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Abstract

Water is arguably the most important liquid on the earth, yet the physics be-

hind many water properties is still poorly understood. Being able to describe

on the fly breaking and formation of chemical bonds, cooperative polarization

effects, proton transfer, etc., ab initio molecular dynamics (AIMD) within

Kohn-Sham density functional theory (DFT) is an ideal theoretical tool for

investigating liquid water structure. To treat water from first-principle quan-

tum mechanical theory, one needs both a good description of the potential

energy surface for the nuclei and a quantum mechanical treatment of nuclear

dynamics. The nuclear potential energy surface is derived from the quantum

mechanical ground-state of the electrons following the Born-Oppenheimer

adiabatic approximation of nuclei and electron dynamics.

In this thesis we focus on the improved description of the nuclear potential

energy surface that can be achieved by more accurate functional approxima-

tions. So far water simulations have used the generalized gradient approxima-

tion (GGA). This approximation is affected by the so-called self-interaction

error that causes an excessive delocalization of the protons in hydrogen bonds

(H-bonds). Moreover, it neglects the non-local correlations responsible for

van der Waals (vdW) interactions. These interactions are weaker than H-

bonds, but a number of recent papers and the work discussed in this thesis

show that vdW interactions play a sizeable role in the water structure.

We adopt the hybrid functional approximation which mixes a fraction of exac-

t exchange into the GGA functional to mitigate the spurious self-interaction

error, leading to a better description of H-bond and vibrational properties.

In addition, we adopt a non-local functional approximation that accounts

for vdW interactions, which are crucial to describe correctly the structure
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and the equilibrium density of water. Both hybrid functional and non-local

correlation are found to be indispensable, resulting in an improved liquid

water structure compared to the GGA approximation. The improvement is

manifest in several properties, including the radial distribution functions, the

bond angle distribution, the broken H-bond statistics, etc.

The statistical effects of quantized nuclear dynamics can be treated in an

exact numerical way through path-integral (PI) AIMD simulation. But this

calculation is computationally expensive. Due to the large computational

cost of the improved DFT functional used in this study, we adopt a cheap ap-

proximation for quantum nuclear motion. According to this approximation,

the nuclei move classically at a temperature ∼ 30K higher than desired tem-

perature. This choice was motivated by a recent work comparing PI AIMD

simulation with classical AIMD simulation at ambient conditions with the

same DFT functional. This work found that the oxygen-oxygen radial dis-

tribution function resulting from classical trajectories mimicked closely the

corresponding quantity from the path-integral study when the temperature of

the classical simulation was ∼ 30K higher than that of quantum simulation.

This approximate treatment of quantum nuclei restricts our investigation to

the analysis of the oxygen distribution functions, as observables that depend

more directly on the proton distribution are more strongly quantum mechan-

ical. We find that the oxygen distribution resulting from our improved DFT

approximations agrees well with the available experimental data.

An analysis of the O site distribution using an order parameter that differenti-

ates between sites representative of a high density liquid (HDL) environment

and sites representative of a low density liquid (LDL) environment is partic-

ularly illuminating, as it allows us to better understand the competing role

of H-bonds and vdW interactions in liquid water. This analysis shows that
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HDL and LDL sites are simultaneously present in the liquid at ambient con-

ditions, consistent with the idea that the inherent potential energy surface

of the liquid has two dominant conformations, with low and high density

respectively.
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1 Introduction

Water and aqueous solutions are ubiquitous in Nature. However, while their

properties have been extensively investigated experimentally, their funda-

mental structure is still poorly understood from a theoretical viewpoint. This

is due to the difficulty of modeling accurately the atomic interactions, i.e.

potential energy surface and the difficulty of having to deal with large quan-

tum effects when classical simulations are insufficient. Moreover, the highly

disordered nature of the liquid requires extensive sampling and therefore it

takes long and expensive AIMD simulations to achieve statistically meaning-

ful results. Experimentally the liquid structure is probed in diffraction ex-

periments (x-ray and neutron) but sometimes structural information is also

extracted from electron excitation spectroscopy, particularly core excitation

spectroscopy. In that case there is an additional difficulty in interpreting

the experimental data, because the experimentally measured cross sections

require in this case a proper many-body theory of the excitation process in

addition to a good structural model. Thus at present there are considerable

controversies in the literature[1]. Nevertheless, advances in computational

methods combined with modern high performance computational techniques

have the potential to achieve major breakthroughs and hence achieve defini-

tive results.

Despite the great importance of water in physics, chemistry and the life sci-

ences, a number of uncertainties still remain regarding its internal structure.

For instance, there is still considerable uncertainty in the first peak of the

oxygen-oxygen (OO) radial distribution function (RDF) extracted from x-

ray data due to the uncertainty in the form factor, i.e. the electronic charge

distribution in the molecule in condensed phase, and the uncertainty in the
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transformation from the experimental accessible structure factor to the real

space RDF, as recently reported by A.Soper[2].

The structure of the liquid as obtained from first-principle simulations based

on common DFT approximations, such as PBE or BLYP[3, 4], the two most

used functionals adopted in liquid water simulations, does not yet agree with

experiment to a high degree of accuracy[5, 6]. In particular, PBE/BLYP

simulations of water consistently result in a liquid that is considerably over-

structured compared to experiment and shows very sluggish diffusion at tem-

peratures close to room temperature, consistent with a substantial underes-

timation of the broken H-bond fraction. These difficulties reflect the depen-

dence of the H-bond strength on a delicate balance between covalent and

electrostatic interactions. Moreover, a purely classical model of the nuclei is

not good enough, as indicated by the importance of isotope effects in static

equilibrium properties, such as the freezing temperature and even the boil-

ing temperature[7]. The limits of classical physics are particularly evident in

the momentum distribution of the protons in ice and water, which has been

measured by deep inelastic neutron scattering [8, 9] and is very different from

the classical Boltzmann distribution at the temperature of equilibrium of the

system. The quantum character of the protons shows up in several proper-

ties and its structural effect cannot be neglected, as shown by recent work

of Morrone and Car[10]. The difficulties encountered so far in first-principle

studies of liquid water structure are closely related to the above issues.

Therefore, on one hand more accurate functionals (e.g. the hybrid function-

als for nonlocal exchange, and including non-local correlations responsible for

vdW interactions) are needed to better improve the description of the elec-

tronic ground state over semi-local GGA for exchange-correlation[3]. Hybrid

functionals (e.g. PBE0[11]) are computationally expensive and have been
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used so far only rarely in water simulations[12, 13]. In addition, non-local

correlation functionals, do play a role. On the other hand, large anharmonic

zero point motion effects should be properly included. As for the structural

effect of quantum nuclei, in principle, PI AIMD simulation can address this

issue without approximation, but these calculations are also very expensive

and finding ways of including nuclear quantum effects in an economical, yet

sufficiently accurate way is a very important goal.

This thesis concentrates on studying the effect of more accurate new exchange-

correlation functionals on the water structure: more specifically, the hybrid

functionals that mix exact exchange into GGA functional to reduce self-

interaction delocalization error, and including non-local correlation respon-

sible for vdW interactions. The expensive calculation of exact exchange in

the hybrid functionals is carried out using a recently developed order N algo-

rithm based on Maximally Localized Wannier functions[14]. The non-local

correlation functional adopts the Tkatchenko-Scheffler (TS) pairwise inter-

atomic interaction scheme[15], in which the C6 coefficients and the damping

functions are explicit functionals of the electron density. Nuclear quantum

effect can be studied accurately with the PI AIMD methodology[10]. How-

ever, this calculation is quite expensive and has not been considered in the

present study. Focusing on the O site distribution, the effect of quantum

nuclei can be accounted for by an increase of approximately 30K in temper-

ature, as suggested by previous PI AIMD simulation results[10]. Including

all these effects (hybrid functionals, non-local correlation, and temperature

increase to account approximately for quantum nuclei), the OO RDF and

the structure factor resulting from the simulation show a dramatically im-

proved agreement with the available experimental data, suggesting that we

have captured the main physics relevant to liquid water structure. Our re-
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search therefore constitutes an important step forward in the description of

liquid water from first principles.

This thesis is organized as follows: Chapter 1 contains the introduction.

Chapter 2 briefly reviews some properties water and mentions physical and

chemical properties that are not yet fully understood experimentally or the-

oretically. This chapter also illustrates the shortcoming of GGA functionals

in the description of water.

Chapter 3 is devoted to the development of an improved exchange-correlation

functional including: (a) a hybrid functional scheme, i.e. the PBE0 function-

al that incorporates a fraction of exact Hartree Fock exchange into the PBE

(GGA) functional; (b) the vdW non-local correlation that is missing in PBE0

functional but is important in liquid water. The implementation and opti-

mization scheme is also discussed.

Chapter 4 discusses comparison between simulation and experiment, and

the influence of various interactions and dynamic effects on the liquid water

structure. The simulation with PBE0 hybrid functional and vdW correlation

at 330K(to mimic quantum effects) leads to an excellent agreement with

experiment at 300K (OO RDF and structure factor).

Chapter 5 contains a summary and the major conclusions of this study.
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2 General background

2.1 A brief description of water

2.1.1 An important liquid with unique properties

Water, called the “molecule of life” or the “matrix of life”, underlines its

biological importance. Water acts as solvent and dispersing and lubricating

medium. It is also a versatile reactant. Life and water are therefore insepa-

rable. It is hardly surprising that living organisms are sensitively attuned to

the properties of water.

The physical and chemical anomalies of water are well known and document-

ed, but their significance in quantitative terms is not always realized[16].

Just to name a few, the large heat capacity of water reflects its ability to

store considerable quantities of thermal energy. The ocean thus acts as vast

thermostats from which the heat energy is carried to the cooler regions by

currents. Another property connected with water movement is the density

maximum near 4oC. This results in the freezing of rivers from the surface

downward instead of upward, enabling fishes to survive in the cold weather.

Some notable physical properties are the following: negative volume of melt-

ing; numerous crystalline polymorphs; high dielectric constant; anomalously

high melting, boiling and critical temperatures for a low-molecular-weight

substance; increasing liquid fluidity with increasing pressure; high mobility

transport for H+ and OH− ions. Other remarkable properties includes the

almost universal solvent action of liquid water, making it rigorous purifica-

tion extremely difficult. Besides, water is one of the most reactive chemicals,

in that it readily interacts with ions and molecules.
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Most of these anomalies are rationalized in terms of an underlying tetrahedral

H-bonded network. For instance, water contracts on melting while most

materials do expand on melting. The reason is that the structure of ice (e.g.

hexagonal ice (Ih)) is open with a low packing efficiency where all the water

molecules are involved in four straight tetrahedrally-oriented H-bonds. On

melting, some of these ice (Ih) bonds break, others bend and the structure

undergoes a partial collapse. This is different from what happens with most

solids, where the extra movement available in the liquid phase requires more

space and therefore melting is accompanied by expansion.

2.1.2 Liquid water structure

The knowledge about how a water molecule interacts with its neighbors in

the liquid is the essential to understand the unique properties of liquid water.

However, the liquid water structure is still not completely understood both

experimentally and theoretically. The more we look, the more the problems

accumulate[1]. As a proof of this, only a few years ago, the exact deter-

mination of the structure of water was listed among the most outstanding

problem in science[17, 18].

The instantaneous local structure of liquid water has been modeled as an

approximate tetrahedron connected via H-bonds, similar to that in crystalline

phase. In the liquid, this tetrahedral structure not only distorts, but also

breaks and reforms on a time scale of about 0.5 picosecond (ps)[19]. This

repeated, constantly reorganizing unit defines a three-dimensional network

extending throughout the liquid. This prevailing view comes largely from x-

ray, neutron-scattering studies and computer simulations. This makes good

sense in the light of the unambiguously tetrahedral arrangement of molecules
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Figure 2.1: Each water molecule(center) is in local tetrahedral cage in the H-

bond network. Red denotes oxygen atom and white denotes hydrogen. Each

water molecule has two donors and two acceptors. The dash lines indicate

H-bond connections among water molecules.

in ice crystals. The local structure of liquid water has been widely accepted

to have this tetrahedron connection with H-bonds, as seen in Fig.[2.1] and

Fig.[2.2].

How exactly large this tetrahedrality is in liquid water remains to be deter-

mined. Recent ab initio simulation[10] with H-bond definition from Ref.[10]

finds that on average ∼ 7% H-bonds are broken with classical nuclei in BLYP

functional. Quantum nuclei effect increases this to ∼ 11% and therefore leads

to a reduction of tetrahedrality. Improved functionals compared to semi-local
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GGAs increase the average broken H-bond fraction. Though no single ex-

periment is capable of characterizing the molecular architecture of the liquid

network in detail, a sizeable fraction around 13% of H-bonds are estimated

to be broken, based on the fact that the heat of melting is 13% of the sub-

limation energy of the solid roughly assuming that the whole energy is used

only to break H-bond[20]. A proposal of a different structural organization

consisting of chains and large rings of H-bonded molecules[21] in which 80%

H-bonds are broken is inconsistent with this point of view. Moreover, it is

inconsistent with basic energetics and thermodynamics.

2.1.3 Hydrogen-bond network in water

The distinctive properties of liquid water can be attributed to H-bond[22, 23].

It is widely accepted that fleeting H-bond is one aspect of water’s molecular

structure setting it apart from most other liquids. These feeble bonds that

link the molecules constantly break and form above water’s melting point,

yet still impose a degree of structure.

The concept of H-bond was first systematically studied by Latimer and Rode-

bush nearly one century ago[24]. Generally, a H-bond specifically exists be-

tween electronegative atoms (e.g. nitrogen, oxygen, fluorine and chlorine)

and hydrogen (or deuterium) atoms, particularly when electropositive atoms

are themselves chemically bonded directly to electronegative atoms. The H-

bond is strongly directional. So the chemical bond containing the hydrogen

atom that is donated to H-bond tends to point directly at the nucleus of the

hydrogen-accepting electronegative atoms. The strength of the H-bond in

water is roughly 0.2 eV and is normally intermediate between weak vdW in-

teractions (∼ 0.02 eV) and strong covalent chemical bonds (∼ 2 eV). Fig.[2.3]
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shows water molecule interaction via the H-bond in the water dimer. As

water dimer contains only one H-bond, it is usually taken as accurate bench-

mark calculation to illustrate dissociation energy variation, thus providing

evidence about H-bond strength.

Liquid water consists of a macroscopically connected, random network of H-

bonds, with frequent strained and broken bonds, as seen in Fig.[2.2]. Anoma-

lous properties of water arise largely due to H-bond. For instance, liquid wa-

ter’s high boiling point is due to the higher number of H-bonds each molecule

can form. Water is unique because its oxygen atom has two lone pairs and

two hydrogen atoms, so the total number of H-bonds per water molecule is

two as each H-bond is shared by two water molecules. That is, each molecule

will act as a H-bond donor through pointing its (positively charged) hydro-

gens at a lone-pair (negative) region of each of two neighboring waters. In

the other two interactions, the central waters will act as a H-bond accep-

tor of two neighboring waters pointing their hydrogens towards the lone-pair

regions of the central water molecule. Based on this simple model, the four-

coordinated motif is built (see Fig.[2.1]). And due to the difficulty to break

these bonds(H-bond strength is ∼ 0.2eV and is one order magnitude larger

than kBT with ∼ 0.02eV), water has a very high boiling point, melting point

and viscosity compared to other molecular liquids that are not H-bonded

(e.g. CH4, SiH4).

To interpret dynamic aspects of H-bonding theoretically and experimentally,

one relies on the definition of H-bond in liquid water. There have been various

widely adopted criteria to define H-bond based on inter-atomic distances

and angles. For instance, in Ref.[26], two water molecules are chosen as

being H-bonded only if their inter-oxygen distance is less than 3.5 Å, and

simultaneously the H−O · · ·O angle is less than 30o. In Ref.[10], a H-bond
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Figure 2.2: Snapshot of a computer simulation of liquid water. Oxygen

atoms (red balls) and hydrogen atoms (white balls) form molecule via co-

valent bonding (solid lines). Neighboring molecules interact via H-bonding

(dash lines). In this image, the center molecule is tetrahedrally coordinated,

forming four H-bonds. Image taken from[25].
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Figure 2.3: Water molecules interact via H-bond.
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is defined in geometric terms by oxygen-to-oxygen and oxygen-to-hydrogen

distance cutoffs that are equal to the minima of the H-bonding peaks of

the RDF, and a H-bond angle greater than 140o. Other H-bond definitions

according to geometry criteria can be found in Refs.[27, 28].

In addition to geometry criteria, there are also definitions in terms of en-

ergetics cutoffs. For instance, within a given model, one can calculate the

distribution of binding energies for all pairs of molecules in the liquid, and

define the pairs within the first peak of this distribution to be H-bonded[20] .

A detailed review and analysis of H-bond definition is presented in Ref.[29],

where a criterion based on electronic structure is also suggested. We have to

notice that these various H-bond definitions in terms of geometry or energy

cutoff are subject to changes of density and temperature and therefore, some

minor difference would appear for different approaches. However, the test for

some H-bond definitions shows that the difference is small and the number

of H-bonds per molecule in water simulations is typically between 3 and 4 at

ambient conditions(since each H-bond is shared by a pair of molecules, the

average number of H-bonds per molecule is 2 or less)[29], i.e. the average of

broken H-bond is between 10% and 20%.

In the following chapters, we will see that H-bond statistics provides a useful

and physically appealing tool to monitor the degree of liquid water over-

structuring when different DFT approximations are adopted.
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2.2 Experimental probes of water structure: x-ray and

neutron scattering

The most important microscopic measurements to probe liquid water struc-

ture are radiation scattering experiments. Elastic scattering of neutrons or

x-rays, in which the scattering crosssection is measured as a function of mo-

mentum transfer between the radiation and the sample, is the source of our

experimental knowledge of the static structure of a liquid. Liquid water

structure has been widely investigated experimentally through elastic x-ray

scattering and neutron scattering[30, 31]

Ab initio simulations of liquid water structure usually focus on real space

structural information (e.g. pair correlation function, or radial distribution

function (RDF)) while experimental scatterings explore reciprocal space. In

order to take experimental data as reference, the procedure of converting

the reciprocal space diffraction data into real space correlations is required.

However, this transformation is far from trivial. For instance, neutron s-

cattering measures a combination of internuclear structure factors weight-

ed by the scattering lengths of the constituted nuclei. In order to extract

the individual pair correlations (they are oxygen-oxygen, oxygen-hydrogen,

hydrogen-hydrogen pair correlation functions in liquid water), three differ-

ent experiments are performed on samples of different isotopic composition

and therefore different scattering lengths. The data analysis is complex and

requires the applications of a variety of corrections to the raw data. In addi-

tion, the scattering is dominated by the hydrogen and the deuterium atoms,

which leads to large uncertainties in oxygen-oxygen (OO) RDF. By contrast,

x-ray scattering is dominated by the oxygen-oxygen correlations, since most

of the charge density is localized around the oxygen atoms. However, the
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procedure of extracting OO RDF from the experimental observed scattering

intensity is not simple and involves a number of theoretical assumptions. Due

to this, it is useful to recall the theory of elastic scattering in order to better

understand the validity of various experimental available data.

Neutrons interact predominantly with atomic nuclei and the strength of the

interaction is quantified by the atomic scattering length b, the value of which

varies from atoms to atoms( according to the Fermi contact approximation,

b is scalar here as nuclei are considered to be point like particles). The

neutron scattering intensity or diffraction cross section per atom for a system

containing N atoms is described by an expression of the form[32]

I(q) ≡ dσ

dΩ
=

〈∣∣∣∣∣
N∑
i=1

bi exp(−iq · ri)

∣∣∣∣∣
2〉

=

〈
N∑
i=1

N∑
j=1

bibj exp(−iq · (ri − rj))

〉
(2.1)

where q is the wavevector transfer in the scattering experiment, and ri is the

position vector of atom i. The angle brackets represent an ensemble average

over the system, and an average over the spin and isotope state of the nuclei,

since the neutron scattering length can be dependent on both the spin and

isotope state. Fortunately the spins and isotopes are not normally correlated

with the atomic positions, unless the system is magnetic, so this average can

be performed independently from the ensemble average.

Since for a homogeneous liquid( e.g. liquid water that we are interested

in here), the separation vector between atoms is not correlated with the

direction of q. Then the differential scattering cross-section can be simplified

to the form
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dσ

dΩ
=

(
dσ

dΩ

)self
+

(
dσ

dΩ

)distinct
(2.2)

where

Iself (q) ≡
(
dσ

dΩ

)self
=
∑
α

cα〈b2
α〉 (2.3)

Idistinct(q) ≡
(
dσ

dΩ

)distinct
=
∑
α,β≥α

(2− δαβ)cαcβ〈bα〉〈bβ〉Sα,β(q) (2.4)

where δαβ is the Kronecker δ function, cα = Nα
N

is the atomic fraction of

atomic species α with Nα the number of that species. The angular brackets

represent spin and isotope average. Sα,β(q) is the partial structure factor

between atom α and β defined by

Sα,β(q) = 4πρ

∫ ∞
0

r2[gα,β(r)− 1]
sin(qr)

qr
dr (2.5)

Assuming corrections for inelasticity effects have been made satisfactorily,

then the self-scattering for neutrons in Eq.[2.3] is a constant and is indepen-

dent of q.

For molecular systems, it usually splits the distinct term into two terms, one

intramolecular and the other intermolecular. The former consists of pairs of

atoms on the same molecule while the latter is composed of pairs of atoms

on different molecules. It is possible to perform a direct Fourier inversion of

Iinter(q) to have appropriately weighted sum of site-site radial distribution

functions(RDFs)
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1

2π2ρ

∫
q2Iinter(q)

sin qr

qr
dq =

∑
α,β

(2− δαβ)cαcβ〈bα〉〈bβ〉(gα,β(r)− 1) (2.6)

For x-ray diffraction, the expressions for the differential scattering cross sec-

tion are analogous to neutron case from Eqs[2.1-2.6], within the standard

approximation that the electron form factor F 2(q) for each atom is spher-

ically isotropic. This electron form factor replaces the neutron scattering

length b in Eqs[2.1-2.6] while the rest stay the same.
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2.3 Structure factor and partial correlation function

2.3.1 Structure factor

As has been discussed, the pair correlation function or radial distribution

function is not directly observable from experiment, but rather derived from

Fourier transform of structure factor( see Eq.[2.17]). In x-ray experiment,

the liquid water structure factor S(q) in experiment is extracted from the

observable scattering intensity I(q) assuming that the x-ray are scattered by

oxygen atoms. The form factor F 2(q) can be calculated from a quantum

mechanical calculation of an isolated water molecules in gas phase. Both as-

sumptions are reasonable, but the one on the form factor should be verified.

Given the assumption that the center of the electronic molecular charge co-

incides with the oxygen atom, which should be correct to very good extent,

the structure factor has a particularly simple expression:

S(q) = 〈 1

N
ρqρ-q〉 (2.7)

where ρq is a Fourier component of the microscopic density

ρq =

∫
ρ(R) exp(−iq ·R)dR =

N∑
i=1

exp(−iq ·Ri) (2.8)

Then we have

S(q) =
1

N

∑
i,j

eiq·Ri,j (2.9)

where Ri,j ≡ Ri−Rj and the sum extends to the pairs of oxygen atoms only.

According to the definition of the x-ray intensity, it is given by
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I(q) = F 2(q) S(q) (2.10)

Let’s first focus on structure factor. For a macroscopically isotropic sam-

ple(e.g. liquid water), S(q) depends only on the modulus of q. In the sim-

ulation N is the number of oxygen atoms in the cell and the pairs are only

those contained in the cell adopting the minimum image convention. The

q vectors that should be included are the reciprocal lattice vectors of the

simulation cell, i.e. q = 2π
a

(n1, n2, n3) for a simple cubic cell. This means we

will obtain a histogram representation of S(q) which has better resolution as

q becomes larger. Also notice that the minimum q accessible in a simulation

is qmin = 2π
a

.

In calculating S(q) a spherical average over the members of each shell of q

vectors must be performed. Thus for a given reciprocal lattice vector modulus

q we have:

S(q) =
1

N

1

Nq

∑
i,j

∑
q

eiq· Ri,j (2.11)

In which the sum over q includes only the Nq reciprocal lattice vectors that

have modulus |q| = q. According to this, we could obtain the structure factor

of liquid water from the ab initio simulation results.

18



2.3.2 Form factor

For the form factor, the definition is as follows:

F 2(q) ≡ 〈|F (q)|2〉 (2.12)

where

F (q) ∝
∫
drρ(r)eiq·r (2.13)

ρ(r) is the electron density distribution of a water molecule and it is defined

within a normalization constant. The angular brackets in the F (q) imply

a spherical and an ensemble average. The latter is only important for a

molecule in a condensed environment.

The form factor for a molecule in gas phase is first calculated. In this case,

we could use the 64-molecule cell size and include only one water molecule

in the cell in its zero temperature equilibrium configuration. Then

F 2(q) =
1

Nq

∑
q

F (−q)F (q) (2.14)

As in the case of the structure factor the average is made over the shell

of reciprocal lattice vectors having modulus equal to q. Notice for a non-

spherical charge distribution, form factor depends on the orientation of the

molecule in the cell and in fact one should average over also the molecular

orientations. However, the non-sphericity should be small and moreover it

would disappear at larger q. The test shows that this is indeed the case by

randomly rotating the molecule and averaging over the orientation. The next

step is to check how well F 2(q) calculated in gas phase corresponds to the

ensemble average for the molecules in liquid. In order to check that we need

to identify the ρ(r) of an individual molecule in the liquid. The latter density
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in not uniquely defined because the molecules in the liquid interact among

themselves. An optimal way to identify the molecular charge in liquid water

is via the Maximally Localized Wannier Functions (MLWF)[33]. There are

4 MLWFs per water molecule. The molecular densities constructed in this

way integrate to the correct molecular electron charge and show a very small

overlap among neighboring molecules. Then the ensemble average can be

performed easily by averaging over molecules and over molecular dynamics

snapshots in addition to averaging over the reciprocal vector shells. Test has

shown that several snapshots are sufficient to compute the ensemble average.

We have to notice that, the experimental form factor involves the total (va-

lence plus core) electronic charge, but in the current pseudopotential calcula-

tions we only access the valence pseudo-charge. This is the reason for having

only 4 MLWFs per molecule, containing 2 electrons each for a total of 8 elec-

trons, but the total number of electrons in a water molecule is 10. However

the 1s oxygen core electrons have definitely a spherical charge distribution

highly localized around the oxygen nucleus, while all the environmental ef-

fects we are after are associated to the valence electrons. In particular the

difference between the average pseudocharge of a molecule in the liquid and

the spherically averaged molecular pseudocharge of a gas phase molecule

should provide an accurate estimate of the change of the form factor going

from the gas to the condensed phase.

Fig.[2.4] shows the calculated x-ray scattering intensity F 2(q) for a single

water molecule in gas phase and condensed phase. In gas phase, the single

water molecule is put at the center of a large supercell. In a pseudopotential

framework, the core contribution results in a (pseudo) form factor which

differs from the one obtained from an all electron calculation[34]. However,

the difference from gas to liquid phase should be represented accurately by
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Figure 2.4: Ab initio calculated x-ray scattering intensities of a water

molecule in the gas phase (black line) and condensed phase (red line). The

inset depicts the zoom-in results to distinguish these two difference, where

the variation of the two is quite small, within ∼ 2%. As the water molecule

form factor in gas phase from all electron calculation is usually adopted, it

leads to ∼ 2% overestimation in the experimental structure factors due to

this uncertainty.

21



the difference between the corresponding pseudocharge densities. Fig.[2.4]

thus provides us sufficient information that the form factors in both phases

are quite close and therefore, we can use the water molecule form factor in

gas phase in dealing with structure factor and x-ray scattering intensities.

The reason is that it is easy to do an accurate all electron calculation for the

gas phase but it would be considerably more complicated to do it for liquid

water.
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2.3.3 Pair correlation function

The complete description of the structure of a liquid usually refers to particle

densities and the closely related, equilibrium particle distribution functions[32].

The generalized quantity ρ
(n)
N (rn)drn yields the probability of finding n par-

ticles of N particles system with coordinates in the volume element drn,

irrespective of the positions of the remaining particles and irrespective of all

momenta. Usually, knowledge of the low-order particle distribution function-

s, in particular of the pair density ρ
(2)
N (r1, r2) is often sufficient to calculate

the equation of state and other thermodynamic properties of the system in

gas phase. This two dimensional pair distribution functions measure the ex-

tent to which the structure of a liquid deviates from complete randomness.

If the system is homogenous and isotropic(like liquid water), the pair distri-

bution function is a function only of the separation r12 = |r2− r1|. It is then

usually called the radial distribution function (RDF) and written simply as

g(r).

The RDF between the atom A and B, gAB(r), is obtained from the average

of the atom-atom pair correlation function over a spherical shell of width dr

and number density ρ

4πr2drρgAB(r) =

∫
dΩ〈δ(r − (rA − rB))〉 (2.15)

where the integral is taken over the solid angle Ω , δ is the Dirac delta

function, and the average is taken over all of phase space. gAB(r) evaluates

the probability that atom A is at a distance r from atom B. The peaks of

the RDF indicate features in the structure of the system of interest. When

no correlations are presents (i.e. in an ideal gas or at long distances in liquid

systems) the RDF approaches one.
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RDF plays a key role in the physics of liquids. Based on the definition

of gAB(r), another relevant quantity 4πr2ρgAB(r)dr is the average number

atoms in a spherical shell of thickness dr, at a distance r from the central

atom. This is informative if we plot 4πr2ρgAB(r)dr as a function of r, as the

area under the curve between any two values of r is equal to the number of

neighboring atoms within that range of distance. For instance, an important

quantity called coordination number is employed to describe liquid water

structure . This quantity is the integration of 4πr2ρgAB(r)dr till the first

minima position in the OO RDF. A typical value between 4 and 5 is reported

in various ab initio simulations and experiments, indicating that liquid water

preserves much of its ice-like tetrahedral structuring but with differences in

H-bonding patterns.

The early investigation of liquid water structure based on x-ray scattering was

performed by Bernal and Fowler in the 1930s[35], who inferred that tetrahe-

dral grouping of molecules occur frequently in the liquid water. This funda-

mental discovery, however, was made without determining the RDF. Instead,

they calculated the diffraction patterns expected for various models of the

liquid water structure and compared the results with the observed pattern.

Narten, et al. (in the 1970s)[36, 37], on the basis of the experimental RDF

at different temperatures, suggested that the tetrahedral coordination might

bear some resemblance to ice Ih for water at 2oC, and that the contraction of

water during warming to 4oC might represent the completion of a transition

to a more compact form of tetrahedral coordination. The overall conclusion

is that water molecules are predominantly coordinated to four neighboring

molecules at room temperature and below, thus forming an extended, three

dimensional network of molecules, but that this four-coordination breaks

down when temperature raises. However, we have to notice that simply fo-
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cus on coordination is not enough to establish tetrahedral coordination and

angular correlations are very important too.

The RDF is garnered indirectly from scattering experiments[38, 39, 40]. Over

the past decade, it was believed that for pure water the neutron[31, 41] and

x-ray scattering[42, 43] data were in good agreement with each other. If

this was the case, then the experimentally obtained RDF may be used as a

benchmark for the study of the structure of water and the viability of any

theoretical model. Particular importance is cast upon the first peak of the

OO distribution. However, a recent study has cast doubt upon this claim[2],

and has shown that there is significant variance in the peak height of the OO

distribution. Much of the confusion originates from how precisely the RDFs

are obtained through transform of the experimental derived structure factor.

The experimental procedures of each method obtain liquid water structure

factor, SAB(q), which is related to the RDF by the following equation[40]:

S(q) = 4πρ

∫ ∞
0

r2[g(r)− 1]
sin(qr)

qr
dr (2.16)

Through inverse FFT, we would obtain

g(r) = 1 +
1

2π2rρ

∫ qmax

0

qs(q) sin(qr)dq (2.17)

We can see that Eq.[2.17] is the same as Eq.[2.5] except the upper limit in

the integral is qmax instead of infinity, which Eq.[2.17] engenders the difficul-

ty to obtain accurate RDFs. For instance, it engenders non-physical error

in the small OO distance in the RDF from x-ray derived structure factor.

There are several techniques that have been introduced in order to extract the

RDF from the scattering information[2, 40]. A number of these methods, in-

cluding reverse Monte Carlo[44] and empirical structure potential refinement

(ESPR)[31], are to fit the experimental data into a computer simulation of
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water. However, these techniques usually bias the experimental observation-

s. They show strong dependence upon the reference water models that are

utilized. This problem is exacerbated by the fact that the structure factors

do not appear to be very sensitive towards the first peak of the OO RDF.

On the other hand, the OH distribution appears to have greater reliability .

We will discuss more about RDF in the coming chapters when it is used to

study the liquid water structure.
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2.4 Computer simulation studies: Molecular dynamics

There are a range of techniques of a quasi-experimental character, referred

to collectively as computer simulation, the importance of which in the devel-

opment of liquid state theory can hardly be overstated. Simulation provides

what are essentially exact results for a given potential model. Its usefulness

rests ultimately on the fact that a sample containing a few hundred or few

thousand particles is in many cases sufficiently large to simulate the behavior

of a macroscopic system.

There are two classical approaches: the Monte Carlo method and the method

of molecular dynamics. There are many variants of each, but in broad terms

a Monte Carlo calculation is designed to generate static configurations of

the system of interest, while molecular dynamics involves the solution of the

classical equations of motion of the particles. In the application to ab initio

field, for instance, first principle quantum Monte Carlo and diffusion quan-

tum Monte Carlo are highly accurate in computing electronic energies for

geometries optimized with different approaches (e.g. quantum chemical ap-

proach, DFT)[45]. However, the application to liquid water is too expensive

to perform.

Molecular dynamics has the advantage of allowing the study of time-dependent

processes. It is based on forces (thus they collectively move all the molecules

and nuclei) which is not what is done in simple MC methods. Molecular

dynamics simulations have increased in complexity from simple pairwise in-

teraction potentials to fully quantum mechanical descriptions. In particular,

the efficient AIMD methodology has enabled simulations of liquid water en-

tirely from first principles[46]. Combined with significant increase in available

computing power, it has pushed the computational simulation of water to an
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exciting stage.

In this light, it is of great importance to understand the accuracy and pre-

dictive power of AIMD simulation. Right here some brief introductions of

key concepts are mentioned. More detailed explanations can refer to relevant

appendix in the end of this thesis and some cited references.

Molecular dynamics is powerful to simulate classical many-body systems[47].

In order to simulate a specific material, one needs a realistic model of its

potential energy Φ(R). There are mainly two directions in approaching the

interactions of the systems. The first is to build a potential utilizing model

functions based mostly upon physical intuition. The parameters are chosen

such that the results from the model match either experiment or the results of

accurate quantum chemical calculations. These model potentials are known

as “force fields”[48, 49]. However, the basic difficulty lies in the case that

transferability is limited in “force fields” approach. Force fields are typically

unable to treat bond breaking and forming events, which are essential to

describe chemical reactions.

The second approach, which is what we are concentrating on in this entire

thesis, is to start from the quantum mechanical description of atomic interac-

tions, and make necessary approximations in order to solve these many-body

complex equations. This would be highlighted in the coming subsection.
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2.4.1 Density functional theory

The fundamental laws necessary to the mathematical treatment of large parts

of physics and the whole of chemistry are thus fully known, and the difficulty

lies only in the fact that application of these laws leads to equations that are

too complex to be solved.

P.A.M. Dirac (1929)[50]

The above statement is written more than eighty years ago. There is an

oral tradition that, shortly after Schrödinger’s equation for the electronic

wave function Ψ had been put forward and spectacularly validated for small

system like He and H2. P.M.Dirac declared that chemistry had come to an

end, as its content was entirely contained in that powerful equation. Too

bad, he is said to have added, that in almost all cases, this equation was far

too complex to allow solution.

R.P.Feynman reiterated this practical difficulty after 30 years as:

Don’t forget that the reason a physicist can really calculate from first princi-

ples is that he chooses only simple problems. He never solves a problem with

42 or even 6 electrons in it. So far, he has been able to calculate reasonably

accurately only the hydrogen atom and the helium atom.

R.P. Feynman(1969)[51]

These complex problems could not be solved with sufficient accuracy until the

birth of modern density functionl theory (DFT)[52, 53]. DFT of electronic

structure is widely and successfully applied in simulations throughout science

and engineering. Kohn noted in this Nobel lecture that DFT “has been

most useful for systems of very many electrons where wave function methods

encounter and are stopped by the exponential wall”[54]. The beauty of DFT
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is that its formalism is in principle exact yet efficient, with one determinant

describing the electron density – all of the complexity is hidden in one term,

the exchange correlation functional. While the exchange-correlation energy

is a functional of the density, the explicit form of this functional in general

is not known.

DFT is an exact reformulation of the ground-state non-relativistic quantum

mechanics of many-body systems. It provides an unprecedented balance of

accuracy and efficiency for electronic structure calculations in molecules, clus-

ters, and solids. Our theoretical investigating tool of liquid water structure

is the ab initio molecular dynamics. These key features of Kohn-Sham DFT,

especially Car-Parrinello molecular dynamics that ingeniously combines the

DFT and molecular dynamics are reviewed in Appendix A, B.
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2.4.2 Exchange correlation functional

The ground-state energy contribution that needs practical approximations

within KS-DFT approach is the exchange correlation functional. This term

holds the key to the success of DFT. Exchange arises from antisymmetry

due to the Pauli exclusion principle, and correlation accounts for the remain-

ing complicated many-body effects that need many determinants to be fully

described. However, the form of exchange-correlation in terms of the densi-

ty remains unknown and it is necessary to use approximations. The choice

of exchange-correlation functional is critical in generating accurate results

from DFT methodology. In the following section, major triumph but also

major failures of some explicit approximation would be reviewed, which is

the motivation to develop advanced improved functional (e.g. PBE0 hybrid

functional) and vdW dispersion interaction correction.

The most simple approximation is to assume that the exchange-correlation

functional is solely dependent upon the local electronic density. This is well

known as the local density approximation (LDA)[53]. In this approximation,

it is assumed that at each point in space the exchange correlation energy per

particle is given by its value for a homogeneous electron gas, namely,

ELDA
xc =

∫
dr n(r) εxc(n(r)) (2.18)

The LDA exchange-correlation functional is garnered from the homogenous

electron gas and can be computed to a high accuracy via quantum Monte

Carlo simulation[55], and the LDA exchange-correlation energy may be ex-

tracted from these results. Although the LDA approximation is successful in

describing many systems, it does not perform well in molecular, H-bonded

systems such as water, as density is clearly very far away uniform in these

systems.
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Many of quantitative failures of the LDA are remedied using the generalized

gradient approximation (GGA). The GGA functional depends not only on

the local electron density, but also on the local gradient of the density in order

to take into account approximately of the inhomogeneities in the density.

EGGA
xc =

∫
dr n(r) (εx(n(r),∇n(r)) + εc(n(r),∇n(r))) (2.19)

where εx and εc are the exchange and correlation energy densities, respec-

tively.

There are many different choices of GGA functionals. For instance, Perdew-

Burke-Ernzerhof(PBE) functional[3] are derived from purely physical consid-

erations, that is, they are not fitted to any specific system, and are instead

made to satisfy some general physical properties[56]. Some make use of

fitting parameters. For example, the exchange functional of Becke[57] con-

tains one parameter that is fit to the exact exchange (from a Hartree-Fock

calculation) of six noble gas atoms. The Lee-Yang-Parr (LYP) correlation

functional[4] contains four parameters that originate from the investigation

of helium. These two functionals are often employed together, denoted as

BLYP functional.

Semi-local GGA corrects (often slightly overcorrects) the LDA overestima-

tion of bonding strength and provides an absolute average error of molecular

atomization energy of the order of 0.3 eV for 20 selected molecule systems[3].

This is still above the desired chemical accuracy, but much better than

LDA[58, 59, 60]. GGA works well for the H-bond in the water dimer and

also for the dipole moment of the water molecule. Thus one would have

expected that it should work well for the liquid as well. It was only in the

last decade that it became clear that this was not the case. The application

of GGA functional to liquid water structure at ambient condition, although
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Figure 2.5: Benchmark calculation of OO RDF with PBE functional com-

pared to reference, with PBE(Ref. Kuhne et al.)[6] and BLYP(Ref. Morrone

et al.)[10].

often qualitatively correct, yields an over-structured oxygen-oxygen (OO)

RDF than experiment[5]. Moreover, GGA functional is usually poor in the

description of water density and pressure. This indicates that GGA func-

tional is far from perfect in the correct description of liquid water and thus

needs improvement both for exchange and correlation.

2.4.3 Liquid water structure with the PBE functional

For further investigation of liquid water structure with more accurate and

improved exchange-correlation functional, it is necessary to have a bench-

mark calculation of liquid water structure with GGA functional. The RDFs

obtained from AIMD simulation are always considered as a main tool on
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monitoring liquid water structure. The liquid water structure with GGA

functional has been widely investigated in the past few years[5, 6, 10, 61].

Typical AIMD simulation of liquid water uses 64 water molecules with peri-

odic boundary conditions (refer to Appendix C to learn more about finite size

effects). In our simulation, a larger supercell size with 128 water molecules

has been used to have better statistical data and to better compare with the

experimental structure factor. This will be illustrated when we discuss the

simulation results in the later chapter.

Appendix C discusses how to perform a meaningful CPMD simulation of

liquid water. Our CPMD simulation using Quantum-ESPRESSO code[62]

with GGA functional (PBE here) yields a liquid water structure in terms of

RDFs (gOO and gOH) quite close to other independent AIMD simulation re-

sults mentioned previously. Fig.[2.5] plots the OO RDF of AIMD simulation

with GGA functional compared to two other reference data[6, 10]. We can

observe that all three gOO(r) are close to each other. Moreover, two gOO(r)

with PBE functional are even more close, with some tiny difference compared

to the one with BLYP functional. The liquid water structure with various

GGA functional would lead to some small difference as the derivations of d-

ifferent GGA functionals discussed in section[2.4.2] varies. Nevertheless, it is

widely accepted that GGA functional leads to an overstructured liquid water

structure. And our calculation with PBE is consistent with these indepen-

dent reference calculation, indicating that the benchmark calculation with

GGA functional is successful, i.e. we have performed a meaningful AIMD

simulation and this provides a strong cornerstone for the coming simulations

with more accurate and advanced functionals to see how they truly improve

over PBE.
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2.5 Improving ab-initio liquid water

2.5.1 The effect of quantum nuclei

The electronic structure calculations based on DFT have been widely used

in the studies of molecular and condensed-matter systems. Most DFT appli-

cations to extended material systems adopts classical nuclei treatment and

use the semilocal generalized gradient approximation (GGA) for exchange-

correlation functional. The structure of the liquid as obtained from first-

principle simulations based on DFT yields an over structured radial distri-

bution function(RDF) for oxygen-oxygen(OO), oxygen-hydrogen(OH) and

hydrogen-hydrogen(HH) compared to experiment[5, 6].

Part of this over-structuring arises from the classical treatment of nuclei, as

nuclear quantum effect plays an important role as seen from isotope experi-

mental evidence. The lighter the species, the larger quantum effects should

be expected. The trend in the Fig.[2.6] indicates that nuclear quantum effect

weakens the H-bond network in the water system. For instance, the melting

and boiling point increases as does the enthalpy of formation and fusion from

light water (H2O) to heavy water (D2O).

It has been recognized recently that a sizeable portion of the over structuring

should be attributed to nuclear quantum mechanics, where the path-integral

AIMD (PI AIMD) methodology is employed to include nuclear quantum

effect[10]. The structural effect of quantum nuclei in water is illustrated in

Fig.[2.7]. From the gOO(r) and gOH(r), we can see that the inclusion of

nuclear quantum effect leads to significantly less structured RDFs than the

corresponding AIMD simulation with classical nuclei. The second peak of

the OH RDF, which corresponds to H-bonding interactions, becomes less
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Figure 2.6: Selected experimental properties of light, deuterated and tritiated

water. Tables taken from thesis of J.Morrone[63].

sharper. The first peak of the OO RDF is a useful marker of the relative

structuring of water. A recent analysis of the experimental data has revealed

significant uncertainty in the peak height[2]. Two data sets from Ref.[2] are

plotted in Fig.[2.7] alongside results from Ref.[31]. The resultant peak from

the path-integral simulation is 2.84, which is closer to the latest experimental

peak height (2.58)[64] than the value of 3.23 obtained from a standard AIMD

simulation. This result is in agreement with increased average fraction of

broken H-bonds observed in the path integral result. However, there are

still some overstructuring in its first minima and the second peak compared

to experimental gOO(r), where there is little controversies among various

experimental data.

From Fig.[2.7] we can observe that gOO(r) with quantum nuclei at 300K

(black line) is very close to gOO(r) with classical nuclei at 330K (red dot).

This observation provides the rationale for mimicking quantum effects on the

OO RDF by a temperature increase of ∼30K, and gives a justification for a

procedure that we adopt later in our study to include nuclear quantum effect

via 30K temperature increase with improved exchange-correlation functional

for liquid water.
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Figure 2.7: The OO (top) and OH (bottom) RDFs in liquid water from a

PI CPMD simulation at 300 K (solid line) and standard CPMD simulation-

s at 300 K (dashed line) and 330 K (dotted line) are reported with joint

neutron/x-ray data. Plots taken from Ref.[10]

.
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Based on these observations, we can conclude that the overstructuring present

in standard AIMD simulations at room temperature is in part mitigated by

the inclusion of nuclear quantum effects. Yet, despite the improvement, still

there remains some degree of overstructuring.
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2.5.2 The PBE0 hybrid functional

The remaining deviations from experiment in the calculated RDFs even after

nuclear quantum effects are included bring up the issue of the DFT accura-

cy in the description of the Born-Oppenheimer potential energy surface of

water. Though GGA functional often improves quantitatively over LDA, it

is not a panacea. Both actually suffer from serious formal deficiencies. One

important deficiency at the heart of many problems that occur with LDA and

GGA functional is the presence of self-interaction. Another is the missing of

non-local correlation, i.e. van der Waals (vdW) dispersion interaction that

is the topic in the next subsection.

The total energy expression within KS-DFT in Eq.[A.6], is partitioned into a

classical Coulomb part and an everything else exchange-correlation part. As

a result, the KS equation has an explicit classical electron-electron repulsion

potential e2
∫
dr′n(r′)/|r − r′| known as Hartree potential. This expression

views the quantum charge distribution as a distribution of continuous clas-

sical charge. This, however, means that it is inherently in error, because

each electron is repelled from the total charge in the system, including a

spurious repulsion from itself. This effect is known as the self-interaction

error, noted by Fermi in the context of Thomas-Fermi theory. This spuri-

ous repulsion is particularly easy to see in one-electron system, where clearly

there should be no electron-electron repulsion at all, and yet the Hartree

term is not zero. Because the electron-electron interaction is, in principle,

handled exactly in DFT, whatever error we are making in the Hartree term

must be completely canceled out by the exchange-correlation term. Unfor-

tunately, only partial cancelation is obtained in either LDA or GGA. This

seemingly innocuous issue has far-reaching consequences and is one of the
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most fundamental problems in DFT.

The AIMD simulations using GGA functionals in the Fig.[2.7] are affected

by self-interaction delocalization errors[65]. These errors can lead to sizable

structural effects in water and H-bonded systems, because H-bonds are rel-

atively weak bonds resulting from a delicate balance between covalent and

electrostatic effects. The delocalization error tilts slightly the balance favor-

ing proton donation and enhances the H-bond strength. As a result, it leads

to an over structured liquid.

Due to this shortcoming of GGA, new exchange-correlation functionals have

been developed. One promising area is orbital-dependent density functionals[66].

Typically, there are four classes of orbital-dependent functional:(1): Hybrid

functionals. (2): Self-interaction correction. (3): The meta-generalized-

gradient approximation. (4): Exact exchange with compatible correlation.

In the following we are adopting hybrid functionals(vdW non-local correla-

tion that is missing in GGA and hybrid functionals as well will be included

as well and will be mentioned shortly). For more detailed information, one

can refer to Ref.[66]. In this scheme, one utilizes the exact (Hartree-Fock)

exchange term mixed with an exchange-correlation functional, yielding a so-

called hybrid functional [67]. For most systems, such hybrid functionals are

the most accurate option available, due to the presence of Hartree-Fock ex-

change term, although they are of greater computational cost than GGA.

The physics hybrid functionals are based on is best understood within the

framework of a fundamental DFT concept: adiabatic connection theorem[68,

69]. Becke[70] realized that the adiabatic connection formalism can serve as a

practical tool for functional construction. He suggested a mixture of Hartree-

40



Fock and LDA or GGA and dubbed this hybrid functionals, i.e.

Ehyb
xc = bEexact

x + (1− b)Eapp
x + Eapp

c (2.20)

where the superscripts hyb and app denote the hybrid functionals and the

approximate (typically semilocal) functional from which it is constructed.

What value of mixing parameter b should one choose and what improvement

over the LDA or GGA, if any, is obtained? Becke suggested practical usage of

Eq.[2.20] by determining b empirically through least-squares fitting to atom-

ization energies, ionization potentials, and proton affinities of a canonical set

of mostly organic molecules, based on first and second row atoms, known as

the G2 set. The optimal value of b is found to be 0.16 to 0.28, depending on

the type of semiempirical correlation functional used for the fit. These values

resulted in mean atomization errors of only 0.13 or 0.09 eV, respectively for

the G2 set. This proves that Eq.[2.20] is in principle a useful form.

From Becke’s results, we can see that whether or not b = 0.25 is a practically

useful value has been found to be a strong function of the type of GGA

used[11, 71, 72]. Fortunately, for the nonempirical PBE GGA, b = 0.25 is

found to be an excellent value[11]. For example, for the largest G3 set, the

mean error obtained for the enthalpies of formation with PBE GGA is 0.94

eV, whereas it is only 0.20 eV if Eq.[2.20] is used with the PBE exchange

correlation functional and b = 0.25. The PBE0 hybrid functional we are

adopting here is the 0.75 PBE exchange and 0.25 exact exchange, with PBE

correlation.

Recently, there have been extensive studies of liquid water structure with

hybrid functionals, due to the deficiency of semi-local GGA functional. The

applications to molecular systems have shown that hybrid functionals are

generally superior to GGA in the description of electronic and structure
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properties[66]. For instance, Zhang et al.[73] performed first principles sim-

ulations of the infrared spectrum of liquid water using hybrid density func-

tionls and observed a much better agreement with experimental results than

GGA description. In particular, the measured stretching and bending mode

of liquid water is quite good. This improvement originates from a more ac-

curate account of the vibrational properties of water monomer and dimer, an

underlying structural model of the liquid with a smaller number of H-bonds

and oxygen coordination and a smaller effective molecular dipole than GGA

functional.

When extended systems are studied, some approximation in the calcula-

tion of exact exchange is sometimes adopted to alleviate the computational

burden[74]. However, this approximation might lead to some deviation from

the true hybrid functionals description of electronic structure, thus resulting

in a deviation of how hybrid functionals truly describe liquid water structure.

For instance, Guidon et al.[13] reported negligible difference in the RDFs,

indicating tiny changes in the number and character of H-bonds found in

the system. In these simulations, some screening techniques like integral

screening and density matrix screening are adopted to alleviate expensive

computation cost even with massively parallel computing resources.

The calculation of exact exchange, if performed within delocalized basis sets,

e.g. plane-wave basis set, is quite expensive and scales cubically with respect

to system size. This is the main reason one is trying to reduce this cost by

performing some approximation for this term. Taking 32 water molecules

system for instance, in the simulation of Zhang et al., the ratio of the CPU

time per AIMD step using PBE0 versus PBE is about a factor of 25[73] even

after efficient massive parallelization scheme is implemented, if adopting the

regular calculation within delocalized plane wave basis sets. Due to this,
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it would take several months to have a meaningful and converged AIMD

simulation as 20 picosecond (ps) simulation is typically needed. As we have

already noticed, 64 water system is currently the appropriate choice in order

to eliminate the finite size effect in liquid water structure description. It is

therefore impossible to run a practical AIMD simulation of 64 water supercell

system in the traditional scheme without some algorithmic breakthrough.

Due to this, we are motivated to include PBE0 functional in liquid water

simulation to see the role PBE0 indeed plays in the description of liquid

water structure. An efficient and accurate calculation of exact exchange is

performed, adopting a linear scaling algorithm developed by Wu et al.[14].
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2.5.3 Non local correlation functional for vdW dispersion inter-

actions: the TS approach

Another deficiency of GGA and hybrid functionals is the missing of the vdW

non-local correlation. While DFT has been widely successful in describing

the properties in dense materials and isolated molecules with LDA and G-

GA approximations, sparse systems, soft matter, molecular van der Waals

complexes, biomolecules and the like can not be adequately described where

the role of vdW effect is indispensable. The origin of vdW interaction be-

tween two non-chemically bonded fragments is the coupling of the electric

field generated by fluctuations in the electron density of one fragment with

the density of the other fragment. This is a dynamical correlation effect

that local (LDA) and semi-local functional (GGA) can not capture, and is

either not related to the exchange, so the hybrid functionals we were talking

about do not help either. The issue of vdW dispersion interactions is a dif-

ficult benchmark in many-body theory, which is what correlation functional

should address.

These difficulties resulting from long range interactions have been widely

studied in the past decades[75]. Generally two approaches are usually adopt-

ed. One scheme is the so-called explicit density functional methods. The

exchange-correlation energies are given as explicit functionals. This means

that once the occupied Kohn-Sham (KS) orbitals and hence the density is

obtained, the exchange-correlation energy is simply evaluated. This require-

ment guarantees that the scaling of the computational cost with system size

would not destroy the cubic scaling by ordinary DFT.

The modern version of the nonempirical vdW density functional (vdW-DF)

was introduced few years ago by Dion et al.[76]. The fully self-consistent
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version came out recently[77]. The vdw-DF method has shown promise for

various systems where long range vdW interactions are important[78]. Re-

cent study with vdW-DF applied to liquid water simulation yields much less

structured compared to GGA results, though there is a very large collapse in

the second coordination shell, suggesting possible overestimation of the vdW

effect in this scheme[79]. Thus this approach might not be suitable for liquid

water structure description.

The second developing approach is based on C6 coefficients and damping

functions. This is based on London’s original work yielding the C6/R
6 asymp-

totic dissociative scaling between two atoms at distance R[80]. The total

vdW energy is given by ∑
I<J

C6IC6J/R
6
IJ (2.21)

The form C6/R
6 is only valid at large separation R between two atoms. It

must be damped at shorter distance simply because it becomes incorrect

(much before repulsion terms dominate). At shorter separation it is replaced

by the common DFT approximations.

The asymptotic C6/R
6 form is usually added as an empirical correction

to DFT energies (see e.g. Grimme in Ref.[81]). In the vdW scheme by

Tkatchenko and Scheffler(vdW-TS)[15], however, the C6 coefficients are giv-

en as an explicit functional of the density, making the scheme largely a non-

empirical DFT scheme like the Dion et al. scheme[76]. Application to the

S22 molecular data set indicates that in this data set the vdW-TS scheme

is significantly more accurate than Dion et al. and also more accurate than

the empirical Grimme’s scheme[81]. Therefore in the following section, we

adopt the accurate vdW-TS scheme by Tkatchenko and Scheffler[15] that is

implemented in the current project.
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With vdW-TS approach to study vdW effect, Santra et al.[45] recently found

that vdW has a substantial effect on the transition pressures between crys-

talline ice phases, the consequence of which is that the transition pressures

from DFT neglecting vdW effect are greatly overestimated. The role of vdW

becomes more important in the high density phase region. As a result, vdW

plays a crucial role in determining the relative stabilities and phase tran-

sition pressures in ice. These observations are of relevance to understand

intermolecular interactions of water in all of its condensed phases. The stud-

ies of vdW effect on liquid water structure with vdW-DF form from Wang

et al.[79] also shows that the underestimated equilibrium density given by

GGA functional increases dramatically together with observed higher diffu-

sivity when vdW density functional (vdW-DF) of Dion et al.[76] is included.

On the other hand, however, this vdW-DF functional overestimates the vd-

W effect and thus excessively weaken the H-bond network, resulting in a

collapsing of the second coordination cell. Recently Jonchiere et al.[82] pre-

sented a study of the vdW effects on liquid water based on semi-empirical

correction of Grimme et al.[83], showing that the structure and diffusivity

of ambient-like liquid water are sensitive to the fifth neighbor position, thus

highlighting the key role played by this neighbor and that the semi-empirical

correction by Grimme et al. improves significantly both the structural and

the dynamical description of ambient water and supercritical water.

It is noteworthy that the effects of the environment on both the C6 coefficients

and the damping functions are completely determined by the electron density

in accordance with DFT principles. One empirical parameter, fitted to the

S22 database of molecular binding energies[84] is used to define the onset with

distance of the dispersion correction. The vdW correction improves substan-

tially the description of weakly bonded systems within DFT. For example,
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the correct ground-state structure of the water hexamer, missed by standard

DFT calculations, is obtained in this way[85]. It makes this scheme quite ap-

pealing for ab initio simulations of water. Based on this, our group include

vdW correlation corrections according to this scheme in AIMD simulations.

The results obtained for water clusters (e.g. the hexamer) including vdW

environmental effects are compared with calculations carried out at the so

called EXX/RPA(EXX denotes exact exchange and RPA the random phase

approximation[86]) level recently used to investigate dispersion interactions

in weakly bonded systems, such as benzene, methane[87] and self-assembled

monolayers on surfaces[88]. Such a comparison would permit to test the

robustness of the environmental approach described above. We note that

thanks to recent progress in evaluating dielectric matrices, EXX/RPA calcu-

lations for relatively large systems(e.g. containing tens of water molecules)

are now becoming feasible. The study of above should give us good insight

on the various physical effects that determine the microscopic structure of

liquid water.
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2.6 Summary

Hybrid functionals improve the description of vibrational properties both

in water clusters and bulk water. vdW’s contribution is important for the

transition pressures among ice phases and therefore one should infer that it

plays an important role in defining the equilibrium density both in ice and

liquid water. Both hybrid functionals and vdW would correct the deficiency

of GGA functional and lead to a better liquid water description than semi-

local GGA functional.

Furthermore, nuclear quantum effects are also important to correctly describe

liquid water structure. Thus the most accurate description of liquid water

would require a PI-AIMD simulation based on a functional like PBE0+TS

(PBE0 functional plus vdW-TS correlation correction). This however, would

be very expensive because of the computational cost of the hybrid functionals

combined with the need to simulate multiple system replicas in a PI simula-

tion. In the present thesis we have therefore opted for a PBE0+TS simulation

in which the nuclei are treated as classical particles and decided to focus the

attention on the site distribution of the oxygen nuclei, which are significantly

heavier than the hydrogens and are thus less prone to quantum behavior. As

shown in a recent PI-AIMD study the effect of quantum dynamics on the

oxygen-oxygen RDF is captured with surprising accuracy by a temperature

increase of about 30K. We therefore perform simulations at 330K to compare

the oxygen pair correlations and structure factor to experiment at 300K.
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3 Numerical implementation of the PBE0+TS

functional

In this chapter, we focus on the numerical implementation of the PBE0+TS

functional, with emphasis on the simulation of liquid water.

3.1 Numerical implementation of the PBE0 functional

3.1.1 Maximally localized wannier function dynamics

We calculate Hartree Fock exchange in the PBE0 functional efficiently work-

ing under maximally localized Wannier function (MLWF) representation ac-

cording to Wu et al. algorithm[14]. This is the footstone to perform the linear

scaling method. In this section, an efficient algorithm of wannier dynamics

that we are currently using is presented and illustrated.

In the AIMD simulation, MLWFs are updated at each MD time step. Fol-

lowing the scheme by Marzari and Vanderbilt[33], we define overlap matrices

M l
ij = 〈wi | e−iGl·r | wj〉 (3.1)

where Gl are the primitive reciprocal lattice vectors and wi are Wannier

functions(WF). One then defines Ω which is the functional of WFs given by

Ω =
N∑
i=1

3∑
l=1

|M l
ii|2 (3.2)

where the index i runs over all the occupied bands and l runs over the three

Cartesian components. The spread S of the WFs is related to Ω by

S =

(
L

2π

)2

(3N − Ω) (3.3)
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where L is the linear dimension of the unit cell. The MLWFs are obtained by

minimizing the functional S or, equivalently, by maximizing the functional

Ω. In AIMD scheme, the electronic degrees of freedom are propagated with

the Verlet algorithm[89, 90]. This implies that the WFs at time t + ∆ are

related to those at time t and t−∆ via

w̄(t+ ∆) = 2w(t)− w(t−∆) +
∆2

µ

(
−δE(t)

δw∗
+ Λw(t)

)
(3.4)

where E(t) is the KS potential energy and δE(t)/δw∗ is the “force” acting

on orbital wi and Λ are Lagrange multipliers that impose orthonormality

constraints on the orbitals. We denote the predicted WFs at time t + ∆

by w̄(t + ∆) to indicate that this is not a MLWF any more here because it

gets delocalized due to one time step propagation of AIMD. To transform

w̄(t+∆) into a MLWF, we need to reminimize the spread functionals at time

t+ ∆. In this way, we obtain the appropriate unitary transformation U that

minimize S at time t+ ∆. Thus:

w(t+ ∆) = Uw̄(t+ ∆) (3.5)

We minimize S (i.e. maximize Ω) by damped dynamics for U . The equation

of motion is:

QÜ =
dΩ

dU
− γU̇ + λ

d

dU
(UTU − 1) (3.6)

where Q is a fictitious mass parameter for U , dΩ
dU

is the force, and γ is the

damping coefficient. λ is the Lagrange multiplier that ensures the unitarity

of U .

The Verlet scheme is used to compute U(t + ∆) from U(t) and U(t − ∆).

Thus, Eq.[3.6] numerically becomes

Ui,j(t+ ∆) = 2Ui,j(t)− Ui,j(t−∆) +
∆2

Q
[(
dΩ(t)

dU
)i,j]

− γ

2∆
[Ui,j(t+ ∆)− Ui,j(t−∆)] + 2ΣkUikλkj

(3.7)
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which on rearrangement yields

Ui,j(t+ ∆) = Ūi,j(t+ ∆) +
∑
k

UikXkj (3.8)

with

X =
γ

∆
λ (3.9)

Ūi,j(t+ ∆) =
1

1 + f

(
2Ui,j(t)− (1 + f)Ui,j(t−∆) +

∆2

Q
[(
dΩ(t)

dt
)i,j]

)
(3.10)

where f = γ∆
2

and the force (dΩ(t)
dt

)i,j is given by

dΩ

dUi,j
=
∑
l

[∑
k

(
BikUkjM

l∗
jj + UkjBkiM

l∗
jj

)
+ C.C.

]
(3.11)

with

Bij = 〈ϕi | e−i
~Gl·~r | ϕj〉 (3.12)

where C.C. denotes the conjugate complex part in the parenthesis.

To compute the lagrange multiplier X in Eq.[3.9], we impose the constraint

of unitarity on U(t + ∆). This constraint leads to a quadratic expansion of

X, which is resolved by an iterative procedure, similar to what is done in

classical molecular dynamics simulation to impose rigidity constraints. In

this case, the unitary condition of U(t + ∆) i.e.
∑

k UkiUkj = δij results in

the following expression

C +BX +XTBT +XTX = I (3.13)

with

Cij =
∑
k

ŪT
ikŪkj Bij =

∑
k

ŪT
ikUkj (3.14)
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The solution is obtained by the following iterative procedure. The initial

term is set to the zero-order approximation

X0 =
1

2
(I − C) (3.15)

and then the iterative cycle proceeds according to the recursive formula

Xk+1 =
1

2

[
(I − C) +XT

k (I −BT ) + (I −B)Xk −XT
k Xk

]
(3.16)

This algorithm typically converges in less then ten steps in the iterative

procedure. Once the matrix of the constraints X has been determined, the

new unitary matrix is calculated according to Eq.[3.8].

This procedure is tested to be significantly more efficient than the alternate

procedure implemented in the Quantum-ESPRESSO package[91].

This scheme can be parallelized quite easily and therefore can be used to

cope with large systems when the matrix size grows big correspondingly.

In this scheme, there are massive matrix multiplication manipulations whose

computational cost grows cubically with increased number of electrons in the

system. The parallelization technique implemented is called Cannon’s algo-

rithm in computer science, a distributed algorithm for matrix multiplication

for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon[92].

It is especially suitable for computers to lay out in a N by N mesh. It has

been shown that Cannon’s algorithm work well in homogeneous 2D grids.

The main advantage of the algorithm is that its storage requirements remain

constant and are independent of the number of processors.

Under the same condition, this damped dynamics with respect to U shows

better efficiency, requiring less than one second on overage per AIMD time

step in 64 water system, which is quite efficient compared to the coming

expensive exact exchange calculation in PBE0 functional.
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3.1.2 Calculation of exact exchange

We adopt the scheme proposed in Ref.[14] to calculate exact exchange. This

approach has computational cost that scales linearly rather than cubically

with system size. We take PBE0[93] as the exchange correlation energy

EPBE0
xc =

1

4
Ex +

3

4
EPBE
x + EPBE

c (3.17)

where Ex denotes exact exchange, EPBE
x is the PBE exchange, and EPBE

c

is the PBE correlation functional. The exact exchange energy Ex has the

Hartree-Fock expression in terms of the one-electron(pseudo-) orbitals:

Ex = −2
∑
i,j

∫ ∫
ϕ∗i (r)ϕ∗j(r

′
)ϕj(r)ϕi(r

′
)

|r− r′ |
drdr′ (3.18)

The corresponding Kohn-Sham(KS) Eq.[A.8] for occupied orbitals is[
−~252

2m
+ Vion(r) + VH(r) + V PBE

c (r) +
3

4
V PBE
x (r)

]
ϕi(r)

+
1

4

∫
Vx(r, r

′)ϕi(r
′)dr′ = εiϕi(r) (3.19)

V PBE
c (r) and V PBE

x (r), the PBE exchange and correlation potential respec-

tively, are functionals of density and its gradient. For the Hartree Fock exact

exchange part, the action of Vx(r, r
′) on each orbital ϕi results in an orbital

dependent term

Di
x(r) ≡ δEx

δϕ∗i
= −2e2

N/2∑
j

∫
dr′

ϕ∗j(r
′
)ϕj(r)ϕi(r

′
)

|r− r′ |
(3.20)

In typical implementation for extended systems, the calculation of
∫
dr′

ϕ∗j (r
′
)ϕi(r

′
)

|r−r′ |

in Di
x can be performed using the Fast Fourier Transform (FFT) algorith-

m with cost proportional to NFFT ln(NFFT ) for a plane wave grid of size

NFFT . Since each Bloch function ϕi is delocalized throughout the entire
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supercell, the integral above results in overall computation proportional to

N2×NFFT ln(NFFT ), which, neglecting the logarithmic dependence, amounts

to cubic scaling with system size.

Instead of evaluating exact exchange from delocalized Bloch orbitals, we turn

to the Wannier representation. The Wannier functions wi(r) are obtained

from the occupied Kohn-Sham orbitals through a unitary transformation

which leaves the ground-state energy invariant, i.e. wi =
∑N/2

j=1 Uijϕj.

In terms of the wi, D
i
x(r) becomes

Di
x(r) = −2(vii(r)wi(r) +

∑
i 6=j

vij(r)wj(r)) (3.21)

where

∇2vii(r) = −4πρ̃ii(r) , ∇2vij(r) = −4πρ̃ij(r) (3.22)

with the overlap matrix

ρ̃ij(r) = wi(r)w∗j (r) (3.23)

Then in real space, the exchange interaction is only present in the region

where two orbitals overlap, i.e. where ρ̃ij 6= 0, then the pair potential vij is

efficiently computed by solving the Poisson equation in a spatial region that

is much smaller than the supercell used in the simulation.

In this approach, the computational cost strongly depends on the localization

of the Wannier orbitals. Therefore we are MLWFs, which exhibit exponen-

tial spatial decay in insulators[94]. Then for each orbital, the number of pair

exchanges that needs to be included is finite and is independent of the system

size. So the computation cost of an exact exchange calculation scales linear-

ly with system size, as seen from Fig.[3.1], which shows a tagged Wannier

orbital interacting with finite number of its neighboring Wannier orbitals in
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Figure 3.1: Overlap between a tagged Wannier orbital(green at the center)

and its nearest neighboring Wannier orbitals(blue) in 64 water molecules

supercell. Red dots denote oxygen atoms and white hydrogen atoms.

an AIMD simulation snapshot. Those Wannier orbitals far away from the

tagged Wannier orbitals would have negligible overlap, therefore leading to

negligible exchange interaction.

The practical solution of the above equations can be further improved. The

density ρ̃ij in Eq.[3.23] is known for each pair of orbitals, we can associate

with each pair of orbitals an orthorhombic box with sides(lx,ly,lz) so that

outside this box the ρ̃ij is smaller than a given cutoff value ρcut, the value of

which is based on the testing results that there is negligible difference in the

exact exchange energy and forces with even lower ρcut. Then Eq.[3.22] are

solved in this greatly reduced grid box without loss of accuracy. For instance,

in the 64 water molecules, the real space grid needed to compute the pair po-

tential vij via Eq.[3.22] contains only 1/8 of the grid points of the simulation

cell. Even fewer are only needed for pair potentials vij that are generated
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by more distant orbitals. As the density ρ̃ij is vanishingly small when the

distance between orbital i and j in terms of wannier center is sufficiently

large, many pair interactions are negligibly small. In our simulation with 64

water molecules, the average number of pair exchange interaction is about

16 out of 255 orbital pairs. In Ref.[14], 64-atom Si supercell requires about

30 out of 127 pair exchange interactions. This makes sense as MLWFs in

water molecules are more localized, associated with smaller wannier spread

compared to Si. Therefore it requires fewer pair interactions among Wannier

orbitals.

The Poisson equations (Eq.3.22) are solved numerically with Laplace opera-

tor∇2 discretized on 19 mesh points in three dimension (7 mesh points in one

dimension ). The resulting finite difference equation has the form of a linear

matrix equation of the type Ax = b. The symmetric and positive-definite

square matrix A is sparse with dimension n, where n is the number of mesh

points inside the reduced box. The vector x corresponds to the unknown

vij and the known b is the pair density ρ̃ij. The value of vij at the boundary

of the box are computed via multipole expansion.

vij(r) = 4π
∑
l,m

1

2l + 1
ql,m

Yl,m(θ, φ)

rl+1
(3.24)

where the multipoles ql,m are given by the integrals

ql,m =

∫
Y ∗l,m(θ′, φ′)r′lρ̃ij(r

′)dr′ (3.25)

Yl,m are spherical harmonics referred to the center of pair density. We found

that choosing lmax = 6 is sufficient to achieve excellent accuracy convergence.

Solving the linearized Poisson equation Ax = b is equivalent to finding the
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vector x that minimizes the function

f(x) =
1

2
xTAx− bTx + c (3.26)

where c is an arbitrary constant. This minimization is efficiently performed

with the conjugate gradient (CG) method[95]. The CG method is terminated

with the residual of vij everywhere is smaller than 10−6 a.u. The calculation

of vij that are out of reduced size box is performed according to multipole

expansion according to Eq.[3.24].

With the calculated Di
x(r), the forces acting on the orbitals due to the exact

exchange can be added in according to Eq.[3.19]. Finally, the exact exchange

energy is given by the sum of the energies of the orbital pairs in the presence

of the corresponding pair potential vij(r),

Ex = −2
∑
i,j

∫
ϕ̃i(r)ϕ̃j(r)vij(r)dr (3.27)
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3.2 Numerical implementation of the TS functional

In order to add the vdW correction self-consistently into AIMD methodol-

ogy, the corresponding forces on wavefunctions and ions from vdW energy

contribution need to be included into CP equation(B.3). Therefore the ma-

jority of vdW implementation is focused on the forces derivation, which is the

content of the following. Fig.[3.2] illustrates basically how vdW correction is

implemented.

The TS-vdW energy is given as a sum over unique pair energies between

atoms A and B:

EvdW = −1

2

∑
A,B

EAB
vdW = −1

2

∑
A,B

fABdampC
eff
6,ABR

−6
AB (3.28)

in which fABdamp corresponds to a given vdW pair energy,

fABdamp =
1

1 + exp[−d( RAB
sRR

0,eff
AB

− 1)]
(3.29)

in an explicit function of the internuclear separation, RAB, between atoms A

and B,

RAB = [(xA − xB)2 + (yA − yB)2 + (zA − zB)2]1/2 (3.30)

and the sum of their respective effective vdW radii, R0,eff
AB ,

R0,eff
AB = R0,eff

A +R0,eff
B (3.31)

In this expression for fABdamp, both d and sR are empirical parameters.

The effective C6 coefficient corresponding to atoms A and B, Ceff
6,AB, is given

by the following combination rule:

Ceff
6,AB =

2Ceff
6,AAC

eff
6,BB(

α0,eff
B

α0,eff
A

)
Ceff

6,AA +
(
α0,eff
A

α0,eff
B

)
Ceff

6,BB

(3.32)
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Figure 3.2: Flowchart of numerical implementation of vdW-TS scheme.

in terms of the effective homonuclear C6 coefficients, Ceff
6,AA and Ceff

6,BB, and

the effective static dipole polarizability, α0,eff
A and α0,eff

B .

Plug in α0,eff
A and α0,eff

B as a function of effective volume, we have

Ceff
6,AB =

(
V eff
A

V free
A

)(
V eff
B

V free
B

)
Cfree

6,AB (3.33)

3.2.1 Forces on wavefunctions

To derive the dispersion forces acting on a given electronic wavefunction, we

need to consider the functional derivative of the TS-vdW pair energy with
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respect to its complex conjugate, i.e.,

FAB
ψi

(r) = −δE
AB
vdW

δψ∗i (r)
(3.34)

which can be re-expressed as a functional derivative with respect to the charge

density via:

FAB
ψi

(r) = −δE
AB
vdW

δψ∗i (r)

= −
∫
dr′

δEAB
vdW

δn(r′)

δn(r′)

δψ∗i (r)

= −
∫
dr′

δEAB
vdW

δn(r′)
ψi(r

′)δ(r − r′)

= −δE
AB
vdW

δn(r)
ψi(r)

(3.35)

One can now define UAB
vdW (r) ≡ δEABvdW

δn(r)
as the dispersion potential arising from

a given TS-vdW pair energy acting on each electronic wavefunction, yielding:

FAB
ψi

(r) = −UAB
vdW (r)ψi(r) (3.36)

The detailed derivative of vdW energy with respect to electron density is

discussed in Ref.[96]. Fig.[3.3] illustrates how the derivation is generally

performed.

3.2.2 Forces on ions

To derive the nuclear gradient of the vdW pair energy expression above,

we will need to consider nuclear displacements of atoms A and B(which are

explicitly included in the pair energy) and of a given atom K(which is not

included in the pair energy)

Recalling that the vdW pair energy for atoms A and B is given by

EAB
vdW = fABdampC

eff
6,ABR

−6
AB (3.37)
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Forces on 
wave 

functions

Figure 3.3: Flowchart of forces on wavefunctions in the numerical implemen-

tation of vdW-TS scheme.
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Forces on ionsForces on ions

Figure 3.4: Flowchart of forces on ions in the numerical implementation of

vdW-TS scheme.

Let’s consider the derivative of EAB
vdW with respect to a nuclear displacement

of atom A along the x-direction:

∂EAB
vdW

∂xA
=
∂fABdamp
∂xA

Ceff
6,ABR

−6
AB + fABdamp

∂Ceff
6,AB

∂xA
R−6
AB + fABdampC

eff
6,AB

∂R−6
AB

∂xA
(3.38)

The derivative of vdW energy with respect to ions position is straightforward,

though complicated. The detailed derivation is discussed in Ref.[96]. Fig.[3.4]

is the flowchart showing the general derivation procedure.
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3.3 Parallelization issues

3.3.1 Exact exchange calculation

The exact exchange calculation requires massive orbital information due to

its non-local characteristics, as seen from Eq.(3.18). In practice, there is

a tradeoff between improving computing efficiency and memory allocation

when implementing the exact exchange calculation in PBE0 functional. For

instance, in 64 water molecule system with cell size corresponding to ex-

perimental liquid water equilibrium density at ambient condition, the FFT

mesh size is 128×128×128 and therefore the size of each orbital is roughly

16 megabytes(MB). If each processor is to hold 256 orbitals, that will be 4

gigabytes(GB). In reality, massively parallel computers that we are working

on for simulation is only 2GB per core.

In order to solve this memory bottleneck, we utilize the excellent inter-

processor communication among massively parallel computers. The National

Energy Research Scientific Computing Center (NERSC)[97] provides amaz-

ing simulation environment where thousands of computing facilities are avail-

able, without which our calculation would not have been possible. Under this

powerful computing tool, we can distribute the orbitals information among

different processors rather than one processor holding all orbitals. For sim-

plicity, each processor stores only one orbital information if we are taking

256 processors to deal with 64 water system simulation (which has 256 or-

bitals totally). Those orbitals needed for exact exchange calculation with a

given orbital can be duplicated and transferred to corresponding processors

at each MD time step. In liquid water, only 15 to 20 orbitals rather than 256

orbitals[98] are required for each orbital’s pair exchange calculation. Cor-

respondingly, the memory to hold these orbitals becomes extremely smaller
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compared to that to hold the whole orbitals for each processor. The remain-

ing exact exchange contributions due to other distant MLWFs are negligible

due to the tiny overlap among MLWFs, as can be schematically seen from

Fig.[3.1].

There is a huge advantage of calculating exact change in MLWF represen-

tations, as MLWFs are exponentially localized. The exchange interaction

between two orbitals is restricted to the spatial region of orbital overlap, the

amplitude of the exchange interaction between two MLWFs decays rapidly

with the distance between their centers. Thus, typically each Wannier orbital

exchanges with only a finite number of neighboring orbitals and the number

of pair interactions per orbital is independent of system size. As a result,

our procedure to compute exact exchange is order N, i.e., its computational

cost scales linearly with system size. Due to this, the scheme works also well

in a larger system like 128 water molecules in the supercell with only double

computation cost.

In addition, there are other useful parallelization strategies implemented to

accelerate simulation. For instance, a so-called Task Group hierarchical par-

allelization strategy for three dimensional FFTs is also adopted[99]. The

basic algorithm is shown in Fig.[3.5]. This strategy tries to utilize more

processors when performing FFT or inverse FFT calculations to save com-

putation time. In this case, not only the regular Z components of FFT for

each electronic state is parallelized, different electronic states that constitute

the total charge density are also parallelized, due to which the scalability

performs well even when more processors are in use.

The calculation associated with exact exchange also implemented this strat-

egy in order to be consistent with the code package expandability. This im-
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Figure 3.5: The Task Group 3D FFT scheme for the calculation of charge

density ρ(r). The G in the figure denotes the number of task group.

proves additional efficiency along with other parallelization strategies. With-

in these schemes, the calculation cost of exact exchange is about ∼30 seconds

per AIMD step with 256 processors. Additional parallelization in which t-

wo processors handle one Wannier orbital pair exchange calculation almost

double the efficiency and leads to ∼ 15 seconds per step with 512 processors.

This has enabled us to perform a longer AIMD simulation (e.g. 20ps) within

several weeks, an excellent achievement in solving this complex problem.

3.3.2 vdW calculation

The parallelization of vdW-TS scheme is pretty more straightforward than

the complex exact exchange calculation explained above, due to two main ad-

vantages. First, the required memory allocation related with vdW becomes

smaller as the C6 coefficient and damping function depend on ground-state

electron density instead of expensive wavefunction information. Therefore

each processor is able to hold the superposition of charge density and molec-

ular charge density simultaneously without memory relocation problem. Sec-

ond, an efficient parallelization scheme is to distribute the calculation task

along all the atoms in the system to different processors (i.e. processor of
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index i computes the contribution of vdW from atom i), so that the calcu-

lation of vdW energy, forces on ions and wavefunctions attributed to each

atom can be assigned to distributed processors. This calculation of each

processor is independent with each other and does not require complex and

expensive communication among processors all the time. The total energies

and forces can then be gathered only once after the corresponding individual

calculation on each processor is successfully performed.

Moreover, due to the linear scaling calculation in this efficient algorithm,

one can easily perform a larger supercell simulation with only a reasonable

increase of computation time. This enables us to choose 128 water molecule

system instead of most-widely adopted 64 water systems in the later chapter

in order to better simulate liquid water.
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4 Comparison to experiment and analysis of

short and intermediate range order in liq-

uid water

In this chapter, first we investigate how well AIMD water structure compares

to experiment when PBE0, vdW and quantum nuclei effects are included. As

quantum nuclei are mimicked via a 30K increase in temperature based on

the work by Morrone et al.[10], only the oxygen-oxygen RDF and the cor-

responding structure factor are considered. The agreement between theory

and experiment is found to be quite good, indicating that we have obtained

a realistic liquid water structure. Therefore, we are motivated to study how

these various interactions and dynamic effects influence water structure. It

is found that PBE0 and quantum nuclei are vital in first coordination shell

because they control the fraction of broken H-bond. vdW on the other hand,

plays a more important role in the second coordination shell by promoting

penetration of interstitial molecules into first coordination shell. The analy-

sis is greatly facilitated by using the so-called local structure index, an order

parameter that allows to identify low- and high-density liquid environments.

We find that both kinds of local environments coexist in the liquid at am-

bient pressure and density, consistent with the so-called two state model of

water[100].
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4.1 Comparison with experiment

4.1.1 PBE0+TS simulation at T=330K with 128 water molecules

A full PI-AIMD simulation of water at the PBE0+TS level would be ex-

tremely time consuming due to the need to simulate a large number (32

in Ref.[10]) of system replicas in a PI simulation. Some recently developed

techniques based on colored noise thermostats could be used to accelerate PI

simulations. The computational cost of this approach would still be heavy

in spite of a substantially reduced number of replicas needed to converge

the Feynman paths (only 4-8 replicas were found to be necessary to model

ice close to melting with the colored noise approach in Ref.[101]). Instead

of fully including nuclear quantum effects we use here a temperature 30K

higher than experiment and focus on the O pair correlations only, as already

discussed several times. In order to better compare the theory to the experi-

mental structure factor we have performed an AIMD simulation on a sample

of 128 water molecules in a cubic box with volume fixed at the experimental

density at ambient temperature and pressure. A 128 molecule cell is nec-

essary for a decent resolution in the structure factor in the q-range of the

first diffraction peak. This is a rather expensive calculation: it took about 3

months to obtain an equilibrated trajectory lasting 10 ps.

4.1.2 Some comments on the effects of quantum nuclei

The OO RDF in Fig.[2.7], which reported both classical (AIMD) and quan-

tum (PI-AIMD) data, showed that the effect of quantum fluctuations on the

OO RDF could be mimicked with good accuracy by a classical simulation at

an artificially higher temperature (e.g. 330K instead of 300K). This observa-
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tion leads some support to the practice, often adopted, of performing AIMD

simulations of water at higher effective temperature than the reference equi-

librium temperature. This practice is however just an empirical cure that can

hardly be justified on general grounds. One sees, for example, in Fig.[2.7]

that a temperature of 330K, which is suitable for OO correlations, is not so

for OH correlations. The inadequacy of a uniform temperature increase to

properly account for the effects of quantum fluctuations is made dramatically

evident by the momentum distribution of the protons. This quantity can be

extracted from deep inelastic neutron scattering experiments[8, 9] and can

be accurately calculated with PI-AIMD simulations[10]. The proton momen-

tum distribution is very different from the classical equilibrium distribution:

for example in ice Ih at T=269K, i.e. close to melting, the classical distri-

bution that most closely reproduce the PI-CPMD data has a temperature of

869K[105]. Thus the temperature used to mimic quantum effects should be

different for each physical property, suggesting that different effective tem-

peratures should be assigned to particles with different masses. The second

observation is that a Boltzmann distribution with a higher effective temper-

ature does not capture important details of the actual distribution. In ice

proton dynamics is quasi-harmonic and the momentum distribution is well

represented by a multivariate Gaussian distribution, with the three principle

frequencies associated respectively to stretching, and combinations of bend-

ing and libration[105]. Similar effects occur in liquid water[10]. These effects

can be characterized as large zero point energy. They are likely to play an

important structural role in all H-bonded systems but are typically neglected

in MD simulations, both empirical and ab initio.
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4.1.3 Structure factor comparison with experiment

X-ray diffraction experiment is the most direct way to probe the structure of

the oxygen site network in liquid water experimentally, as x-rays are sensitive

to electrons and therefore provides major information about OO structure

distribution. However, neutrons are insensitive to OO correlations since hy-

drogen scatters neutrons more strongly than oxygen, which on the other

way, makes neutron diffraction the best source of information on the oxygen-

hydrogen and hydrogen-hydrogen correlations.

The x-ray diffraction intensity measured in experiments, is given by the prod-

uct of the form factor F 2(q) (see sect.2.3.2) and the structure factor S(q) (see

sect.2.3.1). In experiment, one relies on the form factor of water molecule

in gas phase to approximate that in condense phase, as the latter is more

complicated to compute in liquid water. In our pseudopotential calculation,

we found that the form factor in gas phase and condense phase is quite close

to each other, with only at most ∼ 2% difference. Though the form factor is

different between pseudopotential and all electron calculation, the difference

from gas to liquid phase should be represented accurately by the difference

between the corresponding pseudocharge densities. Therefore it is reasonable

to use the water molecule form factor in gas phase in dealing with structure

factor from x-ray scattering intensities.

Thus it is preferable to compare theoretical and experimental data for the

structure factor S(q), as it is more directly obtained from experiment and

does not require a Fourier inversion. Ab initio simulation of liquid water

can also calculate the structure factor S(q) directly. Fig.[4.1] compares the

calculated structure factor S(q) using the PBE0+TS functional and two S(q)

from x-ray diffraction. The calculated S(q) is discrete and therefore there is
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Figure 4.1: Ab initio calculated structure factor S(q) with PBE0+TS at 330K

compared to two experimental data, with Hura from Ref.[43] and Huang from

Ref.[102].

some discontinuity particularly at small q. The experimental S(q) shown here

gives very consistent results in the two reported experiments. The calculated

S(q) is quite close to the two experimental S(q) throughout the entire q range.

Only some tiny right shift of the peak positions is observed, consistent with

the OO RDF plot which is slightly left shifted compared to the experimental

OO RDFs and this will be shown shortly.
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4.1.4 OO RDF comparison with experiment

RDF is widely used in investigating liquid water structure, as it shows plen-

ty of structure information in real space. Ab initio simulation can calculate

the RDF directly as trajectories of all nuclei are recorded. X-ray/neutron

diffraction experiments measures the scattering intensity in reciprocal space

and can only calculate structure factor directly. To extract RDF, a trans-

formation technique from reciprocal space to real space is required, which is

not easy and can lead to uncertainties as to be discussed below.

A comparison between theory and experiment in real space is provided in

Fig.[4.2], which shows the OO RDFs from two x-ray diffraction experiments,

one joint x-ray/neutron diffraction experiment, and the one from our simu-

lation. The agreement between theory and experiment is pretty good in the

range from the first minimum of the RDF up to half the size of the supercell

(∼ 7.8 Å). In this range the three experiments agree very well with each

other. It is more difficult to quantify the accuracy of our simulation in the

region of the first peak, due to the large uncertainty in the experimental

RDF extracted from two different experiments in that region. The two x-ray

experiments had different resolutions (qmax = 10 Å−1 and qmax = 16 Å−1,

respectively). Recently, new high q-data with qmax = 23 Å−1 together with

elimination of the OH contribution to the OO RDFs gives a first peak height

of 2.58 at OO distance of 2.80Å[64], indicated by the brown star in Fig.[4.2].

This new x-ray experimental result is very close to the simulated peak height

of 2.57 at a distance of 2.76 Å, providing strong support to the accuracy of

our adopted functional approximation. We have shown in the Fig.[4.1] that

the discrepancy between the two x-ray experiments in Fig.[4.2] is absent from

the corresponding structure factors, indicating that the difference between
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Figure 4.2: Calculated OO RDF with PBE0+TS at 330K from CPMD sim-

ulation, compared to two RDFs derived from x-ray diffraction experiment

(x-ray Hura from Ref.[43], x-ray Huang from Ref.[102].) and one from joint

x-ray/neutron diffraction experiment from Ref.[103].

the two x-ray experimental RDF’s in the first peak of Fig.[4.2] should be

associated to the procedure adopted to transform into real space data set

extending only up to qmax in reciprocal space. The experimental OO RDF

from joint x-ray/neutron diffraction experiment on the other hand agrees

very well with the simulation also in the first peak region, in which a differ-

ent RDF extraction technique call empirical potential structure refinement

(EPSR)[104] is used and would be mentioned shortly.
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4.1.5 Extracting the RDF from experiment

We have seen that two experimental derived OO RDFs show large uncer-

tainty in the first peak region, but the corresponding structure factors have

less difference (see Fig.[4.1] and Fig.[4.2]). Thus much of the experimen-

tal uncertainty derives from the transformation of the structure factor, the

knowledge of which is limited by the experimental resolution. For instance,

one experimental derived OO RDF from Ref.[102] in the Fig.[4.2] is obtained

from structure factor S(q) through the following relationship:

g(r) = 1 +
1

2π2rρ0

∫ qmax

0

e−αq
2

qS(q) sin(qr)dq (4.1)

where ρ0 is the average molecular density of water. qmax is the maximal mo-

mentum transfer that can be achieved in experiment. The window function

e−αq
2

is adopted to decrease the magnitude of spurious ripples resulting from

the truncation errors associated with the Fourier transform[102].

This Fourier inversion in Eq.[4.1] is limited by qmax, which should be large

enough to obtain a converged result. For instance in the experiment of

Ref.[102], qmax was equal to ∼ 16 Å−1. Though this is sufficient to cap-

ture the main information of the structure factor, an accurate determination

of its first peak of the RDF and a complete elimination of spurious ripples

would require higher qmax.

Fig.[4.3] plots the OO RDF extracted from S(q) according to Eq.[4.1] without

the usage of window function for smoothing, i.e. setting α = 0. We observe

that spurious ripples exist throughout the r range. Moreover, it is found that

as qmax increases, the first peak region of OO RDF, usually an indicator of

liquid water structuring, shows some small but non-negligible shift. As qmax

increases from 9, to 12 and 16 Å−1, the first peak position decreases from
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Figure 4.3: Calculated OO RDFs via Fourier transformation of structure

factor S(q) with several qmax cutoffs. The inset displays the zoom-in region

of OO first peak, indicating a shift of both first peak position and value

depending upon qmax.
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2.85 to 2.83 and 2.80, while the peak intensity increases from 2.13 to 2.34

and 2.45 Å, respectively. With this trend in mind, we may expect that the

converged peak value should be larger than 2.45 at a position smaller than

2.80 Å when more accurate high q experimental data would be available.

This is indeed confirmed by a very recent experiment with qmax = 23 Å−1,

which reports a peak value of 2.58 with first peak position at 2.80 Å[64].

In practice, in order to eliminate spurious ripples due to truncation error,

an exponentially decaying window function e−αq
2

is adopted in Eq.[4.1]. The

Fig.[4.4] plots the OO RDF curve through Fourier transform of S(q) with

window function. It is observed that relatively strong spurious oscillations

are present when the window function is not adopted (black line with α = 0),

which is the case in the early Narten’s approach[38]. The spurious oscillations

are gradually eliminated with increasing α. However, the first peak value in

OO RDF is observed to be quite sensitive to small α variation. Therefore

though window function can smoothen the RDFs, it leads the first peak OO

RDF unreliable. This technique is adopted in Ref.[102] with the blue curve

seen in Fig.[4.2] and therefore can explain the deviation of this experimental

derived OO RDF from simulation.

Another experimental derived OO RDF from Ref.[43] in the Fig.[4.2] adopts

another transformation technique. Instead of extracting the RDF from the

structure factor S(q) via a direct Fourier transformation, Hura, et al.[43],

started in real space to construct a linear combination of RDFs chosen from

various theoretical and experimental curves, as shown below

gOO(r) =
N∑
i=l

aig
i
OO(r) (4.2)

where giOO(r) are the basis functions from simulations of various potentials[106,

107] and various experimental curves[38, 108, 109]. The ai are calculated
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according to a linear least-squares optimization scheme performed on the

entirely q-space, using linear superpositions of the corresponding SiOO(q) (a

modified atomic form factor is used in their approach to obtain structure

factor from scattering intensity)[43]. The advantage of this fitting is that, it

does not show any nonphysical features, because the basis RDFs do not show

any nonphysical features for small distance r. The limit of this approach is

that it does not rely entirely on experiment and/or data of high accuracy

(such as the calculated form factor). Therefore g(r) is biased by theoreti-

cal empirical potential simulations that lack direct independent experimental

validation. This technique is adopted in Ref.[43] with the pink curve seen

in Fig.[4.2] and therefore might explain the deviation of this experimental

derived OO RDF from simulation.

Another approach widely used for exploration of the geometries of the inter-

molecular structures consistent with the measured radial distribution func-

tions is the empirical potential structure refinement (EPSR) procedure[104].

This process performs a Monte Carlo computer simulation of the system

under study to generate ensembles of water molecules whose structure is

consistent with measured diffraction data. The water molecule ensembles so

obtained are used to calculate structural quantities such as site-site radial

distribution functions and spatial density functions. All of the tests that

have been done to date using this procedure indicate strongly that forcing

the simulated molecular ensembles to reproduce the measured radial distri-

bution functions is a substantial constraint on the three-body and high-order

correlation functions, and will almost certainly capture the essential topolo-

gy of the local order. One example, where the robustness of the structures

determined can be seen, is a comparison of the structures determined for a

dilute alcohol water solution: two independent and differently weighted sets
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of isotopic substitution data on the same chemical system were both analyzed

by the EPSR procedure. The results are found to display the same local or-

der. This technique is adopted in Ref.[103] to derive OO RDF with the green

curve seen in Fig.[4.2]. The experiment and theory agree very well with each

other, suggesting the advantage of this procedure and more importantly: a

realistic water structure is obtained from ab initio simulation.
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4.2 Effect of the functional approximation and quan-

tum nuclear dynamics on the local order of liquid

water

From the ab initio perspective it is important to understand how the various

effects discussed above correlate with the molecular forces and dynamics.

4.2.1 Mean square displacement

For that purpose we consider the diffusion coefficient, which can be estimated

from the mean square displacement(MSD) through the Einstein relation:

6D = limt→∞
d

dt
〈|ri(t)− ri(0)|2〉 (4.3)

where ‘‘D” is the diffusion coefficient, ri(t) is the ith atom’s position at time

t. The MSD of the oxygen atoms was determined over the trajectories. The

dynamic properties of liquid water in the simulation provide us useful infor-

mation related with liquid water structuring. The MSD allows us to monitor

the fluidity of a liquid. Our estimated D is affected by large uncertainty, as

our trajectories are too short (typically ∼100 ps would be necessary for an

accurate determination of D). Moreover in our simulation we use massive

Nose-Hoover chain thermostats, which likely affects the dynamics. However,

the diffusion coefficient extracted from the simulation still provides valuable

information: an over-structured RDF would lead to a smaller diffusion coef-

ficient, due to the overestimated H-bond strength.

Fig.[4.5] shows the MSD of liquid water with different exchange-correlation

approximations. PBE0 increases fluidity over PBE as the H-bond strength

is reduced in PBE0 due to a reduction of self-interaction error. vdW interac-

tions also increase diffusion as they also tend to lead to more broken H-bonds.
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Obviously a temperature increase of 30K increases diffusion compared to a

simulation at 300K.

The diffusion coefficient that we obtain from the simulation on a 128 molecule

cell with PBE0+TS at 330 K is 1.4 × 10−5cm2/s. As has been discussed in

Ref.[6], there is size dependence of the translational self-diffusion D which

arises from the fact that a diffusing particle sets up a hydrodynamic flow that

decays as slowly as 1/r. In a periodically repeated system this leads to an

interference between a diffusing particle and its periodic images. This effect

has been analyzed by Dunweg and Kremer[110, 111], who have established

the following relation for the diffusion coefficient under periodic boundary

conditions(PBC) as a function of simulation box length L.

D∞ = DPBC(L) +
kBTζ

6πηL
(4.4)

where D∞ is the diffusion coefficient for an infinite system, ζ = 2.837 a nu-

merical coefficient similar to the Madelung constants which results from an

infinite summation over all replicas, and η the translational shear viscosity.

If in Eq.[4.4], we use our calculated DPBC and take the experimental value

of η = 8.92× 10−4Pa · s, we extrapolate a value of 2.0× 10−5cm2/s for D∞,

which is quite close to the experimental value of 2.2 × 10−5cm2/s at room

temperature. Clearly one should not weight too strongly this comparison, in

view of the short simulation trajectory, the adoption of massive thermostat-

s for thermal equilibration and the crude approach used to mimic nuclear

quantum effects. It is interesting, however, that the same accurate function-

al that gives a very good water structure, also gives diffusion properties close

to experiment.
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Figure 4.5: The MSD evolution of simulation time, with PBE(black),

PBE0(red), PBE0+TS at 300K(green), PBE0+TS at 330K(blue). Note that

the first three effects are all performed at 300K. In what follows, this holds

the same meaning in the remaining plots.

82



4.2.2 Oxygen-oxygen radial distribution function

It is of interest to analyze how the various physical effects contribute to

the local order in water. Fig.[4.6] shows the OO RDF with PBE, PBE0,

PBE0+TS and PBE0+TS at 330K. It is found that PBE0, vdW and the

temperature raise mimicking quantum effects all lead to a softened structure.

Quantitatively, these effects have more or less the same contribution in the

first peak region. On the other hand in the first minimum and second peak

region, the vdW contribution is larger indicating that the primary role of

vdW interactions should be associated to the penetration of more molecules

from the second coordination shell to the first shell. This behavior becomes

more clear when the RDF is decomposed into bonded and non-bonded subsets

in HDL- and LDL-like sites, as will be discussed shortly.

The observed less structured RDF from PBE to PBE0 is qualitatively con-

sistent with Ref.[12]. This result is also consistent with recently reported

RDF results with the PBE0 functional by Zhang et al.[73]. The better ac-

curacy of PBE0 over PBE in the description of the H-bond in water is well

documented by detailed studies of the water dimer in Appendix D. Adding

vdW interactions to PBE0 further improves the description of liquid water,

indicating that both H-bonding and vdW interactions are crucial in liquid

water. Quantum nuclei effects, mimicked here by a temperature raise, further

soften the OO RDF. In absence of a full quantum mechanical treatment by

PI-AIMD, we limit our discussion here to the OO RDF, a complete study of

OO, OH and HH correlations will have to wait for a full PI-AIMD simulation

based on PBE0+TS.
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Figure 4.6: Calculated OO RDFs with PBE, PBE0, PBE0+TS at 300K,

PBE0+TS at 330K.
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4.2.3 Triplet correlation function

To better quantify the local order, higher order correlations than two-body

ones would be important. Unfortunately they are not directly accessible from

diffraction experiment. A very important three-body correlation function

is the triplet distribution p(θOOO). This quantity has been extracted from

experiments recently[103] .

In this analysis, three water molecules are regarded as a triplet if two of them

lie within 3.18 Å of the third: this is the distance at which OO coordination

number reaches ∼ 4.0. The angle calculated is the included angle made by

these two molecules with the third to which they are “bonded”. Fig[4.7] plots

the oxygen-oxygen-oxygen(OOO) three body triplet distribution with PBE,

PBE0, PBE0+TS at 300K, PBE0+TS at 330K. This distribution shows a

peak value with position close to the perfect tetrahedral angle of 109.47o.

The tetrahedrality is more pronounced in PBE and decreases when PBE0,

vdW and approximate quantum nuclear are included.

In order to quantify the tetrahedrality of the liquid[112, 113], one uses a local

order parameter “q”, which is defined as:

〈q〉 = 1− 〈(cos(θOOO) +
1

3
)2〉 (4.5)

the average is taken over all appropriate triplets in the liquids.

Fig[4.8] illustrates how tetrahedrality of liquid water evolves with differen-

t functionals. 〈q〉 systematically decreases when PBE0, vdW and nuclear

quantum effect are included. The 〈q〉 is 0.65 when all these corrections are

considered, which is quite close to experimental derived value of 0.58 for light

water.
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Figure 4.7: The distribution of triplet angles for triplets of water molecules in

the CPMD simulations (black for PBE, red for PBE0, green for PBE0+TS,

blue for PBE0+TS at 330K.)
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Figure 4.8: Tetrahedrality of liquid water 〈q〉.

4.2.4 Broken H-bond statistics

Further important information comes from the broken H-bond statistics. We

here adopt the geometrical definition of H-bond suggested in Ref.[10], i.e. a

H-bond is defined in geometric terms by oxygen-to-oxygen and oxygen-to-

hydrogen distance cutoffs that are equal to the minima of the H-bonding

peaks of the RDFs, and a H-bond angle greater than 140o. The fraction

of broken hydrogen, as seen in Fig.[4.9], increases approximately from 7.5%

with PBE to 10.5% with PBE0, indicating increased fluidity. This behavior

is consistent with corresponding trend in the RDFs. The fraction of broken

H-bond increases up to 14% when the vdW correction is added to PBE0.

The fraction of final broken H-bond is about 18% when nuclear quantum

effects are also approximately taken into account. This fraction of broken

H-bond is consistent with most estimates and experimental data. It is defi-

nitely inconsistent with the proposal that ∼ 80 percent of the H-bonds are
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Figure 4.9: The distribution of the fraction of broken H-bonds in the CPMD

simulations (black for PBE, red for PBE0, green for PBE0+TS, blue for

PBE0+TS at 330K.)

broken in a liquid made by chains and rings of molecules. This conclusion is

independent of the criteria adopted for the H-bond definition.
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4.3 Local structure index analysis: high- and low-density

sites

Some anomalies in water have been tentatively associated with the presence

of two competing preferential local structures associated to local environ-

ments of high and low density [100], in a picture inspired by the existence

of at least two different forms of amorphous glass states, namely low-density

amorphous ice (LDA) and high-density amorphous ice (HDA)[114].

In liquid water, high density liquid (HDL)-like sites are characterized by the

presence of interstitial molecules between the first and second coordination

shells, leading to perturbed H-bonding and higher density. Low density liquid

(LDL)-like sites exhibit more tetrahedral-like local order with well-separated

first and second shells, and thus lower density close to that of hexagonal ice.

The structures of HDL and LDL have been characterized experimentally in

undercooled water by A.Soper et al.[115]. The water structure was mea-

sured as a function of pressure using neutron diffraction at a temperature of

268 K. The measured structure functions imply a continuous transformation

with increasing pressure from a LDL with an open, H-bonded tetrahedral

structure, to a HDL with a collapsed second coordination shell,

To identify these “structured” and “unstructured” molecules, a more elab-

orate parameter called the Shiratani-Sasai local-structure-index (LSI) has

been used[116, 117]. This LSI has been successfully applied to the inherent

structure in force field simulations of supercooled and ambient water and

reveals a structural bimodality in the underlying potential energy surface on

which the thermal motion evolves [118, 119, 120].

The Shiratani-Sasai LSI distinguishes molecules with well separated first and
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second coordination shells from molecules with a more disordered environ-

ment that contains neighboring molecules in interstitial positions. The index

I(i, t) is defined for molecule i at time t. For each molecule i one orders the

rest of the molecules depending on the radial distance rj between the oxygen

of the molecule i and the oxygen of molecule j : r1 < r2 < rj < rj+1 < ... <

rn(i,t) < rn(i,t)+1, n(i, t) is chosen so that rn(i,t) < rth = 3.7Å < rn(i,t)+1. Then

I(i, t) is defined as

I(i, t) =
1

n(i, t)

n(i,t)∑
j=1

[∆(j; i, t)− ∆̄(i, t)]2 (4.6)

where ∆(j; i, t) = rj+1 − rj and ∆̄(i, t) is the average over all molecules of

∆(j; i, t). Thus, I(i, t) expresses the inhomogeneity in the radial distribution

within a sphere of radius around 3.7Å. The choice of 3.7Å comes from the

observation of the existence of certain molecules which show an unoccupied

gap between 3.2Å and 3.8Å in their radial neighbor distribution for certain

periods of time[116, 117]. A low LSI value corresponds to a disordered lo-

cal environment with high-local density while a high LSI indicates a highly

structured, tetrahedral coordination with low local density.

We apply the LSI order parameter directly to the real thermally disordered

structure in the simulations. A LSI cutoff value is selected to separate

the molecules with an approximately 1:1 ratio for AIMD liquid water with

PBE0+TS at 330K( Ic = 0.025Å). The LSI distributions in PBE, PBE0,

PBE0+TS at 300K, PBE0+TS at 330K are all studied to understand how the

various effects (PBE0, vdW and quantum nuclei) correlate with the molecu-

lar forces and dynamics. Fig.[4.10] plots the LSI distribution in these various

environments, reflecting the changing population of the two sets in different

samples. With the chosen LSI cutoff, the fraction of HDL-like sites is 23%
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Figure 4.10: Probability density of finding a molecule with local structure

index I from PBE , PBE0, PBE0+TS, PBE0+TS at 330K.

with PBE, 30% with PBE0, 43% with PBE0+TS, 50% with PBE0+TS at

330K. This increase of HDL-like sites due to PBE0 and quantum nuclei are

more or less the same (∼7% increase for each effect), while the vdW interac-

tion has a larger contribution in increasing the population of HDL-like sites

(∼13% increase). This indicates that vdW interactions play an more impor-

tant role in HDL-like sites formation, which is largely via the penetration of

more interstitial molecules into first coordination shell.

Fig.[4.11] illustrates the calculated OO RDFs for LDL- and HDL-like sites

compared to those derived from experiment. The RDF of LDL-like exhibits

a highly structured distribution, while the first minimum of HDL-like RDF
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is difficult to locate due to the greater population of interstitial molecules in

HDL-like sites leading to a collapse of the second coordination shell. Both

LDL- and HDL-like RDFs show similarity compared to experimentally de-

rived RDFs for LDL and HDL water.

HDL- and LDL-like sites have distinct structural features. The high-LSI sites

(LDL like) are characterized by very well defined first and second coordina-

tion shells and a deep first minimum similar to the experimentally derived

RDF of LDL water. This is in sharp contrast to the low-LSI sites (HDL

like) which feature a collapsed second coordination shell and a pronounced

shoulder at interstitial distances around 3.5 Å, similar to what is observed

for high density amorphous (HDA) ice.

The coordination number that is associated with OO RDFs, is studied to

show the average number of neighboring molecules of each molecule. The

calculated value is ∼4.66 in the simulation of liquid water, and is ∼ 4.83

and ∼ 4.43 for HDL- and LDL-like sites, respectively. The higher coordina-

tion number in HDL-like is due to more population of interstitial molecules

between the first and second coordination shell.

The H-bond statistics is also interesting to investigate on LDL- and HDL-like

sites. With our adopted H-bond definition, the average fraction of broken H-

bond is 10% in LDL-like and 19% in HDL-like sites. Connected largely by a

tetrahedral structure, water molecules in LDL-like sites are mainly connected

with 4 H-bonds with some degree of distortion and breaking of H-bonds. The

HDL-like sites have a higher broken H-bond fraction, combined with a higher

fraction of interstitial molecules. However, more than three out of four H-

bonds are still connected, indicating that the differences in these two sets are

largely due to interstitial molecules’s role instead of the H-bonded peak. To
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Figure 4.11: Comparison of experimentally derived HDL and LDL OO RDF

[115] with that of sites in PBE0+TS at 330K simulation that distinguish

HDL- (low LSI) and LDL-like (high LSI) molecules according to one given

cutoff of LSI (Ic = 0.025Å).
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fully understand this behavior, a detailed quantitative analysis of H-bonded

and non H-bonded subsets is required.

Fig.[4.12] and Fig.[4.13] plot the OO RDFs for H-bonded and non H-bonded

molecules in HDL-like, LDL-like sites respectively. In the H-bonded region

of the first coordination shell, PBE0 and the quantum nuclei have a larger

effect in softening HDL-like structure. In the non H-bonded region, vdW has

a more important role by pulling interstitial molecules into first coordination

shell. This effect is pretty evident in the non H-bonded HDL-like OO RDF

from Fig.[4.12]. Hybrid functionals and the quantum nuclei soften the liq-

uid structure but do not change significantly the average network topology

by favoring more high-density configurations (i.e. configurations with more

interstitial molecules than simply allowed by the broken H-bonds). The in-

crease of the non-bonded fraction in excess to what is made possible by the

broken H-bonds is due to vdW interactions, which increase the number of

interstitial molecules by displacing molecules from the second to the first

coordination shell. Since the interstitial molecules are not H-bonded to the

central molecule, the only attractive interaction that may bring them closer

to the central molecule is the vdW interaction. On the other hand, in the

low density local structure LDL-like sites having a network topology closer

to that of LDA ice, the fraction of interstitial molecules is much less and

the contribution of vdW is weaker and leads to structural changes similar

in magnitude to those generated by the hybrid functionals and the quan-

tum nuclei. Interestingly, many more interstitial molecules are present in

the neighborhood of HDL-like sites than in that of LDL-like sites, but the

H-bonded fraction changes by a lesser amount. This is due to a change of

network topology between the two sets. This explanation is supported by the

coordination number analysis in the HDL- and LDL-like sites that is decom-
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Figure 4.12: OO RDFs of H-bonded and non H-bonded HDL-like species

with PBE, PBE0, PBE0+TS, PBE0+TS at 330K. In H-bonded region of

first coordination shell, PBE0 and quantum nuclei (mimicking) have a larger

effect in softening HDL-like structure. In the non H-bonded region, vdW have

a more important role by pulling interstitial molecules into first coordination

shell.
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Figure 4.13: OO RDFs of H-bonded and non H-bonded LDL-like sites

with PBE, PBE0, PBE0+TS, PBE0+TS at 330K. Different from HDL-

like species, interstitial molecules are fewer in LDL-like species as seen from

Fig.[4.11]. PBE0, vdW and quantum nuclei (mimicking) show similar effect

in both H-bonded and non H-bonded regions.
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Figure 4.14: The coordination number in H-bonded and non H-bonded HDL-

like, LDL-like sites with PBE, PBE0, PBE0+TS, PBE0+TS at 330K.

posed into H-bonded and non H-bonded contribution, as seen in Fig.[4.14].

The relative change in the bonded fraction between the two sets is smaller

than the corresponding change in the non-bonded fraction, i.e., the H-bonded

fraction changes less.

In the H-bonded region, on the other hand, the local structure of HDL-

and LDL-like sites shows similar behavior, being almost equally tetrahedral

in both cases. The Fig.[4.15] plots the three body oxygen-oxygen-oxygen

(OOO) angle distribution. In a perfect tetrahedral structure, this angle dis-

tribution is a delta function centered at 109.47o. In both H-bonded HDL-

and LDL-like sites, this tetrahedral structure is primarily maintained, with

angle distribution close to gaussian distributions with average 107.4o, 107.6o

and standard deviation 22.3o, 20.1o in HDL-like, LDL-like respectively. This

indicates that the local bonding environment of HDL- and LDL- like are

generally the same, with only slight difference.

Last but not least, it is interesting to investigate how HDL- and LDL-like

sites organize in liquid water, i.e., what’s the local ordering of these two
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Figure 4.15: Three body oxygen-oxygen-oxygen (OOO) angle distribution of

H-bonded HDL-like, LDL-like sites with PBE0+TS at 330K.
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Figure 4.16: OO RDFs of HDL-HDL, LDL-LDL and their cross correlation

with PBE0+TS at 330K.
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Figure 4.17: OO RDFs of H-bonded and non H-bonded in the subsets of

HDL-HDL, LDL-LDL and their cross correlation with PBE0+TS at 330K.
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sites? Are they mixed or clustered? In order to answer this, an analysis of

cross correlation between HDL and LDL and relevant coordination number

is required. Fig.[4.16] plots the OO RDFs of HDL-HDL, LDL-LDL and their

cross correlation as resulting from our simulation with PBE0+TS at 330K.

In this plot, RDF of HDL-HDL shows more interstitial molecules and RD-

F of LDL-LDL is more or less a tetrahedral structure. This suggests that

in the short range, LDL-like sites have some degree of clustering as seen in

the first peak region. On the other hand, HDL-like sites correlation is more

pronounced in the interstitial range, resulting in a collapse of second coordi-

nation shell. Both HDL-HDL and LDL-LDL correlations are observed in the

first and second coordination shell, but become weaker after the third coor-

dination shell. Fig.[4.17] decomposes these correlations into H-bonded and

non H-bonded subsets. The distinction between low LSI-low LSI and high

LSI-high LSI becomes more obvious. Low LSI-low LSI which corresponds to

high local density, show a more obvious peak around 3.5 Å and this value is

roughly the first minimum of OO RDF of liquid water. This indicates that

more interstitial molecules are in between first and second coordination shell.

High LSI-high LSI shows a peak around 4.3 Å which is roughly the position

of second peak of OO RDF of liquid water. Therefore, this means a normal

tetrahedral structure for high LSI-high LSI correlation.

Fig.[4.18] shows the coordination number of H-bonded and non H-bonded in

the subsets of low LSI-low LSI, high LSI-high LSI and cross correlation from

simulation with PBE0+TS at 330K. In the H-bonded region, the coordina-

tion number of low LSI-low LSI correlation is 1.73, which is close to that in

the cross correlation (1.62). Both are a little smaller than the coordination

number of high LSI-high LSI sites (2.05). This indicates that in H-bonded

region, LDL-like sites have some degree of clustering but not much, while
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Figure 4.18: Coordination number of H-bonded and non H-bonded in the

subsets of Low LSI-low LSI, High LSI-High LSI and cross correlation with

PBE0+TS at 330K

HDL-like sites have little clustering. This analysis is consistent with that

from OO RDF. In the non H-bonded region, the coordination number of

HDL-HDL is 1.01. This value is higher than the number from cross corre-

lation (0.51) and the number from LDL-LDL (0.28). Therefore HDL-sites

are somewhat clustered in interstitial range. The basic message that one can

extract from that is: at short range (nearest neighbor distance) some clus-

tering is present but mainly in high LSI sites and negligibly in low LSI sites.

At the interstitial range (around 3.5 Å), low LSI sites show some clustering.

With this, we can conclude that the analysis of HDL- and LDL-like sites in

ab initio water is consistent with the two state model of water.
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5 Conclusion

In this thesis, we focus on ambient water structure from AIMD simulation.

We found that in order to achieve an excellent description of liquid water

structure, three improvements are required to cure the deficiency of GGA

functional with classical nuclei simulation:

1: Quantum treatment of hydrogen instead of classically as we should, leads

to less overstructuring in liquid water[10];

2: Inclusion of PBE0 hybrid functional over semi-local GGA functional(PBE)

corrects the spurious self-interaction error and this leads to an improved

liquid water description;

3: The vdW non-local correlation that is missing in GGA and hybrid func-

tionals is also found to be important.

We observed that inclusion of all three important effects could achieve dra-

matically great results by referring to experiment data. The OO RDF, struc-

ture factor S(q), average broken H-bond statistics, the tetrahedrality of liquid

water 〈q〉 support this conclusion. Though currently quantum nuclei effect

is mimicked by a temperature increase due to the current computing limi-

tation, a complete simulation accounting for the above three effects will be

possible in the coming future with the higher-speed computing power and

more ingenious algorithm development. Moreover, the analysis of HDL- and

LDL-like sites in liquid water shows more clear the true role that PBE0,

vdW and quantum nuclei play. And more importantly, the current study

provides evidence that sites having LDL like and HDL like character coexist

in liquid water at ambient conditions. The coexistence of these sites with

distinct characteristics is definitely related to the existence of two amorphous
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ice forms in water. Whether or not this is related to the presence of a first

order transition in the metastable liquid regime, as hypothesized in Ref.[100],

is beyond our study.

Improving the modeling of water to have a better physics understanding of

liquid water structure not only enhances the predictive power of computa-

tional methodologies based on first principle electronic structure theory, but

also provides novel insight for experimental observations. Our detailed in-

vestigations of the microscopic properties of bulk water will also be a major

step forward to better understand water’s role in different environments, such

as interfacial water in materials and water at biological interfaces. Another

important issue is a better understanding of water as a solvating medium

and provide insight about how water rearranges around small solutes (both

hydrophilic and hydrophobic), and what signatures of important water de-

fects(hydronium, hydroxyl ions, the hydroxy radical etc.) can be detected

with spectroscopic means.

It should be stressed that the connection between theory and experimen-

t works in both directions. On one hand experimental data is essential to

validate theory, on the other hand theory helps in interpreting the experi-

ments and can even lead to extract more accurate experimental information.

For instance, the experimental uncertainty in the first peak of the OO RDF

comes from the incomplete knowledge of the x-ray scattering form factor for

oxygen in condensed water phases and the finite qmax scattering density. In

theory, we could contribute to further solving the uncertainty in this OO

RDF by extracting the form factor from accurate DFT calculation. Our sim-

ulated ambient water gives a first peak value of OO RDF ∼ 2.57 around the

position of 2.76 Å, in pretty good agreement with latest experiment deter-

mination derived from the highest qmax data currently available. This can
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shed light on the validation and verification of approximations used in the

experimental data processing.

Lastly, computer simulation has been playing a vital role in both the quanti-

tative characterization of liquid water and the advancement of our qualitative

understanding of water and its anomalies.
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Appendices

A Kohn Sham density functional theory

Instead of empirical potential energy, a more fundamental approach without

empirical fitting is to derive the potential energy surface directly from the

elementary interaction. The atom is consisted of electrons and nuclei in the

atomic scale. While it is often efficient to treat nuclei classically, the electron-

s need to be treated quantum mechanically. And to a good approximation,

the light electrons follow adiabatically the heavy nuclei, which is the essence

of Born-Oppenheimer adiabatic approximation. According to this approx-

imation, the electrons that are initially in the ground state will remain in

the ground state corresponding to the nuclear configuration visited at that

particular instant. The great approximation would lead to the separation of

electronic and nuclei dynamics. Therefore, the nuclear parameters R can be

treated as external parameters in the many-body electronic Hamiltonian Ĥ:

Ĥ =
−~2

2m

∑
i

∇2
i +

∑
i,I

−ZIe2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
(A.1)

In this equation, upper case indices refer to nuclei and lower case indicates

to electrons. ZI is the atomic number, e is the absolute value of the electron

charge, m the electron mass and the sum run over nuclei and electrons.

The ground state of electrons is found by minimization:

EGS(R) = MinΨ〈Ψ|Ĥ|Ψ〉 (A.2)

Here Ψ(r) ≡ Ψ(r1, r2, r3, ...., rNe) is a normalized many-electron wavefunction

and Ne is the total number of electrons(For simplicity, spin variables are
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omitted here). Then the nuclear potential energy surface is given by

Φ(R) = EGS(R) +
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
(A.3)

The classical nuclear trajectories can be computed without empirical fitting

of potential. However, solving this Eq.[A.2] is not easy as this is a formidable

quantum many-body problem that requires further approximation.

To simplify this problem , we are adopting Kohn-Sham DFT(KS-DFT), a

formally exact scheme to map a system of interacting electrons into a ficti-

tious system of non-interacting electrons with the same density. KS-DFT is

an approach to the many-electron problem in which electron density, rather

than the many-electron wave functional, plays the central role[54, 121]. It

makes use of the Hohenberg-Kohn theorem, which states that there is a

one-to-one relationship between the ground state energy and the electronic

density, n(r). Thus, it is possible to express the energy as a functional of

the electron density. This greatly simplifies the problem due to the fact that

density is only a function of single three-fold vector, whereas the wavefunc-

tion is a function with three dimensional position vectors times the number

of states.

In the recent years, DFT has become the method of choice for electronic-

structure calculations across an wide variety of fields, from organic chemistry

to condensed matter physics[56]. There are two main reasons for the success

of DFT: First, DFT offers the only currently known practical method of fully

quantum mechanical calculations for systems with many hundreds or even

thousands of electrons. Second, it enhances our understanding by relying on

relatively simple, physically accessible quantities that are easily visualized

even for large systems[122].
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According to DFT, the ground state energy of the interacting system with

given nuclear configuration R, can be obtained by minimizing a functional

of the electron density.

EGS(R) = Minn(r)EV [n] (A.4)

Here V ≡ V (r) =
∑

I
−ZIe2
|r−RI |

is the external potential of the nuclei acting

on the electrons. And the potential V depends parametrically on the nu-

clear configuration R. EV [n] is a functional of the orbital, with n(r) =

2
∑Ne/2

i=1 |ψi(r)|2 for a closed shell system(For other systems, it is straightfor-

ward to write down the n(r) expression as well). In this case, the minimiza-

tion problem is equal to the case with respect to the orbitals

EGS(R) = Minψ∗EV [ψ, ψ∗] (A.5)

Eq.[A.5] now becomes much simpler compared to Eq.[A.2], as Eq.[A.2] has

variables that is a many-body wavefunction and is growing exponentially

with the number of electrons. However, the Eq.[A.5] has Ne/2 independent

variables with only orthonormality constraint, i.e. 〈ψi|ψj〉 = δij. With this,

the energy functional in Eq.[A.5] becomes:

EV [ψ∗, ψ] = 2

Ne/2∑
i=1

〈ψi|
−~2∇2

2m
|ψi〉+

∫
V (r)n(r)dr

+
1

2

∫ ∫
drdr′

n(r)n(r′)e2

|r − r′|
+ EXC [n]

(A.6)

In this equation, the first term is the kinetic energy associated to the single

particle orbitals. The second term is the potential energy of the electrons in

the field of the nuclei and the third is the average Coulomb energy of the

electrons. EXC [n] accounts for the exchange and correlation energy, which is

the remaining contribution to EGS.
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EXC [n] is an unknown universal functional of the density. The choice of

exchange correlation functional is critical in generating accurate results from

DFT methodology. And this thesis is dedicated to improve this important

term in order to better describe the microstructure of liquid water .

The minimization problem in Eq.[A.5] then leads to Euler-Lagrange equa-

tions

δEV [ψ∗, ψ]

δψ∗i (r)
− εiψi(r) = 0 (A.7)

where εi are lagrange multipliers that keep the norm of the orbitals unitary.

Expanding the functional derivative would give

(
−~2∇2

2m
+ V (r) +

∫
n(r′)e2

|r − r′|
dr′ + VXC(r))ψi(r) = εiψi(r) (A.8)

The left term in the bracket is the Kohn-Sham Hamiltonian and VXC(r) =

δEXC [n]
δn(r)

is the exchange-correlation potential. Eq.[A.8] is well known as the

Kohn-Sham equations.

If the form of this functional was known exactly, then the density of the

auxiliary system would be exactly that of the real system, and we would

be able to solve any problem within the limit of numerical accuracy. Un-

fortunately, this exact form is unknown. In practice, approximations are

necessary to write explicit expressions for the exchange-correlation energy

and potential as functionals of the density. Commonly used approximation-

s are the local density approximation(LDA)[53] or the generalized gradient

approximation(GGA)[54, 123].
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B Car-Parrinello molecular dynamics

The emerging of Car-Parrinello molecular dynamics(CPMD) (1985) origi-

nates from the limitations suffered by both DFT and classical molecular

dynamics, which effectively restricted their application to the realistic sim-

ulation of condensed matter at finite temperature to specific cases. Pure

DFT was mainly applicable to the electronic structures of ordered and ho-

mogenous systems. On the other hand, the forces between atoms sued in

molecular dynamics did not take into account the fact that the electronic

potentials varied with the atomic movement during the progress of a simu-

lation. By using DFT to calculate the potential ‘felt’ by atoms and letting

such potential evolve with each step of the simulations, the Car-Parrinello

method allowed a much wider range of disordered and therefore more realistic

materials systems to be studied.

The main obstacle that prevents the use of potential energy surfaces derived

from DFT in molecular dynamics simulations is the high cost of the quan-

tum mechanical calculation of the electronic energy and electronic forces on

the nuclei. In a molecular dynamics simulation, the Kohn-Sham equation

need to solved self-consistently at all the nuclear configurations visited in a

trajectory. In order to compute meaningful statistical averages the number

of nuclear configurations in a numerical trajectory must be large, i.e. long

time simulation is always needed to obtain converged result. And this cost

exists until the formulation of the Car-Parrinello approach come out.

So right here we are giving a brief introduction about CPMD approach, as

this is the computation tool we are using to investigate liquid water structure.

The Car-Parrinello approach[46] is an extended Lagrangian formulation, in

which both nuclear and electronic degree of freedom act as dynamic variables.
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The dynamics derives from the Lagragian postulated by Car and Parrinello:

LCP =
1

2

∑
I

MIṘ
2
I + 2µ

∑
i

〈ψ̇|ψ̇〉 − Φ[R,ψ∗, ψ] + 2
∑
i,j

λi,j(〈ψi|ψj〉 − δij)(B.1)

Here µ is the mass parameter with unit of a mass time a length squared. The

mass parameter is used to control the dynamical response of the electron-

ic orbital ψi(r, t). Note that in order to keep the derivation as transparent

as possible, the more convenient atomic units(a.u.) is used here. And the

ψ̇i(r, t) ≡ ∂ψi(r, t)/∂t describes the rate of change of the orbitals with respect

to time. λij is the lagrange multipliers that impose orthonormality among

the orbitals. The second term in the equation gives the kinetic energy asso-

ciated with the time evolution of the orbitals. If we combine the nuclear and

electronic parameter space together, we would have potential energy surface

ΦCP [R,ψ∗, ψ] = EV (R)[ψ
∗, ψ] +

1

2

∑
I 6=J

Zv
IZ

v
J

|RI −RJ |
(B.2)

The first term is the Kohn-Sham energy functional that has been discussed

above in Eq.[A.6].

From the Lagrangian equation, we obtain the equation of motions for orbitals

and nuclei:

MIR̈I = −∂ΦCP [R,ψ∗, ψ]

∂RI

µ|ψ̈i〉 = −HKS|ψi〉+
∑
j

|ψj〉λji
(B.3)

where HKS = δΦCP [R,ψ∗,ψ]
2δ〈ψi| .

These two equations are usually called Car-Parrinello equations. They gen-

erate trajectories in the extended parameter space of nuclear and electronic

degrees of freedom. And the Lagrange multipliers that ensure the orthogo-

nality of Kohn-Sham orbitals are given by

λij(t) = 〈ψi(t)|ĤKS(t)|ψj(t)〉 − µ〈ψ̇i(t)|ψ̇j(t)〉 (B.4)
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Eqs.[B.3] has conserved total energy in extended parameter space:

HCP = K +Ke + ΦCP (B.5)

Here K(Ṙ) = 1
2

∑
IMIṘ

2
I is the kinetic energy of the nuclei. The Ke =

2µ
∑

i〈ψ̇i(t)|ψ̇i(t)〉 is the fictitious kinetic energy of the electronic orbitals

under the dynamics generated by Eq.[B.3].

The essence of CPMD is that owing to the mass separation between the

electrons and the ions, the electrons follow the ionic motion adiabatically.

The electronic evolution may be modeled by means of a fictitious dynamical

scheme. In this approach, the first principle molecular dynamics trajectory is

generated without the need for re-minimization of the electron wavefunction

at each time step, that is, it is possible to generate one step of electronic

motion per step of nuclear evolution. They presented a unified dynamical

framework by which the electrons and ions evolve adiabatically. A CPMD

time step requires evaluating the action of the Hamiltonian HKS on the

electronic orbitals, which is much simpler and less time consuming compared

to a self-consistent diagonalization of Kohn-Sham Hamiltonian. And the

nuclear dynamics generated by Eq.[B.3] is an excellent approximation of the

Born-Oppenheimer time evolution when orbital dynamics is fast and follows

adiabatically nuclear motion. Therefore CPMD dramatically decreases the

amount of computational effort necessary and has paved the way for studies

of a large variety of systems that would not be possible otherwise.

The remaining task is to separate in practice nuclear and electronic motion

such that the fast electronic subsystem stay cold also for long times but still

follows the slow nuclear motion adiabatically. And adiabaticity is controlled

by the fictitious mass parameter µ. Simultaneously, the nuclei must nev-

ertheless be kept at a much higher temperature. This can be achieved in
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nonlinear classical dynamics via decoupling of the two subsystems(fast elec-

trons and slow ions) and adiabatic time evolution. This is possible if the

power spectra stemming from the dynamics de not have substantial overlap

of their respective vibrational density of states, so that the energy transfer

from the “hot nuclei” to the ”cold electrons” becomes practically impossible

on the relevant time scales.
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C Performing meaning CPMD simulations

CPMD is a so useful theoretical tool that it would be necessary to have a few

words on how to perform a meaningful and correct simulation. First a gen-

eral procedure to perform CPMD simulation is recalled, followed by several

key quantities to monitor to make sure a meaningful CPMD is run. After

that, the issue about finite size effect is talked about. In CPMD simulation

with NVT ensemble, an effective temperature control technique is required

and thus Nose-Hoover thermostat that is adopted in the entire simulation is

reviewed.

C.1 The procedure of running CPMD simulation

In order to achieve an excellent and correct CPMD simulation, typically we

need a good initial configuration which is often taken from empirical force

field simulation, as ab-initio simulation is much more expensive.

After the initial configuration is successfully obtained, the electronic wave-

functions would be optimized to ground state with damping CPMD scheme[47],

which has proved efficient in optimizing electrons wave functions. In order to

run a statistically meaningful CPMD, the configuration would need to mod-

ified around their equilibrium positions by adding in a random displacement

for each atom, so that ions would deviate from their equilibrium and perfor-

m statistical sampling. Otherwise, the ions would move little in molecular

dynamics and lead to poor statistical sampling. A simple check whether the

configuration is appropriate can be monitored by looking at the forces acting

on ions. Typically an order of 10−2 a.u. is suitable for CPMD simulation. If

the forces is quite smaller like 10−4 a.u., then a larger random placement for
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Figure C.1: The time evolution of potential energy surface and constant of

motion in a typical CPMD simulation.

the configuration needs to be added in.

There are typically four key quantities to keep an eye on in CPMD simula-

tion:

(1): The potential energy surface fluctuates as a function of simulation time

and does not show any drift, otherwise the system is still evolving into de-

sired equilibrium state.

(2): The constant of motion, a quantity that is a constant in the CPMD

methodology should not show any drift, according to the Eq.[B.5] in micro-

canonical ensemble or Eq.[C.8] in canonical ensemble, otherwise some nu-

merical integration or other related issues may have something wrong.

(3): The average temperature of oxygen and hydrogen is the desired temper-

ature under canonical ensemble.

(4): The ratio of ions kinetic energy versus the fictitious electron kinetic
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Figure C.2: The fictitious Car-Parrinello electron kinetic energy(blue line)

and the kinetic energy of the ions(red line) are plotted as a function of time

in a typical CPMD simulation.

energy should be large enough to satisfy the adiabatical conditions between

ions and electrons, i.e. electrons follows adiabatically the motion of ions.

A typical simulation result with PBE functional is shown for better illustra-

tion. Fig.[C.1] shows the potential energy surface and the constant of motion

over a typical CPMD running. There is no drift in the potential energy in-

dicating that the system is in equilibrium state. The constant of motion is a

straight line, meaning that the integration over CPMD is well performed.

Fig.[C.2] shows the evolution of electron fictitious kinetic energy and ions

kinetic energy in CPMD simulation. The simulation is done under NVT

ensemble with T=300K. The plotted energy is converted to atomic unit with

the relation Eions = 3
2
NkBT . There is no drift in both electronic fictitious
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kinetic energy and ionic kinetic energy and the ratio of ions over electrons

is around 10. This indicates that the adiabatic condition between ions and

electrons are satisfied quite well, i.e. there are no energy transfer from ions

to electrons in the simulation.

C.2 Finite size effect

In AIMD simulation, it is preferred to work in the supercell with periodic

boundary conditions, in which water molecules are put into the box with

system size that corresponds to experimental density. In periodic boundary

conditions that is first developed by Born and von Karman in 1912, the

cubic box is replicated throughout space to form an infinite lattice. Each

molecule interacts with a series of periodic images of the system. This greatly

simplifies the problem of simulating large system with almost infinite atoms

in real world.

However, it is important to ask if the properties of a small, infinitely periodic

system can represent the macroscopic system. This so-called finite size effect

exists in expensive ab initio simulation and needs to be minimized as much as

possible. The computing transport properties such as the diffusion constant

has been shown to depend on system size[6]. Furthermore, since the system

is periodic on a small interval, the RDF is only valid up to a distance as long

as only the box size allows.

Fig.[C.3] taken from Kuhne et al.[6] shows the OO RDF with semi-local GGA

functional in three supercells(32, 64, 128 water molecules respectively). The

difference is quite huge between 32 and 64 water system, while it is almost

negligible between 64 and 128 water system. Therefore at PBE functional

level the finite size effect is not negligible in 32 water system, that is, the
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Figure C.3: Comparison of the oxygen-oxygen(OO) RDFs, obtained from

AIMD simulations with 32, 64, and 128 water molecules in the supercell,

plot taken from Ref.[6]

liquid water properties at ambient conditions can not be represented well in

this small system. In the current CPMD code package[62] , the computation

cost typically scales cubically with system size in planewave basis set repre-

sentation and therefore there is a tradeoff between accuracy and efficiency.

Due to this, we need to adopt at least 64 water system instead. In order to

calculate In what follows, all the ab initio simulations are performed in the

supercell with 64 water molecules, unless pointed out specifically.

C.3 Nose-Hoover thermostat

To study liquid water at ambient temperature within AIMD methodology,

it is preferable to work under NVT canonical ensemble, i.e. the number

of atoms, volume and temperature are kept fixed in the simulation, though

MD simulations are most easily carried out in microcanonical ensemble(NVE
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ensemble). In investigating liquid water properties, there are advantages

to perform simulations in the canonical ensemble. For instance, one main

objective of performing simulation is to calculate experimentally measurable

quantities. The experiments with which we want to make contact are usually

carried out under the conditions of constant particle number and temperature

and either constant pressure or volume. Therefore, temperature control in

molecular dynamics is essential as good scheme would be able to equilibrate

the system quite efficiently, so that the ergodicity can be achieved successfully

and the molecular dynamics statistical results will be meaningful.

This issue arises more serious in liquid water simulation with widely adopted

Generalized Gradient approximation(GGA) for exchange-correlation functional[5],

within which the H-bond strength is over estimated, as indicated from the

overstructured RDFs compared to experimental data. This means under

ambient condition, the water would have glassy behavior instead of liquid

property within GGA approach. The mean square displacement(MSD), an

indicator of liquid fluidity, shows smaller diffusion coefficient compared to

experiment. Due to this, it would take much longer time in the expensive ab

initio simulation to achieve converged statistical results. Furthermore, a good

understanding of thermostat applied to canonical ensemble(NVT) would be

easily transferred to other widely used ensemble(e.g. isobaric-isothermal en-

semble(NPT)), in which the underlying physics is the same. Therefore, it is

necessary to have a brief introduction and investigation of thermostats that

are frequently used in CPMD simulation in order to harness this technical

tool correctly.

One class of constant temperature simulation methods that has numerous ap-

plications to a wide range of problems is the so-called “extended system”(ES)[124].

The ES method, originally proposed by Nose[125], is rewritten by Noover[126]
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in a more convenient form. We are briefly review the equation of motion in

the Nose-Hoover chain dynamics. We consider the case of n chains where the

jth chain is coupled to gj degrees of freedom, where

q̈ij =
Fij
mij

− qij η̇1j (C.1)

η̈1j =

∑N
i=1 gimij q̇ij − gjkBTj

Q1j

− η̇1j η̇2j (C.2)

η̈kj =
Qk−1,j η̇

2
k−1,j − kBTj
Qkj

− η̇kj η̇k+1,j (C.3)

η̈Mjj =
QMj−1,j η̇

2
Mj−1,j − kBTj
QMjj

(C.4)

It can be shown that the extended system has the conserved quantity.

H
′
=

1

2

n∑
j=1

gj∑
i=1

mij q̇
2
ij +

1

2

n∑
j=1

Mj∑
i=1

Qij η̇
2
ij + U(qij) +

n∑
j=1

gjkBTjη1j

+
n∑
j=1

Mj∑
i=2

kBTjηij

(C.5)

The Nose-Hoover chain thermostats are attractive because they produce con-

tinuous dynamics with a well defined, conserved quantity. Assuming the

dynamics is ergodic, they generate canonically distributed positions and mo-

menta.

Combining this thermostat equation with Car-Parrinello approach expressed

in Eq.[B.3], the equation of motion for ions coupled with thermostat is:
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MIR̈I = −∂ΦCP [R,ψ∗, ψ]

∂RI

− εRMIṘI (C.6)

where the ions are coupled to independent thermostats, with εR the thermo-

stat variables that act as dynamical friction coefficients on the nuclei

Correspondingly, the dynamics of the thermostats is governed by the follow-

ing equation:

QRε̇R =

(∑
I

MIṘ
2
I − gkBT

)
(C.7)

Here QR is the thermostat “masses”, g the number of independent internal

nuclear degrees of freedom( g= 3N − 3 in molecular dynamics simulations of

extended systems with periodic boundary conditions). The mass QR controls

the dynamical response of the thermostat. The values are chosen to ensure

good dynamical coupling between nuclei and the corresponding thermostats.

Though Eq.[C.7] are not equivalent to Hamiltonian equations of motion, there

is still a conserved quantity associated to this non-Hamiltonian dynamics ,

namely:

HNH
CP = Ke +K + ΦCP +

QR

2
ε2R + gkBT

∫ t

0

dt′εR(t′) (C.8)

Eq.[C.7] eliminates the systematic drift of ions kinetic energy K in the simu-

lations. In practical simulation, the conserved quantity(constant of motion)

can be monitored to check whether there is something wrong, algorithmically

or numerically in the implementation.

To numerically integrate these equations of motion is nontrivial especially

Eq.[C.1], in which there are velocity dependent forces in the equation of mo-
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tion. The original implementation adopted η̇1j = (η1j(t)−η1j(t−∆t))/∆t to

approximate Eq.[C.9], which is accurate only to the order of ∆t and therefore

leads to a nonnegligible drift in the constant of motion quantity. This drift

accumulates as time evolves. If not handled properly, the simulation would

lead to the deviation of correct ions dynamics and cause some underlying

non-physical description.

If we apply the Verlet algorithm[89, 90] to the quantities qij and η1j that

have the accuracy to the order of ∆t2, the drift of constant of motion would

be eliminated. Eq.[C.1] then numerically becomes

qij(t+ ∆t) + qij(t−∆t)− 2qij(t)

(∆t)2
=
Fij(t)

mij

− qij(t)
η1j(t+ ∆t)− η1j(t−∆t)

2∆t
(C.9)

If we wants to compute the atomic positions at time t+ ∆t based on known

quantities at time t, η1j(t + ∆t) needs to be solved first. However this is

impossible, as seen from Eq.[C.2], η1j(t+ ∆t) can only be solved with known

qij(t + ∆t). Therefore Eqs.[C.1, C.2]need to be solved self-consistently, oth-

erwise there would be a drift in the constant of motion due to the numerical

integration error. A working alternative is to start with ηi,j(t) as the initial

guess to approximate ηi,j(t + ∆t), then the whole equation of motion quan-

tities at t + ∆t are calculated. These calculated ηi,j(t + ∆t) can be taken

as the new input to solve Eqs.[C.1, C.2] again. This algorithm is proved to

worked well and do not require too many modifications in the original code

within standard Verlet algorithm scheme.

The code package we are working on relies largely on Verlet algorithm for

numerical integration. Although simple in form, the original Verlet algorithm

and its modifications are at least as satisfactory as higher-order schemes that

make use of beyond second derivatives of the particle coordinates. It may be

less accurate than others at short times but, more importantly, it conserves
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energy well even over long times. It is also time reversible, as it should be for

consistency with the equations of motion. Some understanding of the reasons

for the stability of the algorithms can be obtained in the reference[127].

Another non-trivial issue when using the Nose-Hoover algorithm is the set

up of parameters, like the Qi,j. The appropriate value for this parameter is

inversely proportional to the characteristic frequency of the nuclear system to

which it is coupled. In order to equilibrate the ions system as fast as possible

to the desired temperature, we should turn to the ions spectrum of liquid

water and choose the frequency that corresponds to the main vibrational

spectrum. Moreover, we need to keep in mind that, in order to keep electrons

to ground state, there needs to be no spectrum overlap between electrons

and ions, or electrons and thermostats. Last but not the least, since oxygen

and hydrogen has various spectrum ranges due to the mass, different Qij

should be set according to the relations Qkj = (mj/mH)kBTτ suggested by

Martyna et al.[128]. Where τ is the characteristic time scale of the system,

mH is the hydrogen mass and mj is the mass of particles that are coupled

to the thermostat. This enables both the hydrogen and oxygen to evolve to

the desired temperature more quickly.
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D Water dimer calculation with PBE0

To see how better hybrid functionals perform over GGA, it would be neces-

sary to first look into the geometry properties of small water cluster system

which has been widely studied and the accurate reference data are avail-

able. In small water clusters, hybrid functional, e.g. Perdew-Burke-Ernzerhof

(PBE0) functional is found to give a more accurate description over PBE

functional, by referring to accurate quantum chemistry calculation[129] in

which the global minimum energy structures of small water clusters from

dimer to pentamer is computed with reference to second order Moller-Plesset

perturbation theory(MP2)[130]. From the Fig.[D.1], we can see that bind-

ing energy of water dimer decreases from 227.8 eV with PBE by 6.0 eV

to 221.8 eV with PBE0. This decrease is fairly agreement with reference

calculation[129] where 220.1 eV with PBE dropped by 5.6 eV to 214.5 eV.

This decrease indicates that H-bond strength becomes weaker from PBE to

PBE0, as the spurious delocalization error in PBE is cured by the introducing

of exact exchange in PBE0.

The equilibrium geometric properties of water dimer are also fully investi-

gated, as seen from Fig.[D.3]. The definition of these parameters can refer

to Fig.[D.2]. Regarding the structural properties of the dimer, it shows the

correct structural trend from PBE to PBE0. This follows the trends in the

PBEPBE and PBE1PBE of Ref.[131] , which refers to PBE and PBE0 in

our simulation, respectively. The PBE0 numbers are actually quite close to

what is called best ab initio. The error of ∼ 1 percent in the equilibrium

distance R is very good and within the accuracy of DFT. Also the fact that

PBE and PBE0 give quite similar results is what we expect given that PBE

already works quite well. The residual differences between Xu et al.[131] and
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Figure D.1: Comparison of binding energy in water dimer with PBE and

PBE0 functional. Reference data are taken from Ref.[129]

ours should be due to numerical effects (different basis sets, etc).

The most important effect is the fact that, while R is the same between PBE

and PBE0 ( within 0.2 percent), rd is shorter by ∼ 1.2 percent in PBE0. This

indicates that the H-bond is going to be slightly less stronger with PBE0.

Indeed the binding energy that we find is 5.67 kcal/mole with PBE and 5.54

kcal/mole with PBE0(1 kcal/mole = 43.3641 meV/mole). This difference

between PBE and PBE0 functional is exactly the same as in Ref.[131], where

for PBE it is 5.11 kcal/mole and 4.98 kcal/mole with PBE0.

If we take the reduction of binding strength as an indicator of the difference

that we should expect in a bulk calculation (this is a very rough estimate

because we neglect cooperative effects, i.e. we assume them to be the same

in PBE and PBE0) a different in H-bond strength of ∼ 2 percent which is

equivalent to an effect of ∼ 30-40 K in temperature units, which is precisely

the kind of effect we are looking for.

Based on these observations, PBE0 functional is found to perform better

than PBE functional in small water cluster. This leads to the expectation
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Figure D.2: Bonding geometry of the ground state water dimer, adopted

from Ref.[131]

Figure D.3: Geometric properties( Å , deg) of water dimer. The ab initio

data are taken from Ref.[131].
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that PBE0 functional would have a better liquid water structure description

compared to PBE functional when we turn to liquid water in condensed

phase.
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