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ABSTRACT 

ARSENIC IN DRINKING WATER CAUSES GENE EXPRESSION CHANGES IN 

THE LIVER RELATED TO INFLAMMATION AND METABOLIC DYSFUNCTION 

AND ACCELERATES ATHEROSCLEROSIS IN APOE-/- MICE. 

Matthew R Zajack 

August 5,2010 

Arsenic exposure in drinking-water is a significant worldwide health 

problem. It causes adverse human health effects, such as cancer, increases the 

risks for others such as cardiovascular disease, and accelerates atherosclerosis. 

In this study, we analyze arsenic-induced gene expression changes in the liver of 

ApoE-knockout mice given 49 ppm arsenic in drinking-water. We hypothesize 

chronic arsenic exposure accelerates atherosclerosis by disrupting liver 

homeostasis, causing aberrant gene expression changes. Networks revealed 

hubs on 3 stress-response MAP kinase pathways, ERK, JNK, and p38. 

Pathways revealed mitochondrial dysfunction and oxidative phosphorylation 

enrichment from the gene set. Transcription factor binding site analysis revealed 

specific transcription factors Foxd 1, estrogen receptors, heat shock factor, Myc, 

and Pparg. Taken together, results suggest metabolic function disruption in the 

mitochondria related to oxidative stress and increased MAPK activity. Future 
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studies should focus on arsenic's effects on mitochondria dealing with 

metabolism and activation of ERK, JNK, and p38 MAPK pathways. 

v 



TABLE OF CONTENTS 

Acknowledgements ........................................................................................... iii 

Abstract .......... , ................................................................................................... iv 

List of Tables ................................................................................................... viii 

List of Figures .................................................................................................... ix 

Chapter 1: Introduction ..................................................................................... 1 

Arsenic exposure ............................................................................................... 1 

Cardiovascular disease and atherosclerosis ..................................................... 5 

Apolipoprotein E-knockout mouse is a model for atherosclerosis ................... 10 

Mechanisms of arsenic-induced atherosclerosis ............................................. 11 

Chapter 2: Methods ......................................................................................... 18 

Animal housing and treatment protocols ......................................................... 18 

RNA collection and preparation ...................................................................... 19 

Microarray analysis ......................................................................................... 19 

MicroRNA microarray analysis ........................................................................ 21 

Functional analysis .......................................................................................... 22 

Transcription factor binding sites analysis ....................................................... 23 

Chapter 3: Results ........................................................................................... 25 

Comparing and contrasting GeneSpring and Partek ....................................... 26 

Ingenuity Pathways Analysis (IPA) functional analysis .................................... 28 

DAVID functional analysis ............................................................................... 30 

MicroRNA analysis .......................................................................................... 31 

Transcription Factor Binding Sites (TFBS) analysis ........................................ 34 

Chapter 4: Discussion ..................................................................................... 36 

Future directions .............................................................................................. 44 

Conclusion and summary ................................................................................ 45 

Figures and Tables ........................................................................................... 47 

vi 



References ................. ....................................................................................... 70 

Curriculum Vitae ............................................................................................... 74 

vii 



LIST OF TABLES 

Table 1: Top IPA networks for GeneSpring and Partek ..................................... 52 

Table 2: Top IPA canonical pathways ............................................................... 54 

Table 3: DAVID analysis on gene expression .................................................... 56 

Table 4: DAVID and IPA mitochondrion analysis ............................................... 57 

Table 5: MicroRNA database comparison ......................................................... 60 

Table 6: MicroRNA and transcript intersection DAVID analysis ......................... 65 

Table 7: TFBS analysis on gene expression ..................................................... 66 

viii 



LIST OF FIGURES 

Figure 1: MvA plot ............................................................................................. 47 

Figure 2: peA analysis on gene expression ...................................................... 48 

Figure 3: IPA networks on gene expression ...................................................... 50 

Figure 4: MicroRNA database comparison network .......................................... 61 

Figure 5: MicroRNA and transcript intersection comparison network ................ 63 

Figure 6: TFBS on gene list cluster ................................................................... 68 

ix 



Arsenic exposure 

CHAPTER 1 

INTRODUCTION 

Arsenic exposure through drinking-water is a significant worldwide health 

problem. Arsenic contaminates drinking water primarily through both natural 

mineral deposits, tapped by groundwater wells, and anthropogenic sources, 

through mining and industrial use[1-2]. 

The US Agency for Toxic Substances and Disease Registry (ATSDR)-a 

division of the CDC-has, for over 13 years, listed arsenic as the number one 

priority substance based on frequency, toxicity, and potential for human exposure 

at facilities located at National Priorities List sites. To put this in perspective, 

arsenic is ranked above lead (2), mercury (3), benzo(a)pyrene (9), and DDT (12) 

in 2007. The US Environmental Protection Agency (EPA) set the maximum 

contaminant level (MCl) for arsenic at 0.010 ppm (parts per million; 0.010 mg/l 

As) or 10 ppb (parts per billion; 10 1J9/l As) in 2001, which is the same as the 

World Health Organization (WHO) provisional guideline value set in 1993. Prior 

to this regulation, the MCl was set at 0.050 ppm for both the EPA in 1976 and 

WHO in 1963 [3]. In addition, the EPA set the public health goal for arsenic 
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exposure at 0 ppm. There are many areas in the United States in which 

groundwater is naturally contaminated with arsenic (0.010 ppm or more) 

including, but not limited to, Michigan, Texas, and parts of the southwestern 

states of Arizona, Nevada, and California, although this estimate excludes many 

rural, private, and unregulated wells for which data are unavailable [4-5]. In a 

study by the EPA in 2000, of the 43,443 ground water systems queried, 2,302 

had arsenic at concentrations> 10 ug/l (0.010 ppm), which is above the current 

EPA MCl [6]. Additionally, there are reports of arsenic drinking-water 

contamination from around the world, including Southeast Asia, China, Iran, and 

Mexico, and many others [7-8], with some of these areas containing 

concentrations as high as 1000 1J9/l arsenic dissolved in groundwater. long­

term arsenic exposure increases the risk of many diseases, including 

hyperpigmentation, keratosis, skin cancer, and internal cancers [9]. Additionally, 

the EPA states health effects from long-term arsenic exposure include skin 

damage, problems with circulatory systems, and an increased risk of cancer [10]. 

long-term exposure to arsenic in drinking-water has a plethora of human 

health effects including increased risks of skin, bladder, and lung cancer [1-2]. 

Arsenic is excreted in the urine, primarily through the kidneys, within a few days 

after ingestion. In a study by Chen et al conducted in northeastern Taiwan, 

arsenic exposure at <10 1J9/l (0.010 ppm) arsenic for over 50 years from birth 

significantly increased the risk of urinary cancer with a relative risk of 4.12 [11]. It 

is also hypothesized that arsenic acts as a skin carcinogen by enhancing the 

effects of ultraviolet (UV) radiation [12]. This is especially likely considering the 
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aberrant effects that arsenic has in combination with polymorph isms in nucleotide 

excision repair genes such as XPA and XPD [13]. Arsenic may also enter the 

body through inhalation. A study at the National Cancer Institute by Lubin et al 

reveals a linear relationship between lifetime cumulative arsenic exposure and 

respiratory cancer mortality [14]. In fact, this study argues against a previously 

postulated exposure threshold for carcinogenesis that was set at 150 IJg/L 

(0.150 ppm) arsenic [15] by showing cumulative lifetime arsenic intake in smelter 

workers in Tacoma, Washington unequivocally corresponded to < 30 IJg/L 

(0.030 ppm) arsenic. However, cancer is not the only concern from long-term 

arsenic exposure, cardiovascular disease risk is also an important consideration. 

Non-cancer studies of the reproductive, neurological, cardiovascular, 

respiratory, hematological, diabetic, and dermal effects of arsenic are of 

significant interest, especially in cost-to-benefit estimates for drinking water 

standards [2]. Early reports concerning the noncancer effects of inorganic 

arsenic focused primarily on the blackfoot disease endemic in Taiwan that has 

occurred since the early 20th century and peaked in the last 1950's [16]. 

Bangladesh and West Bengal, in an effort to stave off bacterial contamination 

persistent in surface drinking water sources, groundwater wells were dug by the 

WHO for use by residents. After a period of years investigators started seeing 

gangrene of the extremities, similar to the blackfoot disease seen in Taiwan, 

among other diseases, and related it back to the artesian well water being 

consumed by residents [17]. Blackfoot disease advances from coldness or 

numbness of the extremities, to intermittent claudication, and finally to gangrene 
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and surgical or spontaneous amputation. Engel et al [16] went on to explain that 

manifestations such as blackfoot disease are only "the tip of the iceberg," and 

that it is likely there is unseen systemic disease-he goes on to support it with 

reports of mortality due to vascular causes such as atherosclerosis. Indeed, 

vascular effects should be taken into consideration with respect to arsenic 

exposure and will be discussed more fully below. 

In addition to arsenic's direct effects on the vascular system, there are 

studies implicating an association of arsenic with cardiovascular disease. 

Arsenic induces atherogenesis by causing endothelial damage, endothelial 

dysfunction, enhanced inflammatory activity, increased coagulability and 

decreased fibrinolysis, smooth muscle cell proliferation, increased oxidative 

stress, impaired nitric oxide balance, and induction of apoptosis. Arsenic has 

also been found in epidemiological studies to be associated with hypertension 

and diabetes mellitus [18]. Low-to-moderate levels of arsenic (11 IJg/L) in 

drinking water in Michigan revealed an association with many diseases by 

standardized mortality ratio (SMR); e.g. circulatory system (SMR, 1.11) 

cerebrovascular disease (SMR, 1.19), diabetes mellitus (SMR, 1.28), and kidney 

disease (SMR, 1.28) [5]. All of these could predispose, trigger, or aggravate 

atherogenesis or are a consequence to atherosclerosis and are discussed below 

in more detail. 
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Cardiovascular disease and atherosclerosis 

Cardiovascular disease is the leading cause of death worldwide. 

Cardiovascular disease accounted for more than 34% of all deaths in the United 

States in 2006, and the estimated direct and indirect cost of cardiovascular 

disease is over $500 billion for 2010 [19]. Cardiovascular disease is 

characterized by the dysfunction of blood vessels and the heart. Diseases 

caused by cardiovascular disease are high blood pressure (hypertension), 

coronary heart disease, heart failure, renal failure, and stroke. Atherosclerosis, a 

disease of the large arteries, is the underlying cause of the majority of 

cardiovascular events and in westernized societies is also the underlying cause 

of about 50% of all deaths [20]. Atherosclerosis is a condition in which plaque­

composed of cholesterol, fat, calcium, and other SUbstances in the blood-builds 

up in the inner linings of arteries. 

Atherosclerosis is a progressive, multifactorial disease that is 

characterized by the accumulation of lipids, inflammation, and scar tissue and 

other fibrous elements in the arterial walls-the process below is summarized 

from Harrison's Principles of Internal Medicine [21]. An abundance of circulating 

cholesterol promotes accumulation of low-density lipoprotein (LDL) particles on 

the outside and invading into the endothelial layer of the arterial wall, forming 

fatty streaks. Once LDL particles are deposited below the endothelial layer, 

away from circulating blood, they favor oxidative modification. These oxidized 

LDL (oxLDL) particles may trigger a local inflammatory response, activating 

inflammatory mediators such as leukocytes and macrophages. Macrophages will 
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engulf oxLDL and become cholesterol-rich foam cells. Accumulation of foam 

cells forms a plaque and progresses the atherosclerotic lesion, releasing more 

inflammatory markers. Under stable conditions, smooth muscle cells will 

eventually proliferate into the macrophage-rich lesion area creating a fibrous 

lesion and narrowing the artery. Alternatively, under certain conditions this 

plaque may remain unstable, not forming a fibrous lesion, and rupture; a rupture 

triggers blood clotting that may block the entire artery. Atherosclerosis is a 

chronic process that occurs in multiple "steps" and is able to go into quiescence 

for long periods of time to resume when conditions again favor lesion formation. 

Inflammation plays an established fundamental role in mediating all stages 

of atherosclerosis, from initiation through progression, and finally, thrombotic 

complications of atherosclerosis [22]. Atherosclerosis is characterized by 

recruitment of white blood cells, such as monocytes and leukocytes, to early 

atherosclerotic lesions [20]. Normally, however, the endothelium does not 

support binding of white blood cells. According to Libby et al [22], an event or 

trigger, such as hypertension, smoking, insulin resistance, or an atherogenic diet 

(a diet high in cholesterol and fats) is needed to stimulate endothelial cells to 

begin to express pro-inflammatory molecules, including adhesion molecules that 

will bind various leukocytes; once blood-derived inflammatory cells participate 

with endothelial cells, they may perpetuate a local inflammatory response [22]. 

In this way, the inflammatory signal to initiate atherosclerosis need not be found 

locally. 
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Distant sources of inflammation may contribute to atherosclerosis [23]. 

The idea that a seemingly unrelated condition may contribute to complications of 

another disease is not novel. For example, the hypothesis that an infection may 

be associated with atherosclerosis, in fact, was suggested over 100 years ago by 

Hektoen [24]. One such example is from the teeth in the case of gingivitis by 

Ford et al [25]. Ford injected 6 week-old apoE-I- mice each either P. gingivalis or 

C. pneumoniae, killed the mice at 18 or 34 weeks of age, and assessed 

atherosclerotic lesion area. They showed all immunized mice developed lesions 

greater than those of controls (p<0.05), but that those immunized with P. 

gingiva lis developed larger atherosclerotic lesions than those with C. 

pneumoniae (p<0.043). 

Systemic inflammation through liver damage also contributes to 

atherogenesis. In a case-control study by Brea et ai, nonalcoholic fatty liver 

disease (NAFLD) is associated with atherosclerosis [26]. They assessed 93 

patients with fatty liver and 40 controls for frequency and magnitude of 

cardiovascular risk factors and measured carotid atherosclerosis by intima-media 

thickness (IMT). They found patients with NAFLD had significantly more 

abnormalities related to metabolic syndrome (MetS), including visceral adiposity, 

hypertension, abnormal glucose metabolism, insulin resistance, 

hypertriglyceridemia, and low HDL cholesterol (p<0.005). They suggest that 

NAFLD is atherogenic beyond its association with MetS. They propose 

mechanisms related to enhanced oxidative stress, reactive oxygen species 
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causing increased circulating inflammatory milieu, and circulating C-reactive 

protein (CRP) contributing to the inflammatory status in NAFLD. 

Systemic inflammation contributing to atherosclerosis is widely accepted 

and now being linked with many other diseases. Berg et al reviews evidence 

supporting the hypothesis that adipose tissue plays a role in development of 

systemic inflammatory state that contributes to CVD [27]. The review touches on 

subjects such as innate immunity mediated solely through fat bodies activated by 

NF-kB in metazoan species, toll-like receptors in mammals activating signal 

transduction pathways activating mediators such as interleukin-6 (IL-6) and TNF­

alpha, and response to infections by IL-6, IL-11, and interferon-gamma (IFN­

gamma). Berg et al explains that obesity contributes to systemic inflammation by 

causing increased expression of TNF-alpha, IL-6, PAI-1, CRP, fibrinogen, and 

increases macrophage infiltration, and that the liver contributes to this condition. 

Obesity also contributes to CVD via atherosclerosis, 

hypercholesterolemia, insulin resistance and type 2 diabetes, and metabolic 

syndrome [27-28]. Libby et al review a study that looks at clinical applications for 

inflammation in atherosclerosis to limit cardiovascular events [29]. The JUPITER 

trial is a placebo-controlled study to evaluate if people with some inflammation 

(indicated by CRP) but below median levels of low-density lipoprotein (LDL) 

would benefit from statin therapy. Endpoints of myocardial infarction (MI), stroke, 

or cardiovascular death fell by 47% in rosuvastatin group compared to placebo 

group (p<O.00001) with little cost in terms of unwanted effects. The study 

provided further evidence that cardiovascular events can be reduced by LDL 
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lowering and an LDL-independent anti-inflammatory effect. The concept of 

inflammation in atherosclerosis is no longer only theory and laboratory 

investigation, it shows a promising role as a tool in the clinic to aid prevention 

and management of cardiovascular disease [29]. Hotamisligil, in a review, 

addresses metabolic and inflammatory responses as the core of metabolic 

disorders such as obesity and CVD [28]. He discusses several topics related to 

the mechanistic core of metabolic and inflammatory responses: Tumor Necrosis 

Factor alpha (TNF-alpha), a proinflammatory cytokine, is overexpressed in 

adipose tissues and acts to inhibit insulin action. Peroxisome-proliferator 

activated receptor (PPAR) and liver X receptor (LXR) transcription factors inhibit 

the inflammatory response in macrophages and adipocytes. c-Jun amino­

terminal kinase (JNK) mediates insulin resistance, plays a critical role in liver 

tissues, and promotes inflammatory gene expression through activator protein-1 

(AP-1) and NF-kB. Obesity and type 2 diabetes are critically involved in many 

processes that interact with metabolic dysfunction and inflammation[28]. Among 

many transcription factors involved in stress-response, NF-kB is very sensitive to 

arsenic-induced oxidative stress [30]. Normally, up-regulation of IKK leads to 

degradation of IkB and in turn translocation of NF-kB to the nucleus where it is 

activated. Ghosh et al have shown that arsenic in cardiomyocytes increased 

ROS production and increased apoptotic cell death [30]. When they 

administered a JNK and p38 MAPK inhibitor, NF-kB and IKK phosphorylation 

was attenuated, suggesting that arsenic increases phosphorylation of p38 MAPK 

and JNK MAPK that leads to NF-kB by IKK activation. 
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Apolipoprotein E-knockout mouse is a model for atherosclerosis 

The apolipoprotein E-knockout (ApoE-/-) mouse [31] is a powerful 

investigatory model for atherosclerosis, especially considering that normal mice 

are highly resistant to atherosclerosis. ApoE-/- mice are used extensively to 

study the development of atherosclerosis. 

Apolipoprotein E (apoE) is one of several evolutionarily conserved 

lipoprotein genes. Its primary function is to mediate the receptor-mediated 

removal of lipoproteins from the blood. ApoE is the primary ligand for the low­

density lipoprotein receptor (LDLr) which mediates the removal of lipoprotein 

remnants from circulation. ApoE-deficiency results in decreased removal of LDL 

cholesterol, i.e. increasing "bad" cholesterol. This results in an increase in 

overall cholesterol levels from 75 mg/dL in the normal (background strain) to 

500 mg/dL in ApoE-/- mice. High levels of LDL and/or low levels of HDL 

cholesterol are risk factors for atherosclerosis and CVD. Plump et al showed the 

atherosclerotic lesions in ApoE-/- mice also accurately represent the extent and 

severity of human atherosclerosis [31]. The ApoE-/- mouse develops massive 

fibroproliferative atherosclerosis [31]. The increased lipid levels and disease 

progression mimic human atherogenesis making the ApoE-I- mouse a desirable 

model to study various effects on the cardiovascular system. 

Simeonova et al evaluated atherosclerotic plaque formation in arsenic 

exposed ApoE-/- mice, and C57BLl6 (background strain), and inflammatory 

signaling in human aortic endothelial cell (HAECs) culture [32]. Mice were given 
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-------------------------------------------------------------------- -------

20 or 100 IJg/mL sodium arsenite in drinking water for up to 24 weeks with either 

regular chow or high fat diet. Body weight and serum cholesterol levels did not 

significantly differ between arsenic and control animals fed a regular diet, 

whereas the high-fat diet significantly increased only cholesterol levels; 

moreover, 20 ug/mL sodium arsenite did not increase serum cholesterol or 

weight but 100 ug/mL sodium arsenite had a slight but significant increase in 

cholesterol. C57BLl6 mice did not develop atherosclerotic lesions with any 

exposure or diet; however, mice with 20 or 100 IJg/mL sodium arsenite on high 

fat diet induced a 1.6 and 2.3 fold increase in lesion size, respectively. 

Inflammatory genes IL-8, NF-kB, and AP-1 were induced in HAECs in response 

to arsenic treatment. They also suggest the role of oxidative stress needs further 

evaluation as a mechanism for arsenic-related vascular effects. Similar results 

were seen by Bunderson et ai, who treated mice with a lower arsenic 

concentration (10 ppm) [33]. They also saw a significant increase in plaque size 

between arsenic and control, and saw evidence of oxidative stress and 

inflammation. These data suggest the ApoE-I- mouse is a good model for 

studying the effects of arsenic exposure on atherosclerosis. 

Mechanisms of arsenic-induced atherosclerosis 

We have already discussed that atherosclerosis is a multifactorial disease 

that is characterized by fat accumulation, inflammation, and thrombotic events 

[21]. We have also discussed how inflammation is central to every step of 

atherogenesis, including initiation, progression, and ultimately the thrombotic 

events [22]. Arsenic is a known carcinogen, causing skin, bladder, and lung 
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cancer at concentrations < 150 j.Jg/L arsenic [1-2, 12-15]. Arsenic also has the 

noncancer effects of vascular disease, represented as blackfoot disease [17] and 

diabetes mellitus[5]. A couple reviews have been published that review 

epidemiological evidence implicating arsenic exposure in cardiovascular disease 

and atherosclerosis [34-35]. Briefly, these two reviews look not only at the 

epidemiological evidence, but also at in vitro cell culture studies and in vivo 

ApoE-I- mouse studies. Simeonova et al reviews epidemiological studies on 

arsenic exposure from 1989-2004 and examines animal models of 

atherosclerosis and arsenic. States et al summarizes several epidemiological 

studies in Bangladesh and Taiwan, as well as provides an updated review of 

arsenic exposure in the ApoE-I- mouse. Now we look at several studies 

implicating arsenic exposure in accelerated atherosclerosis, chronic 

inflammation, and cardiovascular disease risk factors such as diabetes mellitus. 

A study by Wu et al showed that a high fat diet exacerbates arsenic­

induced liver fibrosis in mice [36]. This study exposed Kunming white mice to 

water containing 200 ppm arsenic as sodium arsenite for 10 months and 

collected blood and livers. They found that arsenite significantly increased serum 

aspartate aminotransferase (AST}-a clinical sign of liver injury-levels 5 fold, 

and when combined with a high fat diet increased by 10 fold over unexposed 

controls. Mild fibrosis (5 fold increase over unexposed controls) occurred in the 

arsenite alone group; combined with a high fat diet, however, fibrotic lesions 

were more severe (more than 10 fold increase over unexposed controls). RT­

peR was used to reveal an increase in expression of genes related to hepatic 
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inflammatory response, namely TNF-alpha and IL-6 by 6 and 7.5 fold, 

respectively, which was drastically increased in a high fat diet. TGF-beta was 

also enhanced for a high-fat diet with arsenic exposure (13 fold) and played a 

role in arsenic hepatofibrogenesis. A high fat diet enchanced arsenic-induced 

liver fibrosis in this study and caused an array of related aberrant gene 

expression changes [36]. Arteel et al demonstrated similar results using four to 

6 week-old C57BLl6J mice were exposed to 49 ppm arsenic as sodium arsenite 

in drinking water for seven months [37]. They showed AL T and AST levels were 

significantly increased 2 and 3 fold, respectively in response to 

lipopolysaccharide (LPS) challenge. Arsenic pre-exposure in this study 

significantly increased liver damage due to LPS. This, combined with a review in 

the Waalkes lab, show that the liver is a major target organ of arsenic toxicity and 

carcinogenesis [38]. Many of the aberrant genes that were differentially 

expressed in these experiments are related to inflammatory signals and that 

cause restructuring of the liver. 

A study by Srivastava et al shows arsenic exacerbates atherosclerotic 

lesion formation and inflammation in ApoE-I- mice [39]. Three-week-old mice 

were exposed to arsenic in drinking water at 1, 4.9, and 49 ppm arsenic 

concentrations for 13 through 33 weeks. 10 week-old control mice showed few 

lesions in aortic arch, while arsenic-exposed mice showed >5 fold larger lesions 

(p<O.01). Exposure to arsenic increased plaque formation in the aortic valve and 

aortic arch in a dose-dependent manner at 1 and 4.9 ppm arsenic in mice 
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exposed for 13 weeks; macrophages also accumulated in lesions in a dose­

dependent manner. 

Various signal transduction pathways are arsenic-induced, and reviews 

can be found here [40-41]. The three major classes of MAPKs are extracellular 

signal-regulated kinases (ERK)s, c-jun N-terminal kinases (JNK), and p38. ERKs 

are growth factor-responsive and induce cell differentiation, proliferation, and 

transformation signaling. JNK and p38 primarily mediate cytokines and stress­

related responses such as cell growth arrest and apoptosis. These pathways 

affect genes that perform a variety of cellular responses that have mechanisms 

leading to cancer-causing effects. Nuclear Factor-kappa B (NF-kB) is a 

transcription factor that mediates cellular processes such as cell-to-cell 

interaction, intracellular communication, cell recruitment or transmigration, 

amplification of pathogenic signals, and initiation or acceleration of 

carcinogenesis. MAP kinases playa role in arsenic-incuded NF-kB activation but 

are complicated and have been reviewed by Qian et al [40]. 

There are also reports that in utero (developing fetus in mother) arsenic 

exposure induces the early onset of atherosclerosis in ApoE-I- mice [42]. 

Pregnant mice were exposed to 85 1J9/L sodium arsenite (49 ppm arsenic) in 

drinking water for 2 weeks, and the aortic trees of male offspring were analyzed 

at 10 and 16 weeks after birth. A few small lesions were seen in unexposed 

control mice. Atherosclerotic lesions in the aortic valve were seen in 5 of 10 

arsenic-exposed mice, and as a group had 2 fold greater lesion size than 

controls (0.5-1.2% in controls vs. 0.6-3.8% in arsenic-exposed; p<0.05). The 
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authors speculate arsenic has lasting effects on susceptibility to atherosclerosis 

in adulthood related to endothelial dysfunction [42]. In addition, a study by Fry et 

al monitored gene expression profiles in newborns whose mothers were arsenic 

exposed during pregnancy and has proposed 11 transcripts that are potential 

biomarkers of prenatal arsenic exposure [43]. CXL 1, DUSP1, EGR-1, IER2, 

JUNB, MIRN21, OSM, PTGS2, RNF149, SFRS5, and SOC3 all show a dose 

response to prenatal arsenic exposure. Stress response and cell cycle 

regulation are the associated molecular functions of this gene set. Furthermore, 

this study looks at other genes and found that gene networks centered on NF-kB 

and IL 1-beta, an inflammation response gene, transcription factors STAT1 and 

HIF-1alpha, and proinflammatory cytokine TNF-alpha [43]. 

Kozul et al found chronic arsenic exposure in drinking water alters immune 

response genes expression in mouse lung [44]. Six-week-old C57BLl6J mice 

were exposed to 0.010 ppm arsenic as sodium arsenite in chow and 0.010 or 

0.100 ppm arsenic as sodium arsenite in drinking water for 5 weeks and RNA 

from lung samples were collected for microarray analysis. They saw alterations 

in immune-related gene expression using Ingenuity Pathway Analysis (IPA) in 

0.010 and 0.100 ppm arsenic exposure. Pathways including TNF-alpha (which 

was upregulated) and IL-1ITLR signaling were also altered. This study shows 

that even low-to-moderate levels of arsenic are causing aberrant gene 

expression using in vivo models. 

Arsenic is metabolized in the liver by humans and rodents, and the liver is 

a known target of arsenic toxicity causing abnormalities such as fibrosis and 
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hepatocarcinoma The Waalkes lab has published articles elucidating 

mechanisms of arsenic-induced liver injury [36, 45] including a literature review 

[38]. Among potential mechanisms for arsenic hepatocarcinogenesis are 

oxidative damage and stress, altered DNA repair, protein interaction with zinc 

finger proteins, hypo- and hypermethylation, and aberrant estrogen linked gene 

expression. As mentioned earlier, Arteel et al have studies implicating arsenic 

exposure to liver injury [37]. They demonstrated that even subhepatotoxic levels 

of arsenic are able to enhance inflammatory liver damage caused by 

lipopolysaccharide (LPS) and elicited a hyper-response. These studies suggest 

arsenic may be a risk modifying factor for other diseases. 

We have proposed a body of evidence (above) linking arsenic exposure 

with cardiovascular complications. Cardiovascular disease is prevalent 

throughout the world and in the United States. Even a small increase in risk 

attributed to arsenic exposure would translate into a large number of excess 

deaths and would therefore be of great significance to public health. Providing 

insight into the biological mechanisms by which arsenic is able to exacerbate 

atherosclerosis may reveal targets for preventative measures or therapies. 

Additionally, learning more about the effects of a known water contaminant would 

aid policy-making decisions based on risk-cost-benefit models. 

We hypothesize that chronic arsenic exposure accelerates atherosclerosis 

by disrupting liver homeostasis. Homeostasis in the liver is disrupted in a way 

that makes the liver prone to aberrant gene expression changes that result 

metabolic dysregulation and inflammation. The inflammation in the liver is able 
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to impact the rest of the body, and thereby atherosclerotic lesions, through 

systemic circulation because of the chronic nature of the immune response. The 

following study examines the transcriptome of the livers of ApoE-I- mice exposed 

to 49 ppm arsenic in drinking-water as sodium arsenite (NaAs04) from 3 weeks 

(PND21) to 10 weeks (PND70) of age. 
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CHAPTER 2 

METHODS 

Animal housing and treatment protocols 

Male ApoE-I- mice (B6.129P2_ApoEtm1unc/J, Jackson Laboratory, Bar 

Harbor, ME) were used in this study. Mice were housed in pathogen-free 

conditions in the University of Louisville vivarium under temperature control in a 

12 h lightl12 h dark cycle. All mice were maintained on a normal chow diet and 

tap water prior to and during exposure as described previously [42]. Tap water 

contains arsenic below the detection limit of 2 ppb, according to the Louisville 

Water Company. Arsenic concentration in the normal chow was not measured in 

the present study; however, arsenic up to 390 ppb has been reported in non­

purified diet [46]. This study and protocols therein were approved by the 

University of Louisville Animal Care and Use Committee. 

Three week old mice (PND21) were weaned and maintained on tap water 

(control) or tap water supplemented with Sodium Arsenite, NaAs02, (85 mg/L; 

49 ppm As; 49 mg/L As) for 7 weeks by Heather Miller. Mice were euthanized 

immediately at the end of the exposure period, when they were 10 weeks old 
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(PN070). Livers and other organs were collected and snap frozen in liquid 

nitrogen and subsequently stored at -80 C until analysis. 

RNA collection and preparation 

Livers of ApoE-/- mice with or without exposure to 49 ppm arsenic in 

drinking-water were collected. RNA was extracted, and sample quality was 

checked by A260/A280 ratio. Yulan Piao in Minoru Ko's lab at the National 

Institute on Aging (NIA) generated fluorescently-Iabeled double-stranded cONA 

using a T7 reverse transcriptase. A reference total mouse standard RNA (Cy5) 

was obtained from Stratagene. Labeled samples at the NIA were applied to the 

NIA Mouse 44K Microarray v2.1 (Whole Genome 60-mer Oligo) GEO accession 

GPL2552, as previously described [47]. Each of the control (Cy5) and 

experimental samples (Cy3) were used on one array, for a total of 6 arrays. 

Microarray analysis 

Microarray output data was processed by the National Institute on Aging 

(NIA) and provided in a tab-delimited text file. Data files have been uploaded to 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/), and 

the GEO accession number is pending approval. The data file contained 

numerical Cy3 and Cy5 signal values per chip for each of the probes, which were 

represented as proprietary Agilent Feature 10's (also called Probeset 10's or 

Probe 10's in some systems). Feature 10's were combined with Agilent 

annotation data. The annotation data allowed propriety Feature 10's to be 
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identified by open standards, where available, in the form of Ref Seq accession, 

Genbank accession, Entrez gene symbol, among others. 

The signal values were processed by both GeneSpringGX 10 (Agilent 

Technologies) and Partek Genomics Suite (Partek Inc.) for comparison. The 

process was similar in both programs: We used each program's import feature 

on our signal values file, and linked it to the Agilent annotation data. Next we 

defined each column of signals as either Cy5 (standard RNA) or Cy3 

(experimental sample). Then we formed groups for different experimental 

parameters; e.g. treatment conditions (arsenic-exposed and unexposed control) 

and age when euthanized (PND70). Finally, we needed to define interpretations 

for the data-that is, compare and contrast arsenic-exposed vs. unexposed 

control groups. Each program provided various, slightly different statistical 

methods to interpret the data. In GeneSpring we used the unpaired TTest of 

equal variance, and in Partek we used the ANOVA to obtain p-values-both 

GeneSpring and Partek averaged signal value over replicates. Programs were 

compared and contrasted (explained in results). Fold-change ratios were 

calculated identically in each program by dividing the replicate average Cy3 

(experimental samples) by the replicate average Cy5 (standard RNA). Fold­

change ratios were log2-transformed into fold-change values that are reported as 

either up or down in arsenic-exposed vs. control unexposed. 
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MicroRNA microarray analysis 

A microRNA microarray analysis was performed by Exiqon using 

miRCURYTM LNA Array Version 8.1. Results were provided in a spreadsheet in 

Microsoft Excel format with signal values for each probe with Hy3 as arsenic­

exposed and Hy5 as RNA standard from Ambion. Probes were labeled with 

miRNA names that match miRBase 10's. Filtering criteria was based on based 

on students t-test used in Microsoft Excel and defined as all micro RNA's where 

p:50.05. Those that passed these criteria were subsequently used in further 

analysis. 

Next, we found mRNA targets to the microRNA. We used two different 

targets databases, TargetScan (http://www.targetscan.org/) and microCosm 

(http://www.ebi.ac.uklenright-srv/microcosm/htdocs/targets/v51). TargetScan 

provides a browser interface for searching each microRNA individually, 

outputting matching mRNA in a text file with columns for Entrez gene symbol, 

number of conserved sites, and representative microRNA. MicroCosm Targets 

provides a tab-delimited text file containing all microRNA-mRNA pairs in a 

specified species. Using this, we filtered out genes that were targets of our 

microRNA, obtaining a text file with columns corresponding to Entrez gene 

symbols and binding characteristics. We filtered these lists down by finding 

microRNA-mRNA pairs that were in common between the two lists. 
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Functional analysis 

Ingenuity Pathway Analysis (IPA; Ingenuity Systems) allows us to gain 

insight into the biological significance to our large gene set. IPA takes advantage 

of several different data sources including, but not limited to, Argonaute for 

microRNA-mRNA interactions, BIND for protein-protein interactions, and Gene 

Ontology. We uploaded the entire gene set for each GeneSpring and Partek, 

including all annotations and specifically columns for p-value and fold-change. 

We used the Genbank Accession number as the identifier to allow IPA to map 

additional annotation information. We performed a New Core Analysis with each 

set of data where p:S;O.01 with any fold-change (FC); the settings were defaulted 

(all databases) with species set to both human and mouse. 

DAVID Bioinformatics Resource (Database for Annotation, Visualization 

and Integrated Discovery; http://david.abcc.ncifcrf.gov/) is an application that 

enhances data analysis in functional annotation. Similar to IPA, DAVID allows us 

to extract biological meaning from our large gene set. DAVID uses several 

different publicly available tools to create function annotation including, but not 

limited to, GoMiner, GSEA, Onto-express. It will then display only the most 

significantly enriched terms. We used DAVID according to protocols published in 

Nature Protocols [48] and Genome Biology [49]. Both our GeneSpring and 

Partek annotated gene sets data were filtered for genes with p:S;O.01 with any 

fold-change (FC). DAVID only allows the identifiers-it does not use p-value or 

FC information, so we uploaded the filtered Genbank Accession numbers into 

DAVID. It automatically detected mouse as our host and set the background 
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gene list to the whole mouse genome. The Functional Annotation view was used 

to evaluate function based on all databases available in DAVID. 

Transcription factor binding sites analysis 

We also utilized computational promoter analysis to find significantly enriched 

transcription factor binding sites (TFBS) using Expander (EXpression Analyzer 

and DisplayER; http://acgt.cs.tau.ac.illexpander/). Expander is a full-featured 

suite for genomics analysis. It allows uploading of a raw signal file that takes the 

data through processing, normalization, mapping, filtering, and then may perform 

a plethora of enrichment-finding procedures-the enrichment-finding is similar to 

IPA and DAVID. We, however, are exclusively interested in Expander's promoter 

analysis feature. We followed a protocol published in Nature Protocols as a 

reference [50]. Expander requires an organism specific data file to provide gene 

information, including the transcription factor fingerprint files. The information in 

the data file is obtained from publicly available databases such as NCBI, 

Ensembl, and others. We used the mouse organism file. 

Promoter analysis utilizes the PRIMA algorithm, which works by finding 

transcription factors whose binding sites are enriched in a given set of promoters. 

To stay within the restraints of the program, we were restricted to looking at a 

region 2000 bp (base pairs) upstream and 200 bp downstream of the 

transcription start site (TSS) in our genes of interest. We filtered GeneSpring 

genes where p:S;0.05 and FCO::±1.5-genes that had a "good chance" of being 

"highly differentially regulated" in our gene set. Expander requires genes to be 
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identified by Entrez gene 10's. To convert them, we uploaded the Entrez gene 

name into DAVID and used the batch name conversion tool to obtain the gene 

10's for mouse. We are then able to import the gene set without any expression 

values into Expander. Expander returns TFBS names, along with number of 

genes enriched with it and a p-value against the total mouse genome as the 

background. To relate TFBS to the transcription factor (TF) that binds it, we used 

MAPPER (http://snpper.chip.org/mapper/mapper-main) to resolve the TFBS 

numerical IDs into most-likely binding TFs. 
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CHAPTER 3 

RESULTS 

Gene expression profiles, using RNA derived from livers of apoE-I- mice 

exposed and unexposed to arsenic, were run on the whole-genome mouse NIA 

44K 2-color oligo-DNA microarrays. When we began this study, we had to 

choose among many resources for analyzing our microarray data, including the 

ability to choose between two different genomics suite applications, 

GeneSpringGX 10 and Partek Genomics Suite. Both applications provided 

comparable features for our needs, so we compared and contrasted how these 

applications differed in the processing of our data. Signal files containing raw 

Cy5 and Cy3 readings were imported to GeneSpring and Partek as described in 

the Materials and Methods. We received the signal files from NIA (materials and 

methods), and they had already normalized the data and no further normalization 

was necessary. Figure 1 is an MvA plot that shows the difference versus the 

average of probe measurements between two samples and assesses the relation 

between the Cy5 and Cy3 channels of each hybridization. Each small square 

represents an individual probe. The original plot (left) and GeneSpring 

normalized plot (right) did not differ, indicating the signal file was already 

normalized, as we expected. 

25 



Each of the expression files contained signal values for 41 ,961 

oligonucleotide probes. Using NIA annotation file data, probes were mapped to 

28,256 (21,484 unique) Entrez gene symbols and 28,225 GenBank (20,686 

unique) accessions. Although there were more gene symbols mapped to probes, 

when we uploaded the dataset to Ingenuity Pathway Analysis (IPA) we received 

over 4000 fewer IPA mapped IDs with the gene symbols set as the 10 column 

than with GenBank accessions. Less IPA mapped IDs means that fewer of our 

probes, and subsequently fewer of our genes are available for analysis. Since 

the GenBank accessions provided more annotation information in IPA than gene 

symbols, we subsequently used GenBank accessions for all our functional 

analyses. 

Significantly expressed genes were identified by TTest in GeneSpring and 

by AN OVA in Partek. Fold-change was calculated with log2 transformed 

Cy3/Cy5 ratios. For functional analysis we focused primarily on genes passing 

the criteria filter p:50.01 with any fold-change. We were primarily concerned with 

populating our functional analysis programs with all of the genes that were 

significantly regulated, regardless of the amount of change. These sets we 

loaded into both IPA and DAVID for comparative analysis. 

Comparing and contrasting GeneSpring and Partek 

Principal component analysis (PCA) allows a broad overview of how the 

data sets relate to each other and is one way to express the variability among the 

sets. In Figure 2, we provided a 3D PCA image for both GeneSpring (top) and 
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Partek (bottom). The figure contains information for this postnatal study 

(exposures: none-pnd70 and pnd21-pnd70) and for a prenatal study (exposures: 

none-pnd1, gd8-pnd1, and gd8-pnd70) that was performed at the same time. 

Both programs indicate similar groupings among the data sets (similar colors 

group together and similar shapes group together). The biggest variability 

among the data sets was the age at which the mice were euthanized (called age 

at sacrifice), on the x-axis. In GeneSpring the pnd1 group is represented by 

squares in the foreground, and in Partek the pnd1 group is isolated on the left 

side of the graph. Additionally, including all of the components, there are 

groupings among replicate sets; however, the replicates corresponding to no 

arsenic exposure (none-pnd1 and none-pnd70) have the greatest spread and 

therefore greatest variability. 

Both GeneSpring and Partek contain functional analysis abilities similar to 

IPA and DAVID; however, these methods were not further explored. GeneSpring 

requires different results interpretations to have specific annotation data that was 

not available to us in our Agilent annotation data file; for example, GO Analysis in 

GeneSpring requires Entrez gene ID's in the form of their Homo sapiens 

numerical ID's, which were unavailable because we were using a mouse genome 

microarray chip. Partek works similarly; however, we had the additional 

drawback of not having direct access to the program at our leisure. The best 

course of action was to use the readily available IPA and DAVID applications, 

which specialize in functional analysis of gene sets. 
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We initially compared the lists generated from GeneSpring and Partek 

with filtering criteria where p:50.01 and any fold-change (Fe) by directly 

comparing number of probes that were in common between the two programs. 

We chose any Fe because both programs computed it similarly, so there was no 

difference. After filtering, the lists have 1,461 and 1,346 probes in GeneSpring 

and Partek, respectively. To compare these lists, we intersected the two filtered 

lists based on the Agilent Feature ID's column. This way, the specific probes 

needed to be represented in both lists, eliminating ambiguity accessions or gene 

symbols would have created. The intersection produced 599 probes between 

GeneSpring and Partek with p:50.01 and any Fe, which is less than half of either 

list. This shows that the statistical methods each program uses are not 

equivalent, as far as a significance cutoff is concerned; however, this does not 

give any insight as to whether this relates to a biological difference in the two 

sets. To determine if the two sets differ in function, we will need to use our 

functional analysis programs IPA and DAVID. 

Ingenuity Pathway Analysis (IPA) functional analysis 

We uploaded the GeneSpring and Partek gene set lists into IPA. 

GenBank accessions were marked as the 10 field that IPA uses to map genes to 

additional annotation data, such as gene function and protein location in the cell. 

IPA also accepts the data corresponding to the p-value and fold-change (Fe) of 

each gene. IPA was able to map 27,174 (non-unique) probes on each data set, 

which is nearly all of the probes available with GenBank accessions. We ran a 

new core analysis on each dataset with criteria set to p:50.01 and any Fe. With 
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these settings, IPA reported having 775 molecules available for 

functions/pathways and 374 networks eligible for GeneSpring and 690 molecules 

for functions/pathways and 324 network eligible for Partek. After running the 

core analysis on both datasets, we used the comparison analysis feature to 

compare information from both datasets at the same time. The top function in 

common between the two was cardiovascular disease. Top canonical pathways 

are oxidative phosphorylation and mitochondrial dysfunction. Taking a look at 

the networks in the comparison revealed numerous overlaps among genes. 

The comparison analysis provides an overlapping networks view where 

we are able to view what networks are connected within and between analyses 

and how many molecules are in each overlap. Out of 50 networks between both 

analyses, only 4 were orphans (not connected to any other network). Many of 

the networks contained overlaps that accounted for a third of the network 

composition. For example, Figure 3 shows the top 2 networks from each 

analysis merged. Both networks have 10 molecule overlaps and are highlighted 

in the figure-the top network contains 2 networks composed of 32 molecules 

and 28 molecules for GeneSpring and Partek analyses, respectively, and the 

bottom 2 networks are composed of 27 molecules each. The top networks 

overlap on and contain network hubs on Creb, ERK1/2, GSTM3, GSTM4, MBD2, 

PPARG, among others, and the bottom networks overlap and contain hubs on 

INF Beta, Interferon alpha, Jnk, MAP2K6, NFkB, MAPK14 (P38 MAPK), among 

others. Top functions in the top network are cellular development, growth, 

proliferation, and movement, connective tissue development and function, 
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embryonic development, and cell cycle. Top functions in the bottom network are 

cellular movement, hematological system development, function, and disease, 

immune cell trafficking, cell death, and post-translational modification. The top 

network functions and top pathways are listed in Table 1 and Table 2, 

respectively. Finally, the "Top Tox functions" (toxicity phenotypes and clinical 

pathologies) for both datasets are mitochondrial dysfunction, oxidative stress, 

and LPS/IL-1 mediated inhibition of RXR function. These results indicate that 

both lists have common biological functions, despite having less than half the 

significantly regulated probes in common. 

DAVID functional analysis 

We corroborated results obtained in IPA by using DAVID Bioinformatics 

Resource. DAVID does not accept p-value or FC. In that respect, DAVID 

exclusively performs enrichment analysis-it only finds functions and/or networks 

that are significantly overrepresented by our gene list over a background gene 

list. Each of our gene sets was filtered in Microsoft Excel where pSO.01 with any 

FC and output in text-only format containing only GenBank accessions. DAVID 

was able to find annotation data for 1026 and 949 GeneSpring and Partek 

probes, respectively. We set total mouse genome as the background gene list. 

The next step is to run the functional annotation clustering analysis and view the 

combined view. This list is composed of various clusters, arranged by function 

and score, containing categories that are database names and terms 

represented by short descriptions of the function/pathway that is enriched, 
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followed by various statistical measurements including number of molecules 

found in the term, percent of term filled, p-value, among others. 

Table 3 lists representative terms per cluster for each GeneSpring (A) and 

Partek (8). Comparing the tables from each dataset, both lists contain similar 

terms that are significantly enriched including mitochondrion, translation, and 

ribosome function enrichment. In contrast, the Partek list contains much lower 

enrichment scores and lower enrichment percentages, although the values are 

still statistically significant (p:50.01). The top functions in the DAVID analysis also 

matches what was seen in the IPA analysis. For example, the mitochondrion 

term in DAVID matches with the mitochondrial dysfunction and oxidative 

phosphorylation with oxidative stress. Additionally, several of the genes that 

appear in corresponding pathways from IPA and DAVID overlap Table 4, 

showing that the enrichment is due to the same genes and same functional 

pathway being enriched by both applications. This overlap lends evidence for 

taking a deeper look at these corroborated pathways and how they are regulated. 

Additionally, it implicates the mitochondrion in and provides a list of genes for 

mitochondrial dysfunction and oxidative phosphorylation. 

MicroRNA analysis 

MicroRNA analysis revealed a different challenge in differential expression 

analysis. The Exiqon microRNA microarray contained only 496 probes, of which 

only 344 had readable signals, which is substantially fewer probes than the 

cDNA microarray. We performed students t-test in Microsoft Excel on the 
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readable signals and were left with 8 probes where pSO.05 and any Fe. 

However, of these only 4 microRNA probes had annotation data to continue 

analysis, which were mmu-miR-206, mmu-miR-18, mmu-miR-140, and mmu­

miR-337. We were then interested in what regulatory networks these microRNAs 

were most likely to regulate. To do this, we found all of the gene targets for each 

microRNA, but we found there are many different databases that provide 

prediction of micro RNA targets and compared two popular methods, miRBase 

(http://www.mirbase.org/) and TargetScan (http://www.targetscan.org/). 

There are fundamental differences in how each micro RNA target 

prediction algorithm works. As a result, the predicted genes vary widely between 

miRBase and TargetScan Table 5. TargetScan produced substantially fewer 

predicted target genes in general-761 genes with TargetScan vs. 3912 genes 

with miRBase total. Additionally, the overlap or intersection between the two 

gene lists was low, resulting in 175 total genes that were common between the 

two methods for the 4 microRNAs. The mmu-miR-337 did not have any 

predicted genes in either database at the time of analysis. 

Using the gene set of the intersection between miRBase and TargetScan, 

and we ran it through the same paces as our original transcript gene sets-we 

used IPA and DAVID to lend insight into the biological workings of the genes 

predicted to be targeted by our Significantly expressed microRNA. IPA analysis 

revealed networks in Figure 4 with top functions tissue morphology, cellular 

growth and proliferation, and gene expression for network 1 (top) and cancer, cell 

morphology, and DNA replication, recombination, and repair for network 2 
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(bottom). Notable genes in these networks include TNF, which is a hub in 

networks, TP53, HIF1A, and many other DNA binding transcription factors, and 

IL 10 in network 1. DAVID analysis reveals several different functional groups 

significantly enriched with the microRNA targets gene set. Additionally, top 

canonical pathways are listed as RAR activation, aryl hydrocarbon receptor 

signaling, role of BRCA 1 in DNA damage response, estrogen receptor signaling, 

and hypoxia signaling in cardiovascular system. Listed in Table 6 are functions 

significantly enriched by this gene set. Listed in the table are many functions 

related to transcriptional regulatory networks, including the term transcriptional 

regulation and DNA binding. If the predicted genes targeted by the microRNAs 

that were Significantly involved in our system were involved in regulatory 

networks such as transcriptional regulation, we may see these results 

corroborated with a transcription factor binding site enrichment analysis. 

We also wanted to find out how the micro RNA predicted targets compared 

to our transcript genes. So, we intersected the miRBase and TargetScan 

intersection genes (175 genes) with all genes where p:S;O.01 and any FC (1461 

genes). This intersection resulted in only 8 unique genes that are similar 

between the two lists, and they are Mylk, Mfn1, Pgrmc1, Commd2, E2f5, Usp33, 

Dhx15, and Pdap1. These are not enough to populate enriched pathways or to 

construct networks, so we had to use a relaxed filtering method. We then looked 

at microRNA predicted target genes from miRBase (3912 genes) and intersected 

those with our filtered genes where p:S;O.01 and any FC (1461 genes). This 

intersection resulted in 158 unique genes. We ran this set through IPA to find if 
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any networks were populated and found results similar to what we saw in our 

transcript gene set Figure 5. The top 2 networks report functions for cell death, 

hematological system development and function, and inflammatory disease (top) 

and cellular development, cell death, and cell signaling (bottom). The networks 

had hubs at TNF, JNK, and p38 MAPK (top) and TNF, IL 1 B, STAT1, STAT3, and 

SOCS3 (bottom). 

Transcription Factor Binding Sites (TFBS) analysis 

Initially, we ran our TFBS enrichment analysis with all of the genes from 

our IPA/DAVID analysis set (where pSO.01 with any FC). However, this resulted 

in hundreds of TFBS that were only marginally enriched (data not shown). We 

decided to be more selective with the dataset we input and decided to check only 

transcripts that were likely to be significantly involved with a large change against 

control, so we filtered the genes where pSO.05 and FC~11.51 which resulted in 94 

genes passing the criteria. In Table 7 are listed the most significantly enriched 

transcription factor binding sites, along with the transcription factor that binds the 

site and the fold-change of the TF, if it was available in our original gene data. 

Only a few of the transcription factors that were resolved from the TFBS were 

differentially expressed, indicated by our transcript dataset-Bhlhe40, Prdm1, 

Pparg, Zcrb, and Gtf2a1 were changed by at least 1.1 fold up or down. 

Additionally, Figure 6 is a hierarchical cluster map showing each gene and the 

TFBS it contains. With this, we are able to look at specific genes in relation to 

transcription factor regulation and identify sets of genes with potential common 
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regulators. Thus, sets of potentially coordinately regulated genes can be readily 

identified. 
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CHAPTER 4 

DISCUSSION 

Arsenic in drinking-water is a worldwide health problem, and millions of 

people are exposed to the detrimental effects of chronic arsenic exposure with 

drinking water levels exceeding the US EPA and WHO guidelines [2]. Arsenic 

exposure in human populations is associated with long-term health 

consequences [51]. We would like to address the molecular mechanisms 

pertinent to arsenic-induced cardiovascular disease. In this study, we 

characterize transcription-based molecular events occurring in the liver that may 

impact and contribute to the acceleration of atherosclerosis in the vascular 

system. 

The current study shows chronic arsenic exposure in drinking-water 

induced gene expression changes in the liver of apolipoproteinE-knockout 

(ApoE-I-) mice related to functions dealing with metabolism and inflammation 

response. This study is an extension of one previously done in our lab where we 

observed chronic arsenic exposure in drinking water exacerbates atherosclerosis 

in ApoE-I- mice [39], and was discussed in a review [35]. Using an inbred mouse 

model provides us a way to eliminate many variables associated with population-
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based arsenic exposure studies-it also reduces confounding factors that may 

occur in genome-wide expression studies. 

In this study, we evaluated the effects of arsenic exposure on gene 

expression in livers of ApoE-I- mice. GO categories in DAVID found to be 

enriched with significantly differentially expressed genes between arsenic­

exposed and unexposed groups included broad terms such as mitochondrion, 

translation, and ribosome function. Additionally, Ingenuity Pathway Analysis 

(IPA) produced networks with functions for cellular development, cellular growth, 

cellular proliferation, and cellular movement, cell cycle, hematological system 

development, hematological system function, and hematological system disease, 

immune cell trafficking, and post-translational modification that contained hubs 

on Creb, ERK1/2, GSTM3 and GSTM4, MBD2, and PPARG for one network and 

INF Beta, Interferon alpha, Jnk, MAP2K6, NFkB, and MAPK14 (P38 MAPK) on 

another network. These genes play an important role in mitochondrial function 

and inflammation regulation. Additionally, we included microRNA data into this 

study. There is much that is not known about the functions of microRNA, 

especially those found in the mouse. However, we were able to use predictive 

techniques to shed some light on the processes occurring here. In general, 

microRNA pointed to broad functions such as biological regulation, transcription 

regulatory activity, and blood vessel morphogenesis that support their supposed 

functions. Gene alterations seen in the present study are largely consistent with 

previous analyses in gene expression on arsenic in drinking water [33,36,43-45, 

52]. Below is a critical discussion of the information contained in the results. 
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Atherosclerosis develops in "steps," when the conditions are present in a 

way to promote atherogenesis. We have previously discussed diseases such as 

diabetes [20], obesity [19, 27, 53], nonalcoholic fatty liver disease (NAFLD) [26], 

and chronic inflammation [28], among others that contribute to the risk 

atherosclerosis and cardiovascular disease. We propose that chronic arsenic 

exposure predisposes the mice to atherosclerosis when they are exposed to a 

second atherogenic insult, such as high fat diet or infection, if not directly. 

The first and most significantly enriched functional Gene Ontology (GO) 

category in our gene set is the mitochondrion term. The mitochondrion 

(mitochondria, plural) is an organelle responsible for aerobic tissue respiration 

and is the primary site for energy production in eukaryotic cells via the electron 

transport chain. Oxidation of glucose takes place to produce energy in the form 

of adenosine triphosphate (ATP) in a process called oxidative phosphorylation. It 

is likely not a coincidence we also observed the oxidative phosphorylation GO 

term to be significantly enriched. Mitochondrial oxidative phosphorylation 

(OXPHOS) dysfunction leads to oxidative stress and is associated with 

atherogenesis and cardiac failure [54]. Although these processes are occurring 

in the liver, it is likely that arsenic reaching other tissues, such as the heart or 

vascular tissue, will show similar disruptions in oxidative phosphorylation. 

Additionally, the mitochondrion is responsible for a plethora of other processes, 

including signaling, cellular differentiation, cell death, and cell cycle control. 

Our data also indicate that mitochondrial dysfunction and oxidative stress 

are occurring. It is not surprising that these two processes pop up at the same 
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time given that mitochondria are the primary consumers of oxygen, containing 

many redox enzymes capable of generating reactive oxygen species (ROS) [55]. 

ROS are chemically-reactive, highly reactive molecules containing oxygen that 

also contains an unpaired valence shell electron. ROS is a natural byproduct of 

respiration (metabolism of oxygen) but also can be dramatically increased during 

times of environmental stress, e.g. ultraviolet (UV) light, and ionizing radiation. 

Accumulation of ROS results in oxidative stress. Since the cell is exposed 

regularly to ROS, there are defense systems in the form of antioxidants. 

Enzymes such as superoxide dismutase (SOD) and glutathione S-transferase 

(GST) and small molecules such as ascorbic acid, glutathione, and sulfur 

containing molecules will prevent ROS damage by scavenging free radicals, 

leaving little net ROS production. If mitochondrial damage occurs with a 

decrease in antioxidant defense capacity, there will be net ROS production. If 

enough ROS accumulates to trigger oxidative stress it will result in additional 

damage to the mitochondria. Once this occurs, a vicious cycle can ensue, 

causing even more damage to the mitochondria and further reduce antioxidant 

capacity. In this study, many genes of interest related to antioxidant defense 

(S002 and various GSTs) are up-regulated, suggesting the livers of arsenic­

exposed mice are experiencing increased ROS levels. This was expected, 

because arsenic is known to produce oxidative stress as a mechanism of 

hepatotoxicity, and possibly, carcinogenesis [1-2]. 

Above we spoke briefly on various arsenic-induced signal transduction 

pathways such as mitogen-activated protein kinase (MAPK) pathways that 
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regulate the expression of a variety of genes that mediate cell apoptosis, 

differentiation, proliferation, and transformation, and Nuclear Factor-kappa B 

(NF-kB) that mediates cellular processes such as cell-to-cell interaction, 

intracellular communication, cell recruitment or transmigration, amplification of 

pathogenic signals, and initiation or acceleration of carcinogenesis. The three 

major classes of MAPKs are enriched in our IPA networks, including extracellular 

signal-regulated kinases (ERK)s, c-jun N-terminal kinases (JNK), and p38. 

Oxidative stress is able to activate p38, which leads to cardiac dysfunctions, via 

generation of malondialdehyde [56]. Gosh et al have shown that arsenic not only 

increased phosphorylation of MAP kinases p38 and JNK, but they, in turn, 

activated NF-kB via the IKK pathway [30]. We have also seen enrichment of the 

ERK1/2 network with arsenic exposure. These relate directly with the enriched 

network functions dealing with cellular development, cellular growth, and cellular 

movement, cell death, immune cell trafficking, among others. 

Peroxisome-proliferator activated receptor gamma (PPARG) is a 

transcription factor that plays a critical role with lipids in inflammation and insulin 

resistance [28]. PPARG can be activated through Creb and ERK1/2 and we see 

this association enriched in our networks. Most notably of PPARG actions, 

ligands to all PPAR family members suppress production of proinflammatory 

cytokines through suppression of NF-kB. It could be that these enriched 

networks are compensatory mechanisms to inflammation or damage in the liver. 

In that sense, then, arsenic is working upstream of these signals. Indeed, in the 

IPA network, PPARG appears to be downstream of the MAP kinase, ERK1/2. 
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Additionally, PPARG is regulated by Myc, which is seen to have enrichment in 

the transcription factor binding site analysis. A constant, if slight, elevation of 

PPARG may have wide-reaching effects on the liver because of PPARG 

transcription factor activity. Indeed, in our dataset we saw that the PPARG 

binding site was significantly enriched in significantly differentially expressed 

(p:S;O.05 and FC>11.51) genes. PPARG is able to interact with some of our most 

highly-regulated genes, so it may be exerting substantial effects in our arsenic­

exposed livers. 

In addition to the molecular mechanisms above, it is beneficial not to 

forget the forest for the trees. There are many other risk factors associated with 

arsenic-induced atherosclerosis that may not be explained explicitly by our liver 

transcriptome analysis, but are supported by some of the pathways that are 

enriched. For example, we have seen arsenic affects normal mitochondrial 

functions. Mitochondrial dysfunction has been implicated in a number of 

diseases including neurodegenerative disorders [55]. cardiovascular disease, 

and diabetes [5, 28]. Lane et al have also stated, "Mitochondrial deficiency can 

theoretically give rise to any symptom, in any organ, at any age" [57]. Indeed, it 

makes sense considering the important functions the mitochondria provide to 

eukaryotic cells. Hotamisligil reviewed literature on inflammation and metabolic 

disorders and showed these two can be triggered by excess of lipids and glucose 

and that the inflammatory response can trigger further metabolic dysfunction, 

creating a vicious cycle. Arsenic could be slightly stimulating both of these 

pathways, as we have seen. In that case, it would only require a small, chronic 
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amount before the system began to propagate the aberrant activity on itself. This 

is corroborated with the fact that ROS will activate JNK, discussed above, 

causing stress to the endoplasmic reticulum, critical in initiation of inflammation 

and insulin action in obesity and diabetes. Hotamisligil discusses therapeutic 

targets to manipulate metabolic and immune systems by targeting not single 

molecules but networks such as those governed by JNK or even to target 

organelles, specifically the mitochondrion. It seems likely that such a 

multifactorial disease process brought on by arsenic as we have seen here would 

have to be treated at a network level, rather than at single genes. 

We worked to minimize limitations and confounding factors in this study by 

using a well-established mouse model [35] and treatment protocol [39]. 

However, transcript levels can vary greatly from one animal to another [46]. 

Normalization cannot fix all of these problems, and for that reason we used data 

that met significance criteria (p:S;;0.01 or 0.05) to be sure there was consistency 

across replicates and only real changes were taken into consideration. 

Additionally, there have been reports that microarrays dilute levels of gene 

expression changes when compared to gene-specific quantitative RT -peR 

methods, although directionality seems to remain [44]. Tools such as IPA and 

DAVID are crucial in experiments that contain whole-transcriptome information. 

They allow researchers to use large gene sets to get insight into modeling, 

analyzing, and understanding complex biological systems that would be 

impossible by looking at single genes. The microRNA provided a unique 

challenge because the data we could collect for analysis was purely based on 
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computational predictions [58]. There are many databases based on different 

algorithms that provide predicted microRNA targets, however the two very 

popular options we chose only overlapped on a few genes. Once the genes are 

selected, what to do with them creates another problem because the large sets 

of seemingly unrelated genes have to have a meaning attached. The TFBS was 

also limited in that it does not report all transcription factors that are significantly 

enriched in a gene set of interest. TFBS looks at the nucleotide sequence 

present in the region 2000 base-pairs upstream and 200 base-pairs downstream 

of the transcription start site. Transcription factors that contribute to a gene may 

be tens of thousands of nucleotides up- or downstream of the transcription start 

site. However, the TFBS analysis does allow us to see another level of biological 

activity that a transcriptome analysis is not able to provide. That is, the 

transcription factors in our list mostly do not have any fold-changes associated. 

This is not surprising, since many transcription factors are activated through post­

translational modification, such as phosphorylation (as in the case of targets of 

MAP kinases such as ERK, JNK, and p38). Using this technique, we were able 

to extend the amount of information we are able to obtain beyond that purely 

related to the transcript measurements. 

This study may have implications on human health, as well. Although 

concentrations of arsenic in drinking water was much higher than current EPA 

and WHO standards (0.010 ppm), our lab has performed dose-response studies 

of arsenic in drinking water to atherosclerosis development and found it to hold 

true for exposures as low as 1 ppm to 4.9 ppm, suggesting the effect may scale 
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down to lower concentrations. In fact, it has already been proposed that there is 

no threshold for effect for noncancer diseases in arsenic exposure [1-2]. This 

may be because even small levels of arsenic causing small changes in gene 

expression over a long period of time may result in significant structural and 

functional changes in the liver. Arsenic may also be acting to "prime" the liver for 

an exaggerated reaction to a second atherosclerotic event, such as a high fat 

diet or an infection. 

Future directions 

The results in this study give a broad-view of changes taking place on the 

transcript-level. It is important to keep in mind that transcript levels do not have 

direct effects on cellular actions, protein drive cellular activity. This should be 

taken into consideration when proposing future directions, as these results only 

hint at mechanisms taking place in a cell. 

The next steps for this study should be to verify inferences that have been 

made. The mitochondrion is implicated in dysfunction as well as dysregulation of 

oxidative phosophorylation. Experiments focusing on these elements would 

clarify whether or not these are occurring. Reactive oxygen species are likely 

culprits of problems to the mitochondrion and should also be checked. We 

mentioned the effects from arsenic that we have seen may only be small 

changes and may actually require another stimulus in order to trigger noticeable 

effects. In this way, experiments could be done for mock infections, possibly 

using lipopolysaccharides (LPS) and then metrics corresponding to mitochondrial 
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dysfunction should be analyzed. In any case, direct reactions of the 

mitochondrion organelle should be a good place to start before concentrating on 

more specific areas, such as signaling pathways. 

Networks composed of significantly expressed genes contained hubs on 

MAP kinase signaling complexes such as ERK, JNK, and p38. These are stress­

response genes and are able to regulate gene expression, cell differentiation, 

and apoptosis, and their action may be causing aberrant gene expression in the 

liver. These genes are activated through phosphorylation pathways, which would 

explain why we did not see their transcript level significantly differentially 

expressed. Since we are not able to see direct changes, western blots may be 

performed to check levels of phosphorylated proteins to assess activation. 

Additionally, we have seen increases in gene expression in genes such as 

PPARG, which are regulated by these MAP kinases. Transcript levels should be 

confirmed by protein levels in order to validate that the changes seen directly 

impact enzymes driving cellular actions. 

Conclusion and summary 

In summary, we have characterized gene expression changes occurring in 

the liver of ApoE-/- mice with arsenic exposure in drinking water. These results 

support the hypothesis that chronic arsenic exposure is able to disrupt liver 

homeostasis and cause aberrant gene changes. Among the changes, metabolic 

functions, especially those in dealing with the electron transport chain, appear to 

be disrupted, and the evidence pOints towards an induction of oxidative stress 
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that acts as both cause and effect in the dysregulation. This study suggests a 

few mechanisms that are disrupting the liver in a way to promote atherosclerosis 

in the vascular system and suggests approaches and mechanisms for further 

research. 

To date, there are still millions of people consuming water that exceeds 

50 IJg/L arsenic and possibly twice as many consuming 10 IJg/L arsenic in many 

parts of the world [51]. The association between chronic arsenic exposure and 

atherosclerosis has far-reaching implications in research and public health. 

Because atherosclerosis is a major public health concern, the consequences of a 

causal association with arsenic would affect large numbers of people worldwide. 
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Figure 1: MvA plot on gene expression. Normalized MA plot of postnatal 

arsenic exposure shows no change after normalization , indicating the signal 

value data was previously normalized . (Left) is the original MvA plot. (Right) is 

the GeneSpring-normalized MvA plot. This plot shows the difference versus the 

average of probe measurements between two samples and assesses the relation 

between the Cy5 and Cy3 channels of each hybridization . Each small square 

represents an individual probe. 
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Figure 2: peA analysis on gene expression. Principal Components Analyses 

(PCA) comparison for GeneSpring (top) and Partek (bottom) indicates similar 

grouping patterns among conditions. These are 3D PCA image for both 

GeneSpring (top) and Partek (bottom). Depicted above are two studies, a 

postnatal study (exposures: none-pnd70 and pnd21-pnd70) and a prenatal study 
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(exposures: none-pnd1, gd8-pnd1, and gd8-pnd70) that were performed at the 

same time. Similar colors indicate replicate samples (3 per color). 
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Figure 3: IPA networks on gene expression. Merged IPA networks 

comparing GeneSpring and Partek data indicate similarities between networks. 

(Top) The top functions of this network are cellular development, growth, 

proliferation, and movement, connective tissue development and function, and 

cell cycle. (Bottom) The top functions of this network are hematological system 

development, function, and disease, cellular movement, cellular movement, 

immune cell trafficking, cell death, and post-translational modification. Gene 

symbols are located in the center of each box; green shapes indicate down­

regulated genes, and red shapes indicate up-regulated genes, compared with 

control. Gray shapes indicate genes that IPA inserted to obtain the most 

connections within the network, but are not regulated significantly regulated by 

the experiment. Highlighted shapes indicate those that were common between 

the merged GeneSpring and Partek networks in the comparison. 
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10 Molecules in Network Score Focus Top Functions 
Analysis Molec. 
1-G ABCB1B, ARHGEF9, ATP51, BRCA1, CA2, 37 32 Cellular 

COX6C, Creb, DPP4, DUSP6, EDN2, ERK1/2, F2R, Development, 
FOPS, FOXC2, GAPDH (includes EG:14433), Connective Tissue 
GSTM4, GSTM3 (includes EG:2947), KPTN, Development and 
MATN4, MBD2, MED16, MED23, MED26, MSX2, Function, Embryonic 
NDUFB5, PEPD, PL TP, PPARG, PSENEN, RBBP7, Development 
RDBP, RNA polymerase II, SERPINE2, SLC9A8, 
UCK1 

1-P AFP, AGK, ANK3, ATPIF1, AXL, CDK14, Creb, 31 28 Cellular Growth and 
DPP4, EDN2, ERK1/2, FDX1, FDXR, FSH, GSTM4, Proliferation, 
GSTM3 (includes EG:2947), hCG, Histone h3, Cellular Movement, 
HNRNPK, KPTN, Lh, MBD2, MSX2, MTOR, MYH14, Cell Cycle 
NPC2, PITX2, PLAUR, PP2A, PPARG, PTTG1, 
RGS16, RNASEH2A, SC4MOL, STC1, TFPI2 

2-P ACACB, ADIPOO, Akt, CCL22, CCND3, CSF2RB, 29 27 Cellular Movement, 
CSNK2A1, DHCR24, FCGR2B, GPX4, GSK3B, Hematological 
HDL, IFN Beta, IGBP1, Interferon alpha, Jnk, System 
LAMA3, LARGE, LBP, LOC643751, MAP2K6, MIF, Development and 
MMP3, NFkB (complex), NLRP2, P38 MAPK, PL TP, Function, Immune 
Ppp2c, PRKAA2, PRKCD, RAC1, RPL23A, SSRP1, Cell Trafficking 
TNFRSF9, TNFSF12 

2-G ALOX12, BCR, C140RF153, CCND3, CD47, 27 27 Cell Death, 
CDK1, Cytochrome c, EEF1A1, G protein alpha, Hematological 
GAS6, GDF15, GH1, GPX4, HMGB1L 1, IFIH1, IFN Disease, Post-
Beta, IL 12 (complex), Interferon alpha, Jnk, Translational 
MAP2K1, MAP2K6, NFkB (complex), NLRP2, OAS1, Modification 
P38 MAPK, PNKD (includes EG:25953), SLC16A6, 
SMAD3, SOD2, THY1, TNFRSF9, TRAF2, TRIM69, 
VDAC1, VPS28 

3-G ALPL, ATP9A, ATPIF1, BAG1, BMYC, DHPS, E2f, 21 23 Embryonic 
EXOSC8, FDX1, FSH, hCG, Histone h3, HRAS, Lh, Development, 
MAP2K1, MBD2, NOL3, NPC2, PGRMC1, Tissue 
PRKAR1A, RAB14, RPA3, SGK1, SKA2, SMAD6, Development, Cell 
SMC2, SNRPC, SSRP1, STC1, SUPT16H, TK1, Death 
TMEM126A, TRIB1, TYMS, UXT 

3-P AMPK, AP2M1, C140RF166, CYP2A6, CYP7A1, 15 18 Gene Expression, 
DLAT, EIF3F, GFER, GLl1, HNF4A, IRS2, ME1, Lipid Metabolism, 
NCOA1, NDUFS1, NDUFV2, NONO, NROB2, Small Molecule 
NR1H4, NR113, NR5A2, PCK1, PPARGC1A, RARA, Biochemistry 
RBM3,RPS5,RPS19,RPSA,RXRA,SAT1,SFPO, 
SULT1C3, SYNCRIP, THRB, TUFM, UCP3 

4-G AIFM1, ATOX1, BAK1, BAX, BMP6, CHMP1A, 19 22 Cellular 
DMPK, DNM1L, EIF4E, GRB2, LAT, LAX 1 , Compromise, 
LETMD1, LSM1, MAP7, MCM6, MFN1, MFN2, Cellular Assembly 
MPV17, NOP10, PA2G4, PARP1, PCNA, POLD1, and Organization, 
POLDIP2, PPIA (includes EG:268373), RPL 11, Cell Morphology 
RPL30, RPL 18A, SOS2, STOML2, TALD01, 
TNFSF10,YY1,ZNF143 

4-P ABCA1, ABCC3, ADIPOO, AEBP1, AKT2, ALB, 13 17 Lipid Metabolism, 
BBC3, C5, CCL27, CD36, CETP, CFD, CR1, Molecular 
CX3CL 1, Cytochrome c oxidase, DIABLO, FOXC2, Transport, Small 
HEXA, HEXB, HMGB1L 1, IL27, LAMB3, LPL, Molecule 
MFHAS1, MUT, NR112, PPARG, PRODH, PSMB10, Biochemistry 
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PTGES,PTPN12,SCNN1G,SLC01A2,TNF,UCK1 
5-G APP, ARC, ATP5A1, ATP5C1, ATP50, CAMK2A, 14 17 Cell-To-Cell 

CSNK1G2, DLG4, DSTN, FMR1, GLUL, GRIA1, Signaling and 
GRIA2, GRIK5, HTT, INS, LEP, NRXN1, PHB2, Interaction, Nervous 
PHLPP1, PRDX1, PRDX2, PRDX3, SDHA, SIK1, System 
SLC25A6, SRXN1, SUCLA2, SYT1, VDAC2 Development and 

Function, Cell 
Morphology 

5-P ACTG1, Actin, ADH5 (includes EG:128), APP, 13 17 Inflammatory 
AVPI1, BLVRA, C5AR1, CCL5, CD163, CHN2, Response, Cell-To-
COPS5, CXCL3, CYBB, DUSP10, FAM38A, FEZ1, Cell Signaling and 
FMR1, IFNAR1, IL 13, ITM2B, Lamin b, LDL, MIF, Interaction, 
MSN, NOS2, PITRM1, PLEC, RAC1, RIPK2, SNCA, Hematological 
SORT1, SPINT2, TNFRSF1A, TPMT, VPS35 System 

Development and 
Function 

6-G APH 1A (includes EG:511 07), BIRC2, CA3, CELA 1, 12 17 Free Radical 
CER1, CSNK2A1, CTNNB1, DHX15, DPAGT1, Scavenging, 
EGF, GNA11, GPI, ICAM2, IFNG, IGBP1, IRAK4, Cellular Movement, 
ITGB2, KLK2, NFkB (complex), PCSK6, P13, Genetic Disorder 
PIK3CG, POLR2F, PRPF8, PSEN1, PTEN, RAC1, 
RPS6KB1, RPS6KB2, SERPINA3, SMNDC1, SOD2, 
TLR5, TNFRSF1B, TXN2 

6-P ABCB1B, BRCA1, CAV1, CCNA2, CCNB1, CCND3, 12 16 Cell Cycle, Cancer, 
CDK1, CDKN1A, CEBPA, CL TC, DHFR, DNTT, Reproductive 
ERCC1, GDF15, GMNN, GSTM1, GSTM5, System Disease 
LETMD1, MCM6, MCM7, NANOG, NR112, PHC1, 
POU5F1, PPARG, RB1CC1, SNX9 (includes 
EG:51429), STUB1, STX8, TOM1 L 1, TOPBP1, 
TP53, TSG101, WWTR1, XRCC5 

7-G AACS, AKT1, ANXA11, ATP5F1, BCL 10, CARTPT, 12 17 Genetic Disorder, 
CCL3L3, CCND3, CLEC7A, CRYL 1, CSNK1E, Metabolic Disease, 
CYP7A1, DLAT, EGF, EIF6, HTR4, IGFBP2, IKBKG, Behavior 
IL2, IMPDH2, LEP, ME1, MEP1A, MIR122A, N-cor, 
NDUFS1, NDUFV2, NFATC1, PER1, PER2, 
PPARGC1A, RPS6KB1, SLC27A5, THRB, THRSP 

7-P ACTL6A, AK3, AKT2, ANXA6, ARID1A, BAF110, 12 16 Gene Expression, 
CA2, ETS2, FCGR2B, GCAT, GLlPR2, IF130, IL4, Cellular Assembly 
IL5, KLHDC2, MMP1 (includes EG:4312), PDK1, and Organization, 
PGM1, PLlN2, PPARG, RHAG, RHCE, SEMA4A, Cellular 
SLC4A1, SMARCA4, SMARCB1, SMARCC1, Compromise 
SMARCC2 (includes EG:6601), SMARCE1, ST?, 
TADA2B, TEP1, TERT, THY1, TMEM97 

Table 1: Top IPA networks for GeneSpring and Partek. Table shows network 

ID, genes in network from list, number of genes, network score, and top functions 

of network. Network ID and analysis indicated for GeneSpring (G) and Partek 

(P). 
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Ingenuity Canonical Analysis Molecules 
Pathways 
Oxidative Phosphorylation GeneSpring NDUFA4, SDHB, UQCR11, TCIRG1, NDUFB5, 

COX5B, UQCRB, ATP5G2, NDUFB10, NDUFB9, 
NDUFA5, NDUFS1, ATP6V1F, NDUFC2, ATP5G1, 
ATP5H (includes EG:10476), ATP5J2, ATP5F1, 
ATP51, COX7C (includes EG:1350), COX411, 
NDUFS4, ETNK2, NDUFA8, SDHA, ATP5J, 
NDUFV1, NDUFC1, COX7A2, COX6B1, ATP50, 
NDUFS7, ATP5A1, COX6C, ATP6V1A, NDUFS3, 
ATP5C1, UQCR10, NDUFV2, NDUFS8, PPA2, 
UQCRC2, NDUFA7 

Oxidative Phosphorylation Partek SDHA, ATP5C1, NDUFS1, NDUFV2, NDUFS8, 
PPA2, TCIRG1, UQCRC2, ATP6V1G1, NDUFS3 

Mitochondrial Dysfunction GeneSpring NDUFA4, SDHB, NDUFB5, COX5B, PSENEN, 
UQCRB, NDUFB10, NDUFB9, NDUFA5, NDUFS1, 
SOD2, GPX4, COX7C (includes EG:1350), 
COX411, NDUFS4, AIFM1, NDUFA8, SDHA, 
ATP5J, NDUFV1, COX7A2, COX6B1, NDUFS7, 
COX6C, ATP5A1, NDUFS3, APH1A (includes 
EG:51107), ATP5C1, PRDX3, NDUFS8, NDUFV2, 
TXN2, UQCRC2, TXNRD2, NDUFA7 

Mitochondrial Dysfunction Partek SDHA, NDUFAF1, NDUFS3, GPX7, APH1A 
(includes EG:51107), ATP5C1, NDUFS1, PRDX3, 
NDUFV2, NDUFS8, UQCRC2, MAPK10, GPX4, 
TXNRD2, AIFM1 

Ubiquinone Biosynthesis GeneSpring NDUFA4, NDUFC1, NDUFV1, NDUFS7, NDUFB5, 
NDUFS3, NDUFB10, NDUFS1, NDUFA5, 
NDUFB9, UFSP2, NDUFV2, NDUFS8, NDUFC2, 
NDUFA7,NDUFS4,NDUFA8 

Ubiquinone Biosynthesis Partek NDUFS1, UFSP2, NDUFV2, NDUFS8, AS3MT, 
NDUFS3 

Citrate Cycle GeneSpring SDHA,SUCLA2,SDHB,SUCLG2,SUCLG1,DLD, 
IDH2, MDH1, MDH2, CL YBL, IDH3B 

Citrate Cycle Partek SDHA, IDH2, MDH2, IDH3B 
Protein Ubiquitination GeneSpring PSMA3, PSMA7, UBE2D2, USP48, TCEB2, 

Pathway STUB1, USP47, USP16, UBE2E3, BRCA1, 
PSMA2, ANAPC11, UCHL3, PSMB5, PSMD13, 
UBE2R2 (includes EG:54926), PSME2, USP30, 
USP1, PSMA1, UBE2L6, USP33, PSMD8, USP31, 
PSMB7, PSMB2, PSMD12, PSMA4 

Protein Ubiquitination Partek USP31, PSMA6, PSMA3, PSMB5, PSMB10, 
Pathway PSMA7, STUB1, UBE2R2 (includes EG:54926), 

USP11, UBE2D2, UBR1, USP48 
Butanoate Metabolism GeneSpring SDHA, ALDH4A1, SDHB, SUCLG2, MCS, DBT, 

ALDH3B1, MY05B, DCXR, HMGCL, ALDH5A1, 
ALDH9A1 

Butanoate Metabolism Partek SDHA, ALDH4A1, BDH1, MCS, ALDH3B1, 
MY05B,PDHB,ALDH5A1,PRDX6,ACADS 

Propanoate Metabolism GeneSpring ALDH4A1, HIBCH, SUCLA2, SUCLG2, SUCLG1, 
ALDH3B1, MUT, ACAD10, UEVLD, ALDH5A1, 
ALDH9A1 

Propanoate Metabolism Partek ALDH4A1, HIBCH, ACSM5, ACACB, DHCR24, 
ALDH3B1, MUT, ACAD10, UEVLD, ALDH5A1, 
ACADS 
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Glycine, Serine and GeneSpring SARDH, GAMT, DLD, GARS, DBT, ALAS 1 , 
Threonine Metabolism PDPR, SMOX, PISD, ABP1, PLCD4, ETNK2 
Inositol Metabolism GeneSpring COX6B1, AIFM3, OXNAD1, COX6C, BLVRB, 

TPI1, TM7SF2, NDUFB10, CYB5RL, RP3-
402G11.5, IDH3B, NDUFA7, NDUFA8 

Glutamate Metabolism GeneSpring ALDH4A1, SUCLG2, NADSYN1, GLUL, MY05B, 
PPAT, ALDH5A1 

Glutamate Metabolism Partek ALDH4A1, NAGK, NADSYN1, GPT, MY05B, 
GPT2, ALDH5A 1 

Valine, Leucine and GeneSpring ALDH4A1, HIBCH, DBT, ALDH3B1, AOX1, MUT, 
Isoleucine Degradation HMGCL, ACAD10, ALDH5A1, ALDH9A1 
Valine, Leucine and Partek ALDH4A1, HIBCH, MCCC1, ALDH3B1, MUT, 
Isoleucine Degradation ACAD10, ALDH5A1, ACADS 
LPSIIL-1 Mediated GeneSpring ALDH4A1, GSTM3 (includes EG:2947), GSTA5, 

Inhibition of RXR Function ALDH9A1, IRAK1, SLC27A5, TRAF2, GSTA4, 
GSTM4, ALAS1, ACSL4, SMOX, ALDH3B1, PLTP, 
FABP3,SULT1C3,NDST1,SULT1B1,ALDH5A1 

LPS/IL-1 Mediated Partek ALDH4A1, SUL T1C2, GSTM1, GSTM3 (includes 
Inhibition of RXR Function EG:2947), GSTA5, SLC01A2, GSTA4, CYP7A1, 

GSTM4, ALDH3B 1, FABP7, PL TP, SUL T1 C3, 
LBP, ABCC3, NDST1, ABCC4, CYP2A6, 
SULT1B1, ALDH5A1 

Pyruvate Metabolism GeneSpring ALDH4A1, LDHD, DLAT, DLD, ALDH3B1, ME1, 
MDH1, MDH2, UEVLD, ALDH5A1, ALDH9A1 

Pyruvate Metabolism Partek ALDH4A1, AKR1A1, ACSM5, ACACB, LDHD, 
DLAT, ALDH3B1, ME1, MDH2, UEVLD, PDHB, 
ALDH5A1 

GeneSpring ALDH4A1, PGM1, GAPDH (includes EG:14433), 
Glycolysis/Gluconeogenesi TPI1, ALDH9A1, ADH5 (includes EG:128), GPI, 
s EN01,DLAT,GALK1,DLD,ALDH3B1,UEVLD, 

ALDH5A1 
Partek ADH5 (includes EG:128), ALDH4A1, AKR1A1, 

Glycolysis/Gluconeogenesi ACSM5, DLAT, PGM1, ALDH3B1, TPI1, UEVLD, 
s PDHB, ALDH5A1 

Table 2: Top IPA canonical pathways. Table shows Ingenuity Canonical 

Pathways, the analysis that produced it, and the molecules that enrich the 

pathway. 
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A} GeneSpring 

Functional Enrichment Category Term % p-value 

Cluster Score 

1 44.4 GOTERM CC FAT GO:0005739~mitochondrion 21.8 2.39E-57 

2 20.8 KEGG_PATHWAY mmuOO190:0xidative 4.2 7.02E-21 

phosphorylation 

2 20.8 GOTERM_BP JAT GO:0022900~electron 3.0 1.16E-14 

transport chain 

3 9.9 GOTERM BP FAT GO:0006412~translation 5.5 1.85E-16 

3 9.9 GOTERM CC FAT GO:0005840~ribosome 4.0 1.66E-13 

4 9.0 GOTERM_BP JAT GO:0051186~cofactor 3.8 2.25E-14 
metabolic process 

B}Partek 

Functional Enrichment Category Term % p-value 
Cluster Score 

1 13.6 GOTERM CC FAT GO:0005739~mitochondrion 15.0 1.42E-20 

2 11.1 GOTERM BP FAT GO:0006412~translation 5.2 9.03E-14 

2 11.1 GOTERM CC FAT GO :0005840~ri bosome 4.0 2.81E-13 

4 2.3 INTERPRO IPR012335:Thioredoxin fold 1.7 1.07E-04 

Table 3: DAVID analysis on gene expression. Tables show enriched terms 

using lists from (A) GeneSpring and (8) Partek where pSO.01 with any Fe 

indicate similar terms are enriched using DAVID. Listed are one (or more) 

representative terms for a functional cluster, along with the category that term 

came from, the percent (%) enrichment that is the number of genes from the 

input list vs. all the genes in the term, and p-value of enrichment. 
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Gene p-value fold- Description 

Symbol change 

AIFM1 8.s3E-04 1.403 apoptosis-inducing factor, mitochondrion-
associated, 1 

ATPsA1 3.74E-03 1.214 ATP synthase, H+ transporting, mitochondrial 

ATPsA1 3.74E-03 1.214 

ATPsC1 1.68E-04 1.349 

ATPsC1 1.68E-04 1.349 

ATPsF1 1.97E-04 1.183 

ATPsG1 1.8sE-03 1.138 

ATPsG2 2.22E-03 1.175 

ATPsH 2.33E-04 1.199 

ATPsl 1.83E-03 1.152 

ATPsJ 2.12E-03 1.103 

ATPsJ 2.12E-03 1.103 

ATPsJ2 6.82E-03 1.163 

ATPsO 1.40E-04 1.222 

ATP6V1A s.31E-03 1.152 

COX411 2.13E-03 1.23 cytochrome c oxidase subunit 

COXsB 6.77E-04 1.225 

COXsB 6.77E-04 1.225 

COX6B1 1.47E-03 1.236 

COX6B1 1.47E-03 1.236 

COX6C s.21E-03 1.162 

COX6C s.21E-03 1.162 

COX7A2 7.7sE-03 1.192 

COX7A2 7.7sE-03 1.192 

COX7C 1.43E-03 1.238 

COX7C 1.43E-03 1.238 

GPX4 2.1sE-04 1.396 glutathione peroxidase 4 (phospholipid 
hydroperoxidase) 

NDUFA4 8.20E-03 1.266 NADH dehydrogenase (ubiquinone) 

NDUFA4 8.20E-03 1.266 

NDUFAs 3.32E-03 1.248 

NDUFAs 3.32E-03 1.248 

NDUFA7 7.16E-03 1.137 

NDUFA7 7.16E-03 1.137 

NDUFA8 s.52E-03 1.22 

NDUFA8 s.52E-03 1.22 

NDUFB10 1.09E-03 1.266 

NDUFB10 1.09E-03 1.266 

NDUFBs 1.92E-03 1.224 
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NDUFB5 1.92E-03 1.224 

NDUFB9 3.22E-03 1.127 

NDUFB9 3.22E-03 1.127 

NDUFC1 3.08E-03 1.127 

NDUFC2 2.48E-03 1.373 

NDUFS1 7.45E-04 1.359 

NDUFS1 7.45E-04 1.359 

NDUFS3 6.59E-04 1.256 

NDUFS3 6.59E-04 1.256 

NDUFS4 6.04E-03 1.238 

NDUFS4 6.04E-03 1.238 

NDUFS7 4.55E-03 1.286 

NDUFS7 4.55E-03 1.286 

NDUFS8 2.76E-04 1.332 

NDUFS8 2.76E-04 1.332 

NDUFV1 2.13E-03 1.214 

NDUFV1 2.13E-03 1.214 

NDUFV2 9.24E-03 1.29 

NDUFV2 9.24E-03 1.29 

PPA2 8.23E-04 1.26 pyrophosphatase (inorganic) 2 

PRDX3 1.71E-03 1.381 peroxiredoxin 3 

SDHA 1.16E-03 1.269 succinate dehydrogenase complex, subunit 

SDHA 1. 16E-03 1.269 

SDHB 2.43E-04 1.239 

SDHB 2.43E-04 1.239 

SOD2 1.75E-03 1.169 superoxide dismutase 2, mitochondrial 

TCIRG1 9.47E-04 1.303 T-cell, immune regulator 1, ATPase, H+ 
transporting 

TXN2 6.60E-03 1.247 thioredoxin 2 

TXNRD2 2.51E-03 1.368 thioredoxin reductase 2 

UQCR10 1. 16E-03 1.185 ubiquinol-cytochrome c reductase 

UQCRll 4.17E-03 1.176 

UQCRB 2.95E-03 1.175 

UQCRB 2.95E-03 1.175 

UQCRC2 1.76E-03 1.274 

UQCRC2 1.76E-03 1.274 

Table 4: DAVID and IPA mitochondrion analysis. Table shows genes that 

are common between DAVID GO term mitochondrion and IPA pathways 
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mitochondrial dysfunction and oxidative phosphorylation with transcript p-value 

and fold-change. Of the 78 genes between the 2 IPA pathways, 72 genes 

appear in the DAVID GO term mitochondrion. 
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No. Unique Genes 

MicroRNA TargetScan miRBase Intersection Notes 

mmu-miR-140 158 1000 43 140/876-3p 

mmu-miR-18 125 2051 71 18ab 

mmu-miR-206 478 861 61 1/206 

mmu-miR-337 0 0 0 

Totals 761 3912 175 

Table 5: MicroRNA database comparison. Table shows number of predicted 

microRNA gene targets found in TargetScan and miRBase. MicroRNA was input 

into each database and predicted gene targets were collected. MiRBase 

reported many more predicted gene targets than TargetScan. Notes indicate 

TargetScan microRNA that have the same predicted targets; i.e. entering miR-1 

or miR-206 in TargetScan will result in the same gene list. 
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Figure 4: MicroRNA database comparison network. The top 2 networks from 

the IPA analysis of the intersection of miRBase and TargetScan for micro RNA 

predicted target genes indicate enrichment of different regulatory processes. 

The top functions of network 1 (top) are tissue morphology, cellular growth and 

proliferation, and gene expression and network 2 (bottom) are cancer, cell 

morphology, and DNA replication, recombination, and repair. Gene symbols are 

located in the center of each box. Colors represent those genes significantly 

expressed and upregulated (red) in the GeneSpring dataset. A legend can be 

found in Figure 3. 
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Figure 5: MicroRNA and transcript intersection comparison network. The 

top 2 networks from the IPA analysis of the intersection of miRBase predicted 

gene targets and transcript genes where p:50.01 with any fold-change indicates 

networks similar in function to the transcript gene set. The top functions 

associated with each of the networks follows: cell death, hematological system 

development and function, and inflammatory disease (top) and cellular 

development, cell death, and cell signaling (bottom). A legend can be found in 

Figure 3. 
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Functional Category Term % Enrichment p-value 

Cluster 

1 GOTERM_BP _ALL GO:0065007~ 44.3 1.60E-08 
biological 
regulation 

1 GOTERM_MF _ALL GO:0030528~ 18.2 6.39E-07 
transcription 
regulator 
activity 

1 GOTERM_MF _ALL GO:0003677~ 23.9 8.09E-07 
DNA binding 

2 GOTERM_BP _ALL GO:0009790~ 10.8 4.42E-07 
embryonic 
development 

3 GOTERM_BP _ALL GO:0006366~ 9.0 4.41E-05 
transcription 
from RNA 
polymerase II 
promoter 

4 GOTERM_BP _ALL GO:0048514~ 5.7 1. 14E-04 
blood vessel 
morphogenesi 
s 

4 GOTERM_BP _ALL GO:0001525~ 4.6 6.94E-04 
angiogenesis 

5 SP PIR KEYWORDS zinc-finger 15.3 9.19E-05 

5 GOTERM_MF _ALL GO:0046872~ 29.6 2.28E-03 
metal ion 
binding 

Table 6: MicroRNA and transcript intersection DAVID analysis. Listed in 

this table are enriched terms for the micro RNA predicted gene targets, 

implicating many transcriptional regulatory networks. Listed are one (or more) 

representative terms for a functional cluster, along with the category that term 

came from, the percent (%) enrichment that is the number of genes from the 

input list vs. all the genes in the term, and p-value of enrichment. 

65 



Enriched with No. Enrichment TF name Fold-
genes factor Chang 

e* 
M00292[Freac-4] 23 1.779 Foxd1 forkhead box D1 NC 

M00997[DEC] 19 1.974 Bhlhe40 basic helix-loop-helix family, 1.5 fc 
member e40 

M01066[BLlMP1] 23 1.453 Prdm1 PR domain containing 1, with (1.2)-fc 
ZNF domain 

M00134[HNF-4] 18 1.347 Pparg peroxisome proliferator activated 1.6 fc 
receptor gamma 

MOO026[RSRFC4] 21 1.338 Same as Mef2a ?? NC 

M00146[HSF1] 12 1.527 Heat shock factor protein 1 NC 

M00626[RFX1_(EF 23 1.797 Rfx1 regulatory factor X, 1 (influences NC 
-C)] HLA class II expression) 
MOO055[N-Myc] 20 1.262 Mycn v-myc myelocytomatosis viral NC 

related oncogene, neuroblastoma 
derived (avian) 

M00403[aMEF-2] 17 1.348 Mef2a myocyte enhancer factor 2A NC 

M00186[SRF] 8 1.391 Srf serum response factor NC 

M00191[ER] 17 1.441 Esr1 estrogen receptor 1 (alpha) 1.3 fc 

M01004[Helios_A] 20 1.741 Ikzf2 IKAROS family zinc finger 2 NC 

M00279[MIF-1] 21 1.502 Gm4924 predicted gene 4924 

M00114[TaxlCREB] 21 1.673 tax p40 [ Human T -Iymphotropic virus 1 ] NC 
and Creb1 cAMP responsive element 
binding protein 1 

M00196[Sp1] 51 1.236 Sp1 trans-acting transcription factor 1 NC 

M00447[AR] 17 1.642 Ar androgen receptor NC 

M00963[T3R] 20 1.636 Rxra retinoid X receptor alpha NC 

MOOO05[AP-4] 18 1.381 Tcfap4 transcription factor AP4 NC 

M00322[c- 25 1.343 Myc myelocytomatosis oncogene 1.6 fc 
Myc:Max] myc 
*Fold-change In arsenic exposed vs. not exposed If FC ~ 11.11. otherwise no 

change (NC). Parentheses represents negative value. 

Table 7: TFBS analysis on gene expression. Listing of significantly enriched 

Transcription Factor Binding Sites (TFBS), from significantly differentially 

expressed genes in GeneSpring dataset where p~O.05 and FC~11.51. All TFBS 

where p::;;O.05 are presented along with the transcription factor that binds the site, 

number of genes involved in our list (out of 94 genes), and enrichment factor, the 

fold-change (FC) of the TF was provided if it was available in our original gene 
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data if the Fe was more than 1.1 fold. TFs were resolved from the TFBS 10 

using MAPPER (http://snpper.chip.org/mapper/mapper-main). 
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Figure 6: TFBS on gene list clustering. Transcription factor binding sites and 

genes used to find enriched TFBS (filtered where p~O.05 and FC>I±1.51). A 

yellow box indicates the gene (on the rows) was found to contain a TFBS (on the 

columns). Clusters are formed on columns and rows using McQuitty's Criteria in 

PermutMatrix (http://www.lirmm.fr/-carauxlPermutMatrixl). 
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