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Abstract

It has been observed that statistical mechanical systems with quenched disorder can

exhibit dramatically different properties than their disorder-free counterparts. The

introduction of disorder can change the spatial structure of a system’s ground state

or the typical behavior of the system’s free energy (or other quantities of interest).

In many systems, the changes to spatial and quantitative behavior are closely linked.

This dissertation explores these themes in two model disordered systems: first-

passage percolation and critical percolation. In first-passage percolation, a model

for paths in a random potential, the energy of the ground state path of length n is

expected to fluctuate like nχ, and the ground state path is expected to deviate from a

straight line by a distance of nξ. There are longstanding conjectures about the values

of χ and ξ, and the relation χ = 2ξ − 1 has recently been rigorously established.

The prediction that χ < 1/2 (in contrast to a situation where each step of unit

length contributed independently to the ground state path’s energy) is related to the

existence of many “approximate ground states,” and such techniques have proved

fruitful for rigorously bounding χ.

In the work presented here, we consider the related issue of wandering of infinite

energy-minimizing paths–that is, infinite paths whose energy cannot be reduced by

altering any finite segment. One could ask whether such paths tend to have asymp-

totic direction or remain in sectors. This and related questions have been studied

in first-passage percolation and related models; in the setting of first-passage per-

colation, there are few rigorous results except under strong assumptions. The work

presented here develops a framework for studying these questions, and provides the

first minimal-assumption results on directional concentration of infinite ground state

paths.

The critical percolation systems studied in this dissertation are two related models

for the two-dimensional infinite cluster “at the critical point”: the incipient infinite
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cluster and the invasion percolation cluster. The disorder in these systems gives them

a fundamentally different geometry than an ordinary lattice, affecting their transport

properties. It was previously shown rigorously that a diffusing particle on the incipient

infinite cluster moves strictly slower than a diffusion on the square lattice, on average

over the disorder.

The work presented here removes the average over disorder to show a quenched

result: for a particular typical realization of the incipient infinite cluster, the diffusion

is slow. The result is extended to diffusions on the invasion cluster. The work shows

the relationship between the geometrical and transport properties of these models by

deriving an upper bound for the speed in terms of critical exponents of the percolation

models.
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Chapter 1

Introduction

The work contained in this dissertation addresses questions arising from the statistical

mechanics of disordered systems. The models considered here describe the behavior of

particles or polymers in a lattice system with local randomness. This randomness af-

fects the favorability of different large-scale configurations of the system: for instance,

the regions which are most often visited by a diffusing particle, or the wandering of a

polymer with constrained endpoints. In general, the geometrical structure of a typi-

cal state of the particle or polymer is closely related to the macroscopic distribution

of regions of energetically favorable disorder. As such, there is a close relationship

between the particle’s typical energy or time it takes to travel a certain distance on

one hand, and its typical trajectory on the other.

The two models most specifically considered here, first-passage percolation and

invasion percolation, have been widely studied in both the physics and mathematics

literature. This dissertation addresses questions in the model primarily through the

lens of rigorous mathematical physics, with motivations in the heuristic and numer-

ical arguments of the physics literature. These models are both especially ripe for

such study in that the non-rigorous predictions for the models have far outpaced the

frontier of rigorous knowledge.
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In the first part of this dissertation, we study questions related to time-minimizing

paths in first-passage percolation. Chapter 2 consists of an introduction to the model

and the problems we will be most concerned with. In Section 2.1, we discuss some

motivations behind models like first-passage percolation, and heuristics for their be-

havior. In Section 2.2, we define the model and describe some global or first-order

properties. In this section we also present a proof of the celebrated “shape theorem”

for the model. In Section 2.3, some fundamental conjectures about smaller-scale fluc-

tuations in the model are presented alongside known rigorous results. Section 2.4 sees

the introduction of infinite geodesics, which are the focus of the new results presented

later in this part of the dissertation. Finally, in 2.5, we present a treatment of some

results due to Hoffman which were a major impetus for these new results.

In Chapters 3 and 4, we will present our new results on infinite geodesics in first-

passage percolation. In Chapter 3, we construct limiting geodesic graph structures

on Z2 as well as a class of fractional planes. In the case of Z2, we prove the existence

of infinite time-minimizing paths which are directionally concentrated or confined in

various senses. These results provide partial answers to conjectures by C. Newman on

directional properties of infinite geodesics. In the case of fractional planes, we show

that the graph of finite geodesics to a point v on the boundary has a limit as v moves

to infinity. This is a partial solution to the problem of determining whether the finite

geodesics to the points (n, 0) on Z2 have a limit in n–in some sense, a question of the

stability of long ground-state polymers under a change of endpoint.

In Chapter 4, we present results on coalescence of infinite geodesics on Z2 and

the half-plane. In Section 4.3, we show that the family of unigeodesics constructed

as limits of geodesics to (n, 0) on the half-plane must coalesce. In the following sec-

tion, we show that the directionally concentrated geodesics previously constructed

on Z2 must coalesce. We also show that the time-minimizing paths we construct

are one-sided (i.e., they have one topological end). This one-sidedness shows that a
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particular method for constructing nonconstant ground states in a disordered ferro-

magnetic model will fail. These results extend previous work by Newman and Licea

on coalescence, and support the conjecture in the literature that two-dimensional

disordered ferromagnets have a unique ground state pair.

In Chapter 5, we provide some background on two-dimensional Bernoulli bond

percolation and random walks on percolation clusters. Standard two-dimensional

bond percolation is a family of models indexed by a parameter p. Each edge of the

two-dimensional square lattice is “open” with probability p and closed otherwise;

the vertices linked by paths of open edges are called open clusters. At the value

p = pc = 1/2, there is no infinite open cluster, but the expected size of an open cluster

is infinite. Two possible definitions for the “infinite open cluster at pc”, the incipient

infinite cluster and the invasion percolation cluster, are discussed. We describe work

by Kesten showing that a random walk on the incipient infinite cluster moves slower

than diffusively. We then state the results of Damron, Hanson, and Sosoe [35] which

provide an alternate and quenched (i.e., not averaged over possible realizations of the

incipient infinite cluster) version of this result, and which extend the result to the

invasion percolation cluster.

The Appendix A consists of the preprint [35] with some chiefly cosmetic modifi-

cations.
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Part I

First-Passage Percolation:

Background and Results
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Chapter 2

First Passage Percolation

The first part of the dissertation focuses on a physical model, first-passage percolation

(FPP), for systems of paths in random potentials. Related models have been pro-

posed to describe various different physical situations; one path by which the physics

community arrived at this sort of model is sketched here. The particular model of

first-passage percolation is introduced, and this is followed by an overview of the

heuristic and numerical predictions for such systems and overview of some rigorous

results. Major conjectures for ground states (“geodesics”) of first-passage models are

described, and their relationship to other aspects of the model is described. This

chapter lays the groundwork for the following two, in which we present results which

provide a partial resolution to these conjectures.

2.1 Random Path Models: Physical Motivations

Systems with quenched disorder provide a broad class of interesting problems in

statistical physics. In models with quenched disorder, physical degrees of freedom (for

instance, spins) experience some interaction which has an essentially random part. In

the case of a magnetic interaction between spins, this randomness may represent, for

instance, the effect of introduced impurities [89]–the positions of impurity atoms do
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not thermally equilibrate on laboratory time scales. When the system is coupled to

a heat bath, the degrees of freedom are allowed to equilibrate but the random terms

in their Hamiltonians remain fixed for all time.

The introduction of quenched disorder to a model is capable of producing a dra-

matic change in behavior. The usual phase diagram may change; in one class of

examples, disorder is known to destroy a previously existing ordered phase [2]. In

other systems, new phases may appear which differ quantitatively from the model’s

previous behavior. This half of the thesis will be concerned with a model, first-passage

percolation, which belongs to a universality class of random path models in which

disorder plays a fundamental role by introducing a “pinned” phase.

One historical route through which these random path models were first studied

was in the above-mentioned context of Ising-type ferromagnetic systems with im-

purities which serve to randomize the strength of local spin-spin couplings [53, 54].

Consider a system of spins in the d-dimensional square lattice Zd. If σ(x) ∈ {−1,+1}

denotes the value of the spin at site x, then we can write the Hamiltonian of the

system as

H = −J
∑
〈xy〉

σ(x)σ(y) +
∑
〈xy〉

Jx,yσ(x)σ(y). (2.1)

Here J > 0 represents the usual ferromagnetic exchange coupling of a pure Ising

system; the impurities Jx,y are random with independent and identical distribution

(i.i.d.) and of small magnitude ( |Jx,y/J | � 1 for a typical realization of Jx,y).

The object of interest is not a complete description of the system described by

(2.1) but the behavior of a typical domain wall between regions of spins with opposite

sign. Assume that there is a domain wall Γ = (e∗i ) of edges dual to those in Zd

which traverses the system parallel to a coordinate axis, with fixed (dual) endpoints

6



(0, 0, . . . , 0) and (L, 0, . . . , 0). The energy of Γ is given by

H(Γ) =
∑

e∗={x,y}∗
(J − Jx,y), (2.2)

a sum of (typically positive) i.i.d. terms.

Systems with Hamiltonians like (2.2) have been extensively studied in the physics

literature, both numerically and heuristically (for an extensive review, see [71]). Con-

sider a random path system with random Hamiltonian 2.2 at inverse temperature β;

we will denote by 〈·〉 the thermal average, and by E the average over disorder. Lastly,

let Γ be a path with endpoints at distance L as above as above and let D(0, L) denote

the maximal displacement of Γ from the first coordinate axis.

For β large, there is predicted [29, 39, 58] to be a so-called “pinned” phase, in

which disorder plays a fundamental role and the behavior of paths is not necessarily

diffusive. That is, the expectation is that

(E
〈
D(0, L)2

〉
)1/2 ∼ Lξ,

where ξ is not in general equal to 1/2. This behavior has been rigorously established

for certain models with Hamiltonians of the form (2.2) (among others, in [86]; see also

[24] for another “non-diffusivity” result). There is a wide range of further conjectures

for the scaling of the expected energy E〈H(Γ)〉 ∼ Lχ in the pinned phase, including

a particular relationship between χ and ξ. These will be discussed further later in

this chapter in the context of first-passage percolation, the model for which the new

results of this dissertation are derived.

It is worth noting here the expected behavior of this class of random path systems

in the limit β ≈ 0. In low dimensions, the pinned phase is believed to exist for all

values of β [39, 53, 54]. In large dimensions, by contrast, it is expected that there is
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a low-β regime in which random paths are diffusive:

|D(0, L)| ∼ L1/2. (2.3)

In fact, this has been rigorously established for a particular model in the case that the

dimension d > 3 by Imbrie and Spencer [55]; see also a simplification and extension

by Bolthausen [21], and an extension to a wider class of disorder distributions by

Sinai [88].

The model considered in [55] makes an additional assumption of directedness of

the random path system. Consider a free-boundary problem whose state space is

the set of all paths Γ : {0, 1, . . . , T} → Zd−1 such that ‖Γ(t) − Γ(t − 1)‖1 = 1. The

Hamiltonian of the system is given by

H(Γ) =
T∑
t=0

h(t,Γ(t)),

where {h(t, x)} is a family of independent random variables such that h(t, x) = ±1

with equal probability. A version of diffusivity proved in [55] is as follows: for any

d > 3, there is a β0 > 0 such that for all β < β0,

∣∣E [〈‖Γ(T )‖2
2

〉]
− T

∣∣ ≤ CT 1−θ

for all T > 0, where C and θ are positive (dimension-dependent) constants.

In what follows, we will consider the particular case of first-passage percolation,

a model in which β = ∞–that is, the questions of first-passage percolation address

the properties of ground state or energy-minimizing paths. In fact, the model has

its origins in a different setting than the one discussed above: namely, the modeling

of fluid flow in a random medium. As such, while the framework is very much the

same, the terminology used will occasionally be different from that above: energies
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will be replaced by passage times, and so on. In the next section, we will give a

full definition of the first-passage model and adopt the usual vocabulary of the first-

passage literature.

2.2 Model and Global Properties

The results presented in this dissertation are proved for the particular random path

model of first-passage percolation. In the following, we specialize to consideration

of the conjectured behavior and established results for this model. First-passage

percolation was introduced by Hammersley and Welsh [49, 50], originally as a model

for fluid flow in a porous medium. In the metaphor of their original papers, paths are

defined on a graph whose edges have random, spatially decorrelated “passage times”

ωe, which are generally nonnegative. The sum of edge passage times along a lattice

path is defined to be the path’s passage time, and two major classes of question arise:

1. What can be said about the geometry of various classes of time-minimizing

paths?

2. What can be said about the passage time of the minimizing path?

The passage time functional on paths plays the role of an energy. In this sense,

asking questions about various time-minimizing paths in first-passage percolation is

equivalent to asking questions about ground states.

First-passage percolation can be defined and studied on a wide variety of graphs.

To give more precise definitions, we restrict ourselves to the case of first-passage

percolation on the square lattice Zd and subsets thereof. Later, the discussion will be

restricted further to the case that d = 2, for which the most detailed conjectures and

results on the model are available, and for which our results are derived.

9



2.2.1 Definition of the Model

Consider the square lattice (Zd, Ed), where Ed represents the set of nearest-neighbor

edges–that is, an edge e ∈ Ed is of the form e = {x, y}, where ‖x − y‖1 = 1. The

graphs for which the model will be defined will be of the form (V,E), where V is a

connected subset of Zd, and

E =
{
{x, y} ∈ Ed : x, y ∈ V

}
.

We will chiefly be concerned with the case V = Zd, we will generally refer to (Zd, Ed)

rather than (V,E) for the sake of concreteness. We will have use of general subgraphs

(V,E) chiefly in the presentation of our results on “fractional planes” in later chapters.

Associated with the model will be a probability space (Ω,B,P), on which are

defined the nonnegative random variables {ωe}e∈E. To be specific, we will heretofore

always make the canonical choice Ω = [0,∞)E, with B the Borel sigma-algebra1. An

element ω ∈ Ω of this canonical space will then be a vector (ωe)e∈E whose coordinates

are the random variables {ωe}. A given ωe will be called an “edge weight”, “edge

passage time”, or simply “passage time”; the joint distribution P of the passage times

will be termed a “passage time distribution.”

We will assume always that P is ergodic under translations of Zd and has all

of the symmetries of Zd. This ensures that the quantities of interest in the model

have distributions which are invariant when the lattice and edge weights are jointly

subjected to a transformation which leaves the lattice unchanged; for instance, the

reflection R, acting by

R : Zd × Ω −→ Zd × Ω

(x, ω) 7→ (−x,Rω),

1We will also use the symbol B to denote an object called the “limit shape” in much of what
follows.
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where (Rω){x,y} = ω{−x,−y}.

In this chaper, unless otherwise stated, we will in fact assume that the edge

weights {ωe} are independent and identically distributed, or i.i.d. In this case, each

edge weight is distributed on [0,∞) according to some measure ν, and P is the product

distribution. Because many of the results and conjectures for the first-passage model

are specific to the i.i.d. case, the restriction to this case will often prove useful in

what follows. However, the new results presented in this thesis are proved a broader

class of ergodic P, as were the results of Hoffman [51] which are presented in Section

2.5. The specific class of distributions for which Hoffman’s results are valid will be

defined at the beginning of Section 2.5.

A finite lattice path γ is some alternating sequence of vertices and edges

(x0, e0, x1, e1, . . . , en−1, xn), where xi ∈ V and ei ∈ E and such that ei = {xi, xi+1}

for all i.

Fix a realization ω of edge weights. Given a finite lattice path γ, we define the

path passage time τ(γ) by the equation

τ(γ) =
∑
e∈γ

ωe. (2.4)

Given two vertices x and y in Zd, we define τ(x, y), the passage time between x and

y, to be the minimal τ(γ) over all finite γ connecting x to y (sometimes written

γ : x y). Such a minimizing γ will be called a finite geodesic between x and y. The

question of existence of finite geodesics is somewhat delicate and will be addressed

further in Subsection 2.2.2. We note here, however, that almost sure existence of

finite geodesics is immediate in the case that the distribution of ωe is bounded away

from zero (i.e., in the case that P(ωe > δ) = 1 for some δ > 0).

We will sometimes consider τ to be a function on (subsets of) Rd×Rd. If z, z′ ∈ Rd

and there exist vertices x, x′ ∈ V with z ∈ x+[−1/2, 1/2)d and z′ ∈ x′+[−1/2, 1/2)d,
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we set τ(z, z′) = τ(x, x′). This extension is especially useful in the case that (V,E) is

(Zd, Ed), where it is used in the statement of the so-called shape theorem.

2.2.2 Linear Order Behavior: Shape Theorem

As discussed above, the relevant questions for the first-passage model center around

the study of geodesics and their passage times. A first question is the first-order

behavior of the passage time–that is, the leading contribution to τ(0, nx) for x ∈ Zd

and n large. It was observed by Hammersley and Welsh [49] that the passage time

is subadditive; that is, τ(x, z) ≤ τ(x, y) + τ(y, z) for all vertices x, y, and z. This

subadditivity is a manifestation of the fact that the passage time is defined by a

minimization procedure, and the concatenation of two finite geodesics may be used

as a convenient trial minimizer. Kingman [68] showed that this implies that the

leading-order behavior of τ(0, nx) is linear and deterministic:

Theorem 2.2.1 (Kingman). Assume E[ωe] <∞. Then

τ(0, ne1)

n
−→ inf

Eτ(0, ne1)

n
=: g(e1),

almost surely and in L1(P)

(here e1 is the unit first coordinate vector). The result is a manifestation of

Kingman’s quite general subadditive ergodic theorem, which has seen application for

similar thermodynamic limits in disordered systems–e.g., showing the existence of a

deterministic free energy density for certain disordered systems in the thermodynamic

limit.

The averaging result of Theorem 2.2.1 describes the growth of the minimizing

passage time for point-to-point boundary conditions, as the points are translated fur-

ther apart. One may ask whether this asymptotic behavior holds for a free boundary

condition–that is, one endpoint of the path fixed at the origin and another allowed
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to wander on the boundary of a cube of linear size n. This question is equivalent to

asking whether averaging behavior of passage times described in Theorem 2.2.1 can

break down in random directions–i.e., whether there can exist exceptional directions

which are abnormally favorable or unfavorable for our directed paths to travel in.

Building on the work of Richardson [84], Cox and Durrett showed [31] that this is

not the case, given quite weak assumptions on the distribution P. To describe one of

their results, we define B(t) to be the set of all points x ∈ Rd such that τ(0, x) ≤ t.

Theorem 2.2.2 (Shape Theorem [31]). Let d ≥ 2, and define Y = min{Xi}2d
i=1, where

the {Xi} are distributed independently with distribution ν (i.e., the same distribution

as a single ωe); assume that EY d <∞.

• If g(e1) > 0, then there exists some compact, convex B ⊆ Rd with nonempty

interior which shares the symmetries of Zd such that, for arbitrary ε > 0,

P
(

(1− ε)B ⊆ B(t)

t
⊆ (1 + ε)B for all large t

)
= 1.

• If g(e1) = 0, then for every compact K,

P
(
K ⊆ B(t)

t
for all large t

)
= 1.

Because a shape-type theorem for a different quantity will play a major role in

the new results of this thesis (see Chapter 3), we will provide a proof of this result

here. The proof presented here differs somewhat in perspective from the original in

[31] and has been influenced by [19].

Proof of Theorem 2.2.2. The first step in the proof is to show that τ(0, x) has at least

as many moments as Y.

Claim 2.2.3. E(τ(0, x)d) <∞ for all x ∈ Zd r {0}.
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To see this, note that there exist 2d disjoint paths {γi}2d
i=1 from 0 to x; assume γ1

is the longest (in euclidean length), and denote its length by L1. Then

P (τ(0, x) > s) ≤ P(τ(γ1) > s)2d

≤ [L1P (ωe > s/L1)]2d

= L2d
1 P (Y > s/L1) .

This proves the claim.

Using subadditive ergodic theory as mentioned above, it can be shown that there

exists some function g : Rd → R such that, if x ∈ Qd with Mx ∈ Zd,

lim
n→∞

τ(0, nMx)

nM
= g(x) (2.5)

almost surely, and in fact, lim τ(0, nx)/n exists almost surely; in particular, since

E(τ(0, x)) is finite, g is finite). The g function is uniformly continuous and thus

extends to a seminorm (i.e., it scales linearly and inherits the subadditivity of τ) on

Rd. See [61] for a detailed discussion and proofs.

In the case that g is a norm–i.e., when g(x) 6= 0 for all nonzero x–then we define

B to be its closed unit ball. Note also that if g(x) = 0 for some nonzero x, then g is

identically zero. To see this, note that g is symmetric about rotations and reflections,

and we can build a basis for Rd out of reflections and rotations of x. This combined

with subadditivity of g insures that g is identically zero if and only if g(e1) = 0.

Our proof will rely on one more tool, whose proof is taken more or less directly

from the proof of (3.5) in [31]. We present it as the following lemma, whose proof we

delay momentarily.
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Lemma 2.2.4. There is a constant κ <∞ such that, for any x ∈ Zd,

P

sup
z∈Zd
z 6=x

τ(x, z)

‖x− z‖1

< κ

 > 0. (2.6)

We will call an x in Zd for which the event appearing in (2.6) occurs a “good”

vertex. We can immediately leverage the information in Lemma 2.2.4 to show

Claim 2.2.5. Let ζ ∈ Zd. For a given realization of edge weights, denote by (nk)

the sequence of natural numbers such that nkζ is a good vertex. Then with probability

one, the sequence (nk) is infinite and limk→∞(nk+1/nk) = 1.

To see that the claim is correct, let Bm denote the event that mζ is a good vertex.

Then

k

nk
=

1

nk

nk∑
i=1

1Bi ;

the right-hand side converges to the probability in (2.6) by the ergodic theorem. Thus,

nk+1

nk
=

(
nk+1

k + 1

)(
k

nk

)(
k + 1

k

)
−→ 1

almost surely. This proves the claim.

Let Ξ1 denote the event that lim τ(0, nq)/n = g(q) for all q with rational coor-

dinates; let Ξ2 denote the event that for every ζ ∈ Zd, the sequence (nk) defined in

Claim 2.2.5 is infinite and that the ratio of successive terms tends to one. From here,

the proof of Theorem 2.2.2 proceeds by contradiction. Assume the Shape Theorem

does not hold. Then there exist a δ > 0 and a collection of edge weight outcomes Dδ

with P(Dδ) > 0 such that, for every outcome in Dδ, there are infinitely many vertices

x ∈ Zd with

|τ(0, x)− g(x)| > δ‖x‖1. (2.7)

For the remainder of the proof, we will use ‖ · ‖ to denote the `1 norm.
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Since P(Ξ1) = 1 = P(Ξ2) (by our claims about g and Claim 2.2.5), the event

Dδ ∩Ξ1 ∩Ξ2 contains some outcome ω; we claim ω has contradictory properties. On

outcome ω, there must exist a sequence (xi) ⊆ Zd satisfying the condition in (2.7).

We can assume that xi/‖xi‖ converges to some y with ‖y‖ = 1 by compactness of

the unit sphere. Let δ′ > 0 be arbitrary; we will fix its value at the end of the

proof. We first choose some large N such that ‖xn/‖xn‖ − y‖ < δ′ and such that

|g(xn)− ‖xn‖g(y)| < δ/2 for n > N. Then we have for n > N (using our assumption

(2.7)):

|τ(0, xn)− g(y)| > δ‖xn‖/2. (2.8)

Next, we set up a sequence of approximating good vertices. We find some z ∈

Rd, ‖z‖ = 1 such that ‖z − y‖ < δ′, with the additional property that z = x/M for

some x ∈ Zd and some positive integer M. This can be done because vectors with

rational coordinates are dense in the unit sphere. On ω, there must exist a sequence

(nk) such that nkMz is a good vertex and such that nk+1/nk tends to one. For any n,

there exists a value of k such that nk+1M > ‖xn‖ > nkM ; denote this value by k(n).

Finally, fix K > 0 such that nk+1 < (1 + δ′)nk and |τ(0, nkMz)/nkM − g(z)| < δ′ for

all k > K. We now let n > N be large enough that k(n) > K.

Before completing the calculation here, it is worth considering where the contra-

diction will arise. We have (essentially by assumption) that τ(0, ny) − ng(y) is of

order n for infinitely many n. Since g is a norm, g(y) and g(z) are arbitrarily close;

and since infinitely many of the {nz} are good vertices, τ(0, ny) and τ(0, nz) are

arbitrarily close. Thus, |τ(0, nz)−ng(z)| is large–but this is counter to the properties

assumed for ω.
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To turn the above into a rigorous estimate, write k for k(n) and expand

∣∣∣∣τ(0, xn)

‖xn‖
− g(y)

∣∣∣∣ ≤ ∣∣∣∣τ(0, xn)− τ(0, nkMz)

‖xn‖

∣∣∣∣+
τ(0, nkMz)

nkM

(
1− nkM

‖xn‖

)
+

∣∣∣∣τ(0, nkMz)

nkMz
− g(z)

∣∣∣∣+ |g(z)− g(y)| .

There are four terms on the right-hand side of the above, which we number from left

to right and bound individually in terms of δ′.

Term 1. Since n > N and k > K, we have that nkM < ‖xn‖ ≤ (1 + δ′)nk+1M , that

‖y− nkMz‖ ≤ δ′nkM, and that ‖xn/‖xn‖− y < δ′. Therefore, ‖xn− nkMz‖ ≤

2δ′‖xn‖. Using the fact that nkMz is a good vertex yields

|τ(0, xn)− τ(0, nkMz)| ≤ κ‖xn − nkMz‖ ≤ 2κδ′‖xn‖.

Term 2. The relationship between nkM and ‖xn‖ given in the Term 1 estimates yields

an upper bound for the second factor of Term 2. By the fact that k > K, we

can bound the first factor. The overall bound is

[g(z) + δ′]
(
1− (1 + δ′)−1

)
.

Term 3. By the fact that k is chosen greater than K, this term is bounded above by δ′.

Term 4. If g is identically zero, this term is trivially zero. If g is not identically zero, it

is a norm on Rd and is thus bounded by Euclidean norm:

cL‖ · ‖ ≤ g(·) ≤ cU‖ · ‖.

Since ‖z − y‖ < δ′, Term 4 is bounded above by δ′ times a constant depending

only on g.
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We have therefore bounded the left-hand side of (2.8) above by an expression of the

form f(δ′)‖xn‖, where f tends to zero as δ′ → 0. Since δ′ was arbitrary, we can choose

it such that f(δ′)‖xn‖ is smaller than the right-hand side of (2.8). This contradiction

proves the theorem.

Proof of Lemma 2.2.4. By translation-invariance, we may assume that x is the origin.

The first step is to show a weak version of the lemma for a “sparse” square lattice. We

will call a pair of vertices z, z′ in 5Zd “5-adjacent” if the Euclidean distance between

them is 5. If z and z′ are 5-adjacent, there exist 2d disjoint paths between z and z′

which lie entirely in the set

{z, z′}+ [−5/2, 5/2)d.

We will define τ̂(z, z′) to be the minimum of the passage times of these paths; the

proof of Claim 2.2.3 shows that E(τ̂(z, z′)d) is finite.

Under these definitions, we can treat 5Zd as a renormalized lattice with 5-edges

f = {z, z′} between 5-adjacent vertices and edge passage times τ̂(f) = τ̂(z, z′). Then

the conclusion of the preceding paragraph is that Eτ̂(f)d < ∞; note also that τ̂(f)

and τ̂(f ′) are independent if f and f ′ have no common endpoint. We extend τ̂(·, ·) to

all of 5Zd by the usual first-passage procedure of minimizing sums of 5-edge weights

over paths.

For any vertex x ∈ 5Zd, it is easy to show that there exist 2d disjoint paths of

5-adjacent vertices connecting 0 and x, with no path having more than ‖x‖1 + 4

vertices (see, for instance, the discussion following [61, (2.11)]); call these paths, sans

their respective first and last vertices, {ri}. Then we have (where f is an arbitrary
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5-edge)

P (τ̂(0, x) > 10‖x‖1Eτ̂(f)) ≤ P (τ̂(ri) > 9‖x‖1Eτ̂(f), for all i)

+ 4dP (τ̂(f) > ‖x‖1Eτ̂(f)) . (2.9)

The first term on the right side of (2.9) may be bounded above by Chebyshev’s

inequality, using the facts that, for all i,

• E[τ̂(ri)] ≤ 8‖x‖1Eτ̂(f),

• Var τ̂(ri) ≤ 8‖x‖1Var τ̂(f), and

• Eτ̂(f)d <∞.

Using the first two of the above implies

P (τ̂(ri) > 9‖x‖1Eτ̂(f), for all i) =
2d∏
i=1

P (τ̂(ri) > 9‖x‖1Eτ̂(f))

≤ Cd/‖x‖2d
1 , (2.10)

where Cd is some constant depending on d and P.

Applying the bound (2.10) in (2.9) and summing over all x ∈ 5Zd shows that

there exists a constant D such that with probability one, τ̂(0, y) < D‖y‖1 for all but

finitely many y ∈ 5Zd. Since τ(0, y) ≤ τ̂(0, y), this proves that there exists a κ5 such

that

P
(

sup
z∈5Zd

τ(0, z)

‖z‖ < κ5

)
> 0. (2.11)

The above is a sparsified version of the bound claimed in (2.6); it only remains to

extend this to all of Zd. To do this, note that if x ∈ Zd and z(x) is the nearest vertex

of 5Zd to x, then defining Rd = supx∈[−2,2]d τ(0, x),

P (τ(x, z(x)) > ‖x‖) ≤ P (Rd > ‖x‖) . (2.12)
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Since Rd has finite dth moment, we can sum (2.12) over all x ∈ Zd as before to see

that with probability one, all but finitely many vertices x ∈ Zd can be reached from

the nearest vertex of 5Zd within passage time ‖x‖. This fact, combined with (2.11),

proves the lemma.

The case in which g is identically zero is well-characterized for i.i.d. first-passage

percolation. In fact, it is known that this occurs exactly when P(ωe = 0) ≥ pc, the

critical probability for i.i.d. bond percolation on Zd (see [61] for a proof, and see

Chapter 5 and [43] for more on bond percolation processes).

As noted in the proof above, assuming g is not identically zero, the limit shape

B is the closed unit ball of some norm g satisfying g(x) = limn τ(0, nx)/n. Since the

shape theorem says that τ(0, nx) = ng(x) + o(n) in a global sense, to some extent

the linear order behavior of the passage time is established. However, beyond the

aforementioned properties of convexity, compactness, and symmetry, very little is

known about the behavior of B for general edge weight distributions (see [27, Section

5] for a discussion).

There are, however, conjectures about B based on both numerical evidence and

the behavior of the related model of last-passage percolation [75, 85]. It is widely

believed that for (ωe) i.i.d. with continuous distribution and enough moments, the

boundary ∂B of B is uniformly curved; as will be discussed later, the question of

curvature of ∂B has implications for fluctuations in the model. On the other hand,

uniform curvature has been rigorously ruled out in the degenerate case where the edge

weight distribution has a large atom at the infimum λ 6= 0 of its support. Here the

relevant condition for a “large atom” is that P(ωe = λ) ≥ ~pc, where ~pc is the critical

probability for directed bond percolation. In such cases, points x and y arbitrarily

far apart will have τ(x, y) = τ(γ) for some γ consisting only of edges with weight λ,

and the boundary of the limit shape has a flat edge [38].
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Lastly, we will note that if the limit shape B is bounded (i.e., if P(ωe = 0) < pc),

the almost sure existence of finite geodesics between any pair of points is immediate.

In Section 3.9.2, we furnish a proof that geodesics always exist for i.i.d. measures on

a broad subclass of connected subgraphs of Z2.

2.3 Fluctuations and Geodesics

The shape theorem result of the last section describes the leading-order behavior of

τ(0, nx) for i.i.d. measures with ν({0}) small– that is, τ(0, nx) ∼ ng(x). The norm

g is a deterministic property of the passage time distribution; the randomness of

τ(0, nx) is therefore present only at order o(n). In fact, τ(0, nx) is believed to exhibit

fluctuations of typical order nχ around its mean, where χ is the so-called fluctuation

exponent. In this section we describe more fully these fluctuation conjectures, as well

as the rigorous results that currently exist. The discussion of this section will again

be restricted to the case of i.i.d. passage time measures P.

A closely related set of questions in the model revolve around the typical “fluc-

tuations” of time-minimizing paths themselves. For instance, if γ is a finite geodesic

connecting 0 and nx, one could ask for the typical diameter of the smallest cylinder

(with axis parallel to x) containing γ. This diameter is expected to behave like nξ,

where ξ is sometimes referred to as the wandering exponent. We will discuss the

predicted wandering behavior later in this section, followed by the conjectured rela-

tionship between χ and ξ, which has been the site of several recent developments in

the field.

Much of work on fluctuations in the model relies on relating fluctuation properties

of the passage time τ to those of the edge weights. Therefore, unless it is explicitly

stated otherwise, we will assume that 0 < Var (ωe) <∞ in the discussion that follows.
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2.3.1 The Fluctuation Exponent χ

One issue encountered in the study of either exponent is that there is no broad

agreement as to their precise mathematical definitions (the recent paper [27] contains

some commentary on the state of the field; for several possible definitions of the

exponents, see [73, 78]). Rather than trying to give an exhaustive account of possible

meanings of χ, we will discuss particular properties one might expect χ to have and

the results and challenges presented thereby.

For any χ′ < χ, one could reasonably expect that there exists some C > 0 such

that

Cn2χ′ ≤ Var (τ(0, ne1)), for all n ≥ 1. (2.13)

Bounds of the type (2.13) (and corresponding upper bounds) have so far been

elusive. One early result is due to Kesten [67]:

Theorem 2.3.1. Consider first-passage percolation on Zd. Assume that 0 <

Var (ωe) < ∞, and that P(ωe = 0 < pc), where pc > 0 is the critical probability for

Bernoulli bond percolation on Zd. Then there exist constants C,C ′ > 0 such that

C ≤ Var τ(0, ne1) ≤ C ′n for all n ≥ 1.

Moreover, there exists some constants C1, C2, C3 such that if x ≤ C1n,

P
(∣∣∣∣τ(0, ne1)− Eτ(0, ne1)

n1/2

∣∣∣∣ ≥ x

)
≤ C2 exp(−C3x).

In the article [67], the opinion is expressed that the upper bound in Theorem

2.3.1 would be in general suboptimal. That is, for i.i.d. P satisfying some reasonable

hypotheses, there should exist, for at least some d, a power-law upper bound of the

form

Var τ(0, ne1) ≤ C ′n1−ε for all n,
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for some ε > 0. For general d, the exact nature of the scaling is a point of some

debate; some predictions suggest, for instance, that Var τ(0, ne1) should grow more

slowly than any power of n when d is large enough (see [30] and the discussion in the

introduction of [78]). In low dimensions, however, it is predicted [78, 60] that there

should be a nontrivial power lower bound for Var τ(0, ne1).

In the most relevant case for the results of this dissertation, the case d = 2, the

prediction [53, 54, 59] that χ = 1/3 appears to be fairly accepted in the literature

(see [71] for an overview). The two-dimensional case is also where the strongest

lower bound on Var τ(0, ne1) has been derived. In [78], it is shown for first-passage

percolation on Z2 that– assuming the hypotheses of Theorem 2.3.1 and that there is

not a large delta mass at the infimum of the edge distribution ν – there exists a c > 0

such that

Var τ(0, ne1) ≥ c log n.

The result was derived independently in a special case in [81].

A similar result in the direction of upper-bounding variances was provided for all

d by Benjamini, Kalai, and Schramm [15] in the case that ν consists of two delta

masses. The result of [15] shows that there exists a c > 0 such that

Var τ(0, ne1) ≤ cn

log n
.

This result was extended to a broader class of distributions, the so-called “nearly

gamma” distributions, in [14]. To date, sharper upper or lower bounds for χ remain

elusive. Certain additional results on χ have been derived using properties of ξ and

path fluctuations; more on the relationship between fluctuations of τ and fluctuations

of time-minimizing paths will be described in the next section.

In fact, methods which utilize fluctuation properties of τ have been used to study

the particular path fluctuation problems which are addressed in Chapters 3 and 4.
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To give an adequate description of these methods, we need to introduce results here

on deviations of τ from a different mean–namely, the limiting shape of the model.

Recall that if P(ωe = 0) is small enough, the limit

lim
n→∞

Eτ(0, nx)

n
= g(x), (2.14)

where g(x) is the norm inducing the limit shape. The rate of convergence to the limit

in (2.14) has been the topic of study by Kesten [67], whose results were sharpened by

Alexander [3] to show the following:

Theorem 2.3.2. Assume that P(ωe = 0) < pc and that E exp(cωe) < ∞ for some

c > 0. Then there exists C > 0 such that

g(x) ≤ Eτ(0, x) ≤ g(x) + C‖x‖1/2
1 log ‖x‖1

for all x ∈ Z2 with ‖x‖1 > 1.

As will be described in what follows, the results of Kesten and Alexander have

proven fruitful in relating properties of geodesics or time-minimizing paths to prop-

erties of the limit shape. A major goal of our efforts in the following chapters will be

to study what can be done in this direction without relying on strong concentration

results like Theorem 2.3.2.

2.3.2 ξ and the Scaling Relation

As discussed alongside the shape theorem in Section 2.2.2, there are strange effects

allowed by the presence of delta masses in ν. If λ is the infimum of the support of ν,

then in the case that λ = 0 and ν({λ}) > pc or λ > 0 and ν({λ}) > ~pc, there will be

infinite clusters of edges e with ωe = λ whose segments will serve as geodesics between

vertices arbitrarily far apart. Aside from these considerations, the presence of delta
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masses allows the existence of multiple distinct geodesics between pairs of vertices.

Thus, in this section, we will assume that P is i.i.d. with continuous marginal ν,

ensuring that finite geodesics between pairs of vertices of Zd exist and are unique (for

more on the issues raised in this paragraph, see [73]).

There are numerous possible definitions of ξ. For concreteness, we will provide a

possible choice which was studied in [73]. For x ∈ Zd, let C(x, r) denote the cylinder

with axis {αx : α ∈ R} and radius r; for x and y in Zd, let M(x, y) be the finite

geodesic between x and y. Then a possible “point-to-point” definition for ξ is given

by

ξ := sup{γ ≥ 0 : lim sup
‖x‖2→∞

P (M(0, x) ⊆ C(x, ‖x‖γ2)) < 1}. (2.15)

Various other rigorous definitions have been proposed for ξ, including direction-

dependent versions of the point-to-point definition above [78] as well as “point-to-

line” versions of the above [73]. While it appears reasonable to conjecture that these

definitions would yield the same value of ξ, there do not appear to be results resolving

this question.

While ξ and χ are expected to depend on the dimension d, they are supposed to

be the same for all ν which are sufficiently nice. Moreover, the exponents are widely

believed ([39, 59, 60, 70] and others; see also [71]) to satisfy the relation

χ = 2ξ − 1 (2.16)

in a wide range of first-passage-like random path models, independent of dimension.

The prediction [53, 54] that χ = 1/3 and ξ = 2/3 in d = 2 is perhaps the best-known

instance of (2.16). Proving (2.16) in the case of first-passage percolation has been

the object of substantial efforts in the mathematical physics literature.

We will summarize some of the results in this direction here, noting that the

definitions of ξ and χ used in different papers are often distinct. Building on work
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of Wehr and Aizenman [92] in the related model of directed first-passage percolation,

Newman and Piza [78] showed the inequality

χ ≥ 1− (d− 1)ξ

2

for a certain “directional” definition of χ and ξ. Also appearing in [78] is the rigorous

lower bound

χ ≥ 2ξ − 1. (2.17)

for a different “global” definition of χ. Bounds on ξ for various definitions (including

(2.15)) appear in [73].

Recently, a complete verification of (2.16) was proved by Chatterjee [27] under

certain assumptions. Building on Chatterjee’s work, a simplified proof which removed

an assumption on the passage-time distribution P was later provided by Auffinger and

Damron in [9]. To state the full form of Chaterjee’s result (as strengthened in [9]), we

define “upper” and “lower” exponents ξa, χa and ξb, χb. Then ξa and χa are defined as

the smallest real numbers such that, for each χ′ > χa and ξ′ > ξa, there exists α > 0

such that the quantities

sup
06=v∈Zd

E exp

(
α
|τ(0, v)− Eτ(0, v)|

‖v‖χ′2

)
,

sup
06=v∈Zd

E exp

(
α
R(0, v)

‖v‖ξ′2

)

are finite, where R(0, v) is the smallest r > 0 such that M(0, v) ⊆ C(v, r). Similarly,

ξb and χb are the largest numbers such that, if ξ′ < ξb and χ′ < χb, there exists α
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such that

inf
v∈Zd
‖v‖2>α

Var τ(0, v)

‖v‖2χ′

2

> 0,

inf
v∈Zd
‖v‖2>α

E
R(0, v)

‖v‖ξ′2
> 0.

Then the result of [9, 27] is

Theorem 2.3.3. Consider i.i.d. first-passage percolation on Zd such that the edge

weight marginal ν does not have a large delta mass at the infimum of its support, and

such that E exp(c ωe) is finite for some c > 0. Assume that ξa = ξb and χa = χb. Then

(2.16) holds.

The conditions under which the assumption that ξa = ξb, χa = χb holds currently

remain obscure.

There is another notion of geodesic wandering in the “geodesic tree”, closely re-

lated to so-called infinite geodesics, which will play a major role in the next section

(and the other two chapters of Part I). In the case that P is an i.i.d. measure with

continuous marginal ν, then if γ 6= γ′ are two finite paths in Zd, we have τ(γ) 6= τ(γ′)

with P-probability one. Therefore, (for such P) finite geodesics must almost surely

exist between each pair of vertices of Zd, and there will be a unique such geodesic for

each pair.

Therefore, for each x ∈ Zd, we can define a graph T (x) with vertex set Zd and

whose edge set contains every e which is a member of some geodesic M(x, y); this

graph will be almost surely connected by the existence of finite geodesics.

Claim 2.3.4. Every (self-avoiding) path in T (x) is a point-to-point geodesic.

Proof. Let γ = (y = v0, e1, v1, . . . , en−1, vn = z) be a path as in the claim. By the

definition of T (x), the edge e1 is in some geodesic from x to either v0 or v1. We will
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assume the former case; the latter is similar. Denote by γi the subsequence of γ up

to vertex vi; we will proceed by induction on i.

Now, assume that γi is the terminal segment of some geodesic gi from x to vi.

Then ei+1 is an edge of a geodesic γ′ from x to either vi+1 or vi. If γ′ is a geodesic to

vi, then its terminal segment must be γi by uniqueness, and so vi appears multiple

times in gi, a contradiction since each ωe > 0 almost surely. If γ′ is a geodesic to vi+1,

then it passes through vi first; by uniqueness of geodesics, γ′ is the concatenation of

gi with ei+1 and we are done.

By the claim above and the uniqueness of finite geodesics, we see that T (x) is

almost surely a tree, called the geodesic tree or tree of infection of x. Regarding

T (x) as a sort of family tree, one could ask how the tree widens spatially between

generations. For instance, if y is a vertex, are the descendents of y in T (x) all in some

cone with axis parallel to y? Questions of this type will be central in the rest of this

chapter, and will be the focus of the results presented in Chapters 3 and 4.

2.4 Infinite Geodesics

In this section, we will largely confine ourselves to the case of i.i.d. first-passage per-

colation on Z2 such that each edge weight ωe has continuous marginal ν. This section

describes issues related to infinite time-minimizing paths, or infinite geodesics, in the

first-passage model. These are the questions at which the new results presented in

the following chapters are aimed. In the next subsections, we will describe particular

problems in infinite geodesics, some previous work on these problems, and then the

contributions which will be described in full detail in Chapters 3 and 4
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2.4.1 Number and Direction

Recall the definition of the geodesic tree T (x) from the previous section. An idea

related to wandering of geodesic paths which appears in [76] is related to the spatial

spreading of T (0).

Given a vertex x ∈ Z2, we will denote by Rout(x) the set of sites y ∈ Z2 such that

the geodesic from 0 to y touches x. Let C(x, ε) denote the cone of y ∈ R2 such that

the angle between x and y (considered as vectors) is smaller than ε. Given a positive

function h on R, we will say that T (0) is h-straight (for a given realization ω) if for

all but finitely many x in Z2,

Rout(x) ⊆ C(x, h(‖x‖2)).

Then analogously to bounding ξ, one could ask what for sort of functions h the

geodesic tree is h-straight with positive probability.

A result in this direction appears in [76]; the assumptions involved require some

small amount of detail. We will say that B (or its norm g) is uniformly curved if for

some C > 0 and any z = αz1 + (1− α)z2 with g(zi) = 1 and 0 ≤ α ≤ 1, we have

1− g(z) ≥ C(min{g(z − z1), g(z − z2)})2.

Theorem 2.4.1 ([76]). Assume that B is uniformly curved and that E exp(c ωe) <∞

for some c > 0. Then for any ε > 0, the geodesic tree T (0) is almost surely h-straight,

with h(r) = r−1/4+ε.

As noted in [73], “it is a basic assumption behind the derivation of the relation

χ = 2ξ − 1” presented in [71] that (at least for certain continuous, i.i.d. P), the limit

shape should be uniformly curved.
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Sketch of proof of Theorem 2.4.1. Let 0 < δ < 1/4. Letting ‖x‖2 be large, we ex-

amine Rout(x) restricted to set A(x) of sites y ∈ C(x, g(x)−δ) with g(y)/g(x) lying

between 1− g(x)−2δ and 2. The boundary of Ax is the set of all vertices of Ax which

are nearest neighbors of some vertex not in Ax. We will name three parts of the

boundary of A(x) : the “front” (the vertices adjacent to some y with g(y) > 2g(x)),

the “back” (the vertices adjacent to some y with g(y) < (1− g(x))−2δg(x)), and the

“side” (the rest of the boundary of Ax.

Assume that Rout(x) contains a point y on the side or back of A(x). Then, since

x is on the geodesic between 0 and y, we have

τ(0, y) = τ(0, x) + τ(x, y) (2.18)

We have

g(y) + g(x− y)− g(x) ≥ C0‖x‖1/2−2δ (2.19)

(by curvature, or by g(y)/g(x) ≤ 1− g(x)−2δ, depending on the location of y).

Using results of Kesten and Alexander, Theorems 2.3.1 and 2.3.2, we can (for

ε > 0) replace the passage time τ(x, y) by

τ(x, y) ∼ g(x− y) +O(‖x− y‖1/2+ε
2 )

almost surely for all y ∈ A(x) for all but a random finite collection of x. Combining

this with (2.18) yields

g(y) = g(x) + g(x− y) +O(‖x‖1/2+ε
2 ).

This is in contradiction with (2.19).
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So almost surely, for all but finitely many x, Rout(x) is contained in the union

of Ax and the union, over all x′ on the front of Ax, of the Rout(x′). Induction now

completes the proof.

To see some consequences of this result, we make the following definitions. We will

say that an infinite nearest-neighbor path γ is an infinite geodesic (for a given edge

weight realization) if every finite subpath of γ is a finite geodesic. Infinite geodesics

come in two varieties:

1. Indexed by N–that is, γ = (v1, e1, v2, . . .). These are called unigeodesics, singly

infinite geodesics or (when it does not cause confusion) simply geodesics.

2. Indexed by Z. These will be called bigeodesics.

Lastly, we will say that a self-avoiding singly infinite path (x1, e1, x2, . . .) in a subgraph

of Z2 has direction θ if arg xn → θ. An immediate consequence of Theorem 2.4.1 is

the following:

Corollary 2.4.2 ([76]). Assume the hypotheses of Theorem 2.4.1. Then with proba-

bility one,

• Every singly infinite, self-avoiding path in T (0) has direction.

• For every θ ∈ [0, 2π), there exists a unigeodesic with direction θ.

Unfortunately, uniform curvature has not been proved for the limit shape of any

i.i.d. P. Nonetheless, the above corollary opens up a number of research questions

regarding the directional properties of infinite geodesics. For instance, what is the

probability that there exists a unigeodesic with direction θ for a “typical” P? More-

over, if γ is a unigeodesic, must it have some asymptotic direction? Finally, without

making an assumption on curvature of the limit shape, is it possible to prove that

unigeodesics exist in the first place?
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At least we can give a quick answer to the last point: with probability one,

there exists at least one unigeodesic (see [72, 76], though it is possible this fact was

previously known). To see this, consider the finite geodesics {γn}n, where γn : 0  

ne1. The first vertex of γn is always 0 for each n. There are four possible choices for

the second vertex of each γn. Therefore, there must be some edge e incident to the

origin such that infinitely many members of {γn} have e as their first edge. Repeating

this argument on subsequences yields a singly infinite path which is easily seen to be

a geodesic.

The method of the last paragraph could be called a “diagonal argument”. One

could next ask whether there exist multiple distinct unigeodesics with positive prob-

ability (here, distinct means sharing at most finitely many edges and vertices). In

order to show the existence of more than one distinct unigeodesic, one could try to

perform the diagonal argument of the preceding paragraph on two distinct sequences

of finite geodesics. To do this, one would need a criterion for which different sequences

of finite geodesics yield distinct unigeodesics when “diagonalized.”

For i.i.d. first-passage percolation on Z2 with exponentially distributed edge

weights, Häggström and Pemantle [48] showed that there will exist at least two

distinct unigeodesics with positive probability. This result was extended to a wide

range of first-passage distributions by Garet and Marchand [41] and Hoffman [52].

A 2008 paper by Hoffman [51] demonstrated that it is in fact possible to derive

the existence of more than two unigeodesics from properties of the limit shape which

are currently known. Given a limit shape B, we define sides(B) to be equal to the

number of sides of B if B is a polygon, and infinity otherwise. A major result of [51]

is

Theorem 2.4.3 ([51]). Assume P is an i.i.d. edge-weight distribution on Z2 with

continuous marginals and such that Eω2+α
e < ∞ for some α > 0. Let ε > 0 be

arbitrary, and define G(x1, . . . , xk) to be the event that there exist distinct unigeodesics
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beginning at vertices x1, . . . , xk. Then for any k ≤ sides(B), there exist x1, . . . , xk in

Z2 such that

P (G(x1, . . . , xk)) > 1− ε.

In fact, Theorem 2.4.3 was proved not just for the i.i.d. continuous-marginal case

considered in this section, but for a wide class of translation-ergodic edge weight

distributions. We will devote the entirety of Section 2.5 to a presentation of a proof

of Theorem 2.4.3.

Hoffman’s results also include a statement that there exist locally favorable regions

through which many finite geodesics will tend to pass. This line of thinking was a

major impetus for the work presented in this dissertation, which in part addresses

the following question:

Q1: Under what conditions on the passage time distribution do there exist uni-

geodesics with direction or directional concentration (i.e., in cones)? Is it possible to

show some version of Corollary 2.4.2 without assuming uniform curvature?

Chapter 3 is addressed in part to Q1. There, it is shown that if x is a point

at which the boundary ∂B of B is differentiable with tangent line Lx, and if Ix is

the sector of angles in which Lx intersects ∂B, then there almost surely exists a

unigeodesic which is concentrated in Ix. That is, if Ix = [θ1, θ2], then there almost

surely exists a unigeodesic (x1, e1, x2, . . .) such that for every ε > 0, all but finitely

many xi have arg xi ∈ [θ1 − ε, θ2 + ε].

Another question is provoked by the diagonal argument for the existence of uni-

geodesics. If (γn)n is a sequence of finite geodesics, we say that γn → γ for some path

γ if for all N > 0, the first N steps of γn equal those of γ for all n large. Then the

diagonal argument presented above works by finding subsequential limits of geodesics.

Q2: Under what circumstances do geodesic limits exist? If γn is the geodesic

between 0 and ne1, does there exist a γ such that γn → γ?
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This question has particular relevance because a natural way to try to construct

geodesics with direction θ would be to find a limit of finite geodesics to points xn

with arg xn → θ. Moreover, one of the major obstacles to further progress in [34]

arises because limits of geodesics are not known to exist, and taking subsequences

breaks ergodicity of a certain measure constructed. Some of the results of Chapter 3

are directed toward Q2. It is shown there that the a version of the question can be

answered on a subclass of infinite subgraphs of Z2 with boundaries.

2.4.2 Merging of Geodesics

Assume for the moment uniform curvature, or any other assumption which would

establish a result like Corollary 2.4.2. Knowing that there almost surely exists a

geodesic with direction θ for every θ, one could ask how many typically exist, where

again we say that two geodesics are distinct if they have finite symmetric difference.

Is it possible that there are more than one such unigeodesic, and does the answer

change if we mandate that the geodesics have the same initial vertex?

A major result in this direction is due to Licea and Newman [72], who proved the

following result:

Theorem 2.4.4. Let P be an i.i.d. edge weight distribution on Z2, and assume that

the single-edge marginal ν has no atoms. Then there exists some set D ⊆ [0, 2π) of

full Lebesgue measure such that if θ ∈ D, then there is zero probability that there exist

distinct geodesics with direction θ.

It is not known whether the set D is all of [0, 2π), or whether any particular

angle lies in D. However, D was later shown to have at most a countably infinite

complement by Zerner (see [77]).

While Theorem 2.4.4 is rather general, there remains the issue of extending the

size of D. Also, without a curvature assumption, it is not clear how to find directional

geodesics in the first place.
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Q3: Do any natural methods for constructing infinite geodesics with direction

produce families of non-distinct unigeodesics–that is, a family of unigeodesics {γx}x∈Z2

with γx \ γy finite for all x and y?

Several results presented in Chapter 4 address Q3. For first-passage on Z2, it is

shown that merging families of unigeodesics can be constructed as subsequential limits

of geodesics to lines, and that these families are directed in the sense described below

Q1. It is also shown that limiting (not subsequential) unigeodesics exist on certain

subgraphs of Z2 with boundaries, and that these limiting geodesics are a nondistinct

family as above.

Busemann Functions and “Surface View”

A major goal of showing merging or nondistinctness of geodesics, as described in [76],

is the study of the microstructure of the surface of the growing region

B(t) = {x : τ(0, x) ≤ t}.

One way to study the surface of B(t) for t large would be to define some sort of “point

at infinity” and examine the first-passage times from this point to the vertices of Z2.

Using his and his collaborators’ results on existence and uniqueness of unigeodesics

with direction, Newman [76] showed that for certain sequences xn with arg xn → θ,

the limit

lim
n→∞

τ(y, xn)− τ(z, xn)

exists almost surely. Going in the opposite direction, this type of limit (which could

be called a Busemann function) was used to great effect in [51] to establish existence

of geodesics. Busemann-type functions are a major tool in the analysis of [10, 34].
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2.4.3 Bigeodesics

A final major question is

Q4: Under what circumstances do bigeodesics exist?

It is clear that bigeodesics must exist for certain P. For instance, if P is a product

measure and P(ωe = 1) = 1, then any doubly infinite path which moves only up and

to the right is a bigeodesic almost surely. However, if P has continuous marginals

and obeys some moment assumptions, there are some plausible heuristic arguments

against bigeodesics [77].

A step toward ruling out bigeodesics appeared in [72] and showed that “directed”

bigeodesics almost surely could not exist, at least for a single fixed direction. That is,

calling a bigeodesic (θ, θ′) directed if its two ends have direction θ and θ′, the result

of [72] is that under the assumptions of Theorem 2.4.4 and for fixed θ, θ′ ∈ D (the

same D as previously), there almost surely exists no (θ, θ′)-directed bigeodesic.

This result leaves the question open in three ways. First is the familiar issue of

whether particular directions may be absent from D. Second, bigeodesics are only

ruled out almost surely for a fixed pair of directions; as there are uncountably many

directions, it is not clear a priori that bigeodesics with random direction can exist.

Finally, barring a result like uniform curvature of the limit shape, it is not clear that

bigeodesics must be directed.

The work of Chapter 4 addresses the problem of bigeodesics on Z2 from a different

point of view. A major effort of this work goes to describing and characterizing a

method of constructing unigeodesics via subsequential limits of finite geodesics to

lines. It is shown in Section 4.5.4 that the unigeodesics so constructed will not be

doubly infinite, ruling out the possibility that this method produces bigeodesics.

It is worth mentioning that the nonexistence of bigeodesics in the half-plane has

been established by Wehr and Woo [93]. Moreover, Wehr has shown [91] that on Zd,
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if there can (with positive probability) exist at least one bigeodesic, then the number

of bigeodesics is almost surely infinite.

Relation to disordered spin models

Questions about geodesics have implications for the ground states of disordered fer-

romagnetic spin models. Examples of such systems include the disordered Ising ferro-

magnet, a variant of the usual Ising model in which nearest-neighbor couplings take

values according to some (positive) distribution. Consider the lattice dual to Z2,

defined by

(Z2
∗, E2
∗ ) = (Z2, E2) +

1

2
(e1 + e2) ,

and define a “spin configuration” σ = (σx)x∈Z2
∗ ∈ {+1,−1}Z2

∗ . Let (Jx,y)〈x,y〉∈E2∗ have

joint distribution µ which is ergodic and such that µ(Jx,y > 0) = 1. For any configu-

ration σ and any finite S ⊆ Z2
∗ define the (random) energy functional

HS(σ) = −
∑
〈x,y〉∈E2∗
x∈S

Jx,yσxσy .

We will call σ a ground state for couplings (Jx,y) if, for each configuration σ̃ such

that σ̃x = σx for all x outside of some finite set, we have

HS(σ) ≤ HS(σ̃) for all finite S ⊆ Z2
∗ .

It is an open problem to describe the set of ground states for this ferromagnetic model.

In particular it is not known how many ground states there are for a given (Jx,y),

although it is conjectured (see, for instance, [77]) that if µ is continuous there should

be only two almost surely. These two are the constant configurations σ = ±1, which

are clearly µ-almost surely ground states. If any nonconstant ground states σ exist,

they cannot have finite regions of disagreement; that is, there can be no finite S such
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that σx = +1 for all x ∈ S and σx = −1 for all y ∈ ∂S or vice-versa (here, ∂S is

the set of sites at `1 distance one from S). Therefore, any nonconstant ground state

must have a two-sided (and circuitless) infinite (original lattice) path of edges dual

to bonds 〈x, y〉 such that σx = −σy.

We can push forward µ to a first-passage edge distribution P on edge-weight

configurations of Z2 by defining ωe = Jx,y, where 〈x, y〉 is the edge dual to e. If such a

first-passage configuration had a bigeodesic, then the configuration σ which takes the

value +1 on one side of the bigeodesic and −1 on the other would be a nonconstant

ground state for the associated spin model.

In addition to the conjectures and partial proofs against the existence of bi-

geodesics in the first-passage model, there are arguments in the physics literature

[40] against the existence of nonconstant ground states. In particular, it is believed

that for distributions µ satisfying some weak conditions (for example, i.i.d. µ with

continuous edge-weight distribution and finite second moment), there should be al-

most surely no nonconstant ground states.

If one were to argue against the existence of non-constant ground states, one

would try to rule out the possibility of constructing such states by standard means.

From the point of view of first-passage percolation, it is natural to try to construct

bigeodesics by taking limits of finite geodesics to points or lines. In this light, the

results presented in subsequent chapters that certain constructions do not produce

bigeodesics can be taken as evidence against the existence of nonconstant ground

states in the disordered ferromagnet.
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2.5 Multiple Geodesics Under General Assump-

tions

In this section, we present an abbreviated form of Hoffman’s [51] result (Theo-

rem 2.4.3) showing the existence of four unigeodesics under general assumptions.

The perspective here differs somewhat from the original (having been influenced by

the work which will appear in [34]), and it also incorporates simplifications originally

suggested by M. Damron [33].

We note that the results of [51] actually hold for any P which is translation-ergodic,

has unique passage times (i.e., the passage times of different finite paths are different

a.s.), has the symmetries of Z2, satisfies Eω2+α
e < ∞ for some α > 0, and such that

the limit shape B is bounded. Note that the shape theorem has been proved for this

class of measures [19], though there is no simple characterization of the conditions

under which boundedness of B holds [47].

2.5.1 Notation

The proofs will require the introduction of some new notation. Because modified

versions of some definitions appear in the following chapters, we specify that any

notation introduced here expires at the conclusion of this section.

For any point v ∈ ∂B (that is, such that g(v) = 1), let Lv denote the unique

tangent line to ∂B at v (if it exists), and define w(v) to some choice of g-unit vector

parallel to Lv. For any S ⊆ R2, we will define the function BS on R2 × R2 by

BS(x, y) = τ(x, S)− τ(y, S).
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We note the relations

|BS(x, y)| ≤ τ(x, y); (2.20)

BS(x, y) +BS(y, z) = BS(x, z). (2.21)

The first is a consequence of subadditivity of τ ; the second is immediate from the

definition of BS.

When approximating passage times, we will need a uniform bound for small in-

crements; to this end, we define

β = 4 sup
x∈R2

‖x‖∞≤4

Eτ(0, x) <∞.

We define the lower density (or simply “density” for short) of a sequence {an} of

natural numbers by

lim inf
N→∞

1

N
# ({an} ∩ {1, . . . , N}) .

2.5.2 Translation Invariance

One issue which must be dealt with is the fact that the passage time distribution is not

precisely translation-invariant because τ(·, ·) is a function on R2. That is, while τ(x, y)

has the same distribution as τ(x+ z, y+ z) for z ∈ Z2, this is not necessarily the case

for z ∈ R2. The following bound, which says that τ is “almost translation-invariant”,

allows us to largely ignore this fact in what follows.

Lemma 2.5.1. For all v, w, z ∈ R2, we have

|Eτ(v, w)− Eτ(v + z, w + z)| ≤ 4β. (2.22)
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Proof. We will write v′ for the closest vertex of Z2 to v (breaking ties by some deter-

ministic rule) and use analogous definitions for w′ and z′. Then, by the invariance of

the first-passage model under translations by vectors in Z2,

Eτ(v′, w′)− Eτ(v′ + z′, w′ + z′) = 0.

Using this fact and the triangle inequality for τ, we see that the left-hand side of

(2.22) is bounded above by

E [τ(v, v′) + τ(w,w′) + τ(v′ − z′, v − z) + τ(w′ − z′, w − z)] .

Each term in the above is the passage time between two points of R2 which are at

Euclidean distance at most four. Therefore, each term is bounded above by β. This

proves the bound (2.22).

2.5.3 Core of the proof

Given vertices {xi}Ni=1 ⊆ Z2, we define Gi to be the (random) set of points which are

reached first from xi; that is,

Gi(ω) = {z ∈ Z2 : Bz(xi, xj) < 0 for all j 6= i}. (2.23)

The sets Gi and Gj are disjoint if i 6= j. Note that if z ∈ Gi and γ is the geodesic

from xi to z, then γ contains only vertices of Gi. Indeed, if γ contained some y such

that By(xi, xj) ≥ 0, then we would have

τ(xi, z) = τ(xi, y) + τ(y, z) ≥ τ(xj, y) + τ(y, z) ≥ τ(xj, z)

and so z /∈ Gi.
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If there exists an infinite sequence {zm} ⊆ Gi , consider the sequence of geodesics

{γi(m)}m which connect xi to the members of {zm}. As before, we can use a “diagonal

argument” to find some infinite geodesic γi = limk γi(mk). By the arguments of the

preceding paragraph, γi ⊆ Gi. We have therefore proved the following:

Lemma 2.5.2. Let {xi}Ni=1 denote N distinct vertices of Z2, with associated random

sets Gi defined in (2.23). If for a configuration ω of edge weights, |Gi(ω)| = ∞ for

i = 1, . . . , N , then there exist at least N disjoint unigeodesics in the configuration ω.

Hoffman’s strategy is to control the growth of Bnxi(xi, xj) as n becomes large to

show that every Gi can be simultaneously infinite with positive probability. For n

large, one would imagine that Bne1(−Me1,Me1) would typically be nonzero of order

M . In fact a weak version of this is true, and will be proved in the next section.

A similar argument holds for B−ne1(Me1,−Me1) This allows the choice x1 = Me1,

x2 = −Me1, and shows that with positive probability both G1 and G2 are infinite

and so there exist at least two geodesics.

To find a set {xi} with more than two elements such that each Gi, one needs to

control Bnv(Mv,Mv′), where v′ is not a multiple of v. Hoffman does this by choosing

v as a point of differentiability of ∂B and w as a unit tangent vector at v, and showing

that Bnv(0,Mw) grows sublinearly in M because τ(Mw,nv) does. This is described

in Theorem 2.5.7 and the preceding discussion.

2.5.4 Growth of Bn,v

A crucial idea in Hoffman’s work, whose explication has already been years in de-

velopment [41, 48, 52], is that if n � M > 0, the point nv should be closer to Mv

than the origin in the first-passage metric. That is, τ(0, nv) − τ(Mv, nv) ∼ M in

some sense. While this relation appears very natural, its proof requires an averaging

“trick,” which gives only a weaker averaged result. We begin with a lemma in terms

of expectation.
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Lemma 2.5.3. For any v ∈ ∂B and ε > 0, there exists an M0 = M0(ε, v) such that

for all r ∈ R2 and for each M > M0, the density of n such that

(1 + ε)M ≥ EBnv(r,Mv) ≥ (1− ε)M (2.24)

is at least 1− ε.

Proof. We will restrict ourselves to r = 0 for the first portion of the proof; we will at

the end describe the extension to general r. To show the first inequality, we can use

(2.20) to see that

Bnv(0,Mv) ≤ τ(0,Mv)

for all n. By the shape theorem and the fact that g(v) = 1, there exists an M0 such

that if M > M0, Eτ(0,Mv) ≤ (1 + ε)M, proving the first inequality.

We will now show the second bound. Choose some k depending on n and M such

that

kM ≤ n < (k + 1)M.

By the shape theorem, there exists an M1 such that if M > M1 and n ≥ 2M(1−ε)ε−1,

(1− ε)(k + 1)M ≤ (1− ε/2)n ≤ Eτ(0, nv). (2.25)

We now decompose the passage time, using the invariance of Eτ(·, ·) under shifts by

elements of Z2:

Eτ(0, nv) =
k−1∑
j=0

[τ(jMv, nv)− τ((j + 1)Mv, nv)] + Eτ(kMv, nv)

≤ 2kβ +
k−1∑
j=0

E [τ(0, (n− jM)v)− τ(Mv, (n− jM)v)] + Eτ(kMv, nv)

≤ Ckβ +
k−1∑
j=0

EB(n−kM+jM)v(0,Mv). (2.26)
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The constant C is the result of both the 2k of the previous line and the fact that

Eτ(kMv, nv) ≤ Eτ(0, (n − kM)v) + β, where Eτ(0, (n − kM)v) can be bounded by

a multiple of kβ since (n− kM)v/k is uniformly bounded in Euclidean norm.

We can now find M2 > M1 such that if M > M2, then Ckβ < ε(k+ 1)M. Putting

this together with (2.26) gives

(1− 2ε)(k + 1)M ≤
k−1∑
j=0

EB(n−kM+jM)v(0,Mv). (2.27)

As in the proof of the first inequality of the lemma, we can find (using the shape

theorem) an M3 > M2 such that for M > M3 we have Eτ(0,Mv) ≤ (1 + ε)M. Using

this and the bound BS(0,Mv) ≤ τ(0,Mv), we see that if M > M3, each term in

(2.27) is bounded above by (1 + ε)M. From here, algebraic manipulation implies that

the number of terms in (2.27) which are at least as large as (1 − √ε)M is at least

(1− 4
√
ε)k.

Because ε was arbitrary, we can apply the preceding with ε′ = ε2/16 to see that

the number of terms of the sequence

EB(n−kM+M)v(0,Mv),EB(n−kM+2M)v(0,Mv), . . . ,EBnv(0,Mv) (2.28)

which are at least (1− ε)M is at least (1− ε)k. From here the lemma is proved once

we take n → ∞ in the appropriate way; we now will see how to do this. Setting

j(M,n) = n− kM, we can restate the result about (2.28) as saying that the number

of terms of the sequence

EB(j+M)v(0,Mv),EB(j+2M)v(0,Mv), . . . ,EB(j+kM)v(0,Mv)

which are at least (1− ε)M is bounded below by (1− ε)k. Taking n to infinity along

a sequence {ni} such that ni mod M = j, we see that the density of terms of the
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sequence {EB(j+lM)v(0,Mv)}l which are at least (1−ε)M is bounded below by (1−ε).

Applying the result for j = 0, . . . ,M − 1 completes the proof in the case r = 0.

Note that by the translation-invariant properties of the model, the result of the

lemma for r ∈ Z2 follows immediately from the case r = 0. For general r ∈ R2, we

write r = r′ + δr, where r′ ∈ Z2 and δr ∈ [0, 1)2. Using the fact that the lemma holds

for r′, in conjunction with the bound

|E(Bnv(r,Mv)−Bnv(r
′,Mv))| ≤ Eτ(r, r′)

and (2.22) proves the result.

We will extend Lemma 2.5.3 from a statement about expectations to a statement

that the bound (2.24) holds with high probability. To do this, we will need a lemma

about uniform integrability of τ.

Lemma 2.5.4. For all z ∈ R2 and all ε > 0, there exist M0 and δ such that

E (τ(0,Mz)1A) ≤ εM

For all M > M0 and all events A with P(A) < δ.

Proof. By the bound in (2.22), it suffices to consider integer M . As in the preceding,

the major difficulty will be with z /∈ Z2. To deal with this, we consider the space

Ω∗ = [0,∞)E
2 × [0, 1)2

under the probability measure P∗ = P×λ, where λ is the uniform (Lebesgue) measure

on [0, 1)2. All of the random variables and events (for instance, τ(x, y)) defined on

the first-passage space Ω = [0,∞)E
2

may be considered as random variables or events

on Ω∗ which do not depend on the coordinates in [0, 1)2.
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For an element (ω, a1, b1) ∈ Ω∗, let w = (a1, b1) + z, and decompose w uniquely as

w = w′ + (a2, b2) where w′ ∈ Z2 and (a2, b2) ∈ [0, 1)2. We will define the translation

operator Tz on Ω∗ by Tz(ω, a1, b1) = (Tw′ω, a2, b2), where (Tw′ω)e = ωe−w′ . The mea-

sure P∗ is stationary under the action of Tz. Therefore, if we fix some starting point

(a1, b1) and write

1

M
τ((a1, b1),Mz + (a1, b1)) ≤ 1

M

M−1∑
j=0

τ(jz + (a1, b1), (j + 1)z + (a1, b1))

=
1

M

M−1∑
j=0

h(T (j)
z (ω, a1, b1)) (2.29)

(where h(ω, a, b) = τ((a, b), (a, b) + z) evaluated in configuration ω), then (2.29) con-

verges almost surely and in L1(P∗) to some random variable h : Ω∗ → R by the

ergodic theorem. Let E∗ denote expectation under P∗.

Recalling that A ⊆ Ω may be regarded as the subset A× [0, 1)2 ⊆ Ω∗, we write

∫
(a,b)∈[0,1)2

E [τ((a, b), (a, b) +Mz)1A] dλ ≤ 1

M
E∗
(
M−1∑
j=0

h(T (j)
z (ω, a, b)1A

)
. (2.30)

If ε > 0, we can use the fact that h has finite expected value to find some δ > 0 such

that

E∗(h1B) < ε/4

for all B ⊆ Ω∗ satisfying P∗(B) < δ. Then, assuming that P∗(A) < δ, we can bound

above the right-hand side of (2.30) by

1

M
E∗
(
M−1∑
j=0

h(T (j)
z (ω, a, b)1A

)
≤
∣∣∣∣∣E∗
(

1

M

M−1∑
j=0

(h(T (j)
z (ω, a, b)− h)1A

)∣∣∣∣∣+
∣∣E∗(h1A)

∣∣
≤
∣∣∣∣∣E∗
(

1

M

M−1∑
j=0

(h(T (j)
z (ω, a, b)− h

)∣∣∣∣∣+ ε/4

< ε/2,
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for M large enough, by the L1 convergence to h.

Now we may note that with P-probability one, for all (a, b) ∈ [0, 1)2,

|τ(0,Mz)− τ((a, b), (a, b) +Mz)| ≤ τ(0, (a, b)) + τ(Mz,Mz + (a, b)).

In particular, we see using Lemma 2.22 that

1

M
|Eτ(0,Mz)1A − Eτ((a, b), (a, b) +Mz)1A| ≤ 2β/M < ε/2,

for M large enough. Putting this together with the upper bound of ε/2 for the

left-hand side of (2.30) proves the claim.

Theorem 2.5.5. For any v ∈ ∂B and ε > 0, there exists an M0 = M0(ε, v) such that

for all r ∈ R2 and for each M > M0, the density of n such that

P (M(1− ε) < Bnv(r, r +Mv) < M(1 + ε)) > 1− ε (2.31)

is at least 1− ε.

We will let ε′ > 0 be fixed (to be chosen at the end of the proof). Let the event

En(M) := {Bnv(0,Mv) > (1 + ε′)M}.

We note that, since Bnv(·, ·) ≤ τ(·, ·), we have

P (En(M)) ≤ P (τ(0,Mv) > (1 + ε′)M)→ 0 (2.32)

as M →∞. Use (2.32) to find some M1 such that, if M > M1, P(En(M)) < δ for all

n. At this point, we have proved the second inequality of (2.31); it remains to prove
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the first. Using Lemma 2.5.4, we can find some δ ∈ (0, ε′) such that E (τ(0,Mv)1A) <

ε′M whenever P(A) < δ. We will henceforth suppress the argument of En.

Find an M0 > M1 such that (2.24) holds (but with ε replaced with ε′) for all n in

some set Ξ(ε′,M) of density at least 1− ε′. For M > M0 and n ∈ Ξ(ε′,M), we may

write

(1− ε′)M ≤ EBnv(0,Mv) = E[Bnv(0,Mv)(1En + 1− 1En)]

≤ ε′M + E[Bnv(0,Mv)1Ecn ],

where the superscript c denotes the usual set complement. In particular, E[Bnv(0,Mv)1Ecn ] >

(1− 2ε′)M . The following claim can be verified with a simple computation.

Claim 2.5.6. Let X be a random variable which is a.s. bounded above by (1 + ε′),

and assume that E(X) > (1− 2ε′). Then if ε′ is sufficiently small,

P
(
X ≥ (1−

√
ε′)
)
≥ 1− 3

√
ε′.

As has been seen, the random variable X := M−1Bnv(0,Mv)1Ecn satisfies the

hypotheses of Claim 2.5.6 for M > M0 and n ∈ Ξ(ε′,M). We now choose ε′ = ε2/9;

noting that X ≥ (1− ε) implies Bnv(0,Mv) ≥M(1− ε) completes the proof.

2.5.5 Bnv in direction w

Having found bounds on the growth of Bnv(0,Mv) as M becomes large, we now will

study the growth of Bnv(0,Mw). Recall the fact that w is a unit tangent vector at the

point v ∈ ∂B, which is a point of differentiability of ∂B. One immediate consequence

of this is that

lim
a→0

1− g(v − aw)

a
= 0. (2.33)
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Now, τ(0, nv) ∼ ng(v) = n for n large. Similarly,

τ(Mw,nv) ∼ ng(v −Mw/n) = n(1 + o(M/n)),

by (2.33). In particular, we expect that in the regime n�M,

Bnv(0,Mw) = τ(0, nv)− τ(Mw,nv) ∼ o(M).

Such a sublinear growth bound will be derived rigorously, though as in the previous

section, we are limited to proving bounds for values of n in sets of high density.

Theorem 2.5.7. Let ε > 0. There exists some M0 such that, for all r ∈ R2 and

M > M0, the density of n such that

P (|Bnv(r, r +Mw)| < εM) > 1− ε

is at least 1− ε.

Proof. Note that Bnv(r, r + Mw) = −Bnv(r + Mw, r), and note that −w is also a

unit tangent vector of ∂B at v. Therefore, we need only prove the bounds of the form

Bnv(r, r +Mw) < εM .

Similarly to the other proofs of this section, we may assume r = 0. Let ε > 0. We

have, for a > 0 and M ′ arbitrary,

Bnv(0, aM
′w) = Bnv(−M ′v, aM ′w)−Bnv(−M ′v, 0)

≤ τ(−M ′v, aM ′w)−Bnv(−M ′v, 0). (2.34)

By the shape theorem, there is some M1(a, ε) such that M ′ > M1 implies that

P (τ(−M ′v, aM ′w) < (1 + εa/4)M ′g(v + aw)) ≥ 1− ε/2. (2.35)
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By (2.33), we have |g(v + aw) − 1| < εa/4 for all a < a0(ε) < 1; we will fix such a

value of a. Using this in (2.35) yields, for M ′ > M1,

P (τ(−M ′v, aM ′w) < (1 + εa/2)M ′) ≥ 1− ε/2. (2.36)

Using Theorem 2.5.5, we may also find an M0 > M1 such that if M ′ > M0, then

for all n in some set of density at least 1− ε,

P ((1− εa/2)M ′ < Bnv(−M ′v, 0)) > 1− ε/2.

This fact and (2.36) applied to (2.34) imply that for M ′ > M0, the set of n such that

Bnv(0, aM
′w) < εaM ′

has density at least 1− ε. Setting M = aM ′ completes the proof.

The result of Theorem 2.5.5, which is essentially a “one-dimensional bound,”

would suffice to show the existence of at least two geodesics. To establish that at

least four geodesics exist, the following theorem–which incorporates the additional

information of Theorem 2.5.7–will prove useful.

Theorem 2.5.8. Fix ε > 0. Let v ∈ ∂B be a point at which ∂B is differentiable,

and let w denote the unit tangent vector at v. Let y ∈ R2 be written (uniquely) as

y = (1− t)v+sw, for s, t ∈ R. Then there exists some M0 such that, for all M > M0,

the density of n such that

P (Bnv(My,Mv) > M(t− ε)) > (1− ε)

is at least 1− ε.
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Proof. Begin by writing

Bnv(My,Mv) = Bnv(My,My + tv) +Bnv(My + tv,Mv). (2.37)

Using Theorem 2.5.5, we can find some M ′
0 such that M > M ′

0 implies the density of

n such that

P (Bnv(My,My + tv) > Mt(1− ε/2)) > 1− ε/2

is at least 1 − ε/2. Similarly, by Theorem 2.5.7, we can find M0 > M ′
0 such that

M > M0 implies that the density of n such that

P (Bnv(My + tv,Mv) > −Mε/2)) > 1− ε/2

is at least 1 − ε/2. Putting these two bounds together with (2.37) completes the

proof.

2.5.6 Proof of Main Theorems

We will demonstrate Theorem 2.4.3 by showing that the condition of Lemma 2.5.2 is

satisfied with high probability.

Proof. Let k ≥ 0 be an integer which is at most the number of sides of B. There exists

a set of points x1 . . . , xk ∈ ∂B such that there is a unique tangent line Li of ∂B at xi,

and such that Li 6= Lj for i 6= j. Let xi 6= xj be arbitrary members of this sequence,

and decompose xj = (1− t)xi+sw(xi) as in the statement of Theorem 2.5.8. Because

Lj 6= Li, we have xj /∈ Li and so t 6= 1.

Applying Theorem 2.5.8, there exists some M0 > 0 and c > 0 such that if M > M0,

the density of n such that

P (Bnxi(Mxj,Mxi) > cM for all i 6= j) > 1− ε (2.38)
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is at least 1− ε. The condition of Lemma 2.5.2 now follows for the collection {Mxi}.

In particular, since the limit shape has at least four sides by symmetry, there

can be at least four unigeodesics. Hoffman is also able to show a form of directional

concentration of long finite geodesics, insofar as there are favorable regions through

which a large density of them tend to pass through. Hoffman’s methods are a major

impetus behind the work presented in the following chapters.
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Chapter 3

Geodesic Graphs and Busemann

Distributions

It is worth recalling the main role of the Busemann function in Hoffman’s [51] results.

Given a set S and two vertices x and y, let γ denote the geodesic from x to S (if it

exists). The Busemann function BS(x, y) has the property that

y ∈ γ =⇒ BS(x, y) = τ(x, y).

If one can show that BS(x, y) 6= τ(x, y), then one rules out the existence of a geodesic

from x to S which passes through y.

So far, this technique has been applied in a local or “one geodesic at a time”

manner to show the existence of geodesics. In what follows, we will take a more

global picture by looking at the interplay between Busemann functions and “geodesic

graphs” which are in some sense global collections of geodesics. One motivating

example for such a geodesic graph is the tree T (x) defined in the preceding chapter.

However, as we will see, our techniques will be most powerful when the graph’s

distribution inherits some translation invariance from (V,E) (note T (x), being rooted

at x, has no translation symmetry).
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3.1 Assumptions and Definitions

In what follows, we will consider only first-passage percolation on a connected sub-

graph of Z2, which we will denote by (V,E) (in the case that (V,E) = (Z2, E2), we

will often simply refer to the graph as Z2). Recall the definition of the model from

Section 2.2.1. If S is a subset of R2, we define the Busemann function

BS(x, y) = τ(x, S)− τ(y, S). (3.1)

We will call a graph of the form

(Z2, E2) ∩ {(x1, x2) : x2 ≥ m}

for m ∈ Z an “upper half plane.”

We denote the standard orthonormal basis vectors for R2 by e1 and e2. If our

graph (V,E) is either (Z2, E2) or an upper half-plane, we can define translations

by unit vectors. The translation operators Tei , i = 1, 2 act on a configuration ω

as follows: (Tei(ω))e′ = ωe′+ei . If (V,E) = (Z2, E2) and P is invariant under these

translations, the passage times have a certain translation-covariance: for i = 1, 2,

τ(x, S)(Teiω) = τ(x+ ei, S + ei)(ω) , (3.2)

where S + ei = {x + ei : x ∈ S}. In the case of the half-plane, (3.2) holds for i = 1

(assuming that P is translation-invariant). On Z2, we analogously define for x ∈ Z2,

the operators

(Txω)e = ωe+x;

this definition is also in effect for half-planes, but with x = (x1, x2), where x2 ≥ 0.
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There are several different classes of assumptions under which our theorems will

be valid. These will be assumptions on both the edge weight distribution P and the

geometry of (V,E). In order to save ourselves from having to describe these in detail

multiple times, we will fix a few common classes of assumptions which will be useful.

3.1.1 Assumptions on the full plane

Two classes of assumptions we commonly consider will be called A1 and A2. In both

cases, (V,E) = (Z2, E2), with certain other requirements depending on whether P is

i.i.d. or merely ergodic. In the first case, P is taken i.i.d.:

A1 First-passage percolation on Z2. Here P is a product measure whose common

distribution satisfies the criterion of Cox and Durrett [31]: if e1, . . . , e4 are the

four edges touching the origin,

E
[

min
i=1,...,4

ωei

]2

<∞ . (3.3)

Furthermore we assume P(ωe = 0) < pc = 1/2, the bond percolation threshold

for Z2.

Condition (3.3) is implied by, for example, the assumption Eωe <∞.

The other assumption is on distributions that are only translation-invariant.

A2 First-passage percolation on Z2. P is a measure satisfying the conditions of

Hoffman [51]:

(a) P is ergodic with respect to translations of Z2;

(b) P has all the symmetries of Z2;

(c) Eω2+ε
e <∞ for some ε > 0;

(d) the limit shape B for P is bounded (see the next paragraph).
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We have seen that A1 suffice to show the shape theorem, Theorem 2.2.2, with a

limiting norm g which is not identically zero. Recall also that, in proving the shape

theorem, we showed that

E(τ(x, y))2 <∞ for all x, y. (3.4)

Under A2, τ has a finite second moment as a consequence of our moment assumption

on ωe.

Under A2, the shape theorem has also been proved [19]; the final assumption of

A2 is tantamount to requiring that g not be identically zero. The statement that B

has nonempty interior is not explicitly proved in [19] but follows from the maximal

lemma stated there.

Since the limit shape is bounded and has nonempty interior, there are constants

0 < C1, C2 <∞ such that

C1‖x‖2 ≤ g(x) ≤ C2‖x‖2 for all x ∈ R2 . (3.5)

We say a measure P on Ω admits geodesics if

P(∃ a geodesic γ : x y) = 1 for all x, y ∈ V .

As discussed in Section 2.2.2, any P which satisfies the shape theorem with g not

identically zero admits geodesics. In particular, measures satisfying A1 and A2

admit geodesics.

For some of our results, we will need a slight strengthening of A1 and A2 which

ensures that there is at most one finite geodesic between a pair of vertices.

A1’ P satisfies A1 and the common distribution of ωe is continuous.

A2’ P satisfies A2 and P has unique passage times.
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The phrase “unique passage times” means that for any pair of edge-nonempty distinct

paths γ and γ′, P(τ(γ) = τ(γ′)) = 0.

3.1.2 Assumptions on fractional planes

The graphs (V,E) admitted by these assumptions will be infinite connected domains

(of Z2) with infinite complement. That is, V ⊆ Z2 is infinite and connected (in

(Z2, E2)), and its complement V c is also infinite and connected. As shorthand, we

will call such a graph (V,E) a fractional plane.

We give an alternate characterization of the class of fractional planes. We will need

the graph dual to the square lattice, the vertex set of which is (Z2)
∗

= Z2 +(1/2, 1/2)

and the edge set of which is (E2)
∗

= E2 + (1/2, 1/2). The edge e∗ is said to be dual

to e ∈ E2 if it bisects e. We prove in Section 3.9.1 that there exists some path of

dual edges Γ = (e∗i )i∈Z which does not (vertex) self-intersect and such that (V,E) is

one of the two components of the graph formed from (Z2, E2) by removing the edges

(ei) dual to those edges (e∗i ). Let vi be the endpoint of ei that lies in V . Note that

while Γ is not self-intersecting, a particular vi may appear multiple times (at most 3

times).

Recall the definition of the phrase “admits geodesics” from the assumptions on full-

plane measures. Some of our results on fractional planes (V,E) make the assumption

that the edge weight distribution P admits geodesics. We show that i.i.d. P admit

geodesics in Section 3.9.2 for general fractional planes (V,E).

3.2 Geodesic Graphs to S

As stated previously, we would ultimately like to construct a geodesic graph which

has some sort of translation-invariance (assuming (V,E) does). The first step in

this program is to construct a graph of geodesics to some set S, which we will later
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“translate to infinity.” In what follows, we will assume without further comment

that S ⊆ R2 contains at least one point z such that, for some x ∈ V , we have

z ∈ x+ [−1/2, 1/2)2. This will ensure that the passage time τ(·, S) is always defined.

We will also define the set of directed edges

~E = {〈x, y〉 : {x, y} ∈ E}.

Assume that P admits geodesics. For any S ⊆ V and configuration ω, we denote

the set of edges in all geodesics from a point v ∈ V to S as GS(v). We regard

each geodesic in GS(v) as a directed path, giving orientation 〈x, y〉 to an edge if

τ(x, S) ≥ τ(y, S) (the direction in which the edge is crossed), and set ~GS(v) to be

the union of these directed edges. Let GS(ω) be the directed graph induced by the

edges in ∪v ~GS(v). Last, define the configuration ηS(ω) of directed edges by

ηS(ω)(〈x, y〉) =


1 if 〈x, y〉 ∈ ~GS(v) for some v

0 otherwise

.

For S ⊆ R2 we define ηS(ω) and GS(ω) using the geodesics to the set Ŝ, where

Ŝ = {y ∈ V : y + [−1/2, 1/2)2 ∩ S 6= ∅}. (3.6)

Proposition 3.2.1. Let S ⊆ R2. The graph GS and the collection (ηS) satisfy the

following properties P-almost surely.

1. Every finite directed path is a geodesic. It is a subpath of a geodesic ending in

S.

2. If there is a directed path from x to y in GS then BS(x, y) = τ(x, y).
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3. Assume that (V,E) = (Z2, E2). If P is translation-invariant, then for i = 1, 2,

ηS(e)(Teiω) = ηS+ei(e+ ei)(ω) . (3.7)

Therefore the finite dimensional distributions of ηS obey a translation invari-

ance:

(ηS(e)) =
d

(ηS+ei(e+ ei)) .

In the case that (V,E) is an upper half plane, the above holds for i = 1 under

the assumption that P is invariant under Te1 .

Proof. The third property follows from translation covariance of passage times (3.2).

The second property follows from the first and Proposition 3.2.4.

To prove the first, let γ be a directed path in GS and write the edges of γ in order

as e1, . . . , en. Write J ⊆ {1, . . . , n} for the set of k such that the path γk induced by

e1, . . . , ek is a subpath of a geodesic from some vertex to S. We will show that n ∈ J .

By construction of GS, the edge e1 is in a geodesic from some point to S, so 1 ∈ J .

Now suppose that k ∈ J for some k < n; we will show that k+ 1 ∈ J . Take σ to be a

geodesic from a point z to S which contains γk as a subpath. Write σ′ for the portion

of the path from z to the far endpoint vk of ek (the vertex to which ek points). The

edge ek+1 is also in GS so it is in a geodesic from some point to S. If we write σ̂ for

the piece of this geodesic from vk of ek to S, we claim that the concatenation of σ′

with σ̂ is a geodesic from z to S. To see this, write τγ̃ for the passage time along a

path γ̃:

τ(z, S) = τσ(z, vk) + τσ(vk, S) = τσ′(z, vk) + τσ̂(vk, S) .

The last equality holds since both the segment of σ̂ from vk to S and the segment of

σ from vk to S are geodesics, so they have equal passage time. Hence k + 1 ∈ J and

we are done.
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Note that each vertex x /∈ Ŝ has out-degree at least 1 in GS. Furthermore it is

possible to argue using part 1 of the previous proposition and the shape theorem that

there are no infinite directed paths in GS. Since we will not use this result later, we

omit the proof. Once we take limits of measures on such graphs later, infinite paths

will appear.

If P has unique passage times, we can say more about the structure of GS.

Proposition 3.2.2. Assume P admits geodesics and has unique passage times. The

following properties hold P-almost surely.

1. Each vertex x /∈ Ŝ has out-degree 1. Here Ŝ is defined as in (3.6).

2. Viewed as an undirected graph, GS has no circuits.

Proof. For the first property note that every vertex x /∈ Ŝ has out-degree at least 1

because there is a geodesic from the vertex to S and the first edge is directed away

from x. Assuming x has out-degree at least 2 then we write e1 and e2 for two such

directed edges. By the previous proposition, there are two geodesics γ1 and γ2 from

x to S such that ei ∈ γi for i = 1, 2. If either of these paths returned to x then there

would exist a finite path with passage time equal to 0. There would then be two

distinct paths with passage time 0 (the concatenation of a zero passage time path

with its reversed path has zero passage time), contradicting unique passage times.

This implies that γ1 and γ2 have distinct edge sets. However, they have the same

passage time, again contradicting unique passage times.

For the second property suppose that there is a circuit in the undirected version

of GS. Each vertex has out-degree 1, so this is actually a directed circuit and thus a

geodesic. But then it has passage time zero, giving a contradiction as above.

Property 2 implies that GS, viewed as an undirected graph, is a forest. It has more

than one component if and only if Ŝ has size at least 2. We will see later that under
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certain assumptions, after taking limits of measures on these graphs, the number of

components will reduce to 1.

3.2.1 Busemann functions: Properties

In order to analyze the structure of the geodesic graph, we will often rely on properties

of Busemann functions. We list below some basic properties of Busemann functions.

One of the most interesting is the additivity property 1. It is the reason that the

asymptotic shape for the Busemann function is a half space whereas the asymptotic

shape for τ is a compact set.

Proposition 3.2.3. Let S ⊆ R2. The Busemann function BS satisfies the following

properties P-almost surely for x, y, z ∈ V :

1. (Additivity)

BS(x, y) = BS(x, z) +BS(z, y) . (3.8)

2. As in 3.7, if (V,E) is either Z2 or an upper half-plane and P is translation-

invariant, then

BS(x, y)(Teiω) = BS+ei(x+ ei, y + ei)(ω) (3.9)

(recall that in a half-plane this holds only for i = 1). Therefore the finite-

dimensional distributions of BS obey a translation invariance:

(BS(x, y)) =
d

(BS+ei(x+ ei, y + ei)) .

3.

|BS(x, y)| ≤ τ(x, y) . (3.10)
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Proof. The first property follows from the definition. The third is a consequence of

subadditivity of τ(y, S). The second item follows from the statement (3.2) for passage

times.

The last property we need regards the relation between geodesics and Busemann

functions. Though it is simple, it will prove to be important later.

Proposition 3.2.4. Let S ⊆ R2 and x ∈ Z2. If γ is a geodesic from x to S and y is

a vertex of γ then BS(x, y) = τ(x, y).

Proof. Write τγ(x, y) for the passage time along γ between x and y. Since every

segment of a geodesic itself a geodesic, τ(x, S) − τ(y, S) = τγ(x, S) − τγ(y, S) =

τγ(x, y) = τ(x, y).

Using this proposition and additivity of the Busemann function we can relate

BS(x, y) to coalescence. If γx and γy are geodesics from x and y to S (respectively)

and they meet at a vertex z then BS(x, y) = τ(x, z)− τ(y, z). This is a main reason

why Busemann functions are useful for studying geodesics.

3.3 Results

The results of this chapter are directed at the issues Q1 and Q2 raised in Section

2.4.1. The ultimate goal is to take limits of geodesic graphs GS defined in the last

section. Using these limits, various properties of infinite geodesics in the model can

be derived.

3.3.1 Results on fractional planes

In fractional planes, we can actually show that limits of GSn exist for an appropriate

sequence of sets Sn. Moreover, the limiting behavior can be established under very

weak assumptions. Moreover, there exists a limiting Busemann function to a point
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“at infinity” constructed by taking limits of Busemann functions. This will prove

useful in the analysis of the geodesic graphs.

We consider geodesics to the sequence {vn}n of boundary vertices of (V,E). As

shorthand, we will set

Bj(x, y) := B{vj}(x, y),

Gj := G{vj}

for each j ∈ Z.

The first result shows that asymptotic limits of the (Bn) exist under no assump-

tions on ω. That is, it holds for all passage time configurations.

Theorem 3.3.1. Consider first-passage percolation on a fractional plane (V,E). For

any x, y ∈ V and ω ∈ Ω,

B(x, y) := lim
n→∞

Bn(x, y) exists . (3.11)

For the second result we consider a measure P on Ω (with the product Borel sigma

algebra) that admits geodesics; that is,

P(∃ a geodesic γ : x y) = 1 for all x, y ∈ V .

We will define a notion of convergence for geodesic graphs. We say that ηn → η ∈

{0, 1} ~E if for each e ∈ ~E, ηn(e) → η(e). In this case we write Gn → G, where G is

the directed graph corresponding to η.

Theorem 3.3.2. Suppose that P is a distribution on a fractional plane which admits

geodesics. Then with probability one, (Gn) converges to a graph G. Each directed

path in G is a geodesic.
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This result can be taken as an answer to Q2 of Section 2.4.1 for a particular family

of finite geodesics.

3.3.2 Results on (Z2, E2)

In the case of the full plane, we no longer have a proof of the existence of the existence

of geodesic limits. However, by taking subsequential limits of geodesic graphs, we can

build a translation-invariant structure which gives us information about the direc-

tional properties of unigeodesics. We can regard the results here as partial answers

to Q1 of Section 2.4.1.

Directional results

Below we will show that under A1 or A2 there are geodesics that are asymptotically

directed in sectors of aperture no bigger than π/2. Under a certain directional con-

dition on the boundary of the limit shape (see Corollary 3.3.4) we show existence of

geodesics with asymptotic direction. To our knowledge, the only work of this type so

far [76, Theorem 2.1] requires a global curvature assumption to show the existence of

geodesics in even one direction.

To describe the results, we endow [0, 2π) with the distance of S1: say that

dist(θ1, θ2) < r if there exists an integer m such that |θ1 − θ2 − 2πm| < r. For

Θ ⊆ [0, 2π) we say that a path γ = x0, x1, . . . is asymptotically directed in Θ if for each

ε > 0, arg xk ∈ Θε for all large k, where Θε = {θ : dist(θ, φ) < ε for some φ ∈ Θ}.

For θ ∈ [0, 2π), write vθ for the unique point of ∂B with argument θ. Recall that a

supporting line L for B at vθ is one that touches B at vθ such that B lies on one side

of L. If θ is an angle such that ∂B is differentiable at vθ (and therefore has a unique

supporting line Lθ (the tangent line) at this point), we define an interval of angles Iθ:

Iθ = {θ′ : vθ′ ∈ Lθ} . (3.12)
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Theorem 3.3.3. Assume either A1 or A2. If ∂B is differentiable at vθ, then with

probability one there is an infinite geodesic containing the origin which is asymptoti-

cally directed in Iθ.

The meaning of the theorem is that there is a measurable set A with P(A) = 1

such that if ω ∈ A, there is an infinite geodesic containing the origin in ω which

is asymptotically directed in Iθ. This also applies to any result we state with the

phrases “with probability one there is an infinite geodesic” or “with probability one

there is a collection of geodesics.”

We now state two corollaries. A point x ∈ ∂B is exposed if there is a supporting

line for B that touches B only at x.

Corollary 3.3.4. Assume either A1 or A2. Suppose that vθ is an exposed point of

differentiability of ∂B. With probability one there exists an infinite geodesic containing

the origin with asymptotic direction θ.

Proof. Apply Theorem 3.3.3, noting that Iθ = {θ}.

In the next corollary we show that there are infinite geodesics asymptotically

directed in certain sectors. Because the limit shape is convex and compact, it has at

least 4 extreme points. Angles corresponding to the arcs connecting these points can

serve as the sectors.

Corollary 3.3.5. Assume either A1 or A2. Let θ1 6= θ2 be such that vθ1 and vθ2

are extreme points of B. If Θ is the set of angles corresponding to some arc of

∂B connecting vθ1 to vθ2, then with probability one there exists an infinite geodesic

containing the origin which is asymptotically directed in Θ.

Proof. Choose θ3 ∈ Θ such that θ1 6= θ3 6= θ2 and B has a unique supporting line Lθ3

at vθ3 (this is possible since the boundary is differentiable almost everywhere). Let

C be the closed arc of ∂B from vθ1 to vθ2 that contains vθ3 and write D for its open
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complementary arc. We claim D ⊆ Icθ3 . This will prove the corollary after applying

Theorem 3.3.3 with θ = θ3.

For a contradiction, suppose that Lθ3 intersects D at some point vφ and write S

for the segment of Lθ3 between vθ3 and vφ. Since Lθ3 is a supporting line, the set B

lies entirely on one side of it. On the other hand, since B is convex and vθ3 , vφ ∈ B,

S ⊆ B. Therefore S ⊆ ∂B and must be an arc of the boundary. It follows that one of

vθ1 or vθ2 is in the interior of S, contradicting the fact that these are extreme points

of B.

Remark 3.3.6. If P is a product measure with P(ωe = 1) = ~pc and P(ωe < 1) = 0,

where ~pc is the critical value for directed percolation, [8, Theorem 1] implies that

(1/2, 1/2) is an exposed point of differentiability of B. Corollary 3.3.4 then gives a

geodesic in the direction π/4. Though all points of ∂B (for all measures not in the

class of Durrett-Liggett [38]) should be exposed points of differentiability, this is the

only proven example.

Remark 3.3.7. From [47, Theorem 1.3], for any compact convex set C which is

symmetric about the axes with nonempty interior, there is a measure P satisfying A2

(in fact, with bounded passage times) which has C as a limit shape. Taking C to be

a Euclidean disk shows that there exist measures for which the corresponding model

obeys the statement of Corollary 3.3.4 in any deterministic direction θ.

Global results

In this section we use the terminology of Newman [76]. Call θ a direction of curvature

if there is a Euclidean ball Bθ with some center and radius such that B ⊆ Bθ and

∂Bθ ∩B = {vθ}. We say that B has uniformly positive curvature if each direction is a

direction of curvature and there exists M <∞ such that the radius of Bθ is bounded

by M for all θ.
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Recall that in [76, Theorem 2.1], Newman has shown that under the assumptions

(a) P is a product measure with Eeβωe < ∞ for some β > 0, (b) the limit shape B

has uniformly positive curvature and (c) ωe is a continuous variable, two things are

true with probability one.

1. For each θ ∈ [0, 2π), there is an infinite geodesic with asymptotic direction θ.

2. Every infinite geodesic has an asymptotic direction.

As far as we know, there has been no weakening of these assumptions.

Below we improve on Newman’s theorem. We first reduce the moment assumption

on P to that of A1. Next we extend the theorem to non-i.i.d. measures. Newman’s

proof uses concentration inequalities of Kesten [67] and Alexander [3], which require

exponential moments on the distribution (and certainly independence). So to weaken

the moment assumptions we need to use a completely different method, involving

Busemann functions instead.

For this theorem, we need slightly stronger hypotheses. Recall the definitions of

A1’ and A2’.

Theorem 3.3.8. Assume either A1’ or A2’ and that B has uniformly positive cur-

vature.

1. With P-probability one, for each θ there is an infinite geodesic with direction θ.

2. With P-probability one, every infinite geodesic has a direction.

The same method of proof shows the following.

Corollary 3.3.9. Assume either A1’ or A2’ and suppose vθ is an exposed point of

differentiability of ∂B for all θ. Then the conclusions of Theorem 3.3.8 hold.

Remark 3.3.10. The proofs of the above two results only require that the set of

extreme points of B is dense in ∂B. In fact, a similar result holds for a sector in

which extreme points of B are dense in the arc corresponding to this sector.
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3.4 Graph Limits on Fractional Planes

The work in this section will be devoted to proving Theorems 3.3.1 and 3.3.2. Our

method is motivated by the “paths crossing” trick of Alm and Wierman [4].

3.4.1 Existence of Busemann Limits

The main goal of this subsection is prove Theorem 3.3.1. We begin with x, y ∈ {vi}i∈Z.

Proposition 3.4.1. For any x, y ∈ {vi}i and ω ∈ Ω, the limit in (3.11) exists.

Moreover, the convergence is monotone.

Proof. We assume that x = vi and y = vj for i < j and we let ε > 0. Fix any

n2 > n1 > j such that vn1 6= vn2 . We can now choose vertex self-avoiding paths

γ : x vn1 and γ′ : y  vn2 to satisfy

τ(γ) ≤ τ(x, vn1) + ε and τ(γ′) ≤ τ(y, vn2) + ε .

Form a continuous path β (in R2) by taking γ, adjoining half of the edge en1 , adjoining

the segment of Γ between e∗n1
and e∗i , and then finally appending half of the edge ei, to

form a continuous circuit based at x. Since this circuit is a Jordan curve, it separates

R2 into an interior and an exterior. See Figure 3.1 for an illustration of β.

Our first observation is that either y ∈ β or y is in the interior of β (and in fact,

y ∈ β only if y ∈ γ). The reason is that y is an endpoint of one of the ei’s, which must

cross β. Since the other endpoint of this edge is in V c, it cannot be in the interior of

β (or on β). The Jordan curve theorem implies that these endpoints are in different

components, and thus if y /∈ β, it must be in the interior of β. We make the following

claim:

Claim 3.4.2. γ′ ∩ γ contains a vertex of Z2.
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Γ

x

y

vn1

vn2

γ

Figure 3.1: Construction of the Jordan curve β. It consists of the red path γ, two
half dual edges in yellow and the blue segment of Γ between vn1 and x.

To show the claim, we first prove that vn2 is either on β or in the exterior of β.

Accordingly, assume vn2 is not on β. Notice that neither endpoint of en2 can touch

β. Furthermore the edge en2 cannot intersect β because e∗n2
is not contained in β.

Therefore both endpoints are in the same component of the complement of β and

since the other one is in V c, they must be in the exterior of β.

Now, considering γ′ as a continuous plane curve, we note that γ′ must intersect

β (since it has to reach vn2 , which is not in the interior of β), but it cannot intersect

Γ. Therefore, it must intersect γ; this intersection must happen at a vertex, though

it may of course also happen at one or more edges. This proves the claim.

We will complete the existence proof for the limit in (3.11) by showing that

Bn(x, y) is monotone in n for fixed x and y. Let n1 and n2 be as above. For any path

σ : a b and c ∈ σ write σ |c for the segment of σ from the first meeting of c onward

and σ |c for the segment of σ to the first meeting of c. Then letting w be a point in
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γ′ ∩ γ,

τ(x, vn2) + τ(y, vn1) ≤ [τ(γ |w) + τ(γ′ |w)] + [τ(γ′ |w) + τ(γ |w)]

= [τ(γ |w) + τ(γ |w)] + [τ(γ′ |w) + τ(γ′ |w)]

= τ(γ) + τ(γ′) ≤ τ(x, vn1) + τ(y, vn2) + 2ε .

Taking ε→ 0,

τ(x, vn2) + τ(y, vn1) ≤ τ(x, vn1) + τ(y, vn2). (3.13)

We can rearrange the terms in (3.13) to find that

Bn2(x, y) ≤ Bn1(x, y).

Since Bn(x, y) is a sequence bounded below by −τ(x, y), limBn(x, y) exists.

We now move on to general x, y ∈ V and prove the limit in (3.11) exists. We

will need a few geometric notions. Let α denote the vertex set of a finite, connected

subgraph of (V,E) which contains some vi. Denote by (V ′, E ′) the graph formed by

setting V ′ = V \ α and letting E ′ be formed from E by removing every edge with an

endpoint in α. The graph (V ′, E ′) may have multiple components, but the following

claim allows us to find a single component defining the Busemann function.

Claim 3.4.3. There exists a component (V ,E) of (V ′, E ′) and an M <∞ such that,

for all n > M, vn ∈ V . Moreover, (V ,E) is formed from (Z2, E2) by the removal of

edges dual to a doubly infinite, self-avoiding path Γ in the dual lattice.

Proof. Note that if vn 6= vn+1, then there exists a path in (V,E) between vn and vn+1

of Euclidean length at most two. Since ‖vn‖1 →∞, we can choose M such that

dist({vn}n>M , α) ≥ 2,
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where dist(·, ·) is the (V,E) graph distance. Then {vn}n>M must all lie in one com-

ponent of (V ′, E ′), which we denote by (V ,E).

It remains to show that (V ,E) can be formed from (Z2, E2) by cutting along a

doubly infinite, loop-free dual path Γ. By Proposition 3.9.1 in Section 3.9.1, it suffices

to show that both V and Z2 \ V are infinite and connected (as subsets of Z2). Both

claims are true for V . Moreover, Z2 \ V is infinite, since it contains V c. Because α is

connected and contains a point of {vi}i, we see that Z2 \ V is connected; it consists

of the union of α, V c, and the sites of V which were only reachable from the large

vn’s via sites of α (see Figure 3.2). Therefore, by the above, the boundary between

(V ,E) and G is a doubly infinite self-avoiding dual path, proving the claim.

We note that, by Proposition 3.4.1 and the linearity of the Busemann function,

we need only prove the existence of the limit in (3.11) when y /∈ {vi}i but x is some

vm (which can be chosen as a function of y). Fix y, and denote by α the vertex set

of some (vertex self-avoiding, finite) path in (V,E) which starts at a vertex adjacent

to y and ends at a vertex w ∈ {vi}i. Form the graph (V ,E) as in Claim 3.4.3; denote

by Γ the doubly-infinite dual path whose existence is established in the claim, and

define {v̄i}i analogously to {vi}i. We may choose an orientation of {v̄i}i such that the

following holds. There exists κ ∈ Z such that for all large n, vn = v̄n+κ.

If τ and Bn are the passage times and Busemann functions in (V ,E) (defined in

the obvious way), then

B(v̄i, v̄j) = lim
n→∞

Bn(v̄i, v̄j) (3.14)

exists for all i and j by Proposition 3.4.1. Fix m large enough that vn = v̄n+κ for

n ≥ m, and choose any n > m.

Note that y is adjacent to some vertex of α; therefore, if y ∈ V , then y = v̄l for

some l. We will want to apply the following lemma to both z = y and z = vm:
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Γ

y

α

Figure 3.2: Removal of the vertex set α from V . The enlarged red squares represent
α and the dotted purple path is the segment of Γ that does not lie in Γ. The vertices
v̄j for j ∈ J are depicted in purple.

Lemma 3.4.4. Let z ∈ V be such that either z ∈ {vi}i or z /∈ V . Denote by J ⊆ Z

the finite set of indices such that v̄j is at Euclidean distance one from α. Then

τ(z, vn) = min
j∈J
{τ(z, v̄j) + τ(v̄j, vn)} . (3.15)

Proof. Let ε > 0 and j ∈ J . Then find paths γ : z  v̄j in (V,E) and γ̄ : v̄j  vn in

(V ,E) such that τ(γ) ≤ τ(z, v̄j) + ε and τ(γ̄) ≤ τ(v̄j, vn) + ε. Build a path σ : z  vn

in (V,E) by concatenating γ with γ̄. Then

τ(z, vn) ≤ τ(σ) = τ(γ) + τ(γ̄) ≤ τ(z, v̄j) + τ(v̄j, vn) + 2ε .

Taking ε→ 0 and a minimum over j ∈ J gives the inequality ≤ in (3.15).

To prove the other inequality, let σ : z  vn in (V,E) be a path such that

τ(σ) ≤ τ(z, vn) + ε. The path σ must have a terminal segment γ̄ which lies in (V ,E)

from some v̄j0 to vn – this terminal segment may be equal to the singleton {vn}. Write
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γ for the segment of σ from z to the last meeting of v̄j0 . Then

min
j∈J
{τ(z, v̄j) + τ(v̄j, vn)} ≤ τ(z, v̄j0) + τ(v̄j0 , vn)

≤ τ(γ) + τ̄(γ̄) = τ(σ) ≤ τ(z, vn) + ε .

Taking ε→ 0 proves (3.15).

So, defining

ϕj(z, n) := τ(z, v̄j) + τ(v̄j, vn)− τ(v̄1, vn) ,

we see that τ(z, vn) = τ(v̄1, vn) + minj∈J ϕj(z, n). Moreover,

lim
n→∞

ϕj(z, n) =: ϕj(z)

exists by (3.14), and therefore so does

lim
n→∞

[τ(z, vn)− τ(v̄1, vn)] . (3.16)

Finally, we can use the above to show convergence of Bn(y, vm) as n→∞. Write

lim
n→∞

Bn(y, vm) = lim
n→∞

[τ(y, vn)− τ(vm, vn)]

= lim
n→∞

[τ(y, vn)− τ(v̄1, vn) + τ(v̄1, vn)− τ(vm, vn)]

= lim
n→∞

[τ(y, vn)− τ(v̄1, vn)]− lim
n→∞

[τ(vm, vn)− τ(v̄1, vn)] ;

Using (3.16) with z = y and z = vm completes the proof.

3.4.2 Geodesic Limits

Our aim in this subsection is to prove Theorem 3.3.2.
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The second statement of the theorem follows directly from the Section 3.2: each

directed path in Gn is a geodesic. So we prove the first statement and show that for

each directed edge (x, y) in ~E, with probability one the value of ηn((x, y)) is eventually

constant. Fix x ∈ V and choose m ∈ N such that, defining (with d(·, ·) the graph

distance in (V,E))

Sm = {w ∈ V : d(x,w) ≤ m}

∂Sm = {w ∈ V : d(x,w) = m+ 1} ,

we have Sm ∩ {vi}i 6= ∅. Setting α = Sm, we may apply Claim 3.4.3 to find (V ,E),

a component of the graph generated by removing α from (V,E) containing vn for all

large n. As before, it can be alternatively created by cutting (Z2, E2) along a doubly

infinite self-avoiding dual path Γ. We will decorate expressions with an overline when

they are meant for the model in (V ,E) (for instance, τ). For the remainder, we also

fix ω ∈ Ω such that for each x, y ∈ V , there is a geodesic from x to y.

For each ζ ∈ Tm := ∂Sm ∩ V , and n such that vn ∈ V , we define the quantity

fn(ζ) = τ(x, ζ) + τ(ζ, vn) . (3.17)

Let mn be the set of minimizers of fn.

Lemma 3.4.5. There exists m ⊂ Tm such that mn = m for all large n.

Proof. First, note that by Proposition 3.4.1, for ζ, ζ ′ ∈ Tm,

fn(ζ)− fn(ζ ′) = τ(x, ζ) + τ(ζ, vn)− τ(x, ζ ′)− τ(ζ ′, vn)

= τ(x, ζ)− τ(x, ζ ′) +Bn(ζ, ζ ′)

is eventually monotone. Suppose that ζ ∈ Tm satisfies ζ /∈ mn for infinitely many

n. Then we can find ζ ′ such that fn(ζ) − fn(ζ ′) > 0 for infinitely many n. By
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monotonicity this means that actually fn(ζ) − fn(ζ ′) > 0 for all large n and thus

ζ /∈ mn for all large n. This also implies that if ζ ∈ mn for infinitely many n then

ζ ∈ mn for all large n, completing the proof.

Given this lemma, the theorem will follow once we show that ηn((x, y)) = 1 if and

only if {x, y} is in a geodesic from x to a vertex of mn. Note that Tm is equal to the

set of vertices in V at Euclidean distance one from Sm. Applying Lemma 3.4.4 with

z = x, any ζ ∈ Tm satisfies

ζ ∈ mn if and only if fn(ζ) = τ(x, vn) .

So suppose first that ηn((x, y)) = 1; then {x, y} is in a geodesic γ from x to vn. γ has

a last intersection ζ with Tm. Then the segment γ̄ of γ from this intersection to vn

has

τ(ζ, vn) = τ(γ̄) ≥ τ(ζ, vn) .

But τ(ζ, vn) ≥ τ(ζ, vn), so τ(γ̄) = τ(ζ, vn). Therefore

τ(x, vn) = τ(γ) = τ(x, ζ) + τ(γ̄) = τ(x, ζ) + τ̄(ζ, vn) = fn(ζ) ,

giving ζ ∈ mn. Furthermore the segment of γ up to the last intersection with ζ is a

geodesic from x to ζ that contains {x, y}.

Conversely, suppose that {x, y} is in a geodesic γ1 from x to a vertex ζ of mn; we

will show that ηn((x, y)) = 1. Choose γ2 as any geodesic from ζ to vn. Concatenate

them to form a path γ from x to vn. We compute

τ(γ) = τ(γ1) + τ(γ2) = τ(x, ζ) + τ(ζ, vn) ≤ τ(x, ζ) + τ(ζ, vn) = fn(ζ) .
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However since ζ ∈ mn, fn(ζ) = τ(x, vn), so τ(γ) ≤ τ(x, vn). The opposite inequality

holds because γ : x  vn, so γ is a geodesic from x to vn. It remains to show that

τ(x, vn) ≥ τ(y, vn). But this holds because y appears in γ after the first appearance

of x. Therefore if we write σ for the segment of γ from the first intersection with y

to vn, then

τ(x, vn) = τ(γ) ≥ τ(σ) = τ(y, vn) .

3.5 Subsequential limits on Z2: Construction

We would like to replicate the success of the limit construction on fractional planes,

now in the case that (V,E) = (Z2, E2). Unfortunately, without the “paths crossing”

tool provided by the boundary, we are unaware of any way to show that such a limit

exists. We instead are forced to construct a limiting graph by use of subsequences.

However, because (V,E) is now highly symmetric, our limiting graph will inherit these

symmetry properties. From these, much can be deduced about limiting geodesics in

the graph.

Our ultimate goal is to prove Theorems 3.3.3 and 3.3.8. These will be derived

over the next sections after a period of tool-building, in which we construct a general

framework for dealing with subsequential limits of geodesic graphs and Busemann

functions. In this section, we construct the aforementioned framework and prove

some of its basic properties.

For the remainder of this section, we assume that (V,E) is Z2 and P is a measure

satisfying A1 or A2.

We will choose a one-parameter family of lines Lα = L+αv for v a normal vector

to L and consider the Busemann functions BLα(x, y). The main question is whether

or not the limit

lim
α→∞

BLα(x, y) (3.18)
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exists for x, y ∈ Z2. If one could show this, then one could prove many results

about FPP, for instance, that infinite geodesics with an asymptotic direction always

exist. Under an assumption of uniformly positive curvature of the limit shape B and

exponential moments for the common distribution of the ωe’s (in the case that P is

a product measure) Newman [76] has shown the existence of this limit for Lebesgue-

almost every unit vector v.

We will try to overcome the difficulty of existence of limits (3.18) by enlarging

the space to work with subsequential limits in a systematic way. This technique is

inspired by work [6, 7] on ground states of short-range spin glasses.

3.5.1 Definition of µ

We begin by assigning a space for our passage times. Let Ω1 = RZ2
be a copy of

Ω. A sample point in Ω1 we call ω as before. Our goal is to enhance this space to

keep track of Busemann functions and geodesic graphs. We will take limits in a fixed

direction, so for the remainder of this section, let $ ∈ ∂B and let g$ be any linear

functional on R2 that takes its maximum on B at $ with g$($) = 1. The nullspace

of g$ is then a translate of a supporting line for B at $. For α ∈ R, define

Lα =
{
x ∈ R2 : g$(x) = α

}
.

For future reference, we note the inequality

for all x ∈ R2, g$(x) ≤ g(x) . (3.19)

It clearly holds if x 6= 0. Otherwise since x/g(x) ∈ B, 1 ≥ g$(x/g(x)) = g$(x)/g(x).

Given α ∈ R and ω ∈ Ω1, write Bα(x, y)(ω) = BLα(x, y)(ω). Define the space

Ω2 = (R2)Z
2

with the product topology and Borel sigma-algebra and the Busemann
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increment configuration Bα(ω) ∈ Ω2 as

Bα(ω) =
(
Bα(v, v + e1), Bα(v, v + e2)

)
v∈Z2 .

We also consider directed graphs of geodesics. These are points in a directed graph

space Ω3 = {0, 1}~E2 , where ~E2 is the set of oriented edges 〈x, y〉 of Z2, and we use

the product topology and Borel sigma-algebra. For η ∈ Ω3, write G = G(η) for the

directed graph induced by the edges e such that η(e) = 1. Using the definition from

Section 3.2

ηα(ω) = ηLα(ω) ∈ Ω3 and Gα(ω) = G(ηα(ω)) for α ∈ R .

Set Ω̃ = Ω1 × Ω2 × Ω3, equipped with the product topology and Borel sigma-

algebra;

(ω,Θ, η) = (ω(e), θ1(x), θ2(x), η(f) : e ∈ E2, x ∈ Z2, f ∈ ~E2)

denotes a generic element of the space Ω̃. Define the map

Φα : Ω1 −→ Ω̃ by ω 7→ (ω,Bα(ω), ηα(ω)) . (3.20)

Because Φα is measurable, we can use it to push forward the distribution P to a

probability measure µα on Ω̃. Given the family (µα) and n ∈ N, we define the

empirical average

µ∗n (·) :=
1

n

∫ n

0

µα (·) dα. (3.21)

To prove that this defines a probability measure, one must show that for each mea-

surable A ⊆ Ω̃, the map α 7→ µα(A) is Lebesgue-measurable. The proof is deferred

to Section 3.9.3.
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From Bα(x, y) ≤ τ(x, y), the sequence (µ∗n)∞n=1 is seen to be tight and thus has

a subsequential weak limit µ. We will call the marginal of µ on Ω2 a Busemann

increment distribution and the marginal on Ω3 a geodesic graph distribution. It will be

important to recall the Portmanteau theorem, a basic result about weak convergence.

The following are equivalent if (νk) is a sequence of Borel probability measures on a

metric space X:

lim
k→∞

νk → ν weakly

lim sup
k→∞

νk(A) ≤ ν(A) if A is closed (3.22)

lim inf
k→∞

νk(A) ≥ ν(A) if A is open . (3.23)

(See, for example, [57, Theorem 3.25].) Because Ω̃ is metrizable, these statements

apply.

In this section and the next, we prove general properties about the measure µ and

focus on the marginal on Ω2. In Sections 3.7 and 4.5 we study the marginal on Ω3

and in Section 3.8 relate results back to the original FPP model. It is important to

remember that µ depends among other things not only on $, but on the choice of the

linear functional g$. We will suppress mention of $ in the notation. Furthermore we

will use µ to represent the measure and also its marginals. For instance, if we write

µ(A) for an event A ⊆ Ω2 we mean µ(Ω1 × A× Ω3).

3.5.2 Translation invariance of µ.

We will show that µ inherits translation invariance from P. The natural translations

T̃m, m = 1, 2 act on Ω̃ as follows:

[
T̃m(ω,Θ, η)

]
(e, x, f) = (ωe−em , θ1(x− em), θ2(x− em), η(f − em)) .
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Here, for example, we interpret e− em for the edge e = (y, z) as (y − em, z − em).

Lemma 3.5.1. For any α ∈ R and m = 1, 2, µα ◦ T̃m = µα+g$(em).

Proof. Let A be a cylinder event for the space Ω̃ of the form

A =
{
ωei ∈ Bi, θrj(xj) ∈ Cj, η(fk) = ak : i = 1, . . . , l, j = 1, . . . ,m, k = 1, . . . , n

}
,

where each Bi,Cj is a (real) Borel set with ak ∈ {0, 1}, each rj ∈ {1, 2}, and each

ei ∈ E2, xj ∈ Z2 and fk ∈ ~E2. We will show that for m = 1, 2,

µα

(
T̃−1
m A

)
= µα+g$(em)(A) . (3.24)

Such A generate the sigma-algebra so this will imply the lemma. For m ∈ {1, 2},

T̃−1
m (A) =

{
ωei−em ∈ Bi, θrj(xj − em) ∈ Cj, η(fk − em) = ak

}
.

Rewriting µα(·) = P(Φ−1
α (·)) and using the definition of Φα (3.20),

µα(T̃−1
m (A)) = P

(
ωei−em ∈ Bi, Bα(xj − em, xj − em + erj) ∈ Cj, ηα(fk − em)(ω) = ak

)
.

Note that translation invariance of P allows to shift the translation by em from the

arguments of ω, Bα and ηα to the position of the line Lα. We have equality in

distribution:

ωe−em =
d
ωe, Bα(x− em, y − em) =

d
Bβ(x, y) and ηα(e− em) =

d
ηβ(e) ,

where β = α + g$(em). In fact, using the translation covariance statements (3.2),

(3.9) and (3.7), equality of the above sort holds for the joint distribution of the ω’s,
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Busemann increments and graph variables appearing in the event A. This proves

(3.24).

Proposition 3.5.2. µ is invariant under the translations T̃m, m = 1, 2.

Proof. Let f be a continuous function (bounded by D ≥ 0) on the space Ω̃, and fix

ε > 0. Choose an increasing sequence (nk) such that µ∗nk → µ weakly as k → ∞.

We can then find k0 such that |µ(f) − µ∗nk(f)| < ε/3 for k > k0. By Lemma 3.5.1,

µα ◦ T̃m = µα+g$(em) for m = 1, 2. Therefore

[
µ∗nk ◦ T̃m

]
(f) =

1

nk

∫ nk+g$(em)

g$(em)

µα (f) dα

⇒
∣∣∣[µ∗nk ◦ T̃m] (f)− µ∗nk (f)

∣∣∣ ≤ 1

nk

∣∣∣∣∣
∫ g$(em)

0

µα (f) dα

∣∣∣∣∣+
1

nk

∣∣∣∣∣
∫ nk+g$(em)

nk

µα (f) dα

∣∣∣∣∣
≤ 2g$(em)D

nk
→ 0 as k →∞ .

As T̃m is a continuous on Ω̃, (µ∗nk ◦ T̃m) converges weakly to µ ◦ T̃m, so there exists

k1 > k0 such that |µ ◦ T̃m(f) − µ∗nk ◦ T̃m(f)| < ε/3 for all k > k1, and k2 > k1 with

2g$(em)D/nk2 < ε/3. So |µ(f)− µ ◦ T̃m(f)| < ε for all ε > 0, giving µ = µ ◦ T̃m.

3.5.3 Reconstructed Busemann functions

We wish to reconstruct an “asymptotic Busemann function” f : Z2 → R by summing

the Busemann increments of Θ ∈ Ω2. That Θ is almost surely curl-free allows the

construction to proceed independent of the path we sum over. For this we need some

definitions.
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Given Θ ∈ Ω2, x ∈ Z2 and z ∈ Z2 with ‖z‖1 = 1 we set θ(x, z) = θ(x, z)(Θ) equal

to

θ(x, z) =



θ1(x) z = e1

θ2(x) z = e2

−θ1(x− e1) z = −e1

−θ2(x− e2) z = −e2

.

For any finite lattice path γ we write its vertices in order as x1, . . . , xn and set

f(γ) = f(γ)(Θ) =
n−1∑
i=1

θ(xi, xi+1 − xi) .

Lemma 3.5.3. With µ-probability one, f vanishes on all circuits:

µ (f(γ) = 0 for all circuits γ) = 1 .

Proof. Pick a circuit γ and let A ⊆ Ω̃2 denote the event {Θ : f(γ) = 0}. Choose an

increasing sequence (nk) such that µ∗nk → µ weakly. For fixed γ, f(γ) is a continuous

function on Ω̃, so the event A is closed, giving µ(A) ≥ lim supk µ
∗
nk

(A) by (3.22) .

However, for each α, by additivity of Bα(·, ·) (see (3.8)),

µα(A) = P

(
n∑
i=1

Bα(xi, xi+1) = 0

)
= 1 .

Thus µ∗n(A) = 1 for all n and µ(A) = 1. There are countably many γ’s so we are

done.

Using the lemma we may define the reconstructed Busemann function. Fix a

deterministic family of finite paths {γx,y}, one for each pair (x, y) ∈ Z2 and define

f(x, y) = f(x, y)(Θ) := f(γx,y) .
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Although we use fixed paths γx,y, this is only to ensure that f is a continuous function

on Ω̃. Actually, for any Θ in the µ-probability one set of Lemma 3.5.3 and vertices

x, y ∈ Z2 we could equivalently define f(x, y) = f(γ), where γ is any finite lattice

path from x to y. To see that it would then be well-defined (that is, only a function

of x, y and the configuration Θ) is a standard argument. If we suppose that γ1 and

γ2 are finite lattice paths from x to y and Θ is given as above, the concatenation of

γ1 with γ2 (traversed in the opposite direction) is a circuit and thus has f -value zero.

However, by definition, this is the difference of f(γ1) and f(γ2) and proves the claim.

We now give some properties about asymptotic Busemann functions that come

over from the original model. The third says that f retains translation covariance.

This will allow us to prove the existence of almost-sure limits using the ergodic the-

orem in the next section.

Proposition 3.5.4. The reconstructed Busemann function satisfies the following

properties for x, y, z ∈ Z2.

1.

f(x, y) + f(y, z) = f(x, z) µ-almost surely . (3.25)

2. For m = 1, 2

f(x, y)(T̃mΘ) = f(x− em, y − em)(Θ) µ-almost surely . (3.26)

3.

f(x, y) : Ω̃→ R is continuous . (3.27)

4. f is bounded by τ :

|f(x, y)| ≤ τ(x, y)) µ-almost surely . (3.28)

83



Proof. The first two properties follow from path-independence of f and the third

holds because f is a sum of finitely many Busemann increments, each of which is a

continuous function. We show the fourth property. For x, y ∈ Z2, the event

{(ω,Θ) : |f(x, y)(Θ)| − τ(x, y)(ω) ≤ 0}

is closed because |f(x, y)|−τ(x, y) is continuous. For every α, (3.10) gives |Bα(x, y)| ≤

τ(x, y) with P-probability one, so the above event has µα-probability one. Taking

limits and using (3.22), µ(|f(x, y)(Θ)| ≤ τ(x, y)(ω)) = 1.

3.5.4 Expected value of f

In this section we compute Eµf(0, x) for all x ∈ Z2. The core of our proof is a

argument from Hoffman [51], which was developed using an averaging argument due

to Garet-Marchand [41]. The presentation we give below is inspired by that of Gouéré

[42, Lemma 2.6]. In fact, the proof shows a stronger statement. Without need for a

subsequence,

Eµ∗nf(0, x)→ g$(x) .

Theorem 3.5.5. For each x ∈ Z2, Eµf(0, x) = g$(x).

Proof. We will use an elementary lemma that follows from the shape theorem.

Lemma 3.5.6. The following convergence takes place almost surely and in L1(P):

τ(0, Lα)

α
→ 1 as α→∞ .

Proof. Since α$ ∈ Lα,

lim sup
α→∞

τ(0, Lα)

α
≤ lim

α→∞

τ(0, α$)

α
= 1 .
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On the other hand, given ε > 0 and any ω for which the shape theorem holds, we

can find K such that for all x ∈ R2 with ‖x‖1 ≥ K, τ(0, x) ≥ g(x)(1− ε). So if α is

large enough that all x ∈ Lα have ‖x‖1 ≥ K, then we can use (3.19):

τ(0, Lα) = min
x∈Lα

τ(0, x) ≥ (1− ε) min
x∈Lα

g(x) ≥ (1− ε)α .

Consequently, lim infα→∞ τ(0, Lα)/α ≥ 1, giving almost sure convergence in the

lemma.

For L1 convergence, note 0 ≤ τ(0, Lα)/α ≤ τ(0, α$)/α, so the dominated con-

vergence theorem and L1 convergence of point to point passage times completes the

proof.

For any x ∈ Z2 and integer n ≥ 1, use the definition of µ∗n to write

Eµ∗n(f(−x, 0)) =
1

n

[∫ n

0

Eτ(−x, Lα) dα−
∫ n

0

Eτ(0, Lα) dα

]
.

Using translation covariance of passage times,

∫ n

0

Eτ(−x, Lα) dα =

∫ n

0

Eτ(0, Lα+g$(x)) dα =

∫ n+g$(x)

g$(x)

Eτ(0, Lα) dα .

Therefore

Eµ∗n(f(−x, 0)) =
1

n

[∫ n+g$(x)

n

Eτ(0, Lα) dα−
∫ g$(x)

0

Eτ(0, Lα) dα

]
. (3.29)

Choose (nk) to be an increasing sequence such that µ∗nk → µ weakly. We claim

that

Eµ∗nkf(−x, 0)→ Eµf(−x, 0) . (3.30)
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To prove this, note that for any R > 0, if we define the truncated variable

fR(−x, 0) = sgnf(−x, 0) min{R, |f(−x, 0)|} ,

then continuity of f on Ω̃ gives Eµ∗nkfR(−x, 0) → EµfR(−x, 0). To extend this to

(3.30), it suffices to prove that for each ε > 0, there exists R > 0 such that

lim sup
k→∞

Eµ∗nk |f(−x, 0)|I(|f(−x, 0)| ≥ R) < ε , (3.31)

where I(A) is the indicator of the event A. Because Eµ∗nkf(−x, 0)2 ≤ Eτ(−x, 0)2 <∞

for all k by (3.4), condition (3.31) follows from the Cauchy-Schwarz inequality. This

proves (3.30).

Combining (3.29) and (3.30), we obtain the formula

Eµf(−x, 0) = lim
k→∞

1

nk

∫ nk+g$(x)

nk

Eτ(0, Lα) dα = lim
k→∞

∫ g$(x)

0

Eτ(0, Lα+nk)

nk
dα .

(3.32)

By Lemma 3.5.6, for each α between 0 and g$(x),

lim
k→∞

Eτ(0, Lα+nk)

nk
= lim

k→∞

Eτ(0, Lα+nk)

α + nk
· α + nk

nk
= 1 .

So using Eτ(0, Lα+nk) ≤ Eτ(0, L2nk) for large k, we can pass the limit under the

integral in (3.32) to get Eµf(0, x) = Eµf(−x, 0) = g$(x).

3.6 Subsequential limits on Z2: Asymptotics

We continue the analysis of the subsequential limiting distribution µ constructed in

the preceding section; we will continue to assume A1 or A2 throughout. In this

section we study the asymptotic behavior of the reconstructed Busemann function

f . We will see that f is asymptotically a projection onto a line and if the boundary
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of the limit shape is differentiable at $, we give the explicit form of the hyperplane.

Without this assumption we show that the line is a translate of a supporting line for

B at $.

One of the advantages of constructing f from our measure µ is that we can use

the ergodic theorem and translation invariance to show the existence of limits. This

gives us almost as much control on the Busemann function as we would have if we

could show existence of the limit in (3.18). If we knew this, we would not need

differentiability at $ to deduce the form of the random hyperplane for f ; we could

derive it from ergodicity and symmetry.

3.6.1 Radial limits

In this section we will prove the existence of radial limits for f . This is the first

step to deduce a shape theorem, which we will do in the next section. We extend

the definition of f to all of R2 × R2 in the usual way: f(x, y) is defined as f(x̃, ỹ)

where x̃ and ỹ are the unique points in Z2 such that x ∈ x̃ + [−1/2, 1/2)2 and

y ∈ ỹ + [−1/2, 1/2)2.

Proposition 3.6.1. Let q ∈ Q2. Then

ρq := lim
n→∞

1

n
f(0, nq) exists µ-almost surely .

Proof. Choose M ∈ N such that Mq ∈ Z2. We will first show that

lim
n→∞

1

Mn
f(0, nMq) exists µ-almost surely . (3.33)

To do this, we note that since τ(0,Mq) ∈ L2(µ) (from (3.4)), it is also in L1. Using

(3.28), f(0,Mq) ∈ L1(µ) as well. Define the map T̃q on Ω2 as

[
T̃qΘ

]
(x) = (θ1(x−Mq), θ2(x−Mq)) .
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This is a composition of maps T̃m, m = 1, 2, so it is measure-preserving. By (3.25)

and (3.26),

f(0, nMq)(Θ) =
n∑
i=1

f((i− 1)Mq, iMq)(Θ) =
n−1∑
i=0

f(0,Mq)(T̃−iq (Θ)) .

Applying the ergodic theorem finishes the proof of (3.33).

To transform (3.33) into the statement of the proposition we need to “fill in the

gaps.” Choose M as above and for any n pick an ∈ Z such that anM ≤ n < (an+1)M .

Then

∣∣∣∣f(0, nq)

n
− f(0, anMq)

anM

∣∣∣∣ ≤ ∣∣∣∣f(0, anMq)

anM

∣∣∣∣ ∣∣∣∣1− anM

n

∣∣∣∣+
1

n
|f(0, anMq)− f(0, nq)| .

The first term on the right converges to 0. To show the same for the second term

we use the fact that f(x, y) ∈ L1(µ,Ω2) for all x, y ∈ R2. Indeed, the difference

f(0, anMq) − f(0, nq) is equal to f(nq, anMq), which has the same distribution as

f(0, (anM − n)q). For each ε > 0,

∑
n≥1

µ(|f(0, (n− anM)q)| ≥ εn) ≤ 1

ε

M∑
i=1

‖f(0,−iq)‖L1(µ) <∞ .

So only finitely many of the events {|f(0, anMq)− f(0, nq)| ≥ εn} occur and we are

done.

The last proposition says that for each q there exists a random variable ρq =

ρ(q,Θ) such that µ-almost surely, the above limit equals ρq. Assume now that we fix

Θ such that this limit exists for all q ∈ Q2. We will consider ρq as a function of q.

The next theorem states that ρq represents a random projection onto a vector %.

Theorem 3.6.2. There exists a random vector % = %(Θ) such that

µ
(
ρq = % · q for all q ∈ Q2

)
= 1 .
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Furthermore % is translation invariant:

%(T̃mΘ) = %(Θ) for m = 1, 2 .

Proof. We will show that q 7→ ρq is a (random) linear map on Q2. Specifically, writing

an arbitrary q ∈ Q2 as (q1, q2), we will show that

µ
(
ρq = q1ρe1 + q2ρe2 for all q ∈ Q2

)
= 1 . (3.34)

Then, setting % = (ρe1 , ρe2), we will have proved the theorem.

The first step is to show translation invariance of ρq. Given q ∈ Q2, let M ∈ N be

such that Mq ∈ Z2. For m = 1, 2, translation covariance implies

|f(0, nMq)(T̃mΘ)− f(0, nMq)(Θ)| = |f(−em, nMq − em)(Θ)− f(0, nMq)(Θ)|

≤ |f(−em, 0)(Θ)|+ |f(nMq − em, nMq)(Θ)| .

Furthermore, given δ > 0,

∑
n

µ (|f(nMq − em, nMq)| > δn) ≤
∑
n

µ (|f(0, em)| > δn) ≤ 1

δ
‖f(0, em)‖L1(µ) <∞ .

Therefore only finitely many of the events {|f(nMq − em, nMq)| > δn} occur and

ρq(T̃mΘ) = lim
n→∞

f(0, nMq)(T̃mΘ)

nM
= lim

n→∞

f(0, nMq)(Θ)

nM
= ρq(Θ) almost surely .

To complete the proof we show that q 7→ ρq is almost surely additive. Over Q,

this suffices to show linearity and thus (3.34). Let q1, q2 ∈ Q2 and choose M ∈ N with

Mq1,Mq2 ∈ Z2. By Proposition 3.6.1, for ε > 0, we can pick N such that if n ≥ N

then the following hold:
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1. µ (|(1/nM)f(0, nMq1)− ρq1| > ε/2) < ε/2 and

2. µ (|(1/nM)f(0, nMq2)− ρq1| > ε/2) < ε/2.

Writing T̃−q(Θ)(x) = Θ(x+Mq) and using translation invariance of ρq2 ,

f(0, nM(q1 + q2))(Θ)− nMρq1(Θ)− nMρq2(Θ)

= f(0, nMq1)(Θ)− nMρq1(Θ) + f(0, nMq2)(T̃ n−q1Θ)− nMρq2(T̃
n
−q1Θ) .

So by translation invariance of µ and items 1 and 2 above,

µ(|(1/nM)f(0, nM(q1 + q2))− (ρq1 + ρq2)| > ε)

≤ µ(|(1/nM)f(0, nMq1)− ρq1| > ε/2) + µ(|(1/nM)f(0, nMq2)− ρq2| > ε/2) < ε .

Thus (1/nM)f(0, nM(q1 + q2)) converges in probability to ρq1 + ρq2 . By Proposi-

tion 3.6.1, this equals ρq1+q2 .

3.6.2 A shape theorem

We will now upgrade the almost-sure convergence in each rational direction, from

Proposition 3.6.1, to a sort of shape theorem for the Busemann function f . The major

difference is that, unlike in the usual shape theorem of first-passage percolation, the

limiting shape of f is allowed to be random.

Theorem 3.6.3. For each δ > 0,

µ (|f(0, x)− x · %| < δ‖x‖1 for all x with ‖x‖1 ≥M and all large M) = 1. (3.35)

As in the proofs of the usual shape theorems, we will need a lemma which allows us

to compare f in different directions. A result showing that with positive probability,

f(0, x) grows at most linearly in ‖x‖ will be sufficient for our purposes. The fourth

90



item of Proposition 3.5.4 allows us to derive such a bound by comparison with the

usual passage time τ(0, x).

Lemma 3.6.4. There exist deterministic K < ∞ and pg > 0 depending only on the

passage time distribution such that

P

sup
x∈Z2

x 6=0

τ(0, x)

‖x‖1

≤ K

 = pg > 0.

Proof. By the first-passage shape theorem, there exists λ < ∞ and T, pg > 0 such

that

P
(
∀t ≥ T, B(t)/t ⊇ [−λ, λ]2

)
= pg .

(Here we are using (3.5).) Choosing K = T + 2/λ completes the proof.

The development of the shape theorem from this point is similar to that of the

usual first-passage shape theorem for ergodic passage time distributions.

We will say that z ∈ Z2 is “good” for a given outcome if

sup
x∈Z2

x 6=z

τ(z, x)

‖x− z‖1

≤ K .

Note that P(z is good) = pg > 0 for all z ∈ Z2.

Lemma 3.6.5. Let ζ be a nonzero vector with integer coordinates, and let zn = nζ.

Let (nk) denote the increasing sequence of integers such that znk is good. P-almost

surely, (nk) is infinite and limk→∞(nk+1/nk) = 1.

Proof. The ergodic theorem shows that (nk) is a.s. infinite. Let Bi denote the event

that zi is good. By another application of the ergodic theorem,

k

nk
=

1

nk

nk∑
i=1

1Bi −→ pg a.s. (3.36)
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Thus,

nk+1

nk
=

(
nk+1

k + 1

)(
k

nk

)(
k + 1

k

)
−→ 1 a.s.,

since the first and second factors converge to pg and p−1
g by (3.36).

In what follows, we will use the fact that there is a positive density of good

sites to show convergence of f(0, z)/‖z‖1 in all directions. Given the convergence of

f(0, nq)/n for each rational q, we will find enough good sites along lines close to nq

to let us to bound the difference |f(0, nq) − f(0, z)|. To describe this procedure, we

need to make several definitions. Call a vector ζ satisfying the a.s. event of Lemma

3.6.5 a good direction. We will extend this definition to ζ ∈ Q2: such a ζ will be

called a good direction if mζ is, where m is the smallest natural number such that

mζ ∈ Z2.

By countability, there exists a probability one event Ω′′ on which each ζ ∈ Q2

is a good direction. For each integer M ≥ 1, let VM = {x/M : x ∈ Z2} , and let

V = ∪M≥1VM . Set B = {z ∈ R2 : z ∈ V, ‖z‖1 = 1} and note that B is dense in the

unit sphere of R2 (with norm ‖ · ‖1). By Theorem 3.6.2, we can find a set Ω̂ ⊆ Ω2

with µ(Ω̂) = 1 such that, for all Θ ∈ Ω̂,

lim
n→∞

1

n
f(nz0)(Θ) = z0 · %(Θ) for all z0 ∈ B . (3.37)

Proof of Theorem 3.6.3. Assume that there exist δ > 0 and an event Dδ with µ(Dδ) >

0 such that, for every outcome in Dδ, there are infinitely many vertices x ∈ Z2 with

|f(x)− x · %| ≥ δ‖x‖1. Then Dδ∩Ω̂∩Ω′′ is nonempty and so it contains some outcome

(ω,Θ, η). We will derive a contradiction by showing that (ω,Θ, η), by way of its

membership in these three sets, has contradictory properties.
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By compactness of the `1 unit ball, we can find a sequence {xn} in Z2 with

‖xn‖ → ∞ and y ∈ R2 with ‖y‖1 = 1 such that xn/‖xn‖1 → y and

∣∣∣∣f(xn)[Θ]

‖xn‖1

− y · %[Θ]

∣∣∣∣ > δ

2
for all n . (3.38)

Let δ′ > 0 be arbitrary (we will ultimately take it to be small). Our first goal is

the approximation of xn by multiples of some element of B. Choose z ∈ B such that

‖z − y‖1 < δ′ and let {nk} denote the increasing sequence of integers such that nkz

is good. (Here if z /∈ Z2, then z being good means that Mz is good, where Mz was

chosen after Lemma 3.6.5 to be Z2. Therefore (nk) would then be of the form (Mlk)

for some increasing sequence lk.) Note that nk+1/nk → 1 by Lemma 3.6.5 so we are

able to choose a K > 0 such that

nk+1 < (1 + δ′)nk and

∣∣∣∣f(0, nkz)

nk
− % · z

∣∣∣∣ ≤ δ′ for all k > K . (3.39)

By the triangle inequality, the left-hand side of (3.38) is bounded above by

∣∣∣∣f(0, xn)

‖xn‖1

− f(0, nkz)

‖xn‖1

∣∣∣∣+

∣∣∣∣f(0, nkz)

‖xn‖1

− f(0, nkz)

nk

∣∣∣∣+

∣∣∣∣f(0, nkz)

nk
− % · z

∣∣∣∣+ |% · z − % · y|

(3.40)

for arbitrary n and nk. Choose some N0 such that ‖xn − ‖xn‖1 y‖1 ≤ δ′‖xn‖1 for all

n > N0, and note that

‖xn − ‖xn‖1z‖1 ≤ ‖xn − ‖xn‖1y‖1 + ‖xn‖1 ‖y − z‖1 ≤ 2‖xn‖1δ
′ for n > N0 . (3.41)

For any n, let k = k(n) be the index such that nk+1 ≥ ‖xn‖1 > nk. If n is so large

that k(n) > K, then ‖ ‖xn‖1z − nkz‖1 < δ′‖xn‖1. Combining this observation with
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(3.41) gives

‖xn − nkz‖1 ≤ 3δ′‖xn‖1 for ‖xn‖1 ∈ (nk, nk+1] when k = k(n) > K . (3.42)

For the remainder of the proof, fix any n > N0 such that k = k(n) > K, so that

(3.42) holds. We will now control the terms in (3.40), working our way from right to

left. The rightmost term may be bounded by noting

|% · z − % · y| = |% · (z − y)| ≤ ‖z − y‖2‖%‖2 ≤ δ′‖%‖2 .

The second term from the right is bounded above by δ′ by (3.39). To bound the third

term from the right, note that nk < ‖xn‖1 ≤ nk+1, so by (3.39),

∣∣∣∣f(0, nkz)

‖xn‖1

− f(0, nkz)

nk

∣∣∣∣ =

∣∣∣∣f(0, nkz)

nk

∣∣∣∣ (1− nk
‖xn‖1

)
≤ [|% · z|+ δ′]

(
1− 1

1 + δ′

)
.

It remains to bound the first term of (3.40). To do this, note that by (3.42),

|f(0, xn)− f(0, nkz)| = |f(nkz, xn)| ≤ τ(nkz, xn) ≤ K‖x− nkz‖1 ≤ 3Kδ′‖xn‖1 .

So ∣∣∣∣f(0, xn)

‖xn‖1

− f(0, nkz)

‖xn‖1

∣∣∣∣ ≤ 3Kδ′ .

Applying our estimates for each term in (3.40) to the left side of (3.38) gives

δ

2
≤ 3Kδ′ + (|% · z|+ δ′)

(
1− 1

1 + δ′

)
+ δ′ + δ′‖%‖2 .

Because this holds for all δ′ > 0, and because the right-hand side goes to zero as

δ′ → 0, we have derived a contradiction and proved the theorem.
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3.6.3 General properties of %

In this short section we study the random vector %. In the case that ∂B is differentiable

at $, the vector % is deterministic and we give the explicit form.

The main theorem of the section is below. It says that the line

L% := {x ∈ R2 : % · x = 1}

is µ-almost surely a supporting line for B at $.

Theorem 3.6.6. With µ-probability one, % ·$ = 1 and % · x ≤ 1 for all x ∈ B. Thus

L% is a supporting line for B at $.

This theorem has an important corollary. It follows directly from the fact that

there is a unique supporting line for B at points of differentiability of ∂B.

Corollary 3.6.7. If ∂B is differentiable at $ then

µ
(
% = (g$(e1), g$(e2))

)
= 1 .

Proof of Theorem 3.6.6. Using Theorem 3.5.5, we first find the expected value of % ·y

for y ∈ R2. We simply apply the dominated convergence theorem with the bound

|f(0,my)| ≤ τ(0,my). Letting ym ∈ Z2 be such that my ∈ ym + [−1/2, 1/2)2,

Eµ(% · y) = lim
m→∞

1

m
Eµf(0,my) = lim

m→∞
g$(ym/m) = g$(y) .

The theorem follows from this statement and

µ (x · % ≤ g(x) for all x ∈ B) = 1 . (3.43)
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Indeed, assuming this, we have

µ(% ·$ ≤ 1) = 1 and Eµ(% ·$) = g$($) = 1 ,

giving % · $ = 1 with µ-probability one. To prove (3.43), first take x ∈ Q2 ∩ B.

Then by (3.28), for all n, f(nx) ≤ τ(nx) with µ-probability one. Dividing by n and

taking limits with Proposition 3.6.1 and the shape theorem we get x · % ≤ g(x). For

non-rational x ∈ B we extend the inequality by almost sure continuity of both sides

in x.

3.7 Subsequential limits on Z2: Geodesic graphs

In this section we study the behavior of µ on Ω3. We will continue to assume A1 or A2

throughout this section. Given η ∈ Ω3 recall from Section 3.5.1 the definition of the

geodesic graph G of η as the directed graph induced by the edges e for which η(e) = 1.

In this section we prove a fundamental property about infinite directed paths in this

graph which relates them to the asymptotic Busemann function constructed from Θ.

3.7.1 Basic properties

We begin by showing that properties of ηα from Section 3.2 carry over to η. We use

some new notation. We say that y ∈ Z2 is connected to z ∈ Z2 in G (written y → z)

if there exists a sequence of vertices y = y0, y1, . . . , yn = z such that η(〈yk, yk+1〉) = 1

for all k = 0, . . . , n− 1. We say that a path in G is a geodesic (for the configuration

(ω,Θ, η)) if it is a geodesic in ω.

Proposition 3.7.1. With µ-probability one, the following statements hold for x, y, z ∈

Z2.

1. Each directed path in G is a geodesic.
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2. If x→ y in G then f(x, y) = τ(x, y).

3. If x→ z and y → z in G then f(x, y) = τ(x, z)− τ(y, z).

4. There exists an infinite self-avoiding directed path starting at x in G.

Proof. The third item follows directly from the second and additivity of f (from

(3.25)). For the first item, if γ is a deterministic finite directed path, write Aγ for the

event that all edges of γ are edges of G and

Bγ = Acγ ∪ (Aγ ∩ {γ is a geodesic}) .

The event in question equals the intersection over all finite γ’s of Bγ, so it suffices to

show that for each γ, µ(Bγ) = 1.

By part 1 of Proposition 3.2.1, for all α ∈ R the P-probability that all directed

paths in Gα(ω) are geodesics is 1. By pushing forward to Ω̃, for each α, µα(Bγ) = 1

and thus µ∗n(Bγ) = 1 for all n. Once we show that Bγ is a closed event, we will

be done, as we can then apply (3.22). To show this we note that the event that

a given finite path is a geodesic is a closed event. Indeed, letting γ1 and γ2 be

finite paths, the function τ(γ1) − τ(γ2) is continuous on Ω̃. Therefore the event

{ω ∈ Ω1 : τ(γ1) ≤ τ(γ2)} is closed. We then write

{γ1 is a geodesic} =
⋂
γ2

{τ(γ1) ≤ τ(γ2)} ,

where the intersection is over all finite paths γ2 with the same endpoints as those

of γ1. Thus {γ1 is a geodesic} is closed. Since Aγ depends on finitely many edge

variables η(e), it is closed and its complement is closed. Therefore Bγ is closed and

we are done.
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For item 2, we write γxy, any path from x to y in G, in order as x = x0, x1, . . . , xn =

y and use additivity of f :

f(x, y) =
n−1∑
i=0

f(xi, xi+1) .

For each i, xi → xi+1, and by item 1, γxy is a geodesic. This means that we only need

to show that if x and y are neighbors such that η(〈x, y〉) = 1 then f(x, y) = ω〈x,y〉,

the passage time of the edge between x and y. By part 2 of Proposition 3.2.1, for

each α, with P-probability one, if ηα(〈x, y〉) = 1 then Bα(x, y) = ω〈x,y〉. By similar

reasoning to that in the last item,

{η(〈x, y〉) = 0} ∪
(
{η(〈x, y〉) = 1} ∩ {f(x, y) = ω〈x,y〉}

)
is closed and since it has µα-probability 1 for all α, it also has µ-probability one.

We now argue for item 4. By translation-invariance we can just prove it for x = 0.

For n ≥ 1 let An ⊆ Ω3 be the event that there is a self-avoiding directed path starting

at 0 in G that leaves [−n, n]2. We claim that µ(An) = 1 for all n. Taking n → ∞

will prove item 4.

For each α > 0 so large that [−n, n]2 is contained on one side of Lα, let γ be a

geodesic from 0 to Lα. This path is contained in Gα. We may remove loops from γ

so that it is self-avoiding, and still a geodesic. It will also be directed in the correct

way: as we traverse the path from 0, each edge will be directed in the direction we

are traveling. So for all large α > 0, with P-probability one, there is a self-avoiding

directed path starting at 0 in Gα that leaves [−n, n]2. Thus µα(An) = 1 for all large α

and µ∗nk(An)→ 1 as k →∞. The indicator of An is continuous on Ω̃, as An depends

on η(f) for finitely many edges f , so µ(An) = 1.

Proposition 3.7.2. Assume A1’ or A2’. With µ-probability one, the following state-

ments hold.
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1. Each vertex in Z2 has out-degree 1 in G. Consequently from each vertex x

emanates exactly one infinite directed path Γx.

2. Viewed as an undirected graph, G has no circuits.

Proof. For x ∈ Z2, let Ax ⊆ Ω̃ be the event that η(〈x, y〉) = 1 for only one neighbor

y of x. Note that the indicator of Ax is a bounded continuous function, so since

µα(Ax) = 1 for all α such that x is not within Euclidean distance 1 of Lα (from part

1 of Proposition 3.2.2 – here Ŝ is contained in the set of vertices within distance 1 of

Lα) it follows that µ(Ax) = 1. For each z that is not a neighbor of x, η(〈x, z〉) = 0

with µα-probability one for all α. This similarly implies that in G with µ-probability

one, there is no edge between x and such a z.

To prove the second statement, fix any circuit C in Z2 and let AC be the event

that each edge of C is in G. Because there are no circuits in Gα with P-probability

one, we have µ∗n(AC) = 0 for all n. The indicator of AC is a continuous function on

Ω̃, so we may take limits and deduce µ(AC) = 0. There are a countable number of

circuits, so we are done.

3.7.2 Asymptotic directions

Recall the definition L% = {x ∈ R2 : x · % = 1} for the vector % = %(Θ) of Theo-

rem 3.6.2. Set

J% = {θ : L% touches B in direction θ} . (3.44)

The main theorem of this subsection is as follows.

Theorem 3.7.3. With µ-probability one, for all x ∈ Z2, the following holds. Each

directed infinite self-avoiding path in G which starts at x is asymptotically directed in

J%.

Proof. We will prove the theorem for x = 0. Assuming we do this, then using

translation invariance of µ and % it will follow for all x.
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Let εk = 1/k for k ≥ 1 and δ > 0. We will show that if S0 = {x ∈ Z2 : 0 → x in

G} then

for each k ≥ 1, µ(arg x ∈ (J%)εk for all but finitely many x ∈ S0) > 1− δ . (3.45)

Here we write (J%)εk for all angles θ with dist(θ, θ′) < εk for some θ′ ∈ J%. The line

L% only touches B in directions in J% so by convexity, vθ · % < 1 for all θ /∈ J%. Since

the set of angles not in (J%)εk is compact in [0, 2π) (using the metric dist), we can

find a random a ∈ (0, 1) with vθ · % < 1− a for all θ /∈ (J%)εk . We can then choose a

to be deterministic such that

µ (vθ · % < 1− a for all θ /∈ (J%)εk) > 1− δ/3 . (3.46)

By the shape theorem there exists M0 such that M ≥M0 implies

P(τ(0, x) ≥ g(x)(1− a/2) for all x with ‖x‖1 ≥M) > 1− δ/3 .

The marginal of µ on Ω1 is P so this holds with µ in place of P. By part 2 of

Proposition 3.7.1,

µ(f(x) ≥ g(x)(1− a/2) for all x with ‖x‖1 ≥M and 0→ x) > 1− δ/3 . (3.47)

Choose C > 0 such that ‖x‖1 ≤ Cg(x) for all x ∈ R2. This is possible by (3.5). By

Theorem 3.6.3, there exists M1 ≥M0 such that M ≥M1 implies

µ
(
|f(x)− x · %| < a

2C
‖x‖1 for all x with ‖x‖1 ≥M

)
> 1− δ/3 .
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This implies that for M ≥M1,

µ
(
|f(x)− x · %| < a

2
g(x) for all x with ‖x‖1 ≥M

)
> 1− δ/3 . (3.48)

We claim that the intersection of the events in (3.46), (3.47) and (3.48) implies

the event in (3.45). Indeed, take a configuration in the intersection of the three events

for some M ≥M1. For a contradiction, assume there is an x ∈ S0 with arg x /∈ (J%)εk

and ‖x‖1 ≥M . Then

(x/g(x)) · % < 1− a by (3.46) .

However, since the event in (3.47) occurs and ‖x‖1 ≥M ,

f(0, x) ≥ g(x)(1− a/2) .

Last, as the event in (3.48) occurs,

f(0, x) < x · %+
a

2
g(x) .

Combining these three inequalities,

g(x)(1− a/2) ≤ x · %+ (a/2)g(x) < g(x)(1− a) + (a/2)g(x) ,

or g(x)(1− a/2) < g(x)(1− a/2), a contradiction. This completes the proof.

3.8 Proof of results on Z2

In this section, we apply the subsequential limit construction of the past sections to

prove the claimed results about directional properties of geodesics on Z2.
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3.8.1 Proof of Theorem 3.3.3

Suppose that ∂B is differentiable at vθ = $ and construct the measure µ as in

Section 3.5.1. Using the notation of Theorem 3.7.3, we set

L% = {x ∈ R2 : x · % = 1} .

From the theorem, we deduce that with µ-probability 1, Γ0 is asymptotically directed

in J%. But by the assumption of differentiability, J% = Iθ with µ-probability 1 and

thus

µ (Γ0 is asymptotically directed in Iθ) = 1 . (3.49)

By Proposition 3.7.1, each finite piece of Γ0 is a geodesic, so Γ0 is an infinite geodesic.

Define Ω̂ ⊆ Ω1 as the set

Ω̂ = {ω ∈ Ω1 : µ(Γ0 is asymptotically directed in Iθ | ω) = 1} .

The inner probability measure is the regular conditional probability measure. The

set Ω̂ is measurable and because the marginal of µ on Ω1 is P, it satisfies P(Ω̂) = 1.

Further, for each ω ∈ Ω̂ there is an infinite geodesic from 0 which is asymptotically

directed in Iθ.

3.8.2 Proof of Theorem 3.3.8

In this section we assume either A1’ or A2’. Assume that the limit shape B has

uniformly positive curvature. Then the boundary ∂B cannot contain any straight

line segments. This implies that the extreme points ext(B) are dense in ∂B. Choose

some countable set D ⊆ ext(B) that is dense in ∂B. For any θ1 and θ2 with 0 <

dist(θ1, θ2) < π, let I(θ1, θ2) be the set of angles corresponding to the shorter closed arc

of ∂B from vθ1 to vθ2 . By Corollary 3.3.5, for each θ1, θ2 ∈ D with 0 < dist(θ1, θ2) < π,
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with probability one there is an infinite geodesic from 0 asymptotically directed in

I(θ1, θ2). The collection of such sets of angles is countable, so there exists an event

Ω′ ⊆ Ω1 such that P(Ω′) = 1 and for each ω ∈ Ω′,

1. for each θ1, θ2 ∈ D such that dist(θ1, θ2) < π, there exists an infinite geodesic

containing 0 and asymptotically directed in I(θ1, θ2) and

2. for each x, y ∈ Z2 there is exactly one geodesic from x to y.

We claim that for each ω ∈ Ω′, both statements of the theorem hold: for each θ there

is an infinite geodesic with asymptotic direction θ and each infinite geodesic has a

direction.

To prove the first statement, let ω ∈ Ω′ and θ ∈ [0, 2π). For distinct angles θ1 and

θ2 such that 0 < dist(θi, θ) < π we write θ1 >θ θ2 if I(θ1, θ) contains θ2. Because D is

dense in ∂B, we can find two sequences (θ1
n) and (θ2

n) such that (a) 0 < dist(θin, θ) < π

for all n and i, (b) for i = 1, 2, dist(θin, θ) → 0 as n → ∞ and (c) for each i = 1, 2

and n, θjn >θ θ
j
n+1. Let vn be the point nvθ and let γn be the geodesic from 0 to vn.

Define γ as any subsequential limit of (γn). By this we mean a path γ such that for

each finite subset E of R2, the intersection γn ∩ E equals γ ∩ E for all large n. We

claim that γ has asymptotic direction θ.

Let ε > 0 and choose N such that dist(θ, θjN) < ε for j = 1, 2. Because ω ∈ Ω′, for

j = 1, 2, we can choose an infinite geodesic γjN containing 0 with asymptotic direction

in I(θjN , θ
j
N+1). Write P for the union of γ1

N and γ2
N . This complement of P in R2

consists of two open connected components (as P cannot contain a circuit). Because

both paths are directed away from θ, exactly one of these two components contains

all but finitely many of the nvθ’s. Let C1 be the union of P with this component and

let C2 be the other component.

Choose N0 so that nvθ ∈ C1 for all n ≥ N0. We claim now that each finite

geodesic γn for n ≥ N0 is contained entirely in C1. If this were not true, γn would
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contain a vertex z in C2 and therefore it would cross P to get from z to vn. Then

if w is any vertex on γn ∩ P visited by γn after z, then there would be two different

geodesics from 0 to w and this would contradict unique passage times. Therefore, as

γn is contained in C1 for all large n, so must γ. This implies that γ is asymptotically

directed in the set of angles within distance ε of θ (for each ε > 0) and therefore has

asymptotic direction θ.

To prove the second statement choose ω ∈ Ω′ and let γ be an infinite geodesic. If

γ does not have an asymptotic direction then, writing xn for the n-th vertex of γ, we

can find an angle φ ∈ [0, 2π) such that φ is a limit point of {arg xn : n ≥ 1} (under

the metric dist) but (arg xn) does not converge to φ. So there exists a number ε with

0 < ε < π and a subsequence (xnk) of (xn) such that for each m, dist(arg xn2m , φ) <

ε/2 but dist(arg xn2m+1 , φ) > ε. By the first part of the theorem we can find infinite

geodesics γ1 and γ2 from 0 such that γ1 has asymptotic direction φ+ 3ε/4 and γ2 has

asymptotic direction φ− 3ε/4. Now it is clear that if we write P for the union of γ1

and γ2 then γ must both contain infinitely many vertices of P and infinitely many

vertices of P c. This again contradicts unique passage times.

Proof of Corollary 3.3.9. If θ is an exposed point of differentiability then by Corol-

lary 3.3.4, with probability one there exists an infinite geodesic from 0 in each rational

direction. Then the proof above goes through with minor modifications.

3.9 Three technical results

In this section, we prove three results whose proofs had previously been delayed.

In the first subsection, we prove that fractional planes have a boundary which is a

single doubly infinite dual path. In the second, we show that geodesics always exist

on fractional planes if P is i.i.d. In the third, we prove that on the full plane, the

measures µα are measurable in α (in the sense that µα(A) is measurable in α).
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3.9.1 Dual edge boundary of V

Consider first-passage percolation on a fractional plane (V,E).

For any set V1 ⊆ Z2, let F be the edge boundary of V1:

F = F (V1) = {{x, y} : x ∈ V1, y ∈ V c
1 } .

Proposition 3.9.1. Let V1 ⊆ Z2 be infinite, connected and such that V c
1 is infinite

and connected. The dual edge set F ∗ consists of a single doubly infinite dual path

which is non-self intersecting. That is, it is connected, infinite and each dual vertex

v∗ in W ∗, the set of endpoints of dual edges in F ∗, has degree exactly 2 in the connected

infinite graph G∗ = (W ∗, F ∗).

Proof. Assume first that G∗ has a cycle. We can then extract from this cycle a self-

avoiding one, whose parametrization yields a Jordan curve. This curve must contain a

vertex of Z2 in its interior, showing that either V1 or V c
1 must be finite, a contradiction.

Next we prove that each dual vertex v∗ ∈ W ∗ has degree 2 in G∗. If v∗ has degree

1, then it has one incident dual edge e∗ ∈ F ∗ and this is dual to an edge e ∈ F . One

endpoint of e is in V1 and one is in V c
1 , but they can be connected outside of F using

the 3 other edges dual to those which have v∗ as an endpoint, a contradiction. This

means each v∗ ∈ W ∗ has degree at least 2 in G∗. However if v∗ has degree at least

3 in G∗ then three such dual edges e∗1, e
∗
2 and e∗3 incident to v∗ are the first edges of

disjoint self-avoiding infinite dual paths P1, P2, P3. These paths split Z2 into at least

3 components, violating the fact that (Z2, E2) \ F has two components.

Last we must show that G∗ is connected. Indeed, if G∗ were not connected, it

would have two components G∗1, G
∗
2 (and possibly others). Since each dual vertex

of G∗i must have degree two, and since there can be no cycles, G∗1 and G∗2 must be

disjoint, self-avoiding, doubly infinite dual paths. But this breaks Z2 into at least

three components, a contradiction.
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3.9.2 Existence of Geodesics

Consider first-passage percolation on a fractional plane (V,E). In this section, we

prove that if P is a product measure and x and y are arbitrary vertices of V, then

there almost surely exists a (finite) geodesic between x and y. For V = Z2 this was

proved by Wierman and Reh [95]; for general d, this appears to be open (see the

remark under Theorem 8.1.8 in [98]). The proof will rely on the following “partial

shape theorem.”

Lemma 3.9.2. Assume that P(ωe = 0) < 1/2. Then, with probability one,

lim inf
‖x‖1→∞

τ(0, x)

‖x‖1

> 0 .

Proof. Because (V,E) is a subgraph of (Z2, E2), it suffices to show the lemma in the

first-passage model on Z2. So let (ωe) be a passage time realization on E2 and define

the truncated ω̂e = min{ωe, 1}, with τ̂ the passage time in the environment (ω̂e).

Then by the shape theorem (see [78, Theorem 1] and the references therein), the

lemma holds for τ̂ . However τ ≥ τ̂ so we are done.

Theorem 3.9.3. Let x and y be elements of V. Then, almost surely, there exists a

geodesic γ : x y.

Proof. The proof will be broken up into two cases, depending on the probability that

ωe = 0. In both cases, we will show that if we write for N ∈ N,

τN(x, y) = min
γ:x y

γ⊆(x+[−N,N ]2)∩V

τ(γ) ,

then

P(τN(x, y) = τ(x, y) for all large N) = 1 . (3.50)

This suffices to prove the theorem, as a function on a finite set attains its minimum.
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Case I: P(ωe = 0) < 1/2. In this case, we fix some deterministic path γ0 in V

connecting x and y and define N = N(τ(γ0)) to be the smallest number such that

min
z∈V \(x+[−N,N ]2)

τ(x, z) > τ(γ0) .

Note that N is almost surely finite by Lemma 3.9.2. Then no path containing a

vertex of V \ (x + [−N,N ]2) can have passage time less than or equal to τ(x, y). In

particular, (3.50) holds.

Case II: P(ωe = 0) ≥ 1/2. Choose a deterministic N0 > 1 such that there exists

a path connecting x and y lying entirely in [−N0, N0]2 ∩ V. We will consider P to

actually be defined on RE2 , though of course the weights of edges outside of E will

have no bearing on the first-passage model in (V,E).

Consider a sequence of annuli An ⊆ R2 of the form

An = [−Nn+1
0 , Nn+1

0 ]2 \ (−Nn
0 , N

n
0 )2;

denote by Gn the event that there is a (vertex) self-avoiding circuit α in An of edges

e such that ωe = 0. By the RSW theorem for independent percolation (see [20,

Section 3.1]), we have

P

(
∞⋃
n=1

Gn

)
= 1 .

For any N ∈ N write LN = NN+1
0 . For a given ω such that GN occurs, choose α

as above and consider it as a continuous plane curve. Further, let γ be any vertex

self-avoiding path in (V,E) from x to y. We will show that there exists another path

γ′ in [−LN , LN ]2 from x to y such that τ(γ′) ≤ τ(γ). This suffices to complete the

proof. To do so, we use the following construction. Let β be any path from x to y

in (V,E) lying entirely in [−N0, N0]2 . Since γ intersects β at x and y we may list

their common vertices in order (along γ) as x = x1, . . . , xk = y. We proceed along
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γ from each xi to xi+1, calling this subpath γi. If γi is not just one edge of β, we

create a Jordan curve C by concatenating the portion of β from xi to xi+1 with γi.

If α intersects the interior of C then we choose any common point p and proceed in

both directions along α from it. In each direction we must meet C again; otherwise

α was in the interior of C, which is false. Furthermore we meet C before we meet Γ,

since Γ is in the exterior of C. Therefore the component of α ∩ int C containing p is

a segment of α from some vertex a to another b. Since a and b are in C they must

be in γi and we can replace the segment of γi from a to b with this segment of α. In

this way we obtain a new path we call γ̃i and corresponding Jordan curve C̃. Note

that τ(γ̃i) ≤ τ(γi). See Figure 3.3 for a depiction of this procedure.

β

γ

pΓ

a

b

σi

Figure 3.3: Modifying the path γ by replacing a segment σi of γ with a segment of
α. In the figure, α is the dotted path in yellow and p is a point on α in the interior
of C, the Jordan curve formed by the union of γi with β.

It remains to show that the procedure defined above eventually terminates in

some path γ̂i and Jordan curve Ĉ. At this point α will not intersect the interior of Ĉ,

implying that γ̂i does not leave [−LN , LN ]2. To prove this, assume that p ∈ α∩ int C

and define a and b as above. Let σi be the segment of γi from a to b. If σi does not

leave α then it must be the complementary segment of α from a to b, implying that

α ⊂ (C ∪ int C). Then int α ⊂ int C, a contradiction, since β is in the interior of

108



α. Therefore we can find some edge adjacent to α in σi. When we construct γ̂i, we

remove this edge from γi and only add edges of α. Since there are only finitely many

edges adjacent to α, the process terminates.

3.9.3 Measurability of α 7→ µα(A).

Consider first-passage percolation on Z2 with a distribution P satisfying A1 or A2.

In this section we show that for all Borel measurable A ⊆ Ω̃, α 7→ µα(A) is Lebesgue

measurable. By the monotone class theorem, it suffices to consider the case that A is

a cylinder event; that is, that there exists M > 0 such that A depends only on passage

times ωe, Busemann increments (θ1(v), θ2(v)) and graph variables η(f) for vertices v

in [−M,M ]2, and edges e and directed edges f with both endpoints in [−M,M ]2.

Recall that for α ∈ R,

L̂α = {x ∈ Z2 : x+ [−1/2, 1/2)2 ∩ Lα 6= ∅}

and that passage times to Lα are actually defined to L̂α. We are interested in how

this set changes near [−M,M ]2 as we vary α. For this reason, define for each v ∈ Z2

C−v = inf{α : v ∈ L̂α} and C+
v = sup{α : v ∈ L̂α} .

It follows that for all v, C−v < C+
v and

v ∈


L̂α if α ∈ (C−v , C

+
v )

L̂cα if α ∈ R \ [C−v , C
+
v ]

.

Define the set

X = ∪v∈Z2{C−v , C+
v }
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and note that X is countable. To prove Lebesgue measurability of α 7→ µα(A), we

show that

f(α) := µα(A) is continuous except at α ∈ X . (3.51)

Let α ∈ [0, n]\X and let ε > 0. For any integer N ≥M such that [−N,N ]2 inter-

sects L̂α let PN be the collection of all lattices paths whose vertices are in [−N,N ]2.

Last define the approximate passage times for x ∈ [−N,N ]2

τN(x, Lα) = min
x∈γ∈PN
γ∩L̂α 6=∅

τ(γ)

and geodesics GN(x, Lα) to be the minimizing paths. Let G(x, Lα) be the original

geodesic from x to Lα. Using the shape theorem, we can choose N large enough that

P

 min
v∈[−M,M ]2

w/∈(−N,N)2

τ(v, w) > max
v∈[−M,M ]2

τ(v, Lα)

 ≥ 1− ε . (3.52)

For N fixed as above, the condition that α /∈ X implies that we can choose δ > 0

such that the interval (α− δ, α + δ) is contained in the complement of the finite set

XN = ∪v∈[−N,N ]2{C−v , C+
v } .

It follows that

for all β with |α− β| < δ, L̂α ∩ [−N,N ]2 = L̂β ∩ [−N,N ]2 . (3.53)

Having fixed δ above we now prove that if |β − α| < δ then |µα(A)− µβ(A)| < ε.

Using the definition of Φα we can first give an upper bound

|µα(A)− µβ(A)| ≤ P(Φ−1
α (A)∆Φ−1

β (A)) , (3.54)
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where ∆ is the symmetric difference operator. Note that the events on the right side

are determined by (a) ωe for e with both endpoints in [−M,M ]2, (b) the geodesics

G(x, Lα) and G(x, Lβ) from all points x ∈ [−M,M ]2 to the lines Lα and Lβ and (c)

the passage times of these geodesics. Therefore the right side of (3.54) is bounded

above by

P(∃ x ∈ [−M,M ]2 such that G(x, Lα) 6= G(x, Lβ)) .

However if such an x exists then by (3.53), one of two geodesics must exit the box

[−N,N ]2. A subpath of this geodesic must cross from [−M,M ]2 to the complement

of (−N,N)2, so the event E(M,N) in (3.52) cannot occur. Thus

|µα(A)− µβ(A)| ≤ P(E(M,N)c) < ε if |β − α| < δ ,

so f is continuous at α, giving measurability of f .
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Chapter 4

Coalescence in geodesic graphs

This chapter is devoted to presenting new results on the coalescence of unigeodesics

constructed using the methods of Chapter 3. The theorems are differ from those

of [72] by being “in construction.” Rather than assuming the existence of directed

unigeodesics and showing that these unigeodesics coalesce, the theorems below show

coalescence for a constructed family of unigeodesics on (V,E). As a biproduct of

these results, it will be shown that our construction does not produce bigeodesics

on Z2. One can regard our theorems as partial answers to questions Q3, and Q4 of

Sections 2.4.2 and 2.4.3.

The theorems are proven for the families of unigeodesics we have constructed as

limits of point-to-point geodesics on fractional planes and point-to-plane geodesics on

Z2. The coalescence results below require that our measure P be translation-invariant,

at least under Te1 . As such, we are forced to specialize our fractional plane results to

the case of upper half-planes.

Recall the formal definition of coalescence: we say that two infinite directed paths

Γ and Γ′ coalesce if their (edge) symmetric difference is finite.
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4.1 Finite Energy and Half-Planes

For the main theorems on coalescence we need an extra assumption in the case that

P is not a product measure. It allows us to apply “edge modification” arguments.

Write ω = (ωe, ω̌), where ω̌f = (ω)f 6=e.

Definition 4.1.1. We say that P has the upward finite energy property if for each

λ > 0 such that P(ωe ≥ λ) > 0,

P
(
ωe ≥ λ

∣∣ ω̌) > 0 almost surely . (4.1)

Note that if P is a product measure, it has the upward finite energy property.

4.1.1 The Half-Plane

The previous results on fractional planes (V,E) required very few assumptions on

P. In our specialization to the half-plane, we will need a slight strengthening of our

assumptions, which we detail here.

Considering the vertex set V = VH = {(x1, x2) ∈ Z2 : x2 ≥ 0} and EH the induced

set of edges, we can analyze first-passage percolation more closely on H = (VH , EH),

taking advantage of translation invariance of standard measures. The relevant space

is ΩH = [0,∞)EH . Note that the family of translation operators {Tx : x ∈ VH} on ΩH

(see Section 3.1) are well-defined on H.

For the results on H we will consider a probability measure P satisfying one of two

assumptions, labeled B1 and B2 below. Assumption B2 includes the upward finite

energy property defined above.

The assumptions we need are:

B1. P is a product measure with continuous marginals OR
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B2. P is the restriction to [0,∞)EH of a Borel probability measure P̂ on [0,∞)E
2

that

satisfies the upward finite energy property and the assumptions of Hoffman [51]:

(a) P̂ is ergodic relative to the translations Tx for x ∈ Z2,

(b) P̂ has all the symmetries of Z2,

(c)
∫
ω2+α
e dP̂ <∞ for some α > 0,

(d) P̂ has unique passage times: with probability one, no two (edge) nonempty

distinct paths have the same passage time and

(e) the limiting shape for P̂ is bounded.

Under parts (a)-(c) of assumption B2, Kingman’s theorem implies that if we write τ ′

for the passage time in Z2 then for each y ∈ Z2, the limit g(y) = limn→∞ τ
′(0, ny)/n

exists almost surely and in L1. Part (e) of assumption B2 is then the statement that

infy 6=0
g(y)
‖y‖1 > 0.

Under either of these assumptions, one can show that P admits geodesics. Under

B1, we show it in Section 3.9.2. Under B2 it follows from the shape theorem proved

by Boivin [19] and boundedness of the limit shape. This means we can use the results

from the previous chapter.

4.2 Results

Recall the two methods of producing geodesic graphs from the previous chapter.

4.2.1 Result on H

Our first result is a general theorem about the coalescence structure of the limiting

geodesic graph on H. For the statement of the main theorem, we use the shorthand

x → y for vertices x, y in a directed graph ~G if there is a directed path from x to y

in ~G.
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Theorem 4.2.1. Assume B1 or B2. Writing xn = (n, 0), the geodesic graphs (Gn)

converge almost surely to a directed graph G with the following properties:

1. each vertex in VH has out-degree 1,

2. viewed as an undirected graph, G has no circuits,

3. for each x ∈ VH , the backward cluster Bx = {y ∈ VH : y → x} is finite and

4. writing Γx for the unique self-avoiding infinite directed path in G starting from

x, for all x, y ∈ VH , Γx and Γy coalesce. That is, their edge symmetric difference

is finite.

Note that the finiteness of Bx has been proven under stronger assumptions by

Wehr-Woo [93]. We therefore relegate the proof of this fact to Section 4.4. We modify

their arguments to account for the fact that, without their moment assumption on

ωe, their large deviations estimate no longer holds.

4.2.2 Results on Z2

We return to the setting of the full plane (Z2, E2). As our graph measure µ was

constructed as a subsequential limit, we lack a statement analogous to the convergence

of finite geodesics on the half-plane. However, our results still allow us to construct

some limiting family of geodesics, and we can prove similar coalescence results.

Theorem 4.2.2. Assume either A1’ or both A2’ and the upward finite energy prop-

erty. Let v ∈ R2 be any nonzero vector and for β ∈ R define

Lβ(v) = {y ∈ R2 : y · v = β} .

There exists an event A with P(A) = 1 such that for each ω ∈ A, the following holds.

There exists an (ω-dependent) increasing sequence (αk) of real numbers with αk →∞

such that GLαk (v)(ω)→ G(ω), a directed graph with the following properties.
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1. Viewed as an undirected graph, G has no circuits.

2. Each x ∈ Z2 has out-degree 1 in G.

3. (All geodesics coalesce.) Write Γx for the unique infinite path in G from x. If

x, y ∈ Z2 then Γx and Γy coalesce.

4. (Backward clusters are finite.) For all x ∈ Z2, the set {y ∈ Z2 : y → x in G} is

finite.

Our last theorem deals with coalescence and asymptotic directions. Before stating

it, we note its relation to the results of Licea and Newman [72]. The result reduces

the complement of the set D (see Section 2.4.2) to be empty for existence of coalesc-

ing geodesics (item 1 above). It however does not address uniqueness; in principle,

different subsequences can produce families of geodesics which do not coalesce. We

reduce the finite exponential moment condition of [72], extend to non-i.i.d. measures

and replace the global curvature assumption with a directional condition. Without

this condition, part 3 gives the existence of coalescing geodesics directed in sectors.

For the statement, recall the definition of Iθ in (3.12).

Theorem 4.2.3. Assume either A1’ or both A2’ and the upward finite energy prop-

erty. Let θ ∈ [0, 2π).

1. If ∂B is differentiable at vθ then with probability one there exists a collection

{γx : x ∈ Z2} of infinite geodesics in ω such that

(a) each x is a vertex of γx;

(b) each γx is asymptotically directed in Iθ;

(c) for all x, y ∈ Z2, γx and γy coalesce and

(d) each x is on γy for only finitely many y.

116



2. If vθ is an exposed point of differentiability of B then the above geodesics all

have asymptotic direction θ.

3. Suppose θ1 6= θ2 are such that vθ1 and vθ2 are extreme points of B. If Θ is the

set of angles corresponding to some arc of ∂B connecting vθ1 to vθ2 then the

above geodesics can be taken to be asymptotically directed in Θ.

Theorems 4.2.2 and 4.2.3 follow from a stronger result. In Sections 3.7 and 4.5,

we prove that any subsequential limit µ defined as in Section 3.5.1 is supported on

geodesic graphs with properties 1-4 of Theorem 4.2.2.

Remark 4.2.4. The finiteness of backward clusters in the graphs produced in the

previous two theorems (see item 4 of the first and item 1(d) of the second) and in

Theorem 4.2.1 is the aforementioned connection to nonexistence of bigeodesics. It

shows that when constructing infinite geodesics using our limiting procedure, it is

impossible for doubly infinite paths to arise.

4.3 Geodesics graphs on H

In this section we prove Theorem 4.2.1. In what follows, we will consider first-passage

percolation under H with a measure P satisfying B1 or B2.

Because P admits geodesics, Theorem 3.3.2 implies that the sequence of graphs

(Gn) converge almost surely to a directed graph G, each of whose directed paths

is a geodesic. As P also has unique passage times, Proposition 3.2.2 states that

each vertex of Gn has out-degree one and there are no undirected circuits, so these

same properties survive in the limit for G. The finiteness of backward clusters is a

consequence of non-existence of bigeodesics in the half-plane, proved by Wehr and

Woo [93]. Unfortunately this result was only proved under B1 with the additional

assumption Eωe <∞, so we provide a proof in Section 4.4 under either B1 or B2.
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This section is devoted to showing coalescence of directed paths in G. Because

each vertex in GH has out-degree one, it suffices to show that each Γv and Γw share

a vertex. The main difficulty will be proving this statement for all v, w on the first

coordinate axis; that is, the set L0, where

for k ∈ N ∪ {0}, Lk := {(x, k) : x ∈ Z} .

To see why this implies coalescence for all paths, assume we have proved this state-

ment and note that it suffices then to show that for all v, w ∈ VH with w ∈ L0, the

geodesics Γv and Γw coalesce. Write v = (v1, v2) and consider the set

L̃v = {(v1, y) ∈ VH : 0 ≤ y ≤ v2} .

With probability one, for each v′ ∈ L̃v, the backward cluster Bv′ is finite. Thus we

can find m,n ∈ Z with m < v1 < n such that for all v′ ∈ L̃v, both points (m, 0) and

(n, 0) are not in Bv′ . This means in particular that Γ(m,0) and Γ(n,0) cannot intersect

L̃v and, since they coalesce, they must meet “above” v. In other words, v is in the

bounded component of VH \ (Γ(m,0) ∪Γ(n,0)) (viewing these paths only as their vertex

sets). By planarity, Γv must intersect Γ(m,0). Because Γ(m,0) coalesces with Γw, this

completes the proof.

So we move to proving coalescence starting from the first coordinate axis. We will

prove by contradiction, so assume either B1 or B2 but that

with positive probability, there are vertices v, w ∈ L0 with Γv ∩ Γw = ∅ . (4.2)
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4.3.1 Estimates on density of disjoint geodesics

Definitions

For each k ∈ N∪ {0} and m,n ∈ Z with m < n define N
(k)
m,n as the largest number N

such that we can find vertices v1, . . . , vN ∈ [m,n]× {k} such that

(a) Γv1 , . . . ,ΓvN are pairwise disjoint and

(b) for all i, Γvi ∩ [L0 ∪ · · · ∪ Lk] = {vi}.

Similarly, for k ∈ N let M
(k)
m,n be the largest M such that we can find v1, . . . , vM ∈

[m,n] × {k} such that (a) and (b) above hold but also (c) for all i = 1, . . . ,M , no

v ∈ L0 has Γv ∩ Γvi 6= ∅.

k

m n

v v1 N

!
!

Figure 4.1: In this example N
(k)
m,n is at least 4. The black paths are geodesics emanat-

ing from vertices on the line Lk. They do not intersect each other and they intersect
Lk only at their initial points. The red paths are segments of geodesics starting from
L0. Note that in this example the paths a and b do not contribute to the random
variable M

(k)
m,n.
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Lemma 4.3.1. For each k1 ∈ N∪{0} and k2 ∈ N, there exist deterministic αk1 , βk2 ≥

0 such that

lim
n→∞

N
(k1)
0,n

n
= αk1 and lim

n→∞

M
(k2)
0,n

n
= βk2 almost surely and in L1(P) .

We have the characterization

αk1 = inf
n∈N

EN (k1)
0,n

n
and βk2 = inf

n∈N

EM (k2)
0,n

n
.

Furthermore, assuming (4.2), α0 > 0.

Proof. Note that for all m < n < p in Z and k1 ∈ N ∪ {0}, k2 ∈ N, we have

N (k1)
m,p ≤ N (k1)

m,n +N (k1)
n,p and M (k2)

m,p ≤M (k2)
m,n +M (k2)

n,p .

Further max{N (k1)
m,n ,M

(k2)
m,n } ≤ n − m + 1 surely, so they have finite mean and

(N
(k1)
m,n ,M

(k2)
m,n ) has the same distribution as (N

(k1)
0,n−m,M

(k2)
0,n−m). Therefore we can apply

Kingman’s subadditive ergodic theorem to find deterministic αk1 , βk2 ≥ 0 such that

1

n
N

(k1)
0,n → αk1 and

1

n
M

(k2)
0,n → βk2 almost surely and in L1(P) .

Furthermore, αk1 = infn∈N EN (k1)
0,n /n and βk2 = infn∈N EM (k2)

0,n /n.

We claim now that under assumption (4.2), α0 > 0. By countability and invariance

of P under T(1,0), we can find i0 ∈ N such that P(A(1, i0)) > 0, where A(1, i0) is the

event that Γ(1,0) and Γ(i0,0) do not intersect. Note that if i1 < i2 < i3 < i4 are integers

such that Γ(il,0) and Γ(il+1,0) are disjoint for l = 1, 3, then by planarity, at least three

of them must be disjoint. So the ergodic theorem implies that with probability one,

A(1, i0) ◦ T(j,0) occurs for infinitely many j and therefore we can find 4 geodesics

starting from L0 that are all disjoint. Clearly at least two of these must intersect L0

120



only finitely often. This implies that for some j0 ∈ N, P(B(1, j0)) > 0, where B(1, j0)

is the event that Γ(1,0) and Γ(j0,0) do not intersect and only touch L0 at their initial

points.

Again, by the ergodic theorem,

1

N

N∑
l=0

T l(j0,0)1B(1,j0) → P(B(1, j0)) almost surely and in L1(P) .

The reasoning given above, but applied to sets {j1, j2, . . .} of size bigger than 4,

implies that for n ∈ N,

N
(0)
0,j0n
− 1 ≥

n∑
l=0

T l(j0,0)1B(1,j0) .

Dividing by j0n and taking n→∞, we find α0 ≥ P(B(1, j0))/j0 > 0.

Lower bound on αk

Proposition 4.3.2. For each k ∈ N, αk ≥ βk + α0.

Proof. For the proof we need a lemma stating that any geodesic starting at L0 inter-

sects Lk only finitely often.

Lemma 4.3.3. Assume (4.2). For each v ∈ L0 and k ∈ N, with probability one, the

set Γv ∩ Lk is finite.

Proof. Assume that there exists k ∈ N such that with positive probability, there

exists v ∈ L0 with Γv ∩ Lk infinite. By countability and invariance of P under T(1,0),

P(B) > 0 , where B =
{

#(Γ(0,0) ∩ Lk) =∞
}
.
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By Lemma 4.3.1, we can find N0 ∈ N such that

P(N
(0)
1,N0+1 > k + 2) > 1− P(B)/2

and then by translation invariance, with positive P-probability, the event B ∩

{N (0)
1,N0+1 > k+ 2} ∩ {N (0)

−1−N0,−1 > k+ 2} occurs. However any outcome in this event

must have contradictory properties, as we now explain. Since B occurs, Γ(0,0) must

intersect infinitely many vertices of either Lk∩{(x, y) : x ≥ 0} or Lk∩{(x, y) : x ≤ 0}.

Let us assume the first; the subsequent argument is similar in the other case. Then

Γ(0,0) must be disjoint from at least k + 1 different geodesics Γv1 , . . . ,Γvk+1
with

vi ∈ L0 ∩ [1, N0 + 1] for all i, but it must intersect some vertex (x, k) for x > N0. By

planarity, the geodesics Γvi must all intersect the set {(x, j) : 0 ≤ j ≤ k}, but then

they cannot be disjoint. This is a contradiction.

Returning to the proof of Proposition 4.3.2, fix k ∈ N. For each m ∈ Z, define

dk(m) as the first coordinate of the last vertex (by the natural ordering) on Γ(m,0) in

the line Lk. This quantity exists almost surely by Lemma 4.3.3. For any a, b ∈ Z

with a < b, define the set

Xa,b = {j ∈ Z : dk(j) ∈ [a, b]} .

We claim that for some fixed N0 ∈ N,

P (X−N0,n+N0 contains [0, n] for infinitely many n ∈ N) ≥ 1/2 . (4.3)

To show this, first choose N0 ∈ N such that P(|dk(0)| ≤ N0) ≥ 3/4. Next note that

by invariance of P under T(1,0), P(dk(n) ≤ n + N0) ≥ 3/4 for all n ∈ N. These two
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events occur simultaneously with probability at least 1/2, so

P (dk(0) ≥ −N0 and dk(n) ≤ n+N0 for infinitely many n ∈ N) ≥ 1/2 .

Last, observe that by planarity, the function m 7→ dk(m) is monotonic. This implies

that if dk(0) ≥ −N0 and dk(n) ≤ n+N0 then the set X−N0,n+N0 contains [0, n].

The second step is to prove that

P

(
lim sup
n→∞

N
(k)
0,n −M (k)

0,n

n
≥ α0

)
≥ 1/4 . (4.4)

Because (N
(k)
0,n −M (k)

0,n)/n converges almost surely to αk−βk, this suffices to complete

the proof of the proposition. First, given ε > 0, by Lemma 4.3.1, pick N1 such that

P
(
N

(0)
0,n/n ≥ α0 − ε for all n ≥ N1

)
≥ 3/4 .

On this event, for n ≥ N1, setting an = bn(α0− ε)c, we may find x
(n)
1 , . . . , x

(n)
an ∈ [0, n]

such that the geodesics Γ
(x

(n)
1 ,0)

, . . . ,Γ
(x

(n)
an ,0)

are pairwise disjoint. If, in addition, the

event in (4.3) occurs, then for infinitely many n, all of dk(x
(n)
1 ), . . . , dk(x

(n)
an ) are in

[−N0, n+N0]. Note that the geodesics emanating from each of the points (dk(x
(n)
i ), k)

are disjoint and do not intersect L0 ∪ · · · ∪ Lk except for their initial vertices. Next,

choose a maximal set Γ̂
(n)
1 , . . . , Γ̂

(n)

M
(k)
−N0,n+N0

of geodesics starting in [−N0, n+N0]×{k}

which are disjoint, intersect L0 ∪ · · · ∪ Lk only at their initial vertices, and such that

no v ∈ L0 has Γv ∩ Γ̂
(n)
i 6= ∅ for i = 1, . . . ,M

(k)
−N0,n+N0

. Note that these Γ̂’s are disjoint

from the geodesics starting from the points (dk(x
(n)
i ), k). Therefore for each n ≥ N1,

with probability at least 1/4 we have N
(k)
−N0,n+N0

≥ an +M
(k)
−N0,n+N0

. Thus

P
(
N

(k)
−N0,n+N0

≥ an +M
(k)
−N0,n+N0

for infinitely many n
)
≥ 1/4 .
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By invariance of P under T(1,0),

P
(
N

(k)
0,n+2N0

−M (k)
0,n+2N0

≥ an for infinitely many n
)
≥ 1/4 .

Finally, as (n+ 2N0)/n→ 1 as n→∞ and ε is arbitrary, (4.4) holds.

Upper bound on αk

In this section we combine the lower bound from last section with an upper bound to

conclude that βk = 0. In what follows, we will denote by G(x, y) the unique geodesic

between x and y.

Proposition 4.3.4. For k ∈ N, αk ≤ α0. Therefore βk = 0.

We will couple together the upper half-plane with shifted half-planes. For any k ∈

N we consider the shifted configuration T(0,k)ω and the unique geodesics G(v, (n, 0)) in

this configuration. Specifically, for any ω ∈ ΩH and v ∈ V k
H = {(x, y) ∈ VH : y ≥ k},

we set

G(k)
n (v) = T(0,−k)

[
G(v − (0, k), (n, 0))(T(0,k)ω)

]
, (4.5)

where for a path γ in H we denote by T(0,−k)γ the path γ shifted up by k units. By

Theorem 3.3.2, there is an almost sure limit G(k)(v) = limn→∞G
(k)
n (v).

Lemma 4.3.5. Let k ∈ N. With probability one, for all v ∈ Lk, if Γv ∩

[L0 ∪ · · · ∪ Lk−1] = ∅ then

Γv = G(k)(v) .

Proof. Let v ∈ Lk such that Γv ∩ [L0 ∪ · · · ∪ Lk−1] = ∅ and write it as v = (v1, v2).

Let σ be the non-self intersecting continuous curve obtained by concatenating (a) the

edges of Γv, (b) the vertical line segment connecting (v1,−1/2) and v and (c) the

ray {(x,−1/2) ∈ R2 : x ≥ v1}. One component of the complement of σ contains all

vertices of Lk−1 to the right of v − (0, 1) and the other contains all vertices of Lk−1
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to the left of v − (0, 1); call the first C1 and the second C2. Because the sequence

G(v, (n, 0)) converges to Γv as n → ∞, there exists N0 such that if n ≥ N0 then

G(v, (n, 0)) does not contain any vertices of the form (v1, y) for y < v2. For n ≥ N0

the geodesic G(v, (n, 0)) cannot contain any vertices in C2. For if it did, it would start

at v, go through a vertex in C2, and then touch (n, 0), a vertex in C1. Because this

geodesic cannot cross {(v1, y) : y < v2)}, it must cross Γv and violate unique passage

times.

For n ≥ N0, let wn denote the first intersection of G(v, (n, 0)) with Lk−1. The

vertex vn directly before this must be in Lk and the segment γn of G(v, (n, 0)) from

v to vn has all vertices in V k
H . Therefore writing vn = (an, k), we have γn = G

(k)
an (v).

Because Γv does not intersect L0 ∪ · · · ∪ Lk−1, ‖wn‖1 →∞. However wn is in C1, so

an → +∞. Taking n to infinity, these segments converge to G(k)(v). However they

converge to Γv.

For n ∈ N, choose r = N
(k)
0,n pairwise disjoint geodesics Γv1 , . . . ,Γvr for v1, . . . , vr ∈

[0, n]×{k} such that for each i = 1, . . . , r, Γvi∩[L0∪· · ·∪Lk] = {vi}. By Lemma 4.3.5,

r ≤ N
(0)
0,n(T(0,k)(ω)). Therefore

N
(k)
0,n(ω)

n
≤ N

(0)
0,n(T(0,k)(ω))

n
for all n ∈ N .

Taking n→∞ and using invariance of P under T(0,k), we find αk ≤ α0.

4.3.2 Deriving a contradiction

In this section we will show that assuming (4.2), there exists k ≥ 1 such that βk > 0.

This will contradict Proposition 4.3.4 and complete the proof of coalescence starting

from the first-coordinate axis.
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Lemmas for edge modification

The first lemma will let us apply an edge modification argument. For a typical element

ω and edge e ∈ EH we write ω = (ωe, ω̌). We say an event A ⊂ ΩH is e-increasing if,

for all (ωe, ω̌) ∈ A and r > 0, (ωe + r, ω̌) ∈ A. The following lemma is a consequence

of the finite energy property.

Lemma 4.3.6. Let λ > 0 be such that P(ωe ≥ λ) > 0. If A ⊂ ΩH is e-increasing

with P(A) > 0 then

P(A, ωe ≥ λ) > 0 .

Proof. We estimate

P(A, ωe ≥ λ) = E
[
E[1A(ωe, ω̌)1{ωe≥λ} | ω̌]

]
≥ E [1A(λ, ω̌)P(ωe ≥ λ | ω̌)] .

Because A is e-increasing, the variable 1A1{ωe≤λ} is less than or equal to the random

variable 1A(λ, ω̌). Therefore if the statement of the lemma is false then 1A(λ, ω̌)

is positive on a set of positive probability. By the upward finite energy property,

P(ωe ≥ λ | ω̌) is positive almost surely, so the above estimates give P(A, ωe ≥ λ) > 0,

a contradiction.

The second lemma is a shape theorem-type upper bound. For it, we define

λ+
0 = sup{λ ≥ 0 : P(ωe ≥ λ) > 0} . (4.6)

Lemma 4.3.7. Suppose that λ+
0 <∞. There exists c+ < λ+

0 such that

P
(
τ(0, x) ≤ c+‖x‖1 for all but finitely many x ∈ VH

)
= 1 .
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Proof. Because P has unique passage times, the marginal of ωe is not concentrated

at a point and therefore Eωe < λ+
0 . For any x ∈ VH choose a deterministic path

γx : 0 x in H with ‖x‖1 number of edges. Then

Eτ(0, x) ≤ Eτ(γx) = ‖x‖1Eωe .

We now set c+ =
Eωe+λ+0

2
and argue that this value satisfies the condition of the

lemma. The argument will be similar to the proof of the shape theorem in the full

space.

For any z ∈ Q2 with second coordinate non-negative, let N be any natural number

such that Nz ∈ VH . Then for n ∈ N, write n = b n
N
c + r, where 0 ≤ r < N and

estimate

τ(0, nz) ≤ Nλ+
0 ‖z‖1 +

b n
N
c−1∑

i=0

τ(0, Nz)(T iNzω) .

Divide by n and use the ergodic theorem to find

lim sup
n→∞

τ(0, nz)

n
≤ Eτ(0, Nz)

N
≤ ‖z‖1Eωe . (4.7)

Let Ω′H be the full-probability event on which (4.7) holds for all z ∈ Q2 with second

coordinate non-negative. Assume by way of contradiction that on some positive

probability event A, the lemma does not hold for the c+ fixed above. Then we can

find ω ∈ A ∩ Ω′H ; we will show that this ω has contradictory properties.

Let (zn) be a sequence of vertices in VH such that ‖zn‖1 →∞ and

τ(0, zn) > c+‖zn‖1 for all n ∈ N .
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By compactness (and by restricting to a subsequence), given a positive a such that

aλ+
0 < c+ − Eωe, we can find some z ∈ Q2 with second coordinate non-negative and

‖z‖1 = 1 such that

∥∥∥∥ zn
‖zn‖1

− z
∥∥∥∥

1

< a for all n ∈ N .

Then we can estimate

τ(0, zn) ≤ τ(0, ‖zn‖1z) + τ(‖zn‖1z, zn) ≤ τ(0, ‖zn‖1z) + ‖‖zn‖1z − zn‖1 λ
+
0 .

Therefore

c+ <
τ(0, zn)

‖zn‖1

≤ τ(0, ‖zn‖1z)

‖zn‖1

+

∥∥∥∥z − zn
‖zn‖1

∥∥∥∥
1

λ+
0 .

Taking limsup on the right side gives c+ ≤ Eωe + aλ+
0 , a contradiction.

The final lemma deals with spatial concentration of geodesics emanating from the

first coordinate axis. For v1, v2, v3 ∈ L0 let B(v1, v2, v3) be the event that

1. the geodesics Γv1 ,Γv2 and Γv3 are disjoint,

2. they intersect L0 only at their initial points, and

3. they intersect each Lk in finitely many vertices.

Lemma 4.3.8. Suppose v1 = (x1, 0), v2 = (x2, 0) and v3 = (x3, 0) with x1 < x2 < x3.

Let BG(v1, v2, v3) be the subevent of B(v1, v2, v3) on which for each ε > 0, there are

infinitely many k ∈ N such that the last intersections ζk and ζ ′k of Γv1 and Γv3 with

Lk satisfy ‖ζk − ζ ′k‖1 < εk. Then

P(BG(v1, v2, v3) | B(v1, v2, v3)) = 1 .

Proof. For z ∈ L0 and k ∈ N, denote by ζk(z) the last point of intersection of Γz

with Lk, which exists almost surely on B(v1, v2, v3) by Lemma 4.3.3. By translation
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invariance we will take v = v3 − v1 and consider

Ck(v) = {‖ζk(v)− ζk(0)‖1 ≥ εk} .

For k, n ∈ N, define X
(k)
n =

∑n−1
j=0 1Ck(v)(T(jd,0)(ω)), where d = ‖v‖1 + 1. By the

ergodic theorem, putting pk = P(Ck(v)),

X(k)
n /n→ pk almost surely . (4.8)

As previously in the paper, for l ∈ Z and k ∈ N, define dk(l) as the first coordinate

of ζk(l) and note that by planarity, dk(l) is monotone in l. Therefore for n ∈ N, the

difference dk(nd)− dk(0) is at least equal to εkX
(k)
n , so

dk(nd)− nd− dk(0)

n
≥ εkX

(k)
n − nd
n

= εkX(k)
n /n− d .

Combining with (4.8), almost surely,

lim inf
n→∞

dk(nd)− nd− dk(0)

n
≥ εkpk − d .

Because dk(nd)−nd and dk(0) have the same distribution, (dk(nd)−nd−dk(0))/n→ 0

in probability. Therefore

pk ≤ d/(εk) ,

giving pk → 0. In particular, with probability one, Ck(v)c occurs for infinitely many

k.

Main argument

We will first assume that λ+
0 <∞ and that (4.2) holds. By Proposition 4.3.2, α0 > 0

and so we can find v1, v2, v3 and p > 0 such that P(B(v1, v2, v3)) ≥ p, where this event
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was defined before Lemma 4.3.8. Fix any positive

ε <
λ+

0 − c+

8λ+
0

. (4.9)

We first define a modified event which combines conditions from the previous

section. Specifically, for k ∈ N we set B′(k) = B′(v1, v3; k) as the event that

1. the geodesics Γv1 and Γv3 are disjoint and intersect Lj in a finite set for all

j ∈ N ∪ {0},

2. writing w1 = w1(k) and w3 = w3(k) for the last intersections of Γv1 and Γv3

with Lk, there is a vertex x∗ in Lk between w1 and w3 such that Γx∗ is disjoint

from Γv1 and Γv3 and Γx∗ intersects Lk only at x∗,

3. the finite geodesics r1(k) and r3(k), defined as the segments of Γv1 ,Γv3 from L0

to each of w1 and w3 satisfy τ(ri(k)) ≤ c+‖vi − wi‖1 for i = 1, 3 and

4. ‖w1 − w3‖1 < εk.

The first two conditions hold together for all k simultaneously with probability at

least p. This is because whenever B(v1, v2, v3) occurs, almost surely each Γvi intersects

each Lk in a finite set, so we can let x∗ be the last intersection point of Γv2 with Lk.

Next, by Lemma 4.3.7 we can find k0 such that

P(τ(vi, w) ≤ c+‖vi − w‖1 for all i = 1, 3 and w ∈ ∪∞k=k0
Lk) > 1− p/2 .

This implies that the first three conditions hold for all k ≥ k0 with probability at

least p/2. Using Lemma 4.3.8,

P(B′(k)) > 0 for infinitely many k ≥ k0 . (4.10)
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k

!1 !3

x*
r(k)1

r(k)3

Figure 4.2: The event B′(k). The geodesics Γvi , i = 1, 3, are the concatenation of
blue and red paths. The black geodesic Γx∗ does not intersect either Γv1 or Γv3
and intersects Lk only at x∗. The red paths satisfy τ(ri(k)) ≤ c+‖vi − wi‖1 while
‖w1 − w3‖1 < εk.

We then fix any such k ≥ k0 with

4‖v3 − v1‖1λ
+
0 <

λ+
0 − c+

2
k . (4.11)

Next we modify the edge-weights for a set of edges between the geodesics Γv1

and Γv3 . For any configuration ω in B′(k) write X1 for the closed subset of R2 with

boundary curves Γv1 , Γv3 and the segment of the first coordinate axis between v1 and

v3. Let X2 be the component of X1 ∩ {(x, y) ∈ R2 : 0 ≤ y ≤ k} containing v1. Last,

define the set X ⊂ EH consisting of all edges not in Γv1 or Γv3 but such that both

endpoints are in X2. Because there are only countably many choices, (4.10) implies

there is a deterministic choice X ′ and a vertex y ∈ Lk such that

P(B′(k), X = X ′, x∗ = y) > 0 . (4.12)

Here the notation x∗ = y means that the (deterministic) vertex y satisfies condition

2 of the definition of B′(k).
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We next show that

P

(
B′(k), X = X ′, x∗ = y,

⋂
e∈X′

{
ωe ≥

c+ + λ+
0

2

})
> 0 . (4.13)

To prove this we enumerate the edges e1, . . . , er of X ′ and repeatedly apply

Lemma 4.3.6. By (4.12), we simply need to verify that

B′(k)∩{X = X ′, x∗ = y}∩
j−1⋂
i=1

{
ωei ≥

c+ + λ+
0

2

}
is ej-increasing for all j = 2, . . . , r .

So take ω in the event on the left for some j = 2, . . . , r with ω′ such that ω′f = ωf for

f 6= ej and ω′ej ≥ ωej . First we claim that Γv1 , Γy and Γv3 are unchanged from ω to

ω′. To see this, note that since ej is not in Γv1 , Γy or Γv3 we can find n1 = n1(ω) such

that if n ≥ n1 then ej is also not in any of the geodesics G(v1, (n, 0)), G(y, (n, 0)) or

G(v3, (n, 0)) in ω. Therefore these remain geodesics in ω′; taking the limit as n→∞

proves the claim. Now it is clear that X = X ′ in ω′ and conditions 1 - 4 of B′(k) hold

in ω′. Obviously if ωei ≥ (1/2)(c+ +λ+
0 ) for i = 1, . . . , j− 1 in ω then this is still true

in ω′. This proves (4.13).

On the event in (4.13), no point v ∈ L0 can have Γv ∩ Γy 6= ∅. We will now argue

for this fact and explain why it leads to a contradiction. If such a v exists it must

be on the segment of L0 strictly between v1 and v3; this is a direct consequence of

planarity and the fact that each vertex in GH has out degree one. Therefore Γv must

start at L0 and use only edges in X ′ until its exit from L0 ∪ . . . ∪ Lk. Writing w for

the first vertex of Γv in Lk, we must then have

τ(v, w) ≥ c+ + λ+
0

2
‖v − w‖1 . (4.14)

On the other hand, we can give an upper bound for the passage time from v to w by

taking the path obtained by concatenating (a) the segment of L0 from v to v1, (b)
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the geodesic r1 and (c) the segment of Lk from w1 to w. We get the bound

τ(v, w) ≤
[
‖v3 − v1‖1 + εk

]
λ+

0 + c+‖v1 − w1‖1

≤ 2

[
‖v3 − v1‖1 + εk

]
λ+

0 + c+‖v − w‖1 .

Combining this with (4.14), we find

(λ+
0 − c+)k ≤ 4

[
‖v3 − v1‖1 + εk

]
λ+

0 .

This contradicts (4.9) and (4.11).

To summarize, we have now shown that for some fixed w1, w2, w3 ∈ Lk such that

the segment of Lk between w1 and w3 contains w2, C = C(w1, w2, w3) has positive

probability, where this event is defined by the conditions

1. Γw1 ,Γw2 and Γw3 are disjoint and intersect L0 ∪ · · · ∪ Lk only in w1, w2 and w3

respectively and

2. no v ∈ L0 has Γw2 ∩ Γv 6= ∅.

Fix any m,n ∈ Z with m < n and w1, w3 ∈ [m,n] × {k}. Let l ∈ N be bigger than

‖w3 −w1‖1 and recall the notation M
(k)
m,n from Section 4.3.1. Note that if C ∩ T(l,0)C

occurs then M
(k)
m,n+l ≥ 2. Iterating this reasoning, for any j ∈ N,

M
(k)
m,n+jl(ω) ≥

j−1∑
i=0

1C(T i(l,0)ω) .

Diving by j and using the ergodic theorem gives βk > 0, a contradiction. This proves

that assumption (4.2) is false in the case λ+
0 <∞ and thus all geodesics starting from

L0 coalesce.

In the case that λ+
0 = ∞ the argument is much easier and we will just explain

the idea. If (4.2) holds then we still find v1, v2, v3 in L0 with v2 in the segment of L0

133



between v1 and v3 and such that the Γvi ’s are disjoint and intersect L0 in only v1, v2

and v3. Again pick y as the last intersection point of Γv2 with L1. Letting S be the

set of edges touching any vertex of L0 between v1 and v3 (and therefore not in Γv1 or

Γv3), we then modify the edge-weights for edges in S to be larger than some Cbig > 0.

Using Lemma 4.3.6 we can find Cbig large enough so that on this event, no vertex v

of L0 can have Γv ∩ Γy 6= ∅. As before, this implies β1 > 0, a contradiction.

4.4 Absence of bigeodesics in H

In this section we outline the modifications needed to carry over the proof of the main

theorem of [93] to our setting. An infinite geodesic indexed by Z is called a bigeodesic.

When we assume unique passage times, such a path is (vertex) self-avoiding.

4.4.1 Lemmas from Wehr-Woo

Assume either B1 or B2 and let K∗ be the event

K∗ = {there exists a bigeodesic} .

Note that for all x, P(#Bx = ∞, (K∗)c) = 0, where Bx was defined in Theorem

4.2.1. By horizontal translation ergodicity, P(K∗) is zero or one; let us assume for a

contradiction that P(K∗) = 1.

Any bigeodesic γ divides R2 \ γ into two components, say R+ = R+(γ) and

R− = R−(γ); that is,

R+(γ) ∩R−(γ) = ∅ ,

R+(γ) ∪R−(γ) = R2 \ γ ,

∂R+ = ∂R− = γ ,
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where R− is a region that contains (0,−1) and where ∂A denotes the usual boundary

of a set A ⊂ R2. Hence by unique passage times, for any points x, y ∈ R−(γ), no bond

b belonging to the finite geodesic G(x, y) can be an element of R+(γ). The following

is [93, Proposition 4].

Proposition 4.4.1. Consider the sequence G((−n, 0), (n, 0)) for n ∈ N. With prob-

ability 1, this sequence has a limit:

γ0 = lim
n→∞

G((−n, 0), (n, 0)) .

Moreover, γ0 is a bigeodesic and for any bigeodesic γ,

γ0 ⊂
[
R−(γ) ∪ γ

]
.

Proof. The same proof as in [93] works here. The only assumption needed is that of

unique passage times.

The next is [93, Lemma 5].

Lemma 4.4.2. Let n ∈ N and H′ = {(x1, x2) ∈ R2 : x2 ≤ n}. With probability 1, for

any bigeodesic γ intersecting z = (z1, z2) with z2 < n,

H′ ∩R+(γ) 6= ∅ and all its components are bounded .

The boundary of each component is a self-avoiding loop, which is a bond-disjoint union

of segments of γ and segments of the boundary of H′.

Proof. Because we do not assume independence of the variables (ωe), we must modify

the proof of [93], replacing independence with the upward finite energy property.
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In order to prove the boundedness of each component of H′∩R+(γ) it is sufficient

to prove that

P(there is a bigeodesic with an infinite connected part in H′) = 0 . (4.15)

For each k ∈ Z consider a rectangular box

Ck = Ck(m,n) = {(x1, x2) : 2km ≤ x1 ≤ (2k + 1)m, 0 ≤ x2 ≤ n} .

Let Tk be the minimum passage time of all paths in Ck which start at a vertex in

the left boundary of Ck and end at a vertex in the right boundary of Ck, without

intersecting the top boundary. Let Ĉk for the set of edges in ∂Ck that do not lie on

the first coordinate axis; then set

Ek =

∑
e∈Ĉk

τe < Tk

 .

We claim that for some m large enough, P(Ek) > 0 for all k. To prove this, we

consider two cases. Assume first that λ+
0 , defined in (4.6), is finite. Then by the

ergodic theorem, writing ek = {(k, 0), (k+ 1, 0)}, (1/m)
∑m−1

k=0 ωek → Eωe. Therefore,

using the bound ωe ≤ λ+
0 ,

lim
m→∞

1

m

∑
e∈Ĉ0

ωe = Eωe .

As P has unique passage times, Eωe < λ+
0 , so choose m such that

P

∑
e∈Ĉ0

ωe <
Eωe + λ+

0

2
m

 > 0 .
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Writing C0
k for the set of edges with an endpoint in Ck \ Ĉk, we see that the above

event is e-increasing for all e ∈ C0
0 . So by Lemma 4.3.6,

P

∑
e∈Ĉ0

ωe <
Eωe + λ+

0

2
m, ωf ≥

Eωe + λ+
0

2
for all f ∈ C0

0

 > 0 .

On this event, each path which passes from the left to the right side of C0, taking

only edges in C0
0 , must have passage time at least

Eωe+λ+0
2

m. So for such m, horizontal

translation invariance gives P(Ek) > 0.

In the case that λ+
0 =∞, the proof of P(Ek) > 0 is easier. We simply modify the

edge-weights for edges in C0
0 to be larger than the sum of the boundary edge-weights

with positive probability. In either case, the ergodic theorem shows that

P(Ek occurs for infinitely many k > 0 and k < 0) = 1 .

For any k such that Ek occurs, no geodesic can pass from the left to the right side

of Ck taking only edges in C0
k , because we can replace the segment between the left

and right sides by a portion of the boundary ∂C0. This shows (4.15). The rest of the

lemma follows immediately.

We now move to [93, Proposition 6], the main observation showing that unique

passage times implies that γ0 must intersect any large box with probability bounded

below uniformly of the position of the box. For l ∈ N, let us write B = B(l) =

[−l, l]× [0, 2l] and let K be the event that at least one bigeodesic intersects B. Define

for L ∈ N, translations of B by

Bi,j = Bi,j(l, L) = B + (iL, jL) for (i, j) ∈ VH .

For L > 2l, the Bi,j are mutually disjoint.
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Proposition 4.4.3. Let δ = 1− P(K). Then

P(Bi,j ⊂ R+(γ0)) ≤ δ ,

P(Bi,j ⊂ R−(γ0)) ≤ δ .

Proof. The proof is the same as that in [93].

4.5 Coalescence on Z2

In this section we consider first-passage percolation on Z2 with a P satisfying A1’

or A2’ and the finite energy property. At the end of the section, we will prove the

theorems of Section 4.2.2. As in the preceding chapter, the results will follow from

properties of the subsequential limit measure µ and the graph G which is sampled

from this measure. As such, the majority of this section will be devoted to an analysis

of paths in G.

We will first prove that all directed infinite paths coalesce in G. Recall that under

either A1’ or A2’, for x ∈ Z2, Γx is the unique infinite directed path in G starting

at x.

Theorem 4.5.1. Assume either A1’ or both A2’ and the upward finite energy prop-

erty. With µ-probability one, for each x, y ∈ Z2, the paths Γx and Γy coalesce.

The proof will be long, so we first explain the main ideas. We apply the technique

of Licea-Newman [72], whose central tool is a Burton-Keane type argument [23].

We proceed by contradiction, so suppose there are vertices x, y such that Γx and

Γy do not coalesce. By results of the last section, they cannot even intersect. We

show in Sections 4.5.1 and 4.5.2 that there are many triples of non-intersecting paths

Γx1 ,Γx2 and Γx3 such that Γx2 is “shielded” from all other infinite paths in G. To

do this, we must use the information in Theorem 3.7.3 about asymptotic directions.
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A contradiction comes in Section 4.5.3 from translation invariance because when

Γx2 is shielded, the component of x2 in G has a unique least element in a certain

lexicographic-like ordering of Z2. This is a different concluding argument than that

given in [72], where these shielded paths are used for a Burton-Keane “lack of space”

proof.

We now give the proof. For the entirety we will assume either A1’ or both A2’

and the upward finite energy property.

4.5.1 Constructing “building blocks”

Assume for the sake of contradiction that there are disjoint Γx’s in G. Then for some

vertex z0, the event A0(z0) ⊆ Ω̃ has positive µ-probability, where

A0(z0) = {Γz0 and Γ0 share no vertices} .

We begin with a geometric lemma. It provides a (random) line such that with proba-

bility one, any path that is asymptotically directed in J% (from (3.44)) intersects this

line finitely often. We will need some notation which is used in the rest of the proof.

Let $′ be a vector with

arg$′ ∈ {jπ/4, j = 0, . . . , 7} and ‖$′‖∞ = 1 , (4.16)

where ‖ · ‖∞ is the `∞ norm. (A precise value of j will be fixed shortly.) Define (for

N ∈ N) L′N = {z ∈ R2 : $′ · z = N}. For such an N and for x ∈ Z2, write x ≺ L′N

if $′ · x < N and x � L′N if $′ · x > N. The symbols � and � are interpreted in

the obvious way. We use the terms “far side of L′N” and “near side of L′N” for the

sets of x ∈ R2 with x � L′N and x ≺ L′N , respectively. Note that any lattice path γ

intersecting both sides of L′N contains a vertex z ∈ L′N .
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Lemma 4.5.2. There is a measurable choice of $′ as in (4.16) such that with µ-

probability one, the following holds. For each vertex x and each integer N ,

Γx ∩ {z ∈ Z2 : z � L′N} is finite .

In other words, Γx eventually lies on the far side of L′N for all x and N .

Proof. The limit shape B is convex and compact, so it has an extreme point p. Because

it is symmetric with respect to the rotation R of R2 by angle π/2, the points pi = Rip,

i = 1, . . . , 3 are all extreme points of B. J% is an interval of angles corresponding to

points of contact between B and one of its supporting lines, so it is connected (in the

topology induced by dist) and must lie between (inclusively) arg pi and arg pi+1 for

some i = 0, . . . , 3 (here we identify p4 = p0). Therefore diam J% ≤ π/2 almost surely

and contains at most three elements of the set {jπ/4 : j = 0, . . . , 7} (and they must

be consecutive). Choose five of the remaining elements to be consecutive and label

them j1π/4, . . . , (j1 + 4)π/4. The interval [j1π/4, (j1 + 4)π/4] defines a half-plane H

in R2 and since the distance between this interval and J% is positive (measured with

dist), for all sufficiently small ε > 0, the sector

{x ∈ R2 : x 6= 0 and dist(arg x, φ) < ε for some φ ∈ J%}

is contained in Hc. This implies the statement of the lemma for a (random) $′ equal

to the normal to H. Since $′ can be chosen as a measurable function of % (which is

clearly Borel measurable on Ω̃), we are done.

For the rest of the proof, fix a deterministic $′ as in (4.16) that satisfies

Lemma 4.5.2 with positive probability on the event A0(z0). (This is possible because

there are only eight choices for $′.) Let A′0(0, z0) be the intersection of A0(z0) and

the event in the lemma. On A′0(0, z0), Γ0 and Γz0 eventually cease to intersect L′0. In
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particular, they each have a last intersection with L′0. Since there are only countably

many possible pairs of such last intersections, we see that some pair (y, y′) in L′0

occurs with positive probability; that is, µ(A(y, y′)) > 0, where A(y, y′) is defined by

the conditions

I. Γy ∩ Γy′ = ∅;

II. Γy intersects L′0 only at y; Γy′ intersects L′0 only at y′ and

III. Γu ∩ L′N is nonempty and bounded for u = y, y′ and all integers N ≥ 0.

(Note that condition III follows directly from the preceding lemma because Γu con-

tains infinitely many vertices.) By translation invariance, there exists z ∈ L′0 with

µ(A(0, z)) > 0.

Fix

ς = a nonzero vector with the smallest integer coordinates normal to $′ (4.17)

(it will be a rotation of either (0,1) or (1,1) by a multiple of π/2). Defining T̃ς : Ω̃→ Ω̃

as the translation by ς (that is, T̃ a11 ◦ T̃ a22 , where ς = a1e1 + a2e2),

1A(0,z) ((ω,Θ, η)) = 1A(ς,z+ς)

(
T̃ς(ω,Θ, η)

)
.

Since µ is invariant under the action of T̃ς , the ergodic theorem implies

1

N

N−1∑
j=0

1A(jς,z+jς) ((ω,Θ, η)) =
1

N

N−1∑
j=0

1A(0,z)

(
T̃ jς (ω,Θ, η)

)
→ g(ω,Θ, η), (4.18)

where g is a function in L1(µ); the convergence is both µ-almost sure and in L1(µ),

so
∫
g dµ = µ(A(0, z)) > 0. Using this in (4.18) gives infinitely many j with

µ (A(0, z) ∩ A(jς, z + jς)) > 0. (4.19)
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We fix j > ‖z‖1 to ensure Γjς and Γz+jς are outside the region bounded by L′0, Γ0,

and Γz.

What is the significance of the event in (4.19)? When it occurs, we are guaranteed

that there is a line L′0 and four directed paths remaining on its far side apart from

their initial vertices. We claim that at least three of them never intersect. Indeed,

ordering the paths using the direction of ς, we are guaranteed that the “first two”

paths do not intersect each other, nor do the “last two.” But if the middle two paths

ever intersect, they would merge beyond that point and the three remaining paths

could not touch.

For x1, x2 ∈ L′0, let B(0, x1, x2) be the event that Γ0,Γx1 and Γx2 (a) never inter-

sect, (b) stay on the far side of L′0 except for their initial vertices and (c) intersect

L′N in a bounded set for each N ≥ 1. Then the above implies

B(0, z, jς) ∪B(0, z, z + jς) ⊇ A(0, z) ∩ A(jς, z + jς) .

Therefore we may choose x1, x2 ∈ L′0 such that the portion of L′0 from 0 to x2 contains

x1 and so that µ(B(0, x1, x2)) > 0. The vertices x1 and x2 are fixed for the rest of

the proof.

4.5.2 Constructing B′

Our next step is to refine B(0, x1, x2) to a positive probability subevent B′(x∗;N,R)

on which no paths Γz with z � L′N (outside of some large polygon) merge with Γx1 .

We will need to pull events back from Ω̃ to Ω1 to do an edge modification and this

will present a considerable difficulty. Our strategy is reminiscent of that in [6]. In the

first subsection we give several lemmas that we will need. In the next subsection we

will define B′ and show it has positive probability.
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Lemmas for B′

We wish to construct a barrier of high-weight edges on the near side of some L′N . Set

λ+
0 = sup {λ > 0 : P (ωe ∈ [λ,∞)) > 0} .

Because we do not wish to assume λ+
0 =∞, our barrier will occupy some wide polygon

(in the case that λ+
0 =∞, many of the complications which we address below can be

neglected; we direct the interested reader to [72]). To control the exit of our directed

paths from the polygon, we will need a lemma about weak angular concentration of

paths:

Lemma 4.5.3. For x ∈ L′0 such that Γx∩L′N 6= ∅, define ζN(x) to be the ς-coordinate

of the first intersection of Γx with L′N . That is, this first intersection may be written

uniquely as ζN(x)ς + b$′ for some number b. Denote the event

BG(xa, xb, xc) := B(xa, xb, xc) ∩
{

for every ε > 0, |ζNi(xa)− ζNi(xc)| < εN

for infinitely many N
}
.

Then µ(BG(0, x1, x2) | B(0, x1, x2)) = 1.

Proof. Let BB(xa, xb, xc, N, ε) denote the event that B(xa, xb, xc) occurs but that

|ζN(xa)−ζN(xc)| ≥ εN. Fix some ` greater than the absolute value of the ς-coordinate

of x2.

Note that, if lim infN µ(BB(0, x1, x2, N, ε)) = 0 for every ε > 0, then the

lemma holds. To see this, for every n > 0 take a sequence (Nn) such that

µ(BB(0, x1, x2, Nn, 1/n) ≤ n−2 and apply the Borel-Cantelli theorem.

So assume for the sake of contradiction that there are some ε, pB > 0 such that

µ(BB(0, x1, x2, N, ε)) > pB > 0 for all large N ; fix some such N > 6`/εpB for the
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remainder of the proof, and define

B̂(n) = BB(n`ς, n`ς + x1, n`ς + x2, N, ε).

We will look at shifted versions of B̂ and define a function f to count the number of

ζN(y) arising from some shifted version of B̂.

Define fN : Z → {0, 1}, where fN(m) = 1 if there is some n ∈ Z such that B̂(n)

occurs and either ζ(n`ς) = m or ζ(n`ς + x2) = m. That is,

fN(m) = sup
n∈Z

{
1B̂(n) max

y=n`ς,x2+n`ς
1ζN (y)=m

}
.

This form makes it clear that fN(m) is a measurable random variable for each N and

m. Finally, set

f̄N(L) =
1

`L+ 1

`L∑
m=0

fN(m).

We claim that f̄N(L) must satisfy contradictory inequalities for L large. Denote by

C(L) the box of vertices points lying between L′0 and L′N with ς-coordinate between

0 and L`.

We first note that, on the event B̂(n)∩ B̂(n′), if ζ(n`ς) = m and ζ(n`ς+x2) = m′,

then ζ(n′ς), ζ(n′ς + x2) /∈ (m,m′) because nς and nς + x2 start outside of the region

bounded by L′0,Γnς ,Γnς+x2 . Moreover, |m−m′| ≥ εN .Thus, by the definition of f, if

f(m) = 1 then f(m1) = 0 either for all m1 ∈ (m,m + Nε) or m1 ∈ (m−Nε,m). In

particular, we have the almost sure bound

`L∑
m=0

f(m) ≤ 3 +
`L‖ς‖1

Nε

=⇒ f̄N(L) ≤ 3

Nε
µ− a.s. (4.20)

for all L larger than some Lmin.
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On the other side, note that if ∩2λ
i=1B̂(ni) occurs, then the non-merging of each

pair Γnς ,Γnς+x2 and planarity ensure that we can find a subset Λ of the set of paths

{Γniς ,Γniς+x2}2λ
i=1

such that |Λ| = λ and such that the paths in Λ are pairwise disjoint. Now, note that

if all the paths of Λ have their starting points in C(L), then if Γ ∈ Λ either its first

intersection with L′N occurs within C(L) or outside.

If the latter occurs, then Γ must intersect a point of C(L) with ς-coordinate 0 or

L. There are at most cN such points, where cN is an L-independent constant. In

particular, we have

`L∑
m=0

fN(m) ≥
[

L∑
n=0

1B̂(n)

]
− cN

=⇒ Eµf̄N(L) ≥ pB
2`

(4.21)

for all L > L′min > Lmin. Combining (4.20) and (4.21) for L large enough, we have

pB
2`
≤ 3

Nε
<
pB
2`
,

a contradiction.

The next lemma is a modification of the usual first-passage shape theorem.

Lemma 4.5.4. There exists a deterministic c+ < λ+
0 such that, P-a.s.,

lim
M→∞

sup
‖x‖1≥M

τ(0, x)/‖x‖1 < c+ .

Proof. Because either A1’ or A2’ hold, E(τe) < λ+
0 . For any z ∈ Z2, choose a

deterministic path γz with number of edges equal to ‖z‖1. For x ∈ Q2 and n ≥ 1
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with nx ∈ Z2,

Eτ(0, nx) ≤ Eτ(γnx) = n‖x‖1Eτe , so g(x) ≤ ‖x‖1Eτe .

This extends to all x ∈ R2 by continuity, so the shape theorem gives the result.

We need a lemma to pull events back from Ω̃ to Ω1. Fix an increasing sequence

(nk) such that µ∗nk → µ weakly.

Lemma 4.5.5. Let E ⊆ Ω̃ be open with µ(E) > β. There exists Cβ > 0 and K0 such

that for k ≥ K0, the Lebesgue measure of the set {α ∈ [0, nk] : µα(E) > β/2} is at

least Cβ nk.

Proof. Call the Lebesgue measure of the above set λ. Since E is open, (3.23) allows

us to pick K0 such that if k ≥ K0 then µ∗nk(E) > β. For such k, we can write

1

nk
(λ+ (nk − λ)β/2) ≥ µ∗nk(E) > β, giving λ >

nkβ

2(1− β/2)
.

Setting Cβ := β(2− β)−1 completes the proof.

The last lemma is based on [6, Lemma 3.4] and will be used in the edge-

modification argument. To push the upward finite energy property forward from Ω1

to Ω̃ we need concrete lower bounds for probabilities of modified events. We write a

typical element of Ω1 as ω = (ωe, ω̌), where ω̌ = (ωf )f 6=e. We say an event A ⊆ Ω1 is

e-increasing if, for all (ωe, ω̌) = ω ∈ A and r > 0, (ωe + r, ω̌) ∈ A.

Lemma 4.5.6. Let λ > 0 be such that P (ωe ≥ λ) > 0. For each ϑ > 0 there exists

C = C(ϑ, λ) > 0 such that for all edges e and all e-increasing events A with P(A) ≥ ϑ,

P (A, ωe ≥ λ) ≥ C P (A) .
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Proof. If P(A, ωe < λ) ≤ (1/2)P(A) then

P(A, ωe ≥ λ) ≥ (1/2)P(A) . (4.22)

Otherwise, we assume that

P(A, ωe < λ) ≥ (1/2)P(A) . (4.23)

We then need to define an extra random variable. Let ω′e be a variable such that,

given ω̌ from ω ∈ Ω1, it is an independent copy of the variable ωe. In other words,

letting Q be the joint distribution of (ω, ω′e) on the space Ω1×R, for Q-almost every

ω̌,

• ω′e and ωe are conditionally independent given ω̌ and

• the distributions Q(ωe ∈ · | ω̌) and Q(ω′e ∈ · | ω̌) are equal.

(This can be defined, for instance, by setting Q(A×B) =
∫
A
P(ωe ∈ B | ω̌) dP(ω) for

Borel sets A ⊆ Ω1 and B ⊆ R.)

We now write P(A, ωe ≥ λ) as

Q[(ωe, ω̌) ∈ A, ωe ∈ [λ,∞)] ≥ Q [(ωe, ω̌) ∈ A, ωe ∈ [λ,∞), ω′e ∈ [0, λ)]

= EQ
[
1(ωe,ω̌)∈A 1ωe∈[λ,∞) 1ω′e∈[0,λ)

]
≥ EQ

[
1(ω′e,ω̌)∈A 1ωe∈[λ,∞) 1ω′e∈[0,λ)

]
(4.24)

= EQ
[
1(ω′e,ω̌)∈A 1ω′e∈[0,λ) EQ

(
1ωe∈[λ,∞) | ω̌, ω′e

)]
. (4.25)

In (4.24), we have used that A is e-increasing. Using conditional independence in

(4.25),

P(A, ωe ≥ λ) ≥ EQ
[
1(ω′e,ω̌)∈A 1ω′e∈[0,λ) EQ

(
1ωe∈[λ,∞) | ω̌

)]
. (4.26)
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By the upward finite energy property,

EQ(1ωe∈[λ,∞) | ω̌) = E(1ωe∈[λ,∞) | ω̌) > 0 Q-almost surely ,

so choose c > 0 such that

Q
[
EQ(1ωe∈[λ,∞) | ω̌) ≥ c

]
≥ 1− (ϑ/4) .

Note that this choice of c depends only on λ and ϑ. By (4.23) and the assumption

P(A) ≥ ϑ, the right side is at least 1− (1/2)P(A, ωe < λ), implying

Q
[
(ω′e, ω̌) ∈ A, ω′e ∈ [0, λ), EQ(1ωe∈[λ,∞) | ω̌) ≥ c

]
≥ (1/2)P(A, ωe < λ) .

Combining with (4.26), we find P(A, ωe ≥ λ) ≥ (c/2)P(A, ωe < λ). We finish the

proof by writing

P(A) = P(A, ωe < λ) + P(A, ωe ≥ λ) ≤
[

2

c
+ 1

]
P(A, ωe ≥ λ) .

Observing this inequality and (4.22), we set C = min{1/2, c/(2 + c))}.

Defining B′

We begin with the definition of the “barrier event” B′. For an integer R > N, let

S(R,N) = {y ∈ Z2 : 0 ≤ y ·$′ ≤ N, |y · ς| ≤ R} .

For any vertex x∗ ∈ S(R,N) ∩ L′N , define B′(x∗;R,N) by the condition

for all z ∈ Z2 \ S(R,N) with z � L′N , Γz ∩ Γx∗ = ∅ . (4.27)
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Proposition 4.5.7. There exist values of R,N and x∗ such that µ(B′(x∗;R,N)) > 0.

Our strategy is to pull back cylinder approximations of B(0, x1, x2) to Ω1 to find

events that depend on G in the vicinity of 0, x1 and x2. We will find a subevent which

is monotone increasing in the weights of edges lying in S(R,N) between the pulled-

back versions of Γ0 and Γx2 . When we look at the subevent on which all of these

weights are large (“edge modification”), the pullback of Γx1 will be unchanged (past

S(R,N)), and no pullback of any Γz can intersect it if z � L′N and z /∈ S(R,N). We

will then choose x∗ to be a certain point on Γx1 ∩ L′N . The constants N and R will

be chosen to guarantee that the pullback of Γx1 is so isolated. Pushing forward the

subevent to Ω̃ will complete the proof.

Proof. We will first fix some parameters to prepare for the main argument. Recall

the definition of c+ from Lemma 4.5.4 and let

λ+ := min{λ+
0 , 2c+} ,

and put δ+ := λ+ − c+ > 0 (giving λ+ = 2c+ when λ+
0 = ∞). Choose once and for

all some

ε <
δ+

16λ+
, (4.28)

such that also

lim sup
‖x‖1→∞

sup
y: ‖y−x‖1≤ε‖x‖1

τ(0, y)

‖x‖1

< λ+ − 7δ+

8
µ-a.s. (4.29)

This follows from Lemma 4.5.4 because if ‖y‖1 is large, ‖y − x‖1 ≤ ε‖x‖1 gives

τ(0, y)/‖x‖1 ≤ (τ(0, y)/‖y‖1)(1 + ε) < c+(1 + ε). Fix β > 0 with µ(B(0, x1, x2)) > β.

The majority of the proof will consist of defining a few events in sequence, the

second of which we will pull back to the space Ω1 to do the edge modification. We

will need to choose further parameters to ensure that each of these events has positive
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probability. For an arbitrary outcome in Ω̃ and N ≥ 0, denote by r0(N) and r2(N)

the segments of Γ0 and Γx2 up to their first intersections with L′N (if they exist) and let

wN denote the midpoint of the segment of L′N lying between these first intersections.

The first event B◦(R,N, ε) is defined by the conditions (for R,N ≥ 1)

1. Γ0,Γx1 and Γx2 never intersect,

2. they stay on the far side of L′0 except for their initial vertices,

3. Γ0 and Γx2 intersect L′N and their first intersection points are within `1 distance

εN of each other,

4. for i = 0, 2, τ(ri(N)) < (λ+ − 7δ+/8)‖wN‖1 and

5. Γ0 and Γx2 do not touch any x � L′N with x /∈ S(R,N).

See Figure 4.3 for a depiction of the event B◦(R,N, ε).

We claim that there exists N0 and R0 such that

µ(B◦(R0, N0, ε)) > 0 . (4.30)

We also need N0 to satisfy a technical requirement. It will be used at the end of the

proof:

‖x2‖1 ≤ εN0 . (4.31)

To pick N0, first choose N1 > 0 so large that if N ≥ N1 then

P
(
∀z, z′ with ‖z‖1 ≥ N, and

‖z − z′‖1

‖z‖1

≤ ε,
τ(0, z′)

‖z‖1

< (λ+ − 7δ+

8
)

)
> 1− β/4 ,

(4.32)

and ‖x2‖1 ≤ εN . This is possible by (4.29). Write E0(N) for the event in (4.32)

and Ex2(N) for E0(N) translated so that 0 is mapped to x2. Then P(B(0, x1, x2) ∩
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Figure 4.3: The event B◦(R,N, ε). The solid dots represent the first intersection
points of Γ0 and Γx2 with L′N . They are within `1 distance εN of each other.

Γx2

Γ0

L′
0 L′

N

S(R,N)

Γx1

E0(N) ∩ Ex2(N)) > β/2. By Lemma 4.5.3, we can then choose N0 ≥ N1 such that

µ(B(0, x1, x2) ∩ E0(N0) ∩ Ex2(N0) ∩ C(0, x2;N0)) > 0 , (4.33)

where C(0, x2;N0) is the event that Γ0 and Γx2 intersect L′N0
and their first intersection

points are within `1 distance εN0 of each other. On the event in (4.33), the endpoints

of the ri(N0)’s are within distance εN0 of wN0 and since they are on L′N0
, their `1

distance from 0 or x2 is at least N0. Therefore τ(ri(N0)) < (λ+ − 7δ+/8)‖wN0‖1 for

i = 0, 2. This shows that the intersection of four of the five events in the definition of

B◦(R,N0, ε) occurs with positive probability. For the fifth, recall that on B(0, x1, x2),

the paths Γ0, Γx1 and Γx2 contain only finitely many vertices z � L′N0
. Thus we can
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choose R0 large enough (depending on N0) to satisfy condition 5 and complete the

proof of (4.30).

Fix these R = R0 and N = N0 from now on. The next event we define is a

cylinder approximation of the first event. It will be needed to pull back to Ω1. For

M > 0 and x ∈ Z2, let ΓMx be the finite path formed by starting at x and then passing

along out-edges of G until we first reach a vertex of R2 \ (−M,M)2. (Note that by

this definition, ΓMx = {x} whenever x /∈ (−M,M)2.) We define B◦M(R,N, ε) with the

same conditions as B◦(R,N, ε), except replacing the paths Γ(·) by the segments ΓM(·).

In addition, however, we impose the restriction that, writing

∂M = [−M,M ]2 \ (−M,M)2 ,

we have

ΓMy ∩ ∂M ⊆ {z ∈ R2 : z � L′N}, y = 0, x2 . (4.34)

Of course, if ΓM0 (etc.) does not intersect L′N , then B◦M does not occur. Then

B◦M(R,N, ε) is open for all M and we claim that

B◦(R,N, ε) = ∪∞M0=1 ∩∞M=M0
B◦M(R,N, ε) . (4.35)

Assuming we show this, then there exists some M0 such that µ(∩∞M=M0
B◦M(R,N, ε)) >

0 and so there is some β′ with

µ(B◦M(R,N, ε)) > β′ for all M ≥M0 . (4.36)

To prove (4.35), note that the right side is the event that B◦M(R,N, ε) occurs for

all M bigger than some random M0. Suppose that an outcome is in the left side. Then

the paths Γ0, Γx1 and Γx2 are disjoint and remain on the far side of L′0 (except for

their first vertices), so the same is true for each ΓM(·) for all M ≥ 1. Also ΓM0 and ΓMx2 do
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not touch any x � L′N with x /∈ S(R,N) for all M ≥ 1. Because Γ0 and Γx2 intersect

L′N , so do ΓM0 and ΓMx2 for all M bigger than some random M1. Their first intersection

points are the same as those of Γ0 and Γx2 , so for M ≥ M1, their first intersection

points with L′N are within `1 distance εN of each other. Further, the passage times

of the segments up to L′N are strictly bounded above by (λ+ − 7δ+/8)‖wN‖1. Last,

because Γ0 and Γx2 do not touch any x � L′N with x /∈ S(R,N), they share only

finitely many vertices with {z ∈ Z2 : z � L′N} and so must eventually lie on the far

side of L′N . This allows us to further increase M1 to an M0 such that if M ≥M0 then

in addition (4.34) holds.

Suppose conversely that the right side of (4.35) occurs. Then for all M bigger

than some random M0, the six events comprising B◦M(R,N, ε) occur. In particular,

the paths Γ0, Γx1 and Γx2 are disjoint and stay on the far side of L′0 except for their

first vertices (parts 1 and 2 of B◦(R,N, ε)). Furthermore Γ0 and Γx2 cannot touch any

x � L′N with x /∈ S(R,N) (part 5). For M ≥M0, the paths ΓM0 and ΓMx2 intersect L′N ,

with their first intersection points within distance εN of each other (with passage time

strictly bounded above by (λ+ − 7δ+/8)‖w‖1). These are the same first intersection

points as Γ0 and Γx2 , so parts 3 and 4 of B◦(R,N, ε) occur.

We now pull the cylinder approximation B◦M(R,N, ε) back to Ω1 using

Lemma 4.5.5. Because this is an open event and satisfies (4.36) for M ≥ M0,

we can find an M -dependent number K0 such that if k ≥ K0, then there is a

set ΛM,k of values of α ∈ [0, nk] which has Lebesgue measure at least Cβ′nk, on

which µα(B◦M(R,N, ε)) > β′/2. Pull back to Ω1, setting Bα
M := Φ−1

α (B◦M(R,N, ε)),

where Φα was defined in (3.20). (Here we have suppressed mention of R,N, ε in the

notation, as they are fixed for the remainder of the proof.) Then

P(Bα
M) > β′/2 for all α ∈ ΛM,k if M ≥M0 and k ≥ K0(M) . (4.37)
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We henceforth restrict to values of M, α and k such that (4.37) holds. In the end

of the proof we will take k → ∞ and then M → ∞. In particular then we will be

thinking of

α�M � N ,

the latter of which is fixed. Some of the remaining definitions will only make sense

for such α, M and N but this does not affect the argument.

Next we define the third of our four events, now working on Ω1. Let sαy be the

geodesic from y ∈ Z2 to Lα (recall this was defined for $ and not $′), and sαy (M) the

path sαy up to its first intersection with R2\(−M,M)2. If sα0 (M) and sαx2(M) intersect

L′N then write rαi (M), i = 0, 2 for the portions up to the first intersection point. As

before, let wαN be the midpoint of the segment of L′N between these two intersection

points. Let Rα
1 (M) be the closed connected subset (in R2) of {x ∈ R2 : x � L′0} with

boundary curves sα0 (M), sαx2(M), L′0 and ∂M . Similarly let Rα
2 (M) be the closed

connected subset of Rα
1 (M) with the following boundary curves: the portions of

sα0 (M) and sαx2(M) after their last intersections with L′N , the segment of L′N between

these intersections and last, ∂M . Note that when (4.34) holds, Rα
2 (M) is contained

in {z ∈ R2 : z � L′N}. See Fig. 4.4 for an illustration of these definitions.

The event B̂α
M ⊆ Ω1 is then defined by the following conditions:

• sα0 (M) and sαx2(M) intersect L′0 only once, are disjoint, and do not touch any

y � L′N with y /∈ S(R,N).

• sα0 (M) and sαx2(M) intersect L′N and their first intersection points are within

`1 distance εN of each other; the paths rαi (M) satisfy τ(rαi (M)) < (λ+ −

7δ+/8)‖wαN‖1, for i = 0, 2.

• sαy (M) ∩ ∂M ⊆ {z ∈ R2 : z � L′N} for y = 0, x2,
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Figure 4.4: The regionsRα
1 (M) andRα

2 (M). The left figure showsRα
1 (M) in green. It

has boundary curves L′0, ∂M , sα0 (M) and sαx2(M). The right figure shows Rα
2 (M) ⊆

Rα
1 (M) in green. It has boundary curves L′N , ∂M , and the pieces of sα0 (M) and

sαx2(M) from their last intersections with L′N . Note that Rα
2 (M) is contained in the

far side of L′N by (4.34).

Lα

L′N

L′0

[−M,M ]2

sα0 sαx2

Lα

L′N

L′0

[−M,M ]2

sα0 sαx2

• there is a vertex X∗ ∈ L′N ∩ S(R,N) such that sαX∗(M) is disjoint from sα0 (M)

and sαx2(M) but is contained in Rα
2 (M), and

• the portions of sα0 , s
α
X∗ and sαx2 beyond [−M,M ]2 do not contain a vertex of

S(R,N);

We claim there is an M ′
0 ≥M0 such that

P(B̂α
M) > β′/4 for all M ≥M ′

0 . (4.38)

Verifying this requires us to define an auxiliary event. Let HM ⊆ Ω1 denote the

event that no geodesic from any point in S(R,N) returns to S(R,N) after its first

intersection with ∂M. Then P(HM)→ 1 as M →∞. So for any M larger than some
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M ′
0 ≥M0, P(HM) > 1− β′/4, giving

P(Bα
M ∩HM) > β′/4 for all M ≥M ′

0 .

To finish the proof of (4.38) we show that Bα
M ∩ HM ⊆ B̂α

M . Note that the first

three conditions of B̂α
M are immediately implied by Bα

M ; they are the analogues on

Ω1 of the conditions that make up B◦M(N,R, ε) (each ΓM(·) is replaced by sα(·)(M)). For

the fourth condition, note that when Bα
M occurs, sα0 (M), sαx1(M) and sαx2(M) stay on

the far side of L′0 (aside from their initial vertices) and stop when they touch ∂M .

Therefore by planarity, sαx1(M) is contained in Rα
1 (M). In particular, if we choose

X∗ to be the last intersection point of sαx1(M) with L′N , then sαX∗(M) is trapped in

Rα
2 (M). We can see this as follows. The last vertex of sαX∗(M) is clearly in this

region because it must be in Rα
1 (M)∩∂M and this equals Rα

2 (M)∩∂M . Proceeding

backward along sαX∗(M) from this final vertex, the path can only leave Rα
2 (M) if it

(a) leaves [−M,M ]2 (b) crosses sα0 (M) or sαx2(M) or (c) crosses L′N . Because none of

these can happen, the fourth condition holds. As for the fifth, it is implied by HM ,

so we have proved (4.38).

Our fourth and final event will fix some random objects to be deterministic so

that we can apply the edge modification lemma. On the event B̂α
M , let U denote the

(random) closed connected subset of [−M,M ]2 with boundary curves L′0, L′N , rα0 (M)

and rα2 (M). Note that U ⊆ S(R,N). Furthermore we note that on B̂α
M , U∩Rα

2 (M) is

contained in L′N . This is because Rα
2 (M) ⊆ {z : z � L′N}, whereas U ⊆ {z : z � L′N}.

Last, define UE to be the random set of edges with both endpoints in U and which

are not edges in sα0 (M), sαx2(M), L′0 or L′N . See Figure 4.5 for an illustration of these

definitions.
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Figure 4.5: Illustration of definitions on B̂α
M . The region U is in blue and is contained

in S(R,N) (not pictured). It is bounded by curves L′0, L′N , rα0 (M) and rα2 (M). The
path sx∗ begins at the final intersection point of the dotted path with L′N .

L′0 L′N

rα2 (M)

rα0 (M)

sx∗

On B̂α
M , there are at most 264NR possibilities for U and UE and at most 2R choices

for X∗. So there exist some deterministic U ′, U ′E , and x∗ such that, if we define

B̃α
M := B̂α

M ∩ {U = U ′, UE = U ′E} ∩ {X∗ = x∗} ,

then

P(B̃α
M) > 2−2−64NRβ′/2R for M ≥M ′

0 and α ∈ ΛM,k . (4.39)

The meaning of the event {X∗ = x∗} is that the deterministic point x∗ satisfies the

conditions in the fourth and fifth items of the description of B̂α
M .

In the rest of the proof we perform the edge modification and push forward to Ω̃.

To apply Lemma 4.5.6 we need to verify that B̃α
M is e-increasing for all e ∈ U ′E . For

this purpose, suppose that ω ∈ B̃α
M and that ω′ is another configuration such that

ω′e ≥ ωe for some fixed e ∈ U ′E but ω′f = ωf for all other f 6= e. By construction, e

is not an edge of sα0 (M), sαx∗(M) or sαx2(M) (e /∈ sαx∗(M) since e is contained in UE ,

which does not meet L′N , so is not in Rα
2 (M) ⊇ sαx∗(M)). Furthermore because sα0 ,

sαx∗ and sαx2 do not re-enter S(R,N) after leaving [−M,M ]2 and all edges of U ′E have
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both endpoints in S(R,N), e cannot be on these paths either. This means that

sαy (ω) = sαy (ω′) for y = 0, x∗, x2 and U(ω) = U(ω′), UE(ω) = UE(ω
′) .

So the fifth condition of B̂α
M occurs in ω′. The paths sαy (M) are then equal in ω and

ω′, so conditions 1, the first part of 2, and 3 and 4 hold in ω′. As e is not on any

of these paths, their passage times are the same in ω′. This gives the second part of

condition 2 of B̂α
M and shows that B̃α

M is e-increasing.

Now we conclude the proof in a slightly different manner depending on whether or

not λ+
0 is finite; we focus first on the case that λ+

0 <∞. We will use Lemma 6.6, but

several times in sequence, appending events onto B̂α
M . Precisely we note for reference

that if e1, . . . , ej are edges and a1, . . . , aj ∈ R then

B̂M
α ∩

[
∩ji=1{ωei ≥ ai}

]
is e-increasing for e ∈ U ′E .

Using Lemma 4.5.6 once for each edge e ∈ U ′E and the upper bound |U ′E | ≤ 32NR,

we can find some constant CN,R such that, defining

B′αM := B̃α
M ∩

{
∀e ∈ U ′E , ωe ≥ λ+ − δ+/4

}
,

we have

P (B′αM) > CN,R > 0 for all M ≥M ′
0 and α ∈ ΛM,k when k ≥ K0(M) .

(For the first application of the lemma we use ϑ = 2−2−64NRβ′/2R, for the second, a

smaller ϑ, and so on.)

We claim that on B′αM , no z ∈ Z2 ∩ [−M,M ]2 with z � L′N and z /∈ S(R,N)

has sαz (M) ∩ sαx∗(M) 6= ∅. We argue by first estimating the passage time between
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vertices from L′0 to L′N in U ′. For any outcome in B′αM , given vertices x ∈ U ′∩L′0 and

y ∈ U ′ ∩ L′N , there is a path from x to y formed by moving along L′0 to 0, taking rα0

to L′N , and moving similarly along L′N to y. This gives

τ(x, y) < (λ+ − 7δ+/8)‖wαN‖1 + (Nε+ ‖x2‖1)λ+. (4.40)

Using the choice of ε from (4.28) and condition (4.31) to bound the right side of

(4.40),

τ(x, y) ≤ (λ+ − 3δ+/4)‖wαN‖1. (4.41)

Suppose now that a point z exists as in the claim. Since sα0 (M) and sαx2(M) do not

touch any y /∈ S(R,N) with y � L′N (see item 1 in the definition of B̂α
M),

Rα
1 (M) ∩ {y : y � L′N} ⊆ S(R,N) .

This implies z /∈ Rα
1 (M), whereas x∗ ∈ Rα

1 (M). As sαz (M) cannot touch sα0 (M)

or sαx2(M) (else it would merge with one of them) it would have to enter Rα
1 (M)

through L′0 and pass through all of U ′ from L′0 to L′N , thus taking only edges of U ′E .

The portion γ′ of γ from its first intersection with L′0 to its first intersection with L′N

would then satisfy

τ(γ′) ≥
(
λ+ − δ+/4

)
[‖wαN‖1 − ‖x2‖1 −Nε]

≥ (λ+ − δ+/4)‖wαN‖1 − 2‖wαN‖1ελ
+

≥ (λ+ − 3δ+/8)‖wαN‖1,

in contradiction with the estimate of (4.41). This establishes the claim.

For the final step in the case that λ+
0 < ∞, note that by the previous claim, the

pushforward, Φα(B′αM), is a sub-event of B′M = B′M(x∗;R,N), defined exactly as the
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event B′ = B′(x∗;R,N) in (4.27) except with Γx∗ and Γz replaced by the truncated

paths ΓMx∗ and ΓMz and considering only z ∈ [−M,M ]2. Thus

µα(B′M) ≥ CN,R for all M ≥M ′
0, k ≥ K0(M) and α ∈ ΛM,k ,

with ΛM,k ⊆ [0, nk] of Lebesgue measure at least Cβ′nk. As the indicator of B′M is

continuous,

µ(B′M) = lim
k→∞

µ∗nk(B
′
M) ≥ CN,RCβ′ .

Last,

µ(B′) = µ(B′M for infinitely many M) ≥ CN,RCβ′ > 0 ,

completing the proof in the case λ+
0 <∞.

If λ+
0 = ∞, we are no longer guaranteed the estimate (4.41), since the passage

time of a path taking Nε steps along L′N is not necessarily bounded above by Nελ+.

However, writing Ẽ for the set of edges with an endpoint within `1 distance 1 of U ′

but not in U ′E and noting

AC := {for all e ∈ Ẽ, τe ≤ C}

satisfies P(AC) → 1 as C → ∞ independently of k and M , we can choose Cbig such

that

P(B̃α
M ∩ ACbig

) > 0

independently of k and M . This event is still monotone increasing in the appropriate

edge variables. In particular, we can modify the edges in U ′E to be each larger than

2Cbig|Ẽ| and the rest of the proof follows as in the case λ+
0 <∞.
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4.5.3 Deriving a contradiction

Given that the event B′(x∗;R,N) of the preceding section has positive probability,

we now derive a contradiction, proving that all paths in G must merge. The next

lemma is an example of a mass-transport principle. (See [16, 45, 46] for a more

comprehensive treatment.)

Lemma 4.5.8. Let m : Z2 × Z2 → [0,∞) be such that m(x, y) = m(x+ z, y + z) for

all x, y, z ∈ Z2. Then

∀x ∈ Z2,
∑
y∈Z2

m(x, y) =
∑
y∈Z2

m(y, x) .

Proof. Write

∑
y∈Z2

m(x, y) =
∑
z∈Z2

m(x, x+ z) =
∑
z∈Z2

m(x− z, x) =
∑
y∈Z2

m(y, x) .

Given a realization of G and x ∈ Z2, order the set

Cx = {y ∈ Z2 : y → x in G} (4.42)

using a dictionary-type ordering where y precedes y′ if either $′ ·y < $′ ·y′ or if both

$′ · y = $′ · y′ and y · ς < y′ · ς (where ς was fixed in (4.17)); clearly this defines

a total ordering. If there is a least element y under this ordering, we will call y the

progenitor of x (relative to G). We define the G-dependent function mG on pairs of

vertices x, y by

mG(x, y) =


1 if y is the progenitor of x

0 otherwise,
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and let m(x, y) := Eµ(mG(x, y)). Note that m(x, y) = m(x+ z, y+ z) by the fact that

G has a translation-invariant distribution.

Since each x can have at most one progenitor,

∑
y∈Z2

m(x, y) ≤ 1 for all x ∈ Z2 . (4.43)

On the other hand, if B′(x∗;R,N) occurs, then Γz cannot intersect Γx∗ if z � L′N

and z /∈ S(R,N). Therefore, on this event, there is some vertex y ∈ S(R,N) which

is the progenitor of infinitely many vertices of Γx∗ . In particular,

∑
y∈Z2

m(y, x) =∞. (4.44)

The contradiction implied by (4.43), (4.44) and Lemma 4.5.8 gives µ(B′(x∗;R,N)) =

0. However this contradicts the previous section and completes the proof of Theo-

rem 4.5.1.

4.5.4 Absence of backward infinite paths

In this section, we move on from Theorem 4.5.1 to show that because all paths in

G coalesce, all paths in the “reverse” direction terminate. That is, recalling the

definition of Cx in (4.42),

Theorem 4.5.9. For each x ∈ Z2, |Cx| <∞ with µ-probability one.

Remark 4.5.10. The proof below applies to the following general setting. Suppose ν

is a translation-invariant probability measure on directed subgraphs of Z2 and there is

a line L ⊆ R2 such that ν-almost surely (a) each x has exactly one forward path and it

is infinite (b) all forward paths coalesce and (c) each forward infinite path emanating

from a vertex on L intersects it finitely often. Then all backward clusters are finite

ν-almost surely.
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We assume that, contrary to the theorem, there exists x ∈ Z2 with µ(|Cx| =∞) >

0 for the remainder of this section to derive a contradiction. Using Lemma 4.5.2,

choose a deterministic $′ with argument in {jπ/4 : j = 0, . . . , 7} such that with

positive µ-probability on {|Cx| =∞}, each Γz eventually lies on the far side of each

L′N . Note that this event is translation-invariant, so by conditioning on it, we may

assume that it occurs with probability 1 (and µ is still translation-invariant).

Claim 4.5.11. There exist vertices z 6= z′ in L′0 such that

µ (|Cz| =∞, |Cz′ | =∞, Γz ∩ L′0 = {z}, Γz′ ∩ L′0 = {z′}) > 0 . (4.45)

Proof. By translation-invariance, we may assume that the x with µ(|Cx| = ∞) >

0 satisfies x ≺ L′0. µ-almost surely, Γx has a last intersection with L′0. There are

countably many choices for such a last intersection, so there exists a vertex z ∈ L′0
such that

µ (|Cz| =∞, Γz ∩ L′0 = {z}) > 0 .

Translating by ς (chosen from (4.17)), the ergodic theorem gives z, z′ satisfying (4.45).

Proof of Theorem 4.5.9. Given an outcome in the event in (4.45), Γz and Γz′ almost

surely merge. So there is some random zG ∈ Z2 which is the first intersection point

of Γz and Γz′ (“first” in the sense of both the ordering in Γz and in the ordering of

Γz′). Again zG can take only countably many values, and so there is a z0 which occurs

with positive probability; call the intersection of the event in (4.45) with the event

{zG = z0} by the name B.

We now consider the graph G as an undirected graph, in which vertices x and y

are adjacent if 〈x, y〉 or 〈y, x〉 are in G (we abuse notation by using the same symbol

for both the directed and undirected versions of G). We define an encounter point

of the undirected G to be a vertex whose removal splits G into at least three infinite
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components. Note that B ⊆ {z0 is an encounter point}; by translation invariance, we

see that there is a uniform ct > 0 such that the probability of any fixed vertex to be

an encounter point is at least ct.

We are now in the setting of Burton-Keane [23]. To briefly synopsize, the number

of points on the boundary of [−M,M ]2 must be at least the number of encounter

points within. In particular, the number of encounter points is surely bounded above

by 8M . But since each point within has probability at least ct to be an encounter

point, the expected number of encounter points within [−M,M ]2 is at least ctM
2.

This is a contradiction for large M.

4.5.5 Proof of Theorem 4.2.2

Assume either A1’ or both A2’ and the upward finite energy property. Let v ∈ R2

be nonzero and ε > 0. We will prove that the statement of the theorem holds with

probability at least 1−ε. Choose $ ∈ ∂B to be parallel to v and construct a measure

µ as in Section 3.5.1. Let (nk) be an increasing sequence such that µ∗nk → µ weakly.

We will define a double sequence of cylinder events that approximate the events

in the theorem. For m ≤ n, a configuration η ∈ Ω3 and x, y ∈ [−m,m]2 ∩ Z2, we say

that x is n-connected to y (x→n y) if there exists a directed path from x to y whose

vertices stay in [−n, n]2. We say that x and y are n-connected (x ↔n y) if there is

an undirected path connecting x and y in [−n, n]2. For m ≤ n write Am,n ⊆ Ω3 for

the event that

1. all vertices v ∈ [−m,m]2 have exactly one forward neighbor in G ∩ [−n, n]2,

2. there is no undirected circuit contained in [−m,m]2,

3. for all vertices v, w ∈ [−m,m]2, there exists z ∈ [−n, n]2 such that v →n z and

w →n z and
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4. for all vertices v ∈ [−m,m]2 there is no z ∈ [−n, n]2\(−n, n)2 such that z →n v.

We claim that for any m there exists n(m) ≥ m such that µ(Am,n(m)) > 1−ε/4m+2.

To prove this, let Ω̂ ⊆ Ω̃ be the event that (a) all vertices have one forward neighbor

in G, (b) G has no undirected circuits, (c) for all x, y ∈ Z2, Γx and Γy coalesce and

(d) |Cx| <∞ for all x ∈ Z2. By Proposition 3.7.2, Theorem 4.5.1 and Theorem 4.5.9,

the µ-probability of Ω̂ is 1. Therefore conditions 1 and 2 above have probability 1 for

all m and n. For any configuration in Ω̂ and m ≥ 1 we can then choose a random and

finite N(m) ≥ m to be minimal so that conditions 3 and 4 hold for all n ≥ N(m).

Taking n(m) so large that µ(N(m) ≥ n(m)) ≤ ε/4m+1 completes the proof of the

claim.

We now pull Am,n(m) back to Ω1, using the fact that it is a cylinder event in

Ω3 and thus its indicator function is continuous. There is an m-dependent number

K0(m) such that if k ≥ K0(m) then µ∗nk(Am,n(m)) > 1 − ε/4m+2. By definition

of µ∗nk in (3.21) and Φα in (3.20), the set Λm,k of values of α ∈ [0, nk] such that

P(Φ−1
α (Am,n(m))) > 1− ε/2m+2 has Lebesgue measure at least nk(1− 2−(m+2)).

The next step is to construct a deterministic sequence (am)m≥1 of real numbers

such that

am →∞ and P
(
∩mj=1Φ−1

am(Aj,n(j))
)
≥ 1− ε/2 for all m . (4.46)

We do this by induction on m. For m = 1, let a1 be any number in the set Λ1,K0(1).

By definition then P(Φ−1
a1

(A1,n(1))) ≥ 1−ε/2. Assuming that we have fixed a1, . . . , am,

we now define am+1. Let k be such that k ≥ max{K0(1), . . . , K0(m + 1)} and

nk ≥ 3am and consider Λ1,k, . . . ,Λm+1,k as above. The intersection of these sets

has Lebesgue measure at least 3nk/4 so choose am+1 as any element of the nonempty

set (3am/2, nk] ∩
[
∩m+1
i=1 Λi,k

]
. For this choice,

1− P
(
∩m+1
j=1 Φ−1

am+1
(Aj,n(j))

)
≤

∞∑
j=1

ε/2j+2 = ε/4 .
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As am+1 ≥ 3am/2, the condition am →∞ holds and we are done proving (4.46).

From (4.46), we deduce P(A) ≥ 1− ε/2, where

A = {∩mj=1Φ−1
am(Aj,n(j)) occurs for infinitely many m} .

We complete the proof by showing that the statement of the theorem holds for any

ω ∈ A. Fix such an ω and a random subsequence (amk) of (am) such that ω ∈

∩mkj=1Φ−1
amk

(Aj,n(j)) for all k. By extracting a further subsequence, we may assume

that GLamk
($) converges to some graph G. The event Φ−1

α (Aj,n(j)) is exactly that

the graph GLα($) satisfies the conditions of Aj,n(j) above, so in particular, it has no

undirected circuits in [−j, j]2, all directed paths starting in [−j, j]2 coalesce before

leaving [−n(j), n(j)]2, no directed paths connect [−n(j), n(j)]2 \ (−n(j), n(j))2 to

[−j, j]2, and all vertices in [−j, j]2 have one forward neighbor in [−n(j), n(j)]2. On

the subsequence (amk), the events Φ−1
amk

(A1,n(1)) occur for all k, so G must satisfy the

conditions of A1,n(1) as well. The same is true for Aj,n(j) for all j, so G satisfies the

conditions of the theorem.

4.5.6 Proof of Theorem 4.2.3

This theorem follows directly from results of the previous sections. Assume either A1’

or both A2’ and the upward finite energy property. For the first part of the theorem,

suppose that ∂B is differentiable at vθ. Choose $ = vθ and construct the measure µ

as in Section 3.5.1. Given (ω,Θ, η) ∈ Ω̃, let G(η) be the geodesic graph associated to

η. By Theorems 3.7.3, 4.5.1 and 4.5.9, with µ-probability one, all directed paths in

G are asymptotically directed in Iθ, they coalesce, and no vertex x has |Cx| infinite.

Call this event A and define

Ω̂ = {ω ∈ Ω1 : µ(A | ω) = 1} .
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µ(· | ω) is the regular conditional probability measure. Ω̂ is a measurable set and

satisfies P(Ω̂) = 1 since the marginal of µ on Ω1 is P. Further, for each ω ∈ Ω̂, the

theorem holds.

For the other two parts of the theorem we simply argue as in the proof of Corol-

laries 3.3.4 and 3.3.5. In the former case we just notice that if vθ is also exposed, then

Iθ = {θ}. In the latter case, we find a point vθ on the arc joining vθ1 to vθ2 at which

∂B is differentiable. The set Iθ contains only angles associated to points on the arc

and we are done.
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Part II

Random Walks on the Invasion

Percolation Cluster
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Chapter 5

Critical Percolation Models

In this chapter, we introduce some fundamental facts about percolation models –

especially critical percolation – and motivate the results of [35] in preparation for the

final chapter of this dissertation. The account here is far from exhaustive and does

not track the historical development of the subject. We direct the interested reader

to the volumes [20, 43] and the recent paper [44].

5.1 Bernoulli Percolation

Percolation theory was introduced by Broadbent and Hammersley [22] as a proto-

typical model for random media. We will be concerned here chiefly with the two-

dimensional case of independent Bernoulli nearest-neighbor bond percolation, which

we will take license to abbreviate as Bernoulli percolation or simply percolation (the

definition of the model in higher dimensions will be clear; for results in higher dimen-

sions, see one of the above references). This is a model on the usual two-dimensional

square lattice (Z2, E2). The model lives on a family of probability spaces parametrized

by some p ∈ [0, 1]. These spaces take the form (Ω,B,Pp); here Ω = {0, 1}E2 , B is the

usual Borel sigma-algebra, and P is the i.i.d. measure with P(ωe = 1) = p.
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A given realization ω ∈ Ω can be taken to define a random graph structure on Z2.

An edge e will be said to be “open” for ω if ωe = 1; otherwise, e is said to be “closed.”

Then two vertices x, y ∈ Z2 are said to be connected by an open path for ω if there

exists a path (x = v1, e1, v2, . . . en−1, vn = y), where vi ∈ Z2, ei = {vi, vi+1} ∈ E2, and

ωei = 1 for all i. The open cluster C(x) of a site x is the set of all sites connected to

x by open paths. Analogous notions exist for closed paths and closed clusters. Many

of the important questions in the model relate to the properties of typical open and

closed clusters for different values of the parameter p.

A well-known property of open-connectedness is that there is a critical probability

pc = 1/2 [62] with the following properties (among others):

1. For p ≤ pc,

Pp (|C(x)| =∞) = 0;

2. For p > pc,

Pp (|C(x)| =∞) > 0.

If for a realization ω there is some x with |C(x)| = ∞, we say there “is percolation

for ω”. The regime p < pc corresponds to exponential decay of the radius of C:

Pp (C(0) contains vertices at Euclidean distance n from 0) ≤ 2 exp(−Kn)

for some K > 0 depending on p.

By contrast, if p = pc, open clusters are finite but typically large:

Pp (C(0) contains vertices at Euclidean distance n from 0) ≥ 1

8n
.

At the critical point, connections tend to be long but sparse. For instance, by duality

the probability that there exists an open connection between a point on the left
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and a point on the right side of a square of side length n (an “open crossing”) is

1/2 independently of n. However, for n large, the typical number of disjoint open

crossings remains of order one (see [17]).

5.1.1 Random Walks on Open Clusters.

A topic which has seen some study (see the introduction to the next chapter for

a longer account of the literature) is the behavior of a random walk on an open

percolation cluster. This is described formally by introducing a new probability space,

the space of trajectories (Xn)n of a particle in discrete time. For a given realization

ω of the percolation cluster, the Markov chain of the walk (Xn)n is defined as follows:

X0 = 0 almost surely; after time zero, conditioned on Xn−1, Xn is chosen uniformly

from the neighbors y of Xn−1 such that the edge {y,Xn−1} is open for ω.

Of most interest are the long-time asymptotics of the random walk on an infinite

percolation cluster. If p > pc, this is achieved by drawing from the percolation

measure P conditioned on the event |C(0)| =∞ and then running the above random

walk (Xn)n. In this case, the infinite open cluster of the origin has density [23] in

the plane, and one might expect the random walk on C(0) to behave much like a

random walk on (Z2, E2). This has been shown in a strong sense through the work of

numerous authors over a number of years. We direct the reader to the recent paper

[18], in which a version of convergence of the walk (Xn)n to isotropic Brownian motion

is shown; the introduction and references of [18] contain some review of the history

of these problems.

On the other hand, the exponential decay of the radius of C(0) for p < pc implies

that the system has a finite correlation length in some sense, and the typical open

cluster will be an isolated speck in any sort of scaling limit. The expected cluster

size at p = pc is infinite, however, and one could ask the question of whether there is

some meaningful way of asking about the long-time behavior of a random walk on an
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“arbitrarily large critical cluster.” There has been some work on ascribing meaning

to the idea of an infinite open cluster at criticality, which we describe in what follows.

5.1.2 The Incipient Infinite Cluster

One method by which one could try to describe a large cluster “at criticality” is to

condition the critical percolation measure on the existence of a connection to infinity.

That is, to define the limit

ν(·) = lim
n→∞

Ppc (· | 0 7→ ∂B(n)) , (5.1)

where B(n) = [−n, n]2 and ∂B(n) is its boundary, and where 0 7→ ∂S means that

there exists an open path connecting 0 and some vertex of the set S.

The existence of the limit of measures (5.1) was proved by Kesten [64]. The typical

cluster C(0) sampled from ν is infinite but has zero density (in fact, it occupies a

fraction of B(n) which goes to zero like a power of n). This signals that the geometry

of such a cluster is quite different from that in the case p > pc, and signals that

a random walk on C(0) would no longer be guaranteed to look like a diffusion on

(Z2, E2).

The measure ν defined in (5.1) is frequently referred to as the distribution of the

“incipient infinite cluster” or IIC. The behavior of the random walk (Xn)n on the IIC

was studied in [65], and a major point of difference between the IIC and Z2 random

walks was shown. Recall that a random walk in (Z2, E2) started at 0 typically moves

a distance of order n1/2 after n steps. For the purpose of stating the theorem, consider

(Xn)n to be a family of random variables on the enlarged probability space of IIC

configurations and walk trajectories.

Theorem 5.1.1 ([65]). There exists some ε > 0 such that the family {n−1/2+εXn}n
is tight.
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The above result is described as a “subdiffusivity” result–the walk moves more

slowly than a diffusion on the square lattice in an “averaged sense”. The correspond-

ing result in a quenched setting is proved in Chapter A:

Theorem 5.1.2. Let τ(n) be the smallest N such that XN /∈ B(n). There exists ε > 0

such that, for ν-almost every realization of the IIC, for almost every realization of the

random walk,

τ(n) ≥ n2+ε

for all n larger than some random n0.

The methods used in Chapter A simplify those of [65] using recent results on the

tortuousity of open paths (specifically, those of [1, 82]).

5.1.3 Invasion Percolation

Another possible description of an infinite critical cluster is the so-called “Invasion

Percolation Cluster” or IPC. This model was introduced and numerically studied

in [26, 96]. The construction of the IPC measure on Ω proceeds by steps. Let {t(e)}

denote a family of independent uniform random variables on [0, 1] indexed by e ∈ E2.

Note that here we describe only the two-dimensional IPC, the case of most interest

in what follows.

Given a realization of the family {t(e)}, define the graph G0 = (V0, E0), where the

initial vertex set V0 = {0} and E0 = ∅. Given Gi−1, consider the edges incident to

Vi−1 (i.e., the edges of E2 which touch a vertex of Vi−1 but do not lie in Ei−1); denote

by ei the incident edge such that t(ei) is minimal. Then Ei is defined by

Ei = Ei−1 ∪ {ei}
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and Vi is the union of Vi−1 and the vertices touched by ei. The graph Gi = (Vi, Ei);

finally, the IPC is defined by the limit

S = lim
n→∞

Gn.

The distribution of the IPC will here be denoted by µ.

Much past work has been devoted to the characterization of the IPC and its

relation to the IIC. It is known that in certain senses, the IPC asymptotically “looks

like” the IIC [56]. A natural question that arises is whether the subdiffusivity of the

random walk on the IIC means that the corresponding behavior holds on the IPC.

The second contribution of [35], as will be presented in Chapter A, is to show that

this subdiffusivity holds using adaptations of techniques from [65]. Moreover, a lower

bound is given for the subdiffusivity exponent ε in terms of the “arm exponents” for

critical percolation in two dimensions.

5.1.4 Idea of proof

Because [35] has to deal with a number of technical issues, we describe here the major

ideas of the proofs in the case of the IPC. Recall that the main goal of the paper is to

demonstrate a subdiffusive upper bound for the speed of a random walk on a typical

realization of the IPC. As we will see in the Appendix, we can prove this result in

two versions with different techniques. One form of the theorem, which parallels the

presentation of the theorem of Kesten, states

Theorem 5.1.3. Let τ(n) be the smallest N such that XN /∈ B(n). There exists ε > 0

such that, for ν-almost every realization of the IPC, for almost every realization of

the random walk,

τ(n) ≥ n2+ε

for all n larger than some random n0.
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The proof of Theorem 5.1.3 is based on results on the intrinsic or chemical distance

in the IPC which did not exist at the time of [65]. Let distIPC(x, y), the intrinsic

distance, denote the length of the shortest path in the IPC between vertices x and y

(we define distIPC(A,B) for sets A,B in the usual fashion). Building on techniques

of Aizenman and Burchard [1], a result of Pisztora [82] says that the IPC distance

between the origin and the boundary of [−n, n]2 is typically very large, in the following

sense. There exist constants C,C ′ and some s > 1 such that

P (distIPC(0, ∂B(n)) ≤ Cns) ≤ C ′n−2.

Therefore, asymptotically, a random walk must go on the order of ns steps to reach

the boundary of a box of size n.

However, there exist general bounds for reversible Markov chains [25, 90] which

imply that the random walk on the IPC is at most diffusive in the intrinsic distance

in the sense that

distIPC(0, Xk)
2 ∼ k.

These two facts imply Theorem 5.1.3. This approach has the advantage of providing

a relatively rapid proof of subdiffusivity using recent percolation technology.

On the other hand, using methods parallel to Kesten’s original proof, a stronger

result can be derived. This takes the form

Theorem 5.1.4. Let τ(n) be as before. There exists ε > 0 such that, for ν-almost

every realization of the IPC, for almost every realization of the random walk,

τ(n) ≥ n2+κ+ε

for all n larger than some random n0. Here κ is a constant which can be bounded

away from zero in terms of physically relevant quantities (see the discussion below).
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To discuss κ and the techniques used to prove the theorem, we briefly describe

“arm exponents” in critical percolation (for more discussion, see the introduction to

the Appendix). A fact of life in critical percolation is that a given point is connected

to the boundary by an open path (or two disjoint open paths) by a power law. In the

following equations, we use “connected” to mean “connected by an open path”.

Ppc (0 is connected to [n,∞)× R) ≤ Cn−η1 (5.2)

Ppc (0 has two disjoint connections to ∂B(n)) ≤ Cn−η2 . (5.3)

We call the event in (5.2) a “one-arm event” and η1 a “one-arm exponent”; two-arm

events are defined analogously.

Kesten’s insight was to note that in some sense, the IIC in the box B(n) looks like

a collection of points at which a one-arm event occurs, but to travel to the boundary

∂B(n) requires one move along the backbone–the collection of sites with disjoint

open connections to 0 and ∂B(n)–which are sites at which a two-arm event occurs.

Moreover, the random walk should spend an amount of time on the backbone roughly

equal to the volume fraction of the IIC it occupies. Because two-arm points are rarer

than one-arm points, this implies that the random walk “wastes time” going down

dead-ends which offer no hope of reaching ∂B(n).

Using an argument based on Kesten’s, Theorem 5.1.4 is shown with a κ bounded

below by η1η2/2.
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A.1 Abstract

We derive quenched subdiffusive lower bounds for the exit time τ(n) from a box of

size n for the simple random walk on the planar invasion percolation cluster. The

first part of the paper is devoted to proving an almost sure analog of H. Kesten’s

subdiffusivity theorem for the random walk on the incipient infinite cluster and the

invasion percolation cluster using ideas of M. Aizenman, A. Burchard and A. Pisztora.

The proof combines lower bounds on the instrinsic distance in these graphs and

general inequalities for reversible Markov chains. In the second part of the paper,

we present a sharpening of Kesten’s original argument, leading to an explicit almost

sure lower bound for τ(n) in terms of percolation arm exponents. The methods give

τ(n) ≥ n2+ε0+κ, where ε0 > 0 depends on the instrinsic distance and κ can be taken

to be 5
384

on the hexagonal lattice.

A.2 Introduction

H. Kesten has proved [65] that the simple random walk {X(n)}n≥0 started at 0 on

the incipient infinite cluster (IIC) [64] in two-dimensional Bernoulli bond percolation

is subdiffusive in the sense that there exists ε > 0 such that the family

{n−1/2+εX(n)}n≥0 (A.1)

is tight. The purpose of the current work is to explain how a “quenched” version

of this result can be obtained and extended to the random walk in an environment

generated by a related two-dimensional model, invasion percolation. (The model is

defined in the next section). We present some refinements of Kesten’s method, which

provides a general framework for proving subdiffusivity of random walks in stochastic

geometric models. In the case of two-dimensional invasion percolation (as well as the
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incipient infinite cluster), the ideas in [65] can be used to give explicit bounds on ε

from (A.1) in terms of known critical exponents (see (A.2) and (A.3) below).

Our main result is the following:

Theorem A.2.1. Let {X(k)}k≥0 be a simple random walk on the invasion percolation

cluster (IPC), and τ(n) the first time X(k) exits the box S(n) = [−n, n]2:

τ(n) = inf{k ≥ 0 : |X(k)|∞ = n}.

There exists ε0 > 0 such that, for almost every realization of the random walk, and

almost every realization of the IPC, there is a (random) n0 such that

τ(n) ≥ n2+κ+ε0 for n ≥ n0.

κ is a constant that can be estimated in terms of the behaviour of the one-arm and

two-arm probabilities in critical percolation (with measure Ppc):

κ ≥ 1

2
η1η2,

where η1, η2 > 0 are exponents such that

Ppc(0 is connected to [n,∞)× R) ≤ C1n
−η1 (A.2)

and

Ppc

0 has two disjoint open

connections to S(n)c

 ≤ C2n
−η2 , (A.3)

for some constants C1 and C2.

Remark A.2.2. If one repeats the arguments of this paper in the setting of random

walk on the IIC or IPC of the hexagonal lattice, one can use the exact values of
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the one-arm and two-arm exponents to give a stronger bound on κ. Indeed, it is

not necessary in that case to use the van den Berg-Kesten inequality [17] in (A.22),

therefore giving

κ ≥ (1/2)η2(η2 − η1).

Using the conjectured value η2 = 5
48

+ 1
4

[13], we get a lower bound 17
384

. Without using

this value, but using η2 ≥ 1/4 [13], we get κ ≥ η1/8 = 5
384

.

Remark A.2.3. This result is stronger than the corresponding theorem for the ran-

dom walk on the IIC stated in [65, Theorem 1.27], but it is derived by a modification

of the strategy used there. In particular, Kesten proves that

P(τ(n) ≥ n2+ε)→ 1,

for the “averaged” measure P, which incorporates averaging with respect to the IIC

measure constructed in [64]. Closer examination of his proof reveals that one can take

ε = η2
1/4, and that the estimates in [65] are sufficient to establish a “quenched” result

by a simple application of the Borel-Cantelli lemma. A substantial part of the present

paper is concerned with presenting arguments to overcome the difficulties in adapting

Kesten’s proof to the invasion percolation cluster.

The second result of the paper concerns a simple derivation of subdiffusivity of

random walk on the IPC using results in [1] and [82] concerning the length of the

shortest path from the origin to ∂S(n) (the chemical distance) in near-critical perco-

lation. The work of these authors implies that for large n this length is of order at

least ns, where s > 1. Although Theorem A.2.4 is contained in Theorem A.2.1, it is

of interest because its proof represents a significant reduction in complexity from the

original argument of Kesten.

Theorem A.2.4 (Quenched Kesten theorem for the IPC). Let τ(n) be the time for

a random walker on the invasion percolation cluster to exit S(n). There exists ε > 0
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such that, for PIPC-almost every ω and almost-every realization of the random walk,

τ(n) ≥ n2+ε

for n greater than some random n0.

Remark A.2.5. A similar, but simpler, argument applies to the incipient infinite

cluster and gives an alternative proof that the random walk on the IIC is almost

surely subdiffusive. See the Appendix for details.

Remark A.2.6. ε > 0 in the statement of Theorem A.2.4 depends on the value

of s obtained by the methods of Aizenman-Burchard and Pisztora. s is both very

small and difficult to calculate explicitly. Kesten’s comparison argument (explained in

Section A.5) yields an improvement of the estimate for τ(n) in the previous theorem

by a factor of the form nκ, which leads to Theorem A.2.1. We note that any explicit

bound on s would be directly reflected in that theorem. Indeed, if one has upper and

lower bounds (with high enough probability)

Cns1 ≤ distIPC(x, y) ≤ Cns2 , x, y ∈ IPC

then one can get the lower bound τ(n) ≥ Cna for any a satisfying

a < 2s1 + η1

(
2
s1

s2

− 2− η2

s2

)
.

On the hexagonal lattice, this can be improved as above to

a < 2s1 + (η2 − η1)

(
2
s1

s2

− 2− η2

s2

)
.
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One can actually show s2 can be taken to be 2− η2, which yields the improved bound

(assuming again the exact value of η2)

κ ≥ η2(η2 − η1)

2− η2

=
17

316
.

Remark A.2.7. The improvement due to s1 and s2 in the previous remark comes

from choosing q larger in (A.16). It is actually a common misconception that Kesten’s

original “lost in the bushes” argument gives a lower bound for τ(n) proportional to

the ratio of volume of the IIC to the volume of its backbone. The reason this is false

is that it is not clear how to increase q to order n. The parameter q gives the scale

at which volume estimates can be applied.

There has been little success with rigorous results for random walks on low-

dimensional critical models (for instance, the IIC and IPC). One notable example

is the work of D. Shiraishi [87] on random walk on non-intersecting two-sided random

walk trace. For results in high dimensions, we mention the recent work of G. Kozma

and A. Nachmias [69] on the IIC in dimensions d ≥ 19 and of M. Barlow, A. Járai,

T. Kumagai and G. Slade on the IIC for oriented percolation [11]. On a critical

Galton-Watson tree, Kesten [65] found the asymptotics of τ(n) and constructed a

scaling limit for random walk on the IIC (see also [32] and [12]). Later, O. Angel, J.

Goodman, F. den Hollander and G. Slade [5] found similar results for random walk

on the IPC on a regular tree.

After setting some notation below, we give the definition of the invasion perco-

lation model in Section A.3, and recall some useful properties of the IPC derived in

previous literature. We then prove Theorem A.2.4 in Section A.4, and explain how

Kesten’s volume comparison argument is used to obtain Theorem A.2.1 in Section

A.5. Section A.6 contains the derivation of estimates used in the proof of Theorem 1.
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For convenience, we work on the square lattice Z2, but our results extend to planar

lattices for which the Russo-Seymour-Welsh estimates hold true.

A.2.1 Notation

In this section, we give notation used throughout the paper for future reference. For

any vertex (lattice point) v = (v1, v2) ∈ Z2, S(n, v) is the box

S(n, v) = ([v1 − n, v1 + n]× [v2 − n, v2 + n]) ∩ Z2

= {x ∈ Z2 : |x− v|∞ ≤ n}.

|x|∞ = max(|x1|, |x2|).

S(n) is the box S(n,0), centred at the origin. ∂S(n, v) refers to the internal vertex

boundary of S(n, v):

∂S(n, v) = {x ∈ S(n) : ∃y ∈ S(n)c, |x− y|∞ = 1}

We also define

Λ(n) = S(n) ∩ IPC,

where IPC is defined in the next section. For a graph G, the set of edges is denoted

by E(G).

For each p ∈ [0, 1], the independent bond percolation measure Pp is an infinite

product of Bernoulli measures with parameter p indexed by the edges of Z2. For a

finite set I ⊂ E(Z2), and a vector v ∈ {0, 1}I we have

Pp(σ ∈ {0, 1}E(Z2) : σ(e) = v(e) for e ∈ I) = p]{e:v(e)=1}(1− p)]{e:v(e)=0}.
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A configuration σ is an element of {0, 1}E(Z2). An edge e is said to be open in the

configuration σ if σ(e) = 1, and closed otherwise.

If A and B are subsets of Z2 we denote by

Pp(A→ B)

the probability of the event that A and B are connected by a path of open edges.

The notation PIPC(A→ B) is defined analogously. We write

P(A
p−→ B)

to denote the probability that A and B are connected by p-open edges.

We will use the connection probabilities π and ρ defined as

π(p, n) = Pp(0→ [n,∞)× R)

ρ(p, n) = Pp(0→ ∂S(n) by two disjoint open paths).

These probabilities refer to independent bond percolation with parameter p. When

no parameter is specified, it is understood that p = pc = 1/2; that is,

π(n) = π(pc, n), ρ(n) = ρ(pc, n).

We denote by PIPC the invasion percolation measure on bond configurations in Z2.

Throughout, ω will denote a realization of the IPC; that is, a subgraph of Z2 sampled

from PIPC. For each such ω, we denote by Pω the probability measure associated

with the simple random walk on the invasion cluster in the realization ω (which by

definition contains the origin 0 = (0, 0) ∈ Z2).

For x > 0 , we denote by log x = log2 x the logarithm of x in base 2.

184



Throughout the paper, Ci will denote constants chosen independent of n. We use

the notation A . B if there exists a constant C such that

A ≤ CB.

This notation is only used if the implicit constant C is deterministic; that is, it does

not depend on the realization of the IPC or of the random walk. The notation

A .c B

is used to emphasize that the implicit constant depends on the parameter c.

The notation A � B denotes the existence of two positive constants D1 and D2

such that

D1B ≤ A ≤ D2B.

If f(n) and g(n) are two positive sequences, we use the notation f(n) � g(n) to

mean

lim
n→∞

g(n)

f(n)
= 0.

A.3 Invasion percolation

A.3.1 Definition of the model

The planar invasion percolation cluster is a random subgraph of the lattice Z2 which

can be constructed from the familiar coupling of the independent bond percolation

measures Pp, 0 < p < 1. To every edge e of Z2, viewed as a graph, associate a random

variable w(e), uniformly distributed in [0, 1], {w(e) : e ∈ E} and {w(e′) : e′ ∈ E ′}

being independent for E ∩ E ′ = ∅. An edge is called p-open if w(e) ≤ p and is

p-closed otherwise. The distribution of the set of p-open edges is that of a Bernoulli
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bond-percolation process at density p. The distribution of (w(e))e∈E(Z2) is a product

measure which will be denoted by P.

The IPC consists of a union of subgraphs of Z2 constructed by an iterative process:

we start at the origin {0, ∅} ≡ G0. At every stage, we form Gi+1 by adding to the

current (finite) graph Gi the edge e with the least weight w(e) among

∆Gi = {e = (u, v) ∈ E(Z2), e /∈ E(Gi) but u ∈ Gi}

as well as the endpoints of e. The IPC is defined to be the union
⋃
i≥0Gi.

Since the percolation probability θ(p) = Pp(0 → ∞) at pc = 1/2 is zero [62], the

IPC contains infinitely many edges e with w(e) > 1/2. On the other hand, for any

p > pc, by the Russo-Seymour-Welsh theorem, the IPC will intersect the (unique)

p-open infinite cluster almost surely (see [28] for general d). By construction, once

an edge e in the p-open infinite cluster has been added, all edges added to the IPC

after e have weight no bigger than p.

A.3.2 Correlation length

We will later require bounds for the probability that the IPC intersects the p-open

infinite cluster, for some fixed p, by the time it reaches an annulus of size n. Such

estimates can be found in [97], [56]. An important notion in this context is the

finite-size scaling length L(p, ε). To define it, consider for p > pc the probability

σ(n,m, p) = Pp(∃ a p-open horizontal crossing of [0, n]× [0,m]).

Then L(p, ε) is defined to be

L(p, ε) = min
n≥0
{σ(n, n, p) ≥ 1− ε}.
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From [66], it is known that L(p, ε1) � L(p, ε2) for 0 < ε1, ε2 ≤ ε0, so we shall fix ε = ε0

and henceforth simply refer to L(p) = L(p, ε). We note the following properties of L:

1. L(p) is right-continuous, non-increasing in (pc, 1) and L(p)→∞ as p ↓ pc.

2. Taking ε0 small enough, there exists K > 0 such that [56, (2.8)]:

σ(2mL(p),mL(p), p) ≥ 1− exp(−Km), m ≥ 1.

3. Again from [56, Eq. 2.10], there exists D independent of p such that

lim
δ↓0

L(p− δ)
L(p)

≤ D.

Let log(j) be the j-th iterate of log, and

log∗ n = min{j > 0 : log(j) n ≤ 16}, n ≥ 16.

Define, for n ≥ 16 and j = 1, . . . , log∗ n

pn(j) = min
p>pc

{
L(p) ≤ n

M log(j) n

}
.

M > 0 is a constant to be determined later. Note that if m ≤ n, then pn(1) ≥ pm(1)

when m is sufficiently large.

By (3) above, there exists D > 0 such that

M log(j) n ≤ n

L(pn(j))
≤ DM log(j) n. (A.4)
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Item (2) in the list above implies [56, (2.21)]

P(Hn(j)) ≡ P

∃ pn(j)-open circuit C around 0 in S(n/2) \ S(n/4)

and C is connected to ∞ by a pn(j)-open path

 (A.5)

≥ 1−C3 exp(−C0M log(j) n).

The measure P refers to the coupling of the p-Bernoulli measures described earlier. If

the event Hn(j) occurs, the IPC intersects the pn(j)-open infinite cluster by the time

it reaches S(n)c. The bound (A.5) plays a role in estimates derived in Section A.6.

A.4 Proof of Theorem A.2.4

We begin by giving a brief sketch of the main idea. The first step is to consider a

restriction of the random walk to a certain subset of the IPC, the backbone. The

exit time for this walk from a box of size n is controlled using the Varopolous-Carne

inequality. This inequality implies that the exit time is at least of order d2, where d

is the chemical (instrinsic) distance to the boundary of the box of size n through the

IPC. In Lemma A.4.1, we outline an argument of A. Pisztora that proves that d grows

superlinearly with n. All of these estimates are tight enough to apply Borel-Cantelli

and close the proof of subdiffusivity.

A.4.1 Random walk on the backbone

The simple random walk started at 0 on the IPC is the Markov chain {X(k)}k≥0 with

the set of sites in the IPC as its state space, such that X(0) = 0, and with transition

probabilities given by

Pω(X(k + 1) = y | X(k) = x) =
1[(x, y) ∈ E(IPC)]

deg(x, IPC)
.
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The random variable deg(x, IPC) denotes the number of sites y such that the edge

(x, y) belongs to the IPC.

Below, it will be convenient to work with a modification of X that is reversible on

Λ(n). Thus, we let {Xn(k)}k≥0 be the Markov chain started at the origin and defined

by the transition probabilities

Pω(Xn(k + 1) = y | Xn(k) = x) =
1[(x, y) ∈ E(Λ(n))]

deg(x,Λ(n))
.

Note that the distribution of Xn(k) coincides with that of X(k) for k ≤ τ ∗(n), where

τ ∗(n) = inf{k ≥ 0 : |Xn(k)|∞ = n}.

Moreover, the distribution of τ ∗(n) is equal to the distribution of the exit time τ(n) =

inf{k ≥ 0 : |X(k)|∞ = n} defined in terms of the “full” random walk X on Λ(n).

Thus, it will suffice to obtain bounds on τ ∗(n).

The “backbone” B(n) of Λ(n) is the set of sites in Λ(n) connected in the inva-

sion cluster to 0 and to ∂S(n) by two disjoint paths. A simple argument (see [65,

Lemma 3.13]) shows that whenever Xn leaves the backbone, it must return at the

site where it left before it reaches ∂S(n). Thus the random walk Xn on Λ(n) induces

a random walk Xn,B on B(n) which moves only when Xn is in B(n). That is, if we

define

σ0 = 0

σm = inf{k > σm−1 : Xn(k) ∈ B(n)}

Xn,B(k) ≡ Xn(σk),
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then Xn,B is a random walk on the backbone B(n), with transition probabilities given

by

Pω(Xn,B(k + 1) = y | Xn,B(k) = x) =


1[x,y∈B(n),(x,y)∈E(Z2))]

deg(x,Λ(n))
, y 6= x

deg(x,Λ(n))−deg(x,B(n))
deg(x,Λ(n))

, x = y.

(A.6)

Here, deg(x,B(n)) is defined as the number of edges (x, y) in Λ(n) such that x, y ∈

B(n).

A.4.2 Estimate on the speed of the walk

Irrespective of the geometry of B(n), Xn,B must travel at least n steps in B(n) to reach

∂S(n), because the distance between any two points in B(n) ⊂ Z2 is no less than the

corresponding chemical distance in Z2. This fact was used by Kesten to conclude that

the time spent by the walker on the backbone is of order at least n2/ log n with high

probability. The Carne-Varopoulos bound ([25], [90]; see also [74, Theorem 13.4])

allows us to obtain a better estimate by considering the chemical distance on B(n).

It implies that the reversible Markov chain Xn,B has at most diffusive speed in the

intrinsic metric of the backbone. If µ is the stationary measure for the walk Xn,B (µ

depends on ω), then

Pω(Xn,B(k) = y | Xn,B(0) = 0) ≤ 2
√
µ(y)/µ(0) exp(− distB(n)(0, y)2/(2k)).

The right side of this expression refers to the chemical distance in the backbone B(n).

The ratio appearing on the right can be bounded independently of the realization ω

of the invasion percolation, since the stationary measure µ satisfies

1/4 ≤ µ(x)

µ(y)
≤ 4,
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for any x, y ∈ B(n). Since B(n) ⊂ Z2, we have the inequality of graph distances:

distB(n) ≥ distZ2 = dist1 .

Summing this bound over λ
√
k ≤ |y|∞ ≤ k, we find

Pω(distB(n)(0, X
n,B(k)) ≥ λ

√
k) . k2 exp(−λ2/C4).

Suppose we restrict our attention to realizations ω of the environment such that the

chemical distance in B(n) satisfies

distB(n)(0, ∂S(k)) ≥ C5k
s, k ≥ n0(ω)

for some n0(ω) and some deterministic constants s > 1, C5 > 0. For such ω, λ ≥ 1

and n sufficiently large, we have:

Pω(|Xn,B(k)|∞ ≥ λk1/(2s)) ≤ Pω(distB(n)(X
n,B(k),0) ≥ C5λk

1/2) (A.7)

. k2 exp(−λ2/C6).

A.4.3 Chemical distance in the IPC

It follows from work of Aizenman and Burchard [1] that the chemical distance inside a

large box in independent bond percolation with parameter pc = 1/2 is bounded below

by a power s > 1 of the Euclidean distance in Z2 with high probability. Pisztora [82]

showed how to extend this result to p > pc suitably close to 1/2, and to the invasion

percolation cluster. We reproduce the argument leading to his result, in a form that

suits our needs, in the lemma below. Theorem A.2.4 follows from these results and

the considerations above.
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Lemma A.4.1 ([82], Theorem 1.3). There exist C7 and s > 1 such that

PIPC

(
distΛ(n)(0, ∂S(n)) ≤ C7n

s
)
. n−2. (A.8)

Proof. The models considered in [1] are defined by families {P`}`>0 of probability

measures on collections of curves in a compact region R. For each `, P` is supported

on unions of polygonal curves with step size `. The realizations in the support of P`

are denoted by F`.

A truncated version of capacity is used to obtain lower bounds on the minimal

number N(A, `) of sets of diameter ` required to cover a given set A ⊂ R:

N(A, `) ≥ caps,`(A) · `−s (A.9)

where

cap−1
s,` (A) = inf

µ(A)=1

∫∫
1

max(|x− y|s, `−s) µ(dx)µ(dy).

The infimum is over Borel probability measures supported on A.

Under the assumption “Hypothesis H2,” the authors of [1] obtain uniform bounds

for caps,`: if there exist some K, σ > 0, and 0 < ρ < 1 such that for every k and

collection of k rectangles A1, . . . , Ak of lengths l1, . . . , lk ≥ ` and cross-section1 σ, and

satisfying

dist(Aj,∪i 6=jAi) ≥ diamAj

for all j, we have

P`(all Ai are traversed by segments of a curve in F`) ≤ Kρk,

1The cross-section of a rectangle is the ratio of its short side to its long side.
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then the capacity caps,` of macroscopic curves is bounded below for some s > 1 [1,

Theorem 1.3]: all curves C in F` with diam(C) ≥ 1/10 satisfy

caps,`(C) ≥ C(s, ω, `).

C(s, ω, `) is a random variable which is stochastically bounded below in the sense that

P`(C(s, ω, `) ≤ u)→ 0 (A.10)

uniformly in ` as u→ 0.

We will apply the results in [1], with ` = n−1 to bond percolation on the rescaled

lattice

Rn = (1/n)Z2 ∩ [−1, 1]2.

For p ∈ [0, 1], let Pnp denote the independent bond percolation measure with parameter

p on the edges of Rn. Pnp induces a probability measure on configurations F1/n of

curves in R = [−1, 1]2: the percolation configuration is a union of connected paths of

p-open edges, each edge being identified with a line segment of length 1/n.

In the case of independent percolation, Hypothesis H2 reduces to the existence

of a cross-section σ and ρ < 1 such that the probability that there exists an open-

crossing of a rectangle of cross-section σ is less than ρ. By the Russo-Seymour-Welsh

estimates, Hypothesis H2 is satisfied for {Pnpc}n≥1.

The lower bound (A.9) gives an estimate for the chemical distance in F1/n between

any two sets in [−1, 1]2. Any pc-open path in Rn connecting subsets A and B of Rn

at Euclidean distance

dist(A,B) ≥ 1/10

contains at least C(s, ω, 1/n) · ns bonds. Denote by distF1/n
(A,B) the (random)

number of bonds in the shortest pc-open path connecting A and B in Rn. By (A.10),
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given any ε > 0, we can choose C(ε) such that for all n,

Pnpc(distF1/n
(A,B) ≤ C(ε) · ns) ≤ ε.

The scaling

x 7→ nx

defines a measure-preserving bijection between (E(Rn),Pnpc) and (E(S(n)),Ppc). It

follows that for each ε > 0, there exists a constant C(ε) such that for all subsets A,

B of S(n) at Euclidean distance n/10 from each other,

Ppc

 there exists an open path connecting A and B

in S(n) with no more than C(ε)ns bonds

 ≤ ε.

Note that if B cuts A from S(n)c in Z2, the restriction that the path be contained in

S(n) is superfluous. This point will be relevant below.

The observation in [82] is that the Aizenman-Burchard bounds remain valid for

p > pc as long as n is smaller than the correlation length L(p). The estimate used to

obtain (A.10) depends only on σ and ρ [1, p. 446]. It follows from the definition of

L(p) and the Russo-Seymour-Welsh estimates that there exists ρ < 1 such that for

rectangles of cross-section ratio 1/3, say, with long side n ≤ 3L(p),

Pp(∃ an open crossing of [0, n]× [0, n/3]) ≤ ρ.

Thus (A.10) remains true uniformly for `−1 ≤ 3L(p). Repeating the argument

above, we see that we can choose C(ε) independent of p ∈ (pc, 1) to make the proba-

bility

Pp(dist(∂S(L(p)), ∂S(3L(p)) ≤ C(ε)L(p)s)
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smaller than an arbitrary ε > 0. The distance refers to the chemical distance in the

union of all percolation clusters in the box S(3L(p)). Since L(p) → ∞ as p ↓ pc, for

any fixed ε, L(p) is much greater than C(ε), and so the estimate on the distance is

not vacuous. More precisely, we find

lim sup
p↓pc

Pp(dist(∂S(L(p)), ∂S(3L(p)) ≤ C(ε)L(p)s) ≤ ε. (A.11)

A block argument with blocks of size 3L(p) converts the initial estimate (A.11)

into an exponential bound for the macroscopic chemical distance in near-critical per-

colation (see the proof of [82, Theorem 1.3, pp. 12-14]). There exist constants C8, C9

such that if p is sufficiently close to pc:

Pp(dist(0, ∂S(n)) ≤ C8n(L(p))s−1) . exp

(
−C9

n

L(p)

)
. (A.12)

With this in hand, (A.8) follows from the construction described in Section A.3. We

outline the argument. The occurrence of the event

H̃n(1) =


∃ p(n/4)−1(1)-open circuit C around 0 in S(n/2) \ S(n/4)

and C is connected to ∞ by a p(n/4)−1(1)-open path


implies that all edges of the IPC in Λ(n) \ S(n/2) are p(n/4)−1(1)-open.

PIPC(distΛ(n)(0, ∂S(n)) ≤ (C8/5) · n(L(p(n/4)−1(1)))s−1) (A.13)

≤ P

∃ x ∈ ∂S(3n/4) : distΛ(n)(x, ∂S(x, n/4− 1))

≤ (C8/5) · n(L(pn(1)))s−1; H̃n(1)

+ P(H̃n(1)c)

. nPp(n/4)−1(1)(dist(0, ∂S(n/4− 1)) ≤ (C8/5) · n(L(p(n/4)−1(1)))s−1) + n−MC10

. n exp

(
−C11

n

L(p(n/4)−1(1))

)
+ n−MC10 .
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The final inequality follows from (A.12) and (A.5). Recalling (A.4):

n

L(pn(1))
≥M log n,

and choosing M suitably large in the definition of pn(1), we find:

n exp

(
−C11

n

L(p(n/4)−1(1))

)
+ n−MC10 . n−2.

By slightly lowering s to absorb the logarithm, the probability on the left of (A.13)

can be made to match the form of the left side of (A.8).

Remark A.4.2. The final part of the proof of Lemma A.4.1 shows that for any

0 < R1 < R2 < R3 and any k > 0, one can find constants (depending on Ri and k)

such that

PIPC(distΛ(R3n)(∂S(R2n), ∂S(R1n) ∪ ∂S(R3n)) ≤ Cns) . n−k.

Here s > 1 is the constant appearing in (A.8). Such a statement will be used in

Section A.5 below.

Proof of Theorem A.2.4. For s > 1, let Ln be the event

{distΛ(n)(0, ∂S(n)) ≤ C7n
s}.

By (A.8) in the previous lemma, we have

∑
n≥1

PIPC(Ln) <∞ (A.14)

for some s > 1. Applying the Borel-Cantelli lemma and choosing

ω ∈ {Ln occurs infinitely often}c,
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we can use (A.7) with λ = 4s ·Cs/2
6 (log n)s/2 and C5 = C7; for some N(ω) we have:

∑
n≥N(ω)

Pω(τ ∗(n) ≤ n2s/λ2) ≤
∑

n≥N(ω)

∑
k≤n2s/λ2

Pω(|Xn,B(k)|∞ ≥ n) <∞.

A second application of the Borel-Cantelli lemma leads to Theorem A.2.4.

Note that for the argument above it was not necessary to consider Xn,B. However,

the decomposition of the IPC into a backbone and “dangling ends” will be central

in the derivation of Theorem A.2.1 below. The proof of Theorem A.2.4 shows that

Xn,B alone already contributes at least n2+ε steps to τ(n).

A.5 Kesten’s comparison argument

Our modification of Kesten’s argument compares the volume of sites in the invasion

percolation cluster (IPC) to the volume of sites on the backbone to conclude that the

walk must be subdiffusive.

A.5.1 Preliminaries and a key lemma

We assume for simplicity of notation that n = 3m, m ∈ Z+. We introduce two

stopping times:

τ(2m) = inf{k ≥ 0 : X(k) ∈ ∂S(2m)}

σ+(m) = inf{k ≥ τ(2m) : X(k) ∈ ∂S(m) ∪ ∂S(n)}.

By definition, we clearly have:

τ(n) = τ(3m) ≥ σ+(m)− τ(2m).

197



Hence, it will suffice to obtain a lower bound on the right side of the previous expres-

sion.

Y (k) = X(τ(2m) + k), k ≥ 0

is a simple random walk on IPC; now define Y n to be the simple random walk on

(the possibly disconnected)

Γ(n) = IPC ∩ (S(n) \ S(m))

with initial point Y (0). Letting σ∗(n) be the hitting time of ∂S(m) ∪ ∂S(n) by the

walk Y n, we note that σ∗(n) has the same distribution as σ+(m)− τ(n).

A key tool in Kesten’s argument is the following result from [65], expressing the

spatial “smoothness” of the local times for a reversible Markov chain.

Lemma A.5.1 ([65], Lemma 3.18). Let x, y be two sites in Γ(n), and let

L(x, k) = ]{l : 0 ≤ l ≤ k, Y n(l) = x}

be the local time at a site x of the walk Y n. Then, for some L0 > 0 and any λ > 1:

Pω

(
∃k, L(y, k) ≥ λ distΓ(n)(x, y) and L(x, k) ≤ 1

2

degΓ(n)(x)

degΓ(n)(y)
L(y, k)

)

. distΓ(n)(x, y) exp(−λ/L0). (A.15)

In [65], Lemma A.5.1 is stated in terms of the intrinsic distance on the incipient

infinite cluster. Replacing ‖x − y‖m,w, d(x) and d(y) in the proof of Lemma 3.18

in [65] by distΓ(n), degΓ(n)(x) and degΓ(n)(y), respectively, we obtain Lemma A.5.1

above.

We also modify our definition of the backbone. B̃(n) is defined to be the set of

sites in Γ(n) connected by two disjoint paths (in Γ(n)) to ∂S(n) and ∂S(m). Y n,B̃ is
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the induced walk on B̃, defined analogously to Xn,B in Section A.4. We let b(n) be

the number of steps Y n,B̃ takes between 0 and σ∗(n); b(n) is the time spent by Y n on

B̃(n).

A.5.2 Sketch of the proof of Theorem A.2.1

Kesten’s comparison argument will be applied to Y n. The idea is to consider a “thick-

ening” of the backbone of size q. By Lemma A.5.1, if a box S(v, q) of size q contains

a site x ∈ B̃(n) with L(x, σ∗(n))� q2L0, the random walk visits all accessible sites of

Γ(n) inside S(v, q) at least CL(x, σ∗(n)) times, with high probability. If it is traversed

by a portion of the random walk, the box S(v, q) typically contains q2π(q) sites of

Γ(n), and at most q2ρ(q) sites of B̃(n). Thus the time spent by Y n in S(q, v) up

to σ∗(n) is larger than the time Y n,B̃ spends there by a factor of at least π(q)/ρ(q).

By choosing q appropriately, the set of sites y on the backbone which do not satisfy

the lower bound of order q2L0 on L(y, σ∗(n)) will make a contribution bounded by a

fraction of the total time spent on the backbone.

A.5.3 Proof of Theorem A.2.1

To realize the strategy just described, we tile S(n) \ S(m) by squares of size

q = Q · nη2/2

(log n)3/2
(A.16)

for a constant Q to be determined. Here η2 is the exponent appearing in (A.3). We

note for future reference that

η2 ≤ 1 so that q = o(
√
n) . (A.17)
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This bound on η2 can be proved using the method of [17, Cor. 3.15]. For the details,

the reader can see a standard sketch of a similar inequality (for crossings of an annulus)

under equation (A.31) later in the paper.

For j = (j1, j2) ∈ Z2, define

D(j, q) = [qj1, q(j1 + 1))× [qj2, q(j2 + 1)),

F (j, q) = [q(j1 − 1), q(j1 + 2)]× [q(j2 − 1), q(j2 + 2)].

Given a realization ω of IPC and a realization of the walk, we follow the path of Y n

until σ∗(n) by introducing two sequences {li} and {ji}, first setting l0 = 0 and j0 to

be the index such that Y n(l0) ∈ D(j0, q) and then defining li by

li+1 = min{l > li, Y (l) /∈ F (ji, q)}

Y n(li+1) ∈ D(ji+1, q).

Y n may reach ∂S(m)∪∂S(n) before leaving F (ji, q), in which case li ends the sequence.

We let C(i) denote the component of F (ji, q)∩Γ(n) containing Y n(li). Y
n may return

several times to the same square, so C(j) may be equal to C(i) for i 6= j. Enumerating

the C(i) without repetition as ι0, ι1, . . . , ιλ, with C(ιλ) the component of F (ji, q) where

i is such that

Y n(σ∗(n)) ∈ F (ji, q),

we define

Λ(ι) =
∑
x∈C(ι)

L(x, σ∗(n))

Θ(ι) =
∑

x∈B̃(n)∩C(ι)

L(x, σ∗(n)).
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Since any x belongs to at most 16 different F squares, we have:

1 + σ∗(n)

1 + b(n)
=

∑
x L(x, σ∗(n))∑

x∈B̃(n) L(x, σ∗(n))
≥ 1

16

∑
ι Λ(ι)∑
ι Θ(ι)

.

We now state volume estimates analogous to those obtained in [65] for the incipient

infinite cluster; they will be derived in the next section. We will only be concerned

with those indices in the set

J = {j ∈ Z2 : F (j, q) ∩ (S(n) \ S(m)◦) 6= ∅}.

The first estimate is for the number of backbone sites in any F square; for any j ∈ J ,

we have:

PIPC

(
](B̃(n) ∩ F (j, q)) ≥ c

C12

q2ρ(q) log q

)
. q−c. (A.18)

The second provides, with high probability, a lower bound for the number of sites

of the IPC in a box F (j, q), j ∈ J , given that there is a crossing of F (j, q) \D(j, q):

PIPC


there exists a crossing r ⊆ Γ(n) of F (j, q) \D(j, q)

with ]{x ∈ F (j, q) : x connected to r in

Γ(n) ∩ F (j, q)} ≤ q2π(q)/(log q)4

 .c q−c (A.19)

Here c is arbitrary but the implicit constant depends on the choice of c.

A.5.4 The events Ei(n) and Wi(n)

We now define the events Ei(n), 1 ≤ i ≤ 4 and Wi, 1 ≤ i ≤ 3. The ratio∑
Λ(ι)/

∑
Θ(ι) will be bounded below by π(q)/ρ(q) on the event (∩iEi) ∩ (∩iWi).

1.

E1(n) =
{
ω : distΓ(n)(∂S(2m), ∂S(n) ∪ ∂S(m)) ≥ C13n

s
}
.
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2.

E2(n) =


ω : ](B̃(n) ∩ F (j, q)) ≤ C14q

2ρ(q) log q

for all j ∈ J

 .

3.

E3(n) =


ω : ]{x ∈ F (j, q) : x connected to r in

Γ(n) ∩ F (j, q)} ≥ q2π(q)/(log q)4 for all

j ∈ J and any crossing r ⊆ Γ(n) of F (j, q) \D(j, q)


.

4.

E4(n) =

{
ω : ]B̃(n) ≤ 4

C15

n2ρ(n)(log n)2

}
.

5.

W1(n) = {b(n) ≥ n2s′/ log n}.

6.

W2(n) =



1/8 ≤ L(x, σ∗(n))

L(y, σ∗(n))
≤ 8 for each pair x, y ∈ S(n) r S◦(m)

such that x, y belong to the union of two clusters

C(i), C(i+ 1) traversed consecutively by Y n and

L(x, σ∗(n)) ≥ 320L0q
2 log n


.

7.

W3(n) =



L(x, σ∗(n)) ≤ 2560L0q
2 log n

for any x in a cluster C(i) such that

L(y, σ∗(n)) ≤ 320L0q
2 log n

for some y ∈ C(i)


.
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By the remark following the proof of Lemma A.4.1, there exists C13 such that

PIPC(E1(n)c) . n−2,

with the same constant s as in (A.8). For any 1 < s′ < s and ω ∈ E1(n), we use the

Carne-Varopoulos estimate (A.7), applied to the symmetric chain Y n,B̃, to show as

in the proof of Theorem A.2.4:

Pω(W1(n)c) . n−2, ω ∈ E1(n), (A.20)

giving the bound (A.2.4).

Recall the definition of q in (A.16). We have

q−1 = o(n−η2/4).

Noting that there are, up to a constant, at most n2/q2 indices j in J , and choosing

C14 ≥ 16/(C12η2) in (A.18), and accordingly in the definition of E2(n), we find

PIPC(E2(n)c) . n−2.

By the estimate (A.25) in Section A.6:

PIPC(E4(n)c) . n−2.

By (A.19) (for some c large enough), we have

PIPC(E3(n)c) . n−2.
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Finally, we have

Pω(W2(n)c),Pω(W3(n)c) . n−2

uniformly in ω. Indeed, suppose x and y are two sites as in the description of W2(n),

then, for n sufficiently large,

distΓ(n)(x, y) ≤ (6q + 1)2 ≤ 40q2

for any ω. Using

1 ≤ degΓ(n)(x), degΓ(n)(y) ≤ 4

for any x, y in the IPC, we find that on W2(n)c, for some pair x, y either

L(x, σ∗(n)) ≤ 1

8
L(y, σ∗(n)) ≤ 1

2

degΓ(n)(y)

degΓ(n)(x)
L(y, σ∗(n))

and

L(y, σ∗(n)) ≥ 8 · 320L0q
2 log n ≥ 64L0 log n distΓ(n)(x, y)

or

L(y, σ∗(n)) ≤ 1

2

degΓ(n)(y)

degΓ(n)(x)
L(x, σ∗(n))

and

L(x, σ∗(n))) ≥ 8L(y, σ∗(n)) ≥ 8L0 log n distΓ(n)(x, y).

The first case is contained in the event appearing in (A.15). So is the second case,

after reversing the roles of x and y in that event. Using

distΓ(n)(x, y) . n2,
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applying Lemma A.5.1, and taking the union over all pairs, x, y ∈ S(3m) \ S(m), we

find that, whatever ω in the support of PIPC:

Pω(W2(n)c) .
∑

x,y∈S(3m)\S(m)

](S(3m) \ S(m)) · exp(−8 log n) . n6n−8.

A similar argument applies to W3(n).

A.5.5 End of the proof

Applying the Borel-Cantelli lemma to

E1(n)c ∪ E2(n)c ∪ E3(n)c ∪ E4(n)c,

we find that for PIPC-almost every ω, there exists N(ω) such that ∩iEi(n) holds when

n ≥ N(ω). For any such ω, a further application of the Borel-Cantelli lemma shows

that, Pω-almost surely, ∩iWi(n) holds for n large enough.

It remains to show that whenever all the events above hold, we have the subdiffu-

sive bound of Theorem A.2.1. First, on E4(n) ∩W3(n), if we denote by
∑∗ the sum

over indices ι such that C(ι) contains a site xι ∈ B̃(n) with

L(xι, σ
∗(n)) ≥ 320L0q

2 log n,

then, assuming W1(n) also occurs, adjusting the constant Q in the definition of q (see

(A.16)):

(
∑
ι

−
∑∗

ι

) Θ(ι) ≤ 16 · 320L0q
2 log n · ]B̃(n)

≤ 1

2
b(n).
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It follows that

1 + σ∗(n)

1 + b(n)
≥ 1

32

∑∗ Λ(ι)∑∗Θ(ι)
. (A.21)

On W2(n), letting yι be the lexicographically earliest point of B̃(n) in C(ι), we have

for those indices ι ≤ λ occurring in
∑∗:

Λ(ι) ≥ 1

8
L(yι, σ

∗(n)) · ]C(ι)

Θ(ι) ≤ 8L(yι, σ
∗(n)) · ]B̃(n) ∩ C(ι).

For each ι ≤ λ, F (jι, q) \ D(jι, q) contains an invaded crossing in C(ι). Thus, on

E2(n) ∩ E3(n), we can write:

Λ(ι)

Θ(ι)
≥ 1

82C14

π(q)

ρ(q)

1

(log q)5
, ι ≤ λ

Bounding every Λ(ι) term below individually in (A.21) and using the BK inequality,

we find:

1 + σ∗(n)

1 + b(n)
&
π(q)

ρ(q)

1

(log q)6
&

1

π(q)(log q)5
. (A.22)

On W1(n), we have b(n) ≥ n2s′/ log n. Recalling the definition of q from (A.16), we

have the following bound for π(q).

π(q) . q−η1 . n−(1/2)η1η2(log n)3η1/2

Choosing ε0 > 0 such that 2 < 2 + ε0 < 2s′, we obtain:

τ(n) ≥ σ∗(n) &
n2s′

log n
· 1

π(q)(log q)5
� n2+ 1

2
η1η2+ε0 ,

the desired result.
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A.6 Derivation of the volume estimates

In this section we prove the volume estimates (A.18) and (A.19).

A.6.1 Estimates for the size of the backbone

We show that the following moment bounds hold for j ∈ J :

EIPC(]F (j, q) ∩ B̃(n))k ≤ k! · (C16q
2ρ(q))k (A.23)

EIPC(]B̃(n))k ≤ k! · kk · (C17n
2ρ(n))k, (A.24)

for k = 1, 2... and constants C16, C17.

The estimate (A.23) implies the existence, for λ > 0 small enough, of the expo-

nential moment:

EIPC exp(λ]F (j, q) ∩ B̃(n)) <∞.

Applying Chebyshev’s inequality with λ = 1/(2C16q
2ρ(q)) yields (A.18).

From (A.24), we obtain the finiteness, for sufficiently small λ, of the stretched

exponential moment:

EIPC exp(λ](B̃(n))1/2) <∞.

Using Chebyshev’s inequality with λ = 1/(2(eC17n
2ρ(n))1/2), we obtain, for each

c > 0:

PIPC

(
]B̃(n) ≥ c

C15

n2ρ(n)(log n)2

)
. n−c

1/2

. (A.25)

To derive (A.23) and (A.24), we follow the method introduced by Járai [56] to

estimate the moments of the volume |Λ| of the IPC in a box. We will instead apply

this argument to the volume of a backbone, and then combine it with an inductive

argument of Nguyen [79].
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We begin with the first moment (k = 1) in (A.23). If F (j, q) ⊂ S(n) \ (S(m))◦,

the number of sites of F (j, q) with two disjoint connections in the IPC to ∂F (j, q)

provides an upper bound for the volume of F (j, q)∩ B̃(n). Let Zq(j, j) denote the set

of sites in F (j, q) with two p2m(j)-open connections to ∂F (j, q). Note that

B̃(n) ⊂ S(m)c.

On H2m(j) (defined in (A.5)), every edge of the IPC in S(m)c is p2m(j)-open, as noted

at the end of Section A.3, and thus:

E(](B̃(n) ∩ F (j, q))) ≤ E(](B̃(n) ∩ F (j, q));H2m(1)c)

+

log∗ 2m∑
j=2

E(]Zq(j, j − 1);H2m(j − 1) ∩H2m(j)c) (A.26)

+ E(]Zq(j, log∗ 2m)).

The first term is bounded up to a constant factor by:

(3q)2 · P(H2m(1)c) . q2(2m)−C0M .

The terms of the sum are estimated using the Harris-FKG inequality:

E(]Zq(j, j − 1);H2m(j − 1) ∩H2m(j)c) ≤ E(]Zq(j, j − 1)) · P(H2m(j)c)

. E(]Zq(j, j − 1)) exp(−MC0 log(j) 2m)

(A.27)
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By decomposing F (j, q) according to the distance l to ∂F (j, q), we find:

E](Zq(j, j − 1)) .
3q/2∑
l=1

qρ(p2m(j − 1), l) (A.28)

.
∑

l≤bL(p2m(j−1))c

qρ(p2m(j − 1), l) (A.29)

+ q2ρ(p2m(j − 1), L(p2m(j − 1))) · 1[ 3q/2 > bL(p2m(j))c ].

By the same argument used for (7) in [64] (see Remark (37) there), the sum up to

L(p2m(j − 1)) in (A.29) is bounded up to a constant by

q2ρ(p2m(j − 1), L(p2m(j − 1))).

The proof in [64] is carried out for p = pc, but the implicit constants that appear are

due to applications of RSW theory and thus are uniformly bounded in p > pc. By

comparability of the arm exponents below L(p) [66] (see also [80, Theorem 26]), we

have

ρ(p2m(j − 1), L(p2m(j − 1)) . ρ(pc, L(p2m(j − 1))).

Thus, finally, in (A.28), we have (since q ≤ 2m)

E](Zq(j, j − 1)) . q2ρ(pc, 2m)M log(j−1) 2m (A.30)

. q2ρ(pc, q)M log(j−1) 2m,

where in the first step we have used the inequality

ρ(pc, r)

ρ(pc, s)
&
s

r
(A.31)

for r ≤ s. A similar inequality for π(pc, n) was used in [56], where the author indicates

that it can be proved by the argument in [17, Corollary 3.15]. The proof of (A.31)
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follows the same general strategy, but does not use the van den Berg-Kesten inequal-

ity: let k = 0, 1, 2, . . . , dr/se, vk = 0±2ks and consider the annuli S(vk, r)\S◦(vk, s).

The inner squares of these 2dr/se + 1 annuli are adjacent. The event that there ex-

ists a pc-open left-right crossing of S(r) has probability bounded below uniformly in

r, and implies that one of the annuli is crossed by two disjoint pc-open paths. By

quasi-multiplicativity, this probability is comparable to ρ(r)/ρ(s), and (A.31) follows

by a union bound.

Inserting (A.30) into (A.27) and then into (A.26), we find

E(](B̃(n) ∩ F (q, j))) . q2ρ(pc, q)

×
(

exp(−MC0 log 2m)

ρ(pc, q)
+M

log∗ 2m∑
j=2

(log(j−1) 2m)−MC0 log(j−1) 2m+M

)

The final term corresponds to E(]Zq(j, log∗ 2m)), which is O(q2ρ(pc, q)) by (A.30).

Using (A.31), we may choose M large enough to make the first term O(1). An im-

portant point made in [56] is that choosing M possibly larger, we may bound the

contribution from the sum in the parentheses by a constant. Indeed, we have

sup
n≥1

log∗ n∑
j=1

(
log(j) n

)−1

. 1. (A.32)

This establishes (A.23) for k = 1. To deal with the higher moments, we use the

following general lemma:

Lemma A.6.1. Let pc ≤ p ≤ 1, n ≥ 1, and Cn(p) be the set of sites of S(n) with

two disjoint p-open connections to ∂S(n). There exists a constant C18 independent

of n and p such that, for any k ≥ 1, the following inductive bound holds:

E(]Cn(p))k+1 ≤ C18(k + 1)n2ρ(p, n)E(]Cn(p))k.
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Proof. The result is essentially due to Nguyen [79], who proved that for p ≥ pc and

L ≤ L(p),

E(]WL)k+1 ≤ C19(k + 1)L2π(p, L)E(]WL)k, k ≥ 1,

where WL is the set of sites in S(L) connected to ∂S(L) by a p-open path. C19 is a

constant uniform in k, L and p.

When n ≤ L(p), the proof in [79] is easily adapted to the variables ]Cn(p). We

define the event

A(x) = {x has two disjoint open connections to ∂S(n)}.

The idea is to write

E(]Cn(p))k+1 =
∑

x1,...,xk+1∈S(n)

Pp(∩ki=1A(xi), A(xk+1))

=

n/2∑
l=1

∑
x1,...,xk∈S(n)

∑
xk+1∈Rl∩S(n)

Pp
(
∩ki=1A(xi), A(xk+1)

)
, (A.33)

where we have set

Rl = Rl(x1, . . . xk) = {x : dist∞(x, {x1, . . . , xk} ∪ ∂S(n)) = l}.

Letting

Circk,l =


there exists an open circuit

around xk+1 in S(l, xk+1) \ S(l/2, xk+1)

 ,
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we have P(Circk,l) ≥ C20 > 0 uniformly in l and n (even for l > L(p)). By the FKG

inequality:

Pp
(
∩ki=1A(xi), A(xk+1)

)
≤ 1

C20

Pp
(
∩ki=1A(xi), A(xk+1),Circk,l

)
≤ 1

C20

Pp

∩ki=1Ã(xi, l), xk+1 has two disjoint

connections to ∂S(l/2, xk+1)

 .

Ã(xi, l) is the event that xi is connected to ∂S(n) by two disjoint open paths outside

of S(l/2, xk+1). By independence, the last quantity on the right is bounded, up to a

constant, by

Pp
(
∩ki=1A(xi)

)
ρ(p, l/2).

For any l, we have:

]Rl . (k + 1) · n.

Returning to (A.33), we find

E(]Cn(p))k+1 . (k + 1) · E(]Cn(p))k · n
n/2∑
l=1

ρ(p, l/2). (A.34)

If n ≤ L(p), we have

ρ(p, l/2) � ρ(pc, l/2) � ρ(pc, l),

and the estimate (see the remark concerning (A.29) above)

n/2∑
l=1

ρ(pc, l) . nρ(pc, n) . nρ(p, n)

leads to the inductive estimate claimed above.
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If n ≥ L(p), we split the sum as we did in the treatment of the first moment of

]Zq:

n/2∑
l=1

ρ(p, l/2) =

bL(p)c∑
l=1

+

n/2∑
l=bL(p)c+1

 ρ(p, l/2) (A.35)

.
bL(p)c∑
l=1

ρ(p, l/2) + nρ(p, L(p)/2)

. nρ(p, L(p)) + nρ(p, L(p)/2)

. nρ(p, n).

Here we have used that for L ≥ L(p), ρ(p, L) � ρ(p, L(p)). This follows by a variant

of the argument presented in [80, Section 7.4] . This establishes the lemma.

Using Lemma A.6.1, induction and the fact that q ≤ 2m/(DM log 2m) for large

m, we obtain

E(]Zq(j, j))
k ≤ k!(C18q

2ρ(p2m(j), q))k ≤ k!(C18q
2ρ(pc, q))

k. (A.36)

Thus, arguing as for (A.26):

E((](B̃(n) ∩ F (q, j))k) . k! q2k(ρ(pc, q))
k(C18)k

×
(

exp(−MC0 log 2m)

k!(C18ρ(pc, q))k
+

log∗ 2m∑
j=2

(log(j−1) 2m)−MC0 + 1

)
.

Using the value of q from (A.16) and choosing M = η2k/2C0, we use (A.32) to get

(A.23) in the case where j is such that F (q, j) ⊂ S(3m) \S(m)◦. For a general j ∈ J ,

the intersection

F (q, j) ∩ (S(3m) \ S(m)◦)
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is a union of at most two rectangles with side lengths r1 and r2, ri ≤ 3q/2. Repeating

the arguments above, we see that the size of the intersection of each of these rectangles

with the backbone B̃(n) enjoys the moment bounds (A.23), with q2ρ(pc, q) replaced

by r1r2ρ(pc, r), with r = max{r1, r2}. Using (A.31), we obtain the upper bound

r2ρ(pc, r). For the higher moments, moment bounds of the form (A.23) with a larger

(but still uniform in max(r1, r2) ≤ 3q/2) constant C16 are valid. (A.18) now follows

by a union bound.

The proof of (A.24) follows a very similar pattern to the above. Instead of Zq(j, j),

we consider the sets

Zn(j), 1 ≤ j ≤ log∗ 2m

of points of S(3m) \ S(m) with two disjoint p2m(j)-open connections to ∂S(m) ∪

∂S(3m). Repeating the steps for the case k = 1 gives (A.24) for the first moment. In

the case of higher moments, we need to modify inequality (A.36), replacing it with

E(]Zn(j))k ≤ k!(C18n
2ρ(p2m(j), n))k ≤ k!(MC21n

2ρ(pc, n) log(j) 2m)k

for some C21. Decomposing as before over the events (H2m(j)) and choosing M ≥

(k + 1)/C0 leads to (A.24).

A.6.2 Proof of (A.19)

In its general outline, the proof is similar to that of (3.24) in [65], with some parame-

ters chosen differently because we wish to bound only logarithmic deviations from the

mean. However, the estimates in [65] are carried out for critical percolation (p = pc),

and the proof of the initial estimate (A.37) below in the supercritical case introduces

an additional technical difficulty.

As explained in Section A.3, the entire (finite) pc-open cluster of any site in the

IPC also belongs to the IPC. Thus, for any crossing r (in the IPC) of F (j, q)\D(j, q),
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the number of sites in F (j, q) \ D(j, q) connected to r by pc-open paths provides a

lower bound for the quantity in (A.19).

The starting point is the following:

Lemma A.6.2 ([64]). Let r be a deterministic path crossing S(27n) \ (S(n))◦. Let

Z(n) be the set of sites pc-connected to r inside this annulus. We have the lower

bound:

Ppc(]Z(n) ≥ C22n
2π(n)) ≥ C23,

for some constants C22,C23 > 0 independent of n.

The proof is essentially that of (56) in [64]. Kesten’s idea is to compute the first

and second moments of the number Y (n) of sites in S(9n) \ (S(3n))◦ connected to

open circuits in S(3n) \ (S(n))◦ and S(27n) \ (S(9n))◦ (and thus to r) and use the

Harris-FKG inequality and the second moment method.

Fix some δ > 0 (to be chosen later). We first show that, for any 0 < t < q

(entailing in particular t < L(pn(1)) by (A.17)), and any coordinates v = (v1, v2)

such that

T (v) = [−t+ v1, t+ v1]× [−t+ v2, 4t+ v2] ⊂ S(3m) \ (S(m))◦,

we have, for some constants C24, C25 > 0,

P

∃ a pn(1)-open crossing r of J(v) = [v1, t+ v1]× [v2, 3t+ v2]

such that ]{x ∈ T (v) : x
pc−→ r in T (v)} ≤ C24t

2π(t)/(log t)δ


.

1

(log t)C25
. (A.37)
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A.6.3 Proof of (A.37)

For any crossing r of J(v), let

Z(T (v), r) = {x ∈ T (v) : x is connected to r in T (v) by a pc-open path}.

The probability on the left of (A.37) equals

P
(
∃ a pn(1)-open crossing r : ]Z(T (v), r) ≤ C24t

2π(t)

(log t)δ

)
≤ P

(
∃ a pc-open crossing r′ : ]Z(T (v), r′) ≤ C24t

2π(t)

(log t)δ

)

+ P

 ∃ a pn(1)-open crossing r such that r

intersects no pc-open crossing of J(v)

 . (A.38)

The precise meaning of “r intersects no pc-open crossing of J(v)” is that no site in

J(v) is a common endpoint of an edge in r and an edge in some horizontal pc-open

crossing of J(v). In particular, r is edge-disjoint from all pc-open crossings.

Both terms on the right in (A.38) will be bounded, up to a constant factor, by

(log t)−δC25 . We begin by estimating the first term in (A.38). For any crossing lattice

path r′ of J(v), let J−(r′) be the set of edges with an endpoint that can be connected

to [v1, v1 + t] × {v2} by a path in J(v) that does not touch r′ (below r′). Note that

J−(r′) may include edges not entirely contained in J(v). The lowest pc-open crossing

R1 of J = J(v) is defined as the horizontal crossing of the rectangle by pc-open edges

such that the component J−(R1), is minimal. Rk is defined inductively as the lowest

crossing of J \ (J−(Rk−1) ∪ Rk−1) (defined analogously – see [63, Prop. 2.3] for the

existence of Rk and precise definitions). For a given (lattice path) crossing r′ of J(v),

write Σr′ for the sigma algebra generated by the status of edges in r′ ∪ J−(r′). We

define K to be the maximal k such that Rk exists. The veracity of the following string
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of inequalities is then evident:

P
(
∃ a pc-open crossing r′ : ]Z(T (v), r′) ≤ C24t

2π(t)

(log t)δ

)
≤
∑
k≥1

P
(
]Z(T (v), Rk) ≤

C24t
2π(t)

(log t)δ
;K ≥ k

)
≤
∑
k≥1

∑
r′′

E
(
P( ]Z(T (v), Rk) ≤ C24t

2π(t)/(log t)δ | Σr′′);Rk = r′′, K ≥ k)
)
. (A.39)

On {Rk = r′′, K ≥ k}, we have the following uniform estimate for the conditional

probability given Σr′′ :

P(]Z(T (v), r′′) ≤ C24t
2π(t)/(log t)δ | Σr′′) .

1

(log t)C25
. (A.40)

To see this, consider the left endpoint lr′′ of the crossing r′′, and annuli

A(lr′′ , 3
k) = S(lr′′ , 3 · 3k) \ S(lr′′ , 3

k),
t

(log t)δ/2
≤ 3k ≤ t.

For 33j ≤ t/27, the existence of circuits C ′j around lr′′ in A(lr′′ , 3
3j) and C ′′j in

A(lr′′ , 3
3j+2), all of whose edges outside J−(r′′) are pc-open implies that any site

in A(lr′′ , 3
3j+1) ∩ ([−t, 0)× R) connected to

∂S(lr′′ , 3
3j) ∪ ∂S(lr′′ , 3

3j+3)

is pc-connected to the crossing r′′. Thus, using the Harris-FKG inequality, indepen-

dence of the edge configurations in J−(r′′) and [−t, 0) × R and the second moment

method as in the discussion preceding (A.37), there exist constants C24, C26, such
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that for each j with t/(log t)δ/2 ≤ 33j ≤ t/27:

P
(
]Z(T (v), r′′) ≤ C24t

2π(t)/(log t)δ | Σr′′
)

≤ P
(
]{x ∈ A(lr′′ , 3

3j+1) ∩ ([−t, 0)× R) : x
pc−→ r′′} ≤ C2436jπ(33j) | Σr′′

)
≤ 1−C26.

There are (δ/(6 log 3)) log log t + O(1) admissible indices j, and so by independence

of the configuration in the different annuli, we find

P
(
]Z(T (v), r′′) ≤ C24t

2/(log t)δ | Σr′′
)
. (1−C26)(δ/(6 log 3)) log log t,

which is the same as (A.40).

Returning to the double sum of (A.39):

P
(
∃ a pc-open crossing r : ]Z(T (v), r) ≤ C22t

2π(t)

(log t)δ

)
.
∑
k≥1

∑
r

1

(log t)C25
P (Rk = r,K ≥ k)

=
1

(log t)C25

∑
k≥1

P (K ≥ k) (A.41)

By the Russo-Seymour-Welsh method, the Ppc probability of a dual vertical crossing

of J(v) is bounded below by some ε > 0. Thus, by disjointness of the Rk’s and the

BK inequality,

P (K ≥ k) ≤ P(∃ k disjoint pc-open crossings of J(v)) ≤ (1− ε)k.

This allows us to bound the sum in (A.41) by C/ε.

We now estimate the second term on the right in (A.38). Denote by Ξ the event

that there exists a pn(1)-open crossing r of J(v) such that r intersects no pc-open
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crossing of J(v). For any K0 > 0, we have

P(Ξ) ≤ P(Ξ, K ≤ K0) + P(K > K0).

As previously, K denotes the maximal number of disjoint pc-open crossings of J(v).

We will choose K0 = c log log n, so as to give the following bound for the second term

above:

P(K > K0) . exp(−C27 log log n) = (log n)−C27 ,

where the constant C27 is a constant such that C27 ≥ C25.

For the first term, we have the union bound

P(Ξ, K ≤ K0) ≤
dc log logne∑

k=0

P(Ξ, K = k).

It will be shown below (see Lemma A.6.3) that there is a constant C28 such that, for

any v with T (v) ⊂ S(3m) \ (S(m))◦,

P(Ξ, K = k) ≤ (C28 log t)2k(pn(1)− pc) · t2 · π4(t), (A.42)

where π4(t) = π4(t, pc) is the “alternating 4-arm probability,” associated to the event

that 〈0, e1〉 is connected to ∂S(t) by two disjoint pc-open paths and its dual edge is

connected to ∂S(t) by two disjoint pc-closed dual paths. Thus

P(Ξ, K ≤ K0) . (log log n) exp(2K0 log(C28 log t))(pn(1)− pc) · t2 · π4(t)

≤ exp
(
C29(log log n)2

)
· (pn(1)− pc) · t2 · π4(t), (A.43)
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for a constant C29. The factor (pn(1)− pc) · t2 · π4(t) is O(n−c). Indeed, it was shown

in [66] that, uniformly for p > pc sufficiently close to pc:

L(p)2π4(L(p), pc)(p− pc) � 1. (A.44)

Applying this to p = pt(1), and using (A.4) and π4(t/(M log t)) � π4(t/ log t) [80,

Proposition 12], we find, for t large enough:

t2

(log t)2
π4(t/ log t) · (pt(1)− pc) � 1.

Thus we have

(pn(1)− pc) · t2 · π4(t) .
pn(1)− pc
pt(1)− pc

· (log t)2.

Here we have used π4(t) ≤ π4(t/ log t). Using (A.44) again, we have:

pn(1)− pc
pt(1)− pc

� L(pt(1))2

L(pn(1))2
· π4(L(pt(1))

π4(L(pn(1)))
.

By quasimultiplicativity [80, Proposition 12]:

π4(L(pt(1)))

π4(L(pn(1)))
� 1

π4 (L(pt(1)), L(pn(1)))
,

where π4(n,N) = π4(n,N ; pc) is the probability that there are four arms of alternat-

ing occupation status connecting ∂S(n) to ∂S(N) in S(N) \ S(n)◦. Using Reimer’s

inequality [83] and the (exact) scaling of the 5-arm exponent (see [80, Theorem 23]

or [94]), we have:

(
L(pt(1))

L(pn(1))

)2

� π5 (L(pt(1)), L(pn(1)))

. π (L(pt(1)), L(pn(1))) · π4 (L(pt(1)), L(pn(1))) .
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Here, π(n,N) is the one-arm probability, that ∂S(n) is connected to ∂S(N) by an open

path. Since the one-arm probability satisfies the power-type upper bound π(n) . n−η1

for some η1 ≤ 1/2 (apply the BK inequality to the bound on η2 in (A.17)), we find

that (pn(1)− pc) · t2 · π4(t) is bounded, up to a constant, by

(log t)2

(
L(pt(1))

L(pn(1))

)η1
. (log n)2

(
t

n

)η1
. (A.45)

Since we assume t < q, and q = o(n1/2) (see (A.17)), we find

(pn(1)− pc) · t2 · (log t)2 · π4(t) = O(n−c),

for some c > 0. Returning to (A.43), we have the bound:

P(Ξ, K ≤ K0) . n−c/2.

It remains to prove (A.42). This is done in Lemma A.6.4 below. Before proceeding,

let us introduce a definition: A pc-closed arm with k defects is a path of dual edges,

all of which except for k of them are pc-closed. The proof of Lemma A.6.4 depends

on the following:

Lemma A.6.3. Let Ξ be the event that there exists a pn(1)-open crossing r of J(v)

such that r intersects no pc-open crossing of J(v), and K be the maximal number

of horizontal pc-open crossings of J(v). Suppose K = k; then there exists an edge

e ∈ J(v) such that

1. e has two disjoint pn(1)-open arms to {v1} × [v2, v2 + 3t] (the left side of J(v))

and {v1 + t} × [v2, v2 + 3t] (the right side of J(v)), respectively.
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2. e∗, the dual edge to e, has two disjoint pc-closed arms, each with at most k defects

to [v1, v1 + t]×{v2} (the bottom side of J(v)) and to [v1, v1 + t]×{v2 + 3t} (the

top side of J(v)), respectively.

3. w(e) ∈ [pc, pn(1)].

Proof. On the event {K = k}, Menger’s theorem [37, Section 3.3] implies that there

is a dual path s joining the top of J(v) to the bottom, all of whose edges, with exactly

k exceptions, are closed and which moreover does not intersect itself. This path must

intersect the horizontal pn(1)-open crossing r [63, Prop. 2.2] along a pn(1)-open edge

e. This edge must then be pc-closed. The dual edge e∗, being part of the non-self-

intersecting s with k defects, has two dual arms joining it to the top and bottom of

J(v). (See Figure A.1.) Moreover, the total number of defects on these two arms is

k. This establishes the lemma.

Figure A.1: Depiction of the application of Menger’s theorem in the proof of
Lemma A.6.3. The dotted path has k defects, shown as empty circles. The solid
black path represents a pn(1)-open crossing and the grey paths represent disjoint
pc-open crossings.

222



The proof of (A.37) is concluded by the following lemma, which establishes the

estimate (A.42):

Lemma A.6.4. There is a constant C28 such that, for each k ≥ 1, the following

bound holds:

P(Ξ, K = k) ≤ (C28 log t)2k(pn(1)− pc) · t2 · π4(t). (A.46)

It suffices to estimate the probability that there is an edge in J(v) satisfying the

two conditions in Lemma A.6.3. To that end, we will show that the expected number

of such edges in J(v) is bounded by the quantity on the right side of equation (A.46).

For e ∈ J(v), let Ake be the event that e satisfies the conditions of Lemma A.6.3.

The key step is the existence of a constant C29 such that

P
(
Ake
)
≤ (C29 log t)2k(pn(1)− pc)P(Be), (A.47)

where Be is the event that e has two disjoint pc-open arms joining it to the left and

right sides of J(v) respectively, and e∗ has two disjoint pc-closed dual arms to the

top and bottom sides of J(v). The effect of the arms with defects is to produce the

logarithmic factor indicated in the equations above:

P
(
Ake
)
≤ (C29 log t)2k(pn(1)− pc)P(Ae), (A.48)

where Ae is defined analogously to Be above, except that the open connections are

required to be pn(1)-open rather than p-open. This follows from the argument in [80,

Prop. 17], where it is shown that if Adj,σ(n) denotes the probability that the origin

is connected to ∂S(n) by j paths, with d defects in total, whose occupation status is

specified by the sequence σ ∈ {open, closed}j, then

P(Adj,σ(n)) .d (1 + log n)dP(Aj,σ(n)). (A.49)
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Aj,σ(n) is the event that there are j arms (without defects) to ∂S(n) (with occupation

status as in σ). Inspection of the proof in [80] reveals that the constant implicit in

(A.49) is of the form (C29)d. Separating the four arms as in [66] verifies that (A.48)

holds.

It now remains to show that P(Ae) . P(Be); that is, that for n sufficiently large,

we can change the pn(1)-open arms in the definition of Ae to be pc-open at the cost

of a constant probability factor. For edges e at distance t/2 from the boundary, this

follows immediately from [36, Lemma 6.3]. We briefly sketch how the proof given

there can be adapted to the case where e is close to the boundary. We write P(Ae)

as P(Ae(pn(1), pc)), where for p, q ∈ [pc, 1), Ae(p, q) denotes the event that e has two

disjoint p-open arms to opposite vertical sides of J(v) and e∗ has two disjoint q-closed

dual arms to the top and bottom of J(v). Using Russo’s formula as in [36, (39)] , we

find

d

dp
P(Ae(p, pc)) =

∑
e′ 6=e

P(Ae(·, pc), Ae′(·, p), De,e′(p)). (A.50)

Ae(·, pc) is the event that e∗ has two disjoint pc-closed dual connections to the top

and bottom of J(v), and De,e′(p) is the event that there exist three disjoint p-open

paths joining, respectively, one vertical side of J(v) to one endpoint of e, the other

endpoint of e to an endpoint of e′, and the other endpoint of e′ to the remaining

vertical side of J(v). Note that our notation differs somewhat from the one in [36].

For the purposes of illustration, we will henceforth suppose that e = 〈(v1 + l, v2 +

b3t/2c), (v1 + l+ 1, v2 + b3t/2c)〉 for some l < t/4; that is, e is close to the left side of

J(v). The sum on the right of (A.50) can be rewritten as:

bl/2c∑
j=1

+
l∑

j=bl/2c+1

+
3t∑

j=l+1

 ∑
e′:|e′x−ex|=j

P(Ae(·, pc), Ae′(·, p), De,e′(p)). (A.51)
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ex denotes the left endpoint of the edge e, if e is a horizontal edge, and its bottom

endpoint if e is a vertical edge. The first sum is bounded by

bl/2c∑
j=1

∑
e′:|e′x−ex|=j

P(Ae(bj/2c; p, pc))P(Ae′(bj/2c; p, p)) (A.52)

×P(A(b3j/2c, l; p, pc))P(T (l, t; p, pc))

.
bl/2c∑
j=1

jP(Ae(bj/2c; p, pc))P(A(1, bj/2c; p, p))

×P(A(b3j/2c, l; p, pc))P(T (l, t; p, pc))

A(n,N ; p, pc) denotes the probability that there are four arms of alternating occu-

pation status joining ∂S(n) to ∂S(N); T (l, t; p, pc) is the event that there are two

pc-closed arms, as well as a p-open arm connecting ∂S(l) to ∂S(t). Using gluing

constructions similar to those in proofs of quasi-multiplicativity, and the fact that we

may change the length of any connections involved by constant factors at the cost of

constant factors in the probabilities, we have:

P(Ae(bj/2c; p, pc))P(A(b3j/2c, l; p, pc))P(T (l, t; p, pc)) � P(Ae(p, pc)).

For p ≤ pn(1) < pt(1), we can use [80, Theorem 27] to assert

P(A(1, bj/2c; p, p)) � P(A(1, bj/2c; pc, pc)).

We can now follow [36] exactly (see equations (42) and (43) and the surrounding

discussion) to show that the sum in (A.52) is bounded by:

P(Ae(p, pc)) · l2π4(t) ≤ P(Ae(p, pc)) · t2π4(t).
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To deal with the second sum in (A.51), we note that when

|ex − e′x| ≥ bl/2c+ 1,

the conjunction of the events Ae(·, pc), Ae′(·, p) and De,e′(p) appearing in the proba-

bility on the right of the equation implies that e has 2 p-open, and e∗ two pc-closed

arms to distance bl/4c, that e′ has four alternating arms with parameter p to the

boundary of the intersection of S(e′x, bl/4c) with J(v), three of which reach to dis-

tance bl/4c, and finally that ∂S(ex, b5l/4c) has two pc-closed arms to the top and

bottom of J(v) and a p-open arm to the right side of J(v), and all these connections

occur inside J(v). Using these observations, an argument similar to the previous case

and a summation analogous to that in the proof of [94, Lemma 6.2], shows that we

can estimate (in addition, using the remarks in [80, Section 4.6] to change the p-open

and closed arms in a half-plane to pc-open and closed arms)

l∑
j=bl/2c+1

∑
e′:|e′x−ex|=j

P(Ae(·, pc), Ae′(·, p), De,e′(p)) . P(Ae(p, pc)) · l2π4(l).

Turning to the final sum on the left in (A.51), we can again closely follow [36] to

bound this term by

t2π4(t) · P(Ae(p, pc)).

The estimates outlined above for the left side of (A.50) imply

d

dp
logP(Ae(p, pc)) ≤ C(l2π4(l) + t2π4(t)).

Integrating this from pc to pn(1) and using (A.44), we find

P(Ae(pn(1), pc)) . P(Ae(pc, pc)),
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e

e'

l

j

Figure A.2: Illustration of the setup for management of the second sum in (A.51).
The edge e is at distance l from the left boundary of J(v) and the distance between
e′ and e is j, a number between l/2 and l. The dark dotted curve represents a pc-
closed dual path (given by Menger’s theorem) and the dark solid curve represents a
pn(1)-open path, connecting e′ and e to each other and to the left and right sides of
J(v). The grey dotted curve represents a pn(1)-closed dual path connecting the edge
dual to e′ with the top and bottom of J(v).

which is what we wanted to prove. We have thus established (A.47); that is, we have

shown

P(Ξ, K = k) ≤ E[]Nk] . (C30 log t)2k · (pn(1)− pc)
∑
e∈J(v)

P(Be),

where Nk is the number of edges satisfying the conditions in Lemma A.6.3. Note

that Be is equal to the event that the edge e is pivotal for the existence of a left-right

pc-open crossing of J(v). Following [94, Lemma 6.2], we can show

∑
e∈J(v)

P(Be) . t2 · π4(t).
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This concludes the proof of the lemma.

A.6.4 Final Peierls argument

We use a block argument and a Peierls argument to upgrade (A.37) to (A.19). The

annulus F (j, q) \D(j, q), centred at

v = q

(
j1 +

1

2
, j2 +

1

2

)

is tiled with smaller squares of side length

t =
q

log q
.

The existence of a pn(1)-open crossing of F (j, q) \D(j, q) implies that of a crossing

r̄ = (x(0), x(1), . . . , x(ξ)),

of S(v, 3q/2 − 5t) \ S(v, q/2 + 5t) along edges of Z2, with x(0) ∈ S(v, q/2 + 5t) and

x(ξ) ∈ S(v, 3q/2)\ (S(v, 3q/2−5t))◦. The reason for considering this smaller annulus

will become clear below. We can now introduce sequences j0, . . . , jλ, and l0 = 0, . . . , lλ

relative to the sequence x(i) and squares of size t; that is,

x(li) ∈ D(ji, t)

li+1 = min{l > li : x(l) /∈ F (ji, t)}.

The first observation is that we have a lower bound on λ due to the difference in

scales:

q − 10t ≤ |x(ξ)− x(0)| ≤
λ−1∑
l=0

|x(li+1)− x(li)|+ |x(ξ)− x(lλ)| ≤ 2
√

2t(λ+ 1),
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implying

λ ≥ C31 log q.

The second observation is that

|ji+1(k)− ji(k)| ≤ 2, k = 1, 2,

where ji(k) denotes the k-th coordinate of the vector j. From this, for each fixed λ,

given ji, there are at most 16 choices for ji+1 and so at most

4
(q
t

+ 11
)

16λ

choices for the sequence j0, . . . , jλ. The first factor is an estimate for the number of

choices of squares D(j, t) with x(0) ∈ D(j, t).

The third observation is that r̄ must contain, between x(ji) and x(ji+1), a “short”

crossing ri of a t× 3t or 3t× t rectangle Ri (that is, the crossing is between the long

sides).

Denote by R̃i the 2t× 5t or 5t× 2t rectangle around Ri, as in (A.37). Then

R̃i ⊂ S(v, 3q/2) \ S(v, q/2),

and so

Ẑ(v, q/2, r̄) = {x ∈ S(v, 3q/2) : x
pc−→ r̄ in S(v, 3q/2) \ S(v, q/2)}

≥ max
0≤i≤λ

Z(R̃i, ri),
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where Z(R̃i, ri) is the number of points in R̃i connected to ri by a pc-open path in

R̃i. It follows that

P

∃p2m(1)-open crossing of F (j, q) \D(j, q)

with Ẑ(v, q/2, r) ≤ q2π(q)/(log q)4


≤

∑
R̃0,...,R̃λ

P

 for all i ≤ λ,∃p2m(1)-open crossing ri in Ri

with Z(R̃i, ri) ≤ q2π(q)/(log q)4

 . (A.53)

The sum is over all possible finite sequences of squares {R̃i}i≤λ, for all λ ≥ C31 log q.

This quantity is controlled by choosing a subsequence of C32λ disjoint R̃i: each

rectangle intersects a fixed number of other such rectangles. The events appearing

in the last probability are independent for disjoint R̃i’s. Their probability can be

bounded using (A.37) (with δ = 1), since our choice of t implies

q2

(log q)4
π(q) ≤ C33

t2

log t
π(t),

for large q. Moreover, one can use the bound on the number of sequences of j’s (there

are at most 4 choices of Ri for a given ji) to control the entire sum: the last line in

(A.53) is bounded up to a constant factor by:

∑
λ≥C31 log q

q64λ(C33(log t)−C34)C32λ.

For q large enough, this sum is bounded (again up to a constant) by:

exp(−C35 log q · log log t)� q−c

for any c > 0.
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On H2m(1), any crossing r in the portion of the IPC Γ(n) consists of p2m(1)-open

edges. Since any site pc-connected to a site in the IPC also belongs to the IPC, we

find that the probability in (A.19) is bounded by:

P(H2m(1)c) + P

∃ a p2m(1)-open crossing of F (j, q) \D(j, q)

with Ẑ(v, q/2, r) ≤ q2π(q)/(log q)4


. (2m)−MC0 + exp(−C35 log q(log log q − log log log q)). (A.54)

Choosing M appropriately in the definition of pn(1) (depending on the parameter c

in (A.19)) establishes the claim.

A.7 Quenched subdiffusivity on the Incipient Infi-

nite Cluster

In this section, we justify Remark 3 above and outline the derivation of a result

analogous to Theorem A.2.4 for the random walk on H. Kesten’s Incipient Infinite

Cluster (IIC). For cylinder events A, the IIC measure is defined by

PIIC(A) = lim
l→∞

Ppc(A | 0→ ∂S(l)). (A.55)

It was shown in [64] that the limit (A.55) exists and that the resulting set function

extends to a measure. Note that the connected cluster of the origin, C(0), is PIIC-

almost surely unbounded. We will refer to this cluster as the IIC. We have the

following result:

Theorem A.7.1 (Quenched Kesten theorem for the IIC). Let {Xk}k≥0 denote a

simple random walk on the incipient infinite cluster started at 0. Let τ(n) denote the

first exit time of Xk from S(n). There exists ε > 0 such that, for PIIC-almost every ω
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and almost-every realization of {Xk}, there is a (random) n0 such that

τ(n) ≥ n2+ε

for n greater than n0.

We can proceed along the lines of the proof of estimate (A.20), and consider a

suitable modification of the random walk whose distribution coincides with that of X

from the first hitting time τ(2m) of ∂S(2m) to the first hitting time of ∂S(m)∪∂S(3m)

after time τ(2m), σ+(m). To use the argument leading to (A.20) in our case, we

merely need to show that we can prove an estimate equivalent to the one obtained

for PIPC(E1(n)c) in Section A.5.

We will show that there are constants C > 0 and s > 1 such that

PIIC({distC(0)(∂S(2m), ∂S(n) ∪ ∂S(m)) ≤ Cns}) . n−2, (A.56)

By the argument given in the proof of Lemma A.4.1, there exists C > 0 and s > 1

such that

Ppc

 ∃ an open path in S(3m) \ S(m)◦ connecting ∂S(2m)

to ∂S(m) or ∂S(3m) with less than Cns edges

 . n−2. (A.57)

Let us denote the event on the left by G(n). Clearly

{distC(0)(∂S(2m), ∂S(n) ∪ ∂S(m)) ≤ Cns} ⊂ G(n).
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G(n) depends only on the status of edges inside S(3m)\S(m)◦. Write the conditional

probability in the definition of PIIC as a ratio:

Ppc(G(n) | 0→ ∂S(l)) =
Ppc(G(n),0→ ∂S(l))

Ppc(0→ ∂S(l))
.

For l > 3m, we have, by independence and monotonicity

Ppc(G(n),0→ ∂S(l)) ≤ Ppc(G(n))Ppc(0→ ∂S(m))Ppc(∂S(3m)→ ∂S(l)). (A.58)

Now

Ppc(0→ ∂S(m)) � Ppc(0→ ∂S(3m)),

and by quasi-multiplicativity

Ppc(0→ ∂S(3m)) · Ppc(∂S(3m)→ ∂S(l)) � Ppc(0→ ∂S(l)).

Using this in (A.58), we have, by (A.57):

Ppc(G(n) | 0→ ∂S(l)) . n−2,

from which (A.56) follows at once.
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