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ABSTRACT 

POLYNOMIAL APPROXIMATION METHOD FOR STOCHASTIC PROGRAMMING 

Dongxue Ma 

October 2nd, 2009 

Two stage stochastic programming is an important part in the whole area of stochastic pro­

gramming, and is widely spread in multiple disciplines, such as financial management, risk 

management, and logistics. The two stage stochastic programming is a natural extension 

of linear programming by incorporating uncertainty into the model. This thesis solves the 

two stage stochastic programming using a novel approach. For most two stage stochas­

tic programming model instances, both the objective function and constraints are convex 

but non-differentiable, e.g. piecewise-linear, and thereby solved by the first gradient-type 

methods. When encountering large scale problems. the performance of known methods, 

such as the stochastic decomposition (SO) and stochastic approximation (SA), is poor in 

practice. This thesis replaces the objective function and constraints with their polynomial 

approximations. That is becauce polynomial counterpart has the following benefits:first, 

the polynomial approximation will preserve the convexity; Second, the polynomial ap­

proximation will un~formly converge to the original objective/constraints with arbitrary ac­

curacy; and third, the polynomial approximation will not only provide good estimation on 

the original objectives/functions but also their gradients/sub-gradients. All these features 

enable us to apply convex optimization techniques for large scale problems. Hence, the 

thesis applies SAA, polynomial approximation method and then steepest descent method 

in combination to solve the large-scale problems effectively and efficiently. 
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CHAPTER 1 

INTRODUCTION 

1.1. THESIS STRUCTURE 

The thesis is organized in the following way. In Chapter 1, it is carefully demonstrated 

how to incorporate random variables into a linear program and the process of reaching a 

general formula of two stage stochastic programming. Considering the wide applications 

of stochastic programming, several classic stochastic models which adjusts to typical appli­

cation are also introduced. Thereafter, this thesis shows that the computational complexity 

is often a problem for the resulting modeL Actually, the model scale grows exponentially. 

Prior to presenting the detailed solution, a thorough literature review is conducted to sum­

marize articles most useful and classical approaches for stochastic programming. 

In Chapter 2, the thesis presents the typical model of two stage stochastic programming 

and its derivatives. The polynomial approximation is then constructed with mathematical 

proof to show the valued properties in both theory and practice. For a practical method, 

the thesis provides the necessary polynomial degree and the necessary number of replica­

tions required. In Chapter 3, a large scale resource distribution problem is solved and the 

numerical result is presented to conclude our research. 

1.2. MODELING UNCERTAINTY 

Optimization is an important tool for most industries. Airline companies use optimiza­

tion to schedule crews and aircraft. Investors use optimization to minimize cost and risk, 

which achieves a high rate of return. There is no doubt that optimization is quite critical in 

decision making. Optimization, also called mathematical programming, chooses the best 



solution from some set of feasible alternatives. A typical optimization problem should con­

tains a set of constraints and an objective which is often used as a quantitative measurement 

of the performance of the system under study. 

The first known optimization technique, steepest descent, which dates to Carl Friedrich 

Gauss. After World War II, the modem optimization techniques emerged by the introduc­

tion of linear programming by George Dantzig in the 1940s. Over the past several decades, 

linear programming has become a fundamental planning tool. It is widely applied in en­

gineering, business, economics, environmental studies and other disciplines. For example, 

the job assignment, transportation control, network volume control, resource allocation, 

and scheduling problems can be solved easily with the application of linear programming. 

The general form of all kinds of linear programming models can be written as follows: 

min {c'xIAx:s b} (1.1 ) 

where x represents the vector of variables (to be determined), while c and b are vectors of 

(known) coefficients and A is a matrix of coefficients. The expression to be maximized or 

minimized is called the objective function (c' x in this case). The equations Ax :S b are the 

constraints which specify a convex polyhedron over which the objective function is to be 

optimized. 

Nevertheless, linear programming has its own drawbacks and limitations. First of all, 

linear programming is applicable only to problems where the constraints and objective 

function are linear, i.e., where they can be expressed as equations that represent straight 

lines. In real life situations, when constraints or objective functions are not linear, this 

technique cannot be used. Secondly, the simplex method is a well-known method to solve 

linear programing problems most of the time. Although this algorithm is quite efficient in 

practice and can guarantee to find the global optimum if certain precautions against cycling 

are taken, it has poor worst-case behavior: it is possible to construct a linear programming 
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problem for which the simplex method takes a number of steps exponential in the problem 

size. 

In fact, for some time it was not known whether the linear programming problem was 

solvable in polynomial time. But with the introduction of the ellipsoid method by Leonid 

Khachiyan in 1979, this issue was solved. Although it is not a practical method, it provides 

insightful views on the possibilities of developing efficient polynomial algorithms by the 

interior point method. In 1984, N. Karmnkar proposed a new interior point projective 

method for linear programing which not only improved Khachiyan's theoretical worst-case 

polynomial bound. but also promised dramatic practical performance improvements over 

the simplex method. 

The third limitation of linear programming problems is the optimal solution may be­

come severely infeasible if the nominal data is slightly changed. The general form of linear 

programming model is provided earlier (1.1). If some coefficients of any constrain are 

slightly changed. then the optimal solution will become infeasible. This phenomenon has 

been demonstrated by studying PILLOT4 from the well-known NETLIB collection, see [4]. 

It is a linear programming with 1000 variables and 4LO constraints; One of the constraints 
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(#372) is 

aT x = l5.7908lx826 - 8.598819x827 - 1.88789x8281.3624l7x829 

1.526049x830 - 0.031883x849 - 28.725555x850 - 1O.792065x851 

0.19004x852 - 2.757176x853 - l2.290832x854 + 717 .562256x855 

0.057865x856 - 3.7854l7x857 -78.3066lx858 - 122. 163055x859 

6.46609x860 - 0.48371x861 - 0.615264x862 - 1.353783x863 

84.644257x864 - 1 22.459045x865 - 43.15593x866 - 1.7 I 2592x870 

0.401 597x871 +X880 - 0.946049x898 - 0.946049x916 2: b = 23.387405 

( 1.2) 

After doing some experiments, they found that quite small Gust 0.1 %) perturbations of 

"obviously uncertain" data coefficients can make the' "normal" optimal solution x* heavily 

infeasible and thus practically meaningless. 

Last but not least, linear programming problems assume that all model parameters are 

known with certainty. This is hardly true for real world problems. The most likely case 

is that we only know partial information. When some parameter is not known, the lin­

ear programming model actually becomes a stochastic programming model and traditional 

solutions become invalid. We mainly focus on introducing an approach based on a proba­

bilistic pattern of the uncertain data. In other words, this method considers the probabilities 

of the interested event and then defines the objectives and constraints of the corresponding 

mathematical model [27]. 

We demonstrate the typical stochastic programming model by incorporating uncer­

tainty in the form of linear programming. Various stochastic models are generated because 

of the specific demand of various industries. A set of classic and frequently used stochastic 

models with different constraints or objective functions will also be shown. Additionally, 
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by this example (1.1), we are able to show you that if we replace a certain number b with a 

uncertain variable ~, the complexity of the problem will grow exponentially. Furthermore 

only a few random variables may make the computational complexity of the model fall 

out of the capacity of the most powerful computer. The uncertainty could happen in A, c 

or b. That means, in reality, we could construct our model including random variables in 

any place of A, cor b. Since deterministic programming is prevalent, it may be tempting to 

suggest that random variables are replaced by their nominal statistics and hence solve the 

resulting problem with deterministic programming. Although this method might work in 

some situations, the solutions provided by this method are structurally different from those 

provided by stochastic programming models. To better understand the difference, please 

refer to an example provided in [30]. 

Example 1. Consider a simple linear programming problem: 

(1.3) 

where ~ is a random variable which subjects to Poisson distribution. 

In order to solve this model with uncertainty, we introduce another two variables, say 

YI, Y2, into the model. YI means the shortage for the constraint XI + X2 = ~ and Y2 is surplus 

regarding to a constantly changing~. Because of the introduction of new variables in 

constraints, the objective function should make a change correspondingly. In mathematical 

terms, this is called a penalty. In other words, the penalty is the cost of the introduction of 

new variables. Here we define q- as the unit cost of YI and q+ as the unit cost of Y2. Then 

a new model is generated after the new variables and unit costs are introduced. 

( 1.4) 

5 



Suppose ~ is a set of random variables. The number of elements in the set is K. Each one 

in the set can be represented as ~I, ~2' ... '~K which follow a Poisson distribution. If we 

enumerate possible outcomes with meaningful probability ~I' ~2' ... ,~b then the model 

can be rewritten as: 

K K 

min2xI + 3X2+ Eq-yi1Pi + Eq+y~Pi 
i=1 i=1 

subject to: XI +X2 + yl +y1 = ~I (l.5) 

2 2 ):2 
Xl +X2 +YI -Y2 = ':> 

3 3 ):3 
XI + X2 + YI - Y2 = ':> 

K K ):K 
XI +X2 +Yl -Y2 = ':> 

where Pi (X = k) = e~~k and A is the f\rrival rate of~. 

If we denote Q(XI,X2,~K) = min q+Y1 +q-y~, then the model above can be recon-

structed as: 

b'· k k _):k k - 1 K su ~ectto.xl+X2+Yl-Y2-':>' - ,"', (1.6) 

For convenience and notation simplicity, we denote that 

(1.7) 
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Then the final model can be rewritten as: 

min lE[G(x, 1;)] 

subject to:Ax :::; c, (1.8) 

x;::: 0 

where G(x,1;) : lR't- ---t lR is a convex function of x for any given 1; E (n, F, JP» which is a 

probability space, x E lR't-, A E lRmxn
, c E lR~. 

The most obvious merit of stochastic programming is that uncertainty is constructed 

explicitly as part of the model and hence is considered in the process of decision making. 

Stochastic programming uses random variables as representatives of uncertainty. Since 

the basic premise of stochastic programing is that the probability of random variables is 

known, the random variables can be generated by their underlying probability. In two stage 

stochastic programming the decision maker takes some action in the first stage, after which 

a random event occurs affecting the outcome of the first stage decision. A recourse decision 

continues to be made in the second stage that compensates for any bad effects that might 

have been incurred as a result of the first-stage decision. 

Model (1.8) is the general form of two stage stochastic linear programming problems, 

which have successful applications in portfolio management, risk management or revenue 

management[23]. For example, fleet management is one of the most critical and interesting 

problems in this area. The core of the fleet management problem includes managing fleets 

of equipment to satisfy customer requests as they evolve over time. The equipment repre­

sents a reusable resource, which serves customers (people or freight) who typically want 

to move from one location to the next. One of the random occurrences of fleet manage­

ment is that customer requests arrive randomly. Sometimes orders arrive within a narrow 

interval, while other times there are no requests. In addition, the time of transportation is 
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another random factor. We cannot predict what will happen during the movement of equip­

ment, especially over long distance. In actual applications, there may be other sources of 

randomness such as equipment failures. So the high-dimensionality of the decisions in­

volved has made fleet management a natural application for the techniques of stochastic 

programming. Although deterministic optimization models in transportation and logistics 

are often applied to the transportation and logistics problems, and the results are deemed 

"good enough" by decision-makers, stochastic optimization models can provide better so­

lutions after introducing random variables. 

However, the model optimizes an expected-value criterion and therefore the optimal 

solution is only an average. In selected applications, such as financial planning, decision 

makers often prefer modeling variance as a measurement of risk. Consider a situation: 

XYZ company needs to decide which stock to buy. The first stock has the same possibly 

of earning 1 dollar or losing 1 dollar per share with even chance. The second stock may 

make the company earn 1 million and I dollars or lose 1 million per share with the same 

possibility. The expectation of the first stock is $0 and the expectation of the second is 

greater than $0. According to the expected-value criterion, the company will choose the 

second stock. But in fact, it is quite dangerous for the company to invest on the second 

one at the risk of losing 1 million per share. This example tells us why it is necessary to 

investigate trade-offs between means and variances of costs (or profit). A model which 

integrates means and variance was introduced in [17] as a weighted mean-risk criterion. 

The general model formation can be stated as follows: 

min E[G(x,~)] + AVar[G(x,A)] 

subject to: Ax :::; c (1.9) 

x2::0 
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where Var(.) is a dispersion statistic and A is a non-negative weight. It is typically intended 

as a measure of the decision maker's aversion to objective function variability. However 

there is an unpleasant consequence about the model (l. 9) in that it is computationally in-

tractable for even the simplest stochastic programs ([ I D. In order to fix this problem, [2] 

defines the coherent measure of risk to preserve the convexity. In [2], it is presented the 

process of constructing a convexity preserved model, coherent measure of risk. Essentially, 

the purpose of replacing the variance by the coherent part is to preserve the convexity of 

(1.9) by defining a convex penalty function. 

In other applications, it might be more appropriate to accept the possibility of infeasi-

bility under some circumstances, provided the probability of this event is restricted below a 

given threshold. For example, in designing a call center, decision makers need to specify a 

time limitation. If the operation cannot pick up phones within the time limitation, the cus-

tomer service level will be harmed. In this case, the mathematical model may be built with 

probabilistic constraints. The formation of this model can be constructed as an extension 

of a deterministic linear programming model. The general form of probabilistic constraints 

can be constructed as follows: 

. , 
mmcx 
xEX 

subject to: P(Ax ~ b) 2: p ( l.1O) 

The model under these constraints is quite problematic because the constraints are not 

convex. There are exceptions. When P(Ax ~ b) follows Normal distribution, then the 

problem is convex; therefore, it can be solved by various methods. 

There is another model which is useful in various situations as well. For example. it is 

often applied in the portfolio selection with constraints on conditional value-at-risk (CVaR). 

9 



The formation is expressed as follows: 

min {f(x) IlE[G(x, ~)l ::; b} 
xEX 

0.11) 

Problems that can be solved but not fast enough for the solution to be useful are called in-

tractable. In computer science, polynomial time refers to the running time of an algorithm, 

that is, the number of computation steps a computer or an abstract machine requires to eval-

uate the algorithm. Polynomial time is a synonym for "tractable", "feasible", "efficient", 

or "fast". Actually this model is generated based on the previous one. Since constraints in 

(1.10) make the problem computationally intractable, we use expectation instead of proba-

bility in order to reduce the computational size. 

All the problem instances above may not be computationally tractable due to the ex-

ponentially growing problem scale. Let us consider the simplest instance, model (2.13). 

There are three elements in the set of ~, namely K = 3. For each ~, the arrival rate A 

equals to 5, 10, 10 respectively. The problem scale is equal to 1.35 x 104 variables (or 

constraints for its dual). Since the computational complexity of the model with uncertainty 

expands exponentially, if we increase the size of the decision variables or ~ in this case, the 

complexity of the problem will easily reach the limitation of supercomputer. 

To date, the fastest supercomputer is a system called "Roadrunner." This system is a 

Linux cluster which is capable of executing 12.8 G 0.28 x 1010) Floating Point Operation 

Per Second (FLOPS). When solving programs with n variables, the computer is actually 

solving a n x n Newton system of linear equations. With standard techniques, the cost will 

In mathematics and computer science, big 0 notation describes the limiting behavior of 

a function when the argument tends towards a particular value or infinity, usually in terms 

of simpler functions. Let f(x) and g(x) be two functions defined on some subset of the real 
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numbers. 

j(x) = O(g(x))x --+ 00 ( 1.12) 

if and only if, for sufficiently large values of x, f(x) is at most a constant times g(x) in 

absolute value. 

Certainly, when special structures, e.g. banded, and sparse, are identified, some factor­

ization method can be applied to significantly reduce the computational overhead. Typical 

linear programming model in commercial scale always lead to a sparse Newton system 

and, as a result, the modern supercomputers are capable of solving commercial linear pro­

gramming with 106 variables. Typical nonlinear convex programs, however, usually lead 

to a dense Newton system and the supercomputer "Roadrunner" is only capable of solving 

a nonlinear convex programming with 104 variables. Therefore, models with uncertainty 

would easily encounter the explosion of variables. We will introduce several prevailing 

solution techniques in section 1.3. 

1.3. LITERATURE REVIEW 

Uncertainty is an important element in decision-making problems. The data A and b 

(1.1) associated with a linear program are "uncertain" to some degree in most real world 

problems. In many models the uncertainty is ignored altogether. Ignoring uncertainty may 

lead to inferior or simply wrong decisions for some specific problems. There are a variety 

of ways in which the uncertainty can be formalized, and over the years various approaches 

to optimization under uncertainty were developed [28]. 

In this section, we are going to summarize the evolution of various techniques used 

to resolve problems with uncertainty. One easy way to solve problems with uncertainty 

is to replace uncertainty by nominal values (e.g., expected values) and solve the resulting 

deterministic model. However this method has been proven less effective than explicitly 
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integrating uncertainty into the model like stochastic programming ( [37], [27], [7] and 

references therein). Other classical approaches in operation research/management science 

for dealing with models with uncertainty are stochastic programming, robust optimization 

and probabilistic programming. Since robust optimization is based on totally different ideas 

from the other two, we do not consider this method in this thesis. 

The first stochastic program with recourse was formulated in [II] and the model was 

named as linear programming under uncertainty, i.e. the two stage stochastic programming 

with recourse. The decision variables are partitioned into two sets. The first is that of 

variables that are decided prior to the realization of uncertain events. The second is the set 

of recourse variables which represent the optimal solution corresponding to the first stage 

decision and realized uncertainty. Other penalty methods are the Scenario optimization and 

the Entropic Penalty methods ( [3], [26]). It is fair to say that stochastic programming solves 

a relaxation of the constraints ( [18] and the references therein). All of the dominating 

penalty approaches cannot guarantee to recover original linear programming constraints 

but only to solve the relaxation of the constraints. The essential components of the typical 

stochastic programming model are ( [37]): 

(I) A decision vector that must satisfy certain constraints. 

(2) A random variable ~ whose value will only be observed after the decision has been 

made. 

(3) An evaluation (cost, possibly) of the decision in terms of the observed outcome. 

The decision process involves a choice of a decision vector x, then ~ occurs and is observed. 

Finally a recourse action y is selected so as to satisfy the stochastic constraints. Since the 

decision y is completely determined by the selection of a given x and the occurrence of some 

~, the only real decision is the choice of x. The actual value of the decision is determined 

as soon as x and ~ are known, even though determining this value involves solving a linear 

program [32]. In mathematical terms, the general formulation of the second stage stochastic 
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programming is expressed as follow [6]: 

min {c'x+lE[minq'y(~)]} 

subject to: Ax ~ b, 

Tx+ Wy(~) = h(~) 

x 2: O,y(~) 2: 0 

(1.13) 

where c, T, q, h(~) are necessary coefficients with corresponding dimensions and y(~) is 

called the second stage decision which is a function of x and~. Under proper assumption, 

lE[minq'y(~)l is convex of x for a given~. If we compare the solutions of stochastic pro­

gramming with its deterministic counterpart, we can find that the solution from the stochas­

tic program is well- hedged, building in some flexibility to meet the uncertain demand in 

the second stage. A second important observation from stochastic programming models is 

that the sequencing of decisions and observations is important. In constructing a stochastic 

programming model, it is not enough just to specify the decision variables. The modeller 

must also construct the model in such a way that prevents decisions that anticipate future 

uncertain events. A third point about the difference between stochastic and deterministic 

model is that the objective function does not account for the variation in outcomes. The 

model minimizes an expected cost, and its optimal policy is given under each scenario. 

And the solution might not be the best for some scenarios. 

Two stage stochastic programming can also be extended into multi-stages. In the multi­

stage stochastic programming, the uncertain parameters are revealed gradually over time. 

Then each stage (except the first stage) will contain some new uncertain parameters fol­

lowed by the decision of previous stages. 

As the applications of stochastic programming are widely spread, a new modelling 

. approach using chance constraints is developed in parallel with the stochastic programming 
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with recourse since the 1950s ( [9], [10], [311, [35]). This approach addresses the problems 

of uncertainty by relaxing constraints with certain probability. It is also called probabilistic 

programming. The basic formulation of probabilistic programming is modeled as follows: 

min {f(x) IJlD(gj(x,~) :s: 0) > 1 - a, j = 1,," ,m} (1.14) 

Here, x and ~ are decision and random vectors,respectively. a is a probability measure 

which typically ranges within [0, 0.10]. gj(x,~) :s: 0 refers to a finite system of inequalities. 

These constraints do not require that the decisions are feasible for (almost) every outcome 

of the random parameters, but require feasibility with at least some specified probability. 

Many people find this method very appealing, but in most applications (although not all) it 

is questionable either from the modeling perspective or from the technical angle. In model­

ing, there is little guidance for what probability levels a should be, because no quantitative 

assessment is being made of the consequence of having gj(x,~) :s: o. 

There are technical difficulties of dealing with chance-constraints as well. Not sur­

prisingly, a general solution method for chance constrained programming does not exist. 

There are multiple reasons that the probabilistic programming is difficult to solve. First, 

it becomes too costly to evaluate whether or not a given constraint is satisfied at a given 

point x. Second, the feasible set of constraints cannot always preserve the convexity even 

when g}(x,~) is affine. Therefore, the model under this constraint is highly problematic. 

When the distribution of ~ is logarithmically concave, however, the feasible set of a chance 

constraint of an affine function is convex ([20], [24]) and the model 0.14) can be rewritten 

into a quadratic conic programming and solved by interior point methods. 

Different from other stochastic programs, those with chance constraints need two kinds 

of approximations: first, the distribution of the random parameter is almost never known 

exactly and has to be estimated from a large amount of historical data. Secondly, even a 

given multivariate distribution (such as multivariate normal) cannot be calculated exactly 
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in general but has to be approximated by simulations or bounding arguments. Both types of 

imprecision motivate the discussion of stability in programs with chance constraints. There 

are numerous applications of chance constrained programming such as energy production, 

finance and transportation( [25]). 

The choice of solution methods strongly depends on how random and decision variables 

interact in the constraint model. The problem scale of two stage stochastic programs (l.8) 

is quite large, and expectation function can not be calculated exactly for most cases. If the 

number of possible scenarios of ~ an number of variables are not large enough, (1.8) can be 

rewritten into an equivalent linear programming model ([ 18],[6]). Obviously, this method 

is not tractable for realistic problems with large numbers of scenarios. 

Since this class of problems are typically very large in scale, many researches have been 

focused on developing algorithms that exploit the problem structure, hoping to decompose 

large problems into smaller more tractable components. Due to large number of scenarios, 

proper sampling based methods are employed. Specifically, the external sampling method 

and the internal sampling method are employed. The external sampling method estimates 

the objective function by Monte Carlo simulation and the internal sampling method esti­

mates the gradientlsubgradient of the objective. The external sampling method typically 

takes one sample before applying a mathematical programming method and the internal 

sampling method updates the estimation from iteration to iteration. Many algorithms have 

been developed to take repeated samples during the course of the algorithm. Details of the 

convergence properties of the external and internal sampling methods can be found in [19] 

and [32]. A method such as sample average approximation belongs to the class of external 

sampling method, while stochastic approximation and stochastic decomposition are both 

in the class of internal sampling method. 
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Our approximation method is an external sampling method because we use Monte 

Carlo sampling to estimate the objective and thereby apply the polynomial approxima­

tion on the simulation data. The resulting model, however, is different from the traditional 

external sampling approaches. Our model will be a convex optimization problem with 

polynomial constraints/objective which is highly tractable for most commercial solvers. 

Furthermore, our polynomial approximation can achieve arbitrary accuracy uniformly. The 

procedure is fundamentally based on the properties of Bernstein Polynomial, such as shape­

preserving ([21 D. 

1.4. OBJECTIVE 

The goal of the thesis is to present a novel combination of methods to solve two stage 

stochastic programs in large scale. First of all, Monte Carlo based sample average algorithm 

is applied to simulate the objective function. Secondly, Bernstein polynomial is used to 

approximate the simulation data. In the end, gradient descent method is applied to solve 

the resulting Bernstein polynomial approximation. 

The most important part of the proposed methodology is to obtain convex polynomial 

approximations with arbitrary accuracy uniformally. Prior to introducing Bernstein polyno­

mial approximation, we will make a review of all available sampling method such as SAA, 

SA and SD. Numerical results of SAA in different scenarios will be presented in chapter 

3. After we get Bernstein polynomial approximation, gradient descent method is imple­

mented in order to solve the tractable convex function. The complete theoretical proof of 

this algorithm is available in chapter 2. 

In order to obtain an arbitrary approximation, we need to determine the necessary de­

gree for each approximation polynomial. By Weierstrass theorem and our finding, the 

polynomial with higher degree will yield better approximation to to the original function. 

However, it may incur bad effects as well such as consuming more time and large model 
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scale. The result is promising in both theory and practice. We employ a specific example 

to demonstrate how to calculate the reasonably small necessary degree in chapter 3. 

Lastly, we need to show the advantage of our approach against the prevailing Sample 

Average Approximation (SAA) method. We show that the our approximation procedure 

will deliver outstanding numerical performance and converge to optimal solution reason­

ably fast. 
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CHAPTER 2 

MODEL 

In this part we will carefully consider stochastic programming optimization problem in 

this form: 

min {f{x} := lE[G(x,~)]} 
xEX 

(2.1 ) 

Here X is a finite subset of]Rn such that X = {xlgj(x) :s; 0,) = 1,··· ,m}, G(x,~)is a real 

valued measurable function of two (vector) variables x and~. ~ is a random vector in ]Rs 

whose distribution is known denoted as P. lE[ G(x,~) J = J G(x, ~)dP(~) is the corresponding 

expected value. It follows that the function f (.) is convex and has finite valued on X. It is 

typically impossible to calculate the expected value lEf(x,~) in a closed form [34]. 

There are some basic properties of the model (2.1). First, the objective function lE[G(x,~) J 

is convex. Second, when the distribution of ~ is discrete and G(x,~) is piecewise convex 

linear, then lE[ G(x,~) J is a piecewise linear function as well. For piecewise linear func­

tions, we can use its equivalent linear programming model presented in both [5] and [14] 

as a substitute. If the number of variables is limited and the number of constraints are huge, 

we can apply the cutting plane method to solve it. 

There are other methods for it as well. SAA is an approach for solving stochastic 

problems by using Monte Carlo simulation. The SAA method sample certain amount of 

representing scenarios and solves the reduced problems. The asymptotic optimality and 

convergence are proved in [33]. In this technique the expected function of the stochastic 

problem is approximated by a sample average estimate derived from a random sample. 

The reSUlting sample average approximating problem is then solved by other optimization 
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approaches. The process is repeated with different samples to obtain candidate solutions 

along with statistical estimates of their optimality gaps until a stopping criterion is satisfied. 

SAA is a valued method and the idea of using SAA for solving stochastic programming 

problems is applied by various researchers to numerous stochastic problem ([15] ). From 

theoretical studies and numerical experiment results, SAA method prove itself reasonably 

efficient for solving certain classes of two stage stochastic problems integrated with a good 

deterministic algorithm ([ 12]). Moreover, SAA is also applied to solve model expressed as 

follows: 

min {j(x)IIE[G(x,~)l S; b} (2.2) 

which is a typical mathematical model raised from the portfolio selection with constraints 

on conditional value-at-risk ([36]). Another class of problems that SAA works well is the 

probabilistic problem or chance constrained problem ([16]). 

The procedures of applying SAA are fairly simple. Suppose we generate an independent 

identically distributed random (iid) sample ~ I, ... , ~N of N realizations of the considered 

random vector; hence, we can estimate the expected value function f(x) by the sample 

average as follows: 
A 1 N . 
fN(X) := - E F(x,~J) 

N j=l 

Consequently, we change the original problem into a deterministic problem this way: 

(2.3) 

(2.4) 

However, it should be noticed that SAA is not an algorithm, the obtained SAA problem still 

has to be solved by an appropriate numerical procedure. 

In addition to SAA method, there are other methods such as SA and SD method devel-

oped to solve stochastic programming. Different from SAA method as an external sampling 
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method, these two methods are internal sampling methods. Comparing with external sam­

pling methods, internal sampling methods apply sampling during each iteration to estimate 

the gradient and bounds. Practically, SD method's performance is not stable due to possible 

bad estimations on gradients. And SA is a crude sub-gradient method which often performs 

poorly in practice. 

SD method decomposes the stochastic elements of a problem into the deterministic data 

in a manner that is reminiscent of the separation of the integer variable from the continuous 

variables in mixed integer programming under Benders' decomposition ([29]). However, 

unlike Bender's decomposition, SD combines successive approximation methods of math­

ematical programming with sampling approaches commonly adopted in the statistical liter­

ature. The manner in which SD uses to sample data makes this method extremely flexible 

in its ability to accommodate various representations of uncertainty. SA is the stochastic 

version of gradient type method which is crude in practice. 

All of these methods have their own problems respectively, particularly when the prob­

lem scale grows exponentially. SAA method actually reduces the original problem down to 

make the model computationally tractable. The optimal solution is a random variable and 

its interval estimation is an on-going research topic. SA and SD methods require evaluating 

the subgradient through sampling. In practice, the estimated subgradient may actually pen­

etrate the supporting hyperplane. In addition, SA method appears more likely to be slow 

in convergence. If the model is simple recourse, it becomes computationally efficient([7], 

[13]); however, such simple recourse model rarely appears in business decisions. 

This thesis applied a polynomial approximation approach to solve two stage stochas­

tic programming model. The demand of approximating the objective by polynomial is 

from the tractability issue. We need to evaluate the gradient/sub-gradient or even Hessian 

accurately and efficiently in order to solve the convex programming, no matter with dif­

ferentiable or non-differentiable constraints. Due to the numerous realizations, sampling 
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methods are widely applied in estimating the gradient/sub-gradient. On the other hand, the 

polynomial is a transparent function and its derivatives can be easily evaluated. When for 

any ~ and a large n, 

(2.5) 

where Pn(x) = L~I aiJ and n is called the degree if an i- O. The numerical properties of 

Pn(x) are expected to be consistent with f(x). The idea is not new and there have been 

several approaches being developed, such as the least square, least norm approximation, 

and the interpolation. There is another polynomial approximation method which are based 

on Bernstein polynomials of the objective function. It has been proven in [21] that us­

ing Bernstein polynomials can generate a better approximation than least square method. 

The main difference between these approaches exists in the way of choosing non-negative 

multiples and component functions. However, these methods except Bernstein polynomial 

approximation are not useful for convex programs because of their poor performance on 

approximating the derivatives. Although the least square method can provide us a polyno­

mial approximation function, the result is not satisfactory. Least square method can only 

guarantee the approximation of each point is controlled within the deviation of € from the 

original value. The estimation on gradient/subgradient is poor and increasing the degree of 

polynomial will worsen the problem. 

For convex problems, a qualified polynomial approximation should be able to 

(1) Preserve the convexity of the objective and constraints. 

(2) Arbitrary accuracy for the function,its gradient/sub-gradient and Hessian (if twice 

differentiable) 

(3) Uniform convergence for the sequence of polynomials by degrees on a closed 

interval. 
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Except the requirements listed above, the arbitrary accuracy polynomial should be con-

structed within a reasonably finite degree at a given e > 0, denoted by M(e). 

In some applications, lE[G(x, 1;)] might be estimated by Monte Carlo, like ~ E~, g(x, 1;i) 

where N is the number of the replications. In this case, we need to show that our approxi-

mation is still valid. What's more, the number of replications N and the necessary degree 

M(e) should be determined at a given e. Afterwards, we can transform the objective func-

tion into a polynomial approximation function and apply convex optimization techniques. 

Consider a convex function f(x) : [a,b]---+ lR on a closed interval [a,b], we can make 

an affine change of variable to transform [a,b] onto [0,1]. Then we have the following 

definitions and theorems: 

Definition 1. The Bernstein polynomial of degree n are defined by 

(2.6) 

for i = 0, 1",' ,n, where 

( 
n) n! 
j -j!(n-j)! 

It is also known that if f(x) is convex, so is its Bernstein polynomial, 

Bn(f;x) = t ( x ) x}(l-xt-} fUln), 
}=o y 

(2.7) 

for any n = 0, 1,2,···. 

Lemma 1. Given a continuous function f(x) : [0,1]---+ lR and any e > 0, there exists an 

sup If(x) I 
integer M(e) = E82 such that when n 2: M(E) 

If(x) -Bn(f;x)1 :::; E, 
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\Ix E [0, 1] where o( E, f(·)) > ° is determined by the uniform continuity. 

Note that n is the degree ofthe Bernstein polynomials which must satisfy the following 

inequality. 

(2.8) 

sup If(x) I 
where M(E) = and 0 is determined by the property of uniform continuous (see 

E02 

[22]). We will show the calculation of M(E) in Chapter 3 for an example in Logistics. 

Lemma 2. If f(x) is twice continuously differentiable, then B~(f;x),B"(f;x) converge 

uniformly to J'(x),J"(x) respectively. 

According to [21], the basic idea of Bernstein polynomial approximation method can 

be summarized as follows: Suppose f(x) is the objective function convex on a finite in-

terval [a,b] that needs to be approximated. And 'Vo(x) , 'VI (x), 'V2(X) , ... , are a sequence of 

functions which should be convex on [0, 1]. We may use functions in this form: 

n 

q,n(x) = r. c j'Vj (x), c j 2:: ° 
j=O 

(2.9) 

to approximate f(x). q,(x) still preserves convexity since we just sum up non-negative 

multiples of the component functions 'Vj(x). 

Theorem 1. There exists a sequence of component functions, 

each convex on [0,1], such that any function f(x) which is convex on [0,1] may be ap-

proximated with arbitrary accuracy on [0, 1] by the sum of nonnegative mUltiples of the 

component functions. 

The proof is provided in [21] and [22]. Based on it, we develop our procedure to 

construct the polynomial approximation. 
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Procedure 1. Since the decision variable x = (XI, . .. ,xn )', we need to construct a non-

negative linear combination of convex polynomials for every component Xi, i = 1, ... , n. 

First, we choose e + 1 distinct x?,xl, ... ,xi E [ai,bi],x? = ai,xf = bi,n 2: M(E/n). 

(_1)k [XI - ai ] k ( n - j ) 

(
5) [xl -ai]j~j bi-

a
; k 

'V j Xi = -- L. --:----,--,---------,--, 2 ~ j ~ n 
bi - ai k=O (k + j) (k + j - 1) 

(2.10) 

"'I (xf) = xfsign[lE(g;( ai,~))], 'Vo(xJ) = sign[lE(g( ai'~))], s = 0, ... , e (2.11) 

Then, we approximate lE[g;(xi,~)l (the ilh component of E7=llE(gi(Xi'~))) on [ai,bi] by 

(2.12). For any E > 0, 
M;{E/n) 

PM; (E/n) (Xi) = E c/"'j(x;) 
j=o 

(2.12) 

where c{,i = 1, ... ,n, j = O, ... ,Mi(E/n) are the corresponding nonnegative coefficients 

for the polynomial. cf is an optimal solution from the norm approximation model (2.13). 

b · . 2 M;{E/n) > ° su 'lect to. ci , ... , ci _ (2.13) 

where we choose W > O,Mi(E/n) which is large enough to approximate lE[gi(xi,~)l within 

E/n degree of Bernstein polynomial. Model (2.13) is a norm approximation problem in [8J 

which can be solved by multiple polynomial algorithms. In realistic problems, x?, xl, ... , xi E 

[ai, bi] are the points we have special interest and they are regarded as perturbed values of 

some differentiable convex function. We must select these points with good reasons. For 

example, when integer constraints exist, we will study the integer points and their neigh­

borhoods. Therefore, x?, xl ' ... ,xi E [ai, bd are likely to be corresponding integer points 

and our approximation should be calculated accordingly afterwards. 
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For most realistic problems, evaluating the objective L~~ I lE [gi (Xi ,~) 1 is difficult. For 

example, when g(x, s) = min{ x, ~}, this function can not be precisely evaluated. We obtain 

the function value component wise by Monte Carlo simulation with Ni for the ith component 

which can be generally expressed in this way: 

(2.14) 

There is an unpleasant consequence that the simulated data may lose convexity. The remedy 

is to simulate the function with large enough number of replications and thereby apply 

the previously introduced procedure, we can still have nonnegative linear combination of 

convex polynomials. 

After applying Bernstein polynomial approximation, the original model is transformed 

into 

min Pn(x) 

subject to: Ax :S b 

(2.15) 

where Pn(x) is the resulting polynomial approximation. Since its gradientlsubgradient can 

be evaluated, we will apply the first order gradient method on it. 

Suppose that we are at the point x = x, where AX = b, i.e., x is a feasible point. Then 

we have 

f(x + d) ~ f(x) + 'V f(xf d (2.16) 

for d "small". In order to choose the direction d and compute the next point 

x' =x+cid (2.17) 

25 



for some stepsize a, we will solve the following direction-finding problem: 

min f(x) + "V f(x) T (x - x) 

subject to: Ax = b 

!Ix-xii s 1, (2.18) 

Note that Ad = 0 ensures that A(x + ad) = Ax = b for any a. Also note that the constraint 

"dT Id S 1" says that d must lie in the Euclidean unit ball B, define as: 

(2.19) 

where Q is a given symmetric and positive-definite matrix. This lead to the more general 

direction-finding problem: . 

min "V f(x) T d 

subject to: Ad = 0 

dT Qd S 1. 

The projected steepest descent algorithm is: 

(1) Step I. x satisfies Ax = b. Compute "V f(x). 
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(2) Step 2. Solve the direction-finding problem (DF P): 

d = argminimumVf(xf d 

subject to: Ad = 0 

dT Qd -::;. 1, 

If V f(x)Td = 0, stop. In this case, x is a Karush-Kuhn-Tucher point. 

(2.21) 

(3) Step 3. Solve mina f(x + rid) for the stepsize a, perhaps chosen by an exact or 

inexact linesearch. 

(4) Step 4. Set X f- x+ ad. Go to Step 1. 

By steepest descent method, we can get the optimal value and solutions of the resulting 

Bernstein polynomial approximation; therefore, the original two stage stochastic program­

ming can be solved completely. A realistic logistics problem will be solved by the proposed 

methodology and numerical results will be presented in chapter 3. 

Comparing with gradient descent method as the first order gradient method, Newton 

method as the second order gradient method can be more effective to find a "better" direc­

tion in each step size; therefore, reach the optimal point more quickly. It is tempting to 

apply Newton method to the resulting Bernstein polynomials. In order to apply the proce­

dure, the original function needs to be differentiable. Consider the significant proportion of 

two stage stochastic programming's objectives are piecewise linear and non-differentiable, 

although the estimation on subgradient is correct, the estimation on Hessian will be unsta­

ble and unbounded. Therefore, we can apply the second order algorithms by applying our 

procedure only if the original function is continuously differentiable. 
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CHAPTER 3 

NUMERICAL STUDY 

In this chapter, we will present a numerical study using the proposed methodology for 

solving a real-world problem. We have the following problem instance, 

60 

min - EE[fimin (Xi'~i)l 
i=l 

subject to: Ax ~ c 

x:?: 0, (3.1) 

where ~ is a60-dimensional Poisson random vector. A is a 10 x 60 matrix. c = (400"" ,400)' 

is a lOx 1 vector and f is a 60 x 1 nonnegative vector. We summarize the matrix A and the 

other settings on c,J, ~ in table 3.1, 

The problem (3.1) can be described as the following applications. 

Example 2. Network Revenue Management: Suppose we have 10 resources that 

means flight legs in the airline application and 60 products. A production consists of a seat 

on one or several flight legs in combination with a fare class and departure date. Each 

resource has the same capacity 400, and the network capacity is given by the correspond-

ing vector c = (400"" ,400)' which is a 10 x I vector. Every product has an associated 

revenue f. By defining aij = 1 if resource i is used by product j, and aij = 0 otherwise, we 

obtain the incidence matrix A = (aij) E 0, I mxn. We assumes that each product uses at most 

one unit of any resource, so aij is either 0 or 1. E[~l means the arrival rate of a customer 

in any time period. 
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Variables RI R2 R3 R4 R5 R6 R7 R8 R9 RIO lE(~)(units) 
XI ($300), X31 ($800) J 40(1:3) 
X2 ($300), X32($800) J 40(1 :3) 
X3 ($300), X33 ($800) J 40(1:3) 
x4($300), X34($800) J 40(1:3) 
xs($300), x3s($800) J 40(1:3) 
x6($300), X36($800) J 40(1:3) 
X7 ($300), X37($800) J 40(1:3) 
x8($300), X38($800) J 40(1:3) 
x9($300), X39($800) J 40(1:3) 
xlO($300), x4o($800) J 40(1:3) 
XII ($500), X4I ($100) J J 100(1:3) 
XI2($500), x42($100) J J 100(1 :3) 
x13($500), x43($100) J J 100(1:3) 
XI4($500), X44($1 00) J J 100(1:3) 
XI5 ($500), X4S ($100) J J 100(1 :3) 
XI6($500), x46($100) J J 100(1:3) 
x17($500), x47($100) J J 100(1 :3) 
XI8($500), X48 ($ 100) J J 100( 1:3) 
XI9($500), x49($100) J J 100(1:3) 
x2o($500), xso($100) J J 100(1:3) 
X21 ($500), XSI ($100) J J 100(1:3) 
X22 ($500), XS2 ($ 100) J J 100(1:3) 
X23 ($500), XS3 ($100) J J 100(1 :3) 
X24($500), x54($100) J J 100(1 :3) 
X25 ($500), X55 ($ 100) J J 100(1 :3) 
X26($500), xS6($100) J J 100(1:3) 
x27($500), X57($ 100) J J 100(1:3) 
X28($500), X58 ($ 100) J J 100(1 :3) 
X29($500), x50($100) J J 100(1:3) 
x30($500), x6o($1 00) J J 100(1 :3) 

Availability (units) 400 400 400 400 400 400 400 400 400 400 

Table 3.1. Network Structure and Constraints for the logistic example 

Example 3. Network Resource Allocation: Various applications are raisedfrom net-

work resource allocation, such as transportation industry. Suppose there are 10 locations 

in the network, the lOx 1 vector represents the upper boundary of available resource of 

each location. The availability of the path connected with each location is represented by 

A = (aij) EO, Imxn, and aij is either 0 or I. There are 60 customers who will place orders 

at the arrival rate oflE[~l. f is the unit cost for each customer. 
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Example 4. Production Control: Two stage stochastic model are also often employed 

in production control. For instance, there are 60 products which are manufacted through 

certain procedures. All of the available procedures are treated as resources; hence, there 

are 10 resources and the upper boundary of each resource is 400. We denote resources by 

c = (400,.·· ,400)', and A = (aU) EO, I mxn represents the necessary procedures for each 

product. lE[~J means the arrival rate of the yield. f is the unit cost for each product. 

First, we apply SAA method to this problem. It is solved 5 times with different sample 

sizes. The performance of each scenario is listed in the table 3.2. 

Sample Size Optimal Value Standard Deviation of Results 
10 4. I 723e+05 30S.6 
50 4. 15S2e+05 129.3 
100 4. 153ge+05 101.1 
ISO 4. 1542e+05 75.0 
200 4. I 530e+05 6S.9 

Table 3.2. Results of optimal value and standard deviation by SAA approach 

Now we demonstrate the numerical result of the proposed method. First, determining 

the necessary degree for every approximation polynomial is a critical step. We show nu-

merical result in determining the necessary degree and the theoretical analysis is in Chapter 

2. For the component lE[min{xl' ~I} J where the arrival rate is AI = 15, we are interested in 

the closed interval x E [13, ISJ. Within the interval, we choose E = 0.1, then for any two dis-

tinct points a, b such that la - bl < () = 0.3, we have IlE[min{ a, ~I} -lE[min{ b, ~I} JI ~= 0.1. 

Then, supllE[min{xi,~}JI ~ 0.1. The necessary degree should be ~i~ ~ o.1~b.32 = 11.11 

which means the degree should be at least 12. We present the graphical illustration of the 

polynomial approximations with degree of n = 5, 10, 15 respectively. 

Figure 3.1, 3.2 and 3.3 show the Bernstein polynomial approximation curves with com-

parison of simulated data. The solid curves are drew from simulated data and the dotted 

curves are drew from our polynomial approximation procedure (see Procedure I. From 
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Figure 3.1. Polynomial Approximation at degree of 5 

Whonn=10 

Figure 3.2. Polynomial Approximation at degree of 10 

these figures, Bernstein polynomial approximation performs uniformly well when degree 

is 15. Numerically, the result is better than we expected. This is the uniform conclusion 

that when n 2: 12, the polynomial approximation will uniformally converge to the corre-

sponding convex function with £ = 0.1. 

After we got the simulation data, we will apply Bernstein approximation method and 

gradient descent method thereafter. We summarize the results in Table 3.3 by enumerating 

n= 1, ... ,15,£=0.1,0.01,0.001. 
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Figure 3.3. Polynomial Approximation at degree of 15 

£ = 0.1 £ = 0.01 £ = 0.001 
Optimal Value Optimal Value Optimal Value 

n=1 3.6955e+05 3.7033e+05 3.7015e+05 
n=2 4. 1644e+05 4.1621e+05 4. 1560e+057 
n=3 4. I 676e+05 4. 1 664e+05 4. 1606e+05 
n=4 4. 1576e+05 4.1600e+05 4. I 593e+05 
n=S 4.IS18e+OS 4. 1 588e+05 4. 1 694e+OS 
n=6 4.1606e+OS 4. 1 54ge+05 4. 1605e+05 
n=7 4.1S74e+OS 4. 1 622e+05 4. I 655e+OS 
n=8 4.1591e+OS 4.1S90e+05 4. 1574e+05 
n=9 4. 1497e+OS 4.1S50e+05 4. 1 556e+OS 

n = 10 4. 1593e+OS 4.1S7ge+05 4. I 55ge+05 
n = II 4.1SS3e+OS 4.1S76e+05 4.1S16e+05 
n = 12 4. 1 55ge+05 4. 1584e+05 4. 155ge+05 
n = 13 4. 1 584e+OS 4.1S2ge+05 4. I 540e+05 
n= 14 4.1S1ge+OS 4.1S17e+OS 4.1S75e+05 
n = IS 4.1357e+05 4.1357e+OS 4. 1498e+05 

Table 3.3. The results of optimal value by proposed methodology 

The optimal value of the model is $ 41541 O.When we approximate the convex objec­

tive by a polynomial with degree of 12, the optimal solution (3.1) is $ 41SS90 and the error 

is 1:~~ig - 1 = 0.0004 or 0.04 %. 
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Until now, we have demonstrated our proposed methodology's efficiency when encoun­

tering non-differentiable (for example, piece-wise linear) convex objective. We conclude 

that our approach would be a tractable alternative to some well established methods, such 

as SAA, SA and SD. 
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