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Abstract

Ultracold atoms have revolutionized atomic and condensed matter physics. In ad-

dition to having clean, controllable Hamiltonians, ultracold atoms are near-perfect

realizations of isolated quantum systems, in which weak environmental coupling can

be neglected on experimental time scales. This opens new opportunities to explore

these systems not just in thermal equilibrium, but out of equilibrium as well.

In this dissertation, we investigate some properties of closed quantum systems,

utilizing a combination of numerical and analytical techniques. We begin by applying

full configuration-interaction quantum Monte Carlo (FCIQMC) to the Fermi polaron

[1], which we use as a test bed to improve the algorithm. In addition to adapting

standard QMC techniques, we introduce novel controlled approximations that allow

mitigation of the sign problem and simulation directly in the thermodynamic limit.

We also contrast the sign problem of FCIQMC with that of more standard techniques,

focusing on FCIQMC’s capacity to work in a second quantized determinant space.

Next, we discuss nonequilibrium dynamics near a quantum critical point, focus-

ing on the one-dimensional transverse-field Ising (TFI) chain. We show that the TFI

dynamics exhibit critical scaling, within which the spin correlations exhibit qualita-

tively athermal behavior. We provide strong numerical evidence for the universality of

dynamic scaling by utilizing time-dependent matrix product states to simulate a non-

integrable model in the same equilibrium universality class. As this non-integrable

model has been realized experimentally [2], we investigate the robustness of our pre-

dictions against the presence of open boundary conditions and disorder. We find that

the qualitatively athermal correlations remain visible, although other phenomena such

as even/odd effects become relevant within the finite size scaling theory.

Finally, we investigate the properties of the integrable TFI model upon varying

the strength of a non-integrable perturbation, attempting to understand the finite-size

scaling behavior of the eigenstate thermalization crossover. We numerically estimate
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the crossover scale of this perturbation strength using exact diagonalization, finding

that the crossover scale decreases strongly with system size, and analytically provide

a lower bound on the finite-size scaling of this crossover. However, we are unable

to solve for the thermodynamic limit of this crossover; doing so will require larger

systems and more comprehensive theory.
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Chapter 1

Introduction

Ultracold atoms are an exciting field sitting at the boundary between condensed

matter and atomic physics. With cold atoms one has the ability to realize and ma-

nipulate a set of designer Hamiltonians, with an amazing range of tools for control

and measurement. Certain models that were invented as low-energy theories to model

traditional condensed matter systems, such as the Bose-Hubbard model, can be re-

alized more or less exactly using cold atoms. This provides an exciting avenue into

exploring condensed matter physics in a new setting, with an unprecedented interplay

between experiment and theory.

However, cold atoms also offer exciting new challenges distinct from those of tra-

ditional condensed systems. For one, cooling these systems is quite a different beast

than cooling a sample in a cryostat. It may seem as if the micro- and nanokelvin

temperatures routinely achievable in modern cold atom experiments would be suffi-

cient to cool any system to its ground state, but in fact the temperature needed to

see quantum effects (the so-called degeneracy temperature) is much lower in ultracold

atoms. While the nanokelvin temperatures achievable in ultracold atoms are much

colder than the millikelvin temperatures found in a dilution fridge, one must compare

this temperature to the other energy scales in the problem. Since the characteristic
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density is much lower in the the cold atom clouds – no more than one atom per

(1000Å)3 for cold atoms versus one atom per (1Å)3 in a room-temperature crystal

– this corresponds to a much lower degeneracy temperature for the cold atoms. So

while nanokelvin temperatures are impressive, rendering the atoms ultracold on our

energy scale, it is not immediately apparent whether they are cold on their energy

scale.

More fundamentally, though, the concept of temperature and cooling is not as

clearly defined in the context of cold atoms. This comes from the fact that cold

atoms are well isolated from their environment. So whereas in a crystal of bismuth,

the electrons quickly thermalize to the temperature of their environment due to inter-

actions with lattice phonons, it is much less clear what mechanisms allow cold atoms

to thermalize in the absence of such a heat bath. This is a major open question in the

context of cold atom physics, and understanding the mechanism for presence and/or

absence of thermalization is a step toward suggesting techniques to reach ever lower

temperatures.

From a fundamental physics standpoint, the existence of such well-isolated systems

allows us to turn the question on its head and ask what interesting properties the

isolated quantum states have when out of thermal equilibrium. While aspects of these

questions have been mulled for the past century by a number of theoretical physicists,

their recent realization in ultracold atoms has brought non-equilibrium dynamics to

the forefront of modern theoretical and experimental research. While dynamics are

understood, and even exactly solvable, for some specific cases, the general rules for

understanding non-equilibrium dynamics are still being written.

In order to study these questions for all but the simplest systems, one of two

approaches is generally utilized. The more traditional approach is to make some

approximation for which the system is solvable, e.g., a mean field theory treatment.

This is a good way to get at the basic physics of many problems, and has been
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very successful particularly in weakly-interacting cases such as the BCS theory of

superconductivity.

However, to push past mean field or other analytical approximations for solving

strongly interacting many-body problems, it is often necessary to utilize numerical

methods. As a rule of thumb, these approaches should complement each other; mean

field or variational solutions provide initial intuition about the physical system, then

numerics help confirm or refine this understanding through methods that are exact,

or at least involve weaker approximations than purely analytic methods.

1.1 Thesis outline

In this thesis, we discuss the application of numerical and analytical methods to a few

problems in isolated quantum systems, with an eye on experimental applications in

cold atoms. We begin by introducing cold atoms in Chp. 2, followed by some essential

numerical methods in Chp. 3. As a first application of these numerical techniques,

in Chp. 4 we develop and use full configuration-interaction quantum Monte Carlo

(FCIQMC) for solving the ground state properties of the Fermi polaron. We then

discuss dynamics near an isolated quantum critical point in Chp. 5, specifically solving

the critical scaling of non-equilibrium dynamics for the quintessential quantum phase

transition of the transverse-field Ising model. In the same chapter, we numerically

compare the dynamics of the Ising model to those of an experimentally-realizable non-

integrable model in the same universality class, providing evidence that the dynamics

is universal. We further detail experimental considerations for this non-integrable

model in Chp. 6. To better understand the onset of statistical mechanics in closed

quantum systems, in Chp. 7 we investigate the finite size scaling of thermalization in a

non-integrable extension of the Ising model. Finally, we draw some overall conclusions

and discuss open questions in Chp. 8.
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1.2 A brief note on notation

In keeping with the quantum statistical mechanical spirit of this work, we use the

convention ~ = kB = 1 throughout, where ~ is Planck’s constant divided by 2π and

kB is Boltzmann’s constant. In addition, when discussing matrix product states we

use the non-relativistic version of the Einstein summation, meaning that all repeated

indices are summed over regardless of whether the indices are raised or lowered.
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Chapter 2

Cold atoms

The cold atom revolution first caught fire in 1995 with the realization of a Bose-

Einstein condensate (BEC) in a gas of cold atoms by three separate experimental

groups [7–9]. Since that time, the field has taken off, demonstrating cooling of

fermions [10], artificial lattices [11], artificial electric [11] and magnetic [12] fields,

and much more. Ultracold atoms have matured to the point where certain models

that have been used for years as theoretically elegant descriptions of basic phenom-

ena, such as the transverse-field Ising model, have recently been implemented in a

cold atom setting [2, 13, 14].

In this chapter, we will discuss the basic properties of cold atoms. We start

by reviewing some procedures used for working with cold atoms experimentally in

Sec. 2.1. We focus on more traditional techniques, such as those predominately

implemented by the MIT groups [1, 10, 15], noting that similar methods underly more

complicated setups such as the Greiner group’s cold atom microscope [2]. Having

introduced the basic properties of cold atoms, in Sec. 2.2 we address to what degree

they can be treated as isolated quantum systems, a topic that we return to in later

chapters.
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2.1 Basic tools of cold atom experiments

It has been roughly one century since the initial realization of an atomic beam [16],

yet only recently have the atoms in such a beam been slowed to the point where they

could be trapped, cooled, and studied. The largest step toward this development

was the invention of the laser, which has become the single most important tool in

modern atomic physics. In addition to helping trap and cool the atoms, lasers enable

a wide range of techniques for controlling them, including the creation of artificial

lattices that act as a bridge between cold atom research and condensed matter physics.

Magnetic and electric fields provide additional tools for controlling these systems; of

particular note is ability to modify interactions through the use of a static magnetic

field (see Sec. 2.1.2). In this section, we review the physics behind cooling, trapping,

and manipulating atoms, closely following two reviews by Ketterle et al. [10, 15].

2.1.1 Trapping and cooling atoms

Starting from a hot atomic beam (at ∼500 K), a series of steps are used to cool the

atoms down to quantum degeneracy and below. These are, in broad strokes,

1. Zeeman slowing, which reduces the energy of the gas to the point where it can

be trapped.

2. Optical molasses cooling, to remove the majority of the remaining thermal mo-

tion, pre-conditioning the gas for evaporation.

3. Evaporative cooling, where much lower temperatures are achieved by removing

the most energetic atoms from the trap.

Both Zeeman slowing and optical molasses cooling depend on Doppler cooling,

which works as follows. Consider a particular atomic transition at frequency ω0. If

the atom is moving to the right at some velocity v, one irradiates it with left-moving
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photons at frequency ω = ω0−∆, with small detuning ∆ off of the atomic resonance.

In the rest frame of the atom, the light is blue-shifted by the Doppler effect, leading to

absorption if ∆ is tuned to match the (v-dependent) Doppler shift. Assuming a fairly

quick atomic decay rate, the atom spontaneously re-emits the photon in a random

direction, bringing the atom back to its internal ground state. However, to conserve

momentum, the atom must on the average receive a momentum kick to the left during

this process, which in the original frame corresponds to slowing down the velocity v.

This process can also be thought of as drag due to the radiation pressure of the

incoming photons, but only acting on atoms with velocity near Doppler resonance.

To continually reduce the velocity, one must either adjust the frequency of the laser

or of the atomic transition to keep the velocity in resonance. In Zeeman slowing, the

atomic transition frequency is modified by passing the atoms through a magnetic field

gradient. By using two hyperfine levels of the atom, the external magnetic field B

allows control of the transition frequency ω0 via the Zeeman effect ∆Ez ∝ µB, where

µ is the magnetic dipole moment (see Fig. 2.1). The magnetic field gradient reduces

the splitting as the atoms slow down, allowing the fixed frequency laser to remain

in Doppler resonance with the atoms. The velocities achieved via Zeeman slowing,

generally of order 40 m/s [17], are sufficiently small to allow trapping of the atoms.

After Zeeman slowing, there are two basic tools for trapping atoms: magnetic fields

and lasers. Magnetic trapping has been around for longer, and was the manner in

which the earliest experiments, such as the first BECs, were trapped and manipulated

[7–9]. However, contemporary experiments often use hybrid magnetic-optical or even

all-optical trapping, since the additional expense and/or complications are balanced

by an improved ability to trap and control atoms (such as the ability to use strong

field seeking states, see below). In general, any such trap is called a magneto-optical

trap (MOT).
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Figure 2.1: Hyperfine spectra of two fermionic species (figures reproduced from
Ref. 10). Red lines indicate the most commonly used hyperfine states in ultracold
fermion experiments.

Magnetic trapping involves an atomic gas polarized in a single hyperfine state;

for reference, the hyperfine spectra of 6Li and 49K are shown in Fig. 2.1. These

spectra split into weak field seeking states (µ > 0), whose energy is lowest in a small

magnetic field, and strong field seeking states (µ < 0), whose energy is lowest in a

large magnetic field. By surrounding the sample with coils and magnets, magnetic

field configurations can be created so that |B| is minimum (but not a maximum

[15]) at the center of the trap. Therefore, only the weak field seeking states can be

trapped by such a static magnetic field configuration, limiting the states that can be

used in cold atom experiments using magnetic traps. Optical traps, however, can be

made to work for any hyperfine state in the manifold, with the additional benefit of

allowing an arbitrary external magnetic field to be added, which can be very useful

(see Sec. 2.1.2).

The essence of optical trapping and manipulation is the AC Stark effect [18], which

describes the interaction of light at frequency ω with an atomic transition |g〉 ↔ |e〉

at frequency ω0 (see Fig. 2.2). For a weak light field of magnitude E and intensity

I = 2ε0c|E|2, this interaction induces level repulsion between the (dressed) atomic

states at second order in perturbation theory. If δ = ω − ω0 is the detuning between
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Figure 2.2: The AC Stark effect for a red-detuned laser, which can be used for optical
trapping in the vicinity of its focal plane.

the laser and the atomic frequencies, then the (dressed) level |g〉 undergoes an energy

shift [18]

∆E =
|〈e|p̂|g〉|2

δ
|E|2 ∝ I

δ
, (2.1)

known as the AC Stark shift or light shift, where p̂ = −ex̂ is the electric dipole

operator. This formula contains two important pieces of information about the AC

Stark shift: first, the shift is proportional to the intensity of light, and second, the

sign of the shift depends on the sign of the detuning δ.

The AC Stark shift is used for trapping the atoms by varying the intensity of

the laser spatially, creating local minima or maxima in the effective potential seen

by the atom. The dependence of the AC Stark shift on the sign of δ allows for two

distinct modes of operation: red-detuned lasers (δ < 0), for which the atoms are

drawn to maxima of intensity, and blue-detuned lasers (δ > 0), for which the atoms

seek intensity minima. In practice, the easiest way to vary the intensity is to focus the

laser using lenses, in which case there exists an intensity maximum in the focal plane.

Therefore, the dominant mode of operation for optical dipole traps is to use one or

more focused lasers in the red-detuned regime, such that the atoms are trapped in

the vicinity of the focal plane (see Ref. 10, Fig. 2.2).
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After the atoms have been trapped, optical molasses pushes their temperature

down further through a similar Doppler cooling process as in Zeeman slowing. Now

the atom cloud is surrounded by six counter-propagating beams (one shining “for-

ward” and one “backward” for each of the x, y, and z axes). To achieve Doppler

cooling, the lasers are slightly red-detuned from a highly excited transition, i.e., a

transition that will quickly spontaneously decay. As before, the atoms experience

a velocity- dependent force that results in effective drag, hence the term “optical

molasses.”

The final, and most effective, stage of the cooling process is evaporative cooling.

Evaporative cooling is based on the simple idea – as seen in cooling coffee or in the

mixing chamber of a dilution fridge – that if the most energetic particles are allowed

to escape, the temperature of the remaining cloud becomes lower. The hottest atoms

are allowed to escape by slowly lowering the depth of the trap, such that the hottest

atoms are able to tunnel across the lip of the trap. Of course, this process decreases

the number of atoms in the trap. However, if enough atoms were initially loaded and

pre-cooled, the final number in the trap after evaporation can still be quite high (of

order 107 [15]).

A crucial aspect of achieving a low-temperature thermal cloud via evaporative

cooling is that the rate at which the gas thermalizes must be much higher than the

rate of cooling. This is particularly problematic for producing ultracold fermions,

where there are either no interactions for a hyperfine polarized cloud or only weak

interspecies interactions for most values of the external magnetic field (see Sec. 2.1.2

for details). Therefore, it is very common when cooling a cloud of fermions to per-

form sympathetic cooling by placing it in contact with a cloud of bosons. The bosons

effectively serve as an interaction medium that allows a much higher rate of thermal-

ization; this is similar to how weakly interacting electrons in a solid state system are

cooled by contact with the phonon reservoir.
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2.1.2 Using cold atoms for condensed matter physics

Once atoms have been cooled and trapped, there are proposals to use them for a

number of purposes, including metrology [19], chemistry [20], and quantum compu-

tation [21]. Here we will focus on another important application: using cold atoms as

a clean, well-controlled system to simulate interesting models from condensed matter

physics. To that end, there are three important properties of cold atoms which we

will discuss: the ability to make artificial lattices using lasers, the ability to control

the hyperfine polarization of the atomic cloud, and the ability to engineer a universal

and tunable class of inter-atomic interactions.

Artificial optical lattices are based on the same idea as the optical dipole trap.

For making a one-dimensional optical lattice, one creates a standing light wave using

a retroreflected laser (a laser that is reflected off a mirror normal to its direction

of propagation). The atoms then experience an effective sinusoidal potential (the

optical lattice) added to the background parabolic confinement, with the strength of

the potential set by the AC Stark shift. Whether the atoms want to reside at the nodes

or the anti-nodes of the standing wave depends on whether the retroreflected beam is

red- or blue-detuned from the relevant atomic transition. Two- and three-dimensional

lattices can be made by adding retroreflected lasers along the other directions. While

the lattice depth can be easily controlled by varying the intensity of the lattice laser,

the lattice spacing a is fixed at λ/2, where λ is the wavelength of the laser, for these

retroreflected lattices. Lattices with spacing a > λ/2 can be realized either by making

a standing wave with a non-zero angle between the lasers or by holographic projection

[22].

To control the population of individual hyperfine states, it is often useful to utilize

a coupling to the magnetic dipole moment. As the hyperfine splittings are in the

radio frequency (rf) regime, one can control the hyperfine state using an rf pulse, as

in NMR. More explicitly, consider two hyperfine levels “|↑〉” and “|↓〉,” connected by
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a magnetic dipole coupling, with an unperturbed energy splitting ω0. If we act on

this system with a near-resonant rf wave at frequency ω with detuning δ = ω − ω0,

then the effective Hamiltonian in the rotating wave approximation is [10]

Heff =
δ

2
σz +

Ω

2
σx , (2.2)

where Ω is the Rabi frequency characterizing the coupling strength between the pho-

tons and the two-level system. Starting from a spin-up polarized state, one could

reverse the spin direction through an NMR-like pi-pulse, i.e., by turning on a resonant

interaction (δ = 0) for time Tπ = π/Ω. However, a more robust choice is “adiabatic

rapid passage,” wherein the detuning is slowly tuned from δ � 1 to δ � 1. As long

as this is done sufficiently slowly (
.

δ � Ω2), the system remains in its ground state,

which goes from |↑〉 in the limit δ � 1 to |↓〉 in the limit δ � 1. One can also

prepare a partially polarized state by sweeping the detuning non-adiabatically, in

which case the polarization is set by the ramp rate through a standard Landau-Zener

process [23, 24]. While this in principle creates a coherent spin mixture, the state

generally decoheres – giving a classical mixture of spins up and down with stable

polarization (long T1) – because gradients of the magnetic field within the MOT lead

to position-dependent shifts in the detuning [10].

Finally, interactions between the atoms can be controlled through use of a Fes-

hbach resonance [26], which occurs near a point where two hyperfine states of the

atoms energetically wish to form a bound state (a molecule). The classic way of the

seeing this is to solve the scattering problem between two atoms, using an atomic

interaction that is generally well-described by a Lennard-Jones potential, with char-

acteristic range on the order of ten angstroms [10]. However, we can think instead

about the simpler case of a square well potential of some depth V and radius R, the

solution to which can be found in any undergraduate quantum mechanics textbook.
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Figure 2.3: A Feshbach resonance occurs when two particle scattering is modified
near the formation of a bound state (Left), leading to a tunable scattering length
(Right) that diverges at the resonance position (data from Ref. 25, a0 = 0.53Å is the
Bohr radius).

As the depth V is tuned to be increasingly negative, at some V = V0 it will admit

a bound state – we will call this point the “Feshbach resonance.” In the vicinity of

V0, one can solve the scattering problem to extract the scattering phase shift δs. An

expansion of δs at low momentum yields two parameters: the s-wave scattering length

a and the effective range reff. For characteristic values of the inter-atomic potential

one finds that a� reff, and thus the phase shift can be approximated by its reff → 0

limit, in which it depends solely on the scattering length a and not on the details

of the scattering potential. Therefore, in this limit, our assumption of solving the

square well in place of the Lennard-Jones potential is justified.

An important property of this scattering length a is that it becomes infinite at

the Feshbach resonance, where the zero energy scattering state is resonant with the

bound state. In fact, the scattering length changes sign at this point as well, from

positive (repulsive) on the side of the Feshbach resonance where the resonant level is

well-defined, to negative (attractive) on the other side of the resonance. A key point

is that, as the scattering occurs between hyperfine states, the effective scattering

potential V is tuned by an external magnetic field. Therefore, a static magnetic field
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can be used as a control knob that allows one to tune the scattering length across

resonance. As an example, the scattering length in 6Li is shown in Fig. 2.3.

The tools described above have been combined to do a vast amount of exciting

experimental research, even just within the last few years. The ability to tune the

interactions has been exploited to greatly extend our understanding of superfluidity,

allowing investigation of the Bose-Einstein condensate (BEC) to Bardeen-Cooper-

Schrieffer (BCS) superfluid crossover in both spin balanced [27–29] and imbalanced

[30–32] situations. A particularly interesting aspect of this crossover is the behavior

of the quantum gas at the point where the scattering length a diverges, known as

the unitary scattering limit or unitarity. There, since both the values of a and the

potential range R cannot enter into the physics of the problem, the sole length scale

is set by the density, or equivalently by the Fermi wavevector kF . Thus, in this

limit thermodynamics becomes universal, and a very successful recent investigation

of thermodynamics at unitarity has shown remarkable agreement between experiment

and theory [33].

Another major avenue of research has been realizing model Hamiltonians inspired

by condensed matter physics using cold atoms on optical lattices, including the Bose-

Hubbard model [11], variants of the transverse-field Ising model [2, 13, 14], and initial

work on fermionic spin and Hubbard-like models [34]. The major advantage of simu-

lating these systems with cold atoms is that the tunability of cold atoms allows for re-

alization of nearly exact versions of condensed matter models (i.e., the Bose-Hubbard

model) originally derived as low energy effective theories of condensed matter sys-

tems. In addition to improved control, cold atoms have the potential to visualize

the states in a novel manner, replacing solid state techniques such as transport and

neutron scattering with position-, momentum-, and/or spin-resolved imaging of the

ultracold atoms [10].
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2.2 Cold atoms as isolated quantum systems

While cold atoms have been used quite successfully for simulating condensed systems,

there is one aspect in which they differ from most traditional condensed matter ex-

periments; cold atoms are, to a high degree, isolated quantum systems. A general

solid state physics experiment is rarely performed in a true vacuum. For example,

a crystal may be attached to a sample holder, which in turn sits in thermal con-

tact with a cryostat. The electrons thermalize not through interactions between each

other, but by interactions with the phononic environment, which in turn exchanges

heat with the cryostat. For a traditional transport experiment, the electrons in the

crystal are connected through leads to some external perturbation – say a voltage

source – that causes electrons to flow between the leads and the sample. Clearly the

conduction electrons have many points of contact with their environment, and while

out-of-equilibrium behavior is possible (transport being, for example, a linear non-

equilibrium response) it is generally not reasonable to treat the sample as a closed

quantum system, uncoupled from its environment.

In cold atoms, on the other hand, environmental interactions are fewer and of a

different nature. The experiment takes place in ultra-high vacuum with the atomic

cloud physically separated from the walls or other potential heat sources. While

there do exist some small sources of environmental decoherence, which we detail in

Sec. 2.2.2, most experiments on short – but still physically relevant – time scales can

be well approximated as an isolated quantum system.

2.2.1 Differences from open quantum systems

The distinction between “open” quantum systems (those in contact with an envi-

ronment) and isolated or “closed” quantum systems (those not interacting with an

environment) is manifest primarily in the dynamics. We know how to find the exact
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dynamics of a closed quantum system described by wavefunction |ψ〉 in a generic

time-dependent Hamiltonian H(t): solve the Schrödinger equation

i
d|ψ(t)〉
dt

= H(t)|ψ(t)〉 . (2.3)

This leads to unitary evolution; the wavefunction is given by |ψ(t)〉 = U(t)|ψ(0)〉,

where U(t) is the unitary operator

U(t) = T exp

[
−i
∫ t

0

H(t′)dt′
]
. (2.4)

We can also extend these ideas to initial mixed states, which can be created, for

example, if the system and environment were allowed to interact in the past. During

the period in which the system and environment do not interact, the system’s density

matrix again undergoes unitary evolution: ρ(t) = U(t)ρ(0)U †(t).

An open quantum system can in principle be treated as a closed quantum problem

if the environment is treated as part of the Hilbert space. However, if we only have

experimental access to the state of subsystem A, its properties are governed by a

reduced density matrix given by tracing out the environment E. Then the evolution

of A may be described by solving for

ρA(t) = TrE
[
|ψ(t)〉〈ψ(t)|

]
. (2.5)

Unlike the complete quantum system, the evolution of the subsystem A is not gener-

ally given by unitary evolution.

One interesting aspect of isolation is that it is not in general possible to describe

the system in terms of the thermodynamic Gibbs ensemble, ρG = exp(−βH), where

H is the Hamiltonian and β = 1/T is the inverse temperature. This comes from the

fact that the population in each energy eigenstate of the isolated system is conserved
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during unitary evolution, so the energy distribution can’t redistribute to that of the

Gibbs ensemble. This is a topic about which we have more to say (see Chp. 7) but,

for the time being, we would like to briefly address the experimental implications of

thermalization in closed quantum system.

In open quantum systems, thermalization is generally thought of in the context

of surrounding the system by a heat bath at some temperature T . Then, over some

time scale τtherm, the system exchanges heat with the environment to reach a new

equilibrium in which the system temperature approaches T and the system is well

described by the Gibbs ensemble.

In closed quantum systems, thermalization occurs within the system, rather than

through interactions with the external environment. Therefore, if we prepare the

system in a non-equilibrium state at some total energy E, but with said energy

distributed among energy eigenmodes in a manner incommensurate with the Gibbs

ensemble, a loose picture of closed system thermalization is that interactions within

the quantum system act to redistribute the energy density. If these interactions do

their job, we again expect that after some time τtherm, observables of a finite subsystem

will be well described by those of the Gibbs ensemble with β chosen to give the

correct total energy. In some sense, the remainder of the quantum system acts as a

heat bath for the subsystem of interest, restoring the conventional ideas of statistical

mechanics. As a corollary, in order to achieve thermalization on reasonable timescales,

it is important to maximize interactions within the cloud, so that thermalization

happens faster than, say, the rate of atom loss due to evaporative cooling.

2.2.2 Mechanisms for loss and heating

While cold atoms can be largely be treated as isolated quantum systems, there re-

main a few environmental source of decoherence when looking on a long time scale

(generally milliseconds to seconds). Which heating mechanism dominates depends on
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the particular experimental setup of interest. Here we mention three major sources

of decoherence – spontaneous emission via interactions with the photons, three body

interactions, and background gas collisions – and discuss when they may be applica-

ble. All of these mechanisms lead to atom loss, and usually result in heating (increase

in entropy) of the remaining atomic cloud. It is also worth noting that, while envi-

ronmental interactions are generally thought of as contributing to heating, this need

not always be the case. For example, evaporation is associated with atom loss, but

clearly results in cooling.

Whenever an atom is in an excited state that is coupled by an electric dipole mo-

ment to other, lower-lying states, it is always possible for that excited state to emit

a photon and relax to the lower atom level; this process is known as spontaneous

emission. Cold atom experiments work predominately in the lowest orbital mani-

fold, where the atomic levels are stable or quasi-stable (lifetime much longer than

the experimental timescale) to spontaneous emission. However, the AC Stark effect

requires some small dressed state population in the higher orbital manifold, in which

there is a non-zero rate of spontaneous emission. From such an excited state, there

are two distinct decay paths: back down to the original hyperfine state or to some

other hyperfine state. In the first case, the atom will generally remain in the trap,

but by momentum conservation should pick up a kick to match the momentum of the

emitted photon, thus contributing to heating. In the second case, it is often true that

the hyperfine state after spontaneous emission is not trapped by the MOT potentials;

therefore, the atom is usually lost from the trap, often scattering from atoms in the

trap as it leaves and increasing their heat [35].

Spontaneous emission, while omnipresent, can be controlled via the detuning δ

between the control laser and the atomic transition. At first order in perturbation

theory, the atomic orbitals hybridize and the probability of finding the atom in its

excited orbital state scales as I/δ2, where I is the intensity of the laser. This also

18



gives the scaling of the spontaneous emission rate. Given that the magnitude of

the AC Stark shift scales as I/δ, experimentally one generally tries to maximize the

intensity while simultaneously using as high a detuning as possible, to minimize the

spontaneous emission rate for a given magnitude of the AC Stark shift. Therefore,

with sufficiently far-detuned lasers, spontaneous emission can often be neglected [18].

Another source of decoherence is atom loss due to three body recombination in

the vicinity of a Feshbach resonance [10]. In deriving the scattering length near a

Feshbach resonance, we neglected the actual formation of long-lived bound states on

the grounds of energy conservation, instead treating the bound states as short-lived

excitations that modify the scattering process. However, if three particles simulta-

neously interact, it is possible to form a long-lived molecule by putting the excess

energy in the motional state of the third atom. The amount of energy transferred in

this case is usually sufficient to kick the third atom out of the trap, so all three atoms

are generally lost since the MOT is not designed to trap molecules. Again, as the

atoms leave the trap, they will often transfer some of their momentum to the trapped

atoms, thus contributing to heating. To avoid three body loss, it is important to work

with dilute gases, since the rate of three body losses – set by the probability of seeing

three atoms in an interaction volume – scales as the cube of the density.

Finally, in a realistic experiment, the atoms are not trapped in a perfect vacuum.

In addition to the trapped atoms, there remain a number of thermal atoms bounc-

ing around in the chamber, which will immediately remove an atom from the trap

upon scattering. In principle, this can be controlled experimentally by improving the

vacuum; however, once other heating mechanisms are under control, background gas

collisions still remain a vital experimental concern.

There are some other effects which can contribute to heating in these cold atom

systems, such as electrical or mechanical noise in various parts of the experimental

apparatus [36], e.g., fluctuations in laser power. However, despite the sources of
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decoherence, cold atomic gases can still be treated as nearly perfectly isolated on

time scales long enough to see some interesting effects [35, 37]. Understanding some

of the properties of such isolated quantum systems is a major theme of this thesis.
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Chapter 3

Numerical approaches to ground

state and dynamical properties

To solve many strongly-interacting problems exactly, one must often resort to numer-

ical methods when no analytical techniques are available. The simplest such method

is exact diagonalization, where one writes out the Hamiltonian matrix in some finite

Hilbert space and proceeds to solve the full spectrum using a Hermitian eigensolver

[38] or the ground state using a sparse matrix eigensolver such as the Lanczos al-

gorithm [39]. Exact diagonalization returns all the information about the energy

eigenstates, in the form of a vector in the Hilbert space, from which it is straightfor-

ward to find the value of arbitrary observables. In this sense, exact diagonalization is

the simplest and most flexible numerical technique available for most problems, and

is usually good for initial numerical investigation of some problem.

However, the efficiency of exact diagonalization scales very poorly with system

size. Consider the case of an L-site spin-1/2 chain. The size of this problem’s Hilbert

space is N = 2L, meaning the Hamiltonian operator can be represented as a 2L ×

2L matrix. Since exact diagonalization of dense matrices requires computational

time of order N3 (which reduces to order N2 for Lanczos on sparse matrices), the

21



computational time scales exponentially with L, which quickly becomes a problem for

systems of size L >∼ 20. Similar scaling holds for evaluating observables, assuming one

can efficiently generate the matrix corresponding to the observable of interest, while

the situation becomes even worse for a time-dependent Hamiltonian. Even some

clever tricks, such as exploiting symmetries to block diagonalize the Hamiltonian

into smaller matrices corresponding to the various symmetry sectors, only generally

reduce N by a polynomial function of L, leaving the scaling exponential. Given

this limitation of exact diagonalization, a number of numerical techniques have been

developed that improve the scaling properties to solve larger systems. We will discuss

two such techniques, quantum Monte Carlo and the density matrix renormalization

group (DMRG), in the remainder of this chapter.

Before getting into the details of how these numerical methods work, we would

like to briefly discuss some generic principles regarding numerics. First, how can

one in general skirt the exponential scaling problem, and what is lost in the process?

While many different numerical techniques approach this question from many different

angles, the methods described in this chapter boil down to two basic concepts. First,

Monte Carlo methods are based on the idea that one does not need to look at every

basis element in the Hilbert space to calculate meaningful physical quantities. Instead,

one can often sample a very small fraction of the Hilbert space at random, obtaining

a representative “snapshot” of the wavefunction instead of the entire thing. While

the Hilbert space grows exponentially, the number of basis elements that one samples

need not. Second, rather than working within the entire Hilbert space, solving the

problem within a subset of Hilbert space with the “important physics” can provide

a great reduction in the computational power needed. Usually, such a technique has

a variational knob that allows one to gradually increase the fraction of Hilbert space

utilized, to help controllably remove the approximation. Such a variational approach

is used in DMRG and certain Monte Carlo methods.
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The second, more philosophical question, is how numerics fit into the traditional

landscape of analytical and experimental physics? Views on this topic range from

“they don’t” to “who cares?”, but nevertheless I would like to give a brief perspective

on this topic. As we’ve mentioned, one major plus for computational approaches is

their potential to yield exact answers for problems that cannot be solved analytically.

However, such answers are only as good as one’s ability to interpret them, which gen-

erally relies on approaching the system through a series of analytical approximations.

In many ways, the situation is similar to the relationship between experimental and

theoretical physics, where some unexpected signal in an experimental setup may re-

quire a new theoretical description (cf. superconductivity). One major advantage of

numerical tools is their tunability; while it might be hard to change the Hubbard U in

some high-Tc cuprate, it is comparatively easy to do so in Monte Carlo code. There-

fore, analytical, experimental, and numerical methods can in principle work together.

In this context, numerical methods can be thought of as another very important tool

in the theorist’s toolkit. However, like any other tool, one must be careful in prop-

erly applying numerical techniques, to avoid accidentally bashing a hole through the

drywall.

3.1 Quantum Monte Carlo

Quantum Monte Carlo is based on the idea that, when solving a problem involving

a complicated sum or integral, it is often not necessary to examine every term in the

sum. Instead, as we will see, one can sample a small fraction of the terms and, as

long as the sum is not too singular, the answer can sometimes be obtained (to fixed

precision) much faster than by performing a direct summation. To illustrate this

point, imagine that you wanted to know how often you would win a game of Solitaire,

playing by some specific strategy. In principle, you could sit down, write out all the
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possible scenarios, and solve for the winning percentage. Alternatively, you could

simply simulate 1000 games of Solitaire to figure out the winning percentage (within

a statistical error bar); on a modern computer, this would take much less time to run

than to, say, write the code. Clearly, sampling a small part of the space of all possible

deck shuffles – only considering 1000 out of 52! = 8 × 1067 permutations – is much

more efficient than doing the full “summation.”

A more informative example is to consider numerically evaluating some compli-

cated integral in d dimensions, such as

I =

∫
V

e−r
2/2| sin(r2)|ddr . (3.1)

Here, for simplicity, we consider integrating over the hypercube V given by ri ∈ (0, 1)

for i = 1, 2, . . . d.

A naive method for solving this integral numerically is to perform Riemann inte-

gration; break up the space into nd hypercubes with side length h = n−1 and then

sum up the values at the centers of the cubes. A quick Taylor expansion tells us that

the error in this case is roughly

εRiem ≈ 〈∇2f〉
2

h2 , (3.2)

where f = exp(−r2/2)| sin(r2)| is the function we wish to integrate and 〈∇2f〉 is the

average value of the Laplacian within the integration volume V . To achieve error ε0,

we must use h ∼ √
ε0 independent of d. Then, as there are n

d ∼
(

1√
ε0

)d
terms in the

sum, the number of steps to perform Riemann integration with a fixed accuracy ε0

scales exponentially with number of dimensions.

In Monte Carlo (MC), we instead sample this integrand stochastically. To do so,

assume that we have some method to sample from an arbitrary probability distribu-
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tion, for example

p(r) =
e−r

2/2

N
, (3.3)

where N is some (possibly unknown) normalization.1 The standard trick in MC is to

rewrite the integral as the expectation value of some observable over this distribution.

I =

∫
V

e−r
2/2
∣∣sin(r2)∣∣ ddr (3.4)

=

C︷ ︸︸ ︷(∫
V

e−r
2/2ddr

)(∫
V
e−r

2/2 |sin(r2)| ddr
)

∫
V
e−r2/2ddr

(3.5)

= C
N−1

∫
V
e−r

2/2 |sin(r2)| ddr
N−1

∫
V
e−r2/2ddr

(3.6)

= C
∫
V
p(r) |sin(r2)| ddr∫

V
p(r)ddr

(3.7)

= C 〈
∣∣sin(r2)∣∣〉p(r) , (3.8)

where

C =

∫
V

e−r
2/2ddr =

(√
π

2
erf

[
1√
2

])d
. (3.9)

So to get I along with the standard error σI , we must sample a large number of

configurations r from the probability distribution p(r) and then compute the statistics

of the observable | sin(r2)|.

An analysis of the errors shows why this helps. Whereas the (deterministic) error

in Riemann integration scales exponentially with number of dimensions, the error

in MC is purely statistical, meaning it scales as N−1/2, where N is the number of

configurations sampled. The MC error also depends on the statistical variance of

the observable and the correlation time (the number of steps between independent

samples); empirically, for a wide range of integrands, these quantities do not depend

1 A more standard technique for doing Monte Carlo integration such as this is to instead sam-
ple from flat distribution p(r) = const. We use Gaussian sampling here as a precursor to VMC,
motivating the introduction the Metropolis algorithm.
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Number dim. d εRiem = |I − IRiem|/I εMC = |I − IMC|/I εMC/εRiem

2 1.014× 10−7 5.342× 10−4 5.267× 103

4 2.603× 10−5 1.249× 10−3 4.797× 101

10 2.668× 10−2 1.181× 10−3 4.427× 10−2

20 1.547× 10−1 1.360× 10−3 8.791× 10−3

Table 3.1: Relative errors of Riemann summation and Monte Carlo integration for
solving the integral in Eq. 3.1. When varying the number of dimensions d, the Rie-
mann hypercube size h is adjusted so that both Riemann and Monte Carlo integration
utilize 220 ≈ 1 million computational steps.

strongly on dimensionality. Therefore, one expects that the statistical error in MC

should be essentially independent of dimensionality, making it generally preferable to

Riemann summation for higher-dimensional integrals. These expectations are con-

firmed for the integral from Eq. 3.1, as seen in Table 3.1.

There is one important aspect of this argument that we have not addressed, namely

how to sample from some arbitrary distribution p(r).2 This can be done by the

Metropolis algorithm [40], which works as follows.

1. Start in some random configuration C from configuration space Ω. In the

example above, each configuration C is a d-dimensional coordinate r and the

configuration space is Ω = {r | r ∈ V }.

2. Sample some other configuration C ′ according to a known probability distribu-

tion q(C ′|C). For example, one could select C ′ at random from Ω, in which case

q(C ′|C) = 1
NΩ−1

, where NΩ is the number of configurations in Ω.

3. Accept the move from C → C ′ (i.e., change configuration from C to C ′) with

probability pa(C
′|C) = min

[
1, p(C

′)q(C|C′)
p(C)q(C′|C)

]
. If the move is not accepted, keep

the configuration C.

2In this example, the Gaussian distribution is special in that very efficient analytical tools exist
to sample from it. However, the Metropolis algorithm can be applied to a much more general class
of distributions.
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4. Measure the value of the desired observable(s) in the current configuration, and

accumulate statistics over multiple MC steps. In the example above, this means

computing | sin(r2)| for r at each step.

5. Repeat from step 2. Each iteration of this procedure is known as a MC step.

The Metropolis algorithm guarantees that, after a few steps required to forget the

initial conditions, the configuration C will be sampled proportional to the probabil-

ity distribution p(C). Note that, as the accept probability only involves the ratio

p(C ′)/p(C), it is not necessary that p(C) be normalized. It is also not necessary that

q(C ′|C) be non-zero for all C ′ 6= C. It is, however, important that any configuration

C ′ can be reached from any other configuration C in a finite number of steps, to avoid

getting stuck in a corner of configuration space.

To motivate how the Metropolis algorithm works, we show that p(C) is a fixed

point of this procedure. Assume, then, that C is already distributed according to

p(C). Following the above procedure, the probability of ending up at configuration

C after one step is

p1(C) =

Probability to stay in C︷ ︸︸ ︷
p(C)

∑
C′ 6=C

q(C ′|C)(1− pa(C
′|C))+

Probability to move to C︷ ︸︸ ︷∑
C′ 6=C

p(C ′)q(C|C ′)pa(C|C ′)

= p(C)
∑
C′ 6=C

q(C ′|C) +
∑
C′ 6=C

{
p(C ′)q(C|C ′)pa(C|C ′)− p(C)q(C ′|C)pa(C ′|C)

}
= p(C) +

∑
C′ 6=C

{
p(C ′)q(C|C ′)min

[
1,
p(C)q(C ′|C)
p(C ′)q(C|C ′)

]
−

p(C)q(C ′|C)min

[
1,
p(C ′)q(C|C ′)

p(C)q(C ′|C)

]}
= p(C) . (3.10)

In addition to performing complicated multidimensional integrals, MC methods

are also very useful in simulating classical thermodynamic systems; in this case, con-
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figurations i (the positions and momenta of N particles, for example) are sampled

from the partition function Z, with weight proportional to exp(−βEi). From here

out, however, we focus instead on applying MC to problems in quantum mechanics

(quantum Monte Carlo, a.k.a. QMC) to get both variational and exact values for

ground state observables.

3.1.1 Variational Monte Carlo

In variational Monte Carlo (VMC), one solves for the expectation value of physical

observables with respect to some trial wavefunction |ψT 〉. An observable O has the

quantum mechanical expectation value 〈O〉 = 〈ψT |O|ψT 〉
〈ψT |ψT 〉 . Inserting a complete set of

states {|x〉}, this becomes

〈O〉 =

∑
x〈ψT |x〉〈x|O|ψT 〉∑
x〈ψT |x〉〈x|ψT 〉

(3.11)

=

∑
x〈ψT |x〉〈x|ψT 〉

〈x|O|ψT 〉
〈x|ψT 〉∑

x〈ψT |x〉〈x|ψT 〉
(3.12)

=

∑
x |〈ψT |x〉|

2 〈x|O|ψT 〉
〈x|ψT 〉∑

x |〈ψT |x〉|
2 . (3.13)

After such a rewriting, the physical expectation value now has the form of a statistical

expectation value over a configuration space Ω = {|x〉}:

〈O〉 = 〈OL(x)〉p(x), (3.14)

where p(x) ∝ |〈ψT |x〉|2 and OL(x) ≡ 〈x|O|ψT 〉
〈x|ψT 〉 . This allows us to solve for 〈O〉 using

MC.

The word “variational” in VMC comes from the fact that |ψT 〉 is often chosen

from some variational class of wavefunctions. The results of the VMC simulation are

then used to tune the variational parameters in order to, for example, minimize the
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energy. This can be done using standard techniques for function optimization [38] with

modifications to deal with statistical noise, often taking advantage of VMC’s ability

to calculate derivatives of the observable with respect to variational parameters for

use as input to the optimization routines [41, 42].

3.1.2 Ground state projection Monte Carlo

There are a number of techniques to move beyond a variational approach and stochas-

tically sample the true ground state of a real-valued Hamiltonian H. One particular

class of methods involve projection to the ground state, starting from the realization

that

lim
β→∞

e−β(H−E0)|ψT 〉 = |ψ0〉 , (3.15)

where E0 (|ψ0〉) is the ground state energy (wavefunction) and |ψT 〉 is an arbitrary

initial state with the condition that 〈ψT |ψ0〉 6= 0.

Ground state QMC methods perform the imaginary time projection e−βH stochas-

tically. To do this, one starts the algorithm with Nw walkers distributed in configura-

tion space, such that the average number of walkers at configuration x is proportional

to 〈x|ψT 〉. In this way, the walkers are a stochastic “snapshot” of the initial wave-

function |ψT 〉. Assuming the Hamiltonian has a bounded spectrum (e.g., for a lattice

Hamiltonian), one can break up the exponential into small time steps:

e−βH = e−τHe−τH · · ·︸ ︷︷ ︸
repeatedN=β/τ times

≈ (1− τH)N . (3.16)

Then at each time step, one stochastically applies the operator U = 1−τH, such that

after N steps of the algorithm, the walkers represent a snapshot of UN |ψT 〉, i.e., the

average number of walkers in configuration x is proportional to 〈x|UN |ψT 〉. For large

enough N , these walkers correspond to a stochastic snapshot of the ground state,

|ψ0〉.
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To illustrate how such a problem is solved in practice, consider finding the ground

state of a single particle hopping on a one-dimensional L-site lattice with open bound-

ary conditions. The Hamiltonian is

H = −
L−1∑
j=1

(c†jcj+1 + h.c.) , (3.17)

in units where the hopping energy is 1. We start the algorithm by samplingNw walkers

proportional to 〈j|ψT 〉. For the example shown in Fig. 3.1, the initial state is chosen

to seed all walkers at the middle site, 〈j|ψT 〉 = δj,L/2. We wish to apply U = 1− τH

stochastically, which can be accomplished as follows. For a walker at site j, there

are three moves allowed: stay in place with probability 1/N ∼ 〈j|U |j〉, move left one

site with probability τ/N ∼ 〈j − 1|U |j〉, and move right with probability τ/N ∼

〈j + 1|U |j〉. The normalization N = 1 + 2τ is chosen to make these probabilities

add up to one. If these moves cause the walker to move outside of the box, then we

throw that walker out of the simulation. Therefore, after moving all the walkers and

tossing away those that leave the box, we must resample to keep the walker number

fixed at Nw, such that the expected number of walkers at site j after resampling is

proportional to the number of walkers at j before resampling. For example, if there

are two walkers on site j and one on site j′ and we wish to resample to Nw = 9 walkers,

then we replace the current walkers by a randomly-generated set of 9 walkers at sites

j and j′, such that the expected number on site j is (2/3)× 9 = 6. These rules define

a random walk for the Nw walkers, such that after N steps, the average number of

walkers at site j is proportional to 〈j|UN |ψT 〉. Thus, the walkers give a snapshot of

the wavefunction UN |ψT 〉, as desired. An illustration of such a random walk can be

seen in Fig. 3.1.
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Figure 3.1: Illustration of the simple QMC example given in the text, with time step
τ = 0.1 and Nw = 10 walkers. Dark blue bars are a snapshot of the walkers at
various steps of the algorithm, while light red bars show cumulative histograms of
walker locations, which eventually approach the ground state (black line).

3.1.3 The sign problem

In the previous example, we have swept one very important issue under the rug: how

can one sample the ground state wavefunction if it is not positive valued, as is allowed

in quantum mechanics? What does it mean to sample from a negative “probability?”

This issue, known as the “sign problem” or “Fermi sign problem,” is one of the most

insidious problems in the field of QMC.

The heart of the sign problem is that MC methods are designed to sample from

a positive probability distribution, but wavefunctions need not have strictly non-

negative components.3 Sampling negative values is possible by expanding configura-

tion space to include both the original configuration C and a sign s = ±. One then

samples configuration C with weight |〈C|ψ0〉| and sign s = sgn〈C|ψ0〉. However, this

“fix” opens up its own can of worms, as we will now show.

Consider two non-interacting particles hopping on a one-dimensional L-site lattice,

with the same Hamiltonian as Eq. 3.17. Treating the particles as distinguishable, if

we start the system with particle A at site 1 and particle B at site 2 (denoted |12〉)

and evolve in imaginary time, the particles will move independently according to

H. Histogramming their positions (Fig. 3.2), each approaches the (single-particle)

3 In fact, wavefunctions need not have strictly real components. However, for a real-valued
Hamiltonian matrix, all eigenstates can be written as real-valued vectors in the Hilbert space.
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Figure 3.2: Probability distribution of positive and negative walkers for the example of
the sign problem given in the text. The distributions of positive and negative walkers
independently approach the bosonic ground state, while their difference approaches
the fermionic ground state.

ground state of H: 〈j|ψsp
0 〉 = sin

(
πj
L+1

)
. Physically, this is acceptable if the particles

are bosons, as such a ground state is symmetric under particle exchange.

However, if the particles are fermions, they should not both end up in the single

particle ground state. In this case, we would have to start the simulation from an

anti-symmetric state, such as

|ψT 〉 = |12〉 − |21〉 . (3.18)

Algorithmically, this corresponds to starting with two walkers, one at |12〉 with a

positive sign and the other at |21〉 with a negative sign. However, the argument

above still works separately for the positive walkers and the negative walkers: each

individually approaches the bosonic ground state, while their difference approaches

the fermionic ground state (see Fig. 3.2).
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To see how the fermionic component emerges, we rewrite the positive initial state

as

|ϕ+〉 ≡ |12〉 = 1

2

[
|12〉 − |21〉

]
+

1

2

[
|12〉+ |21〉

]
, (3.19)

in which the first term is anti-symmetric (fermionic) and the second term is symmetric

(bosonic). If the single particle orbitals of H are φ0 (ground state), φ1 (first excited

state), etc., then the many-body ground state of H is the bosonic state

|b〉 = |φ0(A)φ0(B)〉 (3.20)

with energy Eb. For simplicity, consider Eb = 0, which can be achieved by adding a

constant offset to H. The fermionic ground state is

|f〉 = 1√
2

(
|φ0(A)φ1(B)〉 − |φ0(B)φ1(A)〉

)
, (3.21)

with energy Ef > 0. Since H conserves symmetry, after long time β the positive

walkers sample from the (positive-valued) wavefunction

e−βH |ϕ+〉 =
1

2

[
|b〉+ e−βEf |f〉

]
. (3.22)

Since Ef > 0, the bosonic piece dominates in the β → ∞ limit. Similarly, the negative

walkers sample from

e−βH |ϕ−〉 =
1

2

[
−|b〉+ e−βEf |f〉

]
. (3.23)

Adding these two together, we see that the physical solution is that e−βH |ψT 〉 ap-

proaches the fermionic state e−βEf |f〉, as it must. However, in the actual simulation

the positive and negative walkers evolve independently without talking to each other;

this means that the physical cancellation of the bosonic parts of the wavefunction

does not occur in the simulation. Therefore, while the wavefunction that we sample
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is fermionic, there remains bosonic noise whose weight, as a function of β, increases

exponentially faster than the fermionic signal. This is what we mean by the Fermi

sign problem.

A more detailed discussion of a particular ground state QMC implementation can

be found in Chp. 4. In particular, we address ways of minimizing the Fermi sign

problem and develop a series of new tools for full configuration-interaction QMC, a

relatively new QMC algorithm developed for quantum chemistry applications [43].

We also discuss a more general version of the sign problem, and its connection to

(basis-dependent) properties of the Hamiltonian matrix.

3.2 Density matrix renormalization group

A second useful numerical technique that we will discuss is the density matrix renor-

malization group (DMRG), invented by Steve White [44, 45] as a more efficient tool

to replace Wilson’s numerical renormalization group [46]. As with any renormaliza-

tion procedure, DMRG attempts to coarse-grain the system, throwing away the least

important degrees of freedom.

The efficiency of DMRG comes from working with a special class of variational

wavefunctions known as matrix product states. Indeed, many contemporary ap-

proaches to DMRG treat it primarily as an efficient technique for searching within

the variational subspace of matrix product states. This is the approach we will take

in the following sections, based on the review of these methods by Schollwöck [47].

As we will see, matrix product states allow efficient numerical optimization and mea-

surement of a wide range of wavefunctions. The matrix product state representation

of a wavefunction is closely tied to the study of entanglement, providing a physical

connection between this ansatz and many topics of current interest.
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Given the efficiency of matrix product states in variational ground state searches,

DMRG has become the technique of choice for solving one-dimensional problems [48,

49]. It has recently been adapted quite successfully for a number of two-dimensional

problems [50, 51], although the scaling of entanglement in two dimensions (and thus,

as we’ll see, the efficiency of DMRG) is exponentially worse than that of one dimen-

sion.

3.2.1 Matrix product states

A matrix product state (MPS) is a representation of an arbitrary wavefunction |ψ〉

as a product of matrices. Consider the Hilbert space H = {|~σ〉 = |σ1 . . . σL〉} of an

L-site spin system, where σ enumerates d spin components (for example, d = 2 in a

spin-1/2 system). Then the standard MPS ansatz with open boundary conditions is

|ψ〉 =
∑
~σ

Mσ1
1 Mσ2

2 · · ·MσL
L |~σ〉 . (3.24)

Here, for each site i and spin σi (except i = 1, N ; see below), we represent |ψ〉 by a

D × D matrix Mσi
i , where D is an arbitrary integer known as the bond dimension.

Since the coefficient c~σ =Mσ1 · · ·MσL is a complex number, the first and last matrices

Mσ1 and MσL need to be 1 ×D row and D × 1 column vectors respectively. There

also exists an ansatz more suited to periodic boundary conditions [52], which we will

not address here.

For the remainder of this chapter, we use two pieces of notational shorthand:

• We write Mσi instead of Mσi
i .

• We utilize the Einstein summation convention (summing over repeated indices).

A useful graphical representation of an MPS is shown in Fig. 3.3a. The matrix

is represented by a black circle, with one leg corresponding to each index needed to
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specify a matrix element Mσ
ij. The product of two matrices M and N is

[
MσNσ′

]
ij
=Mσ

ikN
σ′

kj ; (3.25)

this is represented graphically by connecting the summed-over legs of Mσ and Mσ′

(Fig. 3.3b), leaving four floating legs σ, σ′, i, and j. In this representation, the only

floating parts of a matrix product state are its spin indices; the internal matrix indices

are summed over (“contracted”), as in Fig. 3.3c.

Efficient manipulation of MPSs involves two basic operations: proper ordering

of contractions and singular value decompositions. Ordering of contractions can be

illustrated by considering the overlap between wavefunctions represented as MPSs:

〈ψ′|ψ〉 =
∑
σ1...σL

(M ′σL)† · · · (M ′σ1)†Mσ1 · · ·MσL . (3.26)

A naive contraction in which, for each ~σ, we perform the matrix multiplication and

then add the ~σ together, requires a prohibitive number of steps (of order dLLD3).

However, distributing the σ sums we can rewrite Eq. 3.26 as

〈ψ′|ψ〉 =
∑
σL

(M ′σL)†
∑
σL−1

[
· · · (M ′σ2)†

∑
σ1

[
(M ′σ1)†Mσ1

]
Mσ2 · · ·

]
MσL

 . (3.27)

Each σ sum requires O(dD3) steps (d matrix multiplications). Thus, by evaluating

the overlap through contracting these sums from the inside out, this method requires

O(dLD3) steps, rendering it computationally feasible. Graphically, this corresponds

to evaluating the vertical contractions before the horizontal ones, sweeping across the

MPS from left to right (Fig. 3.3e).

The second tool in the MPS toolkit is the singular value decomposition. Consider

an arbitrary matrixM of size r×c, with r ≤ c for simplicity. M can always be written

in the formM = USV † [38], known as its singular value decomposition (SVD), where
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U , S, and V are of size r × r, r × r, and c × r respectively. U and V satisfy the

canonicity condition U †U = V †V = 1r, while S is a non-negative real-valued diagonal

matrix, known as the singular value matrix.

One illustration of the power of the SVD is using it to write an arbitrary wave-

function

|ψ〉 =
∑
~σ

cσ1···σL|~σ〉 (3.28)

as an MPS. We can think of the coefficient cσ1···σL as a rank-L tensor, or by combining

indices we can reshape it into a matrix Cσ1,α1 , where α1 = (σ2, . . . , σL) is a super-index

that iterates over all spins besides σ1. Performing an SVD on Cσ1,α1 , we get

Cσ1,α1 = Uσ1jSjV
∗
α1j

, (3.29)

using Sj to denote the j-th diagonal element of the singular value matrix S. We can

reshape U to get d row vectors Aσ11j = Uσ1j, which will be the matrices at site 1 in the

MPS.

Similarly, we can multiply the S and V matrices and reshape to get new “coef-

ficient” cj,σ2,...,σL = SjV
∗
(σ2,...,σL)j

. We can then continue performing the SVD site-by-

site, reshaping the U matrices to get the desired Aσ matrices for the MPS. At first

glance it would appear that the matrices at site ` + 1 are d times larger than those

on site `; for example, at site 2 we would reshape cj,σ2,...,σL to C(j,σ2),(σ3,...), yielding

a d2 × d2 matrix for U . However, a closer analysis reveals that the size increases

for a bit, but eventually must come back down to give a column vector on site L.

Therefore, the size of the A matrices follows the progression: 1× d on site 1, d× d2

on site 2, ..., dL/2−1 × dL/2 on site L/2, dL/2 × dL/2−1 on site L/2+ 1, ..., d× 1 on site

L. Note that, while Aσ1 never needs to be larger than 1× d, we can pad it with zeros

to get a 1×D matrix if desired.
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The matrices generated by such an SVD have some useful properties. Consider

the canonicity condition, U †U = 1. After reshaping, this corresponds to

∑
σ

(Aσ)†Aσ = 1 . (3.30)

Matrices satisfying this property are referred to as left canonical. The above procedure

generates left canonical matrices on each site except for site L.4 Similarly, one can

define right canonical matrices satisfying

∑
σ

Bσ (Bσ)† = 1 . (3.31)

These are the matrices that one would generate by sweeping from site L to site 1

(right to left) and appropriately reshaping the V matrix. For the rest of this chapter,

matrices denoted A are left canonical and those denoted B are right canonical.

There is a special class of MPSs called “mixed canonical” matrix products states,

which are of the form · · ·AAΨBB · · · where only one site ` has non-canonical matrices

Ψσ` . If Ψσ`
ij is a D × D matrix, consider an SVD on the D × dD matrix Ψi(j,σ`) =

UiαSαV
∗
(j,σ`),α

. We can define A′σ`−1 = Aσ`−1U ; it is easy to check that A′ is also left

canonical. We can also reshape V to get a right canonical matrix Bσ`
α,j = V(j,σ`),α.

Therefore, our MPS has been rewritten as · · ·AA′SBB · · · , where S is the singular

value matrix which we can think of as residing on the bond between sites ` − 1 and

`. The wavefunction can be rewritten as

|ψ〉 =
∑
α

Sα|αA〉|αB〉 , (3.32)

4 A careful analysis of the procedure shows that the site L is not left canonical because no SVD
is ever performed at site L.
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where

|αA〉 =
∑

σ1...σ`−1

[Aσ1 · · ·Aσ`−2A′σ`−1 ]1α |σ1 · · ·σ`−1〉

|αB〉 =
∑
σ`...σL

[Bσ` · · ·BσL ]α1 |σ` · · ·σL〉 .

Eq. 3.32 is precisely a Schmidt decomposition if the |α〉’s are orthonormal; this is

where we utilize canonicity.

〈βB|αB〉 =

(∑
σ`

Bσ`

[
· · ·
∑
σL

BσL (BσL)† · · ·

]
(Bσ`)†

)
αβ

=

(∑
σ`

Bσ`

[
· · ·
∑
σL

BσL−11 (BσL−1)† · · ·

]
(Bσ`)†

)
αβ

= . . . = δαβ .

A similar proof shows that the |α〉A states are orthonormal as well.

The Schmidt decomposition in Eq. 3.32 is the basis for physical insight into prop-

erties of the MPS. For instance, consider an MPS |ψ〉 of bond dimension D. In

addition, assume that it is normalized, so that
∑

α S
2
α = 1. Then the von Neumann

entanglement entropy of |ψ〉 across the bond between sites `− 1 and ` is

S = −
∑
α

S2
α log

(
S2
α

)
. (3.33)

As there are D values of α in the sum, the maximum entanglement entropy of such

an MPS is Smax = logD.

Another consequence of the Schmidt decomposition is to enable compression. Sup-

pose we wish to approximate an MPS |ψ′〉 with bond dimension D′ by some |ψ〉 with

smaller bond dimension D. The Schmidt decomposition suggests a good way to do

this: perform the SVD, then throw out terms in the Schmidt decomposition corre-
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Figure 3.3: Graphical representation of (a) a matrix within the MPS, (b) multipli-
cation of two matrices, (c) a matrix product state, (d) a matrix product operator,
(e) a wavefunction overlap, and (f) an expectation value. Circles/squares/diamonds
represent matrices, lines represent indices, and lines connecting different matrices are
summed over.

sponding to the smallest values of Sα.
5 This procedure is an optimal compression of

the matrices on that one site, in that it minimizes the magnitude of the difference

between states,
∣∣∣∣|ψ〉− |ψ′〉

∣∣∣∣2. We refer to this procedure as SVD compression of the

MPS from bond dimension D′ to D.

3.2.2 Matrix product operators

In addition to matrix product states, one can define a matrix product operator

(MPO), whose pictorial representation is shown in Fig. 3.3d. Noting that opera-

tors are an outer product of a ket with a bra, an MPO is very similar to an MPS,

except that matrices in an MPO have two spin indices per site. Thus, a generic MPO

is written

O =
∑
~σ~σ′

Mσ1σ′
1 · · ·MσLσ

′
L|~σ〉〈~σ ′| . (3.34)

Since one can rewrite the MPO in the form of an MPS by wrapping the spin indices

σ, σ′ into a single super-index (σ, σ′) of spin dimension d2, all of the tricks developed

for MPSs can be applied to MPOs, including SVD compression. While it is not

5From an entanglement perspective, this corresponds to removing the components of |ψ′〉 with
the highest entanglement energy [53].
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obvious that Hamiltonians or other physical observables can be expressed in the form

of an MPO with small bond dimension, it turns out to be the case that most local

observables can be written as MPOs of bond dimension DO <∼ 5 [47].

An important operation involving an MPO O is acting with it on some MPS |ψ〉 to

get |ψ′〉 = O|ψ〉. As with wavefunction overlaps, this can be done very efficiently by

appropriate ordering of contractions, which is easily seen in the graphical MPS/MPO

representation (Fig. 3.3f). Mathematically, this operation corresponds to taking ten-

sor products of the MPO matrices Mσjσ
′
j with those of the MPS Ψσ′

j and summing

over the spin index σ′
j. An important consequence of such an operation is to increase

the bond dimension of the resultant MPS; if |ψ〉 has bond dimension D and O has

bond dimension DO, then |ψ′〉 will have bond dimension DOD.

Having established the basic techniques used to manipulate and compress matrix

product states and operators, we proceed to explain how they can be used for time

evolution and ground state calculations.

3.2.3 Time evolution via MPS

Time evolution of an MPS turns out to be a rather straightforward operation. There

are many variants to implement this idea, including time-evolving block decimation

(TEBD [54, 55]), time-dependent DMRG (tDMRG [56, 57]), and the more recently

developed time-dependent MPS (tMPS [58]) algorithm that we discuss below. While

there are some technical differences between these algorithms, they all operate on a

similar premise.

We wish to use MPSs to solve for the time evolution of some initial state |ψ(0)〉.

For simplicity, we consider the case of a time-independent Hamiltonian H. Then, at

time t, according to the Schrödinger equation,

|ψ(t)〉 = e−iHt|ψ(0)〉 . (3.35)
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In order to use the MPS formalism that we have developed, we must show how to

express the unitary evolution operator U(t) = exp(−iHt) as an MPO. While this

is not in general a trivial thing to do exactly, it can be accomplished to arbitrary

accuracy using a Trotter decomposition [59].

More explicitly, consider some one-dimensional Hamiltonian H with at most near-

est neighbor interactions, meaning we can break it up into a sum of terms acting on

even bonds and terms acting on odd bonds,

H = Hodd +Heven =
∑
j odd

Hj +
∑
j even

Hj , (3.36)

where Hj acts only on sites j and j + 1. Since they act on different sites, the terms

within Hodd or Heven commute with each other, i.e., [Hj, Hj+2n] = 0 for n ∈ Z.

This is useful because time evolution becomes separable; looking at the odd sites, for

example,

Uodd(t) = e−iHoddt = e−i
∑

j oddHjt =
∏
j odd

e−iHjt . (3.37)

As we will soon see, this product can be easily expressed as an MPO.

However, Hodd and Heven do not commute with each other. Therefore, in order to

apply, e−iHt = e−i(Hodd+Heven)t, we must first perform a Trotter decomposition. To do

so, consider a small time step τ = t/N , such that e−iHt =
(
e−iHτ

)N
. For small τ ,

e−iHτ = e−i(Hodd+Heven)τ = e−iHoddτe−iHevenτe−i[Hodd,Heven]O(τ2) . (3.38)

Dropping the O(τ 2) commutator term, this is the first order Trotter breakup. Higher

order Trotter breakups give higher order corrections in τ , but regardless the general

principle is to use such an approximation and extrapolate to the τ = 0 limit to solve

for the correct time evolution.
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As an example of how to construct an MPO corresponding to Uj(τ) ≡ e−iHjτ ,

we use the case of an Ising interaction H = J
∑

j s
z
js
z
j+1 where sx,y,z are the Pauli

matrices; more general nearest neighbor interactions can be done in a similar fashion.

Consider Uj(τ) = e−iJs
z
j s

z
j+1τ . Since this is diagonal in the sz basis,

〈↑j, σj+1|Uj| ↓j, σ′
j+1〉 = 0 (3.39)

for all values of spins σj+1 and σ
′
j+1 on site j +1. In terms of the MPOs, this implies

that M↑↓
j = M↑↓

j+1 = M↓↑
j = M↓↑

j+1 = 0. To get the correct matrix elements, we need

the remaining matrices to satisfy

M↑↑
j M

↑↑
j+1 =M↓↓

j M
↓↓
j+1 = e−iJτ , M↑↑

j M
↓↓
j+1 =M↓↓

j M
↑↑
j+1 = eiJτ . (3.40)

Note that the product of these matrices is a complex number, meaning that we want

Mj to be a row vector and Mj+1 to be a column vector. The solution to these

equations is not unique, but one choice that works is

M↑↑
j =

(
eiJτ , e−iJτ

)
, M↑↑

j+1 =

 1

0

 (3.41)

M↓↓
j =

(
e−iJτ , eiJτ

)
, M↓↓

j+1 =

 0

1

 . (3.42)

Due to the product form of Uodd =
∏

j odd Uj (similarly for Ueven), the entire MPO for

Uodd is constructed by using the above ansatz for each odd bond. This gives an MPO

of bond dimension DU = 2, with matrices of size 1× 2 on the odd sites and size 2× 1

on the even sites.6

6 One can shape this into the more conventional form of 2 × 2 square matrices by padding the
matrices with zeros to the bottom right.
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The procedure is then, starting from an MPS |ψ(0)〉 at time zero, apply the MPO

versions of Ueven(τ) and Uodd(τ) sequentially to get

|ψ(t)〉 ≈ Uodd(τ)Ueven(τ) · · ·Ueven(τ)|ψ(0)〉 , (3.43)

where the approximation comes from the Trotter breakup error, becoming exact in

the limit τ → 0. However, if |ψ(0)〉 has bond dimensionD, then each application of an

MPO corresponds to a tensor product, multiplying the bond dimension by a factor of

2 in the example above. So after time t = Nτ , the bond dimension blows up to 4ND if

the MPS is stored exactly. The solution to this problem has already been suggested;

at each step apply the SVD compression procedure to reduce the bond dimension

back down to a manageable quantity Dfeasible. However, as the entanglement grows

in time, we need to continually increase Dfeasible to accurately capture the quantum

state. At the cost of this controlled approximation, the time evolution is simulated

efficiently, becoming exact in the limit of τ → 0 and Dfeasible → ∞.

3.2.4 Ground states via MPS

In place of real time evolution, one can use the methods of the previous section to

perform imaginary time evolution |ψ(β)〉 = e−βH |ψ(0)〉. As we saw in the context of

QMC, taking the limit β → ∞ of this expression is one method for finding the ground

state ofH. However, for matrix product states, a much more efficient algorithm exists:

the density matrix renormalization group (DMRG) [44, 45]. While not precisely

equivalent to DMRG, we will discuss a closely-related MPS algorithm for finding the

ground state of some Hamiltonian H expressed in MPO form: single-site ground state

MPS (gsMPS [47]). As we do not utilize this algorithm elsewhere in the thesis, we only

briefly describe it here for the sake of completeness and to highlight the connection

between MPS algorithms and DMRG.
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The idea behind single-site gsMPS is to note that, if we fix the matrices on all but

site j, then the problem of optimizing the matrices on site j is linear, and thus easily

solved exactly. The algorithm is then to sweep back-and-forth across the sites, from

site 1 to site L and back again, at each step optimizing the matrices on a single site.

While these local optimization steps are not guaranteed to give the global minimum

for a fixed bond dimension D, empirically they often not only do so, but do so much

more efficiently than imaginary time evolution [47].

Consider a mixed canonical state |ψ〉 = · · ·Aσ`−1Ψσ`Bσ`+1 · · · and a Hamiltonian

H expressed as an MPO with matricesM . We wish to optimize the energy E = 〈ψ|H|ψ〉
〈ψ|ψ〉

or, using a Lagrange multiplier λ, to optimize 〈ψ|H|ψ〉−λ〈ψ|ψ〉 where λ will give the

energy. The second term is particularly clean for a mixed canonical state, namely

〈ψ|ψ〉 = Ψσ
ij

(
Ψσ
ij

)∗
, (3.44)

since the A’s and the B’s contract to give identities as we saw earlier. To avoid some

math, we evaluate the first term using the graphical representation, which tell us that,

using optimal contractions, the expectation value within part A (sites 1 to ` − 1) is

just a rank-3 tensor Lijk “=” 〈ψA|HA|ψA〉 (see Fig. 3.4). Similar, part B contracts to

give a tensor Ri′j′k′ . While we do not detail this here, these tensors can be efficiently

created and updated during the gsMPS sweeps. Contracting with the matrices at site

`, we get

〈ψ|H|ψ〉 − λ〈ψ|ψ〉 = LijkΨ
σ′

ii′ (Ψ
σ
kk′)

∗Mσσ′

jj′ Ri′j′k′ − λΨσ
ij

(
Ψσ
ij

)∗
. (3.45)

Note that the matrix elements of Ψ appear strictly quadratically; this is the hallmark

of a linear problem that can be easily solved. Taking the derivate with respect (Ψσ
kk′)

∗
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Figure 3.4: Graphical representation of the ground state MPS algorithm, in which one
optimizes 〈ψ|H|ψ〉 − λ〈ψ|ψ〉. The expectation value of H is split up into two rank-3
tensors, L and R, which can be efficiently updated during the sweeps. The overlap
〈ψ|ψ〉 is even more straightforward, as the contraction of appropriately canonized
matrices gives an identity matrix.

and setting it to zero, we get the linear equations

LijkΨ
σ′

ii′M
σ′σ
jj′ Ri′j′k′ − λΨσ

kk′ = 0 . (3.46)

We can see that this is just a linear eigenvalue problem by combining indices: defining

eigenstate ψ(σ,k,k′) = Ψσ
kk′ of matrix H(σ,k,k′),(σ′,i,i′) = LijkM

σ′σ
jj′ Ri′j′k′ , we see that

Hψ = λψ. The ground state of the dD2 × dD2 matrix H is then generally found via

the Lanczos algorithm, and subsequently reshaped to give a new matrix Ψ′ of strictly

lower energy. One then performs an SVD to make site ` canonical, moves onto the

next site, and continues to sweep back and forth until the ground state is reached.

While very clean, the above single-site gsMPS procedure is prone to getting stuck

in local energy minima. A number of procedures exist that are able to skirt this issue,

including standard DMRG and two-site gsMPS [60]. One state-of-the-art procedure,

known as multi-site targeting, can be easily implemented on top of single-site gsMPS

[61]. Essentially, in addition to the optimal single-site matrix Ψ′, one mixes in some

higher excitations by adding states that can be reached via a single application of H

to the optimized MPS with Ψ replaced by Ψ′ . As the algorithm progress, the weight

of these excitations is decreased, until eventually one is just doing single-site gsMPS.
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As this procedure is not used in this work, we refer the reader elsewhere for details

[47, 61].
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Chapter 4

Understanding and improving full

configuration-interaction QMC

Full configuration-interaction quantum Monte Carlo (FCIQMC) [43] is a recently-

developed ground state QMC method, similar to those discussed in Sec. 3.1.2,

which is based on the chemistry version of exact diagonalization known as the full

configuration-interaction method. It improves in two major respects over similar

projection techniques such as diffusion Monte Carlo (DMC [62], essentially the

continuous-space analogue of the particle-in-a-box example in Sec. 3.1.2). First,

FCIQMC works in a discrete as opposed to a continuous basis; originally it was

conceived for use with Slater determinants of atomic or molecular orbitals, but it

is naturally extensible to other discrete bases such as momentum eigenstates of a

finite box [63, 64]. While not strictly necessary, FCIQMC is also often performed in

a second-quantized basis, i.e., Slater determinants for fermionic particles, whereas

DMC traditionally works in a first-quantized formalism (see Sec. 4.1.3 for more

details on this distinction).

The second distinguishing characteristic of FCIQMC, enabled by the discrete ba-

sis, is annihilation. As usual, the walkers are stored as signed basis elements, but if
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two walkers end up the same basis element with opposite sign during the course of

the simulation, those two walkers annihilate and are removed from the simulation.

In the case of our simple example in Sec. 3.1.3, such an annihilation process could in

principle diminish or remove the bosonic noise. As this annihilation process removes

noise from the simulation, it is able to mitigate the sign problem [43], albeit at a cost

that still scales exponentially with system size.

The remainder of this chapter is split into two sections. In Sec. 4.1 we introduce

the FCIQMC algorithm and discuss aspects of the FCIQMC sign problem in the

context of annihilation. As an important example, we discuss the differences between

first and second quantized formalisms with respect to the FCIQMC sign problem,

understanding how and when their sign problems differ. In Sec. 4.2 we present a

number of improvements to the FCIQMC algorithm, using its application to the

Fermi polaron as a test case. We discuss the advantages and limitations of these

extensions, speculating on their applicability to more general problems in many-body

theory.

4.1 Annihilation and the FCIQMC sign problem

While a number of QMC methods have been developed that attempt to solve fermion

ground state problems exactly by cancelling some of the “bosonic” noise terms (e.g.,

Ref. 65), FCIQMC is one of the first to show real success in pushing past existing

exact methods for some problems in quantum chemistry [43, 66]. The key aspect

leading to the success of FCIQMC is annihilation, which enables filtering out some

sign-problem-affiliated noise without affecting sampling of the fermionic ground state.

Another notable aspect of FCIQMC is its capacity to work in a second-quantized

basis of Slater determinants. In this section, we introduce the FCIQMC algorithm

[43] and show how to understand the sign problem in terms of properties of the basis-
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dependent Hamiltonian matrix [63]. We then analyze the effect of working in a basis

of second quantized determinants, comparing it to the more standard first quantized

formalism used in DMC. We show that from a standpoint of the sign problem, second

quantization is at least as good as first quantization. Finally, we prove what conditions

must hold for the first and second quantized sign problems to differ.

4.1.1 The FCIQMC algorithm

In FCIQMC, the configuration space consists of signed basis elements: Ω = {(s, |i〉)},

where s = ± and |i〉 is a member of some many-body basis. We wish apply the

operator U = 1 − τ [H − S] (see Sec. 3.1.2), where S is a tunable parameter that is

used to control the number of walkers. FCIQMC starts with a set of walkers sampled

from some initial state |ψT 〉, such that configuration C = (s, |i〉) is sampled with

probability proportional to |〈i|ψT 〉| and sign s = sgn〈i|ψT 〉. Given some population

of walkers, a single stochastic application of the operator U consists of three basic

steps: 1) off-diagonal spawning, 2) diagonal cloning/killing, and 3) annihilation. We

store all walkers in a list Lwalkers, with the exception of walkers spawned during a

given step of FCIQMC, which are temporarily stored in Lspawned.

In the off-diagonal spawning step, we stochastically apply the off-diagonal compo-

nents of U . Put another way, for each configuration (s, |i〉) ∈ Lwalkers, we wish to sam-

ple some other configuration (s′, |j〉) with weight w(j|i) = ss′〈j|U |i〉 = −τss′〈j|H|i〉,

where s′ is chosen to make this weight positive. To implement this, first propose a

move by selecting basis element |j〉 6= |i〉 at random from some known, normalized

probability distribution q(j|i). Unlike in the Metropolis algorithm, q here must be

chosen such that q(j|i) 6= 0 if 〈j|H|i〉 6= 0. Then choose s′ such that −τss′〈j|H|i〉 ≥ 0.

To make the algorithm sample with net weight w(j|i), we spawn with weight

wS(j|i) =
w(j|i)
q(j|i)

=
|τ〈j|H|i〉|
q(j|i)

, (4.1)
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meaning that we spawn an average of wS walkers on |j〉; if wS > 1, then we deter-

ministically spawn bwSc walkers and spawn one additional walker stochastically with

probability wS − bwSc. All spawned walkers are added to Lspawned.

Similarly, the diagonal clone/kill step involves (stochastically) multiplying each

configuration (s, |i〉) ∈ Lwalkers by weight wD(i) = 〈i|U |i〉 = 1− τ(〈i|H|i〉 − S). There

are two possible scenarios for wD: either wD > 1 or 1 ≥ wD ≥ 0.1 If wD > 1, then

we wish to clone wD − 1 walkers in the same configuration (s, |i〉). As before, this

is done by deterministically spawning bwD − 1c walkers and stochastically spawning

one more with probability (wD − 1)− bwD − 1c. If wD < 1, then we kill the walker,

i.e., remove it from the list Lwalkers, with probability 1− wD. During the simulation,

the offset S is adjusted through standard feedback routines [43] to keep the walker

number close to some desired value Nw.

Having stochastically applied both the diagonal and off-diagonal components of U ,

the list Lspawned is merged into Lwalkers, which now contains a snapshot of UN |ψT 〉. We

then perform the crucial final step of FCIQMC: annihilation. Annihilation proceeds

by examining the list Lwalkers for any pairs on the same basis element with opposite

sign, i.e., (+, |i〉) and (−, |i〉). As these two walkers add together to zero, and thus

contribute nothing but noise, they are removed from the simulation. Annihilation

proceeds until all such pairs have been removed from the list.

Finally, in order to retrieve properties of ground state wavefunction sampled by the

simulation, we must measure the value of observables with respect to the wavefunction

snapshot |ψn〉 after n steps of the algorithm; the most common such observable is the

energy E = 〈H〉. Noting that H commutes with U , the energy is given by

E =
〈ψn|H|ψn〉
〈ψn|ψn〉

=
〈ψT |UnHUn|ψT 〉
〈ψT |UnUn|ψT 〉

=
〈ψT |HU2n|ψT 〉
〈ψT |U2n|ψT 〉

=
〈ψT |H|ψ2n〉
〈ψT |ψ2n〉

. (4.2)

1While it is possible to treat the case where wD < 0, we choose τ and S such that this scenario
does not occur.
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Since |ψ2n〉 is the wavefunction we sample after 2n steps, it is stochastically given by

a sum of walkers w at step 2n: |ψ2n〉 →
∑

w sw|iw〉. Thus

E =

∑
w sw〈ψT |H|iw〉∑
w sw〈ψT |iw〉

. (4.3)

4.1.2 The FCIQMC sign problem

How can a sign problem emerge in the algorithm above? By construction, the only

possibility for flipping the sign of a walker is through off-diagonal spawning; thus,

the sign problem comes from spawning loops in which a walker, starting at |i〉 with

positive sign, spawns via the off-diagonal elements of U and eventually returns to |i〉

with a negative sign. In the absence of such loops (for a given basis), the Hamiltonian

does not have a sign problem, and the problem is relatively easy to solve. However,

many problems of physical interest, including most fermionic Hamiltonians, do in fact

have a sign problem.

For a more quantitative analysis of the sign problem, we turn to the work of

Spencer et al. [63]. We will reproduce the important aspects of their argument here,

as it is necessary for our later discussion. Consider the operator U in some fixed

basis {|i〉}, with matrix elements Uij = 〈i|U |j〉 and with S and τ chosen such that

Uii > 0 for all i. Break this matrix up into two components, U = U+ − U−, such

that U+(−) has strictly non-negative elements. Then if p is a vector representing the

positive walkers and n is a vector of negative walkers, the evolution described above

is a stochastic version of pn+1

nn+1

 =

 U+ U−

U− U+


 pn

nn

 . (4.4)

The equations can be decoupled by considering the “in-phase” component (p+ n)/2

and the “out-of-phase” component (p−n)/2, which go to the eigenstates with maxi-
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mum eigenvalues of U+ +U− and U+ −U− respectively. We refer to this maximum

eigenvalue as the “ground state” of the U+±U− matrix, as it is related to the ground

state of the Hamiltonian matrix. The out-of-phase component is the ground state of

H that we are after, while the in-phase component is the undesired noise. One can

prove that the maximum eigenvalue Up
max of U

++U−, is at least as large as Un
max, the

maximum eigenvalue of U+ −U−. Therefore the noise always grows faster than the

signal, giving the sign problem. The sign problem’s magnitude is set by the energy

difference ∆Umax = Up
max − Un

max, since the signal to noise ratio grows exponentially

at a rate ∆Umax/τ .

Annihilation is slightly trickier in this language, but one important point can

be seen fairly easily. Consider adding a constant noise vector v to both p and n

simultaneously. In the absence of annihilation, this will affect the in-phase component,

giving (p+ n+ 2v)/2, but will not affect the out-of-phase component. With perfect

annihilation, the noise component v cancels itself out, so the in-phase component

returns to (p + n)/2 while the out-of-phase component remains unchanged. This is

an illustration of a general point: annihilation impacts the evolution of the in-phase

component (noise), but has no effect on the out-of-phase component (signal). A

more in-depth analysis shows that, in certain limits, the effectiveness of annihilation

depends on the same energy scale as does the sign problem, ∆Umax, becoming more

effective (i.e., requiring fewer walkers to succeed) when the gap ∆Umax is small [63].

4.1.3 First vs. second quantization in FCIQMC

Spencer et al.’s analysis of the sign problem, as discussed in the previous section, did

not assume anything about the choice of basis. In particular, it did not require that

the basis be first quantized (as in DMC [67]) or second quantized (as in the original

FCIQMC calculations of Ref. 43). In this section, we will address this issue, answer-
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ing two questions. First, when are the sign problems of first and second quantized

algorithms different? Second, when they differ, which is better?

In order to be clear about what basis a quantity is expressed in, we will use

the subscripts F , D, and P to indicate a first quantized (Hartree product) basis, a

determinant (second quantized) basis, and a permanent basis respectively. A quantity

without any subscript is general and can be considered in any of the three bases.

Let us consider a first quantized basis of Hartree products, {|i〉}, for a system of

N fermions, where |i〉 = φi1φi2 · · ·φiN and multiple occupancy of any single-particle

basis function, φj, is forbidden. The second quantized basis is a set of determinants

{|Di〉}. We use the notation |i〉 ∈ |Di〉 to indicate that |i〉 is in the determinant

expansion of |Di〉, regardless of the sign with which it appears. If |i〉 ∈ |Di〉, then

|Di〉 can be obtained from |i〉 using the anti-symmetrizer operator A:

A|i〉 = (−1)σ√
N !

|Di〉 , (4.5)

where σ is the number of permutations required to bring |i〉 into coincidence with

|Di〉. We utilize a similar notation for the (bosonic) basis of permanents, {|Pi〉},

where S|i〉 = 1√
N !
|Pi〉, using the symmetrizer S.

In the general case where the first quantized Hamiltonian may have a sign problem,

the FCIQMC algorithm without annihilation is unstable with respect to the ground

state of the U+
F + U−

F matrix. By the variational principle, this ground state is

symmetric with respect to Hartree products related by permutation symmetry. The

ground state of U+
F +U−

F is hence identical to the ground state of the same matrix

expressed in a permanent basis. The second quantized FCIQMC algorithm is unstable

to the ground state of U+
D +U−

D.

When is the sign problem the same for these two different cases? In other words,

when do U+
F + U−

F (in a permanent basis) and U+
D + U−

D (in a determinant basis)
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have the same ground state energy? It is clear that one possible way for this to occur

is if these are simply the same matrix, i.e., if

〈Pi|
(
U+
F +U−

F

)
|Pj〉 = 〈Di|

(
U+
D +U−

D

)
|Dj〉 (4.6)

for all i and j. What is true, but not immediately apparent, is that if these matrices

do not match, then their ground state energies differ; we prove this in Appendix A.

We also show that these conditions can be recast as a requirement that any two

off-diagonal matrix elements of U taking a walker from |i〉 to |j〉, |j′〉 ∈ |Dj〉 must

do so with the same sign, after anti-symmetrization; we now discuss this alternative

viewpoint of the sign problem.

One can compare the first quantized walkers to the second quantized walkers by

mapping to second quantization using the anti-symmetrizer. This “filtering” process

is naturally performed in a mixed estimator measurement of observable O,

〈O〉ME =
〈ψT |O|ψ〉
〈ψT |ψ〉

, (4.7)

where |ψT 〉 is some anti-symmetric trial wavefunction and |ψ〉 is the walker wavefunc-

tion. This is, for example, how energies are measured in FCIQMC (see Eq. 4.2). Any

physical observable must conserve symmetry, so

[O,A] = 0 =⇒ 〈ψT |O|ψ〉 = 〈ψT |AO|ψ〉 = 〈ψT |OA|ψ〉 . (4.8)

Thus only the “filtered” walker distribution, A|ψ〉, enters into calculation of observ-

ables, so for understanding the sign problem we need only look at the distribution of

first quantized walkers after anti-symmetrization.

Consider a first quantized walker starting on |i〉 that can spawn to both |j〉 and

|j′〉, where |j〉, |j′〉 ∈ |Dj〉. After a single step of the FCIQMC algorithm, it is possible
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Figure 4.1: Example of a single step in which the first and second quantized FCIQMC
algorithms differ. (Top) In the first quantized algorithm, a walker on |i〉 spawns to
|j〉, |j′〉 ∈ |Dj〉. After anti-symmetrizing, the walkers can add incoherently. (Bottom)
Same step in the second quantized algorithm. The cancellation on |Dj〉 is automati-
cally accounted for by the sign and magnitude of 〈Di|U |Dj〉.

for the antisymmetrizer to map these walkers to |Dj〉 with opposite signs, resulting

in a worse sign problem (see Fig. 4.1). FCIQMC in a determinant basis performs

this cancellation automatically. Therefore, one would expect that the sign problems

will only be identical if the first quantized walkers map to the same sign under the

anti-symmetrizer. This argument also suggests that, if the sign problems differ, the

second quantized algorithm will be better. We prove this as well in Appendix A,

showing that the conditions above uniquely characterize when the first and second

quantized sign problems differ.

There are a number of physical situations where the equivalence conditions in

Eq. 4.6 can hold, including:

• the two-particle operator is diagonal in the single-particle basis;

• off-diagonal Hamiltonian matrix elements in the space of determinants only

involve a single integral, i.e., the Hamiltonian matrix elements between deter-

minants differing by a single orbital do not have a contribution from the two-

particle operator and the Hamiltonian matrix elements between determinants

differing by two orbitals contain only a Hartree term or only an exchange term.
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Figure 4.2: Probability distribution of walkers for a fermionic Hamiltonian where the

first and second quantized problems are identical, H = −
∑

〈ij〉

[
c†icj + c†jci − ninj

]
,

where the sum is over nearest neighbors of a two-dimensional square lattice. The
upper right triangles of the first and second quantized distributions match, and the
“missing” triangles, which can be reconstructed by expanding out the Slater deter-
minants, will match as well. Positions are plotted as Ri = xi + Lyi for particle i at
position (xi, yi).

Two important examples of the first case are the Hubbard model in an arbitrary basis

and the DMC algorithm, where walkers accumulate a (diagonal) weight according to

the electronic potential and move (off-diagonally) according to the one-body kinetic

operator. To illustrate the relationship between first and second quantized walkers

in such a case, we plot their distributions for a simple Hamiltonian – two particles

hopping with nearest neighbor interactions – in Fig. 4.2. Notice that the first and

second quantized walker distributions match step-by-step.

However, there are a number of Hamiltonians for which the first and second quan-

tized sign problems are not identical. For instance, an arbitrary double excitation

matrix element of U+
F +U−

F in a permanent basis is given by [68]

1

N !

∑
|i〉∈|Pi〉
|j〉∈|Pj〉

∣∣∣〈i|U |j〉∣∣∣ = ∣∣∣〈ij|û12|ab〉∣∣∣+ ∣∣∣〈ij|û12|ba〉∣∣∣ , (4.9)
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Mij Lowest eigenvalue (a.u.)
(UF )ij = 〈i|U |j〉 0.436866981
(U+

F +U−
F )ij = −|〈i|U |j〉| 0.473717218

(UD)DiDj
= 〈Di|U |Dj〉 0.436866981

(U+
D +U−

D)DiDj
= −|〈Di|U |Dj〉| 0.465099719

(U+
F +U−

F )PiPj

= − 1
4!

∑
|i〉∈|Pi〉
|j〉∈|Pj〉

|〈i|U |j〉| 0.473717218

Table 4.1: Largest eigenvalues of matrices related to the 3D uniform electron gas and
consisting of elementsMij. Periodic boundary conditions were applied to a simulation
cell of dimensions L×L×L containing four electrons at a density of rs = 1 a.u.. The
plane-wave basis set of 38 plane waves contains all plane waves with momentum less
than 2π/L. The resulting determinant and permanent Hilbert spaces each contain
567 functions with Ms = 0 and momentum k = 0. The time step and offset are
τ = 0.1 and S = 0 respectively.

where û12 is the two-body-interaction component of the U operator. The equivalent

element in U+
D +U−

D is

〈Di|U |Dj〉 =
∣∣∣〈ij|û12|ab〉 − 〈ij|û12|ba〉

∣∣∣. (4.10)

It is clear that the two matrix elements are not, in general, equivalent. Hence the

sign problem in FCIQMC can be different in a first and second quantized bases. As

a concrete example where the sign problems differ, we consider the uniform electron

gas (UEG, see Ref. 64). Results in Table 4.1 show that, even with just four electrons

in a small plane-wave basis set, the sign problem in a determinant basis is inherently

different from that in a first quantized basis.

In summary, we have shown that the sign problem in FCIQMC in a second quan-

tized formalism is generally different from the the sign problem in a first quantized

representation, except in certain cases such as the conventional instability of Diffu-

sion Monte Carlo. For situations where the sign problem differs, we have shown in

Appendix A that the second quantized algorithm is better. Thus, in addition to the

technical improvements offered by second quantized FCIQMC (i.e., ease of annihi-
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lation), it improves a more fundamental issue in fermion QMC: the sign problem.

Finally, we note that, while all of our arguments and proofs have been focused on

the case of fermions, they can be readily extended to the case where the particles are

bosons to show that working in a second quantized basis (of permanents) is at least

as good as a first quantized basis.

4.2 Improving FCIQMC as applied to the Fermi

polaron

Having detailed the properties of FCIQMC and in particular its sign problem, we

will now discuss a number of methods we have developed to improve the FCIQMC

algorithm. It should be noted that other such techniques exist, most notably the

initiator method of Ref. 66, but for the problems we have considered (i.e., the Fermi

polaron) we have not found that method to be particularly successful. Thus, we have

set out to develop extensions to improve the convergence of FCIQMC, utilizing the

Fermi polaron (described below) as a test bed for these improvements. We discuss a

number of improvements that we have made to the algorithm, including the imple-

mentation of importance sampling and release node, the development of a variant of

fixed node with a tunable sign approximation, and an extension allowing FCIQMC

to work in the thermodynamic limit.

4.2.1 Introduction to the Fermi polaron

The polaron is a classic problem in condensed matter physics, as it is one of the

simplest problems that shows strongly-interacting many body effects. The most well-

known version is the Fröhlich polaron [69, 70], involving a single electron interacting

with a bath of phonons. We will be interested in the Fermi polaron as seen in

cold atomic gases [1], defined instead for a three-dimensional system of two fermion
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species, denoted spin up and spin down. Starting with a non-interacting Fermi sea of

spin up particles, a single spin down “impurity” is added that interacts with the sea

of spin ups. One wishes to solve for the ground state properties of this impurity, as

dressed by the spin up interactions. Many possible ground states can result, including

a well-defined polaronic quasiparticle with mass renormalized by the interaction, a

tightly-bound bosonic molecule formed by binding a single spin-up particle, and other

more exotic possibilities.

Since experimentally, near a broad s-wave Feshbach resonance, the fermions in-

teract by a short-range potential with scattering length a, the Hamiltonian that we

consider is [71]

H =
∑
kσ

εkc
†
kσckσ +

g

V
∑
kpq

c†k+q,↑c
†
p−q,↓cp,↓ck,↑ , (4.11)

where εk = k2/(2m) is the kinetic energy, V is the volume of the system, and m is the

mass of the particles. We regularize the short-range interaction by introducing a high-

momentum cutoff Λ on the spin-ups. The interaction strength g is cutoff-dependent

[72]:

g−1 =
1

8πa
− Λ

4π2
. (4.12)

We solve this Hamiltonian for a cube of side length L = V1/3 with periodic boundary

conditions. With N spin up particles, the Fermi wavevector and energy are kF =

(6π2N/V)1/3 and EF = k2F/(2m) respectively.

In the non-interacting limit (a = g = 0), the ground state of this Hamiltonian is

an undressed polaron,

|D0〉 ≡ |FS↑,0↓〉 , (4.13)

where |FS↑,0↓〉 denotes a Fermi sea of spin-up particles with a single spin down at

zero momentum. Upon turning on a weak attractive interaction (small negative a),

the polaron remains a well-defined quasiparticle with non-zero quasiparticle residue

Z = |〈ψ0|D0〉|2, where |ψ0〉 is the ground state of the interacting Hamiltonian. Note
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that Z can be written as the ground state expectation value 〈ψ0|P0|ψ0〉, where P0 =

|D0〉〈D0| projects onto the undressed polaron.

Off of unitary on the BEC side (a−1 > 0), the polaron eventually becomes unstable

to formation of a tightly-bound molecule. If we allow the masses of the spin up and

spin down particles to differ, then an even more exotic panoply of ground states

has been predicted, including a molecule at non-zero ground state momentum and a

trimer, in which the molecule binds a second spin-up particle [72]. As the primary

focus of this section is to investigate and improve the numerical method of FCIQMC

and not to further map out the fascinating phase diagram of the Fermi polaron, from

here out we restrict ourselves to the “mass-balanced” case: m↑ = m↓.

The mass-balanced Fermi polaron has been most thoroughly investigated at uni-

tarity, where (kFa)
−1 = 0. Chevy found that the ground state at unitarity is well-

described by a variational wavefunction that includes all single particle-hole excita-

tions on the spin up Fermi sea, giving a ground state energy of −0.6066EF [71, 73].

These results were later extended by Combescot and Mora [73], who introduced a

procedure for calculating the variational ground state energy at an arbitrary num-

ber of particle-hole excitations and proceeded to solve for the two particle-hole pair

variational energy, −0.6156EF .

The Fermi polaron has also been approached via Monte Carlo techniques, most

notably diagrammatic Monte Carlo [74]. Monte Carlo results for the ground state

energy agree well with the variational solutions. Given the agreement of the ground

state polaron energy between variational expansions, Monte Carlo, and experiment

[1], the energetics of the polaron at unitarity are a good test case for improvements

to the FCIQMC algorithm.

One remaining source of contention is the molecular binding transition, which is

theoretically predicted to occur near (kFa)
−1 = 0.9 [72]. However, experimentally the

quasiparticle residue vanishes at (kFa)
−1 ≈ 0.75 [1]. It is believed that this difference
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may be due to the small but finite density of the spin down particles in the experiment.

Once we have developed the techniques to solve the Fermi polaron in this limit, we

will briefly address this issue in Sec. 4.2.7.

4.2.2 Applying basic FCIQMC to the Fermi polaron

Given the effectiveness of the variational expansions in describing the polaron, we

choose as our basis all momentum space determinants with at most M particle-hole

pairs dressing the spin-up Fermi sea.2 The Chevy ansatz [71] is then, for example,

the exact solution for M = 1. In this basis, all off-diagonal elements of H come from

the interaction and are given by the constant value g/V , with their sign set by Fermi

statistics. We fix the number of spin-up particles N and momentum cutoff Λ. Note

that we eventually want to take the physical limit N → ∞ and Λ → ∞, for which

the basis size becomes infinite. We work in the sector with zero total momentum,

which is always valid for a polaron-like quasiparticle [72]. N will be limited to 7, 19,

27, . . . to ensure that the spin up Fermi sea is a closed shell for our cubic volume with

periodic boundary conditions.

The walkers are initialized in the undressed polaron state with positive sign, |ψi〉 =

|D0〉. We write general determinants as

|D〉 = |k1,k2, . . . ,k`;q1, . . . ,q`〉 = c†k1
· · · c†k`

cq1 · · · cq`
|D0〉 , (4.14)

where k’s label the particle excitations, q’s label the holes, k1 < k2 < . . . < k`, and

q1 < . . . < q` for an arbitrary momentum ordering. The values of ki and qi are

restricted to momenta on a discrete grid set by the size of the box L. The energy

2As we work here in a basis with a restricted number of many-body excitations, the method is
more accurately denoted configuration-interaction QMC (CIQMC), with FCIQMC being the special
case with M = N ; note that we used the notation “CIQMC” in Ref. 4. However, as the methods
are algorithmically identical, we continue to use the notation “FCIQMC” for this dissertation, to
avoid confusion.
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Figure 4.3: Issues with naive FCIQMC. (a) Polaron energy traces at unitarity for
FCIQMC with M = 1 (dashed blue) and M = 2 (solid red) particle-hole excitations.
Discontinuities occur forM = 2 when the denominator of the energy metric (Eq. 4.15)
is zero. (b) Histogram of the particle excitation momentum for M = 1, computed
stochastically. Momenta are uniformly occupied from the edge of the Fermi sea (k =
kF ) up to the cutoff (k = 20kF ). (c) Graphical representation of sign issues for
the polaron (see text for details). Panels (a-b) use N = 33 spin up particles and
momentum cutoff Λ/kF = 20.

metric in this basis is

E(β) =
〈D0|H|ψw(β)〉
〈D0|ψw(β)〉

=

∑
w Sw〈D0|H|Dw〉∑
w Sw〈D0|Dw〉

, (4.15)

where the zero of energy is defined such that 〈D0|H|D0〉 = 0. For sufficiently large

β, the statistical average of E(β) converges to the fermionic ground state energy.

Using the original FCIQMC algorithm in this basis, we are able to find the ground

state energy for M = 1, N = 33 and Λ = 20kF , where the sign problem is weak

(Fig. 4.3a). For M = 2, however, the sign problem prevents convergence with fixed

number of walkers Nw = 106 (Fig. 4.3a). TheM = 2 sign problem can be understood

by starting from a determinant with two particle-hole pairs, |D2〉 = |k1,k2;q1,q2〉.

Off-diagonal matrix elements allow hopping from |D2〉 to four single particle-hole

determinants (see Fig. 4.3c). Of these, two come with positive sign, two with negative

sign, and all have the same weight g/V . However, one can show that the signs

within the single particle-hole shell should all be positive in the ground state, so

63



the determinants with two particle-hole pairs rain down nearly-random noise. This

results in a large sign problem unless the noise is efficiently annihilated.

We emphasize that our approach to the Fermi polaron differs from previous prob-

lems where FCIQMC has been applied because almost all determinants are “im-

portant”; this fact arises because the interaction is short-range in real space, i.e.,

long-range in momentum space. Fig. 4.3b shows a histogram of the walkers in the

first particle-hole shell for theM = 1 ground state. The particle excitations are evenly

occupied from the Fermi sea all the way up to the cutoff, in contrast to situations as

in Ref. 43 where the ground state consists of a few large-weight determinants; this

makes annihilation more difficult.

FCIQMC for quantum chemistry problems minimizes these issues through an in-

telligent choice of single particle orbitals. However, for the Fermi polaron, there is no

clear choice of single-particle basis that minimizes the impact of unimportant determi-

nants. In the next section we show that using importance sampling can have a similar

effect. This not only improves the variance, as usual in importance sampling, but also

appears to improve the annihilation properties by favoring certain determinants.

4.2.3 Importance sampling

Importance sampling is by now a standard Monte Carlo technique that has been used

to decrease statistical noise. Importance sampling consists of sampling walker |D〉

from a probability distribution proportional to |〈D|ψT 〉〈D|ψ0〉| instead of |〈D|ψ0〉|,

where |ψT 〉 is a trial wavefunction that we choose. This is implemented by re-

weighting the off-diagonal moves, and can be thought of as simply acting with the

(non-Hermitian) effective “Hamiltonian” His given by

〈D′|His|D〉 = 〈D′|H|D〉〈ψT |D
′〉

〈ψT |D〉
. (4.16)
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The energy metric becomes

E(β) =

∑
w Sw〈D0|H|Dw〉/〈ψT |Dw〉∑
w Sw〈D0|Dw〉/〈ψT |Dw〉

. (4.17)

We also calculate quasiparticle residue through the method of mixed estimators [75],

Z ≈ 2〈ψT |P0|ψ0〉 − 〈ψT |P0|ψT 〉 . (4.18)

As His is not Hermitian, we must be careful to only act with it on kets.

Choosing an appropriate trial wavefunction plays a major role in the success of

importance sampling. A naive guess, the free fermion wavefunction, would give |ψT 〉 =

|D0〉; this would not allow sampling of any particle-hole excitations. Therefore, we

must construct some |ψT 〉, which in general we would like to be as close as possible

to the ground state |ψ0〉.

To motivate our choice of |ψT 〉, consider the Schrödinger equationH|ψ0〉 = E0|ψ0〉.

If H = T + V , where the kinetic term T is diagonal in the momentum basis, then

〈D|ψ0〉 = − 1

〈D|T |D〉 − E0

∑
D′

〈D|V |D′〉〈D′|ψ0〉 . (4.19)

For |D〉 with n particle-hole pairs, the interaction term connects it to determinants

|D′〉 with n−1, n, and n+1 particle-hole pairs. The strength of the interaction is g/V

with sign SD′ ≡ sgn(〈D|V |D′〉). While these coupled linear equations are generally

hard to solve, we can make the simplifying approximation of only considering |D′〉

with n − 1 particle-hole pairs in constructing |ψT 〉. To allow some freedom, we will

define variational coefficients α and β to replace g and E0 respectively, giving

〈Dn|ψT 〉 = − β/V
〈Dn|T̂ |Dn〉 − α

∑
D′

n−1s.t.

〈D′
n−1|V |Dn〉6=0

SD′
n−1

〈D′
n−1|ψT 〉 , (4.20)
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Λ M N 1/(kFa) α β Basis size

20 1 33 0 -0.6 20 1.09× 106

20 2 33 0 -0.6 20 2.88× 1011

20 3 33 0 -0.6 20 3.28× 1016

20 4 33 0 -0.6 20 2.03× 1021

20 2 33 0.5 -1.22 29.6 2.88× 1011

20 2 33 0.9 -2.22 37.3 2.88× 1011

20 2 ∞ 0 -0.6 20 ∞

Table 4.2: Basis size and variational parameters α and β used for different Hamilto-
nians defined by [Λ,M,N, 1/(kfa)], as described in the text.

where |Dn〉 denotes a determinant with n particle-hole pairs. This gives a recursive

definition for |ψT 〉 which, since normalization is irrelevant, we seed from 〈D0|ψT 〉 = 1.

The parameter α is chosen to be approximately the energy. Then, for each shell of

n particle-hole pairs, we calculate Zn = 〈ψT |Pn|ψT 〉 using variational Monte Carlo,

where Pn projects onto the subspace of determinants with n excitations. β is chosen

to minimize the maximum deviation of Zn from its average value, 1/(M + 1). Some

characteristic values of α and β are shown in Table 4.2.

There is one minor issue with this ψT : due to the discreteness of the Hilbert space,

Eq. 4.20 will potentially yield 〈D|ψT 〉 = 0 for some small set of determinants |D〉,

which become increasingly scarce as N → ∞. This prevents any weight from being

put on these determinants, introducing a bias. To avoid this bias, we introduce a

third parameter γ such that if Eq. 4.20 yields |〈D|ψT 〉| < γ, we set 〈D|ψT 〉 → γ. The

biased simulation with γ = 0 gives a variational upper bound on the energy, which

should be fairly close to correct. As an example, at unitarity for the relatively small

basis with N = 7, Λ = 10kF , and M = 3, the difference in energy is −0.6279(3)EF

for γ = 0 versus −0.6310(17)EF for γ = 10−4. We use γ = 10−4 throughout the

remainder of this paper, unless otherwise specified.

Importance sampling greatly improves the effectiveness of FCIQMC. For example,

at unitarity FCIQMC with importance sampling is able to solve the polaron ground
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Figure 4.4: Limits of importance sampling. At unitarity with N = 33 and Λ/kF = 20,
importance sampled FCIQMC can solve the polaron energy (a) and quasiparticle
residue (b), with γ = 0 to improve statistics. (c) Energies off of unitarity, with error
bars computed for runs of fixed imaginary time ∆β = 35/EF . For (kFa)

−1 > 0.15
with M = 2, the simulation failed to converge.

state for Λ = 20kF , N = 33, and M = 4 – corresponding to a basis size of 2.03× 1021

– using only 106 walkers. Solutions for the polaron energy and quasiparticle residue

at unitarity are shown in Fig. 4.4a-b.

We next push to positive values of a−1, where for (kFa)
−1 > 0.9 the polaron is

expected to become unstable to formation of a molecule. As the interaction strength

1/(kFa) is increased, the weight of the wavefunction is pushed to higher momenta,

making annihilation more difficult. As seen in Fig. 4.4c, for M = 2 particle-hole

pairs, the error bar gradually increases as we push off of unitarity. Eventually, for

1/(kFa) > 0.15, FCIQMC with importance sampling fails to find the ground state.

To proceed, we now introduce modifications that allow us to further stabilize the

algorithm.

4.2.4 Partial node approximation

Fixed node quantum Monte Carlo is a method that removes the exponential cost of

solving a fermionic Hamiltonian by approximating the Hamiltonian with a related

one that has no sign problem. In this section we develop a way to extrapolate to

the exact solution of our (restricted basis) Hamiltonian using a fixed-node-inspired
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starting point. In fixed node algorithms, such as the lattice formulation of van Bemmel

et. al. [76], one must specify a “correct” sign for each determinant. For simplicity

we choose to use |ψT 〉 as determining our sign structure. Given this choice, an off-

diagonal element 〈D′|His|D〉 will be called sign-violating if 〈D′|His|D〉 > 0, since in

this case applying −τHis to hop from D to D′ would flip the sign, violating the sign

structure of |ψT 〉.

The fixed node Hamiltonian Hfn is given by

〈D′|Hfn|D〉 =

 0 if sign viol. (s.v.)

〈D′|His|D〉 if not s.v. (n.s.v.)
, where D 6= D′

〈D|Hfn|D〉 = 〈D|His|D〉+
∑
D′s.v.

〈D′|His|D〉 . (4.21)

Note that the sign-violating off-diagonal matrix elements have been removed and

“dumped” onto the diagonal. Hfn is guaranteed to give a variational upper bound on

the ground state energy, yielding the correct ground state energy if |ψT 〉 = |ψ0〉.

Lattice fixed node was originally designed for real space lattices where there are

very few off-diagonal elements connected to any given configuration. For our Hamil-

tonian, there will in general be many sign-violating matrix elements connected to a

given determinant |D〉 (of order > 107 for our parameters), and the sums required to

modify the diagonals of Hfn become analytically intractable. We therefore initially

work with a modified Hamiltonian H ′
fn – the fixed node Hamiltonian without diagonal

dumping – given by

〈D′|H ′
fn|D〉 =

 0 if sign viol.

〈D′|His|D〉 if not s.v.
, where D 6= D′

〈D|H ′
fn|D〉 = 〈D|His|D〉 , (4.22)
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whose ground state energy is no longer guaranteed to be a variational upper bound

on that of H. In Sec. 4.2.6 we will describe the steps needed to reintroduce the

variational upper bound.

Due to the presence of annihilation in FCIQMC, we are able to introduce a less-

severe approximation, which we call the partial node approximation. In partial node,

we interpolate between the importance sampled and fixed node Hamiltonians

Hpn = εpnH
′
fn + (1− εpn)His . (4.23)

Surprisingly, we find that this algorithm works up to a very high fraction of the

original sign violating terms (small εpn). To obtain the exact answer for M = 2, we

extrapolate to the original Hamiltonian (εpn = 0), heuristically using a quadratic fit

(Fig. 4.5b).

To quantify the improvement gained by using the partial node approximation, we

measure the average flip rate of the sign of the walkers on the reference determinant

D0 (which typically should contain approximately 30% of the walkers for a given

snapshot). The flipping of this sign is a signature of an instability of the algorithm

coming from the sign problem, and the average flip rate must be significantly below

the inverse correlation time for useful data to be garnered from the simulation. Fig. 3d

shows the average flip rate using the partial node approximation. Notice that the flip

rate for εpn = 0 is close to the inverse correlation time, presenting a problem, but by

εpn = 0.4 the flip rate has significantly decreased.

4.2.5 Release node FCIQMC

In FCIQMC without annihilation, the sign problem manifests as a variance that

scales exponentially with both β and the energy difference between the fermionic and

bosonic ground states (see Sec. 3.1.3). This exponential scaling in β holds even in the

69



Figure 4.5: Partial and release node FCIQMC for 1/(kFa) = 0.9, Λ = 20kF , and
N = 33, both with and without diagonal dumping (d.d.). These two techniques give
consistent ground state energies for M = 1 (a) and M = 2 (b). Note that at εpn = 0,
the partial node method reduces to importance sampling. In (b), the release node is
initialized from the εpn = 0.4 partial node walkers, the trace of which is shown in (c),
including standard error across 100 trials. A less optimal initial condition is shown
in the inset. (d) Flip rate of the denominator of the energy metric as a function of
εpn (blue dots), compared to the flip rate without importance sampling (red triangle)
and the inverse of the Monte Carlo correlation time (black dashed line). Panels (a-c)
use 106 walkers, while (d) uses 104.

presence of annihilation at finite walker number, so minimizing the total β needed to

reach the ground state wave-function with a certain fidelity also minimizes the effect

of the sign problem. Thus, one can improve the convergence time of the importance

sampled FCIQMC algorithm (εpn = 0) by starting very close to the ground state; this

is called release node.

One approach to starting near the true ground state is to use the ground state

of the partial node Hamiltonian Hpn with a small value of εpn. We aren’t able to

explicitly represent this wavefunction, but we can prepare it stochastically via partial

node FCIQMC. The set of Nw walkers prepared thusly is allowed to evolve under the

true Hamiltonian for fixed imaginary time β. When the wavefunction is “released”

70



to evolve under the exact Hamiltonian, it quickly relaxes to the exact ground state;

this is what we call release node FCIQMC [77].

In release node, we use the same energy metric as in importance sampled

FCIQMC. In this case, since we have now propagated with two non-commuting

Hamiltonians (Hpn and His), the arguments in Eq. 4.2 do not work, so at early

times after “release” the energy metric has no meaning. The energy metric becomes

meaningful again when the wavefunction reaches the ground state, at which point

it gives the ground state energy. As seen in Fig. 4.5c, the energy converges to the

ground state energy before the errors blow up if we start close enough to the ground

state. The release node energies agree well with the partial node extrapolation

(Fig. 4.5a-b), which provides a check of the validity of our extrapolation.

4.2.6 Diagonal dumping in partial node FCIQMC

The partial node approximation that we have discussed thus far does not give a

variational upper bound on the energy, since we removed the diagonal dumping to

get the effective Hamiltonian H ′
fn (Eq. 4.22). To restore the variational upper bound,

we now discuss how one can put the effects of the diagonal dumping back into the

partial node algorithm.

While the sum involved in diagonal dumping is in general not analytically

tractable, it can be done stochastically in much the same way as off-diagonal

spawning. During the diagonal create/kill step, we would like to stochastically apply

Udiag = 1− τ〈D|His|D〉 − τ
∑
D′s.v.

〈D′|His|D〉 (4.24)

to a walker on determinant |D〉. The first two terms can be done exactly, while the

sum – denoted ∆K – can be sampled as follows.
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1. Pick another determinant |D′〉 according to some normalized probability func-

tion q(D′|D).

2. If 〈D′|His|D〉 is not sign-violating, then let ∆K = 0.

3. Otherwise, let ∆K = 〈D′|His|D〉/q(D′|D).

However, as this stochastically sampled ∆K is now potentially very large, multi-

plying |D〉 by weight Udiag has the potential to be disastrous if Udiag � 0. Therefore,

we find it necessary when stochastically dumping the diagonal to also use the approx-

imation

1− τ〈D|His|D〉 − τ∆K ≈ e−τ(〈D|His|D〉−∆K) . (4.25)

This introduces a time step error which one must extrapolate to zero; empirically

a quadratic extrapolation for τ < 10−3 appears to be quite effective. Partial node

results with stochastic dumping of the diagonal are shown in Fig. 4.5a-b.

4.2.7 Results of partial and release node FCIQMC

Using partial node FCIQMC followed by release node, we are now able to determine

values for the energy and quasiparticle residue of the Fermi-polaron on the BEC side

of the interaction, which are shown in Fig. 4.6a-b for Λ = 20kF and N = 33. The

energies are compared to polaron energies from diagrammatic Monte Carlo [74]. Our

results match well for small values of 1/(kFa), while for larger values of 1/(kFa) our

energies deviate from the diagrammatic results. This is a consequence of working at

fixed Λ = 20kF , as opposed to diagrammatic Monte Carlo, which is done in the limit

Λ → ∞. Our results agree with the diagrammatic solution after extrapolating to

Λ = ∞.

Fig. 4.6b shows the quasiparticle residue Z compared to experimental results [1],

where there is a small but finite density of spin-down atoms. We find that, as with the
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Figure 4.6: Ground state energy (a) and quasiparticle residue (b) at Λ = 20kF ,
N = 33. Energies are compared against the N → ∞, Λ → ∞ results from diagram-
matic QMC [74], while Z is compared to experimental measurements [1] and Chevy’s
analytical solution for M = 1 [71]. Differences in Z between FCIQMC and analytic
results come from finite size effects and our use of a mixed estimator. The inset to
(a) shows finite size effects in extrapolating to the TDL at unitarity. In (c), we show
a correlation between jumps in these energies and single particle basis size.

energy, an M = 1 variational expansion provides a good estimate of Z. Therefore, as

noted elsewhere [1], our theoretical model differs significantly from the experiment,

possibly as a result of the finite spin-down density used experimentally.

In extrapolating our results to the physical limit, Λ → ∞, we encountered an

unexpected problem. Using a linear fit over a wide range of 1/Λ (Fig. 4.6a inset), we

find that individual data points have error well outside the line, with no discernible

pattern. Zooming into a very small region of Λ (Fig. 4.6c), we discover the reason

behind this: small fractional increases in basis size as new shells become available

cause large jumps in the ground state energy. A similar issue occurs when attempting

to extrapolate in particle number N . We nevertheless attempt such an extrapolation

in Fig. 4.6a-b. As a result, the size of the error bars reflects not the accuracy of the

data points at individual values of Λ, but rather these inherent shell effects.

Shell effects vanish as N → ∞. Therefore, we next address the possibility of

extending FCIQMC into the thermodynamic limit.
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4.2.8 Extension to the thermodynamic limit

All the quantum Monte Carlo simulations described so far have been done for a finite

number of particles. In this section, we describe how to modify FCIQMC to work

directly in the thermodynamic limit (TDL, N → ∞). One complication is that, in

the TDL, the momenta form a continuous set of k-points instead of being limited to a

discrete grid. Additionally, it is important to work in a representation where instead

of enumerating the momenta for all N = ∞ particles, we instead store only their

excitations above a known state, in this case |D0〉. Crucially, in order for the spectrum

of the Hamiltonian to remain bounded, allowing application of 1 − τH instead of

e−τH , the TDL only works with a cutoff M on the number of excitations allowed.

This requirement is similar in spirit to the diagrammatic Monte Carlo method of

imposing a cutoff on diagram order, in an attempt to avoid a divergence.

As momentum space is no longer discretized in the TDL, one might assume that

annihilation is no longer possible, and therefore that the algorithm is doomed to fail.

However, there is one key exception: due to the discrete choice of |D0〉, annihilation

can still occur at that one determinant.

Given this, the TDL algorithm is in practice nearly identical to the algorithm with

finite N ; in fact, one can think of the TDL algorithm as just the limit of the finite

algorithm for larger and larger N . We have carefully defined |ψT 〉 such that all factors

of V cancel out when determining relevant quantities, such as spawning probability

or energy. This is important because taking the limit N → ∞ while at fixed spin-up

density (constant kF ) means taking V → ∞ as well.

The TDL algorithm is remarkably effective at finding the ground state withM = 1

at unitarity, where the sign problem is weak. These energies at various values of Λ

are shown in Fig. 4.7a, where an extrapolation to Λ = ∞ is much smoother than for

finite N due to the absence of shell effects.
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Figure 4.7: (Left) Ground state polaron energy in the TDL for M = 1, (kFa)
−1 = 0

as a function of Λ (blue dots). A linear extrapolation in 1/Λ (green star) agrees with
the exact M = 1,Λ → ∞ energy as calculated by Chevy [71, 73]. (Right) Fixed node
(εpn = 1) energies for M = 2 compared against the exact solution by Combescot and
Giraud [73].

For the sign-problem-heavy M = 2 case, we instead show data in the sign-free

fixed node limit (εpn = 1), using the diagonal dumping method described in Sec. 4.2.6.

This gives a good energy for the M = 2 polaron, which is a variational upper bound

on the known energy of −0.6156EF within error bars. We believe this latter approach

of combining fixed node with working directly in the thermodynamic limit will have

wide applicability even for the approximate calculations that currently dominate the

fermion QMC literature.

4.3 Conclusions

In this chapter, we have discussed many aspects of the FCIQMC algorithm, noting

both its limitations with respect to the sign problem and ways in which it improves on

certain other techniques. In particular, we showed in the first half of this chapter that

the predominate use of FCIQMC as a second quantized algorithm for finding fermionic

ground state has a sign problem that is at least as good as equivalent methods that

work in a first quantized formalism. We showed that when they differ, the sign

problem in second quantization is strictly better, and explicated the conditions under
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which this occurs. An open question is how much of an sign problem improvement

second quantization gives for systems of physical interest, and how this compares to

other techniques to improve the sign problem, such as an intelligent choice of single

particle basis and/or the developments we described in the second half of this chapter.

Second, we have shown that the FCIQMC algorithm can solve the Fermi polaron

problem, after improving the algorithm with an appropriate importance sampled

wave function, introducing partial and fixed node approximations, and utilizing re-

lease node methods. We believe these improvements demonstrate two main points

that should be useful as FCIQMC and its variants are applied to future problems

in condensed matter physics. First, for strongly correlated condensed systems where

many determinants are occupied in any single particle basis, we have demonstrated

that physical insight – in the form of a good choice of trial wavefunction – can sig-

nificantly improve the behavior of the FCIQMC algorithm. Combining the improved

statistics of importance sampling with sign-attenuating approximations such as par-

tial node FCIQMC, we showed a significant increase in the effectiveness of FCIQMC

in solving the polaron problem. Finally, we showed that these methods can be made

exact, up to statistical noise, via extrapolation or release node QMC.

Second, we have shown that under certain conditions the FCIQMC algorithm can

be extended to work with systems in the thermodynamic limit. Furthermore, we

have introduced a fixed node algorithm in this limit, which has historically been an

important tool for solving fermionic systems with QMC. We anticipate that these

new developments will open a variety of problems in condensed matter physics to be

approached using these new developments.
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Chapter 5

Kibble-Zurek scaling of the

quantum Ising chain

The previous chapter addressed the properties of the Fermi polaron ground state,

assuming the atoms could be cooled to a sufficiently low temperature for such prop-

erties to be visible. The remainder of this thesis will primarily focus on the properties

of isolated cold atom and model systems out of thermal equilibrium. As an initial

foray into this field, in this chapter we discuss dynamics of one of the simplest but

most useful models in condensed matter theory: the one-dimensional transverse-field

Ising chain.

The transverse-field Ising (TFI) chain is one of the simplest models that exhibits a

quantum phase transition [78]. The theory of scaling in the vicinity of a second-order

phase transition is one of the most successful paradigms of modern condensed mat-

ter theory. Scaling theory was originally developed for omnipresent thermodynamic

phase transitions, where thermal fluctuations drive the transition from an ordered

to a disordered phase. However, nearly identical concepts apply to zero-temperature

quantum phase transitions, where the order-to-disorder transition is driven by quan-

tum fluctuations, i.e., non-commutativity of the quantum operators.
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The ideas of critical scaling theory are codified by the renormalization group, in

which one “coarse grains” the system, essentially zooming out physically by integrat-

ing out the highest energy (shortest distance) modes in the system. One then solves

for how various terms in the action “flow” as coarse graining proceeds, in order to

identify the properties of physics at the longest length scales (lowest energy scales).

The flows are characterized by certain numbers known as critical exponents, which

describe the asymptotic behavior of various observables as one approaches the critical

point. These critical exponents and associated scaling functions are universal prop-

erties of the critical point, meaning that two physically distinct models that exhibit

the same symmetry breaking will have the same critical exponents.

Critical exponents and scaling functions characterizing the zero-temperature

(ground state) quantum critical point in the TFI chain have been understood for

more than sixty years, since the seminal work of Onsager [79]. However, with

the recent advent of isolated quantum dynamics as found in cold atom systems,

a question has arisen whether such a critical point exhibits universal scaling of

non-equilibrium dynamics, particularly within the framework of the Kibble-Zurek

(KZ) mechanism, which describes the dynamics of a system as it is ramped across a

phase transition at a finite rate. Kibble first introduced this idea to model symmetry

breaking during cooling of the early universe [80], and later Zurek showed that

condensed matter systems exhibit similar behavior in the context of slowly ramping

across the superfluid phase transition in liquid 4He [81]. Both proposals looked at

ramps from deep in the disordered phase to deep in the ordered phase, which has

historically been the primary focus of research on the KZ mechanism (cf. [82, 83]).

Recent work has also explored ramps that end at the critical point [5, 84, 85].

However, the scaling theory of the KZ mechanism applies more generally than

these two limits. Near the quantum critical point (QCP), observables measured during

the ramp are postulated to exhibit universal scaling forms [86, 87]. In this chapter, we
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solve for the scaling functions of excess heat, ground state log-fidelity, and equal-time

spin correlations in the TFI chain for two scaling directions – time t during the ramp

and finite system size L – and investigate the qualitative features of these observables.

In many cases, the quantum dynamics of a closed non-integrable quantum system

lead to a thermal state. In contrast, we show here that the spin correlation functions

are qualitatively different from those of any thermal state. We also find a ramp

protocol where the state at large time not only does not thermalize, but also does

not dephase to the diagonal (“generalized Gibbs”) ensemble. Finally, we provide

evidence for the universality of the dynamics by using time-dependent matrix product

states (tMPS) to simulate the experimentally-realizable, non-integrable model of Mott

insulating bosons in a tilted potential [2, 88].

5.1 Non-equilibrium dynamics of the transverse-

field Ising chain

The Hamiltonian for the TFI chain on an L-site one-dimensional lattice is

H = −J
L∑
j=1

[
(1− λ) sxj + szjs

z
j+1

]
, (5.1)

where λ is a tunable transverse magnetic field and sx,z are Pauli matrices with periodic

boundary conditions (s1 = sL+1). We work in units where J = 1/2 and, for technical

simplicity, restrict ourselves to L even.

This model has two quantum phase transitions (QPTs) at λc = 0 and 2 [78]. The

ground state of the TFI chain is given by a disordered paramagnetic (PM) phase for

λ < 0 and λ > 2, while for 0 < λ < 2, the system is in a ferromagnetic (FM) phase

with two degenerate ordered ground states in the limit L → ∞. For the remainder

of this chapter, we will focus on the QCP at λc = 0.

79



The Hamiltonian of the TFI chain can be diagonalized by applying a Jordan-

Wigner transformation [78, 89]:

sxj = 1− 2c†jcj, szj = −(cj + c†j)
∏
m<j

sxm, (5.2)

where c†j creates an effective fermion at site j. This Hamiltonian conserves the fermion

number modulo 2, and for an even length chain the ground state has an even number of

fermions [89]; thus, we restrict ourselves to that sector. Within the even fermion parity

sector, the “string” operator (
∏

m<j s
x
m) takes the periodic boundary conditions on

the spins and translates them into anti-periodic boundary conditions for the fermions.

So, Fourier transforming,

H =
∑
k

[
(1− λ− cos k)c†kck +

sin k

2
(c†kc

†
−k + c−kck)

]
, (5.3)

where the available momenta are kn = 2π(n+1/2)
L

for n = 0, 1, . . . , L− 1.

This Hamiltonian can only excite fermions in momentum pairs (k,−k), so we

introduce a pseudo-spin σ corresponding to whether the (k,−k) pair is filled (σz = 1)

or unfilled (σz = −1). Then in the sector where all fermions are either occupied

or unoccupied in (k,−k) pairs (which contains the ground state), the Hamiltonian

becomes H =
∑L/2−1

n=0 Hkn , where

Hk = (1− λ− cos k)σz + (sin k)σx . (5.4)

Note that H is a free-fermion Hamiltonian, so the TFI chain is integrable.

As a prelude to understanding the dynamic scaling of this model, let’s examine

the basic scaling properties of its ground state. As mentioned earlier, renormalization

is a procedure to understand the long-wavelength properties of the system near the

critical point. These limits are particularly straightforward to see in the TFI model,
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by just taking the |λ|, k � 1 limit of Eqs. 5.3 and 5.4:

H ≈
∑
k

[
λσzk + kσxk

]
. (5.5)

As we will see later, this limit is taken naturally in the case of KZ dynamics.

Note that this Hamiltonian is a function of λ as well as the set of momenta

{k} = 2π(n+1/2)
L

, i.e., H = H(λ, {k}). Consider the Hamiltonian closer to the critical

point at λ′ = λ/2. Comparing the Hamiltonians at λ and λ′, we see that they satisfy

the relation H(λ, {k}) = 2H(λ′, {k/2}). In other words, the low-energy physics at λ

and λ′ is equivalent as long as we rescale the energy and momenta by a factor of 2.

This is the essence of scaling theory.

We can associate critical exponents with the rescaling properties of energy and

momentum (or equivalently time and distance) in the vicinity of the critical point. For

instance, the correlation length critical exponent ν and the dynamic critical exponent

z are defined such that, under renormalization, characteristic length (ξ) and time (ξt)

scales diverge as

ξ ∼ |λ|−ν ; ξt ∼ |λ|−νz . (5.6)

From the above discussion, it is clear that ν = z = 1 for the TFI model. Similarly,

we can ask about the scaling properties of observables, such as spin-spin correlations,

near the critical point. In this case, critical exponents are replaced by entire scaling

functions, describing the low-energy long-distance behavior of the spin correlations in

terms of scaling-dimensionless quantities such as L/ξ. For instance, the scaling form

of unequal-time spin-spin correlations in an infinite length TFI chain is

G(x, t) = 〈ψ0(λ)|Szj (0)Szj+x(t)|ψ0(λ)〉 = λ2βg

(
x

ξ
= xλ,

t

ξt
= tλ

)
, (5.7)
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where |ψ0(λ)〉 is the ground state of the Hamiltonian in Eq. 5.5. We have introduced

a new critical exponent β, corresponding to the scaling properties of the spin Sz.

This “anomalous” critical exponent was found to be β = 1/8 by Onsager and Yang

[79, 90], although its derivation is not as simple as that of ν and z. When considering

the low-energy long-distance behavior of other models in the Ising universality class,

not only are the critical exponents β, ν, and z universal, but so is the entire scaling

function g(x/ξ, t/ξt).

We are now in a position to discuss the non-equilibrium scaling properties of the

TFI chain, in particular its scaling within the KZ criterion.

5.1.1 Kibble-Zurek scaling

In a KZ ramp, λ is varied as a function of time near the critical point at λ = 0. For

simplicity, we focus primarily on the case of a linear ramp, λ(t) = vt, where v is the

ramp rate and the QCP is at λ = t = 0. Importantly, we always work at times t such

that λ < 2, so that the ramp only crosses a single critical point. The ramp begins

at t = −∞ deep in the disordered phase, where the wavefunction is initialized in the

ground state of the instantaneous Hamiltonian H(t = −∞). For an infinite system,

the Hamiltonian is gapless at the critical point. Therefore, it is impossible to ramp

slowly enough through the QCP to avoid creating excitations and to produce true

long range order in the ordered phase.

Near the QCP, the characteristic time scale ξt ∼ λ−νz becomes arbitrarily large.

Thus for a non-zero ramp rate, there exists a Kibble time, −tK , at which the lowest

momentum modes stop following the ramp adiabatically and become significantly

excited. More explicitly,

|tK | = ξt(λ(|tK |)) ∼ |vtK |−νz

⇒ tK ∼ v−νz/(1+νz) . (5.8)
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For the TFI chain ν = z = 1, so tK ∼ v−1/2. One can similarly define a length

`K ∼ t
1/z
K such that tK and `K set the characteristic time and length scales for the

Kibble-Zurek scaling forms [86, 87].

For a KZ ramp of the TFI chain, the wavefunction |ψ(t)〉 can be written as a

product |ψ(t)〉 = ⊗k|Ψk(t)〉, where each mode evolves independently as

id|Ψk〉/dt = Hk(t)|Ψk〉

= [(1− vt− cos k)σzk + (sin k)σxk ] |Ψk〉 . (5.9)

The KZ scaling limit is defined as taking v → 0 with τ , Λ, and κ constant [86, 87],

where

τ ≡ tv1/2 ∼ t/tK

Λ ≡ Lv1/2 ∼ L/`K

κ ≡ kv−1/2 ∼ k`K

=
2π(n+ 1/2)

Λ
. (5.10)

n = 0, 1, ..., (L/2) − 1 indexes the modes. Note that L → ∞ in the scaling limit, as

`K → ∞ and Λ is constant.

To take the KZ scaling limit, we can expand out the sine and cosine in Eq. 5.9

and multiply through by a factor of v−1/2 to get

i
d|Ψκ〉
dτ

=

{[
− τ − κ2

2
v1/2 +O(v)

]
σzκ +

[
κ− κ3

6
v +O(v2)

]
σxκ

}
|Ψκ〉 . (5.11)

Notice that all quadratic and higher order terms in κ from the sine and cosine come

with positive powers of v. Thus, in the KZ scaling limit (v → 0), Eq. 5.11 simplifies

to

id|Ψκ〉/dτ = (−τσzκ + κσxκ) |Ψκ〉 (5.12)
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Each mode Ψκ(τ) in Eq. 5.12 has the form of a Landau-Zener (LZ) equation, which

can be solved in terms of parabolic cylinder functions [24, 91]. Note that |Ψκ(τ)〉 is

expressed solely in terms of the scaled variables τ and κ; the existence of these scaled

wavefunctions depending solely on scaled quantities constitutes the essence of the KZ

scaling theory.

In order to visualize the scaled wavefunction from Eq. 5.12, we solve for the

dynamic scaling functions of three observables of the TFI chain: the ground state

log-fidelity F [92], the excess heat Q, and the spin-spin correlation function G:

F (t) = − log
(∣∣〈ψ0(t)|ψ(t)〉

∣∣2) (5.13)

Q(t) = 〈ψ(t)|H(t)|ψ(t)〉 − 〈ψ0(t)|H(t)|ψ0(t)〉 (5.14)

G(x, t) = 〈ψ(t)|szjszj+x|ψ(t)〉 , (5.15)

where |ψ0(t)〉 is the instantaneous ground state of H(t). Both log-fidelity and excess

heat serve as good initial measures of non-adiabaticity, going to zero in limit of an

adiabatic ramp in which the system remains in its ground state. Fidelity also holds

a special place in the realm of quantum computation and simulation, particularly

in adiabatic quantum computation, where it is proposed that many-body systems

be ramped from a boring (unentangled) state to an interesting (entangled) state

for use in computing. Such proposal often involve ramps across a quantum critical

point [93, 94], and small ground state log-fidelity serves as herald for the ramp’s

success. Meanwhile, spin correlations provide additional insight into the properties

of the wavefunction, which are of particular relevance both experimentally and in the

context of scaling theory.
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For the non-equilibrium ramp, excess heat and log-fidelity become

Q(t) =
∑
κ

[
〈Ψκ(t)|Hκ(t)|Ψκ(t)〉 − 〈Ψ0

κ(t)|Hκ(t)|Ψ0
κ(t)〉

]
(5.16)

F (t) = −
∑
κ

log
(∣∣〈Ψ0

κ(t)|Ψκ(t)〉
∣∣2) . (5.17)

where |Ψ0
κ(t)〉 is the instantaneous ground state of Hκ(t). The excess heat has the

form of a sum over the excess heat in each mode, Qκ, which is just the product of

the excited state occupancy

pexcκ = 1−
∣∣〈Ψ0

κ|Ψκ〉
∣∣2 (5.18)

and the excited state energy

Eexc
κ = 2

√
t2 + k2 = 2v1/2

√
τ 2 + κ2 . (5.19)

If we define a scaled form of this mode excess heat as

qexcκ (τ) ≡ Qκ(τ)

v1/2
= 2pexcκ (τ)

√
τ 2 + κ2 , (5.20)

then the scaled excess heat density is

q(τ,Λ) ≡ Q(t)

vL

=
1

Λ

∑
κ

qexcκ (τ) . (5.21)

85



Similarly, the scaled log-fidelity density1 is

f(τ,Λ) ≡ F (t)

v1/2L

= − 1

Λ

∑
κ

log (1− pexcκ (τ,Λ)) . (5.22)

These scaling forms are obtained by making the observable scaling-dimensionless

using factors of tK and `K . So, for example, the excess heat density Q/L becomes

QtK
(L/`K)

=
Qv−1/2

Lv1/2
= q . (5.23)

Some values of the scaled excess heat and log-fidelity are shown in Fig. 5.1c-d.

For the equal-time sz-sz correlation function, we postulate a non-equilibrium scal-

ing form, and check for scaling collapse. Utilizing translation invariance and the value

of the anomalous critical exponent for spin, β = 1/8, the scaled correlation function

is

g(τ,Λ, χ) ≡ G(x, t, L, v)x1/4, (5.24)

where χ ≡ xv1/2 is the scaled distance. To solve for the spin correlations, we use

a standard trick of breaking up each site of the spin chain into a pair of Majorana

fermions [78]:

Aj = c†j + cj; Bj = c†j − cj . (5.25)

In terms of these Majoranas, the spin-spin correlation function is

〈szjszj+x〉 = 〈BjAj+1Bj+1 · · ·Bj+x−1Aj+x〉 , (5.26)

1 We work with log-fidelity density because, as shown in Refs. 92 and 95, log-fidelity density is a
natural quantity for which the thermodynamic limit (L → ∞) may be taken. One way to see this
is to assume we make an average “error” of ε per site, such that the fidelity is F = (1 − ε)L. This
gives log-fidelity density of F = −(logF)/L = − log(1− ε), which remains well-defined as L→ ∞.
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which can be broken up into a Pfaffian of pairwise expectation values of the form

〈AA〉, 〈AB〉, and 〈BB〉 [96] using Wick’s theorem. In our momentum-space pseudo-

spin notation, these expectation values are

〈AjAj+`〉 = 〈BjBj+`〉 = −i
∑
k

[
〈σyk〉 sin(k`)

]
(5.27)

〈AjBj+`〉 = 〈BjAj+`〉 =
∑
k

[
〈σzk〉 cos(k`)− 〈σxk〉 sin(k`)

]
. (5.28)

We then evaluate the Pfaffian numerically2, and find that good scaling collapse occurs

for small v (Fig. 5.2a).

5.1.2 Diagonal observables: Finite size scaling and asymp-

totic limits

In a finite size system, a gap ∆ ∼ L−z opens at the QCP. This has important effects on

the dynamics, which are most easily understood for the diagonal observables – excess

heat and log-fidelity. From Eqs. 5.21 and 5.22, it is clear that these observables

depend only on the excitation probability pexcκ (τ) and excess heat qexcκ (τ) for each

mode, some values of which are shown in Fig. 5.1a-b. Finite size effects enter by

limiting the values of κ that are summed over; for example, the minimum value is

κmin = π/Λ. As an initial example of finite size effects, in Fig. 5.1e-f we show the

scaled diagonal observables as a function of scaled system size Λ for a snapshot taken

right at the QCP (τ = 0). In the regime of small scaled size Λ . 1, the finite-size

gap dominates and the system remains near the ground state. The observables can

be understood perturbatively by noting that they must be even under a sign reversal

of the ramp rate [98]; thus, to lowest order, the excess heat and log-fidelity densities

scale as Q/L ∼ F/L ∼ v2 in the limit Λ � 1. So for fixed L, in which case v1/2 ∼ Λ,

2 We note that the theory of Toeplitz determinants [97] can, in principle, be used to analytically
solve for the correlation function in the limit x� 1.
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Figure 5.1: Diagonal observables (excess heat and log-fidelity) for the TFI model,
which derive from the mode excitation probability pexcκ (a) and mode excess heat qexcκ

(b). From these, one obtains the scaled log-fidelity (c) and excess heat (d) for various
scaled system sizes Λ = Lv1/2. (e,f) Finite size scaling for ramps to the QCP (τ = 0).
For comparison, the insets show κ dependence of pexcκ and qexcκ at τ = 0. The limits
of these scaling functions are detailed in the text.

we expect the scaled observables to asymptote to q ∼ Λ2 and f ∼ Λ3; this is confirmed

in Fig. 5.1e-f.

In the opposite limit, Λ → ∞, finite-size effects vanish; we will refer to this as the

thermodynamic limit of KZ scaling (KZ-TDL). As we see in Fig. 5.1e-f, excess heat

density and log-fidelity density approach a constant in this limit, thus confirming that

they are intensive thermodynamic quantities. In between these two limits, the excess

heat shows non-monotonic behavior, which is a manifestation of the non-monotonicity

of the mode excess heat qexcκ at the QCP (Fig. 5.1f, inset). While Kibble-Zurek scaling

theory is most elegant in the KZ-TDL, where finite size effects become negligible, most

current experimental realizations of the TFI chain and related models [2, 13, 14] are

for small finite systems. Therefore, understanding finite size effects will be crucial in

connecting theory to experiment.
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As a final comment on finite-size scaling, we point out that the Λ → 0 limit of

the KZ scaling form gives the ground state scaling form, since this is limit where the

finite size gap is so large that no excitations occur. As such, the KZ scaling forms

encompass equilibrium scaling theory. One corollary of this fact is that, if KZ scaling

forms exist, then they must have the same critical exponents as the equilibrium scaling

theory; otherwise, the equilibrium limit could not be recovered.

Turning now to time-dependence of the diagonal observables, during the initial

part of the ramp (τ � −1), the system is very nearly in equilibrium (Fig. 5.1c-d).

Meanwhile, deep on the FM side of the ramp (τ � 1), LZ physics tells us that the

excitation probability of mode κ asymptotes to [24]

pexcκ = exp(−πκ2) . (5.29)

In between, at finite positive τ , the excitation probability for each mode – given by

the LZ equation and shown in Fig. 5.1a – oscillates as a function of scaled time before

converging to Eq. 5.29. These oscillations show up in the log-fidelity (Fig. 5.1c),

excess heat (Fig. 5.1d), and the correlation function (Fig. 5.2c-d). Note that the

excess heat q continues to increase linearly as a function of time in the limit τ � 1,

while the log-fidelity f asymptotes to a constant. Thus the increasing excess heat is

caused not by an increase in the occupation of excited states, but by an increase in

the energy for these excitations.

5.1.3 Spin correlations: Athermal properties and decoher-

ence

While diagonal observables have much cleaner (i.e., Pfaffian-free) formulations, spin

correlations provide greater insight into the properties of the system near the QCP.

For instance, the ground state correlations exhibit quasi-long-range order at the QCP,
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with a power law tail G(x) ∼ x−1/4. However, at any finite temperature, these

correlations become short range, decaying exponentially on a distance scale set by the

thermal de Broglie wavelength for our integrable model. Looking at the correlations

right at the QCP for the KZ ramp (Fig. 5.5b, black lines), we see the finite-size

crossover from near-equilibrium power-law correlations for Λ = 5 to a non-equilibrium

exponential decay of correlations for Λ = 30.

However, the TFI chain is integrable, so although a KZ ramp through the critical

point creates excitations, the resulting excited states differ markedly from equilibrium

thermal states at the same energies. From Eq. 5.29, we see that at long times the

populations of modes with κ2 < (log 2)/π are inverted, i.e., at a negative effective

temperature with excitation probability greater than 50%. This leads to qualitatively

athermal physics in the scaled correlation function, which goes substantially negative

by τ = 5 over a range of scaled distances (see Fig. 5.2c-d). This is qualitatively

different from any thermal state (Fig. 5.2d), which would have a finite correlation

length but never negative correlations. Similar behavior has been seen outside the

scaling regime for both slow [99] and instantaneous [100] quenches of the TFI chain

and the XY model [101].

There is one more limit that is worth discussing, namely what happens formally

as τ → ∞ while remaining in the scaling regime? We have seen that the diagonal

observables are relatively boring in this limit, but the spin correlations may undergo

a process known as dephasing. To motivate dephasing, if one were to stop the ramp

at some value λf and wait a very long time, the phase differences between modes

would increase to the point where the phases are essentially random. In such an

integrable system, dephasing results in the generalized Gibbs ensemble (GGE, see

Ref. 102), given by removing all phase information from each mode; see Chp. 7 for a

more detailed discussion of dephasing.
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Figure 5.2: (a) Spin-spin correlation function of the TFI chain for a ramp to the
QCP (t = 0), showing scaling collapse for a wide range of slow ramp rates. The inset
shows correlation functions prior to scaling. (b) Scaled correlation length and (c-d)
correlation function as a function of scaled time (b-d) and distance (c-d) during the

ramp, where we define the correlation length as ξv1/2 =
√∫∞

0
g(χ)χ2dχ/

∫∞
0
g(χ)dχ.

This correlation length deviates from equilibrium near tv1/2 = −2.5 and remains finite
at the QCP and beyond. In (c), we compare the KZ correlation function at τ = 5 to
a representative thermal correlation function and the GGE correlation function (see
text). All data in this figure are in the KZ thermodynamic limit, Lv1/2 � 1.

Since the Hamiltonian changes as a function of time, we must specify to which

GGE we wish to compare our correlations. We define the GGE at time τ as the

dephased ensemble that one would approach upon freezing the current Hamiltonian

and waiting a long time (see Chp. 7):

ρGGE(τ) =
∏
κ

[
(1− pexcκ (τ))|Ψ0

κ(τ)〉〈Ψ0
κ(τ)|+

pexcκ (τ)|Ψ1
κ(τ)〉〈Ψ1

κ(τ)|
]
,

(5.30)
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where |Ψ1
κ(τ)〉 is the excited state of mode Hamiltonian Hκ. As an example, the GGE

spin correlations at τ = 5, which is on the FM side of the QCP, are shown in Fig. 5.2c.

In the limit τ → ∞, the mode Hamiltonians asymptote to Hκ ∝ −σzκ, so the GGE

approaches a fixed value with |Ψ0
κ〉 → | ↑〉, |Ψ1

κ〉 → | ↓〉, and pexcκ → e−πκ
2
.

To see if τ → ∞ gives the dephased ensemble, we consider the phase difference

∆ϕ between characteristic modes κ = 0 and κ = 1, since excitations are exponentially

suppressed for κ >∼ 1. Starting from some time τi � 1, after which the dynamics is

effectively adiabatic, the (scaled) energy difference ∆E and phase difference ∆ϕ are

∆E(τ) =
√
τ 2 + 1− τ ≈ 1

2τ

∆ϕ =

∫ τf

τi

∆E(τ)dτ ≈ 1

2
log(τf/τi) (5.31)

Since ∆ϕ→ ∞ as τf → ∞, the phase information between modes is lost in the long

time limit, so the observables approach those of the GGE.

We note that, for non-linear ramps (say cubic ramps, λ ∼ t3), a similar scaling

theory can be written down [86]. Then the above argument again holds, except now

∆ϕ ≈
∫ τf

τi

1

2τ 3
→ const. (5.32)

as τf → ∞, implying that phase information remains, and the cubic ramp does not

approach the GGE.3 To summarize, both linear and cubic ramps exhibit athermal

behavior, such as negative correlations, coming from the inversion of low-momentum

modes, but only the linear ramp dephases to the GGE in the long time limit.

3We note two points about observing dephasing in practice. First, our arguments only hold when
taking the long time limit while remaining near the QCP (λ � 1) to stay in the scaling regime.
This limit is difficult to achieve, and is compounded by disorder, which becomes more important in
the slow ramp, long time limit. Second, one must know the exact location of the QCP for the cubic
ramp; a slight “miss” would allow one to linearize about the actual QCP. The slower the ramp, the
more accurately one needs to know the QCP to see cubic scaling.
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5.2 Universality of Kibble-Zurek scaling

While the TFI chain is a beautiful theoretical model, it is difficult to realize in the lab.

Therefore, if our results are to have experimental merit, we must address an important

aspect of scaling theory: universality. The idea of universality is that, in the scaling

limit, a large number of terms in the Hamiltonian can be irrelevant to the physics.

We have already seen an example of this in the case of the TFI model, where in the

scaling limit we could drop higher-order terms in momentum from the expansion of

the sine and cosine. While those terms still exist, they do not affect the physics of

the scaling limit. A more complicated example is a four-fermion interaction, such as

V = γ
∑

j njnj+1 (corresponding to an sx-sx interaction in the original spin model).

Upon carrying out the same renormalization procedure as in Sec. 5.1, the coefficient

γ of this interaction term decreases. Thus, in the scaling limit, the four-fermion

interaction term flows to zero, and is dubbed “irrelevant.” In fact, one can show that

for all one-dimensional Hamiltonians breaking only a discrete two-fold (a.k.a. Z2)

symmetry, the TFI critical point discussed above is the only critical point that can

exist; every other perturbation is irrelevant [78]. Any one-dimensional model with

such a symmetry-breaking is thus said to be in the TFI (or two-dimensional Ising4)

universality class.

All of these arguments are well understood and accepted for equilibrium scaling.

However, while the scaling arguments above can be applied heuristically to the case

of non-equilibrium KZ scaling, there is some debate as to whether KZ scaling is

universal [103, 104]. In this section, we provide strong evidence for the universality of

KZ dynamics by comparing the TFI scaling functions derived in the previous section

to those obtained numerically for an experimentally-realizable model in the same

(equilibrium) universality class. There have been a number of recent experimental

4 This name comes from the fact that the ground state properties of the one-dimensional quantum
TFI chain can be mapped exactly to the thermodynamic properties of the two-dimensional classical
Ising model [78].
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advances toward realizing other, non-integrable models in the Ising universality class

[2, 13, 14]. For the remainder of this chapter and the next, we focus on one, the Mott

insulator in a tilted potential (MITP), realized experimentally in Ref. 2.

5.2.1 Mott insulator in a tilted potential

In Ref. 2, the authors experimentally create one-dimensional chains of interacting

bosons, with sufficiently deep lattice and short-range interactions such that the be-

havior is well described by the repulsive Bose-Hubbard model. They then add a

constant magnetic field gradient along the length of the chain, which appears to the

hyperfine-polarized bosons as a constant potential gradient. Thus, the experimental

Hamiltonian is

Hexpt =
∑
j

[
−w

(
b†j+1bj + b†jbj+1

)
+
U

2
nj(nj − 1)− Ejnj

]
, (5.33)

where w is the hopping energy, U is the on-site repulsion, and E is the effective electric

field (derivative of the external potential due to the magnetic field gradient). As we

are interested in the Mott insulating phase, we consider U � w.

An interesting thing happens near E ≈ U , as discovered experimentally in Ref. 11

and explained theoretically in Ref. 88; the system begins to spontaneously form

dipoles, which we will see are well described by an effective spin Hamiltonian that

exhibits a paramagnetic to antiferromagnetic QPT. As it is crucial to understanding

how this model fits into the Ising universality class, we summarize the derivation of

the effective spin model below.

Consider the Mott insulator at unit filling (one boson per site). As we apply the

tilt E , a naive prediction might be that the atoms just fall downhill. However, while

such a process might make sense in the presence of a heat bath, here it is forbidden
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Figure 5.3: Example of states within (a-b) and outside of (c-d) the resonant manifold,
showing their energies in the absence of hopping (w = 0). Starting from (a) a Mott
insulator at unit filling with energy E = 0, a single boson can tunnel (b) with small
energy gain ∆. However, the state with three atoms on a site (c), while energetically
allowed (E = −3∆), cannot be reached as it requires tunneling through a state at
much lower energy (d).

by energy conservation. Indeed, for a large range of tilt E � U , the atoms simply

remain in the Mott insulating state, localized by interactions.

Eventually, for |E −U | ≈ w, the bosons are energetically allowed to tunnel. How-

ever, once a boson has hopped downhill, nothing further can happen – it can’t tunnel

further down the chain, another boson can’t fill the spot it vacated, etc. – as all of

these result in large change in energy. If the diagonal energy gain upon tunneling a

single boson is ∆ ≡ E − U , then in the limit |∆|, w � E , U there exists a resonant

manifold of states with energy close (within O(w)) to that of the Mott insulating

state. Denoting the Mott insulating state as | · · · 11 · · ·〉, it is clear from the above

discussion that hopping a single boson to form a dipole is within the resonant man-

ifold, so | · · · 02 · · ·〉 is allowed. It would appear energetically as if states such as

| · · · 003 · · ·〉 are resonant as well; however such a state requires tunneling through the

state | · · · 012 · · ·〉, which is in a lower energy manifold (see Fig. 5.3). Therefore, the

only states within the resonant manifold are those with (|02〉) or without (|11〉) a

dipole on each bond. Note also that it is impossible to have dipoles on neighboring

bonds.
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Figure 5.4: Illustration of the Mott insulator in a tilted potential (MITP), realized
experimentally in Ref. 2 (see text for details).

Since the presence or absence of a dipole on each bond is a two-level system,

we can recast the dipole Hamiltonian as a spin Hamiltonian, where each spin lives

on a bond of the original lattice (see Fig. 5.4). Letting ↑ (↓) correspond to the

presence (absence) of a dipole, hopping terms correspond to spin rotations in this

basis; thus −wb†j+1bj maps to
√
2wSx, where the factor of

√
2 comes from Bose

statistics. Similarly, a diagonal energy gain of ∆ occurs upon the formation of a

dipole; thus we get ∆Sz/2. Finally, as there cannot be two dipoles on neighboring

bonds, this maps to a constraint disallowing neighboring up spins. So we see that the

tilted boson system is well-described by the effective spin Hamiltonian

Heff = P

{
−
∑
l

[
uSxl +∆

Szl + 1

2

]}
P , (5.34)

where l labels the bonds, Sx,z are effective spin-1/2 Pauli matrices residing on the

bonds, and P is a projector implementing the constraint that no two neighboring

bonds are both spin up. The Mott insulator to dipole quantum phase transition is

thus recast as a paramagnetic to antiferromagnetic phase transition (see Fig. 5.4), in

which the projector P produces the antiferromagnetic interactions.

The energy scale of Eq. 5.34 is set by u =
√
2w; we work in units with u = 1.

In analogy with the TFI chain, we define the parameters λ = ∆ − ∆c and v = ∂tλ,

where ∆c
∼= 1.31 is the location of the QCP [88]. The antiferromagnetic correlation

function is given by G(x) = (−1)x
(
〈SzjSzj+x〉 − 〈Szj 〉〈Szj+x〉

)
.
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5.2.2 Comparison of Mott insulator and Ising dynamics

In order to numerically simulate a ramp in this non-integrable system, we use time-

dependent matrix product states (tMPS, see Sec. 3.2.3). We take advantage of the

fact that for the Hamiltonian Eq. 5.34, the term within the projectors (call it Hd(t))

is a sum of single site Hamiltonians. We thus evolve in time using |ψ(t + ε)〉 ≈

P exp(−iεHd(t))|ψ(t)〉 by first exactly applying the single site Hamiltonian Hd(t),

an MPO of bond dimension 1, then projecting out configurations with neighboring

dipoles using the projection operator P , which is broken up into odd and even sites

as MPOs of bond dimension 2. For instance, to project out neighboring spin ups on

sites 1 and 2, we use the MPO matrices

M↑↓
1 =M↓↑

1 =M↑↓
2 =M↓↑

2 = 0 (5.35)

M↑↑
1 =

(
0 1

)
; M↓↓

1 =
(
1 1

)
;M↑↑

2 =

 1

0

 ; M↓↓
2 =

 0

1

 . (5.36)

This projection increases the MPS bond dimension by a factor of two, which is then

reduced back to its original value D using SVD compression. The method becomes

exact in the limit ε → 0 and D → ∞, and its convergence has been numerically

checked by extrapolating in these parameters. Ground states are found by doing

imaginary time evolution at fixed λ, also using tMPS. Note that, while we use the

MPS ansatz described in Sec. 3.2.1, which is mainly intended for open boundary

conditions, here we use it to simulate systems with periodic boundary conditions.

While this introduces no additional errors, it does empirically require larger bond

dimension than solving the same system with open boundary conditions.
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Figure 5.5: Results of tMPS simulations for ramping the MITP. The data show scaling
collapse of MITP (colored dots) to the scaling limit of the TFI chain (black lines) as
a function of scaled time τ = tv1/2 (a), scaled system size Λ = Lv1/2 (a,b), and scaled
length x/L (b,c). We have checked that data for Λ = 30 is near the Λ = ∞ limit for
the TFI model (not shown), although finite size effects can still be seen in (c).

Fig. 5.5 shows calculated observables of the MITP model compared to the Ising

scaling functions derived earlier.5 We see clear scaling collapse in all three scaling

directions: ramp time t, system size L, and distance x. As expected, simulations

do not collapse as well for smaller system sizes. While the dynamic range of the

simulations is limited, and the scaling collapse for finite systems is imperfect, we

consider our results to be strong numerical evidence for the postulated universality

of KZ scaling of systems in the Ising universality class.

We note that, while scaling collapse for the system sizes considered is not perfect

at tv1/2 = 5, the correlation function goes negative as predicted from the TFI scaling

function. Therefore, the athermal physics of the KZ ramp is robust against small

system sizes and the breaking of integrability, and is a qualitative feature of our

model that should be visible experimentally. A major open question is whether such

athermal behavior will manifest in KZ ramps near non-integrable QCPs, where the

relatively short-time dynamics of the KZ ramp will be in competition with the long-

time expectation of eigenstate thermalization (cf. Chp. 7, Ref. 105).

5There is an overall non-universal scaling between the TFI and MITP models, given empirically
by vMITP = 4.84vTFI, GMITP = 0.784GTFI, and tMITP = 0.557tTFI. All values in Figs. 5.1 and 5.2
are those of the TFI chain, while Fig. 5.5 gives those of the MITP model.
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5.3 Conclusions

In conclusion, we have solved for the full Kibble-Zurek dynamic scaling forms of

the one-dimensional transverse field Ising chain at zero temperature. We provided

numerical evidence for the universality of KZ scaling via tMPS simulations of the

MITP model. The TFI scaling functions show a number of unexpected properties,

including athermal negative correlations at a distance scale set by the ramp rate and

the absence of dephasing in the long time limit for a cubic ramp protocol. As we will

see in the next chapter, many of the properties discussed for the disorder-free TFI

model with periodic boundary conditions are robust in the experimental case of open

boundary conditions and disorder, opening up the exciting prospect of seeing these

phenomena experimentally in the near future.
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Chapter 6

Experimental considerations for

the tilted Mott insulator

One important question that we have not yet addressed is whether the non-

equilibrium phenomena discussed in the previous chapter will be visible experi-

mentally. While we can estimate the relevant time scales within the TFI scaling

theory, such an analysis neglects two experimentally-relevant effects: disorder and

open boundary conditions. Open boundary conditions cannot matter in the ther-

modynamic limit, although they can affect finite-size scaling. However, disorder is

a relevant perturbation of the TFI chain, so for a slow enough ramp, disorder must

affect the dynamics.

In this chapter, we address the effects of disorder and open boundary conditions

on the equilibrium and non-equilibrium properties of the MITP model, with an eye

on experimental implications for the setup in Ref. 2. For the experimentally relevant

case of open boundary conditions, we show how incipient long-range order leads to

even/odd effects in finite size systems. We discuss what effect this has on ground state

and non-equilibrium properties of the model, and in particular what aspects of the KZ

scaling theory do or do not survive. Finally, we add disorder to the model with open
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boundary conditions, and numerically establish the rough disorder strength necessary

to disrupt the athermal negative correlations seen in the disorder-free model.

6.1 Ground state with open boundary conditions

One notable effect in the presence of open boundary conditions (o.b.c.) is a distinction

between even and odd length systems; for a system with an even number of sites, it

is possible to have a perfect dipole covering, but for an odd number of sites, it is

not. In this section we will sketch the basic ground state properties of this even/odd

effect, including some possible ways to detect it. We will mostly focus on deep in the

AFM regime, where domain walls become the fundamental quasiparticles, deriving

an effective low-energy theory that describes the spectrum of domain walls in this

regime.

For comparison to experiment, whenever we estimate actual numbers, we use the

approximate parameters from Ref. 2:

U = 400Hz

w = 10Hz

Ef = 1.2U = 480Hz

∆f = Ef − U = 80Hz . (6.1)

In connection with the spin Hamiltonian, we refer to a singly-occupied site as a domain

wall. In addition, for consistency with the remainder of this chapter, L will refer to

the number of bonds in the boson chain, i.e., the number of sites in the effective spin

model. Therefore, an even length boson chain will have odd L and vice versa.

As a starting point, let’s look at the case of 15 and 16 sites with open boundary

conditions (L = 14 and 15 respectively). The resulting spectra are shown in Fig. 6.1.
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Figure 6.1: Spectra of the MITP model with open boundary conditions, on a lattice
of L = 14 (a) and 15 (b) bonds. Degeneracies and energy gaps are labeled.

These spectra focus on the AFM side of the phase transition, where nominally there

should be two nearly-degenerate ground states (fully degenerate in the thermody-

namic limit). Note that the Ising Z2 symmetry here is translation symmetry, instead

of a spin symmetry, and open boundary conditions do not respect this symmetry.

Therefore, as a result of open b.c., there is no longer a nearly-degenerate ground

state. In its place are ground states of two different types, depending on whether L

is even or odd.

We can easily understand the ground states, and indeed the entire spectrum, in

the limit ∆ � t. Consider first the extreme limit w = 0 (no hopping). For an even

number of sites, there is a single isolated ground state, given in this limit by the

perfect AFM, i.e., the state with a perfect dipole covering. For an odd number of

sites, on the other hand, there is no perfect dipole covering. Therefore, there are

L/2+1 degenerate ground states in the absence of hopping, given by a single domain

wall on any of the odd-numbered sites.

Before introducing hopping, it’s worth developing a clear notation for states with

multiple domain walls. Denoting the domain wall as |1〉, since it is just an unpaired

boson, and the dipole as |d〉 = |02〉, an arbitrary state can be written as a string of

unpaired bosons and domain walls, i.e., |102021102〉 = |1dd11d〉. For a system with L

bonds and W domains walls, there are D = (L+1−W )/2 dipoles filling in the gaps.
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The degeneracy of the W domain wall sector is just the number of places to put the

domain walls, namely the binomial coefficient

 W +D

D

. These degeneracies are

indicated in Fig. 6.1. In order to add two domain walls to any given state, one has

to break a dipole, which costs energy ∆.

We now want to introduce hopping perturbatively, w � ∆. Consider first what it

means to hop a domain wall. In the above language, this is a transition of the form

|1d〉 → |d1〉 for a pair of sites. This can’t happen at first order, but at second order

there is one process to do this while remaining on the resonant manifold, namely

|102〉 → |111〉 → |021〉 . (6.2)

The intermediate state costs diagonal energy ∆, but gains two hopping terms. There-

fore, the matrix element is w′ = 2w2/∆ (the factor of 2 = (
√
2)2 comes from the

bosonic commutation relations).

A second, trivial effect comes from the similar process

|102〉 → |111〉 → |102〉 . (6.3)

In other words, a dipole can gain energy w′ by temporarily breaking and reforming.

Therefore, there is a diagonal shift given by w′ times the number of dipoles, D.

Finally, also with a matrix element w′, there is an effective interaction induced

between nearest neighbor domain walls, given by the exchange process

|11〉 → |02〉 → |11〉 . (6.4)

Since the intermediate step lowers the energy by ∆, this is a repulsive interaction.
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To summarize, at second order in w/∆, the effective Hamiltonian for the branch

with W domain walls and D = (L+ 1−W )/2 dipoles is

Heff = ∆W − w′D − w′
D+W−1∑
j=1

[
c†jcj+1 + c†j+1cj − njnj+1

]
, (6.5)

where c†j creates a domain wall on “site” j and nj = c†jcj is the number operator.

The notation cj has been chosen to emphasize that, due to hardcore constraint (i.e.,

nj ≤ 1) and open boundary conditions, the domain walls can be treated as fermions.

The “sites” j on which this effective Hamiltonian is defined are the lattice of the

effective {|1〉, |d〉} basis, i.e., a lattice with either a domain wall or a dipole on each

site. Thus, the effective lattice size is Leff = D +W .

While the above construction describes the entire spectrum in the limit ∆ � w,

most current work is focused on the ground state properties [2]. Given this, we

describe a few concrete experimental implications for the ground state.

First, boundary conditions should be visible in the parity of the number of domain

walls. For a system with an even (odd) number of sites, it should only be possible

to see an even (odd) number of domain walls. Assuming that this is fairly easily

distinguishable, one could go a step farther and see how the histogram shifts as

a function of ∆. For sufficiently large ∆, the signal should be dominated by one

domain wall (L even) or zero domain walls (L odd). Furthermore, the correction, i.e.,

the occupation probability of two additional domain walls, should perturbatively go

as ∼ (w/∆)2; for ∆f/w = 8, as estimated from experimental parameters, this should

already by a pretty good approximation (see Fig. 6.2a,c).

Second, within the W = 1 manifold for an odd number of sites, Eq. 6.5 becomes

a free particle Hamiltonian. So, to see the expected particle-in-a-box behavior of the

ground state, one can take a series of measurements to map out the occupation of

bosons and post-select measurements with a single domain wall. If the ramp was
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Figure 6.2: (a,b) Ground state of the L = 14 MITP model with o.b.c. (a) Probability
of finding the ground state wavefunction in the single domain wall sector (W = 1)
as a function of ∆/w. (b) For the states in this sector at the estimated experimental
value ∆/w = 8, a histogram of the domain wall locations (red dots). Black dashed
line shows the comparable particle-in-a-box ground state. (c) For L = 15, probability
of finding the ground state in the pure AFM (W = 0) and with one broken dipole
(W = 2).

adiabatic and started from the Mott insulating ground state, then the domain wall

should be in the ground state of the particle-in-a-box (see Fig. 6.2b).

Finally, there is a theoretical point that bears mentioning. As a result of the o.b.c.

breaking the Z2 symmetry of this model, one thing that should not be found, even in

the thermodynamic limit, are two degenerate spontaneous-symmetry-broken ground

states, as would exist with p.b.c. or in the AFM Ising model (where Z2 is a spin

symmetry). However, there are remnants of the long-range order associated with the

“symmetry-broken” ground states. In o.b.c., while even/odd effects do show up in the

AFM ground state, they do not show up in the PM ground state (the Mott insulator).

This is related to the fact that the insulator is fundamentally a quantum disordered

state, with a short correlation length, so no information can pass from one boundary

to the other that would allow it to globally notice the boundary conditions. However,

since the AFM is ordered, what happens at one boundary does affect what happens at

the other boundary, so even/odd effects occur precisely because of long-range order.

This is important because one could imagine getting similar long domains of dipoles

by just using locally staggered effective magnetic fields to favor the configuration
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Figure 6.3: (a-c) Spin-spin correlation function of the MITP model with open bound-
ary conditions, compared to the TFI scaling function with p.b.c. (black lines). (d)
Expectation values of the z components of the individual spins, 〈Szl 〉, for the same
parameters as (c) with L = 97, 49, and 13 (inset) bonds, where l is the bond index.
Arrows indicate the 180◦ phase shift (AFM domain wall) that yields the negative
correlations in (c).

|0202 . . .〉. However, this state would not have a particle-in-a-box domain wall ground

state with an odd length system; it would just put the one domain wall locally at

whichever end the local fields were designed to place it at.

6.2 Kibble-Zurek with open boundary conditions

We now turn to the effect of open boundary condition on the Kibble-Zurek dynamics

of the MITP model. Comparing the observables to those obtained from the finite

size scaling theory of the TFI model with periodic boundary conditions (p.b.c.), we

expect the the two to be identical in situations where the finite size effects vanish. In

other words, boundary conditions should not matter in the KZ-TDL. However, once

finite size effects become relevant, we should no longer expect the systems to match.
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To compare against the TFI model, we numerically simulate a ramp of the MITP

model with o.b.c. using the same methods as Sec. 5.2.2. The only difference is that, in

projecting out neighboring spin ups, we do not apply the “end projector” that acted

on sites 1 and L. We solve for the spin-spin correlation function G(x) for the same

criteria as in Fig. 5.5, the results of which are show in Fig. 6.3a-c. We see that large

Λ matches the TFI model much better than small Λ, confirming our expectation that

o.b.c. are irrelevant in the KZ-TDL. Note that Fig. 6.3 shows scaled correlations as

a function of scaled length x/L, and we see that the solutions match better at small

distances x� L, where boundary effects are not important, as opposed to x/L ∼ 0.5,

where boundary effects are non-trivial. Also notice that the even/odd effects show

up quite strongly in situations where the boundaries matter, as expected.

An additional complication with o.b.c. is that, compared to the translationally

invariant system with p.b.c., there is no unique way to define G(x); due to the loss

of translation invariance,

〈SzjSzj+x〉 − 〈Szj 〉〈Szj+x〉 6= 〈SzjSzj+x〉 − 〈Sz〉2 , (6.6)

where 〈Sz〉 ≡ 1
L

∑
j〈Szj 〉. Choosing either side of Eq. 6.6 in defining G(x) gives

quantitatively different results. Similarly, including sites near the end of the chain in

the definition of G(x) introduces end effects whereas considering only spin correlations

between sites in the middle third of the chain emphasizes the bulk behavior at the

expense of throwing away data. The results in Fig. 6.3 use the definition

G(x) ≡ (−1)x
1

L− x

L−x∑
j=1

[
〈SzjSzj+x〉 − 〈Sz〉2

]
. (6.7)

Empirically (data not shown), the various definitions of G(x) that we described above

gave quantitatively different, but qualitatively similar, results. However, as expected,

all of the definitions converge to the same result in the KZ-TDL.
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Most importantly, the athermal negative correlations that we saw with p.b.c.

remain in the case of o.b.c. (Fig. 6.3c), and therefore are robust with respect to both

boundary conditions and small system size. In fact, o.b.c. provides an additional route

to seeing negative correlations experimentally. As seen in Fig. 6.3d, due to the absence

of the end projector, the system selects the AFM with higher spin-up probability

at the ends. By breaking the degeneracy of the ground states, the domain walls

associated with negative correlations can be seen simply by measuring the expectation

value of Szj for each site j, rather than measuring correlation functions. As expected

from Fig. 6.3c, for constant Λ these domain walls occur at a roughly constant value of

j/L. This prediction, confirmed in Fig. 6.3d, implies that the position of the domain

wall relative to the edge of the sample is tunable by the ramp rate v.

6.3 Kibble-Zurek with disorder

Experimentally, of course, disorder is omnipresent. In this section, we attempt to de-

termine whether the non-equilibrium properties we have discussed are robust against

the presence of weak-to-moderate disorder. It is well known that disorder is a relevant

perturbation for the TFI model [106, 107], which has profound effects on its Kibble-

Zurek scaling [108, 109]. Therefore, if one ramps slowly enough or probes correlations

on a sufficiently large length scale, disorder effects become relevant and qualitatively

change the scaling behavior. This topic is interesting in its own right, and deserves a

separate discussion. However, our focus here will be on the robustness to disorder of

the disorder-free KZ scaling theory in small, experimentally accessible systems.

The particular type of disorder that we consider is a random on-site longitudinal

field hzl ,

Heff = P

{
−
∑
l

[
Sxl +

(
∆+ hzl

)(Szl + 1

2

)]}
P , (6.8)
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Figure 6.4: L = 15 site MITP model with open boundary conditions and disorder
after a KZ ramp with the same parameters as Fig. 6.3d. (a) Spin-spin correlations
and (b) bond-by-bond 〈Sz〉 are shown for a range of disorder strength, with average
and standard error taken over 1000 disorder realizations. The inset to (b) zooms in
on the middle of the chain.

using the same notation as Eq. 5.34 and with hzl sampled from a Gaussian of width ε.

This is only an approximate model of the experimental disorder [110], but it should

give a good initial feel for disorder effects.

We use tMPS to simulate the time evolution of this Hamiltonian for an L = 15

bond MITP chain with open boundary conditions and a wide range of disorder

strength, the results of which are shown in Fig. 6.4. Clearly, strong enough dis-

order modifies the behavior of 〈Sz〉 and its correlations, decreasing the size of the

qualitatively athermal negative correlations. However, a non-zero signal of negative

correlations robustly remains up to the largest disorder strength that we simulate

(ε = 0.5). We estimate that the experimental conditions, with hopping energy 10

Hz and 5 Hz of disorder, correspond to ε ≈ 0.35. At this disorder strength, while

the negative correlation signal is smaller than at zero disorder, it may still be mea-

surable. Given the data in Fig. 6.4, we would recommend looking for these negative

correlations via measurements of the full correlation function as opposed to looking
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Figure 6.5: Estimated ramp rates necessary to see athermal negative correlations in a
twelve-site bosonic chain. The experimental data, borrowed from Ref. 2, shows their
measurement of the “paramagnetic fraction,” namely the fraction of sites with odd
bosonic occupation.

for domain walls in 〈Sz〉, as the correlation function signal is stronger than the domain

wall signal near ε ≈ 0.35.

6.4 Conclusions

In this chapter we have investigated the properties of the MITP model under exper-

imentally relevant conditions: with open boundary conditions and in the presence of

disorder. We find that these experimental constraints can be a blessing in disguise,

in some cases yielding phenomena not seen in the translation invariant case. To this

end, we have made a number of concrete proposals for experimental measurements

that should be within the reach of the current experimental setup [2]. In particular,

we have shown that these systems have strong even/odd effects, which are inextrica-

bly tied to the long-range AFM order of the ground state. These effects show up in

both the ground state and in the KZ dynamics, although for fast enough ramps the

KZ length scale is much less than the system length, so boundary conditions become

irrelevant. In this limit, open boundary conditions actually provide a new paradigm

for measuring the athermal spin correlations, as the broken translation symmetry

allows one to measure Sz directly instead of measuring its correlations. Finally, we
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find that the athermal correlations are remarkably robust against disorder, so that it

may be possible to see this effect even at current experimental levels of disorder.

Based on the robustness of the negative correlations against both boundary condi-

tions and disorder, we can estimate the time scale necessary to see this phenomenon

experimentally. Using the approximate experimental energy scales from Eq. 6.1 and

Ref. 2, we simulate the MITP model with open boundary conditions for the un-

frustrated case (L odd) and look for the presence of negative correlations, using the

correlation function defined in Eq. 6.7. While the smallest system shown in Ref. 2, a

six-site bosonic chain, does not exhibit negative correlations due to finite size effects,

they occur for all larger systems with L odd. In Fig. 6.5, we show the estimated

minimum ramp rate necessary to see negative correlations for a twelve-site bosonic

chain. Clearly, the time scales necessary to see these non-equilibrium effects are well

within the experimental range. 1

1These estimates do not include the effects of disorder. While this would quantitatively modify
the predicted ramp rates at current levels of experimental disorder, the numbers will change as the
experiments continue to improve.
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Chapter 7

Finite-size crossover of eigenstate

thermalization

The behavior of isolated quantum systems are a topic of renewed recent interest

[111], driven in large part by their experimental realization in ultracold atoms. One

particularly interesting question involving the dynamics of isolated systems is their

long-time behavior when started in some out-of-equilibrium state. After long enough

times, do these systems equilibrate? If so, what are the properties of the equilibrium

state, and how robust are these properties to changes in the initial state? Finally,

how does the isolated quantum equilibrium compare to the non-isolated equilibrium

given by quantum statistical mechanics?

As we will see, the answer to these questions is quite complicated. In particular, it

is now well-understood that, while most initial conditions will eventually evolve to a

long-time equilibrium, the properties of this equilibrium state depend on interactions

and disorder in the Hamiltonian of interest. In this chapter, we will discuss what

is understood about the long time relaxation of an isolated quantum system, and

present our preliminary data on the role of interactions on long time equilibrium of

finite size isolated systems.
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7.1 Dephasing in many-body systems

Consider an arbitrary time-independent Hamiltonian H with energy eigenstates |α〉,

under which we evolve a wavefunction |ψ(t)〉1 with initial state

|ψ(0)〉 =
∑
α

Cα|α〉 . (7.1)

Then the wavefunction at time t is given by

|ψ(t)〉 =
∑
α

Cαe
−iEαt|α〉 , (7.2)

where |α〉 corresponds to energy eigenvalue Eα of the Hamiltonian H. Furthermore,

we will assume that the energy levels are non-degenerate (Eα 6= Eβ for all α 6= β).

We work with such Hamiltonians in a finite Hilbert space, so that expressing |ψ〉 as

a discrete sum over non-degenerate levels is justified. One must take great care in

approaching the thermodynamic limit, where the discrete energy spectrum approaches

a continuum.

For this wavefunction, the expectation value of observable O is

〈O(t)〉 =
∑
αβ

C∗
βCαe

−i(Eα−Eβ)tOβα , (7.3)

where Oβα ≡ 〈β|O|α〉. Clearly the time evolution of this observable is complicated,

involving quasiperiodic oscillations dependent on both the eigenstate energies and

their matrix elements with respect to the observable. However as we will see in the

next section, its properties can be much better understood in the long time limit,

where the off-diagonal terms in Eq. 7.3 tend to cancel, due to their quasi-random

phases.

1 We note that, as in Sec. 2.2.1, these arguments can be readily generalized to cases where the
system starts in a mixed state density matrix.
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7.1.1 Generic dephasing: the diagonal ensemble

Taking the long time average of Eq. 7.3, which we denote 〈〈O〉〉, all off-diagonal terms

of the sum drop out, leaving

〈〈O〉〉 =
∑
α

|Cα|2Oαα . (7.4)

Notice that this is the same as the expectation value of O for the density matrix

ρdiag =
∑
α

|Cα|2 |α〉〈α| , (7.5)

known as the diagonal ensemble. The process in which pure state observables ap-

proach those of the diagonal ensemble, in which the off-diagonal phase information

of the pure state is lost, is known as dephasing.

Before proceeding to analyze the diagonal ensemble for some specific cases, we

note some of its general properties. First, while the wavefunction and its associated

density matrix are always in a pure state, the diagonal ensemble can be a mixed

state. This comes from the fact that phase information was lost, although not to

environmental dephasing as in many mixed states, but instead to time averaging.

A second point regarding the diagonal ensemble is that, while phase information

is not preserved, the weight |Cα|2 in each eigenstate is, meaning that whatever energy

distribution is initially prepared, that distribution is stationary under time evolution.

This is in contrast to an open system, where thermal equilibrium is reached by ex-

changing energy with the environment and settling into a new energy distribution

given by the Gibbs ensemble.
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7.1.2 Integrable dephasing: the generalized Gibbs ensemble

While integrability of a quantum system is primarily thought of as a nice property for

finding analytical solutions of a quantum many-body problem, it is of much more fun-

damental importance in the context of dynamics. Before explaining this, we state our

definition of integrability: by integrable, we mean a quantum system whose Hamil-

tonian is separable, i.e., H =
∑

kHk and [Hk, Hk′ ] = 0, with a number of conserved

modes k that scales polynomially with the number of sites and/or particles in the

system (logarithmically with the size of the Hilbert space). The prototypical example

of this is free fermions or bosons, where k are then the momenta of the modes. While

this class encompasses a wide range of models, including the transverse-field Ising

chain, it is a fairly restrictive definition that is not universally agreed upon [111]. For

example, this definition does not include models that can only be solved by the Bethe

ansatz, such as the Lieb-Liniger gas [112, 113].

As a consequence of integrability, the number of independent conserved quantities

in the diagonal ensemble can be significantly reduced. One can see this by noting

that the energy eigenstates must now be separable: |ψ〉 =
∏

k |ψk〉. As a result, if the

system is initialized in a product state of these modes k, then the diagonal ensemble

is also separable and, while it is still true that there are exponentially many conserved

quantities given by the weight in each energy eigenstate |α〉, these quantities are no

longer independent of each other. For instance, if the (non-degenerate) Hamiltonian

is that of free fermions, then it is formally true that the diagonal ensemble for a

system initialized in such a product state can be written

ρGGE =
∏
k

e−βkHk = e−
∑

k βkHk , (7.6)

which is known as the generalized Gibbs ensemble (GGE, see Ref. 102). Here βk is

a Lagrange multiplier, known as the inverse mode temperature, which is chosen to

115



give the correct occupation of mode k to match the initial conditions. This is not

an exact equality for the case of a free boson Hamiltonian, as not just the number

operator in mode k, nk = b†kbk, but also its higher moments are conserved quantities.

However, for physically reasonable initial conditions it is often found [102] that the

GGE with only a single mode temperature set to match 〈nk〉 gives a good quantitative

description of the time-averaged observables in a system of free bosons.

As there are no interaction terms between modes, the GGE can be effectively used

to describe integrable systems out of thermal equilibrium, particularly cases where

the momentum distribution differs from thermal equilibrium. Indeed, the GGE was

first postulated to describe such a phenomenon [102], which had been experimentally

realized in a one-dimensional Bose gas [35]. Since that time, the GGE has been

successfully applied to a number of theoretical and experimental situations [35, 37,

102], and its ability to correctly describe the non-equilibrium properties of isolated

integrable systems is by now well accepted.

7.2 Thermalization in the generalized Ising chain

To summarize, the long time average of observables for an arbitrary Hamiltonian H

and initial state |ψ(0)〉 are well described by the diagonal ensemble

ρdiag =
∑
α

|Cα|2 |α〉〈α| , (7.7)

which for an integrable system initialized in a product state can simplify to the

generalized Gibbs ensemble (GGE),

ρGGE =
∏
k

e−βkHk . (7.8)
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While the properties of these density matrices are not immediately clear, what is clear

is that they will not, in general, be the same as the Gibbs ensemble ρG = e−βH . One

might therefore be skeptical, since the success of ultracold atoms relies on the ability to

cool these isolated quantum gases to very low temperatures, and if temperature were

ill-defined, one would need to seriously re-examine most ultracold atom experiments

in the literature.

Fortunately, quantum mechanics provides a mechanism for effective thermaliza-

tion in closed systems, loosely related to the classical statistical mechanics ideas of

ergodicity and chaos. At the most basic level, the idea behind thermalization of closed

systems is that, while the system as a whole can never be thought of as truly achieving

a Gibbs distribution, the reduced density matrix of a small subsystem can approach

the Gibbs ensemble. The remainder of the system acts as a heat bath for the subsys-

tem, and thus any observable that is “reasonable” will have properties well-described

by the Gibbs ensemble.2

To understand thermalization in closed systems, we examine the behavior within

a microcanonical ensemble with narrow energy window ∆E. This approach is not

fundamentally different than the canonical ensemble implicitly used above, harkening

back to the arguments of classical statistical mechanics. Small systems may have a

wide range of support for the distribution of weight over energy levels, p(e), where

e = E/V is the energy density. However, in the thermodynamic limit this distribution

becomes sharply peaked, leading to identical expectation values in the microcanonical,

canonical, and grand canonical ensembles.

2 The term “reasonable” here is not particularly well-defined or understood. It is common to
instead say that thermalization only works for local observables [105, 114], but even then non-
local properties such as momentum distributions tend to also be well-described thermally. For the
remainder of this chapter, we will leave the term loose, noting that it remains an interesting open
question precisely what observables will notice differences from the thermal ensemble.
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7.2.1 The eigenstate thermalization hypothesis

Consider a microcanonical ensemble Ω centered at energy E with small width ∆E,

which contains NΩ energy eigenstates. By the postulates of statistical mechanics,

the energy of an arbitrary observable O must, in the long time average, match its

microcanonical average:

〈〈O〉〉 = 〈O〉mc =⇒
∑
α∈Ω

|Cα|2 Oαα =
1

NΩ

∑
α∈Ω

Oαα , (7.9)

where the C’s are normalized microcanonically:
∑

α∈Ω |Cα|2 = 1. There are two main

possibilities for how this can come about. One possibility is that, for all “reasonable”

initial conditions, either the values of |Cα|2 are all very close to N−1
Ω or the values

of Cα and Oαα are randomly distributed and uncorrelated, such that their sum gives

the microcanonical average. This option, known as canonical typicality, seems to

work for a variety of observables and initial conditions [115, 116], usually argued for

using an assumption of locality of observables and Hamiltonians. While canonical

typicality can be useful in certain situations, such as understanding when integrable

Hamiltonians give effectively thermal behavior [116], it can certainly be defeated by

appropriately chosen initial conditions. This has been seen experimentally in various

setups that are well described by a GGE, but not a thermal ensemble [35, 37].

A more robust possibility known as the eigenstate thermalization hypothesis

(ETH) was originally proposed by Deutsch [117] and Srednicki [118] and has since

been seen numerically [105] in certain systems using large-scale exact diagonalization.

The eigenstate thermalization hypothesis postulates that, for each eigenstate |α〉 in

the microcanonical ensemble and in the limit of large system size, the expectation

value of any “reasonable” observable O in |α〉 approaches that of the microcanoni-

cal ensemble: Oαα ≈ 〈O〉mc. Its name derives from the fact that, if it holds, then

each eigenstate “looks” thermal, since its observables can’t be distinguished from
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those of the equipartitioned microcanonical ensemble. One major advantage of the

ETH is that, since thermalization occurs for each eigenstate, the time averaged value

of the observable does not depend on initial conditions (within the microcanonical

ensemble).

It is now widely accepted that, for a broad class of non-integrable systems, the

properties of many observables obey the eigenstate thermalization hypothesis [105,

114]. However, it is also well understood that there are situations where eigenstate

thermalization does not occur. One such situation which we have already discussed

is the case of integrable systems, where two states close in energy can nevertheless

look qualitatively different from the standpoint of observables, since they can be

made from completely different modes which do not interact. Another important

limit where eigenstate thermalization breaks is in the presence of strong disorder,

even with interactions; this is known as many-body localization [119, 120]. Under-

standing the behavior in between perfectly integrable and/or localized systems and

strongly interacting non-integrable systems with respect to eigenstate thermalization

is a major open question. In Sec. 7.2.3, we will present some initial numerical data

and analytical thoughts on the crossover between non-thermalizing integrable systems

and strongly non-integrable systems that obey the ETH, using a generalization of the

one-dimensional Ising model as a numerical test case.

7.2.2 The eigenstate thermalization crossover

Consider an integrable Hamiltonian H0 to which a non-integrable perturbation γV is

added. For a finite-size system, it seems fairly evident that eigenstate thermalization

cannot occur at an arbitrarily small γ, since the distribution of eigenvalues and their

observables must vary smoothly from the integrable γ = 0 case, where the ETH is not

satisfied. Therefore, the onset of eigenstate thermalization in finite size systems must

take the form of a crossover, the properties of which were first investigated by Rigol
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[121] for 1D hardcore bosons with next nearest neighbor hopping and interactions to

make them non-integrable. What remains unclear is what happens to this finite size

crossover as the system size is increased toward the thermodynamic limit (TDL).

One possibility is that the crossover will asymptote to some sort of phase transi-

tion with the onset of eigenstate thermalization at a finite, non-zero value γc. There

is numerical evidence for such a phase transition in the case of many-body localiza-

tion [120], and it has been suggested [114] that such a phase transition could exist

in the case of the integrability/non-integrability crossover by analogy to certain clas-

sical systems, where there can exist a non-zero amount of integrability-breaking γ –

known as the Kolmogorov-Arnold-Moser (KAM) threshold [122–124] – below which

the system does not exhibit classical chaos.

A second possibility is that the onset of thermalization in the TDL occurs at

arbitrarily small γ. In the next section, we provide evidence that appears to support

this possibility. While our numerical evidence and theoretical predictions are not yet

sufficient to strongly argue for this hypothesis, we point out that at least one other

group has produced similar evidence [125]. We therefore present the data and ideas

that we have so far on this topic, with the hope that our on-going efforts will soon

be able to more strongly support or reject this hypothesis.

7.2.3 Results for generalized Ising chain

The model that we consider is a generalization of the 1D Ising chain in which non-

integrable interactions are added. In particular, we add a nearest-neighbor sxsx inter-

action which, while irrelevant near the critical point in the low energy renormalization

group sense, nevertheless appears to break the integrability. The Hamiltonian is

H = −
L∑
j=1

[
(1− λ) sxj + szjs

z
j+1 + γsxj s

x
j+1

]
, (7.10)
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where γ = 0 is the integrable point which we tune away from. Doing the same

set of transformations as were used to solve the TFI model (see Chp. 5), the above

Hamiltonian can be re-expressed in terms of Wigner fermions. The sxsx term involves

four fermion scattering,

Hxx/γ = L− 4
∑
k

nk +
4

L

∑
k,k′

nknk′ [1− cos(k − k′)] +

4

L

∑
k1<k2
k′1<k

′
2

c†k′1
c†k′2
ck2ck1

(
eik

′
2 − eik

′
1

) (
e−ik2 − e−ik1

)
δk1+k2,k′1+k′2 . (7.11)

This term conserves fermion number modulo 2, so we continue to work in the even

fermion parity sector. Also, noting that the total fermion momentum P is conserved,

we work in the P = 0 sector, additionally restricting ourselves to the subspace with

even spatial parity (an extra symmetry within the P = 0 sector).3

As the ETH is a statement regarding the properties of individual energy eigen-

states, we numerically perform exact diagonalization on this Hamiltonian to gain

access to these eigenstates. We then wish to look at the spread of observable expec-

tation values for eigenstates within some microcanonical energy window ∆E, but first

we must specify the energy E (or equivalently temperature) where this microcanonical

ensemble is centered. Borrowing on the ideas of Pal, Oganesyan, and Huse [120, 126],

we consider the onset of thermalization at infinite temperature, where the canonical

ensemble is ρ = 1. Then, for a system in the TDL, a microcanonical ensemble cor-

responding to infinite temperature is defined as an energy window ∆E centered at

the middle of the energy spectrum, that captures a vanishingly small energy density

∆E/L → 0 as L → ∞. One convenient method for doing this is to include only the

middle third of the energy spectrum, i.e., the eigenstates with energy EN/3 through

3 While all of the preceding arguments considered properties of a full Hamiltonian, they really
only hold within a given symmetry sector. For example, as there are no interactions between sectors
of different total momentum P in the generalized Ising model solved here, they cannot thermalize
between one another, but rather thermalize within each sector.
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E2N/3 if the N eigenstates are sorted according to E1 < E2 < . . . < EN . Since the

r.m.s. width of the energy distribution scales as
√
L [120] by a simple argument,4 the

middle third of the spectrum incorporates energy densities ∆E/L ∼ 1/
√
L, which

vanishes in the TDL as desired. However, its worth noting that for a finite size

Hamiltonian, this particular choice of microcanonical ensemble includes some states

at finite temperature, leading inevitably to finite size effects. For these eigenstates,

we attempt to discover what properties characterize thermalization, and how they

scale with system size.

Prior to seeing thermalization, we must first confirm that our Hamiltonian is

indeed non-integrable. While there is no cut-and-dry analytical test for this, one

successful technique which has been applied in many-body localization is to look

at the many-body spectral statistics. For a non-interacting problem, different modes

don’t talk to one another, meaning that two many-body eigenstates can lie arbitrarily

close in energy. Once integrability-breaking interactions are introduced, however,

closely-spaced energy levels repel one another. Therefore, while the density of states

looks very similar with or without interactions (Fig. 7.1a-b), the distribution of energy

spacings between neighboring levels changes significantly as interactions are turned

on, exhibiting a dip near zero due to level repulsion (Fig. 7.1c-d). We can encompass

the level spacing in a single statistic [126]

rn =
min (En+1 − En, En − En−1)

max (En+1 − En, En − En−1)
, (7.12)

where the N energy levels are sorted as E1 < E2 < . . . < EN . The average value

of this statistic should change from 〈r〉 ≈ 0.386 in the non-interacting limit, given

by the statistics of an uncorrelated (Poissonian) distribution, to 〈r〉 ≈ 0.530 in the

strongly interacting limit, given by the statistics of a Gaussian orthogonal ensemble

4Break H up into a sum of on-site Hamiltonians Hj . Then 〈H2〉 =
∑

ij〈HiHj〉. For our nearest
neighbor Hamiltonian, 〈HiHj〉 = 0 if |i − j| > 1 (for an appropriate breakup of H). Since 〈H2

i 〉 ∼
〈HiHi+1〉 ∼ 1 as the matrix elements are of order unity, we find that 〈H2〉 ∼ L.
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Figure 7.1: (a,b) Density of states for the generalized Ising model in Eq. 7.10, exhibit-
ing no significant differences between the integrable case (a) and the non-integrable
case (b). (c,d) Energy level spacing for the same values of the integrability-breaking
parameter γ, demonstrating level repulsion for the non-integrable Hamiltonian. In
(c), a large peak at Ej+1 − Ej = 0, corresponding to degenerate levels in the inte-
grable model, has been removed. (e) Finite size and γ dependence of the level spacing
statistic r, defined in Eq. 7.12. The dashed lines shows the expected value of r for
GOE and Poissonian level statistics [120]. All panels show data at λ = 1

2
, restricted

to the total momentum P = 0 sector with even spatial parity. Panels (c-e) are for
infinite temperature, i.e., only using the middle third of the energy spectrum.

(GOE) from random matrix theory [126]. While this general trend holds (Fig. 7.1e),

confirming that the γ term breaks integrability, the data is much too noisy to establish

finite-size scaling behavior. Therefore, we search for a better tool to investigate the

finite size scaling of eigenstate thermalization.

According to the ETH, all reasonable observables should undergo a crossover from

randomly distributed to microcanonically equivalent as interactions are increased.

While we in principle have complete freedom to choose such an observable, it is

important to step back before proceeding and ask what properties we wish this ob-

servable to satisfy. First, in order to be able to accumulate statistics over the entire

middle third of the spectrum, we need the observable to be “microcanonically” the

same over this wide range in energy. While a priori it seems unnecessary to look over

such a large energy window, other studies which looked over much smaller energy win-

dows to avoid seeing the energy-dependence of the observable (e.g., [121, 125]) had,

as a result, very limited statistics on finite size scaling. Second, we wish to exam-

ine an observable that would be relatively straightforward to measure experimentally
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and/or utilize in more complicated numerical techniques, such as DMRG or QMC

methods. We will present some initial data for an observable which satisfies the first

of these criteria but, as we will see, not the second. In this sense, this observable is a

valuable tool for examining the finite-size crossover within the context of numerical

exact diagonalization, but a more physical observable will need to be found before

approaching the problem through more advanced methods or experiments.

The observable we consider (Fig. 7.2) is the number of broken momentum pairs,

B =
∑
k>0

(
nk + n−k − 2nkn−k

)
, (7.13)

where nk = c†kck is number of fermions at momentum k. This observable is suggested

by the form of the unperturbed integrable Hamiltonian (Eq. 5.3), which commutes

with B since all fermion operators occur in (+k,−k) pairs. Therefore, the eigenstates

with γ = 0 have B as a good quantum number (Fig. 7.2a). However, the scattering

terms in Eq. 7.11 do not commute with B, so as they are turned on, the eigenstate

values of this observable mix. Eventually, for high enough γ, the spread of 〈B〉

between eigenstates narrows and approaches a steady state (Fig. 7.2e), which has

weak dependence on energy within the middle third of the spectrum (Fig. 7.2d). The

spread of these Bαα values is characterized by their standard deviation

σB =

√∑
α

(
Bαα − Bαα

)2
, (7.14)

where Bαα is an average value over the α’s. We see in Fig. 7.2f that σB has strong L

and γ dependence, as expected.

To heuristically identify a crossover scale γc(L), we take σB and do the following:

1) subtract the average value between γ = 0.8 and 1.0 to remove the offset, and 2)

locate the value of γ where σB is at half of it’s γ = 0 value by fitting to the four
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Figure 7.2: (a-d) Expectation values Bαα of the broken pair operator B (Eq. 7.13)
in the energy eigenstates |α〉, showing a crossover from integrable behavior (γ = 0)
to eigenstate thermalization (γ = 0.6). Dashed green lines outline the middle third
of the spectrum, used to find infinite temperature behavior in (e-f). (e) Evolution
of the Bαα distribution as a function of γ. (f) Width of the Bαα distribution as a
function of system size L and γ, normalized by the width at γ = 0. (inset) Heuristic
estimate of the crossover scale from σB, as described in the text. Dashed line shows
our calculation for the breakdown of perturbation theory, γc ∼ L−2. As in Fig. 7.1,
we use λ = 1

2
and P = 0.

nearest points. This point, γc, is our estimate of the crossover scale. As seen in the

inset to Fig. 7.2f, γc decreases strongly as a function of L. While consistent with the

hypothesis that the phase transition occurs at infinitesimal integrability breaking in

the TDL (i.e., γc → 0 as L → ∞), the range of system sizes we are able to solve is

still not sufficient to draw any definitive conclusions.

Finally, we can place some limits on the finite-size scaling properties of eigenstate

thermalization in this model by noting that, in order for the integrable Hamiltonian’s

eigenstates to mix sufficiently for their observables to satisfy the ETH, perturbation

theory must break down.5 If we consider an arbitrary eigenstate |n〉 of the unper-

5 After completing this analysis, we became aware of similar ideas in Ref. 125.
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turbed TFI Hamiltonian, then at second order in perturbation theory, the energy of

|n〉 shifts by

∆E(2)
n =

∑
m 6=n

|〈m|V |n〉|2

Em − En

. (7.15)

Perturbation theory breaks down when the characteristic size of this term approaches

the level spacing Em − En between coupled levels, i.e., levels where 〈m|V |n〉 6= 0.

To determine a naive bound on the breakdown of perturbation theory for the

Hamiltonian in Eq. 7.10, we note that for each mode km = 2π(m+1/2)/L, there exists

some Bogoliubov rotation such that the eigenstates of the unperturbed Hamiltonian

are just number eigenstates of the Bogoliubov modes [78]. So |n〉 can be represented

as a binary string of length L, i.e., |00111011 · · ·〉, where a 1 (0) at positionm indicates

that mode m is (not) occupied. The zeros and ones will be completely random in

some arbitrary infinite temperature eigenstate.

Denote the Bogoliubov creation operators a†k = ukc
†
k+ vkc−k, where uk and vk are

elements of the unitary Bogoliubov rotation matrix. In terms of these operators, the

off-diagonal elements of the interaction matrix V do not conserve particle number,

i.e., terms of the form aaaa, a†aaa, ..., a†a†a†a† all exist. These terms have two things

in common: 1) they enter with magnitudes proportional to γ/L and 2) they conserve

the total momentum, modulo 2π. In counting up the total number of non-zero matrix

elements of V , we are free to choose three different momenta at random, with the

fourth fixed by momentum conservation. Therefore, the total number of terms in the

sum in Eq. 7.15 scales as L3, as there are L different momenta to choose from. By the

first condition, these terms all enter with magnitude |〈m|V |n〉|2 ∼ γ2/L2. Meanwhile,

as the unperturbed levels come from a band with bandwidth of order unity, the

characteristic scale of energy difference in the denominator of Eq. 7.15 will be ∼ 1.

This leads to an effective density of connected states ρconn ∼ L3, corresponding to a

characteristic gap of ∆conn ∼ L−3 between connected levels. So we expect a scale γc
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for the breakdown of perturbation theory given by

(γc
L

)2
L3 ∼ ∆conn =⇒ γc ∼ L−2 . (7.16)

While a bit heuristic, the above argument sets a limit on the fastest a system

could thermalize as the non-integrable interaction γsxsx is introduced. For example,

it appears to rule out the possibility of exponential approach to eigenstate thermal-

ization for large systems, i.e., γc 6∼ e−L. However, we are not yet able to show that

this breakdown of perturbation theory is sufficient for eigenstate thermalization, so

we have not proven that γc → 0 as L→ ∞. While the strong decrease in observable

variance as a function of system size shown in the inset to Fig. 7.2f provides evidence

in favor of this possibility, the numerics have not yet been pushed to sufficiently large

systems to establish that γc does not asymptote to a finite value in the TDL.

7.3 Conclusions

In this chapter, we investigated the finite size scaling of eigenstate thermalization as

integrability is broken, using a variant of the Ising model as a numerical test case.

Compared to the other chapters in this dissertation, this chapter contains relatively

raw research, and therefore we are not able to draw many definitive conclusions at this

time. We showed some preliminary evidence that, for a fairly aphysical observable

B, the crossover scale for eigenstate thermalization decreases sharply with system

size. From a perturbative calculation, we set an upper limit on the rate at which the

crossover scale can approach zero as the system size increases. However, we are not yet

able to determine the asymptotic behavior of this crossover in the thermodynamic

limit. To do so in a definitive manner, we will likely need a combination of more

sophisticated numerics – such as MPS-based techniques – to allow investigation of

larger system sizes, a more predictive theoretical approach – in particular one which
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suggests some finite size scaling form which we can attempt to match to the data – and

a more physically relevant observable to measure, such as the spin-spin correlation

function. We have been working on all of these fronts, so hopefully soon we will be

able to reach a more concrete conclusion.
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Chapter 8

Open questions in closed systems

In this dissertation, we have discussed a number of topics in closed quantum systems.

We have developed and analyzed the FCIQMC algorithm, both understanding and

improving its ability to mitigate the sign problem, which is crucial to solving prob-

lems in fermionic systems. Turning to dynamics, we have solved the scaling properties

for one of the simplest quantum critical systems, the integrable transverse-field Ising

chain. We saw that qualitatively athermal spin correlations that arise in the dynam-

ics are not only universal, but robust against experimental considerations such as

boundary conditions and disorder. Finally, we turned to the long time behavior of

the TFI chain with an integrability-breaking term added, presenting some initial data

on the finite size scaling of eigenstate thermalization, a crucial ingredient for utilizing

these closed systems to simulate condensed matter systems in thermal equilibrium.

This work, however, only begins to touch on the many open questions in the

field of isolated quantum systems. We have seen that even in some of the simplest

cases, such as the Kibble-Zurek scaling theory of the transverse-field Ising model,

one finds interesting, unexpected, and universal non-equilibrium behavior. However,

breaking the integrability renders the problem much more difficult, and it is in these

non-integrable systems that the majority of open questions reside.
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Within the context of scaling theory, many questions about the dynamics remain.

The TFI chain discussed in Chp. 5 is one of the simplest examples of a critical point

available: an integrable system with an integrable critical point. We saw numerically

that breaking the integrability did not change the scaling behavior, but the MITP

model still has an integrable QCP, meaning that the low energy properties remain

integrable. One important goal is to find scaling functions for a non-integrable QCP,

where even the low energy degrees of freedom are strongly correlated. In this case,

one may address the interplay between eigenstate thermalization, which occurs in the

long time limit, and the relatively short time behavior of critical scaling dynamics.

As a precursor, one could instead examine the dynamics during a ramp of an RG-

relevant non-integrable perturbation near an integrable QCP; for instance, adding a

longitudinal magnetic field to the TFI chain.

Another class of models with interesting critical scaling properties are those with

z = ∞ QCPs [108, 109], notably the infinite randomness critical point of the Ising and

Heisenberg models [107, 127], as well as disorder-free models exhibiting a Berezinsky-

Kosterlitz-Thouless (BKT) phase transition such as the quantum spin-1/2 XXZ model

[128] and the spin-1 XXZ model with uniaxial single-spin anisotropy [129]. The model

of Ref. 129 has particular applicability as a low-energy theory of the one-dimensional

Bose-Hubbard model, which has much closer connection to current experiments than

these spin models [35, 37]. In addition, with these one-dimensional bosonic systems

there is some question as to the existence of anomalous dynamic exponents [104, 129],

which may be addressable within a full BKT scaling theory.

At higher energies, our understanding of thermalization remains incomplete. For

instance, most work on thermalization has focused on one-dimensional systems for

the simple reason that they are the most numerically tractable. However, in higher

dimensions, cold gases empirically thermalize well enough for mapping out equations
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of state [130]. This dimensional dependence is still not fully understood, nor is, for

example, the effect of an optical lattice [131, 132].

Experimentally, the controllable onset of thermalization remains to be seen. Since

the first observation of athermal behavior in an integrable system [35], there have been

numerous attempts to controllably add integrability-breaking terms to the Hamilto-

nian in order to measure the onset of thermalization. However, as of yet the time

scales necessary to see thermalization in these systems do not appear to be accessi-

ble; the systems heat up due to environmental interactions before characteristics of

eigenstate thermalization manifest [36, 37].

In order to theoretically address these questions, new numerical techniques will

be needed. DMRG-based methods have been quite successful in performing time

evolution and finding ground states of one-dimensional systems. However, their ap-

plicability for finding highly excited states is currently quite limited [133]. In addition,

while time evolution works well for one-dimensional systems, it does not scale well to

higher dimensions. One option for using DMRG-like techniques in higher dimensions

are tensor product states [134, 135], but at this point that technology is still at too

early a stage to be competitive with DMRG in performing time evolution.

Time evolution and excited state targeting with QMC suffer from a sign problem

similar to that of the ground state of fermionic Hamiltonians, even for Hamiltonians

where the ground state algorithm has no sign problem. This can be understood

physically as the fact that, for most bases, excited and/or time-evolved states have

nodes and phases, even when the ground state does not. For example, if we want to

do real-time evolution via applying the operator U = e−iτH ≈ 1− iτH, we can break

U up into four positive matrices {U±,U±I}, such that

U = U+ + iU+I −U− − iU−I . (8.1)
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Then, working in a configuration space consisting of a basis element and a phase (i.e.,

{±1,±i}), the time evolution stochastically simulates



c+n+1

c+In+1

c−n+1

c−In+1


=



U+ U+I U− U−I

U−I U+ U+I U−

U− U−I U+ U+I

U+I U− U−I U+





c+n

c+In

c−n

c−In


(8.2)

As in the analysis of Sec. 4.1.2, the dominant instability here is to the ground state of

U+ +U+I +U− +U−I . An interesting open question is how this “phase problem” is

affected by the presence of annihilation. Based on our experience with FCIQMC, it

seems as if solving such a problem would be difficult, but not necessarily impossible.

In conclusion, the dynamics of closed quantum systems remain a difficult but

exciting frontier, becoming increasing relevant due to continued improvements in

ultracold atom experiments. Indeed, it is often simpler to see non-equilibrium effects

on experimental time scales than it is to find the ground state, so as theorists we

must continue working to turn this into an advantage rather than a burden. The

difficulty lies not just in numerically or analytically solving the Schrödinger equation,

but in attempting to place results within a broader unifying context; as a fairly new

field, research on closed system dynamics still seems relatively disjointed. While in

this dissertation we have examined some particular limits of the dynamics – namely

their long time behavior and critical scaling – the majority of phase space remains

untouched. We hope and expect that, as this area is explored, it will continue to yield

exciting and unexpected new phenomena.
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Appendix A

Proof of quantization equivalence

conditions for FCIQMC

We will now show that a) the conditions described in Sec. 4.1.3 uniquely characterize

when the first and second quantized sign problem differ and b) if they differ, the

second quantized sign problem is better. We introduce the notation

Ũα = U+
α +U−

α , (A.1)

where α ∈ {F,D, P}, U+(−)
α consists of strictly non-negative elements, and the actual

matrix corresponding to U is Uα = U+
α −U−

α .

Let’s start by considering under what conditions the first and second quantized

algorithms have the same sign problem. From the arguments in Sec. 4.1.3, it is clear

this will be the case if

〈Pi|
(
U+
F +U−

F

)
|Pj〉 = 〈Di|

(
U+
D +U−

D

)
|Dj〉 . (A.2)
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Expanding out the determinants and permanents, this can be rewritten

1

N !

∑
i∈Di
j∈Dj

|〈i|U |j〉| =

∣∣∣∣∣∑
i∈Di
j∈Dj

〈i|Di〉〈j|Dj〉〈i|U |j〉

∣∣∣∣∣ . (A.3)

By the triangle inequality, the left side is greater than or equal to the right side, with

equality iff all terms within the absolute values on the right side are of the same sign.

Therefore, the equality implies that, for all i ∈ Di and j ∈ Dj,

sDiDj
|〈i|U |j〉| = sgn〈i|Di〉sgn〈j|Dj〉〈i|U |j〉 ⇐⇒

sDiDj
= sgn〈i|Di〉sgn〈j|Dj〉sgn〈i|U |j〉

or

〈i|U |j〉 = 0 , (A.4)

where sDiDj
= ±1 is an arbitrary sign that is the same for all i ∈ Di and j ∈ Dj. If

we consider two distinct FQ basis elements j, j′ ∈ Dj, then either

• 〈i|U |j〉 = 0 or

• 〈i|U |j′〉 = 0 or

• sgn〈j|Dj〉sgn〈i|U |j〉 = sgn〈j′|Dj〉sgn〈i|U |j′〉 . (A.5)

These conditions, which we will see uniquely characterize when first and second quan-

tization differ, are precisely the conditions we assumed were met by the “filtered” psip

distribution in Sec. 4.1.3. Since the conditions in Eq. A.5 are equivalent to those in

Eq. A.2, then if Eq. A.5 holds, the first and second quantized sign problems are iden-

tical.

Second, we show that if the conditions in Eq. A.5 are not met, then the sign

problem in second quantization is strictly better. Let |ϕ̃D〉 be the highest energy
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eigenstate of ŨD with eigenvalue ẼD. Construct the (normalized) FQ state |ϕF 〉 such

that

〈i|ϕF 〉 =
1√
N !

〈Di|ϕ̃D〉 , (A.6)

for all |i〉 ∈ |Di〉. Since ŨD is a positive matrix, |ϕ̃D〉, and thus |ϕF 〉, is positive

valued.

Now consider the variational energy of |ϕF 〉 with respect to the matrix ŨF :

Ẽ ′
F ≡ 〈ϕF |ŨF |ϕF 〉 =

∑
ij

〈i|ϕF 〉〈j|ϕF 〉〈i|ŨF |j〉 . (A.7)

By definition, 〈i|ŨF |j〉 = |〈i|U |j〉|. Utilizing this,

Ẽ ′
F =

1

N !

∑
ij

〈Di|ϕ̃D〉〈Dj|ϕ̃D〉 |〈i|U |j〉|

=
1

N !

∑
DiDj

〈Di|ϕ̃D〉〈Dj|ϕ̃D〉
∑
i∈Di

∑
j∈Dj

|〈i|U |j〉| , (A.8)

where in the last step we broke the sum up into determinant sectors.

From this point onward, assume that the conditions in Eq. A.5 are not met. Then

there must exist some j, j′ ∈ Dj such that

• 〈i|U |j〉 6= 0 and

• 〈i|U |j′〉 6= 0 and

• sgn〈j|Dj〉sgn〈i|U |j〉 6= sgn〈j′|Dj〉sgn〈i|U |j′〉 . (A.9)

Consider the sign of these two terms in the sum
∑

j∈Dj
from Eq. A.8. It is clear that

|〈i|U |j〉| = |〈i|U |j〉sgn〈j|Dj〉| (A.10)
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for all j ∈ Dj. However, by Eq. A.9, j and j′ have different signs for the term inside

the absolute value on the right hand side of Eq. A.10. Therefore, by the triangle

inequality,

Ẽ ′
F >

1

N !

∑
DiDj

〈Di|ϕ̃D〉〈Dj|ϕ̃D〉
∑
i∈Di

∣∣∣∣∣∣
∑
j∈Dj

〈i|U |j〉sgn〈j|Dj〉

∣∣∣∣∣∣ . (A.11)

We are now in a position to rewrite the right hand side in terms of determinants,

since ∑
j∈Dj

|j〉sgn〈j|Dj〉 =
√
N !|Dj〉 . (A.12)

Thus,

∑
j∈Dj

〈i|U |j〉sgn〈j|Dj〉 =
√
N !〈i|U |Dj〉

=
√
N !〈i|UA|Dj〉

=
√
N !〈i|AU |Dj〉

= sgn〈i|Di〉〈Di|U |Dj〉 . (A.13)

Now that everything is in terms of Di, we can bring out a factor of N ! correspond-

ing to the sum
∑

i∈Di
. Then

Ẽ ′
F >

∑
DiDj

〈Di|ϕ̃D〉〈Dj|ϕ̃D〉 |〈Di|U |Dj〉|

=
∑
DiDj

〈Di|ϕ̃D〉〈Dj|ϕ̃D〉〈Di|ŨD|Dj〉 = ẼD . (A.14)

Therefore, by the variational principle, ẼF > ẼD, where ẼF is the maximum eigen-

value of H̃F .

In conclusion, we have shown that ẼF = ẼD if and only if the conditions in Eq. A.5

hold. If they do not hold, then ẼF > ẼD. Therefore, the sign problem in a second
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quantized formalism is at least as good as in the first quantized case with same set

of single-particle orbitals, becoming strictly better precisely when the conditions in

Eq. A.5 break.
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