicates the fold change ofOVE26 over FVB (P.:sO.OI at each age by t-test). B) Serum 

1,25-dihydroxy vitamin D levels are elevated (P< 0.005) in 8 month old diabetic mice. 

Immunohistochemical staining ofCYP27BI on paraffin sections ofC) control and D) 

diabetic kidney. Original magnification X200. E) Serum calcium level is slightly 

increased in diabetic mice. (P<O.OI, n=5) 
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Figure 19. Fasn microarray results were validated by rtPeR using average fold 

change (OVE26 over FVB). Red column represents microarray results and green 

column represents rtPCR results. Comparison were made between OVE26 mice and 

FVB mice. 
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Figure 20. SREBFl regulated genes with significantly altered gene expression in 

OVE26 kidney. Green symbols and solid arrows indicate that expression was 

down-regulated in OVE26 mice and that SREBFI normally stimulates expression of that 

gene. Red symbols and dashed arrows indicate that expression was up-regulated in 

OVE26 mice and that SREBFl normally inhibits expression of that gene. 
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Figure 21. Increased inflammatory genes expression at different stage of diabetes in 

OVE26 mice. At early stage of diabetes, hyperglycemia can induce moderate protein 

leakage, which may stimulate C3 expression. As the disease progressed, C3 expression 

was further increased possibly regulated by elevated pro-inflammatory cytokines 

expressIOn. At late stage of diabetes, inflammatory genes CD44 and VCAMI were 

up-regulated, which were associated with excessive protein leakage. The severe protein 

leakage may also promote macrophage infiltration and activate Nf-kB transcriptional 

pathway. The latter may contribute to elevated VCAM-I expression in the tubules. 

94 



REFERENCES 

United States Renal Data System. USRDS 2007 Annual Data Report. Bethesda, MD: 
National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of 
Health, U.S. Department of Health and Human Services; 2007 

1. Muller I, Niethammer D, Bruchelt G (1998) Anthracyc1ine-derived chemotherapeutics 
in apoptosis and free radical cytotoxicity (Review). Int J Mol Med 1: 491-494. 

2. Morgan WA, Kaler B, Bach PH (1998) The role of reactive oxygen species in 
adriamycin and menadione-induced glomerular toxicity. Toxicol Lett 94: 209-215. 

3. Wang Y, Wang YP, Tay YC, Harris DC (2000) Progressive adriamycin nephropathy in 
mice: sequence of histologic and immunohistochemical events. Kidney Int 58: 
1797-1804. 

4. Javaid B, Olson JL, Meyer TW (2001) Glomerular injury and tubular loss III 

adriamycin nephrosis. J Am Soc Nephroll2: 1391-1400. 

5. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, et al. (2005) Characterization of susceptibility 
of inbred mouse strains to diabetic nephropathy. Diabetes 54: 2628-2637. 

6. Bachur NR, Gordon SL, Gee MV (1978) A general mechanism for microsomal 
activation of quinone anticancer agents to free radicals. Cancer Res 38: 
1745-1750. 

7. Mimnaugh EG, Trush MA, Gram TE (1986) A possible role for membrane lipid 
peroxidation in anthracyc1ine nephrotoxicity. Biochem Pharmaco135: 4327-4335. 

8. Kalyanaraman B, Sealy RC, Sinha BK (1984) An electron spin resonance study of the 
reduction of peroxides by anthracyc1ine semiquinones. Biochim Biophys Acta 799: 
270-275. 

9. Olson RD, Boerth RC, Gerber JG, Nies AS (1981) Mechanism of adriamycin 
cardiotoxicity: evidence for oxidative stress. Life Sci 29: 1393-1401. 

95 



10. Powell SR, McCay PB (1988) Inhibition of doxorubicin-initiated membrane damage 

by N-acetylcysteine: possible mediation by a thiol-dependent, cytosolic inhibitor 

oflipid peroxidation. Toxicol Appl Pharmacol96: 175-184. 

11. Hida H, Coudray C, Calop J, Favier A (1995) Effect of antioxidants on 
adriamycin-induced microsomal lipid peroxidation. Bioi Trace Elem Res 47: 
111-116. 

12. Bertelli R, Ginevri F, Gusmano R, Ghiggeri GM (1991) Cytotoxic effect of 
adriamycin and agarose-coupled adriamycin on glomerular epithelial cells: role of 
free radicals. In Vitro Cell Dev BioI 27 A: 799-804. 

13. Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin alphaS 
demonstrates a developmental role for the kidney glomerular basement 
membrane. Dev Bioi 217: 278-289. 

14. Natoli TA, Liu J, Eremina V, Hodgens K, Li C, et al. (2002) A mutant form of the 
Wilms' tumor suppressor gene WTl observed in Denys-Drash syndrome 
interferes with glomerular capillary development. J Am Soc Nephrol 13: 
2058-2067. 

15. Koshikawa M, Mukoyama M, Mori K, Suganami T, Sawai K, et al. (2005) Role of 
p38 mitogen-activated protein kinase activation in podocyte injury and 
proteinuria in experimental nephrotic syndrome. J Am Soc Nephrol 16: 
2690-2701. 

16. Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, et aI. (2004) 
Development of late-stage diabetic nephropathy in OVE26 diabetic mice. 
Diabetes 53: 3248-3257. 

17. Siu B, Saha J, Smoyer WE, Sullivan KA, Brosius FC, 3rd (2006) Reduction in 
podocyte density as a pathologic feature in early diabetic nephropathy in rodents: 
prevention by lipoic acid treatment. BMC Nephrol 7: 6. 

18. Lee VWS, Harris DCH (2010) Adriamycin nephropathy - a model of focal segmental 
glomerulosclerosis. Nephrology: no-no. 

19. Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, et al. 
(2009) Inducible rodent models of acquired podocyte diseases. Am J Physiol 
Renal Physiol296: F213-229. 

96 



20. Venkatesan N, Punithavathi D, Arumugam V (2000) Curcumin prevents adriamycin 
nephrotoxicity in rats. Br J Pharmacol 129: 231-234. 

21. Ryan GB, Karnovsky MJ (1975) An ultrastructural study of the mechanisms of 
proteinuria in aminonucleoside nephrosis. Kidney Int 8: 219-232. 

22. Zou MS, Yu J, Nie GM, He WS, Luo LM, et al. (2010) 1, 25-dihydroxyvitamin D3 
decreases adriamycin-induced podocyte apoptosis and loss. Int J Med Sci 7: 
290-299. 

23. Guo J, Ananthakrishnan R, Qu W, Lu Y, Reiniger N, et al. (2008) RAGE mediates 
podocyte injury in adriamycin-induced glomerulosclerosis. J Am Soc Nephrol 19: 
961-972. 

24. Kagi JH, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27: 
8509-8515. 

25. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic BioI 
Med 14: 325-337. 

26. Schwarz MA, Lazo JS, Yalowich JC, Reynolds I, Kagan VE, et al. (1994) 
Cytoplasmic metallothionein overexpression protects NIH 3T3 cells from 
tert-butyl hydroperoxide toxicity. J BioI Chern 269: 15238-15243. 

27. Schwarz MA, Lazo JS, Yalowich JC, Allen WP, Whitmore M, et al. (1995) 
Metallothionein protects against the cytotoxic and DNA-damaging effects of 
nitric oxide. Proc Natl Acad Sci USA 92: 4452-4456. 

28. Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and 
mammalian metallothioneins functionally substitute for yeast copper-zinc 
superoxide dismutase. Proc Natl Acad Sci USA 90: 8013-8017. 

29. Chen H, Carlson Ee, Pellet L, Moritz JT, Epstein PN (200 I) Overexpression of 
metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA 
damage and diabetes. Diabetes 50: 2040-2046. 

30. Li X, Chen H, Epstein PN (2004) Metallothionein protects islets from hypoxia and 
extends islet graft survival by scavenging most kinds of reactive oxygen species. 
J BioI Chern 279: 765-771. 

97 



31. Sun X, Zhou Z, Kang YJ (2001) Attenuation of doxorubicin chronic toxicity in 

metallothionein-overexpressing transgenic mouse heart. Cancer Res 61 : 
3382-3387. 

32. Lazo JS, Kuo SM, Woo ES, Pitt BR (1998) The protein thiol metallothionein as an 

antioxidant and protectant against antineoplastic drugs. Chern BioI Interact 
111-112: 255-262. 

33. Zheng H, Liu J, Choo KH, Michalska AE, Klaassen CD (1996) Metallothionein-I and 
-II knock-out mice are sensitive to cadmium-induced liver mRNA expression of 
c-jun and p53. Toxicol Appl Pharmacol 136: 229-235. 

34. Quesada AR, Byrnes RW, Krezoski SO, Petering DH (1996) Direct reaction ofH202 
with sulfhydryl groups in HL-60 cells: zinc-metallothionein and other sites. Arch 
Biochem Biophys 334: 241-250. 

35. Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of 
metallothioneins: a comparative overview. Cell Mol BioI (Noisy-Ie-grand) 46: 
407-417. 

36. Thomas JP, Bachowski GJ, Girotti AW (1986) Inhibition of cell membrane lipid 
peroxidation by cadmium- and zinc-metallothioneins. Biochim Biophys Acta 884: 
448-461. 

37. Zhou Z, Sun X, Lambert JC, Saari JT, Kang YJ (2002) Metallothionein-independent 
zinc protection from alcoholic liver injury. Am J Pathol 160: 2267-2274. 

38. Ochi T, Otsuka F, Takahashi K, Ohsawa M (1988) Glutathione and metallothioneins 
as cellular defense against cadmium toxicity in cultured Chinese hamster cells. 
Chern BioI Interact 65: 1-14. 

39. Ferreira AM, Ciriolo MR, Marcocci L, Rotilio G (1993) Copper(l) transfer into 
metallothionein mediated by glutathione. Biochem J 292 ( Pt 3): 673-676. 

40. Zheng S, Carlson EC, Yang L, Kralik PM, Huang Y, et al. (2008) Podocyte-specific 
overexpression of the antioxidant metallothionein reduces diabetic nephropathy. J 
Am Soc Nephrol 19: 2077-2085. 

41. Ye G, Metreveli NS, Ren J, Epstein PN (2003) Metallothionein prevents 
diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species 
production. Diabetes 52: 777-783. 

98 



42. Kang YJ, Chen Y, Yu A, Voss-McCowan M, Epstein PN (1997) Overexpression of 
metallothionein in the heart of transgenic mice suppresses doxorubicin 
cardiotoxicity. J Clin Invest 100: 1501-1506. 

43. Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, et al. (2002) A new 
method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161: 
799-805. 

44. Hartner A, Eifert T, Haas CS, Tuysuz C, Hilgers KF, et al. (2004) Characterization of 
the renal phenotype in a mouse model of Marfan syndrome. Virchows Arch 445: 
382-388. 

45. Sanden SK, Wiggins JE, Goyal M, Riggs LK, Wiggins RC (2003) Evaluation of a 
thick and thin section method for estimation of podocyte number, glomerular 
volume, and glomerular volume per podocyte in rat kidney with Wilms' tumor-l 
protein used as a podocyte nuclear marker. J Am Soc Nephrol14: 2484-2493. 

46. Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated 
resistance against actin fragmentation and cell death induced by oxidative stress. 
Cancer Res 56: 273-279. 

47. Apostolova MD, Chen S, Chakrabarti S, Cherian MG (2001) High-glucose-induced 
metallothionein expression in endothelial cells: an endothelin-mediated 
mechanism. Am J Physiol Cell Physiol 281: C899-907. 

48. Mitu GM, Wang S, Hirschberg R (2007) BMP7 is a podocyte survival factor and 
rescues podocytes from diabetic injury. Am J Physiol Renal Physiol 293: 
FI641-1648. 

49. Liu LL, Li QX, Xia L, Li J, Shao L (2007) Differential effects of dihydropyridine 
calcium antagonists on doxorubicin-induced nephrotoxicity in rats. Toxicology 
231: 81-90. 

50. Vielhauer V, Berning E, Eis V, Kretzler M, Segerer S, et al. (2004) CCRI blockade 
reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and 
nephrotic syndrome. Kidney Int 66: 2264-2278. 

5l. Miller B, Patel VA, Sorokin A (2006) Cyclooxygenase-2 rescues rat mesangial cells 
from apoptosis induced by adriamycin via upregulation of multi drug resistance 
protein 1 (P-glycoprotein). J Am Soc Nephrol 17: 977-985. 

99 



52. Li X, Yuan H, Zhang X (2003) Adriamycin increases podocyte permeability: 
evidence and molecular mechanism. Chin Med J (Engl) 116: 1831-1835. 

53. Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc 
transporter 1. Proc N atl Acad Sci USA 101: 4918-4923. 

54. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, et al. (2005) Podocyte 
depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion 
in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 
16: 2941-2952. 

55. Morioka Y, Koike H, Ikezumi Y, Ito Y, Oyanagi A, et al. (2001) Podocyte injuries 
exacerbate mesangial proliferative glomerulonephritis. Kidney Int 60: 2192-2204. 

56. Teutsch S, Newman J, Eggers P (1989) The problem of diabetic renal failure in the 
United States: an overview. Am J Kidney Dis 13: 11-13. 

57. Breyer MD (2008) Stacking the deck for drug discovery in diabetic nephropathy: in 
search of an animal model. J Am Soc Nephrol19: 1623-1624. 

58. Fornoni A, Ijaz A, Tejada T, Lenz 0 (2008) Role of inflammation in diabetic 
nephropathy. Curr Diabetes Rev 4: 10-17. 

59. Sahakyan K, Klein BE, Lee KE, Tsai MY, Klein R (2010) Inflammatory and 
endothelial dysfunction markers and proteinuria in persons with type 1 diabetes 
mellitus. Eur J Endocrinol162: 1101-1105. 

60. Persson F, Rossing P, Hovind P, Stehouwer CD, Schalkwijk Co, et al. (2008) 
Endothelial dysfunction and inflammation predict development of diabetic 
nephropathy in the Irbesartan in Patients with Type 2 Diabetes and 
Microalbuminuria (IRMA 2) study. Scand J Clin Lab Invest 68: 731-738. 

61. Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Tesch GH (2005) Intercellular 
adhesion molecule-l deficiency is protective against nephropathy in type 2 
diabetic db/db mice. J Am Soc Nephrol16: 1711-1722. 

62. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1983) 
1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221 : 
1181-1183. 

100 



63. Veldman CM, Cantorna MT, DeLuca HF (2000) Expression of 
1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem 
Biophys 374: 334-338. 

64. Imazeki I, Matsuzaki J, Tsuji K, Nishimura T (2006) Immunomodulating effect of 
vitamin D3 derivatives on type-1 cellular immunity. Biomed Res 27: 1-9. 

65. van Etten E, Mathieu C (2005) Immunoregulation by 1,25-dihydroxyvitamin D3: 
basic concepts. J Steroid Biochem Mol BioI 97: 93-101. 

66. Segerer S, Nelson PJ, Schlondorff D (2000) Chemokines, chemokine receptors, and 
renal disease: from basic science to pathophysiologic and therapeutic studies. J 
Am Soc Nephroll1: 152-176. 

67. Lo WK (2006) Serum parameters, inflammation, renal function and patient outcome. 
Contrib Nephrol150: 152-155. 

68. Tan X, Wen X, Liu Y (2008) Paricalcitol inhibits renal inflammation by promoting 
vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc 
Nephrol19: 1741-1752. 

69. Zehnder D, Quinkler M, Eardley KS, Bland R, Lepenies J, et al. (2008) Reduction of 
the vitamin D hormonal system in kidney disease is associated with increased 
renal inflammation. Kidney Int 74: 1343-1353. 

70. Teng M, WolfM, Lowrie E, Ofsthun N, Lazarus JM, et al. (2003) Survival of patients 
undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 349: 
446-456. 

71. Agarwal R, Acharya M, Tian J, Hippensteel RL, Melnick JZ, et al. (2005) 
Antiproteinuric effect of oral parica1citol in chronic kidney disease. Kidney Int 68: 
2823-2828. 

72. Teng M, Wolf M, Ofsthun MN, Lazarus JM, Hernan MA, et al. (2005) Activated 
injectable vitamin D and hemodialysis survival: a historical cohort study. J Am 
Soc Nephrol 16: 1115-1125. 

73. Wang Y, Zhou J, Minto AW, Hack BK, Alexander 11, et al. (2006) Altered vitamin D 
metabolism in type II diabetic mouse glomeruli may provide protection from 
diabetic nephropathy. Kidney Int 70: 882-891. 

101 



74. Epstein PN, Overbeek PA, Means AR (1989) Calmodulin-induced early-onset 
diabetes in transgenic mice. Cell 58: 1067-1073. 

75. Berthier CC, Zhang H, Schin M, Henger A, Nelson RG, et al. (2009) Enhanced 
expression of Janus kinase-signal transducer and activator of transcription 
pathway members in human diabetic nephropathy. Diabetes 58: 469-477. 

76. Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, et al. (2006) Modular 
activation of nuclear factor-kappaB transcriptional programs in human diabetic 
nephropathy. Diabetes 55: 2993-3003. 

77. Taylor J, Tibshirani R, Efron B (2005) The 'miss rate' for the analysis of gene 
expression data. Biostatistics 6: 111-117. 

78. Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts 
of various types and expression levels in neural tissue and cultured cells: in situ 
hybridization using digoxigenin-Iabelled cRNA probes. Histochemistry 100: 
431-440. 

79. Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, et aL (2001) The adhesion 
receptor CD44 promotes atherosclerosis by mediating inflammatory cell 
recruitment and vascular cell activation. J Clin Invest 108: 1031-1040. 

80. Zehnder D, Bland R, Walker EA, Bradwell AR, Howie AJ, et al. (1999) Expression 
of 25-hydroxyvitamin D3-1alpha-hydroxylase in the human kidney. J Am Soc 
Nephroll0: 2465-2473. 

81. Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, et al. (2006) Regulation of renal fatty 
acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 
mice with type 1 diabetes. Diabetes 55: 2502-2509. 

82. Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, et al. (2002) Diminished 
hepatic response to fasting/refeeding and liver X receptor agonists in mice with 
selective deficiency of sterol regulatory element-binding protein-Ic. J BioI Chern 
277: 9520-9528. 

83. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, et al. (2003) 
Combined analysis of oligonucleotide microarray data from transgenic and 
knockout mice identifies direct SREBP target genes. Proc Nat! Acad Sci USA 
100: 12027-12032. 

102 



84. Cohen CD, Lindenmeyer MT, Eichinger F, Hahn A, Seifert M, et al. (2008) Improved 
elucidation of biological processes linked to diabetic nephropathy by single 
probe-based microarray data analysis. PLoS One 3: e2937. 

85. Usui HK, Shikata K, Sasaki M, Okada S, Matsuda M, et al. (2007) Macrophage 
scavenger receptor-a-deficient mice are resistant against diabetic nephropathy 
through amelioration of micro inflammation. Diabetes 56: 363-372. 

86. Susztak K, Bottinger E, Novetsky A, Liang D, Zhu Y, et al. (2004) Molecular 
profiling of diabetic mouse kidney reveals novel genes linked to glomerular 
disease. Diabetes 53: 784-794. 

87. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, et al. (2006) Endothelial nitric 
oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J 
AmSocNephrol 17: 2664-2669. 

88. Xu J, Huang Y, Li F, Zheng S, Epstein PN (201 0) The FVB Mouse Genotype Confers 
Susceptibility to OVE26 Diabetic Albuminuria. Am J Physiol Renal Physiol. 

89. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal 
damage? J AmSocNephrol17: 2974-2984. 

90. Tang S, Sheerin NS, Zhou W, Brown Z, Sacks SH (1999) Apical proteins stimulate 
complement synthesis by cultured human proximal tubular epithelial cells. J Am 
Soc Nephrol 10: 69-76. 

91. Morita Y, Ikeguchi H, Nakamura J, Hotta N, Yuzawa Y, et al. (2000) Complement 
activation products in the urine from proteinuric patients. J Am Soc Nephrol 11: 
700-707. 

92. Sacks S, Zhou W (2008) New boundaries for complement in renal disease. J Am Soc 
Nephrol 19: 1865-1869. 

93. Tang Z, Lu B, Hatch E, Sacks SH, Sheerin NS (2009) C3a mediates 
epithelial-to-mesenchymal transition in proteinuric nephropathy. J Am Soc 
Nephrol20: 593-603. 

94. Quigg RJ, He C, Lim A, Berthiaume D, Alexander 11, et al. (1998) Transgenic mice 
overexpressing the complement inhibitor crry as a soluble protein are protected 
from antibody-induced glomerular injury. J Exp Med 188: 1321-1331. 

103 



95. Tu Z, Kelley VR, Collins T, Lee FS (2001) I kappa B kinase is critical for 
TNF-alpha-induced VCAMI gene expression in renal tubular epithelial cells. J 
Immunol 166: 6839-6846. 

96. Rouschop KM, Roelofs 11, Claessen N, da Costa Martins P, Zwaginga 11, et al. (2005) 
Protection against renal ischemia reperfusion injury by CD44 disruption. J Am 
Soc Nephrol16: 2034-2043. 

97. Sibalic V, Fan X, Lofting J, Wuthrich RP (1997) Upregulated renal tubular CD44, 
hyaluronan, and osteopontin in kdkd mice with interstitial nephritis. Nephrol Dial 
Transplant 12: 1344-1353. 

98. Rouschop KM, Sewnath ME, Claessen N, Roelofs JJ, Hoedemaeker I, et al. (2004) 
CD44 deficiency increases tubular damage but reduces renal fibrosis in 
obstructive nephropathy. J Am Soc Nephrol 15: 674-686. 

99. Jones So, Ito T, Phillips AO (2003) Regulation of proximal tubular epithelial cell 
CD44-mediated binding and internalisation of hyaluronan. Int J Biochem Cell 
Bioi 35: 1361-1377. 

100. Kralik PM, Long, Y Song, Y, Yang, L. Wei, H., Coventry, S., Zheng, S., 
Epstein, P.N. (2009) Diabetic Albuminuria is Due to a Small Fraction of 
Nephrons Distinguished by Albumin Stained Tubules and Glomerular Adhesions. 
The American journal of Pathology: In Press. 

101. Baeke F, Takiishi T, KorfH, Gysemans C, Mathieu C (2010) Vitamin D: modulator 
of the immune system. CUff Opin Pharmacol. 

102. Bland R, Walker EA, Hughes SV, Stewart PM, Hewison M (1999) Constitutive 
expression of 25-hydroxyvitamin D3-l alpha-hydroxylase in a transformed human 
proximal tubule cell line: evidence for direct regulation of vitamin D metabolism 
by calcium. Endocrinology 140: 2027-2034. 

103. Chen YC, Meier RK, Zheng S, Khundmiri SJ, Tseng MT, et al. (2009) Steroidogenic 
Acute Regulatory (StAR)-Related Lipid Transfer Domain Protein 5 (STARD5) 
Localization and Regulation in Renal Tubules. Am J Physiol Renal Physiol. 

104. Reiniger N, Lau K, McCalla D, Eby B, Cheng B, et al. (2010) Deletion of the 
receptor for advanced glycation end products reduces glomerulosclerosis and 
preserves renal function in the diabetic OVE26 mouse. Diabetes 59: 2043-2054. 

104 



CURRICULUM VITAE 

Lu Yang 

Education and Training: 

2010 Ph.D. , Pharmacology and Toxicology, University of Louisville, School of 

Medicine, Department of Pharmacology & Toxicology, Louisville, KY 

2007 M.S., Pharmacology and Toxicology, University of Louisville, School of 

Medicine, Department of Pharmacology & Toxicology, Louisville, KY 

2004 B.s., Biophysics & Neurobiology, University of Science and Technology 

of China, Department of Neurobiology & Biophysics, Hefei, China 

Awards, Honors: 

2004-2010 

1999 

University Scholarship & Fellowship, University of Louisville 

Outstanding Student's Scholarship of University of Science & Technology of 

China 

Research Experience: 

2002-2004 Research Assistant, Vision Research Laboratory, University of Science and 

Technology of China, Department of Neurobiology & Biophysics 

Thesis Title: 

105 



2004-2010 

"Expression of!! opioid receptor in the primary visual pathway and influence of 

chronic morphine addiction on its expression in visual cortex of cat" 

Supervisor: Dr. Yifeng Zhou 

Graduate Research Assistant, University of Louisville, School of Medicine, 

Department of Pharmacology & Toxicology 

Supervisor: Dr. Paul N. Epstein 

Thesis Title: 

"Adriamycin nephrotoxicity is reduced by metallothionein over-expression and 

kidney gene expression is modified by diabetes in the OVE26 diabetic model" 

Peer reviewed Publications: 

1. Yang L, Zheng S, Epstein PN. Metallothionein over-expression in podocytes reduces 

adriamycin nephrotoxicities. Free Radic Res. 2009 Feb;43(2): 174-82. 

2. Kralik PM, Long Y, Song Y, Yang L, Wei H, Coventry S, Zheng S, Epstein PN. Diabetic 

albuminuria is due to a small fraction of nephrons distinguished by albumin-stained tubules 

and glomerular adhesions. Am J Pathol. 2009 Aug; 175(2):500-9 

3. Zheng S, Carlson EC, Yang L, Kralik PM, Huang Y, Epstein PN. Podocyte-specific 

overexpression ofthe antioxidant metallothionein reduces diabetic nephropathy. J Am Soc 

Nephrol. 2008 Nov;19(l1):2077-85. 

Manuscripts in preparation: 

1. Yang L,Brozovic S, Long YS, Kralik PM, Waigel S, Zacharias W, Zheng S, Epstein 

PN. Induction of inflammatory gene expression in OVE26 diabetic kidney parallels 

the onset of severe albuminuria. (submitted) 

2. Zheng S, Huang Y, Yang L and Epstein PN. Uninephrectomy ofOVE26 mice 

provides a brief window for observing greatly accelerated diabetic nephropathy. 

Selected conference abstracts: 

106 



1. Yang L, Brozovic S, Epstein PN. 2008 Progressive Changes in Gene Expression in OVE26 

Diabetic Kidney. American Diabetes Association 68th Scientific Sessions. l103-P. 

Professional Societies: 

2008-Present Member, Sigma Xi, The Scientific Research Society 

107 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	12-2010

	Adriamycin nephrotoxicity is reduced by metallothionein over-expression and kidney gene expression is modified by diabetes in the OVE26 diabetic model.
	Lu Yang
	Recommended Citation


	tmp.1423685735.pdf.dAFr4

