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ABSTRACT 

ADENOVIRUS-INDUCED CYCLIN E ACTIVATES CDK2 FOR VIRUS 

REPLICATION 

Pei-Hsin Cheng 

February 2, 2010 

Human adenoviruses (Ads) can infect and replicate in cells at different 

cell-cycle stages. Ads with the E1 B55K deletion preferentially replicate in cancer 

cells and cause oncolysis. Our laboratory has previously shown that the Ad E1 b 

gene is involved in induction of several cell-cycle regulative genes (Rao, X. et al. 

Virol. 350:418-28, 2006) and that cyclin E expression is required for efficient viral 

replication (Zheng, X. et al. J Viral 82:3415-27, 2008). In this study, we sought to 

investigate the interaction of cyclin E with its partner CDK2 in Ad-infected cells. 

We show four lines of evidence indicating the importance of CDK2 activation by 

cyclin E in Ad replication. First, the replication of E1 B55K-deleted Ads was 

partially inhibited in the transgenic CHO cell line expressing a cyclin E mutant 

unable to bind CDK2, but not in those expressing wild-type cyclin E or a mutant 

unaffecting its CDK2 binding. Second, Ad-induced cyclin E protein formed com-
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plex with CDK2, correlating with the increased phosphorylation of CDK2 at T160 

and pRb at 8612. Third, the CDK2 chemical inhibitor, roscovitine, decreased viral 

DNA synthesis, protein production, and viral yield. Finally, a siRNA specifically 

inhibiting CDK2 repressed the viral replication with the decrease in pRb 

phosphorylation. Our findings indicate that Ad-induced cyclin E activates CDK2 to 

target the transcription repressor pRb for Ad productive replication. 
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CHAPTER I 

INTRODUCTION 

The human adenoviruses (Ads) are double-stranded linear DNA viruses that 

can infect and replicate in cells at different cell-cycle stages (5). After infection, 

viral early proteins interact with cellular factors to create favorable environments 

for viral replication. The E1 region contains two sets of genes, E1a and E1b, that 

are dedicated to controlling cell cycle, inhibiting apoptosis, and regulating cellular 

and viral genes (69). Ads with E1 modifications that preferentially replicate in 

cancer cells have been used for oncolytic virotherapy. 

The viral E1 a gene expresses immediately after infection. The primary role of 

E1A products is to regulate expression of multiple cellular and viral genes (5). 

Instead of directly binding to specific DNA sequences in transcriptional regulation 

elements, E1A proteins interact with several key regulators of cell proliferation (3, 

20). The well-known cellular factors that E1A proteins bind with are products of 

the retinoblastoma (Rb) gene and its structurally related genes, p107 and p130 

(41, 76). By sequestering the retinoblastoma protein (pRb), E1A activates 

transcriptional regulator E2F proteins. Studies have suggested that the pRb/E2F 

complex actively represses the transcription from target genes, mediates G1 

arrest triggered by p19 (ARF), p53, p161NK4a, TGF beta, and cell contact (38,64, 

83). Several groups have shown that expression of E1A triggers the accumulation 
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of p53 protein and p53-dependent apoptosis (16, 40, 44, 86) either by activating 

p53 transcription or preventing p53 from being degraded by the proteasome (11, 

16,40,56). 

E1 B55K has been shown in some studies to counteract the E1A-induced 

stabilization of p53 (16, 58). E1 B55K protein may inhibit the functions of p53 

through at least two distinct mechanisms. E1 B55K reportedly binds the amino 

terminus of p53 (35), and this binding may repress p53 transcriptional activation, 

as suggested in transcription assays (43) and transient transfection studies (79). 

E 1 B55K may also interfere with p53 function by cooperating with viral E40rf6 

protein to cause proteolytic degradation of p53 protein (29, 51, 57, 77). Thereby, 

E1 B55K blocks the expression of p53-regulated genes and, consequently, 

counteracts the p53-dependent apoptosis induced by E1A, allowing efficient viral 

replication (35, 43). 

Ad dl1520 (ONYX-015) contains an 827-bp deletion and a point mutation 

generating a premature stop codon in the E1 B55K coding sequence, preventing 

expression from the gene (4). It was originally proposed that the E1B55K-deleted 

Ads could only replicate in p53-deficient tumor cells because the 

E1 B55K-mediated degradation of p53 protein might be not required in those 

cancer cells (8, 62). E1 B55K-deleted oncolytic Ads have been applied in human 

clinical trials and are being marketed for cancer treatment in China (80). However, 

the original hypothesis was challenged by several studies showing E1 B55K 

mutants are able to replicate in many cancer cell lines regardless of their p53 
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status (17, 26, 27, 63). Recent studies have shown that the accumulation of p53 

protein in cells, after infection with Ads carrying mutated E1 855K genes that are 

unable to repress p53, can neither efficiently induce apoptosis nor 

transcriptionally activate expression of p53-responsive genes (32, 52). These 

studies have demonstrated that blocking of p53 activity by E 1 855K protein is 

unlikely to be the major requirement for viral replication. Thus, the mechanism(s) 

of E1 855K-deleted viral replication of in cancer cells is still not established, even 

though the vectors have been applied in human cancer treatment (80). 

Previously, our laboratory has shown that Ad E1855K is involved in the 

induction of cell cycle-related genes, including cyclin E (60). E1855K-mediated 

cyclin E induction normally plays a critical role in viral replication; however, 

E1855K is not required for cyclin E induction and viral replication in cancer cells 

with deregulated cyclin E (85). We proposed that cyclin E deregulation in cancer 

cells may be an important molecular basis for oncolytic replication of 

E1 855K-deleted Ads (85). 

Cyclin E regulates the DNA replication (14, 22), centrosome duplication (31, 

45), and cell cycle progression in cells. In normal cell cycle, the level of cyclin E 

rises at late G1 phase and peaks at the G1/S phase to promote the S-phase entry 

(37, 54). Deregulation of cyclin E is frequently detected in many types of cancers 

by gene amplification (42), overexpression of cyclin E mRNA or protein levels (18, 

66), decrease of cyclin E turnover (73), and the presence of more active forms of 

cyclin E (2, 36, 78). Constitutive overexpression of cyclin E was shown to induce 
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chromosome instability and impair normal cell cycle progression (47, 72). The 

idea that abnormal cyclin E expression can trigger tumors has also been 

supported by several transgenic animal studies (10, 21, 39). 

One of the functions of cyclin E in the cell cycle is to bind and activate 

cyclin-dependent kinase 2 (CDK2) (50). The cyclin E/CDK2 complex then 

phosphorylates substrates such as pRb and leads to transcriptional activation of 

downstream genes. Recent studies have indicated that cyclin E also has 

CDK2-independent functions (23, 24). In vivo animal studies revealed the 

variance between the phenotypes of cyclin E null (cyclin Er'- ET'-) mice and 

CDK2 null (CDK2-'-) mice. Mice lacking CDK2 are viable, showing no significant 

effects on normal development except defective germ cell development (6, 55). 

Yet double knockout of cyclin E1 and E2 genes in mice caused embryonic lethality 

owing to the deficiency in endoreplication of trophoblast giant cells and 

megakaryocytes (25). Matsumoto et al. (2004) identified a centrosomal 

localization signal (CLS) domain in cyclin E (46). This CLS domain allows cyclin E 

to target the centrosome and promote S phase entry in a CDK2-independent 

manner. Additionally, Geng et al. (2007) showed that a cyclin E kinase-deficient 

mutant (KD-E) is able to partially restore minichromosome maintenance protein 

(MCM) loading and S phase entry in cyclin E null cells (24). These results 

illustrate the CDK2-independent functions of cyclin E. 

To further study the role Ad-induced cyclin E in the Ad infectious life cycle, we 

investigated whether the cyclin E function is dependent on activation of CDK2. 

This question may be especially important in the development of oncolytic 
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virotherapy strategies. We show that Ad-induced cyclin E binds with and activates 

CDK2 that targets transcription repressor pRb, which may in turn regulate 

expression of cellular and viral genes. The results suggest that the interaction 

between cyclin E and CDK2 generates a suitable environment for Ad productive 

replication. 
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CHAPTER II 

MATERIALS AND METHODS 

Cell lines and culture conditions. HEK 293 (ATCC no. CRl-1573), CHO (ATCC 

no. CCl-61) and human lung cancer A549 (ATCC no. CCl-185) cell lines were 

purchased from the American Type Culture Collection (Rockville, MD). The 

transgenic CHO cell lines were established and kindly provided to us by Dr. 

James L. Maller's laboratory (46). HEK 293 and A549 cell lines were cultured in 

MEM-Alpha. All CHO cell lines were cultured in F-12K medium. All media were 

supplemented with 10% FBS and penicillin/streptomycin (100 U/ml). Cells were 

cultured in a 5% CO2 incubator at 3rC. All cell culture reagents were obtained 

from Gibco BRl (Bethesda, MD). 

Adenoviral vectors. Wild-type adenovirus type 5 (Adwt, ATCC no. VR-5) was 

used as a replication-competent control. AdCMV/GFP, an Ad vector with E1 

deletion, was used as a replication-defective control. Adhz63, an oncolytic Ad 

vector with the deletion of E1 B55K region similar to d11520, was constructed by 

our laboratory (59). 

Viral infection and titration. Cells were seeded into 6-well plates at a density of 

2.5 x105 (cells/well) and cultured under the indicated conditions. Subsequently, 

cells were mock-infected or infected with AdGFP, Adwt, or Adhz63 at an MOl of 5. 
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Cytopathic effect (CPE) caused by viral replication was observed at designed time 

points and photographed with an inverted microscope (Olympus CKX41). Total 

infected cells and cell supernatants were collected at 48 hr postinfection (p.i.) and 

lysed to release virus particles with three cycles of freezing and thawing. The viral 

titers were determined by the infective unit method as described previously (65, 

84). Briefly, HEK 293 cells were seeded in 96-well plates at a density of 103 

(cells/well) and then infected with 5-fold serially diluted viruses. CPE was 

recorded and scored after incubation for 7 days. 

Viral DNA synthesis assay. After viral infection, A549 cells were collected at 

different time points. The viral DNA synthesis was determined with Southern blot; 

1 I-Ig of isolated genomic DNA was digested with the restriction enzyme Pstl and 

analyzed with 1 % agarose gel, which was subsequently transblotted to a 

Hybond-N+ membrane (YA3609; Amersham Pharmacia Biotech, Arlington 

Heights, IL). The probe was prepared by digesting 0.5 I-Ig pBHGE3 (7) with Pstl 

and labeled by following the protocol of Amersham AlkPhos Direct Labeling and 

Detection Systems (RPN 3690; GE Healthcare, Piscataway, NJ). The blot was 

prehybridized for 3 hrs at 60°C. The hybridization and stringency washes were 

performed at 60°C and followed by the chemiluminescent detection according to 

the manufacturer's protocol. 

Western blot analysis. Infected A549 cells were harvested at indicated time 

points and lysed with CDK2 lysis buffer (20 mM Tris pH 7.5, 150 mM NaCI, 5 mM 
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MgCb, 0.5% Nonidet P-40, 0.1 % Brij 35, 5 mM sodium glycerophosphate, 1 mM 

sodium vanadate, 1 mM dithiothreitol). The Western blot analyses were 

performed as described previously (86). Briefly, 80 I-Ig of cell Iysates were 

electrophoresed through 12% SOS-polyacrylamide gels and transferred onto an 

Immobilon-P Membrane (Millipore, Billerica, MA). The primary antibodies used in 

this study were rabbit anti-cyclin E (M-20), COK4 (C-22), mouse anti-cyclin 01 

(OCS-6), PCNA (PC1 0), p21 (F-5), pRb (IF8) (Santa Cruz Biotechnology, Santa 

Cruz, CA), mouse anti-COK2, p27 (BO Biosciences, San Jose, CA), pCOK2 T160 

(Cell signaling Danvers, MA), rabbit anti-phospho-pRb S612, and actin (Sigma, St. 

louis, MO), anti-phospho-pRb S795 (New England Biolabs, Beverly, MA), and 

anti-phospho-pRb T821 (Invitrogen, Carlsbad, CA). The membranes were then 

incubated with anti-mouse immunoglobulin G (lgG) or anti-rabbit IgG 

peroxidase-linked species-specific whole antibody (GE Healthcare, Piscataway, 

NJ). Chemiluminescent detection was performed with ECl reagents according to 

the supplier's recommendations (GE Healthcare). 

Immunoprecipitation. A549 cells were seeded in 150 mm dishes at a cell density 

of 5 x106 (cells/dish) and then mock-infected or infected with AdGFP, Adwt, or 

Adhz63 at an MOl of 5. At 48 hr p.i., cells were collected and lysed with COK2 

lysis buffer according to the method described in previous publications (12, 85). 

500l-lg cell Iysates were immunoprecipitated with cyclin E (HE111), the mouse 

monoclonal antibody, (Santa Cruz) or anti-COK2 antibody (BO Transduction 

laboratories) at 4°C for 4 hr, followed by adding protein A Sepharose Cl-4B 
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(82506; Sigma) and incubating overnight. Immunocomplexes were analyzed by 

Western blot with anti-cyclin E and CDK2 antibodies. 

siRNA transfection. The siRNA oligonucleotides were synthesized by 

Eurogentec (Fremont, CA). Three different siRNA duplexes were designed to 

target CDK2 on nucleotides 399 to 419 (#1), 619 to 639 (#2), and 691 to 711 (#3) 

according to Genbank accession NM001798.2 (National Center for Biotechnology 

Information GenBank). A negative control siRNA duplex containing two strands of 

19 complementary RNA bases with 3'dTdT overhangs was obtained from 

Eurogentec (SR-CLOOO-005). The sequences have no significant homology to 

any known mouse, rat, or human gene sequences. A549 cells were seeded into a 

6-well plate at a density of 105 (cells/well) and then transfected with 200 nM CDK2 

siRNA duplexes or a negative control siRNA duplex with Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) according to the manufacturer's protocol. Cells were 

harvested at 48 hr after transfection. Eighty j.Jg of cell Iysates were analyzed by 

Western blot with CDK2 and actin antibodies. 
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CHAPTER III 

RESULTS 

Cyclin E mutant unable to bind CDK2 inhibits replication of E1 B55K-deleted 

virus. 

Our laboratory has previously established the link between cyclin E and 

replication of E1 B55K-deleted viruses (85). Cyclin E can promote S phase entry 

and participate in DNA replication via CDK2-dependent (50) and 

CDK2-independent pathways (46). To investigate the connection of CDK2 and 

cyclin E in Ad replication, we first applied transgenic CHO cell lines expressing 

Myc-tagged wild-type rat cyclin E (cycE-wt), a cyclin E mutant that is still able to 

bind CDK2 (cycE-SWNQ-A), or a cyclin E mutant unable to bind CDK2 

(cycE-S180D) (46) to evaluate whether cyclin E binding with CDK2 plays a role in 

viral replication. Expression of the knock-in cyclin E genes is under the control of 

the tetracycline-on (Tet-on) system. We first examined the protein levels of the 

Myc-tagged cyclin E proteins with or without tetracycline as an expression inducer. 

The results showed that the expression of knock-in rat cyclin E genes is not 

significantly repressed in the absence of Tet (Fig. 1A). Thus, the CHO cell line 

without any transgenic cyclin E was used as a control for the CHO cell lines with 

different knock-in cyclin E genes. 

To verify the infectivity of human Ad on the hamster cells, the normal CHO 

cells and the three transgenic CHO cells were infected with AdGFP at an MOl of 
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10. AdGFP is a replication-defective Ad with deletion of E1a and E1b genes and 

carrying green fluorescent protein (GFP) as a reporter gene. Equal expression of 

the green fluorescence protein was observed in all four cell lines at 48 hr p.i., 

indicating that all the CHO cells can be efficiently and equally infected by Ads (Fig. 

1 B). 

We then determined the CPE caused by viral replication in the cells infected 

with wild-type Ad5 (Adwt) or E1B55K-deleted Adhz63 at an MOl of 10. The 

repeated experiments showed that there was no difference among the 

Adwt-caused CPE in the normal CHO and the three transgenic cell lines at 96 hr 

p.i., showing cells rounded up and detached from the cell monolayer (Fig. 2, a-h). 

However, CPE caused by E1 B55K-deleted Adhz63 was repressed in the CHO 

(Fig. 2, i and j) and in the CHO-cycE-S180D cells (Fig. 2, 0 and p). The CHO cells 

do not express any transgenic cyclin E, while the transgenic cycE-S180D is 

unable to bind CDK2. More CPE was observed in Adhz63-infected CHO cells 

expressing cycE-wt (Fig. 2, k and I) or cycE-SWNQ-A (Fig. 2, m and n), both of 

which are able to bind with CDK2. 

It should be noted that all the CHO cells carry their endogenous cyclin E gene. 

It appeared that the endogenous cyclin E was enough to support Adwt replication 

in CHO cells, but overexpression of transgenic cyclin E that can bind with CDK2 

improved replication of Adhz63 with deletion of E1 B55K. This result agrees with 

our previous report that oncolytic replication of E1 B55K-deleted viruses is 

dependent on overexpression or deregulation of cyclin E in cells (85). The results 

presented in Figure 2 suggest that cyclin E binding to CDK2 is required for viral 
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replication. 

Cyclin E/CDK2 complex is induced by replication-competent viruses. 

Our laboratory has reported that A549 cells constitutively express cyclin E 

protein, and that Ad infection mainly induces the large form of cyclin E protein 

(cyclin EL) (85). Cyclin E and cyclin EL are generated from splicing and using 

different start ATG codons in exons 2 and 3 (54). The N terminus of cyclin EL is 15 

amino acids longer than that of cyclin E. To investigate the physical interaction 

between CDK2 and cyclin E, we used anti-cyclin E antibody to immunoprecipitate 

cyclin E protein and analyzed the immunocomplexes with Western blot. A549 

cells were mock-infected or infected with AdGFP, Adwt, or Adhz63. At 48 hr p.i., 

cells were collected and lysed. The data show that cyclin E precipitated from cells 

mock-treated or treated with replication-defective AdGFP (as controls) did not 

exhibit significant association with CDK2 protein (Fig. 3A, lanes 1 and 2). 

However, immunocomplexes from Adwt- and Adhz63-infected A549 cells 

contained both cyclin E and cyclin EL with an increase of CDK2 binding (Fig. 3A, 

lanes 3 and 4). Thus, the cyclin EL induced by viral replication is associated with 

CDK2 in the precipitated complex. To verify this cyclin E/CDK2 interaction, we 

also used anti-CDK2 antibody to pull down the protein complex and examined the 

level of cyclin E. The immunoprecipitated CDK2 protein was increased in Adwt 

and Adhz63-infected cells with a concomitant precipitation of cyclin EL, especially 

for Adwt-infected cells (Fig. 38, lanes 3 and 4). The results indicate that 

replication-competent viruses (Adwt and Adhz63) induce cyclin EL expression 
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and increase the formation of cyclin E/CDK2 complex. 

Adenoviruses activate cyclin E/CDK2 but not cyclin D/CDK4. 

Consistent with the previous published study in our laboratory (85), we 

detected that the faster-migrating band, cyclin E, was constitutively produced by 

A549 cells and that the slower-migrating band, cyclin EL, was markedly induced 

by the replicative Adwt and Adhz63 (Fig. 4A, lanes 3 and 4, 7 and 8). Previous 

studies showed that the CDK2 is activated by the phosphorylation on the T160 

site and that this phosphorylation increases its electrophoretic mobility, resulting in 

faster-migrating bands (28). Analysis of the cell Iysates with Western blot 

demonstrated that the cyclin EL induction led to an increase of the 

faster-migrating CDK2, consistent with pCDK2 T160 (the active form of CDK2), 

which is significantly increased at 48 hr p.i. (Fig. 4A, lanes 7 and 8). We verified 

that the phosphorylated pCDK2 T160 was increased by Adwt and Adhz63 with the 

antibody that specifically targets this phosphorylated CDK2 protein (Fig. 48). 

We also examined the level of cyclin D since both cyclin D and cyclin E are 

involved in the transition of the G1/S phase. Interestingly, the cyclin D level was 

decreased after viral infection (Fig. 4C, lanes 3 and 4, and 7 and 8). Meanwhile, 

the level of CDK4 and the proliferating cell nuclear antigen (PCNA) did not 

significantly change in any of the groups. CDK4 is regulated and activated by 

cyclin D to process the G1-S transition (34, 70). PCNA is known to regulate DNA 

replication and DNA repair, and is also associated with multiple cyclin/CDK 

complexes in the cell-cycle progression (48, 82). Our results show that Ads 
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specifically activate cyclin E and CDK2, but not cyclin D and CDK4, suggesting a 

critical role for cyclin E and CDK2 in Ad replication. 

Adenoviruses increase pRb phosphorylation and repress CDK inhibitors. 

CDK2 activated by cyclin E is known to control the G1-S transition by 

phosphorylation of the downstream substrates. Considering that pRb is one of the 

well-known targets for pCDK2, we examined whether the increase of active 

pCDK2 alters the phosphorylation of pRb on S612, which is a CDK2-preferred 

phosphorylation residue (67, 81). We found that phospho-pRb S612 was strongly 

increased in cells infected with replication-competent Adwt and Adhz63, even 

though the protein level of unphophorylated pRb is decreased approximately two 

fold (Fig. 5A, lanes 3 and 4). We could not detect any significant changes of pRb 

phosphorylation at the CDK2-prefferred phosphorylation residue T821 (33, 81) 

and the CDK4-prefferred S795 (13) (Fig. 5A), suggesting the specific selection of 

pRb phosphorylation at S612 by CDK2. We also observed that the protein levels 

of both p21 and p27 are decreased in the virus-infected cells, especially for p21 

which is strongly inhibited (Fig 58, lanes 3 and 4, and 7 and 8). p21 and p27 are 

the well-known CDK inhibitors, which negatively regulate the activity of 

cyclin/CDK complexes to prevent the cell-cycle progression (71). Our results 

suggest that Ads activate the CDK2 by inducing cyclin E and repressing p21 and 

p27, and that the cyclin E-activated CDK2 in turn increases pRb phosphorylation 

at S612 to promote viral production. 
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CDK2 chemical inhibitor reduces adenoviral replication. 

To further investigate the role of CDK2 in viral replication, we used the 

chemical CDK2 inhibitor, roscovitine (Ros; CYC202), to interrupt cyclin E and 

CDK2 interaction. Ros is a purine derivative that inhibits the activity of CDK2 by 

binding to its active site (1S). Ros reduces phosphorylation on CDK2 (61) and 

blocks the androstenedione-induced increase in active phosphorylated CDK2 (1). 

If CDK2 is required for viral replication, blocking CDK2 activity should reduce 

replication. Figure 6A, representing one of the three repeated experiments, shows 

that with increased Ros, CPE caused by infection with Adwt and Adhz63 was 

partially inhibited. Figure 68 shows that S IJM of Ros led to a 2-fold decrease of 

Adwt titer (P = 2.17E-04) and a 3.S-fold decrease of Adhz63 titer (P = 0.034) when 

compared with the control group treated with virus and DMSO. Figure 6 8 also 

shows that 10 IJM of Ros led to even more decreases of viral titers, as-fold 

decrease for Adwt (P = 1.01 E-OS) and a 7.S-fold decrease for Adhz63 (P = 0.012). 

The repressed viral yields are consistent with the CPE phenomenon in Figure 6A. 

Thus, inhibiting CDK2 by Ros decreases viral production. 

We further examined the levels of viral DNA and proteins produced in cells 

affected by Ros treatment. The viral DNA synthesis was determined by Southern 

blot probed with the Ad genome (Fig. 7 A). The viral DNA synthesis of Adwt and 

Adhz63 at 24 hr p.i. was strongly inhibited in the presence of 10 IJM Ros. 

Consistently, the viral capsid proteins were significantly inhibited in the presence 

of 10 IJM Ros (Fig. 78). We also examined the change of phospho-pRb S612 with 

Ros treatment. We found that inhibition of CDK2 activity by Ros repressed the 
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phosphorylation of pRb at S612 site induced by Ad infection (Fig. 7C, lanes 4 and 

6). Interestingly, Ros treatment markedly repressed cyclin E protein production 

induced by Adwt and Adhz63 (Fig. 7C, lanes 4 and 6). To sum up, our data 

suggest inhibition of CDK2 with the chemical reagent roscovitine reduced viral 

DNA synthesis, capsid proteins expression, phospho-pRb S612 and cyclin E 

induction, inhibiting viral replication. 

siRNA inhibiting CDK2 represses adenoviral replication by targeting pRb. 

Since the chemical inhibitor Ros may also influence other CDKs and cellular 

kinases, we applied RNA interference to specifically silenced CDK2 expression in 

further experiments. We tested three different pairs of siRNA duplexes targeting 

CDK2 on the coding region and showed that all CDK2 siRNAs dramatically 

inhibited CDK2 expression in A549 cells (Fig. 8A). The #1 siRNA appears to have 

the most sizeable inhibiting effects. To evaluate the effects of CDK2 on the cellular 

protein production in response to viral infection, A549 cells were infected with 

Adhz63 after the cells treated with CDK2 siRNA duplex (#1) or a non-specific 

control siRNA for 48 hrs. We focused on the E1855K-deleted Adhz63 because it 

is more sensitive to the inhibition of CDK2 activity as shown in figures 6 and 7. As 

expected, the CDK2 siRNA specifically repressed production of CDK2 protein and 

decreased pCDK2 T160 (Fig. 88). Repression of CDK2 resulted in reduced 

CDK2-specific phosphorylation on pRb, but did not affect pRb protein level (Fig. 

88). We also observed that repression of CDK2 specifically decreased 

Ad-induced cyclin EL, but not cyclin E. 810ckage of CDK2 expression with siRNA 

16 



notably caused a 3-fold decrease of viral titer (P = 0.03, Fig. BC). These findings 

show that specifically inhibiting CDK2 with siRNA significantly represses viral 

production, correlating with the decreased CDK2 activation. 
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CHAPTER IV 

DISCUSSION 

Previously our laboratory has shown that induction of cyclin E is required for 

Ad replication (60, 85). In this report, we demonstrate that CDK2 activation by 

cyclin E is a critical molecular step in Ad replication. Four lines of evidence 

support the importance of activation of CDK2 by cyclin E in Ad replication. First, 

the replication of E1 B55K-deleted virus was partially inhibited in the transgenic 

CHO cell expressing a cyclin E mutant unable to bind CDK2. Second, Ad-induced 

cyclin E directly interacted with CDK2 and formed the cyclin E/CDK2 complex, 

leading to increased phosphorylation of CDK2 and pRb. Third, the CDK2 

chemical inhibitor, roscovitine, decreased viral replication. Finally, a siRNA 

specifically inhibiting CDK2 repressed the viral replication with the decrease in 

pRb phosphorylation. These four lines of evidence support the hypothesis that 

Ad-induced cyclin E activates CDK2, which targets the transcription suppressor 

pRb, resulting in controlling cellular and viral gene expression for productive viral 

replication (Fig. 9). 

Considering that CDK2-independent functions of cyclin E are related to 

participation in DNA replication licensing (24) and oncogenic transformation (23), 

we first used the CHO cell line expressing transgenic wild-type or mutated cyclin 

E genes to investigate whether the ability of cyclin E to bind to CDK2 plays an 

important role in the viral replication. Expression of transgenic cyclin E genes did 
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not affect Adwt replication. Adwt, containing the intact E1 B55K region, can elicit 

endogenous cyclin E expression (60, 85), and, thus, its replication is not 

dependent on expression of the transgenic cyclin E genes. However, replication of 

the E1 B55K-deleted virus is enhanced in CHO cells expressing transgenic cyclin 

E proteins that can bind with CDK2, but not in CHO cells without transgenic cyclin 

E or expressing cycE-S180D mutant that is unable to bind CDK2 (Fig. 2). 

Consistent with the results of using transgenic CHO cell lines, the CDK2 chemical 

inhibitor Ros decreased viral DNA synthesis and protein production (Figs. 6 and 

7). Ros inhibits the activity of CDK2 by binding to its active site (15). Our results 

suggest that cyclin E binding with and activating CDK2 is an important step in Ad 

replication. 

Cyclin E and the large form cyclin EL are generated from alternative splicing. 

The translation of cyclin EL is initiated at an ATG codon located in exon 2 and 

cyclin E is from the ATG codon in exon 3 (54). Previously our laboratory 

constructed a plasmid, pTet-cycE, containing cyclin E cDNA that produces these 

two forms of cyclin E proteins (85). The A549 cell line constitutively expresses the 

regular cyclin E protein (cyclin E), and Ad infection mainly induces the expression 

of large form cyclin E protein (cyclin EL) (85). In this study our finding indicates 

that Ad-induced cyclin EL preferentially associates with CDK2 protein (Fig. 3). We 

cannot exclude that cyclin E in A549 may also interact with CDK2. However, we 

only observed detectable levels of CDK2 along with cyclin EL after Ad infection 

with replication competent Adwt and Adhz63, suggesting cyclin EL highly interacts 

with CDK2. Consistently, Harwell et al. reported that the addition of exogenous 
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cyclin EL increases the activity and phosphorylation of CDK2 in vitro (30). They 

showed that cyclin EL can bind to endogenous CDK2 in complex with cyclin E, 

cyclin A, or unbound CDK2, and the cyclin-activating kinase is involved in the 

phosphorylation of CDK2 in this event. It is still unclear why Ad infection mainly 

induces cyclin EL that is highly associated with and activates CDK2. 

We identified that Ad-induced cyclin EL correlates with the increase of 

phosphorylated CDK2 at T160 and phosphorylated pRb at 5612 (Figs. 4A and 

5A). Three phosphorylation sites have been identified in CDK2 (28). T160 

phosphorylation is essential for CDK2 activity while T14 and Y15 phosphorylation 

cause an inhibitory effect. The retinoblastoma tumor suppressor pRb is 

inactivated by CDK's phosphorylation and, presumably, enables E2F transcription 

factor to be released from the pRb/E2F complex to carry out the downstream 

gene regulation (75). Phosphopeptide analysis of pRb showed that 5612 is one of 

the CDK2-preferred phosphorylation sites (81). The presence of pCDK2 T160 and 

phospho-pRb 5612 provides the evidence to indicate the increased CDK2 activity 

caused by Ad-induced cyclin EL. We also examined the level of pRb with 

phosphorylation of T821 (CDK2-preffered) and 5795 (CDK4-preffered); however, 

we did not detect any significant change on these two sites (Fig. 5A). Inhibition of 

CDK2 expression with the CDK2 siRNA repressed phosphorylation on CDK2 and 

pRb (Fig. 88) and decreased viral replication (Fig. 8C). Our results indicate that 

Ad-induced cyclin EL activates CDK2, which specifically introduces pRb 

phosphorylation on 5612 site. 

We detected a notable decrease of CDK inhibitors p21 and p27 in the 
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Ad-infected cells. The decrease may be the result of the highly induced cyclin 

E/CDK2 complex. p21 and p27 inhibit the activity of cyclin/CDK complexes to 

prevent the cell-cycle progression, and their protein stability is also regulated by 

cyclin/CDK complexes (68, 71, 87). Phosphorylation of p27 by cyclin E/CDK2 

causes its degradation (68, 74). Montagnoli et al. showed that cyclin 

E/CDK2-dependent phosphorylation of p27 on threonine 187 facilitates the 

formation of a trimeric complex with cyclin E/CDK2 and leads to p27 ubiquitination 

(49). In agreement with our findings, recent studies also suggest that CDK may 

promote p21 degradation (9, 87). Thus, the activated cyclin E and CDK2 may 

decrease the CDK inhibitors p21 and p27 to benefit viral replication. Whether 

cyclin E/CDK2 complex directly or indirectly governs the degradation of p21 and 

p27 has yet to be clarified. 

The pRb phosphorylation by cyclin E/CDK2 may lead to regulation of cellular 

and viral genes for Ad replication. Interestingly, Ad-induced cyclin EL expression 

is inhibited by a CDK2 chemical inhibitor and CDK2 siRNA (Figs. 7C and 88). It 

seems that inhibition of CDK2 interferes in the cyclin E induction via a loop back 

regulation (Fig. 9). Previous studies have reported that cyclin E gene is the 

downstream target of E2F (19, 53). In our previous work, we showed that the 

cyclin E promoter is more active in cancer cells and that the promoter activity is 

further enhanced after viral replication (85). We suggest that cyclin E activates the 

cyclin E-CDK2-pRb/E2F pathway and cyclin E itself is also one of the targets of 

the pathway. 

In summary, these results demonstrate that Ad-induced cyclin E plays a 
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critical role in Ad replication by activation of CDK2. Our results suggest that cyclin 

EL binds to and activates CDK2; subsequently, the active cyclin E/CDK2 

phosphorylates the transcription suppressor pRb, which can regulate expression 

of multiple cellular and viral genes, including the looping back further increasing 

cyclin E production. Therefore, CDK2 activation by cyclin E appears to generate a 

suitable environment for viral replication (Fig. 9). Our results not only help to 

further reveal the mechanism of Ad replication, but also provide the basis for the 

development of future oncolytic vectors. The experiments regarding the novel 

oncolytic viruses are ongoing. 
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FIGURES 

A. 
CHO-cycE-wt CHO-cycE-SWNQ-A CHO-cycE-S 180D 

T~ + + 

Myc-cycE 

B. 
CHO CHO-cycE-WI CHO-cycE-SWNQ-A CHO-cycE-SI80D 

Fig _ 1_ Transgenic cyclin E expression and the infectivity of AdGFP in CHO cells_ 

(A) 5 x105 of CHO cells expressing Myc-tagged wild-type rat cyclin E (cycE-wt) , 

Myc-tagged cyclin E mutant able to bind CDK2 (cycE-SWNQ-A), or Myc-tagged 

cyclin E mutant unable to bind CDK2 (cycE-S180D) were cultured in the presence 

or absence of 10 IJg/mL tetracycline for 96 hrs and cell Iysates were analyzed by 

Western blot. (8) Wild-type (CHO) and transgenic CHO cells were infected with 

AdGFP at an MOl of 10_ All fluorescent microscopy is at taken at 48 hr p.i. with an 

Olympus IX50 microscope (original magnification of x1 00). 
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Adhz63 

Fig. 2. Comparison of viral replication in normal and Myc-cycE transgenic CHO 

cells. 5 x105 of CHO cells were mocked-infected or infected with AdGFP, Adwt or 

Adhz63 at an MOl of 10. CPE was observed at 96 hr p.i. Photographs are 

presented in duplicate (original magnification of x100). 
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A. IP with anti·cycE 

mock AdGFP Adwt Adhz63 

cycEL 
cyeE 

- CDK2 

2 4 

B . IP with anti·CDK2 

mock AdGFP Adwt Adhz63 

CDK2 

cycEL 

2 3 4 

Fig . 3. Cyclin E/CDK2 complex induced by viral infection in A549 cells. (A) A549 

cell Iysates were immunoprecipitated with anti-cyclin E antibody (1 :50 dilution). 

Immunocomplexes were analyzed by Western blot with cyclin E and CDK2 

antibodies. (8) The ceillysates were immunoprecipitated with anti-CDK2 antibody 

and immunoblotted for CDK2 and cyclin E. 
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Fig. 4. Effects of viral replication on cellular proteins related to G1/S phase. A549 

cells were mock-infected or infected with AdGFP (GFP), Adwt (wt), or Adhz63 (63) 

at an MOl of 5. Cells were collected at 24 hr or 48hr p.i., and then analyzed by 

Western blot. Cell Iysates were immunoblotted for (A) cyclin E, CDK2, and actin; 

(8) pCDK2 T160 and actin ; and (C) cyclin D, CDK4, PCNA and actin. Actin was 

used as the loading control. 
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A 24m 

mock OFP wt 63 
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pRb 

actm 
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actin 
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actin 
3 4 

B. 
24hr 48hr 
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p21 

aclUl 

p27 

actin 

3 4 5 6 7 g 

Fig. 5. Effects of viral replication on pRb and CDK inhibitors. A549 cells were 

mock-infected or infected with AdGFP (GFP), Adwt (wt) , or Adhz63 (63) and 

collected at 24 hr or 48 hr p.i. , followed by Western blot analysis. Ceillysates were 

immunoblotted for (A) phospho-pRb (p-pRb) at S612, T821 , S795 and actin ; or (8) 

p21 , p27 and actin. Actin was used as the loading control. 
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Fig. 6, Effects of roscovitine on CPE and viral production, (A) Cells were treated 

with 0 IJM, 5 IJM or 10 IJM of roscovitine (Calbiochem, Darmstadt, Germany), and 

mock-infected or infected with AdGFP, Adwt or Adhz63 at an MOl of 5. All 

microscopy is originally at a magnification of x1 00 taken at 48 hr p.i. (8) Viral titers 

were determined at 48 hr p.i. with infection unit method, The values represent the 

means± S,D, of independent quadruplicate, * P<0.05 compared with the 

DMSO-control group, Student's t-test 
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Fig. 7. Effects of Ros on viral DNA synthesis, viral capsid proteins, virus-induced 

cyclin E and phospho-pRb S612. (A) A549 cells were collected at 0 hr and 24 hr 

p.i. Viral DNA synthesis was determined by Southern blot. (8) At 24 hr p.i. , cells 

were harvested and cell Iysates were immunoblotted for adenovirus type 5 capsid 

proteins, (C) cyclin E (M-20) , pRb S612, and actin. Actin was used as a loading 

control. 
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Fig. 8. Effects of CDK2-specific siRNA on oncolytic viral replication. (A) A549 cells 

were transfected with 200 nM siRNA duplexes targeting different coding regions 

of CDK2. "Mix" represents the mixture of three pairs of siRNA duplexes (#1 to #3). 

Cells were harvested at 48 hr after transfection and analyzed by Western blot. (8) 

At 48 hr after transfection with CDK2 siRNA duplex (#1) or a negative control 

siRNA, cells were infected with Adhz63 at an MOl of 5. Cells were harvested at 24 

hr after infection and analyzed by Western blot. (C) The viral titers were 

determined at 48 hr p.i. with the infection unit method. The values are means 

±S.D. of independent triplicate. * P<0.05 compared with the negative control 

group, Student's t-test. 
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Viral •. E CDK2 --I Rb/E2F -+ Adenovirus ---+ cyc In ---+ p --t genes ---+ .. factors . replicatIon 

t 
Cancer factors 

Fig. 9. Proposed mechanism of cyclin E function in Ad replication. In Ad-infected 

cells, cyclin E binds to and activates CDK2. Subsequently, active pCDK2 

phosphorylates the transcription repressor pRb, leading to the downstream 

cellular gene expression to provide a suitable environment for the viral replication. 
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APPENDIX 

List of Abbreviations 

Ad adenovirus 

CPE cytopathic effect 

CDK2 cyclin-dependent kinase 2 

CHO Chinese hamster ovary 

DMSO dimethyl sulfoxide 

FBS fetal bovine serum 

GFP green fluorescent protein 

IP immunoprecipitation 

MOl multiplicity of infection 

MEM-Alpha minimal essential medium Alpha 

PBS phosphate buffered saline 

Rb retinoblastoma gene 

pRb retinoblastoma protein 

phospho-pRb phosphorylated pRb 

Ros roscovitine 

siRNA small interfering RNA 

Tet tetracycline 

wt wild-type 
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