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ABSTRACT 

        A common problem faced by most organizations in today‟s world is one of worker-

task assignments.  Assigning a large number of complex tasks to workers at various 

training levels can be a complicated process which has the potential to cost or to save a 

company large sums of money.  The aim of this project is to develop a heuristic tool 

designed to match tasks to workers given the workers‟ skills proficiency profiles.  This 

heuristic should also provide a training plan which will rectify current worker skills gaps 

while minimizing training costs.  Prior research maintained a focus on utilizing 

mathematical models of this skills management problem. The main difficulty with these 

mathematical models is that they were unable to reach feasible solutions in a reasonable 

amount of time when the problem size became large. It is therefore wise to investigate 

possible heuristic solution techniques.  This research will compare and contrast three 

specific heuristic techniques: a Greedy Assignment Algorithm, Meta-RaPS Greedy 

Heuristic, and Meta-RaPS Shortest Augmenting Path (SAP) Heuristic.  Meta-RaPS is a 

meta-heuristic that is used to improve the performance of algorithms by strategically 

infusing randomness which allows the exploration of more of the solution space.  

The skills management heuristics developed in this research were tested using 47 

randomly generated data sets generating results within 0.03% of optimal for the 

recommended Meta-RaPS SAP solution methodology.   
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I. INTRODUCTION 

 

 

 

 There are many problems that management teams face in every company throughout 

the world.  One large issue is that of worker-task assignments.  Assigning specific tasks 

to workers with varying skill levels is a complicated process that can have a large 

monetary impact on any company.  It is important to approach this problem with great 

care and attention.  The main cost that comes into play when solving the worker-task 

assignment problem is that of worker training.  This is because if the workers are not 

trained in the necessary skills, they will be unable to complete the tasks necessary to the 

company‟s survival.   

 It is also important to realize that if worker-task assignments are not completed 

properly, there can be additional costs incurred.  These costs include that of poor quality, 

and backlogged work.  When poor worker-task assignments are made, it is likely workers 

will be assigned tasks for which they are not properly trained which will result in faulty 

work ultimately costing the company money.  Also, it is a large possibility that improper 

assignments would result in qualified workers being overloaded with too many tasks and 

not enough capacity to complete them all which would result in a backlog of work, also 

costing the company money. 

 It is therefore important to consider methods that aid in the worker-task assignment 

model.  In the past, these assignments are often completed manually by the management 

teams within the companies.  This is a valid method of assignment as long as the team 

knows what criteria need to be met.  The problem with manual evaluation of this issue is 

that as the number of workers and the number of tasks increase, the complexity of the 
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problem grows rapidly and it becomes increasingly difficult to find high quality 

solutions.  A solution technique which produces near optimal solutions for large-scale 

problems is needed. 

 The issue of turn-over also comes into play.  Many companies not only have 

frequent worker turn-over, but also product turn-over as well.  Each time new workers are 

introduced in the place of old workers, the process must change.  This is also true when 

new tasks (or products) are introduced into the company of changes are made to the 

current tasks.  Each change will cause added difficulty in manually configuring the 

worker-task assignments. An automated solution technique is recommended to allow 

solutions to be generated rapidly. 

 As previously stated, the main cost factor to be dealt with during the proper worker-

task assignment is that of training.  Since workers must be trained in order to complete 

these tasks, and training requires both time and money, a cost will be incurred for every 

worker that must complete some training.  Therefore, these assignments should be made 

so that the overall amount of training is minimized in order to minimize the total cost of 

the worker-task assignment.  Due to all of these issues, it has become apparent that a 

computer tool to aid in the worker-task assignment problem would be very useful as well 

as applicable to many companies throughout various industries. 

 The worker-task problem is discussed in greater detail in Chapter II. Chapter III is a 

review of the literature that is relevant to this application.  The solution methodology will 

be described in Chapter IV followed by the results in Chapter V.  Chapter VI, the final 

chapter, contains the conclusions obtained from this research as well as suggestions for 

future research. 
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II. PROBLEM DESCRIPTION  

 A detailed description of the worker-task assignment problem considered in this 

research is presented in this chapter.  First terminology used throughout this paper is 

defined, then both a narrative and mathematical description of the problem is presented.  

There are three factors associated with work that are necessary to define to accurately 

describe this project. The first factor is referred to as tasks which are the specific jobs that 

will need to be completed.  A generalized example of a task would be to change a flat 

tire.  Secondly, skills must be considered.  Skills are the specific abilities that a worker 

must have in order to complete a task.  Continuing with the example of changing a flat 

tire, required skills would include proficiency in finding the required equipment, 

understanding of the use of a jack, ability to loosen lug nuts with a lug wrench, 

knowledge of undercarriage of car, and talent for fitting the spare tire within the wheel 

well.  Lastly, the level of skills must be considered.  Levels could be defined in simple 

terms such as novice, intermediate, and expert.  Therefore, each task requires certain 

levels of various skills in order to be brought to fruition. For example, some cars may 

have more complex jacks or very tight lug nuts.  These issues would require more 

advanced skills than others. 

 Furthermore, it is important to identify the assignment relationship between these 

three factors.  Although skills are unique among themselves, various tasks may require 

the same skill or set of skills, at the same or different levels.  For example, it may also be 

necessary to have the skill defined as “knowledge of undercarriage of car” when 

changing the oil on a car which would be considered a different task.  Each task must be 
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assigned to a worker.  Although each task is only assigned to one worker, each worker 

may themselves be assigned multiple tasks.   

  Each task has its own set of skills, each with a specific skill level required.  

Likewise, each worker will have their own set of skills on which they have been trained 

to a specific level. The skill set of the worker is determined by the supervisor in charge of 

that worker.  When a worker does not meet the skill level required by the task assigned to 

them, a skills gap is said to be present.  In these instances the worker must be trained in 

order to correct the skills gap.  As stated above, training requires both time and money to 

complete.  A feasible solution to this skills management problem is one in which all 

workers have enough capacity (i.e. time) to complete all the tasks, and resulting training, 

assigned to them. 

 It is important to note that this research represents an assignment problem with 

dependent costs.  This aspect makes this topic different from the general assignment 

problem.  The main variation in this model is that it assumes the once a worker is trained 

to a certain level for a specific task, their level of skill is increased for all additional tasks 

that will be assigned to them.  In other words, once a worker is trained to complete one 

task, that training will carry over which has the potential to cut down on any further 

training needed for additional tasks that may be assigned. 

 Additionally, the skills management problem addressed in this research includes the 

stipulation that all workers must be assigned at least one task.  This „workforce 

preservation‟ requirement ensures that no workers will be terminated.  This skill 

management problem can be described mathematically as originally introduced in DePuy 

et al. (2006) and repeated here.  
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Parameters:  

{j} = set of skills needed to perform task j 

Sik = worker i‟s skill level for skill k 

Rjk = required skill level for task j‟s skill k 

Tj = length (# hrs) of task j 

Ai = capacity (# hrs) of worker i 

Cklm = cost associated with raising a worker‟s skill level on skill k from level l to level m 

Eklm = time required (# hrs) to raise a worker‟s skill level on skill k from level l to level m 

 

Decision Variables: 

Xij =  

mikSik
Z  =  

  

Nik =  

 

Objective Function: 

Minimize Training Cost Minimize  
i k m

mikSmkS ikik
ZC   (1) 

Constraints: 

Determine Needed Training ijjk

Sm

mikSikik XRmZNS
ik

ik

5

 }{,, jkji  (2) 

  

 1
5

ik

ik

Sm

mikSik ZN  ki,  (3) 

All tasks assigned 
i

ijX 1 j  (4) 

All workers assigned 

 at  least one task 
j

ijX 1

 

i  (5) 
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Worker Capacity 
j

i

k m

mikSmkSijj AZEXT
ikik

 i  (6) 

Binary Variables }1,0{},1,0{},1,0{ ikmikSij NZX
ik

 mkji ,,,  (7) 

 

 The first equation in the model is the objective function which dictates that the 

model be run in order to minimize the overall training cost of the assignment.  Next, 

equations 2 and 3 are used to determine the total training needed by a worker in order to 

meet the skill levels required to complete a specific task.  Equation 4 is used to ensure 

that all tasks have been assigned and that each task is assigned to only one worker. 

Equation 5 specifies that each worker must be assigned at least one task.  The sixth 

equation makes sure the total workload assigned to a worker (i.e. task time plus training 

time) does not exceed the worker‟s capacity.   Finally, equation 7 defines all decision 

variables to be binary. 

 As an extension to the original problem, this research will also include the capability 

to allow fixed assignments.  There will be instances where the supervisor knows which 

employee needs to be assigned a specific task.  In these cases, the supervisor can specify 

these “fixed assignments” before allowing the heuristics to make the remaining worker-

task assignments.    Mathematically, including fixed assignments would add the 

following constraints to the formulation presented above for the fixed assignment of 

worker i to task j. 

 Xij =1 (7) 

There are three different solution heuristics developed in this research.  First the 

Greedy Assignment Algorithm will be presented as a basis for the worker-task 

assignment problem.  Next, a modified version of the Greedy Assignment Algorithm will 
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be presented and is referred to as the Meta-RaPS Greedy heuristic as presented in DePuy 

et al., 2006.  Lastly, the Shortest Augmented Path (SAP) Algorithm will be modified via 

the meta-heuristic Meta-RaPS and applied to this skills management problem.  An 

automated computer tool which implements each of the three heuristic solution 

methodologies is also developed.   
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III. LITERATURE REVIEW  

This section reviews literature relevant to both the skills management problem and 

solution techniques presented in this thesis.  The skills management problem formulated 

in the previous chapter is a variation of the generalized assignment problem which will be 

reviewed here as well.  

1. The Generalized Assignment Problem 

 The Generalized Assignment Problem (GAP) is a combinatorial optimization 

problem that has been studied for many years.  This type of problem occurs when it is 

necessary to assign required tasks to available resources.   The GAP can be applied to 

many real world applications and is often described with two specific examples. The first 

is the knapsack problem which describes the GAP in terms of items of certain weights 

that must be placed into knapsacks.  Also, the scheduling problem depicts the GAP as a 

problem where jobs with specific processing times are assigned to agents or employees 

(Oncan, 2007).   Many have also expanded the general assignment problem to 

incorporate other factors such as profit maximization (Rainwater et al., 2009), minimal 

training costs (DePuy et al., 2008), and elastic costs (Nauss, 2004).  

 The solution methodologies for these types of problems are as varied as the 

problems themselves.  These solution methodologies include the greedy assignment 

algorithm (Martello et al., 1981), Branch and Bound (Ross et al., 1975), Tabu (Dupont et 

al., 2008), as well as many heuristic methods developed to handle specific versions of the 

general assignment problem.  These heuristic methods include Set Partitioning Heuristic 

(Cattrysse et al., 1994),Variable Depth Search Heuristic (Amini et al., 1994) and 

Lagrangian Relaxation Heuristics (Lorena et al., 1996). 
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 The assignment problem with dependent costs is a special case of the GAP.  In 

these cases the jobs which have already been assigned to workers are taken into account 

when assigning future tasks.  This means that the workers capacity will be changed 

before any secondary assignment can occur and the training level of that worker will also 

be updated to correspond to the training received in order to complete the first task 

assigned.  To date, similar problems have not appeared in the literature. 

2.  Skills Management 

Skills management originates from the need to fulfill human resource constraints 

set forth by human resource departments with employees who compliment the company 

strategy (Ley, 2003).  More specifically, skills management deals with formulating a list 

of competencies required by various jobs and assigning values to employees based on the 

level each has achieved for those specific competencies.  

Many have worked to perfect the science of assigning competency levels to 

employees as well as finding the most useful training techniques.  These include Skills 

Management Information Systems (SMIS) developed by J. Hasebrook (2001) as well as 

the Competence Performance Theory which was initially studied by Korossy (1997) and 

was further evolved by Ley and Albert (2003).  Overall, one thing that everyone seems to 

agree upon is that a solid skills management method is crucial to any company who 

wishes to keep an up-to-date workforce. 

These issues cover only the formulation for this problem.  Once the problem has 

been defined and is understood the next step is to establish an adequate solution 

methodology.  Much research has also been done in order to find and improve upon 

solution techniques for the GAP and DGAP.  This research utilizes both a version of a 
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Metaheuristic for Randomized Priority Search (Meta-RaPS) and the Shortest Augmenting 

Path (SAP) algorithm.   

3. Meta-RaPS 

Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a generic, high 

level strategy used to modify construction heuristics based on the insertion of randomness 

(DePuy and Whitehouse, 2001; DePuy et al., 2002). Meta-RaPS integrates priority rules, 

randomness, and sampling. At each iteration, Meta-RaPS constructs and improves 

feasible solutions through the utilization of construction heuristic priority rules used in a 

randomized fashion.  After a number of iterations, Meta-RaPS reports the best solution 

found.  As with other meta-heuristics, the randomness represents a device to avoid 

getting stuck in a local optima.  

Meta-RaPS has been applied to a variety of combinatorial problems such as: the 

Set Covering Problem (Lan et al., 2007), the Unrelated Parallel Machine Problem 

(Rabadi et al., 2006b), the Traveling Salesperson Problem (DePuy et al., 2005), the 

Knapsack Problem (Moraga et al., 2005), the Vehicle Routing Problem (Moraga, 2002), 

machine scheduling (Hepdogan et al., 2009) and the Resource Constrained Project 

Scheduling Problem (DePuy and Whitehouse, 2001). Meta-RaPS has demonstrated good 

performance in terms of both solution quality and computation time with respect to other 

meta-heuristics such as genetic algorithms, neural networks, and simulated annealing. 

The Meta-RaPS procedure will be discussed in greater detail in Chapter IV. 
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4. Shortest Augmenting Path (SAP) 

 The Shortest Augmenting Path algorithm has also been used to help solve 

versions of the general assignment problem.  This algorithm has been proven to provide 

optimal results in a much faster time than other algorithms (Jonker and Volgenant, 1987) 

as well as faster times than many heuristics used in assignment software (Kennington and 

Wang, 1990).  In their paper published in 1987, Jonker and Volgenant presented the use 

of the SAP algorithm for the linear assignment problem. Also, in that paper was included 

a Pascal code for the use of the SAP algorithm which was used as a basis for a portion of 

this project. 

 The SAP algorithm has since been used in a wide variety of applications.  

Examples or research that stems from the SAP algorithm includes: the allocation of tasks 

to multifunctional workers (Corominas et al., 2006), trailer-to-door assignments with 

cross-docking (Bozer, 2007), and the solution of the minimum product rate variation 

problem (Moreno, 2007). 

 This research pertains to a problem based on the general assignment problem with 

dependent costs incorporating skill management information.  Also in this research are 

solution methodologies which incorporate a version of the Meta-RaPS heuristic as well as 

the Shortest Augmenting Path algorithm. More in depth information on the specifications 

of the problem researched here can be found in the previous chapter (Chapter II) while 

additional information on the solution methodologies is presented in the following 

section (Chapter IV). 
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IV. SOLUTION METHODOLOGY 

1. Greedy Assignment Algorithm 

 Typically a greedy algorithm builds a solution by iteratively adding feasible 

components to the solution until a stopping criteria is met.  For this Greedy Assignment 

algorithm, tasks are iteratively assigned to workers until all the tasks have been assigned.  

Tasks are assigned such that the worker‟s capacity is not exceeded, each worker is 

assigned at least one task, and all the tasks have been assigned.  The objective is to 

minimize the total training costs.    

 The Greedy Assignment algorithm developed for this skills management problem 

uses a two-phase approach. The first phase assigns exactly one task to each worker, and 

the second phase assigns any remaining tasks to workers with unfilled capacity. Phase 1 

of the Greedy Assignment algorithm is used to maintain workforce preservation by 

ensuring each worker gets at least one task assigned to them.  When considering fixed 

assignments, those fixed assignment are made before phase one and any worker involved 

with a fixed assignment will not be included in phase 1 but will be considered for 

additional task assignments in phase 2.  

The first phase of the greedy algorithm assigns the tasks to the workers beginning 

with the least skilled worker.  This is determined by finding the total training cost for 

each worker to complete all the tasks.  Those workers that are not skilled will require 

much training to complete all tasks and will therefore have a high total training cost.  The 

workers are sorted from highest to lowest total training costs.  Starting with the worker 

with the highest total training cost (i.e. the least skilled worker), workers are assigned the 

task which is easiest (i.e. lowest training cost) for them.  Once a task is assigned, it is 



 

13 
 

removed from consideration.  At the end of phase 1 each worker is assigned exactly 1 

task.  The worker capacities and skills set are updated based on these phase 1 

assignments.  After phase one is complete, phase two assigns all remaining tasks to 

workers.   

In phase 2, the remaining, unassigned tasks are ordered from the most difficult 

task to least difficult task as determined by the total training cost for all workers to 

complete the task.  Those tasks with a high total training time are difficult tasks as many 

workers would require additional training to be able to complete the task.  Starting with 

the task with the highest total training cost (i.e. the most difficult task), tasks are assigned 

to the worker which requires the least amount of training (i.e. lowest training cost) to 

complete the task.  Once a task is assigned, it is removed from consideration and the 

workers capacity and skills set are updated.  At the end of phase 2 all tasks have been 

assigned.    

Figures 1 and 2 show the pseudocode for phases 1 and 2, respectively, using the 

Greedy Assignment algorithm (Figures 1 and 2 from DePuy et al., 2008).  While the 

Greedy Assignment method guarantees a feasible solution, it has a tendency to become 

stuck at local optima and therefore can deviate greatly from the global optimal value.  

The meta-heuristic, Meta-RaPS, discussed in the next section offers a way to prevent this 

Greedy Assignment algorithm from getting stuck in a local optima. 
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FIGURE 1. Pseudocode for Greedy Assignment Algorithm Phase 1 (DePuy et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Pseudocode for Greedy Assignment Algorithm Phase 2 (DePuy et al., 2008). 

 

 

Calculate total training cost for each worker over all tasks, total_worker_cost matrix 

Do Until each worker is assigned one task 

 Find unassigned  worker with maximum total_worker_cost, max_cost_worker 

 Find unassigned  task with minimum training cost for max_cost_worker,min_cost_task 

 Assign min_cost_task to max_cost_worker 

 Update skill set for assigned worker based on training required for assigned task 

 Update total_worker_cost and  total_task_cost for assigned worker and task 

 Update worker_capacity for assigned worker 

 Update total_training_cost 

Loop 

  

Calculate total training cost for each unassigned task over all workers, total_task_cost matrix 

Do Until all tasks are assigned 

 Find unassigned  task with maximum total_task_cost , max_cost_task  

 Find worker with minimum training cost for max_cost_task and available worker 

    capacity,min_cost_worker 

 Assign max_cost_task to min_cost_worker 

 Update skill set for assigned worker based on training required for assigned task 

 Update total_worker_cost and  total_task_cost for assigned worker and task 

 Update worker_capacity for assigned worker 

 Update total_training_cost 

Loop 

Print total_training_cost and assignments 
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2. Meta-RaPS Heuristic 

Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a generic, high 

level strategy used to modify greedy algorithms based on the insertion of a random 

element (DePuy et al., 2002).  Meta-RaPS constructs feasible solutions through the 

utilization of a greedy algorithm in a randomized fashion.  As with other meta-heuristics, 

the randomness represents a device to help avoid getting stuck in local optima.  The 

general Meta-RaPS procedure will be reviewed below, then the specific application of 

Meta-RaPS to this skills management problem will be discussed.  

The Meta-RaPS heuristic utilizes two parameters that are specified by the user in 

order to incorporate this randomness into the system: %priority and %restriction.  The 

Meta-RaPS heuristic calculates all of the total training cost values for the workers and the 

tasks the same as the Greedy Assignment Algorithm did.  The difference is in how it 

chooses to assign the tasks to the workers using these two user-defined parameters.  The 

%priority parameter dictates how often the assignment specified by the Greedy 

Assignment Algorithm will be made versus when an assignment that is close to the 

greedy assignment will be made. Some of the time (i.e. 100%-%priority) and assignment 

whose cost is within %restriction of the cost of the greedy algorithm assignment will be 

made instead.  An „available‟ list of those assignments whose cost is within %restriction 

of the cost of the greedy algorithm assignment is formed.  An assignment is randomly 

picked from this available list.   

The addition of these parameters and the randomness that they incur in the model 

allows the heuristic to avoid becoming stuck in local optima.  The Meta-RaPS Greedy 

Assignment heuristic utilizes the Meta-RaPS concept in both phase 1 and phase 2 of the 
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Greedy Assignment Algorithm. Figures 3 and 4 show the pseudocode for phase 1 and 

phase 2 of the Meta-RaPS Greedy Assignment heuristic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 – Pseudocode for Meta-RaPS Greedy Assignment Heuristic Phase  

 

 

 

 

 

 

Calculate total training cost for each worker over all tasks, total_worker_cost matrix 

Do Until each worker is assigned one task 

 Find unassigned  worker with maximum total_worker_cost, max_cost_worker 

 Find unassigned  task with minimum training cost for max_cost_worker, min_cost_task 

 P = RND(1, 100) 

 If P ≤ %priority Then 

  Assign min_cost_task to max_cost_worker 

 Else 

Form available list of unassigned workers whose total_worker_cost  is within 

%restriction of maximum total_worker_cost and that worker‟s associated unassigned 

tasks within %restriction of min_cost_task 

  Randomly choose worker/task pair from available list and make assignment 

 End If 

 Update skill set for assigned worker based on training required for assigned task 

 Update total_worker_cost and  total_task_cost for assigned worker and task 

 Update worker_capacity for assigned worker 

 Update total_training_cost 

Loop 
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FIGURE 4 – Pseudocode for Meta-RaPS Greedy Assignment Heuristic Phase 2 

In order to determine what values to set for the %priority and %restriction 

parameters, trials were completed.  Both large and small data sets were tested using a 

wide range of parameter values.  Each data set was run multiple times in order to 

determine which parameter settings aided the heuristic to the best solution value most 

consistently.  The following parameters were determined to be most applicable to this 

problem: phase 1 %restriction of 500%, phase 2 %priority of 20%, and phase 2 % 

restriction of 20%. 

 

Calculate total training cost for each task over all workers, total_task_cost matrix 

Do Until all tasks are assigned 

 Find unassigned  task with maximum total_task_cost , max_cost_task  

 Find worker with minimum training cost for max_cost_task and available worker 

    capacity, min_cost_worker 

 P = RND(1, 100) 

 If P ≤ %priority Then 

  Assign max_cost_task to min_cost_worker 

 Else 

Form available list of unassigned tasks whose total_task_cost  is within %restriction 

of maximum total_task_cost and that task‟s associated unassigned workers within 

%restriction of min_cost_worker 

  Randomly choose worker/task pair from available list and make assignment 

 End If 

 Update skill set for assigned worker based on training required for assigned task 

 Update total_worker_cost and  total_task_cost for assigned worker and task 

 Update worker_capacity for assigned worker 

 Update total_training_cost 

Loop 

Print total_training_cost and assignments 
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3. Shortest Augmenting Path (SAP) Algorithm 

 Also investigated in this research is the inclusion of the Shortest Augmenting Path 

Algorithm (SAP) developed by Jonker and Volgenant (1987).  SAP is an algorithm to 

find the optimal solution to the classic assignment problem (i.e. optimal assignment of n 

workers to n tasks).  

For this research, it is assumed (as is in most companies) that there are more tasks 

than there are workers, i.e. workers will be assigned multiple tasks to complete.  

However, the SAP algorithm assigns an equal number of tasks to workers.  To resolve 

this issue, the SAP algorithm is only incorporated into phase 1 of the algorithm (i.e. the 

assignment of 1 task to each worker).  When the number of tasks exceeds the number of 

workers, a decision must be made as which subset of tasks will be assigned via SAP.  The 

Meta-RaPS technique is used again to select from a list of „easy‟ tasks (i.e. low total 

training cost tasks) those tasks which will be assigned in phase 1.     

 The SAP algorithm utilizes a series of four segments: (1) Initialization, (2) 

Termination, (if all rows are assigned), (3) Augmentation and (4) Adjustment of the dual 

solution.  Also, the Initialization segment in itself contains a series of three „sub-

procedures‟.  These include: (1) column reduction, (2) reduction transfer (from 

unassigned rows to assigned rows), and (3) augmenting reduction of unassigned rows 

(Jonker and Volgenant, 1987). 

 The column reduction stage is performed first.  This stage takes all columns into 

account; however it first indexes them into their reversed order before any are 

considered.  This order reversal allows the columns with higher index values to be the 

most likely columns to be assigned.  The reduction transfer stage exists solely to further 
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reduce the amount of unassigned rows before beginning the augmenting reduction stage.  

The augmenting reduction stage is designed to find “augmenting paths that begin in 

unassigned rows and where reduction is transferred” (Jackson et al, 2008).  

 In their research, Jonker and Volgenant (1987) warned that this augmenting 

reduction phase can be more time consuming than the traditional methods of column and 

row reduction, the augmenting reduction method allows the solution to approach the 

optimal solution value much more rapidly and therefore be more rewarding to the 

algorithm in the long run (Jonker and Volgenant, 1987). 

 There is a possibility (albeit a small one) that after the Initialization phase, all of 

the necessary assignments will be made.  If this is the case, the Termination phase goes 

into effect which terminates the algorithm as it will have already found its solution in the 

first phase.  If this is not the case, the algorithm will move into the next phase. 

The next phase of the SAP algorithm is the augmentation phase.  During this 

phase a modified version of Dijkstra‟s algorithm is utilized in order to find the shortest 

augmenting path.  This modification allows the algorithm to find the shortest augmenting 

path for one additional solution at the root node of the shortest path tree found by 

Dijkstr‟a algorithm.  During this phase, full or partial solutions are found using 

alternating rows and columns within the algorithm.   

The last phase of the SAP algorithm is the adjustment of the dual solution.  This 

phase allows the information from the initialization phase and the augmentation phase to 

be adjusted so that the dual variables are updated.  “This allows for the restoration of 

complementary slackness and causes all assignments to correspond to the row minima 

from the reduced cost matrix.” (Jackson et al, 2008). 
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Again, it is important to emphasize the fact that this SAP method is only 

applicable for one-to-one applications (where the number of tasks is equal to the number 

of workers).  Because this research is not restricted to the one-to-one case, the SAP 

algorithm will only be incorporated in phase 1 of the assignment.  The assignment of any 

remaining tasks (i.e. those tasks not considered by the phase 1 SAP procedure) will be 

assigned using the phase 2 method previously discussed and shown in Figure 4.  The 

pseudocode for phase 1 of the Meta-RaPS SAP algorithm is shown in Figure 5 (from 

Jackson et al., 2008). 
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FIGURE 5 – Pseudocode for Shortest Augmenting Path Algorithm (Phase 1 Only) 

Do Until each worker is assigned one task 

n = #workers 

Calculate total training cost for each task over all workers, total_task_cost matrix 

Sort total_task_cost from smallest to largest 

Form available list of tasks whose total_task_cost is within %restriction of the nth 

smallest  total_task_cost. 

Randomly choose n tasks form available list 

Find the worker with the minimum cost, min_cost_worker, for a given task 

If min_cost_worker is unassigned 

Assign task to min_cost_worker 

End If 

Form list of available workers 

Do for 2 iterations 

Choose available_worker 

Find min_cost associated with available_worker 

Recalculate total cost 

Assign best_task to available worker 

Loop 

For available workers remaining 

Find worker/task pair with minimum cost 

If related task is unassigned Then 

Go To “Augmentation Code” 

End If 

Update Cost 

Find related task and calculate “new cost” 

If „related task‟ is unassigned Then 

Go To “Augmentation Code” 

End If 

**Augmentation Code** 

Find related task and its cost 

Find worker with the shortest path value for related task 

Assign task to worker 

Next available worker 

For all assigned workers 

Update worker capacities 

Update total cost 

Next Worker 

Update workerskill, total_worker_cost, total_task_cost, 

worker_capacity, total_training_cost 

Loop 
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4. Software Tool 

The three solution methodologies developed in the previous chapter were coded 

as Visual Basic Macros in Microsoft Excel® and an automated skills management tool 

was developed.  There is an initial macro which is used to set up a new assignment 

problem.  This macro prompts the user to input the necessary assignment problem data 

parameters such as number of workers, number of skills, number of tasks, current skill 

levels for each worker, required skill levels for each task, time to complete each task 

(after all training has been completed), each worker‟s capacity, training times for each 

skill, and training costs for each skill. Figure 6 below shows a screenshot of these empty 

matrices set up for a very small sized problem for 3 workers, 2 skills, and 4 tasks. 

 

FIGURE 6: Empty Matrices Screen Shot 
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V. RESULTS 

Several data sets were randomly generated and are used to compare the results of the 

three solution methodologies discussed in the previous chapter; 1. Greedy Assignment 

Algorithm, 2. Meta-RaPS Greedy Assignment (MR Greedy) and 3. Meta-RaPS Shortest 

Augmenting Path (MR SAP).  First four small data sets were generated to compare the 

results of the three solution methodologies to the optimal solutions.  As discussed in 

DePuy et al. (2006) optimal results for small problems can be obtained using LINGO 

software and the mathematical model presented in Chapter II.  However the optimal 

solution for larger problems cannot be found in a reasonable time therefore motivating 

the development of the solution heuristics developed in this research.  Table I shows the 

deviation from the optimal objective function value for each of the three solution 

methodologies.   

 

TABLE I 

 RESULTS FOR SMALL DATA SETS 

 

 

 

Problem Size     

(#Workers, 

#Tasks, #Skills)

Optimal

Solution 

Methodology:   

Greedy

%Diff Opt.

Solution 

Methodology:       

MR Greedy

%Diff Opt.

Solution 

Methodology:     

MR SAP

%Diff Opt.

9, 13, 11 551 605 9.80% 558 1.27% 551 0.00%

9, 13, 11 297 370 24.58% 316 6.40% 297 0.00%

9, 13, 11 393 443 12.72% 409 4.07% 393 0.00%

13, 19, 15 976 1063 8.91% 1006 3.07% 984 0.82%

average 14.00% average 3.70% average 0.20%

# opt 0 # opt 0 # opt 3
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Table I shows that for small problem sizes, the greedy methodology performs the 

worst of the three. Not only does the greedy version not obtain any of the optimal 

solutions, its percent difference from optimal averages out to be 14.00%.   MR greedy 

does much better than the purely greedy algorithm with an average percent difference of 

3.7% from the optimal value although it too receives none of the optimal solutions.  MR 

SAP is the methodology that truly shines with these small problem sizes.  Its percent 

difference from optimal is a mere 0.20% average.  Also, the MR SAP version is able to 

obtain three optimal solutions out of the four problem sets.  It can be easily concluded 

that the addition of the Shortest Augmenting Path Algorithm contributes substantially to 

the optimality of the solution value. 

Next the three solution methodologies were evaluated using larger data sets.  Table II 

shows results for 15 medium and large data sets ranging from 50 to 2000 workers and 55 

to 3000 tasks.  As previously mentioned, the optimal solution is not available for these 

data sets as they are too large to be solved in a reasonable amount of time by a 

commercial solution. 
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TABLE II 

 RESULTS FOR MEDIUM AND LARGE  DATA SETS 

Problem Size 
(#Workers, 

#Tasks, #Skills) 

Phase 1: 
Greedy   

Phase 2: 
Greedy 

Phase 1: MR 
Greedy   Phase 2: 

MR Greedy 

Phase 1: SAP   
Phase 2: 
Greedy 

Phase 1: MR SAP   
Phase 2: MR 

Greedy 

50, 55, 50 15423 15241 14922 14760 

50, 75, 50 16435 15717 16089 15394 

50, 100, 50 20659 19743 20600 19436 

100, 110, 50 29428 29205 28468 28172 

100, 150, 50 30834 30073 30089 29452 

100, 200, 50 36138 35198 35413 34501 

200, 220, 50 56944  56356 54248 53875 

200, 300, 50 60810 59502 59045 58055 

200, 400, 50 71835 69939 71254 69362 

500, 550, 50 140688  140001 134598 134018 

500, 750, 50 148238 146302 144220 141690 

1000, 1100, 50 274574  274211 264631 263256 

1000, 1500, 50 288939 286342 281221 279387 

2000, 2200, 50 541494 541096 521070 519659 

2000, 3000, 50 565549  562565 549748 547275 

 

Table II shows that even with large sized problems, the MR SAP method still 

maintains its dominance over the other methods.  This can be seen in the results for each 

and every large data set tested.  The MR SAP version attains solution values much lower 

than those of the other methods.  When comparing each methodology to the MR SAP 

method, it can be seen that the MR SAP attains values averaging 4.69% lower than those 

of the purely Greedy, 2.93% lower than the MR Greedy and 1.78% lower than the SAP 

Greedy.  This is a great improvement for the tool and allows for great potential savings. 

To investigate the performance of the solution methodologies for various ratios of 

workers and tasks, two sets of data were generated (one set with 8 problems and the other 
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set with 10 problems) each with varied ratios of workers and tasks.  Table III shows the 

results for these data sets.  Again, due to problem size, optimal solutions are not 

available. 

 

TABLE III 

RESULTS FOR DATA SETS WITH VARIED RATIO OF TASKS TO WORKERS 

 

Table III shows again the strength that the SAP algorithm adds to the MR SAP 

heuristic.  The MR SAP version outperforms the other two for each of the large data sets.  

It is important to notice that that difference in the solution values are not always very 

large.  As the problem size grows for these data sets, the MR SAP has a tendency to 

perform slightly worse than it did on smaller problem sizes.  This is due to the use of the 

Problem Size 

(#Workers, 

#Tasks, #Skills)

Solution 

Methodology:   

Greedy

Solution 

Methodology:   

MR Greedy

Solution 

Methodology:   

MR SAP

9, 9, 11 427 395 391

9, 12, 11 562 533 527

9, 15, 11 690 629 623

9, 17, 11 740 659 658

9, 18, 11 756 705 690

9, 21, 11 884 731 719

9, 27, 11 1252 899 857

9, 36, 11 1079 926 887

11, 11, 13 685 632 621

11, 14, 13 735 702 686

11, 16, 13 806 751 723

11, 18, 13 849 812 772

11, 19, 13 887 849 834

11, 21, 13 961 890 874

11, 22, 13 1022 913 908

11, 28, 13 1283 1114 1084

11, 33, 13 1600 1290 1271

11, 44, 13 1743 1462 1405
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Phase 2.  Although Phase 1 will always receive the optimal value for the worker-task 

combinations under consideration, as the problem size grows, a larger majority of the 

worker-task assignments are made during the second phase which does not guarantee an 

optimal solution.  From this we can see that as the ratio of tasks to workers grows the 

solution values stray farther from the optimal values.  Although this is the case, the MR 

SAP method is still very promising for completing these assignments with minimal costs.  

  As mentioned in Chapters II and IV, the original skills management problem can 

be slightly modified to include the option of fixed assignments. Table IV shows the 

results for a data set with 9 workers, 13 tasks, and 11 skills.  Each row of Table IV shows 

the results for an increasing number of fixed assignments.  The optimal results were 

obtained for each problem instance, and the results for each solution methodology are 

compared to optimal in Table IV.  Obviously, as more task assignments are fixed, the 

problem becomes easier to solve since there are fewer „free‟ or unfixed assignments that 

need to be considered by the solution methodologies. 

 

TABLE IV 

RESULTS FOR FIXED ASSIGNMENT DATA SETS 

 

# fixed 

assignments
Optimal

Solution 

Methodology:   

Greedy

%Diff Opt.

Solution 

Methodology:       

MR Greedy

%Diff Opt.

Solution 

Methodology:     

MR SAP

%Diff Opt.

0 566 617 9.01% 570 0.71% 566 0.00%

1 585 646 10.43% 595 1.71% 585 0.00%

2 595 639 7.39% 603 1.34% 597 0.34%

3 606 639 5.45% 608 0.33% 606 0.00%

4 606 644 6.27% 608 0.33% 606 0.00%

5 612 644 5.23% 632 3.27% 612 0.00%

6 616 651 5.68% 638 3.57% 616 0.00%

7 616 651 5.68% 638 3.57% 616 0.00%

8 648 651 0.46% 648 0.00% 648 0.00%

9 648 648 0.00% 648 0.00% 648 0.00%

average 5.56% average 1.48% average 0.03%

# opt 1 # opt 2 # opt 9
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The addition of fixed assignments adds to the complexity of assigning workers to 

tasks.  Table IV shows how each of the methodologies performed for ten difference data 

sets ranging from no fixed assignments to all workers receiving one fixed assignment.  

Although these are small sized data sets, they can show us a lot about the capabilities of 

the three methods.  The Greedy method was able to find only one optimal solution which 

was for the data set with the most fixed assignments.  In general, as the number of fixed 

assignments grew, the Greedy heuristic was able to obtain more improved results.  This 

can be attributed to the fact that it had fewer decisions to be made with allowed it to 

refrain from becoming stuck at local optima. 

The MR Greedy method performed better than the purely greedy heuristic.  This 

method was able to obtain two optimal solutions, but again these were found for data sets 

which included a large number of fixed assignments.  The MR Greedy version averaged 

only 1.48% difference from the optimal solution which was also much better than the 

5.56% difference obtained by the greedy version.  It is easy to see that the addition of the 

MR heuristic is a good addition to this tool. 

Overall, the MR SAP version far outperforms the other two methods once again 

for these data sets.  This method was able to find nine optimal values out of the ten data 

sets.  This gave it an average percent difference of 0.03% from optimal.  The small size 

of the data sets allows most of the assignments to be made in the SAP portion of the 

heuristic.  This gives the MR SAP method a huge advantage over the other two and 

proves that it is a wonderful addition to this tool. 

Computer run times for these solution methodologies are obviously a function of 

the problem size.  Run times for 10,000 iterations of MR Greedy and MR SAP for a 
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problem of size 9 workers – 17 tasks - 11 skills was 16.14 seconds and 16.43 seconds 

respectively on a Dell Inspiron I6400 PC with 1.00 GB of RAM.  For larger problems of 

size 11 workers – 17 tasks - 13 skills, it took 25.53 seconds and 30.53 seconds 

respectively to run 10,000  iterations.  The Greedy algorithm arrives at the same solution 

each time it is executed and therefore only needs to be run for one iteration for each 

problem.  Run times for the Greedy heuristic ranged from 0.15625 seconds for a small 

problem of size 9 workers – 17 tasks - 11 skills to 0.17188 seconds for a large problem of 

size 11 workers – 17 tasks - 13 skills. 
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VI. CONCLUSIONS AND FUTURE RESEARCH 

 

This research compared three solution methodologies for the skills management 

problem of assigning tasks to workers.  A Greedy Assignment algorithm was developed 

and two Meta-RaPS meta-heuristic approaches were developed; one based on the Greedy 

Assignment algorithm, the other based on the Shortest Augmented Path (SAP) algorithm 

of Jonker and Volgenant (1987).  All three solution heuristics were included in software 

tool and the performance of the heuristics was evaluated using several randomly 

generated data sets.  The Meta-RaPS SAP heuristic was shown to provide the best results.   

As shown in Chapter V, the results of all data sets tested were much improved for the 

Meta-RaPS SAP heuristic.  The improvement provided by the addition of the SAP 

algorithm is perhaps easiest to see in the results from the small data sets contained in 

Table I.  This is due to the fact that the first phase of the heuristic is able to make a much 

larger impact as the number of assignments made in the first phase is greater when the 

ratio of tasks to workers is closest to one.   

As the problem sizes increase, as shown in Tables II and III, the solution values grow 

as well.  This is due to the fact that the ratio of tasks to workers is straying farther away 

from a value of one causing an increasing number of assignments to be made in phase 2 

of the heuristic.  Although phase 2, which uses the MR Greedy method, is much 

improved over the purely Greedy method, it does not guarantee an optimal solution as in 

phase 1.  Even with the larger problem sizes, the MR SAP heuristic steadily maintains 

solution values better than those of the Greedy or the MR Greedy heuristics. 
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The addition of fixed assignments causes another hurdle for the heuristic tool to 

conquer.  Table IV shows results for data sets of small to medium size that include fixed 

assignments.  As seen from these results, the Greedy and MR Greedy heuristics continue 

to have difficulty in reaching optimality.  The MR SAP heuristic does exceedingly well 

under these conditions.  The fixed assignments no longer need to be considered by either 

part of the tool which allows the SAP portion of the heuristic to make a larger percentage 

of the assignments than it normally would for that size problem.  This results in less 

assignments being made by the second phase, increasing the overall optimality of the 

solution. 

Because the SAP algorithm was shown to be so beneficial in solving these skills 

management problems and because the current phase 2 algorithm has been shown to need 

improvement, it is recommended that future research be conducted in order to explore the 

capabilities of the SAP algorithm‟s use in Phase 2 of this skills management tool.  Also, 

the solution methodologies should be evaluated on additional large problems. 
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Chapter One: Introduction 

1.1 Overview 

Workforce competency assessment and the resulting assignment of workers to tasks is a 

necessary management function in most organizations.  The ability to utilize current 

worker skills and decrease training costs is an important tool in industry.  When done 

properly, it allows all tasks to be assigned to workers who are qualified and minimizes 

the total cost of training over all employees, thus minimizing the cost to the company. 

This management heuristic compiles all worker skill data that is provided by the user, and 

calculats the optimal or near optimal solution, depending on the number of workers and 

the number of tasks.  The tool considers the skill sets of each worker and enumerates the 

costs for each worker-task pairing.  After passing through much iteration the tool then 

settles on the best overall solution.  

The first phase of the tool utilizes the Shortest Augmenting Path algorithm developed by 

Jonker and Volgenant [1].  This portion of the tool has the ability to obtain the optimal 

solution however, it is only able to complete one-to-one assignments. A one-to-one 

assignment refers to circumstances where the number of workers is equal to the number 

of tasks to be assigned.  For cases where the number of tasks is not equal to the number 

of workers, all unassigned tasks are sent to the second phase of the operation. 

Phase 2 of the management heuristic contains a randomized meta-heuristic known as 

Meta-RaPS which was developed by DePuy, Whitehouse, and Moraga [2].  This heuristic 

is based on a greedy algorithm which has been randomized in order to keep the solution 

away from local optima.  This phase of the heuristic does not guarantee and optimal 

solution although it has been proven to be very effective.  

This tool also has the ability to complete fixed assignments.  This allows the user to 

designate certain workers to complete specific tasks as needed. 
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1.2 Heuristic Tool Overview 

The following factors are needed to successfully run the Logistics Skill Management 

Heuristic.  

Set-up Parameters: 

- Number of workers 

- Number of possible skills 

- Number of tasks 

- Number of fixed assignments 

Input Parameters: 

- The skill level (1 -5) for EACH worker corresponding to EACH skill 

- The skill level (1 -5) required for each skill that is to be assigned 

- The time it takes to complete each task 

- The capacity of time that each worker has available 

- The cost to train between each skill level for each skill needed 

- The time it takes to train a worker to the next skill level for each skill 

Results: 

The resulting data that is provided by this tool is as follows: 

- Results Summary:  

o Worker – task assignment pairs 

o The cost of the best solution found 

o Run time of the model 
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- Worker Training Results: 

o List of each worker that required training with the skill in which they need 

trained, along with their original level of that skill and the skill level they 

need to obtain. 

o List of all workers and the number of skills they require training in (if any) 

o Training cost of each worker 

o Training time for each worker 

 

- Skill Training Results: 

o The number of workers that need to be trained from level a to level b for 

each skill that requires some training. 

- Totals: 

o The total number of all workers who need training from level a to level b. 

(Also can show this in graphical form) 

o The  total overall training time 

o Total overall training cost 

o Total cost of the solution 
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Chapter Two: Installation 

2.1 Systems Requirements 

The Logistics Skills Management Heuristic can be run from Excel 2003 or Excel 2007. 

2.2 Installation Steps 

The Logistics Skills Management Heuristic is run in a usual Excel workbook. 

 Step 1: Download the file (ExcelProject.xls) and save to desired location. 

 Step 2: Double-click on the saved file to open. 

 Step 3: Enable Macros: 

 For a 2003 workbook the user will be prompted with a security 

warning. Click “Enable Macros” in order to run the tool. [3] 

 

 

 

 For a 2007 workbook the security warning is shown towards the 

top of the page. Click “Options” then “Enable this Content”. [3] 
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Chapter Three: Tool Operations 

3.1 Running the Assignment Tool 

 1.  Open the Excel workbook (ExcelProject.xls) by double clicking on the file 

 2.  Enable Macros (as instructed in Chapter 2) 

 3.  Click the button that reads “Setup Inputs” 

 4.  When prompted, enter the desired number of workers, skills, tasks and fixed 

assignments. 

5.  After the sheet has completed its setup, enter the necessary parameters (See 

Input Parameters listed in Chapter 1) 

6. Once all parameters are entered, click the button that reads “Find Assignments” 

This tool will not save multiple runs of an assignment within its workbook.  For this 

reason it may be a good idea to save each assignment as a different file.  To do this, select 

the file menu at the top of the workbook (in Excel 2007 this appears as the Microsoft 

Office Logo at the top left of the screen) and select “Save As”.  Rename the workbook to 

the title of your choice and click “Save”. 

As a user of this workbook, that tab labeled „Parameters‟ may also be of interest.  This 

tab contains the percentage parameters and number of iterations that are used in the 

heuristic code for the assignment calculations.  This number, when changed, will cause 

the second phase of the operation to find a different solution.  Use this feature cautiously 

as it could result in a solution that is farther from the optimal; however it can be changed 

easily and may prove helpful.  To change any of these parameters, simple click the arrow 

on the drop-down box and select the number of your choice, then rerun the tool by 

clicking the “Find Assignments” button on the „Input‟ tab. 
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Chapter Four: Results 

4.1 Basic Results 

The “Results Summary” page contains a quick overview of the assignment solution.  This 

page includes the following information: Each worker-task pair that is assigned, the cost 

of this solution, and the run time for the run.  This data is presented in the format shown 

below. 

 

4.2 Additional Results 

Additional results are displayed in various other tabs of the workbook.   

1. To view detailed results for the training required by each worker, click on the 

„Worker Training Results‟ tab. This worksheet provides information on which 

workers need to be trained on which tasks.  It also shows what skill levels that 

begin at for these tasks as well as what skill levels they need to be trained to.  

Another table shows all of the workers in the assignment and how many (if any) 

different skills they need to be trained on, along with the training costs and 

training times associated with each of these workers. An example of this sheet is 

shown below. 
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2. To view additional results regarding skills and skill levels for training, click on 

the tab labeled „Skill Training Results‟.  This worksheet lists all of the skills that 

workers will need to be trained on.  It also shows the number of workers that need 

to be trained on each of these skills and at what level they will need training. An 

example of this output is shown below. 

 

 

3. As a user, if it is desired to view some overall totals of some of these results, right 

click on the last tab and select „Unhide‟.  A box will pop-up with a sheet named 

„Totals‟. Select this sheet and click „OK‟. This will bring up the hidden sheet that 

contains some basic sums of this information.  This information is also formatted 

to show any non-zero training values in green for easy interpretation.  Also, a 
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button is included on this sheet that when clicked, will produce a graph of the 

training summed information.  When use of this tab is complete, right click on the 

„Totals‟ tab and select „Hide‟ to restore the hidden quality to the tab. 
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