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Abstract

This thesis studies bouncing cosmologies in which the present-day expansion of the

universe was preceded not by a “big bang”– before which time and space ceased to

have meaning– but by a contracting phase that then bounced. We discuss two com-

peting paradigms for generating the observed, scale-invariant spectrum of primordial

density perturbations during the contracting phase: “the matter bounce scenario”

and “ekpyrosis.” First, we discuss the matter bounce scenario, and in particular, its

fine-tuning instability to the growth of anisotropic stress. Then, we examine ekpyro-

sis. In the best-understood ekpyrotic models, one scalar field drives the background

evolution of the universe while another (entropic) scalar field generates the density

perturbations. We study the stability of these models, showing that in contrast to

previous theorems, the simplest (as measured by parameters and degrees of freedom),

observationally viable realizations are dynamical attractors. Finally, we present a new

mechanism called “warm ekpyrosis,” which eliminates altogether the need for the sec-

ond (entropic) scalar field. Rather, a single field falls down its ekpyrotic potential,

smoothing and flattening the universe, while simultaneously, through couplings to

lighter degrees of freedom, decaying into hot, ultrarelativistic matter. This decay

allows both for the production of a scale-invariant density perturbation and for a

possible mechanism of reheating.
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Chapter 1

Introduction

1.1 Olbers’ paradox and the beginning of the Uni-

verse

The darkness of the night sky immediately presents a paradox [1], named after the

German astronomer Heinrich Wilhelm Olbers, that sheds. . . well. . . light on the na-

ture of the cosmos. For if the Universe were eternal and static and filled more or less

uniformly with stars like the sun, then the intensity of light observed at the Earth

would be infinite; that is, the night sky would be bright, not dark. To see this, note

that in a spherical shell around the Earth of width dr at radius r containing a number

density n of stars, there would exist 4πr2ndr stars. If each one emitted at luminosity

L, then an Earth-bound observer would measure an intensity, dI, from this shell that

is independent of radius, i.e.,

dI = (4πr2n)
L

4πr2
dr = nLdr. (1.1)

Therefore, the total intensity would diverge, i.e., I =
∫
dI = nL

∫∞
0
dr =∞, indicat-

ing an infinitely bright sky.
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The resolution, encoded in Einstein’s equations of general relativity [2], is that

the Universe is not static. Space is not merely a fixed background through which

particles move, but rather stretches and bends in response to them. In our Universe,

as a result of this stretching, distant regions grow ever more distant over time. As a

corollary, in the past, the Universe was smaller and denser. Extrapolating Einstein’s

equations back through this high density regime reveals a singularity approximately

13.8 billion years ago, an event Fred Hoyle famously derided in 1949 as a “big bang.”

Ever since then, light, which travels at finite speed, can have traversed only a finite

distance. In turn, this means that Earth-bound observers today can see only a finite

distance away and therefore finitely many stars [3]. Therefore, the total intensity is

finite; the night sky is dark.

1.2 The cosmic microwave background

When we observe an object that is one light year away, it appears to us as it was

one year ago, since this is when the light was emitted, only having reached us after

a year of transit. By extension, the farther out we look in distance, the further back

we are looking in time. By observing very distant light sources, we are in effect

studying the Universe in its nascency. Unfortunately, there is a limit to how far we

can see. The farthest light we can detect originates from the time when the Universe,

having burst into existence hot and dense after the big bang, had stretched and cooled

enough that free electrons, from which photons had previously Thomson scattered,

bound to protons to form neutral hydrogen. Over the last 13.8 billion years, these old

photons have been free streaming through space, carrying a snapshot of the Universe

as it was 380,000 years after the big bang. First detected in 1964 by Penzias and

Wilson [4] and measured today by precision ground-based [5, 6, 7, 8], balloon-borne

[9, 10] and satellite telescopes [11, 12, 13], this “cosmic microwave background” (CMB)

2



radiation has a nearly ideal blackbody spectrum at a temperature of 2.73 K and is

isotropic except for minuscule anisotropic fluctuations of order but 10−5 (ignoring the

dipole anisotropy induced by the peculiar motion of the Earth with respect to the

cosmological rest frame of the CMB). According to the theory of general relativity,

these fluctuations grew via gravitational instability to form the foam-like cosmic web

of large-scale structure we observe today.

1.3 Big bang problems and the inflationary proposal

Given the great success of explaining the growth of large-scale structure from these

initial fluctuations, it is natural to ask what caused them. In searching for an ex-

planation, in 1969, Charles Misner realized something troubling, a conundrum he

referred to as the “horizon paradox” [14]. Due to the finite time since the big bang

and the finite speed of light, there is a greatest possible distance– a particle horizon–

over which physical information can travel. Cosmic microwave background photons

that subtend an angle of more than ≈ 2◦ on the sky were beyond each other’s particle

horizon, meaning they were out of causal contact, at the time they decoupled from

matter. Nevertheless, the CMB radiates as a nearly perfect isotropic blackbody. It is

as though distant regions achieved thermal equilibrium, despite insufficient time for

any physical mechanism to induce it. Therefore, the Universe began with a density

profile that is inexplicably smooth. In that same year, Robert Dicke noticed a similar

problem: the Universe began with a spatial geometry that is inexplicably flat [15].

Reflecting on these problems, Misner remarked, “Things that you don’t under-

stand can be a constant to ten or twenty percent, but to one percent, it requires

an explanation.” Since 1981, the conventional explanation for the initial smooth-

ness and flatness of the Universe has been the inflation scenario [16, 17, 18]. In its

ideal formulation, typical conditions arising from the big bang allow small, causally
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connected regions of the Universe to undergo a period of rapid, accelerated expan-

sion, i.e., inflation, before nucleosynthesis. The accelerated expansion smoothes and

flattens the local geometry, while simultaneously stretching quantum fluctuations to

cosmological scales. These quantum fluctuations [19, 20, 21, 22, 23] imprint the ob-

served anisotropies onto the CMB and form the density perturbations that seed the

formation of large-scale structure.

However, this idealization has been criticized for several weaknesses. First, al-

though it was introduced to explain the required smoothness and flatness, inflation

requires special initial conditions of its own, conditions certain entropic arguments

suggest are extremely, exponentially unlikely [24]. For example, applying the canon-

ical Liouville measure to homogeneous, isotropic universe, the authors of Ref. [25]

demonstrate that such universes are exponentially less likely to result from long pe-

riods of inflation than from no inflation at all. Concordantly, the quantum argument

given in Ref. [26] concludes that constituent quanta at sub-Planckian energy densities

are exponentially unlikely to initiate inflation, even when weighted by volume.

Second, the inflationary paradigm is versatile to the point of being unfalsifiable.

By adding parameters and adjusting their values, inflationary models can accommo-

date nearly any cosmological observables [27]. Unfortunately, for the models most fa-

vored by observation– those involving a single field with a flat, plateau-like potential–

initiating inflation requires smoothness over scales much greater than the Hubble ra-

dius [28], the very condition inflation was supposed to provide. Without it, gradients

and inhomogeneities rapidly dominate the evolution of the Universe, preventing in-

flation from ever starting. Thus, “inflation does not predict smoothness and flatness–

it assumes it” [29].

Third, given a particular model, inflation leads almost unavoidably to the multi-

verse, according to which any outcome is possible [30, 31, 32, 33, 34, 35]. In most

regions, quantum fluctuations of the inflaton field exert small effects– the ones respon-
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sible for the temperature anisotropy observed in the CMB. In these places, inflation

terminates when the classically evolving inflaton field falls far enough down its poten-

tial function. But in rare regions, the quantum fluctuations deliver large kicks back

up the potential, impeding the classical descent of the inflaton, thereby prolonging

the exponential expansion. In short order, these rare eternally inflating regions dom-

inate the volume of space, and the process repeats anew. Far from the uniformity

inflation was intended to provide, the universe obtains a fractal-like structure as small

pocket universes terminate inflation at different times and with different cosmologi-

cal properties. Some are flat and smooth with a scale-invariant spectrum of density

fluctuations like ours, but an infinite number are not. According to Guth, “Anything

that can happen will happen; in fact, it will happen infinitely many times” [36]. With

no selection rule– no probability measure– to favor pocket universes like our own, the

multiverse renders inflation unpredictive.

Finally, inflating universes have been shown to be geodesically past-incomplete

[37]. This implies that inflation is fundamentally unable to explain the nature of the

big bang singularity. Rather, some unknown physics is required. These issues have

motivated the search for better answers.

1.4 Bouncing cosmologies

One approach is to replace the initial big bang singularity with a big bounce. In

contrast to inflation, one-time bouncing cosmologies (and their cyclic cousins) can

be past-eternal [38], meaning the universe has no creation event because it always

exists. As a happy consequence, the pre-bounce contracting phase offers plenty of time

for resolving Misner’s horizon paradox: in a past-eternal universe, particle horizons

are infinite, so distant regions enjoy perennial causal contact. Moreover, bouncing
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cosmologies resolve the flatness problem since contraction, like inflation, is a natural

flattener.

The earliest cyclic solution to Einstein’s equations predates inflation by nearly

60 years, way back to Friedmann’s “periodic world” of 1922 [39]. In it, Friedmann

argued that a homogeneous universe with a cosmological constant and a supercritical

matter density executes eternal, regular periods of expansion and contraction with

bouncing transitions in between. These ideas generated significant interest amongst

the founders of the big bang theory (e.g., Einstein [40, 41] and Lemaître [42]) until

Tolman emphasized a serious thermodynamic flaw [43, 44]. He argued that as a direct

consequence of the second law of thermodynamics, the regular periods of expansion

and contraction should increase in duration over time. Backtracking, then, the periods

universe achieves zero size a finite time in the past, thereby reintroducing the creation

event the model was designed to avoid.

Another problem for contracting universes, first shown by Belinksii, Khalatnikov,

and Lifshitz (BKL) in the 1960s, is their instability to the growth of anisotropic

stresses [45]. In expanding universes, anisotropies are usually ignored, since they di-

lute much faster than other stress-energy components and therefore quickly become

negligible. In contracting universes, however, BKL showed that the opposite is true:

as space contracts, anisotropies grow more important. In short order, they drive the

universe towards a Kasner-like evolution in which one spatial direction expands while

the other two contract. If spatial curvature is present, then every so often, sudden

jumps between Kasner-like solutions switch the directions and rates of contraction in

a manner reminiscent of a kitchen mixer [14]. Over time, inhomogeneities in the cur-

vature induce asynchronies between jumps at different locations, leading ultimately to

a highly inhomogeneous crunch that is incompatible with the large-scale homogeneity

observed today.
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As a result of Tolman’s entropy problem and the BKL instability, cyclic cosmolo-

gies fell into disfavor until Steinhardt and Turok proposed an innovation that resolves

both. Initially formulated in the language of M-theory, their new cyclic model [46]

posited that the observable Universe occupies one of two parallel 3-branes whose reg-

ular collisions punctuate long periods of intra-brane stretching and manifest as big

crunch/big bang transitions. The stretching of the branes dilutes the entropy density,

thereby circumventing Tolman’s problem. Meanwhile, the inter-brane potential re-

sponsible for the periodic collisions generates an ultra-slow contracting phase, called

ekpyrosis [47], that evades the BKL instability before the bounce [48]. Over time, this

new cyclic model was understood to admit an effective 3+1-dimensional description

using the same ingredients, i.e., scalar fields, as inflation. In this framework, the ekpy-

rotic phase derives from an effective scalar whose pressure exceeds its energy density,

so that the field dominates all other stress-energy components, even anisotropies, and

the Universe contracts homogeneously.

In light of these successes, bouncing cosmologies have resurged in recent years.

Many mechanisms have been proposed for achieving a bounce, both singular (see,

e.g., [49, 50, 51, 52, 53, 54])– in which quantum gravity effects introduce bounce-

inducing deviations from conventional general relativity– and nonsingular (e.g., [55,

56, 57, 58, 59, 60, 61, 62])– in which the density remains sub-Planckian and the

transition from contraction to expansion evolves classically via a violation of the null

energy condition. Both approaches face difficult challenges, although recent progress

on cubic Galileon theories [63, 64] has provided classically stable nonsingular bounces

that avoid many pathologies plaguing other models, e.g., ghosts, gradient instabilities,

super-luminal sound speeds, etc.

Whether singular or nonsingular, any bouncing model must ultimately explain

the nearly scale-invariant spectrum of primordial fluctuations observed in the CMB.

Since fluctuations on length scales of cosmological interest originate in the contracting
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phase preceding the bounce, predictions for primordial spectra depend critically on the

gravitational dynamics, i.e., the equation of state of the dominant energy component,

during the contracting phase. In this thesis, we consider two popular contracting

scenarios, examining the stability and spectra of each: the matter bounce scenario

(chapter 2) and ekpyrosis (chapters 3 and 4). We will assess to what extent these

scenarios address the standard fine-tuning problems without introducing additional

tunings of their own.

This thesis is organized as follows: In chapter 2, we show that the BKL insta-

bility poses a serious fine-tuning challenge for any bouncing cosmology involving a

matter-like phase of contraction to generate the observed spectrum of perturbations.

In chapter 3, we argue that, in contrast to previous theorems, precisely the opposite

is true of the simplest, observationally viable, two-field models of ekpyrosis. In par-

ticular, we prove that these models are strong attractors for a wide range of initial

conditions. Finally, in chapter 4, we propose an ekpyrotic mechanism for generat-

ing the observed spectrum that is also an attractor. Termed “warm ekpyrosis,” the

model involves a single ekpyrotic field coupled to a thermal bath of radiation into

which it continuously decays. The decay allows a scale-invariant spectrum to be gen-

erated without the need for a second field. It also provides a possible mechanism for

reheating the post-bounce universe without recourse to stringy, high energy physics.

Chapters 2, 3, and 4 are based on work published in Refs. [65, 66, 67], respectively.
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Chapter 2

Fine-tuning challenges for the matter

bounce scenario

This chapter was published in Ref. [65] as an Editor’s Suggestion.

2.1 Introduction

Matter bounce models were introduced to provide a simple mechanism for generating

a scale-invariant spectrum of adiabatic perturbations in accord with observations

[68, 69, 70, 71]. The basic idea is that quantum fluctuations naturally generate a scale-

invariant spectrum of adiabatic curvature perturbations during a contracting phase

if the dominant density is a pressureless (i.e., matter-like) fluid, such as a scalar field

rolling along an exponential potential [72, 73, 74]. If the matter-like phase is followed

by a nonsingular bounce, say, the scale-invariant spectrum can be preserved after

the bounce and provide an explanation of the observed fluctuations in the microwave

background and of the large-scale structure of the universe. This scenario is referred

to as “matter bounce” [75]. It resolves the horizon problem (and in some incarnations,

the flatness problem) of standard Big Bang cosmology [76], generates the observed
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perturbations, and avoids the multiverse problem [77, 31, 32, 33, 34, 35] of inflation

[78, 17, 18].

One well-known problem with the matter bounce scenario is its overproduction

of tensor fluctuations during the matter-like contracting phase. This issue has been

studied extensively [62, 79, 80] with various proposed resolutions [81, 82, 83, 84, 85].

But perhaps the biggest problem for the matter bounce scenario is the instability

of the contracting matter-like phase to anisotropy. If unchecked, anisotropy rapidly

dominates the energy budget of the universe– spoiling the equation of state respon-

sible for the scale-invariant spectrum– and ultimately leading to chaotic Belinskii-

Khalatnikov-Lifshitz (BKL) behavior [45].

Most works attempting to resolve the anisotropy problem focus on avoiding BKL

instability after the matter-like contracting phase and thus after the generation of

scale-invariant superhorizon perturbations [62, 86, 79]. They argue that if anisotropy

is subdominant by the end of the matter-like contraction, then an ensuing phase of

ekpyrosis will render it negligible thereafter. Suppressing the anisotropy after the

matter-like phase is far too late, though, as we emphasize in this chapter. Unless the

anisotropy is exponentially suppressed before the matter-like phase begins, it rapidly

overtakes the energy density of matter before a sufficient number of scale-invariant

modes have been generated.

In this chapter, we examine the anisotropy problem and demonstrate that it re-

quires extreme, exponential tuning of the initial conditions– in some cases, expo-

nentially more tuning than required to resolve the flatness problem, for example. In

Sec. 2.2, we summarize the anisotropy problem along lines similar to those in Ref. [87].

In Sec. 2.3, we argue that suppressing the anisotropy requires a protracted isotropiz-

ing phase prior to the matter-like phase, and moreover that the degrees of freedom

responsible for the matter-like phase must be coupled to those driving the isotropiz-

ing phase. In Sec. 4.4, we construct an example of this sort involving a canonical
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scalar field with a specially constructed potential. In Sec. 2.5, we show how resolving

the anisotropy problem requires extreme fine-tuning of this potential. In Sec. 2.6, we

conclude, arguing that this extreme fine-tuning is a generic property of the matter

bounce scenario.

In what follows, we employ reduced Planck units (8πG = 1) and metric signature

(−+ ++).

2.2 Quantifying the anisotropy problem

In this section, we review the anisotropy problem for matter-dominated, contracting

universes, demonstrating that the growth of anisotropy is exponentially sensitive to

the number of modes that leave the horizon during the matter-like phase. This result

is summarized in Eq. (2.5).

In a flat Friedmann-Robertson-Walker universe driven by a stress-energy compo-

nent, X, with a constant equation of state ε = −Ḣ/H2, the scale factor, a, is related

to the Hubble parameter, H ≡ ȧ/a, in the following way

af
ai

=

(
Hi

Hf

)1/ε

, (2.1)

where subscripts i and f denote initial and final values. In the above, overdots

denote derivatives with respect to coordinate time, t. The ratio of the energy density

in anisotropy (∝ a−6) to that in X (∝ a−2ε), f ≡ ρσ/ρX , scales as

ff
fi

=

(
af
ai

)2(ε−3)

=

(
Hi

Hf

)2(1− 3
ε )
, (2.2)

where the second equality follows from Eq. (2.1). A perturbation with comoving

wavenumber k will exit the horizon when, k = a|H|. As the universe evolves, a|H|

grows (for ε > 1), taking shorter and shorter wavelengths outside the horizon. That
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is, between times tf and ti

N ≡ ln

(
afHf

aiHi

)
=

(
1− 1

ε

)
ln

(
Hf

Hi

)
(2.3)

e-foldings of scales will have exited the horizon. Combining Eqs. (2.3) and (2.2) yields

ff
fi

= exp

(
−2N

(
ε− 3

ε− 1

))
. (2.4)

During ekpyrosis, ε > 3, so the right side of Eq. (2.4) decreases exponentially with N ,

reflecting the isotropizing power of ekpyrosis. By contrast, during matter-dominated

contraction, ε = 3/2, so the right side of Eq. (2.4) grows exponentially with N ,

ff/fi = e6N . (2.5)

This quantifies the anisotropy problem of matter-dominated contraction. Unless fi is

fantastically small, Eq. (2.5) shows that anisotropy will overtake matter after only a

few e-foldings of scales have left the horizon.

Past works have simply assumed fi to be small, arguing that if ff does not exceed

unity by the end of the matter-like contraction, then an ensuing phase of ekpyrotic

contraction will ensure that it never does. The problem with the above logic is in

assuming fi ∼ O(e−360) (if 60 e-foldings of scales are generated). For comparison, con-

sider the flatness problem of standard Big Bang cosmology. In its most extreme ver-

sion, wherein radiation-dominated expansion is assumed to begin at or near Planckian

energy density, the fractional contribution of spatial curvature, ΩK ∝ 1/(aH)2, in-

creases by a factor of (ΩK)f/(ΩK)i = (ȧi/ȧf )
2 = tf/ti = (Ti/Tf )

2 ∼ e146, where T is

temperature, and for simplicity, we have assumed radiation domination all the way

to present day at Tf = 2.7K. Thus, (for N = 60)1 the anisotropy problem of the
1Of course, reducing N (to as low as ≈ 7.6 to satisfy the minimum required by observations

[88, 69]) reduces the fine-tuning in Eq. (2.5). But doing so introduces a different kind of tuning,
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matter bounce scenario is many, many orders of magnitude worse than the flatness

problem of standard Big Bang cosmology: it involves a factor of e−214 more tuning.

2.3 The necessity of coupling

Without a powerful isotropizing phase before matter domination, it is clear from the

last section that anisotropy quickly spoils the generation of scale-invariant modes. But

suppressing anisotropy before matter domination is impossible unless the degrees of

freedom responsible for the isotropizing phase are coupled to those responsible for the

matter-like phase, as we now show.

Consider a universe with three components: anisotropy, pressureless matter, and

a third stress-energy component, X, which will be used to suppress anisotropy. Since

anisotropy grows faster than matter, suppressing anisotropy with X requires that X

grows faster than both anisotropy and matter. For example, X might be an ekpyrotic

field. Thereafter, this component, which begins greater than matter and grows faster

than matter must somehow give way to matter. If X is decoupled from the matter,

such a transition is impossible. Either X must decay directly into matter, or else

it must drive the matter-like phase itself. In either case, suppressing the anisotropy

imposes extreme fine-tuning requirements on the Hubble parameter, as we will show

below.

The decay scenario suffers additionally from the tight constraint that the decay

products must gravitate like nonrelativistic matter and nothing stiffer that might

spoil a matter-like background. For example, from the reasoning of the previous

section, any relativistic species, produced even in modest amounts, will grow faster

than matter by a factor of exp(2N), quickly spoiling the matter-like phase. Therefore,

namely in ensuring these modes are today cosmological. That is, it is not enough to generate 7.6
e-foldings of scale-invariant modes; these modes must also be pushed far outside the horizon before
the bounce– but after the matter-like phase– by some mechanism that does not amplify anisotropy,
i.e., ekpyrosis, but that pushes them to just the right distance so that they re-enter the horizon
today. This tuning can exceed that captured by Eq. (2.5).
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we will focus on the scenario without decay, presenting one realization in which X

is a scalar field whose potential is specially constructed to produce both phases, first

(stiff) ekpyrotic- and then (soft) matter-like contraction. We show that suppressing

the anisotropy is possible only if the potential is extremely fine-tuned. Thus, the

tuning of the anisotropy is traded for a tuned potential, and hence a tuned Hubble

parameter.

2.4 Stiff-to-soft model

In this section, we present a toy model in which the universe undergoes a phase of

ekpyrotic contraction before transitioning into matter-like contraction. The stiff-to-

soft transition is possible because both phases are driven by the same scalar field, φ,

whose potential energy density, V (φ), pictured schematically in Fig. 2.1, is specially

constructed to obtain this behavior. As φ moves from the far right of Fig. 2.1 to the

left, the universe contracts with an ekpyrotic equation of state εek > 3 until it crosses

the kink in the middle of the figure. Thereafter, the field runs up the potential, driven

by Hubble anti friction, and the universe contracts with the same equation of state

as pressureless matter, εmd ≡ 3/2. As discussed, the purpose of the ekpyrotic phase

is to suppress the anisotropy so that the succeeding phase remains matter-like and

thereby generates a scale-invariant spectrum of adiabatic perturbations.

2.4.1 The equations of motion and the solution

The Lagrangian density is

L =
1

2
R− 1

2
(∂φ)2 − V (φ), (2.6)
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where R is the Ricci scalar,

V (φ) = Vmd(φ) + Θ

(
φ− φe

∆φ

)
× (Vek(φ)− Vmd(φ)) , (2.7)

Vek(φ) ≡ −V f
ek exp

(
−
√

2εek(φ− φe)
)
, (2.8)

Vmd(φ) ≡ V i
md exp

(
−
√

2εmd(φ− φe)
)
, (2.9)

Θ(φ) ≡ (1 + tanhφ) /2, (2.10)

V f
ek > 0 is the magnitude of the potential energy density at the end of ekpyrosis, V i

md >

0 is the magnitude of the potential energy density at the onset of matter domination,

φe is the field value at which ekpyrosis transitions into matter domination, and ∆φ

sets the width of the transition. We will consider the limit of a rapid transition,

namely ∆φ→ 0, so that the changeover from ekpyrosis to matter domination can be

approximated by a Heaviside θ function, i.e., Θ(φ−φe
∆φ

)→ θ(φ− φe). In this limit,

V (φ) ≈


Vek(φ) for φ > φe

Vmd(φ) for φ < φe,

(2.11)

so the scalar field generates ekpyrotic contraction to the right of the kink and matter-

like contraction to the left of the kink. The solution to the equations of motion,

H2 =
1

2

(
1

2
φ̇2 + V (φ)

)
, (2.12)

0 = φ̈+ 3Hφ̇+ V,φ, (2.13)

is given by

aek(t) = ae

1 + (te − t)

√
V f
ek

εek − 3
εek

1/εek

(2.14)

φek(t) = φe +
√

2εek ln

(
aek(t)

ae

)
(2.15)
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ϕ

V(ϕ)

Figure 2.1: This shows the potential in Eq. (2.7). The field moves from right to
left across the figure, transitioning from ekpyrotic to matter-like contraction after the
kink.

for t < te and by

amd(t) = ae

1 + (te − t)

√
V i
md

3− εmd
εmd

1/εmd

(2.16)

φmd(t) = φe +
√

2εmd ln

(
amd(t)

ae

)
, (2.17)

for t > te, where te is the time at which φ = φe, ae ≡ a(te), and V i
md = 3V f

ek/(2(εek−3)).

Figure 2.2 shows excellent agreement between this analytic solution and a numerical

solution to the equations of motion. Since the rest of this section is devoted to a

derivation of this solution, the casual reader may skip to Sec. 2.5 with no loss of

continuity.

2.4.2 Analytical derivation

We can gain insight into these dynamics by analyzing the equations of mo-

tion in the dimensionless “Ω-variables” (or more properly their square roots)
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t
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ϕ(t)

Figure 2.2: This shows a numerical solution to Eq. (2.13) superimposed over the
analytic result in Eqs. (2.15) and (2.17) (where φe = te = −V i

md = −1, εek = 6,
and ∆φ = 10−4). The two curves are indistinguishable. For t < te, the solution is
ekpyrotic, and for t > te it is matter-like.

(x, y) ≡ ( φ̇√
6H
,−
√
|V |

√
3H

), characterizing respectively the fractional kinetic and po-

tential energy density in the φ field. In these variables, the Friedmann equation,

Eq. (4.10), takes the simple form y =
√
±(x2 − 1), where the upper sign corresponds

to the case V < 0 as in the ekpyrotic phase and the lower sign corresponds to

V > 0 as in the matter-like phase. Thus, during ekpyrosis, x > 1, and during matter

domination, x < 1. In either case, the scalar field equation, Eq. (2.13), can be

rewritten as
dx

d ln a
= 3(x2 − 1)

(
x−

√
ε

3

)
. (2.18)

The function on the right side of Eq. (2.18) is plotted in Fig. 2.3. There is a fixed-

point, scaling solution at x =
√
ε/3. At first, when ε = εek > 3, this solution

corresponds to the red dot in Fig. 2.3(a). If the transition is rapid (which we can

ensure by taking ∆φ small), then the function plotted in Fig. Fig. 2.3(a), which

applies during the ekpyrotic phase, changes rapidly into that shown in Fig. 2.3(b),

which applies during the matter-dominated phase. Since in the matter-dominated
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Figure 2.3: This shows the right side of Eq. (2.18) during (a) ekpyrosis (for the choice
ε = 6) and (b) matter domination (ε = 3/2). In both cases, the fixed-point solution
x =

√
ε/3 is indicated by a red dot. In (a), the blue curve slopes upward at the fixed

point, indicating stability. In (b), the blue curve slopes downward at the fixed point,
indicating instability. 18



phase, ε = εmd = 3/2, the fixed-point solution corresponding to the red dot is now at

x = 1/
√

2. As explained in Fig. 2.3, the fixed-point solution is an attractor during

ekpyrosis and a repeller during matter domination. Thus, to ensure that matter

domination lasts long enough to generate 60 e-foldings of scale-invariant modes, the

transition must leave the system very close to x = 1/
√

2. We now show how to

achieve this.

Recall that te is the time at which φ crosses the kink in the potential separating

ekpyrosis from matter domination. To find the matching conditions at te for the

solutions in the two regimes, we first multiply Eq. (2.13) by φ̇ to obtain

d

dt

(
1

2
φ̇2 + V

)
= −3Hφ̇2, (2.19)

where the last term on the left side follows from the identity V̇ = V,φφ̇. Now we

integrate over time from te− δ to te + δ and take the limit δ → 0. Assuming the right

side is finite (though possibly discontinuous) in some neighborhood of the kink, this

yields “conservation of energy” across the kink, i.e.,

∆(φ̇2) = −2∆(V ), (2.20)

where ∆(F ) ≡ F (t+e )−F (t−e ) for any function F (t). Note that this implies continuity

of φ and H across the kink. There is, however, a discontinuity in φ̇: the kinetic energy

of the field is reduced by the height of the kink.

Therefore, to ensure that the transition carries the ekpyrotic solution at xbefore =√
εek/3 to the matter-like solution at xafter =

√
εmd/3, the height, ∆V , of the kink

must be chosen to satisfy

1√
2

!
= xafter =

φ̇after√
6Hf

ek

=

√
x2
before −

∆V

3(Hf
ek)

2
. (2.21)
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Since (Hf
ek)

2 = V f
ek/(3(x2

before − 1)) and xbefore =
√
εek/3, this gives ∆V = (1 +

3
2(εek−3)

)V f
ek or

V i
md =

3

2(εek − 3)
V f
ek, (2.22)

as claimed below Eq. (2.17).

2.5 Analysis of fine-tuning

We have constructed a cosmological model in which soft (pressureless) matter over-

takes stiff (ekpyrotic) matter. This is necessary for the matter bounce scenario to

explain the initial smallness of the anisotropy at the onset of the matter-like phase.

Unfortunately, as we will now show, small anisotropy requires an extremely fine-tuned

potential.

First, note that generating Nmd e-foldings of scales during the matter-like phase

immediately requires

V f
md/V

i
md = exp (6Nmd) . (2.23)

or equivalently, that |H| must grow during the matter-like phase by a factor

exp (3Nmd). Although we have modeled the pressureless matter as a scalar field, it

is clear from Eq. (2.3) that this growth in Hubble is independent of the nature of

the pressureless matter (so long as it can support density fluctuations, e.g., a scalar

field with the same equation of state as matter). During this period, recall from

Eq. (2.5) that the fractional energy density in anisotropy will have grown by a factor

of exp (6Nmd). Therefore, the preceding ekpyrotic phase must suppress anisotropy

by at least this much. This requires

V f
ek/V

i
ek > exp

(
6Nmd

1− 3
εek

)
, (2.24)
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or equivalently that |H| must grow by a factor of at least exp (3Nmd) during the

ekpyrotic phase. Therefore, combining Eqs. (2.23) and (2.24) with Eq. (2.22), we find

that from the beginning of the ekpyrotic phase to the end of the matter-like phase,

the potential must grow by many orders of magnitude such that

V f
md/V

i
ek >

3

2(εek − 3)
exp

((
12 +

18

εek − 3

)
Nmd

)
, (2.25)

or equivalently, that |H| must grow by a factor exp (6Nmd). This is independent of

the nature of the degrees of freedom driving ekpyrosis. Thus, we have shown that

resolving the anisotropy problem requires an extremely fine-tuned potential.

2.6 Discussion

In this chapter, we have emphasized some of the difficulties imposed by the anisotropy

problem on the matter bounce scenario. Collecting the model-independent observa-

tions of the previous section, these are:

1. Generating Nmd e-foldings scale-invariant modes with matter-like contraction

requires that H change by ≈ 2.6Nmd orders of magnitude. During such a phase,

the fractional energy density in anisotropy grows by twice as many orders of

magnitude, ≈ 5.2Nmd.

2. Therefore, without a powerful suppression mechanism before the matter-like

contraction, anisotropy rapidly overtakes the matter, thereby spoiling the back-

ground required for the scale-invariant spectrum. Previous arguments invoking

an isotropizing phase after the anisotropy has already grown by this expo-

nentially large factor are analogous to invoking present-day dark energy as a

resolution to the flatness problem of standard Big Bang cosmology.
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3. If ekpyrosis is that suppression mechanism, any implementation will require an-

other phase during which H changes by another 2.6Nmd orders of magnitude.

It will also require that soft, pressureless matter somehow overtake stiff, ekpy-

rotic matter. This is impossible unless the degrees of freedom responsible for

ekpyrotic contraction are coupled somehow to the pressureless matter. (In the

toy model presented here, in which both the stiff and the soft phases result from

the same scalar field, this requires fine-tuning a potential over 5.2Nmd orders

of magnitude with a kink of just the right height in between. The only other

possibility is to arrange for direct decay of an ekpyrotic field into pressureless

matter, which introduces the additional problems discussed in Sec. 2.3.)

Other attempted resolutions to the problem of small initial anisotropy, involving

high-energy, nonlinear modifications to the gravitational action [89] or to the equation

of state of matter after the matter-like phase [87], suffer from the same fine-tuning

constraint discussed in Sec. 2.2: it is too late. Anisotropy must be exponentially

suppressed by the onset of the matter-dominated phase. This was appreciated in

Ref. [87].

Having discussed the anisotropy problem, it is worthwhile to consider the other

big challenge for the matter bounce scenario, which was discussed in Sec. 2.1, namely

the overproduction of tensor fluctuations during the matter-like phase. For a wide

class of single-field models, it has been argued [79, 80] that satisfying current lim-

its on the tensor-to-scalar ratio requires violating current limits on primordial non-

Gaussianities. This conclusion applies quite generally to any non-singular bouncing

model in which 1) the matter-like contraction is due to a single (not necessarily

canonical) scalar field, 2) the same scalar field allows for the violation of the null

energy condition required to produce the nonsingular bounce, 3) the fluctuations are

sourced from Bunch-Davies vacuum, and 4) general relativity holds at all scales. This

seriously constrains the viability of matter bounce cosmology. The only remaining
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models must violate one or more of these quite general assumptions, for example

through the inclusion of multiple fields (as in the matter bounce curvaton mecha-

nism [81]) or through modifications to Einstein gravity (as in e.g., [90, 91, 82, 92]).

Both approaches spoil the aesthetic advantage of requiring only a single, simple ex-

tra degree of freedom. Given these phenomenological challenges and in light of the

anisotropy problem– which plagues even these modified versions– the matter bounce

scenario is not very promising.
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Chapter 3

Scale-invariant perturbations in

ekpyrotic cosmologies without

fine-tuning of initial conditions

Parts of this chapter were published in Ref. [66] in collaboration with Dr. Anna Ijjas

and Professor Paul Steinhardt.

3.1 Introduction

To recapitulate, in chapter 1 we explained that a prime motivation for studying con-

tracting universes is that they naturally resolve the fine-tuning problems of standard

big bang cosmology. In chapter 2, we examined a subset of contracting universes

with the additional feature that they naturally generate the observed (nearly) scale-

invariant spectrum of primordial fluctuations. We showed that these “matter bounce

scenarios” come at a price because they introduce a new fine-tuning problem that is

many orders of magnitude worse than the standard fine-tuning problems: in these

scenarios, anisotropy rapidly grows to dominate the energy budget of the universe,

spoiling the equation of state responsible for the fluctuations and leading ultimately
24



to chaotic mixmaster behavior. We argued that the only salvation for such scenarios is

to invoke an ekpyrotic phase beforehand, since ekpyrosis suppresses anisotropy. This

same instability to anisotropy applies quite generally, not just to matter-dominated

contraction, but to any contracting phase driven by stress-energy components with

softer equations of state than that of anisotropy. In light of this, the remainder of

this thesis will explore ekpyrotic cosmologies in greater detail.

Ekpyrotic bouncing cosmologies are designed to smooth and flatten the universe

via a matter component whose energy density grows to dominate all other forms

of stress-energy, including inhomogeneities, spatial curvature, and most importantly

anisotropy (see Eq. (2.4) with ε > 3) [47]. The universe undergoes an ultra-slow con-

traction such that quantum fluctuations in the ekpyrotic energy component, ρφ, that

drives the contraction exit the Hubble radius (see Eq. (2.3) with ε > 3). A key ques-

tion is whether these superhorizon quantum fluctuations can explain the observed,

scale-invariant spectrum without introducing additional fine-tuning problems.

The earliest models of ekpyrosis involving a single scalar field cannot; they produce

an adiabatic spectrum with a strong blue tilt [93, 94, 95, 96, 97] that is inconsistent

with observations. The best known ekpyrotic models that produce the observed fluc-

tuations involve two scalar fields. In these examples, the potentials are chosen such

that the universe contracts with an ekpyrotic equation of state while simultaneously,

vacuum-sourced entropy fluctuations exit the Hubble radius with a scale-invariant

spectrum. After the ekpyrotic smoothing phase, these perturbations convert via a

curvaton-like “entropic mechanism” into a scale-invariant spectrum of adiabatic per-

turbations [58, 98, 99, 100, 101]. In the first examples of this kind, the background

cosmological solution describing the evolution of the two fields along the potential

energy surface is unstable, which means finely tuned initial conditions are required to

begin the ekpyrotic phase [102, 103, 104, 105]. Tolley and Wesley studied a wide range

of ekpyrotic models and suggested that this problem may be generic [106], namely
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that generating a scale-invariant spectrum of adiabatic or entropic fluctuations is only

possible if the ekpyrotic phase begins with finely tuned initial conditions. Their argu-

ment hinged on a phase plane analysis which revealed that the background solutions

are not attracted to a fixed point. From this, they concluded that the scenario suffers

from a sensitivity to initial conditions. If true, this argument represents a serious

blow to bouncing cosmologies because it implies that ekpyrosis cannot resolve the

standard puzzles without introducing another fine-tuning problem of its own.

In this chapter, we present simple ekpyrotic models that generate a scale-invariant,

nearly Gaussian spectrum of density perturbations but do not require fine-tuning of

initial conditions. Although these models belong in the class considered by Tolley

and Wesley, we show that the background solutions are attracted to a fixed curve

along which scale-invariant fluctuations are generated. The existence of such a fixed

curve is sufficient to ensure that the observational predictions are insensitive to the

choice of initial conditions. In other words, being attracted to a fixed point is not

necessary to avoid fine-tuning.

In Section 3.2, we summarize the general argument that suggests the need for

finely tuned initial conditions. In Section 3.3, we review a simple ekpyrotic model for

which we find a fixed-curve but no fixed-point attractor. In Section 3.4, we describe

how to construct more general examples that also avoid the need for fine-tuning of

initial conditions. Finally, we discuss the implications for cosmology.

3.2 Scaling solutions, scale-invariance and instability

Scaling solutions are solutions to the equations of motion for which there exists a set

of field variables such that all contributions (treating the kinetic and potential energy

densities as distinct) to the total energy density scale identically with time, keeping

their fractional contributions constant. Scaling background solutions are particularly
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important because they are exactly solvable and can yield a scale-invariant spectrum

of perturbations.

In Ref. [106], Tolley and Wesley presented an instability argument that applies to

contracting, ekpyrotic, scaling solutions derived from two-derivative, two-field actions

S =

∫
d4x
√
−g
(

1

2
R−

2∑
a,b=1

1

2
Gab(Φ)gµν∂µΦa∂νΦb − V (Φ)

)
(3.1)

that possess a continuous symmetry generated by a parameter κ such that

dΦa

dκ
= ξa(Φ), gµν → eκgµν , S → eκS. (3.2)

Here gµν is the spacetime metric with (−+ ++) signature convention, R is the Ricci

scalar, ξa(Φ) is a function of two scalar fields Φ = {Φa} where a = 1, 2, Gab is the

metric on field space, and V (Φ) is the potential energy density; reduced Planck units

(8πGN = 1 where GN is Newton’s gravitational constant) are used throughout. This

symmetry guarantees the existence of a set of field variables (Φ1,Φ2) 7→ (φ, σ) such

that the Lagrangian density can be rewritten as

L =
1

2
R− 1

2
(∂σ)2 − 1

2
f(σ)(∂φ)2 − V0e

−cφh(σ), (3.3)

where c is a real constant, and V0 < 0 (that is, the ekpyrotic potential V (φ, σ) is

negative). Along the background solution, f(0) = h(0) = 1 and σ = 0.

It proves useful to introduce the dynamical variables

(w, x, y, z) ≡

(√
f(σ)φ′√

6H
,
σ′√
6H

,−
a
√
−V0h(σ)e−

c
2
φ

√
3H

, σ

)
(3.4)

where τ is conformal time running from large negative to small negative values, a

prime denoting a derivative with respect to conformal time, a is the scale factor, and
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H ≡ a′/a is the conformal Hubble parameter. The four variables are dimensionless

using reduced Planck units. With these variables, the Friedmann-Robertson-Walker

(FRW) equations of motion become

w,N = 3(w2 + x2 − 1)

(
w − c√

6f(z)

)
−
√

3

2

f,z
f(z)

xw, (3.5)

x,N = 3(w2 + x2 − 1)

(
x+

1√
6

h,z
h(z)

)
+

√
3

2

f,z
f(z)

w2, (3.6)

z,N =
√

6x. (3.7)

Here we introduced the dimensionless time variable N ≡ ln a that denotes the num-

ber of e-folds of ekpyrotic contraction and runs from large positive to small positive

values. We eliminated y using the Friedmann constraint

w2 + x2 − y2 = 1. (3.8)

The equation of state takes the simple form

ε ≡ 1− H
′

H2
= 3(w2 + x2). (3.9)

From the Friedmann constraint, we also see that the square of each variable w, x, and

y is a fractional contribution to the total energy density: w2 is the φ-kinetic energy;

x2 is the σ-kinetic energy; and y2 is the potential energy. The equation-of-state

parameter ε is the sum of kinetic energies.

As can be verified by direct substitution, the background Eqs. (3.5)-(3.7) admit a

fixed-point solution,

(w, x, y, z) =

(
c√
6
, 0,

√
c2

6
− 1, 0

)
, (3.10)
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Φ2

Φ1

δσ
δφ

Figure 3.1: A schematic trajectory of a solution through field-space: The
field variables (φ, σ) were constructed so that, along the field-space trajectory in
Eq. (3.10), only φ varies and σ = 0. Perturbations δφ are tangent to the trajectory
and are adiabatic; perturbations δσ are orthogonal to the trajectory and are entropic.

in which σ = 0 and only φ is changing, provided the constraint h,σ(0) =

−c2f,σ(0)/(c2 − 6). Obviously, this is a scaling solution since any fractional

contribution to the total energy density, w2, x2, and y2, is constant.

The cosmological background solutions correspond to a field-space trajectory like

the one shown in Fig. 3.1. Perturbations of this trajectory can be decomposed into

those along the red curve (adiabatic perturbations) and perpendicular to it (entropic

perturbations).

The instability argument connects the stability of the solution in Eq. (3.10) with

the spectral indices of its perturbations. The basic idea makes use of the fact that,

since z ≡ σ = 0 in the background solution, the second order action and, hence, the

perturbation spectra derived from it are determined by a few parameters

{c; f,σ (0); f,σσ (0);h,σσ (0)}. (3.11)

29



Linearized around the fixed point in Eq. (3.10), the background Eqs. (3.5)-(3.7) reduce

to a matrix equation, where the parameters in Eq. (3.11) determine the eigenvalues

of the matrix. Tolley and Wesley’s analysis showed that any combination of the

parameters in Eq. (3.11) that results in a scale-invariant spectrum of perturbations

(entropic or adiabatic) renders the background solution dynamically unstable to per-

turbations in the sense that the matrix associated with the linearized system has at

least one negative eigenvalue. In a contracting universe, a negative eigenvalue means

a dynamically unstable direction in (w − x− z) space.

An example is given by the Lagrangian density

L =
1

2
R− 1

2
(∂Φ1)2 +

1

2
(∂Φ2)2 − Ṽ0e

−c1·Φ1 − Ṽ0e
−c2·Φ2 , (3.12)

where c1, c2 are positive-definite constants and Ṽ0 < 0. The corresponding FRW

equations of motion admit a scaling solution with Φi = Ai ln |τ | + Bi and c1A1 =

c2A2 that has been shown [98, 99] to generate a scale-invariant spectrum of entropic

perturbations. According to the instability argument, it should have an unstable

background which in this simple case (Gab = δab) can be depicted as in Fig. 3.2.

For the purpose of illustration, we briefly outline how the instability emerges from

a negative eigenvalue of the linearized system. The change of variables,

φ =
c2Φ1 + c1Φ2√

c2
1 + c2

2

, (3.13)

σ =
c1Φ1 − c2Φ2√

c2
1 + c2

2

+ σ0 (3.14)

with σ0 = 2 ln(c2/c1)/(c2
1 + c2

2), brings the Lagrangian density in Eq. (3.12) to the

form of Eq. (3.3). The coupling function to the kinetic energy of φ, f(σ), and the
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Figure 3.2: The instability of the scaling solution corresponding to the ac-
tion in Eq. (3.12): The background cosmological solution corresponds to a trajectory
along the ridge of the potential as indicated by the red arrow and red curve. Quantum
fluctuations along the trajectory produce a blue spectrum of adiabatic perturbations
and fluctuations normal to the trajectory produce a scale-invariant spectrum of en-
tropic perturbations. After the ekpyrotic phase, the entropic perturbations convert
into adiabatic perturbations due to the bending of the trajectory curve (not shown
here). The fact that the background trajectory is a ridge means that it is unstable if
the initial conditions are sufficiently far from the ridge.

coupling function to the potential energy of φ, h(σ), are given by

f(σ) = 1, (3.15)

h(σ) = 1 +
c2

2
σ2 +O(σ3), (3.16)

and the parameters, c and V0 are defined such that

1

c2
=

1

c2
1

+
1

c2
2

, (3.17)

V0 =

(c2

c1

) 2c21
c21+c

2
2

+

(
c1

c2

) 2c22
c21+c

2
2

 Ṽ0. (3.18)
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Linearizing the background Eqs. (3.5)-(3.7) about the fixed point in Eq. (3.10), the

perturbations (δw, δx, δz) ≡ (w − c√
6
, x, z) satisfy


δw,N

δx,N

δz,N

 = M ·


δw

δx

δz

 (3.19)

with M defined as

M ≡


1
2

(c2 − 6) 0 0

0 1
2

(c2 − 6)
c2(c2−6)

2
√

6

0
√

6 0

 . (3.20)

The eigenvalues of M are (c2−6)/2 and (c2−6)±
√

9c4 − 60c2 + 36/4. Note that the

smallest eigenvalue is negative for ekpyrosis, as is clear from substituting Eq. (3.10)

into the equation of state, Eq. (3.9): ε > 3 requires c >
√

6. Therefore, as the universe

contracts, N decreases, and perturbations along the eigenvector corresponding to the

negative eigenvalue grow so that the system is carried away from the fixed-point

solution in Eq. (3.10). In this case, the negative eigenvalue means that the initial

conditions for the fields must be fine-tuned to lie close to the trajectory or else the

fields will evolve far-off course as illustrated in Fig. 3.2.

3.3 Ekpyrosis and scale-invariance without fine tun-

ing

In this section, we describe the case where the negative eigenvalue exists but is phys-

ically irrelevant. As we will show, the occurrence of the negative eigenvalue only

means that the attractor is a fixed curve rather than a fixed point.
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We consider the Lagrangian density first discussed by Li in Ref. [107],

L =
1

2
R− 1

2
(∂ψ)2 − 1

2
e−λψ(∂χ)2 − Ṽ0e

−λψ, (3.21)

where λ is positive and Ṽ0 < 0. The model involves an ekpyrotic field, ψ, with a

negative potential, similar to ordinary, single-field ekpyrosis. The novel feature is

the non-canonical, exponential coupling to the massless spectator field, χ. We begin

with the simple case where V (ψ) = 0. This corresponds to the borderline ekpyrotic

equation of state ε = 3. Then, we generalize to V (ψ) 6= 0 (ε > 3) and provide a full,

analytic treatment.

3.3.1 V (ψ) = 0

The basic idea is captured in Fig. 3.3(a), which illustrates background trajectories

corresponding to different initial conditions in the space (w̃, x̃, �
��
0

ỹ, z̃) ≡

 ψ′√
6H

,
e−

λ
2
ψχ′√

6H
,
��

�
��

�
��
�*0

−a
√
−Ṽ0e

−λ
2
ψ

√
3H

, e−
λ
2
ψ(χ− χ0)

 . (3.22)

We use the superscript ∼ to distinguish quantities expressed in (ψ, χ) variables from

those expressed in the special (φ, σ) variables that were used to derive the original

instability argument.

Any set of initial conditions for a, ψ, ψ′, χ, and χ′ corresponds to a particular point

on the cylinder. The background solution follows the blue arrow originating at this

point. There are two special initial conditions at the points (w̃, x̃, z̃) = (±1, 0, 0); the

one with the + sign corresponds to the red arrow in Fig. 3.3(a). These two points

are special because the blue arrows vanish here; i.e., if the background solution starts

here, it stays here. Hence, these are fixed-point solutions.
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Figure 3.3: The Lagrangian density in Eq. (3.21) with V = 0 and λ =
√

6:
Green curves and red arrows map onto each other according to the transformations
in Eqs. (3.38)-(3.41). Solutions follow the blue arrows. (a) The trajectories in
(ψ, χ) variables: For ỹ = 0, (w̃, x̃, z̃) ≡

(
ψ′/(
√

6H), e−
λ
2
ψχ′/)

√
6H), e−

λ
2
ψ(χ− χ0)

)
.

The green curve is the fixed-curve attractor (w̃, x̃, z̃) = (1, 0, z̃). The red arrow
points to the fixed point (w̃, x̃, z̃) = (1, 0, 0). (b) The trajectories in (φ, σ) vari-
ables: For y = 0, (w, x, z) ≡

(√
f(σ)φ′/(

√
6H), σ′/(

√
6H), σ

)
. The green curve,

(w, x, z) =
(
sech(λ

2
z),− tanh(λ

2
z), z

)
, is the fixed-curve attractor. The red arrow

points to the fixed point (w, x, z) = (1, 0, 0).
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For any other initial conditions, (i.e., any other point on the cylinder), the blue

arrows carry the background solution toward the green curve. The green curve is

therefore a strong attractor for generic initial conditions. Henceforth, we call such

an attractor curve a “fixed-curve attractor.” Solutions evolving along this curve are

scaling solutions since w̃, x̃, and ỹ are constant. They describe a universe dominated

by the kinetic energy of the adiabatic field, ψ; the entropic field, χ, is constant. For

the case (λ =
√

6) depicted in Fig. 3.3, these solutions can be shown to generate a

scale-invariant spectrum of perturbations in the entropic field, χ.

As for the negative eigenvalue associated with the linearized equations of motion,

in the cases discussed in this chapter, it only indicates the existence of a fixed-curve

attractor instead of a fixed-point attractor. The existence of a fixed-curve attractor

means there is no need for fine-tuning of initial conditions.

One can describe the same dynamics in the special (φ, σ) variables (see Fig.

3.3(b)). Since the Lagrangian density in Eq. (3.21) has the shift symmetry of Eq. (3.2)

assumed by the instability argument, it can be put into the form of Eq. (3.3) through

a variable transformation (ψ, χ) 7→ (φ, σ),

ψ = φ+
2

λ
ln

[
sech

(
λσ

2

)]
+ ψ0, (3.23)

χ =
2

λ
e
λ
2

(φ+ψ0) tanh

(
λσ

2

)
+ χ0, (3.24)

where ψ0 is a real constant (see Appendix A). Substituting this transformation into

Eq. (3.21) yields the Lagrangian density in Eq. (3.3) with f(σ) = h(σ) = cosh2(λσ
2

)

and c = λ. The two Lagrangian densities describe the same theory in different field

variables: the cylinder on the right is a twisted version of the one on the left. It is

clear from the blue arrows that the green curve in Fig. 3.3(b) is an attractor, just like

the green curve in Fig. 3.3(a). Solutions along the green-curve attractor generate a

scale-invariant spectrum of entropic perturbations.
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3.3.2 V (ψ) 6= 0

We extend our analysis to the more general form of the Lagrangian density in

Eq. (3.21) that applies both to V (ψ) = 0 and to V (ψ) 6= 0.

Extremizing the action with respect to variations of the fields (ψ, χ) yields the

field equations

ψ′′ + 2Hψ′ − λṼ0e
−λψa2 +

λ

2
e−λψχ′2 = 0, (3.25)

χ′′ + 2Hχ′ − λψ′χ′ = 0. (3.26)

The Friedmann constraint is

H2 =
1

6

(
ψ′2 + e−λψχ′2 + 2a2Ṽ0e

−λψ
)
. (3.27)

Using the variables defined in Eq. (3.22), these equations can be recast as the au-

tonomous, dynamical system

w̃,N = 3(w̃2 + x̃2 − 1)

(
w̃ − λ√

6

)
−
√

3

2
λx̃2, (3.28)

x̃,N = 3x̃(w̃2 + x̃2 − 1) +

√
3

2
λw̃x̃, (3.29)

z̃,N = −
√

3

2
λw̃z̃ +

√
6x̃. (3.30)

If V 6= 0, this system admits three fixed-point solutions at (w̃, x̃, ỹ, z̃) =

(−1, 0, 0, 0) , (3.31)

(+1, 0, 0, 0) , (3.32)(
λ√
6
, 0,

√
λ2

6
− 1, 0

)
, (3.33)
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all of which are unstable (i.e., associated with a negative eigenvalue). The third

fixed-point solution given by Eq. (3.33) bisects two fixed-curve solutions

(w̃, x̃, ỹ, z̃) =

(
λ√
6
, 0,

√
λ2

6
− 1,±Z̃

)
(3.34)

with Z̃ ∝ e−
λ2

2
N , that generate a scale-invariant spectrum of entropic perturbations,

as shown in Ref. [107].

If V = ỹ = 0, λ2 must be 6 in order for the fixed point in Eq. (3.33) to be a solution.

For λ =
√

6, this coincides with the fixed point in Eq. (3.32) and corresponds to the

red arrow shown in Fig. 3.3(a); Eq. (3.34) parameterizes the vertical, green, fixed-

curve attractor.

Changing variables (ψ, χ) 7→ (φ, σ) as defined in Eqs. (3.23) and (3.24), the

Lagrangian density in Eq. (3.21) takes the form of Eq. (3.3) with f(σ) = h(σ) =

cosh2
(
λ
2
σ
)
, c = λ, and V0 = Ṽ0e

−λψ0 . Repeating the same analysis in the new vari-

ables defined in Eq. (3.4), the equations of motion become

w,N = 3(w2 + x2 − 1)

(
w − λ√

6
sech (λz)

)
−
√

6c tanh(λz)xw, (3.35)

x,N = 3(w2 + x2 − 1)

(
x+

√
2

3
λ tanh(λz)

)
+
√

6c tanh(λz)w2, (3.36)

z,N =
√

6x. (3.37)
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The variable transformations as defined in Eqs. (3.23) and (3.24) imply the fol-

lowing relationship between the variables (w, x, y, z) 7→ (w̃, x̃, ỹ, z̃):

w̃ = sech
(
λ

2
z

)
w − tanh

(
λ

2
z

)
x, (3.38)

x̃ = tanh

(
λ

2
z

)
w + sech

(
λ

2
z

)
x, (3.39)

ỹ = y, (3.40)

z̃ =
2

λ
sinh

(
λ

2
z

)
. (3.41)

If V = 0, these transformations quantify how to “twist” Fig. 3.3(b) to generate Fig.

3.3(a).

The fixed-point solutions in Eqs. (3.31)-(3.33) are given in the new variables

(w, x, y, z) as

(−1, 0, 0, 0) , (3.42)

(+1, 0, 0, 0) , (3.43)(
λ√
6
, 0,

√
λ2

6
− 1, 0

)
, (3.44)

and the fixed-curve solutions in Eq. (3.34) are

(
λ√
6
sech

(
λ

2
z

)
,− λ√

6
tanh

(
λ

2
z

)
,

√
λ2

6
− 1,±Z

)
(3.45)

with Z = (2/λ) sinh−1
(
λZ̃/2

)
. These fixed curves lie on the surface of the cylinder

w2 + x2 = λ2

6
. For V = 0 and λ =

√
6, Eq. (3.45) corresponds to the twisted green

curve that is confined to the surface of the unit cylinder in Fig. 3.3(b).

Direct substitution verifies that the curves in Eq. (3.34) and Eq. (3.45) are solu-

tions to the background equations given in Eqs. (3.28)-(3.30) and Eqs. (3.35)-(3.37)

for both V = 0 with λ =
√

6 and for V 6= 0.
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To show the existence of a negative eigenvalue, we linearize the equations of motion

about the fixed points, in Eq. (3.33) and (3.44), respectively, for the two sets of

variables. Linearizing Eqs. (3.28)-(3.30) about Eq. (3.33) yields a matrix equation

like that given in Eq. (3.19) with (δw̃, δx̃, δz̃) ≡
(
w̃ − λ/

√
6, x̃, z̃

)
and

M̃ ≡


λ2

2
− 3 0 0

0 λ2 − 3 0

0
√

6 −λ2

2

 . (3.46)

Similarly, linearizing Eqs. (3.36)-(3.37) about Eq. (3.44) yields Eq. (3.19) with

(δw, δx, δz) ≡
(
w − λ/

√
6, x, z

)
and

M ≡


λ2

2
− 3 0 0

0 λ2

2
− 3

λ2(λ2−3)
2
√

6

0
√

6 0

 . (3.47)

Both M̃ and M have eigenvalues {−λ2/2, λ2/2− 3, λ2 − 3}, the first of which is neg-

ative. In the first set of variables, the eigenvector corresponding to the eigenvalue

−λ2/2 is parallel to the unit vector in the z̃-direction, which is tangent to the fixed-

curve solution in Eq. (3.34). In the second set of variables, the eigenvector associated

with eigenvalue −λ2/2 is parallel to a linear combination of unit vectors x̂, ẑ, namely

ẑ − λ2/(2
√

6)x̂, which is tangent to the fixed-curve solution in Eq. (3.45).

For the case, V = 0 and λ =
√

6, these eigenvectors are tangent to the green fixed

curves in Fig. 3.3 at the red arrows. The existence of a negative eigenvalue in this

model is harmless, since it only means that the system is attracted to a fixed-curve

solution (instead of a fixed-point solution) that generates a scale-invariant spectrum

of entropic perturbations.
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3.3.3 Further generalizations

Although the remainder of this chapter will consider actions with the shift symmetry

in Eq. (3.2), our results can be generalized to cases without shift symmetry. For

example, the field contribution to the shift-symmetric Lagrangian density in Eq. (3.21)

is a special case of the more general Lagrangian density

L =
1

2
R− 1

2
(∂ψ)2 − 1

2
e−λψ(∂χ)2 − V0e

−µψ [1 + r(χ)] + q(χ) (3.48)

with µ = λ and r(χ) = q(χ) = 0. The addition of q(χ) and r(χ) breaks the shift

symmetry since

V = (1 + r(χ))V0e
−µψ + q(χ)

→
(

1 + r(χ0 + e
λ
2µ
κ(χ− χ0))

)
V0e

−µψ−κ + q(χ0 + e
λ
2µ
κ(χ− χ0))

6= e−κV. (3.49)

If µ = λ, the ekpyrotic Lagrangian density in Eq. (3.48) admits a scaling solution that

is a fixed-curve attractor with χ′ = 0 and that generates a scale-invariant spectrum

of entropic perturbations. This is due to the fact that as χ′ → 0, r(χ) and q(χ)

approach constants r(χ0) and q(χ0). The first, r(χ0), can be reabsorbed into V0, and

the second, q(χ0), is negligible along the fixed-curved attractor.

3.4 Constructing new models

In this section, we derive the most general ekpyrotic, two-field Lagrangian density

with shift symmetry that admits scaling solutions which are either fixed-point or fixed-

curve attractors and generate a scale-invariant spectrum of entropy perturbations.
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First, we consider the Lagrangian density in Eq. (3.3) with arbitrary parameters

and couplings,

{V0 < 0, c ∈ R, h(σ) > 0, f(σ) > 0}. (3.50)

In Appendix B, we show that the combined conditions of shift symmetry, scaling

solution, fixed-curve attractor and scale-invariant spectrum of perturbations imply

the following properties:

P1: lim
|σ|→∞

f(σ) =∞ monotonically;

P2: lim
|σ|→∞

h(σ) ∝ e−µσ;

P3: lim
|σ|→∞

(w, x, y, z) =

(
0, µ√

6
,
√

µ2

6
− 1,−sgn(µ)∞

)
;

P4: |µ| >
√

6.

Property P1 says that the coupling f(σ) must grow without bound. Property P2

constrains the form of the potential energy density to be exponential at late times.

Property P3 defines the scaling solution. It implies w = 0 so that the φ field is fixed;

furthermore, since the background equations in Eqs. (3.5)-(3.7) depend explicitly on

σ, which will vary, it also implies that the scaling solution is a fixed curve (rather

than a fixed point) in (w−x−z) space. Property P4 is necessary for ekpyrosis (ε > 3)

as follows from substituting this solution into the equation of state, Eq. (3.9).

The example from the last section has these four properties. At late times, the

fixed-curve attractor in Eq. (3.45) goes to z ≡ σ → ±∞. In this limit, f(σ) = h(σ) =

cosh2(λσ/2) is dominated by the single exponential e|λσ|/4. For example, if λ > 0

and σ → −∞, choosing µ = λ in the solution in property P3 reproduces Eq. (3.45)

at late times. Similar arguments apply for the different combinations of sgn(λ) and

sgn(σ).

Assuming properties P1 through P4, the only remaining degrees of freedom are

the parameters, c, V0, and the late-time behavior of f(σ), modulo property P1. We
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show now that, given these four properties, it is possible to obtain a scale-invariant

spectrum for the entropic modes but not for the adiabatic modes.

We perturb Einstein’s equations about the fixed-curve solution specified by Prop-

erty P3, working in the longitudinal gauge [108, 23] where the metric takes the form

ds2 = a2
(
−(1 + 2Φ)dτ 2 + (1− 2Φ)d~x2

)
. (3.51)

Since φ′ = 0 along the background solution in property P3, the quantity Qs ≡√
f(σ)δφ is automatically gauge invariant and represents the entropy perturbation;

the Mukhanov-Sasaki variable Qσ ≡ δσ + (σ′/H)Φ is also gauge invariant and

represents the adiabatic perturbation [109, 110]. Property P3 implies that the equa-

tion of state ε = µ2/2 and, therefore, the conformal Hubble parameter is H−1 =

(1− ε)(−τ) < 0. Then, the mode functions uσ ≡ aQσ and us ≡ aQs satisfy

u′′σ +

(
k2 − θσ

(−τ)2

)
uσ =

α

(−τ)2
us +

β

(−τ)
u′s, (3.52)

u′′s +

(
k2 − θs

(−τ)2

)
us =

γ

(−τ)2
uσ +

δ

(−τ)
u′σ, (3.53)
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where the background-dependent quantities can be derived, for example, from the

expressions in Ref. [111]:

θσ = −2 (µ2 − 4)

(µ2 − 2)2
− (µ2 − 6)

2

µ2(µ2 − 2)2

c2

f
, (3.54)

θs = −2(µ2 − 4)

(µ2 − 2)2
+ 3

µ2 − 6

µ2(µ2 − 2)

c2

f
− µ(µ2 − 6)

(µ2 − 2)2

f,σ
f

− µ2

(µ2 − 2)2

(
f,σ
f

)2

+
2µ2

(µ2 − 2)2

f,σσ
f
, (3.55)

α = 4
µ2 − 6

µ(µ2 − 2)2

c√
f

+ 2
µ2 − 6

(µ2 − 2)2

c√
f

f,σ
f
, (3.56)

β = 2
µ2 − 6

µ(µ2 − 2)2

c√
f
, (3.57)

γ = −4
µ2 − 6

µ (µ2 − 2)2

c√
f
, (3.58)

δ = −β. (3.59)

These variables are generally time dependent because f = f(σ) is a function of τ .

Substituting the expression for H−1 into the definition of x given in Eq. (3.4), we find

f,σ =
f ′

σ′
= −f ′µ

2 − 2

2µ
(−τ). (3.60)

Using this expression, Eqs. (3.55), (3.56) can be rewritten as

θs = −2
µ2 − 4

(µ2 − 2)2

c2

f
− 2

µ2 − 2

f ′

f
(−τ)− 1

4

(
f ′

f
(−τ)

)2

+
1

2

f ′′

f
(−τ)2, (3.61)

α = 4
µ2 − 6

µ(µ2 − 2)

c√
f

+
µ2 − 6

µ(µ2 − 2)

c√
f

f ′

f
(−τ). (3.62)

Eqs. (3.52) and (3.53) are a coupled, linear system of differential equations which

must be solved as τ → 0− to find the spectra. Depending on the growth rate of the

coupling function f(σ), different terms in Eqs. (3.54), (3.61), (3.62), (3.57), (3.58),

and (3.59) come to dominate in this regime. For example, the first term in θσ always
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dominates over the second since f →∞ as τ → 0−. By contrast, the relative sizes of

the different terms in θs depend on the magnitude of f ′/f .

For clarity, we define the symbol “&” to mean

|A(τ)| & |B(τ)| if
d ln |A(τ)|
d ln |τ |

<
d ln |B(τ)|
d ln |τ |

as τ → 0−. (3.63)

Similarly, we define “∼” to mean

A(τ) ∼ B(τ) if
d ln |A(τ)|
d ln |τ |

=
d ln |B(τ)|
d ln |τ |

as τ → 0. (3.64)

For example, 1/(−τ)2 & 1/(−τ) and 3/(−τ) ∼ 2/(−τ).

There are three qualitatively different cases to consider: fast growth, |f,σ /f | & 1;

slow growth, |f,σ /f | . 1; and “just-so” growth, |f,σ /f | ∼ 1.

3.4.1 Fast growth: |f,σ /f | & 1

If |f,σ /f | & 1, then |f ′/f | & |1/τ |. Let us assume that

γ

(−τ)2
uσ,

δ

(−τ)
u′σ �

θs

(−τ 2)
us (3.65)

so that to leading order, the entropic mode evolves independently:

u′′s −
1

2

(
f ′′

f
− 1

2

(
f ′

f

)2
)
us = 0. (3.66)

For the mode function us, we find the solution

us(τ) =
√
f(τ)

[
c1(k)

∫ τ

−1/k

dτ̄

f(τ̄)
+ c2(k)

]
, (3.67)

where c1(k) and c2(k) are constants of integration. Choosing c1(k) and c2(k) so

that us and u′s match the Bunch-Davies solution, (1/
√

2k)e−ikτ , at horizon crossing
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(−τ = 1/k), yields

c1(k) =
ei (f ′ (−1/k) + 2ikf (−1/k))

2
√

2kf (−1/k)
, (3.68)

c2(k) =
ei√

2kf (−1/k)
. (3.69)

For fast-growing f , the integral in Eq. (3.67) is very closely approximated by

(1/k)(1/f(−1/k)) at late times. With Eqs. (3.68) and (3.69), the entropic mode

function is given by

us = Σ(k)
√
f(τ) (3.70)

where

Σ(k) ≡ ei (−f ′ (−1/k) + (2− 2i)kf (−1/k))

2
√

2k3/2f (−1/k)3/2
. (3.71)

Substituting this result into the right side of the adiabatic equation, Eq. (3.52), we

find that uσ satisfies

u′′σ + 2
µ2 − 4

(µ2 − 2)2

1

(−τ)2
uσ = 4

µ2 − 6

µ(µ2 − 2)2

cΣ(k)

(−τ)2
(3.72)

with solution

uσ = c3(k)(−τ)
µ2−4

µ2−2 + c4(k)(τ)
2

µ2−2 + 2
µ2 − 6

µ(µ2 − 4)
cΣ(k) (3.73)

where c3(k) and c4(k) are constants. The first two terms vanish as τ → 0 by prop-

erty P4. This shows that our assumption in Eq. (3.65) is justified.

From the solutions for the mode functions in Eqs. (3.67) and (3.73), it is clear

that both the adiabatic and the entropic spectra are proportional to k3|Σ(k)|2. Scale

invariance is obtained if and only if

|Σ(k)|2 = ξk−3, (3.74)
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for some constant ξ that is independent of k. Eq. (3.74) is a first order differential

equation for the coupling function f , namely

(
f ′

f

)2

− 4

(−τ)

f ′

f
= 8ξf − 8

(−τ)2
; (3.75)

its solution is given by

f(τ) =
sec2 (ln |τ/τ0|)

2ξ(−τ)2
, (3.76)

where τ0 is an integration constant. This is clearly not monotonic as τ → 0−, and

therefore, it violates property P1. Hence, we conclude scale-invariance is impossible

for fast-growing f .

3.4.2 Slow growth: |f,σ /f | . 1

If |f,σ /f | . 1, then |f ′/f | . 1/(−τ). To leading order, both mode functions satisfy

u′′ + 2
(µ2 − 4)

(µ2 − 2)2

1

(−τ)2
u = 0, (3.77)

as is clear from Eqs. (3.52), (3.53) and (3.54)-(3.62). In this case, both the adiabatic

and the entropic spectra are given by

ns = 4−
∣∣∣∣µ2 − 6

µ2 − 2

∣∣∣∣ , (3.78)

which is blue by property P4. Hence, we conclude scale invariance is impossible for

slow-growing f .

3.4.3 “Just-so” growth: |f,σ /f | ∼ 1

If |f,σ /f | ∼ 1, f(σ) = e−λσ for some λ ∈ R such that sgn(λ) = sgn(µ). The coupling

functions α, β, γ, δ are all proportional to 1/
√
f so the right sides of Eqs. (3.52) and
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(3.53) can be neglected. The mode functions effectively decouple and the adiabatic

spectral index is again given by Eq. (3.78); the entropic spectral index is

ns = 4−
∣∣∣∣2λµ− 2

µ2 − 2
+ 1

∣∣∣∣ , (3.79)

which is scale invariant when λ = µ. For a given µ >
√

6, any ns < (3µ2−2)/(µ2−2)

can be achieved by choosing λ = (ns − 1)/µ− µ(ns − 3)/2.

Note that since “just-so” growth implies f(σ) = e−λσ (and property P2 requires

h(σ) = e−µσ), the Lagrangian density is given by

L =
1

2
R− 1

2
(∂σ)2 − 1

2
e−λσ(∂φ)2 − V0e

−cφe−µσ, (3.80)

which is equivalent to the Lagrangian density in Eq. (3.48) with the identifications

σ ←→ ψ,

φ ←→ χ. (3.81)

3.5 Discussion

Recall that in chapter 2, we studied matter-like contracting universes. We showed

that such universes have no hope of explaining the fine-tuning problems of standard

big bang cosmology without introducing the worse fine-tuning problem associated

with the unstable growth anisotropy. We argued above that these same conclusions

extend to any contracting universe whose dominant energy density blueshifts slower

than anisotropy. This led us to consider ekpyrotic universes because these have the

attractive feature that they obviate this anisotropy problem. Notwithstanding, Tolley

and Wesley pointed out that many ekpyrotic models of observational interest– i.e.,
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those that generate the observed fluctuation spectrum– suffer from a different kind

of fine-tuning problem that manifests as a sensitivity to initial conditions.

In this chapter, we presented explicit ekpyrotic models, with and without shift

symmetry, that generate a scale-invariant spectrum of entropic fluctuations and do

not require finely tuned initial conditions. Rather, we showed that although the

negative eigenvalue identified by Tolley and Wesley can indicate a true instability in

some models, in others it simply implies the existence of a fixed-curve solution rather

than a fixed point. For the actions discussed here, the fixed curve is a stable attractor;

fine-tuning of initial conditions is thereby avoided.

It is worthwhile to pause to examine these beneficial features in a broader context.

First, as with all ekpyrotic models, those discussed here avoid the mutiverse problem

of inflation and therefore make falsifiable predictions that are the same in all parts of

the universe without resorting to additional inputs like anthropic arguments or prob-

ability measures. From an aesthetic perspective, it is remarkable that the avoidance

of finely tuned initial conditions alleviates, rather than exacerbates, concomitant re-

quirements on the equation of state, ε, during the ekpyrotic phase. These models no

longer require ultra-stiff pressures (i.e., ε� 3) to obtain a scale-invariant spectrum of

density perturbations; the observed spectral index can be achieved– and fine-tuning

problems averted– if ε is only marginally greater than 3. Moreover, as in all ekpyrotic

models, these naturally generate an undetectable spectrum of primordial gravitational

waves (the ratio of the tensor-perturbation amplitude to the scalar-perturbation am-

plitude, r ≈ 0), consistent with current bounds [47, 112]. They also generate zero

non-Gaussianity during the ekpyrotic contraction phase. A small amount of local non-

Gaussianity may be generated during the bounce, but at a level well within current

observational bounds on fNL [113, 114].

Interestingly, as observational constraints impose tighter bounds on r, inflation

and ekpyrosis are moving in diametrically opposed directions in terms of parameters,
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degrees of freedom, and initial conditions. That is, inflationary models are becoming

more complicated [28] while ekpyrotic models are becoming simpler.

3.6 Appendix A: Deriving the coordinate transfor-

mation

In this appendix, we will derive the coordinate transformation in Eqs. (3.23) and

(3.24). We will work in three steps. First, we will show quite generally that the

symmetry transformation in Eq. (3.2) guarantees that the existence of a Killing field,

namely ξa, on field space. Next, we will specialize to the model in Eq. (3.21), showing

that it possesses the symmetry and then constructing the corresponding Killing field.

Finally, we will choose coordinates (φ, σ) on field space such that the Killing direction

is φ and the orthogonal direction is σ, thereby producing Eqs. (3.23) and (3.24).

Showing existence of the Killing field from symmetry

In order to conform to the (standard) notation that contravariant vector indices ap-

pear as superscripts and that covariant covector indices appear as subscripts, we will

depart from the (nonstandard) convention taken in Eq. (3.1), in which Φa with lower

index denotes field-space coordinates and in which Gab with upper indices denotes

field-space metric components. Rather, henceforth, Φa with upper indices will de-

note field-space coordinates, and Gab with lower indices will denote field-space metric

components. This should present no ambiguity.

The instability argument in Ref. [106] applies to actions of the form in Eq. (3.1),

which in this new notation reads

S =

∫
d4x
√
−g
(

1

2
R− 1

2
Gabg

µν∂µΦa∂νΦ
b − V (Φ)

)
≡ SR + SK + SV . (3.82)
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Perturbing Eq. (3.2) about an arbitrary point κ = κ0, we find that under

Φa(x;κ0)→ Φa(x;κ0 + ε) = Φa(x;κ0) + ξa(Φ(x;κ0))ε+O(ε2) (3.83)

gµν(x;κ0)→ gµν(x;κ0 + ε) = eεgµν(x;κ0) (3.84)

the action transforms as

S(κ0)→ S(κ0 + ε) = eεS(κ0). (3.85)

To first order in ε, we have from Eqs. (3.83) and (3.84) that

δεΦ
a ≡ ∂Φa(x;κ0 + ε)

∂ε

∣∣
ε=0

= ξa (3.86)

δεgµν ≡
∂gµν(x;κ0 + ε)

∂ε

∣∣
ε=0

= gµν . (3.87)

Then the demand that the action transforms as in Eq. (3.85) implies

δεS ≡
dS(κ0 + ε)

dε

∣∣
ε=0

= S(κ0). (3.88)

or equivalently that

0 = δεS − S (3.89)

= (δεSR − SR) + (δεSK − SK) + (δεSV − SV ). (3.90)
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The first term in parentheses vanishes trivially since in 3+1 dimensions, δε(
√
−ggµν) =

√
−ggµν . Expanding the other two terms gives

0 = δε

(∫
d4x
√
−g
(
gµνGab∂µΦa∂νΦ

b + V (Φ)
))
− SK − SV (3.91)

=

∫
d4x

(
δε(
√
−ggµν)Gab∂µΦa∂νΦ

b +
√
−ggµνδεGab∂µΦa∂νΦ

b

+
√
−ggµνGab∂µδεΦ

a∂νΦ
b +
√
−ggµνGab∂µΦa∂νδεΦ

b + δε(
√
−gV )

)
−SK − SV (3.92)

=

∫
d4x
√
−g
[
gµν
(
δεGab∂µΦa∂νΦ

b + 2Gab∂µδεΦ
a∂νΦ

b
)

+ δεV + V

]
(3.93)

Since Gab and ξa depend only on Φa, we can use the chain rule to write

δεGab =
∂Gab

∂Φc
δεΦ

c (3.94)

and

∂µδεΦ
a = ∂µ(Φc)

∂δεΦ
a

∂Φc
. (3.95)

Using these and relabeling indices, we can rewrite the term in the square brackets in

Eq. (3.93) as

(
∂Gab

∂Φc
δεΦ

c +Gac
∂δεΦ

c

∂Φb
+Gcb

∂δεΦ
c

∂Φa

)
gµν∂µΦa∂νΦ

b +

(
dV

dΦa
δεφ

a + V

)
. (3.96)

Recalling Eq. (3.86), this expression is

(LξGab)g
µν∂µΦa∂νΦ

b +

(
dV

dΦa
ξa + V

)
. (3.97)

Since this transformation is to hold for all fields and all metrics, both terms in paren-

theses must vanish separately, i.e., (LξG)ab = 0 and δεV = −V . Thus, we have shown
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that if the symmetry transformation in Eq. (3.2) holds, then ξa is a Killing field on

field space (and moreover that V → e−κV ).

Constructing the Killing field

The model in Eq. (3.21) possesses the symmetry in Eq. (3.2). Note that under

ψ → ψ +
κ

λ
, (3.98)

χ → χ0 + eκ/2(χ− χ0), (3.99)

gµν → eκgµν , (3.100)

the action indeed changes as S → eκS. Therefore, by the argument of the previous

section, the field-space metric possesses a Killing field. In the rest of this section, we

will derive a formula for the general Killing field. Then, by choosing the appropriate

Killing direction to be φ and the orthogonal direction to be σ, we will reproduce the

variable transformation in Eqs. (3.23) and (3.24).

For the purposes of solving Killing’s equation, it is useful to change field-space

variables (ψ, χ) 7→ (X, Y ) where

X = χ− χ0 (3.101)

Y =
2

λ
e
λ
2
ψ. (3.102)

In these variables, it is clear that field-space is the well-known Poincaré half-plane

[115]

dψ2 + e−λψdχ2 =

(
2

λ

)2(
dX2 + dY 2

Y 2

)
. (3.103)
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It is also useful to rewrite Killing’s equation for a vector field Ka in terms of its

covariant components by substituting the identity

Γνρµ + Γµρν = Gµν,ρ (3.104)

into the first term on the right side of

(LKG)µν = Gµν,ρK
ρ +GµσX

σ
,ν +GσνK

σ
,µ, (3.105)

where Γνρµ ≡ GνσΓσρµ and Γσρµ are the components of the Levi-Civita connection for

the field-space metric. This yields

(LKG)µν =
(
GνσΓσρµ +GµσΓσρν

)
Kρ +GµσK

σ
,ν +GνσK

σ
,µ (3.106)

= GνσK
σ
;µ +GµσK

σ
;ν (3.107)

= Kν;µ +Kµ;ν (3.108)

= Kν,µ +Kµ,ν − 2ΓρνµKρ = 0 (3.109)

For the field-space metric in Eq. (3.103), the only nontrivial connection components

are ΓYXX = −ΓXXY = −ΓYY Y = Y −1. Thus, Eq. (3.109) yields from the (µ, ν) =

(X,X), (X, Y ), (Y, Y ) components, respectively, the following differential equations,

for KX and KY

KX,X = Y −1KY , (3.110)

KX,Y + 2Y −1KX = −KY,X , (3.111)

KY,Y = −Y −1KY . (3.112)
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Equation (3.112) integrates immediately to

KY = X,X(X)/Y, (3.113)

where X (X) is an arbitrary function of X. Putting this into Eq. (3.110) yields

KX,X =
X,X(X)

Y 2
=⇒ KX =

X (X)

Y 2
+ Y(Y ) (3.114)

where Y(Y ) is an arbitrary function of Y . Substituting Eqs. (3.113) and (3.114) into

Eq. (3.111) and rearranging yields the separable equation

X,XX = −Y Y,Y − 2Y , (3.115)

from which it follows that both sides are equal to the same constant, which we set to

A. The remaining integrals are trivial and give

X (X) =
A

2
X2 +BX + C, (3.116)

Y(Y ) = −A
2

+
D

Y 2
, (3.117)

where B,C, and D are integration constants. Putting these into Eqs. (3.113) and

(3.114) and raising the indices yields

KX =

(
λ

2

)2(
A

2
(X2 − Y 2) +BX + (C +D)

)
, (3.118)

KY =

(
λ

2

)2

(AXY +BY ) . (3.119)

Thus, we have derived the most general Killing field of the field-space metric. It is a

linear combination of the independent Killing fields, K1 ≡ (X2 − Y 2)∂X + 2XY ∂Y ,

K2 ≡ X∂X + Y ∂Y , and K3 ≡ ∂X .
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Selecting the coordinates

We will now choose coordinates (φ, σ) such that φ increases along Ka
2 , namely ∂aφ =

ωKa
2 , where ω is a constant. This implies

∂X

∂φ
= ωX =⇒ X = α(σ)eωφ, (3.120)

∂Y

∂φ
= ωY =⇒ Y = β(σ)eωφ, (3.121)

where α and β are functions of σ that will be chosen such that the Lagrangian density

takes the form in Eq. (3.3). Comparing to the field-space metric,

(
2

λ

)2(
dX2 + dY 2

Y 2

)
=

1

(ωβ)2

(
(α2

,σ + β2
,σ)dσ2 + ω2(α2 + β2)dφ2

−ω(αα,σ + ββ,σ)(dφdσ + dσdφ)

)
, (3.122)

this requires

α2
,σ + β2

,σ = ωβ2 (3.123)

αα,σ + ββ,σ =
1

2

d

dσ

(
α2 + β2

)
= 0 (3.124)

Equation (3.124) integrates to α2 + β2 = c2
1 for some constant c1. Parameterizing the

solution as

α(σ) = c1 tanh (F (σ)) , (3.125)

β(σ) = c1 sech (F (σ)) , (3.126)

for some function F (σ), we can substitute into Eq. (3.123). This yields F 2
,σ = ω2,

which has a solution

F (σ) = ωσ + c2. (3.127)
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Substituting into Eqs. (3.120) and (3.121) gives

X = c1 tanh(ωσ + c2)eωφ (3.128)

Y = c1sech(ωσ + c2)eωφ. (3.129)

Using Eqs. (3.101) and (3.102), we find (setting c2 = 0, c1 = 2
λ
e
λ
2
ψ0 , ω = λ/2),

ψ = φ+
2

λ
ln

[
sech

(
λσ

2

)]
+ ψ0, (3.130)

χ =
2

λ
e
λ
2

(φ+ψ0) tanh

(
λσ

2

)
+ χ0, (3.131)

in agreement with Eqs. (3.23) and (3.24).

3.7 Appendix B: Deriving the properties

In this appendix, we derive the four properties listed at the beginning of Sec. 3.4

using a series of lemmas:

Lemma 1 x = 0 cannot generate a scale-invariant adiabatic spectrum without fine-

tuning.

If x = 0, z = z0 = const. Since z ≡ σ, this means that σ ≡ z0 along the solution.

Defining

σ̄ ≡ σ − z0, (3.132)

φ̄ ≡
√
f(z0)

(
φ− 1

c
lnh(z0)

)
, (3.133)

c̄ ≡ c√
f(z0)

, (3.134)

F (σ̄) ≡ f(σ̄ + z0)

f(z0)
, (3.135)

H(σ̄) ≡ h(σ̄ + z0)

h(z0)
, (3.136)
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the Lagrangian density can be recast as

L =
1

2
R− 1

2
(∂σ̄)2 − 1

2
F (σ̄)(∂φ̄)2 − V0H(σ̄)e−c̄φ̄. (3.137)

Eq. (3.137) has the shift-symmetric form of Eq. (3.3) with the solution (x, z) = (0, z0)

at (x, z̄) = (0, 0) (with z̄ ≡ σ̄) for which Tolley and Wesley proved that any solutions

of interest are unstable. For fixed-point solutions like this (as opposed to fixed-curve

solutions) instability implies the need for finely tuned initial conditions. Thus, we

conclude |σ| → ∞; we are forced to fixed-curve solutions.

Lemma 2 f → const cannot generate a scale-invariant adiabatic or entropic spec-

trum without fine tuning.

When f = f0 = const, the non-canonical coupling becomes canonical. Then, the

background Eqs. (3.5) and (3.6) give (w, x) = (w0, x0) with x0 6= 0 (cf. lemma 1).

Then h = e−
√

6x0σ. In such canonically coupled theories, the adiabatic perturbation

decouples from the entropic perturbation and has a blue tilt. More precisely, the

equations of motion corresponding to the Lagrangian density

L =
1

2
R− 1

2
(∂σ)2 − 1

2
f0(∂φ)2 − V0e

−cφe−dσ (3.138)

linearized around (w0, x0) = (d/
√

6, c/
√

6f0) yield the same equation for both the

adiabatic and the entropic mode functions

u′′ +

(
k2 +

2f0 (c2 + (d2 − 4) f0)

(c2 + (d2 − 2) f0)2

1

(−τ)2

)
u = 0 (3.139)

so that the spectral index is given by

ns = 4−
∣∣∣∣c2 + (d2 − 6) f0

c2 + (d2 − 2) f0

∣∣∣∣ . (3.140)
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Avoiding fine tuning, (i.e., negative eigenvalues in the linearized equations of motion)

requires c2/f0 + d2 > 6. In this regime, the spectral indices are blue for both the

adiabatic and entropic spectra.

Lemma 3 If w 6= 0 then f → const at late times.

For scaling solutions, the background equation for w, Eq. (3.5), can be recast as

df

dz
= A

√
f
(√

f −B
)
, (3.141)

with A ≡
√

6 (w2 + x2 − 1) /x and B ≡ c/(
√

6w). There are various cases to consider,

depending on the sign of A and B. For example, if A > 0 and B > 0, then x > 0

so that z′ < 0. Then sgn(f ′) = −sgn(df/dz), so that f decreases whenever the

right side of Eq. (3.141) is positive (
√
f > B) and increases whenever it is negative

(
√
f < B). It follows that at late times f → B2 = const. The other cases can be

analyzed similarly, with the result that f → (B2 or 0). With lemma 2, we only have

to consider the case w = 0.

Lemma 4 If w = 0, then f →∞ at late times.

If w = 0, then Eq. (3.5) becomes w,N = 3(x2−1)×(−c/(
√

6f)). The condition w = 0

is maintained only if f →∞.

To this point, we have shown that any ekpyrotic, scaling attractor that generates

a scale-invariant spectrum of either adiabatic or entropic perturbations lies at w = 0

with f → ∞ and x 6= 0. Defining µ ≡
√

6x, Eq. (3.6) implies h,z /h = −µ, from

which we conclude, given that z ≡ σ, h(σ) ∝ e−µσ (property P2).

Lemma 5 The scaling solution must correspond to the limit given in property P3.

With h(σ) = e−µσ, the only scaling solutions of Eqs. (3.5) and (3.6) are (w, x) ={
(0,±1), (0, µ/

√
6)
}

if f,σ /f 6= const. For the first two solutions, ε = 3. Since

ekpyrosis corresponds to ε > 3, we only consider the third solution (property P3).
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Note, if f,σ /f = const ≡ −λ, there is another scaling solution at

(w, x) =

(
±
√
µ(λ+ µ)− 6

|λ+ µ|
,

√
6

λ+ µ

)
. (3.142)

At late times, this solution is equivalent to one in Ref. [100] that was shown never to

be an attractor.

Lemma 6 The coupling f(σ) must grow monotonically.

Since the solution in property P3 is a fixed curve, it can be parameterized by one

variable, z. For any finite |z|, f will be finite so that even if the system lies at (w, x) =

(0, µ/
√

6), the kinetic energy of the ekpyrotic field evolves as w,N = −3c(µ2/6−1)/
√
f

(cf. Eq. (3.5)). Thus, in any interval over which f shrinks, |w,N | grows. For this

reason, we only consider solutions for which f grows monotonically (property P2).

Linearizing Eqs. (3.5) and (3.6) about the background in property P3 yields

(δw),N =

(
3

(
µ2

6
− 1

)
− µf,z

2f

)
δx, (3.143)

(δx),N = 3

(
µ2

6
− 1

)
δx, (3.144)

where δw ≡ w and δx ≡ x − µ/
√

6. The eigenvalues of this system are

{(µ2 − 6)/2, (µ2 − 6− µf,z /f) /2}. Since µf,z /f < 0, this reduced 2 × 2 sys-

tem is stable i.e., has positive eigenvalues, if |µ| >
√

6 (property P4).
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Chapter 4

Warm ekpyrosis

Most of this chapter was published in Ref. [67] in collaboration with a fellow graduate

student Gustavo Turiaci, who has granted permission for its reproduction here.

4.1 Introduction

In chapter 3, we demonstrated that the best understood two-field models of ekpyrosis

can simultaneously resolve the standard puzzles of big bang cosmology and generate

the observed primordial spectrum of fluctuations, without introducing additional fine-

tuning problems. This chapter explores whether these same successes can be achieved

utilizing a single ekpyrotic scalar field. As we show below, this is indeed possible, but

at the cost of imposing greater fine-tuning constraints to be discussed. The key

ingredient is a coupling between the single field and a perfect fluid of ultra-relativistic

matter. This coupling introduces a friction term into the equation of motion for

the field, opposing the Hubble anti-friction, which can be chosen such that an exactly

scale-invariant (or nearly scale-invariant) spectrum of adiabatic density perturbations

is continuously produced throughout the ekpyrotic phase. An obvious advantage

compared with the two-field models is that the spectrum is immediately adiabatic,

and hence no conversion is necessary.
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To provide some context, it is useful to reexamine the history of ekpyrotic cosmolo-

gies, and in particular their efficacy at both explaining the fluctuations and resolving

the standard puzzles. As mentioned in chapter 3, the earliest models of ekpyrosis

involved a single, minimally coupled scalar field with a steep, negative exponential

potential. After some debate, it was shown that these models cannot produce the ob-

served scale-invariant, adiabatic spectrum because the comoving curvature perturba-

tion acquires a strong blue tilt [93, 94, 95, 96, 97]. However, it was noticed in Ref. [116]

that when a second scalar field is added– also with a steep, negative potential– there

exists a background solution along the potential energy surface whose entropic pertur-

bations acquire a scale-invariant spectrum. After the ekpyrotic smoothing phase, it

was argued in Ref. [99], the entropic perturbations will convert into a scale-invariant

spectrum of adiabatic perturbations if the background solution undergoes a bend in

field-space. This two-step process, first of generating scale-invariant entropic pertur-

bations and then of converting them to adiabatic perturbations, has been dubbed the

“entropic mechanism” [58, 100]. As remarked in chapter 3, this is similar to the “cur-

vaton mechanism” described in Refs. [117, 118, 119]. The first models making use of

the entropic mechanism require finely tuned initial conditions because the background

solution is unstable to small perturbations [106, 102, 103, 104, 105].

The more recent two-field models discussed in chapter 3 have cured this instability

by introducing non-canonical kinetic terms [107, 120, 114, 66]. Such terms provide

friction in the equation of motion for the non-canonically coupled field [121]. This

friction has two effects: 1) it damps the background evolution for the non-canonically

coupled field, thereby making it the entropy direction in field-space and 2) it alters the

spectrum of perturbations in this direction: scale-invariant entropic spectra are pro-

duced even though the entropy field has no potential. These newer models have the

attractive features that they generate no detectable spectrum of primordial gravita-

tional waves (the ratio of the tensor-perturbation amplitude to the scale-perturbation
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amplitude, r ≈ 0) and zero non-Gaussianity during the ekpyrotic contraction phase;

only a small amount of local non-Gaussianity (fNL = O(1)) is generated by the con-

version process [112, 113, 114]. These models also impose less stringent constraints

on the equation of state parameter of the universe and hence require less fine-tuning

of parameters than actions with canonical kinetic terms.

In all of these models, during the slow contracting phase, the ekpyrotic fields are

assumed to have no direct interaction with any other fields. They simply traverse

their potential energy surface in a supercooled universe, and only after the ekpyrotic

phase is the universe assumed to reheat, either through some coupling to Standard

Model particles or through stringy, higher dimensional effects [58]. In this chapter, we

consider a single, ekpyrotic field coupled to a perfect fluid of ultra-relativistic matter

(e.g., radiation) in thermal equilibrium. As the field falls down its steep, negative

potential, it decays continuously into lighter fields which are thermally excited, thus

generating a dissipative friction term in its equation of motion. We assume that

the dissipation occurs under adiabatic conditions in which the microscopic dynamical

processes operate much faster than the macroscopic evolution of the field and of the

universe [122]. In this way, we approximate the dissipation to be local in time, a

condition which may be difficult to achieve in a microphysical model. We return to

this point in Sec. 4.4. As in the non-canonical, two-field models discussed above,

this friction term allows a scale-invariant spectrum to be produced. In contrast to

the non-canonical models, the scale-invariant spectrum is immediately adiabatic; no

conversion is necessary.

To describe the interaction between the fluid and scalar field, we strive for gen-

erality, leaving the details of specific microphysical model-building for future work.

Therefore, we work at the level of the equations of motion, adding generic dissipa-

tive and noise terms. As we will show, if the dissipation is too strong, the radiation

fluid dominates the energy density of the universe; if it is too weak, the scalar field
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dominates. Hence, our results require that the dissipation coefficient evolve in fixed

proportion to the Hubble parameter. This is the main source of fine-tuning (although

this tuning can be relaxed somewhat by changing the details of the interaction).

The idea of particle production during a cosmological smoothing and flattening

phase has been investigated previously in models referred to as warm inflation, where

thermal fluctuations sourced by radiation-induced noise were shown to dominate over

vacuum fluctuations [123, 124, 125, 126, 122, 127]. Similar effects appear in mod-

els such as trapped inflation [128]. In contracting universes, however, the thermal

fluctuations are suppressed on the largest scales, and the density perturbations are

dominated by vacuum fluctuations. The reason is that contracting universes grow

hotter with time, so that longer modes cross the horizon at lower temperature with

correspondingly smaller thermal fluctuations.

This chapter is organized as follows. In Sec. 4.2, we solve and analyze the back-

ground evolution, showing the appearance of a new family of attractors introduced

by the interaction between the ekpyrotic field and the radiation fluid. In Sec. 4.3, we

compute the power spectrum for the comoving curvature perturbation by studying

scalar perturbations to linear order. This results in a Langevin-like equation that we

solve using Green’s function techniques. We find that the thermal contribution to the

power spectrum is subleading to the vacuum contribution over the observable modes,

and we show how to fix the parameters of the model to obtain scale invariance. In

Sec. 4.4, we discuss implications of our results and directions for future work.

4.2 Background

In this section, we derive an explicit solution for the background cosmology. The

main results of this section are Eqs. (4.17) and Fig. 4.1.
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We employ reduced Planck units in which 8πGN = kB = ~ = cL = 1 where

GN is Newton’s gravitational constant, kB is Boltzmann’s constant, ~ is the re-

duced Planck’s constant, and cL is the speed of light. We use the metric signature

(−,+,+,+). Commas denote ordinary derivatives, and semicolons denote covariant

derivatives.

We consider a contracting universe populated with a radiation fluid and a mini-

mally coupled scalar field obeying Einstein’s equations,

Gab = Tab. (4.1)

Here, Gab is the Einstein tensor, and Tab = T
(r)
ab + T

(φ)
ab is the total energy-momentum

tensor which has been decomposed into a term describing the radiation fluid, de-

noted by the superscript (r), and a term describing the scalar field, denoted by the

superscript (φ). The radiation fluid is characterized by a four-velocity, ua, an energy

density, ρr, and a pressure, pr, so that its energy-momentum tensor is given by

T
(r)
ab = (ρr + pr)uaub + prgab. (4.2)

For simplicity, we take pr = ρr/3, although this is not central to our results. The

scalar field is characterized by a potential energy density, V (φ), so that its energy-

momentum tensor is given by

T
(φ)
ab = φ,aφ,b −

(
1

2
φ;cφ;c + V (φ)

)
gab. (4.3)

For convenience, we take the negative, exponential form, V (φ) = V0e
−cφ, where V0 < 0

and c > 0. The interaction between the radiation fluid and the scalar field is described
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by a flux term, Qa ≡ −Γubφ,bφ,a, satisfying

T
(r)b

a;b = −T (φ)b
a;b = Qa. (4.4)

In a spatially flat, Friedmann-Robertson-Walker spacetime, the background metric

takes the form

ds2 = a2(τ)
(
−dτ 2 + δijdx

idxj
)

= −dt2 + a2(t)δijdx
idxj, (4.5)

where a is the scale factor, t < 0 is cosmic time, and τ < 0 is conformal time defined

by dτ ≡ dt/a. At background, Eqs. (4.4) gives two equations (from the t-component)

φ̈+ 3Hφ̇+ V,φ = −Γφ̇, (4.6)

ρ̇r + 4Hρr = Γφ̇2, (4.7)

where overdots represent derivatives with respect to cosmic time and H ≡ ȧ/a < 0

is the Hubble parameter. The flux term, proportional to Γ, describes the decay of

the φ-field into the particles comprising the radiation fluid. It appears in two places:

on the right side of Eq. (4.7), it sources the energy density of the radiation, ensuring

that ρr is not rapidly outstripped by the energy density in the ekpyrotic field, φ; but

most important, in Eq. (4.6) it manifests as a dissipative friction term for φ. As we

will see, this friction term is critical for the production of a scale-invariant spectrum.

As it stands, Eq. (4.6) for the scalar field is incomplete. It is well understood in

the context of classical and quantum theory that whenever a process generates an

effective dissipative interaction, it also generates fluctuations that can be described

by a stochastic noise source, Ξ, with zero mean [129]. Thus, Eq. (4.6) should read

φ̈+ 3Hφ̇+ V,φ = −Γφ̇+ Ξ. (4.8)
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If the microphysical process responsible for this noise, Ξ, is in thermal equilibrium at

some temperature, T , then the Fluctuation-Dissipation Theorem relates the dissipa-

tion it induces, Γ, to its correlation function via

〈Ξ(x, τ)Ξ(x′, τ ′)〉 = 2ΓTδ(3)(x− x′)δ(τ ′ − τ), (4.9)

where angular brackets denote ensemble averaging. If this process is not in thermal

equilibrium, then its correlation, 〈ΞΞ〉, can depend more generally on (x, τ) and

(x′, τ ′). As discussed in Sec. 4.1, this noise term is critical in warm inflation because

it significantly enhances the power spectrum of scalar perturbations relative to the

vacuum result. In the contracting models considered here, the opposite is true: as we

will show, the noise, Ξ, is completely irrelevant to the power spectrum of the comoving

curvature perturbation. Moreover, since it has zero mean, 〈Ξ〉, it is irrelevant to the

background dynamics as well and will be omitted in the reminder of this section.

To find the background dynamics, Eqs. (4.6) and (4.7) must be solved subject to

the Friedmann constraint (from the t-t component of Eq. (4.1)),

H2 =
1

3

(
1

2
φ̇2 + V + ρr

)
. (4.10)

To this end, it proves useful to introduce the dimensionless “Ω-variables,” (or more

properly their square roots)

(x, y, z) ≡

(
φ̇√
6H

,−
√
|V |√
3H

,−
√
ρr√
3H

)
, (4.11)

characterizing respectively the fractional kinetic energy density in the scalar field, the

fractional potential energy density in the scalar field, and the fractional energy density

in the radiation fluid. In terms of these variables, Eq. (4.10) can be rewritten as

y =
√
x2 + z2 − 1, where we have taken the positive root since H < 0 in a contracting
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universe. The equation of state of the universe takes the simple form

ε ≡ −Ḣ/H2 = 3x2 + 2z2, (4.12)

as can be obtained by differentiating Eq. (4.10) and substituting Eqs. (4.6) and (4.7).

Therefore, ekpyrosis occurs whenever 3x2 + 2z2 > 3. Meanwhile, Eqs. (4.6) and (4.7)

can be rewritten as

dx

d ln a
= 3(x2 + z2 − 1)

(
x− c√

6

)
− x

(
z2 +

Γ

H

)
, (4.13)

dz

d ln a
= (3x2 + 2z2 − 2)z +

Γ

H

x2

z
. (4.14)

Note that Γ appears only in the ratio γ ≡ Γ/H < 0. It is at this point that the fine-

tuning enters: we assume in this chapter that γ is a constant, independent of time.

To motivate this assumption, note that if |γ| grows rapidly, the universe becomes

dominated by radiation only, and if it shrinks rapidly, the universe becomes dominated

by the ekpyrotic field only. It is only when γ is roughly constant that these two

components coexist. Therefore, we assume it in what follows, and merely observe

in passing that if, e.g., Γ ∝ T 2 or √ρφ, where ρφ ≡ 1
2
φ̇2 + V , then γ is constant

along the solution of interest, and our assumption is justified. With this assumption,

Eqs. (4.13) and (4.14) admit a fixed-point, scaling solution at (x0, z0) with

x0 ≡
[(

24
(
c2 + 4

)
γ + 9

(
c2 − 4

)2
+ 16γ2

)1/2

+3c2 + 4γ + 12
]
(6
√

6c)−1, (4.15)

z0 ≡ [(γ + 3)(
√

9c4 + 24(γ − 3)c2 + 16(γ + 3)2

+4γ + 12)− 3c2(γ − 3)]1/2(3
√

2c)−1. (4.16)
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As a consistency check, note that in the absence of radiation, i.e., when γ = 0,

this solution reduces to (x, z) = (c/
√

6, 0), which reproduces ordinary, single-field

ekpyrosis (when c >
√

6).

To summarize, Eqs. (4.15) and (4.16) describe a cosmological background whose

evolution is given by

a = (t/te)
1
ε

H ≡ ȧ/a =
1

εt

φ = φe +

√
6x0

ε
ln (t/te)

ρr =
3z2

0

ε2t2

a = (τ/τe)
1
ε−1

H ≡ a′/a =
1

(ε− 1)τ

φ = φe +

√
6x0

ε− 1
ln (τ/τe)

ρr =
3z2

0 (τ/τe)
−2ε/(ε−1)

τ 2
e (ε− 1)2

,

(4.17)

where ′ ≡ d/dτ and we have normalized the scale factor to unity when ekpyrosis ends

at some time te < 0. For convenience, we have included the results in conformal time

and defined τe ≡ ε(ε− 1)−1te and

φe ≡
1

c
ln

(
− V0τ

2
e (ε− 1)2

3 (x2
0 + z2

0 − 1)

)
. (4.18)

These dynamics are pictured in Fig. 4.1, which shows that this solution is an attractor

for a wide range of initial conditions.

We close this section by noting that if the flux term is changed to Qa =

Γ(ubφ,b)
nφ,a, for n > 1, it can be shown that the updated equations of motion

admit a similar attractor so long as Γ ∝ H2−n. This alleviates the finely-tuned time

dependence of Γ required for the stability of the background solution.
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Figure 4.1: This streamplot shows that the warm ekpyrotic background solution is
an attractor for a wide range of initial conditions. For illustration, we have chosen
parameter values (c, γ) = (15,−56.8). Any set of initial conditions for φ, φ̇, ρ̇, and a
corresponds to a particular point in this plane (x, z) ≡

(
φ̇/(
√

6H),−√ρr/(
√

3H)
)
.

The background solution follows the blue arrows originating at this point. The red
and green curves are included simply to guide the eye: they are nullclines, where
dx/d ln a = 0 (red) and dz/d ln a = 0 (green). The intersections of the nullclines
are shown as red dots. These so called “fixed-point, scaling solutions” are special
because the blue streamlines vanish here. If the background solution starts at one of
these points, it stays there. The rightmost such point corresponds to (x0, z0) defined in
Eqs. (4.15) and (4.16). Clearly, it is an attractor for a wide range of initial conditions.
The analysis below shows that the comoving curvature perturbation generated by this
solution acquires a scale-invariant spectrum on large scales.
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4.3 Perturbations

In this section, we study scalar perturbations to linear order about the background

solution described in Eqs. (4.17). We show that there exists a wide range in parameter

space (i.e., choices of c and γ) for which the comoving curvature perturbation acquires

a scale-invariant power spectrum. This result is displayed in Fig. 4.2; it is the main

result of this chapter.

A full derivation of the scalar perturbation equations in spatially-flat gauge is

presented in Appendix 4.5. In this gauge, all perturbed quantities can be expressed

in terms of the scalar potentials of the four-velocities of the radiation fluid, δur, and

of the scalar field, δuφ. In particular, the comoving curvature perturbation is

R ≡ −H
2ε

(6x2
0δuφ + 4z2

0δur). (4.19)

These potentials satisfy the coupled system

δu′′φ +
C1

τ
δu′φ +

(
k2 +

C2

τ 2

)
δuφ = Jr(δur, k, τ) + ξ(k, τ), (4.20)

δu′′r +
C5

τ
δu′r +

(
k2

3
+
C6

τ 2

)
δur = Jφ(δuφ, k, τ), (4.21)

where

Jr(δur, k, τ) ≡ C3

τ 2
δur +

C4

τ
δu′r, (4.22)

Jφ(δuφ, k, τ) ≡ C7

τ 2
δuφ +

C8

τ
δu′φ, (4.23)

ξ ≡ Ξ/φ̇2, and the Ci are constants that depend on c and γ, whose explicit definitions

are given in Eqs. (4.71) and (4.62)-(4.69).
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The purpose of the rest of this section is to solve Eqs. (4.20) and (4.21) for general

c and γ so that we can find R via Eq. (4.19). Before solving this system in general

(Sec. 4.3.2), we first review the solution in the cold case when γ = 0 (Sec. 4.3.1).

4.3.1 Cold ekpyrosis

In this subsection, we reproduce the result of standard, single-field ekpyrosis, i.e.,

without radiation, for which a scale-invariant spectrum for R is impossible [97].

Recall that with no radiation (γ = 0) and a sufficiently steep potential (c >
√

6),

the background solution in Eqs. (4.15) and (4.16) reduces to (x0, z0) = (c/
√

6, 0). As

for the perturbations, δur vanishes identically, and Eq. (4.20) becomes

δu′′φ +
C1

τ
δu′φ +

(
k2 +

C2

τ 2

)
δuφ = 0, (4.24)

with C1 = −2 and C2 = 2c2 (c2 − 3) (c2 − 2)
−2. The selection of Bunch-Davies vac-

uum fixes

δuφ(k, τ) =
ε− 1√

2ε

√
π

4
(−τ)

1−C1
2 H(1)

νφ
(−kτ), (4.25)

where, in terms of the function

ν(X, Y ) ≡ 1

2

√
(X − 1)2 − 4Y , (4.26)

we have defined νφ ≡ ν(C1, C2). In the next subsection, we will use this same nor-

malization for the perturbation, δuφ, since at early times, the temperature, T , and

dissipation, Γ, are small. In the super-horizon limit, −kτ → 0, Eq. (4.25) approaches

δuφ ∝ k−νφ , so the spectral index is given by

ns = 4− 2νφ = 3 +
4

c2 − 2
, (4.27)
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which is clearly blue (in particular > 3) for ekpyrosis (which requires c >
√

6). Thus,

scale-invariance is impossible in the single-field model.

4.3.2 Warm ekpyrosis

In this subsection, we consider the “warm” case when γ 6= 0. The presence of the

radiation fluid introduces into Eqs. (4.20) and (4.21) two crucial differences: the first

is that C1 and C2 depend not only on the steepness, c, of the potential, but also on

the dissipation rate, γ; the second is that δur is no longer negligible.

To solve the system, we decompose the scalar potential for the four-velocity of the

radiation fluid as δur = δuh
r + δup

r , where the first term is a homogeneous solution to

Eq. (4.21) with Jφ set to 0, i.e.,

δuh
r (k, τ) = (−kτ)

1−C5
2 [a1(k)Jνr(−kτ) + a2(k)Yνr(−kτ)], (4.28)

and the second term is the particular solution given by integrating over the retarded

Green’s function, i.e.,

δup
r (k, τ) = k−1

∫ τ

−∞
Gr(−kτ,−kτ̄)Jφ(δuφ, k, τ̄)dτ̄ . (4.29)

In the above, a1(k) and a2(k) are integration constants and

Gr(z, y) ≡ π

2
y (z/y)

1−C5
2 [Jνr

(
z/
√

3
)
Yνr

(
y/
√

3
)
− Yνr

(
z/
√

3
)
Jνr

(
y/
√

3
)

] (4.30)

with νr ≡ ν(C5, C6). In Appendix 4.6, we show that the integral in Eq. (4.29) can be

approximated by

δup
r ≈ (C7/C6)θ(1− k|τ |)δuφ, (4.31)
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where θ(x) is the Heaviside step function. That is, δup
r is negligible before horizon

crossing and is a constant multiple of δuφ after horizon crossing (see Fig. 4.4).

Armed with these solutions, we now turn to Eq. (4.20). The right side is a sum of

three terms, Jr(δup
r , k, τ) + Jr(δuh

r , k, τ) + ξ. The last term is negligible as discussed

in detail in Appendix 4.7. The second term is a rapidly decreasing function that

depends on the initial state of δuh
r . We restrict attention to models where this term

begins sufficiently small that it can be neglected. Therefore, we need only consider

Jr(δup
r ). Inside the horizon, it has no effect, but outside the horizon, it renormalizes

the “dissipation” and “frequency” terms on the left side of Eq. (4.20)

C1 → C̃1 ≡ C1 − C4C7C
−1
6 , (4.32)

C2 → C̃2 ≡ C2 − C3C7C
−1
6 , (4.33)

as is clear from substituting Eq. (4.31) into Eq. (4.22) and putting the result into

Eq. (4.20).

Therefore, the subhorizon solution is given by

δusub
φ =

ε− 1√
2ε

√
π

4
(−τ)

1−C1
2 H(1)

νφ
(−kτ), (4.34)

and the superhorizon solution is given by

δusup
φ = (−τ)

1−C̃1
2

(
κ1Jν̃φ(−kτ) + κ2Yν̃φ(−kτ)

)
, (4.35)

where ν̃φ ≡ ν(C̃1, C̃2), and κ1 and κ2 are approximated by the following matching

conditions at horizon crossing (−kτ = 1)

δusub
φ = δusup

φ , (4.36)

(δusup
φ )′ − (δusub

φ )′ = −C4C7C
−1
6 k δusub

φ , (4.37)
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i.e.,

κ1 = −π
3/2(ε− 1)

8
√

2C6

√
ε

(
H(1)
νφ

(1)(Yν̃φ(1)(C̃1 − C1

+2(C4C7C
−1
6 + ν̃φ − νφ))− 2Yν̃φ−1(1))

+2H
(1)
νφ−1(1)Yν̃φ(1)

)
× k

C1−C̃1
2 , (4.38)

κ2 =
π3/2(ε− 1)

8
√

2C6

√
ε

(
H(1)
νφ

(1)(Jν̃φ(1)(C̃1 − C1

+2(C4C7C
−1
6 + ν̃φ − νφ))− 2Jν̃φ−1(1))

+2H
(1)
νφ−1(1)Jν̃φ(1)

)
× k

C1−C̃1
2 , (4.39)

Substituting the solution in Eq. (4.35), together with Eqs. (4.38) and (4.39), into

Eq. (4.19), we find that the primordial power spectrum of the comoving curvature

perturbation on superhorizon scales is given by

∆2
R(k, τ) ≡ k3

2π2
|R|2 ≈ O(10−4)V

1+C̃1+2ν̃φ
2

end kns−1, (4.40)

where Vend ≡ |V0|e−cφe is the magnitude of the potential energy density when ekpyrosis

ends, and the spectral index is given by

ns = 4− 2ν̃φ + (C1 − C̃1), (4.41)

which is plotted in Fig. 4.2.

Given any point in the c-γ plane, the height of the surface above that point shows

the spectral index, ns. The color scheme reflects that for ns > 1, the spectrum is blue

and for ns < 1, the spectrum is red. The thick, blue curve at γ = 0 reproduces the re-

sults of ordinary, single-field ekpyrosis from Eq. (4.27). As discussed in Sec. 4.3.1, this

curve describes a blue-tilted spectrum that is inconsistent with observation. However,

note the effect of particle production on the spectral index: at any value of c, increas-
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Figure 4.2: This shows ns as a function of c and γ for the background solution in
Eqs. (4.17).

ing the dissipation rate, |γ|, reddens the spectrum. In particular, the thick, black

curve has ns = 1. Any choice of c and γ along this curve corresponds to an exactly

scale-invariant spectrum. For such a choice, the exponent of Vend in Eq. (4.40) can

be computed and is roughly .61, so that to match the observed amplitude, Vend must

be made of order V 1/4
end ∼ 1016 GeV, which is high enough to recover the successful

predictions of hot big bang nucleosynthesis.

In this section, we have ignored isocurvature perturbations. The reason is that

even though they are not negligible at the end of ekpyrosis, reheating will render

them thus, provided the universe reheats in local thermal and chemical equilibrium

with no nonzero conserved quantities (see Ref. [130]). Therefore, our assumption that

isocurvature perturbations can be ignored amounts to this rather mild constraint on

reheating. This can be achieved, e.g., if the φ-field completely decays into thermalized

radiation at sufficiently early time.
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4.4 Discussion

In this chapter, we have presented a scenario for ekpyrosis that continuously generates

a scale-invariant spectrum of adiabatic perturbations. The key is the continuous

decay of the ekpyrotic field; this decay introduces a friction term that allows a scale-

invariant spectrum to be achieved. More generally, as can be seen by following a

curve of constant c along the surface in Fig. 4.2, we showed that the effect of particle

production is to redden the power spectrum of the supercooled theory.

We view the elimination of the second scalar field and hence any subsequent con-

version mechanism as a major simplification, and a return to the spirit of the original

formulation of ekpyrosis, since the hydrodynamical behavior at finite temperature

is universal regardless of the details of its microscopic origin. While we have not

attempted to embed this phase into a complete cosmological history, the decay into

radiation presents the tantalizing possibility of evading the need for additional reheat-

ing (provided the radiation so generated does not present complications for realizing

a bounce).

There are two key assumptions that merit attention. The first is that the dissipa-

tion rate must scale with the Hubble parameter. This scaling represents the greatest

source of fine-tuning (although see the last paragraph of Sec. 4.2 for a possible al-

ternative). The second is that the initial fluctuations of the fluid, δuh
r , are small

enough to be neglected. If these conditions are met, it is always possible to choose

the parameters c and γ such that a scale-invariant spectrum is achieved.

There are many directions for future work. One possibility is to consider gener-

alizations of the radiation fluid within the framework presented here, as was done in

warm inflation [131]. For example, one could analyze a fluid with a non-relativistic

equation of state or that is out of thermal equilibrium. One could also include vis-

cosity by adding corrections to its energy-momentum tensor, T (r)
ab .
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Another possibility is to devise a microphysical theory– to identify the micro-

scopic degrees of freedom comprising the fluid that realizes the effective dynamics

described here. For example, one could try to reproduce the trapped inflation sce-

nario in a contracting universe [128]. In warm inflation, this is difficult, though not

impossible [132, 133, 134], to achieve because, as argued in Ref. [135], the dissipation

coefficient, Γ, appears as the result of a small correction to a sub-leading thermal

correction to the potential energy density of the inflaton, which must be extremely

flat to support inflation. Thus, non-negligible Γ requires large thermal corrections,

which spoil the extreme flatness of the potential. In ekpyrosis, such extreme flatness

is neither required nor permitted. Nevertheless, constructing a microphysical model

may also prove difficult for warm ekpyrosis. We assumed in this chapter that the

degrees of freedom in the thermal bath induce a dissipation coefficient that is local

in time. However, as indicated above, interactions between a scalar field and the

degrees of freedom in an ambient thermal bath generically lead to non-local terms in

the equation of motion for the scalar field. These terms can be approximated with a

local friction term only when the microphysical dynamics of these degrees of freedom

operate much faster than the evolution of the ekpyrotic field and the contraction of

the universe. Since the background solution in Eq. (4.17) involves only a logarithmic

dependence of the ekpyrotic field on time, it may be possible to find a model where

these non-local interactions are well approximated by a local term, but we leave this

for future work. In addition, the scaling Γ ∝ H may require nontrivial microphysics.

For example, if the dissipation coefficient depends only on temperature, this scaling

requires Γ ∝ T 2, which may be difficult to achieve [136, 137, 138, 135, 139, 140].

It is important to understand to what extent dissipation affects the tensor-to-

scalar ratio. One does not expect dissipation to alter the tensor spectrum from the

predictions of ordinary, single-field ekpyrosis, in which it is strongly blue-tilted and

exponentially suppressed on large scales [112]. Since we have shown that dissipation
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flattens the scalar spectrum, we expect the tensor-to-scalar ratio to be exponentially

suppressed on observable scales.

It is also important to understand the effects of dissipation on the non-Gaussian

signatures. A reason to be optimistic is that, as we have shown, neither the steepness,

c, of the potential nor the equation of state parameter of the universe, ε, needs to be

tuned particularly large. As discussed above, one microphysical realization for which

the machinery already exists to compute non-Gaussianities would be an ekpyrotic

analog of the trapped inflation scenario [128]. In such a realization, the ekpyrotic

field falls down its potential, transferring its kinetic energy into the production of

other particles via couplings of the form

1

2

∑
g2
i (φ− φi)χ2

i . (4.42)

As φ passes each φi, the particles corresponding to the field χi become light and

are copiously produced with an energy density controlled by gi. As a consequence,

the ekpyrotic field receives an effective friction term in its equation of motion– also

controlled by the {gi}– which can be chosen to approximate the dissipative dynamics

studied here. In trapped inflation, these effects were used to support slow roll on

potentials that were otherwise too steep. The techniques developed in Ref. [128] for

the computation of non-Gaussianities would apply as well to ekpyrotic potentials.

For comparison, the models discussed in Refs. [107, 120, 114, 66] generate no non-

Gaussianity during the ekpyrotic phase.

4.5 Appendix A: Perturbation equations

In this appendix, we will derive the linearized perturbation equations. We will follow

the notation of Ref. [141] (see also Ref. [142]). To simplify the derivation, we will
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find the linearized equations for the ensemble expectation values of the fields. This

implies that any stochastic contribution to these equations will vanish.

A metric with the most general scalar-type perturbation in a flat Friedman-

Robertson-Walker background is

ds2 = −a2(1 + 2α)dτ 2 − 2a2β,idτdx
i + a2 [δij(1 + ϕ) + 2ψ,ij] dx

idxj (4.43)

Ignoring anisotropic stress, the energy-momentum tensor for the fluid can be decom-

posed as

T (r)τ
τ = −(ρr + δρr) (4.44)

T
(r)τ

i = a(ρr + pr)δur,i (4.45)

T
(r)i

j = (pr + δpr)δij, (4.46)

Thus, perturbations in the fluid are parameterized by δρr, δpr and δur. For simplicity,

we will assume δpr = δρr/3, though this is not central to our results. In writing the

perturbation equations, it is useful to define the shear, χ ≡ a(β + aψ̇), and the

perturbed expansion of the normal-frame vector field κ ≡ 3(−ϕ̇ + Hα) + k2

a2
χ. In

Fourier space, the perturbation equations are

−k
2

a2
ϕ+Hκ = −1

2
δρ, (4.47)

κ− k2

a2
χ+

3

2

∑
i=r,φ

(ρi + pi)δui = 0, (4.48)

χ̇+Hχ− α− ϕ = 0, (4.49)

κ̇+ 2Hκ+

(
3Ḣ − k2

a2

)
α =

1

2
(δρ+ 3δp), (4.50)

δρ̇r + 3H(δρr + δpr) +
k2

a2
(ρr + pr)δur = +δqr + ρ̇rα+ (ρr + pr)κ, (4.51)

−1
a3(ρr + pr)

d

dt

[
a3(ρr + pr)δur

]
=

δpr
ρr + pr

+ α− jr
ρr + pr

, (4.52)

δφ̈+ 3Hδφ̇+

(
k2

a2
+ V,φφ

)
δφ = φ̇(κ+ α̇)− δqφ + (2φ̈+ 3Hφ̇)α, (4.53)
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where

δρ ≡ δρr + φ̇δφ̇− φ̇2α + V,φδφ, (4.54)

δp ≡ δpr + φ̇δφ̇− φ̇2α− V,φδφ, (4.55)

δuφ ≡ −δφ/φ̇, (4.56)

δqr ≡ δΓφ̇2 + 2Γφ̇δφ̇− 2αΓφ̇2, (4.57)

δqφ ≡ δΓφ̇− Γαφ̇+ Γδφ̇, (4.58)

jr ≡ −Γφ̇δφ. (4.59)

Eqs. (4.47)-(4.52) are, respectively, the Gt
t component of the field equations, the Gt

i

component, the Gi
j − 1

3
δijG

k
k component, the Gi

i − Gt
t component, the T (r)b

i;b = Qi

component, the T (r)b
t;b = Qt component, and the T (φ)b

t;b = −Qt component.

Henceforth, we work in spatially flat gauge (G = ϕ = 0). Then Eqs. (4.47) and

(4.48) can be solved algebraically for the metric variables α and β in terms of the

matter variables δφ, δur, and δρr. Eq. (4.52) can then be solved algebraically for δρr

in terms of δur and δφ. Substituting these results into Eqs. (4.51) and (4.53) leaves

two closed equations for the variables δur and δuφ. Specializing to the background

solution in Eqs. (4.17), these are

δüφ + c1Hδu̇φ +

(
k2

a2
+ c2H

2

)
δuφ = c3H

2δur + c4Hδu̇r (4.60)

δür + c5Hδu̇r +

(
k2

3a2
+ c6H

2

)
δur = c7H

2δuφ + c8Hδu̇φ, (4.61)
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with the constants ci defined by

c1 ≡ −
√

6cz2
0

x0

−
√

6cx0 +

√
6c

x0

− γ − 3, (4.62)

c2 ≡ 6
√

6cx3
0 + 6

√
6cx0z

2
0 − 6

√
6cx0 − 18x4

0

−24x2
0z

2
0 + 27x2

0 + 2γz2
0 + 6z2

0 +

√
6

2
cγx0, (4.63)

c3 ≡ −2
√

6cz4
0

x0

− 2
√

6cx0z
2
0 +

2
√

6cz2
0

x0

−8γx2
0 + 12x2

0z
2
0 + 16z4

0 − 2γz2
0 − 8z2

0 , (4.64)

c4 ≡ −4z2
0 , (4.65)

c5 ≡
4γx2

0

z2
0

− 1, (4.66)

c6 ≡ −2
√

6cγx3
0

z2
0

− 2
√

6cγx0 +
2
√

6cγx0

z2
0

−6γx4
0

z2
0

− 7γx2
0 −

4γ2x2
0

z2
0

− 6γx2
0

z2
0

−8x2
0z

2
0 + 3x2

0 − 8z4
0 + 10z2

0 , (4.67)

c7 ≡ −2
√

6cγx3
0

z2
0

− 3
√

6cx3
0 − 2

√
6cγx0 +

2
√

6cγx0

z2
0

−3
√

6cx0z
2
0 + 3

√
6cx0 + 12x4

0 − 5γx2
0 −

4γ2x2
0

z2
0

−6γx2
0

z2
0

+ 12x2
0z

2
0 − 18x2

0, (4.68)

c8 ≡
5γx2

0

2z2
0

+ 2x2
0, . (4.69)

For concreteness, we have assumed Γ ∝
√
V (φ), independent of ρr and φ̇, i.e.,

Γ = −γ
√
−V (φ)/(3(x2

0 + z2
0 − 1)). For this choice, δΓ = γcHδφ/2. Of course, for

a realistic model, Γ should depend on the temperature of the radiation fluid [136];

the field dependence is not required [137, 138, 135]. One possibility, which pre-

serves the Γ ∝ H scaling necessary for the warm ekpyrotic background solution, is

Γ ∝ T 2/M, where M is some mass scale fixed by the background solution. More

generally, Γ can be any function of T and φ, provided the scaling Γ ∝ H is preserved.
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We have performed the analysis for the two extreme cases, where Γ ∝
√
V (φ) and

where Γ ∝ T 2 and found that both cases give qualitatively similar results, namely, a

scale-invariant scalar spectrum is possible. There are only minor differences, e.g., in

the ci in Eqs. (4.62)-(4.69). This is important because in warm inflation, a tempera-

ture dependence in the dissipation coefficient can have large effects on the primordial

scalar spectrum as shown in Refs. [136, 139, 140].

As we explained above, in deriving these equations, we have averaged out the

stochastic fluctuations. However, at background level, we know that whatever mi-

crophysical process generates the dissipation, Γ, in the equation of motion for the

scalar field, must also be accompanied by a stochastic source, Ξ, whose correlation

satisfies the Fluctuation-Dissipation Theorem (see Appendix 4.7 for details). That

is, Eq. (4.60) must be replaced with

δüφ + c1Hδu̇φ +

(
k2

a2
+ c2H

2

)
δuφ = c3H

2δur + c4Hδu̇r + ξ(k, t), (4.70)

where ξ ≡ Ξ/φ̇2 with the extra factors of φ̇ in the denominator coming from the

change of variables from δφ to δuφ. In conformal time, Eqs. (4.70) and (4.61) become

Eqs. (4.20) and (4.21) , with

Ci =



ci−1
ε−1

if i = 1, 5

ci
(ε−1)2

if i = 2, 3, 6, 7

ci
ε−1

if i = 4, 8

(4.71)

where again ε ≡ 3x2
0 + 2z2

0 .
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4.6 Appendix B: Locality of fluid response

Since, in general, fluids behave non-locally we will show in this appendix how locality

can be recovered in the late time limit. This is because the sources for the fluid are

τ−2δuφ(k, τ), τ−1δu′φ(k, τ) and not δuφ itself. Using the expression for the source, Jφ,

in Eq. (4.23) and integrating the derivative term by parts, the particular solution for

the radiation fluid in Eq. (4.29) can be rewritten as

δup
r (z) =

∫ ∞
z

dyKr(z, y)δuφ(y), (4.72)

where z ≡ −kτ and we defined the kernel

Kr(z, y) ≡ C7 + C8

y2
Gr(z, y)− C8

y
Gr,y(z, y). (4.73)

Now, we will show that this kernel behaves locally in the small z (superhorizon)

approximation. It follows from the explicit expression of the Green’s functions that

Kr(z, z)→∞ and Kr(z, y)→ 0 for z 6= y as z → 0. These properties are illustrated

in Fig. 4.3. To compute the particular solution for the radiation fluid, we can therefore

make the local approximation

δup
r (z) =

∫ ∞
z

dyKr(z, y)δuφ(y) ≈ δuφ(z)

∫ ∞
z

dyKr(z, y). (4.74)

In the small z limit, this integral can be done exactly and gives

∫ ∞
z

dyKr(z, y) =
C7

C6

+O(z
1−C5+2νr

2 ). (4.75)
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Figure 4.3: (a) Comparison of the locality of the Green’s function, Gr, (blue) and
the kernel, Kr, (black) for z = 10−2. Both are normalized such that their maximum
value is 1: as should be clear, ymax is the argument for which Gr(z, y) is maximized.
Note the logarithmic scale on the horizontal axis. (b) Comparison of the fluid kernel,
Kr at different final times, z. As modes are stretched beyond the horizon z � 1, this
kernel becomes increasingly local. For both plots, we used (c, γ) = (15,−56.8).
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Figure 4.4: This plot shows the time dependence of the real (blue) and imaginary
(red) parts of the ratio δup

r/δuφ when (c, γ) = (15,−56.8). Recall δuφ is given by
Eqs. (4.34) and (4.35) and δup

r is given by Eq. (4.29), or, equivalently, by Eq. (4.72).
There is a sharp transition once a mode exits the horizon. Inside the horizon (z > 1),
the particular solution for the fluid δup

r is negligible. Outside (z < 1) it rapidly
approaches a constant factor, roughly C7/C6, times δuφ. This justifies the mode
matching procedure in the text.

Therefore, in this limit, we make the approximation (see Fig. 4.4)

δup
r (z) ≈ (C7/C6)δuφ(z) +O(z

1−C5+2νr
2 ). (4.76)

4.7 Appendix C: Thermal contribution to the scalar

spectrum

In this appendix, we will show that the thermal contribution to the power spectrum

of the comoving curvature perturbation, ∆2
R, is negligible for the observable modes

in comparison to the vacuum, scale-invariant contribution.
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To prove this, we write the particular solution for the scalar field perturbation in

terms of the stochastic noise

δuφ(k, τe) = k−1

∫ τe

−∞
dτGφ(−kτe,−kτ)ξ(k, τ), (4.77)

where Gφ is the retarded Green’s function for Eq. (4.20), and again, τe is the time

at which ekpyrosis ends. The two-point function of the noise follows from the

Fluctuation-Dissipation Theorem in Eq. (4.9)

〈ξ(k, τ)ξ(k′, τ ′)〉 = NFD(2π)3δ(k + k′)δ(τ − τ ′), (4.78)

where the noise kernel is given by

NFD ≡ 2ΓT/φ̇2, (4.79)

with the extra factors of φ̇ in the denominator coming from the change of variables

from δφ to δuφ. Substituting Eq. (4.78) into Eq. (4.77) and changing the integration

variable to y = −kτ , the thermal power spectrum for δuφ is given by

〈δuφ(k, τe)δuφ(k′, τe)〉

=
1

k3

{∫ ∞
−kτe

[Gφ(−kτe, y)]2NFDdy

}
×

(2π)3δ(3)(k + k′). (4.80)

To compute this integral, we separate out the time dependence of the noise kernel,

i.e., NFD = N0(−τ)
1
2

+ 1
2(ε−1) with

N0 ≡
−γ(ε− 1)1/2

3x2
0

(
45

π2
z2

0

)1/4

(−τe)
− 1

2(ε−1) . (4.81)
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For the Green’s function, Gφ, we use the same approximation we used to compute

δuφ in Eqs. (4.34) and (4.35), namely finding the solutions for y > 1 and y < 1

and matching at horizon crossing, taking account of the effect of Jr according to the

change in dissipation and frequency in Eqs. (4.32) and (4.33).

��-�� ��-�� ��-�
�

��-�

��-�

��-�

�(�)

Figure 4.5: This plot shows the result for A(z) obtained by matching the different
solutions at horizon crossing. The largest scales correspond to the smallest values
of z. Thus, there is a strong suppression of the thermal contribution to ∆2

R on the
largest scales. Again, we have used the parameter choice (c, γ) = (15,−56.8).

Then, dropping the arguments on the left side of Eq. (4.80), the power spectrum

is

k3〈δu2
φ〉 = N0(−τe)

1
2

+ 1
2(ε−1)A(−kτe)×

(2π)3δ(3)(k + k′) (4.82)
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where the function

A(z) ≡ z−
1
2
− 1

2(ε−1)

∫ ∞
z

dy[Gφ(z, y)]2y
1
2

+ 1
2(ε−1) (4.83)

is plotted in Fig. 4.5. Using Eqs. (4.81), (4.82), and (4.19) in Eq. (4.40), we find

that this contribution to ∆2
R is suppressed relative to the vacuum result by a factor

that is weakly dependent on c and γ and is of order A(−kτe)V
.14
end, e.g., for the choice

(c, γ) = (15,−56.8). Thus, the ratio of this thermal contribution to the vacuum

contribution is of order O(10−9) for the largest observable modes.
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Chapter 5

Conclusion and outlook

Early Universe theories were introduced to address fine-tuning problems with stan-

dard big bang cosmology. To date, inflation remains the most popular proposal, but

open questions remain– both phenomenological and conceptual. In this thesis, we

studied bouncing alternatives in which the large-scale structure of the present-day

Universe originates from the contracting phase before the bounce. These scenarios

have the attractive features that they avoid a multiverse and make falsifiable predic-

tions for cosmological observables.

Throughout the duration of my PhD (2012-2017), early Universe cosmology has

undergone a paradigm shift. In 2013, the BICEP2 collaboration reported a detection

of B-modes in the polarization of the CMB at large angular scales (around ` ≈ 80)– a

detection they concluded was “well-fit by a lensed-ΛCDM + tensor theoretical model

with tensor-to-scalar ratio r = 0.20+0.07
−0.05” [6]. At the time, this detection was hailed as

“smoking gun” evidence for cosmic inflation. After all, when combined with previous

bounds from, e.g., PLANCK2013 on the spectral index of the scalar perturbation

spectrum, ns = 0.9603 ± 0.0073 [143], the simplest, single-field inflationary models

predict a primordial gravitational wave spectrum with a tensor-to-scalar ratio con-
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sistent with the claimed detection. Bets were settled and champagne was poured in

celebration of this putative verification of inflation.

As time passed, more detailed studies revealed that the B-mode polarization de-

tected by BICEP2 was caused not by primordial gravitational waves but by a local

contaminant that obscures our view of the CMB– the polarized emission of dust

within our galaxy. Taking proper account of the contribution of dust, a joint anal-

ysis of data from the BICEP2/Keck Array and the Planck collaboration revised the

bounds on the tensor-to-scalar ratio, r0.05 < 0.12 at 95% confidence [144]. With that,

the simple models of inflation– those that precipitated the uncorking of champagne

bottles– were suddenly disfavored by the data. One would think that if a detection of

primordial gravitational waves proves inflation, then a non-detection should disprove

it. But this is not so for a theory as versatile as inflation because it can accommodate

nearly any cosmological observables (see Ref. [145] for a recent inflationary model

consistent with the revised bounds). Some view unfalsifiability as a feature. It cer-

tainly affords theorists a justification for permanent employment. But it also means

that no observation can rule it out, a big problem for any scientific theory.

Along with these recent phenomenological obstacles, inflation comes with the more

serious philosophical hurdle of the multiverse– a nearly unavoidable consequence of

quantum fluctuations coupled with accelerated, exponential expansion. With the

multiverse, any and every cosmological outcome is produced an infinite number of

times. The multiverse predicts everything, and so it predicts nothing. In light of

these shortcomings, early Universe cosmologists have two options: we can either seek

to redress these shortcomings within the inflationary framework, or we can search for

alternative mechanisms for resolving the standard problems. In this thesis, we have

taken the second approach, choosing to focus our efforts on two popular bouncing

paradigms.
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Chapter 2 was based on work published in Ref. [65]. In it, we assessed the mat-

ter bounce scenario. We showed that its instability to anisotropic stresses renders

it fundamentally unable to address the standard fine-tuning problems without in-

troducing a more extreme fine-tuning requirement of its own. In particular, since

the growth of anisotropies is exponentially sensitive to the number of scale-invariant

modes that leave the Hubble horizon during the matter-like phase, any implementa-

tion must involve a powerful mechanism for suppressing anisotropy beforehand. We

argued that orchestrating such a suppression requires that the degrees of freedom

responsible for the matter-like phase be coupled to those driving the isotropizing

phase. As we pointed out, there are two possibilities: either the isotropizing degrees

of freedom must decay directly into matter or they must drive the matter-like contrac-

tion themselves. We showed that both possibilities impose extraordinary, exponential

fine-tuning requirements on any realization. As a result of these considerations, we

arrived at two robust conclusions: 1) new insights are required for the viability of

the matter bounce scenario and 2) ekpyrosis is a seemingly indispensable ingredient

in any bouncing cosmology that hopes to explain the standard puzzles within the

framework of Einstein gravity.

Chapter 3 was based on work published in Ref. [66] in collaboration with Dr.

Anna Ijjas and Professor Paul Steinhardt. In it, we examined recent models of two-

field ekpyrosis. For these models, we found no such fine-tuning challenges. On the

contrary, we illustrated that the simplest realizations are strong attractors for a wide

range of initial conditions. The attractor behavior is produced by a non-canonical

kinetic coupling between the adiabatic and entropic fields. The coupling introduces

friction into the equation of motion for the entropic field, stabilizing it against per-

turbations, thereby avoiding the need for finely tuned initial conditions. The entropic

field acquires (nearly) scale-invariant perturbations, which convert into curvature per-

turbations via the entropic mechanism. These models generate zero non-Gaussianity
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during the ekpyrotic phase and an undetectable spectrum of primordial gravitational

waves, consistent with current bounds. Therefore, detecting large-amplitude primor-

dial gravitational waves would represent an unequivocal falsification of this scenario.

Finally, chapter 4 was based on work published in Ref. [67] in collaboration with

my fellow graduate student, Gustavo Turiaci. In it, we introduced a new model

called “warm ekpyrosis,” which is also an attractor and has the aesthetic advantage

of requiring only a single scalar field. We showed that an ekpyrotic field decaying

into hot radiation receives dissipative corrections to its equation of motion, which

can be chosen such that its fluctuations acquire a (nearly) scale-invariant spectrum.

The spectrum is immediately adiabatic, and thus no conversion is necessary– another

significant advantage. It is notable that the same ingredient responsible for the scale-

invariant spectrum– the dissipation induced by the decay– also provides a framework

for explaining reheating, a largely unexplored topic in the context of ekpyrotic cos-

mologies and one that merits further study. The general hydrodynamical analysis we

applied provides many directions for future work, chief among them to devise a micro-

physical realization that reproduces the effective dynamics described here. As with

all ekpyrotic scenarios, this too would be falsified by a detection of large-amplitude

primordial gravitational waves.

These results suggest that ekpyrotic bouncing cosmologies hold promise for de-

scribing the early Universe. In the near future, high-sensitivity measurements of

B-mode polarization in the CMB will yield tighter constraints on the tensor-to-scalar

ratio, providing a crucial discriminant between these different early Universe scenar-

ios. Within the framework of Einstein gravity, it is difficult to imagine an ekpyrotic

universe that can generate large-scale primordial gravitational waves. Both mech-

anisms studied in this thesis for producing scale-invariant curvature perturbations

(noncanonical kinetic couplings in chapter 3 and direct decay in chapter 4) altered only

the scalar (compressional) modes; they left the tensor (radiative) perturbations intact
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with respect to single-field ekpyrosis [112]. All models to date generate no detectable

spectrum of primordial gravitational waves. To alter this spectrum, one might imag-

ine tensorial corrections to the anisotropic inertia (see e.g., πTij in Eq. (5.1.43) of

Ref. [146]). Such terms vanish for perfect fluid matter or for matter in local thermal

equilibrium, but in general they can act as sources for the production of primordial

gravitational waves. We leave the investigation of such effects for future work.
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