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ABSTRACT 

COMPARING DYNAMIC RISK-BASED SCHEDULE METHODS WITH MRP 

VIA SIMULATION 

LiSun 

December 12, 2008 

Material Requirements Planning (MRP) is one of the earliest production scheduling 

approaches that utilizes computers. MRP is still regarded as one of the most widely used 

systems for production scheduling. Even though MRP has made contributions, there are 

some fundamental problems (i.e. the assumption of infinite capacity and fixed lead times) 

which make the MRP system vulnerable to effects of uncertainty. To overcome this 

fundamental flaw, there was a trend towards the development of detailed finite-capacity 

scheduling systems (i.e. MRP II, ERP, and APO). All these MRP-based systems still 

ignore variability and randomness and are inherently push systems. 

Instead of creating a detailed schedule based on forecast, Factory Physics Inc. developed 

Dynamic Risk-Based Scheduling (DRS), which creates a set of policy parameters (e.g. 

WIP level, lot sizes, reorder point, and reorder quantity) that work for a range of 

situations to calculate the production schedule. 
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This thesis compares the key performance measures of DRS and MRP-based scheduling 

systems. We begin with a single-machine problem and develop simulation models for 

varying levels of uncertainty in forecast demand (i.e. base demand scenario, under

estimated scenario and over-estimated scenario) and two levels of variability in the 

system (i.e. moderate variability and no variability). Then the experiment is extended to 

multiple-machine problems. We also introduce more constraints into the DRS and MRP 

models to improve their performance. We also test the performance of MRP models for 

different planning horizons. We find that the DRS strategy is more robust to forecast 

error than MRP-based strategies. DRS also usually obtains better performance than MRP

based models in terms of higher fill rate and lower inventory. 
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CHAPTER 1 INTRODUCTION 

In this thesis, we compare the traditional MRP-based strategies with a new production 

scheduling strategy named as Dynamic Risk-based Scheduling (DRS) developed by 

Factory Physics Inc. 

1.1 Background 

Manufacturing systems strive to achieve multiple objectives such as meeting deliveries 

on-time, minimizing work-in-process inventory, shortening customer lead times, and 

maximizing resource utilization, which often conflict. For example, it is easier to finish 

jobs on time when utilization of resources is low. Customer lead times can be shortened if 

a large inventory is maintained. The goal of production scheduling is to strike a profitable 

balance among these conflicting objectives (Hopp and Spearman 2008). 

Scheduling as a practice is as old as manufacturing itself. It did not start as a research 

discipline until the scientific manufacturing movement in the early 1900s. But serious 

analysis of scheduling problems did not begin until the development of the computer in 

the 1960s and 1970s. MRP is one of the earliest production scheduling approaches based 

on the application of computers. Although it started slowly, MRP got an extensive 

development in 1972 because the American Production and Inventory Control Society 

(APICS) launched its "MRP Crusade" to promote its use (Hopp and Spearman 2008). 

MRP is still regarded as one of the most widely used systems for production scheduling 
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(Mohan and Ritzman 1998). Even though MRP has made contributions, there are some 

fundamental problems (i.e. the assumption of infinite capacity and fixed lead times) 

which make the MRP system vulnerable to effects of uncertainty. To overcome this 

fundamental flaw, there was a trend toward the development of more and more detailed 

finite~capacity scheduling systems (i.e. MRP II, ERP, and APO). All these are still MRP~ 

based systems which ignore variability and randomness and are thus inherently push 

systems. 

Instead of creating a detailed schedule based on foreca$t, Factory Physics Inc. developed 

Dynamic Risk~Based Scheduling (DRS), which creates a set of policy parameters (e.g. 

WIP level, lot sizes, reorder point, and reorder quantity) that work for a range of 

situations to calculate the production schedule. The policy is dynamic, which means that 

it depends on the actual demand and the actual production. The policy is risk~based, 

which means that it considers random events and assumes inaccuracy in the forecast. The 

optimal execution obtained from DRS policy results in a manufacturing system that is 

robust enough to accommodate moderate changes in demand and/or capacity without the 

need to reschedule. It also can detect when the assumption regarding demand and 

capacity used to determine the dynamic policy is no longer valid and indicates the need 

for either more or less capacity. 

1.2 Problem statement 

This thesis compares the key performance measures (fill rate, inventory, backorder, etc) 

in manufacturing systems between DRS and MRP~ba:sed systems. The objective is to 
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demonstrate the conditions under which static models i may be preferred and conditions 

under which dynamic models may be preferred via simijlation and analytical tools. 

We develop simulation models for all the policies and compare the performance 

measures under different scenarios. We compare the~ performance of the models for 

varying levels of uncertainty in demand forecasts and two levels of variability in systems. 

We also compare the simulation results with analytical models to demonstrate the validity 

of the analytical models. 

By comparing the model performance under differen~ scenarios, we not only estimate 

which policy is better under a specific situation, we a~so find the impact of uncertainty 

and variability in the systems for different policies. 

1.3 Thesis organization 

Chapter 2 provides a review of the literature assq>ciated with vanous production 

scheduling models. Chapter 3 focuses on the introduc.ion of the production scheduling 

models we compare (i.e. MRP and DRS). Chapter 4 discusses the development of 

simulation models of all the systems. Chapter 5 discus~es the design of experiments. We 

begin with a system which contains one machine and! 23 parts. In this single-machine 

case, we compare the performance between MRP and DRS for varying levels of 

uncertainty in forecast demand (e.g. over-estimated forecast, under-estimated forecast). 

We also develop the system for two levels of variability (i.e. moderate variability and no 

variability) and compare the performance between MRP and DRS. Then we extend to 

multiple-machine cases with multiple machines and multiple products. We introduce 

more constraints, such as CONWIP, recourse, makeswan and capacity constraints into 
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MRP and DRS models to improve their performance. Chapter 6 summanzes the 

conclusion of this thesis. 
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CHAPTER 2 LITERATU~E REVIEW 

In this chapter we review literature associated with the ~roduction scheduling problem as 

well as the comparison between different scheduling po~icies. 

2.1 Production scheduling in a push environrfient 

During the 1960s, Joseph Orlicky, Oliver Wight! and others developed Material 

Requirements Planning (MRP). The basic idea is that! a production schedule of an end 

item translates into known quantity and timing needs lof components based on demand 

requirements, bill-of-material and lead time informatioQ (Orlicky 1975). 

The terms "push" and "pull" have been widely used to describe manufacturing systems. 

MRP is called a push system because it computes schedules of what should be started (or 

pushed) into production based on demand (Hopp and Spearman 2008). 

Although MRP started slowly, it got an extensive d~velopment in 1972 because the 

American Production and Inventory Control Societ~ (APICS) launched its "MRP 

Crusade" to promote its use (Hopp and Spearman 2008). Orlicky reported 150 

implementations in 1971 (Orlicky 1975). By 1981, the number of implementations had 

increased to around 8,000 (Wight 1995). 

However, the success of MRP is not spotless, and then~ are some fundamental problems 

(i.e. infinite capacity and fixed lead times assumptionls) which make the MRP system 
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vulnerable to the effects of uncertainty. There is a conflict between MRP's deterministic 

nature and the uncertainty of most operations. The inherent assumption in an MRP 

system is that the actual production parameters such as lot size and delivery lead-time are 

fixed, which can be rarely achieved in practice. In reality, especially in the job-shop 

environment, actual lead time and optimal lot sizes are neither known nor fixed 

(Karmarkar 1989). 

It is difficult for the MRP system to deal with the uncertainty inherent in most operations. 

Small parameter changes at the final assembly level often causes large changes at earlier 

production levels, which is called "MRP nervousness" (Krupp 1984). Uncertainty in the 

timing or quantity of demand can exacerbate the nervousness. In addition, uncertainty in 

the filling of orders, or variations in the quantity produced or lead time, can be another 

source of nervousness (Blackburn et al. 1986). 

Many dampening methods have been proposed to reduce system nervousness in order to 

minimize its negative impact on production systems. Introduction of safety stock and 

safety lead time is a widely used method dealing with the uncertainty in the system 

(Blackburn et al. 1986). Whybark and Williams (1976) built a simulation model to 

compare the performance of safety stock and safety lead time, which build a buffer 

inventory to protect against demand uncertainty. The results have concluded that safety 

stock is preferable to safety time for buffering against quantity uncertainty, while the 

safety lead time is more appropriate in the case of time uncertainty. Their research 

provides a general guideline for choosing between two buffering methods in an MRP 

system. 
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Forecast error is an important factor that affects the performance of an MRP system. Lee 

and Adam (1986) conducted a simulation study to examine two dimensions of forecast 

error: standard deviation and bias. They found that standard deviation is relatively less 

important in terms of the magnitude of the total cost impact, which includes inventory 

carrying cost, setup cost and end-item shortage cost. Their results suggest that higher 

forecast error level may not result in higher total cost, which seems to contradict what we 

intuitively believe. The lot-for-Iot rule resulted in the least total coast at a significant 

positive bias forecast error. Even for other lot-sizing rules, a slight bias (positive or 

negative) may also improve MRP performance. 

Wemmerlov (1986) conducted a simulation study which was observed under three 

conditions: no demand uncertainty, demand uncertainty present but no safety stocks, and 

demand uncertainty present with safety stocks to counter its effects. The results showed 

that stockouts, larger inventories, and more orders occurred simultaneously when demand 

uncertainty was introduced in the system. Service levels were decreased and inventory 

levels were increased when forecast error became larger. In addition, the experiments 

showed that introduction of safety stocks to counter the effect of the forecast errors leads 

to reduction of shortages, but increases the expense of additional inventories and orders. 

Enns (2001) conducted a series of experiments to investigate the effects of forecast bias 

and demand uncertainty in a batch production environment. The inflated planned lead 

time and safety stock are used to compensate for forecast error. The analysis of 

performance is focused on the MPS due dates and customer delivery requirements. 

Forecast bias and demand uncertainty are shown to have a bigger impact on customer 

delivery service levels than on master scheduling performance. Results also show that 
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increasing planned lead times and adding safety stock are both effective in improving 

delivery performance. If demand uncertainty dominates completion time variability, 

safety stock will meet delivery objectives with less finished goods inventory. 

Grasso and Taylor (1984) employed a MRPlProduction simulator to examine the impact 

of operation policies on the total cost of the MRP system given supply uncertainty 

resulting from timing factors, such as the amount of lead time variability, the amount of 

safety stock or safety lead time, the lot ~size rule, and the holding cost and lateness 

penalty. The results showed that the total cost of the MRP system is affected by all the 

factors. The practical guidelines suggested by the research are: 

1) Allowing purchase parts to arrive late more frequently than allowing them to 

arrive early would be advantageous because it results in the lowest total costs of 

the system; 

2) When buffering against uncertainty of the supply/timing variety, it is more 

prudent to use safety stock instead of safety lead time. This conclusion contradicts 

the finding from Whybark and Williams (1976), who suggested that safety stock 

is more appropriate for buffering quantity uncertainty and safety lead time for 

dampening timing uncertainty; 

3) The lot~for~lot rule should be used when the lead time distribution of purchased 

parts follows the uniform discrete distribution which exhibits the most variability. 

Ho and Ireland (1998) conducted a simulation experiment to examine the impact of 

forecasting errors on the scheduling instability in a MRP system. They found that 

forecasting errors might not cause a higher degree of scheduling instability, which can be 
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mitigated by using an appropriate lot-sizing rule. They suggested that applying EOQ and 

lot-for-lot (LFL) creates a significantly more nervous MRP system than applying part

period balancing (PPB) and silver-meal (SM). They also found that the selection of an 

appropriate lot-sizing rule can be effective in dealing with forecast errors when lead time 

tends to fluctuate. 

Mohan and Ritzman (1998) conducted a simulation study to investigate the impact of 

planned lead times on performance in multistage manufacturing where MRP is used in a 

make-to-stock environment. They found that: 

1) Planned lead times are important to customer serVIce under all operating 

environments, but have a less effect on inventory than factors such as lot size and 

product structure; 

2) Tight due dates introduced by short planned times result in poor customer service 

without saving much inventory; 

3) Small increases to planned lead times improve customer service substantially with 

small inventory increases; 

Guide and Srivastava (2000) gave a comprehensive review of techniques of buffering 

against uncertainty with MRP systems. Yeung et al. (1998) reviewed important 

parameters which affect the effectiveness of MRP systems. They classified the literature 

into seven groups based on their impact on MRP performance: 

1) MPS frozen interval; 

2) MPS replanning frequency; 

3) MPS planning horizon; 
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4) Product structure; 

5) Forecast error; 

6) Safety stock; 

7) Lot-sizing rules. 

The original MRP system neglected capacity constraints. It analyzed the material flow 

separated from capacity and routing, which is another major shortcoming (Lambrecht and 

Decaluwe 1988). Today MRP production schedules are usually adjusted by a bottoms-up 

replanning procedure which can incorporate the production capacity limit. However, this 

two-step procedure for determining the lot sizes under capacity is much more complex 

(Benton and Shin 1998). 

MRP provides a systematic method to plan and procure materials to support production. 

However, issues such as capacity infeasibility, and system nervousness can undermine 

the effectiveness of an MRP system. Over time, additional procedures were developed to 

address some of the problems in order to improve the MRP performance. These were 

incorporated into a larger system called Manufacturing Resources Planning, or MRP II, 

which combined MRP with demand management, forecasting, capacity planning, 

dispatching, input/output control and other modules (Hopp and Spearman 2004). It grew 

in popularity, and 16 companies sold $400 million in MRP II software in 1984 alone 

(Zais 1986). By the end of the 1980s, Enterprise Resource Planning (ERP) was developed, 

which is a more advanced version of MRP II, containing modules for many business 

functions such as integrating sales, marketing, human resources, accounting, purchasing 

and logistics modules (Hopp and Spearman 2004). Of course, it was correspondingly 

more expensive. However, the principle deployed in ERP is MRP II when ERP is applied 
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to production planning and scheduling with a manufacturing environment (Koh et al. 

2002). 

Koh et al. (2002) refer to the use of MRP, MRP II and ERP as a production planning and 

scheduling system within manufacturing enterprises as MRP-planned manufacture. They 

conclude that MRP, MRP II or ERP is an enabler (planner) rather that an optimizer 

(executor), which means that under a perfect manufacturing environment (without the 

effects of uncertainty), the plan can be executed. Otherwise, some other techniques, such 

as rescheduling or subcontracting, have to be applied in the planner to deal with 

uncertainty in the environment. 

2.2 Production scheduling in a pull environment 

In the 1970s and 1980s, while MRP was steadily dominating the American production 

system, Japan was taking an entirely different direction. 

Starting in the 1940s, Taiichi Ohno began evolving a system that would enable Toyota to 

catch up with the American automobile industry, which is now known as the "Toyota 

Production System". It was designed to "make goods; as much as possible, in a 

continuous flow" (Ohno 1988). Ohno (1988) described the system as resting on two 

pillars: 

1) Just-in-time (JIT), or producing only what is needed 

2) Autonomation, or automation with a human touch 

According to Ohno (1988), JIT involved two components: kanban and level production. 

Kanban or "pull production" became the hallmark of the Toyota Production System. 

11 



To describe the Toyta kanban system, Hopp and Spearman (2008) distinguish between 

push and pull production control systems as follows: In a push system, such as MRP, 

work releases are scheduled, and in a pull system, releases are authorized. The difference 

is that a schedule must be prepared in advance, while an authorization is decided by the 

status of the plant. 

Huang and Kusiak (1996) summarize the main principles for the implementation of 

Kanban systems as: 

1) Level production (balance the schedule) in order to achieve low variability of the 

number of parts from one time period to the next. 

2) A void complex information and hierarchical control systems on a factory floor. 

3) Do not withdraw parts without a kanban. 

4) Withdraw only the parts needed at each stage. 

5) Do not send defective parts to the succeeding stages. 

6) Produce the exact quantity of parts withdrawn. 

Kanban pull systems have been analyzed via simulation, mathematical and stochastic 

modeling approaches (Uzsoy and Martin-Vega 1990). 

The simulation studies of kanban can be broadly classified as (Huang and Kusiak 1996): 

1) Explorative analysis of pull systems 

2) Comparative analysis of push and pull systems 

Yavuz and Satir (1995) and Huang and Kusiak (1996) present reviews of simulation 

modeling. 
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Krajewski et al. (1987) developed a large simulation model which is able to represent 

diverse manufacturing environments. The results show that the kanban system, by itself, 

is not crucial to improve performance. The benefits of implementing a kanban system 

result from the manufacturing environment with uniform workflows and flexibility to 

adjust to changing capacity requirements. 

Huang and Kusiak (1996) state that deterministic models are suitable to optimize some 

objective functions of the kanban system in the deterministic repetitive environment. 

However, it might not be appropriate in a dynamic environment. In the stochastic 

approach, Markov chains are often used to describe the system where the pull demand 

and the production time are modeled as variables. The general assumptions are the 

Poisson process arrivals and exponential processing time (Mitra and Mitrani 1990; Siha 

1994). 

The benefits of kanban in specific and pull in general have been widely cited as: (Cheng 

and Podolsky 1996; Hopp and Spearman 2004) 

1) Reduced WIP and cycle time: by limiting releases into the system, kanban 

reduced WIP and therefore results in a shorter cycle time. 

2) Smoother production flow: kanban achieves a steadier, more predictable output 

stream by reducing fluctuations in WIP levels. 

3) Improved quality: short queues reduce the time between creation and detection of 

a defect. 
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4) Reduced cost: the process of limited WIP is widely described via the analogy of 

lowering the water (inventory) in a river to find the rocks (problems). This results 

in a more efficient system with lower costs. 

However, kanban is not applicable in all environments. Monden (1983) addressed that 

kanban is difficult, or impossible to use when there are: 

1) Job orders with short production runs 

2) Significant set-ups 

3) Scrap loss 

4) Large, unpredictable fluctuations in demand 

2.3 Production scheduling in a hybrid push/pull environment 

Hybrid push/pull commonly refers to the production control strategy that combines push 

and pull. 

Spearman et al.(1990) and Spearman and Zazanis (1992) found that, while specific 

environment improvements are certainly important for the improved performance of pull 

systems (e.g., setup reduction, production smoothing), there are three primary logistical 

benefits: 

1) There is less congestion in pull systems. 

2) Pull systems are inherently easier to control than push systems. 

3) The benefits of a pull environment are more related to the bounded WIP than to 

the practice of "pulling" everywhere. 
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Based on these findings, Spearman et al. (1990) proposed a hybrid push/pull system 

known as CONWIP, which has the benefits of a pull system but also can be applied to 

more general manufacturing settings. For a given production line, a limit on the work-in

process (WIP) in the line is established, and releases are not allowed into the line 

whenever the WIP is at or above this limit. They termed this a hybrid system because the 

first station in the line requires a pull signal, but the other stations in the line do not. 

Hence, all the operators, except the one at the first station, just process jobs when they 

have them, which is the same as in a push system. 

Framinan et al. (2003) did a comprehensive review on the CONWIP production control 

system, including the operation of CONWIP, the application of CONWIP, and the 

comparison with other systems. In this paper, they conclude that: 

1) Most of the research related to operations focuses on card setting and job 

sequencing; however, there are almost no papers dealing with other decisions, 

such as the relative importance of the different decisions in the overall 

performance of the system, and the impact of lot-sizing on the system 

performance. 

2) CONWIP has proved to be applicable to a number of manufacturing scenarios, 

including job-shops, assembly lines, or rework, among others. 

3) CONWIP has been compared to a number of production systems; however, there 

are no general conclusions. 

Hybrid push/pull systems also have been studied by Deleersnyder et al. (1992), Hodgson 

and Wang (1991), Pandey and Khokhajaikiat (1996), and Wang and Xu (1997). Geraghty 
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and Heavey (2004) give a comprehensive reVIew about alternate hybrid push/pull 

strategies. 

2.4 Comparison between different types of production scheduling 

There are a number of papers presenting the companson between different types of 

production scheduling. 

Spearman et al. (1990) compare CONWIP with kanban and with push-based production 

control of a single production line. They conclude that the CONWIP differs from kanban 

in three main ways: 

1) A backlog is used to dictate the part number sequence. 

2) Cards are related to all parts produced on the line rather than individual part 

numbers. 

3) Jobs are pushed between workstations in series once they are authorized by a card 

to start at the beginning of the line. 

The differences between CONWIP and push control systems stem largely from the built

in feedback of the CONWIP system. Spearman et al. (1990) show that CONWIP can 

result in lower WIP levels than a kanban system with the same throughout based on 

theoretical reasons, which makes CONWIP better than kanban since it provides the 

benefits of kanban to a wider variety of situations. They also demonstrate that pull is 

more effective than push in many production situations for the environmental, queueing, 

and control effects reasons. 
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Bonvik et al. (1997) performed a simulation study for a short flow-line making a single 

part type to compare kanban, minimal blocking, basestock, CONWIP, and hybrid control. 

They considered constant and time-varying demand rates. The hybrid control policy 

demonstrated superior performance in terms of achieving a high service level with 

minimal inventories, closely followed by CONWIP and basestock. 

Geraghty and Heavey (2004) compare the performance between hybrid push/pull in 

which different stages along a production line are controlled by a push or pull policy and 

CONWIP/pull in which kanbans are used to control WIP at individual stages as well as 

an overall WIP cap on inventory. They showed that the optimal hybrid push/pull is 

effectively CONWIP/pull. 

Huang et al. (1998) developed simulation models to compare the performance among 

MRP, kanban and CONWIP systems implemented in a semi-continuous manufacturing 

environment: a cold rolling plant. The results showed that CONWIP is the most efficient 

among the three control systems, which can greatly decrease the WIP, average inventory 

and average inventory costs and meanwhile provide a higher throughput rate and facility 

utilization. 

Karmarkar (1991) has compared the procedural distinctions between push and pull 

systems. He shows that the order release process and resulting information flows can be 

used to characterize push and pull control schemes and discusses the evolution of these 

control schemes. He demonstrates that various combinations or hybrid forms of these 

schemes are possible through the comparison of the characteristics of various types of 

push and pull control schemes. 
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Damodaran and Melouk (2002) compared push and pull systems with transportation 

consideration. A multiproduct, multiline, multistage production system was used to 

compare the two systems. It was found that the total production was drastically reduced 

with the introduction of transporters. In terms of throughput rate, the push system 

outperformed the pull system when transportation time was ignored and the opposite is 

true with transporter consideration. In terms of average waiting time in the system, the 

push system performed better than the pull system when the batch size was small; on the 

contrary, the pull system was better when the batch size was large. 

Cheraghi and Dadashzadeh (2008) present a comparative analysis of several different 

production control systems in a complex factory setup via simulation. They conclude 

that: 

1) The pull system does not outperform the push system with respect to WIP under 

all conditions. 

2) Each of the systems performs best at a specific inter-arrival time, although it is 

different for each system. So no single production control system is best under all 

conditions. 

3) The batch size shows a significant effect on the system performance of the pull 

system. Pull based systems prefer a smaller batch size to better control WIP. 

Simulation and mathematical methodology are the most common ways to compare the 

performance between different strategies (Buzacott 1989; Krajewski et al. 1987; Luss 

1989; Pyke and Cohen 1990; Rees et al. 1989; Spearman and Zazanis 1992). Benton and 
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Shin (1998) performed a comprehensive comparison of the MRP-JIT and push-pull 

systems, including conceptual comparison literature and analytical comparison literature. 

Herer and Masin (1997) developed a mathematical programmmg formulation of a 

CONWIP-based production system in which they explained the main advantages of 

CONWIP over MRP systems. They demonstrated that the difference between MRP and 

CONWIP lies in the way inventory is handled. In MRP-ruled manufacturing systems the 

amount of inventory in the system is theoretically unlimited (Wight 1995). This 

difference causes MRP systems to have long lead time, poor service levels, and large 

work-in-process and finished goods (Chase et al. 1998). 

Ovalle and Marquez (2003) conducted a comprehensive literature review to present the 

benefits of the CONWIP system in different production environments and discussed the 

possible utilization of CONWIP supply chain policy to manage the entire supply chain. 

They developed a simulation model to demonstrate the advantages of this strategy in 

comparison with a fully integrated supply chain, which are smaller average of orders 

placed; less impact of demand variability on the ordering policy; shorter average finished 

goods inventory, work-in-process levels, and potential inventory cost; and easier control 

of inventories. 

19 



CHAPTER 3 SCHEDULING AND PLANNING MODELS 

3.1 MRP 

A production scheduling and planning model helps decide a complete specification of the 

amounts and the exact timing of the production for each end item or final product. 

Accordingly, MRP deals with two basic functions of production control: quantities and 

timing. MRP must determine proper production quantities for all type of items, including 

final products which are sold, components which are used to compose final products and 

raw materials which are purchased. MRP must determine the production timing as well. 

Usually the production plan is divided into three component parts: 

1) The master production schedule (MPS) 

2) The materials requirements planning (MRP) systems 

3) The detailed job shop schedule 

Each of the components is a subsystem of the entire plan. 

MPS contains the demand for the MRP system, which provides the quantity and due 

dates for all parts that have independent demand, including all end items as well as 

external demand for lower-level parts. The MPS contains part numbers, need quantity, 

and due date for each purchase order which is used by the MRP system to obtain the 

gross requirements to initiate the MRP procedure. Thus MPS can be treated as input to 
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MRP. MPS also contains the current inventory status which is known as on-hand 

inventory and the status of outstanding orders (both purchased and manufacturing) 

known as scheduled receipts. 

The basic MRP procedure is simple. We will discuss each of the steps in detail in section 

3.3 where we will also discuss development of the simulation model. Here we briefly 

describe the MRP procedure. 

• The first step is to determine net requirements by deducting on-hand inventory 

and any scheduled receipts from the gross requirements. 

• The next step is to divide the net requirements into appropriate lot sizes to form 

jobs. 

• The last step is to determine start times of the jobs by offsetting the due dates of 

the jobs by planned lead times. 

Planned order releases, which are important outputs of a MRP system, eventually become 

the jobs processed in the plant which form the basis of the detailed job shop schedules. 

Overall, MRP is a closed production system with two major inputs: 

1) The MPS for the end item 

2) The relationship between the components and subassemblies composing the end 

item 

The method is simple and logical. However, an important assumption used in the MRP 

procedure is unrealistic. As mentioned previously, all the required information is 

assumed to be known with certainty which is not always true. There exist two key 
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sources of uncertainty, which are the forecast demand for the future sales of the end item 

and the estimation of the production lead time. 

Forecast uncertainty means that the actual demand is likely to be different from the 

demand forecast. MRP is based solely on forecast demand, so the forecast uncertainty 

could result in poor scheduling of recourses. 

MRP assumes that the planned lead time for the production item is also known with 

certainty. This is used to determine the start time of the jobs by offsetting their due dates. 

In essence, it assumes infinite capacity. The uncertainty of the actual production lead 

time can result in either excess inventory or high backorder. 

3.2 DRS 

Detailed scheduling would be futile if the forecast which is the base of scheduling is 

wrong or must be re-done when conditions change (e.g. line goes down, demand 

changes). Instead of creating a detailed schedule for a single situation, the DRS system 

creates a set of policy parameters (e.g. reorder point, reorder quantity and WIP level) that 

work for a range of situations. The policy is dynamic which means that it depends on 

actual demand and actual production. The policy is risk-based which means that it 

considers random events and lack of knowledge (e.g. forecast inaccuracy). The optimal 

execution obtained from DRS policy results in a manufacturing system that is robust 

enough to accommodate moderate changes in demand and/or capacity without the need to 

reschedule, which is the dynamic control. It also can detect when the assumption 

regarding demand and capacity used to determine the dynamic policy is no longer valid 
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and indicates the need for more capacity (e.g .. a makeup shift or a second shift), which is 

the risk-based control. 

So the essential differences between MRP and DRS are: 

• MRP generates detailed schedule while DRS determines optimal dynamic 

parameters. 

• Over a planning period, the schedule must be fixed in MRP while it is dynamic in 

DRS. 

• In MRP there is no reaction to random demand/supply (i.e. reschedule, ignore 

changes) while DRS automatically reacts to random demand/supply (i.e. self 

correcting, capacity "trigger"). 

3.3 Simulation models 

We will now focus on the development of simulation models in order to compare the 

performance of the DRS strategy with the traditional MRP model for scheduling the 

release of orders into a manufacturing system. 

3.3.1 MRP 

The MRP model has three components. 

In the first component, we calculate the net requirement for each product 

deterministically based on forecast demand and then get the planned order receipts. We 

then determine the planned order release by taking into consideration the production lead 

times (see Figure 1). 
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Figure 1: MRP procedure 

Table 1 shows the notations used in this section. 

Dt(O) 

Wi(t) 

NRt(t) 

POi(t) 

PW/(t) 

hi 

Kj 

Table 1: Notations 

projected inventory position for product i in period t 

demands due before the first period fqr product i 

on-hand inventory for product i in period t 

net requirements for product i in pericjd t 

planned order receipts for product i in period t 

planned work orders for product i in ~riod t 
holding cost rate for product i 

setup cost for product i 

Detemlille 
---. Planned Order 

Releases 

The forecast demand for product i in period t, denoted as Di(t), t = 0, ... , n, is assumed 

to be known. The period in our model is one day and the planning horizon is four weeks. 

The projected inventory position in period t, IPi(t), is computed as: 

Di(O) is the sum of the demands due before the first period. Wi(t) is the current on-hand 

inventory. 

The next step is to get the net requirement for each product in each period, N R i (t) as 

min{Di(t), max{O, -IPJt)}} 
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Then we compute the planned order receipts POi (t). In our model we use re-order 

quantity Q as the lot size. Thus the planned order release is an integer multiple of Q. The 

last step is to assign the planned work orders. We calculate the planned lead time I by 

dividing re-order point by average daily demand. Then, the planned work orders, PWi(t) 

are given by 

The second component of the MRP model triggers production based on the order release 

plan schedule, which is illustrated in Figure 2. First, we check the production plan each 

day to see if there are any planned order releases for the products. If so, we trigger a 

production and update the inventory level. 

Ched. Daily 
Prudul'lion 

Plan 

If planned Order 
Rclell~c == 0" 

No 

L.pdOlt: 
Itl\ctllury 

Lc\c1 

Figure 2: Production process in MRP system 

L:pdale 011 

1m ctllOr~' 

Dispo~c 

The third component follows the actual order demand to update the inventory level, 

which is illustrated in Figure 3. When a demand is realized, we update the inventory level 

and compare the inventory level with the re-order point. If the inventory level is greater 

than re-order point, the order is filled. 
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Figure 3: Order demand procedure in MRP system 
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For the MRP model, we also introduce the Silver-Meal heuristic which is a popular lot-

sizing named for Harlan Meal and Edward Silver (1973). It can be incorporated into the 

MRP calculus as shown in Nahmias (2001). 

To apply the Silver-Meal heuristic, we need two additional inputs: the holding cost rate 

hi and the setup cost Ki. Define Ci (T) as the average holding and setup cost per period if 

the current order spans the next T periods. As above, let NRJt) be the net requirements 

over an n-period horizon. Consider period 1. If we produce just enough in period 1 to 

satisfy the demand in period 1, then just the order cost Ki is incurred. Therefore, 

If we produce enough in period 1 to meet the demand in both periods 1 and 2, then 

N Ri (2) must be held for one period. Hence, 

By induction, we can get the general formula 

CJj) = (K + h * NRi(2) + 2h * NRi(3) + ... + U - l)h * NRi(J))/j 

Once Ci(J) > CiU - 1), stop and set the planned order receipts POi(1) = NRi(l) + 

NRJ2) + ... + NRi(J - 1) , and begin the same process again at periodj. 
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Several useful constraints can be introduced into the MRP model to improve the 

performance, such as capacity constraint, minimal makespan constraint, and recourse 

policy. 

In the basic MRP model, the production scheduling plan is calculated based on forecast 

demand without the consideration of capacity. It is clear that the introduction of capacity 

constraints makes a more realistic solution. However, they also make the problem more 

complex. Turning to the original MRP model, in addition to calculating the net 

requirements NRi(t) in each period, we can also assume known production 

capacity Ci(t) in each period. Therefore, we need to find a feasible solution for planned 

work orders PWi(t) subject to the constraints, 

To calculate the production scheduling plan with consideration of capacity constraints, 

we must first obtain planned work orders PWi (t) based on the original MRP procedure. 

Then we compare PWi(t) with capacity CJt). If it is greater than capacity, we need to 

release the excess production plan PWi(t) - Ci(t) into the following days with excess 

capacity, hence we get new planned work orders PWi(t), which does not violate the 

capacity constraints. 

In addition to introducing capacity constraints to get a more realistic solution, we also 

consider the makespan to improve the performance, which means that the optimal order 

release sequence is determined based on minimizing makespan. In the MRP model, order 

release plan is calculated by forecast demand and planned lead time. Often, there is more 

than one product that can be released for production. A reasonable order release sequence 
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could improve the system performance. Here we introduce makes pan to decide the order 

release sequence. We calculate the makes pan for each possible sequence of every product 

and then choose the one which minimizes the makespan. Clearly it is a reasonable way to 

decrease the cycle time and hence improve the system performance. 

Recourse is another useful way to improve the performance. After we calculate the 

planned order release based on MRP procedure, we compare planned work orders 

PWJt) with capacity Ci(t). If the former is greater than the latter, recourse is introduced 

into the model, which means that a second-shift is introduced into the system. It is 

obviously a way to decrease the cycle time and improve the customer service. 

3.3.2 DRS 

In DRS model, we trigger the production based on the actual demand. When a demand 

occurs, the inventory level is updated. If the updated inventory level is greater than the 

re-order point, the order is filled. If not, we trigger a production. Then, the number of 

batches of production is calculated as: 

r.l is the smallest integer greater or equal to ".". The model is illustrated in Figure 4. 

Vpdatc 
In\C'ntory 

Lc\cI 

Inventory Level .' 
ROJ",' 

Tnf!gcr Production 
and Update 

In,,:IlI11ryLc\d 

Figure 4: Production process in DRS model 
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For the DRS model, CONWIP and recourse constraints are also introduced to improve its 

performance. 

CONWIP constraint is illustrated in Figure 5. Based on the DRS model discussed in the 

Figure 4, CONWIP constraint is introduced to control the production process. After we 

trigger an order production, we need to check the WIP to see if it is less than the WIP cap 

which is set as a constant according to the system capacity. If the current WIP is less than 

the WIP cap, the order can be released into the production line directly. Otherwise, the 

order is held outside the production line until the WIP drops below the WIP cap. In this 

case, by limiting order releases into the system, the CONWIP controls WIP and hence 

results in a lower average WIP leveL This also makes cycle time shorter according to 

Little's Law (1961). 

Cheel \\ IP WIP' WIP Cap? 

lIuld Order ()lI",d~ 
lInltl WIP' W IP Cap 

Figure 5: CONWIP constraint procedure in DRS system 

Introducing CONWIP into the system also brings another benefit for monitoring the 

status of the system. We can watch the items waiting outside the production line which is 

like a virtual queue. When we apply recourse to improve the system performance, it is 

easy to make a decision about whether a second shift is needed based on the size of the 

virtual queue. We check the queue outside the production line at the end of every day (a 

period). If the number in the virtual queue is greater than the limit cap which is set up 
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based on the system capacity, a second shift would be triggered. Otherwise, process line 

produces items in one shift. 

3.4 Alternative model 

In this project, we not only build the simulation for the DRS policy, but also use an 

analytical tool called "Lean Physics Support Tool" (LPST for short) to calculate the 

results for DRS model. LPST is developed by Factory Physics, Inc. This software suite 

consists of design, planning and execution tools based on a scientific framework that 

enables companies to determine how to advance their operations to the best possible 

levels of profitability. Figure 6 displays an input screen of the online tool. We can input 

necessary system parameters (e.g., number of orders per period, average order size, 

transfer batch, ROP, ROQ). Then we can calculate the results through this tool. An 

example is shown in Figure 7. We can get the system performance measurements such as 

cycle time, backorder, inventory, fill rate and so on. Then we can compare the results for 

the DRS system obtained via analytic and simulation models and demonstrate the validity 

of the former. 
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CHAPTER 4 NUMERICAL RESULTS 

In this chapter we present the design of the experiments and show the results. We begin 

with a single-machine problem and then expand to multiple machines. In the single

machine problem, the system contains only one machine to produce 23 parts. In the 

multiple-machines problem, we have multiple work centers and each of the work centers 

consists of multiple machines. Multiple products need to be produced in the system as 

well and each product needs to go through multiple work centers. Detailed data are 

provided in the following sections. 

4.1 Single-machine problem 

To compare the MRP model with the DRS model, we used three scenarios with a single 

machine and 23 parts. In the first scenario, the actual order demands follow a Poisson 

distribution with the mean equal to the predicted order demands, which is called base 

scenario. The second scenario assumes that the forecast demand is over-estimated by 

20% for each product which means that the actual mean demand for each product is 20% 

lower than the forecast demand and is called the over-estimated scenario. The third 

scenario assumes that the forecast demand is under-estimated by 20% for each product 

which means that the actual mean demand for each product is 20% higher than the 

forecast demand and is called the under-estimated scenario. In our model, we have 23 

parts and one machine. The specific data is shown in Table 2. NrOrder refers to the 
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average number of orders per period (one month); AvgOrdSize is the average order size 

for each part (assumed to be normally distributed, with the standard deviation equal to 

StDevOrdSize); OnHandQty is the onhand inventory; ROQ is re-order quantity, and ROP 

is re-order point. 

For each scenario, we created two sub-scenarios. One is with moderate variability and the 

other is without variability. With moderate variability, the number of actual orders per 

period follows a Poisson distribution, the ordersize is normally distributed, and the 

process time is exponentially distributed, as shown in Table 2. In the no-variability 

scenario, all the variables, including the number of orders per period, ordersize, and 

process time, are constant. 

Table 2: Input data for single-machine problem --- --Partl 16.5826 16.5826 230 46 0 9890 519 

Part2 9.8444 9.8444 90 18 1399 9990 145 

Part3 97.45 97.45 260 52 4094 10370 2142 

Part4 203.726 203.726 500 100 37622 25920 7483 

PartS 112.5884 112.5884 260 52 4782 19620 , 2396 

Part6 31.9135 31.9135 370 74 1892 4930 1315 

Part7 46.2692 46.2692 130 26 2184 7260 604 

Part8 51.9272 51.9272 660 132 5087 7480 3358 

Part9 6.3083 6.3083 120 24 630 7510 145 

Part 10 1.9786 1.9786 750 150 0 4930 455 

Part I 1 8.2923 8.2923 130 26 2023 4930 188 

Part12 125.3411 125.3411 170 34 5951 9000 1712 

Part13 36.04 36.04 50 10 1505 4760 199 

Part14 157.1427 157.1427 1800 360 70660 80640 21751 

Part15 183.6258 183.6258 310 62 11732 10080 4249 

Part16 3.3139 3.3139 790 158 4796 9780 649 

Part 17 41.3034 41.3034 880 176 11336 18140 3781 

Part18 54.3913 54.3913 230 46 3446 7510 1204 
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Part 19 14.6444 14.6444 210 54 2493 7510 560 

Part20 18.6798 18.6798 1090 218 2958 7510 2681 

Part21 14.0424 14.0424 1250 250 3319 9890 2538 
Part22 7.7521 7.7521 230 46 3488 4930 317 
Part23 8.7343 8.7343 320 64 1614 4930 419 

For all the MRP and DRS models in this chapter, we run 100 replications of the 

simulation for 10 years with a one-year warm-up period. We use Rockwell Arena 10.0 as 

the simulation software on an x-86 workstation. 

4.1.1 Base scenario 

As mentioned previously, mean demand is equal to the forecast mean demand in the base 

scenario. There are two sub-scenarios under this case. One is with moderate variability, 

which means that the inter-arrival time of orders is exponentially distributed. The setup 

time and process time are also exponentially distributed. To compare the performance 

between MRP and DRS strategies, we mainly focus on the following measurements: 

• Fill rate based on time: the fraction of time the system does not have backorders. 

It represents a reasonable definition of customer service. 

• Fill rate based on units: represents the fraction of demand (based on units) that 

will be filled from stock. It represents another definition of customer service. 

• A verage backorder 

• A verage inventory 

Fill rate is related to customer satisfaction, so the higher the fill rate, the greater the 

customer satisfaction. Backorder also is another measure of customer satisfaction, which 

is better when it is lower. Inventory Incurs a holding cost, so a lower inventory is 
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preferred. In an ideal situation, we need the fill rate to be as high as possible to meet 

customer demand, while maintaining as little inventory as possible. 

Table 3-5 show the results for the DRS and MRP simulation models as well as the LPST 

analytical model. From the tables we can see that: 

• The machine utilizations compare well among all three models, which is a basic 

step to demonstrate the validity of the analytical model. 

• Analytical results compare well with simulation results for DRS model (i.e. 

comparison between LPST and Arena simulation). 

• Most of the 23 parts have higher fill rates, much lower inventory and backorder in 

the DRS model, which can be interpreted as a system with better performance 

when compared to MRP model. 

Table 3: Fill rate (time) and average backorder for DRS and MRP simulation models and LPST model with 
moderate variability 

Simulation 
LPST3.0 

Simulation LPST3.0 
Simulation 

Part 1 98.68% 98.74% 98.24% 7.54 7.72 11.03 

Part 2 99.70% 99.73% 99.56% 0.43 I 0.45 0.78 

Part 3 90.49% 92.94% 90.43% 298.26 170.75 308.89 

Part 4 83.52% 90.96% 79.58% 2017 .• 6 580.92 2677.89 

Part 5 93.48% 93.88% 91.95% 233.52 199.09 309.18 

Part 6 92.10% 94.51% 88.74% 124.6~ 74.75 195.88 

Part 7 96.92% 97.06% 96.42% 23.62 23.51 30.12 

Part 8 86.21% 94.11% 83.85% 613.2~ 151.44 736.50 

Part 9 99.66% 99.69% 99.49% 0.53 0.53 0.76 

Part 10 98.73% 99.06% 97.80% 5.73 I 6.51 13.21 

Part 11 99.34% 99.39% 98.88% 1.25 1.33 2.40 

Part 12 90.48% 92.81% 88.17% 250.91 147.19 326.53 

Part 13 98.71% 98.76% 98.35% 3.13 3.11 4.07 

Part 14 77.82% 86.82% 74.63% 7657 .• 3 2653.06 9654.70 

Part 15 81.39% 93.53% 77.39% 1286.62 188.26 1609.90 
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Part 16 99.03% 99.17% 98.39% 5.90 I 7.08 11.61 

Part 17 92.51% 93.94% 90.55% 358.38 245.81 484.62 

Part 18 93.79% 94.65% 92.79% l00.~1 79.89 123.31 

Part 19 98.28% 98.41% 97.68% 9.88 10.31 15.06 

Part 20 92.02% 94.81% 88.90% 231.~ 132.27 356.47 

Part 21 94.46% 95.60% 91.60% 151.46 117.70 248.16 

Part 22 98.88% 98.98% 98.18% 3.56\ 3.82 6.51 

Part 23 98.32% 98.46% 97.37% 7.73 8.57 14.13 

Table 4: Fill rate (units) and average inventory for DRS and MRP simulation models and LPST model with 
moderate variability 

Part 1 97.57% 97.55% 5464.40 6415.25 

Part 2 99.05% 99.06% 5172.43 I 6266.52 

Part 3 97.40% 95.37% 7332.51 8539.73 

Part 4 97.99% 91.00% 20439.79\ 21413.97 

Part 5 98.62% 95.97% 12202.94 12966.40 

Part 6 92.20% 88.80% 3777.03 I 4020.62 

Part 7 98.14% 97.40% 4237.13 4787.09 

Part 8 90.82% 87.75% 7099.59 I 8128.84 

Part 9 98.34% 98.65% 3908.73 4805.46 

Part 10 84.19% 87.30% 2916.20 I 3825.65 

Part 11 97.26% 97.60% 2643.67 3198.92 

Part 12 98.04% 93.97% 6213.09 I 6478.60 

Part 13 98.92% 98.40% 2580.09 2908.84 

Part 14 97.68% 90.87% 62070.92\ 64350.54 

Part 15 96.80% 89.26% 9285.77 10065.68 

Part 16 91.62% 93.81% 5544.75 I 7164.34 

Part 17 94.95% 92.85% 12844.14 14146.02 

Part 18 96.81% 95.23% 4953.44 I 5571.68 

Part 19 96.26% 96.39% 4311.94 5017.77 

Part 20 84.89% 85.07% 6434.03 7297.41 

Part 21 86.85% 86.61% 7476.37 8269.81 

Part 22 95.16% 95.82% 2779.63 3346.15 

Part 23 93.24% 94.28% 2943.37 3499.65 

Table 5: Comparison of machine utilization estimates for DRS and MRP simulation models and LPST model 
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LPST 3.0 74.55% 

MRP Simulation 74.58% 

Table 6 shows average results for DRS and MRP models. The difference (%) column is 

calculated as (DRS Simulation - MRP Simulation) / MRP Simulation, which reflects the 

percentage change between DRS model and MRP model. We can see that DRS 

simulation model obtained a higher fill rate based on time (l.68%), a lower average 

backorder level (2l.86%), a higher fill rate based on units (1.57%) and a lower average 

inventory (8.92%) than MRP simulation model. Overall, DRS model has a better 

performance than MRP model in this single-machine problem for the base scenario with 

moderate variability in the system. 

Table 6: Comparison between DRS and MRP simulation models for base scenario with moderate variability 

Fill Rate Based on Time 93.68% 92.13~ 1.68% 

Average Backorder (units) 582.34 745.29 -21.86% 

Fill Rate Based on Units 94.91% 93.43~ 1.57% 

Average Inventory (Units) 8810.09 9673.26 -8.92% 

Tables 7-9 compare the performance measures for the three models assuming that the 

inter arrival rate, process time and set up time are constant. We can conclude that: 

• Once again, the machine utilizations for the three models are very close. 

• The analytical results compare well with simulation results for DRS model (i.e. 

comparison between LPST and Arena simulation). 
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• Most of the 23 parts have higher fill rates based on time, much lower backorder 

and inventory in DRS model, which can be interpreted as a system with better 

performance when compared to the MRP model. 

Table 7: Fill rate (time) and average backorder for DRS and MRP simulation models and LPST model without 
variability 

Simulation 
LPST3.0 

Simulation LPST3.0 
Simulation 

Part I 100.00% 99.99% 99.00% 0.00 0.00 3.26 

Part 2 100.00% 100.00% 99.80% 0.00 0.00 0.24 

Part 3 99.58% 99.46% 92.92% 1.25 2.83 208.51 

Part 4 91.94% 98.29% 80.04% 33.691 34.24 2424.91 

Part 5 99.53% 99.52% 92.42% 1.94 2.71 266.51 

Part 6 99.91% 99.80% 92.18% 0.02 0.37 107.59 

Part 7 99.94% 99.90% 97.23% 0.05 0.10 18.61 

Part 8 99.85% 99.45% 87.07% 0.53 3.48 530.96 

Part 9 100.00% 100.00% 99.76% 0.00 0.00 0.18 

Part 10 99.63% 100.00% 99.79% 059 0.00 0.95 

Part 11 100.00% 100.00% 99.55% 0.00 0.00 0.43 

Part 12 99.51% 99.40% 89.65% 1.23 3.00 262.45 

Part 13 100.00% 99.98% 98.83% 0.00 0.01 2.29 

Part 14 95.71% 95.37% 75.71% 120.5Q 85.47 8415.48 

Part 15 98.57% 98.39% 78.22% 10.44 21.08 1480.85 

Part 16 99.68% 100.00% 99.32% 0.19 I 0.00 1.62 

Part 17 99.91% 99.84% 92.41% 0.40 0.69 318.66 

Part 18 99.94% 99.75% 94.23% 0.04 0.63 83.10 

Part 19 100.00% 99.99% 98.64% 0.00 0.00 5.58 

Part 20 99.99% 99.93% 93.63% 0.04 0.12 145.69 

Part 21 100.00% 99.95% 95.47% 0.00 0.05 88.87 

Part 22 100.00% 99.99% 99.24% 0.00 0.00 1.42 

Part 23 100.00% 100.00% 98.77% 0.00 0.00 3.82 

Table 8: Fill rate (units) and average inventory for DRS and MRP simulation models and LPST model without 

Part 1 

Part 2 

97.69% 

99.07% 

99.48% 

99.15% 

variability 
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Part 3 97.49% 98.15% 7326.29 8715.26 

Part 4 98.07% 91.27% 20458.691 21164.38 

Part 5 98.68% 96.91% 12201.41 12956.91 

Part 6 92.48% 96.16% 3780.82 I 4066.03 

Part 7 98.20% 98.81% 4237.03 4693.05 

PartS 91.17% 94.15% 7177.88 I 8152.79 

Part 9 98.41% 99.21% 3917.89 4432.23 

Part 10 84.87% 92.82% 2912.68 I 3753.81 

Part 11 97.39% 99.37% 2658.18 2974.60 

Part 12 98.11% 96.37% 6216.55 I 6524.19 

Part 13 98.96% 99.31% 2580.46 2873.13 

Part 14 97.77% 92.43% 62200.531 64288.04 

Part 15 96.93% 91.28% 9288.11 10035.23 

Part 16 91.96% 96.98% 5518.98 I 6798.92 

Part 17 95.14% 96.05% 12854.11 14017.07 

Part 18 96.94% 97.39% 4956.72 ! 5538.81 

Part 19 96.42% 98.71% 4323.03 4783.58 

Part 20 85.50% 95.27% 6434.01 7357.25 

Part 21 87.36% 95.02% 7473.23 8163.37 

Part 22 95.27% 98.11% 2773.71 3300.49 

Part 23 93.51% 97.87% 2943.70 3357.31 

Table 9: Comparison of machine utilization estimates for DRS and MRP simulation models and LPST model 

DRS Simulation 

LPST 3.0 

MRP Simulation 

74.55% 

74.55% 

74.37% 

Table 10 shows the average measures for the DRS and MRP models. Once again, we can 

see that DRS simulation model obtained a higher fill rate based on time, a significantly 

lower average backorder level, a lower fill rate based on units and a lower average 

inventory than the MRP simulation model. In this situation, DRS obtained a little higher 

fill rate based on time and even a little lower fill rate based on units, but meanwhile it got 

much lower inventory level, which means that it got almost the same customer 
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satisfaction with much lower holding cost. So overall, we can say that DRS model has a 

better performance than MRP in this single machine case for the base scenario in the 

system without variability. 

Table 10: Comparison between DRS and MRP simulation models for base scenario without variability 

Fill Rate Based on Time 99.55% 93.65%1 6.31% 

Average Backorder (units) 7.43 624.87 -98.81% 

FiURate Based on Units 95.10% 96.53%1 -1.48% 

Average Inventory (Units) 8826.21 9525.35 -7.34% 

4.1.2 Over-estimated scenario 

For the over-estimated scenario, in which case the mean demand is 20% lower than the 

forecast demand, we also have two sub-scenarios. One is with moderate variability in the 

system (i.e. exponentially distributed inter-arrival times, process time and setup time). 

The other is without variability in the system (i.e. constant order arrival rate, process time 

and setup time). Once again, we focus on fill rate, inventory and backorder for the 

performance comparison. 

Tables 11-13 show the results for the over-estimated forecast demand scenario in the 

system with moderate variability. From the results, we can conclude that: 

• DRS obtains similar fill rate (based on time) as MRP, with some parts having a 

little higher value, and some parts a little lower value. Overall there is no big 

difference. 
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• For average backorder over time, some parts have higher levels in the DRS 

model, and some parts have a higher level in the MRP model. We cannot make 

any conclusions from this result. 

• MRP resulted in a little higher fill rate based on units than DRS. 

• All the 23 parts obtained much lower inventory level in DRS model, which is 

indicative of better performance. 

Table 11: Fill rate (time) and average backorder for DRS and MRP simulation models and LPST model for 
over-estimated scenario with moderate variability 

DRS Simulation MRP Simulation DRS Si~ulation MRP Simulation 

Part 1 99.58% 99.44% 1.67 2.52 

Part 2 99.90% 99.83% 0.09 0.18 

Part 3 97.06% 98.10% 58.51 36.59 

Part. 4 94.05% 95.16% 448.81 385.69 

Part 5 97.94% 98.06% 46.95 46.40 

part. 6 97.61% 96.80% 25.60 38.02 

Part 7 99.05% 99.10% 5.07 5.02 

Part 8 95.43% 95.88% 130.50 120.50 

Part 9 99.90% 99.77% 0.09 0.29 

Part 10 99.42% 98.86% 1.91 5.45 

Part 11 99.82% 99.60% 0.21 0.58 

Part 12 97.01% 97.08% 49.43 51.02 

Part 13 99.62% 99.57% 0.63 0.79 

Pait;14 89.58% 92.20% 2301.831 1827.44 

Part 15 93.22% 94.58% 296.75 241.30 

Part 16 99.62% 99.13% 1.58 5.39 

Part 17 97.66% 97.55% 73.85 80.10 

Part.l8 98.19% 98.33% 18.81 18.23 

Part 19 99.48% 99.19% 2.32 3.94 

Part!20 97.43% 96.66% 50.80 74.93 

Part 21 98.23% 97.20% 34.74 58.78 

Part 22 99.62% 99.32% 0.95 1.78 

Part 23 99.44% 99.10% 2.10 3.42 
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Table 12: Fill rate (units) and average inventory for DRS and MRP simulation models and LPST model for 
over-estimated scenario with moderate variability 

DRS Simulation MRP Simulation DRS *mulation MRP Simulation 

Part 1 97.58% 98.56% 5469.l8 6372.76 

Part 2 99.02% 99.36% 5137.42 6098.21 

Part 3 97.39% 98.72% 7325.S3 9412.17 

Part 4 97.99% 98.04% 20443~8 25398.71 

Part 5 98.62% 98.78% 12214;20 13696.85 

Part 6 92.19% 94.51% 3777.~1 4463.53 

Part 7 98.13% 98.88% 4230.16 4859.54 

Part 8 90.82% 95.17% 7097.~1 9361.53 

Part 9 98.30% 98.87% 3927.02 4827.90 

Part 10 84.20% 88.93% 2920.~ 3893.56 

Part 11 97.24% 98.36% 2653.94 3205.88 

Part 12 98.03% 98.19% 6211.~ 7163.27 

Part 13 98.91% 99.30% 2581.98 2909.25 

Part 14 97.68% 97.98% 62036h8 75287.67 

Part 15 96.80% 97.73% 9286.69 12016.12 

Part 16 91.53% 94.59% 5536.d? 7069.06 

Part 17 94.95% 96.98% 12848,49 15394.10 

Part 18 96.81% 98.21% 4964.th 5936.28 

Part 19 96.27% 97.63% 4307.49 5081.88 

Part 20 84.92% 91.71% 6434.th 8126.24 

Part 21 86.84% 91.34% 7483.23 8927.04 

Part 22 95.14% 97.01% 2781.$ 3376.93 

Part 23 93.25% 96.26% 2938.97 3563.70 

Table 13: Comparison of machine utilization estimates for DRS and MRP simulation models and LPST model 

DRS Simulation 

MRP Simulation 

59.42% 

59.75% 

To summarize, we calculate the average measures for all the 23 parts in system, as shown 

in Table 14. DRS model obtained lower fill rate based on time, higher backorder, lower 

fill rate based on units and lower inventory than MRP model in this scenario (i.e. over-

estimated forecast demand case with moderate variability in the system). DRS got a 
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lower fill rate, albeit small, compared to the large decrease percentage in inventory level 

(i.e. 17.79%). We can conclude that in this case DRS also obtained a better performance 

than the MRP model. 

Table 14: Comparison between DRS and MRP simulation models for over-estimated scenario with moderate 
variability 

FiURate Based on Time 97.78% 97.85" -0.07% 

Average Backorder (units) 154.49 130.80 18.11% 

Fill Rate Based on Units 94.90% 96.74~ -1.91% 

Average Inventory (Units) 8809.03 10714.88 -17.79% 

Results for the over-estimated forecast demand scenario without variability are presented 

in Tables 15-17. We can find that: 

• For all the 23 parts, DRS obtained perfect fill rate based on time which IS 

obviously better than the MRP model. 

• Backorder level is related to fill rate based on time. Similarly, DRS obtained 

perfect backorder level, which is lower than that for the MRP model. 

• For fill rate based on units, MRP model resulted in a little higher percentage than 

the DRS model. 

• For all the 23 parts, DRS obtained much lower inventory level than MRP model, 

which is definitely a better performance. 

Table 15: Fill rate (time) and average backorder for DRS and MRP simulation models and LPST model for 
over-estimated scenario without variability 

Part 1 100.00% 99.88% 0.00 0.26 

Part 2 100.00% 99.98% 0.00 0.02 

Part 3 99.99% 99.05% 0.01 16.51 

Part 4 99.62% 96.97% 2.99 219.57 
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Part 5 99.95% 98.96% 0.10 21.38 

Part 6 100.00% 98.92% 0.00 8.83 

Part 7 99.99% 99.62% 0.00 1.55 

PamS 100.00% 98.16% 0.00 48.05 

Part 9 100.00% 99.95% 0.00 0.01 

Part 10 99.67% 99.99% 0.55 0.06 

Part 11 100.00% 99.98% 0.00 0.01 

Pan 12 99.97% 98.25% 0.02 27.09 

Part 13 100.00% 99.83% 0.00 0.19 

Part 14 99.70% 94.26% 5.54 1173.56 

Part 15 99.91% 96.11% 0.38 161.79 

Parti 16 99.90% 99.88% 0.04 0.20 

Part 17 100.00% 99.04% 0.00 24.12 

part! 18 100.00% 99.28% 0.00 6.43 

Part 19 100.00% 99.85% 0.00 0.45 

Part 20 100.00% 99.30% 0.00 10.21 

Part 21 100.00% 99.50% 0.00 6.10 

Parti22 100.00% 99.92% 0.00 0.09 

Part 23 100.00% 99.88% 0.00 0.17 

Table 16: Fill rate (units) and average inventory for DRS and MRP simulation models and LPST model for 
over-estimated scenario without variability 

Part 1 97.68% 100.00% 551S.21 5763.35 

Part 2 99.05% 99.47% 517~.22 5187.57 

Part 3 97.50% 100.00% 7322.35 9345.42 

Part 4 98.07% 99.87% 2~.93 25503.13 

Part 5 98.68% 100.00% 12207.63 13496.22 

Part 6 92.49% 99.61% 378~.76 4417.29 

Part 7 98.20% 99.83% 4240.71 4680.81 

Part 8 91.17% 99.51% 717V.03 9363.76 

Part 9 98.35% 99.41% 3968.77 4294.03 

Part 10 84.74% 93.47% 291V.33 3876.56 

Part 11 97.36% 99.73% 2662.94 2851.05 

Part 12 98.11% 99.76% 621~.58 7122.88 

Part 13 98.96% 99.87% 2578.83 2742.84 

Part 14 97.77% 99.83% 622~.52 75185.79 

Part 15 96.93% 99.87% 928~.61 12048.64 

Part 16 92.14% 98.49% 553$.85 6991.86 

Part 17 95.13% 99.70% 12857.69 15062.38 
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Part 18 96.94% 100.00% 495~.55 5810.27 

Part 19 96.37% 99.83% 4317.16 4743.77 

Part 20 85.50% 99.52% M4.46 7943.61 

Part 21 87.31% 99.19% 7486.73 8693.74 

Part 22 95.30% 98.96% 278~.40 3119.46 
I 

Part 23 93.56% 99.25% 2942.62 3347.85 

Table 17: Comparison of machine utilizations for over-estimated scenario without variability 

MRP Simulation 59.54% 

To summarize, we calculate the average measurement for all the 23 parts to compare the 

overall performance between DRS model and MRP model. As shown in Table 18, we can 

find that DRS obtained a higher fill rate based on time, much lower backorder level, a 

lower fill rate based on units and a lower inventory level. Compared with the small 

difference in fill rate (i.e. 0.97% and -4.28%), DRS model has a big drop in inventory 

level (i.e. -15.96%), which also can be seen as a better performance. 

Table 18: Comparison between DRS and MRP simulation models for over-estimated scenario without 
variability 

Average Backorder (units) 

Fill Rate Based on Units 

Average Inventory (Units) 

4.1.3 Under-estimated scenario 

0.42 

95.10% 

8827.47 

75.07 

99.36, 

10504.01 

-99.44% 

-4.28% 

-15.96% 

For the under-estimated scenario (i.e. actual demand mean is 20% higher than forecast 

demand), two sub-scenarios are conducted as well. One sub-scenario is with moderate 
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variability in the system (i.e. exponentially distributed inter-arrival time, process time and 

setup time). The other is without variability in the system (i.e. constant order arrival rate, 

process time and setup time). 

A detailed comparison data is shown in Tables 19-21. We find that: 

• All the 23 parts resulted in higher fill rate based on time in DRS model, which is 

obviously a better performance compared to MRP model. 

• All the 23 parts obtained lower backorder level in DRS model, which is also a 

better performance compared to MRP model. 

• DRS model obtained higher fill rate based on units for all 23 parts than MRP 

model, which is definitely a better performance. 

• Some parts have higher inventory level in DRS model, and some parts have 

lower. No conclusion can be drawn about the inventory levels. But the parts 

which got higher inventory level in DRS model also had higher fill rate. For 

example, part 3 inventory level is higher in the DRS model but also has better fill 

rate. 

Table 19: Fill rate (time) and average backorder for DRS and MRP simulation models and LPST model for 
under-estimated scenario with moderate variability 

Part 1 94.25% 93.29% 63.14 78.64 

PlU't 2 9S.77% 98.40% 3.28 1 4.65 

Part 3 67.22% 62.17% 2211,67 2714.65 

PlU't 4 55.05% 43.93%. 1200f·78 16552.43 

Part 5 75.73% 70.11% 1853;37 2481.01 

Pat16 71.01% 61.39% 943.1f 1369.07 

Part 7 86.89% 84.36% 208.~3 270.56 

PartS 59.04% 49.65% 3784f6 5031.25 
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Part 9 98.64% 98.26% 3.4 4.64 

Part 10 95.87% 94.45% 27.8~ 44.09 

Part 11 96.98% 96.50% 1O.3~ 12.63 

Part~12 67.35% 58.11% 1820fW 2549.56 

Part 13 94.17% 93.07% 28.43 36.18 

Part 14 50.70% 39.04% 3702~.29 50562.68 

Part 15 51.48% 37.63% 7294~04 10158.26 

Part 16 96.44% 95.36% 36.4q 53.31 

Part 17 72.39% 65.96% 271 IJ76 3607.4 
I 

Part 18 75.69% 71.68% 809.0/ 1008.46 

Part 19 92.39% 90.70% 85.0~ 117.18 

Part 20 70.79% 63.82% 1708-/41 2291.73 

Part 21 78.02% 71.82% 1131.i41 1579.7 

Part 22 95.09% 93.87% 27.5~ 37.03 

Part 23 92.44% 90.65% 66.08 88.55 

Table 20: Fill rate (units) and average inventory for DRS and MRP simulation models and LPST model for 
under-estimated scenario with moderate variability 

, 

Part 1 97.59% 96.04% 546~.75 6220.93 

Part 2 99.09% 98.67% 515~.33 6239.01 

Part 3 97.39% 87.17% 73241.26 7194.68 

Part 4 97.99% 78.20% 2044/6.85 16524.85 

Part 5 98.63% 90.51% 122d1.29 11676.33 

Part 6 92.18% 78.84% 378~30 3364.84 

Part 7 98.14% 94.46% 4236.44 4520.20 

Part 8 90.82% 74.07% 71oQ.45 6460.60 

Part 9 98.35% 98.07% 389~.72 4824.03 

Part 10 84.27% 85.82% 2927/.94 3615.75 

Part 11 97.25% 96.86% 265Q.69 3132.00 

Part 12 98.04% 84.03% 6211~25 5348.79 

Part 13 98.91% 97.06% 25781.17 2855.99 

Patt14 97.68% 78.42% 6208/4.46 49966.60 

Part 15 96.80% 70.26% 9290.45 7170.92 

Part 16 91.58% 92.41% 554~I9 6862.80 

Part 17 94.96% 85.45% 1285b.60 12285.70 

Part 18 96.81% 89.95% 495~78 4999.76 

Part 19 96.26% 94.14% 4321f51 4772.94 

Part 20 84.92% 75.05% 6434(35 6209.34 
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Part 21 

Pad 22 

Part 23 

86.87% 

95.15% 

93.25% 

79.10% 

94.23% 

91.80% 

748~.59 

271~.59 
294i.65 

7276.87 

3212.94 

3327.55 

Table 21: Comparison of machine utilizations for under-estimated scenario with moderate variability 

MRP Simulation 89.49% 

To summarize, we calculate the average measures for all the 23 parts. As shown in Table 

22, we can find that DRS model obtained 6.51 % higher fill rate based on time, 26.62% 

lower backorder level, 8.57% higher fill rate based on units and 7.77% higher inventory. 

Notice that the actual demand is 20% higher than forecast demand in this scenario. 

Obviously the production plan obtained from the MRP model could not meet the actual 

demand, so the fill rate is lower and inventory is also lower. We could not conclude that 

DRS model is absolutely better than MRP model in this scenario. 

Table 22: Comparison between DRS and MRP simulation models for over-estimated scenario with moderate 
variability 

Fill Rate Based on Time 79.84% 74.97%1 6.51% 

Average Backorder (units) 3211.24 4376.25! -26.62% 

Fill Rate Based on Units 94.91% 87.42% I 8.57% 

Average Inventory (Units) 8811.90 8176.67 7.77% 

The last situation for the single machine case is the under-estimated scenario without 

variability in the system. Tables 23-25 show the detailed comparison results between 

DRS and MRP model. We can find that: 
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• All the 23 parts obtained very good fill rate based on time in DRS model, which is 

obviously much better than MRP model. DRS got better performance in terms of 

fill rate based on time. 

• All the 23 parts resulted in very low backorder level in DRS model, which is 

much lower than MRP model. The DRS model has better performance in terms of 

backorder as well. 

• Most of the 23 parts had much better fill rate based on units in the DRS model 

than in the MRP model. Only a few parts got a little worse fill rate based on units 

in the DRS model. 

• For the inventory level, some parts had lower values in the DRS model, and some 

had higher values. 

Table 23: Fill rate (time) and average backorder for DRS and MRP simulation models and LPST model for 
under-estimated scenario without variability 

Part 1 99.99% 94.03% 49.66 

Part 2 100.00% 98.89% 2.36 

Part 3 98.14% 63.01% 8.7~ 2401.86 

Part 4 94.30% 45.93% 14~.20 14946.43 

Part 5 98.27% 71.86% 10.#1 2141.40 

Part 6 99.67% 64.20% 0.4~ 1079.79 

Part 7 99.70% 86.52% 0.30 200.29 

PartS 98.83% 52.29% 6.4~ 4334.73 

Part 9 100.00% 98.77% 0.00 1.98 

Part 10 99.30% 97.66% 1.0~ 10.94 

Part 11 100.00% 97.43% O.O~ 6.89 

Part 12 98.11% 59.86% 7.8$ 2244.22 

Part 13 99.98% 93.74% O.O~ 28.13 

Part 14 88.03% 40.04% 67~.27 45926.33 
I 

Part 15 94.65% 39.16% 60.71 9125.95 

Part 16 99.61% 97.10% 0.2$ 16.63 

Part 17 99.22% 69.27% 4.9b 2815.73 
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Part 18 99.30% 72.61% l.1b 869.90 

Part 19 99.99% 92.04% 0'<~1 76.71 

Part 20 99.77% 67.55% O.:h 1666.79 

Part 21 99.96% 76.09% 0.1~ 1050.33 

Part 22 99.98% 94.99% O.~ 21.83 

Part 23 100.00% 92.62% O.~ 49.30 

Table 24: Fill rate (units) and average inventory for DRS and MRP simulation models and LPST model for 
under-estimated scenario without variability 

Part 1 97.65% 97.97% 6106.17 

Part 2 99.15% 99.10% 5548.06 

Part 3 97.50% 88.44% 7185.35 

Part 4 98.07% 81.53% 16706.36 

Part 5 98.67% 91.93% 11732.72 

Part 6 92.49% 85.72% 3445.47 

Part 7 98.20% 96.72% 4502.37 

Part 8 91.17% 81.32% 6620.60 

Part 9 98.46% 98.94% 4460.48 

Part:lO 84.91% 93.05% 3542.33 

Part 11 97.32% 98.49% 2941.46 

Part 12 98.11% 85.79% 5373.98 

Part 13 98.96% 97.84% 2872.92 

Part 14 97.76% 80.22% 49516.72 

Part 15 96.93% 73.55% 7332.15 

Part 16 92.03% 96.18% 6562.29 

Part 17 95.16% 91.35% 12537.96 

Part 18 96.94% 91.35% 4932.23 

Part 19 96.40% 96.16% 4714.17 

Part 20 85.50% 85.61% 6339.13 

Part 21 87.34% 88.73% 7365.83 

Part 22 95.34% 96.26% 3059.59 

Part 23 93.48% 95.64% 3242.55 

Table 25: Comparison of machine utilizations for under-estimated scenario without variability 

DRS Simulation 89.45% 
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MRP Simulation 89.14% 

To summarize, we calculate the average measures for all the 23 parts. From Table 26 we 

can find that DRS resulted in 28.38% higher fill rate based on time, 98.96% lower 

backorder, 4.57% higher fill rate based on units and 8.66% higher inventory. In this 

situation (i.e. under-estimated forecast demand scenario without variability in system), 

DRS improves the customer service performance significantly (i.e. 28% increase in fill 

rate based on time and 4.57% increase in fill rate based on units) associated with a slight 

increase in inventory (i.e. 8.66%). 

Table 26: Comparison between DRS and MRP simulation models for under-estimated scenario without 
variability 

Average Backorder (units) 

Fill Rate Based on Units 

Average Inventory (Units) 

4.1.4 Conclusions 

40.19 

95.11% 

8817.38 

-98.96% 

4.57% 

8.66% 

In order to summarize the comparison results between DRS model and MRP model, we 

compare the overall average performance measurements (i.e. fill rate based on time, 

backorder, fill rate based on units and inventory) for the above six scenarios and group 

them relative to variability in the inter-arrival, process and setup times. Table 27 shows 

the comparison results summary for the system with moderate variability, including base 

scenario, over-estimated and under-estimated forecast demand scenarios. Table 28 shows 

the comparison results summary for the system without variability. 
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Table 27: Comparison summary between DRS and MRP simulation models with moderate variability 

over-estimated 

under-esthnated 

97.78% 

79.84% 

97.85% 154.49 130.80 

74.97% 3211.24 4376.25 

96.74% 

87.42% 

8809.03 

8811.90 

10714.88 

8176.67 

Table 28: Comparison summary between DRS and MRP simulation models without variability 

over-estimated 

under-estimated 

99.94% 98.98% 

9856% 76.77% 

0.42 75.07 

40.19 3872.53 

99.36% 8827.47 10504.01 

90.95% 8817.38 8114.82 

In the system with moderate variability, we can conclude that: 

• For the base scenario, DRS obtained higher fill rate, lower backorder and lower 

inventory, which is absolutely better performance than MRP model. 

• For the over-estimated forecast scenario, DRS obtained slightly reduced fill rate 

than MRP model, and meanwhile had much lower inventory. 

• For the under-estimated forecast demand scenario, DRS obtained higher fill rate 

and higher inventory than the MRP model. 

In the system without variability, we can find that: 

• For the base scenario, DRS resulted in higher fill rate based on time, much lower 

backorder, slightly lower fill rate based on units and much lower inventory, which 

is better performance compared to MRP model. 
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• For the over-estimated scenano, DRS obtained higher fill rate based on time, 

much lower backorder, lower fill rate based on units and much lower inventory, 

which should be a better performance compared to MRP model. 

• For the under-estimated scenario, DRS got a much higher fill rate based on time, 

much lower backorder, higher fill rate based on units and slightly higher 

inventory. Improvement of fill rate in DRS model is much higher than the 

increase in inventory. Therefore the DRS model has better performance than 

MRP. 

• Comparing the results for DRS model among the three scenanos (i.e. base 

scenario and over-estimated and under-estimated forecast demand), we find that 

the performance measurements are similar, which means that DRS model is very 

robust even with a forecast bias. 

• Comparing the results for MRP model among the three scenarios, we find that the 

performance measurements change a lot according to the forecast bias. Over

estimated forecast demand causes a big increase in inventory. And under

estimated forecast demand results in a large reduce in fill rate. Therefore we can 

conclude that MRP model is not robust for the forecast bias. 

4.2 Multiple-machine problem 

We extend to multiple machines cases. We set up several examples. First we develop a 

basic multiple-machine example to compare with other analytical results in order to 

demonstrate the validity of the models. Then we build the MRP and DRS models with 

different product types and workstation information. We also introduce several 
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constraints into the models to improve the performance, such as makespan, capacity and 

recourse constraints into MRP and CONWIP and recourse constraints into DRS model. 

As in the single-machine case, we also build MRP-based and DRS models for three 

demand scenarios (i.e. base scenario, over-estimated and under-estimated scenarios). 

4.2.1 Comparison between simulation models and analytical models 

Simulation is frequently used to validate the results obtained from analytical models. 

Since analytical models are usually more flexible and efficient than simulation models, 

they are beneficial alternatives. But analytical models are extremely complex because of 

stochastic operating environment for many problems. Hence validation of analytical 

models is important. We compare the simulation models with three analytical models in 

order to demonstrate the validity and usefulness of analytical models. The first is LPST, 

which was already referred to in section 3.4. The second analytical model is 

Manufacturing system Performance Analyzer (MPA). MPA is an open queuing network 

model of manufacturing system that is based on Whitt's (1983) Queuing Network 

Analyzer (QNA) and refined, adapted and extended it in several ways. It is developed by 

Meng and Heragu (2004). The third analytical tool is Rapid Analysis of Queuing Systems 

(RAQS), which is a software package for analyzing general queuing network models 

based on a two-moment framework, which is a Windows application developed at 

Oklahoma State's Center for Computer Integrated Manufacturing Enterprises (Kamath et 

al. 1995). 

In this section, we develop two multiple-machine examples. In both examples, the system 

includes multiple workstations and multiple products. In the first example, not all the 
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products need to be processed through every workstation. In the second example, all the 

products go through all the workstations. 

In the first example, there are four workstations. Workstation 1 contains only one 

machine. Workstations 2 and 4 contain two machines each. Workstation 3 contains six 

machines. Three products need to be processed in this system. The order inter-arrival 

time for each product is exponentially distributed. Table 29 shows the order information 

for each product. One period has 8 hours and the time unit is hour in Table 29. The 

process batch size is equal to the order size, which is constant in this case. 

Table 29: Products Input 

Mean Period Demand 

Mean time between dmd 

Std Dev time between dmd 
Process Batch Size 

1.8 
17.7778 

17.7778 
4 

2 
4 
4 

0.3333 
72.0072 
72.0072 
3 

In this system, the setup time and process time of each product in each workstation is 

exponentially distributed. Detailed data are shown in Tables 30 and 31. If the process 

time equals 0 in a workstation, it means that the product does not go through that 

workstation. For example, we can tell from Table 31 that product 3 is processed only in 

workstation 3 and the mean process time is 10 hours. 

Table 30: Setup Time (hours) Input -----PNl 4 10 0 I 0 
PN2 0 0 0 I 0 
PN3 0 0 010 

Table 31: Process Time (hours) Input -----
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PNI 
PN2 

PN3 

2 
o 
o 

5 
o 
o 

10 I 
1O! 
tol 

2 
2 

o 

Then we can develop the simulation models and analytical models to compare the results 

in order to demonstrate the validity of the models. Table 32 compares the machine 

utilization obtained via the simulation model and three analytical models. Table 33 

compares the cycle time (CT) and its standard deviation (CT STD). We find that the 

results compare very well, which is a sufficient validity of models. 

Part 1 

P~2 

Part 3 

Table 32: Comparison of Machine Utilization -----

208.12 

31.93 

48.36 

PC 1 67.51 % 67.50% 67.5P% 67.50% 

PC 2 84.42% 84.38% 84.4P% 84.38% 

PC 3 86.08% 86.11% 86.1P% 86.11% 

PC 4 47.51 % 47.50% 47.5b% 47.50% 

113.59 

29.88 

40.75 

Table 33: Comparison of Cycle Time 

209.82 

32.76 

49.22 

209.08 

31.88 

48.48 

109.45 

1 24.49 

37.29 

208.87 

31.75 

48.50 

115.98 

29.62 

40.78 

We extend the multiple-machine case to a more complex situation, in which there are 4 

workstations and 3 products. Each product must be processed at every workstation. 

Similarly, Table 34 shows the product order information. The order inter-arrival time is 

also exponentially distributed. 

Table 34: Product Input 
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Mean Period Demand 
Mean Time between Demand 

Std Dev Time between Demand 
Process Batch Size 

0.9 11 
35.55556 4~ 
35.55556 4~ 
4 6 

0.3333 
72.0072 
72.0072 
3 

Tables 35 and 36 show the setup time and process time, which are also exponentially 

distributed. 

PN2 

PN3 

PN2 

PN3 

4 

4 

2 
2 

Table 35: Setup Time Input 

10 
6 

20 
20 

Table 36: Process Time Input 

5 
1 

5 
10 

15 
20 

2 

4 

The machine utilization, cycle time and the standard deviation of cycle time are 

compared for the simulation and analytical models in Tables 37 and 38. We find that the 

results compare well once again demonstrating validity of the analytical models. 

Table 37: Comparison of Utilization -----PC 1 80.98% 80.97% 80.gp% 80.97% 
I 

PC2 90.13% 90.10% 90.~% 90.11% 

PC3 42.05% 42.06% 42.~ 42.06% 

PC4 89.72% 89.72% 89.70% 89.73% 

Table 38: Comparison of Cycle Time 
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Part 1 

Part 2; 

Part 3 

430.04 

458.95 

439.41 

233.88 

238.32 

239.50 

429.15 

464.15 

432.15 

426.87 

461.84 

429.76 

229.92 

235.24 

232.28 

4.2.2 Comparison between MRP-based and DRS systems 

415.95 

450.94 

418.94 

232.87 

238.12 

235.21 

In this system, also we have four workstations and three products. The first workstation 

has four machines and the others all have three machines each. Table 39 shows the 

product information. Here one period is one day (i.e. 24 hours) and time unit is hours. We 

can see that order inter arrival time is exponentially distributed. The order size is 

constant. All the three parts need to be processed by all the four workstations. Tables 40 

and 41 show the setup time and process time for each product in each workstation. All 

the times are exponentially distributed. 

Table 39: Product Information 

Mean time between dmd 

Std Dev time between dmd 
Order Size 

9 
9 
6 

Table 40: Setup Time Information 

PNI 5 6 

PN2 6 5 4
1 

PN3 4 6 41 

Table 41: Process Time Information 

11 

11 
6 

4 

5 

6 

--PNI 1.5 1 O~ 1 
PN2 1 1 0.5 
PN3 1 1 II 1.5 
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We develop the MRP-based and DRS models to compare the performance of the two 

systems. As before there are three scenarios in each system (base scenano, over-

estimated and under-estimated scenarios). 

4.2.2.1 DRS 

4.2.2.1.1 DRS 

We build basic DRS model under three scenarios (i.e. base scenario, over-estimated and 

under-estimated scenarios). The parameters (i.e. reorder point and reorder quantity) are as 

shown in Table 42. 

Table 42: ROP and ROQ for three parts 

Part 1 
Part2 
Part3 

190 
310 
190 

24 
32 
24 

In Tables 43 and 44, we show the results for the base scenario, in which the actual order 

inter arrival time follows exponential distribution. The performance measures in Table 43 

are explained below. 

• Inventory position: Represents the balance of on-hand inventory, backorder, and 

replenishment orders (i.e. inventory position = on-hand inventory -backorders + 

orders). 

• OH Inventory: Stands for on-hand inventory, which represents physical inventory 

in stock, hence can never be negative. 

• Backorder: The average number of orders waiting to be filled. 

59 



• Cycle time: The average time from when a job is released into the system until it 

reaches an inventory point at the end of the routing. 

• STD CT: Stands for standard deviation of cycle time. 

• Fill rate time: The fill rate (based on time) and represents the customer service 

level. 

Pard' 
Part2 

Part3 

200.97 
323.99 
200.97 

Table 43: Results of DRS model in base scenario 

66.98 
107.82 
85.37 

5.19 
6.73 
1.89 

200·y2 
215.98 

212.~4 

82.86 
86.44 
85.04 

Table 44: Utilization of DRS model in base scenario 

WC2 89.04% 
WC3 72.80% 
WC4 79.63% 

87.28% 
89.07% 
93.90% 

We find that the bottleneck resource (Workcenter 2) in this case is utilized 89.04%. 

Because the utilization is so high, we find that if the forecast error increases, the 

bottleneck resource utilization also increases significantly and the production line buildup 

begins to increase more. This occurs even if we only increase the forecast error by 10%. 

Tables 45 and 46 show the performance of the DRS and MRP models for the 10% under-

estimated forecast scenario, where the mean actual demand is 10% more than forecast 

demand. We find that: 
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• Inventory Position does not change significantly when compared to the base 

scenario. 

• On-hand inventory and fill rate decrease significantly, as expected. 

• Backorder and cycle time also increase dramatically. 

• Bottleneck resource utilization increases to 97.38%, which is rather high. We can 

reasonably conjecture that high bottleneck utilization causes a long waiting line in 

the system, making the cycle times long, backorder high and fill rate low. 

Pard 
Part2 

Part3 

201.ot 
324.01 
201.00 

Table 45: Results of DRS model in under-estimated scenario 

-83.67 
-117.31 
-38.14 

102.35 
147.63 
66.37 

389.23 1 
402.11 
400.461 

194.05 
194.84 
194.96 

Table 46: Utilization of DRS model in under-estimated scenario 

WC2 97.38% 
WC3 79.45% 
WC4 86.83% 

33.40% 
35.17% 
45.67% 

The results of over-estimated forecast scenario, in which the actual demand is 10% lower 

than forecast demand, are shown in Tables 47 and 48. We find that: 

• Inventory position is almost at the same level as in the base scenario 

• Cycle time decreases compared to the base scenario, resulting in higher on-hand 

inventory, lower backorder and higher fill rate 

• Bottleneck resource utilization decreases to 80.09%, which is more acceptable 

than in the base scenario 
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Part2 
Part3 

323.98 
200.98 

Table 47: Results of DRS model in over-estimated scenario 

168.93 
117.74 

0.25 

0.05 
67.95 

66.26 

Table 48: Utilization of DRS model in over-estimated scenario 

WCI 66.75% 
WC2 80.09% 
WC3 65.55% 
WC4 71.43% 

4.2.2.1.2 DRS with CONWIP constraint 

99.20% 

99.66% 

We add a CONWIP constraint to the basic DRS model where we use the average WIP 

level from the base scenario as a cap on the inventory. 

Table 49 shows the results for the base scenario with the CONWIP constraint. Here we 

have two parameters for cycle time. In this table, cycle time is the same as what we had 

in the basic model, and it represents the time between when a job is released until it 

reaches the end point of the production line. The column labeled as "CT 0" represents 

the cycle time plus the time the job waits outside the production line in the virtual queue 

when the current WIP level is greater than the WIP cap. From the results, we can see that 

the cycle time is reduced. However the cycle time plus the waiting time in the virtual 

queue increases, which explains the lower on-hand inventory level, higher backorder 

lever, and hence the lower fill rate compared to the basic DRS model in the base scenario. 

Table 49: Results of DRS model with CONWIP constraint added to the base scenario --------
62 



--------Part 1 . ( 200.99 

Part2 

Part3 

324.00 

201.00 

19.68 
95.34 

45.94 

35.43 
7.18 

21.28 

185.59 
199.97 

198.05 

163.47 
67.62 

!66.93 

272.05 
228.95 
283.85 

71.40% 
87.38% 
78.35% 

Table 50 shows the results for the under-estimated scenario (i.e. actual demand is 10% 

greater than the forecast demand). We find that cycle time plus the waiting time outside 

the production line increases dramatically which explains why the backorder level 

increases and fill rate decreases significantly. This is much worse when compared to 

basic DRS model. From the difference between cycle time and "CT 0", we can conclude 

that the production batches have a dramatic waiting time outside the production line in 

the virtual queue which results in a deterioration of the overall performance. The long 

external waiting times result from the CONWIP constraints, where we use the same WIP 

cap as in the basic scenario while the larger actual demand increases the number of 

production batches waiting outside the production line. We can conclude that the 

CONWIP cap must be chosen carefully. An inappropriate number can worsen the 

performance. 

Table SO: Results of DRS model with CONWIP in under-estimated scenario 

Part2 

Part3 

323.98 
200.98 

-74.63 
-7081.61 

100.44 

7081.72 
214.42 

215.35 
66.40 

65.58 
362.19 
12105.94 

37.23% 
0.22% 

We add the CONWIP constraint in the basic DRS model for the over-estimated scenario 

(i.e. actual demand is 10% lower than forecast demand). The result is shown in Table 51. 

We find that the results are similar to the basic model, which can be explained by the 

closeness of the cycle time and "CT 0" values. 
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Table 51: Results of DRS model with CONWIP in over-estimated scenario 

Partl 201.03 
Part2 324.04 
Part3 201.03 

104.13 

166.79 
115.75 

0.76 
0.33 
0.33 

4.2.2.1.3 DRS with recourse constraint 

156.28 

171.47 

168.76 

61.92 

66.25 
65.31 

161.57 
174.52 

174.42 

97.87% 
99.05% 
99.00% 

From the results of CONWIP constraint in the previous section, we find that CONWIP by 

itself is not effective in improving the performance. However, when it is used along with 

a recourse constraint, which means that additional capacity, for example a second shift, is 

added to the production line dynamically whenever there is an excessive number of jobs 

waiting outside the network. Because CONWIP cap represents a reasonable capacity of 

the production line, monitoring the number of waiting items outside the production line in 

the virtual queue could be an acceptable way to decide whether or not a second shift is 

needed. In our model, we set up a cap for the waiting items outside the production line, 

which could be a signal to trigger the second shift. When the number of the waiting items 

outside the production line is greater than the cap, a second shift is triggered. 

Tables 52-54 show the results for the base scenario, under-estimated scenario and over-

estimated scenario for the recourse constraint model. We find that for the base scenario 

and over-estimated scenario, the recourse constraint does not result in an obvious 

improvement when compared to the basic DRS model. This can be interpreted as follows. 

Even without the second shift, the basic DRS model already had a good performance. 

This means that the original capacity was already able to meet the demand and recourse 

is not necessary. In the under-estimated scenario, the backorder decreases and fill rate 
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increases dramatically compared to the basic model. So we can conclude that recourse 

based on CONWIP constraint is an effective way to check when the production line 

capacity cannot meet the production requirements. 

Table 52: Results of DRS model with recourse in base scenario 

Part2 
Part3 

323.99 
201.00 

113.43 
81.37 

1.88 
1.51 

194.58 
192.71 

66.90 
65.83 

209.96 
219.62 

93.71% 
94.05% 

Table 53: Results of DRS model with recourse in under-estimated scenario 

Partl 200.99 
Part2 323.98 
Part3201.01 

13.05 
62.98 
34.75 

17.28 
7.29 
9.37 

185.17 
197.38 
198.19 

~1.46 
66.07 

~.44 

256.19 
236.47 
277.83 

58.94% 
81.00% 
72.91% 

Table 54: Results of DRS model with recourse in over-estimated scenario 

Partl 
Part2 
Part3 

201.00 
324.03 
201.02 

4.2.2.2 MRP 

105.84 
168.01 
116.46 

0.22 
0.23 
0.11 

155.10 
171.05 
167.87 

~1.16 
66.51 

~.96 

158.38 
173.55 
171.85 

98.82% 
99.16% 
99.37% 

We now consider the MRP model and test the effect of updating frequency on the MRP 

model. We consider three different updating frequencies (i.e. update once each week, 

every two weeks, and every four weeks). We also introduce makespan, capacity, and 

recourse constraints into the MRP model. 
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4.2.2.2.1 MRP with one-week update period 

Tables 55-57 show the results for MRP with one-week updating frequency, including 

base, under-estimated and over-estimated scenarios. We compare the three scenarios and 

conclude that forecast error affects the performance of the MRP models. When the actual 

demand is higher than the forecast demand (i.e. under-estimated scenario), the cycle time 

and backorder increase dramatically, hence fill rate decreases dramatically. When the 

actual demand is lower than the forecast demand, the cycle time and backorder decrease, 

inventory increases, and hence fill rate improves. 

Table 55: Results of MRP model with one-week update in base scenario 

Part 1 
Part2 
Part3 

204.66 
325.21 
209.60 

66.56 
102.95 
90.12 

5.94 
8.31 
2.22 

206.81 
222.51 
219.50 

85.29 
89.10 
88.81 

86.05% 
87.22% 
93.77% 

Table 56: Results of MRP model with one-week update in under-estimated scenario 

Partl 198.35 
Part2 315.56 
Part3 204.40 

-128.91 
-191.13 
-69.85 

141.74 
210.87 
92.66 

445.1~ 
460.19 
457.29\ 

211.08 
212.94 
211.36 

23.32% 
24.15% 
36.17% 

Table 57: Results ofMRP model with one-week update in over-estimated scenario 

Part2 

Part3 

336.97 
215.29 

180.18 
131.18 

0.31 
0.08 67.75 

66 

99.04% 
99.62% 



4.2.2.2.2 MRP with two-week update period 

Tables 58-60 show the results for MRP with two-week updating frequency, including 

base, under-estimated and over-estimated scenarios. The effect of forecast error is similar 

as in the one-week update model. We can find that: 

• In the two-week update model, the inventory position and on-hand inventory is 

lower than in the one-week update model in the base scenario. However, the fill 

rate is also lower than in the one-week update model. So it is hard to conclude 

which one is better. 

• In the under-estimated scenario, the inventory is lower in the two-week update 

model than in the one-week scenario which indicates better performance. 

However the fill rate is also lower. 

• In the over-estimated scenario, the inventory is higher than in the one-week 

update model and the fill rate is similar. We can say that in the over-estimated 

scenario, one-week update model is better than the two-week update model. 

Part 1 
Part2 
Part3 

Partl 
Part2 
Part3 

Table 58: Results of MRP model with two-week update in base scenario 

200.76 
319.64 
206.46 

65.08 
100.89 
89.67 

6.74 
8.64 
2.11 

203.721 
218.54 

214.241 

83.03 
86.16 

84.54 

84.36% 
85.80% 

93.27% 

Table 59: Results of MRP model with two-week update in under-estimated scenario 

186.49 
298.32 

195.19 

-169.84 
-253.57 

-102.74 

180.01 
268.58 

120.74 
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/485.49 
500.53 

1496.58 

221.61 
222.59 
222.66 

18.70% 
18.94% 

29.67% 



Table 60: Results of MRP model with two-week update in over-estimated scenario 

Part2 
Part3 

342.48 

218.84 

185.19 

135.55 
0.33 
0.08 

4.2.2.2.3 MRP with four· week update period 

69.84 
67.80 

99.05% 
99.53% 

Tables 61-63 show the results for MRP with four-week updating frequency, including the 

base, under-estimated and over-estimated scenarios. The effect of forecast error is similar 

as in the one-week update model. A comparison between the four-week update model 

and the two-week update model yields similar observation as in the comparison between 

the two-week update and the one-week update model. 

PartI 
Part2 
Part3 

Partl 
Part2 
Part3 

Part 1 
Part2 
Part3 

Table 61: Results ofMRP model with four-week update in base scenario 

197.80 
315.16 
204.45 

63.17 
97.57 
88.27 

8.57 
12.07 
3.10 

~.05 
~17.48 
~13.56 

83.82 
86.69 
85.59 

Table 62: Results of MRP model with four-week update in under-estimated scenario 

167.75 
269.oI 
179.17 

-163.29 
-243.39 
-97.62 

172.55 
256.89 
114.47 

226.38 
227.24 
227.15 

Table 63: Results of MRP model with four-week update in over-estimated scenario 

225.16 
357.36 
224.64 

129.66 
200.17 
140.50 

0.39 
0.25 
0.14 

68 

~59.18 
175.04 

.70.68 

64.31 
68.42 
67.09 

81.54% 
82.69% 
91.45% 

17.76% 
17.54% 
29.48% 

98.46% 
99.05% 
99.31% 



4.2.2.2.4 MRP with Silver-Meal heuristic algorithm 

Now we introduce the Silver-Meal heuristic algorithm into the MRP model as a way of 

developing advanced planning optimization (APO) models, such as those used in 

industry. We assume the holding cost to be $1 per unit per day and the total set up time of 

a part type as the order cost for each part type. Table 64 shows the results for the base 

scenario. One more performance measure, namely the total number of orders in the 

simulation run, is included in Table 64. We calculate the average total cost (holding cost 

+ order cost) for the base MRP model and Silver-Meal augmented MRP model. The 

Silver-Meal MRP obtains a lower total cost, but at the expense of the fill rate when 

compared to the basic MRP model. 

Table 64: Results of MRP model with Silver_Meal algorithm in base scenario 

Part2 

Part3 

312.73 
203.31 

71.18 
66.61 

20.33 
6.31 

4.2.2.2.5 MRP with makespan constraint 

214.93 ! 

234.84 
106.33 
107.21 

75.34% 
85.64% 

7349.00 

4117.90 

When we release jobs into the production line, we follow the FIFO (first-in-first-out) rule 

in the basic MRP. In this subsection, we introduce the makespan constraint into the basic 

MRP model, which means that we determine the sequence in which to release jobs so as 

to minimize makespan. Part 3 has the highest priority to be released, part 2 is the second 

one and part 1 has the lowest priority. Table 65 shows the results for the MRP model with 

makespan constraint under the base scenario. 
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• Part 1 has a higher cycle time compared to the basic MRP model. This part has a 

higher backorder and lower fill rate, due to the low priority assigned to part 1. 

• Parts 2 and 3 have lower cycle time compared to the basic MRP model. These 

parts have lower backorder and higher fill rate, because parts 2 and 3 have a 

higher priority. 

Table 65: Results of MRP model with Makespan constraint in base scenario 

Part2 
Part3 

324.71 

209.47 

107.34 

94.80 

4.2.2.2.6 MRP with capacity constraint 

7.18 

1.63 
86.68 

84.78 

88.15% 
95.31% 

In the basic MRP model, capacity constraints are not considered. The implicit assumption 

is that the production line has infinite capacity. Because this assumption is not 

reasonable, we introduce capacity constraints into the basic MRP model, which is what 

we did with the CONWIP constraint in the DRS model. According to the WIP cap in the 

CONWIP DRS model, we set up an upper bound on capacity for each part type in the 

MRP model, which is calculated based on some specific proportion of CONWIP cap. For 

example, part 1 capacity is calculated by: 

1..1,1..2 and 1..3 represent the arrival rates of parts 1,2 and 3. 
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We add the MRP capacity constraint to the basic MRP model, considering all three 

scenarios (base, under-estimated and over-estimated scenarios) with three different 

updating frequencies. 

Tables 66-68 show the results for the three scenarios with the one-week update model. 

The comparison among the three scenarios is similar as in the basic MRP model. 

• In the base scenario, the capacity constraint results in a little shorter cycle time, 

hence a little higher inventory level, lower back order and a little higher fill rate 

compared with the basic model, which shows that the chosen capacity upper 

bound is effective. 

• In the under-estimated scenario, capacity constraint results in a much higher cycle 

time, hence much lower inventory, and higher backorder than the basic model. 

• In the over-estimated scenario, there is no obvious difference between the model 

Part2 
Part3 

Part2 
Part3 

with capacity constraint and the basic model. The capacity constraint does not 

have much of an effect. 

Table 66: Results of MRP model with capacity constraint and one-week update in base scenario 

325.64 
209.60 

104.85 
90.36 

8.19 
2.06 

88.19 

87.07 

87.56% 
94.29% 

Table 67: Results of MRP model with capacity constraint in under-estimated scenario 

315.34 
204.32 

-225.77 
-87.68 

245.94 
110.31 
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254.63 
254.17 

24.07% 
35.87% 



Table 68: Results of MRP model with capacity constraint in over-estimated scenario 

Part2 
Part3 

336.26 
215.45 

179.66 

131.73 
0.28 
0.05 

113.88 

1tO.50 
68.53 

67.61 

99.09% 

99.67% 

Tables 69-71 show the results for three scenarios in the two-week update model. The 

comparison among the three scenarios is similar as in the basic MRP model. The 

comparison between the basic model and the capacity constrained model is similar to that 

in the one-week update model comparison. 

Table 69: Results of MRP model with capacity constraint and two-week update in base scenario 

Partl 
Part2 

Part3 

200.72 

321.40 
206.69 

66.88 
106.72 
91.30 

5.89 
7.24 

1.90 

~00.32 
215.67 

~11.68 

80.99 
84.72 

82.86 

85.14% 
87.25% 
93.67% 

Table 70: Results of MRP model with capacity constraint and two-week update in under-estimated scenario 

Part2 
Part3 

271.19 
181.41 

-224.11 
-86.26 

236.12 
102.29 

186.52 

186.33 
15.56% 
26.59% 

Table 71: Results ofMRP model with capacity constraint and two-week update in over-estimated scenario 

Part2 

Part3 

342.46 
218.36 

185.90 

134.52 

0.25 

0.05 

72 

174.21 

1170.68 

68.15 
67.28 

99.11% 

99.69% 



Tables 72-74 show the results for all the three scenarios for the four-week update model. 

The comparison among the three scenarios is similar as in the basic MRP model. The 

comparison between the basic model and the capacity constrained model is similar to that 

in the one-week update model comparison. 

Table 72: Results of MRP model with capacity constraint and four-week update in base scenario 

Partl 
Part2 
Part3 

199.09 
314.71 

205.12 

66.25 
98.43 

90.23 

7.71 
11.17 
2.99 

I 199.83 
215.82 

I 211.42 

82.70 
87.08 

85.07 

83.39% 
83.47% 

91.59% 

Table 73: Results of MRP model with capacity constraint and four-week update in under-estimated scenario 

Part 1 
Part2 
Part3 

169.51 
271.19 
181.41 

-148.52 
-224.11 
-86.26 

156.97 
236.12 
102.29 

1434.52 
449.61 

1445.94 

185.45 
186.52 

186.33 

15.36% 

15.56% 
26.59% 

Table 74: Results of MRP model with capacity constraint and four-week update in over-estimated scenario 

Part2 
Part3 

357.79 
226.19 

202.30 

143.14 

4.2.2.2.7 MRP with recourse constraint 

0.39 

0.15 
173.40 

1169.16 

68.44 
66.57 

98.92% 
99.42% 

As in the DRS model, we introduce the recourse constraint into the basic MRP model. As 

discussed in the previous section, we use the capacity upper bound of each part type as 

the signal to trigger a second shift. Each day, we check the daily production release plan 

based on the basic MRP model. If the release plan is greater than the capacity upper 

bound, a second shift is triggered. Intuitively, the performance should improve. In this 
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case, we also build the model for all three scenanos with three different update 

frequencies. 

Tables 75-77 show the results for the three scenarIOS under a one-week updating 

frequency. The comparison among the three scenarios is similar as in the basic MRP 

model. 

• In the base scenario, the recourse constraint results in a slightly lower cycle time, 

hence slightly lower backorder, higher inventory and fill rate. 

• In the under-estimated scenario, recourse constraint results in a much lower cycle 

time, hence much lower backorder, higher inventory and fill rate. When the 

production requirements are more than the forecast, the recourse model is 

effective in reducing the cycle time. 

• In the over-estimated scenario, there is no obvious difference between the basic 

Part I 
Part2 

Part3 

model and the model with the recourse constraint. Because there is no excess 

production when actual demand is lower than forecast, the system seldom triggers 

the second shift. 

Table 75: Results of MRP model with recourse constraint and one-week update in base scenario 

207.07 
328.72 

211.53 

70.26 
106.85 

92.76 

5.05 
6.92 

1.79 

205.85 
221.38 

217.67 

83.59 
87.23 

86.40 

87.37% 
88.14% 

94.40% 

Table 76: Results of MRP model with recourse constraint and one-week update in under-estimated scenario 

Part 1 
Part2 

201.73 
320.77 

-111.11 
-166.29 

74 

124.73 
186.79 

426.24 
441.53 

180.99 24.69% 
182.14 24.90% 



Part3 206.96 ~55;86 79.17 I 437.23 182.18 37.54% 

Table 77: Results of MRP model with recourse constraint and one-week update in over-estimated scenario 

Part2 

Part3 

335.88 

215.42 

177.38 

131.11 
0.24 

0.05 

176.25 
171.80 

70.39 
67.86 

99.00% 
99.72% 

Tables 78-80 show the results for the three scenanos under two-week updating 

frequency. The comparison among the three scenarios is similar as in the basic MRP 

model. The comparison between the basic model and the recourse constraint model is 

similar to the one-week update model comparison. 

Table 78: Results of MRP model with recourse constraint and two-week update in base scenario 

Part2 
Part3 

326.11 

209.71 

108.47 

92.92 

7.80 

1.98 

217.95 

214.34 
86.51 

85.97 

87.31% 

93.67% 

Table 79: Results of MRP model with recourse constraint and two-week update in under-estimated scenario 

Part2 
Part3 

310.09 

201.44 

-121.64 

-30.89 
144.87 

57.61 

391.34 
386.93 

158.04 

158.36 

27.91% 
42.59% 

Table 80: Results of MRP model with recourse constraint and two-week update in over-estimated scenario 

Part2 
Part3 

341.90 

218.21 

183.90 

133.71 

75 

0.34 
0.06 

175.06 

171.78 
69.00 

67.20 

98.89% 

99.61% 



Tables 81-83 show the results for the three scenarios under four-week updating 

frequency. 

Table 81: Results ofMRP model with recourse constraint and four-week update in base scenario 

Partt 
Part2 
Part3 

203.08 
322.32 

207.66 

72.83 
110.91 

94.73 

5.64 
7.47 
2.17 

195.44 
211.67 

207.60 

79.06 
83.32 

81.87 

85.80% 
86.88% 

93.32% 

Table 82: Results of MRP model with recourse constraint and four-week update in under-estimated scenario 

Partl 
Part2 
Part3 

178.14 

288.37 
188.88 

-68.68 
-97.53 
-17.53 

85.43 
123.16 
46.91 

335.01 
350.77 
344.51 

144.21 
146.51 
145.86 

29.82% 
31.17% 
46.90% 

Table 83: Results of MRP model with recourse constraint and four-week update in over-estimated scenario 

Part2 
Part3 

356.47 
226.43 

4.2.3 Conclusions 

199.08 
142.99 

0.45 
0.09 

174.50 
170.33 

68.16 
66.51 

98.83% 
99.48% 

We summarize the comparison results for the multiple-machines case. We first compared 

the simulation results to those obtained via some analytical tools (i.e. MPA, RAQS and 

LPST) and they match well. This tells us that analytical tools are useful planning tools. 

Then we built the DRS and MRP models under different scenarios (i.e. base scenario, 

under-estimated scenario and over-estimated scenario). 
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We focus on two performance measures for the comparison, inventory position 

representing the cost, and fill rate representing customer service. Table 84 shows the 

aggregate results for the three parts for the base scenario under different policies. Here 

the MRP models are all based on one-week updating frequency. We find that: 

• CONWIP constraint model obtained lower average fill rate and higher average 

inventory level than the basic DRS model, while CONWIP and recourse 

constraints obtained the highest fill rate and relatively low inventory level among 

all the models. From this example, we can say that CONWIP is not necessarily an 

effective way to improve the performance, but an effective way to provide 

recourse constraints. 

• Compared to the basic MRP model, makes pan constraint does improve the 

performance by increasing the fill rate and decreasing the inventory. The capacity 

constraint improves the fill rate but with higher inventory. The recourse 

constraints results in higher fill rate and higher inventory. 

• Comparing all the models, the DRS with CONWIP and recourse constraints 

obtain the highest fill rate and relatively low inventory which is only higher than 

DRS basic model. Even the DRS basic model obtains a higher fill rate and lower 

inventory level than all the MRP models, which could be treated as a better 

performing model. 

Table 84: Results for the base scenario under different policies 

DRS 

DRSCONWIP 

DRS CONWIP Recourse 

MRP 

89.72% 

80.34% 

91.83% 

88.49% 

77 

218.77 

218.79 

218.79 

222.85 



MRP Makespan 

MRP Capacity 

MRP Recourse 

88.70% 

89.00% 

89.45% 

222.77 

223.05 

225.22 

Table 85 compares the results among basic DRS model and basic MRP models with 

different updating frequency. We find that: 

• In the base scenario, where the actual demand arrival rate follows a Poisson 

distribution, the DRS model obtains the highest fill rate and relatively low 

inventory level, which is only higher than the MRP model with a 4-week updating 

frequency. We find that the MRP model with a I-week updating frequency 

obtains the highest fill rate and inventory level. If we update more frequently, 

then the released plan can be adjusted to be closer to the actual demand. 

• In the under-estimated scenario, the fill rate in all the DRS and MRP models 

dropped dramatically because of the high bottleneck resource utilization. 

However, the DRS obtained the highest fill rate. A comparison among the MRP 

models with three different updating frequencies follows the same pattern as in 

the base scenario, but the scale is larger than in the base scenario. 

• In the over-estimated scenario, the fill rate in all the DRS and MRP models were 

rather high. The DRS model had the highest fill rate and lowest inventory, which 

indicates the best performance among all the models. When the MRP models with 

different updating frequencies are compared, we see the same pattern as in the 

base scenario for the fill rate, but the scale is smaller. However the inventory 

pattern is the opposite of fill rate. The MRP with I-week updating frequency 

resulted in the best performance among all the MRP models. 

78 



• Overall, the DRS model obtained better fill rate than MRP in the base and under-

estimated scenarios. DRS had better fill rate and inventory level than the MRP 

model in the over-estimated scenario. Among MRP models (base and under-

estimated scenarios), the I-week update frequency had the highest fill rate and 

inventory. In the over-estimated scenario, the I-week update frequency had the 

highest fill rate and lowest inventory. Thus update frequency affects the MRP 

performance along with the forecast error. 

Table 85: Results for basic DRS model and basic MRP models with different updating frequency 

MRP lwk 

MRP2wks 

MRP4wks 

88.49% 

87.21% 

84.50% 

222.85 

219.05 

216.20 

26.86% 

21.51% 

20.55% 

79 

216.48 

204.93 

18:1.62 

99.12% 

99.01% 

98.94% 

230.46 

234.05 

243.26 



CHAPTER 5 CONCLUSION 

In this thesis, we compare a relatively new production strategy, Dynamic Risk-based 

Scheduling (DRS) developed by Factory Physics Inc., with the traditional MRP-based 

strategies. 

We first provide a review of the literature on different production scheduling systems. 

Then we discuss the theoretical models of the DRS and MRP-based scheduling systems. 

Later on we discuss the development of the simulation models for different systems we 

compare. Then we design a set of experiments to compare the performance between 

different strategies under different situations. This is the main contribution of this thesis. 

In the experiment design part, we begin with a single-machine example. We compare the 

performance between MRP and DRS for varying levels of uncertainty in forecast demand 

(i.e. base scenario, under-estimated scenario and over-estimated scenario) and different 

levels of variability in the system (i.e. moderate variability and without variability). We 

find that: 

• In the system with moderate variability, the DRS model had better performance 

than the MRP model in terms of: 1) higher fill rate and lower inventory in the 

base scenario; 2) higher fill rate with slightly higher inventory in under-estimated 

scenario; 3) much lower inventory with slightly lower fill rate in over-estimated 

scenarIo. 
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• In the system without variability, the DRS model had better performance than the 

MRP model in terms of: 1) higher fill rate and much lower inventory in the base 

scenario; 2) much higher fill rate and slightly higher inventory in under-estimated 

scenario; 3) higher fill rate and much lower inventory in over-estimated scenario. 

In addition, the DRS model obtained similar performance under the three 

scenarios which tells us that DRS model is more robust to forecast error. 

When the experiment is extended to the multiple-machines case, we introduce more 

constraints into both the DRS and MRP models to improve their performance. The 

constraints are CONWIP, makespan, capacity, and recourse. We also test the 

performance of the MRP models under different updating frequencies. We find that: 

• CONWIP by itself is not an effective way to improve the system performance, but 

an effective way to obtain recourse constraints. 

• Introducing makes pan, capacity or recourse constraints into the basic MRP model 

does improve its performance, but the DRS model with CONWIP and recourse 

constraints yields better performance. 
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GLOSSARY OF TERMS 

MRP: Material Requiements Planning 

MPS: Master Production Schedule 

DRS: Dynamic Risk-based Scheduling 

MRP II: Manufacturing Resources Planning 

ERP: Enterprise Resource Planning 

APO: Advanced Planning Optimization 

JIT: Just-In-Time 

WIP: Work-In-Process 

CONWIP: Constant WIP 

ROP: Reorder Point 

ROQ: Reorder Quantity 

LPST: Lean Physics Support Tool 

MPA: Manufacturing systme Performace Analyzer 

RAQS: Rapid Analysis of Queueing Systems 
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