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Abstract

In this Dissertation, different aspects of holographic entanglement entropy are ex-

plored. In quantum information theory, entanglement is a useful resource needed

to perform quantum operations. Entanglement entropy quantifies this resource and

even if computable in quantum field theories, it is quite hard to calculate explicitly.

However, in the context of gauge/gravity duality, (holographic) entanglement entropy

was proposed by Ryu and Takayanagi (RT) to be captured by the area of a minimal

surface in Anti DeSitter (AdS) space, which is extremely simple to compute.

We begin by using the holographic dictionary to derive the RT formula. This is

done by first considering smooth bulk geometries which are dual to n copies of the

boundary geometry glued in a particular way. The action of these geometries com-

putes the Renyi entropies Sn for any integer n. We give a prescription to analytically

continue the action to non-integer n and argue that, in the n → 1 limit, S1, the

entanglement entropy, is given by the area of a minimal surface, reproducing the RT

conjecture. That is, we reduced the RT proposal to the equality between bulk and

boundary partition functions, a standard entry in the dictionary.

We then generalize the previous formalism to account for corrections due to bulk

quantum fields (1/N corrections in the boundary). This allows us to derive a new

formula: boundary entanglement entropy is given by the area of the minimal surface

plus bulk entanglement entropy. This extends RT beyond the planar limit and we

present several predictions of the proposal.

Our exploration of holographic entanglement entropy continues by considering

different states: by comparing the quantum corrected entropy for nearby states we

obtain the modular hamiltonian operator in bulk perturbation theory. From this

expression of the modular hamiltonian, we derive that relative entropy is bulk relative

entropy and that the modular flow is the bulk modular flow.
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Chapter 1

Introduction

1.1 Holography: A crossroad of fields

High energy theory has historically been concerned with the study of very small

physics like fundamental particles and interactions or the theory of everything and

unification. In trying to understand strong interactions, string theory was discovered.

However, string theory was found out to be far more interesting, among other things,

it was shown to be a theory of quantum gravity: the unification between the gravita-

tional forces, which governs the evolution of the Universe, and quantum mechanics,

which dictates the probabilistic evolution of electrons and subatomic particles. The

realm of quantum gravity doesn’t necessarily concern the very small. Quantum effects

are important in cosmology: in the context of inflation, the quantum fluctuations of

the inflaton (primordial fluctuations) seed the large scale structure of the universe.

Quantum effects are also important in macroscopic black holes, they are responsi-

ble for its evaporation, as was argued in [1] . Black hole evaporation is necessarily

a quantum mechanical effect, however it is still not clear how this whole process is

completely compatible with quantum mechanics (information loss [2] ). So, even if

gravity has been technically quantized with the discovery of string theory, it is still
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far from clear how several paradoxes are practically solved in quantum gravity. In

fact, some people argue that an observer who falls into a black hole will hit a firewall

at the black hole horizon [3], and even if the general feeling is that this shouldn’t

happen, the community is confused about how to counter the firewall argument.

However, there is yet another approach into quantum gravity (motivated from

string theory) which might make the problem more tractable. In 1997 [4] proposed

the striking AdS/CFT duality: string theory in a “box” (Anti De Sitter space) is

dual to field theory in the boundary of the “box”. This is a weak/strong duality, when

the gravitational theory is weakly coupled, the field theory is strongly coupled. This

duality relates two very different theories and soon after the proposal an extensive

dictionary between quantities in gravity and in the field theory was developed.

On a different note, some strongly coupled systems studied by experimentalists

can be modeled by complicated field theories. It is hard to extract predictions from

these models, because long and elaborated computer simulations are often needed.

The dynamics of these systems are generally so complicated that it is impossible to

make progress analytically. However, AdS/CFT provides an insight into strongly

coupled field theory physics in terms of simple gravitational calculations. Even if

the duality is a property of a specific theory, it has been useful to understand the

properties of certain classes of strongly coupled systems.

More concretely, the dictionary has made it possible to understand the physics of

collisions of heavy ions in accelerators or exotic phases of matter like superconductiv-

ity, by just doing simple calculations. A considerable amount of the initial efforts in

holography was devoted to understand how one could study a variety of (boundary)

field theory phenomena in terms of the simpler calculations in gravity.

In this way, most of the developments in holography have been focused on using

AdS to understand the CFT . However, these two theories are still dual in the presence

of corrections to the classical and weakly coupled gravitational bulk theory. Thus,
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even if the boundary theory is complicated, it provides a proper definition of quantum

gravity. In this way, the AdS/CFT dictionary should be thought as a useful tool in

both directions. This powerful dictionary which was derived in the high energy theory

context is thus useful for a variety of other fields: condensed matter, high energy

phenomenology, cosmology, quantum gravity (quantum information theory),...

1.2 Holography and quantum gravity

Even if the AdS/CFT conjecture provided an explicit definition of quantum gravity

in terms of a holographic field theory, the idea that gravity is holographic is much

older.

In local quantum systems, the total Hilbert space factorizes into the product of

the Hilbert spaces at every point and the observables in this Hilbert space are local

operators. Gauge theories are also local, only gauge invariant observables can be

measured and they necessarily have support in more than one point. For example, in

electromagnetism one can measure the electric or magnetic field, but operators like the

vector potential are not physically observable. Furthermore, conserved charges, which

are normally defined in a time slice, are better understood as boundary observables.

For example, Gauss’ law implies that the electric charge contained in a spatial region

is equal to the charge measured in the associated flux surface. Gravity is also a

gauge theory: nothing in gravity can depend on the choice of coordinates and thus

any physical observable that one considers should be coordinate independent. In this

case, the associated conserved charge is the Hamiltonian, the operator which governs

time evolution. In analogy with the electric charge in the electromagnetic case, the

energy in some space region can be obtained by measuring the Hamiltonian in the

boundary of the region. Given that any quantum state has a unitary time evolution

and that the Hamiltonian is a boundary term, it seems suggestive to think that
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maybe one should associate a Hilbert space to the boundary where the Hamiltonian

has support. This would imply that the degrees of freedom in gravity are holographic:

they live in one less dimension.

Black hole entropy

A more concrete realization of the holographic principle is the fact that black holes

are thermodynamic systems: they have a temperature and an entropy given by the

Bekenstein-Hawking formula

SBH =
A

4GN

(1.1)

with A the area of the black hole horizon. From this we learn that even if usual

thermal systems have an entropy that scales like the volume of space, thermal systems

in quantum gravity seem to scale like the area. The holographic principle [5] suggests

that one should give serious consideration to this boundary theory, and think about

this entropy as the thermal entropy of a theory which lives in one less dimension.

Even if the BH formula was originally proposed from the fact that it satisfies a first

law, it was later derived [6] by thinking about the classical action of the black hole

background as the saddle point approximation to the euclidean quantum gravity path

integral, which equates the classical action with the free energy. However, there is no

general first principle to count the gravitational degrees of freedom and obtain this

entropy from some microscopic counting.

Black hole entropy as entanglement entropy

After this thermodynamic interpretation, it was suggested [7] that another natural

interpretation would be to think of this entropy as the contribution from all fields

(including gravitational) to the entanglement entropy of the black hole exterior. Even

if this seems natural, it is not clear how to do this calculation in gravity. Note that

these two ways of thinking about it: the black hole being a thermal system or thinking

about the exterior in terms of tracing out interior degrees of freedom are equivalent.
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In the previous section, I described how AdS/CFT is useful to understand strongly

coupled field theories from simple classical relativity calculations. However, given that

we know so little about (even perturbative) quantum gravity, we can use the field

theoretical definition of the Hilbert space to understand better how to do certain

things in quantum gravity.

One could think of this as the guiding principle of this present work: by un-

derstanding how the dictionary works for questions concerning splitting (boundary)

Hilbert spaces, one might be able to probe complicated properties of quantum gravity.

There are lots of questions in quantum gravity that we can explore in this way: how

can one split a given spacetime into subregions? Field theories are local and thus the

Hilbert space factorizes, but it is far from clear to what extent one could do something

like this in gravity. If there is some notion of quantum gravity for subregions, can

one compare different states in the same subregion, ...? In this work, we are going

to pursue this line of thought by doing concrete calculations in AdS/CFT . Even if

these questions are interesting enough in the AdS/CFT context, we also expect that

they will provide with good intuition for how quantum gravity works more generally.

1.3 Entanglement in quantum mechanics

A characteristic property of quantum systems is that they can be entangled. On a

first sight, entanglement can appear very similar to classical correlations. Consider a

magician who was a white and a black ball. He gives one of them to Alice and the

other to Bob, and the magician assigns the balls randomly, so that, if the experiment

is repeated several times, they will get each colors the same number of times. When

Alice looks at her ball, she will know the color of Bob’s ball. So, the outcome of Alice

measurement will be correlated with that of Bob. This correlation is classical: before
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observing the ball its color is already determined and the magician could know which

color each person got.

One can try to repeat a similar experiment using quantum mechanics [8]. The

magician now has a pair of entangled spins and he gives one to Alice and the other

to Bob, the spins are prepared so that if Alice measures the spin in some direction it

will point up half of the times and down half of the times. Her measurement will be

perfectly anticorrelated with that of Bob, once Alice measures that the spin is up, she

will know that, if Bob’s measures the spin in the same direction, it will be pointing

down. Naively, the outcomes of the measurement look the same as in the classical

case. However, in the quantum case, spin doesn’t have a definite direction before

being measured, there are no hidden variables which could explain their outcomes.

For example, we can consider Alice and Bob measuring their respective correlated

particle in the x, y axes, so that a measurement in the x axes can give an outcome

±x. The simplest way to see that there is no hidden variables theory is by considering

an experiment where Alice and Bob measure their spins in orthogonal directions. If

Bob measures his spin in x direction and gets +x and Alice measures her spin in

the y axes with outcome −y, a hidden variables theory would predict that Alice’s

spin is in the −x direction, because it is anticorrelated with Bob’s. However, after

measuring her spin the y direction and obtaining −y, a measurement of her spin in the

x direction will give +x with probability 1
2
. A way of summing up why entanglement

is different is that it induces correlations between non commuting observables, which

is not possible classically.

It is often useful to describe the quantum state restricted to a subsystem. If the

system is in a pure state, it will be described by a wave function |Ψ〉 and it will have

an associated density matrix ρ = |Ψ〉〈Ψ|. The reduced density matrix of a subsystem
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R is defined by tracing over R̄, the degrees of freedom which are not in R.

ρR = trR̄ρ (1.2)

This reduced density matrix can be diagonalized and the number of non-zero el-

ements quantifies how entangled this subsystem is with the environment. The Von

Neumann entropy of ρR provides with a measure of quantum entanglement, the en-

tanglement entropy:

SEE = −trρR log ρR (1.3)

This quantity can be understood as quantifying of the number of Bell pairs that

are shared between R and R̄.

1.4 Entanglement in QFT

Quantum field theories have a very entangled vacuum and thus, entanglement entropy

of subregions is divergent. In algebraic approaches to quantum field theory one never

considers entanglement entropy but instead there are other entanglement measures

that can be formally defined, like the relative entropy.

Despite of these divergences, the entanglement entropy of a subregion R can be

regularized by introducing a cutoff near the entangling surface ∂R. This regularization

is far from universal and thus there is some ambiguity in how one does it. However,

one can often extract some unambiguous information from the entanglement entropy.

Up to coefficients, the expression for the entanglement entropy in four dimensions

looks like:

SEE(R) =
A(∂R)

ε2
+ ...+ # log ε+ ... (1.4)

Here A(∂R) is the area of the entangling surface, so this first term is often called

”area law” . In this case the coefficient of the logarithmic term is universal. One
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can also get rid of these ambiguities by comparing the entropies of different states or

considering the mutual information.

Even after considering the previous points, the calculation of entanglement entropy

is hard. One can compute the density matrices explicitly for free fields and compute

its von Neumann entropy, and this is often calculated by putting the theory on a

lattice. More generally, only for specially symmetric situations one can make more

progress: for example, if one considers the vacuum state of an arbitrary Lorentz

invariant theory, the density matrix of half a region is thermal, this is the Unruh

effect, which is formalized in the Bisognano-Wichmann theorem.

In general, it is hard to get the density matrix functional explicitly for quantum

field theories. In order to avoid taking the log of a complicated matrix, one can equiv-

alently define the entanglement entropy as the analytic continuation of the partition

function of our theory in a different background. This is called the replica trick and

consists in instead evaluating trρnR. This object corresponds to the partition function

in a geometry where one inserts a conical excess around the entangling surface ∂R.

The entanglement entropy can be obtained by analytically continuing this conical

excess partition functions:

SEE = lim
n→1

1

1− n
(trρnR − ntrρR) (1.5)

Setting up the computation in this way makes it better defined: it provides a path

integral description of the entanglement entropy. However, it is still hard to complete

the calculation explicitly , unless there is some symmetry or one considers free fields.

Because of the intrinsic complications of computing entanglement entropy in quan-

tum field theories it was rather surprising when Ryu and Takayanagi (RT) [9] proposed

that, in holography, entanglement entropy has a simple expression. They suggested

that one should compute the area of the minimal bulk surface that ends in the bound-
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ary entangling surface:

SEE(R) = min
A(S)

4GN

, ∂S = ∂R (1.6)

This proposal passed several checks and in the next chapter we will provide a

derivation.

While the RT formula is very interesting by itself and it makes it easy to compute

entanglement entropy in strongly interacting field theories, it also provides a new

window to understand entanglement in quantum gravity. We will explore these ideas

in the next subsection.

1.5 Entanglement and spacetime

The beauty of RT’s proposal is that entanglement becomes a geometrical quantity.

The previous formula is not the first instance where this was observed though. In [10],

Maldacena described the thermofield double state, which can roughly be thought as

a particular quantum superposition of many different and disconnected geometries,

in terms of a unique, connected geometry. In this case, it looks like the massive

amount of entanglement between the two disconnected geometries is responsible for

gluing them. This fact (often dubbed EPR → ER) was further explored in [11] and

it is probably one of the most mysterious properties of quantum gravity. Mark Van

Raamsdonk suggested [12, 13] that maybe one should think about entanglement as

the ”glue of spacetime”.

Even if these ideas are very appealing, it is complicated to quantify under what

conditions geometries “emerge from entanglement”, because this necessarily involves

the dynamics of non-perturbative quantum gravity.

Another interesting direction is to understand to what extent the bulk subregion

between the RT surface and the boundary subregion R, the entanglement wedge, is
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dual to R. This is sometimes called subregion-subregion duality. From the boundary

point of view, there is a well defined Hilbert space of the subregion R, but since the

study of entanglement in quantum gravity has been less explored, it is less clear how

one traces out in the bulk. Because the bulk theory is gravitational, the only way

that we understand the bulk degrees of freedom is in the semiclassical approximation,

in terms of quantum fields in a curved background. This provides with the bulk

with a relatively simple Hilbert space, but once gravity is incorporated there are

lots of subtleties in how to define the Hilbert space of this bulk subregion (treating

the gravitons as perturbative fields) because in gauge theories there is no Hilbert

space factorization. However, the Hilbert space of the boundary subregion is well

defined, so it looks like one should be able to understand very non-trivial questions

in (perturbative) quantum gravity using AdS/CFT .

1.6 Main results

In this Dissertation, various aspects of entanglement in holography are studied. The

different chapters correspond to a selection of the author’s published work [14, 15, 16]

. The papers [17, 18, 19] that the author wrote during these years haven’t been

included in this thesis.

In the first chapter, we consider the dual geometries of boundaries which have

a conical excess 2π(n − 1) around the entangling surface ∂R. That is, we use the

established AdS/CFT dictionary to understand entanglement entropy, which allows

for a derivation of RT from the usual equality between boundary partition function

and bulk action. An important point is that these bulk geometries are smooth:

even if the boundary is singular, the bulk is regular and it satisfies the gravitational

equations of motion. This means that in order to compute the partition function in

the replicated geometry (which in gravity is given by the action of the gravitational
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solution), one has to solve some complicated non-linear equations. In general, it is

hard to get the partition function for any finite n − 1. However, in this chapter we

discuss how one should think about the n − 1 → 0 limit and how one can solve the

equations of motion perturbatively in n − 1. We observe the entanglement entropy

is given by the area of a special surface, and the equations of motion close to n − 1

determine that this surface has to be minimal. This provides a derivation for the RT

formula.

Since the previous construction is fairly general, one easily go beyond Einstein

gravity. In the next chapter, we consider the effect of quantum corrections in the

bulk. That is, we consider the 1/N (or h̄) corrections to the RT formula. A striking

property of RT is the fact that it is given by the integral of a local bulk quantity.

The quantum corrections have a contribution which is also a local integral in the RT

surface. However, there is also an important non-local contribution: one has to con-

sider the entanglement entropy of bulk fields in the region delimited between the RT

surface and the boundary. So, boundary entanglement has a geometric contribution

but there is also a non-local bulk entanglement piece.

Then we proceed to use the previous ideas to extract more general information

about our boundary region R. In particular, we study how one can think about the

boundary density matrix as an operator in bulk perturbation theory. We observe that

it can be given a very simple expression: the bulk entanglement entropy gives the

bulk density matrix but the area contribution becomes just a linear operator (within

the small subspace of bulk perturbations). This simple expression is obtained by

considering small perturbations of the density matrix. Having access to the density

matrix, one can consider other interesting quantities. For example, we discuss how the

relative entropy (a measure of entanglement which encodes how close are two states)

becomes the bulk relative entropy and how the modular evolution 1 is generated by

1A generalization of Rindler evolution for less symmetric systems.
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the bulk modular hamiltonian. These ideas also provide a framework to think about

subregion-subregion duality and we speculate how one could try to quantify it using

our observations.

To conclude, in this Dissertation we have studied in detail what the dual of en-

tanglement entropy in AdS/CFT is. We have shown that it is given by the area of

the minimal surface plus the bulk entanglement entropy and that the modular hamil-

tonian of a boundary subregion is the minimal area operator plus the bulk modular

hamiltonian. All this suggests that entanglement is dual to entanglement (in the

absence of strong back-reaction). In this way, one might expect that the RT for-

mula could be understood in terms of gravitational bulk entanglement, but it is not

completely clear how to compute entanglement entropy in (perturbative) quantum

gravity. These properties also identify a bulk subregion which captures the entan-

glement properties of the boundary subregion. Because the entanglement structure

of the two subregions is roughly the same, this presents a strong case for an exten-

sion of AdS/CFT to subregions. This is interesting by itself and this might also be

very helpful to understand how one should one think of subregions, reduced density

matrices and entanglement in perturbative quantum gravity.
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Chapter 2

Generalized gravitational entropy

2.1 Introduction

Originally the concept of entropy arose from equilibrium thermodynamics. However,

we know think of entropy as a measure of information. In particular, we can assign

an entropy to a general density matrix via

S = −Tr[ρ log ρ] (2.1)

By thinking about the thermodynamics of black holes the area formula for grav-

itational entropy was discovered [20, 21, 1]. Gibbons and Hawking introduced a

thermodynamic interpretation of euclidean gravity solutions with a U(1) isometry

[6] . The idea is that one considers Euclidean solutions with prescribed boundary

conditions. The boundary conditions, as well as the solutions, are invariant under

a U(1) symmetry1. These solutions can be viewed as describing the computation of

the partition function of a quantum theory in the classical approximation. In other

words, one thinks of the Euclidean gravitational action as logZ(β) = −SE,grav. Then

1Here we assume that there is a single U(1) symmetry, otherwise we need to add the corresponding
chemical potentials, etc.

13



the entropy, obtained as S = −(β∂β−1) logZ, is equal to the area of the codimension

two surface which is a fixed point for the U(1) symmetry in the bulk. Classically, the

boundary can be chosen to be any surface where we put boundary conditions. It can

also be an asymptotic boundary such as the AdS boundary.

(a) (b)

Figure 2.1: (a) A euclidean solution with a U(1) symmetry is interpreted as com-
puting the equilibrium thermodynamic partition function of the gravity theory. (b)
We consider a euclidean solution with a circle but without a U(1) symmetry. This
is interpreted as computing Tr[ρ] for an un-normalized density matrix in the gravity
theory. This is the density matrix produced by euclidean evolution.

Interestingly, one can extend the notion of gravitational entropy to situations

without a U(1) symmetry as follows.

Let us first consider a general quantum system. Its Euclidean evolution generates

an un-normalized density matrix

ρ = Pe−
∫ τf
τ0

dτH(τ) (2.2)

where we considered a general time dependent Euclidean Hamiltonian. We can com-

pute the entropy of this density matrix by the “replica trick”. Namely, first notice

that Tr[ρ] can be computed by considering euclidean evolution on a circle, identifying

τf = τ0 + 2π 2. Similarly, we can compute Tr[ρn] by considering time evolution over

2Throughout this chapter we set the coordinate length of the initial circle to 2π. Of course, its
physical length depends on the metric.
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a circle of n times the length of the original one, where the couplings in the theory

are strictly periodic under shifts of the original circle, H(τ + 2π) = H(τ).

We then can compute the entropy as

S = − n∂n [logZ(n)− n logZ(1)]|n=1 = −Tr[ρ̂ log ρ̂] ,

Z(n) ≡ Tr[ρn] , ρ̂ ≡ ρ
Tr[ρ]

(2.3)

here now ρ̂ is a properly normalized density matrix. This involves computing Z(n)

and then performing an analytic continuation in n.

Figure 2.2: Computing the entropy using the replica trick. (a) Euclidean solution
for n = 1. (b) Solution for n = 4. At the boundary we go around the original circle n
times before making the identification. We then find a smooth gravity solution with
these boundary conditions. The curves in the right hand side are schematically giving
the boundary conditions at infinity. We see that in (b), we simply repeat n times the
boundary conditions we had in (a).

Going back to the gravitational context, we can consider metrics which end on a

boundary. We assume that the boundary has a direction with the topology of the

circle. The boundary data can depend on the position along this circle but it respects
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the periodicity of the circle. We define the coordinate τ ∼ τ + 2π on the circle. We

can then consider a spacetime in the interior which is smooth. Its Euclidean action

is defined to be logZ(1). See 2.1 (b). We can also consider other spacetimes where

we take the same boundary data but consider a new circle with period τ ∼ τ + 2πn.

Their Euclidean action is defined to be logZ(n). These computations can be viewed

as computing Tr[ρn] for the density matrix produced by the Euclidean evolution. See

2.1 . If we are sufficiently diligent, we can find these actions, analytically continue

in n the corresponding answers and compute S as in (2.3) . This has been explicitly

done in [22, 23] for some examples in three dimensional gravity.

Note that we are implicitly assuming that gravity is holographic. We are imagining

that setting boundary conditions on some boundary defines the theory and that the

interior geometry is an approximation to the full computation. We do not know

how (and whether) holography works for general boundaries. Here we only need it

to be approximately valid so that this classical computation has the interpretation

of computing an approximate density matrix in some approximate theory. In cases

where the boundary is a true asymptotic boundary (such as a locally asymptotically

AdS boundary) the situation is well understood. This corresponds to computing the

entropy of a perfectly well defined density matrix in the dual field theory .

Interestingly, there is a simple conjecture for the final answer. The entropy is also

given by the area of a special codimension two surface in the bulk of the original

(n = 1) solution. At this surface the circle shrinks smoothly to zero size. The surface

obeys a minimal area condition.

S ≡ − n∂n [logZ(n)− n logZ(1)]|n=1 =
Aminimal

4GN

(2.4)

From now on, logZ(n) denotes the classical gravity action logZ(n) = −SGrav of the

nth solution. This formula was first conjectured by Ryu and Takayanagi in the context
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of the computation of entanglement entropy of conformal field theories with gravity

duals [9] (see [24] for a review3). Proving their formula amounts to proving the above

conjecture, as we explain below. Notice that (2.4) can be viewed as a statement about

classical general relativity. It is a relation between the actions for classical solutions

that are produced by the replica trick and the area of the minimal area solution with

n = 1. Of course, for solutions with a U(1) symmetry, (2.4) reduces to the standard

Gibbons-Hawking computation. In that case, the U(1) symmetry also ensures that

the horizon is a minimal surface, with zero extrinsic curvature.

In this chapter we will give an argument for (2.4) based on reasonable assumptions

regarding the analytic continuation of the solutions away from integer values of n.

We will also explain why proving (2.4) is equivalent to proving the Ryu Takayanagi

conjecture. The Ryu-Takayanagi conjecture for the case of asymptotically AdS3 pure

gravity was proven in [22, 23]. Previous arguments include [27] , whose assumptions

were criticized in [28] .4

This chapter is organized as follows. In section 2 we perform some explicit com-

putations in a simple example. In section 3 we review the derivation of the entropy

formula for the case with a U(1) symmetry. In section 4 we present the arguments

for the main formula (2.4) . There we explain how the solution looks for n close

to one. We also derive the minimal area condition for the surface. In section 5 we

discuss the connection to entanglement entropy in field theories with gravity dual.

In section 6 we present the conclusions. In the appendices we present some further

explicit examples and more details on the computations.

3 See [25, 26, 27] for related work.
4 Fursaev [27] took the solution for n = 1 and set τ ∼ τ + 2πn everywhere in the bulk. This

introduces a conical singularity in the bulk. As noted by Headrick [28] , for integer n, one should
instead consider solutions which are non-singular in the bulk.
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2.2 A simple example without a U(1) symmetry

Since our discussion has been a bit abstract, let us discuss a very simple concrete

example. This example will also motivate some assumptions that we will make later.

Let us start with the BTZ geometry

ds2 =

[
dr2

(1 + r2)
+ r2dτ 2 + (1 + r2)dx2

]
(2.5)

This metric has a U(1) isometry along the circle labeled by τ , τ ∼ τ + 2π. All

functions will be invariant under translations in x. This direction will not play any

role in this discussion and we take it to be compact of size Lx. Computing the entropy

for this solution gives the standard area formula, S0, for this solution.

We now add a complex, minimally coupled, massless scalar field φ. We set bound-

ary conditions that are not U(1) invariant

φ = ηeiτ , at r =∞ (2.6)

We now compute the gravitational action to second order in η for the family of

solutions described above. The metric is changed at order η2, but since the original

background obeys Einstein’s equations, there is no contribution from the gravitational

term to order η2. So, to this order, the whole contribution comes from the scalar field

term in the action.

Namely, for the nth case, we need to consider a spacetime with the same boundary

conditions as in (2.6) but where τ ∼ τ + 2πn. This implies that the spacetime in the

interior is

ds2 =

[
dr2

(n−2 + r2)
+ r2dτ 2 + (n−2 + r2)dx2

]
(2.7)

And we need to consider a scalar field in this spacetime. We can write the wave

equation. The solution of the wave equation that is regular at the origin and obeys
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(2.6) at infinity is

φ = ηeiτfn(r) , fn(r) = (nr)n
Γ(n

2
+ 1)2

Γ(n+ 1)
2F1

(n
2
,
n

2
+ 1;n+ 1;−(nr)2

)
(2.8)

Note that fn → 1 as r →∞.

We now evaluate the gravitational action for every n. We evaluate it to second

order in η, so we consider the quadratic action for the field φ. Using standard formulas

we can write

logZ(n)|η2 = −
∫
AdS3

|∇φ|2 = −(2πn)Lx
[
r3φ∗∂rφ

]
r=∞ =

= (2πLx) [1− n log n+ nψ(n/2) + (linear in n)] (2.9)

where Lx is the length of the x direction and ψ is the Euler ψ function. The terms

linear in n include divergent terms that should be subtracted. However, they do not

contribute to the entropy (2.3) .

We analytically continue in n and compute the entropy via (2.3) to find

S = S0 + η2πLx(4−
π2

2
) (2.10)

We can now compare this with the answer we expect from the area formula. This

non-zero configuration for the scalar field changes the geometry to second order in η.

Thus it produces a second order change in the area of the horizon. This change can

be computed from Einstein’s equation. We obtain the same answer (2.10) . This is

done in detail in appendix A, where we also consider a scalar field with an arbitrary

mass.

So, we have explicitly checked the conjecture for this special case. Now, let us

make some remarks.
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We considered a complex scalar field, but the computation can be done also for

a real scalar field with boundary conditions φ = η cos τ at infinity. The result is

essentially the same. See appendix A.

Notice that the solution for the nth case has a Zn symmetry. This is a replica

symmetry of the boundary conditions which extends to the bulk solution. So, in this

case we are not breaking the replica symmetry. Notice that r = 0 is a fixed point of

the action of the Zn replica symmetry for all n > 1. In this case, the metric has a

U(1) symmetry. However, the full scalar field configuration is only symmetric under

the Zn
5.

Here we have computed logZ(n) and then analytically continued the answer. The

geometry (2.7) is well defined also for non-integer n and we can trivially continue it

to non-integer values of n, and it remains smooth. We could ask whether we can also

analytically continue the whole field configuration to non integer values of n. Notice

that as we vary n, the τ dependence at the boundary is kept fixed. Thus, even for

non-integer n, we will keep the same boundary condition. This boundary condition

is not compatible with a non-integer period for τ . We will ignore this. In other

words, we will integrate τ between [0, 2π] and multiply the result by n. However, as

we go to r = 0, we find that the scalar field behaves as φ ∼ rneiτ , which leads to a

singularity for the scalar field at r = 0. The scalar field, or its stress tensor do not

diverge if n > 1. In other words, this appears to be a relatively harmless integrable

singularity. This singularity seems physically questionable. But we are not trying to

give a physical interpretation to the solution with non-integer n. We are only trying

to define it mathematically, as an intermediate step in computing the replica trick

answer. One could worry that if we allow singularities, then the solution will not be

uniquely defined. However, we are allowing a very specific behavior which determines

a unique solution for given boundary conditions. More explicitly, note that when we

5 In this case there is a U(1) symmetry which is shift in τ combined with a phase rotation of the
complex field. But for a similar computation with a real scalar field we only have the Zn symmetry.
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solve the wave equation near r ∼ 0, we get two solutions rneiτ and r−neiτ . We set to

zero the coefficient of the second solution at the origin. This prescription uniquely

selects a solution, both for integer and non-integer n.

This gravity theory in AdS3 with a massless scalar field can arise from a Kaluza

Klein reduction of a higher dimensional theory. For example, it can come from a ten

dimensional solution of the form AdS3 × S3 × T 4. Then the massless field can be an

off-diagonal component of the metric on of the four torus [29, 30]. More explicitly,

we can deform the metric of the four torus as

ds2
T 4 = e2φ1dy2

1 + e2φ2dy2
2 + e−2φ1dy2

3 + e−2φ2dy2
4 (2.11)

where φ = φ1 + iφ2. We see that the singularity of the field φ at the origin translates

into a singularity for some of the Riemann tensor components. Let us consider n =

1+ε. Then since φ ∝ r1+εeiτ this leads to a singularity in some of the Riemann tensor

components Rαiβi ∼ ε
r

(no sum over i), where i are the directions on the four torus

and α denotes the directions along the two transverse components (labeled also by r

and τ) Despite these singularities the action is finite, as we saw when we computed

it explicitly.

An alternative way to view the solution labeled by n is the following. We consider

the τ circle to have period 2π but introduce a conical singularity at the origin with

opening angle 2π/n. This is not the same as the gravity solution with n = 1 since

the field configuration has to adjust to the presence of the conical singularity. Then,

when we evaluate the gravitational action, we integrate τ over [0, 2π] but multiply

the resulting answer by a factor of n. This factor of n arises because the real period

of τ is 2πn instead of 2π. It is important that we evaluate the gravitational action

without introducing any contributions from the tip of the conical singularity, since the
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full space (with the right period for τ) is non-singular 6 7 . This picture makes sense

both for integer or non-integer n.

2.3 Computation of gravitational entropy when

there is a U(1) symmetry

In this section we will describe the computation of the entropy using Euclidean meth-

ods in a way that it emphasizes the fact that the contribution comes form the horizon.

This has been discussed by various authors in a similar form [21, 31, 32, 33, 34, 35].

Here we say it two ways that we particularly liked.

2.3.1 Entropy from rounded off cones

Setting the period of the circle to be τ ∼ τ + 2πn, then we find that the formula for

the entropy can be written as

S = −n∂n [logZ(n)− n logZ(1)]n=1 (2.12)

Let us consider this expression for n close to one. We interpret the first term in the

square brackets as the correct, smooth solution when n is not one. We interpret the

second term as the solution for n = 1 but with a τ which has period τ ∼ τ + 2πn.

This solution has a conical singularity at the origin. However, we do not include

any contribution from the conical singularity. We simply integrate the gravitational

action density away from the tip.

We now evaluate the difference in the square brackets in (2.13) by adding and

subtracting a smooth geometry which is the same as that of the cone far away from

the origin, but it is a regularized cone near the origin, see 2.3.1 . This smooth

6This looks superficially similar to what was discussed in [27], but it is different in detail.
7 This point of view was also suggested to us by T. Faulkner.
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Figure 2.3: A particular combination of geometries that is useful for computing
the entropy. The first geometry is the correct solution with period 2πn. The last
geometry contains a conical singularity. It is the solution with n = 1 but with the
circle identified after τ → τ + 2πn. For n = 1 the deficit angle of the cone is very
small and it has been greatly exaggerated here for artistic reasons. The two middle
ones are identical and correspond to a regularized version of the last solution. They
only differ for r < a, where a is small regulator. This is not a solution, it is an
off-shell configuration. All of the configurations obey the same boundary conditions
at infinity.

geometry is not a solution of the equations of motion of the theory, it is an off-shell

configuration. We are simply introducing it to help us perform the computation. It

is possible to choose this off-shell configuration in such a way that the metric differs

only by an amount of order n− 1 from the true solution.

Thus we get

S = −n∂n
[
(logZ(n)− logZoff(n)) + (logZoff(n)− n logZ(1))

]
n=1

(2.13)

Each of the terms in the brackets is the action for one of the configurations in 2.3.1

. Since the off shell configuration that corresponds to a regularized cone differs by a

first order term in n−1 from a solution of the equations, we see that we can interpret

the first parenthesis as the result of doing a first order variation away from a solution
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(the solution with period n). This first order variation vanishes due to the equations

of motion for the solution with period n. Notice that both metrics obey the same

boundary conditions at the boundary, so that there are no boundary terms8.

So all that remains is the second parenthesis. The second parenthesis contains the

difference between a smooth cone and a regularized cone. This receives a contribution

only from the region near the tip of the cone. This contribution is extensive in the

area of the horizon, namely the area of the surface transverse to the tip of the cone.

The region near the rounded tip of the cone contains an integral of
∫
d2x
√
gR along

the cone directions which gives

∫
Reg Cone

d2x
√
gR ∼ 4π(1− n) (2.14)

Thus, the final answer has the form

S =
1

16πGN

(Area)

(
−n∂n

∫
Reg Cone

d2x
√
gR

)
=

Area

4GN

(2.15)

One can consider a metric that explicitly regularizes the cone, such as [34]

ds2 = dr2g2(r) + r2dτ 2 (2.16)

where g = n+o(r2) at r ∼ 0 and g = 1 for r > a, where a is a small distance which sets

the size of the regularization. Inserting this metric into the gravitational action we get

(2.14) . One can choose a completely explicit function such as g = 1 + (n− 1)e−r
2/a2

,

for example. In this case we can see explicitly that the metric perturbation is of order

(n− 1).

8The absence of boundary terms is clearest if we write the action in a non-manifestly covariant
form using only first derivatives of the metric. Then the fact that the two configurations obey the
same boundary conditions for the metric implies that there are no boundary terms.
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2.3.2 Entropy from apparent conical singularities

Another way to think about this problem is as follows. First we note that, since the

solutions are invariant under time translation, the evaluation of logZ(n) is the same

as

logZ(n) = n[logZ(n)]2π (2.17)

where [logZ(n)]2π is the gravitational action density for the solution labeled by n but

integrated over τ from [0, 2π] (instead of [0, 2πn]). We can now write the entropy as

S = −n2∂n[logZ(n)]2π (2.18)

Note that the solution labeled by n is a smooth geometry if the τ circle has period

2πn. On the other hand, imagine we wanted to view it as a configuration where the

τ period continues to be 2π. In that case, it is a geometry with a conical singularity

whose opening angle is 2π/n. Thus we can view

[logZ(n)]2π (2.19)

as the gravitational action of a configuration with τ = τ + 2π but with a conical

singularity with opening angle 2π/n, without including any curvature contribution

from the conical singularity. Then we see that the expression of the entropy (2.18)

involves taking a derivative with respect to n. When we change n we are changing the

opening angle of the singularity. In addition, we are changing the metric and other

fields everywhere since they have to adjust to this new strength of the singularity.

However, since the original solution (the solution with n = 1) is a solution of the

equations, we would naively expect that a first order variation of the metric and

other fields should vanish due to their equations of motion. This naive expectation

is essentially right, except for the fact that we are changing the boundary conditions
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at the origin, since the strength of the conical singularity is being changed. Thus,

the only change in the action comes from a boundary term. In other words, when we

change n the action changes as

−∂n[logZ(n)]2π|n=1 =
∫
Eg∂ng + Eφ∂nφ+

+ 1
8GN

∫
r∼0

dyD−2√g(∇µ∂ngµr − gµν∇r∂ngµν) = A
4GN

(2.20)

where Eg and Eφ are the equations of motion for the metric and other fields, which

vanish. Here y are the coordinates along the r = 0 surface. The boundary term

vanishes at the large r boundary since we are choosing boundary conditions in such

a way that the variation of the action gives the equations of motion without extra

boundary terms. On the other hand, at the horizon (at r = 0), we do get a contribu-

tion from the boundary term. This boundary term produces the area contribution.

Note that the n derivatives of the metric are evaluated at the horizon. For exam-

ple, in the parametrization ds2 = n2dr2 + r2dτ 2 near the origin, we get, as the only

non-vanishing component, ∂ngrr|n=1 = 2. With these expressions we can evaluate the

parenthesis in (2.20) and obtain 2/r.

This derivation easily generalizes to theories with higher derivative actions, giving

the Wald entropy [36, 37, 38].

Note that in both cases we used explicitly the locality of the action along the τ

direction. It would be interesting to find the corresponding formula in weakly coupled

string theory exactly in α′.
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2.4 Argument for the entropy formula (2.4)

2.4.1 Properties of the metric for n integer

For n = 1, the boundary contains a circle which we label by the coordinate τ . Recall

that the boundary is the surface where we are putting boundary conditions. This

circle is non-contractible on the boundary, but it can be contractible in the interior

of the geometry. Here by boundary, we mean the boundary where we set boundary

conditions for the gravitational action. It need not be an asymptotic boundary.

The metric and all fields are periodic on this circle. Let us collectively denote

these fields as ψ(τ), with

ψ(τ) ∼ ψ(τ + 2π) (2.21)

Of course, the fields depend on other coordinates, but here we are highlighting their

τ dependence. We impose boundary conditions

ψ(τ)|Boundary = ψ̂B(τ) , ψ̂B(τ) = ψ̂B(τ + 2π) (2.22)

where we specify the functions ψ̂B(τ), which are periodic.

The solution with n > 1, has exactly the same boundary conditions (2.22) , but

we require the periodicity τ = τ+2πn on the τ circle. This implies that the boundary

conditions have a Zn symmetry. We assume that the bulk solution continues to have

this Zn symmetry.9.

9

In principle, the replica Zn symmetry can be broken. Our discussion assumes that it is not
broken. The simplest gravity solutions can also develop other instabilities. For example, if one
considers gravity in AdSd+1 with a boundary Hd−1 × S1. If the radius of S1 is equal to the radius
of Hd−1 then the full solution is AdS, viewed as a black brane with a hyperbolic spatial section.
If we make the S1 n times larger, then for large n, we approach an extremal black hole with an
AdS2×Hd−1 near horizon geometry. This can lead to bad tachyons for m2R2

AdSd+1
< −d/4. Thus if

the original AdSd+1 has tachyons in the allowed range −d2/4 ≤ m2R2
AdS < −d/4, then we will have

an instability. This is similar to the discussion of [39] , where an extremal Reissner-Nordstrom black
brane in AdS4, with a near horizon geometry AdS2×R2 was considered. Good tachyons in AdS4 can
be bad tachyons in the AdS2 region if − 9

4 < m2R2
AdS < − 3

2 . See [40] for further discussion. Here we
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Each of the solutions for n > 1 has a special codimension two surface which is

left invariant by the action of Zn. We will focus on this surface. We can choose a

coordinate r which is a radial coordinate away from this surface and an angle τ . The

true angle around the surface is really α = τ/n, we have chosen τ to have the same

period as the one we have at infinity (α ∼ α+ 2π). The metric in the two directions

transverse to this surface has the form

ds2 = n2dr2 + r2dτ 2 + · · · (2.23)

where the factor of n comes from demanding that there is no singularity at r = 0.

In addition, all fields are required to have an eikτ dependence, with integer k. This

comes from the period of τ and the Zn symmetry. Thus, a scalar field would behave

as rneiτ ∼ rneinα near the origin, as results from demanding that it is non-singular.

As a side remark, notice that if the bulk space has no fixed points under the Zn

action, then this means that we can choose the coordinate τ in the interior so that

this circle never shrinks. An example is a space with topology Rd−1 × S1, but with

a metric that depends on the coordinate along the S1. In these cases the entropy is

zero. The reason is very simple, the solution for the nth replica is the same as the

solution with n = 1 but with a longer circle so that logZ(n) = n logZ(1). Here, of

course, we used the locality of the classical action.

2.4.2 Metric for n non-integer

Here we make some assumptions on the form of the metric when n is not an integer.

We will continue to impose exactly the same boundary condition (2.22) , which is

periodic with period 2π. This is not compatible with τ → τ + 2πn. Now, in the

assume that we have no dangerous tachyons that can lead to these instabilities. Similar instabilities
were observed computing the Renyi entropies of circular regions in the three dimensional interacting
O(N) model, we thank Igor Klebanov for this observation .
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region where the τ circle has positive size, we can ignore this problem and think of τ

as being non-compact. When we evaluate the action, we can integrate the τ direction

from 0 to 2π and then multiply by n.

However, we expect that there is still a surface where the τ circle shrinks to

zero. For the two dimensions transverse to this surface we impose that the metric

continues to behave as in (2.23) , even though n is not an integer. The rest of the

fields, including other components of the metric, are chosen so that they are periodic

in τ → τ + 2π as in (2.21). This implies that the field configuration is singular at

r = 0. However, we expect that this singularity is as harmless as the one we had for

the scalar field in section 2 .

This is seems a reasonable assumption. As evidence for its validity we can point

to the explicit example mentioned in section 2 .

An equivalent way to specify the solutions is to compactify the τ circle to τ+2π in

all cases (all values of n) and demand that there is a conical defect angle with opening

angle 2π/n in the interior. We do not introduce any contribution to the action from

the tip of the cone. In addition, we multiply the gravitational action by a factor of n.

This is mathematically equivalent to what was discussed above and the reader can

choose the preferred interpretation.

Note that this is similar to introducing a cosmic string (or cosmic D − 3 brane)

with opening angle 2π/n in the original solution, with the metric backreacting as

necessary to account for its presence.

As n→ 1 the solution goes over to the solution with n = 1. Thus, this analytically

continued solution is close to the n = 1 solution and we can expand it in powers of

n− 1.
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2.4.3 Derivation of the minimal surface condition

We emphasized that for n > 1 we have a special surface where the circle shrinks,

and is fixed under the Zn action. But for n = 1 there is no obvious special surface,

since there is no unique way to choose the coordinate τ in the interior once it is not

associated to a U(1) isometry. So, when we expand the solution in n − 1 we need

to select a surface. Motivated by the Ryu-Takayanagi conjecture we want to select

a minimal area surface. In this subsection we will explain the origin of this minimal

area condition. The final conclusion is that the condition comes from demanding that

the solution obeys the Einstein equations to leading order in n−1. This derivation is

essentially the same as the derivation of the equations of motion for a cosmic string

(or D − 3 brane) from the behavior of the metric near the conical singularity. This

problem was analyzed previously in [41, 42].

Two dimensional dilation gravity

It is good to start with a simple situation first. For that purpose we will consider

a two dimensional dilaton gravity where the action is

−SGrav =
1

16π

∫
d2x
√
ge−2ϕ

[
R + 4(∇ϕ)2 + · · ·

]
(2.24)

where the dots indicate other fields, or a potential for ϕ, etc. Notice that if we have a

solution with a horizon, then e−2ϕ at the horizon plays the role of the area in Planck

units of the higher dimensional gravity solutions. In this case the codimension two

surface is just a point. The minimum area condition is that e−2ϕ is a minimum (or

really an extremum) at this point. We will derive this condition from demanding

that the configuration for small ε ≡ n − 1 obeys the linearized field equations near

r = 0. In other words, expanding the fields around the n = 1 solution, and assuming

the periodicity condition for the fields, (2.21) , we will see that we can only obey the

equations if ∂iϕ = 0.

30



Let us say that as n→ 1 the special surface goes over to some point of the n = 1

manifold. Let us pick this point to be the origin in some coordinate system x1, x2.

Then the metric of the n = 1 solution around this point is ds2 = dx2
1 + dx2

2 + o(x2).

The field ϕ is regular at this point. Now, for n−1 = ε we expect a metric of the form

ds2 = e2ρ(dx2
1 + dx2

2), with e2ρ = r2( 1
n
−1), as r → 0. Then to first order in ε we have

δρ ∼ −ε log r to be the first order solution. We consider the two following equations

for two dimensional dilaton gravity

0 = e−2ϕ(4∂zϕ∂zρ+ 2∂2
zϕ) + Tmatter

zz

0 = e−2ϕ(4∂z̄ϕ∂z̄ρ+ 2∂2
z̄ϕ) + Tmatter

z̄z̄ (2.25)

where z = x1 + ix2, z̄ = x1 − ix2. Here Tmatter denotes the stress tensor for the

rest of the fields of the theory, coming from the dots in (2.24) . Expanding the first

equation to first order we find

−2∂zϕ(0)
ε

z
+ 2∂2

zδϕ+ δTmatter
zz = 0 (2.26)

and a similar equation by expanding the second. Here ∂zϕ(0) is the derivative of the

field for the n = 1 solution at the origin. It is just a z independent constant. Since

the matter stress tensor is not expected to be singular at order 1/r, we find that

∂2
zδϕ ∝

ε∂zϕ(0)

z
, ∂2

z̄δϕ ∝
ε∂z̄ϕ(0)

z̄
(2.27)

up to terms that are less singular as r → 0. Now we assume that the solution for

δϕ has a fourier expansion with integer powers of eiτ . The first equation in (2.27)

suggests that we try a solution proportional to δϕ ∝ z log z. However, the periodicity

condition under shifts of τ suggests that we should consider δϕ ∝ z log(zz̄). However,
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this is not a solution of the second equation. Thus this implies that the gradients of

the field should vanish at the origin.

More formally, we can argue as follows. The periodicity condition implies that if

we take the τ derivative of any field and integrate over τ between zero and 2π, we

should get zero. This is true both for δϕ and its derivatives. In particular, note that

the following combination of derivatives gives

∂τ [(r∂r − 1)∂zδϕ] ∝ (z∂z − z̄∂z̄)(z∂z + z̄∂z̄ − 1)∂zδϕ ∝ ε∂zϕ(0) (2.28)

where we used both equations in (2.27) . Now the integral over τ of (2.28) should

be zero, according to our assumption about the periodicity of δϕ. This then implies

that ∂zϕ(0) = 0.

In summary, in this case we found that the condition comes from the zz and z̄z̄

components of the Einstein equations. In higher dimensions we expect that this will

come from Einstein’s equations in the directions normal to the surface.

Note that if we changed the coefficient of the dilaton kinetic term in (2.24) from

4(∇ϕ)2 to (4 + σ)(∇ϕ)2, then we would be adding terms of the form σ∂zϕ∂zϕ to the

equations in (2.25) . Expanding around the background solution such terms lead to

contributions that are subleading, in the expansion around the origin, compared to

the terms already taken into account in (2.27) . Thus, if we had a two dimensional

action with a different coefficient for the dilaton kinetic term, we would have reached

the same conclusion10.

Einstein gravity in D dimensions

We now go back to the case of Einstein gravity. In general, we can expand the metric

10This is to be expected since this coefficient can be changed by a field redefinition of the metric.
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of the n = 1 solution around the special surface as

ds2 =dr2 +R2dτ 2 + bidτdy
i + gijdy

idyj ,

gij =hij + r cos τK1
ij + r sin τK2

ij + o(r2)

R =r + o(r3) , bi = o(r2) (2.29)

where r is coordinate normal to the surface and yi are coordinates along the surface.

Here Kα
ij are the two extrinsic curvature tensors. hij depends only on yi but not on r

or τ . When we deform away from n = 1 we assume that we cannot change the period

of the cosines above.

When n = 1 + ε some of the metric components generically go like r1+ε. This can

give rise to terms in the equations of motion going like 1/r. These terms can only

come from situations where we have two derivatives along the transverse directions

(the r and τ directions). Such terms in the equations of motion are the same as

the ones we would obtain by performing a dimensional reduction from D dimensions

to the two transverse directions. This brings us back to the previous case. More

explicitly, we write the full D dimensional metric as

ds2 = e2ρ(dx2
1 + dx2

2) + e−
4ϕ
D−2 ĝijdy

idyj + o(r2) , det(ĝij) = 1 (2.30)

where ĝij is the transverse metric appearing in (2.29) but rescaled so that its deter-

minant is one. The off diagonal terms in (2.29) do not contribute to terms of order

1/r in the equations of motion. Both ĝij and ϕ depend on all the coordinates, the

yi and the xi. Here we have pulled out the overall volume factor of the transverse

space and parametrized it by ϕ. Dimensionally reducing to the first two dimensions

gives us (2.24), but with a different coefficient for the dilaton kinetic term. Thus, we

obtain the same conditions that ∂xαϕ = 0 for α = 1, 2. Now if we translate between
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ϕ and the original metric (2.29) we find that

−4ϕ = log(det(hij)) + x1K1 + x2K2 + o(r2) , Kα = hijKα
ij (2.31)

where Kα are the traces of the extrinsic curvature tensors. We then see that the

condition ∂αϕ = 0 implies that

K1 = K2 = 0 (2.32)

Namely, the traces of the extrinsic curvatures should vanish. There are two directions

that are transverse to the surface so we have two relevant extrinsic curvatures. These

coincide with the equations of motion for a minimal area surface. There are two

transverse directions to the surface and thus two equations. In appendix B we derive

(2.32) directly in D dimensions, without doing the dimensional reduction.

Note that the non-trace part of the extrinsic curvatures are not constrained to

vanish. In fact, already in our simple example of section 2 we have non-vanishing

extrinsic curvature if we interpret the scalar field as coming from a component of a

higher dimensional metric as in (2.11) .11

2.4.4 Computation of the entropy using the cone method

Once we have established the form of the solution, we can compute the entropy using

the cone method as explained in section 3. The arguments are similar, but one has

to check that the mild singularities we discussed above cause no problems.

Let us discuss this first for the case of AdS plus a scalar field discussed in section 2.

There, the singularity is only present in the scalar field which behaves as φ ∼ rεreiτ .

With this mild singularity, if we integrate by parts in order to use the equation of mo-

11 More explicitly, in the notation of that section, if the field at the origin goes as φ = reiτ this
leads to φ1 = r cos τ = x1 and there is an extrinsic curvature component K1

y1y1 = −K1
y3y3 using the

coordinates (2.11) and (2.5) for the 3-d part.
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tion for φ, it is clear that we do not run into any problem at r = 0. The most dangerous

term seems to come from the variation of δ
∫
drr(∂rφ)2 = 2

∫
drr∂rφ∂rδφ→ r∂rφδφ|0.

However, δφ would also vanish at the origin if we are considering the variations that

come from varying n in the solution. In other words, when we compare the correct

configuration with n − 1 > 0 and a regularized cone, we can consider a regularized

cone where φ has the same type of singularity at the origin. This shows that the first

parenthesis in (2.13) vanishes.

The second parenthesis only gives us something interesting if we consider terms

that have two derivatives acting on the metric, otherwise their contribution is going

to be small as we remove the regulator. Thus, only the metric in the two directions

transverse to the minimal surface are relevant. And in those dimensions the compu-

tation reduces to the usual one, with the contribution coming only from the curvature

term in the action.

In conclusion, evaluating the differences in (2.13) we find that the answer is equal

to the area, as we wanted to prove to argue (2.4) .

The discussion so far was completely local in the directions transverse to the

“horizon”. Here by horizon we mean the point in the two transverse directions where

the circle is shrinking to zero size. In some cases this “horizon” can have multiple

disconnected regions. Then, we should sum over the areas of each of the horizons.

Even when we have multiple horizons, the period of the τ circle is the same in the

whole solution.

2.4.5 A comments on other U(1) symmetries

Throughout this discussion we have focused on the particular geometric circle that

we used to define the density matrix and the replica trick. We considered cases where

we have no translation symmetry along the circle. However, we can have other U(1)

symmetries. As a simple example, we can have a U(1) gauge field in the bulk. Then
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as in the ordinary case, [6] , the integral of the gauge field along the τ circle should

vanish at the origin
∫ 2πn

0
dτAτ

∣∣∣
r→0

= 0 (up to global gauge transformations), where

the τ circle shrinks. This should hold for all n, both integer and non-integer. At the

boundary we can fix the holonomy of A along the τ circle as we please. In order to

compute the entropy of the density matrix with a chemical potential we should fix

the integral µ̂ ≡
∫ 2π

0
Aτ at the large r boundary. If we keep everything else fixed

at the boundary but we vary µ̂, this has the interpretation of changing the density

matrix ρ → eiµ̂Qρ where Q is the charge associated to the U(1) symmetry. We can

compute the entropy of this density matrix by treating this boundary condition as

we treated all other boundary conditions. Namely, Aτ (τ) is kept fixed. Therefore its

circulation over the τ circle of length 2πn is nµ̂. Of course, if the holonomy in the

τ circle is different at the origin (r = 0) than at the boundary, then we will have a

non-zero field strength in the bulk. The computation of the entropy is identical to

what we discussed in general.

This other U(1) symmetry can also be an ordinary geometric isometry, and its

treatment is similar.

2.5 Connection to the Ryu-Takayanagi formula

We presented the computation of the entropy of the gravitational density matrix in

a form that is very general. The objective was to emphasize that (2.4) is really a

statement about an analytic continuation of classical solutions. In this section we

explain why the conjecture (2.4) for the entropy is related to the Ryu-Takayanagi

formula for entanglement entropy.

The Ryu-Takayanagi formula is a conjecture in the AdS/CFT context [9] . In

the quantum field theory one is interested in computing the entanglement entropy

of a spatial region A on the boundary of the field theory. This spatial region has a
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boundary ∂A. The conjecture is that this entanglement entropy is given by a the area

(in Planck units) of a codimension two minimal surface in the bulk whose boundary

ends on ∂A.

Figure 2.4: The Ryu-Takayanagi conjecture. The entanglement entropy of a region
A in a conformal field theory is given by the area of a minimal surface in the bulk of
AdS that ends on ∂A (the boundary of region A) at the boundary of AdS.

In principle, we can compute the entanglement entropy of the region A by using the

replica trick [43, 44]. This is a general method for computing entanglement entropy

in quantum field theories. The idea is to take n copies of the field theory and match

them together so that by moving in a circle around ∂A we go from one copy to the

next. Going n times around this circle we come back to the original copy. Thus at

∂A there is a conical defect with a 2πn opening angle. This appears to be a singular

metric. However, one can choose a conformal factor that diverges at ∂A in such a

way that the size of the circle around ∂A is finite.

This is most easily understood for simple regions [45, 46]. Imagine we have a

conformal field theory R1,d−1 at the boundary. Then we can choose a region A defined
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Figure 2.5: Geometries that we are considering to compute the entanglement entropy
in the field theory. a) Semiplane. Region A is half of the plane and its boundary, ∂A,
is at x0 = x1 = 0. b) x0, x1 view of the semiplane and the coordinate τ .

Figure 2.6: Other geometries in three dimensions. a) Disk configuration. b) Slightly
deformed disk. The τ coordinate goes around ∂A.

by x1 > 0, see figure 2.5 . The boundary of the region is the surface x0 = 0, x1 = 0.

Going to Euclidean space, Rd, we can combine the directions x0 and x1 into two

directions labeled in polar coordinates by r and τ . The metric is

ds2 = r2dτ 2 + dr2 + d~x2 → dτ 2 +
dr2 + d~x2

r2
(2.33)
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where ~x are the rest of the spatial coordinates. In the right hand side of (2.33) we

have multiplied by an overall conformal factor 1/r2 to put the metric in the form of

S1 ×Hd−1. We can now easily perform the replica trick, it corresponds to changing

the length of S1 from 2π to 2πn. Clearly this metric, S1
n ×Hd−1 is a perfectly legal

metric and we can consider its gravity dual. It is a certain black brane. In this case,

we have a U(1) isometry in the rescaled coordinates and then the entropy computed

using the replica trick or using the ordinary Gibbons-Hawking formula is exactly the

same. Note that at the AdS boundary the circle S1 has a nonzero size everywhere.

In the interior of AdS it shrinks to zero at a “horizon”. Notice, in particular, that the

half space region we discussed above can be conformally mapped to a spherical region∑
x2
i ≤ 1. In this case, the circle S1 appearing in (2.33) corresponds to a coordinates

that goes around ∂A as in figure 2.5 .

Now, this was a very simple region. If we consider more complicated regions, then

it is not possible to choose a system of coordinates and a conformal rescaling such

that the metric is independent of the angular direction τ . In all cases we will have

an angular direction, τ , since it is the direction we used to perform the replica trick

construction. The choice of this coordinate is completely arbitrary, as long as it goes

around the boundary of region A. As we go near ∂A we have a problem which locally

looks like (2.33) , and we can choose a conformal factor which makes the metric non-

singular as in (2.33) for all the replicas. The difference with (2.33) is that, as we

increase r, we will have extra terms in the metric that can have some τ dependence.

This dependence always involves powers of e±iτ since this is just the statement that

the τ direction is parametrizing circles in the original boundary geometry. All the

statements in this paragraph involve the boundary geometry, the geometry where the

field theory lives. These replica trick boundary geometries simply amount to letting
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the circle have size τ ∼ τ + 2πn, without changing any of the functions that appear

in the boundary geometry. All such functions are periodic under τ → τ + 2π 12.

Thus, the field theory replica trick, can be translated, via the standard AdS/CFT

dictionary [47, 48], to a problem in gravity which is identical to the problem that

we discussed in section 4. Here no conjecture is involved other than the original

AdS/CFT relation. The replica trick then defines the entropy as in (2.3) . In order

to do that, we need to analytically continue in n to n ∼ 1.

The Ryu-Takayanagi conjecture boils down to a statement in classical geometry.

It is the statement we discussed in section 4. Computing logZ(n), using smooth

geometries, analytically continuing in n, and computing the entropy defined in (2.3)

gives the area formula in (2.4) 13

Notice that in a setup where A is a spatial region contained at x0 = 0 on the

boundary, then there is a time reflection symmetry x0 → −x0, which translates into

τ → −τ for the circle in the Euclidean solution. This implies that we can go to

Lorentzian signature, as usual with x0 → ix0. This translates into τ → it . Now the

region where the τ circle is shrinking to zero corresponds to a horizon in the bulk. It

is a horizon for an observer sitting at fixed small r.

There is a generalization of the Ryu-Takayanagi conjecture for situations that are

time dependent [49] . It again involves an extremal surface ending on ∂A, but in the

full Lorentzian spacetime. In those cases there is no obvious Euclidean continuation

to perform the replica trick. This suggests that there should be a way to think about

the problem which does not go through the Euclidean solutions and the replica trick.

We should remark that in some cases we can perform a replica trick in the Euclidean

12 If we want to explicitly parameterize the metric in this way, we might need to choose different
coordinate patches, as usual. When the coordinate patches are chosen in a τ dependent fashion, then
the τ → τ + 2πn identification can produces spaces with an n dependent topology. This happens,
for example, in the case that we have two separate intervals in a two dimensional CFT. (We thank
Xi Dong for a discussion on this.)

13Of course, if there is more than one bulk solution we should in principle sum over all of them
and the one with the minimal action dominates. If we have two sequences of solutions, labeled by
n, we can take the n→ 1 limit for each sequence and select the one with the minimal action.
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geometry for regions that depend on the Euclidean time and then one can analytically

continue to the Lorentzian signature solutions. Some examples were discussed in [50]

.

2.5.1 General entanglement interpretation

In the introduction, we presented the computation of the generalized gravitational

entropy as a property of the density matrix constructed by integrating over a circle

in Euclidean time. It is natural to ask whether there is a general Lorentzian inter-

pretation that involves entanglement. This is indeed the case in the Ryu-Takayanagi

discussion of entanglement of a subregion of the boundary.

(a) (b)

τ τ

ΑΒ c

a

d

b

c

a

Figure 2.7: We consider periodic boundary conditions with a reflection symmetry
τ → −τ . In (a) we see that by cutting at τ = 0 we get a density matrix ρac, where
a and c label the states on the two sides of the cut. In (b) we note that we can cut
along the moment of time reflection symmetry τ = 0, π. Then we get a pure state
in two separate Hilbert spaces labeled by A and B. The bottom half of the picture
can be viewed as a state ψab and the top part as ψ†cd. Tracing out over the B Hilbert

space, we recover ρac =
∑

b ψabψ
†
cb. At this moment of time reflection symmetry we

can also continue to Lorentzian signature.

Here we would like to point out that in very general situations we can also have an

entanglement interpretation. Suppose that the boundary conditions have a moment

of time reflection symmetry. Say that this acts as τ → −τ . Then by cutting the

boundary conditions at τ = 0, π we can interpret the lower part of the evolution as
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specifying a pure state |Ψ〉 in the product of two theories, which we call A and B.

See 2.5.1 . Similarly, the upper part can be viewed as specifying the state 〈Ψ|. The

density matrix can then arise by tracing over one or the other subsystem. And the

entropy can be interpreted as entanglement entropy for system A with B. This is the

same as in the eternal black hole discussion [51, 10].

r=0 
Amin

horizon

AB

Figure 2.8: Here we consider a situation with asymptotically AdS boundary condi-
tions. The boundary conditions contain a small time dependent deformation which
vanishes at infinity. So in the far future we settle down into a stationary black hole on
both sides. The entropy of these black holes is bigger than the entropy of the initial
entanglement since, the time dependent boundary conditions have sent in energy and
have increased the entropy of the system. In other words, there was a non-zero flux
of energy through the horizon which increased its area. The dotted lines indicate the
matter falling through the horizon.

The bulk solution is also expected to have a time reflection symmetry in this case.

Under τ → it we get a Lorentzian solution. The vicinity of r = 0 looks locally like

Rindler space. This procedure generically produces a time dependent solution and

we might get singularities or horizons in the boundary conditions. We can consider a

situation where the Lorentzian time evolution can be performed out to infinite time

without ever connecting again the two boundary regions or encountering singularities
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on the boundary. An example is the following. We start from a Euclidean black

hole but with a small perturbation of the boundary conditions which is smooth in

Euclidean time and goes to zero at large Lorentzian time. More concretely, we can

consider the model of section 2 and set the boundary conditions φB = η(1+cos τ)
2+cos 2τ

. When

we go to Lorentzian time this becomes φB = η(1±cosh τ)
2+cosh 2t

where the ± corresponds to

the A and B sides respectively. Note that these go to zero at large times. We expect

that solution should be qualitatively like 2.5.1 . A very explicit solution with these

characteristics was studied in [52, 53] 14.

In cases that arise from entanglement of subregions via AdS/CFT, the fact that

the causal horizon is closer to the boundary than the minimal surface that computes

the entanglement entropy was noted in [49](see also [54, 55, 56, 57]).

2.6 Conclusions and discussion

In this chapter we have noted that we can generalize the concept of Euclidean gravi-

tational entropy to more general situations than the ones associated to thermal equi-

librium. In particular, we have considered euclidean solutions that contain a circle

τ → τ + 2π. We have introduced a boundary, setting boundary conditions which are

τ dependent but periodic under τ → τ + 2π. Thinking of gravity as a holographic

theory, we view these boundary conditions as defining the system. Euclidean evolu-

tion on the circle produces an un-normalized density matrix. The Euclidean solution

gives us the trace of this density matrix. By performing the gravity version of the

replica trick we have defined traces of nth powers of the density matrix. These are

geometries with exactly the same boundary condition as functions of τ , but where

the τ variable is taken to have period τ → τ +2πn. For integer n the bulk geometries

14 The solutions in [52, 53] are based on Janus solutions. Their boundary in Euclidean space has
the form S1×Σ where Σ is a quotient of hyperbolic space. The S1 is divided in two equal parts and
the dilaton has a different value on each part. The Lorentzian continuation is obtained by continuing
across the moment with a time reflection symmetry. The two boundaries different values for the
dilaton. These values are constant in time. The bulk smoothly interpolates between the two.
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are smooth and free of any conical defects. These geometries are computing the trace

of the nth power of the density matrix. By analytically continuing in n and taking

a derivative near n = 1 we can compute a quantity that is interpreted as the Von-

Neumann entropy of the underlying density matrix. Note that all computations are

classical. The density matrix we are talking about is a hypothetical density matrix

in some underlying theory of quantum gravity. In AdS/CFT situations we can give

an precise definition for this density matrix.

A version of the Ryu-Takayanagi conjecture is that this generalized gravitational

entropy, computed in this fashion, is given by the area of a minimal area surface in

the original geometry (the solution with n = 1).

We have given some arguments for the correctness of the Ryu-Takayanagi conjec-

ture. The arguments involved the assumption that we can analytically continue the

geometries away from integer values of n. We further made the assumption that these

analytically continued geometries, for small ε ≡ n − 1, are smooth in the two direc-

tions transverse to the minimal area surface but can have mild singularities which are

not important for evaluating the action. We do not view these metrics as physically

meaningful, we view them just as a tool for deriving the Ryu-Takayanagi formula.

Our assumptions were motivated by considering a simple example, described in sec-

tion 2. But we have no further justification other than the fact that they hold in this

example and seem reasonable assumptions. We have derived the minimal area con-

dition by demanding the existence of a small deviation away from the n = 1 solution

that is consistent with our assumptions on the type of singularities that are allowed.

One simple way to state the type of allowed singularities is to do a dimensional re-

duction of the whole configuration to the two dimensions transverse to the minimal

surface. Then we have a two dimensional metric, a dilaton field that multiplies the

two dimensional curvature in the action and a set of other fields. Then the metric

should be smooth and the gradient of the dilaton at the minimal surface should be
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zero, which is the minimal area condition. All other fields can have mild singularities

of the form φ ∼ z|z|2ε at the origin. When n is not an integer we evaluate the gravi-

tational action by integrating τ between [0, 2π] and then multiplying by n. We have

also argued that this method gives rise to the area formula for the entropy, essentially

for the same reasons as for the case with the U(1) symmetry. One way to understand

this is that all non U(1)invariant fields are going to zero at the origin. Then the

methods described in section 3 give the usual formula.

An alternative way to view the solutions is to imagine that we keep the original

period of the circle, τ ∼ τ + 2π but we introduce a cosmic string (or cosmic D − 3

brane) with a 2π/n opening angle. In addition, we multiply the resulting action by

a factor of n. For n close to one we have a very light cosmic string that deforms the

geometry very slightly. We can then view the entropy formula as arising from the

Nambu action for this cosmic string. Also the minimal area condition comes from

minimizing this Nambu action. The long and detailed discussion that we presented

tried to justify these statements in detail.

Although we have mainly discussed surfaces anchored in the boundary of AdS,

where we have an underlying density matrix, these methods could be extended to

more general cases. For our point of view it is necessary that we consider a surface at

some distance from the entangling surface and perform the replica trick holding this

surface fixed. The method selects a minimal surface. For example, in section 5.1, we

saw that the RT formula encodes the entanglement between two regions of spacetime

that are prepared in the Hartle-Hawking state, here we get the boundary reduced

density matrix by tracing over the degrees of freedom of one of the subsystems.

Bianchi and Myers, [58], proposed that the area of arbitrary surfaces measures the

entanglement of quantum gravity degrees of freedom between the inside an outside

of this surface. While this is an interesting possibility, it cannot be derived from

our method since we get minimal surfaces. Furthermore, drawing a small tubular

45



neighborhood around an arbitrary surface and performing our replica trick would

lead to entanglement which is not computed by the original surface but by a minimal

one, if there is one within the tubular region.

One interesting open question is whether one can generalize the derivation to

the time dependent case considered in [49] , where, generically, there is no obvious

Euclidean continuation.

Another interesting direction is to generalize the discussion to gravity with higher

derivatives. The most naive conjecture is that the entropy is given by the Wald

formula. However, this conjecture was argued to be wrong in [59] , where a modified

conjecture was made for the case of Lovelock gravity. A more informed conjecture is

to say that we get the Wald-Iyer formula proposed in section 7 of [37] . In fact, this

reduces to the proposal in [59] for Lovelock gravity. It would be interesting to see

whether this is correct and what the equations for the surface are.

2.7 Appendix A: Example of a scalar field in AdS3

In this appendix, we consider a massive scalar field in AdS3 and show explicitly that

the entropy that we compute using the replica trick is equal to the modification of

the area due to the presence of a non-zero scalar field background.

2.7.1 Massive scalar field

For a massive scalar field we have equations which are very similar to the ones in the

text. We consider a complex scalar field of mass m. Setting the radius of AdS3 to

one we need to impose the boundary condition

φ|rc = ηeiτr∆−2
c , ∆ = 1 +

√
m2 + 1 (2.34)
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where ∆ is the scaling dimension of the corresponding operator and rc is a large value

of r which represents the cutoff surface. The relevant solution of the wave equation

on the metric (2.7) is

φ = ηeiτ
f(nr)

f(nrc)
r∆−2
c , f(r) = rn 2F1

(
n

2
− ∆

2
+ 1,

n

2
+

∆

2
;n+ 1;−r2

)
(2.35)

We then evaluate

logZ(n) =−
∫
d3x
√
g[|∇φ|2 +m2|φ|2] = −(2πn)Lx φ

∗
rcr

3
c∂rφ

∣∣
rc

=

=(2πLx)|η|2 [B(n,∆) + linear in n] (2.36)

where the terms linear in n also include all divergent terms. It is important that

these counterterms do not give rise to any non-trivial n dependence. This is due to

the fact that we keep the τ -dependence of the boundary conditions fixed as we vary

n. We also defined

B(n,∆) = −
2n3−2∆Γ(2−∆)Γ

(
n+∆

2

)2

Γ(∆− 1)Γ(n−∆
2

+ 1)2
(2.37)

We can then compute the entropy to order η2 from (2.3) , which gives

S|η2 =− n∂n[logZ(n)− n logZ(1)]|n=1 =

=− η2

{
4π [2(∆− 2)∆ + (1−∆)π tan(π∆/2)] Γ(2−∆)Γ

(
∆+1

2

)2

Γ
(

3−∆
2

)2
Γ(∆)

}
(2.38)

2.7.2 Change in the metric from Einstein’s equations

Now we will study the backreaction of the scalar in the metric. The action is

−S =

∫
AdS3

[
R− 2Λ− |∇φ|2 +m2|φ|2

]
(2.39)
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with Λ = −1. The equations of motion are

Rµν −
gµν
2

(R− 2) = T(µν) (2.40)

where Tµν = ∂µφ
∗∂νφ− gµν

2
(|∇φ|2 +m2|φ|2). The ansatz for the metric is

ds2 =
1

r2 + g(r) + 1
dr2 +

(
r2 + 1

)
(1 + v(r))dx2 + r2dt2 (2.41)

where g(r), v(r) will be O(η2). If we expand Einstein equations to first order we

obtain three equations for the diagonal components. There are only two independent

equations since the last one will give us the scalar wave equation when the first two

are satisfied

g′(r) = Txx
2r

(r2 + 1)

v′(r) = 2rTrr −
2rg(r)

(r2 + 1)2

(2.42)

Since we consider a configuration with ∂xφ = 0, we can relate the components of

the stress energy tensor: Trr = (∂rφ)2 + (1 + r2)−2Txx. We then find

v′(r) = 2r(∂rφ)2 +
∂

∂r

(
g(r)

r2 + 1

)
(2.43)

And

v(0) = −2

∫ ∞
0

drr|∂rφ|2 → S|η2 = 4πδA = −η2(4πLx)

∫ ∞
0

drr|∂rφ(r)|2 (2.44)

where we use that the second term in (2.43) is a total derivative and that g(0) = 0

due to the regularity condition for the metric at the origin. In addition g/r2 → 0 at
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infinity. In our units (16πGN = 1), the black hole formula is S = 4πA = 4πA0(1 +

v(0)
2

) = 4π(A0 + δA). Substituting the solution for φ(r) for n = 1 (2.35) , and

integrating, we get the same as in (2.38) . We checked this only numerically, but

below we will show it without performing the explicit calculation.

2.7.3 The two quantities are the same

In the above computation we actually did not need to solve all the equations to the

end in order to show that the two results are the same.

We will rearrange the entropy formula for the scalar so that we get an expression

that is simpler to compare with the area contribution. The lagrangian L(gµν , φ,∇µφ)

is a function of τ . When we evaluate the gravitational action, we integrate over all

coordinates except τ . Then we first integrate over τ from zero to 2π and then multiply

by n. We can do this both for integer or non-integer n. We denote the τ integral as

[logZ(n)]2π. Then we have

logZ(n) = n[logZ(n)]2π (2.45)

Then the entropy formula (2.3) simplifies and we get

S = − n∂n {n[logZ(n)]2π − n logZ(1)}|n=1 = − ∂n[logZ(n)]2π|n=1 (2.46)
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And the later expression can be straightforwardly evaluated, using15 √gTµν =
∂
√
gL

∂gµν
,

−∂n[logZmatter(n)]2π =

∫ 2π

0

dτ

∫
dxdr

√
g

(
Tµν

∂gµν

∂n
+
∂L
∂φ

∂nφ+
∂L

∂(∂µφ)
∂n∂

µφ

)
=

=

∫ 2π

0

dτ

∫
dxdr

√
gTµν

∂gµν

∂n

(2.47)

In the last line we used the equations of motion (of course δS
δφ

= 0). One can check

that the expression with the stress energy tensor gives us
√
gTµν

∂gµν

∂n
|n=1 = −2η2rf ′2,

so

S − S0 = −η24πLx

∫
drrf ′2 (2.48)

In writing (2.47) we have only included the action of the scalar field in the computa-

tion.

We can now show that we get the area, without using explicit expressions. This

can be done as follows. First note that in the second line of (2.47) we can use

Einstein’s equation to write Tµν in terms of the Einstein tensor, which is related to

the variation of the gravitational action. We end up with an expression of the form

∫
dτdxdr

√
gGµν

∂gµν

∂n

∣∣∣∣
n=1

(2.49)

This is closely related to the derivative of the gravitational part of the action. As

we explained above we know that the gravitational part of the action has no term of

order η2. Thus we know that the ∂n derivative of the gravitational part vanishes at

order η2. This derivative is the same as (2.49) up to a total derivative term

∂n[logZGrav(n)]2π
∣∣
η2 = 0 = 2π

[∫
dxdr

√
gGµν

∂gµν

∂n
−
∫
dx
√
g∇µ∂ng

µr

∣∣∣∣
r=0

]
η2

(2.50)

15We define it like this because the action is logZ(n) =
∫
AdS3

(LGrav−Lmatter) so the field equations
read Gµν = Tµν .
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The last term gives the area of the horizon, or more precisely the area of the horizon

at order η2.

These are the same manipulations that one can do in general, but we have done

all steps explicitly above to check that everything indeed works in situations with no

U(1) symmetry.

2.7.4 Real scalar

We now consider the case of a real scalar field φ = f(r) cos τ , f(r) is the same as

before but now the stress energy tensor no longer has the U(1) symmetry

Tµν = T 0
µν + T 1

µνe
i2τ + T−1

µν e
−i2τ (2.51)

And T ∗1 = T−1. The metric has the same fourier decomposition, so v and g in (2.41)

also have three fourier components. The entropy coming from the change in the area

is

S|η2 =

∫ 2π

0

dτv(0) = 2πv0(0) (2.52)

where v0 is the constant component of v. It is easy to check that v0(0) = −
∫
drrf ′2.

The scalar action contributes as follows

S|η2 =

∫
dτdr(−2rf ′2 cos2(kτ)) = −2π

∫
drrf ′2 (2.53)

So we find agreement once more, and the result is precisely half of the complex scalar.
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2.8 Appendix B: Derivation of minimal area con-

dition for the general case from a explicit cal-

culation

In this appendix, we obtain the minimal area condition of section 4 without using

dimensional reduction. As in section 4, we derive this condition from requiring that

the analytically continued solution satisfies the linearized equations of motion near

r = 0.

The metric of the n = 1 solution, which satisfies (locally) the equations of motion

is

ds2 =dx2
1 + dx2

2 + gij(dy
i + biαdx

α)(dyj + bjαdx
α) + o(r2) ,

gij =hij + x1K
1
ij + x2K

2
ij , biα ∼ o(r) (2.54)

Here, yi are the directions along the surface. Now, we do the replica trick, that is, we

change the periodicity of the τ circle from 2π to 2πn and analytically continue n to

1 + ε. In this way, the metric will be modified to linear order in ε

ds2 = e2ρ(dr2 + r2dτ 2) + gij(dy
i + biαdx

α)(dyj + bjαdx
α) + δg (2.55)

Where we decomposed the perturbation in a part that makes the metric smooth

ρ = δρ = −ε log r and a perturbation δg that has components δgab valued in all

directions. For simplicity we work with z, z̄ coordinates: x1 = z+z̄
2
, x2 = z−z̄

2i
. As a

gauge condition, we set δgzz = δgz̄z̄ = 0. We also set δgzz̄ = 0, since this variation is

included in ρ. We require the perturbation, δgab to be periodic: δgab(τ) ∼ δgab(τ+2π).

We want to compute the linearized equation of motion δGzz = δTzz. In particular,

we want to focus on the terms that can be divergent, going like 1/r near the origin.
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We find

δRzz =
−ε
z
Kz +

1

2
(2δgpz;zp − δg;zz −∇2δgzz) + (regular as r → 0)

=
−ε
z
Kz −

1

2
∂2
zδγ + · · · (2.56)

where δγ ≡ gijδgij and Kz = K1−iK2

2
. In (2.56) we neglected the terms that have yi

derivatives because we expect them to be regular, only terms with two xα derivatives

can contribute to this order.

Now, since the stress energy tensor is not expected to be singular, the equations

of motion imply that the two potentially divergent terms should cancel

1

2
∂2
zδγ =

−ε
z
Kz

1

2
∂2
z̄δγ =

−ε
z̄
Kz̄ (2.57)

These are the same equations as before (2.27) , which are only satisfied for a

periodic function, δγ(τ) ∼ δγ(τ + 2π), if Kz = Kz̄ = 0. Note that although the

equations of motion are well behaved for Kz = 0, the Riemann tensor diverges, as we

discussed in section 2. This discussion is similar to the analysis in [41] for the motion

of a cosmic string.

2.9 Appendix C : Computation of the entropy for

a disk

Here we consider a very simple example of gravitational entropy. We go through it

to explain how one can put boundary conditions at fixed distance.

Consider the metric ds2 = dr2 +r2dτ 2. In addition, we can have other dimensions,

but let us assume we can ignore them. In this case, we can say that we pick an r = rc
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and we set up the boundary conditions there. We demand that the metric in the

angular direction is

ds2
bdy = r2

cdτ
2 (2.58)

at the boundary r = rc. We now consider the situation with τ ∼ τ + 2πn. We should

consider now metrics with the same boundary condition (2.58) , but compatible with

the new period. These metrics are

ds2 = n2dr2 + r2dτ 2 (2.59)

We can evaluate the gravitational action for these spaces and obtain

logZ(n) =
1

16πGN

[∫
√
gR + 2

∫
bdy

K

]
=

A

4GN

(2.60)

which is independent of n. Here A is the area of the transverse directions which were

not explicitly mentioned above. Using the usual formula, we get the expected area

formula for the entropy.

We have included this trivial computation to explicitly show how gravity regular-

izes the divergent contribution that one normally gets in field theory. In fact, there

is no divergence because there was no conical space in this computation!. Of course,

this begs the question of whether the finite part of the one loop correction computed

by performing a one loop computation around the above geometries is indeed the

same as the finite part of the one loop corrections computed using the conical spaces

that appear in the field theory discussion of the replica trick.
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Chapter 3

Quantum corrections to

holographic entanglement entropy

3.1 Holographic entanglement entropy

In quantum field theories, it is interesting to compute the entanglement entropy

among various subregions. For example, we can consider a region A and compute

the entanglement entropy between region A and the rest of the system, see figure 4.1.

In theories with a gravity dual there is a very simple prescription for computing this

entropy [9, 24]. We first find a minimal area surface that ends on the boundary of

region A, at the boundary of the bulk, see figure 4.1. Then the entropy is given by

the area of this surface,

Scl(A) =
(Area)min

4GN

(3.1)

In situations where we can apply the replica trick, this formula was proven for AdS3

in [22, 23] and more generally in [14]. This is the correct result to leading order in

the GN expansion. If the boundary theory is a large N gauge theory, then (3.1) is

of order N2. The leading term (3.1) comes from classical physics in the bulk. Here
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we consider the quantum corrections to this formula. Namely, corrections that come

from quantum mechanical effects in the bulk. These are of order G0
N (or N0).

Figure 3.1: The red segment indicates a spatial region, A, of the boundary theory.
The leading contribution to the entanglement entropy is computed by the area of a
minimal surface that ends at the boundary of region A. This surface divides the bulk
into two, region Ab and its complement. Region Ab lives in the bulk and has one
more dimension than region A. The leading correction to the boundary entanglement
entropy is given by the bulk entanglement entropy between region Ab and the rest of
the bulk.

We find that the quantum corrections are essentially given by the bulk entangle-

ment entropy. More precisely, the minimal surface that appears in (3.1) divides the

bulk into two regions. We denote by Ab the bulk region that is connected to the

boundary region A, see figure 4.1 . Then the bulk quantum correction is essentially

given by the bulk entanglement entropy between region Ab and the rest of the bulk.

Namely, at this order, we can think of the bulk as an effective field theory living on

a fixed background geometry and compute the entanglement entropy of region Ab as

we would normally do in any quantum field theory1 . This is a computation in the

bulk effective field theory, it depends on the details of the bulk fields. We can then

1Caution: do not confuse the bulk entanglement entropy (3.3) with the one computed by the area
formula (3.1). Both are computed in the bulk and are entanglement entropies, so unfortunately we
have a clash of terminology. Hopefully, this will not cause confusion. Note also that [58] discussed
a proposal of entanglement entropy in gravitational theories which does not require the surfaces to
be minimal.
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write the quantum correction as

S(A) = Scl(A) + Sq(A) +O(GN) , (3.2)

Sq(A) = Sbulk−ent(Ab) + · · · (3.3)

The dots in (3.3) denote some extra one loop terms that can be expressed (like the

classical term (3.1)) as an integral of local quantities. We will give a more detailed

discussion of these terms below. They include terms that cancel the UV divergencies

of the bulk entanglement entropy, so that Sq is a finite quantity. In the case of black

holes, this expression for the quantum correction has been discussed in [7, 60, 43, 33,

61, 62, 63, 64], with increasing degrees of precision.

We first present a sketch of an argument for this formula. We then consider various

simple checks.

3.2 An argument

In static situations one can use the replica trick to compute the entropy. This can be

done to any order in the GN expansion. In particular, it can be used to compute the

quantum corrections. The procedure is the following. First we find the smooth bulk

solutions for each integer n. The full partition functions around these geometries,

including the classical action and all quantum corrections, gives the nth Renyi en-

tropies. One then computes the analytic continuation in n. At order G0
N this involves

computing the one loop determinants around each of the classical solutions. There are

many difficulties with this method, including constructing the smooth bulk solutions

and then continuing the replica index to non-integer n. Despite these difficulties, in

[65] this method was used to compute the quantum correction in a few cases using

the classical bulk solutions constructed in [22]. On the other hand, the formula (3.3)

is a shortcut, or an alternative expression, for the final answer in the same way that
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(3.1) is a shortcut for the classical version of the replica method. The final answer

(3.3) is physically clearer and easier to compute.

3.2.1 Review of the classical argument

Let us begin by reviewing the derivation of (3.1) in the classical case [14]. First

consider the boundary field theory. The replica method is based on going to euclidean

time and then considering an angular direction with origin at the boundary of region

A. We label this by τ , with τ = τ + 2π, see figure 3.2 for an illustration.

Figure 3.2: Slighly deformed disk and angular direction around the boundary.

We then consider the quantum field theory in a series of spaces given by the same

metric but with τ = τ + 2πn, with integer n. With the naive boundary metric this τ

circle shrinks at the boundary of the region A. However, we can rescale the metric by

choosing a Weyl factor so that the circle does not shrink according to the boundary

metric2. We need to compute the partition function of the quantum field theory on

this sequence of spaces and then analytically continue in n to compute

S = − ∂n(logZn − n logZ1)|n=1 = −Tr[ρ log ρ] (3.4)

where ρ = ρA is the density matrix of region A in the boundary theory.

2 If the theory is conformal this rescaling does not change the interesting physics. If it is not
conformal we can still do it, but we will have spatially varying dimensionful couplings in the new
space.
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In theories with gravity duals, the partition functions can be computed by con-

sidering bulk solutions, gn, which end at the boundary on the geometries we have

defined above. Then one computes the gravitational action and partition functions

for these solutions. This can be done to any order in the GN expansion. The leading

order answer comes from evaluating the classical action. We discuss this first.

These bulk geometries, gn, are typically such that the circle τ shrinks smoothly in

the interior. These geometries have a Zn symmetry generated by τ → τ + 2π, since

the metric and all other couplings are periodic under this shift. See figure 3.3. It is

convenient to introduce the geometries ĝn = gn/Zn. These are bulk geometries with

exactly the same boundary conditions as the original geometry, g1, with τ = τ + 2π.

However, these geometries typically contain a conical defect, or cosmic “string” (a

codimension two surface) with opening angle 2π/n. These sit at the points where the

Zn symmetry had fixed points, the points where the circle shrinks. Then the classical

action obeys the condition I[gn] = nI[ĝn]. This just follows from the fact that the

classical action is the τ integral of a local lagrangian density. In evaluating I[ĝn] we

do not include any contributions from the singularity, not even a Gibbons-Hawking

boundary term near the singularity3. We simply integrate the usual bulk lagrangian

away from the singularity. We can now analytically continue the geometries ĝn to non-

integer n. They have the same boundary as the n = 1 solution, but in the interior

they contain cosmic “string” singularity of opening angle 2π/n. When n→ 1 we have

a very light cosmic string. The minimal area condition comes from the equations of

motion of this cosmic string and the area formula (3.1) follows essentially from its

action, see [14] for more details.

3 We still include the Gibbons-Hawking boundary term at the AdS boundary, as usual.
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Figure 3.3: Computation of the entropy using the replica trick. a) Original geometry
with no U(1) symmetry. b) Replicated smooth geometry g4. c) After a Zn quotient
of the gn geometry of b) we get the geometry ĝn = gn/Zn. It has a conical singu-
larity with opening angle 2π/n. This geometry has the same asymptotic boundary
conditions as the original one in a). We can analytically continue this geometry to
non-integer values of n. d) We use the geometries in c) to construct the density
matrix ρ̂n. ρ̂n is defined as a path integral on this geometry with arbitrary bound-
ary conditions at τ = 0, 2π. It can be computed using the bulk Hamiltonian for τ
evolution.

3.2.2 Quantum argument

This is a generalization of the black hole discussion in [63, 64] to situations without

the U(1) symmetry.

At the quantum level, the replica trick instructs us to compute the partition func-

tion of all the bulk quantum fields around the black hole geometry. This involves

computing the functional determinants for the quadratic fluctuations around the ge-
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ometries gn
4. In performing this computation we can view τ as a time evolution, so

that the quantum partition function can be written as

Zq,n = Tr[Pe−
∫ 2πn
0 dτHb,n(τ)] = Tr[ρ̂nn] ,

ρ̂n ≡ Pe−
∫ 2π
0 Hb,n(τ) (3.5)

Here Hb,n(τ) is the bulk time dependent hamiltonian that evolves the system along

the τ direction5. It depends on n because the equal τ slices of the geometry gn do

depend on n. In the second equality we have used the fact that Hb(τ) = Hb(τ + 2π).

We have also defined a bulk (non-normalized) density matrix ρ̂n. The n subscript

reminds us that the definition depends on n because the bulk geometry depends on

n. In fact, we can assign ρ̂n also to the bulk geometry ĝn = gn/Zn. Up to now the

discussion was for integer n.

Now we analytically continue to non-integer n as follows. We consider the bulk

geometry ĝn that we defined for the classical computation. We define again ρ̂n as

given by the same expression as in (3.5). Now Hn,b is a Hamiltonian defined on equal

τ slices of the geometry ĝn, with non-integer n. In summary, we define the partition

function for non-integer n via

Zq,n = Tr[ρ̂nn] , ρ̂n ≡ Pe−
∫ 2π
0 Hb,n(τ) (3.6)

Here we are ignoring UV divergencies. More precisely, we can consider a UV regulator

that is local and general covariant so that the discussion is valid for the regulated

theory.

4Part of the bulk fields could be strongly coupled. For example, we can have a non-trivial CFT
in the bulk. In that case, the bulk computation is more complicated, but the principle is the same
(at this order in the GN expansion): computing the partition function in the geometry gn.

5Hb,n(τ) is a local integral over a constant τ spatial slice. This should not be confused with the

so called “modular hamiltonian”, K, defined through e−K = Pe−
∫ 2π
0

Hb,n(τ) which is a non-local
operator.
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We can now write the expression for the quantum correction as

Sq = −∂n (logZq,n − n logZq,1)n=1 = −∂n(log Tr[ρ̂nn]− n log Tr[ρ̂1])n=1 =

= Sbulk−ent + S···

Sbulk−ent = −∂n(log Tr[ρn1 ]− n log Tr[ρ1])n=1 , S··· ≡ −
Tr[∂nρ̂n]|n=1

Tr[ρ1]
(3.7)

Here Sbulk−ent involves only ρ1 ≡ ρ̂1, which is the density matrix in the original (n = 1)

geometry. This term computes the bulk entanglement entropy. The second term, S···,

arises due to the n dependence of the bulk solution and gives rise to the dots in (3.3).

Let us find a more explicity expression for this term. For simplicity, we assume that

the solution is such that only the metric is non-zero in the classical background and

the rest of the fields are zero. This can be easily generalized. To evaluate S··· we

go again to the Lagrangian formalism. The Lagragian, L(ĝn, h, ϕ), depends on the

background metric and the small fluctuations of all the fields: the metric fluctuations,

h, as well as all the other fields denoted by ϕ. We can then write

S··· = 〈
∫
dτ∂nL〉 =

∫
dτ〈Eµν(ĝ + h, ϕ)∂nĝ

µν + dΘ(ĝ, h, ϕ; ∂nĝ)〉 −
∫
dτdΘ(ĝ, ∂ng)

(3.8)

where the brackets indicate quantum expectation values. In other words, we integrate

over the fields h and ϕ. Here Eµν represent equations of motion for the metric. These

do not vanish because the quantum fluctuations are off shell. And Θ is related to

all the partial integrations involved in going from a variation of the lagrangian to

the equations of motion. We are using a notation similar to [37], where the reader

can find explicit expressions. Θ is linear in ∂nĝ. The Θ term is the same as the one

that gives rise to the Wald-like entropy formula [37]. We say Wald-like because we

are considering a situation without a U(1) symmetry. For the usual two derivative

action, it gives rise to the area formula. Here we are evaluating it for a generic off shell

configuration (since we have general variations h, ϕ) and computing the expectation
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value. We have also subtracted the classical result. The simplest example where this

term is nonzero is the following. Consider a theory with a scalar field with a coupling

ζφ2R. If the scalar field is zero in the classical solution, this does not contribute to

the classical black hole entropy. However, if we consider the small fluctuations of φ,

we will get a term proportional to ζ〈φ2〉(Area). Such a term arises from the Θ term

in (3.8). In general, we denote such terms as 〈∆SW−like〉 6 . This is the expectation

value of the formal expression for the Wald-like entropy7. We expect that the graviton

gives rise to possible contributions to this term.

Now let us focus on the first term in (3.8). The equations of motion are non-zero

because we are considering quantum fluctuations. We can formally write this term

as ∫
dτ〈Eµν〉∂nĝµν = −1

2

∫
dτ〈Tµν〉∂nĝµν (3.9)

Here we have viewed the quantum expectation value of the equations of motion as a

quantum generated expectation value for the stress tensor. This expectation value of

the equations of motion will force us to change in the classical background. Indeed,

to avoid “tadpoles” we will need to change the classical background ĝ → ĝ+ h̄, where

h̄ is small classical correction of order GN in such a way that

Eµν(ĝ + h̄) = −〈Eµν〉 =
1

2
〈Tµν〉 (3.10)

where we are expanding the left hand side only to first order in h̄. We can then

reexpress (3.9) as

∫
dτE(ĝ + h̄)∂nĝ = ∂nIn(ĝn + h̄)|n=1 −

∫
dτdΘ(ĝ + h̄, ∂nĝ) (3.11)

6 Note that for solutions where R = 0, we do not expect any ζ dependence on Sq or Sbulk−ent.
Sbulk−ent does not depend on ζ and one can easily show that the ζ dependence on the finite part of
S... cancels between δA and 〈∆SW−like〉 terms.

7 In situations without a U(1) symmetry, the general Wald-like expression for a general higher
derivative theory is not known. For the purposes of this discussion we simply assume that such an
expression exists. In the case of an action with R2 terms the expression was found in [59, 66, 67, 68].
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To first order in h̄, In(ĝn+ h̄) = In(ĝn) due to the equations of motion for ĝ. In (3.11)

we are considering n very close to one. Here h̄ is the solution for n = 1, and we have

kept it fixed as we vary n away from one. We have also ignored higher order terms

in h̄. The right hand side of (3.11) can be then rewritten as the change in the area

due to the shift of the classical solution, δA
4GN

. Since the change in the background is

of order GN , this term is of order one. In a general higher derivative theory this will

presumably become δSW−like. A diagrammatic interpretation of this contribution is

given in figure 3.4.

Figure 3.4: The contribution to S··· from the change in the area of the minimal
surface, δA, due to the quantum corrections of the background. We can interpret this
diagram as solving (3.10) for h̄ in terms of 1-loop stress tensor. We need to solve for
h̄ along the minimal surface and integrate the stress tensor over all space.

In addition, we should add terms arising from the counterterms that render the

bulk quantum theory finite. Such counterterms are given by local expressions in

terms of the metric and the curvature, etc. Thus they look like the classical action

itself. They contribute to the entropy via local terms of the same form as the ones

we get for a general higher derivative local action. For example a counterterm of the

form 1
εD−2

∫
R gives a contribution (Area)

εD−2 . There are similar contributions from higher

derivative terms. We just apply the Wald-like formula for the counterterms8 .

8As we mentioned this formula is unknown for general non-U(1) invariant situations. However
see [59, 66, 67, 68] for R2 corrections. Here we simply assume that such a formula exists.
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In conclusion, the full expression for the quantum correction to the entropy is

given by

Sq = Sbulk−ent +
δA

4GN

+ 〈∆SW−like〉+ Scounterterms (3.12)

The first term is the bulk entanglement. The second is the change in the area due

to the shift in the classical background due to quantum corrections. The third is the

quantum expectation value of the formal expression of the Wald-like entropy. The

final term arises because we need to introduce counterterms in order to render the

computation finite9. The last three terms in (3.12) fill in the dots in (3.3). Some

articles, e.g. [63], compute the entanglement entropy by smoothing the tip of the

cone and, when fields are coupled to curvature, they obtain an extra contact term,

this is precisely our Wald-like term, Sreg−cone = Sbulk−ent + 〈∆SW−like〉.

Let us finish with some comments. The expression (3.12) for the case of black

holes was discussed in [63, 64]10 . Notice that, in the black hole case, we can compute

the entropy using the Gibbons-Hawking method, which is to change the period of

τ (called β), considering always the smooth solution. In this case, we get the full

quantum result from the determinants, computed on the n- (or β-)dependent geom-

etry. In other words, at this order, there is no need to shift the classical background

due to quantum corrections, or to evaluate quantum expectation values of the formal

expression for the Wald entropy. 11 However, if we evaluate the quantum correction

using bulk entanglement (as opposed to the Gibbons-Hawking method) we need to

take them into account to get the right answer. Similarly, if we compute the quantum

correction using the replica trick, we can just compute the determinants, and analyt-

ically continue them without worrying about the changes in the classical background

due to the quantum corrections, as was done for AdS3 in [65].

9Some aspects of these counterterms have been discussed recently in [69].
10 In the black hole case, where one has a U(1) symmetry, it is easier to define the quantum

computation for non-integer n. Here we had to define it as (3.6).
11 For example, this has been carried out explicitly to find the logarithmic corrections to black

hole entropy, see [70] and references within.
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The last three terms in (3.12) are given by local integrals on the original minimal

surface. Thus, they contribute terms which are qualitatively similar to the classi-

cal contribution. The classical Ryu-Takayanagi formula was shown to obey various

nontrivial inequalities also obeyed by entanglement entropy [71]. One of these is the

strong subadditivity condition. In fact, this inequality follows from the fact that we

are minimizing a quantity in the bulk [71]. Thus if we add the last three terms in

(3.12) to the Ryu-Takayanagi formula, we still get a result that can be viewed as the

minimization of a local expression. To order G0
N , the corrections in (3.12) do not

change the shape of the surface because they are small corrections. Moreover, the

bulk entanglement contribution, the first term in (3.12), obeys the entropy strong sub-

additivity condition on its own, since it can be viewed as a field theory computation

in the bulk. Thus, we have argued that the classical plus first quantum contribution

should also obey the strong subadditivity condition.

3.3 Applications

Here we discuss some applications of the above formula. We will concentrate on cases

where the quantum correction gives a qualitatively new effect.

3.3.1 Almost gapped large N theory

Consider the Klebanov-Strassler theory in the large N limit, where it is described by

the gravity dual found in [72]. The shape of the corresponding geometry is such that

most of the bulk fields give rise to massive excitations from the four dimensional point

of view. The only massless excitations are associated to the spontaneous breaking of

the U(1) baryon symmetry [73, 74]. Since it is a supersymmetric theory, the usual

Goldstone boson is part of a massless chiral superfield.
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Now consider a region A of a size which is larger than the inverse mass of the

lightest massive modes. The classical contribution for such a region was computed in

[75]. This arises from a minimal area surface which comes down from the boundary

into the bottom of the throat with a topology as indicated in figure 3.5 . The result

is that it goes as

Scl ∝ c0R
2 + constant + · · · (3.13)

for large R, where R is the size of the region. Here c0 has both UV divergent and

finite contributions. c0 is proportional to N2 12

Figure 3.5: Shape of the minimal area surface in the Klebanov-Strassler theory. The
yellow region is the interior. The quantum correction is given by the entanglement
between the interior and the exterior.

The quantum correction is given by the entanglement in the bulk between the

interior and the exterior of region bounded by the Ryu-Takayanagi minimal area

surface in the bulk, see figure 3.5. For a large region, we can approximately compute

the bulk contributions by doing a Kaluza-Klein decomposition of all the bulk fields,

and then doing the entanglement computation in four dimensions. To the order we

are working, all the bulk fields are free. All the massive bulk modes contribute only

with terms that give rise to contributions similar to (3.13). However, the massless

modes (two bosons and two fermions) give rise to a qualitatively new logarithmic

12 Here by N we mean the value of N in the last step of the cascade [72]. The UV divergent
contribution has a larger effective value of N .
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term of the form

Sq−log = −α logRΛ (3.14)

where Λ is the scale setting the mass of the massive modes. Here α is a numerical

constant that depends on the shape of the region [76]. For a spherical region α = 4a

where a is the conformal anomaly coefficient for a chiral superfield, a = − 1
48

.

A similar correction to the Ryu-Takayanagi formula was argued for in [77]. In

Section 3 of [77] they consider an AdS soliton geometry which is dual to a 3d confining

gauge theory. A Chern-Simons term was added to the boundary theory resulting in

a topological theory in the IR. The expected topological term in the entanglement

entropy is reproduced by the entanglement of bulk fields. This provides a further

check of (3.3).

3.3.2 Thermal systems in the bulk

We can consider a confining theory whose geometry can be modelled by an AdS space

with an infrared end of the world brane. In this case, let us consider a theory with

no massless modes. Then the entanglement entropy of a large region of size R will

behave as in (3.13). This will be the case as long as we consider the theory in the

vacuum. However, if we consider the theory in a thermal bulk state, with a gas of

particles in the bulk, we get a contribution to the entropy from this gas. We are

considering the phase with no black brane. Then we get a contribution proportional

to the volume, S(A) ∝ VA, in addition to (3.13). This contribution is of order G0
N

(or N0). We obtain this contribution from the bulk entanglement entropy of region

Ab, eee figure (3.6).

Another case which is qualitatively similar arises when we consider a fermi sur-

face in the bulk13. Since we end up computing the bulk entanglement entropy, we

reproduce the logarithmic terms that are expected in that context [78, 79]. This

13We thank S. Hartnol for pointing out this application.
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Figure 3.6: Confining theory and thermal gas in the bulk. Here VA is the volume of
region A in the boundary

is important for applications of AdS/CFT to non-Fermi liquids. See for example

[80, 81, 82], where such logarithmic violations are expected due to the appearance

of bulk fermi surfaces. This should be contrasted with [83] where the logarithmic

violations to the entanglement entropy where found from the leading geometric term.

3.3.3 Non-contractible circle

If the τ circle that appeared in our discussion in section 3.2 is not contractible in

the bulk, then the classical contribution to the entropy vanishes. In this case, the

whole contribution to the generalized gravitational entropy comes from the quantum

correction. It involves the propagation of the quantum particles around the bulk

circle. It is a finite contribution. In the case that the system has a U(1) symmetry,

this is just the thermal entropy of a gas of particles in the bulk. In general, this setup

leads to a bulk mixed state under analytical continuation to Lorentzian signature and

we just get the entropy of this bulk mixed state.
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3.3.4 Mutual information, generalities

For two disjoint regions, A and B, we define the mutual information

I(A,B) = S(A) + S(B)− S(A ∪B) (3.15)

A feature of the Ryu-Takayanagi formula is that, for well separated disjoint regions,

the mutual information is zero [28]. See figure 3.7. In other words, the classical bulk

answer is zero. This is due to the fact that the surface for S(A ∪ B) is the union of

the surfaces that we use to compute S(A) and S(B). We will see that the quantum

correction gives us something different from zero. Note that all the local contributions

(coming from the second, third and fourth terms in (3.12)) also cancel for the same

reason as in the classical case. Thus mutual information comes purely from the bulk

entanglement term (the first term in (3.12)). Thus the quantum contribution to the

mutual information is simply equal to the bulk mutual information for the two bulk

regions:

I(A,B) = Ibulk,ent(Ab, Bb) (3.16)

Here A and B are two regions in the boundary CFT. Ab and Bb are the two cor-

responding regions in the bulk, see figure 3.7. As explained in [12, 13], a non zero

answer is necessary for having non-vanishing correlators. The argument is based on

the general bound for correlators [84]

I(A,B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2|OA|2|OB|2
(3.17)
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where |OA| is the absolute value of the maximum eigenvalue14. Thus, the non-zero

one loop correction will enable us to obey this bound. We will discuss this in more

detail below.

Figure 3.7: We consider two regions A and B on the boundary which are separted
by a long distance, r � rA, rB, where rA,B are their sizes. The minimal area surfaces
have the shape indicated. In the bulk, they define regions Ab and Bb, which are shown
in yellow. The surface for S(A ∪B) is simply the sum of the two surfaces.

Long distance expansion for the mutual information in quantum field

theory

Here we consider two disjoint regions, A and B that are separated by a large distance

in the boundary theory. In this situation, one can do a kind of operator product

expansion for the mutual information. As discussed in [85, 28, 86, 87], the expected

leading contribution comes from the exchange of a pair of operators each with dimen-

sion ∆ 15. In other words, we have [85, 28, 86, 87]

I(A,B) ∼
∑

C∆
1

r4∆
+ · · · (3.18)

14Of course, we should choose OA to be a suitably smeared function of a local operator so that
the maximum eigenvalue is finite. For example, OA ∼ ei

∫
O(x)g(x), where g(x) is a localized smooth

function.
15An idea for an OPE expansion of mutual information was discussed in [88]. However, we think

that it is not correct because it includes the exchange of single particle states, as opposed to two
particle states.
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where C∆ comes from squares of OPE coefficients. These OPE coefficients CA
O arise

by replacing region A of the replica space by a sum
∑
CA
OO over local operators in the

n copies of the original CFT. Such operators take the form of products of operators

of the original CFT living on the different replicas. Once we have have these OPE

coefficients we can find:

C∆ = ∂n

[∑
CA
OC

B
O

]
n=1

(3.19)

where the sum is over all operators contributing at the same order as (3.18). This

involves sums over operators in different replicas and the analytic continuation in n

appears non-trivial.

Figure 3.8: OPE-like expansion for mutual information.

For a single operator living on a single replica the OPE coefficient CA
O , in principle,

could be calculated. However, it vanishes as (n − 1) since the one point functions

of the un-replicated space vanishes. Therefore, the square of the OPE coefficient in

(3.19) vanishes at n = 1. The two operator case in (3.18) gives the first non-zero

answer. We expect that the leading contribution comes from pairs of operators with

lowest anomalous dimension.

At integer n we are doing a standard OPE expansion in terms of operators of the

replicated theory. However, the final result at n = 1 cannot be interpreted as an

ordinary OPE expansion in the original theory. For example, the leading behavior in

(3.18) might not be reproduced by operators of the original theory. For example, the
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theory, at n = 1, might not have an operator with dimension ∆′ = 2∆ to reproduce

(3.18)16. In general, the individual OPE coefficients cannot be continued to n = 1.

However the sums of squares of all the OPE coefficients contributing at the same

order in (3.18) can be continued to n = 1 [86]. Here we will not compute the OPE

coefficients, we simply focus on the r dependence.

Notice that this behavior of the mutual information, (3.18), is consistent with

the bound (3.17). In addition, this implies that the C∆ coefficient for the lightest

operator cannot vanish.

In large N theories, the standard large N counting rules imply that the OPE

coefficients CA
O for the leading contribution are of order one, since they come from a

connected two point function in the replicated geometry. This is in the normalization

where the two point function of single trace operators is normalized to one. Thus,

the leading contribution to C∆ vanishes at order N2 and is non-vanishing at order

one. Similar large N counting for more general operators leads us to expect that

the mutual information vanishes exactly at order N2 in large N theories, for well

separated regions, as is the case in large N theories with gravity duals. For this

argument, the crucial feature is that the contribution from the exchange of a single

operator vanishes17.

We can similarly consider mutual information in non-conformal theories. For

example we can consider a massive theory. In this case the long distance expansion

can be done in terms of the excitations of the massive theory, in terms of the lightest

massive excitation. As before, these excitations will propagate along the n separate

copies of the replicated theory. And the leading contribution comes from pairs of the

16 For example, in the Ising model, the leading term comes from the spin operator of dimension
∆ = 1/4. However there is no (spin zero) operator in the theory with dimension 1/2 that can
reproduce (3.18).

17This is no longer true for the mutual Renyi entropies [28].
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lightest particle18. Again the bound (3.17) implies that the corresponding coefficient

cannot vanish. So far we have discussed theories in flat space. We can similarly

consider theories in curved spaces. Again, for well separated regions, we have a long

distance expansion of the mutual information that involves the propagation of the

lightest excitations, but now in curved spacetimes. Thus the mutual information

behaves as

I(A,B) ∼ CG(xA, xB)2 + · · · (3.20)

where G is the propagator for the lightest excitation of the theory in the curved

manifold. More precisely, the one whose G(xA, xB) propagator is the largest.

Long distance expansion for mutual information using gravity duals

Now we consider a theory with a gravity dual. For well separated regions, as argued

around (3.16), the leading order term comes from the bulk entanglement between

regions Ab and Bb, see figure 3.7. In this approximation, we have a quantum field

theory in a fixed background geometry. Then the long distance expansion of the

mutual information reduces to the expression in (3.20), where we should consider the

lightest bulk particle. If the theory reduces to pure gravity in the bulk, then this is

the graviton. Again, the coefficient is non-zero due to the bulk version of (3.17).

But at long distances G(xAb , xBb) ∼ 1
|xA−xB |2∆ due to the standard AdS/CFT

dictionary [47, 48]. Here xAb is some point in the bulk region Ab and xA is some point

in the boundary region A. Inserting this into (3.20) we reproduced the expected field

theory result (3.18).

18 In general, the contribution from the exchange of a single particle should vanish when n→ 1. In
free theories, the single particle contribution vanishes for all n due to a Z2 symmetry that multiplies
the field by a minus sign.
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3.3.5 Corrections to the Entanglement Plateaux

Another situation where we expect quantum corrections to be the dominant answer

comes from considering entanglement entropy for subsystems in thermal states. They

satisfy the Araki-Lieb inequality [89]:

∆S = S(ρ)− |SAc − SA| ≥ 0 (3.21)

where ρ is the density matrix describing the state of the full system. Here Ac is the

complement of region A in the boundary theory (A ∪ Ac gives the full system). For

a thermal state S(ρ) is just the thermal entropy of the full system.

In holographic theories this inequality can be saturated when A is small enough (or

equivalently Ac is small.) This was discussed extensively in [90] where this saturation

was named the Entanglement Plateaux (see also [91, 9, 71].) That is, for region A

small enough the minimal surface for region Ac is the disconnected sum of the minimal

surface for region A and the horizon of a black hole in the bulk, see figure 3.9. The

thermal entropy is computed by the black hole horizon. Thus the classical answer

gives a vanishing contribution to (3.21). In the bulk, the first non-zero contribution

to (3.21) comes from the bulk entanglement contribution to the quantum correction

(3.12). This reduces to

∆S = SH − SAcb + SAb = SH + SAb − SH∪Ab = I(H,Ab) > 0 (3.22)

where region H is the region behind the horizon. We are imagining we have the

eternal black hole and region H is the second bulk space joined to the first by the

Einstein-Rosen bridge. We see that ∆S is the same as the bulk mutual information

of regions H and Ab. This is positive by the subadditivity condition applied to the
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bulk field theory. The inequality in (3.22) is strict because of (3.17) applied to the

bulk theory.

Figure 3.9: We consider a small region A and its complement Ac in a finite tem-
perature state. The bulk contains a black hole. The region Ab is the region outside
the black hole horizon. The minimal surface that gives the leading anwer to S(A)
is the the one indicated by a purple dashed line surrounding region Ab. The surface
associated to S(Ac) is the one associated to S(A) plus the black hole horizon. The
thermal entropy is computed by the surface at the black hole horizon. The region H
is the interior of the black hole.

3.3.6 EPR pair in the bulk

Imagine two well separated regions A and B in such a way that their mutual infor-

mation vanishes according to the classical RT formula. In the vacuum, the mutual

information decays at long distances. Here we add two spins that are EPR correlated

as indicated in figure 3.10 . We can imagine these as arising form the spin of two

(fermionic) glueballs in the boundary theory which corresponds to two particles in

the bulk.

In this case the bulk entanglement entropy contains a non-zero piece which is

independent of the separation, for large separations. This is just simply the usual

mutual information of two spins, I = 2 log 2. Of course we can consider a more
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Figure 3.10: We consider two regions and their mutual information. In each bulk
region we have a quantum spin. The two spins are in an EPR configuration.

complex system with the same type of result. This contribution is given by the bulk

entanglement term in (3.12).
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Chapter 4

Relative entropy is bulk relative

entropy

4.1 Introduction and summary of results

Recently there has been a great deal of effort in elucidating patterns of entanglement

for theories that have gravity duals. The simplest quantity that can characterize such

patterns is the von Neumann entropy of subregions, sometimes called the “entangle-

ment entropy”. This quantity is divergent in local quantum field theories, but the

divergences are well understood and one can extract finite quantities. Moreover, one

can construct strictly finite quantities that are well-defined and have no ambiguities.

A particularly interesting quantity is the so called “relative entropy” [92, 93]. This

is a measure of distinguishability between two states, a reference “vacuum state” σ

and an arbitrary state ρ

S(ρ|σ) = Tr[ρ log ρ− ρ log σ] (4.1)
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If we define a modular Hamiltonian K = − log σ, then this can be viewed as the free

energy difference between the state ρ and the “vacuum” σ at temperature β = 1,

S(ρ|σ) = ∆K −∆S.

Relative entropy has nice positivity and monotonicity properties. It has also

played an important role in formulating a precise version of the Bekenstein bound

[94] and arguments for the second law of black hole thermodynamics [95, 96].

In some cases the modular hamiltonian has a simple local expression. The simplest

case is the one associatated to Rindler space, where the modular Hamiltonian is simply

given by the boost generator.

In this article we consider quantum field theories that have a gravity dual. We

consider an arbitrary subregion on the boundary theory R, and a reference state σ,

described by a smooth gravity solution. σ can be the vacuum state, but is also allowed

to be any state described by the bulk gravity theory. We then claim that the modular

Hamiltonian corresponding to this state has a simple bulk expression. It is given by

Kbdy =
Areaext

4GN

+Kbulk + · · ·+ o(GN) (4.2)

The first term is the area of the Ryu Takayangi surface S (see figure 4.1), viewed as

an operator in the semiclassically quantized bulk theory. This term was previously

discussed in [97]. The o(G0
N) term Kbulk is the modular Hamiltonian of the bulk region

enclosed by the Ryu-Takayanagi surface, Rb, when we view the bulk as an ordinary

quantum field theory, with suitable care exercised to treat the quadratic action for

the gravitons. Finally, the dots represent local operators on S, which we will later

specify. We see that the boundary modular Hamiltonian has a simple expression in

the bulk. In particular, to leading order in the 1/GN expansion it is just the area

term, which is a very simple local expression in the bulk. Furthermore, this simple

expression is precisely what appears in the entropy. This modular Hamiltonian makes
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sense when we compute its action on bulk field theory states ρ which are related to

σ by bulk perturbation theory. Roughly speaking, we consider a ρ which is obtained

from σ by adding or subtracting particles without generating a large backreaction.

Due to the form of the modular Hamiltonian (4.2), we obtain a simple result for

the relative entropy

Sbdy(ρ|σ) = Sbulk(ρ|σ) (4.3)

where the left hand side is the expression for the relative entropy on the boundary.

In the right hand side we have the relative entropy of the bulk quantum field theory,

with ρ and σ in the right hand side, being the bulk states associated to the boundary

states ρ, σ appearing in the left hand side. Note that the area term cancels.

Another consequence of (4.2) is that the action of Kbdy coincides with the action

of Kbulk in the interior of the entanglement wedge1,

[Kbdy, φ] = [Kbulk, φ] (4.4)

for φ a local operator in Rb. This follows from causality in bulk perturbation theory:

terms in Kbdy localized on S do not contribute to its action in the interior of the

entanglement wedge, S being space-like to the interior. NoteKbulk is the bulk modular

Hamiltonian associated to a very specific subregion, that bounded by the extremal

surface S. Implications of (4.4) for entanglement wedge reconstruction are described

in section 4.5.2.

The bulk dual of relative entropy for subregions with a Killing symmetry was

considered before in [91, 98, 99, 100, 101, 102]. In particular, in [102], the authors

related it to the classical canonical energy. In fact, we argue below that the bulk

modular hamiltonian is equal to the canonical energy in this case. This result extends

that discussion to the quantum case. Note (4.2) and (4.3) are valid for arbitrary

1The entanglement wedge is the domain of dependence of the region Rb.
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Figure 4.1: The red segment indicates a spatial region, R, of the boundary theory.
The leading contribution to the entanglement entropy is computed by the area of an
extremal surface S that ends at the boundary of region R. This surface divides the
bulk into two, region Rb and its complement. Region Rb lives in the bulk and has one
more dimension than region R. The leading correction to the boundary entanglement
entropy is given by the bulk entanglement entropy between region Rb and the rest of
the bulk.

regions, with or without a Killing symmetry. In addition, we are not restricting σ

to be the vacuum state. Recently a different extension of [102] has been explored in

[103], which extends it to situations where one has a very large deformation relative

to the vacuum state. That discussion does not obviously overlap with ours.

This chapter is organized as follows. In section two, we recall definitions and

properties of entanglement entropy, the modular Hamiltonian, and relative entropy.

In section three, we present an argument for the gravity dual of the modular hamilto-

nian and the bulk expression for relative entropy. In section four, we discuss the case

with a U(1) symmetry, relating to previous work. In section five, we discuss the flow

generated by the boundary modular hamiltonian in the bulk. We close in section six

with some discussion and open questions.
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4.2 Entanglement entropy, the modular hamilto-

nian, and relative entropy

We consider a system that is specified by a density matrix ρ. This can arise in

quantum field theory by taking a global state and reducing it to a subregion R. We

can compute the von Neuman entropy S = −Tr[ρ log ρ]. Due to UV divergences

this is infinite in quantum field theory. However, these divergences are typically

independent of the particular state we consider, and when they depend on the state,

they do so via the expectation value of an operator. See [104, 105].

4.2.1 Modular Hamiltonian

It is often useful to define the modular hamiltonian Kρ ≡ − log ρ. From its defini-

tion, it is not particularly clear why this is useful – it is in general a very non-local

complicated operator. However, for certain symmetric situations it is nice and simple.

The simplest case is a thermal state where K = H/T , with H the Hamiltonian

of the system. Another case is when the subregion is the Rindler wedge and the

state is the vacuum of Minkowski space, when K is the boost generator. This is

a simple integral of a local operator, the stress tensor. For a spherical region in a

conformal field theory, we have a similarly simple expression, which is obtained from

the previous case by a conformal transformation [45]. In free field theory one can also

obtain a relatively simple expression that is bilocal in the fields [106] for a general

subregion of the vacuum state.

In this chapter we consider another case in which simplification occurs. We con-

sider a quantum system with a gravity dual and a state that can be described by a

gravity solution. We will argue that the modular Hamitonian is given by the area of

the Ryu-Takayanagi minimal surface plus the bulk modular Hamiltonian of the bulk

region enclosed by the Ryu-Takayanagi surface.
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4.2.2 Relative entropy

Modular Hamiltonians also appear in the relative entropy

Srel(ρ|σ) = trρ(log ρ− log σ) = ∆〈Kσ〉 −∆S (4.5)

where Kσ = − log σ is the modular Hamiltonian associated to the state σ. If σ was a

thermal state, the relative entropy would be the free energy difference relative to the

thermal state. As such it should always be positive.

Relative entropies have a number of interesting properties such as positivity and

monotonicity [92]. Moreover, while the entanglement entropy is not well defined for

QFT’s, relative entropies have a precise mathematical definition [93].

If ρ = σ+ δρ, then, because of positivity, the relative entropy is zero to first order

in δρ. This is called the first law of entanglement:

δS = δ〈Kσ〉 (4.6)

When we consider a gauge theory, the definition of entanglement entropy is am-

biguous. If we use the lattice definition, there are different operator algebras that

can be naturally associated with a region R [104]. Different choices give different

entropies. These algebras differ in the elements that are kept when splitting space

into two, so that ambiguities are localized on the boundary of the region, ∂R. One

natural way of defining the entanglement entropy is by fixing a set of boundary con-

ditions and summing over all possibilities, since there is no physical boundary. This

was carried out for gauge fields in [107, 108, 109] and gives the same result as the

euclidean prescription of [110]. However, the details involved in the definition of the

subalgebra are localized on the boundary. Because of the monotonicity of relative
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entropy, these do not contribute to the relative entropy (see section 6 of [104] for

more details).

In the case of gravitons we expect that similar results should hold. We expect that

we similarly need to fix some boundary conditions and then sum over these choices.

For example, we could choose to fix the metric fluctuations on the Ryu-Takayanagi

surface, viewing it as a classical variable, and then integrate over it. As argued in

[104], we expect that the detailed choice should not matter when we compute the

relative entropy. See appendix A for more details.

As we mentioned above, it often occurs that two different possible definitions

of the entropy give results that differ by the expectation value of a local operator,

S(ρ) =tr(ρO) + S̃(ρ). A trivial example is the divergent area term which is just a

number. In these cases the two possible modular Hamiltonians are related by

S(ρ) = tr (ρO) + S̃(ρ) −→ K = O + K̃ (4.7)

This implies that relative entropies are unambiguous, S(ρ|σ) = S̃(ρ|σ). For the

equality of relative entropies, it is not necessary for O to be a state independent

operator. It is only necessary that O is the same operator for the states ρ and σ.2

4.3 Gravity dual of the modular hamiltonian

A leading order holographic prescription for computing entanglement entropy was

proposed in [9, 49] and it was extended to the next order in GN in [15] (see also [65]).

The entanglement entropy of a region R is the area of the extremal codimension-

two surface S that asymptotes to the boundary of the region ∂R, plus the bulk von

2 In other words, if we consider a family of states, with ρ and σ in that family, then O should be
a state independent operator within that family.
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Neuman entropy of the region enclosed by S, denoted by Rb. See figure 4.1.

Sbdy(R) =
Aext(S)

4GN

+ Sbulk(Rb) + SWald−like (4.8)

SWald−like indicates terms which can be written as expectation values of local operators

on S. They arise when we compute quantum corrections [15], we discuss examples

below.

We can extract a modular Hamiltonian from this expression. We consider states

that can be described by quantum field theory in the bulk. We consider a reference

state σ, which could be the vacuum or any other state that has a semiclassical bulk

description. We consider other states ρ which likewise can be viewed as semiclassical

states built around the bulk state for σ. To be concrete we consider the situation

where the classical or quantum fields of ρ are a small perturbation on σ so that the

area is only changed by a small amount. Now the basic and simple observation is

that both the area term and the SWald−like are expectation values of operators in the

bulk effective theory. Therefore, for states that have a bulk effective theory, we can

use (4.7) to conclude that

Kbdy =
Âext

4GN

+ ŜWald−like +Kbulk (4.9)

This includes the contribution from the gravitons, as we will explain in detail below.

The area term was first discussed in [97]. We view the area of the extremal surface

as an operator in the bulk effective theory. This contains both the classical area as

well as any changes in the area that result from the backreaction of quantum effects.

Since we are specifying the surface using the extremality condition, this area is a

gauge invariant observable in the gravity theory.3 Note that the area changes as

3 If we merely define a surface by its coordinate location in the background solution, then a pure
gauge fluctuation of the metric can change the area. If the original surface is not extremal this
already happens to first order.
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we change the state, but we can choose a gauge where the position of the extremal

surface is fixed. Finally ŜWald−like are the operators whose expectation values give us

SWald−like.

Interestingly, all terms that can be written as local operators drop out when we

consider the relative entropy. The relative entropy has a very simple expression

Sbdy(ρ|σ) = Sbulk(ρ|σ) (4.10)

Note that the term going like 1/GN cancels out and we are only left with terms of

order G0
N . There could be further corrections proportional to GN which we do not

discuss in this article. It is tempting to speculate that perhaps (4.10) might be true

to all orders in the GN expansion (i.e. to all orders within bulk perturbation theory).

Of course, using the equation for the entropy (4.8) and (4.9) we can check that

the first law (4.6) is obeyed. In the next section we discuss this in more detail for a

spherical subregion in the vacuum.

4.4 Regions with a local boundary modular Hamil-

tonian

For thermal states, Rindler space, or spherical regions of conformal field theories we

have an explicit expression for the boundary modular Hamiltonian. In all these cases

there is a continuation to Euclidean space with a compact euclidean time and a U(1)

translation symmetry along Euclidean time. We also have a corresponding symmetry

in Lorentzian signature generated by a Killing or (conformal Killing) vector ξ. The

modular Hamiltonian is then given in terms of the stress tensor as Kbdy = ER ≡∫
∗(ξ.Tbdy), where the integral is over a boundary space-like slice. When the theory
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has a gravity dual, the bulk state σ is also invariant under a bulk Killing vector ξ. In

this subsection we will discuss (4.9) for states constructed around σ.

For this discussion it is useful to recall Wald’s treatment of the first law [21, 36, 37]

δER =
Alin(δg)

4GN

+

∫
Σ

∗(ξ.Eg(δg)) (4.11)

where Eg(δg) is simply the linearized Einstein tensor with the proper cosmological

constant. It is just the variation of the gravitational part of the action and does not

include the matter contribution. Here Alin is the first order variation in the area due

to a metric fluctuation δg. And Σ is any Cauchy slice in the entanglement wedge

Rb. Equation (4.11) is a tautology, it arises by integrating by parts the linearized

Einstein tensor. It is linear in δg and we can write it as an operator equation by

sending δg → δĝ, where δĝ is the operator describing small fluctuations in the metric

in the semiclassically quantized theory.

4.4.1 Linear order in the metric

For clarity we will first ignore dynamical gravitons, and include them later (we would

have nothing extra to include if we were in three bulk dimensions). We consider

matter fields with an o(G0
N) stress tensor in the bulk, assuming the matter stress

tensor was zero on the σ background.4 Such matter fields produce a small change

in the metric that can be obtained by linearizing the Einstein equations around the

vacuum. These equations say Eg(δg)µν = Tmat
µν , where Tmat

µν is the stress tensor of

matter. Inserting this in (4.11) we find that [21, 36, 37]

δER =
Alin(δg)

4GN

+

∫
Σ

∗(ξ.T ) =
Alin(δg)

4GN

+Kbulk (4.12)

4This discussion can be simply extended when there is a non-zero but U(1)-symmetric background
matter stress tensor, such as in a charged black hole. In that case we need to subtract the background
stress tensor to obtain the bulk modular Hamiltonian.
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where we used that the bulk modular Hamiltonian also has a simple local expression

in terms of the stress tensor due to the presence of a Killing vector with the right

properties at the entangling surface S. Notice that we can disregard additive con-

stants in both the area and E , which are the values for the state σ. We only care

about deviations from these values. This is basically the inverse of the argument in

[111]. This shows how (4.9) works in this symmetric case. The term ŜWald−like in (4.9)

arises in some cases as we discuss below.

Let us now discuss the ŜWald−like term. There can be different sources for this

term. A simple source is the following. The bulk entanglement entropy has a series

of divergences which include an area term, but also terms with higher powers of the

curvature. Depending on how we extract the divergences we can get certain terms

with finite coefficients. Such terms are included in SWald−like. A different case is

that of a scalar field with a coupling αφ2(R − R0) where R is the Ricci scalar in

the bulk, and R0 the Ricci scalar on the unpertubed background, the one associated

to the state σ. Then there exists an additional term in the entropy of the form

ŜWald−like = 2πα
∫
S φ

2. If we compute the entropy as the continuum limit of the

one on the lattice, then it will be independent of α. Under these conditions the

bulk modular Hamiltonian is also independent of α and is given by the canonical

stress tensor, involving only first derivatives of the field. However, the combination of

Kbulk + ŜWald−like =
∫

Σ
∗(ξ.T grav(φ)), where T grav

µν (φ) is the standard stress tensor that

would appear in the right hand side of Einstein’s equations. T grav
µν (φ) does depend

on α. The α dependent contribution is a total derivative which evaluates to 2παφ2

at the extremal surface. A related discussion in the field theory context appeared in

[105, 18].
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4.4.2 The graviton contribution

We expect that we can view the propagating gravitons as one more field that lives on

the original background, given by the metric gσ. In fact, we can expand Einstein’s

equations in terms of g = gσ + δg2 +h. Here h, which is of order
√
GN , represents the

dynamical graviton field and obeys linearized field equations. δg2 takes into account

the effects of back-reaction and obeys the equation

E(δg2)µν = T grav
µν (h) + Tmatter

µν (4.13)

where T grav
µν (h) comes simply from expanding the Einstein tensor (plus the cosmolog-

ical constant) to second order and moving the quadratic term in h to the right hand

side. h obeys the homogeneous linearized equation of motion, so the term linear in

h in the equation above vanishes. We can now use equations (44-46) in [112], which

imply that

Kbdy,1+2 = E1+2 =
Âlin(h+ δg2) + Âquad(h)

4GN

+ Ecan (4.14)

where Kbdy,1+2 is the boundary modular Hamitonian (or energy conjugate to τ trans-

lations) expanded to quadratic order in fluctuations. Similarly, the area is expanded

to linear and quadratic order. Finally, Ecan is the bulk canonical energy5 defined

by Ecan =
∫
ω(h,Lξh)+matter contribution, where ω is the symplectic form defined

in [112]. From this expression we conclude that the modular Hamiltonian is the

canonical energy

Kbulk = Ecan (4.15)

We can make contact with the previous expression (4.12) as follows. If we include

the gravitons by replacing Tmat
µν → Tmat

µν + T grav
µν (h) in (4.12), then we notice that we

get Alin(δg2), without the term Aquad(h). However, one can argue that (see eqn. (84)

5This differs from the integral of the gravitational stress tensor by boundary terms.
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of [112]) ∫
Σ

∗(ξ.T grav(h)) = Ecan(h) +
Aquad(h)

4GN

(4.16)

thus recovering (4.14).

In appendix A we discuss in more detail the boundary conditions that are neces-

sary for quantizing the graviton field.

4.4.3 Quadratic order for coherent states

The problem of the gravity dual of relative entropy was considered in [102] in the

classical regime for quadratic fluctuations around a background with a local modular

Hamiltonian. They argued that the gravity dual is equal to the canonical energy.

Here we rederive their result from (4.10).

We simply view a classical background as a coherent state in the quantum theory.

eiλ
∫

Πφ̂+φΠ̂|ψσ〉, where |ψσ〉 is the state associated to σ 6. We see that in free field

theory we can view coherent states as arising from the action of a product of unitary

operators, one acting inside the region and one ouside. For this reason finite coherent

excitations do not change the bulk von Neuman entropy of subregions, or ∆Sbulk =

0. Thus, the contribution to the bulk relative entropy comes purely from the bulk

Hamiltonian, which we have argued is equal to canonical energy (4.15) . Therefore,

in this situation we recover the result in [102]

Sbdy(ρ|σ) = Sbulk(ρ|σ) = ∆Kbulk −∆Sbulk = ∆Kbulk = Ecanonical (4.17)

4.5 Modular flow

The modular hamiltonian generates an automorphism on the operator algebra, the

modular flow. Consider the unitary transformation U(s) = eiKs. Even if the modular

6 Here λ could be O(1/
√
GN ) as long as the backreaction is small.
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hamiltonian is not technically an operator in the algebra, the modular flow of an

operator, O(s) ≡ U(s)OU(−s), stays within the algebra. For a generic region, the

modular flow might be complicated, see [113] for some discussion about modular

flows for fermions in 1 + 1 dimensions. However, in our holographic context it can

help us understand subregion-subregion duality. In particular, it can help answer the

question of whether the boundary region R describes the entanglement wedge or only

the causal wedge [114, 56, 57, 115]. The entanglement wedge is the causal domain of

the spatial region bounded by the interior of S.

From (4.2), we have that

[Kbdy, φ] = [Kbulk, φ] (4.18)

where φ is any operator with support only in the interior of the entanglement wedge,

and where on the right-hand side we have suppressed terms subleading in GN . On

the left-hand side terms in Kbdy localized on S have dropped out, similarly as in

(4.10). Thus the boundary modular flow is equal to the bulk modular flow of the

entanglement wedge, the causal wedge does not play any role.

One may also consider the flow generated by the total modular operator,

Kbdy,Total = Kbdy,R − KbdyR̄, which should be a smooth operator without any

ambiguities. From our full formula for the bulk dual of the modular Hamiltonian

we see that Kbdy,Total = Kbulk,Total + o(GN). If the global state is pure, then KTotal

annihillates it.

4.5.1 Smoothness of the full modular Hamiltonian in the

bulk

For problems that have a U(1) symmetry, such as thermal states and Rindler or

spherical subregions of CFTs, we know the full boundary modular Hamiltonian E .
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We can define a time coordinate τ which is translated by the action of E in the

boundary theory. In these situations the bulk state also has an associated symmetry

generated by the Killing vector ξ. We can choose coordinates so that we extend τ in

the bulk and ξ simply translates τ in the bulk. Then the bulk modular Hamiltonian

is the bulk operator that performs a translation of the bulk fields along the bulk τ

direction.

Let us now consider an eternal black hole and the thermofield double state [10].

This state is invariant under the action of HR −HL. Let us now consider the action

of only the right side boundary Hamiltonian HR
7. It was argued in [11] that this

corresponds to the same gravity solution but where the origin of the time direction

on the right side is changed. This implies that the Wheeler de Witt patch associated

to tL = tR = 0 looks as in figure 4.2(b), after the action of e−itHR On the other hand,

if we consider the bulk quantum field theory and we act with only the right side bulk

modular Hamiltonian Kbulk,R we would produce a state that is singular at the horizon.

By the way, it is precisely for this reason that algebraic quantum field theorists like

to consider the total modular Hamiltonian instead. It turns out that the change in

the bulk state is the same as the one would obtain if we were quantizing the bulk

field theory along a slice which had a kink as shown in figure 4.2(b). Interestingly the

area term in the full modular Hamiltonian (4.9) has the effect of producing such a

kink. In other words, the area term produces a shift in the τ coordinate, or a relative

boost between the left and right sides [31]. The action of only the area term or only

KBulk,R would lead to a state that is singular at the horizon, but the combined action

of the two produces a smooth state, which is simply the same bulk geometry but with

a relative shift in the identification of the boundary time coordinates8.

Let us go back to a general non-U(1) invariant case. Since the bulk modular

Hamiltonian reduces to the one in the U(1)-symmetric case very near the bulk entan-

7Here left and right denote the two copies in the thermofield double state.
8We thank D. Marolf for discussions about this point.
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(a) (b)

Figure 4.2: In this figure we are considering the thermofield double state. (a) Acting
with the bulk modular Hamiltonian e−itKbulk,R we get a new state on the horizontal
line that has a singularity at the horizon. (b) The area term introduces a kink, or a
relative boost between the left and right sides. Then the state produced by the full
right side Hamiltonian is non-singular, and locally equal to the vacuum state.

gling surface S, we expect that the action of the full boundary modular Hamiltonian,

including the area term, will not be locally singular in the bulk – though it can be

singular from the boundary point of view due to boundary UV divergences.

4.5.2 Implications for entanglement wedge reconstruction

One is often interested in defining local bulk operators as smeared operators in the

boundary. This operator should be defined order by order in GN over a fixed back-

ground and should be local to the extent allowed by gauge constraints. If we consider

a t = 0 slice in the vacuum state, then we can think of a local bulk operator φ(X) as

a smeared integral of boundary operators [116]

φ(X) =

∫
bdy

dxd−1dtG(X|x, t)O(x, t) + o(GN) (4.19)

One would like to understand to what extent this φ operator can be localized to a

subregion in the boundary.
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Given a region in the boundary R, we have been associating a corresponding region

in the bulk, the so-called entanglement wedge which is the domain of dependence of

Rb, D[Rb]. There is another bulk region one can associate to R, the causal wedge

(with space-like slice RC) which is the set of all bulk points in causal contact with

D[R], [55]. RC is generically smaller than Rb [117, 115].

In situations with a U(1) symmetry, such as a thermal state or a Rindler or

spherical subregion of a CFT, we have time-translation symmetry and a local modular

Hamiltonian that generates translations in the time τ . We can express bulk local

operators in the entanglement wedge (which coincides with the causal wedge) in

terms of boundary operators localized in D[R] [116, 118]9

φ(X) =

∫
R

dyd−1

∫
dτ G′(X|y, τ)O(y, τ) + o(GN) , X ∈ Rb (4.20)

A natural proposal for describing operators in that case is that we can replace τ

in (4.20) by the modular parameter s. In other words, we consider modular flows of

local operators on the boundary, defined as OR(x, s) ≡ U(s)OR(x, 0)U−1(s)

A simple case in which Rb is larger than RC is the case of two intervals in a 1+1

CFT such that their total size is larger than half the size of the whole system, see

figure 4.3. Here, it is less clear how to think about the operators in the entanglement

wedge. We would like to use the previous fact that the modular flow is bulk modular

flow to try to get some insight into this issue.

The modular flow in the entanglement wedge will be non-local, but highly con-

strained: the bulk modular hamiltonian is bilocal in the fields [106]. If we have an

operator near the boundary of the causal wedge and modular evolve it, it will quickly

develop a non zero commutator with a nearby operator which does not lie in the

causal wedge. Alternatively, an operator close to the boundary of the entanglement

wedge will have an approximately local modular flow. It will follow the light rays em-

9It is sometimes necessary to go to Fourier space to make this formula precise [118, 119].
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Figure 4.3: In both figures the region R is the union of the two red intervals and the
Ryu-Takayanagi surface is the dotted black line, while the boundary of RC is the blue
dashed line (color online). In a), the shaded region denotes the defining spatial slice
Rb of the entanglement wedge. In b), the shaded region is the defining spatial slice RC

of the causal wedge. The modular flow of an operator close to the Ryu-Takayanagi
surface will be approximately local, so that φ1(s) will be almost local and, after some
s, it will be in causal contact with φC1. This flow takes the operator out of this slice to
its past or to its future. Alternatively, if we consider an operator near the boundary
of the causal wedge φC2, it is clear that, under modular flow, [φC2(s), φ2] 6= 0.

anating from the extremal surface and it can be on causal contact with the operators

in the causal wedge. See figure 4.3.

So we see that to reconstruct the operator in the interior of the entanglement

wedge, one necessarily needs to understand better the modular flow. It seems natural

to conjecture that one can generalize (4.20) to two intervals (or general regions) by

considering the modular parameter instead of Rindler time, ie the simplest generaliza-

tion of the AdS/Rindler formula which accounts for the non-locality of the modular

hamiltonian would be

φ(X) =

∫
R

dx

∫
dsG′′(X|x, s)O(x, s) , X ∈ Rb (4.21)
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Here G′′ is a function that should be worked out. It will depend on the bilocal kernel

that describes the modular Hamiltonian for free fields [106].

So we see that to reconstruct the operator in the interior of the entanglement

wedge, it is necessary to understand better modular flows in the quantum field theory

of the bulk. To make these comments more precise, a more detailed analysis would

be required, which should include a discussion about gravitational dressing and the

constraints. We leave this to future work.

Here we have discussed how the operators in the entanglement wedge can be

though of from the boundary perspective. However, note that from (4.9) (and con-

sequently the formula for the relative entropy), it is clear that one should think of

the entanglement wedge as the only meaningful candidate for the “dual of R”, see

also [114]. If we add some particles to the vacuum in the entanglement wedge Rb

(which do not need to be entangled with R̄b), the bulk relative entropy will change.

According to (4.3), the boundary relative entropy also changes and, therefore, state

is distinguishable from the vacuum, even if we have only access to R.

4.6 Comments and discussion

4.6.1 The relative entropy for coherent states

If we consider coherent states, since their bulk entanglement entropy is not changed,

the relative entropy will just come from the difference in the bulk modular hamilto-

nian. Since our formulation is completely general, one could in principle compute it

for any reference region or state and small perturbations over it.

A particularly simple case would be the relative entropy for an arbitrary subre-

gion between the vacuum and a coherent state of matter. To second order in the

perturbation, one only needs to work out how the modular hamiltonian for the free
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fields [106] looks like for that subregion of AdS, and then evaluate it in the coherent

state background.

4.6.2 Positivity of relative entropy and energy constraints

Our formula (4.10) implies that the energy constraints obtained from the positivity

of the relative entropy can be understood as arising from the fact that the relative

entropy has to be positive in the bulk.

4.6.3 Higher derivative gravity

Even though we focused on Einstein gravity, our discussion is likely to apply to other

theories of gravity. The modular hamiltonian will likely be that of an operator local-

ized on the entangling surface plus the bulk modular Hamiltonian in the corresponding

entanglement wedge. Thus the relative entropy will be that of the bulk. There could

be subtleties that we have not thought about.

4.6.4 Beyond extremal surfaces

A. Wall proved the second law by using the monotonicity of relative entropy [95, 96].

If we consider two Cauchy slices Σ0,Σt>0 outside a black hole, then Srel,t < Srel,0 is

enough to prove the generalized second law. Interestingly, section 3 of [112] shows

the “decrease of canonical energy”: Ecan(t) < Ecan(0). The setup (Cauchy slices)

that they both consider is the same. Due to the connection between relative entropy

and canonical energy, [102], we expect a relation between these two statements. This

does not obviously follow from what we said due to the following reason.

Here we limited our discussion to the entanglement wedge. In other words, we are

always considering the surface S to be extremal. We expect that the discussion should

generalize to situations where the surface S is along a causal horizon. The question
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is: what is the precise boundary dual of the region exterior to such a horizon? Even

though we can think about the bulk computation, we are not sure what boundary

computation it corresponds to. A proposal was made in [120], and perhaps one can

understand it in that context.

Being able to define relative entropies for regions which are not bounded by min-

imal surfaces is also crucial to the interesting proposal in [121] to derive Einstein’s

equations from (a suitable extension to non-extremal surfaces of) the Ryu-Takayanagi

formula for entanglement.

4.6.5 Distillable entanglement

In the recent papers [122, 123] it was argued that for gauge fields, only the purely

quantum part of the entanglement entropy corresponds to distillable entanglement.

The “classical” piece that cannot be used as a resource corresponds to the shannon

entropy of the center variables of [104]. Our terms local in S are the gravitational

analog of this classical piece and one might expect that a bulk observer with access

only to the low-energy effective field theory can only extract bell pairs from the bulk

entanglement. This seems relevant for the AMPS paradox [3, 124, 125].

4.7 Appendix A: Subregions of gauge theories

4.7.1 U(1) gauge theory

The problem of defining the operator algebra of a subregion of a gauge theory was

considered in [104]. It was shown that for a lattice gauge theory there are several

possible definitions of the subalgebra. It was further found that the subalgebra can

have a center, namely some operators that commute with all the other elements of

the subalgebra. In this case we can view the center as classical variables. Calling the

classical variables xi, then for each value of xi we have a classical probability pi and a
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density matrix ρi for each irreducible block. The relative entropy between two states

is then

S(ρ|σ) = H(p|q) +
∑
i

piS(ρi|σi) (4.22)

where pi, qi are the probabilities of variables xi in the state ρ and σ respectively.

H is the classical (Shanon) relative entropies of two probability distributions, H =∑
i pi log(pi/qi).

In the continuum we expect that the relative entropy is finite and independent of

the microscopic details regarding the precise definition of the algebra [93].

These microscopic details have a continum counterpart. When we consider a

region R we would like to be able to define a consistent quantum theory within the

subregion. In particular, imagine that we consider all classical solutions restricted to

the subregion. Then we define a presymplectic product between two such solutions,

which we will use to quantize the gauge orbits. This presymplectic product should

be gauge invariant so that it does not depend on the particular representative. Let

us consider a free Maxwell field. The presymplectic product is given by integrating

Ω(A1, A2) =

∫
Σ

ω(A1, A2) =

∫
Σ

(A1 ∧ ∗F 2 − A2 ∧ ∗F 1) (4.23)

where A1 = A1
µdx

µ is a gauge field configuration. Here we imagine that both A1 and

A2 are solutions to the equations of motion. Σ is any spacelike surface.

Demanding gauge invariance amounts to the statement

0 = Ω(A, dε) =

∫
∂Σ

ε ∧ F (4.24)

where ∂Σ is the boundary of the spacelike surface. We have used the equations of

motion for F and integrated by parts. In order to make this vanish we need some

boundary conditions. In particular, let us concentrate on the boundary conditions
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required at the boundary of Σ corresponding to the boundary of a region S = ∂Σ.

One possible boundary condition is to set Ai = Acl
i for components along the surface,

where Acl
i is a classical gauge field on the surface. In this case, it is natural to set ε = 0

on the surface. We can quantize the problem for each fixed Acl
i and then integrate

over all Acl
i . These values of Acl

i are the “center” variables xi in the above discussion.

This is called the “magnetic” center, since the gauge field Acl
i defines a magnetic field

F = dAcl on the surface.

There are other possibilities, such as fixing the electric field, or “electric center”,

where the perpendicular electric field is fixed.

These would correspond to specific choices on the lattice. Since we expect that

relative entropy is a finite and smooth function of the shape of the region, [104] has

shown that the detailed boundary condition does not matter, as long as we choose

something that makes physical sense. Recently, [107, 108] carried out explicitly the

field theory calculation, being careful with the center variables.

4.7.2 Gravity

Here we consider the problem of defining a subregion in a theory of Einstein grav-

ity. We consider only the problem at the quadratic level where we need to consider

free gravitons moving around a fixed background (which obeys Einstein’s equations).

These gravitons can be viewed as a particular example of a gauge theory. We can also

compute the symplectic form, as given in [37], and then impose that the symplec-

tic inner product between a pure gauge mode and another solution to the linearized

equations vanishes. Here the gauge tranformations are reparametrizations, generated

by a vector field ζ. Note that ζ is not a killing vector, it is a general vector field

and it should not be confused with ξ discussed in section 4.4. Writing the metric as

g + δg, where g is the background metric and δg is a small fluctuation. Then the

gauge tranformation acts as δg → δg +Lζg, where Lζ is the Lie derivative. Then, as
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shown in [112], there is a simple expression for the sympectic product with a such a

pure gauge mode ∫
Σ

ω(δg,Lζg) =

∫
∂Σ

δQζ − ζ.Θ(g, δg) (4.25)

with Qζ and Θ(g, δg) given in eqns (32) and (17) of [112].

We would like to choose boundary conditions on the surface which make the right

hand side zero. We choose boundary conditions similar to the “magnetic” ones above.

Namely, we fix the metric along the entangling surface S to δgij = γij. We treat γij

as classical and then integrate over it. This is enough to make all terms in (4.25)

vanish. Let us be more explicit. By a change of coordinates we can always set the

metric to have the following form near the entangling surface. For simplicity we write

it in Euclidean space, but the same is true in Lorentzian signature

ds2 = dρ2 + [ρ2 + o(ρ4)](dτ + aidy
i)2 + hijdy

idyj (4.26)

here ai and hij can be functions of τ and ρ, with a regular expansion around ρ = 0.

In these coordinates the extremal surface S is always at ρ = 0, both for the original

metric and the perturbed metric. Extremality implies that the trace of the extrinsic

curvature is zero, or KA = hij∂XAhij = 0, where XA = (X1, X2) = (ρ cos τ, ρ sin τ).

This is true for the background and the fluctuations

KA = 0, δKA = 0 (4.27)

which ensures that even on the perturbed solution we are considering the minimal

surface. These conditions ensure that the splitting between the two regions is defined

in a gauge invariant way.

We demand that all fluctuations are given in the gauge (4.26). Thus, near ρ = 0,

δg leads to δai and δhij. We now further set a boundary condition that δhij = γij
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where γij is a classical function which we will later integrate over. For defining the

quantum problem we will view it as being classical. We will quantize the fields in the

subregion for fixed values of γij and then integrate over the classical values of γij.

With these boundary conditions we see that all terms in (4.25) vanish. In fact,

(4.25), has three terms10

∫
Σ

ω(δh,Lξg) =

∫
∂Σ

δδhQ(ζ)− iζΘ(g, δh)

=

∫
∂Σ

[
δaiζ

i + ζτδhii + (−hij∂Aδhij +
1

2
δhij∂Ahij)ζBε

AB

]
(4.28)

Since the fluctuation of the metric is zero at the entangling surface, δhij = 0, we

see that many terms vanish. In addition, since we are setting δhij = 0, it is also

natural to restrict the vector fields so that ζ i = 0 on the surface. This ensures that

the first term in (4.28) vanishes. Note that the middle term is related to the fact

that the area generates a shift in the coordinate τ . After all the area is the Noether

charge associated to such shifts [36, 37].

The extremality condition makes sure that we are choosing a (generically) unique

surface for each geometry. We then treat the induced geometry on the surface as a

classical variable, quantize the metric in the subregion, and then sum over this clas-

sical variable. In this region, we seem to have a gauge invariant symplectic product.

We have not explicitly computed the entanglement entropy for gravitons with

these choices, but we expect that it should lead to a well defined problem and that

relative entropies will be finite.

10We did not keep track of the numerical coeficients in front of each of the three terms
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