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Abstract

In this thesis we develop and test methods for numerically evolving hydrodynam-

ics coupled to the Einstein field equations, and then apply them to several prob-

lems in gravitational physics and astrophysics. The hydrodynamics scheme utilizes

high-resolution shock-capturing techniques with flux corrections while the Einstein

equations are evolved in the generalized harmonic formulation using finite difference

methods. We construct initial data by solving the constraint equations using a multi-

grid algorithm with free data chosen based on superposing isolated compact objects.

One application we consider is the merger of black hole-neutron star and neutron

star-neutron star binaries that form through dynamical capture, as may occur in

globular clusters or galactic nuclei. These systems can merge with non-negligible

orbital eccentricity and display significant variability in dynamics and outcome as a

function of initial impact parameter. We study the electromagnetic and gravitational-

wave transients that these mergers may produce and their prospects for being detected

with upcoming observations.

We also introduce a numerical technique that allows solutions to the full Ein-

stein equations to be obtained for extreme-mass-ratio systems where the spacetime

is dominated by a known background solution. This technique is based on using the

knowledge of a background solution to subtract off its contribution to the trunca-

tion error. We use this to study the tidal effects and gravitational radiation from a

solar-type star falling into a supermassive black hole.

Finally, we utilize general-relativistic hydrodynamics to study ultrarelativistic

black hole formation. We study the head-on collision of fluid particles well within the

kinetic energy dominated regime (Lorentz factors γ = 8 − 12). We find that black

hole formation does occur at energies a factor of a few below simple hoop conjecture

estimates. We also find that near the threshold for black hole formation, the collision
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leads to two separate apparent horizons which then merge. Both of these phenomena

can be understood in terms of a gravitational focusing effect.
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Chapter 1

Introduction

In this chapter we begin by briefly enumerating some of the topics in physics and

astrophysics that can be addressed using general-relativistic hydrodynamics, empha-

sizing the particular applications addressed in this thesis. We also review the equa-

tions of general-relativistic hydrodynamics in the form used here, and then outline

the remainder of the thesis.

1.1 Motivation

Since shortly after its formulation by Albert Einstein in 1915-1916, general relativity

has been the reigning theory of gravity. Yet despite being around for nearly a century,

most of our evidence for the veracity of general relativity comes from the weak field

regime: from solar system tests or indirect evidence of gravitational waves [9]. The

theory still remains largely untested in the strong-field regime where spacetime is

highly curved and very dynamic. One of the most promising avenues to explore

this regime is through the direct detection of gravitational waves. Several ground-

based gravitational wave detectors utilizing laser interferometers including LIGO [10],

VIRGO [11], and GEO600 [12] have been built and run. Though no detections have

yet been made [13], these observatories are currently being upgraded to “advanced”
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sensitivity and are expected to begin taking data in the next few years. Pulsar

timing arrays are another promising method for detecting gravitational waves that

is currently being pursued [14, 15] and there have also been proposals for a space-

based laser interferometer gravitational wave detector to be launched in the coming

decades [16].

The primary target for ground-based gravitational wave detectors is the merger of

stellar mass compact object binaries: black hole-black hole, black hole-neutron star,

and neutron star-neutron star binaries. Event rate estimates for these mergers are

based on population synthesis models and have large uncertainties, but they indicate

that Advanced LIGO should see somewhere between ∼ 1-1000 events per year [17].

The lack of analytical solutions of the general-relativistic field equations describing

the mergers of these systems makes numerical methods necessary to understand them.

Because gravitational wave signals are expected to have small magnitudes compared

to the noise in the upcoming generation of detectors, match-filtering techniques which

utilize waveform templates to pick the signal out of the noise will probably be nec-

essary. This makes numerical solutions of the field equations necessary not only for

interpreting gravitational wave signals, but potentially also for detecting them.

This thesis is concerned with general-relativistic systems that have matter, e.g.

black hole-neutron star and neutron star-neutron star binaries, which are of inter-

est for several reasons beyond the exploration of strong-field general relativity. It

is thought that the cores of neutron stars contain matter exceeding nuclear den-

sity (3 × 1014 gm/cm3) by a factor of a few. These densities are far beyond the

reach of terrestrial experiments and there is considerable uncertainty about the prop-

erties of matter in this regime. It has been speculated that the cores of neutron

stars could contain boson condensates, hyperons, or possibly even strange quark

matter [18]. Since the properties of super-nuclear density matter, encoded in the

neutron star’s equation of state, determine the star’s compactness, maximum mass,
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tidal deformability, etc., observations of neutron star mergers could reveal crucial in-

formation about nuclear density physics. Studies of these effects in binary mergers

indicate that the equation-of-state may be encoded in gravitational wave signals at

a detectable level [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] (though percent-level

characterization of equation-of-state parameters may not be possible until the next

generation of detectors are developed).

Systems with matter also have the potential to source observable electromagnetic

transients which might be seen as counterparts to gravitational wave signals. Indeed,

there are already efforts underway to trigger searches for electromagnetic transients

using potential gravitational wave sources [30, 31]. Merging black hole-neutron star

or neutron star-neutron star binaries are one of the leading candidates for the progen-

itors of short gamma-ray bursts (SGRBs) [32, 33, 34]. In the hypothesized scenario,

the merger would create a black hole surrounded by an accretion disk which would

subsequently power a jet. A compact-object-merger origin of short gamma-ray bursts

is consistent with the duration and millisecond variation observed in the signal, as

well as the fact that SGRBs do not trace star formation [35]. However, the case is

still inconclusive, which is something that the coincident detection of a gravitational

wave and short gamma-ray burst could change. Though simulating the actual burst

event is beyond the scope of this work, the properties of an accretion disk resulting

from a compact object merger — and hence its viability to launch such a burst — will

depend crucially on the strong-field dynamics of the merger, and thus is something

which should be addressed by general-relativistic hydrodynamic simulations.

Besides short gamma-ray bursts, the high-energies of compact object mergers

could power a number of other electromagnetic transients. During the merger pro-

cess, some material will become unbound and ejected from the system. As the ejecta

decompresses, it will undergo the r-process building up heavy elements which then

decay by nuclear fission, sourcing infrared/optical emissions [36, 37, 38]. The collision
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of this ejected material with the interstellar medium could also potentially produce

radio wave emissions. Again, the amount of ejected material will depend crucially

on the details of the merger dynamics [39]. Compact object mergers could also pro-

duce electromagnetic transients from magnetic field effects [40, 41] or flaring from the

neutron star’s crust cracking [42]. With a number of transient surveys underway or

scheduled to come on-line, including PTF [43], Pan-STARRS [44], and LSST [45], un-

derstanding what these potential transients indicate about the strong-field dynamics

which gave rise to them will be important.

Another target system for transient surveys in which strong-field gravity is impor-

tant is tidal disruption events. Supermassive black holes with masses of roughly 105

to 1010 M⊙ are thought to reside in the centers of most galaxies (including our own)

and, on occasion, stars pass close enough to them to be captured and tidally dis-

rupted [46]. The resulting accretion from the disrupted stellar material is conjectured

to be the source of a number of candidate events observed in the optical through the

X-ray bands [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. For solar-type stars

encountering black holes of 107 to 108 solar masses, tidal disruption will occur near

the innermost stable circular orbit of the black hole. These systems will therefore

be sensitive to strong-field effects, including zoom-whirl type behavior and the spin

of the black hole, which may imprint the flares we observe from such events. Hence,

general-relativistic hydrodynamics can also contribute to the understanding of these

systems.

There are numerous other examples of astrophysical systems that are being studied

using general-relativistic hydrodynamics, including black hole accretion tori [61, 62,

63, 64], NS-white dwarf mergers [65], white dwarf-intermediate black hole disruption

events [66], and core-collapse supernovae [67]. As the field matures this list will

certainly grow.
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Even beyond gravitational wave astronomy and high-energy astrophysics, there

are a host of problems in theoretical general relativity and high-energy physics that

can be addressed using general-relativistic hydrodynamics. This includes studying

the ADS-CFT/gauge-gravity duality [68, 69, 70] and critical phenomena in gravita-

tional collapse [71]. One example which we address here is the possibility of form-

ing black holes in ultrarelativistic collisions. If two particles collide at sufficiently

high speeds, they should form a black hole, because as the speeds of the particles

approach the speed of light (in the center-of-mass frame) their kinetic energy will

become arbitrarily large. According to general relativity, kinetic energy, like all other

forms of energy, gravitates. Besides being an interesting theoretical topic in general

relativity, it has been suggested that if our universe has small or warped extra dimen-

sions [72, 73, 74] black hole formation could occur in proton collisions at the Large

Hadron Collider [75, 76], and in the ultrarelativistic collision of cosmic rays with the

Earth’s atmosphere [77].

The numerous and diverse applications motivate the development of general and

robust methods for simulating general-relativistic hydrodynamics. In the remainder

of this chapter, we briefly review the Einstein equations and the general-relativistic

hydrodynamic equations and outline the remainder of this thesis.

Note that throughout this thesis, unless otherwise stated, we will make use of

geometric units where G = c = 1.

1.2 Einstein equations

In Einstein’s theory of general relativity, gravity is described in terms of the geometry

of spacetime. Spacetime is represented by a Lorentzian manifold with metric gab where

distances are measured by the line element

ds2 = gabdx
adxb . (1.1)
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The Christoffel connection Γa
bc for the spacetime manifold is given by

Γa
bc =

1

2
gad(∂bgcd + ∂cgbd − ∂dgbc) (1.2)

and can be used to define the covariant derivative on an arbitrary vector field V a as

∇aV
b = ∂aV

b + Γb
acV

c . (1.3)

Spacetime curvature is encoded in the Riemann tensor Ra
bcd which is usually defined

in terms of the commutator of the covariant derivative operator:

(∇a∇b −∇b∇a)V
c = Rc

dabV
d , (1.4)

i.e., the difference from changing the order when parallel transporting the vector field

in first one direction and then another. Using (1.2), the Riemann tensor can then be

written as

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ceΓ
e
db − Γa

deΓ
e
cb . (1.5)

Now the spacetime curvature in which gravity is manifested is governed by the field

equations:

Rab = 8πTab − 4πTgab. (1.6)

Here Tab is the stress-energy tensor of the matter, T is its trace, and Rab := Rc
acb is the

Ricci tensor formed by contracting the Riemann tensor. Hence the field equations rep-

resent a set of 10 second-order partial differential equations for the metric. However,

in this form, they have no fixed characteristic since they are merely statements about

the geometry of 4-dimensional spacetime and are invariant under diffeomorphism.

The particular formulation of the Einstein field equations that we use in this

thesis is the generalized harmonic formulation [78, 79] (c.f. BSSN [80, 81], another
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popular formulation). In this formulation, we require the coordinates to satisfy an

inhomogeneous wave equation �xa = Ha where Ha are specified functions (called the

source functions) which encode the coordinate degrees of freedom. We can use these

source functions to rewrite (1.6) as

gcd∂c∂dgab + ∂bg
cd∂cgad + ∂ag

cd∂cgbd + ∂aHb + ∂bHa − 2HdΓ
d
ab + 2Γc

dbΓ
d
ca

= −8π(2Tab − gabT ). (1.7)

We promote Ha to independent functions and specify additional equations for them.

For example, the simplest choice would be the harmonic gauge, Ha = 0. In this

work we only make use of gauge conditions where Ha is specified as some function of

the metric and coordinates, though in general more complicated evolution equations

are possible. As long as the evolution equations for the source functions and mat-

ter take a suitable form (i.e. do not change the principle part from being the first

term), (1.7) is manifestly hyperbolic. In this formulation, we turn the Einstein equa-

tions into a Cauchy evolution problem by specifying initial values for the variables

{gab, ∂tgab, Ha, ∂tHa} and evolving them forward in time.

Of course, this only gives a valid solution to the Einstein equations as long as the

constraint Ha = �xa always holds. In fact, one can show using the Bianchi identity

and conservation of stress-energy that the quantity Ca := Ha − �xa itself satisfies

the evolution equation

�Ca = −Ra
bC

b. (1.8)

This means that if on some initial time slice Ca = 0 (which we ensure by setting

Ha = ∂b(
√−ggab)/

√−g = �xa initially, where g is the determinant of the metric)

and ∂tC
a = 0, then while evolving with (1.7), Ca = 0 will be satisfied for all time.

The requirement that ∂tC
a = 0 is actually equivalent to the standard Hamiltonian

and momentum constraints which are obtained by projecting the Einstein field equa-
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tions onto a time slice. In Chap. 3 we will elaborate on the constraint equations and

how they can be cast as a set of coupled elliptic differential equations and solved

numerically. Thus, evolving the Einstein equations in the generalized harmonic for-

mulation entails the following: construct initial values for {gab, ∂tgab} that satisfy the

constraint equations with the desired matter sources; evolve {gab, ∂tgab} using (1.7);

in tandem evolve Ha according to an appropriate gauge choice; and evolve the matter

according to its equations of motion.

1.3 General-relativistic hydrodynamics

For this thesis, we are concerned with coupling hydrodynamic matter to dynamical

spacetime, primarily to model the bulk motion of stars. A hydrodynamical descrip-

tion is appropriate for a medium where the characteristic length scale of interest is

much larger than the mean free path of particles to collide with their neighbors. For

a perfect fluid we assume that for every fluid element there is a local inertial frame

comoving with the element where the particles in the fluid element are in thermo-

dynamic equilibrium and appear the same in every direction. This means that we

can assign a single velocity and isotropic pressure to each fluid element. The stress-

energy tensor for a perfect fluid is given in terms of the intrinsic fluid quantities ρ,

the rest-mass density; P , the pressure; and ǫ, the specific energy as

T ab = (ρ+ ρǫ+ P )uaub + gabP . (1.9)

where ua is the four-velocity (normalized so that uaua = −1).

For matter consisting of a single fluid, the first part of the hydrodynamic evolution

equations follows directly from the conservation of stress-energy,

∇aT
ab = 0 . (1.10)
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The other part comes from conservation of rest-mass (or equivalently baryon number):

∇a(ρu
a) = 0 . (1.11)

The final piece of information needed to close this system of equations is an equation

of state which gives the pressure as a function of rest-mass density and specific energy,

P (ρ, ǫ). In a hydrodynamical model of a neutron star, for example, this would encode

the microphysical properties of the matter. Hence (1.10) and (1.11) give us five

evolution equations for five hydrodynamic degrees of freedom.

The approach taken by most schemes (including the one presented in this thesis)

for numerically evolving general-relativistic hydrodynamics is not to directly evolve

the intrinsic fluid variables, but to instead introduce new variables that allow (1.10)

and (1.11) to be rewritten in a form that more resembles the usual Newtonian Euler

fluid equations. This idea has a long history going back to Wilson [82, 83]. The

particular form of the hydrodynamic equations used in this thesis can be obtained

as follows [84]. Using the identity that for an arbitrary vector field V a, ∇a(V
a) =

∂a(
√−gV a)/

√−g, (1.11) can be rewritten as:

∂t(D) + ∂i(Dv
i) = 0. (1.12)

where the new variable is D := ρ
√−gut, vi = ui/ut is the coordinate velocity, and

the index i sums only over spatial directions. Something similar can be done with

(1.10) to obtain

∂tSa + ∂i

(√−gT i
a

)

=
1

2

√−gT bc∂agbc (1.13)

where the new evolution variables encoding the fluid energy-momentum are Sa :=

√−gT t
a. However, (1.13) contains source terms since the fluid can exchange energy

and momentum with gravity.
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Such a choice of evolution variables allows the extensive technology that has been

developed for numerically simulating such systems to be imported to the general-

relativistic case. Since (1.12) and (1.13) do not contain derivatives of fluid quantities

in their source terms, the fluid evolution can be treated as a result of fluxes of con-

served quantities passing between fluid cells in the numerical domain, thus numeri-

cally enforcing the conservative nature of the equations. We can also carry over from

Newtonian hydrodynamics so called “high-resolution shock-capturing” techniques for

handling discontinuities (i.e. shocks) that generically develop during evolution [85].

These techniques are based on calculating the fluxes at the interfaces of fluid cells by

treating the fluid quantities as constant on either side of the interface with a discon-

tinuity at the interface itself and then either exactly or approximately solving this

problem (referred to as a Riemann problem) using the characteristic structure of the

fluid equations. We will elaborate on this in Chap. 2.

1.4 Outline of thesis

The rest of this thesis is as follows. In Chap. 2 we describe a code for evolving hy-

drodynamics in full general relativity using the generalized harmonic formulation for

the gravity and using high-resolution shock-capturing techniques and a conservative

formulation of the hydrodynamic equations. One notable aspect of this code is the

use of Berger-Collela style flux corrections to allow adaptive mesh refinement to be

used without breaking the conservative nature of the hydrodynamics scheme. As

noted above, creating initial data for general-relativistic evolutions requires solving

the constraint part of the Einstein field equations, a set of coupled elliptic equations.

In Chap. 3 we describe an initial data solver that uses a multigrid algorithm with

mesh refinement and was designed to be applicable to generic setups through the use

of a scheme based on superposing compact objects without assuming symmetries.
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As a major application of these methods we study a particular subclass of com-

pact object binaries that form through dynamical capture in dense stellar regions,

such as globular clusters or galactic nuclei, and hence may merge with non-negligible

orbital eccentricity. In Chap. 4 we present simulations of dynamical capture black

hole-neutron star mergers, including an exploration the effects of black hole spin and

neutron star equation of state, and in Chap. 5 we follow with a study of binary neu-

tron star mergers. These systems are shown to exhibit large variability with impact

parameter in the resulting dynamics and outcome, and in some cases make promis-

ing sources for potential observables like short gamma-ray bursts, r-process powered

transients, or, in the case of binary neutron stars, precursor flaring events from crust-

cracking during non-merger close encounters. Using the results from full numerical

simulations as a guide, in Chap. 6 a model is presented for complete gravitational

wave signals from highly eccentric mergers. This is used to explore the detectability

of these signals by ground-based observatories, as well as to show how such signals

may be missed by standard data analysis techniques.

In Chap. 7 a novel modification of the methods of Chap. 2 is presented that al-

lows the accurate and efficient simulation of systems with a large disparity in mass,

such as in stellar disruption events. The modification is based on a background error

subtraction technique where the knowledge of the background solution is used to sub-

tract off its contribution to the truncation error, while still evolving the full Einstein

equations. This method is used to efficiently achieve high accuracy in simulations of

a solar-type star falling into a supermassive black hole.

The same tools of general-relativistic hydrodynamics used for astrophysical sim-

ulations are applied in Chap. 8 to the quite different regime where kinetic energy

makes up approximately 90% of the total mass/energy of the spacetime (i.e. Lorentz

factors of γ ≈ 10) to study head-on collisions of ultrarelativistic fluid particles. The

simulations show that a focusing effect, where each boosted particle acts like a gravi-
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tational version of a lens on the other particle, can lower the threshold for black hole

formation compared to earlier estimates by causing matter to be focused into two

trapped regions which then merge into a single black hole.

Finally, in Chap. 9 we conclude and summarize some directions for future work.
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Chapter 2

Hydrodynamics in full general

relativity

2.1 Introduction

As mentioned in Chap. 1, a new generation of gravitational wave detectors (LIGO [10],

GEO [86],TAMA [87], and VIRGO [11]) are now operational, and within the next few

years are expected to reach sensitivities that will allow observations of the Universe

in gravitational radiation for the first time. The prime targets of these observations

are compact object (CO) binaries composed of combinations of black holes (BHs)

and neutron stars (NSs). Besides this, compact object mergers involving NSs are

also possible progenitors for short-gamma-ray bursts (SGRBs) [32, 33, 34] and other

electromagnetic and neutrino counterparts [88]. Thoroughly modeling systems like

these would require evolution of the spacetime, the photon and neutrino radiation

fields, and the magnetized, relativistic fluid. Even a minimalistic treatment, with the

Einstein equations coupled to the equations of relativistic hydrodynamics, represents

a complex, nonlinear system of partial differential equations. Numerical simulations

are thus essential for exploring such strong-field, dynamical systems. There is a long
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history of adapting successful techniques for simulating Newtonian hydrodynamics

to relativistic and general relativistic fluids which we will not attempt to summarize

(see [89] for a review of general relativistic hydrodynamics). Instead, we will briefly

attempt to place the code described here in the context of other recent codes developed

for fluids on evolving spacetimes.

Several of these codes [90, 91, 92, 93, 94] solve the field equations in the BSSN

formulation [80, 81]. The remainder [95, 96] use the generalized-harmonic formula-

tion [78, 79] which we also employ; unlike our code, however, these groups convert to

a fully first-order formulation [97]. Most groups use finite-difference methods for the

metric evolution and a conservative, high-resolution shock-capturing (HRSC) scheme

for the hydro evolution; these unigrid algorithms are then interfaced with some sort

of adaptive mesh refinement (AMR). A notable exception for the metric evolution

is [95], which employs pseudospectral methods for the metric and then interpolates

to a finite-volume grid for the fluid.

Some groups have implemented the MHD equations in full GR; since these codes

all make use of conservative HRSC methods, they may be principally differentiated

by how they meet the challenge of preserving the ∇·B = 0 constraint. (A straightfor-

ward finite-difference evolution of the magnetic field would generically lead to mag-

netic monopoles and, hence, unphysical behavior.) WhiskyMHD employs constrained

transport [92] for this purpose, which preserves the constraint to machine accuracy,

whereas the code of [98] uses hyperbolic divergence cleaning. Constrained trans-

port, however, requires special interpolation at refinement level boundaries in order

to preserve the constraint. The Illinois group found that a vector-potential formula-

tion of the MHD equations works well when coupled to AMR [99]. This is because

the constraint is preserved by construction with the vector-potential, even with the

restriction and prolongation operations of AMR (see also [100] for a thorough exami-

nation of the electromagnetic gauge condition). Studies indicate that magnetic fields

14



do not significantly affect the gravitational dynamics of CO mergers (see e.g. [98]),

but they could be critical for understanding EM counterparts including the possible

formation of a SGRB engine. A new method to treat the MHD equations was recently

presented in [40], where ideal MHD is used in high matter density regions (e.g. inside

a NS), while the force-free approximation is used elsewhere (e.g. the magnetosphere

of a NS). The authors applied the method to study the collapse of magnetized hy-

permassive NSs (which could be formed via binary NS mergers) and suggested that

intense EM outbursts could accompany such events.

Besides MHD, the other major advances in the physical model for numerical rel-

ativity codes have been in the arena of microphysics. While the Γ = 2 EOS was

the community standard for quite some time, most codes now allow for a nuclear

theory-based EOS [101, 102] and/or use various parametrized, piecewise polytropic

EOSs inspired by the range of plausible nuclear EOSs [103, 104]. These advances in

EOS description primarily affect the cold NS structure, but the group developing the

SACRA code has also begun to account for neutrino transport via a simplified leakage

scheme [21, 105]. The same group has also made available a formulation for a more

accurate truncated moment scheme with a variable Eddington factor closure [106],

which shows much promise for numerical relativity simulations with neutrino physics

beyond the leakage approximation.

Another category of GR hydrodynamics codes employs the conformal-flatness ap-

proximation, which is particularly useful when supernova simulations are the target

application. An example is CoCoNuT/VERTEX, which incorporates relativistic hy-

drodynamics, conformally flat gravity, and ray-by-ray neutrino transport [107]. The

code of [108] employs a similar scheme for hydrodynamics and gravity but adds a test

magnetic field; this code has been used to study the magnetorotational instability in

supernovae.
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Newtonian (and semi-Newtonian) [109, 110], conformally flat [111, 112], and fixed-

background [113] SPH codes represent an important, orthogonal approach to studying

CO interactions. SPH has an advantage over Eulerian schemes when a large range of

spatial scales is involved. Such a situation may arise in CO mergers when material is

stripped from a star in a tidal interaction and forms an extended tail. On the other

hand, Eulerian codes are the standard approach when strong shocks are present,

as would arise in binary NS mergers or disk circularization. (Recent progress has

been made, however, in applying SPH to situations with relativistic shocks [114].) In

addition, SPH has not (to our knowledge) yet been coupled to a code which evolves

the full Einstein equations. Nonetheless, comparisons between Eulerian and SPH

results could prove very useful on a problem-by-problem basis to characterize the

errors in both methods.

Though current efforts in GR simulations involving matter tend to focus on in-

creasingly complex physical models, there remain many unanswered questions in the

astrophysics of compact objects that can be addressed with a code which solves the

Einstein equations coupled to perfect fluid hydrodynamics. We have thus focused

our code development on hydrodynamics in full GR, while maintaining a flexible in-

frastructure to accommodate additional physics modules in the future. We evolve

the field equations in the generalized-harmonic formulation using finite differences.

The fluid is evolved conservatively using one of several different shock-capturing tech-

niques we test here. We have also implemented the hydrodynamical equations in a

manner that is independent of EOS. We make use of AMR by dynamically adapting

the mesh refinement hierarchy based on truncation error estimates of a select number

of the evolved variables. We also utilize Berger and Colella [115] style flux corrections

(also known as “refluxing”) in order to make the use of AMR compatible with the con-

servative nature of the hydrodynamic equations. Though AMR flux corrections have

been implemented in other astrophysical hydrodynamics codes (such as Athena [116],
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CASTRO [117], Enzo [118], and FLASH [119]), to our knowledge this algorithm has

not been used previously for hydrodynamics simulations in full general relativity.1

A further noteworthy feature of our implementation is that we store corrections to

the corresponding fluid quantity integrated in the volume of a given cell instead of

the flux, allowing for easy implementation within a computational infrastructure that

supports cell-centered but not face-centered distributed data structures.

In the remainder of this chapter we outline our computational methodology for

simulating hydrodynamics coupled to the Einstein field equations and describe tests of

this methodology. In Sec. 2.2 we review the generalized-harmonic approach to solving

the field equations and present our methods for conservatively evolving a perfect

fluid coupled to gravity, including our method for inverting the conserved quantities

to obtain the primitive fluid variables and the implementation of flux corrections

to enforce the conservation of fluid quantities across AMR boundaries. In Sec. 2.3

we present simulation results which test these methods, highlight the strengths and

weaknesses of various shock -capturing techniques, and demonstrate the utility of the

flux correction algorithm.

2.2 Computational methodology

In this section we begin by explaining the basic equations and variables we use to nu-

merically evolve the Einstein equations in Sec. 2.2.1 and then discuss the conservative

formulation of the hydrodynamics equations that we use in Sec. 2.2.2. The evolution

of conserved fluid variables necessitates an algorithm for inverting these quantities to

obtain the primitive fluid variables which we present in Sec. 2.2.3. Finally in Sec. 2.2.5

we present the details of our algorithm for AMR with flux corrections.

1Note that “flux correction” here refers to the enforcement of conservation at AMR boundaries,
not the recalculation of fluxes with a more dissipative scheme to preserve stability as in Athena [120].
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2.2.1 Solution of the Einstein equations

We solve the field equations in the generalized-harmonic formulation [78, 79] where

we fix the coordinate degrees of freedom by specifying the evolution of the source

functions Ha = �xa. In this form the evolution equation for the metric, gab, becomes

manifestly hyperbolic:

gcd∂c∂dgab + ∂bg
cd∂cgad + ∂ag

cd∂cgbd + 2H(a,b) − 2HdΓ
d
ab + 2Γc

dbΓ
d
ca

= −8π(2Tab − gabT ) (2.1)

where Γa
bc is the Christoffel symbol, Tab is the stress-energy tensor, and T is its trace.

We evolve the metric, the source functions, and their respective time derivatives

using fourth-order Runge-Kutta where the spatial derivatives are calculated using

fourth-order accurate finite-difference techniques. In other words, we have reduced

the evolution equations to first order in time so that there are 28 “fundamental”

variables {gab, Ha, ∂tgab, ∂tHa}, but we directly discretize all first and second spatial

gradients without the introduction of additional auxiliary variables.

Analytically one can show [121] that if one begins with initial data that satisfies

the Hamiltonian and momentum constraints, initially set Ha = �xa, and then evolve

the metric according to (2.1) and the source functions according to some specified dif-

ferential equations, then the constraint equation Ha−�xa = 0 will be satisfied for all

time. Numerically this statement will only be true to within truncation error, which

can grow exponentially in black hole space times; to prevent this we add constraint

damping terms as in [122, 123]. In practice, ensuring that Ha −�xa is converging to

zero for a given numerical simulation run at different resolutions provides an excel-

lent check that the numerical solution is indeed converging to a solution of the field

equations.
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As described in [79], the computational grid we use is compactified so as to include

spatial infinity. This way we can impose boundary conditions on the metric simply by

requiring that it be Minkowski. However we evolve the metric of the uncompactified

coordinates since the compactified metric is singular at spatial infinity.

2.2.2 Conservative hydrodynamics

Coupled to gravity we consider a perfect fluid with stress-energy tensor

T ab = ρhuaub + gabP , (2.2)

where h := 1 +P/ρ+ ǫ is the specific enthalpy and ua is the four-velocity of the fluid

element. The intrinsic fluid quantities ρ, the rest-mass density; P , the pressure; and

ǫ, the specific energy are defined in the comoving frame of the fluid element. As men-

tioned in Chap. 1, the equations of hydrodynamics are then written in conservative

form as follows [84]:

∂tD + ∂i(Dv
i) = 0 (2.3)

∂tSa + ∂i

(√−gT i
a

)

=
1

2

√−gT bc∂agbc (2.4)

where vi is the coordinate velocity, g is the determinant of the metric, and the index

i runs over spatial coordinates only. Note that (2.4) explicitly contains the time

derivative of the metric for index a = t. The conserved variables D and Sa are

defined as follows:

D :=
√−gρut (2.5)

Sa :=
√−gT t

a (2.6)
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where D is simply the time component of the matter 4-current.2

In some situations we wish to perform axisymmetric simulations where we use the

symmetry to reduce the computational domain to two dimensions. We do this using

a modification of the Cartoon method [125] as described in [79], where we take the

x-axis as the axis of symmetry, and only evolve the z = 0 slice of the spacetime. For

the hydrodynamics this means that effectively each fluid cell becomes a cylindrical

shell, and we use the fact that the Lie derivative of the fluid fields with respect to

the axisymmetric killing vector are zero to rewrite the coordinate divergences in the

above equations as

∂i(Dv
i) = ∂x(Dv

x) + 2∂y2(yDvy) (2.7)

and similarly for ∂i(
√−gT i

a) for the t and x components. For the y component there

is an additional source term

∂i(
√−gT i

y) = ∂x(
√−gT x

y) + 2∂y2(y
√−gT y

y ) − (Szv
z +

√−gP/y). (2.8)

By writing the y flux contribution in terms of ∂y2 we ensure that when we discretize

our evolution will be conservative with respect to the cylindrical shell volume element.

We choose a special form for the equation for Sz:

∂tSz + ∂x(
√−gT x

z) +
2

y
∂y2(y2

√−gT y
z ) = 0, (2.9)

since in axisymmetry the quantity ySz is exactly conserved (that is, it has no source

term).

2In some implementations of the GR (magneto)hydrodynamic equations, see for e.g. [124], the
analog of St in (2.6) that is evolved has the rest-mass density D subtracted off. This could provide
improved results in situations where the rest-mass density is orders of magnitude larger than the
internal or magnetic energy, and accuracy in these latter quantities is important. In the scenarios
studied here (in particular since we are not looking at the behavior of magnetic fields) the added
effect of a small amount of internal relative to rest energy on the dynamics of the fluid or metric
will be negligible, and we expect either definition of St to give comparable accuracy results here.
However in Chap. 7, where we study solar-type stars, we do make use of such a variable.
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The conservative evolution system is solved numerically using HRSC schemes.

We briefly summarize the different methods we have implemented and test in this

chapter, though the references should be consulted for more complete details. For

calculating intercell fluxes we have implemented HLL [126], the Roe solver [127], and

the Marquina flux [128] method. The HLL method is straightforward to implement

since it does not require the spectral decomposition of the flux Jacobian and is based

on estimates for the largest and smallest signal velocities. The Roe solver works by

solving the linearized Riemann problem obtained using the flux Jacobian at each cell

interface (using the so-called Roe average of the left and right states). The Marquina

flux method is an extension of this idea that avoids the artificial intermediate state

and switches to a more viscous local Lax-Friedrich-type method from [129] when the

characteristic speeds change sign across the interface. Since the latter two methods

require the spectral decomposition of the flux Jacobian, we give it for our particular

choice of conserved variables in Sec. 2.2.4. For reconstructing fluid primitive vari-

ables at cell faces we have implemented MC and minmod [85], PPM [130] 3, and

WENO5 [132] 4, all of which may be used interchangeably with any flux method.

MC and minmod are both slope limiter methods that reduce to linear reconstruction

for smooth flows. Minmod is the more diffusive of the two. In comparison, PPM

and WENO5 are higher-order reconstruction methods. PPM is based on parabolic

reconstruction with modifications to handle contact discontinuities, avoid spurious os-

cillations from shocks by reducing order, and impose monotonicity. WENO5 combines

three different three-point stencils with weights that are determined by a measure of

the smoothness of the quantity being reconstructed. The specific fluid quantities that

we reconstruct on the cell faces are ρ, u, and WU i, where u := ρǫ, W is the Lorentz

factor between the local fluid element and an observer normal to the constant t hy-

3In particular we use the reconstruction parameters presented in [131].
4Specifically, we perform reconstruction with the stencils and weights presented in Section A2

of [133].
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persurfaces, and U i is the Eulerian velocity (the explicit form of which is given in

the following section). We choose to reconstruct WU i instead of simply U i since any

finite value of this quantity corresponds to a subluminal velocity.

The fluid is evolved in time using second-order Runge-Kutta. Since the fluid is

evolved in tandem with the metric, the first and second substeps of the fluid Runge-

Kutta time step are chosen to coincide with the first and third substeps of the metric

time step. Since the spatial discretization of the fluid equations that we use is only

second-order we choose to use second-order time stepping for the hydrodynamics and

we have not yet experimented with higher-order methods. We still use fourth-order

Runge-Kutta for nonvacuum metric evolution (even though for evolutions with mat-

ter the overall convergence rate will be no greater than second-order) both for conve-

nience and because in vacuum dominated regions we may expect some improvement

in accuracy. For general relativistic hydrodynamics we evolve the fluid on a finite

subset (though the majority) of the total grid (which as mentioned extends to spatial

infinity through our use of compactified coordinates), and at the outer boundary for

the fluid we impose an outflow condition.

Finally, as is common practice for this method of simulating hydrodynamics, we

require that the fluid density never drop below a certain threshold, adding a so-called

numerical atmosphere. We give this numerical atmosphere a spatial dependence that

makes it less dense approaching the boundaries5 and choose a maximum value that

makes it dynamically negligible (typically at least 10 orders of magnitude below the

maximum density). The atmosphere is initialized using a cold equation of state (e.g.

a polytropic equation of state).

5Specifically we let ρatm(xc, yc, zv) = ρ̄ cos2(xc) cos2(yc) cos2(zc) where ρ̄ is a constant, and
(xc, yc, zc) are the compactified coordinates which range from -1 to 1.
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2.2.3 Primitive inversion

The set of hydrodynamical equations is closed by an EOS of the form P = P (ρ, ǫ).

While the conserved variables Sa and D are simply expressed in terms of fluid primi-

tive variables (ρ, P , ǫ, and vi) and the metric, the reverse is not true. This necessitates

a numerical inversion to obtain the primitive variables following each update of the

conserved variables. The method we use is similar to the one used in [134] for spher-

ical symmetry. First, we decompose the 4-dimensional metric into the usual ADM

space plus time form

ds2 = gabdx
adxb

= −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) (2.10)

where γij is the spatial metric, α the lapse function and βi the shift vector. Then,

from the metric and conserved variables we construct two quantities,

S2 := γijSiSj = γH2W 2(W 2 − 1) (2.11)

E := βiSi − St =
√−g(HW 2 − P ) , (2.12)

where H := ρh and γ is the determinant of the spatial metric. We reduce the problem

of calculating the primitive fluid variables from the metric and conserved variables to

a one-dimensional root problem, where we begin with a guess for H and iteratively

converge to the correct value such that f(H) = 0 for some function. From (2.12) we

can choose

f(H) = E/
√−g −HW 2 + P. (2.13)
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Note that given the metric and conserved variables, f(H) is only a function of H,

and can be computed as follows. First, calculate W 2 = (1 +
√

1 + 4Λ)/2 where

Λ :=
S2

γH2
= W 2(W 2 − 1) . (2.14)

Then compute ρ and ǫ from

ρ = D/(
√
γW ), (2.15)

and

ǫ = −H(W 2 − 1)/ρ+WE/(Dα) − 1 , (2.16)

respectively. Once ρ and ǫ are known, P can be obtained from the equation of state,

and then f(H) above. An iterative procedure for solving f(H) = 0, where f(H)

is calculated as just described, thus gives the primitive variables ρ, P , and ǫ. The

three-velocity can then be computed from

U i =
γijSj√
γHW 2

, (2.17)

where the Eulerian velocity U i is related to the grid three-velocity through U i =

(vi +βi)/α. This inversion scheme is implemented so as to allow any EOS of the form

P = P (ρ, ǫ); thus, Γ-law, piecewise polytrope, and tabular equations of state such as

the finite-temperature EOS of Shen et al. [135, 136] (for a given electron fraction Ye)

are all supported.

In practice we solve for f(H) = 0 numerically using Brent’s method [137], which

does not require knowledge of derivatives and is guaranteed to converge for any con-

tinuous equation of state as long as one begins with a bracket6 around the correct

solution. This can be useful when dealing with equations of state interpolated from

6 The initial bracket for the root finding is chosen by first checking if [H0/(1 + δ),H0(1 + δ)],
where H0 is the value of H computed for the primitive variables at the previous time step and δ > 0
is a parameter we take to be 0.4, is a valid bracket around the zero of f(H). If it is not, as a failsafe
we try successively larger brackets with [H0/(1 + δ)n,H0(1 + δ)n] for n ≥ 2.
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tabulated values. One can avoid losing accuracy in the ultrarelativistic and non-

relativistic limit by Taylor expanding the above inversion formulas (see [134]), for

example, in 1/Λ and Λ, respectively. We have implemented such expansions in our

primitive inversion algorithm, though we have not yet made any significant study of

the inversion calculation in these regimes.

In some cases the conserved variables will, due to numerical inaccuracies, evolve

to a state that does not correspond to any physical values for the primitive variables.

This causes the inversion procedure to fail. This can happen in very low density

regions that are not dynamically important but still must be addressed. We handle

such situations using a method similar to that of [84] by ignoring the value of St and

instead requiring the fluid to satisfy a cold equation of state.

2.2.4 Spectral decomposition of the flux Jacobian

Our conservative formulation of the hydrodynamical equations (2.3,2.4) can be writ-

ten in vector notation as ∂tq + ∂i(F
i) = S where q is a five dimensional vector of the

conserved (in the absence of sources S) fluid variables q = (D,St, Sx, Sy, Sz)
T and

the flux Fi = (Dvi, (St −
√−gP )vi, Sjv

i + δi
j

√−gP )T , where the index j in the flux

is shorthand for the 3 components (x, y, z). Some flux calculation methods such as

the Roe solver [127] and the Marquina flux [128] require the spectral decomposition

of the Jacobian ∂Fi

∂q
which we give here. (See [138] for the spectral decomposition for

a similar formulation with slightly different conserved variables.) The eigenvalues are

λ± = αq(a± b) − βi (2.18)

and

λ3 = αU i − βi (2.19)
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(with multiplicity 3), where a = (1 − c2s)U
i, b = cs

√

(1 − U2)[γii(1 − U2c2s) − aU i],

q = (1 − U2c2s)
−1, cs is the sound speed, and α, βi, γij are metric components as in

(2.10). Here and throughout we use i ∈ {x, y, z} to refer to the direction of the flux

in the Jacobian with which we are concerned, ∂Fi

∂q
. In the following equations we use

the index j as a shorthand for the three spatial components of the eigenvectors (that

is, the components associated with Sx, Sy, and Sz). The indices l and m are fixed by

i and the indices n and p are fixed by j as indicated below. The index k is the only

index that is summed over. A set of linearly independent right eigenvectors is given

by

r± =
(

1, hW [Ukβk − {α(γii − U iU i) + Aβi}/B], hW (Uj − δi
jA/B)

)T

, (2.20)

where A = [U ic2s(1 − U2) ∓ b]q and B = γii − U i(a± b)q,

r3 =
(

κ/(HW (κ/ρ− c2s)), Ukβ
k − α,Uj

)T

, (2.21)

where κ = ∂P
∂ǫ

, and,

r4 =
(

WUl, 2hW
2(Ukβ

k − α)Ul + hβl, h(γjl + 2W 2UjUl)
)T

(2.22)

where for r4, l = y, z, x for i = x, y, z respectively. The expression for r5 can be

obtained simply by replacing l with m, where m = z, x, y for i = x, y, z respectively,

in the above expression for r4. H and W are as defined following (2.12).
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We also give the corresponding left eigenvectors. Component-wise, for l± =

(lD± , l
t
±, l

j
±),

lD± = ∓fhWV∓ξ

lt± = ∓f
[

(K − 1){−γU i + V∓(W 2ξ − Γlm)} +KW 2V∓ξ
]

/α

lj± = ∓f
[

(γlnγmp − γlpγmn){1 −KAi − (2K − 1)V∓U
i} + (2K − 1)V∓ξW

2U j
]

−βjlt± (2.23)

where l = y, z, x and m = z, x, y for i = x, y, z respectively, and n = y, z, x and

p = z, x, y for j = x, y, z respectively and Γlm = γllγmm − γlmγlm, ξ = Γlm − γU iU i,

K = (1 − c2sρ/κ)
−1, Λ± = (a ± b)q, V± = (U i − Λ±)/(γii − U iΛ±), Ai = (γii −

U iU i)/(γii − U iΛ∓), and

f−1 = 2hWbqξ(K − 1)(γii − U iU i)[(γii − U iΛ+)(γii − U iΛ−)]−1.

Furthermore,

l3 =
W

c2sρ
(κ− c2sρ)

(

h,W/α,W (U j − βj/α)
)

, (2.24)

and the components of l4 and l5 are

lD4 = 0

lt4 = Glm(αhξ)−1

lj4 =
[

δj
iU

iGlm + δj
l {γmm(1 − UiU

i) + γimUmU
i}

−δj
m{γlm(1 − UiU

i) + γimUlU
i}
]

(hξ)−1 − βjlt4 (2.25)

27



where Glm = (γmmUl − γlmUm) and for l4, l = y, z, x and m = z, x, y for i = x, y, z

respectively. The expression for l5 can be obtained from the above expression for l4

simply by interchanging l and m.

2.2.5 Adaptive mesh refinement with flux corrections

Many of the problems we are interested in applying this code to involve a range

of length scales, and in many cases we expect the small length scale features not

to be volume filling, for example the individual compact objects in binary mergers.

Such scenarios can be efficiently resolved with Berger and Oliger style adaptive mesh

refinement [139]. A description of the variant of the algorithm we use can be found

in [140]; here we mention some particulars to this implementation, and give a detailed

description of the extension to ensure conservation across refinement boundaries.

The computational domain is decomposed into a hierarchy of uniform meshes,

where finer (child) meshes are entirely contained within coarser (parent) meshes. The

hierarchy is constructed using (primarily) truncation error (TE) estimates, which are

computed within the Berger and Oliger time subcycling procedure by comparing

the solution obtained on adjacent levels of refinement before the coarser levels are

overwritten with the solution from the finer level. Typically we only use the TE of

the metric variables, since fluid variables in general develop discontinuities as well

as turbulent features that do not follow strict convergence. The layout of the AMR

hierarchy is then periodically adjusted in order to keep the TE below some global

threshold. In some situations we also require that a region where the fluid density

is above a certain threshold always be covered by a minimum amount of resolution.

This can be used to ensure, for example, that the resolution around a NS does not

temporarily drop below some level even if the TE of the metric variables in the

neighborhood of the star becomes small.
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When setting the values of the metric variables on the AMR boundary of a given

child level we interpolate from the parent level using third-order interpolation in time

and fourth-order in space. For the cell-centered variables, the outer two cells in each

spatial direction (for a refinement ratio of 2) on a child level are initially set using

second order interpolation in time and space from the parent level. Following the

evolution of the child level and flux correction applied to the parent level when they

are in sync as described below, but before the cell-centered values on the child level

are injected into the parent level, the values in the child boundary cells are reset using

first-order conservative (spatial) interpolation from the parent level (i.e. the value in

the child cell is set to be the same as that of the parent cell in which the child cell

is contained). This ensures that the boundary cells on the child level are consistent

with the corresponding flux-corrected cells on the parent level but does not affect the

order of convergence of the scheme since these values are not used in the evolution

step. During a regrid when adding cells to the domain of a refined level we also use

first-order conservative interpolation from the overlapping parent level to initialize

the values of the fluid variables at new cells (fourth-order interpolation is used for

the metric variables). Note that the actual domain that is refined is larger than the

volume where the TE estimate is above threshold by a given buffer in any direction.

The buffer size and regridding interval are chosen so that if change in the region of

high TE is associated with bulk motion of the solution (e.g. the NS moving through

the domain), this region will never move by more that the size of the buffer between

regrids. This ensures that new cells (for this kind of flow) are always interpolated

from regions of the parent that are below the maximum TE threshold. Thus, though

the interpolation operation to initialize new cells is first-order, we find the error it

introduces is negligible (i.e., below the maximum desired TE).

AMR boundaries require special treatment in conservative hydrodynamics codes

however, since the fluxes across the boundary of a fine-grid region will not exactly
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Figure 2.1: A visualization of a refinement level boundary and its treatment in
the flux correction algorithm. The top shows cells in the x direction on refinement
level L while the bottom shows equivalent cells for the L + 1 refinement level (here
the refinement ratio is 2). Fluxes are symbolized by arrows. On the bottom level
the blue cells (“type B” in the discussion in the text) and those to the left on level
L + 1 are boundary cells and will have their values set by interpolation from level
L following an evolution step on level L. Because of truncation error, subsequent
evolution on level L + 1 will give a flux differing from that computed on the parent
level L. Consequently, when the new fine grid solution is injected back to the parent
level (in cells to the right of the red/dotted pattern cell), the solution about the
boundary will no longer be consistent with the flux previously computed there. The
correct this, the fluid quantity in the red/dotted pattern cell is adjusted to exactly
compensate for the difference in flux computed between the coarse and fine levels.

match the corresponding flux calculated on the coarse-grid due to differing truncation

errors. To enforce conservation, we correct the adjacent coarse grid cells using the

fine-grid fluxes according to the method of Berger and Colella [115]. In the remainder

of this section we review the algorithm and outline our specific implementation.

We will concentrate on the evolution of D on a 3-dimensional spatial grid, though

the remaining conserved fluid quantities are treated the same way, and modifica-

tion to different numbers of spatial dimensions is trivial. Equation (2.3) is evolved

30



numerically at a given resolution as

Dn+1
i,j,k = Dn

i,j,k − ∆t
[

(F x
i+1/2,j,k − F x

i−1/2,j,k)/∆x

+(F y
i,j+1/2,k − F y

i,j−1/2,k)/∆y + (F z
i,j,k+1/2 − F z

i,j,k−1/2)/∆z
]

(2.26)

where Dn
i,j,k is the volume average of D over the (i, j, k) cell at time t = n∆t; F x

i+1/2,j,k

is the flux F x = Dvx through the (i + 1/2, j, k) cell face; ∆x is the x length of each

cell and so on for the y and z direction. In practice the flux values will be calculated

with some HRSC technique combined with Runge-Kutta, but the specifics are not

relevant here. Now consider a situation with two sequential levels of refinement, L

and L + 1, where level L + 1 has a higher resolution with spatial refinement ratio

of r in each direction, and its domain is a subset of level L. (In practice, we always

take r = 2.) Here we focus the discussion on a left boundary in the x direction, as

illustrated in Fig. 2.1; boundaries along the right face and other coordinate directions

are treated in a like manner.

When evolving according to the Berger-Oliger algorithm, after each time step of

length ∆t is taken on level L, r steps of length ∆t/r are taken on level L+ 1. Then

the results obtained on L+1 are injected into level L where the levels overlap i.e., the

restriction operation is performed conservatively by setting the value in the parent

cell to the (coordinate) volume-weighted average of the child cells that make up the

parent cell. Now on level L, the change in D due to flux going through the cell face

(iL + 1/2, jL, kL) on a timestep will be

δDL = −∆t

∆x
F x

iL+1/2,jL,kL
(tn). (2.27)
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On level L+1, the change in D in one fine-level time step due to flux passing through

one of the r2 cell faces that make up this same interface is

δDL+1,j,k,m = −∆t/r

∆x/r
× F x

iL+1+1/2,jL+1+j,kL+1+k(tn +m∆t/r).

for j, k, and m ∈ {0, 1, . . . , r − 1}. Now because of truncation error, in gen-

eral the change in the net “mass” 7 δML := δDLVL within the coarse-level cell at

(iL, jL, kL) computed with the coarse-level fluxes will not equal the corresponding

quantity δML+1 :=
∑

j,k,m δDL+1,j,k,mVL+1,j,k,m computed with the fine-level fluxes,

where VL is the coordinate volume of the cell (iL, jL, kL) and VL+1,j,k,m is the coordi-

nate volume of the cell (iL+1, jL+1 + j, kL+1 + k). Thus, after the values of D on level

L+ 1 are injected into level L (in cells (iL + 1, jL, kL) and to the right in this exam-

ple), the solution on level L will suffer a violation of mass conservation proportional

to δML − δML+1. To restore the conservative nature of the algorithm, the idea, de-

scribed in detail below, is to adjust the conservative variable D in the cell (iL, jL, kL)

post-injection by an amount to exactly compensate for this truncation error induced

difference.

The scheme originally proposed in [115] is to define an array that keeps track of

a correction to the fluxes through cell faces on level L that make up the boundary

of the evolved cells on level L+ 1. Consider the case where (iL + 1/2, jL, kL) is such

a face. This face-centered flux correction array, δF , is initialized with the inverse of

the flux in (2.27), δF = −F x
iL+1/2,jL+j,kL+k, and then during the course of taking the

7 For the conserved fluid variable D which we focus on for specificity, the value of the quantity
integrated within the volume of a cell in fact represents the rest mass in that cell. Throughout
this section we will therefore use the term ‘mass’ to refer to the value of a conserved fluid variable
volume integrated within a cell, though for other conserved fluid variables this will not correspond
to a physical mass.
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r time steps on level L+ 1 receives corrections from the terms in (2.28)

δF → δF +
1

r3

∑

j,k,m

F x
iL+1+1/2,jL+1+j,kL+1+k(tn +m∆t/r). (2.28)

After the cell values on level L are overwritten by the injected values on level L + 1

where they overlap, the cells on level L that abut level L+1 though are not themselves

covered by level L+ 1 cells are corrected with the flux stored in δF .

The way we implement the flux correction algorithm is slightly different from this.

In particular we wish to avoid the added computational complexity of implementing

face-centered grid functions, and therefore we keep track of a cell-centered correction.

The correction is thus also more naturally represented as a correction to the fluid

quantity integrated within the volume of the cell (e.g. for D the rest-mass) rather

than a flux. Again referring to Fig. 2.1, we define the first few cells at the boundary of

level L+ 1 as buffer cells since the calculation of flux requires knowledge of the state

on both sides of the interface. These cells will have their values set by interpolation

from those in level L. The innermost buffer cells for the boundary on level L + 1

we call type B cells (blue cells in the lower half of the figure). These are the cells

where the level L + 1 contribution to the mass correction will be stored. The cell

on level L which contains the type B cell we will refer to as a type A cell (red,

dotted-pattern cell). Type A cells are the ones that receive mass corrections in this

algorithm. For each cell on each refinement level we use a bitmask grid function that

indicates whether the cell is one of the above types (A or B), and if so which of the

six possible faces (+x, −x, +y, −y, +z, −z) abut the boundary. For simplicity in

the implementation we do not allow grid hierarchies where a cell would be both type

A and type B8.

8In other words, an inner (non-physical) boundary on level L must be at least one cell away
from any inner boundary on level L − 1. If the hierarchy is generated by truncation error which is
sufficiently smooth, inner boundaries will typically not be coincident. Also, experience suggests it
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In the following we outline the additional tasks relative to the basic Berger-Oliger

algorithm that need to be performed with our implementation of Berger-Colella.

Following the spirit of these algorithms, we break down the tasks into those the AMR

“driver” code implements, which do not require knowledge of the specific equations

being evolved or what physical quantities the variables represent, and conversely

the “application” steps that would need to be implemented by a unigrid application

code plugging into the driver to become AMR-capable. The driver tasks include the

following:

(i) For the conserved fluid density D, allocate a storage grid function to keep track

of the associated mass correction δM , i.e. the total correction to D within the

volume of a given cell.

(ii) Upon initialization set all correction arrays δM to zero, and compute the bit-

mask for the current refinement hierarchy.

(iii) After any regrid, recompute the bitmask array for the new hierarchy.

(iv) During the stage when buffer cells are set for variable D at interior boundaries

on level L + 1 via interpolation from level L, also interpolate the correction

variable δM , where the latter’s interpolation operator simply sets δM in a child

cell to be 1/r3 that of the parent cell (for a three-dimensional spatial grid).

(v) Following injection of arrays D and δM from level L + 1 to level L, where the

injection operator for δM is an algebraic sum over child cells (a) zero all type

B cells in δM on level L + 1, (b) call the application routine (first item in the

next list) to apply the mass corrections to D stored in the injected δM to type

A cells on level L, (c) zero all type A cells in δM on level L.

The following are new tasks that the unigrid application code needs to implement:

is often more challenging to get an AMR evolution stable if inner boundaries are too close, so in all
this restriction is not particularly limiting.
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(i) A routine that will add the mass corrections stored in δM to D for all type A

cells on a given grid (i.e., set DL → DL + δM/VL)9.

(ii) When taking a single time step on a grid, for any cell marked type A, set δM

to minus the change in mass of the cell from fluxes through cell faces indicated

by the bitmask. For example, with the case illustrated in Fig.2.1 and discussed

above around Eqs. (2.27) and (2.28), set δML = −VLδDL.

(iii) When taking a single time step on a grid, for any cell marked type B, add

to δM the change in mass of the cell from fluxes through cell faces indicated

by the bitmask. For example, with the same example above, set δML+1,j,k →

δML+1,j,k + VL+1,j,k,mδDL+1,j,k,m.

For the GR-hydro equations we have five conserved fluid variables, D and Sa.

Though the latter do have nonzero source terms — since gravity can be a source (or

sink) of energy-momentum — the above algorithm ensures there will be no artifi-

cial loss/gain in the presence of AMR boundaries due to truncation error from the

advection terms.

2.3 Tests

In this section we present a number of tests of the methods presented above. We

begin by demonstrating the fourth-order convergence of the evolution of the Einstein

equations for vacuum spacetimes before moving on to a number of flat space, rel-

ativistic hydrodynamics tests that probe the treatment of fluid discontinuities. We

conclude with several tests of hydrodynamics in curved spacetimes.

9Since we consider D a density and δM a mass, this requires normalization by the volume
element VL, which the application knows. Note that in our code even though we have included
the uncompactified metric volume element

√−g in the definition of the conservative variables and
fluxes, compactification (and in axisymmetry, the cylindrical shell volume element) effectively makes
the grid non-uniform and so the volume scaling is non-trivial. An alternative implementation could
move this correction step to the driver list of tasks, though then the application would need to
supply the driver with the array of local volume elements.
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2.3.1 Vacuum evolution

In [79, 141] several tests of convergence of an earlier version of the code (without

hydrodynamics) were presented. However, since then we have updated the evolution

of the Einstein equations to fourth-order spatial differencing and fourth-order Runge-

Kutta time differencing, so we first show two vacuum tests: a Brill wave evolution [142,

143] and a boosted BH evolution.

Brill wave

For the Brill wave test we begin with initial data where the spatial line element is

given by

ds2 = ψ4
(

eBdx2 +
eBy2 + z2

r2
dy2 +

(eB − 1)yz

r2
(dydz + dzdy) +

eBz2 + y2

r2
dz2
)

(2.29)

where r =
√

y2 + z2, B = 2Ar2 exp(−(r/σr)
2 − (x/σx)

2), and the value of the confor-

mal factor Ψ is determined by solving the Hamiltonian constraint. We choose A = 40,

σr = 0.16, and σx = 0.12. The initial data is chosen to be time symmetric (γ̇ij = 0)

and maximally sliced (K = 0) with the conformal lapse α̃ := Ψ−6α = 1. The remain-

ing metric components are chosen to satisfy the harmonic gauge (�xa = 0). This

describes a gravitational wave that initially collapses inward before dispersing. In

Fig. 2.2 we show results from convergence tests in axisymmetry at three resolutions

where the medium and high runs had, respectively, 1.5 and 2 times the resolution

of the low run. The constraint equations (Ha − �xa = 0) as well as the metric

components show the expected fourth-order convergence.

Boosted BH evolution

As an additional vacuum spacetime test we evolved a boosted BH in three dimen-

sions. We began with initial data describing a BH in harmonic coordinates [144] with
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Figure 2.2: Top: The natural log of the L2 norm of the constraint violation, Ca :=

Ha − �xa, for a Brill wave evolution (i.e. natural log of
√

∫

|Ca|2d2x/
∫

d2x). The

three resolutions shown are scaled assuming fourth-order convergence. Time is shown
in units ofM , the total ADM mass of the spacetime, and the constraints are multiplied
by M to make them dimensionless. The lowest resolution has a grid spacing of
h = 1.56M . Middle/Bottom: The value of the metric component gtt evaluated at
(x, y, z) = (0, 50M, 0) (middle) and the difference in this quantity between low and
medium resolution, and medium and high resolution (bottom), the latter scaled so
that the two curves should coincide for fourth-order convergence.
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boost parameter v = 0.25. As described in [79], during the evolution we avoid the

BH singularity by searching for an apparent horizon and excising a region within.

To demonstrate convergence we performed this simulation at three resolutions, the

lowest of which has approximately 30 points covering the diameter of the BH. The

medium (high) resolution has 1.5 (2.0) times the number of points in each dimen-

sion, respectively. For all resolutions we used the same AMR hierarchy, determined

based on truncation error estimates at the lowest resolution, with six levels of 2:1

refinement. In Fig. 2.3 we demonstrate that the constraint equations are converging

to zero at fourth-order. When hydrodynamics is included the theoretical limiting

convergence rate of our code will drop to second-order (in the absence of shocks).

However in vacuum dominated regions, for example the gravitational wave zone, one

can expect that for the finite resolutions we can practically achieve the convergence

will be somewhere between second- and fourth-order.
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Test Γa PL ρL vL PR ρR vR

RT1 5/3 13.33 10.0 0.0 10−8 1.0 0.0
RT2 5/3 1000.0 1.0 0.0 10−2 1.0 0.0
RT3 4/3 1.0 1.0 0.9 10.0 1.0 0.0
TVT 5/3 1000.0 1.0 0.0 1.0 1.0 (0.0, 0.99)b

Table 2.1: The initial left and right states for the 1D Riemann problems. a Adiabatic
index of EOS b In this case vx=0 but the transverse velocity vy = 0.99 is nonzero.

2.3.2 Relativistic hydrodynamic tests in flat spacetime

We have performed a number of standard tests for relativistic, inviscid hydrodynamics

that probe how well a given numerical scheme handles the various discontinuities that

arise. The best combination of reconstruction and flux calculation methods depends

on the problem under consideration. We have thus implemented several options and

maintained a modular code infrastructure so that they are readily interchangeable and

upgradable. While strong shocks such as the ones considered here are not expected to

play an important dynamical role in binary BH-NS mergers, they might be important

in other potential applications of interest (such as NS-NS grazing impacts, or under-

standing EM emission from collisions). Thus, the ability to tailor the reconstruction

and flux methods to the problem at hand may prove important in the future. In this

section, we closely follow the sequence of tests used in the development of the RAM

code of Zhang and MacFadyen [145], so that our results may be compared with theirs.

Though they focus on more sophisticated flux-reconstruction algorithms, their sim-

pler methods (labeled U-PPM and U-PLM, denoting reconstruction of the unknowns

with piecewise parabolic and linear reconstruction, respectively) are comparable to

the ones we employ.

1D Riemann problems
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Reconstruction Flux method RT1 RT2 RT3 TVT

Errora Convergenceb Error Convergence Error Convergence Error Convergence

MC HLL 0.034 0.82 0.110 0.59 0.062 0.77 0.238 0.72
Roe 0.032 0.82 0.110 0.60 0.052 0.80 0.233 0.72
Marquina 0.036 0.82 0.127 0.59 0.056 0.79 0.227 0.76

Minmod HLL 0.061 0.86 0.169 0.42 0.054 0.71 0.395 0.76

WENO5 HLL 0.033 0.84 0.093 0.76 0.039 0.61 0.191 0.83
Roe 0.032 0.85 0.096 0.79 0.039 0.60 0.198 0.81
Marquina 0.036 0.85 0.093 0.76 0.038 0.66 0.183 0.82

PPM HLL 0.041 0.88 0.133 0.67 0.024 1.01 0.248 0.78

Table 2.2: 1D Riemann test results. aThe L1 norm of the error for resolution N = 400. bThe average convergence rate between
runs with N = 200, 400, 800, and 1600. The ideal rate is unity for problems such as these containing discontinuities.
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Figure 2.4: Density at t = 0.4 for Riemann Test 1 (RT1) with different reconstruction
methods and the HLL flux scheme at resolution N = 400. The inset shows the shock
and contact discontinuity. The exact solution was generated using the code of [147].

tests which used the Roe or Marquina flux calculation with WENO5 do not have the

oscillation visible in the plot around x = 0.8 in the HLL-WENO5 case.

The second Riemann test (RT2) is more difficult than the first, with the blast wave

resulting in a very thin shell of material bounded by a shock on the right and a contact

discontinuity on the left (see Fig. 2.5). The average convergence rates for this test

show a marked difference between the piecewise-linear and higher-order reconstruction

methods. WENO5 seems to perform best, but there is not much difference between

HLL and Marquina or the Roe solver (with diminished CFL factor) with WENO5.

As in RT1, the reconstruction method seems to be more important to the solution

than the flux scheme.

RT3 is a challenging problem in which the fluid on the left collides with the

initially stationary fluid on the right, resulting in two shocks separated by a contact

discontinuity. Our numerical solutions suffer from significant oscillations (particularly

in the reverse shock) for all reconstruction schemes except PPM, which was specifically

designed to suppress such post-shock oscillations (see Fig. 2.6). PPM also has the
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Figure 2.5: Density at t = 0.4 for Riemann Test 2 (RT2) at different resolutions for
HLL-WENO5. The average convergence rate in this case is 0.76. The thin shell of
material between the shock and the contact is particularly difficult to resolve.

best convergence properties (0.85-1.16), with an average rate close to the expected

value of unity. (Finite-volume hydrodynamic schemes such as this should converge at

first order to a weak solution of the equations when discontinuities are present.)

For the transverse velocity test, the initial data are set up as in RT2, except that

there is a transverse velocity vy = 0.99 on the right side of the partition. The strong

shock propagates into the boosted fluid, and the structure of the shock is altered, since

the velocities in all directions are coupled through the Lorentz factor [148]. Again,

the reconstruction technique influences the result more than the flux calculation. For

WENO5 reconstruction, the errors for HLL, Roe, and Marquina are all very close in

magnitude. WENO5 and PPM yield the best results overall. In Fig. 2.7 we show the

density profile at different resolutions for HLL combined with WENO5.

1D shock-heating problem

We next consider a one-dimensional shock-heating problem as in [145], which tests

a code’s conservation of energy as well as the ability to handle strong shocks. For
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Figure 2.6: Density at t = 0.4 for Riemann Test 3 (RT3), a collision problem, for
different reconstruction methods with HLL at resolution N = 400. The post-shock
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Figure 2.7: Density at t = 0.4 for the transverse test (TVT) at different resolutions
for HLL-WENO5. The average convergence rate in this case is 0.83.
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Reconstruction Errora Convergenceb

ZERO 950 0.94
Minmod 801 0.92
MC 1500 0.85
PPM 824 0.96
WENO5 1670 0.53

Table 2.3: Shock -heating test results. For this test we also compare to zero slope
reconstruction, labeled “ZERO.” a The L1 norm of the error for resolution N = 400.
b The average convergence rate between runs with N = 200, 400, 800, and 1600.

this problem, the computational domain is x ∈ [0, 1] with a reflecting boundary at

x = 1. The fluid moves toward this boundary with an ultrarelativistic initial velocity

of v = 1− 10−10. The fluid has an initial density of ρ = 1.0 and a very small amount

of specific internal energy, ǫ = 0.003. The EOS is a gamma-law with Γ = 4/3. When

the relativistic fluid slams into the wall, its kinetic energy is converted into internal

energy behind a shock which propagates to the left. Because the fluid is initially

cold, essentially all of the heat is generated through this conversion. As explained

in [145], the shock speed and the compression ratio of the shock (or equivalently, the

post-shock density) is known analytically. We evaluate our errors by calculating the

L1 norm of the density errors on the entire computational domain. The average rate

of convergence is also calculated using this measure of error.

We performed this test using HLL with five different reconstruction methods at

four different resolutions (200, 400, 800, and 1600 zones). Results are shown in

Table 2.3. We find that, due to the extremely strong shock, there is a tendency for

post-shock oscillations to form with less diffusive reconstruction schemes (see Fig. 2.8).

The WENO5 solution is afflicted with severe post-shock oscillations and exhibits poor

convergence to the exact compression ratio. Very diffusive reconstruction schemes

(zero slope and minmod) are comparatively quite successful and converge rapidly to

the exact compression ratio. PPM, with its flattening step, gives the best convergence

rate overall.
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Figure 2.8: Density at t = 2.0 for the shock-heating test with different reconstruction
methods and the HLL flux scheme. The inset focuses on the shock front.

Emery step problem

Next we consider the two-dimensional (2D) Emery step problem [149, 130], with the

setup as in [145]. In this scenario, a fluid flows through a wind tunnel at relativistic

speed and hits a step, which is represented by a reflecting boundary condition. The

computational domain is (x, y) ∈ [0, 3]× [0, 1]− [0.6, 3]× [0, 0.2] where the subtracted

region represents the step. At the left boundary, inflow conditions are enforced (as

in the initial data), while at the right, outflow conditions are enforced. All remaining

boundaries are reflecting. The fluid is initialized with density ρ = 1.4, velocity vx =

0.999, and a Γ = 1.4 EOS. The pressure is set to 0.1534, giving a Newtonian Mach

number of 3.0.

Higher-order reconstruction methods seem to be essential for this test problem.

We find that the MC limiter performs poorly, regardless of the flux method. Al-

though the MC simulation is stable, the bow shock formed as the fluid reflects off

the step is distorted by large amplitude post-shock oscillations. These propagate

downstream, rolling up the boundaries between the different solution regions. The

higher resolution runs with MC also have these features, but at shorter wavelengths
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Figure 2.9: Density contours (30 equally spaced in the logarithm) for the Emery step
problem. The upper (lower) two plots show results for resolution 240×80 (480×160).
For each resolution, the upper plot shows results for WENO5 reconstruction, and the
lower for PPM. The respective minimum and maximum densities, (ρmin, ρmax), are
(1.0, 1.0 × 102), (0.55, 1.1 × 102), (0.82, 1.1 × 102), and (6.8 × 10−2, 1.1 × 102).

and lower amplitude. PPM and WENO5 reconstruction performs much better, and

these results are shown at two resolutions in Fig. 2.9. (This figure can be compared

to those of [150, 145].) The PPM results appear slightly better than WENO5 at a

given resolution, likely because of the deliberate oscillation suppression in the PPM

algorithm.
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2D shock tube problem

As an additional test of these algorithms’ ability to propagate strong, multidimen-

sional shocks we consider a 2D shock tube test. The computational domain (x, y) ∈

[0, 1] × [0, 1] is divided into four equal quadrants. The initial fluid states in the

lower/upper, left/right quadrants are

(ρ, P, vx, vy)
LL = (0.5, 1, 0, 0)

(ρ, P, vx, vy)
LR = (0.1, 1, 0, 0.99)

(ρ, P, vx, vy)
UL = (0.1, 1, 0.99, 0)

(ρ, P, vx, vy)
UR = (0.1, 0.01, 0, 0).

In this simulation the lower-right and upper-left quadrants converge on the upper-

right quadrant creating a pair of curved shocks. We use a Γ = 5/3 EOS. In Fig. 2.10

we show results from simulations using HLL or the Marquina flux method combined

with WENO5 or the MC limiter. The first three panels are from runs with resolution

of 400 × 400 and a CFL factor of 0.5 and are comparable to [145] and the references

therein. Though the main shock features are captured by all of the methods we

considered, oscillations arising from the curved shock fronts are evident in varying

degrees. The fourth panel is similar to the first but contains a refined mesh in the

center that has the same resolution as the other three panels, while the remainder of

the domain has half the resolution. Though the majority of the flow is thus effectively

derefined, the principal features remain the same. This is despite the fact that the

shocks must travel through or along refinement boundaries, and the numerical shock

speeds differ slightly on either side of such boundaries due to the different truncation

errors.
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Figure 2.10: Density contours (30 equally spaced in the logarithm) for the 2D Rie-
mann problem with, from left to right, top to bottom: HLL and MC, HLL and
WENO5, Marquina and MC, and HLL and MC with mesh refinement. The respective
minimum and maximum densities, (ρmin, ρmax), are (1.1×10−2, 7.0), (8.2×10−3, 8.1),
(9.1 × 10−3, 7.1), and (7.6 × 10−3, 7.0). For the first three simulations a resolution
of 400 × 400 was used. For the final simulation, a refinement region (red box) was
placed in the middle with equivalent resolution, while the remaining grid has half the
resolution (i.e. this simulation has lower resolution overall). A CFL factor of 0.5 was
used throughout.
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2.3.3 Hydrodynamic tests in curved spacetime

Bondi accretion

As a first test of our code’s ability to simulate relativistic hydrodynamics in the

strong field regime, we consider Bondi flow. We set up our initial conditions with a

stationary solution to spherical accretion onto a black hole [151]. We use Kerr-Schild

coordinates for the black hole metric. In order to test our code’s ability to converge

to the correct solution we measured how the conserved density D differed from the

exact solution as a function of time for three resolutions. The lowest resolution has a

grid spacing of h = 0.078MBH , while the medium and high resolutions have twice and

4 times the resolution respectively. As shown in Fig. 2.11, ||D−Dexact|| converges to

zero at second-order. For this test we tried both the MC and WENO5 limiters (with

HLL for the flux calculation). Though both had similar levels of error and showed

the expected convergence, WENO5 had larger errors at low and medium resolutions.

This is probably because, at lower resolutions, the larger WENO5 stencil extends

farther inside the black hole horizon where there is larger truncation error.

Boosted NS

As an additional test of our evolution algorithm, we considered a single TOV star

with a boost of v = 0.5, with astrophysically relevant EOS (the HB EOS of [23]) and

mass (1.35 M⊙). We performed a convergence study at three resolutions, the lowest

of which has approximately 50 points covering the diameter of the star. The medium

(high) resolution has two (three) times the number of points in each dimension, re-

spectively. The AMR hierarchy is identical in all cases, with 7 levels of 2:1 refine-

ment, and was determined using truncation error estimates from the low resolution

run. Figure 2.12 shows that the constraint violations show the expected second-order

convergence to zero. We also compared the performance of different reconstruction
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Figure 2.11: The L2 norm of the difference between the numerical and exact value
of the fluid quantity D (divided by the norm of the exact solution) for Bondi ac-
cretion with MC and WENO5. The low resolution was run with a grid spacing of
h = 0.078MBH while the medium and high has twice and 4 times the resolution
respectively. The results are scaled for second-order convergence.

methods (though using the HLL flux method throughout). In Fig. 2.13, we show the

maximum density of the NS as a function of time for various reconstruction meth-

ods. Though the drifts and oscillations in density converge away for all methods, we

find that WENO5 gives the least density drift compared to MC and PPM at a given

resolution. The drift in maximum density with PPM has to do with the way this

particular implementation enforces monotonicity at extrema, which results in a loss

of accuracy (see for example [152]). Modifying the way the algorithm handles smooth

extrema can reduce this effect. We implemented one such modification (Eqs. 20-23

from [152]), the results of which are labeled ‘PPM alt.’ in Fig. 2.13.

Boosted NS flux correction test

As a demonstration of the flux correction algorithm (outlined in Sec. 2.2.5) to enforce

conservation across AMR boundaries, we perform an additional boosted NS test. We
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use the same conditions as the low resolution simulation outlined above in Sec. 2.3.3

but with a different AMR hierarchy. In particular, we keep the hierarchy fixed so

that the boosted NS will move to areas of successively lower refinement. In Fig. 2.14,

one sees that without flux corrections there is a ≈ 0.1% loss in fluid rest-mass as the

NS moves off the highest refinement level, and a ≈ 0.8% loss as the NS moves off

the next to highest refinement level. This change in the conserved fluid rest-mass

comes from the fact that there is a slight mismatch in fluxes at the mesh refinement

boundaries due to truncation error. With the flux correction routine activated, this

error is eliminated, and the only change in the total rest-mass is due to the density

floor criterion (i.e., the numerical atmosphere). As an indication of how the use of

flux corrections affects energy and momentum we can also compare the integrated

matter energy and momentum as seen by a set of Eulerian observers. The matter

energy density is given by T abnanb and the momentum density is given by pi =

−T a
i na where na is the timelike unit normal to the constant t slices. These quantities

involve combinations of the conserved fluid variables and the metric and are subject

to truncation error, especially since in this simulation the NS is allowed to move to

lower resolution. In addition, these quantities can vary with time due to gauge effects

(though in this case, the variation due to gauge effects is subdominant to the variation

mentioned below), so we use them as an indication of the effect of flux corrections

by comparing them for the simulations with and without flux corrections to a similar

simulation where the AMR tracks the NS and there is therefore essentially no flux

across AMR boundaries. At the end of the simulation the run without flux corrections

has 0.91% less energy compared to a similar simulation where the AMR tracks the

NS, while the run with flux corrections has only 0.13% less energy. The run without

flux corrections has 4.0% less momentum (in the boost direction) while with flux

corrections the comparative loss is 2.5%.
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This test is somewhat artificial since we have deliberately prevented the AMR

algorithm from tracking the NS. As long as the AMR algorithm can keep the bound-

aries away from areas of non-negligible flux (as it does when following the boosted

NS in the test described in Sec. 2.3.3) the effect of the flux correction algorithm is

small, at the level of the numerical atmosphere that gets pulled along with the star.

However, in astrophysical applications, situations may generically arise in which fluid

crosses AMR boundaries. For example, the tidal tails formed by the disruption of a

NS by a BH will cross refinement boundaries, and likewise for the subsequent accre-

tion disk that forms, since it would be much too costly to keep these entire structures

on the finest mesh. Of course, the hydrodynamic solution is still subject to truncation

error, which could in principle affect aspects of the dynamics at the same order of

magnitude as putative nonconservative effects. Though for certain problems, such as

calculating the amount of unbound material following a BH-NS merger, or studying

the late time accretion, it could be quite advantageous to ensure conservation within

the hydrodynamic sector. It would be an interesting computational science prob-

lem to systematically study the efficacy of AMR boundary flux conservation in such

scenarios.

Finally, we note that additional convergence test results from this code are shown

in subsequent chapters for the particular applications discussed there.

2.4 Conclusions

Numerous scenarios that fall within the purview of general relativistic hydrodynamics

are still mostly unexplored—especially CO mergers involving neutron stars. There

is a rich parameter space, of which large areas remain uncharted due to uncertainty

or potential variability in BH and NS masses, BH spin and alignment, the NS EOS,

and other aspects. Beyond the pure hydrodynamics problem, the roles of magnetic
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fields and neutrino physics are just beginning to be explored by various groups, and

we expect to add support for such physics to our code in the future. In Chap. 7 we

describe additional modifications of this code that allow it to be efficiently used for

studying extreme-mass-ratio systems.

The potential applications of robust and flexible numerical algorithms for evolving

hydrodynamics together with the Einstein field equations are manifold. With this in

mind, we have implemented methods for conservatively evolving arbitrary EOSs, in

particular for converting from conserved to primitive variables without knowledge of

derivatives; and we have implemented numerous reconstruction and flux calculation

methods that can be used interchangeably to meet problem specific requirements.

Though accurate treatment of shocks may not be crucial for BH-NS mergers (where

shocks are not expected to be dynamically important), the same is not true of NS-
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NS binaries, especially eccentric ones where the stars may come into contact during

nonmerger close encounters [153]. We have also taken care to implement a flux cor-

rection algorithm that preserves the conservative nature of hydrodynamical advection

across AMR boundaries. Though strict conservation is not, strictly speaking, essen-

tial (since any nonconservation would be at the level of truncation error), it is an

especially appealing property when studying, for example, CO mergers as potential

SGRB progenitors. After merger, material that did not fall into the black hole —

typically on the order of a few percent of the original NS mass — will fill a large

volume making up an accretion disk and potentially unbound material. Though ac-

curately tracking this material is not important for the gravitational dynamics, it is

critical for characterizing potential EM counterparts to the merger.
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Chapter 3

Conformal thin-sandwich solver for

generic initial data

3.1 Introduction

The purview of numerical relativity has extended to include not only relativity theory,

but also a wide range of other topics. Motivated by current and upcoming efforts to

detect gravitational waves [10, 11, 86, 154, 155], there has been extensive work on

mergers of binary compact objects (BCOs) [156] including binary black holes (BH-

BH) [157, 158, 159, 160], binary neutron stars [161], and black hole-neutron star (BH-

NS) systems [162, 163]. In addition to binaries in quasicircular orbits, there have also

been studies of eccentric binaries [164, 165, 4, 3, 166, 167, 168, 169, 153, 170] as may

arise, for example, from dynamical capture. Other works of interest to astrophysics

include gravitational collapse of stars [171, 172], black hole accretion [89], and the

nature of cosmological singularities [173, 174]. Aside from astrophysical systems,

numerical relativity has also emerged as a useful tool to explore various concepts in

gravity and high energy physics [175], such as critical collapse [71], ultrarelativistic

collisions [176, 177, 178, 179, 180], the gauge/gravity duality [68, 181, 182, 69, 70],
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gravity and black holes in higher dimensions [183, 184, 185], and the (in)stability of

anti-de-Sitter spacetime [186]. In all these applications, a necessary ingredient is a

good method for constructing initial data (ID). In this chapter we present a new initial

data solver, based on the conformal thin-sandwich (CTS) [187] formulation, which

we have designed to be more generally applicable to a range of physical scenarios by

avoiding symmetry or simplifying assumptions.

There has been extensive research on the problem of constructing ID for general

relativity, and detailed reviews can be found in [188, 189, 190, 191]. Early attempts at

solving the initial data problem relied on certain assumptions to make the mathemati-

cal formulation of the problem more tractable, such as conformal flatness and maximal

slicing. The widely used Bowen-York solution [192] is one such example. These as-

sumptions are restrictive since, for example, the isolated Kerr black hole does not

admit conformally flat slices [193], and consequently the Bowen-York solution cannot

be used to construct black holes with spin higher than S/M2
ADM = 0.928 [194, 195].

Other examples include the use of quasiequilibrium assumptions for constructing

ID for binary systems (such as approximate helical Killing vectors or the like, and

approximate hydrostatic equilibrium for any matter in the system); see, for exam-

ple, [196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211].

This serves as a good approximation for astrophysically motivated quasicircular in-

spiral sufficiently far from merger, though it is not valid for eccentric mergers (except

possibly near the turning points of the orbit [212]) or the ultrarelativistic scattering

problem. Many of these studies made further simplifying assumptions, such as con-

formal flatness, which does not have an astrophysical motivation. Attempts to sup-

ply more realistic conformal initial data include superposition of isolated black hole

spacetimes [213, 214, 215, 216, 217, 195, 218], and in addition using post-Newtonian

solutions [219, 220] and matched asymptotic expansions to supply an initial outgoing

radiation field [221, 222, 223]. Using superposed data allowed evolution of binary
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black holes in quasicircular orbits with spins exceeding the Bowen-York limit [224].

A further alternative approach, initially applied to binaries including neutron stars,

involves solving the full Einstein-Euler system of equations with a waveless and/or

near-zone helical symmetry approximation [208, 225, 226, 227, 228].

Since our goal is to have a more general purpose numerical initial data solver that

can be used for a range of applications, as outlined in the first paragraph, we will

use the CTS formalism with arbitrary conformal metric and other free data to be

chosen as needed for the particular application. For our first version of the code, as

presented here, we restrict to four-dimensional, asymptotically flat spacetimes, with

application to BCO interactions. For the free data we use superposed, boosted sin-

gle CO spacetimes. At large separation this is a good approximation for the physical

metric of dynamical capture binaries and the ultrarelativistic scattering problem, and

the nonlinear corrections from solving the CTS equations are small. For quasicircular

binaries, again at large separation this is a good approximation. However, unlike

the scattering problems, at practical (because of limited computational resources)

initial separations to allow evolution through merger, the simple superposition we

use at present will not give improved astrophysically relevant ID compared to current

quasiequilibrium approaches. Compared to existing studies using superposed data, a

couple of novel aspects about our work is we include the matter and metric in the su-

perposition of COs involving fluid stars (as opposed to solving the Euler equations on

a flat background in the studies mentioned earlier, or conformal to a single black hole

solution [210]) and the consideration of ultrarelativistic initial boosts with Lorentz

factors up to 10.

Another notable aspect of this work is how we handle black hole singularities.

Most existing approaches either use some form of boundary condition on a trapped

surface on or inside each black hole (see, for example, [188, 196, 205]), or use a slice

that maps the interior region of the computational domain for each black hole to either
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part (so-called “trumpets” [229, 230, 231, 232]) or all (“punctures” [233]) of a different

asymptotically flat region spanned by an Einstein-Rosen bridge (for a novel variant

that does not require separation of the metric into a background piece and conformal

factor see [234]). Here we follow an alternative approach where some distance inside

the apparent horizon of each black hole we replace the vacuum interior with an (un-

physical) distribution of stress-energy to regularize the interior metric. This is similar

to a “stuffed black hole” [235] or the “turduckening” evolution scheme [236, 237] (see

also [238]). However, since we use excision to subsequently evolve the initial data,

with the excision surface chosen to entirely contain the unphysical matter, here it

is merely a device to set up a simple initial data problem without explicit interior

boundary conditions or singularities. Note, however, that if we were to solve the ID on

a domain with traditional excision surfaces inside each black hole, we would (assum-

ing a well-posed elliptic problem) obtain the same solution exterior with appropriate

excision boundary conditions, though the mapping between some unphysical interior

and appropriate boundary conditions would be nontrivial and in general nonunique.

An outline of the rest of the chapter is as follows. In Sec. 3.2 we review the CTS

formulation, describe our method for choosing the metric and fluid free data, outline

the scheme for regularizing black hole solutions, and describe how we numerically solve

the constraint equations using a multigrid solver. In Sec. 3.3 we present examples of

initial data obtained with our solver for quasicircular, eccentric, and ultrarelativistic

mergers of compact objects. Finally, we comment on our results and discuss possible

future improvements in Sec. 3.4. We use geometric units where Newton’s constant

G = 1 and the speed of light c = 1.
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3.2 Computational methodology

3.2.1 Conformal thin-sandwich equations

To formulate the initial data problem for general relativity, we start by foliating

spacetime with a family of spacelike hypersurfaces Σt parametrized by t. The normal

vector to these surfaces nµ and the generator of time translations tµ satisfy

tµ = αnµ + βµ, (3.1)

where α is the lapse and βµ is the shift, which is tangent to Σt (nµβ
µ = 0). We use

the standard convention where Greek indices run through {0, 1, 2, 3} and represent

the full spacetime coordinates, while Latin indices run through {1, 2, 3} and represent

coordinates intrinsic to a given spatial hypersurface. Using the orthogonal projection

operator ⊥µ
ν := δµ

ν +nµnν , we obtain the induced metric on Σt, γij := gµν ⊥µ
i ⊥ν

j,

where gµν is the four-dimensional spacetime metric. The line element can be written

in terms of these quantities as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (3.2)

The extrinsic curvature of a slice Σt can be written in terms of a Lie derivative as

Kij := −1

2
Lnγij . (3.3)

Projecting the Einstein equations onto the hypersurface Σt, one obtains the constraint

equations

R +K2 +KijK
ij = 16πE, (3.4)

DjK
ij −DiK = 8πpi, (3.5)
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where K = γijKij, R, and Di are the Ricci scalar and covariant derivative associated

with γij, respectively, and E and pi are the energy and momentum density as measured

by an Eulerian observer, respectively.

In the language of the 3 + 1 decomposition, initial data for the Einstein field

equations (and any matter evolution equations) are a set of 20 functions representing

the components of α, βi, γij, Kij, E, and pi on the initial slice Σt that together satisfy

the constraints (3.4)–(3.5). Though, in principle, there are numerous conceivable

ways of coming up with consistent initial data, it is challenging to separate freely

specifiable versus constrained degrees of freedom in a manner where the underlying

physical interpretation of the free data is transparent, and where the choice of the

free data leads to a well-posed set of constraint equations. The CTS method [187] is

a prescription for this separation of degrees of freedom that begins with a conformal

decomposition of the spatial metric and the extrinsic curvature. Introducing the

conformal factor Ψ, we define

γ̃ij := Ψ−4γij, (3.6)

Âij := Ψ10

(

Kij − 1

3
Kγij

)

=
1

2α̃

[

˙̃γij + D̃iβj + D̃jβi − 2

3
γ̃ijD̃kβ

k

]

, (3.7)

where ˙̃γij := Ψ4(γ̇ij− 1
3
γijγklγ̇

kl) is defined to be traceless, the overdot indicates a time

derivative, α̃ := Ψ−6α, and R̃ and D̃i are the Ricci scalar and covariant derivative

associated with γ̃ij, respectively. With these definitions we can rewrite (3.4) and (3.5)

in the CTS form as

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ijΨ−7 − K2

12
Ψ5 = −2πΨ−3Ẽ (3.8)

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πp̃i (3.9)
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with p̃i := Ψ10pi, Ẽ := Ψ8E. Initial data is obtained by solving this system of four

elliptic equations for Ψ and βi [upon substitution of (3.7) into (3.9)], where γ̃ij, ˙̃γij,

K, α̃, Ẽ, and p̃i are the “free data” that can be freely specified to reflect the physical

system under investigation.

3.2.2 Superposed free data

Under the conformal thin-sandwich method one is free to choose any values for γ̃ij,

˙̃γij, α̃, K, Ẽ, and p̃i for which a solution can be found. In this section we outline our

method for determining this free data in order to construct initial data representing

binary systems. The basic idea is as follows. Since solutions to the Einstein equations

representing isolated compact objects (black holes, stars, etc.) are well known, and

since if the separation between the objects is not too small the solution describing

two compact objects is well-approximated by superposing the two isolated solutions,

we therefore set our free data using such a superposed solution and then solve the

constraint equations in order to obtain the nonlinear correction.

There are many ways to combine the metrics representing isolated compact ob-

jects. The method we use is based on the 3 + 1 splitting. Let γ
(1)
ij , γ̇

(1)
ij , α(1), and

βi(1) represent the spatial metric, time derivative of the spatial metric, lapse, and

shift, respectively, of the first isolated solution (e.g. a boosted black hole or neutron

star solution) and similarly for the second isolated solution. Then, we construct the

following quantities:

γ
(sup)
ij = γ

(1)
ij + γ

(2)
ij − fij (3.10)

γ̇
(sup)
ij = γ̇

(1)
ij + γ̇

(2)
ij (3.11)

α(sup) = α(1) + α(2) − 1 (3.12)

βi(sup) = βi(1) + βi(2) (3.13)

63



where fij is the flat-space metric. This particular construction will break down if

α(sup) ≤ 0 or det[γ
(sup)
ij ] ≤ 0 anywhere in the domain, which would then require some

other way of combining the metrics, for example, using distance-weighted attenua-

tion functions as in [239]. (In [217] it was also found necessary to enforce a desired

asymptotic falloff of the superposed metric, owing to the use of a corotating frame.)

However, these conditions are not violated for the cases considered here. From the

above quantities, we then calculate the free data we will use when solving the CTS

equations from the usual relations:

γ̃ij = γ
(sup)
ij (3.14)

˙̃γij = −γ̃ikγ̃jl

(

γ̇
(sup)
kl − 1

3
γ̃mnγ̇(sup)

mn γ̃kl

)

(3.15)

α̃ = α(sup) (3.16)

K =
1

2α̃
(2∂iβ

i(sup) + ˙̃γij γ̃ij + γ̃ijβk(sup)∂kγ̃ij). (3.17)

For initial data with matter we use a similar method. We set Ẽ and p̃i by su-

perposing the energy and momentum density of the two objects (we do not consider

situations where they would both be nonzero at the same point). For some cases (in

particular for the ultrarelativistic boosts), we rescale the momentum density so that

its magnitude with respect to the superposed metric γ̃ij is equal to the magnitude of

the original momentum density with respect to the metric of the isolated object (γ
(1)
ij

or γ
(2)
ij ). This ensures that Ẽ2 and p̃ip̃i have the same ratio as the isolated objects.

This is important since the choice of conformal scaling of the energy Ẽ = EΨ8 was

designed to ensure that if the conformal quantities satisfy the dominant energy con-

dition,
√

γ̃ij p̃ip̃j ≤ Ẽ, then so will the rescaled quantities following the solution of

the constraints.
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3.2.3 Regularizing black hole solutions

In cases where black holes are a part of the physical system, the divergences at the

black hole’s singularity must be addressed. As discussed in the Introduction, there are

several ways to deal with this issue in the initial data problem; the approach we take

here is to explicitly modify the metric of an isolated (prior to superposition) black hole

solution inside the horizon to take a prescribed, regular form. The regularized region

will not in general satisfy the vacuum constraint equations, and to avoid a singular

conformal factor and shift vector components when solving the constraints with such

background data, we introduce unphysical energy-momentum in the union of black

hole interiors so that these regions automatically satisfy the constraints, albeit with

the unphysical interior matter source.

We start with a single, unboosted spinning black hole spacetime in horizon pene-

trating coordinates (for the results described here we use the harmonic form of Kerr

derived in [144], though we have also tried it using Kerr-Schild coordinates without

difficulty), so that the only divergences in the metric components are well within the

horizon. We then choose a surface that encloses the singular region, yet is strictly

inside the event horizon. The interior of this surface we call the regularization region.

Outside the regularization region we do not modify the metric. Inside, there are

many conceivable ways to alter the metric to eliminate the divergences. The simple

approach we take is to promote the black hole mass M and spin a constants to func-

tions of space and smoothly decrease them from their bare values at the regularization

surface to zero at some surface interior to this.

Specifically, we introduce a regularization function

freg(x) =























1, x > 1,

x3 (6x2 − 15x+ 10) , 1 > x > 0,

0, 0 > x,

(3.18)
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chosen to be twice continuously differentiable so that the consequent unphysi-

cal energy is well behaved. We use a Cartesian grid1 and define r(E)(x, y, z) =
√

x2 + y2 + z2 as the Euclidean radius for a point with coordinates x, y, z. We

then replace the mass M and the spin parameter a with ξ(x, y, z)M and ξ(x, y, z)a,

respectively, in all the metric components, where

ξ(x, y, z) = freg

(

(r(E)(x, y, z)/r
(E)
+ (x, y, z)) − qin

qout − qin

)

, (3.19)

r
(E)
+ (x, y, z) is the Euclidean radius for the point on the event horizon at the same

angular direction as (x, y, z), qout defines the outer surface of the regularization region,

and qin is the inner surface inside of which the metric is Minkowski, with 1 > qout >

qin > 0. The shape of the regularization region, namely a shrunken form of the interior

of the event horizon, was motivated by the similar volume excised during evolution

(though that is based on the apparent horizon, and the excision surface is a best-fit

ellipsoid rather than the exact shape of the apparent horizon). The particular values

of qout and qin are not too important (i.e., give essentially the same solutions), the only

practical requirements being that qout represents a surface within the excision surface

we will use during evolution and that qin is not to be too close to qout; otherwise

excessive resolution is needed to resolve the transition.

Once we have an everywhere-regular metric, we superpose it with any other COs

to construct the free data as described in Sec. 3.2.2. We then compute the unphysical

energy and momentum we will add to the regularization regions simply by evaluat-

1Note that in the harmonic coordinates of [144] only the region with rK > M is represented
on the Cartesian grid r ≥ 0, where rK is the radial coordinate of the the metric in ingoing null
Kerr form. Hence the physical singularity is not on the grid; however, the metric components are
discontinuous at x = y = z = 0 (rK = M), and hence regularization is still required.
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ing (3.4) and (3.5) with the background, superposed data

Eunphys := 1
16π

(R +K2 +KijK
ij)(sup), (3.20)

pi
unphys := 1

8π
(DjK

ij −DiK)(sup). (3.21)

Eunphys and pi
unphys are then added to Ẽ and p̃i within the regularization regions, and

we can then solve the CTS equations as usual without any additional special treatment

of these regions. It is also possible to calculate the unphysical energy-momentum

before the superposition and add Eunphys and pi
unphys directly. The former method

gives a small discontinuity of Eunphys and pi
unphys at the boundary of the regularization

region, whereas the latter one gives continuous quantities. Either approach leads to

similar results, but the former gives more rapid relaxation of the elliptic equations

and is the choice for the cases presented here.

During evolution, we choose black hole excision surfaces that entirely contain the

regularization regions and unphysical matter. Thus, one can think of the unphysical

matter as serving as a proxy for what would otherwise be boundary conditions for

Ψ and βi on excision surfaces. Given a solution to the constraints with regularized

interiors it is trivial to read off what the equivalent (Dirichlet) boundary conditions

would have been, though the inverse problem of mapping some set of desired boundary

conditions to interior sources is less trivial and likely not well posed in general.

3.2.4 Fluid solutions

For the applications with (physical) matter considered here we use Tolman-

Oppenheimer-Volkov (TOV) star solutions in isotropic coordinates to construct

the metric free data quantities as well as Ẽ and p̃i. Such solutions are derived

by assuming a relationship between the pressure and density P (ρ), e.g. as given

by a polytropic condition. Once the constraint equations have been solved and E
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and pi found, we determine the new density and pressure profiles using this same

relationship and solving the equation

(E + P (ρ))(E − ρ) − pip
i = 0 (3.22)

for ρ, which follows directly from the expressions for the energy and momentum

density of a perfect fluid. For the applications considered here, we do not explicitly

impose any additional constraints on the fluid quantities (e.g. that the fluid be in

hydrostatic equilibrium). We leave that to future extensions.

3.2.5 Multigrid elliptic solver

To numerically solve the CTS equations we discretize (3.8) and (3.9) using standard

second-order finite difference operators and solve them using a full approximation

storage implementation of the multigrid algorithm with adaptive mesh refinement

(AMR) as described in [240]. A multigrid algorithm is characterized by a smooth-

ing operation and by a choice of restriction and prolongation operators. We use

Newton-Gauss-Seidel relaxation for smoothing, and half-weight restriction and linear

interpolation for the restriction and prolongation operators, respectively. These latter

operators require special treatment on mesh refinement boundaries which we outline

in Sec 3.2.6. Unlike in the evolution code, we do not use a compactified coordinate

system extending to spatial infinity. Rather, the initial data numerical grid extends to

a large but finite radius. This is to avoid numerical problems attributable to large Ja-

cobian factors needed in compactification which become especially problematic near

the corners of the boundary. At the outer boundaries we impose boundary conditions

that Ψ = 1 and βi = βi(sup). Since the use of mesh refinement enables us to put the

outer boundary far away from the compact objects, these boundary conditions can

be made sufficiently accurate compared to numerical error (though for future applica-
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tions they could also be replaced with, e.g., Robin boundary conditions). Any points

outside this domain on the evolution grid are initialized via extrapolation, assuming

a leading order 1/r approach to an asymptotically flat spacetime.

For some applications we wish to solve for initial data with axisymmetry. To

efficiently solve the constraint equations in these situations we have implemented a

modified version of the Cartoon method [125] similar to that used in [79]. Letting the

y axis be the axis of symmetry, we restrict our computational domain to a subset of

the half-plane (x, y) ∈ (−∞,∞) × [0,∞). We use the existence of an axisymmetric

Killing vector to express derivatives in the z direction in terms of derivatives in the

x and y directions. On the y axis we impose regularity, which gives the following

conditions for the constrained variables: ∂yΨ = 0 and ∂yβ
x = ∂yβ

y = βz = 0.

3.2.6 Multigrid AMR interpolation

A multigrid algorithm requires a restriction operator to inject quantities from finer to

coarser grids as well as a prolongation operator to interpolate corrections from coarser

grids to finer grids (see e.g. [241]). For our multigrid algorithm we use half-weight

restriction as our restriction operator. In three dimensions half-weight restriction can

be written as

fHW = fi,j,k +
1

12
(∆fxx + ∆fyy + ∆fzz), (3.23)

where

∆xxf = fi+1,j,k − 2fi,j,k + fi−1,j,k, (3.24)

and similarly for the y and z directions. Note that ∆xxf divided by h2 (where h is the

grid spacing) is a second-order approximation for ∂2
xf . On AMR boundaries where

the full stencil is not available we must modify the above expression. For example, on
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a negative x boundary we replace ∆xxf by a right-handed second derivative stencil

∆xxf = 2fi,j,k − 5fi−1,j,k + 4fi−2,j,k − fi−3,j,k (3.25)

and so on for the other directions. This ensures not only that fHW is a second-order

representation of f , but also that fHW is smooth to O(h4) on AMR boundaries. Hence

if second derivatives of fHW are computed including restricted boundary points in the

stencil, the error will be O(h2).

We use linear interpolation as our prolongation operator. However, after applying

a correction from a coarse grid, we reset the values on the AMR boundaries of the fine

grid for the points that do not exist on the coarse level with fourth-order interpolation

using those points that do. We found this higher order interpolation to be beneficial

as we do not relax the points on the boundary.

3.3 Applications

3.3.1 Quasicircular binary black holes

As a first application of our technique, we generate and evolve ID for the (approxi-

mate) quasicircular inspiral of two nonspinning, equal-mass black holes. Our present

method for providing free data is not designed to easily give initial data for quasi-

circular inspiral (though presumably with sufficient fine-tuning of the boost vectors

this could be achieved), and this basic example is mainly to provide a relatively low

eccentricity binary, a couple of orbits before merger, for comparison to past studies.

Specifically, we are interested in seeing how close the masses, etc., of the black holes

obtained following the solution of the constraints are to the corresponding parameters

used in constructing the free data, and how much “spurious” gravitational radiation

is present in the initial data.
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Figure 3.1: The conformal factor Ψ from BH-BH ID. Upper: Ψ on the x axis which
lies on the orbital plane and goes through the centers of the black holes. Lower: Dif-
ferences in Ψ with resolution on the x axis, scaled assuming second-order convergence.

For the initial data, we use free data set by superposing two boosted nonspinning

equal mass black holes at a coordinate separation of 10M , where M is the sum of

the isolated black hole masses (which in general will be different from the irreducible

masses of the black holes once the constraint equations are solved). The black holes

are given purely tangential boost velocities chosen so that, when evolved, the black

holes undergo a few orbits with monotonically decreasing proper separation. The ini-

tial data grid extends to ±2048M in all three directions. For convergence studies of

the initial data solver, we use three base grid sizes of 333, 653, and 1293 and 12 levels

of mesh refinement with identical grid structures in each case. As expected, the con-

formal factor and shift vector exhibit second-order convergence as shown in Figs. 3.1

and 3.2, as does the residual of (3.4) and (3.5). For evolution, we use the highest

resolution initial data. The ID is evolved using the generalized harmonic formulation

of the field equations, choosing harmonic coordinates at t = 0 and transitioning to
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Figure 3.2: Differences in the shift component βy with resolution on the x axis from
BH-BH ID, scaled assuming second-order convergence.

a damped harmonic gauge as described in Chap. 2. The eccentricity is estimated to

be e ≈ 0.05 based on the evolution of the coordinate distance between the centers

of the apparent horizons as shown in Fig. 3.3. Though the orbital eccentricity could

presumably be reduced further by tuning the initial velocities using methods such

as the one proposed in [242] or using the post-Newtonian approximation as in [243],

we did not attempt to do so for this basic comparison. Because of corrections from

solving the constraints, the sum of the masses of the isolated black holes whose space-

times we superpose M is different from the sum of irreducible masses computed from

their apparent horizons at the beginning of the evolution Mirr. For this particular

case Mirr/M = 1.21. The ID is constructed using free data with nonspinning black

holes, and the initial spin calculated from the apparent horizons is zero to within

truncation error (|S/M2
BH| < 6× 10−3). The ratio of the irreducible mass of the final

black hole after the merger to the sum of the irreducible masses of the initial black

holes is Mirr,f/Mirr = 0.885, and the dimensionless spin parameter of the final black

hole is af/Mf = 0.678. Both of these values are in good agreement (considering the

mild initial eccentricity here) with the high accuracy results of 0.88433 and 0.68646,
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Figure 3.3: Coordinate separation of the centers of the two black holes fitted to
a function (A − B(t − t0))

1/4 + C cos(ω(t − t0) + φ). This function combines the
decaying orbit attributable to quadrupole radiation with the effects of eccentricity,
given by e = C/d(t = t0) ≈ 0.05. Because of early-time gauge effects (a transition
from harmonic to damped harmonic gauge) we exclude the first t = 40Mirr from the
fit.

respectively, from [244]. In Fig. 3.4 we show the gravitational waves from the BH-BH

merger. The initial spurious part of the signal is of comparable magnitude to other ID

approaches that do not attempt to include gravitational waves from the prior inspiral;

see, for example, [223].

3.3.2 Eccentric compact object mergers

As another application of this technique, we consider constructing initial data de-

scribing a dynamical capture BH-NS binary. We set the free data using a boosted

harmonic black hole solution and a neutron star with the HB equation of state [23].

Let M be the sum of the masses of the isolated black hole and neutron star. We

construct initial data for a 4:1 BH-NS binary by setting the boost velocities to cor-

respond to a Newtonian orbit with eccentricity e = 1 and periapse distance rp = 5M

at various initial separations d. We keep the mass and spin that we use for the black

hole component of the free data fixed at 0.8M and −0.4M , respectively (where the
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Figure 3.4: The real and imaginary components of the l = 2, m = 2 spin-weight −2
spherical harmonic of rΨ4 extracted at a radius of 105M . Time is measured from the
beginning of the simulation.

negative sign indicates that the spin is retrograde with respect to the orbital angular

momentum) and the mass of the neutron star component of the free data fixed at

0.2M . The spin and masses will receive corrections from solving the constraint equa-

tions and with decreasing d these will differ more and more from the input parameters

of the free data. The input parameters can, of course, be tuned to achieve desired

values in the final solution. However, since here we are mainly interested in quanti-

fying this difference, we keep them fixed. We use a grid extending from −1600M to

1600M in each dimension where the base level is covered by 2573 points and there

are nine additional levels of mesh refinement, each with a refinement ratio of two. We

solve for data with initial separations d/M = 15, 25, and 50. In Table 3.1 we show

the maximum difference of the conformal factor from unity as well as the actual ADM

(Arnowitt-Deser-Misner) mass, black hole mass and spin, neutron star rest mass, and

induced neutron star density oscillations for these three different separations. We

can see that even at a separation of 15 M the difference between input and final

parameters is small—at the level of a few percent. At such separations, however, the

oscillations induced in the neutron star by the initial setup become large. This prob-
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lem could be remedied by adding additional constraints to the matter, for example,

requiring it to satisfy an equilibrium version of the Euler equations.

We evolve the initial data past merger using three different resolutions. To give

some sense of the smallest scales resolved in these runs, the low (medium, high)

resolution run has two finest-level meshes centered around the BH and NS of roughly

803 (1003, 1503) cells each, resolving the diameter of the NS with approximately 40

(50, 75) cells and the BH horizon diameter with roughly 70 (85, 130) cells. Unless

otherwise stated, all quantities are from the high resolution runs. In Fig. 3.5 we

show the norm of the constraints throughout the evolution of the d = 15M ID at the

different resolutions. The single highest, resolution ID is used for all evolution runs, so

the fact that evolution constraints are converging to zero indicates that the truncation

error of the ID is at least as small as that of the highest resolution evolution. In Fig. 3.6

we plot the amplitude of the gravitational waves measured from the three different

evolutions to show the amount of spurious gravitational radiation this method of

constructing ID introduces. The level of spurious gravitational radiation decreases

with increasing separation and in all three cases is small—an order of magnitude

or more below the physical signal of interest. After the passage of the spurious

gravitational radiation, the gravitational wave signal from all three initial separations

is approximately the same, though there are small differences owing to the changes

in parameters indicated in Table 3.1, and because we are starting the systems along

different points of a Newtonian trajectory.

3.3.3 Ultrarelativistic initial data

As a final application, we consider the problem of specifying ID for ultrarelativistic

collisions. The study of the collision of objects where kinetic energy dominates the

dynamics of the spacetime is of considerable interest to super-Planck scale particle

collisions, as arguments suggest classical Einstein gravity will be adequate to describe
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d/M max(|Ψ − 1|) M0/M0,∞ MBH/M aBH/M MADM/M ρoscill. (%)

15 0.0155 1.077 0.832 −0.398 1.051 14.3
25 0.0092 1.049 0.818 −0.402 1.030 9.0
50 0.0046 1.028 0.808 −0.399 1.017 4.5

Table 3.1: Characteristics of BH-NS initial data with Newtonian orbital parameters
rp = 5M and e = 1 with three initial coordinate separations d. Here max(|Ψ − 1|)
is the maximum deviation over the entire domain of the conformal factor from the
background free-data value of unity, M0/M0,∞ is the rest mass of the neutron star
compared to its isolated rest mass, MBH/M and aBH/M are the black hole mass and
spin parameters measured from the apparent horizon relative to the initial total mass
M of the free data, MADM/M is the relative ADM mass of the solution, and ρoscill. is
the relative magnitude of the oscillation in time of the maximum rest mass density
of the neutron star induced by the ID construction.
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Figure 3.5: The L2 norm of the constraint violation, Ca := Ha − �xa, in units of
1/M for the d = 15M BH-NS merger in the 100M × 100M region around the center

of mass in the equatorial plane (i.e.
√

∫

‖Ca‖2d2x/
∫

d2x ). This is shown for low,

medium, and high resolutions where the latter two are scaled assuming second-order
convergence.
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Figure 3.6: The log of the magnitude of the l = 2, m = 2 spin-weight −2 spherical
harmonic of rΨ4 for BH-NS simulations with different initial separations d. The value
of Ψ4 was extracted on a sphere of radius 100M and is shown starting at the beginning
of the simulation and continuing past merger. The waveforms have been aligned so
that the peaks occurs at time 0.

the process [245, 246, 247]. The hoop conjecture [248] predicts that the generic

outcome of a sufficiently ultrarelativistic collision will be black hole formation, and

this, together with suggestions of a tera-electron-volt Planck scale [72, 74], imply

that, if such a scenario describes nature, the Large Hadron Collider or cosmic ray

collisions with Earth could produce black holes [75, 76, 77]. Though to date no signs

of black hole production have been observed [249, 250], the nature of the kinetic

energy dominated regime in general relativity is of interest in its own right and has

largely been unexplored.

Initial data describing such systems will be far from equilibrium, and one cannot

assume that the solution is time symmetric or quasistatic. It is instructive to recall

the Aichelburg-Sexl [251] solution describing a gravitational shock wave. The solution

can be obtained from a boosted Schwarzschild solution by simultaneously taking the

mass to zero and the boost parameter to infinity, while keeping their product constant

and finite. Two such oppositely boosted solutions can be superposed to obtain a new

solution that is valid up until collision. Though it is not clear how applicable this is to
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the nonlimiting case, this suggests that superposition may be a good approximation

to describing such spacetimes.

Here we consider the specific example of the setup for a head-on collision of two

fluid star solutions. We use the method described in Sec. 3.2.2 to construct free data

from two Γ = 2 polytropic TOV star solutions that have unboosted mass M∗ and a

compactness (ratio of mass to radius) of C = 0.01. The stars are boosted toward each

other with boost factor γ = 10. We consider a sequence of solutions at various initial

coordinate separations d. We take advantage of the axisymmetry of the problem and

use [−2000M, 2000M ]× [0, 2000M ] where M := 2γM∗ as our computational domain.

The base level is covered by 1025 × 513 points, and there are nine additional levels

of mesh refinement. To test convergence we also consider two lower resolutions with

grid spacing 2 and 4/3 times as coarse.

Using the method for specifying free data described in Sec. 3.2.2, as d → ∞

we expect the corrections from solving the constraints will go to zero: Ψ → 1, the

magnitude of the coordinate velocities of the stars |v| will approach
√

1 − γ−2, the

ADM mass MADM will approach M , and the total rest mass M0 will approach the

sum of the rest masses of the isolated stars M0,∞. In Fig. 3.7 we show how all these

quantities change with coordinate separation. We can see that it is possible to solve

for ID where the stars are quite close together, though the corrections become large,

and in particular the ADM mass decreases quite significantly.

To give an indication of the numerical errors on these quantities, we can compare

the values obtained at the highest resolution to the Richardson extrapolated values

using all three resolutions. For example, for the smallest separation d = 1.56M , we

have max(|Ψ − 1|) = 0.05326 (0.05325) and max|v| = 0.530149 (0.530153) where the

values in parentheses are the Richardson extrapolated quantities (which are consistent

with approximately second-order convergence).
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Figure 3.7: Various quantities from ultrarelativistic collision ID with γ = 10 made
using the superposition method for constructing free data. From top to bottom
the quantities shown are the maximum (over the entire domain) difference of the
conformal factor from unity, the maximum coordinate velocity of the fluid, the total
rest mass, and the ADM mass. All quantities are shown as a function of d, the
coordinate separation between the two stars. For all these cases the maximum of
|Ψ − 1| occurs for values of Ψ that are less than unity. One might expect these
quantities to approach their infinite separation limits as 1/d for large d; the dotted
lines show such 1/d curves for each quantity matched to the d/M = 50 point.
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We can compare the above method of constructing free data for this case to

a conformally flat method. Specifically, we set all the metric free data quantities to

their flatspace values and set Ẽ and p̃i for each star to a special-relativistically boosted

density and pressure profile taken from the TOV solution. In Fig. 3.8 we show the

same quantities as in Fig. 3.7 but using this conformally flat method. In this case the

corrections from solving the constraints will not go to zero with infinite separation

since all the nontrivial geometry is coming from the conformal factor. Hence the

energy-momentum will be substantially rescaled at any separation. Also in contrast

to the first method, the maximum of |Ψ−1| occurs for Ψ > 1 instead of Ψ < 1, which

means E and pi will be smaller than their conformal counterparts. With conformally

flat ID it is also possible to solve for stars close together, though, as in the previous

method, the ADM mass decreases steeply. It should also be noted that because of

the large shift vector obtained with the second method, the coordinate velocity is

substantially greater than one, which may make it more challenging to numerically

evolve.

A full characterization of this ultrarelativistic collision ID requires evolution, which

we present in Chap. 8.

3.4 Conclusions

We have outlined a general method for constructing initial data based on super-

position and the CTS formulation of the constraint equations, and demonstrated

the method with some example solutions. Though there are numerous existing ap-

plications of the CTS method, and superposition has been proposed before, some

of the notable aspects of the work presented here include adding the matter and

metric of neutron stars to the prescription, regularizing the interiors of black holes

with (unphysical) matter sources, and applying it to regimes not yet studied before,
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namely, initial data for generic high-eccentricity binary mergers and ultrarelativistic

collisions. For astrophysically relevant binaries we find that superposition of single,

isolated compact object solutions works well in the sense that nonlinear correction

from solving the constraints are relatively small for larger initial separations, implying

that superposition is a good start to attain more astrophysically realistic initial data

(for example, by adding prior gravitational wave information as in [223] to the su-

perposed background data for quasicircular or low eccentricity inspirals). Including

neutron stars, we find that the superposition effectively induces oscillations in the

stars. This again is small for large separations and hence a good approximation to

dynamical capture binaries. However, practical application to low eccentricity inspi-

rals will likely require that the CTS equations be supplemented with some form of

quasiequilibrium equations for the hydrodynamics (as in many existing ID methods,

for example [200, 208, 225]).

For the ultrarelativistic boost examples we are able to obtain solutions to the

CTS equations with superposed and conformally flat data well into the kinetic en-

ergy dominated regime (γ = 10) for sufficiently large initial separations. At smaller

separations we are still able to obtain solutions. However, for these initial data sets

the corrections to the metric and fluid properties become large, and it is less clear how

to separate the total energy of the spacetime into kinetic energy, rest mass energy, etc.

This will require evolution to resolve, and we leave that to future work. Nevertheless,

given that there are few results on the uniqueness and existence of solutions to the

conformal constraint equations beyond constant mean curvature slicing [252] (and

in some cases, such as the extended CTS equations [253] there are known examples

of nonuniqueness [254]), it is interesting that we are able to obtain solutions in this

highly nonlinear regime.
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Chapter 4

Dynamical capture black

hole-neutron star mergers

4.1 Introduction

It is important to understand mergers of black holes (BHs) and neutron stars (NSs)

not only because they are a chief source for ground-based gravitational wave (GW)

detectors (such as LIGO [10]) but also because they may be accompanied by a diverse

range of electromagnetic (EM) and neutrino emission. One of the more interesting

possibilities in this regard is that BH-NS mergers may be progenitors of a fraction of

observed short-hard gamma-ray bursts (sGRBs) [32, 33, 34]. Furthermore, existing

and planned wide-field survey telescopes such as PTF [43], Pan-STARRS [44], and

LSST [45] are beginning to observe and classify fainter EM transient events, some of

which are expected to be produced in BH-NS mergers from a variety of mechanisms

(see [88] for a recent, detailed exploration of the possibilities). Coincident observation

of these EM events with a gravitational wave signal from a binary coalescence would

provide a wealth of additional information about the system beyond any individual

observation, even, for example, providing an independent way to measure cosmologi-
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cal parameters [255]. However this depends on having a good understanding of how to

map the particular observations to the underlying astrophysical processes governing

the merger.

The great diversity in sGRBs hints at the possibility that there will be a corre-

sponding diversity in the associated GW and EM signals, and motivates the explo-

ration of all viable channels for binary compact (BCO) mergers. BCOs may form

through the evolution of primordial binaries or through dynamical capture in dense

stellar systems, such as nuclear or globular clusters. BCOs formed through the latter

channel, which could merge with non-negligible eccentricity, are the focus of this and

the subsequent two chapters. In this chapter we study dynamical capture BH-NS

evolution using full general relativistic hydrodynamics (following-up and extending

the first such study performed in [4]). Before delving into the details, we briefly sum-

marize the motivation for studying this class of BCO. In contrast, most studies of

BH-NS mergers to date have focused on the quasicircular inspiral case; see [162] for

a review of these efforts.

A chance close-encounter of two compact objects in a stellar cluster could result

in a bound system if the energy loss due to GW emission is sufficiently large. (Tidal

interaction with the NS is also a source of energy loss [256], though due to the relative

scalings with distance, to leading-order the total cross section for capture is dominated

by the GW emission.) Because of gravitational focusing, a sizable fraction of binding

encounters will result in highly eccentric binaries that merge within a few orbits of

the initial encounter. For Newtonian hyperbolic orbits of systems with total mass

M and relative velocity w at infinity, the pericenter separation rp is related to the

impact parameter at infinity b by rp = b2w2/2M +O(w4) (unless otherwise stated we

employ geometric units with G = c = 1 throughout). Thus, since the capture rate is

linearly proportional to the cross sectional area, it is linearly proportional to rp. For

the 4:1 BH to NS mass ratio systems studied here (with w = 1000 km/s), estimates of
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the energy lost to GW based on the work of [257] shows binding encounters occur at

rp . 40 M (and scales with mass ratio as µ4/7). The results presented here show that

cases with initial rp . 7M (for the canonical nonspinning BH), or close to 20% of

binding encounters (of a 4:1 system with w = 1000 km/s), result in “direct collisions,”

i.e., merging on the first close-encounter.

4.1.1 Event rates

At first glance it may seem that encounters resulting in dynamical capture would be

too rare to be of any relevance as possible GW or EM transient sources; however,

recent studies have suggested otherwise. Here we briefly review the event rates for

dynamical capture binaries. (We consider NS-NS and BH-BH in addition to BH-NS

rates since we will be interested in these systems in subsequent chapters.) 1

Galactic nuclei are one promising setting for the formation of dynamical capture

binaries. Mass segregation around a central massive BH can lead to large densities

of stellar mass BHs and stars. For example, the Fokker-Planck model used in [258]

suggests that our galactic nucleus should have ∼ 2000 BHs and ∼ 400 NSs in the

central 0.1 pc. In [259, 260], the event rate for the formation of BH-BH binaries

from GW capture in this setting was estimated to be roughly between 0.01 and 1.0

yr−1 Gpc−3, with corresponding Advanced LIGO detection rates of ≈ 1 − 102 yr−1.

This rate assumes that the number density n of BHs in galactic nuclei has a scatter

with 〈n2〉/〈n〉2 = 30. Assuming no scatter would reduce the above rate by a factor

of 30. This also assumes a number density of contributing galaxies of 0.05 Mpc−3;

i.e. it includes all galaxies as contributing roughly equally. Lower mass galaxies

are not as well understood, though if a significant number of them have total cluster

mass fractions above the 2.5% used in the aforementioned calculation, this rate would

increase. Other unaccounted for effects, such as steeper profiles from light-dominated

1Some of the material in this subsection originally appeared in [6]
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mass functions [261], could also potentially increase this rate. The formation of BH-

NS binaries is estimated to be ∼ 1% of this rate [259].

Dynamical capture binaries may also form in globular clusters (GCs) that undergo

core collapse [262, 263]. In [264] binary formation through tidal capture was studied.

Using M15 as a prototypical GC, it was calculated that the NS-NS tidal capture rate

would peak at ∼ 50 yr−1 Gpc−3 at z = 0.7 (falling to ∼ 30 yr−1 Gpc−3 by z = 0)

for their default model of core collapse. They also provide a scaling to BH-NS and

BH-BH mergers which (assuming MBH = 4.5M⊙ and a relative fraction of BHs to NSs

fBH/fNS ≈ 0.28) gives rates that peak at ∼ 70 yr−1Gpc−3 and ∼ 20 yr−1Gpc−3 for

BH-NS and BH-BH mergers, respectively. This scaling does not include complications

due to BH ejection [265, 266, 267, 268, 269]. Also, these calculations do not include

the likely reduction in compact object (CO) populations within the GC due to natal

kicks. In [270] it was found that including a 5% NS retention fraction when fitting

simulation results to observations of M15, and assuming no central BH, reduced the

estimated number of NSs in the inner 0.2 pc by ∼ 1/4 compared to a similar study that

did not include natal kicks [271]. The calculated NS-NS merger rate is quite sensitive

to the fraction f of NSs in the core, scaling as ∼ f 2, which means the aforementioned

rates could be too large by an order of magnitude if retention rates are this low.

However, observations suggest that in some GCs the NS retention fraction could be

as high as 20% [272]. Also, note that the tidal capture cross section used in [264]

is more than an order of magnitude smaller than the GW capture cross section for

compact objects, and using the latter would increase the rates by the same factor.

Tidal capture is estimated to occur in [264] for periapse values rp/M ≤ 32, 25, and

13 for NS-NS, BH-NS, and BH-BH binaries, respectively.

In [273] NS-NS binary formation in GCs via exchange interactions was studied,

giving a merger rate of ∼ 2 yr−1 Gpc−3. A similar mechanism was explored in [274]

for BH-NS systems; the results depend sensitively on the initial mass fraction of BHs,
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with more massive BHs leading to higher event rates. For example, models where the

GC contained M = 35⊙ BHs lead to advanced LIGO detection rates of 0.04–0.7 yr−1.

Though in contrast to tidal or GW capture discussed in the previous paragraph, the

mechanisms looked at in both these studies typically produce binaries with periods

of 0.1 days or longer, and they will effectively circularize before entering the LIGO

band.

There is also the possibility that eccentric mergers could result from hierarchical

triples through the Kozai mechanism. This has been suggested to occur in BH-

BH mergers in GCs [275, 276, 269] and CO mergers around supermassive BHs in

galactic nuclei [277], as well as in coeval or dynamically formed BH-NS or NS-NS

binaries [278]. Though dynamically different from direct capture two-body systems,

in Kozai-accelerated evolution the merger itself could take place with significant ec-

centricity [275] and have comparable behavior at late times to the systems studied

here. However, we are unaware of any systematic studies of expected populations and

corresponding LIGO-event rates for such Kozai triple systems. Efforts to understand

this mechanism in the general-relativistic regime are ongoing (see e.g. [279]), and we

are unaware of any systematic studies of expected populations and corresponding

LIGO-event rates for such Kozai triple systems (though see [280]).

In comparison, population synthesis models [281] find primordial BH-NS merger

rates from ∼ 0.1 yr −1Gpc−3 (pessimistic) to ∼ 120 yr −1Gpc−3 (optimistic). To

estimate Advanced LIGO detection rates requires full templates for these events,

which we present in Chap. 6; however, here we briefly mention that in [260] the signal-

to-noise ratio was computed using post-Newtonian-based models of the early stages

of the mergers, which showed that a subset (depending upon the component masses)

could be observed out to 200-300 Mpc for an average orientation, even excluding

the final stages of the merger in the templates. This suggests detection rates of

∼ 0.3−10/yr. For comparison to primordial BH-NS binaries, [17] quotes an Advanced
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LIGO optimal detection distance of 927 Mpc for a 10 M⊙ BH to 1.4 M⊙ NS merger,

which scales to ∼ 400Mpc when averaging over orientation and sky location; the

corresponding detection rates range from 0.2/yr to 300/yr for pessimistic to optimistic

source population estimates.

Though far from conclusive, there is also observational evidence for multiple sGRB

progenitors, which could, in part, be due to dynamical capture vs primordial mergers.

Of sGRBs with identified host galaxies, ∼ 25% have offsets of & 15 kpc from their

hosts [282]. This subset of sGRBs with large offsets would be consistent with kicked,

primordially formed BCOs or with dynamically formed binaries in globular clusters.

The latter may be preferred for the largest offsets [283], especially if primordial BCOs

experience weak kicks [284]. Analysis of x-ray afterglows observed by Swift/X-Ray

Telescope suggests that different progenitors may be responsible for sGRBs with and

without extended emission [285]; again, one possible explanation is dynamical capture

(with extended tidal tails leading to long-term emission) vs primordial. There has

also been a claim that a very high-energy gamma-ray source observed in Terzan 5

may, in fact, be the remnant of a BCO merger-powered sGRB [286]; if true, this

would support the claim that dense cluster environments can be significant sources

of BCO mergers.

4.1.2 Effects of orbital eccentricity

Merging with moderate to high eccentricity could have significant effects on all the

GW and EM observables from the event. In contrast to a low-eccentricity inspiral,

the GWs are emitted primarily around periapsis, resulting in waveforms that resem-

ble a sequence of bursts more than a continuous signal. Consequently, for mass ratios

relevant to stellar mass BH-NS mergers, the evolution of effective orbital parameters

describing the binary does not occur quasistatically as in the early inspiral of low-

eccentricity binaries. Regarding effects associated with tidal disruption of the NS, an
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interesting coincidence for this class of BH-NS systems is that the typical radii in-

side of which tidal stripping begins, depending upon the NS compactness and, hence,

equation of state (EOS), roughly coincides with the range of pericenter separations

where the orbit becomes unstable due to general relativistic effects (rp . 10M de-

pending upon on the spin of the black hole where M is the total mass of the system).

The resultant dynamics could thus be very different from Newtonian expectations.

Of course, these two zones also roughly correspond for quasicircular inspiral. How-

ever, highly eccentric binaries have significantly more angular momentum (at a given

orbital separation) than quasicircular binaries. This additional angular momentum

could strongly affect the matter dynamics relative to the quasicircular case, for ex-

ample, resulting in comparatively massive disks and/or in multiple and prolonged

episodes of mass transfer and ejection. Ejected mass will decompress and form heavy

elements through the r-process [36, 37, 38], and thus these systems could account for a

significant fraction of such elements in the Universe. Furthermore, subsequent decay

of the more radioactive isotopes could lead to observable EM counterparts [287, 88].

4.1.3 Outline of remainder of chapter

In this chapter we perform simulations of BH-NS dynamical capture and merger

using general relativistic hydrodynamics (GRHD) (see [264] for an earlier related

study using a Newtonian-based hydrodynamics code) for several values of BH spin

and NS equation of state. Astrophysical BHs are expected to form with a range of

spins, (see e.g. [288, 289]) and in the quasicircular case spin was found to be crucial

in obtaining significant accretion disks [290, 291, 292, 98]. Additionally, there is

significant uncertainty about the NS equation of state. Since the EOS determines the

NS compaction and, hence, the point at which the NS will become tidally disrupted, it

is also an important determinant of the merger outcome. In addition to non-spinning

BHs, we consider initial BH-spins aligned and antialigned with the orbital angular
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momentum (with dimensionless spin parameter a = 0.5 and a = −0.5, respectively),

as well as different EOSs (the “2H”, “HB” and “B” models from [23]). Note that

there is no a priori reason to expect alignment of the BH spin with orbital angular

momentum in dynamical-capture binaries; this particular choice of spin direction and

magnitude was purely motivated as a first, simple exploration of the effects of spin

on the merger. Certainly in future studies a broader expanse of parameters will

need to be considered. There is also much room for improvement with the matter

description, including more realistic EOSs and additional physics beyond GRHD. For

quasicircular BH-NS inspiral [293], EOS effects were studied in [101, 22, 294, 20],

the effects of magnetic fields in [98, 295], and higher mass ratio systems (up to 7:1)

in [296].

In the remainder of the chapter we begin with a brief review of our numerical

methods (Sec.4.2); In Sec. 4.3, we describe the particular cases we study. We focus

on systems with small initial periapsis rp, in part for the practical reason that these

binaries merge quickly and are thus computationally tractable, this is the regime

where full general-relativistic (GR) effects will be most strongly manifested, and be-

cause maximum complementary information to post-Newtonian studies (e.g. [260] or

[264]) can be obtained. We present the results of the simulations in Sec. 4.4. We find

that the rich variability in the dynamics and merger outcome as a function of im-

pact parameter is compounded by considering different EOSs and values of BH spin.

For example, we find that with prograde spin or a stiffer EOS significant episodes of

mass transfer may occur during nonmerger close-encounters. Systems where the BH

has retrograde spin or that are somewhat less eccentric (than parabolic) can undergo

sustained whirling phases before merger that are evident in the GW signal. As in the

eccentric binary NS mergers studied in [153], we also find that strong f -mode oscil-

lations in the NS can be excited in close, nonmerger encounters (see also an earlier

study of a head-on BH-NS collision [297], though here the presence of the f-mode is
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largely a consequence of the initial data). In Sec. 4.5 we use the results of the simula-

tions to calibrate a simple model for the non-quasistatic evolution of effective orbital

parameters during each close-encounter. This model will be extended in Chap. 6 to

explore the detectability of these systems with gravitational wave observations. We

conclude in Sec. 4.6.

4.2 Numerical methods

In this section, we briefly outline our numerical methods for solving simulating ec-

centric binaries.

4.2.1 Evolution

We model the evolution of BH-NS binaries by solving the Einstein field equations

coupled to a perfect fluid using the code described in Chap. 2. In order to avoid

singularities we excise within any apparent horizons. In evolving eccentric binaries,

we find that a damped harmonic gauge similar to the one described in [178] (see

also [298]) is beneficial for achieving stable evolutions through merger. Specifically a

damped harmonic gauge takes the form Ha = ξ(na − n̄a), where na is the four-vector

normal to the constant coordinate time slices, n̄a is another timelike unit vector, and

ξ is a constant controlling the magnitude of the damping. The particular form for n̄a

that we found to work well is from [298],

n̄a =
1

α

(

∂

∂t

)a

+ log
( α

h1/2

)

na. (4.1)

We use a value of ξ ≈ 0.2/M , though include a spatial dependency so that ξ goes

to zero at spatial infinity. In addition, we begin with initial data in the harmonic

gauge and transition to this damped harmonic gauge before the two objects begin

to strongly interact. The use of this gauge seems to smooth out sharp features in
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the lapse that develop near merger when harmonic gauge is used, however, we have

not studied the pure harmonic case in sufficient detail to conclude whether or not

harmonic time slicing is developing a coordinate singularity.

We describe the neutron star material as a perfect fluid. The fluid equations are

written in conservation-law form and solved using high-resolution shock-capturing

schemes as described in Chap 2. Though we have implemented several methods for

calculating intercell fluxes and for reconstructing fluid primitive variables at cell faces,

we used HLL [126] combined with WENO-5 [133] for the results presented here.

Truncation error estimates are used to generate the AMR-level structure. All ini-

tial data were evolved with a fiducial “medium” resolution run, where the coarsest-

level has 1283 cells and covers the entire domain (we use a compactified coordinate

system, so this includes spatial infinity). We also chose a maximum truncation error so

that initially six additional levels of refinement (seven total) are generated to resolve

the BH and NS. Given the computational expense of these simulations, we limited the

total number of levels to seven during evolution, and did not allow regridding on the

two coarsest-levels to prevent the algorithm from tracking the outgoing gravitational

waves beyond the largest extraction sphere of 100M . For several representative cases

we also ran a “low” and “high” resolution simulation for convergence testing, where

on each level the low (high) resolution run had a mesh spacing of 64/50 (64/96) of the

medium resolution run, and we scaled the corresponding maximum local-truncation

error threshold-parameter used by the AMR algorithm assuming second-order con-

vergence. Note that this procedure will not generate identical hierarchies between

different resolution runs (except for the two coarsest levels in the wave zone, which

we keep fixed), but on average the highest-resolution grid covering a given coordinate

cell will have the above refinement ratios between the different runs. To give some

sense of the smallest scales resolved by the hierarchy, before tidal disruption, the low

(medium, high) resolution run has two finest-level meshes centered around the BH
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and NS of roughly 803 (1003, 1503) cells each, resolving the diameter of the NS with

approximately 40 (50, 75) cells and the BH horizon diameter with roughly 70 (85,

130) cells. Unless otherwise noted, results will be reported for medium resolution

with error bars (where appropriate) computed from convergence calculations.

4.2.2 Initial data

We construct initial data by superimposing a boosted BH with a boosted nonspinning

Tolman-Oppenheimer-Volkoff (TOV) star solution separated by d = 50M . Though

this superposition does not strictly satisfy the constraint equations except in the limit

of infinite separation, we have performed tests at various separations in order to verify

that the superposition-induced constraint violation is comparable to truncation error

at our resolution, in particular following an initially slightly larger transient that

propagates away (and is partly damped due to the use of constraint damping) on

roughly the light-crossing time d of the binary. In Fig. 4.1, we show the level of

constraint violation (Ca := Ha −�xa) following the transient for various separations

and resolutions for the rp = 10M case. At these resolutions, we can still achieve

convergence of the constraints with this superposed data, and increasing the initial

separation to d = 100M does not significantly affect the level of constraint violation

at the same resolution. This implies that the error introduced by the superposition is

on the order of or smaller than the numerical truncation error at this resolution. We

note that the work described in the chapter was originally carried out prior to the

development of the code described in Chap. 3 and does not make use of it. However,

comparison of select evolutions with initial data constructed as in Chap. 3 confirm

that the superposition error is comparable to the truncation error.

The fact that we are beginning the binary at finite separation as a simple super-

position of boosted single-compact object solutions and that there is a transient early

time constraint-violation, both effectively introduce systematic errors in the param-
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eters of the binary. To give some idea of the possible magnitude of this error, the

effect on the apparent horizon-mass of the BH at early times and the amplitude of

the density oscillation induced in the NS are both . 2%. Though it is difficult to

exactly quantify how this will translate to modified-binary parameters, we expect it

to be comparable to or smaller than the error introduced by setting initial orbital

parameters at a finite distance based on a Newtonian approximation (as described in

the next section). As we report later, the truncation error in quantities of interest

that we do measure such as energy emitted in GWs is percentwise larger than this,

implying that solving the constraints or attempting more accurate initial representa-

tions for the metric and NS fluid distribution may only offer marginal improvement

in the overall accuracy of the results at these resolutions. However, for future higher-

resolution studies it would be important to solve the constraints and improve the

model of the physical initial conditions for the system.

Finally, we briefly comment that since our simulations employ compactified coor-

dinates such that the outer boundaries extend to spatial infinity, the global [Arnowitt-

Deser-Misner (ADM)] M and J should be conserved. In practice, however, we must

evaluate these quantities at a finite distance, making them subject to gauge arti-

facts, some propagating outward from the central BH-NS region from t = 0. For

t < 200M , an extraction sphere of 300M is free of propagating artifacts, hence M

(J) is conserved to better than 0.3 (2.0)% for all cases at medium resolution.

4.3 Cases

Motivated by possible BH-NS interactions in cores of galactic nuclei and globular clus-

ters, we create initial data for hyperbolic encounters with varying impact parameter.

These encounters are hyperbolic since the two bodies have nonzero kinetic energy at

(effectively) infinite separation. We will take their relative velocity at infinity to be
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Figure 4.1: L2-norm of the constraint violation, Ca := Ha − �xa, in units of 1/M
from the rp = 10M case in the 100M ×100M -region around the center of mass in the

equatorial plane (i.e.
√

∫

‖Ca‖2d2x/
∫

d2x ). This is shown for low, medium, and high

resolutions for the standard initial separation between the BH and NS of d = 50M ;
the relative magnitudes at a given time are consistent to good approximation with
second-order convergence. Also shown is a medium resolution run with an initial
separation of d = 100M . The time is shifted so that the point of closest approach
occurs at approximately t = 0 for all cases.

w = 1000 km/s since this is the expected magnitude of the virial velocity in the core

of a nuclear cluster [299, 300].

In practice, this initially positive total energy is small compared to the kinetic

energy of the encounter itself, so that the orbits are nearly parabolic and have eccen-

tricities 1 + O(10−5). In this study we also restrict our attention to BH-NS systems

with a 4:1-mass ratio (referring to the isolated ADM masses of the BH and NS). The

reasons for choosing this mass ratio are in part because it is within the range of astro-

physically plausible values given current observations of NS and candidate BH masses

(see, for example, [301, 302]), and in part because within this range it is also a value

where we expect to see strong tidal-disruption effects. Certainly it would be of inter-

est to explore a broader range of mass ratios, however, due to limited computational

resources we leave that to a future study.
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We choose the initial positions and velocities for the BH and the NS according to

the Newtonian equations for a hyperbolic orbit (see, e.g., [303]) with w = 1000 km/s

and an initial separation of d = 50M . We vary the initial spin of the BH, considering

the values a = −0.5, 0, and 0.5 where negative (positive) values indicate retrograde

(prograde) spin in relation to the orbital angular momentum. We also consider three

different broken Γ-law model EOSs labelled 2H, HB, and B in [23]. For the prototyp-

ical 1.35 M⊙ NS that we use, these EOSs give compactions MNS/RNS = 0.13, 0.17,

and 0.18, respectively. Note that while the compaction of the B EOS NS is only

slightly smaller than that of the HB, it has a maximum mass of 2.0 M⊙ (the 2H and

HB have maximum masses of 2.83 and 2.12 M⊙, respectively). Given recent obser-

vations [304], B is therefore on the soft end of the allowed range for the EOS family

considered here. We include a thermal component in the EOS, a Γ-law with Γth = 1.5

to allow for shock heating.

We do not consider large impact parameters corresponding to initial rp > 15M .

Even so, for impact parameters at the upper end of the range we do evolve the

eccentricity is sufficiently large (though < 1) after the first close-encounter that it

would be very expensive to evolve to the second encounter. To help calibrate our

model for orbital parameter evolution that will be introduced in Sec. 4.5, we also

consider a set of runs with initial orbital parameters for a bound orbit with eccentricity

e = 0.75 instead of the hyperbolic orbit with e ≈ 1. These simulations can be seen as

corresponding to systems that have already undergone one or more close-encounters

and evolved to these orbital parameters.

To keep the parameter space at a manageable size, we vary only one of the three

parameters of BH spin, NS-EOS, and initial eccentricity at a time from our base case

— an initially nonspinning BH (a = 0), a NS with the HB EOS, and the two objects

initially with Newtonian orbital parameters corresponding to a marginally unbound

orbit (e ≈ 1) — and then consider a range of impact parameters. See Fig. 4.2 for
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plots of the NS trajectory for several cases, and Fig. 4.3 for snapshots of the rest-mass

density at select times illustrating aspects of the matter dynamics.

4.4 Results

Varying the parameters as discussed in the previous section, there is much degeneracy

in the qualitative features that arise (which will need to be addressed in future studies

investigating extraction of source properties from GW and EM observations). This is

essentially because the leading-order source of the variability is rooted in the following

two properties of the system: (1) the NS radius, varied by altering the EOS (as the NS

mass is fixed in this study), (2) the location of the innermost stable orbit (ISO) varied

by changing the spin of the BH or the eccentricity of the encounter. For equatorial

geodesics on a black hole background, the ISOs asymptote to circular orbits, though

these should not be confused with the innermost stable circular orbit (at r = 6M

in Schwarzschild), or ISCO. The circular orbits (in the range r = 3M to 6M in

Schwarzschild) associated with the ISOs with nonzero eccentricity are unstable, and

under infinitesimal perturbation their noncircular nature is manifest in the form of

zoom-whirl behavior [305]. Specifically, depending upon the size of the perturbation,

the geodesic will undergo a number of near circular orbits (the “whirls”), followed

either (depending upon the sign of the perturbation) by a plunge into the BH or by

a single near elliptical orbit (the “zoom”), and in the latter case the motion repeats.

Away from the geodesic limit there is still an effective ISO, where qualitatively similar

behavior occurs [167], though radiation reaction will eventually drive the system to a

merger for all bound systems.

In terms of the gravitational dynamics, the closer the periapsis is to the ISO,

the more whirling that occurs, resulting in enhanced GW emission and more rapid

evolution of effective orbital parameters. Regarding the matter dynamics, the ISO is
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essentially the “event horizon” for fluid elements following geodesics, or being close to

geodesic. What this implies is on a close-encounter, if the NS is not disrupted and the

periapsis of the orbit is within the ISO a merger will result and the entire NS will fall

into the BH. If the NS is disrupted, following the essentially Newtonian redistribution

of angular momentum that results, fluid elements within an ISO corresponding to

their effective eccentricity will immediately plunge into the BH, while the rest will

either move out onto eccentric orbits to later fall back onto an accretion disk or

be ejected from the system. If the majority of the NS mass ends up outside the

ISO following disruption, once it moves beyond the tidal-disruption zone there will

be sufficient self-gravity for the material to recoalesce into a NS core. Similarly, in a

partial disruption where only the outer layers are stripped from the NS, some stripped

material will accrete into the BH, some back onto the NS, and a portion will be flung

out unbound.

In the following subsections, we break down the discussion of phenomenology

of the encounters by first summarizing the results from the base case presented

in [4] (Sec. 4.4.1), then describe in turn what happens when spin (Sec. 4.4.2), EOS

(Sec. 4.4.3), and eccentricity (Sec. 4.4.4) are changed relative to the base case. In

order to have some intuitive understanding of why the changes have the effects they

do, it is useful to keep the above discussion in mind. This can also allow one to

anticipate what would happen if parameters we are not altering here are changed, for

example, the BH or NS mass.

4.4.1 Zero-spin survey with HB EOS

Here we summarize the results obtained for simulations with an initially nonspinning

BH and a NS with the HB EOS. We considered a range of periapsis separations

from rp/M = 5.0 to 15 (i.e., 50 to 150 km). Henceforth, we will consider rp to be

normalized by M . In all of these cases, sufficient energy is carried away by GWs to
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Figure 4.2: Trajectories of the NS center-of-mass for various simulations. The rp =
7.0 with 2H EOS, rp = 7.0 with B EOS, and rp = 5.5 a = 0.5 (HB EOS) both undergo
a close-encounter followed by a short elliptic orbit before merging. Note that while in
both the rp = 7.0-cases the NS approaches the BH on essentially the same orbit, the
dynamics around the close-encounter and subsequent orbits are very different due to
EOS effects (see Sec. 4.4.3). The rp = 10 (HB EOS) undergoes a long-period elliptical
orbit following the initial periapsis passage. The remainder of the cases shown merge
on the first encounter while displaying various degrees of whirling behavior.
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Figure 4.3: Rest-mass density in the equatorial plane from various BH-NS simula-
tions, left to right, top to bottom: (1) the BH and NS undergoing a close-encounter
(t = 242 M, rp = 7.0, B EOS), (2) the NS undergoing a whirling-phase before merg-
ing (t = 269 M, rp = 8.13, a = −0.5), (3) the NS stretched into a long tidal stream
during merger (t = 506 M, rp = 7.5, e = 0.75), (4) a mass transfer episode (t = 292
M, rp = 7.0, 2H EOS), (5) towards the end of a mass-transfer episode during the NS’s
first periapsis passage (t = 272 M, rp = 5.5, a = 0.5), and (6) a nascent accretion
disk (t = 388 M, rp = 5, a = 0.5). Recall that rp is reported in units of total mass
M . The color scale is logarithmic from 10−6 to 1 times the initial maximum density
(ρmax = 8.3 (3.7,9.8) ×1014 g cm−3 for the HB (2H, B) EOS). The BH is roughly the
same coordinate size (with diameter ≈ 3 M) in all panels, which can be used to infer
the relative scale of each snapshot.
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result in a bound system. Our simulations exhibit three types of behavior: (1) a direct

plunge (rp = 5.0, 5.83, 6.67, 6.81); (2) following the initial periapsis passage, a single

elliptical orbit and then a plunge (rp = 6.95, 7.22, 7.5); and (3) following the initial

periapsis passage, a long-period elliptical orbit (rp = 8.75, 10.0, 12.5, 15.0). For the

latter group (and the high-resolution rp = 7.5 run), we do not simulate the entire orbit

since the length of such simulations would make them very computationally expensive

2, and we focus on the burst of GWs associated with the first periapsis passage. For

one case in each class (rp = 5.0, 7.5, 10.0) we performed a convergence study which

showed approximately second-order convergence and allowed us to perform a Richard

extrapolation to estimate errors in the resulting GWs. To give further indication of

the truncation error in these runs, in Fig. 4.4 we plot the error in the trajectory of

the NS in a fly-by case rp = 10 (see Fig. 4.2 for the medium resolution trajectory).

The GW energy and angular momentum emitted (including extrapolated values from

the resolution studies) as well as the disk properties of those cases followed through

merger are summarized in Table 4.1. Table 4.2 shows the spin of the post-merger BH

(for this base set of runs as well as the subsequent parameter survey) for the cases we

followed through merger. As the threshold in rp dividing (1) and (2) is approached

there is a dramatic enhancement in the gravitational energy and angular momentum

released during the close-encounter.

The amount of material remaining after merger, which could potentially form an

sGRB-powering accretion disk also depends significantly on impact parameter. Below

the threshold dividing (1) and (2), there is a sizable amount of remaining material in

excess of 20% in the rp = 6.81 case. In most cases ≈ 50% of the material is unbound.

As seen in Fig. 4.5, a simple numerical estimate of the fallback time for the bound

2For example, based on an estimate using the emitted GWs and assuming a Newtonian orbit the
rp = 8.75 case will undergo another close-encounter after ∼ 7000 M, which would take 2-3 months
of wall clock time to simulate at medium resolution (while the larger rp cases will take even longer).
Though such long runs are not unheard of, we chose to use our limited computational resources to
explore a greater number of parameters.
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material based on when the elliptic orbit will return to the accretion disk shows the

characteristic t−5/3 scaling [46].
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rp M0/M0(t = 0) a M0,u/M0(t = 0) b τacc (ms) c First periapsis d Total e

EGW

M · 102 JGW

M2 · 102 EGW

M · 102 JGW

M2 · 102

5.00 0.005g 0.0 25 – – 0.67(0.87)f 4.14(4.86)f

6.67 0.107 0.056 130 – – 1.29 9.10
6.81 0.221 0.101 40 – – 1.19 9.60
6.95 0.018 0.003 47 0.697 7.33 1.65 13.9
7.22 0.013 0.001 16 0.358 4.48 1.18 10.2
7.50 0.009 0.003 7.6 0.242(0.147)f 3.44(2.46)f 1.03 44.7
8.75 . . . . . . . . . 0.073 1.58 . . . . . .
10.0 . . . . . . . . . 0.033(0.027)f 0.97(0.88)f . . . . . .
12.5 . . . . . . . . . 0.011 0.46 . . . . . .

Table 4.1: Disk properties and GW energy and angular-momentum losses for an initially hyperbolic (e ≈ 1) encounter of a
zero-spin BH and NS with HB EOS. Dashed entries correspond to cases that merge during the first encounter, and hence have
no “first periapsis”; dotted entries correspond to binaries that were only evolved through first periapsis passage.
a Rest-mass remaining outside the BH shortly (∼ 50 M) after the end of merger, normalized by the initial total rest-mass.
b Unbound rest-mass estimated using local fluid velocities and assuming a stationary metric.
c Rough initial accretion timescale (τacc = M0/Ṁ0) evaluated shortly after merger.
d Energy and angular momentum lost to GWs during the first close-encounter.
e Total GW energy and angular-momentum losses for cases which were followed through merger.
f Results are from medium-resolution runs; values in parentheses are Richardson-extrapolated estimates using low and high
resolutions, where available. Note that the relatively large error for rp = 7.5 (and to a lesser extent rp = 5, 10) is due in part
to truncation error altering the actual periapsis by a small amount, and in this regime the GW emission is highly sensitive to
binary separation.
g For the rp = 5 case M0/M0(t = 0) was the same at the three resolutions to within ≈ 5 × 10−4; however, for such low disk
masses we expect systematic effects, e.g., the numerical atmosphere to be important.
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a = 0 HB EOS

rp 5.00 6.67 6.81 6.95 7.22 7.50
afinal 0.49a 0.45 0.37 0.47 0.50 0.50
aeff 0.40 0.46 0.47 0.47 0.48 0.49

a = 0.5 a = −0.5

rp 5.00 5.50 6.00 6.25 5.00 7.50 8.13 8.28
afinal 0.74 0.71 0.71 0.70 0.16 0.25 0.22 0.24
aeff 0.72 0.74 0.77 0.77 0.08 0.17 0.19 0.19

2H EOS B EOS

rp 5.00 6.75 7.00 5.00 6.25 7.00
afinal 0.50 0.29 0.33 0.48 0.52 0.48
aeff 0.40 0.46 0.47 0.40 0.45 0.47

e = 0.75

rp 7.50 7.81
afinal 0.44 0.49
aeff 0.46 0.47

Table 4.2: Post-merger BH spin (dimensionless) for various initial conditions. Also
shown is the effective spin aeff , used in the model described in Sec. 4.5 and calculated
from initial conditions using (4.3).
a afinal = 0.49 ± 0.01
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Ṁ
(M

⊙
/s

)

t−5/3

Figure 4.5: Approximate fallback accretion rates for rp = 6.81, 6.95, 7.22, and 7.5
cases with HB EOS. Time is plotted in seconds. For this diagnostic, we consider the
fluid in each cell as a ballistic particle and take its orbital period as the approximate
fallback timescale. The instantaneous BH accretion rates evaluated at the same time
are shown at the upper right (arbitrary abscissa).
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Figure 4.6: Effect of resolution on the disruption and subsequent accretion of NS
material, as measured by the total rest-mass exterior to the BH horizon, for the
rp = 5, a = 0.5 case (see Sec. 4.4.2). The amount of rest-mass remaining at late times
at the different resolutions is consistent with approximately second-order convergence.

values are reported in the table. In Fig. 4.6 we also show the amount of rest-mass

exterior to the BH horizon as a function of time and resolution for this case.

One important consequence of the reduced critical-impact parameter in the pro-

grade case is that around this threshold, the tidal forces on the NS are greater and

the resulting accretion disks consequently larger. Even more striking, the enhanced

tidal interaction can lead to significant mass transfer from the NS to the BH even in

nonmerger close-encounters, as, for example, with the rp = 5.5, a = 0.5 case. Here

the NS becomes highly distorted and loses approximately 16% of its mass to the BH

(see Fig. 4.7). However, a compact (albeit highly distorted) star remains (see Fig. 4.3

middle, bottom) until it merges with the BH on its second close-encounter.

For the a = −0.5 cases (see bottom of Table 4.3), rp = 5.0, 7.5, and 8.13 are direct

mergers while the rp = 8.28 case goes through a single elliptic orbit before merging.

The rp = 8.44, 8.75, and 10.0 cases go out on longer elliptic orbits which we did

not follow to completion. Because of the larger critical-impact parameter for merger

on the first encounter, there is less tidal disruption and, hence, the accretion disks
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Figure 4.7: Left: The amount of rest-mass (normalized to the total rest-mass of the
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rp = 5.5, a = 0.5 HB-case. In both cases there are two significant episodes of mass
transfer. Right: The angular momentum of the BH horizon in units of the total
ADM-mass squared, M2, as a function of time for the same two cases.

contain ≤ 1% of the total NS rest-mass for all the cases followed through merger.

However, this also means that the BH and NS can undergo more whirling behavior in

the critical regime before merger. This is especially evident in the waveform for the

nearer threshold merger case of rp = 8.13, a = −0.5 as shown in Fig. 4.8. The gravi-

tational wave signal shows several cycles of almost constant amplitude and frequency,

indicative of a nearly circular orbit. Compared to the near-threshold nonspinning case

(rp = 6.81, also shown in Fig. 4.8), this whirling period is much more pronounced in

the waveform.
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Figure 4.8: The real and imaginary components (solid, black-lines and red, dotted-
lines) of Ψ4 on the z-axis (perpendicular to the orbital plane) during merger for the
following cases (top to bottom): rp = 5, HB; rp = 6.81, HB; rp = 7.5, e = 0.75, HB;
rp = 8.13, a = −0.5, HB; and rp = 7.0, 2H (see Fig. 4.10 for the full signal). The
waveforms are aligned so that the peak occurs at t = 0 with zero phase.
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rp M0/M0(t = 0)a M0,u/M0(t = 0)b τacc (ms) c First periapsis d Totale
EGW

M · 102 JGW

M2 · 102 EGW

M · 102 JGW

M2 · 102

a = +0.5

5.00 0.165(0.295)f 0.021(0.107)g 4.8 – – 1.25(1.41)f 7.14(9.04)f

5.50 0.174 0.088 40 0.800 7.14 1.40 10.9
6.00 0.181 0.029 26 0.360 4.16 1.53 14.7
6.25 0.080 0.014 33 0.347 4.11 1.29 12.0
7.50 . . . . . . . . . 0.104 1.90 . . . . . .
10.0 . . . . . . . . . 0.025 0.82 . . . . . .

a = −0.5

5.00 0.007 0.0 36 – – 0.33 2.32
7.50 0.008 0.0 71 – – 0.82 5.91
8.13 0.010 0.0 0.12 – – 1.57 13.7
8.28 0.002 0.0 2.8 0.385 5.12 1.25 12.8
8.44 . . . . . . . . . 0.268 3.98 . . . . . .
8.75 . . . . . . . . . 0.167 2.85 . . . . . .
10.0 . . . . . . . . . 0.052 1.32 . . . . . .

Table 4.3: Disk properties and GW energy and angular-momentum losses for an initially hyperbolic (e ≈ 1) encounter of a BH
with spin a = ±0.5 and NS with HB EOS. The same comments and set of footnotes a to f apply as in Table 4.1.
g For the rp = 5, a = +0.5 case the Richardson extrapolated value of M0,u/M0(t = 0) was computed using just the medium and
high-resolution results and assuming second-order convergence due to the low amount of unbound material in the low-resolution
case.
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Figure 4.9: The fraction of rest-mass outside a given radius (1/M0)
∫ R

r
ρdV for an

isolated star with the HB or 2H EOS and M = 1.35 M⊙. Here radius r is normalized
to the radius of the HB star (RHB). The horizontal, dotted-lines indicate the amount
of material accreted into the BH during the initial close-encounter for the rp = 5.5-
case with HB EOS (bottom) and the rp = 7.0-case with 2H EOS (top) as shown in
Fig. 4.7.

with the 2H and HB EOS. This shows that the outer spherical shell that contains

the approximately 40% of the NS material that is accreted into the BH during the

first close-encounter for 2H corresponds to a volume containing almost no material in

the HB case. Again, though we are ignoring the complicated details of mass-transfer

dynamics, this is suggestive as to why, for the BH-NS system studied here, there is

significant mass transfer for the 2H EOS around rp = 7.0 but very little for the HB

EOS.

Since for the 2H rp = 7.0 case so much mass is transferred before the merger and

there is a strong disruption during merger, the gravitational wave signal resulting

from merger itself is significantly weaker than for other cases (see Fig. 4.8). The full

waveform from Fig. 4.10 also shows that the GW pulse from the fly-by dominates the

signal compared to the merger part of the waveform.

Between the initial close-encounter and merger there is also evidence in the GW

signal of excited f -modes within the NS; this was also observed in eccentric-binary NS

encounters [153]. Here we give a qualitative account of the stellar dynamics to show
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Figure 4.10: The real and imaginary components (solid black lines and red dotted
lines) of Ψ4 on the z-axis (perpendicular to the orbital plane) at r = 70 M for the
rp = 7.0 2H simulation. The large burst at t ≈ 300 M comes from the initial fly-by,
where the NS becomes extremely distorted (Fig. 4.3) and loses a significant portion
of its mass (Fig. 4.7). The smaller pulse at t = 600 M comes from the merger. In
between, there is a smaller component of the signal coming from the tidally induced
oscillation of the NS.

that the dominant oscillation is akin to that of an f -mode of an isolated, perturbed

star—a detailed study, aside from the difficulty of applying a perturbative analysis in

such a transient and in some cases highly distorted star, is beyond the scope of this

study. Figure 4.11 demonstrates the density and velocity distortions for the rp = 7.0,

2H case (right panel) as well as the rp = 6.95 HB case in which the distortion is

less extreme (left panel). The latter bears a particularly strong resemblance to the

pure l = m = 2 f -mode flow pattern (see, e.g., Fig. 19 of [306]). In both cases, an

animation of the density field seems to suggest a rotating, distorted NS. However, as

Fig. 4.11 demonstrates, the velocity pattern is not one of overall rotation but rather

that of an oscillatory mode. Indeed, the circulation theorem should hold to a good

approximation in the bulk of the NS material (though there are entropy-generating

shocks near the surface). Thus, the tidal interaction with the BH would not induce

rotation in the usual sense, but rather oscillatory modes with rotating patterns. Many

such modes are likely to be excited, but the l = m = 2 f -mode seems to dominate.
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We performed a spherical-harmonic decomposition of the star’s rest-mass density

ρ =
∑

ClmYlm at select times and found C22 to be the largest coefficient next to C00.

We also checked that the perturbation amplitude grows monotonically with radius.

For the rp = 6.95 simulation with the HB EOS |C22/C00| ≈ 0.01 − 0.02 at r = 0.4M

grows to |C22/C00| ≈ 0.15 − 0.20 at r = 0.8M . Here r is the radius of the sphere

centered on the NS center-of-mass on which the coefficients are calculated. The next

largest coefficient C20 is smaller by a factor of & 2. The rp = 7.0 simulation with the

2H EOS shows similar behavior although the coefficients are somewhat larger with

|C22/C00| ≈ 0.03 and 0.25 at r = 0.4M and 0.8M , respectively.

We briefly comment on the possible detectability of such an f -mode excitation in

GWs. Such an observation in principle could provide a wealth of information about

the structure of the NS, in particular, since f -mode frequencies are quite sensitive

to the EOS (see for example [307]). However, here, (a) the amplitudes are quite low

relative to the dominant GW emission (see Fig. 4.10), (b) for the cases where the

largest amplitudes are excited, the initial rp is sufficiently small that only a few cycles

of waves will be emitted before subsequent merger, limiting the signal-to-noise that

could be built up, and (c) the frequency is quite high (above 1 kHz) and thus not in

a regime where the AdLIGO-class detectors are very sensitive. Thus, even if there

is a sizable population of eccentric merger events as studied here, it is unlikely that

any corresponding f -mode excitation will be observed with the current generation of

GW detectors.
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Figure 4.11: NSs exhibiting large-amplitude f -mode oscillations following the first
interaction with the (nonspinning) BH. The cases shown are rp = 6.95 with the HB
EOS at t = 341M (top) and rp = 7.0 with the 2H EOS at t = 356M (for the latter
case, see the bottom left-panel of Fig. 4.3 for a snapshot of the density near the time
of closest approach to the BH when this large oscillation is excited). The color map
shows the rest-mass density in the equatorial plane on a logarithmic scale, normalized
to the instantaneous maximum density. The arrows show the velocity in the NS
center-of-mass frame. The longest velocity arrows correspond to velocity magnitudes
0.084 (top) and 0.17 (bottom). Though the two cases have similar periapsis radii,
the lower compaction in the 2H-case leads to a much stronger tidal interaction and
an f -mode which shows nonlinear characteristics.
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rp M0/M0(t = 0)a M0,u/M0(t = 0)b τacc (ms) c First periapsis d Total e

EGW

M · 102 JGW

M2 · 102 EGW

M · 102 JGW

M2 · 102

2H EOS

5.00 0.008 0.0 56 – – 0.58 3.61
6.75 0.278 0.117 18 – – 0.47 4.65
7.00 0.303 0.149 60 0.387 4.53 0.43 5.41
7.25 . . . . . . . . . 0.283 3.90 . . . . . .
7.50 . . . . . . . . . 0.200 3.07 . . . . . .

B EOS

5.00 0.008 0.0 57 – – 0.60 3.83
6.25 0.008 0.0 64 – – 0.87 5.63
7.00 0.010 0.001 10 0.718 7.69 1.73 10.7
7.50 . . . . . . . . . 0.268 3.72 . . . . . .

Table 4.4: Disk properties and GW energy and angular-momentum losses for an initially hyperbolic (e ≈ 1) encounter of a BH
with zero-spin and a NS with 2H and B EOS. The same comments and set of footnotes a to f apply as in Table 4.1.

115



4
.4

.4
B

o
u
n
d

e
cce

n
tric

e
v
o
lu

tio
n

F
in

ally,
w

e
sim

u
lated

b
in

aries
w

h
ere

th
e

B
H

an
d

N
S

h
ave

in
itial-orb

ital
p
aram

eters

corresp
on

d
in

g
to

a
b
ou

n
d

orb
it

w
ith

e
=

0.75
for

a
ran

ge
of

valu
es

of
r
p .

T
h
ese

sim
u
lation

s
can

b
e

v
iew

ed
as

corresp
on

d
in

g
to

sy
stem

s
th

at
h
ave

alread
y

b
ecom

e

b
ou

n
d

th
rou

gh
on

e
or

m
ore

close-en
cou

n
ters

an
d

lost
som

e
of

th
eir

in
itial

eccen
tricity.

In
p
ractice,

th
e

len
gth

of
su

ch
evolu

tion
s

w
ou

ld
b
e

very
com

p
u
tation

ally
ex

p
en

sive

to
follow

in
fu

ll.
O

f
th

e
im

p
act

p
aram

eters
con

sid
ered

(see
T
ab

le
4.5),

r
p

=
7.5

is
th

e

on
ly

d
irect-p

lu
n
ge,

an
d
r
p

=
7.81

is
th

e
on

ly
case

w
e

follow
ed

p
ast

p
eriap

sis
p
assage

to
m

erge
on

th
e

secon
d

close-en
cou

n
ter.

F
or

th
e

rem
ain

in
g

cases
(r

p
=

8.13,
8.75,

an
d

10.0),
w

e
on

ly
follow

ed
p
artially

th
rou

gh
th

eir
ellip

tic
orb

its
after

th
e

fi
rst

close-

en
cou

n
ter.

T
h
e

th
resh

old
for

m
erger

on
th

e
fi
rst

en
cou

n
ter

m
oves

ou
t

sligh
tly

in
th

is

case
as

an
ap

p
eal

to
geo

d
esics

in
S
ch

w
arzsch

ild
w

ou
ld

su
ggest.

In
F
ig.

4.12,
w

e
p
lot

th
e

grav
itation

al
w

aveform
s

from
tw

o
fl
y
-b

y
close-en

cou
n
ters

r
p

=
8.13

an
d

10.0.
In

ad
d
ition

,
w

e
fi
t

th
e

ex
p
ected

w
aveform

accord
in

g
to

a
N

ew
ton

ian
-ord

er
q
u
ad

ru
p
ole

ap
p
rox

im
ation

[257,
303,

308]
(N

Q
A

)
to

ou
r

n
u
m

erical
resu

lts
b
y

m
u
ltip

ly
in

g
b
y

an

overall
factor.

A
s

fou
n
d

in
[4]

an
d

in
ou

r
oth

er
sim

u
lation

s
h
ere

for
th

e
m

argin
ally

u
n
b
ou

n
d

case,
th

ou
gh

th
e

sh
ap

e
of

th
e

w
aveform

s
agree

q
u
ite

w
ell,

th
e

n
u
m

erical

resu
lts

ex
h
ib

it
a

sign
ifi

can
t

am
p
litu

d
e

en
h
an

cem
en

t
th

at
is

larger
th

e
closer

on
e

gets

to
th

e
th

resh
old

for
m

erger
d
u
rin

g
th

e
close-en

cou
n
ter.

In
ad

d
ition

,
from

F
ig.

4.8

w
e

can
see

th
at

th
e

n
ear-th

resh
old

m
erger

w
aveform

sh
ow

s
m

ore
ev

id
en

ce
of

w
h
irlin

g

th
an

th
e

in
itially

u
n
b
ou

n
d

case.

116



rp M0/M0(t = 0)a M0,u/M0(t = 0)b τacc (ms) c First periapsis d Total e

EGW

M · 102 JGW

M2 · 102 EGW

M · 102 JGW

M2 · 102

7.50 0.109 0.062 32 – – 1.47 13.6
7.81 0.007 0.001 7.1 0.410 5.25 1.58 16.1
8.13 . . . . . . . . . 0.248 3.67 . . . . . .
8.75 . . . . . . . . . 0.125 2.34 . . . . . .
10.0 . . . . . . . . . 0.049 1.28 . . . . . .

Table 4.5: Disk properties and GW energy and angular-momentum losses for an initially eccentric e = 0.75 encounter of a
zero-spin BH with a NS with HB EOS. The same comments and set of footnotes a to f apply as in Table 4.1.
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to the zoom-whirl orbits in Kerr spacetimes. As the BH-NS approaches the critical-

impact parameter, it is closer and closer to the unstable orbit dividing plunging and

nonplunging orbits and will, therefore, exhibit more and more whirling behavior.

Though the effect is most dramatic near threshold, this zoom-whirl analog is a way

to understand the significant enhancements over the NQA predictions that persist

till rp ≈ 10 (see Fig.4 in [4]). This motivates a fit to the GW energy emitted in a

whirling close-encounter with the functional form (see Fig. 4.13)

EGW = E0(1 − (δrp/∆)γ) (4.2)

where δrp = rp − rc, E0 is the difference in energy between a quasicircular orbit and

an eccentricity e orbit both with rp = rc, ∆ is the range over which zoom-whirl-like

behavior dominates the GW- emission energetics, and γ is a parameter that in the

geodesic analogue is related to the instability exponent of the corresponding unstable

circular orbit. Given the limited number of points we have, we choose to use γ as our

single fitting parameter. We set rc to the average of the closest sub and supercritical

values of rp from the simulations. We choose ∆ = 3 by inspection so that values of

rp outside this range are well-approximated by the NQA model. Certainly, in future

work once more data points are available it would be preferable to more systematically

fit to the other parameters as well, and refine the model.

The left panel of Fig. 4.13 shows this fitting performed individually to each set

(e, a) of simulations run. We should note that due to limited computational resources

we have not been able to perform this fitting at multiple resolutions in order to be

able to estimate the effect of truncation error on γ. However, due to the sensitivity of

EGW on rp that can be seen in Fig. 4.13, one would expect that the truncation error

in these values will be dominated by the resolution dependence of rc as opposed to the

error in γ. In the remainder of this section we will use the data from the e ≈ 1, a = 0
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set to calibrate geodesic-inspired extensions to arbitrary values of (e, a), which can

then be compared to the other three sets of simulation data (right panel of Fig. 4.13)

to test how well this extrapolation works.

To extend this model to different values of eccentricity e and BH spin a, we assume

that the dependency of rc and γ on these values is the same as in the geodesic case

on a Kerr background. We will use aeff to refer to the effective spin parameter we use

in the Kerr formulas. For better correspondence with the Kerr spacetime, we want to

take aeff to be the approximate spin of the BH that would form if a merger occurred.

We do this rather then use the initial spin of the BH based on results from [167],

which suggest that far from the geodesic limit the total angular momentum of the

binary is more important than the BH spin. We estimate aeff using

aeff = a0

√

(1 + e)rp√
2rc0

+ a(MBH/M)2. (4.3)

where MBH, a, rp, and e are the initial BH-mass, initial BH-spin, periapsis, and

eccentricity, respectively, of the encounter for which we want to compute an aeff , and

a0 ≈ 0.5 is the final spin measured from the e ≈ 1, a = 0, rp = rc0 ≈ 6.9 simulation. In

Table 4.2, we show how aeff compares to the final BH-spins in the simulations that we

followed through merger. This simple formula based on the total angular momentum

of the system does not attempt to capture any of the complications due to differences

in matter dynamics or gravitational radiation between the different cases, and as can

be seen does not always capture the trends with rp seen in the simulations. We use

aeff because it has a simple motivation, and it does a decent job of estimating the

final BH-spin for the purposes of this model. This allows us to extend this model to

other values eccentricity e and BH-spin a that were not simulated.

Recall that for equatorial geodesics with eccentricity e in Boyer-Lindquist coordi-

nates with BH-spin parameter a, there is a value for the periapsis that corresponds
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to a marginally unstable orbit rBL
c (e, a). It can be found by solving the equation (see,

for example, [305]) (rBL
c )2 = (J − aE)2(1 + e)/(3− e), where E and J are the orbit’s

specific energy and angular momentum, respectively. For our model, we assume that

rc(e, aeff) ∝ rBL
c (e, aeff), and we fit the proportionality constant using our numerical

results for e ≈ 1, a = 0.

The instability exponent for unstable circular orbits in Boyer-Lindquist coordi-

nates is given by [309, 167]

γBL(e, a) =
r

2π

[

3r2D +
4M

ω2
(rR2ω2 − 4Maω − r + 2m)

]−1/2

(4.4)

where R = r2 + a2(1 + 2M/r), D = r2 + a2 − 2Mr, ω = M/(Ma ±
√
Mr3) (± for

prograde and retrograde, respectively), and we set r = rBL
c (e, a). Again, we assume

that γ(e, aeff) ∝ γBL(e, aeff) and fit the proportionality constant using our numerical

results for e ≈ 1, a = 0. For the angular momentum lost to gravitational waves in a

close-encounter we assume a similar expression

JGW = J0(1 − (δrp/∆)γ) (4.5)

where again J0 is the difference in angular momentum of a quasicircular orbit and an

eccentricity e orbit evaluated at the same separation rp.

This simple prescription for estimating gravitational-wave energy and angular-

momentum loss has some obvious limitations. We are extrapolating the critical im-

pact parameter and instability exponent based on a Kerr spacetime to a BH-NS

spacetime that is dynamic and nonperturbative. We are also ignoring tidal effects

or dependence on EOS in this model. Nevertheless, in Fig. 4.13, we compare how

closely this predicted scaling with spin and eccentricity matches that from simulation

results. Given its simplicity, as well as the numerical error in these results, this model

does a satisfactory job of capturing the trends in these scalings.
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Figure 4.13: Left: Energy lost to GWs during the initial close-encounter (i.e. exclud-
ing merger) as a function of rp for initial BH spin a = 0,−0.5, and 0.5 and for initial
eccentricity e = 1 and 0.75. The functional form E0(1 − (δrp/∆)γ) (lines) motivated
by zoom-whirl dynamics is a fit to the simulation results (points). δrp = rp−rc where
rc is the threshold value for merger during the encounter. E0 is the difference in energy
between a quasicircular orbit and an e ≈ 1 (0.75) orbit, both having rp = rc. ∆ is the
range over which zoom-whirl-like behavior dominates the GW-emission energetics. γ
is a parameter that in the geodesic analogue is related to the instability exponent of
the corresponding unstable circular orbit, here, we use it as our fitting parameter. We
obtain γ = 0.19, 0.13, 0.25, and 0.16 for (e, a) = (1, 0), (1,-0.5), (1,0.5), and (0.75,0),
respectively. Right: This shows the same simulation data points as the left figure,
though here we use the e = 1, a = 0 case (solid, black points) to determine the free
parameters for the method described in the text to extrapolate the values of rc and
γ to the other three cases.

4.5.2 Systems undergoing multiple close-encounters

The enhanced GW energy and angular-momentum losses during a close-encounter for

a given rp result in more rapid loss of eccentricity and larger rate of decrease of rp of

the next encounter. Figure 4.14 shows approximate trajectories in e and rp for binaries

on initially marginally unbound (i.e., e = 1 + ǫ) orbits for a range of initial BH spin.

These results were obtained using the above model for energy and angular momentum

lost to GWs and assuming e and rp follow the Newtonian relationship to energy

and angular momentum. We approximate these losses as occurring in discrete steps

during close-encounters. (This approximation will break down as e→ 0.) Trajectories

computed with the NQA amplitude and eccentricity-dependence [257, 303, 308] are
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Figure 4.14: The evolution of the eccentricity and periapsis separation of various
4 : 1 mass ratio BH-NS binaries that begin marginally unbound and undergo a series
of close-encounters (large red points) before merging. For comparison, we also plot
the results using the NQA expressions from [257, 303] (magenta x’s). We also plot
the critical eccentricity for a given rp for a close-encounter to result in merger (blue,
dotted-line). Hence, the points below this curve correspond to merger events. From
left to right, top to bottom, the plots correspond to an initial BH-spin of a = −0.5,
0, and 0.5, respectively.

also shown in the figure. The NQA execute many more orbits before merger. This

clear departure from the NQA prediction at small rp due to strong field-GR effects

should thus be apparent in the gravitational waveform. This model can also be used

to predict approximately the critical-initial impact parameter for the BH-NS system

to merge on the second close-encounter, the third close-encounter, and so on. We

expect interesting dynamics around each of the thresholds up until the point where

the system has undergone enough close-encounters that it circularizes.
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4.6 Conclusions

We have performed an initial survey of eccentric BH-NS mergers including the ef-

fects of black hole spin and varying the NS EOS. Though the limited number of

values we considered in this work does not begin to exhaust the parameter space,

what is immediately apparent is the strong diversity in the resulting gravitational

and matter dynamics. Though we have not yet studied the consequences of this

on gravitational-wave detectability and parameter extraction, or possible electromag-

netic counterparts, it is clear that the outcome can depend sensitively on the binary

parameters and matter EOS.

In order to understand the effects of large eccentricity, these simulations can be

compared to the quasicircular BH-NS merger simulations of [294, 292], which used

the same piecewise polytrope equations of state. In [294], it was found that for a

nonspinning BH and a 3:1-mass ratio, the resulting disk masses where 0.044, 0.0015,

and < 10−5 M⊙ for the 2H, HB, and B EOSs, respectively. Hence eccentric mergers

with certain ranges of impact parameters is one way to achieve significantly larger

accretion disks compared to the quasicircular case without BH spin. The effects of

BH spin were considered in [292], where for a 4:1-mass ratio and the HB EOS they

found disk masses of 0.024 and 0.18 M⊙ for BH spins of a = 0.5 and 0.75, respectively

(and even larger values for stiffer EOSs or lower mass ratios). They also only found

a non-negligible amount of unbound material (≥ 0.01M⊙) for stiff EOSs like the 2H.

Thus, an important characteristic of eccentric mergers is the larger amount of ejected

material found for some parameters. This could be a significant source of r-process

elements [36, 37, 38], and give rise to EM counterparts, e.g. through nuclear decay

of the radioactive r-process isotopes [287, 88]. The amount of energy radiated away

in gravitational waves for the quasicircular case is somewhat higher than the values

found here (for example, EGW = 1.7% of the total mass for a 4:1 mass ratio, HB

EOS, and a = 0.5 in [292]). The gravitational-wave signal is of course completely
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different for eccentric mergers, which are dominated by bursts from close-encounters

or merger of the two compact objects.

Whether dynamical capture BH-NS mergers occur with sufficient frequency in the

Universe to constitute a decent event rate for ground-based GW detectors is another

question; at the least, failure to observe such events will place constraints on these

sources, while if several are observed given the sensitivity of the outcome to properties

of the binary, they could be ideal environments to reveal the structure of neutron

stars. And again, we should emphasize that excessive fine tuning of parameters is not

required for significant variability. Taking the relative velocity at large separations

in a typical nuclear-cluster cusp as an example (≈ 1000 km/s), roughly 25% of such

encounters will have rp . 10, (following the same line of reasoning discussed in the

introduction for the percentage of direct collisions) corresponding to the cases studied

here. Certainly some of the most extreme examples of mass transfer, large accretion

disks, or multiple whirl orbits will be rare; perusing Tables 4.1-4.5 will give some

idea of the distribution with rp. (Recall that the cross section scales linearly with rp

due to gravitational focusing, and that one would also expect some cases with larger

initial rp than we followed through merger to exhibit similar variability.) It is not

trivial to calculate a transition value of initial rp above which the qualitative behavior

at late times is described by a quasicircular inspiral, though our study suggests at

least a quarter of dynamical-capture binaries will merge with high eccentricity.

In Chap. 6 we elaborate on the detectability of the GW signals from BH-NS merg-

ers that arise from dynamical capture in the strong-field regime. This complements

the first study of such systems presented in [260], in that we intend to focus on the

later stages of high-eccentricity mergers, including the merger/ringdown part of the

signal. Future work includes expanding the parameter space to different BH and

NS masses, BH-spin orientations, and (as computational resources permit) evolution

of systems that exhibit more than two close-encounters before merger. Performing
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higher-resolutions simulations will also be important to coming up with a more quan-

titatively accurate model of the behavior of the BH-NS binary near the threshold

for merger during a given close-encounter. Doing so will not only require additional

computational resources but a better method for creating initial data describing such

eccentric binaries, since the superposition method used here imposes an effective floor

on the accuracy that be reached. It would also certainly be interesting to investigate

EM counterparts to these events; such simulations would require extensions to the

code used here beyond the present GRHD.
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Chapter 5

Dynamical capture binary neutron

star mergers

5.1 Introduction

In addition to the black hole-neutron star binaries explored in Chap. 4, merging binary

neutron stars (NSs) also promise to be rich sources of both gravitational and electro-

magnetic (EM) radiation, probing strong-field gravity and nuclear density physics,

and hence warrant their own detailed study. NS–NS mergers are a primary source

targeted by gravitational wave (GW) detectors such as [10] and they are also candi-

dates for short gamma-ray burst (SGRB) progenitors and several other EM counter-

parts [88, 310, 311].

There have been numerous studies of primordial binary NS mergers (see e.g. [161]),

which will have essentially zero orbital eccentricity when they enter the frequency

band of ground-based GW detectors. However, binaries may also arise via n-body

interactions in dense stellar regions and some fraction of them will have sizable ec-

centricity at merger. Recall from Chap. 4 that such binaries may form in globular

clusters (GCs) undergoing core collapse [262, 273] or in galactic nuclei [299, 260, 277]
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through dynamical capture, as well as possibly through Kozai resonance in a triple

system [278], or exchange interactions [273]. It is far from certain that high ec-

centricity mergers occur frequently enough to expect observation with the upcoming

generation of GW detectors. However, it is also not implausible that they do, and

as eccentric NS mergers may also produce distinguishable EM emission compared

to quasi-circular mergers, it behooves us to understand both systems from a multi-

messenger perspective.

In Chap. 4, black-hole–neutron-star (BH–NS) mergers formed through dynamical

capture were found to exhibit a rich variation with impact parameter, in some cases

producing sizable disks and amounts of unbound material. In [153], several eccentric

NS–NS mergers were studied using a Γ = 2 equation of state (EOS) and shown

to exhibit f -mode excitation during close encounters. There have also been studies

of BH–NS and NS–NS collisions with Newtonian gravity [264, 312] showing similar

variation in the outcomes.

In this chapter, we study dynamical capture NS–NS mergers for a range of impact

parameters using general-relativistic hydrodynamics (GRHD). We also consider sev-

eral different NS EOSs because of the uncertainty regarding the correct description of

matter above nuclear densities. One of the important issues we address for the first

time is if these mergers can produce hypermassive neutron stars (HMNSs). In studies

of quasi-circular systems it was found that thermal energy from the merger, as well

as differential rotation, could support long-lived HMNSs for some EOSs e.g., [105]

and that this would be imprinted in the GW signal and resulting disk properties.

HMNSs with longer lifetimes can also build up significant magnetic fields which can

power strong EM transients during the collapse to a BH [40]. For dynamical capture

binaries, the amount of angular momentum, and likely the amount of shock heating,

will be strong functions of impact parameter, suggesting HMNS formation will be as

well.
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Another notable feature of dynamical capture NS–NS mergers is their potential

to produce unbound nuclear material which will decompress and form heavy nuclei

via the r-process [36, 37, 38]; subsequent radioactive decay could produce observable

emission. Recent work [313, 314] suggests processes like NS–NS mergers may be

needed to supplement the supernovae r-process yield in accounting for the observed

abundances. Though simulations of quasi-circular NS–NS mergers using Newtonian

or conformally flat gravity have found suitable ejecta, they seem to be in tension with

fully general-relativistic results which find negligible amounts of ejecta [161]. This is

arguably because of strong-field GR effects, such as BH formation and the existence of

innermost stable orbits. As we show, dynamical capture mergers are more promising

sources of ejecta, presumably as the stars are less bound when disruption occurs.

In the remainder of this chapter, we outline our methods for simulating NS–NS

mergers with GRHD, discuss the merger dynamics for a range of impact parameters

and three different EOSs, and comment on potential GW and EM counterparts. We

find that, while the GW signals from these mergers may be challenging to detect

with upcoming ground-based detectors, they have the potential to source numerous

EM transients. Non-merging close encounters can induce tidal deformations strong

enough to crack the NSs’ crusts; a merger where the total mass is above the maximum

mass of a single NS can either promptly collapse to a BH or produce a hot, rapidly

rotating HMNS, where the latter outcome tends to have more massive disks and

ejected material.

5.2 Numerical approach

We numerically solve the Einstein equations, discretized with finite differences, in the

generalized harmonic formulation. The hydrodynamics are evolved in a conservative

formulation using high-resolution shock-capturing techniques. Details are given in
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Chap. 2. We use the same gauge, slope limiters, and flux methods as in Chap. 4. In

particular, we use WENO-5 [133] for reconstructing fluid variables at cell interfaces

and HLL [126] for calculating intercell fluxes.

We use adaptive mesh refinement with up to seven levels that are dynamically

adjusted according to truncation error (TE) estimates. To measure convergence and

TE, we perform a select number of simulations at three different resolutions. The

low, medium, and high resolutions, respectively, have base levels covered by 1293,

2013, and 2573 points (with the maximum TE threshold adjusted accordingly), and

approximately 64, 100, and 128 points across the diameter of the NSs on the finest

level at the initial time (for the HB EOS). In Figure 5.1, we show an example of

convergence of NS trajectories as well as the constraints of the field equations. All

simulations are performed at medium resolution and results quoted below are from

this resolution, with Richardson extrapolated values given in parenthesis (indicating

the quantity’s TE) where multiple resolution data are available.

We use the piece-wise polytropic EOS models labeled 2H, HB, and B from [23] and

include a thermal component Pth = (Γth − 1)ǫthρ with Γth = 1.5. These EOSs were

designed to span the range of possible EOSs. The 2H, HB, and B EOSs, respectively,

give NSs with compactions MNS/RNS of 0.13, 0.17, and 0.18 for MNS = 1.35 M⊙ and

maximum masses of 2.83, 2.12, and 2.0 M⊙ (unless otherwise stated we use geometric

units with G = c = 1).

We construct initial data by solving the constraint equations in the conformal

thin-sandwich formulation as described in Chap. 3. We begin the two NSs at a sepa-

ration of d = 50M , where M = 2.7 M⊙ is the total mass of the system (hence d = 200

km), and consider various initial velocities which we label by rp, the periastron dis-

tances of parabolic Newtonian orbits with the same velocities (which will be different

from the actual periastron distance of the simulated binaries). We performed the ma-

jority of the simulations using the middle compaction HB EOS but ran select impact
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Figure 5.1: Top: L2-norm of the constraints (Ca := Ha −�xa) in the 100M × 100M
region around the center of mass in the equatorial plane for the rp = 7.5 (left) and
rp = 10 (right) HB cases, with the three resolutions scaled assuming second-order
convergence. Bottom: the difference in the NS center of mass as a function of time
from the different resolution runs for the rp = 10, HB case, scaled assuming second-
order convergence.
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parameters using all three EOSs. For all simulations except one we used NSs that

both have a mass of 1.35 M⊙; the other case has a mass ratio of q = 0.8 and a total

mass of 2.88 M⊙. We leave a more detailed study of mass-ratio dependence to future

work.

5.3 Results and discussion

5.3.1 Effect of impact parameter

Using the HB EOS, we consider a range of impact parameters from rp/M = 2.5 (we

henceforth quote rp in units of M) to rp = 20 (i.e., 10 to 80 km). This is well within

the range to form a bound system as [257] indicate that for equal masses, GW capture

occurs for rp . 1.8/w4/7 where w is the velocity at infinity. (Tidal energy loss [256],

because of the relative scalings with distance, is subdominant in determining capture.)

Binaries that approach with small impact parameters (rp = 2.5 and 5) promptly

merge and collapse to a BH. For rp = 2.5 the mass and dimensionless spin of the final

BH is MBH/M = 0.998(0.995) and a = 0.537(0.538) while the energy and angular

momentum in GWs is EGW/M = 3.7(4.0) × 10−3 and JGW/M
2 = 2.60(2.75) × 10−2.

For rp = 5, MBH/M = 0.985, a = 0.719, EGW/M = 1.06 × 10−2, and JGW/M
2 =

6.74 × 10−2; Figure 5.2 shows the corresponding GW signals. For both these cases,

the amount of material leftover after merger is . 10−6 the original rest mass of the

NSs. The dearth of matter post-merger, and the fact that most of the power of the

GW signal is at a relatively high frequency (∼ 5 kHz), makes these scenarios less

promising sources of observable EM or gravitational radiation.

Binaries with larger impact parameters (rp = 10, 15, and 20) result in non-merging

close encounters followed by long elliptic orbits which we did not follow in their

entirety due to limited computational resources. The close encounters result in pulses

of GW radiation and excite f -mode oscillations in the stars, which are also evident
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Figure 5.2: Real (solid black) and imaginary (dotted red) components of the
Newman–Penrose scalar Ψ4 on the axis orthogonal to the orbit measured at r = 100M
for the rp = 5, 7.5, 8.75, and 10 cases with HB EOS.

in the GW signal (see Figures 5.2 and 5.3). This f -mode excitation was studied

in detail in [153] and also found in similar BH–NS encounters (see Chap. 4). The

induced tidal ellipticity in the rp = 10 case is greater than the δR/R ≈ 0.1 value

required to induce a strain of ustrain ≃ 0.1 and shatter the NS crust ([315]; though

we are not modeling the crust here). The energy and angular momentum radiated

in the rp = 10 close encounter is EGW/M = 1.472(1.474) × 10−3 and JGW/M
2 =

3.545(3.546)×10−2; for rp = 15 and 20 (EGW/M, JGW/M
2) = (1.64×10−4, 8.69×10−3)

and (3.8 × 10−5, 2.8 × 10−3), respectively. Taking this as orbital energy and angular

momentum loss gives a Newtonian estimate for the time to the next close encounter of

65 ms for the rp = 10 case. For the next largest impact parameter simulated, rp = 15,

the tidal deformation is negligible, and the estimated time to the next close encounter

is 1.8 s. This suggests precursor EM transients associated with crust shattering for

these systems could be produced of order hundreds of milliseconds, but probably not

more than a few seconds, before merger.

For the intermediate cases (rp = 7.5 and 8.75), the stars come into contact and

form a single object. For rp = 7.5, this happens at the first close encounter; for
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50 MeV/mn

0.05
1015 gm cm−3

108

Figure 5.3: Snapshots of thermal specific energy (top left panel) with a logarithmic
color scale from 0.05 to 50 MeV/mn and rest-mass density (other five panels) from
108 to 1015 gm cm−3. The top left and top middle, and bottom middle and bottom
right panels show the equatorial plane, while the other two show a perpendicular
plane through the center of mass. The top panels show an HMNS with surrounding
disk and unbound material from the rp = 8.75, HB EOS case at t = 13.3 ms. The
bottom panels show, from left to right, a BH and a surrounding disk for the rp = 7.5
B EOS case at t = 10.2 ms; a merger from the rp = 7.5, HB EOS case at t = 3.2 ms;
NSs with excited f -mode perturbations post close encounter from the rp = 10, HB
EOS case at t = 4.1 ms. The first four panels have the same distance scale, where
the coordinate radius of the HMNS and BH are ≈ 13 and ≈ 6 km, respectively. The
last two panels share a second distance scale; the coordinate separation between the
NSs in the last panel is ≈ 73 km.
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rp = 8.75, the stars briefly fly apart before merging. When the stars come into contact

they undergo shock heating and develop features similar to the Kelvin–Helmholtz

vortices observed in [312] (see Figure 5.3). Though the total mass is above the

maximum for a cold, static star with this EOS, the stars are highly spun-up and have

a significant thermal component (22%–25%) to their internal energy (see Table 5.1).

In the vicinity of these objects the (density-weighted) average thermal specific energy

is ǫth ≈ 10–20 MeV/mn where mn is the neutron mass.

These HMNSs produce quasi-periodic GWs with frequency ∼ 3.2 kHz (see Figure

5.2). Though these hypermassive configurations survive the duration of our simula-

tions (≈ 13 ms), they presumably will eventually collapse to form BHs. In Table 5.1,

we indicate the rate of energy and angular momentum loss to GWs at the end of the

simulation. From this one can roughly estimate the time it will take for the HMNS to

radiate its remaining angular momentum to GWs assuming a constant dJGW/dt (e.g.,

for the rp = 7.5, HB case, it will take ∼ 70 ms). However, magnetohydrodynamic

effects, such as the Kelvin-Helmholtz [316, 317, 318] the magnetorational instabil-

ity, [319] — as well as cooling by neutrino emission, (which could take seconds) [105],

none of which we take into account, will also be important in determining when these

stars collapse. Table 5.1 also lists data from the unequal mass ratio (q = 0.8), rp = 7.5

case, which shows qualitatively similar behavior to the equal mass case.
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rp EOS Jtot/M2 a 〈ǫth〉
b Eth/Eint

c M0,u
d EGW

M
× 100 e JGW

M2 × 100 f dEGW/dt g dJGW/dt/M h

7.5 HB 0.96 20 0.22 0.64 3.78(3.91) 30.5(31.2) 1.56 × 10−5 1.23 × 10−4

7.5 (q = 0.8) HB 0.96 14 0.17 0.57 3.36 27.5 7.60 × 10−6 6.22 × 10−5

7.5 2H 0.95 14 0.31 4.39 0.70 10.8 3.45 × 10−7 3.20 × 10−6

8.75 HB 1.05 17 0.25 2.65 2.07 24.0 1.50 × 10−5 1.14 × 10−4

10 2H 1.11 11 0.27 6.65 0.50 9.28 2.70 × 10−6 3.48 × 10−5

Table 5.1: Properties of Hypermassive NS Cases, Measured at t ≈ 13.3ms
a Global angular momentum.
b Density-weighted average of the thermal component of the specific energy in units of MeV/mn.
c Fraction of internal (Eulerian) energy that is thermal.
d Rest mass that is unbound in percent of M⊙.
e The total energy emitted in GWs through the r = 100M surface.
f The total angular momentum emitted in GWs.
g Average GW flux of energy.
h Average GW flux of angular momentum.
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the amount of matter, total and unbound (fluid cells with outward radial velocity and

four-velocity time component ut < −1; see also Table 5.1), outside a given radius from

the center of mass and the velocity distribution of the unbound matter. The various

cases have 0.005–0.07M⊙ unbound material, and roughly 2–3 times more in a disk. As

expected, cases with less compact NSs have more unbound material compared to more

compact cases. Larger impact parameters (which have more angular momentum) also

have comparatively more unbound material with the most occurring in cases where

the NSs first come into contact in non-merger close encounters (rp = 8.75 HB and

rp = 7.5 and 10 2H). The unequal mass-ratio merger with q = 0.8 produces slightly

less unbound material than the comparable equal mass merger. In all cases, the ejecta

is mildly relativistic with asymptotic velocity that peaks in the range 0.1–0.3c. This

ejecta is presumably neutron rich and will convert to heavy elements through the

r-process, the heaviest of which will undergo fission, emitting photons [38, 320, 287].

The arguments from [287] estimate the time scale as

tpeak ≈ 0.6 d(Mu/3 × 10−2M⊙)1/2(v/0.2c)−1/2

with a luminosity, peaking in the optical/near UV, of

L ≈ 4 × 1042 erg s−1(Mu/3 × 10−2M⊙)1/2(v/0.2c)1/2

normalized here to the approximate values from the rp = 8.75 case. However, recent

calculations using more detailed heavy element opacities suggest that the timescale

may be up to a week with emission peaking in the IR [321].
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Figure 5.4: Left: The total and unbound rest mass outside a given radius from
the center of mass for various cases at t ≈ 13 ms. Right: Unbound rest mass with
asymptotic velocity grouped in 0.05c bins. The legend applies to the left panel as
well. By this time, the rp = 7.5, B case has collapsed to a BH, the rp = 7.5, 2H case
is an NS below the maximum mass for this EOS, while the rest are HMNSs that will
presumably collapse to BHs within 10’s of ms to a few seconds.

This ejecta is also expected to collide with the interstellar medium producing radio

waves that will peak on timescales of weeks with brightness [39]

F (νobs) ≈ 0.4(Ekin/2 × 1051 erg)(n0/0.1cm−3)7/8

(v/0.2c)11/4(νobs/GHz)−3/4(d/100Mpc)−2 mJy

where n0 is the density of the surrounding environment (we use n0 ∼ 0.1 cm−3 for GC

cores; [312]), νobs is the observation frequency, d the distance, and we have normalized

the kinetic energy and velocity to the rp = 8.75, HB simulation. We assume the same

electron distribution power index and energy fraction in relativistic electrons and

magnetic fields as in [88].
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5.4 Conclusions

We have performed GRHD simulations modeling dynamical capture NS–NS merg-

ers, giving direct estimates of the corresponding GW emission and merger outcome

varying impact parameter, EOS, and mass ratio. By measuring pre-merger tidal

deformation and post-merger stripped material (bound and ejected), we have also

speculated on related EM transients.

Regarding transients that may precede the merger, non-merging close encounters

can lead to tidal deformations strong enough to crack the NSs’ crust and tap into

the ∼ 1046 erg stored in elastic energy [322], potentially causing flaring activity from

milliseconds up to possibly a few seconds before merger. Though a different mecha-

nism and time scales, the signature could be similar to resonance induced cracking for

quasi-circular inspirals proposed in [42]. The cracking of the NS crust is one possible

explanation for SGRB precursors observed by Swift [323].

We find that dynamical capture mergers can result in prompt BH formation or

the formation of an HMNS depending on impact parameter and EOS. The HMNSs

will be long lived due to their rapid rotation and thermal energy, giving them the

potential to seed large magnetic fields and source intense transients during collapse.

In contrast to what was found in general-relativistic studies of quasi-circular NS–

NS mergers, we find that dynamical capture mergers can result in massive disks even

for equal mass binaries, and can result in up to a few percent of a solar mass in

ejecta. This mildly relativistic ejecta can produce potentially observable optical and

radio transients. The amount of ejecta found here is similar to the 0.009–0.06 M⊙

found with Newtonian gravity [312], though not for comparable impact parameters

(rp ≤ 5). However, what is qualitatively consistent with the Newtonian setups is that

we observe the largest amounts of unbound material for grazing collisions.

Regarding GW detectability, the high frequency of the merger-ringdown or quasi-

periodic signals from the HMNS will be difficult to observe with AdLIGO. Individual
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bursts from close encounters would also not be detectable except for very nearby

events. For example, an rp = 10, HB EOS merger at d = 100 Mpc has sky-averaged

SNR for AdLIGO of ≈ 0.9. This implies that if dynamical capture NS–NS mergers

constitute a fraction of SGRB progenitors, a further subset of these will not have a

detectable GW counterpart. GW signals from larger rp binaries undergoing numerous

close encounters would have larger SNR, and the timing between bursts will be a

sensitive function of the orbital energy, containing information about the EOS, for

example. We defer a detailed study of GW detectability to Chap. 6.
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Chapter 6

Observing gravitational waves from

dynamical capture binaries

6.1 Introduction

As recounted in Chap. 4 and Chap. 5, in dense stellar regions, such as galactic nuclei

or globular clusters, individual black holes (BHs) or neutrons stars (NSs) can become

gravitationally bound as energy is lost to gravitational radiation during a close pas-

sage. These dynamically captured pairs may be additional sources for gravitational

wave (GW) detectors, as well as sources of electromagnetic (EM) transients such as

short gamma-ray bursts (SGRBs). Eccentric pairs will be distinguishable from qua-

sicircular coeval binaries, which are born in a bound system and have had time to

circularize before reaching the sensitive bandwidths of ground-based GW observato-

ries such as LIGO [10], VIRGO [11], GEO600 [12], and KAGRA(LCGT) [324].

The primary purpose of this chapter is to study the detectability of sources that

retain eccentricity while in the LIGO band (for simplicity, we only employ LIGO

sensitivity curves). We focus on mergers with initial periapse rp . 10M, where M

is the total mass, making this study complementary to previous studies [259, 260].
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As we show later, in this regime essentially all mergers occur with non-negligible

eccentricity (e & 0.2). This is also the regime where strong-field effects such as

black hole spin and zoom-whirl behavior can influence the dynamics. To estimate

the fraction of dynamical capture binaries that retain high eccentricity, we can use

Newtonian dynamics with quadrupolar energy loss following [257, 325, 303]. First, for

a hyperbolic orbit with a small velocity at infinity v ≪ 1, the relationship between

impact parameter b and rp is rp ≈ b2v2/2M . In other words, the cross section

σ ∝ b2 scales linearly with rp. The maximum pericenter passage that leads to a

bound system through gravitational radiation loss1 is rp,m ≈ (31η)2/7v−4/7M , where

η = m1m2/M
2 = q/(1 + q)2 is the symmetric mass ratio, with q the mass ratio. For

a galactic nuclear cluster where v ≈ 1000 km/s, between 20% and 30% of dynamical

capture binaries (where the range is from q = 1 to q = 0.1) will have rp/M < 10; for

a globular cluster with v ≈ 10 km/s, this drops to 1.5%–2.0%.

Although we focus on those with small initial periapse, all dynamical capture

binaries will have a repeated burst phase [260]. For a large fraction of expected

binary masses the repeated bursts will be within the Advanced LIGO band. The

burst frequency is νb ≈ r−1
p (rp/M)−1/2; the lowest frequency occurs at rp = rp,m,

which ranges from (1−100Hz)/M10 for q = 0.1 encounters in globular clusters to q = 1

encounters in nuclear clusters, with M10 = M/10M⊙. To estimate the percentage of

systems that will end with a low-eccentricity inspiral phase, if the initial periapse

is rp,i, and we consider the repeated burst phase to end at a periapse of rp,f with

eccentricity ef , from [325] rp,i ≈ 0.57rp,f (1 + ef )e
−12/19
f [1 + O(e2f )]. For example, if

a binary with ef < 0.1 by rp,f = 10M can be considered to have a low eccentricity

inspiral phase, then this corresponds to all systems with rp,i > 27M . For nuclear

1As mentioned earlier, for the COs considered here, energy lost to tidal effects is much less than
GW emission at these separations, so the latter process determines the cross section. Also, when
a bound system is formed, the fraction that has a semimajor axis large enough to have the binary
tidally unbound by a subsequent interaction with the surrounding cluster potential is insignificant.
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clusters, this is between 20% and 40% for q = 1− 0.1, while the corresponding range

for globular clusters is 94% and 96%.

Multimessenger exploration, combining gravitational wave signals with detections

of electromagnetic transients, is of course an exciting possibility. Binary NS or BH-

NS mergers are thought to be progenitors for SGRBs, and may also source a number

of other EM transients [88, 311]. As illustrated in Chap. 4 and Chap. 5, simulations

of eccentric BH-NS and NS-NS mergers have shown a rich variation in outcome with

impact parameter, with the possibility of large accretion disks as well as ejecta that

could undergo the r-process [264, 4, 3, 5, 312]. The time scales between close en-

counters in eccentric mergers may also explain observed delays between precursors

and SGRBs [323]. For example, as noted in Chap. 5 NS crust cracking on a non-

merging close encounter could potentially cause flares that precede the merger by an

interval ranging from milliseconds to possibly a few seconds. Even a null GW de-

tection provides astronomical information as it rules out compact object mergers as

the source of an observed GRB, but only if the detectability of these types of signals

is understood. Given the disparate nature of the waves from dynamical capture vs

coeval mergers, data analysis methods designed specifically for each are required for

this kind of astronomy. Methods to search for quasicircular inspiral (of relevance

to the majority of coeval binaries, and a subset of dynamical capture binaries that

form with a sufficiently large periapse to circularize before merger) have been the

predominant focus of the GW community over the past decades [326]. Compara-

tively, there is a dearth of studies on the detectability of highly eccentric mergers 2.

In [328] the single burst from a parabolic close encounter was studied, while [259]

included the additional signal provided by subsequent bursts. This repeated burst

phase was studied in [260] using 2.5 and 3.5 order post-Newtonian (PN) equations

of motion. It was found that GWs from this phase may be detectable by Advanced

2Though see [327] for a recent study of the efficacy of quasicircular templates to detect lower
eccentricity NS binaries.

144



LIGO out to 200–300 Mpc for BH-NS binaries and 300–600 Mpc for BH-BH binaries.

Since the PN approximations begin to break down close to merger, the evolution was

only followed to rp = 10M . To model the last stages of merger requires numeri-

cal relativity (NR), and there have been a number of numerical studies of eccentric

mergers [167, 164, 165, 329, 153, 4, 3, 5, 170]. However, because of the computational

expense of these simulations, it is not possible with current computer resources to

follow high-eccentricity binaries through multiple close encounters. The challenge is

compounded by a large parameter space, including the impact parameter, mass ratio,

BH spin, and NS equation of state. It is thus not reasonable to expect that brute-force

numerical simulations will be able to provide templates before the Advanced LIGO

era, even accounting for expected increases in computer power.

To begin to bridge the gap between large periapse PN solutions and late-time nu-

merical solutions, we introduce a model for the inspiral, merger, and ringdown of dy-

namical capture compact binaries. This model is based on geodesic equations of mo-

tion in an effective Kerr spacetime, combined with quadrupole radiation (Sec. 6.2.1)

and a version of the Implicit Rotating Source (IRS) model [330, 331] for the merger

and ringdown parts of the GW signal (Sec. 6.2.3). (Except for the IRS extension, and

the comparable masses, our hybrid is reminiscent of the “kludge” introduced to study

extreme mass ratio inspirals [332, 333, 334, 335], based in part on the “semirelativis-

tic” approach of [336].) We validate this model through a comparison to full numerical

simulations in the strong-field regime (Sec. 6.2.2) and to the PN approximation for

rp > 10M (Sec. 6.2.4).

The waveforms we produce here are likely not accurate enough for optimal

template-based detection of multiple-burst events. Indeed, creating improved accu-

racy waveforms will probably require a different approach, for example, using the

effective one body (EOB) formalism which has recently been extended to generic or-

bits [337] and calibrating it using full numerical simulations. However, our waveforms
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capture the relevant features with sufficient faithfulness that we can use them to

assess the efficacy of existing LIGO search strategies. We can also use our waveforms

to investigate new search strategies that may be better suited to highly eccentric

mergers. In Sec. 6.3 we use this model to evaluate how well these GW signals could

be seen with each generation of the LIGO detectors, varying impact parameter

(equivalently rp), total mass, and mass ratio. We use various analysis methods:

matched filtering with the model templates, filtering with ringdown templates, and a

burst search with sine-Gaussian templates. We also estimate how well a hypothetical

search using incoherent stacking of bursts following [338] would perform. Though not

as optimal as matched filtering, stacking is likely more robust to timing uncertainties

in the burst sequence. We find that if capture binaries do exist, in many cases

their GW signals will be missed by single-burst or ringdown searches (and, as we

argue, quasicircular templates), whereas these sources would be detectable with a full

template or a stacked burst search. In particular, GRB051103 [339] had a measured

distance of 3.6 Mpc, and no coincident GW signal was found using traditional

searches [340, 341]. However, there is a sizable region of the parameter space of

dynamical capture binaries that existing searches would have missed. The possibility

that the GRB was preceded by an eccentric merger remains a viable possibility.

In Sec. 6.4 we make concluding remarks and comment on the direction of future

work.

6.2 Waveform Model

In this section we describe our model for high-eccentricity merger waveforms. We

first look at the inspiral phase in Sec. 6.2.1, which can be considered a sequence

of GW bursts, each generated at a periapse passage. In Sec. 6.2.2 we compare the

model expressions we use for the bursts to full numerical simulations. In Sec. 6.2.3
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we discuss the IRS model for the merger and ringdown phase, and in Sec. 6.2.4 we

present examples of the full signal, and make further comparisons to PN results for

the inspiral phase.

6.2.1 Repeated burst phase

Our objective here is to model the GW signal from an eccentric binary that passes

through a series of close encounters prior to merger. To this end, we use a prescrip-

tion based on the equations of motion of a geodesic in a Kerr spacetime, coupled

with the quadrupole formula for gravitational radiation. We identify the mass and

total angular momentum of the binary with the mass and spin parameters of the

effective Kerr spacetime and the orbital angular momentum and energy with that of

the geodesics. This approach has the advantage of reproducing the correct orbital

dynamics in the Newtonian limit and general-relativistic test particle limit, while still

incorporating strong-field phenomena such as pericenter precession, frame dragging,

and the existence of unstable orbits and related zoom-whirl dynamics. For simplicity,

in this first study we restrict our attention to equatorial orbits and, for the most part,

nonspinning BHs (we compare the IRS model to a merger involving a spinning BH

in Sec. 6.2.3).

The equations for an equatorial geodesic in a Kerr spacetime with mass M and

dimensionless spin a can be written in first order form using Boyer-Lindquist coordi-

nates as

τ̇ =
∆

ẼR2
0 − 2M2aL̃/r

:= Q,

φ̇ =
1

R2
0

[

L̃Q+ 2M2a/r
]

:= Ω,

ṙ = ∆QPr/r
2,

Ṗr =
1

r2Q

[

Ω2(r3 −M3a2) +M(2MaΩ − 1)
]

+
P 2

rQ

r3

[

M2a2 −Mr
]

(6.1)
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where R0 = r2 + 2M3a2/r + M2a2, ∆ = r2 − 2Mr + M2a2, Pr = r2ṙ/(∆Q), τ is

proper time, and the overdot indicates a derivative with respect to the coordinate

time. Here Ẽ and L̃ are the energy and angular momentum of the geodesic.

In order to apply these equations to a binary system we go to the center-of-mass

frame and let r be the separation between the objects. Then we identify the geodesic

parameters Ẽ and L̃ with the reduced energy and angular momentum of the system

and promote these quantities to time-dependent variables. To determine the amount

of energy and angular momentum radiated away to gravitational waves, we use the

quadrupole formula

˙̃E = −µ
5

...
I ij

...
I ij

˙̃L = −2µ

5
ǫzijÏik

...
I jk (6.2)

where µ is the reduced mass, Iij is the reduced quadrupole moment, and Ïij and
...
I ij

are written in terms of the variables {r, φ, Pr, Ẽ, L̃} using (6.1). We set M in (6.1) to

the total mass (neglecting orbital energy contributions), and we set a = µL̃/M2+aBH ,

where aBH is the net spin of any BHs (though again for this study we focus on non-

spinning BHs, where aBH = 0). The use of an effective spinning BH spacetime based

on total angular momentum is motivated by [167], where it was found that the prop-

erties of zoom-whirl-like dynamics exhibited in equal mass mergers in full numerical

relativity are better approximated by geodesics on the effective Kerr spacetime than

Schwarzschild spacetime, and it differs from the EOB approach which uses deforma-

tions of the Schwarzschild metric for the merger of nonspinning objects [342]. We note

that when the orbital angular momentum is large we will have a > 1. However, this

will occur only when the separation r is also large, so general-relativistic effects are

small, and no unusual behavior arises from exceeding the Kerr limit. We numerically

integrate the coupled set of equations (6.1) and (6.2).
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The remaining element is to calculate the observed gravitational radiation, which

will depend on the intrinsic source parameters (i.e. the mass, mass ratio, eccentricity,

and initial periapse distance), and will also vary with sky location and relative orien-

tation of the source to the detector. At linear order and in the transverse traceless

gauge, the complex gravitational wave strain hopt a distance d from an optimally

oriented source is simply related to changes in the quadrupole moment through

hopt := hopt
+ + ihopt

× :=
2

d

(

Ïx x + iÏy x

)

. (6.3)

For general orientations, the emitted strain can be represented through a mode de-

composition as

h̄ := h+ + ih× =
∞
∑

ℓ=2

ℓ
∑

m=−ℓ

hℓm(t, d) −2Yℓm(θ, φ) , (6.4)

where −2Yℓm are the spherical harmonics of spin weight −2 [343], and θ and φ are

the polar and azimuthal angles of orientation, respectively. For the comparable mass,

nonspinning systems that we are primarily interested in, the quadrupole (i.e., ℓ = 2,

m = +− 2) component dominates the strain, so that

h̄ ≈ h22(t, d) −2Y22(θ, φ) + h2−2(t, d) −2Y2−2(θ, φ). (6.5)

This completes the approach for calculating the source waveform that reaches a de-

tector. In a later section we will include the sensitivity of the detector in the analysis.

6.2.2 Comparison to fully general-relativistic numerical sim-

ulations

To provide some validation for this model we compare several waveforms of single

high-eccentricity fly-by encounters from full general-relativistic numerical simulations
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to those obtained from the geodesic equation with the quadrupole formula. The

simulations include a 4:1 mass ratio BH-NS system (see Chap. 4), an equal mass

NS-NS system (see Chap. 5), and an equal mass BH-BH system. The NR simulations

were all performed using the code described in Chap. 2.

In Fig. 6.1 we show several such examples from NR simulations of the 4:1 BH-NS

system alongside corresponding waveforms from our model with best-fit parameters.

The peak amplitude of the geodesic is scaled to be the same as in the simulations.

The fit is performed by finding the initial orbital parameters that maximize the phase

overlap between the waveforms (see e.g. [344]). In this regime the match between the

waveforms is most sensitive to rp as opposed to e. As can be seen, the fly-by waveforms

from our model provide a good match to those from simulations. Even close to the

effective innermost stable orbit (ISO) for the BH-NS system (the bottom panels of

Fig. 6.1), where the system begins to show evidence of whirling behavior, our model

is able to approximately capture the shape of the waveform.

In Table 6.1 we give the fit parameters, amplitude enhancement, and overlap.

We also show the approximate initial orbital parameters (rp and e) of the simulation

obtained by equating a Newtonian estimate of the reduced orbital energy and angular

momentum at the beginning of the simulation with the Ẽ and L̃ parameters of the

geodesic model described above. (Note, this is different from the Newtonian values

for rp and e used in [3, 5].) For most of the BH-NS systems in Table 6.1 we can see

that the enhancement required to match the amplitude of our model to the simulation

results is ∼ 4%–11%. This is presumably due to aspects not captured by this simple

model, such as finite-size effects, as well as truncation error from the simulations.

The one case where the amplitude of the simulation waveform was below the model

result was a simulation with strong whirling behavior (bottom-right panel of Fig. 6.1)

where the NS had large f -mode oscillations excited as described in [3].
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Figure 6.1: Comparison of the ℓ = 2, m = 2 component of h̄ for fly-by waveforms
from 4:1 BH-NS simulations (solid line) and our model with best-fit periapse distance
(dashed line). The approximate effective geodesic orbital parameters of the simulated
system (left to right, top to bottom) are (rp, e) = (8.3, 1.0), (8.0, 0.8), (5.6, 1.0), and
(5.0, 1.0). The fit parameters are given in Table 6.1.

We also compare the geodesic model with an equal mass BH-BH and an equal

mass NS-NS system as shown in Fig. 6.2. Although one would expect a geodesic

approximation to be most accurate in the limit that one mass is much larger than

the other, it still provides good fits for equal masses. This model, however, does not

attempt to include finite-size effects (such as the f -mode excitation visible in the later

part of the bottom of Fig. 6.2), which would be required to address questions related

to measuring the NS equation of state from such GW signals.
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Figure 6.2: Comparison of the ℓ = 2, m = 2 component of h̄ for fly-by waveforms from
equal mass BH-BH (left panel) and NS-NS (right pannel) simulations (solid lines) and
our model (dotted lines) with best-fit parameters. The approximate effective geodesic
orbital parameters of the simulated systems are (rp, e) = (8.7, 1.0) for both cases. The
fit parameters are given in Table 6.1. The feature in the waveform after the peak in the
NS-NS simulation is from f -mode excitation that occurs during the close encounter.

Simulationa Fitb

Binary rp e rp e Ac Overlapd

NS-BH 8.30 1.00 8.77 1.00 1.04 0.99
NS-BH 8.00 0.80 7.97 0.81 1.11 0.98
NS-BH 5.62 1.00 5.61 1.00 1.11 0.97
NS-BH 5.04 1.00 4.26 1.00 0.61 0.74
BH-BH 8.71 1.00 8.23 1.00 1.16 0.99
NS-NS 8.71 1.00 7.82 1.00 1.28 0.96

Table 6.1: Fit parameters for close-encounter GWs.
a Approximate initial parameters of the geodesic model based on the initial orbital
energy and angular momentum of the simulation.
b Initial parameters of the geodesic model that best fit the simulation data.
c Amplitude enhancement applied to the waveform from the best-fit geodesic model.
d Overlap between simulation and the best-fit geodesic model.
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6.2.3 Merger model

After a binary has evolved through some number of close encounters, it will merge.

In order to include the waveforms resulting from merger, we supplement the model

outlined in Sec. 6.2.1 with a version of the IRS model [330, 331] for the merger

and ringdown part of the GW signal. Note that the IRS assumes the waveform is

circularly polarized. This is not strictly valid for the complete merger-ringdown phase

of eccentric binaries, though as we show below, it does provide a reasonably good

approximation to results from numerical simulations. As with other aspects of our

waveform model, this assumption could be refined in the future, but it is adequate for

the purpose of testing the efficacy of existing search strategies for detecting eccentric

binaries.

In particular, we model the phase evolution to asymptotically approach the least

damped quasinormal mode frequency of the final BH, ωQNM, via

ω(t) = ωQNM(1 − f̂) (6.6)

where

f̂ =
c

2
(1 +

1

κ
)1+κ

(

1 − (1 +
1

κ
e−2t/b)−κ

)

. (6.7)

Here b = 2Q/ωQNM is determined by the quality factor and frequency of the final

BH, and κ and c are free parameters of the model. The amplitude is given, up to an

overall factor A0, by

A =
A0

ω(t)

(

| ˙̂
f |

1 + α(f̂ 2 − f̂ 4)

)1/2

(6.8)

where
˙̂
f = df̂/dt, and α is a free parameter. We find that α = 72.3/Q2 provides a

reasonably good fit to our numerical simulations.

In Fig. 6.3 we show a comparison between simulation results of BH-NS mergers

and the best-match IRS model waveforms, where we let κ and c be fitting parameters.
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Figure 6.3: Comparison of the merger GW strain from a 4:1 BH-NS simulation
(solid lines) and the IRS model (dotted lines) with best-fit parameters. The left
panel shows a case where the initial BH was nonspinning. The right panel shows a
case with aBH = 0.5, which results in more whirling behavior and tidal disruption of
the NS. The best-fit parameters in (6.7) are (κ, c) = (0.66, 0.28) (left) and (0.46, 0.18)
(right), and the matches are 0.98 and 0.96, respectively. The match is weighted based
on the “whitened” waveforms as described in Sec. 6.3 assuming a total mass of 10
M⊙.

In Fig. 6.4 we show the same thing for equal mass NS-NS and BH-BH mergers. This

simple model will not capture disruption or other matter effects, and best-fit values

for κ and c will have some dependence on the parameters of the binary, such as the

impact parameter preceding merger. However, when studying signal detectability we

fix κ = 0.64 and c = 0.26, which empirically provides reasonably good fits to a large

number of simulated waveforms, and therefore provides an adequate representation of

a generic eccentric merger. We attach the IRS part of the waveform to the model from

Sec. 6.2.1 when the separation reaches the light ring of the effective Kerr spacetime.

6.2.4 Model properties and comparison to post-Newtonian

Combining the inspiral and merger models allows us to generate complete waveforms

for dynamical capture binaries. In Fig. 6.5 we show one such example for a 4:1 mass

ratio system with initial orbital parameters corresponding to rp = 8M and e = 1. The
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Figure 6.4: Comparison of merger waveforms from an equal mass BH-BH simula-
tion (left panel) and NS-NS simulation that forms a BH (right panel) with the IRS
model (dotted lines) with best-fit parameters. The best-fit parameters in (6.7) are
(κ, c) = (0.31, 0.03) (left) and (0.36, 0.19) (right), and the matches are 0.98 and 0.97,
respectively. The match is weighted based on the “whitened” waveforms as described
in Sec. 6.3 assuming a total mass of 20 M⊙ and 2.8 M⊙ for the BH-BH and NS-NS
binaries, respectively.

waveform shows the decreasing time interval between bursts from close encounters as

rp and e decrease due to gravitational radiation. The number and timing of the bursts

is a sensitive function of the amount of energy and angular momentum radiated in

each close encounter. In Fig. 6.6 we show how rp and e evolve according to this model

for some example binaries. It can be seen that the binaries considered here, which

begin on parabolic orbits with rp<−10M , still have non-negligible eccentricity all the

way to merger.

We can also compare this model to that given by the 2.5 and 3.5 order PN ap-

proximation as used in [260]. In Fig. 6.7 we show how the difference in the energy

and angular momentum radiated away in a close encounter for 2.5 or 3.5 PN relative

to our model changes with the initial impact parameter. The geodesic model predicts

less energy and momentum loss than 2.5 PN but more than the 3.5 PN. At large

impact parameters the three different models converge. At smaller impact parame-

ters the 2.5 and 3.5 PN approximations begin to diverge. As shown in [345], the PN
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Figure 6.5: GW strain generated with our model and initial conditions rp = 8M
and e = 1. The left panel shows the entire waveform, while the right panel shows a
zoomed-in view of the end of the waveform.
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Figure 6.6: Evolution of orbital parameters for a 4:1 (left panel) and an equal mass
ratio (right panel) binary. The effective eccentricity is calculated from successive
apoapse and periapse distances as e = (ra − rp)/(ra + rp).
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counter for the 2.5 and 3.5 PN approximations versus our model. For this comparison
the orbits are chosen to initially have zero energy and the same value of angular mo-
mentum which, for a geodesic with the same initial conditions, corresponds to the
value of rp indicated on the x axis.

approximation fails to converge (or even to provide physically sensible results in the

case of 3.5 PN) for rp . 10M .

The gravitational wave model we have outlined in this section is relatively simple

and could be improved upon by, for example, adding more sophisticated conservative

dynamics, including finite-size effects for NSs, as well as going beyond the quadrupole

approximation in determining gravitational radiation. However, given the decent

match between this model and the full numerical simulations, as well as its consistency

with the PN approximation as described above, it can be used to investigate issues

of detectability, as we do in the next section.
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6.3 Detectability

6.3.1 Detector modeling

Having developed a model for the gravitational waveforms emitted by high-

eccentricity binaries, we can now assess the detectability of these signals for

different source parameters and detectors. The measured strain h is given by

h = ℜ
[

Fh̄
]

= F+h+ + F×h× , (6.9)

where F := F+ − iF× is the sky-dependent detector response. The signal-to-noise

ratio (SNR) ρ using a perfectly matched filter is given by

ρ2 = 〈h|h〉, (6.10)

where 〈·|·〉 denotes a noise-weighted inner product given by

〈h1|h2〉 := 2

∞
∫

0

df
h̃∗1h̃2 + h̃1h̃

∗
2

Sn

, (6.11)

where Sn(f) is the power spectral density of the detector noise, and h̃ denotes the

Fourier transform of the original h time series. Because we limit our model to the

quadrupole component of the signal, and we focus on detectors (like LIGO) for which

the gravitational wavelength is much longer than the detector’s armlength, we can

trivially relate the SNR of an optimally oriented and located source to the SNR of an

orientation- and sky-location-averaged source. For such detectors, the response func-

tion to the two waveform polarizations, F+ and F×, is simply the root-mean-squared

(rms) average over the sky location and polarization angles,
√

〈F 2
+,×〉 =

√

1/5 [346].

Likewise, the rms average over source orientations is
√

〈−2Y2, +− 2
〉 =

√

1/5, so that
√

〈ρ2〉 = ρopt/5. We can further define the characteristic strain hc for both the signal
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Figure 6.8: The characteristic strain hc is shown for the initial (thin dash-dotted
line), Enhanced (dash-dotted line), and Advanced LIGO (solid line) detectors, as
well as for two example signals at DL = 1 Gpc. The first signal corresponds to an
orientation-averaged source with M = 100 M⊙, q = 1, and rp = 5M (dashed line),
and the second signal is from a source with M = 10 M⊙, q = 0.1, and rp = 10M
(dotted line). Both signal spectra are smoothed to diminish fluctuations and make
the trend more clear. The system with q = 0.1 has little contribution from the merger,
so the repeated burst phase dominates the spectra, with hc∝∼f , whereas the q = 1
system signal comes largely from the merger, where hc ≈ constant over a small band
of frequencies.

and detector noise. Given Eq. (6.11) and the typical practice of plotting sensitivity

curves logarithmically, it is useful to define hc :=
√

〈−2Y2, +− 2
〉fh̃opt for signals and

hc :=
√

fSn/〈F 2〉 for detector noise, so that both signal and noise are characterized

as a dimensionless strain, and the ratio of signal-hc to noise-hc is the square root of

the integrand for ρ2 when integrated over logarithmic frequency intervals df/f . We

show this characterization of signal and noise in Fig. 6.8.

For assessing the relative contribution of different waveform segments to the SNR,

it is often convenient to work in the time domain by constructing “whitened” wave-

forms [347], which weight the amplitude of the waveform as a function of frequency

159



to account for the presence of noise in the detector,

h′ =

+∞
∫

−∞

df
h̃√
Sn

e−i2πft. (6.12)

With these whitened vectors, the noise-weighted inner product (6.11) can be reex-

pressed in the time domain:

〈h1|h2〉 :=

∞
∫

−∞

dt h′∗1 (t)h′2(t). (6.13)

Figure 6.9 shows portions of the whitened waveform for two example cases with the

same mass ratio and initial rp and e, but different masses. The upper panel shows the

burst with the largest SNR contribution for a source with total mass M = 10 M⊙,

while the lower panel shows the loudest burst for M = 100 M⊙. The different masses

change the frequency of the signal, so different bursts are emphasized by the detector

sensitivity; in particular, for larger masses the final burst and merger are emphasized.

We also show best fits for two types of templates that are described below.

6.3.2 Templates and detection strategies

While quasicircular sources are searched for using matched filtering, eccentric systems

are far more susceptible to modeling errors in the relative timing and phase of signal

bursts, which is why we focus our attention on alternative approaches to detection.

For example, a small modeling error in the energy lost during a particular periapse

passage δE will induce a timing error in the arrival time of the subsequent burst δT

given by δT ∝ δE(1 − e)−5/2. Therefore, dynamical capture binaries are far more

challenging to model with sufficient accuracy to apply matched filtering due to their

large eccentricities.
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Figure 6.9: Whitened waveforms for a 10 M⊙ (top panel) and a 100 M⊙ (bottom
panel) binary with initial e = 1 and rp = 5M , along with the (whitened) best–fit
template among sine-Gaussian and ringdown templates.

We assess detection prospects of GWs from capture binaries for two currently

used templates, sine-Gaussian (SG) and ringdown (RD) templates, as well as an

idealization of a third strategy based on combining an excess power search with

stacking. The SG and RD both take the form

h̄ = A exp

[

−
(

t− to
τ

)γ

+ iω(t− to) − iφo

]

, (6.14)

where γ = 1 and t>−to for the RD templates, and γ = 2 with −∞ < t < ∞ for the

SG templates. Here A is the overall amplitude, to and φo are the time and phase of

the template’s amplitude peak, τ sets the e-folding of the amplitude, and ω is the

constant frequency.

In addition to assessing the performance of two burst templates, we calculate a

rough approximation of the potential performance for an excess power search that

accumulates power from the entire signal [338], which we will call a power-stacking
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search. Here, the data would be transformed to a time-frequency (TF) tiling using

a basis suitable for capturing individual bursts within a tile, and then power from

different tiles corresponding to bursts, as informed by our model, would be combined.

Whereas in most existing TF searches an individual element must have enough power

to exceed some threshold, with that threshold being large enough to avoid many

false alarms, the approach we describe does not require that the signal be detectable

in any single TF element. In the case of a monochromatic signal, the SNR from

optimal filtering will accumulate with the number of cycles N as
√
N , while the excess

power in stacking TF elements (constructed using any basis) overlapping the given

frequency will accumulate as N1/4. The signals from high-eccentricity binaries are not

monochromatic, but given the typically large number of bursts occurring in band, and

the relative flatness of both the source spectrum and the detector sensitivity across

its most sensitive band, we expect the aforementioned scalings to hold approximately

for realistic signals.

This search would be very similar to the stacked search proposed for combining

potential GW counterparts to observed electromagnetic signals from soft gamma re-

peaters [338]. There, TF elements were aligned in time based on the observed bursts,

and they demonstrated theN1/4 SNR scaling when adding power for identical injected

signals. Since we do not have a separate observational trigger, our proposed search

would sum power along elements overlapping bursts as indicated by our waveform

model. We leave it to future work to fully investigate this, though here we assume we

can achieve the N1/4 SNR scaling, and thus can estimate the performance of a power-

stacking search by noting that optimal filtering should outperform power stacking by

N1/4. Hence, we can approximate the effective excess power SNR as ρEP ≈ N−1/4ρ.

This simple estimate will constitute our third search technique in our subsequent

analysis.
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We do not employ quasicircular (QC) templates, although they have thus far been

the only tool employed to search for long-lived signals. QC templates will generically

fail to match the performance of any of the above methods for the repeated burst

phase of eccentric sources for the following reasons. First, during the long intervals

between eccentric bursts a QC template will still be integrating power from the data,

which is predominantly noise. Specifically, the ratio of the characteristic time scale

of an eccentric burst to the period between bursts is roughly

τGW

T
≈ (1 − e)3/2 . (6.15)

In other words, there will be ∼ (1 − e)−3/2 additional cycles between bursts in a QC

signal with the same periapse. Moreover, even if the QC template is phase aligned

to a particular burst, since the time between bursts is much larger than the GW

period, the rest of the template will effectively have random phase alignment with

other bursts in the sequence and, on average, no additional SNR will be acquired. To

summarize, typically the best-matched QC template will only integrate signal about

the loudest burst, but even so, the performance will not be as good as a single-burst

search due to the larger integrated noise accumulated over the period of the QC

template (expect for the higher mass systems where only the final merger/ringdown

signal is in band).

6.3.3 Results

We calculate two useful quantities related to the SNR: the detectability horizon and

the detection probability. Since h ∝ D−1
L , where DL is the luminosity distance, we can

use (6.10) to calculate the distance (which we call the detection horizon) at which

a sky- and orientation-averaged source could be observed with a SNR of 8 using

optimal filtering. The detection probability for a given strategy is simply the ratio of
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the volume in which the strategy could detect a source with some SNR to the volume

in which the source could be seen with the same SNR using optimal filtering. In

the remainder of this section, we will calculate these quantities for various cases of

interest. We consider the following configurations:

• three detector sensitivities, corresponding to initial, Enhanced, and Advanced

LIGO;

• three detection strategies, including SGs, RDs, and power stacking, and how

they compare to optimal filtering;

• three intrinsic system parameters:

– total system mass M , ranging from 1 M⊙–2000 M⊙;

– mass ratio q of the binary components, ranging from 0.01–1;

– initial rp, ranging from 5M–10M (with initial e = 1; we exclude rp < 5M

simply because in most cases it is a direct collision qualitatively similar to

rp = 5, and see [260] for a study of rp > 10M).

In Fig. 6.10, we show contours of constant horizon distance as a function of q and

rp for initial LIGO, assuming optimal filtering, SG templates, and power stacking.

Two contours of note, at 0.77 and 3.6 Mpc, correspond to the distances of GRB070201

[348] and GRB051103 [339], respectively. These were two nearby gamma-ray bursts

observed by Swift during the S5 initial LIGO run, while two interferometers were

actively collecting data at or near initial LIGO’s design sensitivity. However, no signal

was found in the LIGO data using the methods applied (specifically, various burst

and quasicircular inspiral templates) for these GRBs, nor for any of the 137 GRBs

(35 with measured redshifts) that occurred while initial LIGO was taking science

data during its S5 run at or near design sensitivity [340, 341]. Thus in Fig. 6.10 we

restrict the mass ratio to the range 0.1–1, with one of the masses fixed at 1.35 M⊙,
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to focus on systems including a neutron star that are expected to generate GRBs. In

the case of a dynamical capture binary source at 0.77 Mpc, the signal is sufficiently

loud that even suboptimal searches like SG templates would detect them. However,

for a source at 3.6 Mpc, whereas an optimal filter would have detected a signal from

a large region of the parameter space, including all cases with q < 0.5 or rp > 7.5M ,

and power stacking would recover signals with q < 0.4, SG templates are far less

effective, and would only recover a small sliver of parameter space with q < 0.2. This

suggests the possibility that the searches applied to the LIGO data would not have

found the gravitational wave counterpart to GRB051103 if it was in the form of a

dynamical capture binary. Furthermore, across the full parameter space explored,

the difference in performance among these three searches is substantial, with optimal

filtering detecting sources as far as DL = 50–100 Mpc, while power stacking only

reaches DL ≈ 30 Mpc, and SG templates only reach DL ≈ 15 Mpc.

Figures 6.11 and 6.12 show, for Enhanced and Advanced LIGO respectively, con-

tours of detection horizon as a function of mass and mass ratio at a fixed rp = 6M

using an optimal filter and SG and RD templates. The primary difference in both

cases is the degradation of performance for higher mass ratios (smaller q), with the

SG performing as well as or better than the RD templates across much of the param-

eter space, with the exception of comparable mass ratios, where the ringdown signal

is most emphasized. For each search, Enhanced LIGO could detect an equal mass

binary with M = 100 M⊙ out to DL = 1 Gpc, and Advanced LIGO will see the same

sources beyond 10 Gpc.

The relative performance of SG and RD is further demonstrated in Figs. 6.13 and

6.14, which show the detection probabilities of each template (equivalently, the ratio

of the detectable volume using the templates to the volume using optimal filtering).

SG templates perform best for M ≈ 200 M⊙ systems using Enhanced LIGO and

M ≈ 1000 M⊙ systems using Advanced LIGO, largely independent of the mass ratio.
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Figure 6.10: Contours of horizon distance (ρ = 8) as a function of mass ratio q
and pericenter separation rp for initial LIGO using an optimal filter (top-left panel),
sine-Gaussian templates (top-right panel), and an estimate of a power-stacking search
(bottom panel) as described in the text. We fix one component to be a 1.35 M⊙ neu-
tron star and change the total mass with mass ratio accordingly. We include a contour
at DL = 0.77 Mpc and another at 3.6 Mpc, to show the region of parameter space
where existing LIGO searches would not have seen a gravitational wave counterpart
to GRB070201 [348] and GRB051103 [339], respectively.

Interestingly, RD templates perform best for comparable mass binaries regardless of

total mass for Enhanced LIGO, whereas no such clear general behavior is observed for

Advanced LIGO. This can be understood because Enhanced LIGO always has fewer

cycles in band than Advanced LIGO, so that the merger-ringdown constitutes a larger

fraction of the total SNR, with that fraction further enhanced for comparable masses

(since ρ ∝ η = m1m2/M
2 for inspirals, but ρ ∝ √

η for ringdowns [349]). Advanced

LIGO shows no such behavior because the number of inspiral cycles is so large that

the merger-ringdown rarely dominates the total SNR.

Figures 6.15 and 6.16 again show contours of horizon distance for Enhanced and

Advanced LIGO, but as a function of total mass and initial pericenter distance at fixed
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Figure 6.11: Contours of horizon distance as a function of rest mass M and mass
ratio q for Enhanced LIGO using an optimal filter (top-left panel), sine-Gaussian
templates (top-right panel), and ringdown templates (bottom panel) for an initial
pericenter separation of rp = 6M .

q = 1. Both q and M rather strongly affect the detectability of sources over the range

of masses considered. rp moderately affects the detectability for lower mass systems

(M . 20 M⊙), though very little for higher mass systems (which is expected since the

number of bursts varies significantly with rp in the range 5M < rp < 10M , but as the

mass increases fewer of the initial bursts are in band). SG templates outperform RD

templates for all but the extremely high-mass systems, and a small region of extremely

low-mass systems with very small rp, that merge after O(1) orbit. This is also clear

in Figs. 6.17 and 6.18, which show the corresponding detection probabilities. In

addition to SG and RD templates, Figs. 6.16 and 6.18 show the relative performance

of a stacked power search, which readily outperforms burst template searches for the

full range of parameters. Since this is the case for q = 1, it will apply more so

for cases with q < 1, as they experience more cycles, so that we can conclude that

167



M [M⊙]

q

DL [Mpc]

 

 

10
0

10
1

10
2

10
310

−2

10
−1

10
0

1 3 10 30 100 300 1000 3000 10000

M [M⊙]

q

DL [Mpc]

 

 

10
0

10
1

10
2

10
310

−2

10
−1

10
0

1 3 10 30 100 300 1000 3000 10000

M [M⊙]

q

DL [Mpc]

 

 

10
0

10
1

10
2

10
310

−2

10
−1

10
0

1 3 10 30 100 300 1000 3000 10000

Figure 6.12: Contours of horizon distance as a function of rest mass M and mass
ratio q for Advanced LIGO using an optimal filter (top-left panel), sine-Gaussian
templates (top-right panel), and ringdown templates (bottom panel) for an initial
pericenter separation of rp = 6M .

a power-stacking search will always outperform a burst search and is likely to be

the optimal search approach in the absence of a matched-filter bank. SG and RD

templates perform best for M in the range 100 M⊙–200 M⊙ for both Enhanced and

Advanced LIGO, with the range of horizon distances being the same as in the M − q

plots. This is as expected given that setting q = 1 maximizes the signal power at

fixed M and rp.

As shown in Fig. 6.18, all three search methods approach optimal-filter perfor-

mance for large masses, M>∼500 M⊙, since all three methods benefit from having

the SNR concentrated in a small number of cycles. However, for lower masses and

therefore a larger number of in-band cycles, the SG and RD template performances

degrade much more rapidly than power stacking. Whereas SG and RD templates

reach detection probabilities as low as 0.01%, power stacking remains above 10% for
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Figure 6.13: Contours of detection probability p := V/Vmax as a function of rest mass
M and mass ratio q for Enhanced LIGO for a source inside the optimal filtering dis-
tance horizon, using sine-Gaussian (left panel) and ringdown (right panel) templates
for an initial pericenter separation of rp = 6M .
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Figure 6.14: Contours of detection probability p := V/Vmax as a function of rest mass
M and mass ratio q for Advanced LIGO for a source inside the optimal filtering dis-
tance horizon, using sine-Gaussian (left panel) and ringdown (right panel) templates
for an initial pericenter separation of rp = 6M .

the full parameter space considered. Since our power-stacking estimate is an ideal-

ization, uncertainties in the timing and frequencies of eccentric bursts may degrade

the performance of a true TF power-stacked search. On the other hand, the results

of [338] suggest this method is rather robust to timing uncertainties that are smaller

than the characteristic time of each burst .
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Figure 6.15: Contours of horizon distance as a function of rest mass M and peri-
center separation rp for Enhanced LIGO using an optimal filter (top-left panel), sine-
Gaussian templates (top-right panel), and ringdown templates (bottom panel). The
mass ratio is q = 1.

6.4 Conclusions

We have developed a novel waveform model for eccentric binary gravitational wave-

forms which can be applied for rp<−10M , where conventional post-Newtonian wave-

forms fail. Such binaries may form through dynamical capture in dense stellar envi-

ronments. Our model is not sufficiently accurate to generate a matched-filter bank,

and doing so will be very challenging for large eccentricities. However, the model is

adequate to supply mock signals to explore the performance of existing LIGO searches

in detecting highly eccentric binary systems. Of existing search strategies, the ring-

down and burst searches are best adapted to these systems. However, we find that

a large fraction of the parameter space, where we included the impact parameter

5 ≤ rp ≤ 10M (see [260] for a complementary study of rp ≥ 10M), total mass

M ∈ [1, 2000] M⊙ and mass ratio q ∈ [0.01, 1], has a significantly smaller horizon dis-
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Figure 6.16: Contours of horizon distance as a function of rest mass M and pericenter
separation rp for Advanced LIGO using, from left to right, top to bottom, an optimal
filter, sine-Gaussian templates, ringdown templates, and a power-stacking search.
The mass ratio is q = 1.

tance than what is, in principle, achievable with a matched-filter search. This implies

that a corresponding volume of sources could have been missed in prior searches and

may be missed in future searches if better adapted strategies are not employed.

Though it may be impractical to construct templates in the near future (via nu-

merical or analytical methods) for these systems that are accurate enough for optimal

searches, a refinement of the waveform model presented here should be adequate for

informing a power-stacking search. This method has the potential to increase SNR

by ≈ N1/4 for an N -burst event compared to a single-burst search. Though less than

the effective N1/2 scaling of a full template search, this would still be a significant

improvement. Note also that even for systems with larger impact parameters that

do evolve to an essentially quasicircular inspiral following the burst phase, for most

expected binary parameters the burst phase will be within the band of ground-based
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Figure 6.17: Contours of detection probability as a function of rest mass M and
pericenter separation rp for Enhanced LIGO for a source inside the optimal filtering
distance horizon, using sine-Gaussian (left panel) and ringdown (right panel) tem-
plates. The mass ratio is q = 1.

detectors. Thus, the quasicircular inspiral phase will be truncated compared to a

primordial quasicircular inspiral, and though such a system may still be detectable

with a quasicircular template, it would of course be misidentified, and a bias would

be introduced in the estimation of the binary parameters.

For future work, we intend to implement a power-stack search using this wave-

form model to fully explore the efficacy of this method and its (in)sensitivity to

timing errors, as well as continue to refine the model to include (for example) spin

precession and finite body effects for neutron stars. We mentioned that the stan-

dard PN equations are ill suited to studying the late stages of mergers, in particular

for high-eccentricity binaries, motivating our development of the effective Kerr with

radiation-reaction model described here. However, the EOB approach [342] is an

alternative to the PN expansion that is well behaved all the way to merger for qua-

sicircular orbits. This approach has recently been extended to generic orbits [337],

and it will be interesting to explore EOB as the basis for a repeated burst waveform

model.
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Figure 6.18: Contours of detection probability as a function of rest massM and initial
pericenter separation rp for Advanced LIGO for a source inside the optimal-filtering
horizon distance, using sine-Gaussian (top-left panel) and ringdown (top-right panel)
templates and a power-stacking search (bottom panel). The mass ratio is q = 1. Note
the different scale in the bottom figure.
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Chapter 7

Simulating extreme-mass-ratio

systems in full general relativity

7.1 Introduction

In recent years, rapid progress has been made in extending the purview of the field of

numerical general relativity to a wider class of binary systems. Numerical solutions

of the full Einstein equations have been used to study not only compact objects

of comparable masses, but also black hole (BH) binaries with mass ratios of up to

100:1 [350, 351], white dwarf-intermediate mass BH systems [66], and neutron star-

pseudo white dwarf mergers [352, 104, 353]. In the latter cases, the compaction

(ratio of mass to radius in geometric units, G = c = 1, which we use throughout)

of the white dwarf was ∼ 10−4, and ∼ 10−2 for the pseudo white dwarf. Here we

are interested in pushing this domain of study even further to BH-stellar systems

where the star has compaction ∼ 10−6, and the mass ratio reaches upwards of 106:1.

However, simulating these systems with standard methods is very computationally

expensive due to the disparate scales in the problem. In order to accurately recover the

dynamics of the system, the truncation error from evolving the BH must be reduced
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below the level of the star’s contribution to the solution. Since the star’s contribution

to the spacetime metric is many orders of magnitude smaller than that of the BH, this

will require exceedingly high resolution compared to the scale that would otherwise

be set by the BH alone. In this chapter we introduce a new method for numerically

evolving these systems in full general relativity that makes use of the knowledge of

the analytic solution of the larger object in order to subtract off the truncation error

of the background solution. This method allows extreme-mass-ratio systems to be

simulated more efficiently and with greater accuracy at a given resolution.

One of the motivations for the development of this method is the study of tidal

disruption of stars by supermassive BHs. Considerable interest in these events has

been sparked by the observation in the optical through ultraviolet wavelengths of

candidate disruptions and subsequent relativistic outflows associated with the fallback

of disrupted material onto the supermassive BH [47, 48, 49, 50, 52, 53, 54, 55, 56, 57,

58, 59, 60]. With more transient surveys [43, 44, 45] beginning operation, the number

of observed events should increase significantly, making it important to understand

the details of the events across a range of parameters. For BHs with masses around 107

to 108 M⊙, solar-type stars will be tidally disrupted near the innermost stable circular

orbit of the BH. They will therefore be sensitive to strong-field effects including zoom-

whirl type behavior and the spin of the BH [354, 355], which may be reflected in

observations.

Numerous approaches have been applied to studying tidal disruptions. Analyti-

cal approximations include those based on Newtonian dynamics [356, 46, 357, 358,

359, 360], Newtonian dynamics with relativistic corrections [361, 362, 363], and in-

corporating aspects of Kerr geodesic motion [355]. There have also been particle and

grid-based simulations of these events utilizing Newtonian gravity [364, 365, 366];

pseudopotentials to incorporate features of general relativity [367, 368, 369, 370];

or hydrodynamics on a fixed BH spacetime, thus ignoring the self-gravity of the
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star [371, 372]. In certain regimes, each of these methods is expected to decently

approximate aspects of the desired physics. However, there has yet to be a fully self-

consistent calculation within general relativity to investigate this, in particular for

the case where disruption occurs near the innermost stable orbit of the BH. The de-

tails of the disruption process will depend on the interplay of the strong-field gravity

of the black hole, the star’s pressure, and the star’s self-gravity, which is essentially

Newtonian since M⊙/R⊙ ∼ 2 × 10−6. The methods presented here allow us to per-

form general-relativistic hydrodynamic simulations that self-consistently combine all

these components, and hence investigate their importance. As a demonstration, we

present results from simulations of the radial infall of a solar-type star into a BH,

which can be easily compared to perturbative calculations. We leave the study of the

more astrophysically relevant parabolic orbits to future work.

In what follows we explain our method for subtracting background-solution trun-

cation error and its implementation in a general-relativistic hydrodynamics code. We

apply this method to simulating the radial infall of a solar-type star into a supermas-

sive BH, illustrating its efficiency and commenting on the tidal effects and resulting

gravitational radiation.

7.2 Computational methodology

7.2.1 Background error subtraction technique

In this section we outline our background error subtraction technique (BEST), a

method for altering the truncation error in cases where the system can be written in

terms of a known background solution, which satisfies the evolution equations on its

own, and a small perturbation. The basic idea is straightforward. Say we want to

numerically find the solution y(x, t) to some evolution equation ∂y/∂t = F , where F

is a nonlinear operator. We discretize t as tn = n∆t and let ∆ be a discrete evolution
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operator (e.g., a Runge-Kutta time stepper) so that we can approximate the evolution

as yn+1 = ∆(yn). Now consider the case where we can write y(x, t) = ȳ(x, t)+ δ(x, t),

where ȳ is itself a known solution to the evolution equation and |δ| ≪ |ȳ| in at least

part of the domain. In general, even if δ(x, t) = 0, there will be truncation error from

evolving ȳ. In fact, this error can be calculated exactly as En = ∆(ȳ(t = tn))− ȳ(t =

tn+1). When evolving y, we can therefore explicitly subtract out the truncation error

from evolving only ȳ at every time step,

yn+1 = ∆(yn) − En. (7.1)

Since En is converging to zero as ∆t → 0 at whatever order the numerical scheme

converges, including this term does not change the overall order of convergence, nor

the continuum solution. However, where the truncation error from evolving the back-

ground part of the solution dominates, including this term can reduce the magnitude

of the truncation error since the remaining error just comes from δ and its nonlinear

interaction with ȳ. Indeed, in the limit of vanishing δ, we merely recover the exact

solution ȳ. In the other limit, supposing |ȳ| ≪ |y|, hence δ ≈ y, the contribution

from the En term in Eq. (7.1) will be negligible, and the solution from the unmod-

ified numerical evolution scheme will be recovered. Though if this were true in the

entire domain, there would be no advantage to using this algorithm.1

7.2.2 Numerical implementation

We apply the above method to evolving the Einstein equations in the generalized

harmonic formulation [79] where the dynamical variables are the metric and its time

derivatives, gab and ∂tgab. In general, evolution equations can also be specified for

1 One could also imagine a third limit arising if one inadvertently (or perversely) chose a back-
ground exact solution ȳ that differed significantly from y, yet was large (i.e. |ȳ| & |y| and |ȳ−y| & |y|);
in that case, subtracting the error term would not help in terms of efficiency, and would in general
require more resolution than the unmodified algorithm to get a solution of comparable accuracy.
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the source functions Ha = �xa, though for simplicity here we restrict ourselves

to gauge choices where the source functions are specified as some function of the

coordinates and metric variables. We consider cases where the metric is close to a

known background solution and hence can be written as gab = g̃ab + hab, where g̃ab is

the known background solution and |hab| ≪ |g̃ab| (in at least part of the domain) and

similarly for ∂tgab. In the example below we take g̃ab to be the metric of an isolated

black hole in a moving frame, though this method will work for an arbitrary metric.

We use a version of the code described in Chap. 2 to numerically evolve the

Einstein-hydrodynamics equations with adaptive mesh refinement, modified by

BEST. We note that whenever we interpolate, extrapolate, or apply numerical

dissipation to the evolution variables, we do so to the quantities hab and ∂thab.

From the viewpoint of the adaptive mesh refinement driver, these are treated as

the dynamical variables. We evolve the metric in time using fourth-order Runge-

Kutta and evolve the fluid variables using second-order Runge Kutta. The fluid

variables are evolved using high resolution shock-capturing techniques as described

in Chap. 2 with the following modifications. For the conserved fluid quantities we

evolve τ := −St/α−Siβ
i −D (where D,Sa are the conserved fluid quantities defined

in Chap. 2 and α and βi are the lapse and shift respectively) instead of St. This

gives better results when the internal energy is small compared to the rest mass.

Additionally, when calculating the source terms in the fluid evolution equations that

involve ∂agbc, we numerically compute ∂ahbc and then add ∂ag̃bc.

From a programming standpoint, modifying a standard general-relativistic hydro-

dynamics code to implement BEST is straightforward as it only entails calling the

time stepping function twice for every physical time step: once with the background

solution g̃ab and all matter sources set to zero, and again with the full solution gab

and matter sources. These results are then combined following Eq. (7.1). This will

essentially double the computational expense of evolving the metric; however, as seen
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below, the savings from not having to resolve the background metric at the same level

can more than make up for this. If g̃ab is static then it is only necessary to compute

En once for a given numerical grid. This algorithm does not depend on the details of

the particular numerical time stepper used nor the particular form of the background

solution. We also note that with this algorithm the level at which numerical round-off

errors come in is still set by the magnitude of gab and not by the magnitude of hab.

For the application considered in this paper, we use the axisymmetry of the prob-

lem to restrict our computational domain to two spatial dimensions using a modified

Cartoon method [125] as described in [79]. However, the methods described here

work equally well in three dimensions.

7.2.3 Comoving frame

For the application considered here we use a background solution that is a Galilean

transformation of a static BH solution. Specifically, we take an isolated BH solution

in coordinates {t̄, x̄i} and transform to the new coordinates {t, xi} where t = t̄ and

xi = x̄i − pi(t̄) where pi(t̄) is some specified function. Below we take pi to be the

geodesic on the isolated BH spacetime with the same initial conditions as the star’s

center-of-mass. This ensures that in the new coordinates the star’s center-of-mass

will essentially be at coordinate rest. This is beneficial since the fluid sound speed cs

is much smaller than the speed of light, and letting the star advect across the grid at

speeds much greater than cs can lead to a loss of numerical accuracy (see [366] and

references therein). For cases where the geodesic used to compute pi falls into the

BH (as considered below) we transition to a constant pi after the geodesic crosses the

BH’s horizon.
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7.3 Application

7.3.1 Setup

As an application of BEST we consider a setup with a star of solar-type compaction

m/R∗ = 2× 10−6 (where m and R∗ are the mass and radius of the star, respectively)

that falls radially into a black hole of mass M . The star is modeled as a perfect fluid

with a Γ = 5/3 equation of state. We begin the star at a distance of 50M from the

BH with the velocity of a geodesic falling from rest at infinity. The initial data is

constructed by solving the constraint equations as described in Chap. 3. For the BH

we begin with a harmonic solution [144] and then apply a Galilean transformation as

described above to keep the star at approximately coordinate rest. We evolve with

the gauge choice Ha = �̃(x̃a) where all the quantities on the right hand side are from

the isolated (and Galilean-transformed) BH solution and hence are not functions of

the dynamical variables. This ensures that the background solution does not undergo

nontrivial gauge dynamics during evolution.2 We consider mass ratios ofm/M = 10−6

and 1.25 × 10−7.

For the m/M = 10−6 case, we use a grid setup with eight levels of mesh refinement

(with 2:1 refinement ratio) covering the star’s radius with approximately 50, 75, and

100 points for what we will refer to as the low, medium, and high resolutions runs,

respectively. Unless otherwise specified, results below are from the high resolution

runs with the other two resolutions used to establish convergence. For the m/M =

1.25 × 10−7 case, we add additional refinement levels to achieve the same resolution

covering the radius of the star. As described in Chap. 2, during evolution the mesh

refinement hierarchy is dynamically adjusted based on truncation error estimates.

2In principle, any gauge condition which preserves the desired background solution is allowed.
E.g., for a BSSN-puncture evolution, one could use the isotropic Schwarzschild solution with some
variation of the 1 + log slicing and gamma-driver condition [373].
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7.3.2 Comparison to not using BEST

In Fig. 7.1 we illustrate the benefits of using the background error subtraction tech-

nique by plotting the truncation error in the metric component gxx after one coarse

time step with and without this technique for the m/M = 10−6 case. For this com-

parison, the same numerical grid at the low resolution is used and the evolution is

carried out in exactly the same way except for the inclusion of the second term in

Eq. (7.1) when taking a time step. Since there is a lot of resolution concentrated on

the star, at the initial separation the truncation error of the BH background solution

is negligible in the neighborhood of the star and the use of BEST does not make

much difference. However, away from the star, and in particular near the BH, the

truncation error from the background solution of an isolated BH moving across the

grid is large. The use of BEST makes a significant difference by obviating the need

to use high resolution globally.

Whereas in this example the BH is initially resolved at the same level as the wave

zone (six refinement levels fewer than the star), in order to achieve the same level of

truncation error near the BH after one coarse time step without BEST, the BH must

be covered with seven additional levels of refinement. Using the total number of time

steps that must be taken at each point in the grid (where, since we use a refinement

ratio of two, each successively finer refinement level takes twice as many steps to

keep a fixed Courant factor) as an estimate of computational expense, the grid setup

necessary without BEST is ∼ 40 times more expensive (and would be ∼ 140 times

more expensive if our computational domain were three- instead of two-dimensional).

This far outweighs the computational expense of computing the background error

term when taking a time step, which will do no more than double the expense of

taking a time step.

We note that high accuracy is required to extract the gravitational wave signal

from this system (see Sec. 7.3.4) and when the evolution is performed without using
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10−7

10−12

Figure 7.1: Comparison of the absolute magnitude of the truncation error in gxx with-
out (left half) and with (right half) the background subtraction algorithm. Truncation
error is calculated by comparing the quantity after one coarse time step (t ≈ 0.4M)
at lower resolution to the same quantity computed with four times the resolution.
The inner [−100M, 100M ]× [0, 100M ] of the domain which is shown (with the x axis
in the vertical direction) is covered entirely by the second level of mesh refinement.
The star (center) is covered by 6 additional levels of refinement while the BH (top)
is not. The color scale is logarithmic and is saturated in the left panel, which has a
maximum of ∼ 10−2.

BEST, even at the equivalent high resolution, truncation error completely dominates

over the physical signal. BEST makes little difference in modeling the star’s self-

gravity effects noted in Sec. 7.3.3 (which is not surprising as the star is well resolved).

However, the accumulation of truncation error from evolving without BEST can cause

the star’s center-of-mass to drift from the geodesic path as shown in Fig. 7.2.

7.3.3 Effects of self-gravity

To demonstrate the importance of including the star’s self-gravity in this calcula-

tion, we also consider simulations where we fix the metric to be that of the isolated

BH. Without self-gravity to balance the star’s pressure, it will expand outwards on

timescales of ∼ R∗/cs. In Fig. 7.3 we show the maximum rest density as a function
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Figure 7.2: The distance of the star’s center-of-mass from the equivalent geodesic for
m/M = 1.25 × 10−7 with and without the background subtraction algorithm at low
resolution.

of time with and without self-gravity. For m/M = 10−6 the star’s central density

drops by more than a factor of two before the star reaches the BH (for this case

R∗/cs ≈ 370M at the star’s center). For m/M = 1.25 × 10−7, as expected, this

drop in density occurs approximately eight times faster in units scaled by the mass

of the BH. With self-gravity, the star’s central density remains essentially constant

in both cases until the star gets close to the BH, at which point it increases. Hence,

simply calculating hydrodynamics on a fixed spacetime background will not capture

the correct physics.

As the star falls into the BH, the star is stretched in the direction parallel to

its motion (i.e., the radial direction) and squeezed in the perpendicular direction by

the BH’s tidal forces. In Fig. 7.4 we show the coordinate parallel and perpendicular

radii of the 0.1ρc density contour (where ρc is the initial central density of the star)

that initially contains ≈ 90% of the star’s mass. We compare this to the change in

separation that two geodesics in the isolated BH spacetime would undergo if they had

the same initial velocity and separation. Form/M = 10−6, it seems that the combined

effect of pressure and self-gravity is small and the change in radii matches the geodesic

calculation well. This is not surprising since the star begins at the nominal Newtonian

tidal radius of rT := R∗(M/m)1/3 = 50M . For m/M = 1.25 × 10−7 the tidal radius
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Figure 7.3: Normalized maximum rest density as a function of time with and without
self-gravity for the star for m/M = 10−6 and m/M = 1.25 × 10−7.

is rT = 12.5M , and there is less of a change in the star’s radii compared to freefall at

early times.

7.3.4 Gravitational waves

Since we are evolving the full spacetime metric, we can also self-consistently calculate

the gravitational wave signal. In Fig. 7.5 we show the gravitational waves emitted

from the star-BH interaction for the m/M = 10−6 case. We plot spherical harmonics

of the Newman-Penrose scalar multiplied by the extraction radius (because of the

axisymmetry, only the m = 0 components are nonzero). The waveforms are shown

multiplied by M/m = 106, since in the point-particle limit this scaled quantity is inde-

pendent of the mass ratio. We also show the difference in the computed gravitational

wave signal with resolution, which is consistent with second-order convergence.

For comparison, we also show the gravitational wave signal of a point particle

falling in a BH, which was calculated in [351] using BH perturbation theory [374].

Though at this mass ratio we are well within the perturbative regime, the star itself
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Figure 7.4: Normalized radius of the star perpendicular and parallel to the star’s
trajectory as a function of time for m/M = 10−6 and m/M = 1.25 × 10−7. For
comparison we also show the relative position of geodesics starting at corresponding
points on the stellar surface and with the same initial velocity as the star’s center of
mass.

is not that close to a point mass since R∗ = 0.5M . Nevertheless, we find that our

results are well matched by the point-particle results, and the difference between the

waveforms is comparable to the truncation error. We also show the power in different

harmonics of the gravitational radiation in Fig. 7.6. For the high resolution run, the

total energy radiated is 0.0101 (0.0103) m2/M , where the value in parentheses is the

Richardson extrapolated value using all three resolutions and can be used to judge

the error. This is compared to 0.0104 m2/M for the point-particle result [374].

7.4 Conclusions

We have presented a method, BEST, for more efficient solution of the Einstein equa-

tions in situations where the metric is dominated by a known background solution.

We have demonstrated the utility of this method by applying it to the radial infall

of a solar-type star into a supermassive black hole and achieving ∼ 40 decrease in
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Figure 7.5: Gravitational wave signal from a star falling into a BH with M =
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6

m. Top: The first three spin-weight −2 spherical harmonics of rΨ4 as well as the
first two harmonics as calculated using a point-particle approximation, from [351],
for comparison. Bottom: The difference between the l = 2 and l = 3 harmonics
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the computational expense. To our knowledge, this is the first computation within

full general relativity of the radial collision problem with such extreme mass ratios

and relative compaction between the two objects (upwards of 106:1 and 105:1, re-

spectively). We found that despite the comparable radius of the star and BH, and

the importance of tidal forces in the star, the gravitational waveform from merger

matches the point-particle calculation to within the numerical error of a few percent.

The method outlined here is rather general and could be applied to many more

problems. An obvious extension, which we will address in future work, is to study

tidal disruption of stars on parabolic orbits by supermassive BHs and explore strong-

field effects, including the spin of the BH. This technique could also be used to more

efficiently study other large-mass-ratio systems, such as binary BHs or a supermassive

BH-neutron star merger, where both objects are strongly self-gravitating, but the ef-

fect of the small object on the larger one is small. Though the disparate length scales

would still be computationally challenging, there would be less need for high global

resolution. Other potential applications include simulating stellar-mass compact ob-
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ject binaries interacting in some strong-field background, such as near a supermassive

BH, or possibly even studying cosmological systems like nonlinear effects of fluctua-

tions on a Friedmann-Robertson-Walker background.
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Chapter 8

Ultrarelativistic black hole

formation

8.1 Introduction

An important topic in high energy physics that remains poorly understood is the

dynamics and outcome of super-Planck scale particle collisions. According to general

relativity, kinetic energy, like all forms of energy, gravitates. This implies that at

sufficiently high center of mass energies E, the gravitational force will eventually

dominate any interaction. Suppose one can localize the particles’ wave functions

at the moment of interaction to be within a sphere of radius R; then, according

to Thorne’s hoop conjecture [248] (see also [245, 246, 247]), if R is less than the

corresponding Schwarzschild radius Rs = 2GE/c2, the gravitational interaction will

be so strong that a black hole (BH) will form. For particles satisfying the de Broglie

relationship the threshold for BH formation occurs at Planck energies. There has been

much interest in the past decade over the possible relevance of this to proton collisions

at the Large Hadron Collider [75, 76] and cosmic ray collisions with the Earth’s

atmosphere [77], spurred by theories of quantum gravity with small or warped extra
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dimensions [72, 73, 74] that present the possibility of a true Planck scale within reach

of these processes. To date no evidence for BH formation has been found [249, 250],

though since the theories do not make firm predictions for what the true Planck scale

is, the high energy scattering problem is worthy (beyond intrinsic theoretical interest)

of further study.

In this chapter we explore the purely classical gravitational properties of head-on

ultrarelativistic collisions (in four-dimensional asymptotically flat spacetime). This

ostensibly gives the leading order description of the process for energies sufficiently

above the Planck scale, as all nongravitational interactions will be hidden behind

the event horizon, implying that the particular model for the particles is irrelevant.

However, part of the motivation for this study is to test this notion, and begin to

investigate how it breaks down approaching the threshold of BH formation (though

again only at the classical level).

There have been several studies of ultrarelativistic collisions using BHs as model

particles. Penrose [375] first considered the head-on collision of two Aichelburg-Sexl

metrics [251], each representing the boost γ → ∞ limit of the Schwarzschild metric

(letting the mass M go to zero such that the energy E = γM is fixed, and note

throughout we use geometric units G = c = 1). Though the spacetime to the causal

future is unknown, a trapped surface is present at the moment of collision, giving an

upper bound of 29% for the radiated energy. Perturbative methods [376, 377] allowed

a direct calculation, estimating 16.4% energy emitted. In [176], head-on collisions up

to γ ≈ 3 were studied using numerical solutions of the field equations; extrapolating

the results to γ → ∞ gave a value of 14 +− 3%. We briefly mention that studies of

BH collisions for general impact parameters using the trapped surface method for

infinite boosts [378], and numerical simulations of finite boosts [177, 379] show that

considerably more energy can be radiated then.
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However, as detailed in [178], the application of the infinite boost results to the

collision of massive particles at ultrarelativistic but subluminal speeds is not entirely

clear. In this limit, the spacetime loses asymptotic flatness while the non-Minkowski

part of the spacetime becomes a two-dimensional shockwave. Moreover, BH colli-

sions at any speed will necessarily produce a larger BH for sufficiently small impact

parameter, and are not suitable for studying the threshold or dynamics of BH for-

mation, nor whether BH formation is the generic outcome regardless of the nature

or compactness of the colliding particles. Trapped surface calculations, as in [378],

can be used to infer the dependence of BH formation on impact parameter (which

we do not consider here); however, they do not provide information on the spacetime

dynamics postcollision. In [178] a first attempt to address some of these questions

was made, where the ultrarelativistic collision of boson stars (solitons of a minimally

coupled complex scalar field) was studied numerically. It was found for boson stars

with compactness 2M/r ≈ 1/20 that a BH forms for boosts greater than γ ≈ 2.9,

roughly one-third the value γh = 10 predicted by applying the hoop conjecture at the

time of collision. Whether the threshold is generically such a factor smaller than the

hoop conjecture estimate was unclear, first because only a single matter model was

considered, but also because, though for γ = 2.9 there is almost twice as much kinetic

as rest mass energy in the spacetime, this may not be high enough for the matter

dynamics to be irrelevant. Furthermore, due to difficulties disentangling gauge from

gravitational wave (GW) dynamics, no estimates of the radiated energy were made.

In this chapter we also study black hole formation in head-on particle collisions.

However, we use perfect fluid “stars” as the model particles. To begin with, this allows

us to further test the generality of the above arguments in a case where gravity would

be opposed by the tendency of the fluid to become highly pressurized on collision and

disperse. Second, the nature of fluid stars, not having small-scale internal oscillations

as boson stars, as well as a new method for constructing initial data [2], permits us
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to explore significantly higher boost collisions where the ratio of kinetic to rest mass

energy is of order 10:1. An independent work with the same matter model used here

was recently presented in [380], though as with [178] it focuses on regimes where this

ratio is at most ≈ 2:1.

We find that BHs are formed above a critical boost γc that is a factor of a few less

than the hoop conjecture estimate. A new phenomenon we present here is, for boosts

slightly above γc, we observe two separate apparent horizons (AHs) form shortly after

the collision, which some time later are encompassed by a single horizon that rings

down to a Schwarzschild BH. We argue that this can be qualitatively understood as

due to the strong focusing of the fluid elements of one star by the boosted spacetime

of the other, and vice versa, using a geodesic model similar to that in [381] for BH

formation in the scattering problem. We also study the GWs emitted in this regime

for the first time and find that for the γ = 10 BH forming case 16 +− 2% of the energy

of the spacetime is radiated (the extrapolation described in [176] suggests this should

be 94% of the γ = ∞ limit). For subthreshold cases, the strong focusing leads to high

fluid pressures that cause the stars to explode outward. In what follows, we outline

the equations we are solving, the numerical methods for doing so, and the setup of

the initial data. We then present the results of our simulations, compare them to

geodesic focusing, and end with concluding remarks.

8.2 Methodology

We numerically solve the Einstein field equations, in the generalized harmonic formu-

lation, coupled to a perfect fluid using the code described in Chap. 2. In particular,

we use the HLL method for calculating intercell fluxes and the MC slope limiter [85]

for reconstructing fluid quantities at cell faces. For simplicity we use the Γ = 2
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equation of state. We use a variation of the damped harmonic gauge [178, 298] that

corresponds to equation (A15) in [298] with p = 1/4.

We take advantage of the axisymmetry of a head-on collision to reduce the numer-

ical grid to two dimensions and use seven levels of mesh refinement where the finest

level covers the equatorial and polar radii of the star by approximately 830 and (due

to Lorentz contraction) 830/γ points, respectively. For the γ = 10 case, to estimate

truncation error we also ran simulations with 1.5 and 2 times the resolution. Unless

otherwise stated, results from this case are from the high resolution run.

Initial data are constructed using free data from two identical, boosted solutions

of the Tolman-Oppenheimer-Volkoff equations with a polytropic condition, and then

solving the constraint equations in the conformal thin-sandwich formulation as de-

scribed in Chap. 3. With this method, the “spurious” gravitational radiation is much

smaller than the physical signal (see Fig. 8.3 below). We choose isolated star solutions

with compaction 2M∗/R∗ = 1/40, where M∗ and R∗ are the gravitational mass and

radius, respectively, of the star in its rest frame. They are boosted towards each other

with Lorentz factor γ, at an initial separation of d = 534M∗. We consider cases with

γ = 8, 8.5, 9, 9.5, 10, and 12, though most of our detailed results are from γ = 8 and

10.

8.3 Results

We find that BH formation does occur in the ultrarelativistic collision of fluid particles

with the aforementioned compaction for boost factors γ>−8.5 +− 0.5 (the uncertainty

is from the sampling resolution of our survey in γ). This is ∼ 2.4 times smaller

than the hoop conjecture threshold of γh ≈ 20. In Fig. 8.1, we show snapshots of

the rest mass density for a subcritical case with γ = 8 and for a supercritical case

with γ = 10. In the former, after the collision, the matter focuses down into two
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high density regions which then explode outward. In the latter, instead of exploding,

two identical AHs appear surrounding these regions. (It should be noted that the

existence of the initially disjoint AHs does not preclude the possibility of a single

encompassing event horizon.) The AHs then fall towards each other with a third,

encompassing AH appearing afterwards.

In Fig. 8.2, we show the irreducible mass of the AHs, proper distance between the

smaller AHs, and the ratio of the proper equatorial and polar circumferences Ceq/Cp

for γ = 10. The two smaller AHs are born rather prolate with Ceq/Cp ∼ 0.6. Together

they have mass > 0.4M where M ≈ 2γM∗ is the total spacetime mass; i.e., they

contain a significant amount of what was originally kinetic energy. When the third

encompassing AH appears it initially has less irreducible mass (though greater area)

than the sum of the smaller AHs. It is also extremely distorted with Ceq/Cp ∼ 0.2

and an equatorial circumference that is less than the smaller AHs, suggesting more

of a dumbbell shape. This contrasts with what is found in ultrarelativistic black hole

collisions where Ceq/Cp ∼ 1.5 initially [176], consistent with a disk shaped AH.

In Fig. 8.3, we show the GW power associated with different spherical harmonics

for γ = 10, and the early part of the GW power for γ = 8. (Because of the symmetries

here only the even l, m = 0 harmonics are nonzero.) For γ = 10, 16 +− 2% of the initial

spacetime energy is radiated as GWs, with a peak luminosity of 0.0137 +− 1% (the error

bars include estimates of the truncation error and finite radius extraction effects). The

mass of the final BH is ≈ 0.72M , suggesting the remaining 12% of the energy is carried

off by the ≈ 32% of the initial rest mass that remains outside the final BH by the

end of the simulation. Measuring the contributions to the total energy from higher

l modes relative to the l = 2 component we get that E4/E2 = 0.19 +− 0.01, E6/E2 =

0.073 +− 0.001, and E8/E2 = 0.040 +− 0.002. The substantial amount of energy in higher

modes is consistent with results from ultrarelativistic BH collisions. Also, the zero-

frequency limit combined with an l-dependent frequency cutoff ωc = l/(3
√

3M) set
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Figure 8.1: Snapshots of rest mass density on a logarithmic scale from 10−2 to 102

times the initial maximum density, for simulations with γ = 8 (left) and γ = 10
(right) at times (top to bottom) t = 0, the initial time; t = 300M∗, shortly after
collision; t = 375M∗, after the appearance of the smaller AHs in the γ = 10 case;
t = 424M∗, after the appearance of the third, encompassing AH (white outline) in
the γ = 10 case; and t = 700M∗. The black regions are best-fit ellipses to the AHs.
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by BH quasinormal frequencies [382] predicts corresponding values of 0.22, 0.09, and

0.05. For γ = 8 we can only extract the GW signal before the fluid outflow crosses

the extraction sphere. Before this time, the GW signal looks qualitatively similar to

the γ = 10 case and contains 10% of the energy of the spacetime.

Cases with γ = 9.5, 9.0, and 8.5 also first form two disjoint AHs with increasing

initial separation, the smaller the boost. However, we were unable to follow these

cases through merger before numerical instabilities set in on the excision surface.

The reason, we believe, is the smaller boosts form more distorted AH shapes, and

our current approach of excising based on the best-fit ellipse to the AH shape is

inadequate. We have also been unable to obtain robust results for significantly higher

Lorentz factors due to high frequency numerical instabilities that develop at the

surface of the boosted stars; however, it seems that the third AH appears at nearly

the same time in this gauge as the first two AHs at γ ∼ 12 for the stars considered

here, and for larger boosts we expect a single AH to form at collision.
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8.3.1 Geodesic focusing

To illustrate the manner in which a boosted star may act like a gravitational lens and,

during collision, focus the matter of the other star, we consider a simplified scenario

in a spacetime consisting of a single boosted star. We follow a set of geodesics coming

from the opposite direction with the same Lorentz factor, initially distributed to fill

out the volume of what would have been the other boosted star (i.e., we replace the

second star with tracer particles). These geodesics are shown in Fig. 8.4 for γ = 10

with the same compaction star described above. As these geodesics pass through the

boosted star they become focused in the direction orthogonal to the boost axis while

spreading out along the boost axis. The greatest focusing (i.e., when the separation

between the geodesics in either direction is smallest) occurs at a distance of ≈ 1.5R∗

away from the star and reduces the radius by a factor of ≈ 4 (roughly consistent, with

the caveat of coordinate differences, with the full problem—see Figs. 8.1 and 8.2).

This contraction is sufficient to get to the BH formation threshold if we assume that

this focusing also converts sufficient translational energy to radial inflow that it is

valid to apply the hoop conjecture to the star’s total energy in this frame. Evidence
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for this assumption comes from the temporary slowdown of the translational velocity

seen in Fig. 8.4 (though somewhat before maximum focusing), and from the full

simulations where in the γ = 10 case the two AHs move toward each other, and in

the γ = 8 case postcompression the fluid flow is largely radial. In the ultrarelativistic

limit, this geodesic focusing factor is mainly a function of the ratio γM∗/R∗, and

similar results are obtained for larger boosts with correspondingly less compact stars.

This can be seen in Fig. 8.5 where the focusing factor in this geodesic model is shown

for various values of γ and M∗/R∗. This simplistic treatment of course ignores the

effects of pressure and nonlinear gravitational interactions.

8.4 Conclusions

In this chapter, we considered the head-on collision of self-gravitating fluid stars in

the regime where the ratio of kinetic to rest mass energy in the spacetime is ∼10:1.

We find above a critical boost γc = 8.5 +− 0.5 that BHs do form. The dynamics of the
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solution, and a simple geodesic model similar to [381], suggest that near threshold

the strong focusing nature of the spacetime sourced by one boosted star on the other,

and vice versa, causes the energy to be concentrated postcollision around two focal

points on axis. In the subcritical case, the material explodes outward from these

points, consistent with [178, 380]; however, just supercritical we find two distinct

AHs that initially form around the focal points. This focusing also offers an intuitive

explanation for why the threshold in cases studied to date is systematically less than

hoop conjecture estimates (here γc/γh ∼ 0.4, with the boson star collisions γc/γh ∼ 0.3

for γc ∼ 2.9 [178], and similar factors were found in [383, 384, 385] for the scattering

problem using a perturbative model).

For the γ = 10 supercritical case, we find 16 +− 2% of the total energy is radiated

gravitationally, consistent with results extrapolated from γ ≈ 3 BH collisions [176],

and perturbative calculations of the infinite boost limit [376, 377]. Moreover, the

leading order spherical-harmonic multipole structure of the waves is consistent with
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point-particle approximations and the BH case [382], both super and subcritical, in

the latter prior to obscuration of the waveform by matter outflow.

This suggests three different regimes in the head-on collision of ultrarelativistic,

nonsingular model particles in general relativity, for sources that have sufficiently

low compactness such that γc ≫ 1. For γ ≪ γc, gravity plays little role, and the

dynamics is governed by that of the matter; for γ ≫ γc, we expect universal behavior;

i.e., any particle model will give the same quantitative spacetime dynamics; however,

in the intermediate regime γ ∼ γc both gravitational and matter dynamics will be

important. Ignoring quantum effects and studying the nature of super-Planck scale

particles collisions using general relativity is arguably robust only when γ ≫ γc,

though perhaps some insights can still be drawn from classical general relativity in

the intermediate regime.

The intermediate regime includes the threshold of BH formation and correspond-

ing, matter-dependent critical phenomena [386]. We conjecture approaching γc may

generically result in two critical solutions unfolding postcollision about the geodesic

focal points of the two colliding particles (we speculate the reason why two distinct

AHs were not seen in [178, 380] is the compactness is not sufficiently low to have

γc ≫ 1.) For Γ = 2 fluid stars, it would be interesting to see whether the critical

solution is the type I unstable starlike solution found for lower γc’s [380], or, as seems

more likely, the type II self-similar solution arising in the kinetic energy dominated

regime [134]. It would also be interesting to explore collisions with nonzero impact

parameters. This would allow a better comparison to BH collisions, which do not

have a threshold for BH formation, but do have two distinct end states as a function

of impact parameter: a large BH or two unbound BHs.
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Chapter 9

Conclusion and directions for

future work

In this thesis, we developed methods for numerically simulating hydrodynamics in

situations where the effects of dynamical spacetime are important, and used these

methods to address several problems in astrophysics and gravitational physics. We

presented some of the first work exploring the mergers of black hole-neutron star and

neutron star-neutron star binaries formed through dynamical capture. We found that

these systems are promising potential sources of gravitational and electromagnetic

transients and show a rich variation in dynamics and outcome with impact parameter.

Of course, here we have only studied a few points in the parameter space of potential

binaries. One area of focus for follow-up work, already underway, is to extend this

to include larger mass ratio (up to 7 : 1) black hole-neutron star binaries, as well

as to study a greater range of black hole spins (up to a = 0.9) including spins with

different orientations with respect to the orbital angular momentum. This will be

interesting since it is expected that black holes are created with various spins [288] that

are not generically aligned with the orbital angular momentum. Spin misalignment

will complicate the dynamics and give rise to precession effects which will alter the
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structure of the accretion disk that forms from the merger. It will also be interesting

to leverage increasing computational resources to follow dynamical capture binaries

through a larger number of close encounters leading to merger. This will be helpful

in tuning improved models of the gravitational wave signals from these binaries.

In addition to expanding the parameter space, it will be important to add new

physics to the simulation of these systems, including neutrinos and electromagnetic

fields. One direction for future work will be to include magnetic fields in the code

presented here. Upgrading the code presented here to ideal magnetohydrodynam-

ics (MHD), which is suitable for simulating the conducting interior of a neutron star,

would require extending the same methods already in place to include additional fluid

variables. This would be straight-forward, though the primitive inversion, spectral

decomposition of the flux Jacobian, etc., would become more complicated. An addi-

tional aspect that would need to be addressed is how to enforce the constraint that

the divergence of the magnetic field vanish. Several groups have performed general-

relativistic simulations of compact object mergers with ideal MHD, which find that

magnetic fields do not significantly affect the bulk dynamics (see e.g. [99, 387]). How-

ever, even if the bulk dynamics are not affected, it has been suggested that detectable

electromagnetic emissions could be created leading up to the merger of a compact

object binary when the black hole or other neutron star enters the neutron star’s

magnetosphere [41, 388], or during the collapse of a hypermassive neutron star to

a black hole [40]. This suggests that understanding the behavior of the magnetic

field outside the neutron star could be an interesting area to focus on. Simulat-

ing the neutron star’s magnetosphere requires a more complicated treatment and is

an active area of research. One promising approach is using hybrid methods that

attempt to combine ideal MHD with a force-free approximation either using match-

ing [40] or within the context of resistive MHD [389]. The code presented here has

been recently updated with Maxwell’s equations and the force-free approximation.
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Constraint violation is controlled using hyperbolic divergence cleaning [390] which is

easily implemented within the current framework of the code. It is hoped that the

force-free approximation can be combined with suitable boundary conditions in the

interior of the neutron star to allow an initial study of the role of magnetic fields in

dynamical compact object mergers. However, it will be much more challenging to

accurately treat the dynamics of the electromagnetic field across the different regimes

going from the neutron star’s interior to the magnetosphere to the vacuum, especially

in scenarios where the star is significantly distorted.

In this thesis we also presented a numerical technique for efficiently solving the

full Einstein equations in situations where the spacetime is dominated by a known

background solution. We used this method to study the radial infall of solar-type

star into a supermassive black hole. Work is currently underway to study the more

astrophysically interesting (though also more computationally expensive) scenario of

a star initially in a parabolic orbit being disrupted by a supermassive black hole.

Understanding the role of black hole spin in these disruption events will be fruitful,

especially if upcoming transient surveys find a number of disruption events which can

be used to explore strong-field effects. Incorporating magnetic fields in simulations

of these events could also be interesting.

Finally, in this thesis we used general-relativistic hydrodynamics to study the

head-on collision of ultrarelativistic fluid particles and found that a gravitational fo-

cusing effect could reduce the threshold for black hole formation. For future work,

it will be worthwhile to extend these simulations beyond axisymmetry to study col-

lisions with non-zero impact parameters. Besides allowing for a better comparison

to ultrarelativistic black hole collision simulations, this will show whether significant

gravitational focusing effects remain with increased impact parameter.
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[228] K. Uryū, F. Limousin, J. L. Friedman, E. Gourgoulhon, and M. Shibata.
Nonconformally flat initial data for binary compact objects. Phys. Rev. D,
80(12):124004, December 2009.

[229] Mark Hannam, Sascha Husa, Denis Pollney, Bernd Brügmann, and Niall Ó
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