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Abstract

In this thesis, we introduce the concept of nearly hyperuniform network (NHN)

structures as alternatives to the conventional continuous random network (CRN)

models for amorphous tetrahedrally-coordinated solids, such as amorphous silicon (a-

Si). A hyperuniform solid has a structure factor S(k) that approaches zero as the

wavenumber k → 0. We define a NHN as an amorphous network whose structure

factor S(k → 0) is smaller than its liquid value at the melting temperature. Using

a novel implementation of the Stillinger-Weber potential for the interatomic interac-

tions, we show that the energy landscape for a spectrum of NHNs includes a sequence

of local minima with an increasing degree of hyperuniformity, i.e. smaller S(k → 0)

that is significantly below the frozen liquid value and that correlates with the width

of the electronic band gap and with other measurable features in S(k) at intermediate

and large k.

We compare the structural properties predicted by these NHN models to the

results of highly sensitive transmission X-ray scattering measurements performed at

the Advanced Photon Source at Argonne National Laboratory, on high-purity a-Si

samples with density close to that of crystalline silicon (c-Si). The best theoretical

NHN model produced so far possesses S(k → 0) = 0.010± 0.002, which is consistent

with the experimentally observed value S(k → 0) = 0.0075± 0.0005. Our theoretical

studies predict an increase in the degree of hyperuniformity with annealing, which

is also observed in these experiments. Both theoretical models and experimental

measurements show that increasing the degree of hyperuniformity is correlated with

increasing the height and narrowing the width of the first diffraction peak, and with

extending the range of oscillations in the pair correlation function. This work suggests

that there is a greater diversity of theoretical network structures and experimental

realizations of amorphous silicon than was previously recognized.
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Thesis Outline

In Chapter 1, we explain the importance of amorphous silicon (a-Si) in the micro-

electronics applications and as a prototype for a wider range of disordered tetrahedral

materials. We also give a definition of hyperuniformity and discuss its significance in

understanding the long-range structure of the disordered materials. In Chapter 2, we

present some background information on various techniques that have been employed

to study the structure of a-Si. Chapters 3, 4, and 5 are based on an article [1].

Chapter 3 introduces the concept of nearly hyperuniform network models (NHN) and

discusses their implications for the structure of a-Si and the electronic band-gap in

a-Si. In Chapter 4, we give details of the techniques used to produce NHN models.

Chapter 5 presents the geometric and topological characteristics of the structure of

NHN models, and their electronic and vibrational density of states. In Chapter 6,

we compare the predictions of NHN models to recent measurements performed by

Xie et al. [2] and Laaziri et al. [3, 4]. Finally, we summarize our findings and discuss

future research in Chapter 7.
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Chapter 1

Introduction and Motivation

1.1 Practical Significance of Amorphous Silicon

A
morphous silicon (a-Si) has found diverse applications in microelectron-

ics since the 1980’s. These include thin-film transistors, active-matrix

liquid-crystal displays, photodiodes, image sensor arrays, scanners, medi-

cal imagers, light sensors, multilayer color detectors, position sensitive detectors, large

scale power generation, and solar cells [5, 6]. The use of a-Si in microelectronics is not

surprising, given that a-Si exhibits semiconducting properties such as an electronic

and optic band-gap, the ability to be doped, and photoconductivity; these properties

are similar to those found in the crystalline (c-Si) and polycrystalline (pc-Si) silicon.

While a-Si has a significantly lower free carrier mobility (by a factor of about 30)

than that of c-Si, its characteristics are more favorable for many applications. Owing

to its disordered structure and lack of domain walls, a-Si is isotropic and more homo-

geneous compared to c-Si and pc-Si. a-Si has a direct electronic band-gap in contrast

to the indirect band-gap of c-Si and pc-Si. Though a-Si has a disadvantage over c-Si
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due to the presence of dangling bond defects in its structure, this disadvantage can

be mitigated by passivating of the dangling bonds via hydrogenation.

Arguably, the most important application of a-Si is in thin-film transis-

tors (TFT) [7]. TFTs are now widely used in active-matrix liquid-crystal displays

and digital radiography. In these applications , the primary advantage a-Si has over

c-Si is its amorphous structure, which allows hetero-interfaces to be easily formed,

and its higher resistivity which matches the resistivity of the liquid crystals.

Another major application of a-Si is in solar photovoltaic cells [8]. An appeal of

a-Si for solar cells is that for a given layer thickness, a-Si absorbs about 2.5 times

more energy than c-Si due to a larger, direct band-gap resulting from the isotropy of

a-Si and the fact that the momentum selection rule for optical absorptions does not

apply for a-Si resulting from the lack of a translational symmetry in the disordered

structure of a-Si. A thickness of less than 1µm of a-Si is sufficient to absorb a large

fraction of sunlight, compared to about 5µm needed for c-Si, requiring less material

for a-Si films of solar cells, making them lighter and less expensive. Although the

applications of a-Si in solar cells has not yet proved economically competitive with

power generation based on fossil fuels, it seems only a matter of time before solar

cell-based power generation will become profitable without the need for governments

subsidies.

The ability to control the properties of a-Si, and to expand the range options and

devices makes the future of a-Si in microelectronics very promising. With possible fu-

ture applications such as phase-change and analogue memory [9], and multi-junction

thin-film full spectrum solar cells [10], there is no doubt that a-Si will play an in-

creasing role in electronics applications in the foreseeable future. Understanding the

relationship between the structure of a-Si and the corresponding physical properties

is crucial to the design of many technological devices, and practical applications of

a-Si continue to motivate the need for a better description of the structure of a-Si.
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1.2 Manufacturing of Amorphous Silicon

Contrary to glasses and most amorphous materials, a-Si cannot be prepared by a rapid

quenching of liquid silicon. The expected cooling rate needed to achieve an amorphous

state by rapid cooling of a liquid state is 1011Ks−1 [11, 12]. Such a cooling rate is

many orders of magnitude higher than what can be currently achieved in laboratories

(about 106Ks−1) [12, 13]. Methods of preparation of a-Si include pressure induced

amorphization, laser quenching, vapor deposition, and sputtering. The purest form

of a-Si is produced by self-ion implantation (silicon ion bombardment) [3, 4].

The ion implantation method produces a-Si by bombarding a liquid nitrogen

cooled c-Si (001) wafer with silicon atoms at different energies and fluencies [14].

The silicon ion energies vary from 1.5MeV to 27MeV and the fluencies vary from

5 × 1015 ions cm−2 to 9 × 1015 ions cm−2, giving a c-Si sample a cumulative dose of

8.3×1016 ions cm−2, while producing a 12µm thick a-Si membrane. Any traces of c-Si

in the sample can be removed by a wet chemical etch with 20% solution of KOH, as

c-Si is more susceptible to KOH etching. The impurity level in a sample produced by

ion implantation method is below 0.1% [14]. Thermal annealing of an as-implanted

sample in vacuum at 600 ◦C produces an annealed sample of a-Si.

Pressure induced amorphization uses a diamond anvil cell to compress porous

c-Si. The sample is transformed to a-Si at pressures in excess of 10GPa [15] and

remains amorphous upon decompression. Pressure induced amorphization can also

be achieved using nano-indentation [16]. Other methods of fabricating a-Si include

laser quenching [17], where silicon is amorphized by melting c-Si with picosecond

laser pulses, chemical vapor deposition [18], where a-Si is formed by condensation of

vaporized silicon onto a substrate, and magnetron sputtering [19], where silicon atoms

ejected from a target by energetic ion bombardment are deposited onto a substrate.

Amorphous silicon networks structures and their properties in general depend on

the preparation method [20]. It has been conjectured [21] that the relaxed form of
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a-Si approaches a universal structure. We will show in Chapter 3 that the possible

structures of a-Si span a much larger class of structures than previously recognized.

1.3 Experimental Probes of Amorphous Silicon

Experimentally, the most direct probe of the structure of a-Si is provided by diffraction

scattering experiments (X-ray or neutron). Since the positions of silicon atoms in

a-Si lack periodicity and a preferred direction, the entire X-ray signal is due to the

diffuse scattering and depends only on the magnitude of the scattering vector k = |k|.

Scattering experiments provide the values of the structure factor S(k) as a function of

the magnitude of the scattering vector k = 4π
λ
sin(θ/2), where θ is the scattering angle

and λ is the wavelength of the electromagnetic wave, or the de Broglie wavelength of

the neutrons. The structure factor is defined as

S(k) =
1

N
|nk|2 , (1.1)

where nk =
∑

j e
−ik·rj is the scattering amplitude of a point pattern, N is the number

of atoms, rj are the positions of atoms, and k is the scattering vector. Note that for

isotropic point patterns nk depends only on the magnitude of the wavevector k = |k|

allowing us to write to S(k) as a function of k. In the following, we omit the delta-

function forward scattering at k = 0 and define S(0) by S(0) = S(k → 0). Using

the Fourier transform, the structure factor S(k) can be inverted to obtain the pair

correlation function g(r) using the formula (valid for three dimensional isotropic point

patterns)

g(r) = 1 +
1

2π2ρ

∫ ∞

0

k (S(k)− 1)
sin(kr)

r
dk, (1.2)

where ρ is the sample density.
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To date, the most precise scattering measurement on a-Si was obtained by Xie

et al. [2] at the Advance Photon Source in the Aragon National Laboratory. Xie et al.

used a highly sensitive small angle transmission spectroscopy with a 250µm×250µm

beam of 17 keV X-rays in vacuum with a sample to detector distance 293mm to

measure the scattering intensity in the transmission geometry from an edge-supported

membrane of a-Si [14]. The measurements were immediately repeated with 9 keV X-

rays. Xie et al. verified that the amorphous scattering volume is free from nucleation

of nanocrystalline silicon, by demonstrating the absence of a very tiny but sharp c-

Si(111) scattering feature on the principal peak. The structure factor at large k (up

to 55 Å
−1
), needed to obtain the pair correlations function, was measured by Laaziri

et al. [3, 4].

A major limitation of the scattering experiments is that they only provide in-

formation about the angular average of pair statistics. The structure factor S(k)

depends only on the magnitude of the scattering vector and consequently only the

angularly averaged pair correlation function is obtained. There is a large degeneracy

of amorphous structures with the same radial pair statistics (g(r) or S(k)). That

is, there is a large number of amorphous structures with identical g(k) and S(k),

but different higher-order correlations g3, g4 · · · [22]. Microscopic structural models

have been devised to understand the full three-dimensional structure of a-Si. Predic-

tive models must be constructed as local minima of physically realistic inter-atomic

interactions in order to reduce the aforementioned structural degeneracy. The devel-

opment of accurate models for a-Si that can explain the measured structure factor

and pair correlation function as well as all other properties of a-Si is a subject of this

thesis.

Another probe of a-Si, independent of the scattering experiments is provided by

the measurement of the phonon spectra (vibrational density of states). The phonon

spectra are measured either by the neutron scattering [23, 24] or by the Raman
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scattering [20, 25]. The size of the electronic band gap is also an important probe

imposing constraints on the number of coordination defects in a-Si. The size of

the electronic band gap, ∆Eg, is observed to increase with annealing. The self-ion

implanted a-Si sample has a band gap of ∆Eg = 0.85 eV and annealed samples (3 h at

500 ◦C) has a band gap of ∆Eg = 1.30 eV [26, 27]. These values should be compared

to the size of the band gap of c-Si, which is ∆Eg = 1.1 eV.

1.4 Theoretical Significance of Amorphous Silicon

Theoretically, a-Si is one of the simplest disordered network materials, serving as a

model for study of a wide range of glassy and amorphous systems [13]. a-Si is a

prototypical example of a covalently bonded, tetrahedrally coordinated amorphous

solids, examples of which include Silicon, Germanium, Silicon dioxide, Germanium

dioxide, Silicon-germanium, Zinc chloride and water. Since a-Si contains only one

type of atom, its structure is easier to understand than the compounds and alloys.

On a short range, atomic positions are completely described in terms of bond-

length d, bond-angle θ and dihedral angle α, see Fig. 1.1 for illustration. On a medium

range, partial information about the structure is provided by ring statistics. On a

long range, no simple metric can fully describe the structure as the number of degrees

of freedom grows without bound with increasing scale. Choosing the correct metric

to characterize the large scale properties of a disordered material is the hardest and

arguably the most important part of a structural description. Hyperuniformity was

proposed as a suitable order metric to characterize a disordered material according

to its local density fluctuations [28]. Hyperuniformity is discussed in detail in the

following section.

Despite being disordered and isotropic, at a short range (0-6 Å) a-Si retains the

same local chemical bonding as that of c-Si. Silicon atoms are almost perfectly tetra-
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(a) Bond-length (b) Bond-angle (c) Dihedral-angle

Figure 1.1: Characteristics of the short-range atomic ordering

hedrally coordinated with less than 0.1% coordination defects [29]. The bond-length

and bond-angle are close to the crystalline values, with only a few percent devia-

tion [3, 4, 30]. The dihedral angle on the other hand has a very broad distribu-

tion, close to the uniform distribution proposed by Zachariasen for an ideal glass in

1932 [31]. On a medium scale, (6-20 Å) a-Si can be partially described by the rela-

tive representation of the shortest-path irreducible rings formed by silicon atoms [32].

Since c-Si has a diamond cubic lattice, it contains only six-atom rings. The a-Si ring

structure on the other hand, while having a large proportion of six-atom rings, also

contains a significant number of five- and seven-atom rings, and a small number of

rings with less than five or more then seven atoms. On a large scale (20 Å and larger)

a-Si looks homogeneous and isotropic. The amount of the density fluctuation on a

large scale is partially described by the hyperuniformity order metric.

a-Si is an example of a highly over-constrained material. The number of con-

straints is seven, far exceeding the three translational degrees of freedom per atom.

See Appendix A for details of the constraint counting. The highly over-constrained

configuration of a-Si is in contrast to SiO2, which is isostatic. The high strain results

in a-Si is far from equilibrium [21], making it ideal for the study of non-equilibrium

statistical systems.
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The existence of a large band-gap in the electronic density of states of a-Si is

not only technologically important, but is also of great theoretical interest. The

band-gap of a-Si ∆Eg = 1.5 eV lies between the indirect band-gap ∆Eg, ind = 1.1 eV

(difference between the minimum energy in the conduction band and the maximum

energy in the valence band) and the direct Γ band-gap ∆Eg,Γ = 3.4 eV (difference

between the energy of the conduction band and the valence band at the Γ point, which

lies at the center of the Brillouin zone) of c-Si [33]. Historically, the existence of a

large band-gap in a-Si was surprising, given the disordered structure of a-Si. Weaire

and Thorpe were the first to use a theoretical argument to show a possibility of a

band-gap in disordered, covalently bonded tetrahedral materials such as a-Si [34, 35].

Their argument explains the existence of a band-gap as a consequence of a high local

bonding order (perfect four-coordination and small deviations of bond-length and

bond-angles) [13].

1.5 Hyperuniformity

A point pattern is hyperuniform if the number variance σ2
R ≡ 〈N2

R〉 − 〈NR〉2 within

a (hyper-)spherical sampling window of radius R grows more slowly than the win-

dow volume for large R, i.e. more slowly than R
d in d dimensions, see Fig. 1.2

for illustration [28]. In reciprocal space, hyperuniformity corresponds to a pattern

having a structure factor S(k) that tends to zero as the scattering vector k = |k|

tends to zero, i.e. the infinite wavelength density fluctuations vanish [28]. For any

system, the structure factor S(k → 0) can be expressed in terms of the fluctua-

tion of N(R), the number of atoms in a sphere with radius R, as S(k → 0) =

limR→∞[〈N(R)2〉 − 〈N(R)〉2]/〈N(R)〉. For a system in thermal equilibrium, one can

show that S(k → 0) = ρkBTχT , where ρ is the number density, T is the temperature,

χT is the isothermal compressibility and kB is the Boltzmann constant.

10
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(b) Crystalline pattern
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(c) Hyperuniform pattern

Figure 1.2: Hyperuniform and non-hyperuniform point patterns. Spherical window
Ω is shown in light green.

The concept of hyperuniformity was introduced by Torquato and Stillinger as

an order metric for ranking point patterns according to their local density fluctua-

tions [28]. Trivial examples of hyperuniform systems are crystals and quasi-crystals.

In this thesis, we are mainly interested in isotropic, translationally disordered struc-

tures.

Since its introduction, hyperuniformity has been observed in many systems of

practical and theoretical interest. Many of these are systems with hard, short-range

interactions, most notably in maximally random jammed packings [36–38]. Random

jammed packings were introduced by Torquato and Stillinger as a rigorous replace-

ment to the historically prominent but ambiguous idea of “random close packing” [39].

Hyperuniform maximally random jammed packings include packings of spheres [36–

38, 40], a class of smoothly shaped non-spherical particles [37, 38, 40], Platonic solids,

ellipsoids, superballs and superellipsoids [41] and polydisperse hard disks [37]. In fact,

long before the aforementioned maximally random jammed packings were shown to

be hyperuniform, Torquato and Stillinger suggested that “all strictly jammed satu-

rated infinite packings of identical spheres are hyperuniform” [28]. Saturated packing

of hard spheres is defined as a packing in which there is no space available to add

another sphere, e.g. in the case of saturated packings of identical hard spheres of unit
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diameter, no point in space has distance greater than unity from the center of some

sphere [28].

Other interesting examples of disordered hyperuniform systems include a one

component plasma [42], strongly interacting systems of bosons such as liquid he-

lium [43], spin-polarized fermionic ground states arising from determinantal point

processes [44, 45], and the ground states of the so-called stealthy potentials [46], that

enforce S(k) = 0 for a k in a range [0, kC ], by a collective coordinates approach [47].

An example of applications of hyperuniformity in cosmology is the Harrison-Zeldovich

form of the primordial power spectrum [48, 49], that describes the matter fluctua-

tions on the large-scale structure of the Universe. Hyperuniformity may play a role in

determining the structural coloring of bird feathers and other biological tissues [50].

Beyond particle systems, the concept of hyperuniformity has been generalized to in-

clude random heterogeneous media [51].

Disordered hyperuniform systems are excellent candidates for materials with ex-

otic properties [52, 53] and have been used to design novel photonic materials with

tunable band-gaps [54–57]. Florescu, Torquato and Steinhardt conjectured that the

band-gap properties of real amorphous materials are related to their degree of hyper-

uniformity [55]: “Although bounded variation [of density] may be sufficient to obtain

a nonzero electronic band-gap, we conjecture that hyperuniform, tetrahedrally coor-

dinated, continuous random networks have substantially larger electronic band-gaps

than those that do not.”de Graff and Thorpe on the other hand suggested that all

amorphous tetrahedral networks have S(k → 0) ≈ 0.035 [21], and hence that hyper-

uniformity or even near hyperuniformity in continuous random networks is impossible.

The reasoning of de Graff and Thorpe is based on an analysis of a 100, 000-atom sam-

ple of continuous random network and on the idea that the structure of amorphous

silicon looks like a “frozen liquid” and hence the density fluctuations “freeze” at the

freezing temperature. The frozen-liquid picture led them to conclude that S(k → 0)
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for a-Si is given by S(k → 0) = (〈N2〉 − 〈N〉2) /〈N〉 = ρkBTξT , where ρ is the num-

ber density, T = Tg ≈ 1100K is the freezing temperature and χT is the isothermal

compressibility of a-Si.

1.6 Pair Correlation Function

Any statistical system ofN identical particles confined to a volume V is completely de-

scribed in terms of the configurational probability density function P (r1, r2, · · · , rN),

which is defined as a probability density of finding the system in configuration

r1, r2, · · · , rN . P (r1, r2, · · · , rN), contains all the information about the system, and

thus it is too complex to be studied in practical samples with N ' 103, let alone in

the thermodynamic limit in which N → ∞. Instead, we define the reduced config-

urational probability density function of rank n, Pn(r1, r2, · · · , rn), which is defined

as a probability density for any n-subset of the N particles to occupy positions

r1, r2, · · · , rn. Pn(r1, r2, · · · , rn) is evaluated by counting the number of n-subsets

of N particles and integrating out the rn+1, · · · , rN variables, which leads to the

following expression,

Pn(r1, r2, · · · , rn) = n!

(

N

n

)∫

V

· · ·
∫

V

P (r1, r2, · · · , rN)drn+1 · · · drN , (1.3)

where V denotes the volume available to a single particle.

Aside from the trivial P0 = 1 and P1 = ρ ≡ N/V , the simplest reduced con-

figuration density is of rank 2, P2(r1, r2). In a statistically homogeneous system,

it is convenient to express the configurational variables in terms of the relative co-

ordinate r21 = r2 − r1 and the center of mass coordinate rCM = [r1 + r2]/2. We

have P2(r1, r2) = P2(r2 − r1, [r1 + r2]/2) = P2(r21, rCM), where we use the fact that

dr1dr2 = dr21drCM . By integrating out the two-particle center of mass variable

rCM on which P2(r1, r2) does not depend, given the assumption of homogeneity, we
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have P2(r1, r2) = P2(r21). In a statistically isotropic system, we may further write

P2(r21) = P2(|r21|) = P2(r21) as the probability density depends only on the magni-

tude of the relative coordinate r21 = r21.

Physical quantities can be derived from statistical operators that are defined as

functions of particle configuration r1, r2, · · · , rN , i.e. o = o(r1, r2, · · · , rN). Every

statistical operator can be expressed in terms an n-body operator expansion as

o(r1, r2, · · · , rN) = o0+
∑

i1

o1(ri1)+
∑

i1,i2

o2(ri1, ri1)+ · · ·+
∑

i1,i2,...,iN

oN(ri1, ri2, · · · , riN ),

(1.4)

where on are n-body operators.

The ensemble average of an operator o(r1, r2, · · · , rN) is defined as

〈o〉 =
∫

V

· · ·
∫

V

o(r1, r2, · · · , rN)P (r1, r2, · · · , rN)dr1 · · · drN . (1.5)

The ensemble average of an n-body operator depends only on the reduced configura-

tional probability density function of rank n. Arguably the most important statistical

operator is the density operator defined as

nr(r1, r2, · · · , rN) =
N
∑

i=1

δ(r− ri). (1.6)

The ensemble average of the density operator is the density of the sample 〈nr〉 = ρ.

Comparison with the n-body operator expansion (1.4) reveals that the density oper-

ator is a one body statistical operator.

The pair correlation function is defined in terms of a density-density correlation

function 〈nr1nr2〉 as

g(r1, r2) =
〈nr1nr2〉
ρ2

− δ(r2 − r1)

ρ
. (1.7)
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The second term subtracts the δ-function self-correlation at r1 = r2. It follows from

equation (1.7) that g(r1, r2) → 1 as |r2−r1| → ∞. Since in statistically homogeneous

isotropic systems the ensemble average depends only on the value of P2(r21), we have

g(r1, r2) = g(r2− r1) = g(|r2− r1|) = g(r21). Intuitively, the pair correlation function

g(r) represents a probability density of finding a particle at a distance r from any

other particle in the system.

1.7 Structure Factor

The structure factor can be defined as a Fourier transform of the density-density

correlation function

S(k) =
1

NV

∫

V

∫

V

[〈nr1nr2〉 − 〈nr1〉〈nr2〉] exp[−ik · (r2 − r1)]dr1dr2

=
1

N

[

〈nkn−k〉 − (2π)3ρ2δ(k)
]

,

(1.8)

where nk is the Fourier transform of the density operator, i.e.

nk =

∫

V

nr exp(−ik · r)dr =
N
∑

j=1

exp(−ik · rj). (1.9)

Note that we have chosen to define the structure factor with the central peak sub-

tracted.

In a homogeneous and isotropic sample, the structure factor S(k) depends only

on the magnitude of the wavenumber k = |k|, so we have

S(k) = 1 + ρ

∫ ∞

0

∫ π

0

[g(r)− 1] exp(−ikr cos θ)2πr2 sin θdθdr, (1.10)
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which can be restated as

S(k) = 1 + 4πρ

∫ ∞

0

r [g(r)− 1]
sin(kr)

k
dr, (1.11)

which expresses an intimate relationship between the pair correlation function g(r)

and the structure factor S(k) in a homogeneous isotropic media.
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Chapter 2

Models of Amorphous Silicon

A
s discussed in section 1.3, experimental probes do not directly provide all

the information necessary to reconstruct the structure of a-Si, so micro-

scopic structural models have been devised in order to understand its

full three-dimensional structure. The most successful of these models are based on

continuous random network (CRN) models [13, 58], first proposed by Zachariasen

in 1932 [31]. In the following, we will present a survey of some of the most well

known modeling methods that have gained a widespread use. These include CRN

methods, molecular dynamics methods, empirical potentials methods, reverse Monte

Carlo methods, and ab-initio density functional methods. There is still an enormous

room for development of new algorithms and approaches to modeling a-Si and amor-

phous semiconductors in general.

2.1 Continuous Random Network Models

The idea of a continuous random network (CRN) was introduced in Zachariasen’s

seminal paper [31] more than 80 years ago. The key idea behind CRN models is

that, on small scales, the local order of a-Si is close to that of c-Si, while a wide
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spread in the dihedral angle distribution ensures that the atomic correlation decays

sufficiently quickly (within the distance of several bond-lengths) to make the sample

homogeneous and isotropic on large scales. The ideal continuous random network of

a-Si is characterized by the following properties:

• each atom is four-fold coordinated (no dangling bonds or floating bonds)

• small spread in bond length and bond angle distributions

• wide spread in dihedral angle distribution

• no long-range order

• no crystalline regions

• no voids

Fig. 2.1 shows typical distributions of bond lengths, bond angles and dihedral

angles in a CRN model. The distributions of bond lengths and bond angles are

approximately Gaussian with σ = 3.6% for bond lengths and σ = 8.61◦ for bond

angles. The distribution of the dihedral bond angles is broad, with enhancements at

−60◦, 60◦, 180◦, arising from the staggered configurations of silicon atoms.

The early versions of the CRN models were made of sticks and balls, see Fig. 2.2.

Polk demonstrated that there are no obstacles to constructing an arbitrarily large

CRN by building a 440 atom CRN with about a 5% bond length and a 10% bond angle

deviation, with no observable difference in the CRN structure between the central and

outer regions [59, 60]. Using a computer program, the models were later relaxed [61]

with the Keating potential and analyzed for their structural characteristics, including

pair correlation functions, the dihedral angle distribution, the bond length and bond

angle distributions, ring statistics [62], and the one-band electronic structure [63].

The CRN models were shown to be in a good agreement with experimental data in

terms of the structure factor, the phonon density of states and the electronic structure;
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Figure 2.1: Distribution of bond lengths, bond angles and dihedral angles in a typical
continuous random network model. Bond lengths are normalized so that the un-
stretched value of Si-Si bond length is

√
3/2. Units on the vertical axis are arbitrary;

dihedral angle is measured in radians.

however they failed to predict the behavior of the structure factor for small values of

the wavevector.

Today, continuous random networks of sizes up to 100, 000 atoms are generated

by an accelerated massively parallelized implementation of the Wooten, Winer, and

Weaire (WWW) method, which uses a sequence of topological reconfigurations (bond

switches) in order to achieve an amorphous, topologically disordered state. The

WWW method bond switches are defined purely topologically. The Keating potential

is used to evaluate the energy of a topological configuration.

19



Figure 2.2: Polk sticks and balls model1

2.2 Keating Potential

The Keating potential [64–67] was originally proposed as an alternative to the strain

potential of the Born-Huang approach of modeling elastic properties of tetrahedrally

bonded crystals with diamond cubic lattice. The Keating potential contains two-body

1Courtesy of Polk, reproduced with permission of Elsevier
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and three-body interactions, described by the formula

E =
3

16

α

d2

∑

i,j

(

rij · rij − d2
)2

+
3

16

β

d2

∑

i,j,k

(

rij · rik +
1

3
d2
)2

, (2.1)

where rij = ri − rj, and ri, rj denote the position vectors of a pair of bonded atoms,

d = 2.35 Å is the mean length of the Si-Si bond, α = 2.965 eV/Å
2
is the overall energy

scale, and β = 0.285α is determined from the crystalline phonon density of states of

silicon. The first term of the Keating potential (bond stretching term) penalizes

bonds for their deviation from their ideal unstrained value, while the second term

(bond bending term) pushes bond angles towards the ideal tetrahedral angle θ0 =

arccos(−1/3) ≈ 109.47◦ of sp3 hybridization. The Keating potential provides a good

fit with experimental data on c-Si, including elastic coefficients, bulk modulus, and

strain-energies [65, 66]. Models of a-Si based on the Keating potential are generally

in good agreement with the pair correlation function g(r) and the structure factor

S(k), except for a significant deviation at large distances r and small wavevectors

k [21].

Evaluation of the Keating potential requires the knowledge of a bonding table i.e.

a list of atomic pairs that are considered to be bonded. Since non-bonded atoms

interacting with the Keating potential incur no penalty for being close, the Keating

potential does not preclude the possibility that a pair of non-bonded atoms comes

unphysically close together. This deficiency of the Keating potential can be remedied

by altering the bonding table to make sure that all pairs of close atoms are always

bonded.
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2.3 Wooten, Winer, and Weaire Method of Gen-

erating Continuous Random Networks

The Wooten, Winer, and Weaire (WWW) method [68] was proposed as an efficient

algorithm for constructing high quality CRNs. The method uses a sequence of bond

transpositions, particular bond reconfigurations that alter the topology of the net-

work while preserving the perfect four-fold coordination of each atom. The topology

reconfiguration due to a bond transposition is illustrated in Fig. 2.3. The bonds be-

tween A,A1 and B,B2 are broken and replaced by bonds between A,B2 and B,A1

respectively, while the bond between A,B is rotated by about 90◦. After each bond

transposition, the configuration is relaxed with the Keating potential.

The starting point of the WWW technique is a perfectly four-coordinated network

of atoms in a periodic box. This network is evolved through a sequence of bond

switches, that are accepted with Hastings-Metropolis acceptance probability

p = min

[

1, exp

(

Eafter −Ebefore

kBT

)]

, (2.2)

where Ebefore, Eafter are the Keating energies before and after bond transposition re-

spectively, kB is the Boltzmann constant and T is the temperature. A sufficiently

long evolution produces a thermal ensemble of configurations at temperature T .

Wooten et al. [68] demonstrated the practicality of their technique by generating a

216-atom sample with bond angle distribution of 11◦. Djordjević et al. [69] later used

the WWWmethod to generate a 4096-atom model with the bond angle distribution of

10.5◦. Significant progress was achieved by Barkema and Mousseau [70], who proposed

improvements to the WWW method that allowed them to generate a 100, 000-atom

models with the bond angle distribution of 10◦. The improvements proposed by

Barkema et al. include using local and non-local relaxation to reject unfavorable
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Figure 2.3: Bond transposition of the bond between atom A and B. Bond transpo-
sitions represent a basic Monte-Carlo evolution step of the WWW method.

transpositions [70] and bulk synchronous parallelization scheme [71]. Barkema and

Mousseau also proposed to start from a highly disordered liquid-like configuration

to avoid any memory of an initial crystalline state. Connectivity of any liquid-like

configuration can be assigned by an expanding loop method described in [70]. Fig. 2.4

illustrates the CRN network produced by the WWW method.

Evolution steps of the WWW method take the system from one local minimum of

the Keating potential to another through the energy landscape of the system. This

presents a notable advantage over molecular dynamics models, where many steps
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Figure 2.4: Small portion of a continuous random network model of a-Si generated
by a WWW method

are taken before the system makes a transition between the states corresponding to

different inherent structures [72, 73].
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2.4 Empirical Classical Potentials

An accurate description of physical properties of solids, especially of the disordered

ones requires a study of samples with sizes at least 3−10 nm, or about 1000−100, 000

atoms. Ab-initio methods based on the density functional theory (DFT) can provide

an accurate description of inter-atomic interactions which are necessary in these stud-

ies, but the computational complexity of ab-initio methods remains prohibitive given

the size of the samples needed. An alternative to the quantum treatment of the DFT

is to use empirical inter-atomic potentials, which are computationally much less ex-

pensive. Developing reliable empirical potentials that are much simpler than the full

quantum treatment, yet capture the essential physics, is of crucial importance for the

study of the structure and properties of materials.

Any classical potential for a statistical system of N particles can be expressed as

a sum of one-body, two-body, three-body, etc. terms (cluster expansion)

E =
∑

i

v1(ri) +
∑

i,j

v2(ri, rj) +
∑

i,j,k

v3(ri, rj, rk) + · · ·+ vN(r1, r2, · · · , rN). (2.3)

Although a purely two-body potential that stabilizes and self-assembles a diamond

lattice has recently been proposed [74], because of the directional nature of sp3 bond-

ing orbitals a three-body potential is likely to be needed in order to model all proper-

ties of silicon that include the melting temperature, phonon spectra, and mechanical

properties.

The Stillinger-Weber potential [75] involves two- and three- body interactions

described by the following set of equations:

ESW =
∑

i,j

v2(ri, rj) +
∑

i,j,k

v3(ri, rj, rk), (2.4)
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v2(rij) = εf2 (rij/σ) , (2.5)

v3(rij, rik, cos θ) = εf3 (rij/σ, rik/σ, cos θijk) , (2.6)

where rij = |rj − ri|, rik = |rk − ri|, θijk is the angle between the vectors rj − ri and

rk − ri, and

f2(r) =











A(Br−p − r−q) exp [(r − a)−1] r < a

0 r ≥ a
(2.7)

f3(rij, rik, θijk) =











λ exp [γ(rij − a)−1 + γ(rik − a)−1]
(

cos θijk +
1
3

)2
rij < a and rik < a

0 rij ≥ a or rik ≥ a.

(2.8)

Table 2.1 shows the original crystalline parameters of the Stillinger-Weber poten-

tial in the first column and the modified parameters that were determined by fitting

to the phonon spectra of a-Si [76] in the second column. Crystalline parameters were

obtained by fitting the c-Si model to the experimentally obtained cohesive energy

and melting temperature. The amorphous parameters were obtained by fitting the

positions of the transverse acoustic (TA) and transverse optic (TO) peaks of the a-Si

phonon spectra [76].
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Stillinger-Weber crystalline Stillinger-Weber amorphous

σ 0.20951 nm 0.20951 nm

ε 2.16826 eV 1.64833 eV

A 7.049556277 7.049556277

B 0.6022245584 0.6022245584

p 4 4

q 0 0

a 1.80 1.80

λ 21.0 31.5

γ 1.20 1.20

Table 2.1: Stillinger-Weber potential parameters

Fig. 2.5 shows the two-body and three-body functions of the Stillinger-Weber

potential. V2(r) is the two-body potential term and V3(r) is the radial part of the

three body potential term.

The Tersoff potentials [77–79] are a family of bond order potentials, a class of

potentials whose bond-strength depends on the local environment. The dependence

of bond-strength on the local environment allows the Tersoff potentials to accurately

describe the non-tetrahedrally bonded atoms (bonding defects) in a-Si. The Tersoff

potentials are described by the following set of formulas.

ET =
∑

ij

v2(ri, rj), (2.9)

where v2 has the form of a Morse pair potential

v2(ri, rj) = fc(rij) [A exp(−λ1rij)− B(ri, rj) exp(−λ2rij)] . (2.10)
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Figure 2.5: Illustration of the Stillinger-Weber potential. The two-body potential
term, V2(r) is shown in dark blue; the radial part of the three-body potential term,
V3(r) is shown in red.

Deviations of the Tersoff potential from a pair potential are derived from the depen-

dence of B(ri, rj) on the local environment. B(ri, rj) is given by

B(ri, rj) = B0 exp (−zij/b) , (2.11)

zij =
∑

k 6=i,j

[

w(rik)

w(rij)

]n

[c+ exp(−d cos θijk)]−1 , (2.12)

where rij = |rj − ri|, θijk is the angle between the vectors rj − ri and rk − ri, and

w(r) is given by

w(r) = fc(r) exp(−λ2r), (2.13)

where fc(r) is a cutoff function that restricts the range of the potential

fc(r) =























1 r ≤ R−D,

1
2
− 1

2
sin
[

π(r−R)
D

]

R−D < r < R +D,

0 r ≥ R +D.

(2.14)
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zij is a weighted measure of the number of bonds competing with the bond ij, and

b determines how rapidly the bond strength falls off with increasing effective co-

ordination [77]. A,B0, λ1, λ2, b, c, d, n, R,D are parameters of the Tersoff potential

determined by fitting to the properties of c-Si.

parameter A B0 λ1 λ2 b c d n R D

value 2280 eV 171 eV 2λ2 1.465 Å
−1

1.324 6.5 6.02 4 3.0 Å 0.2 Å

Table 2.2: Tersoff potential parameters

Another class of empirical potentials are the environment-dependent interatomic

potentials (EDIP) [80–83]. The EDIP potential was constructed using an analysis

of elastic properties for the diamond crystalline structure and inversions of ab-initio

cohesive energy curves. The EDIP potential includes two- and three-body terms which

depend on the local atomic environment through an effective coordination number.

The EDIP potential takes the following form

EEDIP =
∑

ij

v2(rij, Zi) +
∑

ijk

v3(rij, rik, Zi), (2.15)

Zi =
∑

j 6=i

f(rij) (2.16)

where f(rij) is a weight function that measures the contribution of neighbor j to the

coordination of atom i in terms of interatomic separation rij. The neighbor function

is 1 for r ≤ c and 0 for large inter-atomic separations r.

f(r) =























1 r ≤ a,

exp
(

α
1−x−3

)

c < r < a,

0 r ≥ b,

(2.17)

x =
r − c

b− c
. (2.18)
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The two-body potential takes the following form

v2(rij , Zi) =











A
[

( B
rij
)− exp (−βZ2

i )
]

exp
(

σ
rij−a

)

r < a,

0 r ≥ a.
(2.19)

The three-body potential contains the radial cutoff function and angular factor

v3(rij, rik, Zi) = g(rij)g(rik)h(cos θijk, Zi), (2.20)

where

g(r) =











exp
(

γ
r−b

)

r < b,

0 r ≥ b.
(2.21)

h(cos θijk, Zi) = λ
{

1− exp
[

−Q(Zi) (cos θijk + τ(Zi))
2]} , (2.22)

Q (Zi) = Q0 exp (−µZi) , (2.23)

τ(Zi) = u1 + u2 [u3 exp(u4Zi)− exp(−2u4Zi)] , (2.24)

and where A,B, ρ, β, σ, a, b, c, λ, γ, Q0, µ, α, u1, u2, u3, u4 are parameters. See [82] for

the values that were obtained by fitting to ab-initio DFT results including lattice

sums, elastic constants, and energies of point defects.

2.5 Molecular Dynamics Models

Molecular dynamics models simulate the motion of atoms interacting with a classical

potential and evolving under Newtonian dynamics. For a system of N particles with
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positions ri(t) and velocities vi(t), the Newtonian dynamics is given by

dr)i
dt

= vi, (2.25)

dvi

dt
= ai(t), (2.26)

ai = − 1

m
∇iV (r1, · · · , rN). (2.27)

A suitable integration scheme has to be chosen to numerically solve the system of

ordinary differential equations (2.27). The simplest integration scheme is the Euler

scheme, which integrates the equations by

ri(t+∆t) = ri(t) + vi(t)∆t, (2.28)

vi(t+∆t) = vi(t) + ai(t)∆t, (2.29)

ai(t) = − 1

m
∇iV (r1(t), · · · , rN(t)). (2.30)

An example of a commonly used scheme is the two step Verlet algorithm [84, 85] that

consists of the following steps:

ri(t+∆t) = ri(t) + vi(t)∆t +
1

2
ai(t) (∆t)

2 , (2.31)

vi(t+∆t) = vi(t) +
1

2
[ai(t) + ai(t +∆t)]∆t, (2.32)

ai(t) = − 1

m
∇iV (r1(t), · · · , rN(t)). (2.33)

The popularity of the Verlet algorithm stems from ease of implementation and good

convergence properties (the Verlet algorithm has O(∆t4) convergence).

Models of amorphous silicon obtained by molecular dynamics simulation of rapid

quenching starting from a sufficiently high temperature thermal state provide a good

fit for the radial distribution function, but suffer from a significant number of overco-

ordinated atoms (atoms with more than 4 neighbors in their first coordination shell,
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i.e. floating bonds) and undercoordinated atoms (atoms with less than 4 neighbors

in their first coordination shell, i.e. dangling bonds) [86–88]. Depending on the speed

of the quenching and the potential used, molecular dynamics models predict the con-

centration of coordination defects to be 5% to 10%. Experimentally, the number of

coordination defects can be reliably measured by electron paramagnetic resonance

experiments (EPR), which are very sensitive to defects in a-Si by detecting unpaired

spins of electrons. The EPR experiments point to a negligible number of coordination

defects - less than 0.1% [29, 89, 90], which means that molecular dynamics models

are ruled out as viable models of amorphous silicon.

2.6 Simulated Annealing

Simulated annealing is a stochastic Monte Carlo simulation procedure, which consists

of randomly selected transitions between two states of a model according to the

Metropolis transition probability [91]

pij = min

[

1, exp

(

Ej −Ei

kBT

)]

, (2.34)

Here Ei, Ej are energies of the i−th and j−th states respectively and T is the tem-

perature.

The model evolved under the Metropolis transition probabilities represents a dis-

crete time Markov chain, which satisfies the detailed balance condition and is assumed

to be transitive, i.e. every state in the configuration is reachable as required by er-

godicity. By the Markov ergodic convergence theorem, the probability distribution

converges to an equilibrium state in which the probability of a configuration is given

by the Boltzmann distribution, i.e. the probability of the n−th state is

Pn =
exp

(

− En

kBT

)

Z
, (2.35)
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where

Z =
∑

n

exp

(

− En

kBT

)

. (2.36)

A deep local minimum in the energy landscape of the model can be found by quasi-

statically lowering temperature from a high temperature T = Tmax to T = 0 according

to a predetermined annealing schedule. This choice of an annealing schedule is critical

to the efficiency of the algorithm. Popular choices of annealing schedule include the

logarithmic annealing schedule defined by T (nstep) = c/ log(1+ nstep) and the inverse

linear annealing schedule defined by T (nstep) = c/(1 + nstep), where nstep denotes the

number of steps taken in the current state of the simulation and c is a constant.

Using the theory of Markov chains, it can be shown that simulated annealing using

logarithmic temperature schedule T (nstep) = c/ log(1+nstep) will eventually reach the

global minimum provided that the constant c is larger than the depth of the deepest

local minimum which is not a global minimum [92]. While the logarithmic annealing

schedule always succeeds in finding a global minimum, the logarithmic convergence

is not practical. Faster annealing schedules may not converge to the global minimum

but rather to a deep local minimum, representing an amorphous state.

Simulated annealing is at the core of the Wooten, Winer, and Weaire method

for generating CRN models of a-Si. Apart from modeling a-Si, it was successfully

employed to model many other amorphous materials, including a-Si, a-Ge, a-SiO2,

a-Se, a-H2O and polymers. Simulated annealing is commonly used as an efficient

optimization method [93, 94].

2.7 Tight Binding Models

Tight binding models represent the simplest quantum mechanical models of solids.

The quantum mechanical treatment is restricted to the valence electrons (the elec-

trons responsible for bonding), which are treated as independent and uncorrelated.
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In the tight binding approximation, electronic eigenstates are represented as a lin-

ear combination of atomic orbitals (LCAO), which leads to the wavefunction of the

following form

|ψ〉 =
∑

i,α

ciα |φiα〉 , (2.37)

where |φiα〉 represent atomic orbitals with i indexing silicon atoms and α index-

ing valence orbitals of a particular silicon atom, i.e. 3s, 3px, 3py, 3pz orbitals of the

1s22s22p63s23p2 electronic configuration of silicon atoms. The tight binding method

approximates the full many-body Hamiltonian by an effective one body Hamiltonian

matrix, whose eigenstates correspond to the electronic states of independent valence

electrons. In the two center approximation, overlaps between three or more orbitals

are neglected, so the Hamiltonian is completely determined by the following transfer

(hopping) matrix elements between two overlapping orbitals

Hiαjβ = 〈iα|H|jβ〉 =
∫

φ∗
iαHφjβdr. (2.38)

Similarly, inner products of wavefunctions are completely determined by the following

matrix of overlap matrix integrals.

Siαjβ = 〈iα|jβ〉 =
∫

φ∗
iαφjβdr. (2.39)

An orthonormal basis of |φiα〉 is often used, as it leads to a simple form of overlap

matrix integrals Siαjβ = δijδαβ .

The interatomic portion of the transfer and overlap matrices can be expressed

in the Slater-Koster basis [95] in terms of the rotationally invariant elements
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assσ, aspσ, appσ, appπ as

A =



















assσ nxaspσ nyaspσ nzaspσ

−nxassσ appπ + nxnx(appσ − appπ) nxny(appσ − appπ) nxnz(appσ − appπ)

−nyassσ nynx(appσ − appπ) appπ + nyny(appσ − appπ) nynz(appσ − appπ)

−nzassσ nznx(appσ − appπ) nzny(appσ − appπ) appπ + nznz(appσ − appπ)



















.

(2.40)

HereA stands for the transfer matrixH or the overlap matrix S and assσ, aspσ, appσ, appπ

stand for the two-center Slater-Koster transfer elements hssσ, hspσ, hppσ, hppπ or the

two-center Slater-Koster overlap elements sssσ, sspσ, sppσ, sppπ respectively, and

nx, ny, nz are components of the unit vector in direction r2 − r1, stretching between

the two bonded atoms. The elements assσ, aspσ, appσ, appπ are rotationally invariant

and have the symmetry of σ or π bonds (see Fig. 2.6 (a)-(d), for illustration). The

intra-atomic portion of the transfer and overlap matrix is taken to be diagonal and

by symmetry can be parametrized as

B =



















bss 0 0 0

0 bpp 0 0

0 0 bpp 0

0 0 0 bpp



















, (2.41)

where bss = bpp = 1 for the overlap matrix elements and bss = Es, bp = Ep for

transfer matrix elements. Es and Ep denote the energy levels of the s and p orbitals

respectively.

The eigenstates of the Hamiltonian are the critical points of the following varia-

tional functional

E [ψ] =
∫

ψ∗Hψdr− ǫ

∫

ψ∗ψdr. (2.42)
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(a) assσ (b) aspσ

(c) appσ (d) appπ

Figure 2.6: Orbital overlaps

In the subspace of one-electron orbitals of the form |ψ〉 =∑i,α ciα |φiα〉, the critical

points satisfy

Hiαjβ cjβ = ǫSiαjβ cjβ. (2.43)

The coefficients ciα are obtained by the Löwdin transformation method, which requires

an eigendecomposition of S and solving for eigenvalues of matrixH with inner product

specified by S. Once the eigenvalues of (2.43) are known, the electronic part of the

configurational energy (band energy) is obtained by summing the eigenenergies of the

Hamiltonian from the lowest energy state up to the Fermi level,

Eelectrons = 2
∑

occupied
states

ǫs, (2.44)
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where ǫs denotes the energy of an electronic state, the factor of 2 takes into account

the spin degeneracy of the states and the sum is performed of the filled states (e.g.

lower half of the spectrum).

The total energy of the atomic configuration consists of the band energy and the

energy of the ionic repulsion between the atoms. The energy of the ion repulsive

interaction can be modeled by a two-body empirical potential

Eions =
∑

i,j

v2(rij), (2.45)

or by a many body potential such as

Eions =
∑

i

f

(

∑

j

φ2(rij)

)

. (2.46)

The total energy of the configuration is then expressed as

E = Eelectrons + Eions +NatomsE0, (2.47)

where Natoms is the number of atoms and E0 is an intrinsic energy associated with a

silicon atom.

Energy of the configuration can be used to evaluate forces on atoms using a formula

F = − d

dR
Eelectrons−

d

dR
Eions = −

∑

iαjβ

(

dHiαjβ

dR
− Eelectrons

dSiαjβ

dR

)

− d

dR
Eions, (2.48)

which in turn can be used as an input of molecular dynamics model or a relaxation.

The eigenenergies can be used to determine the size of an electronic band gap.

The major limitation of the tight binding method is the need for an eigendecom-

position of an n × n matrix, with n = NatomsNorbitals, where Natoms is the number

of silicon atoms and Norbitals is the number of atomic orbitals per atom. Since the
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computational complexity of the matrix diagonalization is O(n3), the use of the tight

binding approximation is impractical for systems with more than about 1000 atoms.

A physically motivated parametrization of the transfer and overlap elements that

successfully predicts the size of the band gap in c-Si was given by Kwon [96, 97]. The

Kwon method uses an orthonormal set of orbitals, so that Siαjβ = 1 for orbitals of

the same type on the same site and Siα,jβ = 0 otherwise. In this model, inter-atomic

transfer matrix elements are parametrized as

hα(r) = hα(r0)
(r0
r

)n

exp

(

n

[

−
(

r

rcα

)ncα

+

(

r0
rcα

)ncα
])

, (2.49)

where the subscript α denotes the four possible types of interatomic hopping, i.e.

ssσ, spσ, spπ, ppπ. The intra-atomic transfer matrix elements are parametrized as

hss = Es, hpp = Ep.

The ionic repulsion is modeled according to equation (2.46) with

f(x) = C1x+ C2x
2 + C3x

3 + C4x
4, (2.50)

and φ2(r) given by

φ2(r) =
(r0
r

)m

exp

(

m

[

−
(

r

rcα

)mc

+

(

r0
rc

)mc
])

. (2.51)

The hα(r0), rcα, rc, r0, n, ncα, m,mc, Es, Ep, E0, Ci are parameters of the model that

were fitted to experimental data shown in the following table:
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off-diagonal transfer elements parameters

α ssσ spσ ppσ spπ

hα(r0)/eV −2.038 1.745 2.75 −1.075

ncα 9.5 8.5 7.5 7.5

rcα 3.4 3.55 3.7 3.7

diagonal transfer elements parameters

Es/eV Ep/eV E0/eV

−5.25 1.20 8.7393204

other electronic parameters

r0/nm n

0.235 2

ion repulsion function parameters

C1/eV C2/eV C3/eV C4/eV

2.1604385 −0.1384393 5.8398423× 10−3 −8.0263577× 10−5

ion repulsion potential parameters

m mc rc/Å

6.8755 13.017 3.66995

Table 2.3: Parameters of the Kwon model [96]

An example of a parametrization that uses a non-orthogonal set of orbitals includes

a model proposed by Bernstein et al. [98]. For more details on the tight binding

method, see [99].
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2.8 Reverse Monte Carlo Models

Reverse Monte Carlo models result from an attempt to create a structural model

that optimizes fit to experimental data with no assumption of the underlying physics.

In the Reverse Monte Carlo models, physically motivated configuration energy is

replaced by an artificial energy function that measures the distance of the configu-

ration dependent quantities from the corresponding experimentally measured data

points [100, 101]

ERMC =
∑

i

[xi(r1, r2 · · · rN)− xi,obs]
2 . (2.52)

Here xi,obs denotes an experimentally measured quantity, xi(r1, r2 · · · rN) the same

quantity calculated from the configuration of the model, and i indexes the differ-

ent measured quantities. The Metropolis-Hasting algorithm can be used to find a

configuration that represents a local minimum of ERMC .

In the case of a-Si, the experimentally measured quantities are typically either the

structure factor S(k) obtained from the diffraction experiments or the pair correlation

function g(r) obtained from S(k). In these cases it is desirable to add a physical, short

range inter-atomic interaction to ERCM to break a high degeneracy of ERMC that is

a result of many different atomic configurations giving rise to the same values of g(r)

or S(k).

The reverse Monte Carlo methods are successful in reproducing the data contained

in the energy function, but often fail to fit other experimental data. An impressive

fit of the experimental data is not necessarily a virtue of the reverse Monte Carlo

methods, since the data are often fitted to a higher precision than that of the data

itself, which is a sign of too many parameters in the model.

The major problem of the reverse Monte Carlo methods is that often very dif-

ferent configurations can fit the same experimental data. Stillinger proved that the

number of inherent structures grows exponentially with the system size [102]. Con-
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sequently, the reverse Monte Carlo methods have a low predictive power, due to the

large number of possible configurations that fit the experimental data well, resulting

from the structural degeneracy. Lack of a physical realistic mechanism that selects

the correct inherent structure presents a serious shortcoming of the reverse Monte

Carlo methods.

2.9 Density Functional Theory Models

Density functional theory (DFT) models represent the electronic energy of a configu-

ration as a functional depending only on the electron charge density, i.e. Eel. = Eel.[ρ],

where the density ρ is given by

ρ(r1) = Nel.

∫

dr2 · · ·drN ‖|Ψ(r1, · · · , rN)〉‖2 . (2.53)

Here Nel. =
∫

d3rρ(r) is the number of electrons in the system. The ground state of

the electrons minimizes the energy functional. The DFT electronic energy functional

is approximated as

Eel.[ρ] = q

∫

d3rφ(r)ρ(r) + q2/2

∫

d3rd3r′
ρ(r)ρ(r′)

|r− r′| + Tel.(ρ) + Eexch.
el. , (2.54)

where q is the charge of electron, φ(r) is an external potential, Tel(ρ) is the kinetic

energy of the electrons, and Eexch.
el. is the exchange-correlation term, which models the

quantum effects of interacting electrons.

The simplest method of approximating the exchange-correlation term is the local

density approximation (LDA). In the LDA approximation, Eel. depends only on the

local density ρ(r) (not on the derivatives of ρ(r)), so that Eel. can be expressed as

Eexch.LDA
el. =

∫

d3rρ(r)ǫexch.el. . The exchange-correlation energy density ǫexch.el. can be

obtained as ǫexch.el. ≈ hc
(

−0.458
rs
R2

∞ − 0.44
rs+7.8R∞

R2
∞

)

by approximating the electrons as
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homogeneous electron gas (jellium) [103, 104]. Here rs is the Wigner-Seits radius

defined by rs =
(

3
4πρ

)1/3

and R∞ = mee4

8ε2
0
h3c

is the Rydberg constant.

The kinetic energy can be evaluated using the Kohn-Sham orbitals |ψi〉 as

Tel(ρ) =
∑

i

〈ψi| − ~/2m∇2|ψi〉 , (2.55)

where the Kohn-Sham orbitals |ψi〉 corresponding to energy εi labeled by index i are

found by solving the Kohn-Sham equation [105]

−~
2∇2 |ψi〉+ Veff(r) |ψi〉 = εi |ψi〉 , (2.56)

where Veff is defined as

Veff(r) = V (r) + q2
∫

d3r′
ρ(r′)

|r− r′| +
δǫexch.el.

δρ
, (2.57)

and the electronic density is

ρ(r) =
∑

occupied
states

‖|ψi〉‖2 . (2.58)

Besides the electronic energy, a configuration also carries an ionic energy

Eion. =
1

2

∑

i 6=j

qiqj
rij

, (2.59)

where qi denotes the electric charge of i-th ion, ri denotes the position of i-th ion,

and rij = |rj − rj|.

The DFT equations form a set of nonlinear integro-differential equations that can

be solved iteratively, where each step of the iteration requires the diagonalization of

a Hermitian N × N matrix. Here N is the number of Kohn-Sham orbitals consid-
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ered. While the DFT models can provide most accurate ways to calculate energies of

configurations, the computational complexity of these models limits their use to only

small sample sizes.
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Chapter 3

Nearly-Hyperuniform Network

Models of Amorphous Silicon

T
his Chapter and Chapters 4 and 5 are based on M. Hejna, P. J. Steinhardt,

S. Torquato, Nearly hyperuniform network models of amorphous silicon,

Phys. Rev. B 87, 245204 (2013). In this chapter we introduce the concept

of the nearly-hyperuniform network models of amorphous silicon and discuss their

implications for the structure of a-Si and the electronic band-gap in a-Si.

3.1 Introduction

The development of accurate structural models of amorphous silicon (a-Si) and other

tetrahedrally-coordinated solids has been an active area of research for the last eight

decades [13, 31, 58], but many challenges remain. The structure of a-Si is approxi-

mated well by continuous random network (CRN) models [13, 58], the first of which

was introduced by Zachariasen in 1932 [31]. Conventional CRNs for a-Si are fully four-

coordinated, isotropic disordered networks that contain primarily five, six, and seven

atom rings, while maintaining nearly perfect local tetrahedral order (narrow bond-
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angle and bond-length distributions). Predictions derived from CRN models assum-

ing a Keating potential describes the interatomic interactions are in good agreement

with many structural properties of a-Si that are accessible via experiments, includ-

ing the radial distribution function (RDF) and the phonon and electron density of

states [58, 70, 76], nearest- and next-nearest-neighbor distances, bond statistics, ring

statistics, etc. These successes are related to the form of the structure factor S(k) at

intermediate wavenumbers k.

In this chapter, we introduce the concept of nearly hyperuniform network (NHN)

structures and, on the basis of computer simulations, propose that NHN models

may provide a better description of a-Si, especially after annealing. A perfectly

hyperuniform solid has a structure factor S(k) that approaches zero as the wavenumber

k → 0, implying that infinite-wavelength density fluctuations vanish [28]. The CRN

models based on the Keating model that have been considered in the past (e.g.,

Ref. [70]) have values of S(k → 0) comparable to those found in the liquid phase at the

equilibrium melting temperature, S(k → 0) ≈ 0.03. We define a nearly hyperuniform

network as a disordered tetrahedral structure whose S(k → 0) is less than the liquid

value at melting. As a practical matter, we shall be interested in cases where S(k → 0)

is substantially less, by 50% or more, which implies a substantial reduction in the

large-scale density fluctuations and runs counter to the limitations imposed by the

frozen-liquid paradigm.

Employing a novel simulation protocol that is based on the Stillinger-Weber (SW)

potential to model the interatomic interactions, we generate a spectrum of NHN mod-

els and show that the energy landscape includes a sequence of progressively more hy-

peruniform minima with values S(k → 0) that are substantially less than the melting

value – by a factor of 2 or more. The simulations suggest that this sequence of states

can be reached through extensive annealing, and more efficiently when combined with

pressure. We further show that the degree of hyperuniformity correlates with other
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measurable signatures in S(k) at intermediate and large k and with the width of the

electronic band gap. Experimental measurements by Xie et al. [2] that lend support

to this picture are discussed in Chapter 6.

While the SW potential has been shown to give a more realistic description of

crystalline silicon [75], the energy penalty for dangling bonds is not sufficiently large,

and hence quenches from the melt, via molecular dynamics, result in an unrealistic

number of coordination defects. These defects are avoided in conventional CRN

models by using the less realistic Keating potential that enforces perfect fourfold

coordination.

3.2 Methods

In our study, we have devised a novel two-step numerical protocol to produce a

spectrum of NHN models that combines the advantages of the Keating and SW po-

tentials. Step one is a standard bond-switching annealing procedure using a Keating

potential [69] applied to 20, 000 atoms within a cubic box (under periodic boundary

conditions) that is augmented with procedural modifications introduced by Barkema

and Mousseau (BM) [70, 71]. However, unlike the BM CRN model, we anneal our

systems significantly longer (between 2 to 250 times as long as measured by the num-

ber of accepted transpositions) to achieve a sequence of inherent structures (local

potential-energy minima) that have lower energies than those of the K (BM) model.

In the second step of our procedure, we use our end-state inherent-structure con-

figurations obtained via a Keating potential (K1, K2, etc.) as initial conditions for

atomic-position rearrangement under a modified SW potential [76] at zero pressure

via a conjugate gradient method. We use the same parameters of the SW poten-

tial that were determined by fitting the phonon spectra of a-Si to neutron scattering

data [76]. We label the corresponding inherent structures of this SW potential respec-
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tively SW1, SW2, etc. With this two-step procedure, the resulting structures possess

a negligible number of dangling bonds. See Chapter 4 for additional simulation de-

tails and Chapter 5 for the geometric and topological properties including structural

and energy statistics for the resulting network configurations.

The structure factors S(k) of the generated samples were evaluated by the sam-

pling volume method. This method is based on the scaling behavior of density fluctu-

ations presented by Torquato and Stillinger [28] and described in detail in Chapter 4.

It can be viewed as a Fourier transform of the pair correlation function g(r) with an

appropriately chosen convergence factor that reduces artifacts due to the finite size

of the model [21].

3.3 Results

In Fig. 3.1, we show S(k → 0) as a function of the inverse of the height H of the first

scattering peak in S(k) for K (BM), the Barkema-Mousseau CRN model [21], as well

as for K3, K5, SW3, and SW5. Importantly, it can be observed that the K (BM)

model is not an endpoint of annealing under the Keating potential, since further

annealing produces a sequence K1 through K5 along a trajectory where S(k → 0)

gets smaller and the first peak height in S(k) gets larger. Moreover, the models

obtained by then quenching under the SW potential are nearly hyperuniform: they

have values of S(k → 0) that extend to more than 50% lower than their K progen-

itors and substantially below the value at the melting temperature. They also have

substantially higher radial distribution function (RDF) first-peak heights (see discus-

sion of Tables 5.1 and 5.2 in Chapter 5). The most nearly hyperuniform structure

obtained in our anneal run, SW5, yields S(k → 0) = 0.010± 0.002, which represents

a 70% reduction in the large-scale density fluctuations relative to the K (BM) model

[S(k → 0) = 0.035 ± 0.001] [21] or over three times more hyperuniform, which is a
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remarkably large reduction in the large-scale density fluctuations of the system. We

note that we stopped with K5 because the annealing runs began to use unreasonable

computational time; we believe that more refined hyperuniform amorphous networks

are achievable with yet longer annealing times.

0.56 0.64 0.72 0.80
H−1

0.00

0.01

0.02

0.03

0.04

S(0)

SW (BM)
SW 3

SW 5

K (BM)

K3

K5

Figure 3.1: S(k → 0) versus the inverse height H of the first scattering peak for the
K (BM) Keating annealed continuous random network model [21] and our Keating
annealed models (circles) and the corresponding Stillinger-Weber quenched models
(squares). The shaded region indicates the nearly hyperuniform range in which S(k →
0) is below the equilibrium melting value for a-Si; note that the SW models are
substantially below this threshold.

The SW5 model exhibits other signature features that correlate with increased

hyperuniformity and can be measured experimentally:
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(1) The SW5 structure possesses a bond-angle standard deviation that is more than

a degree lower than that of the K (BM) model and is in better agreement with recent

bond-angle analysis of monatomic amorphous semiconductors [30].

(2) The height of the first peak of S(k) for the SW5 model is higher than for the

K (BM) model, as shown in Fig. 3.2(a). The SW5 model exhibits a small scattering

enhancement near k = 1.0 Å
−1

seen in the experiments of Ref. [2].

(3) The K (BM) model has a significantly broader first peak of the pair correlation

function g(r) (due to a larger bond-length variation) than the SW5, as shown in

Fig. 3.2(b).

(4) For larger wavenumbers, the K (BM) model predicts a significantly faster decay

of the large-k oscillations in S(k) than does that of the SW5 model, as shown in

Fig. 3.3.

(5) Based on simulations of smaller 1000-atom models and using a tight-binding model

for silicon by Kwon [96], the electronic band gap increases with increasing hyperuni-

formity, as shown in Fig. 3.4. The widths of the isotropic band gaps are calculated as

the difference between the lowest energy state of the conduction band and the high-

est energy state of the valence band. The figure shows that the fractional band gap

width ∆E/E increases as the SW energy per atom decreases, which correlates with

increasing relaxation and thus the hyperuniformity. ∆E is the band gap width and E

is the energy of the midpoint of the band gap compared to the lowest energy valence

state. The same absolute gap width, ∆E, also increases with hyperuniformity.

To ensure that our NHN configurations are truly amorphous, we analyzed them

for the presence of ten-atom cages composed of four adjacent six-rings that constitute

a basic building block of the diamond crystalline structure. Our results show that the

most annealed CRN sample, K5, has 0.02 ten-atom cages per atom, a tiny fraction

compared to the perfect crystal that has one ten-atom cage per atom. Since the

Stillinger-Weber relaxation produces only negligible amount of topological defects,
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Figure 3.2: (a) Comparison of the angularly averaged structure factor S(k) versus
k for small to intermediate k for the Stillinger-Weber quenched SW5 model (blue
solid curve) and the Keating annealed K (BM) model [70] (red dashed line). (b)
Comparison of the first peak in radial distribution function g(r) versus radial distance
r for the K (BM) model [70] (red dashed curve) and the SW5 model (blue solid curve).

the results for K models carry over to the corresponding SW models. The ten-atom

cages are quite uniformly distributed throughout the volume, and there are no large

clusters. Comparison of our results to a recent study of nucleation [106] shows that

NHN models are far from crystallization. The ten-atom diamond cage that constitutes
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Figure 3.3: The angularly averaged structure factor S(k) versus the wavenumber k at
large k for the Stillinger-Weber quenched SW5 model (blue solid curve) displays larger
amplitude oscillations than the Keating-annealed K (BM) model [70] (red dashed
curve).

a basic building block of the diamond lattice and the eight-atom wurtzite cage that

constitutes a basic building block of the wurtzite lattice are shown in Fig. 3.5 (a) and

Fig. 3.5 (b) respectively.
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Figure 3.4: Fractional band gap, ∆E/E versus the average SW energy per atom eSW
in units of ε = 1.6483 eV, where ∆E is the band gap width and E the energy at
the midpoint of the band gap (measured with respect to the bottom of the valence
band). The value of eSW/ε decreases with increasing hyperuniformity, as shown in
Table 5.3 below; hence, the figure shows that fractional band gap width increases
with hyperuniformity.
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(a) Ten-atom diamond cage

(b) Eight-atom wurtzite cage

Figure 3.5: Illustration of ten-atom diamond cage and eight-atom wurtzite cage that
represent a basic building blocks of the diamond and wurtzite lattices respectively.
The size of clusters of ten-atom diamond cages can be used as a measure of proximity
to crystallization.
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3.4 Discussion

The fact that our annealing-quenching procedure produces a sequence of NHN mod-

els with an increasing degree of hyperuniformity (i.e., S(k → 0) tending to zero) has

deep significance. First, it demonstrates that the energy landscape for conventional

Keating-annealed CRN models, for Stillinger-Weber quenched models, and, hence,

probably amorphous silicon, has local minima that span a greater diversity of struc-

tures than was previously recognized. It also demonstrates that, experimentally, it is

possible to reach minima that are more nearly hyperuniform than had been thought

achievable. The density fluctuations as measured by S(k → 0) are not frozen at the

freezing point, but continue to decrease with annealing. In particular, the value of

S(k → 0) cannot be considered a universal quantity for a-Si or any other amorphous

tetrahedral network, as might be inferred from de Graff and Thorpe [21]. For ex-

ample, while the percentage drop in the energy per atom in going from the K (BM)

model to SW5 is about 23%, the corresponding drop in S(k → 0) is about 50%.

Remarkably, the configurational proximity metric [53], which gauges the average local

atomic movement required to transform one structure into another, is only about

one percent of a bond-length with a corresponding percentage energy drop of only

about 2.4% during our Stillinger-Weber (framework) quenching step from a Keating

potential-annealed CRN to a SW potential-quenched NHN state, even though the

latter possesses an S(k → 0) that is about one half the CRN value. This reveals

the importance of collective atomic rearrangements during the second step of our

quenching protocol.

Our findings are completely consistent with recent results for amorphous metals

in which the atomic pair interactions are isotropic [107, 108]. In these studies, it has

been demonstrated that, on approach to an inherent structure, S(k → 0) is nearly

hyperuniform and decreases monotonically [107], and that S(k → 0) decreases as

the temperature decreases. Also, deeper local minima in the energy landscape are
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accessed [108]. Thus, the observation that sampling deeper energy minima are accom-

panied by increased hyperuniformity appears to apply to a wide class of disordered

systems (with both isotropic and directional interactions) and its full elucidation de-

mands attention in the future.

Is it possible to construct a-Si with appreciably smaller S(k → 0) than reported

here or, more ambitiously, reach true hyperuniformity (S(k → 0) = 0)? There are

both fundamental and practical reasons to consider such questions. On the practi-

cal side, our results above suggest that hyperuniform amorphous tetrahedral network

models will have larger electronic band gaps than typical non-hyperuniform sam-

ples [13]. Similar ideas have successfully led to the creation of novel designer materials

composed of a hyperuniform disordered arrangement of dielectric materials that have

complete photonic band gaps [54–56]. On the theoretical side, our present compu-

tational results strongly indicate that continued annealing of a-Si samples improves

the degree of hyperuniformity. Moreover, our simulations suggest that quenching a-Si

samples under increased pressure leads to further decrease of S(k → 0) (see Table 5.4

for dependence of S(k → 0) on compression).

Perfect hyperuniformity has been observed previously in disordered systems with

hard, short-range isotropic interactions, most notably in a wide class of maximally

random jammed packings [36, 37]. It has also been found in systems with soft, long-

range interactions; for example, in one component plasmas [42, 44] or in the ground

states of so-called stealthy potentials [46] that enforce S(k) = 0 for a k in a range

[0, kC], where kC > 0. The existence of these diverse examples and our construction

here of a sequence of increasingly hyperuniform configurations suggest that the search

for a configuration with S(k → 0) = 0 is one of the exciting areas for future research.

Even before our numerical studies of NHN models began, the general theoretical

conjectures above stimulated recent measurements by Xie et al. [2] of the structure

factor in the long-wavelength limit for a sample of a-Si synthesized by direct ion bom-
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bardment. These experiments have measured S(k → 0) to determine the degree of

hyperuniformity both as-implanted and after annealing and have also checked several

other correlated signatures predicted above. The results are discussed in Chapter 6.
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Chapter 4

Description of Methods

I
n this chapter, we give details of the techniques used to produce NHN models.

We also present a description of techniques used to study the structural and

topological properties of the generated models, such as the structure factor and

the ring and cage statistics.

4.1 Simulation Details to Create NHN Models

We have devised a two-step procedure to create NHN models that are based on the

Stillinger-Weber (SW) potential. The first step involves producing a highly annealed

CRN model based on the Keating potential as an initial condition for a SW quench.

Barkema and Mousseau used an accelerated and scalable modification of the Wooten,

Winer, and Weaire (WWW) technique [68] to produce large Keating-relaxed CRN

models that have been a standard in the field. We have introduced several improve-

ments to the Barkema-Mousseau algorithm, which, together with faster computers,

allow us to generate significantly higher quality CRNs.

The starting point of the WWW technique is a disordered, perfectly four-

coordinated network of atoms in a periodic box. Following the suggestion by
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Barkema and Mousseau [70], we started from a liquid-like configuration to avoid any

memory of an initial crystalline state. This disordered network is evolved through a

sequence of bond switches, that are accepted with a Hastings-Metropolis acceptance

probability

P = min[1, exp(−∆Es/kBT )],

where kB is the Boltzmann constant, T is the temperature, and ∆Es is the change of

energy due to the bond switch, evaluated from the Keating potential [64]:

EKeat. =
3

16

α

d2

∑

i,j

(

rij · rij − d2
)2

+
3

16

β

d2

∑

i,j,k

(

rij · rik +
1

3
d2
)2

.

Here α, β are the bond-stretching and bond-bending constants respectively, and d is

the equilibrium bond length.

Since the acceptance rate is less than 0.1% in a well annealed network, it is im-

portant to avoid a complete relaxation of trial configurations and reject the proposed

move as soon as it becomes clear that the move will increase the Keating energy.

To that end, Barkema and Mousseau have proposed that a move be rejected if the

Keating force exceeds a certain threshold value [70]. In addition, we introduce here a

multiscale local cluster relaxation methodology, which consists of the following steps:

(1) Only atoms in a small cluster of about 120 atoms around a switched bond are

relaxed, with the bond-switch being rejected if the energy increases by more

than a threshold value of 0.01 eV per atom in the cluster.

(2) If not rejected in step (1), atoms in a larger cluster of about 320 atoms around

the switched bond are relaxed, with the bond-switch being accepted or rejected

based on the Hastings-Metropolis acceptance probability.
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(3) Relaxation of all the atoms is performed after about a hundred accepted moves

to relieve any built up stress due to the local relaxation.

Performing only local relaxations is crucial to the scalability of the algorithm, while

using multiple scales increases efficiency. An important speed-up is achieved by par-

allelization. We use an asynchronous master-worker parallelization paradigm, where

the master proposes transpositions and workers report on their success, instead of a

bulk synchronous parallelization proposed by Vink et al. [71].

In our procedure, the annealing temperature is slowly decreased from about 0.3 eV

to about 0.15 eV per silicon atom. Following Barkema and Mousseau, we performed

a zero temperature quench every several thousand successful transpositions at the

annealing temperature. During the annealing-quenching procedure, we varied the

ratio of the two-body and three-body interaction by 5% and the volume of the system

by 3%. We found that a significant speed-up of the quenches can be achieved by

preferentially trying bond-switches that have the highest strain, then switching the

bonds that lie in the neighborhood of previously successful bond-switches, since the

successful bond-switches often appear in clusters. Several models K1-K5 at various

degree of annealing were produced whenever the Keating energy per atom showed a

substantial decrease.

The second step of our two-step procedure to create a NHN model involves finding

a zero-pressure inherent structure (local minimum) associated with a modified SW po-

tential interaction. The SW potential [75] involves two- and three- body interactions

of the following form:

ESW =
∑

i,j

v2(rij) +
∑

i,j,k

v3(rij, rik, cos θijk),
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v2(rij) = εf2 (rij/σ) ,

v3(rij , rik, cos θijk) = εf3 (rij/σ, rik/σ, cos θijk) ,

where

f2(r) =











A(Br−p − r−q) exp [(r − a)−1] r < a

0 r ≥ a,

f3(rij, rik, cos θijk) =

λ exp
[

γ(rij − a)−1 + γ(rik − a)−1
]

(

cos θijk +
1

3

)2

.

Here ε = 1.6483 eV, A = 7.050, B = 0.6022, p = 4, q = 0, a = 1.80, λ = 31.5, γ =

1.20, and σ = 2.0951 Å are parameters that were determined from fitting the location

of transverse optic and transverse acoustic peaks to neutron scattering experiments

on a-Si by Vink et al. [76].

The advantage of the two-step procedure lies in its computational efficiency, which

is crucial for a generation of large samples needed for a study of hyperuniformity. The

first step uses a simple quadratic potential (Keating potential) to obtain a defectless

network structure that serves as a crude approximation of a-Si. The second step uses

a more accurate potential (Stillinger-Weber potential) to obtain an inherent structure

of a realistic potential without the need of performing the entire relaxation with a

computationally expensive potential.

4.2 Stillinger-Weber Quench

The Stillinger-Weber quench described in the previous section was performed at zero

external pressure under a modified Stillinger-Weber potential. The numerical relax-
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ation of the point pattern was performed using the Polak-Ribiere conjugate gradient

method at zero pressure, until a local minimum was reached. In order to efficiently re-

lax a large point pattern with three-body interactions, we used a periodically wrapped

cell list method. In this method the simulation domain is subdivided into appro-

priately sized small cells that wrap around to accommodate the periodic boundary

conditions. Points are binned into cells and only points within a block of 3 × 3 × 3

neighboring cells are considered for evaluation, reflecting the short-range interaction

of the Stillinger-Weber potential. The cell list method allows to evaluate the force

with computational complexity of O(N) steps for an N -particle system. This numer-

ical computation was performed on a cluster of four Nvidia Tesla graphics card units,

totaling 960 CUDA cores.

Currently there are no reliable measurements of the three-point correlation func-

tion g3(r12, r13, r23) (where r12, r13, r23 are the side lengths of the triangle defined by

points r1, r2, r3) that could help discriminate between different empirical potentials

used to relax models of a-Si. Since it is expected that g3(r12, r13, r23) is sensitive to the

form of the three-body term of the empirical potential used for relaxation, a precise

measurement of g3(r12, r13, r23) could reveal a need to either modify the parameters

of the Stillinger-Weber potential or to replace the Stillinger-Weber potential by a

computationally more costly potential (e.g. Tersoff or EDIP potential) in the second

step of the two-step procedure.

4.3 Evaluating the Structure Factor from a Nu-

merical Model

The structure factors S(k) of the generated samples were evaluated by the sampling

volume method. This method is based on the scaling behavior of density fluctuations

presented by Torquato and Stillinger [28] and described in detail by de Graff and
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Thorpe [21]. The method can be viewed as a Fourier transform of the pair correlation

function g(r) with an appropriately chosen convergence factor that reduces artifacts

due to the finite size of the model [21]. In the rest of this section we will derive the

formula for the estimate of the structure factor using the sampling volume method

and show how it is related to the Fourier transform of the pair correlation function.

Consider a sphere of radius R centered at x0 within an N -point sample with

periodic boundary conditions. The structure factor of points that lie within this

sphere is given by

Sw(k, R) =
1

N

N
∑

i,j

wR (ri − x0)wR (rj − x0) e
ik·(ri−rj), (4.1)

where wR(r) is the spherical window function defined as

wR(r) =











1 |r| ≤ R

0 |r| > R.
(4.2)

We will assume that the sample is part of a homogeneous system, so that we can

average over all possible positions of x0 (center of the spherical window). Translational

averaging gives the following value of the structure factor:

Sw(k, R) =
1

V N

∫

V

∑

i,j

wR (ri − x0)wR (rj − x0) e
ik·(ri−rj)dx0, (4.3)

which can be expressed as

Sw(k, R) =
1

N

∑

i,j

αR(ri − rj)e
ik·(ri−rj), (4.4)
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where we have introduced a spherical intersection function α(r), which is given by

the following formula (in three dimensions).

αR(r) =











1− 3
4
r
R
+ 1

16

(

r
R

)3
=
(

1− r
2R

)2 (
1 + r

4R

)

r ≤ 2R,

0 r > 2R,
(4.5)

where r = |r|.

We will further assume that the sample is part of an isotropic system and thus

the structure factor depends only on the magnitude of the wavevector k = |k|. This

allows us to average over all possible spherical angles Ω of directions of the wavevector

k.

Sw(k, R) =
1

4π

∫

S2

1

N

∑

i,j

αR(ri − rj)e
ik·(ri−rj)dΩ, (4.6)

which simplifies to

Sw(k, R) =
1

N

∑

i,j

αR(|ri − rj |)
sin (k|ri − rj|)
k|ri − rj|

. (4.7)

The structure factor Sw(k, R) of a sample has a sharp central peak Scp(k) at k = 0

that approaches a delta function peak (Scp(k) = δ(k)) in the infinite sample limit.

In order to estimate the behavior of the central peak, we will evaluate the scattering

amplitude of the spherical sampling window that is uniformly filled with density ρ0.

Such a spherical sampling window has a central peak of amplitude

Acp(k, R,x0) = ρ0

∫

R3

wR (r− x0) e
ik·rdr = ρ0w̃R(k)e

ik·x0, (4.8)

where w̃R(k) =
(

2π
kR

)3/2
R3J3/2(kR). Here J3/2(kR) =

√

π
2(kR)5

[sin(kR)− (kR) cos(kR)]

is the Bessel function of order 3/2. The corresponding structure factor is given by

Scp(k, R) =
|Acp(k, R,x0)|2

〈N(R)〉 = ρ20
|w̃R(k)|2
ρ0v(R)

= ρ0α̃R(k), (4.9)
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where v(R) = 4π
3
R3 is the volume of the spherical sampling window, 〈N(R)〉 = ρ0v(R)

is the average number of atoms within the spherical sampling window, and α̃R(k) =

12π
k6R3 [sin(kR)− (kR) cos(kR)]2. Thus we obtain the structure factor with the central

peak subtracted S(k, R) as

S(k, R) = −ρ0α̃R(k) +
1

N

∑

i,j

αR(|ri − rj |)
sin (k|ri − rj|)
k|ri − rj|

, (4.10)

or, performing the sum over i = j,

S(k, R) = −ρ0α̃R(k) + 1 +
1

N

∑

i 6=j

αR(|ri − rj |)
sin (k|ri − rj|)
k|ri − rj|

, (4.11)

where ρ0 is the density of the infinite sample.

From equations (4.5) and (4.11) we expect that for a fixed value of k, the large R

behavior of S(k, R) is S(k, R) = a+b/R+O(1/R3). Therefore, to obtain the value of

S(k), we plot S(k, R) versus 1/R, and extrapolate the linear relation between S(k, R)

and 1/R to 1/R→ 0. Fig. 4.1 shows the dependence of the relative variance on 1/R.

The relation between S(k, R) and 1/R is to a good degree linear. We extrapolate

this linear dependence to obtain S(k) by the linear least square fit. The Error of the

extrapolation can be estimated from the linear least square fit variation.

The first part of the formula (4.11) can be expressed as

−ρ0α̃R(k) = −ρ0
∫

R3

αR(|r|)e−ik·rdr = −
∫ ∞

0

ρ04πr
2 sin(kr)

kr
αR(r)dr. (4.12)

The last part of the formula (4.11) can be recognized as a discrete approximation to

to the continuous integral, i.e.

∫ ∞

0

ρ04πr
2g(r)

sin(kr)

kr
αR(r)dr ≈

1

N

∑

i 6=j

αR(|ri − rj |)
sin (k|ri − rj|)
k|ri − rj|

. (4.13)
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Figure 4.1: Plot of the relative variance of the sample versus 1/R. The relative
variance exhibits a linear dependence on 1/R. Red dashed line shows how the relative
variance can be extrapolated to 1/R→ 0 to obtain the value of S(k).

Given the approximation

∫ ∞

0

ρ04πr
2g(r)

sin(kr)

kr
αR(r)dr ≈

1

N

∑

i 6=j

αR(|ri − rj |)
sin (k|ri − rj|)
k|ri − rj|

, (4.14)
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equation (4.10) can be recognized as a discrete approximation of

S(k) = 1 +

∫ ∞

0

4πr2 [ρ(r)− ρ0]
sin kr

kr
αR(r)dr. (4.15)

Hence the sampling volume method can be thought of as being derived from the

formula

S(k) = 1 + 4π

∫ ∞

0

r [ρ(r)− ρ0]
sin(kr)

k
dr, (4.16)

where the regularization factor αR(r) was used in the infinite integral to turn it into

a finite one, and in order to obtain the best estimate of the regularized integral and

a discrete sum was used. Compare to equation (1.11) in section 1.7 and note that

ρ(r)− ρ0 = ρ0(g(r)− 1).

4.4 Ring Statistics

The ring statistics provides an important measure of the medium-range order in the

continuous random network models. In addition to characterizing the ring statistics

itself, the ring adjacency can be used to identify larger topological structures, such as

eight-atom wurtzite cages and ten-atom diamond cages. Many different irreducibility

criteria have been proposed in the past to determine what constitutes an irreducible

ring. While different irreducibility criteria generally agree for small rings, they may

differ for larger rings (more than about 7 atoms). In this thesis, the ring statistics used

are the irreducible shortest-path ring statistics [32]. Unlike many other irreducibility

criteria, the shortest-path rings agree well with the intuitive notion of an irreducible

ring.

In order to explain the shortest-path irreducibility criterion we give a few defi-

nitions. A path of length k is a sequence of k adjacent bonds, which are defined as

as bonds that share an atom. A ring of length k is a sequence of k adjacent bonds
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with at most one bond per vertex pair that starts and ends at the same atom. The

topological distance between atoms i, j is the minimum k such that there is a path

between i and j of length k. The irreducible shortest-path ring is defined as a ring

that contains a shortest path for each pair of vertices in the ring. The irreducible

shortest-path rings can be efficiently enumerated by the backtracking algorithm [32].

There are no experiments that measure the ring statistics directly, nevertheless

some experiments put constraints on the possible topologies of a-Si. Since triangles

result in highly strained atomic configurations, which lead to electronic states in the

band gap counter to experiments, a realistic model of a-Si should not contain triangles.

Presence of a significant number of triangles is also inconsistent with the narrow bond

angle distribution inferred from the pair correlation function g(r). Increased dihedral

ordering deduced from a careful analysis of the pair correlation function [30] points

towards a large number of six-rings.
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Chapter 5

Structural Characteristics of NHN

Models

I
n this chapter we present structural characteristics of the NHN models. These

characteristics demonstrate the homogeneity and isotropy of the generated sam-

ples. They also show the level of relaxation and put the models in the context

of other samples generated in the past. In the last two sections, we discuss the density

of electronic and vibrational states.

5.1 Geometric Characterization of Amorphous

Silicon

Geometric characteristics refer to the properties that can be expressed in terms of

geometric distances. These include the distributions of bond lengths, distributions of

bond angles and quantities based on the pair correlation function and the structure

factor. Characteristics that are derived from the total energy of the sample under the

interaction of some potential are also considered geometric characteristics.
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Table 5.1 summarizes the structural properties of the Keating-relaxed CRN mod-

els with progressively higher level of annealing. K5, the most annealed model, has

more than a degree lower bond angle deviation than Barkema-Mousseau models [70]

(K (BM)). The Short-range order of the models improves with annealing. Table 5.1

shows the standard deviation σL of the bond length, the standard deviation σA of

the bond angle, the limit of the structure factor as k → 0 and the height of the

first-coordination shell peak in g(r).

Model σL σA S(k → 0) g(r) max

K (BM) 4.03% 9.94◦ 0.035 4.9

K1 3.84% 9.23◦ 0.031 5.1

K2 3.83% 9.14◦ 0.028 5.1

K3 3.80% 9.01◦ 0.027 5.2

K4 3.71% 8.71◦ 0.026 5.3

K5 3.64% 8.61◦ 0.022 5.4

Table 5.1: Short-ranged and long-ranged properties of the Keating-relaxed CRN mod-
els

Table 5.2 summarizes the structural properties of the NHN models derived from

the CRN models by a zero-pressure minimization of the modified Stillinger-Weber

potential. The SW (BM) model is obtained from the Barkema-Mousseau CRN

model [70] (K (BM)). Table 5.2 shows the standard deviation of the bond length,

the standard deviation of the bond angle, the limit of the structure factor as k → 0,

and the height of the first-coordination shell peak in g(r).
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Model σL σA S(k → 0) g(r) max

SW (BM) 2.70% 10.5◦ 0.018 7.3

SW1 2.68% 10.0◦ 0.016 7.3

SW2 2.68% 9.8◦ 0.015 7.3

SW3 2.66% 9.6◦ 0.015 7.4

SW4 2.66% 9.3◦ 0.014 7.4

SW5 2.65% 9.2◦ 0.010 7.4

Table 5.2: Short-ranged and long-ranged properties of the NHN models

Table 5.3 shows the average motion of atoms (measured by the configurational

proximity metric pi→f =
√

∑N
k=1 |ri,k − rf,k|2/r0, where ri,k, rf,k are the initial and

final positions of atoms in the SW quench and r0 is the mean nearest-neighbor dis-

tance [53]) as a result of replacing the Keating interaction with the Stillinger-Weber

interaction. This quantifies the configurational distance of the SW models from their

K progenitors. The Keating energy (eK) and Stillinger-Weber energy per atom (eSW )

of a CRN model and the Stillinger-Weber energy per atom (eSW ) of the correspond-

ing SW model are also shown. The SW (BM) model is obtained from the Barkema-

Mousseau CRN model [70] (K (BM)).
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Model Prox. metric eK (K) eSW/ε (K) eSW/ε (SW)

SW (BM) 0.723% 0.02130 −1.7809 −1.8264

SW1 0.900% 0.01864 −1.8141 −1.8505

SW2 1.062% 0.01833 −1.8179 −1.8532

SW3 0.952% 0.01794 −1.8235 −1.8553

SW4 1.088% 0.01685 −1.8372 −1.8645

SW5 1.015% 0.01648 −1.8421 −1.8660

Diamond 0 −2.0000 −2.0000

Table 5.3: Energies per atom of the K and SW models under different interactions.
eSW is given in units of the SW potential energy scale ε = 1.6483 eV. eK is given in
dimensionless units in which d =

√
3/2 and α = d2. Energies of the diamond lattice

are shown for comparison. The first column shows the distance of a SW model from
its K progenitor in terms of the proximity metric.

Table 5.4 shows the values of S(k → 0) for a sequence of models that were ob-

tained by a constant-volume SW quench of CRN5 at various degrees of compression.

The compression is expressed in terms of the relative compression of the linear scale

compared to the linear scale of the sample at zero pressure (SW5). The uncertainty

of S(k → 0) is 0.002.

Rel. Compr. −4% 0% 4% 8%

P (GPa) −10 0 10 30

S(k → 0) 0.017 0.010 0.009 0.007

Table 5.4: Dependence of S(k → 0) on the relative compression of the linear scale
during a constant-volume SW quench
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5.2 Topological Characterization of Amorphous

Silicon

A characteristic of a sample is considered topological if it is derived from the model’s

connectivity table defined by the atomic bonding. Topological characteristics include

concentrations of rings of different orders, concentrations of various cages, clusters of

cages and characteristics derived from these notions.

Table 5.5 compares the irreducible ring statistics of the Barkema-Mousseau CRN

model [70] (K (BM)) and our most annealed model (K5). The medium-range order

significantly improves with annealing, as seen by the increased number of hexagons

and smaller number of squares as well as eight- and nine-membered rings.

Ring order 4 5 6 7 8 9

K (BM) 2.39% 45.5% 74.1% 51.0% 15.7% 4.1%

K1 1.61% 43.2% 80.5% 52.6% 13.9% 3.1%

K2 1.47% 43.1% 81.2% 52.8% 13.9% 3.1%

K3 1.37% 42.5% 82.8% 53.0% 14.0% 2.9%

K4 1.00% 42.1% 83.9% 54.6% 13.1% 2.6%

K5 0.99% 42.8% 85.0% 53.9% 12.9% 2.6%

Table 5.5: Comparison of the ring statistics between the Barkema-Mousseau CRN
model [70] (K (BM)) and our most annealed model (K5)

Tables 5.6 and 5.6 show characteristics of the ten-atom cages of our models. The

results for crystalline and paracrystalline [109] models are shown for reference. In

Table 5.6, the first column shows the number of the ten-atom diamond cages per

atom; the second column shows the number of clusters of diamond cages per atom. In

Table 5.7, the first column shows the size of the maximal cluster; the second column

shows the average size of the clusters; and the third column shows the number of
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interior cages. Interior cages are defined as cages whose atoms and neighbors all lie

within the same cluster. Clusters are collections of ten-atom cages in which each

ten-atom cage shares one atom or more with at least one other ten-atom cage.

Cage statistics of the K1-5 and SW1-5 models shows that while our models are

significantly more relaxed than the K (BM) model, the models are very far from

crystallinity or paracrystallinity. Table 5.6 shows that the number of clusters per atom

in the K/SW models increases with annealing, and hence that increased annealing

moves the K/SW models away from the Paracrystalline model. As this trend is the

exact opposite from what is expected based on the behavior of the concentration

of the ten-atom cages in the K/SW samples, it raises a serious doubt on whether

paracrystalline state can be reached by annealing of a-Si.

Model No. cages No. cl. per atom

K/SW (BM) 0.9% 6.29× 10−3

K1/SW1 1.6% 8.30× 10−3

K2/SW2 1.6% 8.20× 10−3

K3/SW3 1.6% 8.10× 10−3

K4/SW4 1.9% 9.15× 10−3

K5/SW5 2.2% 9.95× 10−3

Paracryst. 15.5% 4.05× 10−3

Diamond cryst. 100% 1/N

Table 5.6: The table shows the number of ten-atom cages per atom (No. cages); the
number of clusters (cl.) per atom. The K1-5 and SW1-5 models all contain 20, 000
atoms; the crystalline has N atoms and the paracrystalline model has 1728 atoms.
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Model Max cl. sz. Aver. cl. sz. No. int. cages

K/SW (BM) 40 12.6 0

K1/SW1 77 14.4 0

K2/SW2 87 14.6 2

K3/SW3 88 14.9 0

K4/SW4 48 15.5 0

K5/SW5 90 15.7 0

Paracryst. 746 122.7 67

Diamond cryst. N N N

Table 5.7: The table shows the number of atoms in the largest cluster; the average
cluster size; and the number of interior cages. The K1-5 and SW1-5 models all contain
20, 000 atoms; the crystalline has N atoms and the paracrystalline model has 1728
atoms.

Fig. 5.1 shows that the ten-atom cage clusters are distributed uniformly through-

out the volume of the SW5 sample. The figure also shows that there are no large

crystalline clusters present in the sample. In fact the largest crystalline cluster has 90

atoms as can be seen from Table 5.7, compared to 746 for the paracrystalline model.
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Figure 5.1: Distribution of the ten-atom cages in the SW5 model; see Fig 3.5 (a) in
Chapter 3 for an illustration of a single ten-atom cage. Ten-atom cages in the SW5
sample are distributed uniformly throughout the volume.

5.3 Isotropy of NHN Models

In order to check that the NHN models are isotropic, we compute the values of the

structure factor S(k) for a two-dimensional cut through the functional values of S(k)

in the three-dimensional space of the wavevectors k. Fig. 5.2 shows the values of the
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structure factor S(k) as a heatmap. Blue on the color scale corresponds to S(k) = 0,

and red color corresponds to S(k) = 2.5. The figure demonstrates that the SW5

model is isotropic. The cross-like feature at k = 0 is a finite size artifact of the cubic

box that bounds the sample.

Figure 5.2: two-dimensional cut through the three-dimensional k space with the
values of the structure factor S(k) shown as a heatmap plot. The region shown

corresponds to k = (kx, ky, 0) with kx, ky ∈ [−6.5 Å
−1
, 6.5 Å

−1
]. The cross-like feature

at k = 0 is an finite size artifact of the cubic box that bounds the sample.
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5.4 Band gap in Amorphous Silicon

The atom of silicon has 14 electrons. Ten of these electrons are core electrons (in

1s22s22p6 configuration), tightly bound to the Si nucleus and consequently do not

take part in the chemical bonding. The outermost four electrons (valence electrons)

of silicon atom have atomic configuration 3s23p2, which changes to a hybridized sp3

configuration in materials with tetrahedral bonding order. The proximity of nearby

silicon atoms leads to a creation of bonding and anti-bonding molecular orbitals as

shown in Fig. 5.3. Since electrons can make a transition between different bonding

sites, bonding orbitals are broadened into a valence band and anti-bonding orbitals

are broadened into a conduction band, as is schematically shown in Fig. 5.3.

↑↑↑↑

3sp3

↑ ↑ ↑ ↑

3sp3

↑↓ ↑↓ ↑↓ ↑↓

anti-bonding molecular orbitals

bonding molecular orbitals

electronic band gap

conduction band

valence band

Figure 5.3: Electronic band gap in amorphous silicon. Hybridized sp3 orbitals form
bonding and anti-bonding molecular orbitals, that are broadened to valence and con-
duction bands in a solid.

Fig. 5.4 (a) and Fig. 5.4 (b) show the electronic density of states of c-Si and a-Si

respectively. Electronic density of states was evaluated by using a tight-binding model

for silicon by Kwon [96]. The electronic structure of c-Si has several sharp features
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due to Van Hove singularities in the Brillouin zone of c-Si, but these sharp features

are missing in a-Si due to its lack of long-range order. Since the density of states of

a-Si resembles a smeared crystalline density of states, it may come as a surprise that

a-Si has a wider electronic band gap than c-Si. The band gap of c-Si depends on

the magnitude and direction of the crystal momentum, with the direct Γ band-gap

(difference between the energy of the conduction band and the valence band at the Γ

point, located at zero crystal momentum) of about 3.4 eV [33]. The indirect character

of the c-Si band gaps (minimum energy in the conduction band and the maximum

energy in the valence band occur at different crystal momenta), however, reduces the

band-gap of c-Si to about 1.1 eV. The band gap of a-Si lies between c-Si direct and

indirect band gap, so the wider electronic band gap of a-Si can be seen as a result of

smoothing out the indirect and anisotropic band gap of c-Si [110].

The band gap size a a-Si sample, obtained by measuring complex dielectric func-

tions, is dependent on the preparation history [110]. The self-ion implanted sam-

ples have a band gap of ∆Eg = 0.85 eV, evaporated samples have a band gap of

∆Eg = 1.12 eV, and annealed samples (3 h at 500 ◦C) had the broadest band gap of

∆Eg = 1.30 eV [26, 27]. The largest measured band gap of a-Si is observed in an

annealed material, which exhibits the largest degree of hyperuniformity, confirming

the behavior predicted by the NHN models (see Fig. 3.4).
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Figure 5.4: Electronic density of states of c-Si and a-Si. Energy of a state in eV
is shown on the horizontal axis, density of states in arbitrary units is shown on the
vertical axis. Sharp features of the c-Si density of states are smeared out in the
a-Si and yet a-Si features a wider electronic band gap than c-Si. Density of states
is calculated by the method of Kwon [96]. Electronic density of states of a-Si is
calculated for a 1000-atom a-Si model produced by a Stillinger-Weber quench of a
CRN network.

5.5 Vibrational Density of States of Amorphous

Silicon

The vibrations of a crystalline solid can be decomposed into plane-wave modes

(phonons) with definite wavevectors k and energy dispersion relation E(k). In an

amorphous solid that lacks periodicity, vibrational excitations no longer have well

defined wavevectors, and thus we will focus on the phonon density of states instead.

The vibrational density of states, g(E), is defined so that g(E)dE is the number

of vibrational states between the energies E and E + dE, which is a well defined

concept in both crystalline and amorphous solids. The vibrational density of states
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affects thermal properties of solids such as the thermal expansion, the thermal

conductivity, and the specific heat, and also mechanical properties such as the sound

wave propagation and attenuation.

Fig. 5.5 (a) and Fig. 5.5 (b) show the phonon densities of states g(E) of c-Si

and a-Si respectively. The crystalline sample features sharp Van Hove singularities

resulting from the singularities on the Brillouin zone. The amorphous sample lacks

the sharp features of the c-Si density of states, yet the transverse acoustic (TA) peak

near E/e = 1.5 and the transverse optic (TO) peak near E/e = 4.0 are clearly

identifiable. Positions of the TA and TO peaks are sensitive to the λ parameter of

the Stillinger-Weber potential and thus the ratio of the TO and TA peaks positions

was used to fit the value of λ parameter of the Stillinger-Weber potential by Vink

et al. [76]. The phonon density of states of a-Si is calculated for a 1000 atom a-

Si model produced by a Stillinger-Weber quench of a CRN network. The phonon

density of states is obtained by diagonalizing the dynamical matrix (matrix of the

second derivatives of the inter-atomic potential) calculated from the Stillinger-Weber

interaction. The second derivatives of the two- and three-body isotropic potential

used to evaluate the dynamical matrix are shown in Appendix B.
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(a) Phonon density of states of c-Si
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Figure 5.5: Phonon densities of states of c-Si and a-Si. The horizontal axis shows
the energy of a phonon state in units of e = 0.0151 eV; the vertical axis shows the
density of states g(E) in arbitrary units. The sharp features (Van Hove singularities)
seen in the density of states of c-Si are smoothed-out in the a-Si sample. Despite the
smoothing of the density of states, the transverse acoustic (TA) peak at ETA/e = 1.5
and the transverse optic (TO) peak at ETO/e = 4.0 are clearly identifiable. The
phonon density of states shown in the figure of a-Si is calculated for a 1000-atom a-Si
model produced by a Stillinger-Weber quench of a CRN network.
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Chapter 6

Comparison of the NHN Models

with Experiments

T
his chapter is based on the experimental results obtained by diffraction

measurements of Xie et al. [2] and Laaziri et al. [3, 4] on a sample of an

edge-supported membrane of a-Si prepared by ion self-implantation [14].

The diffraction measurements provide the structure factor S(k) as a function of the

the wavenumber k. Using the Fourier transform, this structure factor function can

be transformed to a pair correlation function g(r). We will show that the nearly-

hyperuniform models of a-Si are in better agreement with these experimental data

than previously considered models, for both the structure factor and the pair corre-

lation function.

6.1 Behavior of the NHN Models under Annealing

The best currently available measurements of the structure factor in the long-

wavelength limit of an annealed sample of a-Si, obtained via transmission X-ray

scattering at the Argonne Advanced Photon Source by Xie et al., indicate that
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S(k → 0) = 0.0075 ± 0.0005 [2]. This is almost five times lower than the value

predicted by de Graff and Thorpe [21] using the currently best available CRN config-

uration of Barkema and Mousseau (BM), obtained using the Keating potential [70].

This suggests that certain large-scale correlations present in a-Si are not accounted

for in current CRN models.

In Fig. 6.1, we show S(k → 0) as a function of the inverse height H−1 of the first

scattering peak for the original K (BM) CRN model [21], for the CRN models with

progressively higher level of annealing under the Keating potential K1-K5, and for

the subsequent Stillinger-Weber quenched models SW1-SW5. Included in the figure

are the experimental measurements for annealed and implanted a-Si samples [2]. The

data obtained from the numerical K1-K5 and SW1-SW5 models show that, with more

annealing S(k → 0) gets smaller and the first peak height gets larger (as does the first

peak in the pair correlation function). The same trend is observed in the experimental

data of as-implanted and annealed a-Si samples. We conclude that the K (BM) CRN

model is not an endpoint of the annealing process. Instead, additional annealing

moves the CRN models in the direction of increasing hyperuniformity (i.e. S(k → 0)

gets smaller), increasing the height of the first scattering peak, and increasing the

height of the first peak of the pair correlation function g(r). It is also seen from the

Fig. 6.1 that the SW models have values of S(k → 0) that are about 50% lower than

the corresponding K models that were used as an initial state for a Stillinger-Weber

quench. Our best nearly hyperuniform model, SW5, yields S(k → 0) = 0.010 ±

0.0002, which is appreciably smaller than that of the K (BM) CRN model [S(k →

0) = 0.035 ± 0.0002] [21], and in between the values of the implanted and annealed

experimental samples, being nearly equal to the latter [S(k → 0) = 0.0075± 0.0005].

The experimental values of S(k → 0) for the as-implanted and annealed a-Si samples

are consistent with the nearly hyperuniform network picture.
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Figure 6.1: Values of S(k → 0) for the network structural models progressively relaxed
with a Keating potential as a function of the inverse height H−1 of the first scattering
peak. Solid red circles represent the original Barkema-Mousseau model (labeled by
K (BM)), and a series of progressive relaxations K1 through K5. The Keating-relaxed
models serve as initial conditions for the subsequently quenched Stillinger-Weber
structures, which appear as solid blue squares (labeled by SW). The experimental
values for as-implanted a-Si and annealed a-Si appear as solid green diamonds. The
trajectory of the experimental values fits well with the modified Stillinger-Weber
results. The shaded region below S(k → 0) = 0.03 indicates the nearly hyperuniform
range in which S(k → 0) is below the equilibrium melting value for a-Si.

A recent study, using fluctuation electron microscopy (FEM) measurements and

electron diffraction data as experimental constraints in a reverse Monte Carlo pro-
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cedure with Tersoff inter-atomic potential, led to the suggestion [109, 111] that as-

prepared a-Si is “paracrystalline”, i.e. that it contains 1 − 2 nm large regions with

the topology of crystalline silicon (paracrystallites). Paracrystalline models of a-Si

are heterogeneous on a nanometer-length scale due to the presence of paracrystallites

embedded in a disordered (not necessarily CRN) matrix [109]. Since it can be inferred

from the fluctuation electron microscopy data that annealing of a-Si leads to a reduc-

tion in paracrystallinity by a factor of 2 to 10 [20, 25, 112], and since S(k → 0) is

expected to decrease with increasing crystalline order and thus with increasing level

of paracrystallinity, paracrystalline models predict that S(k → 0) should decrease

with annealing. This prediction of paracrystalline models is counter to both the the-

oretical predictions and the experimental data. We conclude that the observed low

value for S(k → 0) is indeed a signature of hyperuniformity consistent with the nearly

hyperuniform network picture.

6.2 Analysis of the Experimental Measurement of

the Structure Factor

In the experimental measurement of S(k), there is an upturn in the structure factor at

the lowest values of the wavevector k, preventing a direct measurement of S(k → 0).

This upturn is due to a small-angle scattering, primarily from surface roughness, and

secondarily from a very small amount of nanoporosity. Surface roughness is expected

especially on the matte side of the sample that was exposed to the chemical etch

used to remove the crystal substrate. The upturn was observed to decrease with the

reduction in the surface roughness.

A simple extrapolation of a straight line from the minimum value of S(k) to

k = 0 can be used to derive an upper limit on S(k → 0). This procedure yields

S(k → 0)upper limit = 0.026 for the as-implanted a-Si sample and S(k → 0)upper limit =
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0.016 for the annealed (relaxed) a-Si sample. Note that these values are below the

computationally determined lower bound of S(k → 0) = 0.035 suggested by de Graff

and Thorpe [21], and that the value for annealed a-Si is lower than that for as-

implanted a-Si.

A more precise estimate of the value of S(k → 0) is obtained by modeling the

small-angle scattering from surface roughness. To model the upturn due to the surface

scattering, we fit S(k) between k = 0.08 Å
−1

and 0.4 Å
−1

to the form S(k) = akb +

S(k → 0) + S(k → 0)k. The first term is an approximation to the small-angle X-ray

scattering, including both Guinier and Porod scattering from a range of surface feature

sizes. The last two terms describe a linear contribution to S(k) at small wavevector

k. The measured S(k), the best overall fits, and the best-fit linear contribution

are shown in Fig. 6.2, where the fits are shown with solid lines. The exponent b,

representing the surface scattering, is b = −3.34 ± 0.02 for the as-implanted sample

and b = −2.40 ± 0.03 for the annealed (relaxed) sample. The linear portions of the

fits are shown with dashed lines. Using the surface scattering model, we find that

S(k → 0) = 0.0199 ± 0.0005 for the as-implanted and S(k → 0) = 0.0075 ± 0.0005

for the annealed (relaxed) a-Si. It is clear that annealing of the experimental samples

increases the degree of hyperuniformity. Both samples are consistent with the nearly

hyperuniform network models and both have S(k → 0) significantly lower than the

de Graff-Thorpe lower bound [21].

We have also considered the more general six-parameter fitting function of the

form S(k) = akb + ckd + S(k → 0) + S(k → 0)k. We have found that the best-fit

S(k → 0) is less than the value reported above with essentially the same goodness of

fit. Hence, the values above could be considered conservative upper bounds.

The values of the terminal slopes are S ′(k → 0) = 0.0188 ± 0.0009 Å for the

as-implanted a-Si and S ′(k → 0) = 0.0260 ± 0.0005 Å for the annealed (relaxed) a-

Si. It is noteworthy that the linear approximation is a good fit to the behavior of
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Figure 6.2: S(k) at low k for the as-implanted a-Si (circles) and the annealed (relaxed)
a-Si (triangles). Note that the minimum values of S(k) for both as-implanted and
annealed are less than 0.03, below the theoretical bounds based on continuous random
network models relaxed with Keating potentials or on treating a-Si as a frozen-liquid.
To obtain S(k → 0), the data are fit (solid curves) to a sum of an inverse power-
law in k, representing small angle scattering mostly from a rough etched surface,
and a linear contribution. The dashed lines show the linear contribution only. The
plot shows that this ansatz fits well (see text for details). We measure the degree
of hyperuniformity to be S(k → 0) = 0.0199 ± 0.0005 for the as-implanted a-Si and
S(k → 0) = 0.0075± 0.0005 for the annealed a-Si.

S(k) for small wavenumber and agrees with what has been observed in MRJ sphere

packings [36].
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6.3 Comparison of the Structure Factor obtained

from NHN models to the Experiments

The computational models presented in Chapter 3 demonstrate that increased an-

nealing results in increased height of the first peak in the pair correlation function,

narrower bond angle distribution, and increased dihedral angle ordering, see Tables 5.2

and 5.1 in Chapter 5. Each of these characteristics can be taken as an indicator of

the state of relaxation of the network model. All of these results are confirmed by the

experimental results of Xie et al. [2] and the earlier experiments [3, 4] that obtained

the pair correlation function in the same samples of a-Si. These experimental studies

observed that the same changes were induced by thermal annealing. The increase in

height and the narrowing of the first peak with annealing observed in computational

models (see Fig. 6.3) results in the extension of the exponential decay length of the

density oscillations in the pair distribution function, with periodicity given by the

wavevector of the first scattering peak in the structure factor. These predictions are

confirmed by the recent analysis [30].

The experimental measurements [3, 4] show that during thermal annealing the

average coordination number increases from 3.79 to 3.88, which means that annealed

a-Si is closer to ideal network models with average coordination number 4 than as-

implanted a-Si. Based on experimental values derived from the width of the first and

the second peaks in the radial distribution function, the bond angle distribution for

the as-implanted a-Si was reported as ∆θ = 10.45◦±0.09◦ and for the annealed sample

as ∆θ = 9.63◦ ± 0.08◦ [3]. Later, a more sophisticated analysis [30], that takes into

account a contribution from third nearest neighbors in addition to the contribution

from the first and the second suggested that the value for the bond angle deviation,

as deduced from the width of the first and second peaks only, may be overestimated
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by as much as 1.5◦. The nearly hyperuniform models are in agreement with the

experimental results derived the latter, more sophisticated, analysis.

Previously, de Graff and Thorpe used a K (BM) 100, 000-atom model relaxed

with the Keating interatomic potential to predict the value of S(k → 0) of a-Si to be

S(k → 0) = 0.035 ± 0.001 [21]. It can be seen from Table 5.1 and Fig. 6.1 that the

K (BM) model is not sufficiently relaxed. It has a bond angle deviation ∆θ = 9.94◦,

which is larger than what is experimentally observed even in the as-implanted a-Si

sample, it lacks the third neighbor ordering [113] observed in experiments, and the first

peak in the structure factor is too short and too wide compared to what is observed

experimentally. The K (BM) models is relaxed by the Keating potential, which is less

realistic than the Stillinger-Weber potential used to obtain the NHN models. The

insufficient structural relaxation and unsatisfactory inter-atomic potential explain

why the K (BM) model overestimates the limit of long wavelength scattering.

The nearly hyperuniform network models introduced in Chapter 3 on the other

hand present a spectrum of models with S(k → 0) ranging from the value proposed

by de Graff and Thorpe based on the frozen-liquid picture to the values comparable

to the experimental values reported by Xie et al. [2]. The structure of our most

annealed NHN model, SW5, is significantly more relaxed than the K (BM) model, as

demonstrated by a bond-angle standard deviation that is more than a degree lower

than that of the K (BM) model, which makes the structure of the SW5 model a

better fit to the experiments. Additionally, while the height of the first peak of S(k)

of the SW5 model lies between those of the annealed and implanted samples, the

corresponding K (BM) value is lower than both experimental values, as shown in

Fig. 6.3.

For larger wavenumbers, our SW5 model again yields better agreement with the

experimental data for the structure factor; see Fig. 6.4. In particular, the K (BM)

CRN model predicts a significantly faster decay of the large-k oscillations in S(k)
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Figure 6.3: Comparison of the angularly averaged structure factor S(k) versus k for
small k for the SW5 model (blue curve) and the K (BM) CRN model [70] (green line)
to those of the experimental measurements on annealed and implanted a-Si samples
obtained by Xie et al. [2] (red and yellow curves). The values of S(k → 0) are
indicated in the legend.

than does the SW5 model, which agrees well with the corresponding experimental

values of the structure factor of Laaziri et al. [3]. We thus conclude that the SW5

model provides an improvement upon other predictions of the K (BM) CRN model.
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Figure 6.4: Comparison of the angularly averaged structure factor S(k) versus k at
large k for the SW5 model (blue curve) and the K (BM) CRN model [70] (green
curve) to those of the experimental measurements on annealed and implanted a-Si
samples of Laaziri et al. [3] (red and yellow curves).
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6.4 Comparison of the Pair Correlation Function

obtained from NHN models to the Experi-

ments

The local coordination structure is captured better by the SW5 model than the

K (BM) CRN model, as shown in Fig. 6.5 for the pair correlation function g(r).

It is seen that the K (BM) CRN model predicts a significantly broader first peak in

g(r) (due to a larger bond-length variation) than the experimentally measured one,

which is captured well by the SW5 model.

Using a two-step numerical procedure consisting of bond-switching annealing re-

laxation and Stillinger-Weber quenching, we have shown that there are nearly hype-

runiform models that perform better than the benchmark Barkema and Mousseau

K (BM) CRN model in reproducing the observed S(k → 0). As the annealing (via

the Keating potential) time increases, the value S(k → 0) decreases (i.e. degree

of hyperuniformity increases) from the initial maximum value associated with the

K (BM) CRN model. Moreover, when these modified CRN models are relaxed under

the SW potential, the resulting NHN states are endowed with values of S(k → 0)

that are smaller than those of their CRN counterparts by a factor of 1/2. Based on

our numerical investigation, we conclude that the value of S(k → 0) cannot be con-

sidered a universal quantity for a-Si or for any other amorphous tetrahedral network,

as suggested by de Graff and Thorpe [21]. It should not go unnoticed that our SW5

model provides better predictions of other observed structural features, including

bond-length and bond-angle statistics, height of the first scattering peak, long-range

oscillations of S(k), and the first peak in g(r).
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Figure 6.5: Comparison of the radial distribution function g(r) versus radial distance
r measured experimentally by Laaziri et al. [3] for an annealed a-Si sample (red curve)
to the K (BM) CRN model [70] (green curve) and the SW5 model (blue curve).
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Chapter 7

Conclusion

7.1 Summary

W
e have presented a new model for the structure of amorphous silicon,

the nearly hyperuniform network (NHN) model. We have shown that

the value of the structure factor in the limit of infinite wavelength

S(k → 0) in the NHN models depends on the amount of relaxation, and is different

from the value obtained from the CRN model of Barkema and Mousseau. Hence,

the value of S(k → 0) cannot be considered a universal quantity, as conjectured

by de Graff and Thorpe [21]. The exact opposite is true: By varying the level of

relaxation, we have obtained a spectrum of NHN models with varying degrees of

hyperuniformity, and we have succeeded in constructing a NHN model, which is

more than a factor of 3 closer to hyperuniformity than what the frozen-liquid picture

predicts. We have shown that annealing increases the degree of hyperuniformity (i.e.

S(k → 0) is smaller) and that the degree of annealing correlates with quantities of

theoretical interest, such as the height of the first scattering peak in the structure
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factor, and with quantities of practical interest, such as the width of the electronic

band gap.

We have demonstrated that the NHN models perform better than the CRN models

in reproducing the observed structure factor S(k), the pair correlation function g(r),

and other structural characteristics, such as the variance of the bond-length and

the bond-angle distribution. High-sensitivity X-ray scattering data indicate that as-

implanted and annealed a-Si have a nearly hyperuniform disordered atomic structure

in agreement with the NHN models. The observed value of S(k → 0) = 0.0075 ±

0.0005 for annealed a-Si is significantly smaller than the theoretical lower bound

offered by de Graff and Thorpe [21], but is consistent with the predictions of the

NHN models.

7.2 Future Work

Since the results presented in this thesis touch diverse topics, it is inevitable that some

of the questions have been left unanswered. These include the structural origin of the

scattering enhancement near k = 1 Å
−1
, the possibility of a perfect hyperuniformity

in disordered tetrahedral solids with soft, short-range interactions, and the origin of

the linear behavior of S(k) as k → 0.

Perfect Hyperuniformity of Disordered Tetrahedral Solids

with Soft, Short-Range Interaction

Whether true hyperuniformity can be achieved in a disordered many-body system

with soft, short-range interparticle interactions remains an open question. Hyperuni-

formity has been observed in systems with hard, short-range interactions, including

a large class of maximally random jammed packings [36, 37]. Hyperuniformity is also

found in systems with soft, long-range interactions; for example, in one-component
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plasmas [42, 44] or in the ground states of stealthy potentials [46]. The existence of

these diverse examples suggest that one cannot rule out the existence of hyperuniform

amorphous tetrahedral network models. In fact, the extrapolation of Fig. 3.1 sug-

gests it may indeed be possible. The search for the perfectly hyperuniform tetrahedral

network models represents an exciting and challenging area for future research.

Scattering Enhancement near k = 1 Å
−1

The structure factor S(k) for both as-implanted and annealed samples exhibits a small

broad peak that has not been examined previously. This scattering enhancement fea-

ture close to k = 1 Å
−1

and well below the first diffraction peak near k = 2 Å
−1

is

observed both in NHN models and in the experiment (see Fig. 6.3 in Chapter 6).

Diffraction peaks between k = 1 Å
−1

and k = 2 Å
−1

are indicative of the medium-

range order on a scale of about 6-20 Å, a scale that is not well understood in disordered

materials despite being the subject of intense interest [114]. The scattering enhance-

ment may bring insights into the packing of the structural tetrahedra of a-Si. Neither

the scattering enhancement in a-Si nor any of its structural analogues in other tetrahe-

dral amorphous materials have been studied. Amorphous silicon, being a monoatomic

solid provides possibly the simplest example of this phenomenon with implications

for the structure of other disordered tetrahedral materials, such as Ge, SiO2,GeO2,

and H2O.

The structural cause of the scattering enhancement near k = 1 Å
−1

remains un-

known. We speculate that the enhancement is caused by energetically favorable cage

structures in the network or perhaps by correlations between dihedral angles in the

“backbone” structures running through the network. We note that the small scatter-

ing enhancement has been found in NHN models without dangling bonds or defects,

which suggests that coordination defects and their clusters cannot explain the struc-
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tural origin of this feature. The nature of these possible causes and their impact on

the structural properties of a-Si is the subject of a future study.

Linear Decay of the Structure Factor

The structure factor S(k) of both the NHN models and the experiments show a

linear behavior as k → 0. Similar behavior was observed in the hyperuniform max-

imally jammed random packings consisting of hard spheres particles, where the lin-

ear behavior is related to a weak power-law tail in the pair correlation function

(g(r) − 1 ∼ −1/r4 [36]). Although our NHN samples are not large enough to in-

vestigate the precise character of the decay of the structure factor at small k and

the pair correlation function at large r, it presents an intriguing direction for future

research.

Failure of the Paracrystalline Models

Our findings do not support the paracrystalline models of a-Si. The NHN models

provide a much better fit for the data without the need of any artificial assumption

of paracrystallinity. It has been argued [109, 115] that the paracrystalline model is

the only model of a-Si capable of explaining a fluctuation electron microscopy (FEM)

measurements [116]. It is possible, however, that the SW1-5 models are capable of

explaining the FEM data without the presence of paracrystallites and with models

involving only physical short-range interactions.

Practical Uses of Controlling the Electronic Band Gap

The capability to fine tune the size of an electronic band gap is desirable in applica-

tions of a-Si to microelectronics, solar panels and many others discussed in Chapter 1.

The search for new, yet unknown applications for band-gap control in amorphous
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semiconductors is likely to lead to other possible technological applications. Similar

ideas have successfully led to the creation of novel hyperuniform disordered materials

with tunable photonic band gaps [54–57]. A provisional patent for the invention of

“Hyperuniform and Nearly Hyperuniform Random Network Materials” has been filed

with the United States Patent and Trademark Office.
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Appendix A

Bonding Constraints in

Amorphous Silicon

We present a mean field theory argument to estimate the degree of overconstraint

of covalent solids. We will assume that the character of the inter-atomic interaction

in the solid is such that it constrains the bond lengths and bond angles to lie in a

narrow range, but it does not pose significant constraints on atoms that lie beyond

the second coordination shell (i.e. it does not constrain dihedral angles etc.).

In these situations, the amount of over-constraint can be seen from the following

constraint counting argument (see [117, 118]). Let us suppose that there are nr atoms

with coordination r (r ∈ Z≥2), so we have for the number of atoms

N =

∞
∑

r=1

nr, (A.1)

and for the average atomic coordination

r =

∑∞
r=1 rnr

∑∞
r=1 nr

. (A.2)
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There is a one constraint for each bond and since each bond is shared by two atoms,

there are r/2 bond constraints per r−coordinated atom. There are also 2r − 3 inde-

pendent angles between the bonds of an r−coordinated atom, since the direction of a

bond can be specified by two angles with respect to a fixed reference frame and there

are 3 independent rotation of the reference frame.

It follows that the number of constraints per atom Nc/N is

Nc

N
=

∑∞
r=1 [r/2 + (2r − 3)]nr

∑∞
r=1 nr

=
5

2
r − 3. (A.3)

Given that r = 4 in the perfectly tetrahedrally bonded network, we obtain that the

number of constraints per atom is Nc/N = 7. Seven constraints per atom is by far

exceeding the three translational degrees of freedom per atom. This demonstrates

the high degree of over-constraint found in a-Si.
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Appendix B

First and Second Derivatives of an

Isotropic potential

B.1 Two-Body Isotropic Potential

The two-body term of the Stillinger-Weber potential is isotropic and thus can be

written as

V = V (|rij|). (B.1)

The first derivative of the two-body term of the Stillinger-Weber potential can be

written as

V ′ = drV (|rij|)
(rij · δrij)

|rij|
. (B.2)

The second derivative of the two-body term of the Stillinger-Weber potential can

be written as
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V ′′ =
1

2

drV (|rij|)
|rij|

(δrij · δrij)

+
1

2

[

drdrV (|rij|)
|rij|2

− drV (|rij|)
|rij|3

]

(rij · δrij)(rij · δrij).
(B.3)

B.2 Three-Body Isotropic Potential

The three-body term of the Stillinger-Weber potential is isotropic and thus can be

written as

V = V (|rij|, |rim|, cos θijm). (B.4)

The first derivative of the three-body term of the Stillinger-Weber potential can

be written as

V ′ =

[

dr1V (|rij|, |rim|, cos θijm)
|rij|

− cos θijm
dcosθV (|rij|, |rim|, cos θijm)

|rij|2
]

(rij · δrij)

+

[

dr2V (|rij|, |rim|, cos θijm)
|rim| − cos θijm

dcosθV (|rij|, |rim|, cos θijm)
|rim|2

]

(rim · δrim)

+

[

dcosθV (|rij|, |rim|, cos θijm)
|rij||rim|

]

[(rim · δrij) + (rij · δrim)] .

(B.5)

The second derivative of the three-body term of the Stillinger-Weber potential

can be written as (shown on the following page)
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