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ABSTRACT 

THE RANKING OF FOOTBALL TEAMS USING CONCEPTS FROM THE ANALYTIC 

HIERARCHY PROCESS 

Yepeng Sun 

October 10, 2009 

A new method to rank football teams with the concepts associated with the Analytic Hierarchy 

Process(AHP) and Graph theory is developed in this thesis. A set of games is interpreted as a 

graph, in which every vertex represents a team, and every edge represents a team quality 

comparison evaluated directly from the score difference of a game. A weighted quality 

comparison value between every two teams is computed from the graph. based on the transitivity 

relationship of comparison values in the Analytic Hierarchy Process(AHP). All the quality 

comparison values are input into the software package Expert Choice as the pair-wise 

comparison values in term of team quality, then Expert Choice can give the rankings of the 

teams. The method is illustrated through the use of scores associated with the 2007 Big East 

Conference football season. 

This method accounts for the margin of victory(score difference) in the rankings, which is 

the main difference as compared to the computer methods in the BCS system. Another 

characteristic of our method is that our ranking method considers indirect comparison as well as 

direct comparison between teams, using Graph theory to integrate and weight all these 

comparisons. 
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CHAPTER 1 INTRODUCTION 

The NCAA Football Bowl Subdivision(FBS) (formerly known as Division I-A) is the only 

NCAA-sponsored sport without an organized toumament to determine its champion. Schools in 

Division I FBS compete in post-season, with the champions of six conferences receiving 

automatic bids to the highly lucrative bowl games. 

The Bowl Championship Series (BCS) is a selection system designed to give the top two 

teams in the FBS an opportunity to compete in a "national championship game". The BCS relies 

on a combination of polls and computer selection methods to determine relative team rankings, 

and to narrow the number of teams involved to two teams to play in the national champion bow 

games held after the other college bowl games. The winner of this game is crowned as the BCS 

national champion, and is guaranteed at least a share of the national championship. 

Before the BCS was introduced in 1998, Division I-A was based solely on two opinion polls, 

commonly referred to as the Coaches' and the AP(Associated Press) polls. The rankings of the 

teams in these two polls is determined by coaches and sports journalists respectively, who vote 

weekly for the top 25 teams based on the team's performances in all games played. 

However, when the Coaches' poll and the AP poll could not make an agreement on the 

choice of the top team, a shared title of national champion could be assigned to two teams, which 

has occurred in 1997 with Michigan and Nebraska. In order to overcome this problem, from 1998 

the new system was introduced, under which the top two teams at the end of season would play 

one final game for the championship. This system is called BCS, and it combines the AP poll, the 

Coaches' poll with several computer-based polls to neutralize the effects of the AP and Coaches' 
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polls, which represent expert opinion criticized by the public for the following two reasons: First 

the human pollsters are not objective observers and may have biases on certain schools based 

on their own perception; second it is impossible for a human pollsters to recall all outcomes of all 

games in the season, even if he or she watched all games. 

Although the computer polls can overcome the above two weaknesses, they also have 

already been proven to be controversial in practice. Sometimes the computer polls could produce 

the ranking which differs significantly from the two human polls. For example, in 2001 University 

of Oregon got the second place in both the AP and Coaches' polls, but it got the 8th place in one 

of the computer polls and ih place in two of the other computer polls. The low ranking of Oregon 

in these three computer polls is analyzed to be contributed to Oregon's many victories with 

narrow point margins(score difference), since the computer models in the BCS do not account for 

margin of victory to rank the teams involved. These kinds of instances happened many times due 

to the ignorance on margin of victory of games in the computer polls. The reason to ignore margin 

of victory in the computer polls is that the ranking result could be more consistent with the human 

polls if the computer polls only account a team's winning percentage and quality of opposition 

than consider the margin of victory between teams. As a negative result, this could lower the 

incentive for a team to earn more scores in games. 

In this thesis, we propose a new computer model to weight the margin of victory in a holistic 

view, based on Graph theory and the Analytic Hierarchy Process(AHP). We consider a set of 

games as a graph, in which the teams are connected with games, and the margin of victory of 

games can indicate the quality comparison between teams; we compare the teams holistically 

based on the transitivity along the paths in the graph, and finally make pair-wise comparison 

between teams to rank the teams with AHP. 

In Chapter 2, we will review the related literature concerning computer models including a 

detailed explanation of the BCS, and introduce some necessary knowledge on AHP. In Chapter 3, 

we introduce our methodology. In Chapter 4, the implementation of our methodology with an 

instance is given. Finally there are discussions and conclusions in Chapter 5. 
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CHAPTER 2 LITERATURE REVIEW 

There are a variety of methods that have been developed for the rankings of athlete teams. In 

this chapter, first we introduced the currently used BCS ranking system; second the related other 

methods are introduced; finally AHP is introduced as a basis for our method. 

2.1 The BCS System 

The Bowl Championship Series (BCS)[1] is a ranking system to decide which two teams in 

the NCAA Football Bowl Subdivision (FBS) have the opportunity to compete in a national 

championship game. According to the BCS Formula, the BCS ranking score is calculated from 

the combination of 2 polls involving human elements (including Harris Interactive College Football 

Poll and USA Today/ESPN Coach's Poll) and 6 polls of computer elements (including Anderson 

& Hester, Richard Billingsley, Colley Matrix, Kenneth Massey, Jeff Sagarin's USA Today and 

Peter Wolfe). In the subsections of this section, each poll is introduced, finally the BCS Formula is 

described. 

2.1.1 Harris Interactive College Football Poll 

The Harris Interactive College Football Poll (Harris PolI)[2] is a weekly rankings of the top 

25 NCAA Division I Football Bowl Subdivision (FBS) college football teams, and this poll is 

compiled by Harris Interactive, a market research company that specializes in Internet research. 

To form the panel of Harris Poll composed by former players, coaches, administrators 

and current and former media, Division I-Bowl Subdivision college football conferences and 
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independent institutions firstly nominate 300 prospective panelists; then Harris Interactive selects 

114 members from the nominees to participate in the actual panel. 

The 114 members vote on the ran kings of top 25 teams from each week in September to 

the end of the regular college football season, and Harris Interactive releases the ranking results 

weekly. There is no published information about the mechanism of voting inside Harris Interactive 

in Internet. 

2.1.2 USA Today/ESPN Coach's Poll 

The USA Today/ESPN Coach's Poll (Coach's Poll)[3] is made up of 61 head coaches at 

Division I FBS institutions, and all of them are members of the American Football Coaches 

Association. Similarly, the Coach's Poll also ranks the top 25 teams in FBS weekly, and the 

detailed mechanism of voting is not published. As a voting system made by a fewer of the 

coaches compared to Harris Poll, the Coach's Polls are under criticism due to its inaccuracy, 

subjectivity and bias[8]. 

2.1.3 Anderson & Hester 

Jeff Anderson and Chris Hester are the owners of this computer ranking system, and the 

system has been a part of the BCS since its inception. The algorithm of the ranking system is 

unpublished as a secret. The Anderson & Hester Rankings are distinct in four ways according to 

its declaration in its official website [4]: 

1. Unlike the polls, these rankings do not reward teams for running up 

scores. Teams are rewarded for beating quality opponents, which is the object of the 

game. Margin of victory, which is not the object of the game, is not considered. 

2. Unlike the polls, these rankings do not prejudge teams. These rankings first appear 

after the season's fifth week, and each team's ranking reflects its actual accomplishments 

on the field, not its perceived potential. 
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3. These rankings compute the most accurate strength of schedule ratings. Each 

team's opponents and opponents' opponents are judged not only by their won-lost 

records but also, uniquely, by their conferences' strength (see #4). 

4. These rankings provide the most accurate conference ratings. Each conference 

is rated according to its non-conference won-lost record and the difficulty of its non

conference schedule. 

2.1.4 Richard Billingsley 

Richard Billingsley developed this method[5], the main components of which are: Won

Loss Records, Opponent Strength (based on the opponent's record, rating, and rank), with a 

strong emphasis on the most recent performance. However, it does not consider the margin of 

victory. 

2.1.5 Kenneth Massey 

Kenneth Massey described his method in his official website[6]. Only the score, venue, 

and date of each game are inputs to the Massey ratings algorithm. Every pair of scores of one 

game is converted as a value between 0 and 1 that estimates the probability that the winner of 

the game would win a rematch under the same conditions. The power rating representing the 

potential ot a team is calculated from the probabilities through a Bayesian win-loss correction. 

2.1.6 Jeff Sagarin's USA Today 

The computer system published in USA Today was developed by Jeff Sagarin[7]. This 

system takes winning and losing as the sole factors, which makes it very "politically correct". 

However, this also makes it less accurate in predictions for upcoming games. 

2.1.7 Peter Wolfe 

Peter Wolte[8] developed his ranking method called a maximum likelihood estimate. In it, 

each team i is assigned a rating value Jrj that is used in predicting the expected result between it 

and its opponent j, with the likelihood of i beating j given by: 
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The probability P of all the results happening as they actually did is simply the product of 

multiplying together all the individual probabilities derived from each game. The rating values are 

chosen in such a way that the number P is as large as possible. 

2.1.8 Colley Matrix 

The method Colley Matrix [9] only considers wins and losses as input, and adjusts 

strength of schedule in a way that is free of bias toward conference, tradition, or region. The 

rating of a team is calculated from the numbers of winning games and number of losing games, 

and the strength of its components. 

2.1.9 The BCS Formula 

Finally, the BCS ranking score of a team is calculated according to the following formula: 

RCS Ranking = (Harris Poll % + Coach's Poll % + Computer Poll % ) 

"Harris PoII%" is the percentage that is calculated from the score of the team in the Harris Poll 

divided by the perfect score of the Harris Poll. Similarly, "Coach's PoII%" is the percentage that is 

calculated from the score of the team in the Coach's Poll divided by the perfect score of the 

Coach's Poll. For example, in the Harris Poll, if Penn State has a score of 2631, and the 

perfect(full) score a team can earn in the Harris Poll is 2850, then 2631 + 2850 = 0.923 is Penn 

State's "Harris PoII%" 

In order to compute "Computer PoII%" of a team, among the team's six scores of the six 

computer polls, the lowest score and the highest score should be taken off, the remaining scores 

are summed up; then the "Computer Poll %" is the sum of the four scores divided by 1 00. 

2.2 Related Work 

Many mathematicians and computer scientists have proposed alternative methods for 

improving team rankings. 

6 



James P. Keener[10] developed a method based on the Perron-Frobenius theorem, in 

which the strength of teams is expressed as a vector T, with the positive components rj indicating 

the strength of the jth team. The score of team i is defined as 

1 N 

Si=-Lai'r· 
n .1.1 

i j=] 

where au is a nonnegative evaluation on the outcome of the game between team i and team j, 

N is the total number of teams in the competition, and n is the number of games played by 

team i. The matrix A with the entries au / is called a preference matrix based on the paired In 
comparison between teams, with the assumption that the strength of a team should be 

proportional to its score, that is, 

Ar=Ar 

where the ranking vector T is a positive eigenvector of the matrix A, and according to the Perron-

Frobenius theorem, there exists an eigenvector T with nonnegative entries with a corresponding 

eigenvalue A. Then the different methods of extracting the preference matrix from uneven and 

incomplete paired comparison between teams are discussed and developed. 

Rick L. Wilson[11] developed a ranking method with a neural network approach: the 

teams and the games between teams form a graph, in which a node represents a team and an 

edge represents a game between the two teams represented by two nodes; and the graph is 

understood as a neural network, in which every node is taken as a neuron, every edge 

connecting with the neuron is taken as an input to it, and the value of the neuron representing the 

team strength is calculated with the transfer function through running an iterative program. 

David Harville[12] developed a statistical regressive model for predicting the score 

difference of the game between two teams, by which the characteristic level of performance of 
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the teams over a long sequence of games is extracted from the random variation of performance 

shown in games, then the teams are ranked with the characteristic level of performance. 

Similarly as [12], [13] takes the outcome of games between two teams as a normal 

distribution based on the strength of the teams over time, and developed a predictive model. 

In the paper [14], the ranking problem is taken as a quadratic assignment problem: every 

team is assigned to a position in the ranking list, which is supposed to maximize the multiplication 

of the degree of victory in scores and the relative distance in the ranking list between any two 

teams. 

R.T.Stefani[15] developed a predictive approach using least squares based on the 

following model: 

W= Ar+v 

Where w is the victory margin of vectors( M xl) of M games, A is the selection matrix with 

entries a ki or a ki (for a game k between team i and j, if team i defeat team j, a ki = + 1 and 

aki = -1; if the result is tie, aki = 0 and aki = 0) , T is the rating vector on N teams, and v is the 

random variable vector on victory margins. David A. Harville[16] and Cilbert W.Bassett[17] gave 

modified versions of ranking method using least square with considering margin of victory. 

David Mease[18] proposed a model using a penalized likelihood approach which results 

in a ranking process that attempts to mimic the thought processes of the human pollsters of the 

Coaches' polls. The underlying assumption is that every team keeps a reliable performance level, 

and its actual performance is its performance level plus the performance variation. Based on the 

model, the algorithm try to calculate the reliable performance level to fit the game outcomes the 

best, and use performance levels to rank the teams. 

[19] proposed a network-based ranking system for US college football: similar to our work, 

it forms a network graph in which every team is a vertex and every game is an directed edge from 
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the winner to the loser; differently from our work, it only counts the direct and indirect win/loss to 

get scores of teams without considering margins of victory. 

[20] proposed a method based on agent-based simulation: a set of voters are simulated 

as walkers in a network structure representing win/loss relationship among teams, the output of a 

game will change the walker's favor on the participant teams with some probability. Finally, the 

team who get more favors ranks high. 

[21] proposed a ranking method with AHP. However, the evaluation on pair-wised 

comparison is very coarse and even unreasonable compared to our work. 

[22] takes the ranking problem as an inverse equal paths problem, and developed a 

network based ranking system similar to [19]. 

2.3 Description of the Analytic Hierarchy Process 

The Analytic Hierarchy Process (AHP)[23-25] is a structured approach to solve complex 

decisions in the economic, social and management sciences with inconsistencies and subjectivity. 

Instead of outputting an absolutely correct solution, AHP can help the decision makers identify 

their needs and objectives, and understand the problems more deeply. Based on some 

mathematical and psychological facts, it was developed by Thomas L. Satty in 1970s, and was 

implemented by the software package "Expert Choice"; and since then it has been studied 

extensively and applied widely. According to the past practical experience, it can be applied in the 

following situations: 

• Choice: select one preferred alternative from a given set of alternatives, in which the 

alternatives are evaluated with multi-criteria. 

• Ranking: evaluate a set of alternatives with multi-criteria, and sort out an order of 

alternatives following the general preference from most to least. 

• Prioritization: determine the relative merit of a set of alternatives according to one or 

several criteria, in which the relative merits of alternatives in terms of the criteria are 

given as values. 
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• Resource Allocation: apportion resources to a set of alternatives according to some 

criteria such as emergency, importance and so on. 

• Benchmarking: compare one alternative such as one solution, or operational 

performance of a company with those excellent alternatives, to identify the gap 

between the existing situation and the ideal situation. 

• Quality management: integrate diversified quality measurements and quality control 

technique together to deal with the multidimensional aspects of quality and quality 

improvements. 

AHP is a systematic approach, which decomposes the problem into a hierarchy and a series 

of pair-wise comparisons, finally the hierarchy and pair-wise comparisons are integrated with 

quantitative techniques. The application of AHP is supposed to follow the following basic steps: 

(1) Develop a hierarchy of objectives which consists of factors such as a general goal, 

criteria, sub-criteria and a set of alternatives, as shown in Figure 1. In this hierarchy, the 

top level defines the general goal of the problem or the system; the bottom level lists the 

alternatives which are to be evaluated, selected or ranked; in between the top level and 

the bottom level, there are several levels of criteria, sub-criteria, ... , and so on, which are 

obtained from the decomposition of the general goal and criteria, and every level is 

exactly non-overlapping partitions of the higher level. 

(2) Make pair-wise comparisons at each level. The comparisons have to do with how much 

more important one criterion/sub-criterion is than another criterion/sub-criterion with 

respect to their parent criteria, when the criteria are compared; and the comparisons 

have to do with how much better one alternative is than another, with respect to the 

criterion by which the alternatives are evaluated. In Figure 1, for the first level of criteria, 

the pair-wise comparisons should be made between criterion 1, criterion 2 and criterion 3 

with respect to the goal; the comparisons also should be made between sub-criterion 1 

and sub-criterion 2 with respect to criterion 1, but no comparisons should be made 
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between sub-criterion 2 and sub-criterion 3, because they have no common parent 

criteria. 

Table 1 Numerical Rating in Pair-wise Comparison 

Importance Numerical Rating 

Equal Importance 

Weak Importance 3 

Strong Importance 5 

Very Strong Importance 7 

Absolute Importance 9 

2, 4, 6, 8 are intermediate values 

Performance 

Equal Performance 

Weakly Better 

Strongly Better 

Very Strongly Better 

Absolutely Better 

Numerical Rating 

3 

5 

7 

9 

2, 4, 6, 8 are intermediate values 

And the answers given to the questions for the pair-wise comparisons are 

converted to numerical code, as shown in Table 1. 
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the top goal 

the first level of criteria 

the second level of 
criteria 

the level of alternatives 

Figure 1. The Hierarchy of AHP 

(3) The pair-wise comparisons with respect to every goal , criterion or sub-criterion form an 

"influence matrix", denoted as A , a square matrix with the number of rows and the 

number of columns equal to the number of criteria in the particular section of the 

hierarchy with respect to the goal, criterion and sub-criterion. The A matrix is used to 

determine the "local weight" for each factor, through using the "eigenvalue method" as 

following: 

Aw= A max W 

I Wi = 1 

where w is the n-dimensional eigenvector associated with the largest eigenvalue, Amax , 

of the influence matrix, A. A max is determined by selecting the largest value of A that 

satisfies the equation given by: 

IA- All = 0 
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The influence matrix A = (a ij ) is given by: 

• The numerical rating provided by step (2), if i is more important or 

performs better than j ; 

• au = I, if i "" j 

• aij "" 1/ aji ' if j is more important or performs better than j; 

The larger the "local weight" of a factor is, the more important or the better of 

performance the factor is, with respect to its parent factor. And if the numerical rating is 

perfectly consistent in the pair-wise comparisons, the influence matrix A will satisfy: 

aij = 

Therefore, it can satisfy a transitive relationship as the following: 

a ik = a· * a k if there exist the comparison between i and j, j and k. (/ .I 

But this is not the requirement AHP can work; on the contrary, AHP can deal with 

inconsistency due to human's judgments or exceptions in the system. 

(4) Determine the global weight (also called global priority) for each alternative in the 

hierarchy. The global weight of an alternative represents the overall score of that 

alternative, and this score indicates how better the alternative is compared to the other 

alternatives. 
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CHAPTER3 METHODOLOGY 

3.1 Basic Idea 

The basic idea of our methodology is to make pair-wise comparisons between teams in 

terms of team quality according to their game performances, give numerical rating based on the 

score difference of the game between the two compared teams, form an influence matrix and 

calculate the overall weight using AHP. As shown in Figure 2, the AHP hierarchy for ranking 

football teams has only two levels: the top level "team quality" is not only the general goal but also 

the unique criterion; the bottom level consists of the teams to be ranked in term of team quality as 

the alternatives. The AHP gives the global weight of every team; the more weight a team has, the 

better the quality of the team. 

Figure 2. The Hierarchy of Team Ranking 

In order to fulfill our idea, several problems must be discussed and solved: 

(1) Convert score difference to quality difference 

If there exists a game between team A and team B, and if team A has beaten team B by 

a score of x to y (A wins over B , and x > y), how can we convert the score difference 
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x - y to the quality difference which indicates the numerical rating representing the 

comparison of quality of two teams? We should construct a conversion function: the input 

is the score difference of one game between two teams, and the output is a number 

between 1 and 9, in which 1 indicates team A and team B perform equally well on team 

quality, and 9 indicate team A performs absolutely better than team B. Table 2 gives a 

more detailed description on the output: 

Table 2 The Numerical Rating in Our Problem 

3 

5 

7 

9 

A and B Perform Equally Well 

A Performs Marginally Better than B 

A Performs Markedly Better than B 

A Performs Very Markedly Better than B 

A Performs Absolutely Better than B 

Any numbers between 1 and 9 represent intermediate values 

The quality difference (DQ) of two teams is a non-decreasing, nonlinear function of the 

score difference (DS) as Figure 3 shows, when the two teams playa game. The function, 

DQ = [(DS) , has a non-increasing first derivative (d(DQ)/d(DS)) as DS increases in 

value. For example, if team A beats team B by 40 points, and team B beats team C by 40 

points, then team A would be expected to beat team C not by 80 points, but by some 

number of points between 40 and 80. 
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Figure 3. The Conversion Function from Score Difference to Quality Difference 

(2) An estimation method based on graph and transitivity 

The ideal situation for team pair-wise comparisons is a Round-Robin Tournament in 

which each team plays a game with each of the other teams at least once. In a Round

Robin Tournament, we can obtain all the quality differences between the teams directly 

based on the score difference of the games they have played. However, in many 

schedules, every team only plays games with a subset of all team members; thus, there 

exist such situations that two teams have never played each other, and we cannot make 

a direct comparison on the team quality between these two teams. 

A solution to deal with this problem is that we can make pair-wise comparisons indirectly 

with the transitivity relationship indicated in the AHP between two teams who have played 

no games with each other. For example, in the following diagram, team i and team j 

have no direct game played, but team i has beaten team k by a quality comparison value 

aik , and team k has beaten team j by a quality comparison value akj ; we can apply the 
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transitivity relationship indicated in AHP to get the indirect quality comparison between 

team i and j as following: 

k 

i 

However, transitivity relationship assumes "perfect consistency", and 

unfortunately the perfect consistency cannot be guaranteed in AHP applications including 

ours. This inspired an estimation method based on graph theory: a set of games form a 

graph, in which every vertex represents a team, and every directed edge with a quality 

comparison value corresponds to a game, and the direction of the edge indicates the 

team of the start vertex wins over the team of the end vertex. The quality comparison 

value on the edge is calculated from the score difference with our conversion function; in 

order to calculate the quality comparison value including direct comparison and indirect 

comparison between two teams, all paths between these two teams are found, the quality 

comparison for every path is calculated according to the transitivity relationship and is 

assigned a weight, and finally a value integrating these quality comparisons with these 

weights is calculated as a weighted quality comparison value. 

For example, suppose that there are 4 teams denoted as vertex 1, 2, 3 and 4, 

and 5 games are played among these teams. This forms a graph shown in the following 

diagram; there exist 3 paths from team 1 to team 4: 1-72-74, 1-74, and 1-73-74; 

although the direction of the edge between 3 and 4 is from 4 to 3, we can convert the 
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edge with the quality comparison value a43 to an edge with the quality comparison value 

l1a
43 

directed from 3 to 4. 

2 

4 
1 

3 

In the following, N Pijm is the mth quality comparison value along the mth path between 

team i and team j 

For path 1 ~4, we can get the quality comparison value 

For path 1 ~2~4, we can get the quality comparison value 

For path 1 ~3~4, we can get the quality comparison value 

NP143 = a13 * (11 a 4J 
Finally, the above quality comparison values are integrated as a weighted quality 

comparison value with given weights W1 ' Wz and W 3 , and this weighted quality 

comparison value A14 would be taken as the corresponding entry of the influence matrix 

A in AHP. 

A14 = WI * NP141 + Wz * NP14Z + W3 * NP143 

And the condition is held at the same time: 
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(3) Home field advantage 

The home field advantage must be considered when one team plays a game in its home 

city with another team. The home field advantage is measured in terms of expected extra 

points the home team can obtain. For example, if we set up the home field advantage as 

3 points, team A has beaten team B by 38 points, and we suppose team A is at home, 

then team A won team B by 35 points after the home field advantage is considered; if 

team B is at home, the score difference should be adjusted as 41 points. 

The general procedures to apply our methodology can be summarized as following: 

(1) Indentify the conversion functions including the values of its corresponding parameters. 

(2) Seek the values for the parameters including the home field advantage and the weighting 

factors to weight the quality comparisons along different paths. 

(3) Compute all the weighted pair-wise comparisons on team quality between teams 

according to the conversion function and the corresponding parameters, form the 

influence matrix A and input it into AHP software package to make a ranking in terms of 

team quality. 

3.2 Formalization of Methodology 

In this section, we will refine our ideas, and give a detailed description of our methodology. 

3.2.1 Input Processing 

The input to our method is a set of tuples, every tuple specifies a game between two 

teams, and every tuple has the following format: 

(winner, loser, winScore, losS core, homeTeam) 

winner: ID of the winning team in the game. 
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loser: 10 of the losing team in the game. 

winScore: score of the winning team. 

losScore: score of the losing team. 

homeTeam: 10 of the home team. 

And if the game result is a tie(winScore = losScore), the winner or the loser just specify 

one of two teams in the game, and the order of them does not matter. 

The input is simplified as the following format: 

(winner', loser', DS) 

winner': 10 of the winning team in the game. 

loser': 10 of the losing team in the game. 

DS: the score difference after consideration of the home field advantage(DS ~ 0). 

The simplified tuples can be computed with the following algorithm: 

Input: a set of tuples with the format (winner, loser, winScore, losScore, homeTeam). 

Output: a set of simplified tuples with the format (winner', loser', DS). 

Method: H is the number of points associated with the home field advantage. 

if homeTeam =:0:: winner, 

diff :0:: winScore - losScore - H; 

if homeTeam == loser, 

diff = winScore - losScore + H. 

if differ ~ 0, 

winner = winner, 
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loser' = loser; 

if differ < 0, 

winner' = loser, 

loser = winner. 

DS = Idiffl. 

The set of simplified tuples can be easily interpreted or converted to a graph, in which 

every vertex is the ID of a team, and every edge weighted by the score difference DS(after 

consideration of home field advantage) represents a game between the two connected vertices of 

teams. We define the graph formally in the following: 

G = (V, E) 

where V is the set of all vertices representing teams; E is the set of all edges representing games 

between teams. 

3.2.2 The Conversion Function 

We will explore the conversion functions with two steps: in the first step, we will devise a 

function which can convert every score difference to a corresponding value between 0 and 1; in 

the second step, we will devise a linear function which can map the value between 0 and 1 to a 

value between 1 and 9 representing the quality comparison between teams in terms of the AHP. 

For the first step, we apply the following function on the score difference DS: 

DQ'J 1 e ( f)SII (1) 

DSij : the score difference of a game between team i and team j. 

C : a parameter the value of which is to be determined. 

DQij : the quality difference as determined by a game between team i and team j , 

o $; DQij < 1. 
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This function can satisfy all the requirements we need: the output value ranges from 0 to 

1, we can easily use a linear function to map it onto a value between 1 and 9; when DS becomes 

larger, DQ approaches 1 and the derivative d(DQ)/d(DS) becomes smaller and approaches O. 

Figure 4 illustrates one possible graph. 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

o 
o 20 40 

DQ 

60 80 100 120 140 

Figure 4. The Curve of the Conversion Function when C = 0.04 

For the second step, we use the following linear function to map DQ to a value between 1 

and 9 as the quality comparison: 

a'l 1 + 8DQ'1 

Figure 5 shows the graph of this function. 
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Figure 5. The Linear Function from lJ" to a" 

As the composition of Equation (1) and (2), we can have: 

ll,,= 9 - 8e·! [)\'i (3) 

Figure 6 shows the graph of the composed function. 
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Figure 6. The Graph of the Composed Function 
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In order to use this function, we must determine a value for C. It is reasonable to assume 

that the value of C is determined by how many score difference corresponds to the statement "A 

Performs Absolutely Better than B". The minimal score difference considered as "A Performs 

Absolutely Better than B" is a Threshold value, denoted as T. We can determine the value of C 

with the following formula: 

9 - aij = 8e-C*T = P (4) 

Then we can have 

c = -~ln~ 
T 8 

(5) 

P is the precision which is a very small value. If P = 0.01, and we assume 70 is the threshold 

value, then C ~ 0.095. Figure 7 shows the curve of the composed conversion function when 

C = 0.095. And once the threshold for "A Performs Absolutely Better than B" is determined, the 

other threshold for others numerical rating will be determined automatically. 

After all DS are converted to DQ, the graph G is also converted to a new graph consisting of 

(V, EI, in which every vertex still represents a team, and every edge represents a game between 

two connected teams indicating a quality comparison in terms of the AHP. 
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Figure 7. The Graph of Composed Conversion Function when 
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3.2.3 Path Search Algorithm 

In order to compute the weighted pair-wise comparison on quality between two teams i and j, 

we must find all paths between i and j. A path in our problem is defined as: a finite sequence of 

vertices without repeated vertices (non-cyclic) such that from each of its vertices there is an edge 

to the next vertex in the sequence. In our problem, the direction of an edge does not matter, 

because it can be transformed to a reverse-directed edge with the inverted weight. The length of 

a path is defined as the number of edges the path has, and we call a path whose length is k as a 

k-segment path. 

To guarantee that we can make pair-wise comparison between any two teams, the graph 

G must be connected, in which there is a path from one vertex to any other vertex. The following 

algorithm written as pseudo-code can validate the connectivity of a graph: 

Input: a graph G = (V, E) 

Output: if the graph is connected. 

Method: 

1. Begin at any arbitrary node of the graph, G. 

2. Proceed from that node using either depth-first or breadth-first search, counting 
all nodes reached. 

3. Once the graph has been entirely traversed, if the number of nodes counted is 
equal to the number of nodes of G, the graph is connected; otherwise it is 
disconnected. 

Given two teams i and j, in order to compute the weighted pair-wise comparison, we 

must find all the paths from vertex i to vertex j. Practically the comparison along the longer path 

have weaker weight in the weighted comparison, therefore we only count those paths within 

length k. For example, if k = 4, we only count those paths with 1, 2, 3 and 4 edges. This can 

simplify the path searching algorithm: with a graph G = (V, E), form a searching tree which starts 

from vertex i as the root node and travels along the edges in E without cycles (a vertex can only 

be visited once) until the length of the path from the root to the leaf nodes reaches to k or vertex j 

is visited; any path from the root node to the leaf nodes of vertex j forms a path for which we are 

looking. Figure 8 shows a set of games among 8 teams in the first half of the season; Figure 9 
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show a searching tree for comparison between team 1 and team 2 when k == 4, the paths from 

the root node to the green leaf are the paths which meet the requirements for this pair-wise 

comparison. The searching algorithm can be described as following: 

Input: Graph G == (V, E), the starting vertex i, the end vertex j, the length limitation k. 

Output: a set of paths from vertex i to vertex j without any cycle whose length is no more 
than k. 

Method: 

1. Proceed from vertex i, visit the adjacent vertices of vertex i, the adjacent vertices 
of the adjacent vertices of vertex i, ... , form a traversal tree from vertex i to the 
visited vertices, until the length of the path from the root to a leave reach to k or 
the visitation meets vertex j . 

2. Collect the qualified paths as the path set for the pair-wise comparison between i 
and j. 

In Figure 9, the path set for pair-wise comparison between 1 and 2 consists of the 

following paths: 

1~2 

1~4~3~2 

1~4~3~5~2 

1~4~8~2 

1~7~8~2 

1~7~6~3~2 

1~7~6~5~2 

1~8~4~3~2 

1~8~2 
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Figure 8. A Graph showing a Set of Games 

Figure 9. The Searching Tree from Team 1 to Team 2 when k=4 
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3.2.4 Compute the Weighted Pair-wise Comparison 

For every qualified path computed from the above algorithm, according to the approaches 

described in the AHP, we can calculate a comparison value NPi~S on team quality based on 

transitivity, i and j are IDs of the two teams, I is the length of the path (l = 1,2,3,4, if k = 4), s is 

the index of the path(there might exist more than one path which have the same length), NP/js is 

the pair-wise comparison value on quality of comparing team i to team j along path s with I 

segments. 

For pair-wise comparison between team i and j, we can form a set of values {N Pi~s1 based 

on the path set for pair-wise comparison between team i and j. In order to integrate and 

neutralize the set of values into one value Aij' we must assign weights vfjs to different N p/jS ' and 

they satisfy the following relationships: 

And 

There might exist different configurations of paths for one pair-wise comparison. For 

example, for one pair-wise comparison, the path set can contain several 1-segment paths, 2-

segment paths, 3-segment paths and 4-segment paths; but for another pair-wise comparison, the 

path set can possibly contain several 2-segment paths and 3-segment paths; ... ; and so on. 

Table 3 shows the different configurations for path sets when k = 4, in which 1_2_3 means there 

only exist 1-segment, 2-segment, 3-segment paths in the path set. 

For simplification, we assign the same weight to the paths with the same length in a path 

set. As shown in Table 2, in a path set which has the configuration 1_2_3, we assign the weight 

V22 to all paths with length 2; and every row of weights sum up to 1. 
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Table 3 The Weighting Vectors for Different Paths Set 

Configuration(\no seg) 1 2 3 4 

1 234 V11 V12 V13 V14 

123 V21 V22 V23 0 

234 0 V32 V33 V34 

1 2 4 V41 V42 0 V44 

1 3 4 V51 0 V53 V54 

1 4 V61 0 0 V64 

1 2 V71 V72 0 0 

1 3 V81 0 V83 0 

2 3 0 V92 V93 0 

2 4 0 V102 0 V104 

3 4 0 0 V113 V114 

1 V121 0 0 0 

2 0 V132 0 0 

3 0 0 V143 0 

4 0 0 0 V154 

We can sort out the path set we obtained from Figure 9 and suppose the computed 

comparison values for every path as following: 

NPi}m is the team quality comparison value for the mth path connecting vertex i and 

vertex j with length s. 

1-segment paths: 

1~2 

2-segment paths: 

1~8~2 

3-segment paths: 

1~4~3~2 

1~4~8~2 
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1-77-78-72 

4-segment paths: 

1-74-73-75-72 NP{26 

1-77-76-75~2 NP{28 

This path set has a configuration of 1j_3_ 4, and the path set is divided into 4 subsets of 

paths according to their number of segments. First we average the comparison value for every 

subset of paths, since we assign the same weight to the paths with the same length in one pair-

wise comparison; second we assign the weights Vll , V12 , V13 and V14 to the 4 averaged 

comparison values respectively. We have the following equations to calculate A12 : 

3.2.5 Minimize the Error between the Actual Output and the Estimated Output 

Since we have already validate the graph G is connected, even though the game set does 

not conform a Round-Robin Tournament, we can compute Aij for any pair i,j E V, which 

represents a weighted theoretical pair-wise comparison value on team quality. More importantly, 

the theoretical comparison values Aij can be used to predict the output of the incoming games in 

the future (a game will happen between i and j). If team i and j have not played a game, we call 

Aij as an estimated output; if they played a game, hence they have a direct comparison value aij 

computed from the output of the game with the conversion functions. Of course, we hope that 

IAij - au I is very small, if it is not zero. 

31 



Remember that we have not determined the value of C in the conversion functions and the 

weights shown in Table 3 yet. As an approach to decide these values, we can transform it as an 

optimization problem: 

We determine the value of C and the weighting vectors such that it can minimize the error 

between the estimated output and the actual output of the games after the games are played. 

3.2.6 Rank the Teams on Quality 

Once we determine all the parameters including the value of C and the weighting vectors, 

and we know the actual output of all games we tried to predict, we can re-compute aij with the 

decided conversion functions, re-apply the path searching algorithms on the new graph with more 

games, and re-compute the weighted quality comparison values Aij; then we can use all Aij to 

form the influence matrix (AiJ as the input to the AHP approach, and compute the global weight 

of quality of every team to rank these teams. 
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CHAPTER 4 RESULTS AND DISCUSSION 

Based on the formal model depicted in the previous chapter, we use Excel to implement the 

computation and analysis. Excel[26] is the most commonly used spreadsheet for pes. It provides 

functions and tool packages for data analysis, computing and optimization that can satisfy the 

requirements of our implementation. 

In this chapter, we will show our step-by-step implementation, give the final results, and 

finally provide some discussion. 

4.1 Implementation 

4.1.1 Data Collection 

We collected the data from Scoreboard of Big East conference season in 2007[1], in which 

we only included the conference games. Table 4 shows the data, name of the home team, name 

of the away team, location, and score of each game in the 2007 Big East conference season. 

We take the first 14 games as the first half of the season and the last 14 games as the 

second half of the season. And we suppose, at the time in between the two half seasons we use 

the results of the first half of the season to predict the results of the second half of the season, 

finally in the end of the full season we will compare the predicted results to the actual results to 

measure and optimize the accuracy of the prediction. 
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Table 4 The Outcomes of Games in 2007 Big East Conference Season 

Date Home Team Away Team Location 
home away 
score score 

- Sat, Sep 22 Louisville Syracuse Louisville, Ky. 35 38 

* Sat, Sep 22 Pittsburgh Connecticut Pittsburgh, Pa. 14 34 
West 

* Fri, Sep 28 USF Virginia Tampa, Fla. 21 13 
We~ 

- Sat, Oct OS Syracuse Virginia Syracuse, N.Y. 14 55 

* Sat, Oct 06 Rutgers Cincinnati Piscataway, N.J. 23 28 

* Sat Oct 13 Syracuse Rutgers Syracuse. N.Y. 14 38 

* Sat, Oct 13 Cincinnati Louisville Cincinnati, Ohio 24 28 

* Thu, Oct 18 Rutgers USF Piscataway, N.J. 30 27 
E.ast Hartford, 

* Fri, Oct 19 Connecticut LouisviUe Conn. 21 17 

* Sat, Oct 20 Pittsburgh Cincinnati Pittsburgh, Pa. 24 17 

* Sat, Oct 27 Louisville Pittsburgh Louisville, KY 24 17 
West 

* Sat, Oct 27 Rutgers Virginia Piscataway, N.J. 3 31 
East Hartford, 

* Sat Oct27 Connecticut USF COnn. 22 15 

* Sat, Nov 03 Pittsburgh Syracuse Pittsburgh, Pa. 20 17 
- ...... _- .. _--------- half season ------------_ .. _ ... -

-Sat NovOO US.F 
'. Cinclnfiatt .' lambs. Fla. 33 38 

East Hartford, 
* Sat, Nov 03 Connecticut Rutgers Conn. 38 19 
*Thu,NoY ,=,West ., 

'~~"'ntownt W.Va. OS Viral' > i· .. LouisviUe>· 38 31 f· trua 

-Sat, Nov 10 S'IrGi"'~a. " 
.,., .... ' .. " ....••.. 
..... '. ··.·tJSJ;i·t '$YtaCU8e. N.Y" 10 41 

* Sat, Nov 10 Cincinnati Connecticut Cincinnati, Ohio 27 3 
.' East Hartford, 

• Sat. Nov 17 Connecticut " SyreolJR .. cQl'···· . 
"', , :M". 30 7 

* Sat, Nov 17 Rutgers Pittsburgh Piscataway, N.J. 20 16 

Ci~ti 
. , 
~:~ . -.Sat, Noy 17 Clnclrmti, ohio 23 28 

* Sat, Nov 17 USF Louisville Tampa, Fla. 55 17 

·Sat.Nov24 . Pittsburgh' .'< t Ulr;·;,< .. R~rgh,Pa .. 37 48 
West 

* Sat, Nov 24 Virginia Connecticut Morgantown, W.Va. 66 21 

* Sat, Nov.24 ?SVtat . . ... cuse. t·· .. Cincinnati. ! r;~~;N.Y. 31 52 
* Thu, Nov 

29 Louisville RutQers Louisville, Ky. 41 38 
West .. 

• Sat, Dec. 61 "Vlrginia ,.< PittsbOroh & .• : ·"wn,W.Va. 9 13 
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4.1.2 Data Preprocessing 

In order to simplify the expression and give convenience for the later computing, we assign a 

unique ID number to every team as shown in Table 5: 

Table 5 The IDs of Teams in Big East Conference 

Team name Team No 

Louisville 1 

Syracuse 2 

Rutgers 3 

Cincinnati 4 

West Virginia 5 

USF 6 

Connecticut 7 

Pittsburgh 8 

The next task is to calculate DQ(quality difference) and aij(quality comparison) according 

to Equations (1) and (2). 

Figure 10 shows the definitions of the parameters in Excel: cell 52 defines the home 

advantage score, which is initialized as 3 points; cell 53 defines the parameter C in equation (1). 

As Figure 11 shows, column E calculates the score difference between home team and 

away team, with Ei = Ci - Di, in which Ei, Ci and Di denote the corresponding cell, and i denotes 

the column index; column F calculates score difference adjusted by the home advantage score 

with the formula Fi = Ei - $5$2 ; column G indicates the winner team in this game with " Gi = 

IF(Fi 2: 0, Ai, Bi) ", and column H indicates the loser team in this game with " Hi = I F(Fi 2: 

0, Bi, Ai)"; column I adjusts the score difference as a positive integer indicating by how many 

points the winner beats the loser, with Ii = AB5(Fi); column J calculates the quality difference 

based on the current game with Ji = 1 - EXP( -$5$3 * Ii); finally column K converts the quality 

difference to a quality comparison value in AHP with Ki = 1 + 8 * Ji . 
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Parameters: 

Home Advantage 

C 

6 

7 

2 

3 8 .. 

s T 

3 

0.112688 note: dq=l-exp(-C* DS) 

Figure 10. The Parameter in Excel 

38 19 19 16 7 

38 31 7 45 

10 41 · 31 ·34 6 

27 3 24 214 

30 7 23 20 7 

20 16 4 1 3 

23 28 -5 -85 

16 0.835198 7.681581 

4 0.362851 3.902809 

2 34 0.978321 8.826565 

7 21 0.906187 8.249493 

2 20 0.894996 8.159971 

8 1 0.106571 1.852565 

4 8 0.594041 5.752331 

6 55 17 38 35 6 1 35 0.980631 8.845048 

• 6 37 48 -11 -14 6 8 14 0.793537 7.348293 

7 66 21 45 42 5 7 42 0.991199 8.929592 

31 52 -21 -244 2 24 0.933097 8.464776 

Figure 11. The Calculation of DQ and Aij in Excel 

In Figure 11 , the red part is the games which are supposed to be played and ended in 

certain outputs, and the non-red part is the set of games which have not occurred yet and for 

which predictions are to be made. The two parts of data form a graph in Figure 12: every node 

represents a team, every solid arrow represents an "occurred" game, and every dotted arrow 

represents a game for which a prediction needs to be made. In addition, the aij values of the red 

part in Figure 11 should reside on the corresponding solid arrows in Figure 12. 
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4.1.3 Setup for the Parameter C 

According to Equation 5, the parameter C is determined by the threshold value T and the 

precision value P. As Figure 13 shows, we define Cell S3(the C parameter) with "=-LN(U5/8)/S5", 

in which Cell U5 is the precision value, and Cell S5 is the threshold value. In the later experiment, 

we can adjust these two values to reflect the actual game scores. 

Parameters: 
Home Advantage 

C 
B 

s u 

3 
0.09549445-3 note: dq=l-exp(-<:- DS) 

8 note: Aij = 1 B-dq 

0.01 

Figure 13. The Setup of Parameter C 

• 

4.1.4 Computation of the Weighted Quality Comparison Values between Teams 

The next step is to calculate the weighted quality comparison values between teams 

according to the methodology previously presented. 

First the weighting vectors in Table 3 are defined in the area of R8:V12. There exist 5 kinds 

of configurations listed in Figure 13 in our case. In every configuration, the summation of the 

weighting factors must be 1, and every weight factor is initialized to be equal to each other(the 

cell in itialized as 0 is an ineffective cell) . 

Second the weighted quality comparison values are computed with the weighting vectors. 

Figure 14 shows one example of the calculation between team 1 and team 2. Column R(Paths) 

lists all the paths between 1 and 2 according to the graphic algorithm we specified in last chapter. 

A path is expressed by the sequence of the vertices it travels. For example, 1_8_2 means the 

path from 1 to 8 and from 8 to 2. 
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Column S(Calc Aij) lists all the quality comparison values along every path in terms of AHP. 

For example, for path 1_8_2, the corresponding cell is defined as "= K12 * K15" , which is 

actually the value of AlB * A12 • 

Column T(Adj Calc Aij) adjusts the values that are greater than 9 in column S to 9, and 

adjusts the values that are smaller than 1/9 in column S to 1/9, with Ti = IF (Si > 9,9,IF(Si < 

1/9, 1/9 ,si)), since the comparison values in AHP are always in between 1/9 and 9. 

Column U(Average) calculates the average value for every set of adjusted Aij whose paths 

have the same number of segments. For example, for the comparison between 1 and 2, there are 

only three 3-segment paths, for which the average value is defined in cell U21 as 

"=(T19+ T20+ T21 )/3". 

Column V(weighted) calculates the final weighted quality comparison values highlighted with 

the red color. For the comparison between 1 and 2, there exist 1-segment, 2-segment, 3-segment 

and 4-segment paths, so that we apply the weighting vector for the configuration 1_2_3_4 on it, 

and the cell is defined as "=U17*S8+U18*T8+U21 *U8+U27*V8" . 
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R s T 

w e ight vector: 
configuration (no seg) .. w .. 1 ______ _ w 2 

0.251 0.25 1_2_3_4 1 ..... ___ ........ • 
234 

124 

134 

1 4 

0 

0.333333333 

0.333333333 

0.5 

0.333333333 

0.333333333 

0 

0 

calculate the average Aij accord ing to t he paths: 

Paths calcAij Adj calcAij 

1----2 

1 2 4.931340672 4.931340672 

1 8 2 3.902809316 3.902809316 

1 78 2 4.534757522 4.534757522 

143 2 265.9687616 9 

148 2 1.37463551 1.37463551 

1 4 3 5 2 31.51992626 9 - - --
14812 0.071424173 0.111111111 - - --
1 765 2 83.77170345 9 - - --
17632 18.15623277 9 - - --
18432 755.127707 9 - - - -

1----3 _____ ---1 

123 0.023529523 0.111111111 

w 3 w4 

0.25 0.25 = 
0.333333 0.333333 = 

0 0.333333 = 
0.333333 0.333333 = 

0 0.5 = 

4 .931341 

3.902809 

4.969798 

7.222222 

Figure 14. Calculate the Weighted Quality Comparison Value between Teams 

4.1.5 Optimizing the Prediction 

sum 

It is reasonable to use the weighted comparison values as the predicted outputs. After we 

computed the weighted values for every pair of comparison between teams, we optimize the 

predicted outputs by changing the parameters(including the weighting vectors and the 

parameters in the pre-processing phase) with Solver Add-ins provided by Microsoft Excel. 
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N 0 Q 

error"2 

.7 11 22. 7804395 

2.61338 6.829738938 
.15639 17.27553959 

8.18721 67.03037783 
554909 30.79235232 
8.32687 69.33675488 
0.89946 0.809019946 

1.4248702 -0.42487 0.18051 657 
1.0314995 0.82107 0.674148686 

357657 12.79184009 
3.4985858 0.40422 0.163396646 

8.11459 65.84653991 
3.43257 11.78251794 

0.74097 0.549041091 
16 -84 6 8 059404 5.75233 2.041868 3.71046 13.76753459 
17 16 7 3 16 0.8352 7.68158 0.7079739 6.97361 48.63119071 
18 4 5 4 0.36285 3.90281 0.381095 352171 12.40247159 
19 ·34 6 2 34 0.97832 8.82656 0.3366032 8.48996 72.07944489 

~ 21 4 7 21 0.90619 8.24949 1.6856404 656385 3.08416189 
21 20 7 2 20 0.895 8.15997 1.2762512 6.88372 47.38559321 
22 1 3 8 1 0.10657 1.85257 5.49037 ·3.6378 13.23362466 
23 ·8 5 4 8 059404 5.75233 0.6248104 5.U752 26.29146628 
24 35 6 1 35 0.98063 8.84505 0.6470799 8.19797 67.20667808 
25 ·14 6 8 1 0.79354 7.34829 3.6262443 3.72205 13.85364329 
26 2 5 7 2 0.9912 8.92959 2.7737048 6.15589 37.8949523 
27 ·24 4 2 2 0.9331 8.46478 0.2 28271 8.22195 67.60044902 
28 o 1 3 0 0 1 2.2992467 ·1.29925 1.6880421 
29 ·7 8 5 7 054562 5.36494 0.1730542 5.19189 26.95568119 
30 sum of error 
31 SO 
32 

Figure 15. The Measurement of Optimization 

We list all the weighted quality comparison values in column L(weighted Aij) as shown in 

Figure 15. Some of the values are kept the same as specified in Figure 14 synchronically, 

whereas some of the values may need an adjustment. For example, we only have the weighted 

quality comparison value from the loser 1 to the winner 2, but now we need the comparison value 

from the winner 2 to the loser 1 in row 2, as a solution we just use A21 = 1/ A12 to obtain the 

corresponding comparison value according to the computation in the AHP. 

Column M(error) lists all the differences between the actual outputs(Aij) and the predicted 

outputs(weighted Aij) as the error of the prediction, with Mi = Ki - Li. 

Column N(errorI\2) lists all the squares of the errors, with Ni = Mi * Mi. 

Cell 015 sums up all the squared errors for the first half of the season, with 

U=SUM(N2:N15)"; cell 029 sums up all the squared errors for the second half of the season , with 
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"=SUM(N16:N29)"; cell 030 specifies the total sum of the squared errors with "=030", and cell 

031 is the SD(Standard Deviation) between the actual output and the predicted output with 

"=SORT(030/28)". 

In order to optimize the prediction, we must minimize SO by changing the parameters ; 

and by this way we can seek for the best parameters to set up our models for future predictions. 

We use Excel Solver Add-in to minimize SO, as shown in Figure 16. We set up SD($0$31 ) as the 

target cell to minimize it by changing the cells containing the parameters and the weighting 

vectors, with subjection to the constraints : the cells to be changed must be positive , and the 

summation of every set of weighting vector must be 1. 

Solver Parameters 

SetTargetC : 

Equal To: \:.... Max G Mill ~ ~aIue of: o 
dose 

!!y Changing CeIs: 

$S$2,$S$B,$f$8,SU$8, $8,$fS9,$U$9, $9 ~ I ~ess 

Sybject to the Constraints: Qptions 

55$10 >= 0 • Add 
SS$10 >= 0 D $5$11 >= 0 Qlange 
SS$2 >= 0 &esetAi 
$5$3 >= 0 

~elete 
$5$5 <= 100 ..... 

tlelp 

Figure 16. Determine Parameters in Excel 

4.1.6 Rank the Teams with Expert Choice 

Expert Choice[27] is a robust, desktop-based application that enables teams to prioritize 

objectives, evaluate alternatives and achieve alignment, buy-in , and confidence around important 

organizational decisions. With Expert Choice, you can combine the expertise and intuition of your 

team with quantitative information to provide valuable insights, explore what-if scenarios, and 

achieve stakeholder consensus and understanding. 
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As Figure 17 shows, the team ranking problem is structured as a two-hierarchy AHP 

problem: the top level is the unique criteria "Team Quality", the low lever lists the 8 teams as 

alternatives. 

As Figure 18 shows, the weighted Aij are input into the matrix of pair-wise comparison. In 

addition, the red color number indicates an inverse comparison. For example, the cell crossed by 

team 3 and team 8 is 3.5 with red color, which means team 8 is better than team 3 with a quality 

comparison value of 3.5; if the color of that number is black, which means team 3 is better than 

team 8 with a quality comparison value of 3.5. 

Figure 19 shows the ranking output, in which the teams are listed from high quality to low 

quality. 

Expert ChOIce: H:IRANKTEAM I!I~E! 

Ideal Mode D 
Local=1.0 Global=1.0 

Figure 17. The Structure of Our Problem in Expert Choice 
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2. SYRAC 
3. RUTGE 
4.CINCIN 
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6.USF 
7.CONNEC 

r ~erbaJ Jj M.atrix r Questionnaire 

With respect to GOAL 

8,PITTSB: 8,Pittsburgh 

is 3.S tiaes (MODERATELY to STRONGLY) .ore IMPORTANT than 

4,CINCIN: 4,Cincinnati 

r 

2. SYRAC I 3. RUTGE I 4.CINCIN I 5.WESTV I 6.USF I 7.CONNEC I 
4.5 1.2 4.9 4.1 1.8 1.7 

8.4 3.4 8.9 5.5 3.3 
5.3 8.6 1.0 1.9 

2.1 6.5 4.1 11-
4.0 4.1 

3.5 
"I 

Figure 18. The Matrix Input of Pair-wise Comparison 
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Priorities a 
File 

• Derived Priorities with respect to GOAL 

INCONSISTENCY RATIO = 0.66 

An Inconsistency Ratio of .1 or more may warrant some investigation . 

5.WESTV . 209 

1. LOUIS .177 

6.USF .142 

7.CONNEC .120 

3. RUTGE .116 

4.CINCIN .097 

2. SYRAC .094 

8. PITTS B .045 

PrintPr~ew 

Figure 19. The Result of the Team Ranking 

4.2 Results 

We set up T = 70 and P = 0.01 , which are considered to be reasonable values(since the 

pair-wise comparisons in AHP are subjective judgments), hence the conversion function is 

decided. We ran the optimization with Solver and obtained the following results: 
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Table 6 The Outcomes of the Optimization 

winner loser win·lose DQ Aij weiQhted Aij error errorl\2 

2 1 6 0.43615 4.489199 0.222756885 4.266442 18.20253 

7 8 23 0.888794 8.110353 8.110347947 5.37E·06 2.89E-11 

6 5 5 0.379651 4.037204 4.037193523 1.06E-05 1.11E-10 

5 2 44 0.985031 8.880246 8.88022263 2.32E-05 5.39E-10 

4 3 8 0.53418 5.273439 5.273309773 0.000129 1.66E-08 

3 2 27 0.924101 8.392807 8.392473902 0.000333 1.11 E-07 

1 4 7 0.487503 4.900027 4.900025801 1.28E-06 1.64E-12 

3 6 0 0 1 0.999999388 6.12E-07 3.75E-13 

7 1 1 0.091077 1.728613 1.728613748 -9.7E-07 9.49E-13 

8 4 4 0.31749 3.539918 3.539887647 3.08E-05 9.48E-10 

1 8 4 0.31749 3.539918 3.542970827 -0.00305 9.32E-06 

5 3 31 0.948198 8.585585 8.572375112 0.01321 0.000174 

7 6 4 0.31749 3.539918 3.539903351 1.51 E-05 2.27E-10 

8 2 0 0 1 0.999996716 3.28E-06 1.08E-11 

4 6 8 0.53418 5.273439 0.154756685 5.118682 26.20091 

7 3 16 0.783012 7.264093 0.517366002 6.746727 45.51832 

5 1 4 0.31749 3.539918 0.24439493 3.295524 10.86048 

6 2 34 0.961102 8.688816 0.182760903 8.506055 72.35297 

4 7 21 0.865391 7.923131 4.136977452 3.786153 14.33496 

7 2 20 0.851903 7.815225 3.313967156 4.501258 20.26133 

3 8 1 0.091077 1.728613 4.747472949 -3.01886 9.113517 

5 4 8 0.53418 5.273439 2.108716901 3.164722 10.01546 

6 1 35 0.964645 8.717157 0.550081938 8.167075 66.70112 

6 8 14 0.737347 6.898778 3.862945143 3.035833 9.21628 

5 7 42 0.981881 8.855044 4.134460345 4.720584 22.28391 

4 2 24 0.898922 8.191379 0.294195164 7.897184 62.36552 

1 3 0 0 1 1 .292283503 ·0.29228 0.08543 

8 5 7 0.487503 4.900027 0.22577849 4.674249 21.8486 

sum of error 409.3615 

SD 3.823618 

Table 6 shows the weighted Aij in the column "weighted Aij", and the difference between 

the actual quality comparison values based on the actual game results and the predicted quality 

comparison values computed with our method with the following weighting vectors in Table 7. 
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Table 7 The Outcomes of the Weighting Vector of the Optimization 

configuration(no 
seg) w1 w2 w3 w4 

1 234 0.999999 0 7.99E-07 0 

234 0 0 0.011556 0.988444 

1 2 4 0.996874 5E-05 0 0.003076 

1 3 4 0.999999 0 3.29E-07 3.29E-07 

1 4 1 0 0 3.29E-07 

And the ranking output has already been displayed in Figure 19 and in Appendix A. 
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CHAPTER 5 CONCLUSION 

In this thesis, we have proposed a new method to rank football teams according to the 

outcomes of games with the techniques borrowed from AHP and graph theory. A set of outcomes 

of games between teams is interpreted as a graph, composed by the vertices representing teams 

and the edges representing games with score differences; the pair-wise comparisons on team 

quality are made, through integrating the quality comparisons based on direct games and the 

indirect quality comparisons derived from some specific paths in the graph; finally the pair-wise 

comparison values are input into Expert Choice to develop a ranking. Our method gives the 

following contributions compared to the computer models in the BCS: 

1. Our method accounts for margins of victory, which is not considered by the computer 

models in the BCS. Instead the BCS models only count the winning percentage and the 

quality of opposite teams for the ranking. This can reduce the motivation for the teams to 

earn more score difference in games, and result in conservative game strategies. Our 

method takes margin of victory into account through pair-wise quality comparisons 

between teams based on outcomes of games. This will not only inspire the teams that 

are going to win to try their best to enlarge the score difference, but also inspire the 

teams that are going to lose to attempt to reduce the score difference. 

2. Our method takes a holistic view to evaluate the quality of teams. Specifically the set of 

games is interpreted as a graph, a specific set of paths is searched for every pair-wise 

comparison between teams, and the quality comparison value is calculated from the 

integration of different quality comparison values for different paths; thus every pair-wise 
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comparison value can capture the holistic information in a set of games for the whole 

season. 

There are still some improvements that we can make through the following further work: 

1. In order to calculate the parameters which can reflect the model more accurately, we 

need more data about games to be involved in the implementation, and we probably 

need a mechanism to filter the outlier data out. In the implementation, we only used the 

outcomes of games of Big East conference in 2007, which consists of 8 teams and 28 

games, to compute the fitting model; however, this cannot guarantee that the model we 

calculated out can reflect the fitting model statistically, therefore more data including 

more teams and games should be introduced into the computation to detect the most 

fitting model. When more data are introduced, we must pay attention to the outlier data, 

which is interpreted as an exception compared to most of the other data, because these 

outlier data could interrupt the computation to seek for more fitting parameters for the 

model. 

2. We can try to detect some new conversion functions. Our conversion function expressed 

by Equations (1) and (2) might not be the best function to convert a score difference into 

a quality comparison value. There is one shortcoming in our conversion function, to make 

our model work we must setup Threshold T and Precision P , in which there are always 

some subjective judgments. 

In general, although our method is not flawless, it approved the feasibility to develop a 

method to rank the teams based on margins of victory and pair-wise comparisons. Based on this 

feasibility, we can develop better methods along this way. 
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