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Abstract 

This Thesis describes the development and testing of a real-time rating estimation 

algorithm developed at Durham University within the framework of the partially 

Government-funded research and development project “Active network management based 

on component thermal properties”, involving Durham University, ScottishPower 

EnergyNetworks, AREVA-T&D, PB Power and Imass.  The concept of real time ratings is 

based on the observation that power system component current carrying capacity is strongly 

influenced by variable environmental parameters such as air temperature or wind speed. On 

the contrary, the current operating practice consists of using static component ratings based on 

conservative assumptions. Therefore, the adoption of real-time ratings would allow latent 

network capacity to be unlocked with positive outcomes in a number of aspects of distribution 

network operation. This research is mainly focused on facilitating renewable energy 

connection to the distribution level, since thermal overloads are the main cause of constraints 

for connections at the medium and high voltage levels. Additionally its application is 

expected to facilitate network operation in case of thermal problems created by load growth, 

delaying and optimizing network reinforcements. The work aims at providing a solution to 

part of the problems inherent in the development of a real-time rating system, such as 

reducing measurements points, data uncertainty and communication failure. An extensive 

validation allowed a quantification of the performance of the algorithm developed, building 

the necessary confidence for a practical application of the system developed. 
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Chapter 1    Introduction 

1.1 Current state of the electrical power industry 

Currently the electricity industry is facing a series of transformations caused by 

technological, economical and political changes. Some of these changes represent an 

opportunity for distribution network operators for improving service quality and returns, 

whilst others represent challenges that tend to modify previous operational methods. The 

development of technologies in other areas such as telecommunications and computer science 

represents an opportunity for distribution network operators. This makes lower cost effective 

communication and computational power available, which can be used for broadening the 

monitoring of the state of the power network and extending the application of automated 

control, thanks also to improvements in the fields of artificial intelligence. Improvements 

were also made inside the electric industry, in areas such as power generation from small-

scale generators (mainly combined heat and power generators in industrial plants) and power 

generation from renewable resources. 

This allows energy to be converted in power plants requiring reduced initial 

investments, but also to be connected to the medium voltage electric network, often closer to 

the final customer but sometimes in very remote areas of the network. This can often become 

a problem since the distribution network was conceived for transferring electricity transmitted 

at high voltages to the final customers at low voltages, and often it lacks a complete 

monitoring of its state. The application of new technologies to the electric distribution 
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network in order to make it more responsive to changes and to integrate the action of all its 

users is usually identified with the concept of Smart Grid, described in detail in Section 1.2. 

From an economic point of view, developed countries saw a reduced increase in energy 

consumption, and the energy intensity of their economies continued to shrink since the ‘70s. 

Improved quality of supply, along with the efficiency improvement of the whole system is a 

method for electricity companies to increase their revenues without counting only on 

increased demand. Another economic problem faced by the electric industry in many 

developed countries, is the ageing of the infrastructure: with an electric network built mainly 

in the ‘60s, many components are at the end or in the second half of their expected life cycle. 

This situation represents both a challenge and an opportunity, since older components can be 

replaced by more advanced ones, but it also makes techniques for extending component 

lifetime and delaying replacements and network reinforcements interesting. 

From a political point of view, the electric industry in developed countries is pushed to 

reduce its production of greenhouse gases, mainly CO2. This is achievable with electricity 

consumption reduction and with the reduction of the fraction of electricity produced using 

fossil fuels. Public incentives for electricity produced with renewable resources are at the 

origin of the recent steady growth of electric power generated by renewable resources, mainly 

wind, waste, biomass and solar. Incentives in some countries have also the intention of 

creating a competitive industry with positive effects on the employment and reduction of 

fossil fuel imports. Politics influence the electric industry also through direct regulation. 

Currently in the UK, the previously nationalised electricity industry was privatised and 

assumed a complex structure, with several companies acting as generators, distributors or 

suppliers, each one with its own regulations. Another political aspect influencing this research 

is represented by the increasing difficulties in obtaining building permission for new 

infrastructure. This makes it preferable to increase the utilisation of existing assets or 
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alternatively, to refurbish existing facilities or building new ones in sites already used for the 

same scope. 

In summary the current drivers for the electric industry that are expected to continue to 

shape its aspect in the future are: increased connection of distributed generation, increased 

connection of renewable energy characterised by a relatively uncontrollable output, ageing of 

the infrastructure and availability of new technologies for active network management. The 

work described in this thesis aims at producing a solution to a particular problem: to inform 

distribution network operators about the thermal state of their network. The first objective of 

this research is to facilitate the connection of renewable energy plants, followed by allowing a 

more flexible management of the network also in situations where thermal limits have been 

reached because of load growth. As seen previously the connection of distributed generation 

to the electric network presents numerous aspects and challenges, but is expected also to 

produce additional benefits for society in general and the electric industry in particular. The 

system described in this thesis, would allow the limit imposed by conservative static ratings to 

be replaced with more realistic ratings assessed in real-time. This is expected to be part of a 

portfolio of solutions, currently under development in public and private research centres to 

face most of the difficulties present today in the electric industry. 

1.2 Current research trends 

Along with research aimed at improving traditional power system components, the main 

research effort for the electric power industry and in particular for distribution networks aims 

at developing frameworks and tools for integrating the action of all of its users in order to 

improve quality of supply whilst reducing the cost of the electricity transferred. In Europe a 

specific technology platform, the “SmartGrids European Technology Platform for Electricity 

Networks of the Future” (1) was created under the supervision of the General Directorate for 
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Research of the European Commission with the aim of carrying out high quality research and 

mobilising private and public investments. Similarly, in the United States, different initiatives 

have been launched in this sector such as the allocation of a combined public and private fund 

of $8 billion to spur the transition to a smart energy grid (2). 

Although there is not a unified definition of smart grid, a series of characteristics are 

unanimously accepted as being peculiar of a smart grid: 

- Accommodate distributed generation 

- Active control 

- Monitoring network state 

- Communication through the network 

One of the main reasons for interest in this approach is its ability to accommodate 

distributed generation and variable distributed generation from renewable energy without or 

with reduced expensive network reinforcements. This also means to make the transition from 

a vertical structure with a top-down flow of energy from the highest voltages levels, to a 

horizontal structure with local exchanges between actors of the network at a low or medium 

voltage level. Another key characteristic of the smart grid is the presence of active control for 

increasing power quality, reducing losses and disruptions and controlling a series of 

parameters currently considered as static or as an external condition, such as line rating or 

customers load. The distribution network was conceived for passive operation with limited 

control and monitoring. An extensive monitoring of the state of the distribution network is 

difficult and expensive because of the networks large size, but reductions in cost of the 

monitoring equipment and the application of estimation techniques are expected to overcome, 

at least in part, this problem. Finally, in order to coordinate the different actors of the network, 

and to provide centralised or distributed active controls with the necessary information, 
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communication across the network must be available, either through third party 

communication companies or through the same network. 

Real-time rating, the technology described in this work, is a technology aimed at 

solving specific distribution network problems in the framework of the current research 

stream. Real-time rating in particular makes use of distributed sensors, specific algorithms 

and communications between the sensors and the computer where the algorithm runs for 

estimating maximum component rating. The interest in this technology arises from the 

observation that currently static power system components are based on conservative 

assumptions, as explained in detail in Chapter 3. On the other side, real component current 

carrying capacity is variable and influenced by environmental conditions such as air 

temperature or wind speed. Therefore monitoring component real-time rating would allow a 

greater amount of energy to be transferred through the network, without requiring expensive 

network reinforcements, which could also require new permissions that may be difficult to 

obtain. 

1.3 Active network management based on component thermal 
properties 

Considering the interesting opportunities offered by the dynamic thermal rating 

technology, a research consortium was formed with the objective of developing and testing a 

distributed generator power output controller informed by network components real-time 

ratings in the project, called “Active Network Management Based on Component Thermal 

Properties”. The members of the research consortium are: Durham University, ScottishPower 

EnergyNetworks, AREVA-T&D, PB Power and Imass, and the project benefited from the 

partial funding of the Department for Innovation Universities and Skills. 



6 
 

ScottishPower EnergyNetworks, a distribution network operator, is interested in the 

development of active network management in order to increase asset utilisation and to 

facilitate the connection of distributed generation on its own network. In the project, this 

company provided a network suitable for study in an area where the development of new 

wind farms is expected to create thermal overloads in different parts of the network. The 

company provided access to its infrastructure for the installation of monitoring equipment and 

of the test system. Thanks to this research, the company has an improved understanding of the 

thermal behaviour of its own network and of the potential benefits offered by this technology. 

Thanks to the positive outcomes of this research, ScottishPower EnergyNetworks has 

expressed further interest for a new research in the area of real-time rating with Durham 

University. 

AREVA-TD, a manufacturer of components and controls for transmission and 

distribution networks, is interested in active network management in order to offer to its 

customers, primarily transmission and distribution network operators, the most advanced 

technologies for dealing with the new scenarios identified in Section1.1. In the research, this 

company provided the hardware necessary for the practical implementation of the system and 

the installation in two substations of the network mentioned above. Thanks to this research, 

AREVA-TD broadened its portfolio of active network management tools and is currently 

working on the integration of the codes developed in the project and its substation automation 

computers. 

PB Power, a management consultancy firm, is interested in broadening its portfolio of 

technical expertise in developing technologies such as dynamic thermal rating. It acted as the 

project manager of the research project and provided valuable technical advice. This company 

is currently developing a planning tool for assessing the impact of dynamic thermal rating on 
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the distribution network as a method for alleviating thermal overloads caused by the 

connection of distributed generation. 

Imass, an IT consultancy firm, is specialised in geographical based information 

management for utilities and is interested in broadening its portfolio of expertise. It acted 

mainly as a consultant during the development of the code, providing valuable technical 

advice. 

The reasons that convinced these companies, among the most important national and 

international players in the power systems industry, represents a confirmation of the expected 

relevance of this technology in the future of distribution network. Furthermore, the interest in 

utilising and developing internally other tools based on the algorithms realised during this 

research, is considered as a confirmation of the appreciation and quality of the work done. 

Inside the consortium, Durham University was in charge of the development of the 

algorithm, acting also as a scientific consultant and providing drive during the project. The 

work undertaken at Durham University is divided in two separate work streams: the 

development of the real-time rating estimator and the development of the distributed 

generators output controller. The work described in this Thesis is relative to the first work 

stream, carried out by the author, whilst the second work stream was carried out by S. C. E. 

Jupe, another PhD student at Durham University. Because of the close link between the two 

works, however, the distributed generator output control algorithm is frequently mentioned in 

this work, and a description of its behaviour is also provided. 
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1.4 Dynamic line ratings 

1.4.1 Statement of the problem 

Currently, static ratings are applied to power system components such as overhead 

lines, electric cables or power transformers. The rating of these components depends on their 

ability to dissipate to the environment the losses generated by the Joule effect. In turn, this is 

dependent on the external environment, and parameters such as air and soil temperature or 

wind speed and direction. Due to the variability of these environmental conditions and to the 

fact that they are usually not monitored by distribution network operators, conservative static 

seasonal values are used for calculating static ratings. The development of methods for 

exploiting variable ratings is expected to introduce greater flexibility in distribution network 

management and to facilitate distributed generation connection. This is dependent on the 

availability of cost effective, accurate, precise and reliable real-time estimation of power 

system component rating, with an acceptable spatial and temporal resolution. 

In summary they are: 

Accuracy: The system must be able to provide rating estimates with the lowest possible 

error. 

Precision: The system must be able to assess the error associated with the estimate 

given and this error should be reduced as much as possible. 

Reliability: The system must be able to provide real-time rating also in case of 

measurement or communication failures, reducing gradually its performance. An in-depth 

description of these points, necessary for providing the necessary confidence for a practical 

adoption of the real-time rating system, is given in Section 6.1. 

Spatial resolution: The system must be able to provide estimates with a spatial 

resolution sufficient for the identification of hot spots and thermal bottlenecks. Electric 
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circuits made by overhead lines and electric cables can be extended over long distances and 

different environmental conditions such as line orientation, soil surface roughness or soil 

composition. Therefore, the rating of the conductor will change along the path and it is 

necessary not to exceed the rating of the most constrained component. 

Temporal resolution: The system must be able to provide estimates within an acceptable 

time limit, in order to prevent the insurgence of potentially dangerous situations created by 

reduced component thermal capacitance, environmental conditions variability and electric 

power transfer variability. 

Cost effectiveness and ease of deployment: The cost of the system must be justified by 

the economical return in terms of enhanced network reliability or power transfer capability. 

Furthermore, the deployment of the system should not be too invasive, possibly without 

requiring outages. 

1.4.2 Possible solutions 

Since component rating can not be measured with a device, alternative parameters 

should be used for assessing the amount of power that can be transferred through the 

component. The considered possible solutions are listed below: 

– Temperature measurement 

– Local measurement 

– Resistance measurement 

– Distributed temperature sensing  

– Environmental condition monitoring and rating estimation 

Temperature measurement: consists of measuring directly or indirectly the temperature 

of the component, in order to compare it with its maximum rating operating temperature. The 
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main advantage of this method is that only one parameter is measured and this parameter is 

relative to the conductor, giving a measurement of part of its state. The main disadvantage is 

that component temperature is not a measure of component rating and this second parameter 

would be more useful in a real-time control, therefore additional approximations would be 

necessary in order to exploit this measurement. Each of the three possible methods of 

temperature measurement listed above presents advantages and disadvantages: 

Local temperature measurement is carried out with temperature sensors on the 

component’s surface. The sensor is coupled with a transmitter (usually radio or GPRS) 

usually powered by induction with the magnetic field around the overhead line conductor. 

This solution is suitable for the measurement of a few hot-spots, but its cost tends to increase 

linearly with the spatial resolution required and the length of the line. Furthermore, in order to 

measure the temperature on the three phases, it is necessary to install a measurement device 

on each conductor. An example of this approach can be found in (3). 

Resistance measurement consists of measuring the resistance of the conductor through 

the measurement of electrical parameters such as voltage drop, current and phase. The 

temperature is then calculated from the relation between resistance and temperature. The main 

advantages of this system are that electrical parameters are usually already measured in the 

network and that usually resistance measurement is very precise. The main disadvantage is 

that this system provides only an averaged measurement of the temperature and is not able to 

identify hot-spots. An example of this approach can be found in (4). 

Distributed temperature sensing allows overcoming the problems of these two 

technologies, providing a number of temperature measurements along a whole circuit. The 

measurement is carried out through an optical fibre built into the conductor (new models) or 

wrapped around (already installed equipment). An example of this approach can be found in 

(5). 
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An alternative option is environmental condition monitoring and rating estimation. 

Local meteorological stations are used for measuring environmental conditions in selected 

locations in the network area. Data are then sent through radio or GPRS to a database where 

software uses them for calculating component temperatures or component ratings in the 

meteorological station location thanks to component thermal models. Additional algorithms 

can be used for calculating environmental conditions in areas not directly instrumented with 

meteorological stations. The main advantage of this system is its scalability and cost 

effectiveness, since with few meteorological stations it could be possible to cover a large area 

with different circuits at different voltage levels. The main disadvantage is that the system 

does not provide a measurement of a state of the component, but, an estimation based on 

mathematical models and on the measurement of their variable inputs. This is likely to reduce 

system accuracy and precision. An example of this approach can be found in (6). 

In Table 1 a summary of the different solutions is provided. For each one of the six 

parameters identified a grade between 1 (minimum) and 3 (maximum) has been given to each 

solution and the distributed temperature sensing along with the rating estimation from 

environmental condition monitoring were found to be the most promising technologies. 

Finally, considering that the negative effects of reduced accuracy and precision in rating 

estimation from environmental condition monitoring can be mitigated by improved 

algorithms and selectively placed local temperature measurements, this technology is 

considered the most promising one. 
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Table 1: Technologies comparison against main performance parameters 

 local 
temperature 

measurement 

temperature estimation 
from resistance 
measurement 

distributed 
temperature 

sensing 

rating estimation from 
environmental 

condition monitoring 

Accuracy 3 1 3 2 

Precision 3 1 3 2 

Reliability 2 2 2 2 

Spatial resolution 1 1 3 3 

Temporal resolution 3 3 3 3 

Cost effectiveness 2 3 1 3 

Ease of deployment 3 2 1 3 

TOTAL 17 13 16 18 

 

As shown in Table 1, component state estimation through environmental condition 

monitoring is the technology which best performs against the seven parameters chosen for 

characterising the potential of a real-time rating system.  The solution developed in this 

project is therefore based on this methodology, while at the same time trying to overcome its 

main disadvantages. A schematic view of the solution developed is shown in Figure 1. 

 

Figure 1: Circuit thermal rating algorithm, flow ch art 
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The algorithm is based on a network model where each circuit is divided in several 

components characterised by uniform conditions, such a same conductor type or same 

environment or orientation. When the rating of a circuit is done, the algorithm load data 

relative to the circuit and real time environmental condition from meteorological stations. 

Environmental conditions are then interpolated in each component location and the rating for 

each component is calculated. Each rating is not represented by a single number, but by a 

probability distribution taking into account inputs variability and the effect of possible 

measurement and communication failures. The different probability distributions are then 

combined in order to identify the probability distribution of the rating of the whole circuit, 

and finally a single value is selected in function of a predetermined level of risk. 

1.5 Research Objectives 

The research described in this work aims at developing a power system real-time rating 

system based on component thermal properties and suitable for implementation on a real 

world application. In order to do so, the solution developed must be cost effective and allow 

safe operation of the network along the technical specifications summarised in the list below, 

developed after consultations with distribution network operators and design and protection 

engineers of different firms of the research consortium. 

– To be cost effective, to require little maintenance and little running cost. 

– Not to infringe statutory clearance limits for overhead lines 

– Not to endanger secure network operation, in particular: 

– In the case of sudden drops in wind speed that would leave an overhead 

line with a power flow greater than the real-time rating. 

– In the case of inaccurate estimation of the network’s thermal state 
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– In the case of thermal overloads not relieved because of the temporal or 

the spatial resolution of the real-time rating system. 

– In the case of thermal overloads generated on non-monitored 

components 

– Not to inflict permanent damage to the component 

– Not to reduce component lifetime 

– To provide safe estimations in case of measurement or communication failures 

The development of the real-time rating system must also be supported by studies 

highlighting potential benefits and issues arising from a practical implementation. A summary 

of the questions that this research aims to answer is provided in the list below. 

– To identify previous projects on power system component thermal monitoring, 

assessing strength and weaknesses of the approach followed. 

– To identify the most suitable architecture for the real-time rating system able to 

satisfy the points identified in this list. 

– To quantify the impact of the implementation of a real-time rating system on 

renewable energy integration. 

– To quantify the impact of the active network management system developed in 

the consortium when informed by real-time ratings. 

– To identify situations where real-time ratings could be applied and should not be 

applied. 

– To quantify the increased component rating (in MVA) and the increased power 

transmission capacity (in MWh) obtainable with the use of real-time rating. 

1.6 Thesis overview 

The present work is structured in the following way: 
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Chapter 2 presents a review of previous work undertaken in the research area covered 

by this study. In Section 2.1 a short description of real-time rating systems deployed or 

conceived is given. The literature regarding the power system component thermal models 

used for real-time rating is reported in Section 2.2. Section 2.3 describes literature regarding 

environmental conditions modelling and Section 2.4 describes work in the area of electrical 

and thermal state estimation in power systems. Finally, in Section 2.5 the existing literature is 

analysed and the research area of this work is clearly defined and positioned in the context of 

the existing research on the topic. 

Chapter 3 describes the models used in the state estimation algorithm for power system 

component rating and environmental condition interpolation and correction. Section 3.1 

contains power system component models description, whilst environmental conditions 

models are described in Section 3.2. Finally in Section 3.3 conclusions on the models 

developed for the real-time rating algorithm are drawn. 

In Chapter 4 the state estimation technique used for real-time power system component 

rating is described. A review of the possible techniques is given in Section 4.1 and following 

to the selection of the Monte Carlo method, in Section 4.2 a detailed description of this 

method is given. Finally in Section 4.3 main conclusions on the state estimation technique 

adopted for the real-time rating algorithm are drawn. 

Chapter 5 presents a description of the actual algorithm developed for carrying out real-

time rating estimation of power system components. The algorithm is described generically in 

Section 5.1, while in Section 5.2 the seven classes developed for describing methods and data 

structures of the problem are described. Section 5.3 provides a description of the databases 

used and in Section 5.4 the structure of the algorithm and the flow of information during the 

rating estimation of a component are described. Finally, in Section 5.5 the main aspects of the 

algorithm developed are summarised, analysed and conclusions are drawn. 
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In Chapter 6 the state estimation algorithm validation against field data is presented. 

Firstly, in Section 6.1 the validation strategy adopted is described: Section 6.2 presents the 

validation of the analytical models used. Section 6.3 presents the validation of the whole real-

time state estimation algorithm, whilst in Section 6.4 the results of the validation process are 

discussed. 

In Chapter 7 a study on the influence of environmental condition on power system 

components is presented. The datasets used for the simulations are introduced in Section 7.1 

and in Section 7.2 the simulation results are presented. Finally, conclusions regarding the 

expected increased headroom obtainable in consequence of the installation of the real-time 

rating system developed in the research are drawn and exposed in Section 7.3. Finally, in 

Chapter 8 the findings of the research are discussed, and in Chapter 9 conclusions are drawn 

and scope for further work is identified. 

1.7 Author’s publications 

A list of the author’s publications published in scientific journals, conferences or books 

is provided below: 
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2) A. Michiorri, P. C. Taylor and S. C. E. Jupe, “Overhead line real-time rating 
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and Energy, vol. 224(3), pp. 293-304, 2010; 
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Chapter 2    Literature review 

2.1 Related work 

Active network management is a broad research topic in the academic and industrial 

environment. The reasons for this are twofold: firstly due to the planned development of DG 

and secondly due to the attempt to delay network investments forced by the rise of the energy 

demand. It is important to note that the European Union Research Commission on Energy 

considers the development of active network management as important for the future of 

energy as the development of renewable technologies such as photovoltaic or fuel cells. It is 

in fact a prerequisite for their diffused interconnection. For this reason, it was one of the key 

actions during the FP7 Programme (7). 

It can be demonstrated (8) that for loads up to 11kV a voltage rise limit is usually met 

before thermal constraints are violated, whereas for greater voltages it is the thermal limit that 

typically constrains the capacity for the connection of DG. Being interested in the higher 

voltage part of the distribution network, attention will be focused on the thermal behaviour of 

the components and on the research carried out on them. This is a research topic that covers 

different branches of engineering: electrical, mechanical, control and it is also a promising 

area for IT applications. This complexity dramatically reduces the possibility to develop 

complete systems, and this can also be seen in the published literature, where work about a 

complete real-time rating system are a minority. As it is one of the most economic and more 
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effective methods for overhead lines uprating (9), (10) the interest on it has continued to 

increase in the last years, being concentrated almost entirely on the transmission network, due 

to its strategic importance and its minor extension. According to (11), in the year 2000 there 

were more than 50 electricity companies using some transmission lines monitoring system for 

evaluating its thermal limitations, and most of them were based on a tension measurement 

method. A quite different method, requiring a thermal state evaluation, was developed by Red 

Electrica de Espana and IBERDROLA in 1998 (6). Here a minimal number of meteorological 

stations are used to gather real-time data. The data is then processed using a meteorological 

model based on the Wind Atlas Analysis and Application Program (WAsP) (12), taking into 

account the effect of obstacles and ground roughness, and finally the rating is calculated. 

These works have been developed by electricity companies and they cover generally only 

overhead transmission lines. 

There are two other works, describing quite different and more complex projects. 

EPRI’s work on this subject is described in (13) and (14), whilst in (9) the project started by 

NUON in 2004 is described. In these papers, methods for measurement and real-time rating of 

overhead lines, electric cables and power transformers are described, respectively for 

transmission and for the distribution networks. Research in the area of state estimation 

techniques for component rating proved the necessity of reliable and accurate environmental 

condition monitoring in order to obtain accurate component rating estimates. 

Other work is more specifically centred on one of the power system components. They 

describe the possible gains achievable using a real-time rating system on them and the related 

problems. Overhead lines are the most studied, such as the work by Henke and Sciacca (15), 

where they describe the possible gains and the avoided dangers in using real-time rating on an 

overhead line. Work by Belben and Ziesler (16) and Helmer (17) study the interesting 

correlation between wind farm output and overhead lines and power transformer rating. With 
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regards to electric cables, the work by Bascom (18) can be cited, even if their rating can not 

be easily related to renewable energy output. 

2.2 Component modelling 

2.2.1 Overhead lines 

The most common model used for overhead line conductors rating is described in (19) 

and has been adopted by the IEEE for the thermal rating of overhead lines (20). Another 

model is proposed by the IEC in (21), even if this standard is quite general and covers not 

only the thermal behaviour, but also the methods to calculate other mechanical parameters for 

the calculation of the sag. An additional suggested standard is the one proposed by CIGRE 

(22): in this paper an accurate thermal model is proposed, enabling calculation with different 

levels of precision, depending on the information availability. The IEEE model has been 

tested and challenged several times as in (23) or (24) in wind tunnel and in both a mismatch 

between the calculated and measured values has been found for the dependence of convective 

heat transfer on wind direction. 

Elsewhere, in (25) and (26) the temperature distribution inside conductors is studied, 

with an analytical and a numerical approach respectively. Finally it is important to mention 

(27) where many aspects concerning the conductor design are considered and different 

software that is used in this field are cited; it is also a valuable source of reference for further 

investigation on the design topic. Fundamental work for the thermal rating of overhead lines 

is reported by Davis (28) and (29), where the model used for the thermal rating, the heat 

exchange, and a statistical analysis of the environmental conditions relevant for the thermal 

rating itself are analysed, describing also a correlation between wind speeds and air 
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temperature. In particular, it analyzes the air temperature and the wind speed and direction for 

a period of over 25 years at Detroit Airport. In (30) the thermal ratings for overhead 

transmission lines have been calculated using weather measurements in ten places in the 

Rocky Mountains for one year, the data has been used to calculate a cumulative probability 

for the conductor’s ampacity. Furthermore, it has been identified in the low wind speed 

measurement the greater source of error between calculated and measured conductor 

temperature values. In another work (31) by Foss and others, the same measurements are 

conducted in three different places in New England, measuring not only the environmental 

conditions but also the real temperature and the current carried by the conductor. In (32) an 

interesting method to select the transmission lines suitable for real-time ratings is presented. 

The load cumulative frequency is an independent field of study and it is linked with the 

thermal rating, for this reason it would be important to cite at least one work on this topic: 

(33) in particular compares the load on eight lines registered over a period of one year in three 

different continents. 

The presence of data uncertainty is studied in (34) where the IEEE model is used to 

calculate the current carrying capacity of an overhead conductor, underlining the effects of the 

lack of information, and showing how it can result in an error of 50% on the determination of 

the temperature of the cable. In (35) another study on dynamic line rating is presented, in this 

work the thermal rating is assessed with measured weather data, exploring also the 

possibilities for a line rating forecast. 

Overhead lines are not characterized only by their thermal behaviour: being conductors 

exposed to the environment they have to withstand atmospheric loads like wind and ice. 

Moreover, the sag of the catenary and the clearance from the ground or from other objects is a 

fundamental aspect of line design, concerning also legislation. Therefore, even if it is not a 

central topic of this research, it is important to consider it. The basic relation to calculate the 
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sag of an overhead line can be found in (36) or (37) where the attention is focused on the 

limitations of the ruling span method used for the line design. Other aspects on the sag 

calculation are quoted also in (38), (39), (40) and (41), focused particularly on different 

methods to increase the precision of the calculations. On a normative point of view (here only 

the IEC international standards are considered), (21) can be used not only to calculate the 

current carrying capacity of the conductor, but also its capacitance and inductance and the 

elongation parameters. Those last parameters can be used in the temperature-tension relation 

described in (36) or (37), rather than the external loads (wind, ice) can been found in (42) and 

(43) 

2.2.2 Electric cables 

The basic thermal model for the calculation of the current carrying capacity of electric 

cables was developed by Neher and McGrath in 1957 (44); in this work the cable is 

considered as a series of concentric layers composed of insulators (thermal resistances) and 

conductors (heat production). Methods to calculate the thermal resistances and the 

dissipations inside the metal sheaths are given in the document, with tables and formulae to 

consider the effect of multiple cables. Other work was developed in more recent years by 

Anders (45), considering a greater number of particular cases and improving part of the 

calculations, even if the structure of the modelling was not changed. These researches are the 

main source of the relevant international standard used in the UK (46). 

Furthermore British distribution network operators refer for practical purposes also to 

the engineering recommendation ENA ER17 (47). In this document rating values are given in 

tables for each cable type, with correction values considering the effect of different external 

conditions. In time, work has been produced to improve the calculation method of different 
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parts of the model cited above without bringing modifications to the basic model. Anders in 

(48) proposes several improvements, refining the calculations of losses and cable temperature 

considering the real power flow. Finally, in (49) a new analytical model is suggested for 

considering the dynamic behaviour of multiple cables in different configurations, comparing 

it with other existing models. 

The method for calculating the external heat exchange with or without the presence of 

solar radiation is challenged by Haskew (50) who suggest a Newton Raphson method instead 

of the currently used Gauss-Siedel one. A comparison between the two methods is provided 

showing the advantages of the proposed method. A model for cables wrapped in fireproof 

material, used in nuclear power plants, is proposed by Figueiredo (51). The results of this 

analytical model were compared with experimental results, suggesting how to improve the 

precision of the method. Sellers in (52) suggests improvements in three different parts of the 

IEC standard cited above: an improved method for calculating the effect of mutual heating of 

differently loaded cables, and reviewed models for the thermal resistance of fluid layer of pipe 

type cables and for the external thermal resistance of concrete-ducts banks. Finally, Bontempi 

(53) exposes a semi-physical model of the cable and discuss its implementation in a learning 

control for the DTR, completing the work with a case study on medium voltage cable. 

Currently numerical simulations are becoming particularly popular in the electric cables 

industry especially for calculating particular cases that can represent hot spots able to reduce 

the rating of an entire line. A particularly complete work in this sector is the one of Aras (54) 

where results from finite element simulation are compared with results from the IEC standard 

analytical results and with laboratory experiment results. Work by Hanna (55) and (56) is 

focused on cables in multi layered soil. The model and the solution algorithm are shown in 

the first paper and a particular application considering three cables in a trench is presented in 

the second. A numerical simulation to calculate cable ampacity was carried out by Freitas (57) 



25 
 

focusing in particular on external conditions: firstly, developing a model describing soil heat 

and moisture migration, and then solving it with a finite element technique. 

A general numerical simulation, concerning cable losses and external thermal resistance 

calculation is described in the work by Garrido (58), where a system of three cables in steady-

state and in a short circuit situation is considered. A variable step discretization is used in 

order to reduce the points. An attempt to give a generalized way to solve the problem of the 

rating of cables systems is shown in the work by Hiranandani (59) based on a two 

dimensional finite differences model considering both cables touching and cables separated 

by an insulator medium. Another finite element model is proposed by Hwang (60) for the 

rating calculation of cables in duct. In particular, numerical methods are used for calculating 

both the electromagnetic field causing losses in the conductor and in the sheets, and the heat 

exchange between cable and duct, which is non-linear because of the irradiative heat transfer. 

Finally, it is important to cite the work by Kovac (61) where the problem of the evaluation of 

the losses is solved numerically, along with the external heat exchange through the ground. In 

particular, this model is applied for touching cables in flat formation and a re-examination of 

the IEC standard is proposed. 

Another field of study concerning the rating of electric cables is the study of the 

external parameters influencing the ampacity. The heat exchange at the soil/air interface for 

the rating of buried cables systems is studied in the work by Buonanno (62) where different 

radiation sources (direct and indirect) are considered. Lyall (63) describes the results of 

ground parameters measurements (thermal resistivity and diffusivity) and their dependence on 

the rainfall. Then optical fibre DTS measurements inside the insulation sheet and outside the 

insulation are compared. Another work concerning the measurement of ground parameters is 

(64) by Milun, where the use of a spherical probe is described, describing how it can be used 

both in field measurements and in limited samples of soil. Finally, Dang (65) presents a study 
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on the thermal ageing of the dielectric insulation comparing data and models from more than 

200 papers, and selecting the model of Simoni and Montanari (66) as the one that best suits 

with experimental data. The application of measurement devices for temperature measuring in 

electric cables systems is a developing research area, usually called Distributed Temperature 

Sensing (DTS). Built-in sensors would help to rate dynamically the cables, but these 

extensions of distribution systems and the cost of the instruments, the necessary frequency 

and the precision of the instruments are object of continued studies. A comparison between 

optical fibre measurements and predicted values is described in the work by Yilmaz (67) 

where the greater accuracy of DTS compared to mathematical models is highlighted, 

especially for recording the effect of external parameter variations. In the work by Kawai 

(68), a DTS system realized with a built-in optical fibre is used for locating faults, illustrating 

in field tests better performance in terms of measurement accuracy in comparison with 

thermocouples. 

The possibility to estimate external parameters for cables rating, considering the data 

from a distributed temperature sensing system is explored by Li (69). The methodology was 

used also for hot spot location and validated by laboratory experimental tests. Finally, the 

work by Nakamura (70) focuses on measurements of joint temperatures, those points often 

representing the thermal bottlenecks of a whole line. The use of thermocouples and optical 

fibres for the measurement of joint external temperature is proposed, to calculate then 

conductor temperatures with differential equations. 

2.2.3 Power transformers 

The industrial standards (71) and (72) cover the entire field in its different parts and 

provide thermal models and parameters. Those two standards represent the state of the art in 
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thermal modelling for power transformers, even if their need to cover a large number of 

different models does not let them to be too specific. For this reason, they are continuously 

challenged by different research, and the availability of greater computational resources 

makes the use of numerical simulations more and more desirable. Preis and Biro present a 

complete work about thermal modelling in (73), where a finite element method for the 

magnetic and fluid dynamic field is applied to determine the temperature rise. Other research 

like (74), involve the numerical modelling only of the thermo fluid dynamic aspect of 

transformers. Most of the research is focused on the development of simple finite element 

thermal models, often with the use of iterative methods. 

Those models present an intermediate complexity level between the one dimensional 

one proposed in the standards and the fully developed 3D one used in numerical simulations, 

requiring less design information than the last but yielding a greater accuracy than the first. A 

clear and exhaustive work in this sector is the one done by Susa introduced in (75) and 

summarised in (76), where an electrical analogy is used to simulate the dynamic thermal 

behaviour of a power transformer; the model was thereafter tested on a real asset and the 

results compared with the IEEE model in (72). After that, the proposed model was refined in 

(77), where the nonlinear resistance of the winding and the thermal capacitance were more 

carefully studied. An electrical analogy is used also in (78) and (79) by Ryder to calculate 

winding and core temperature rise. The results obtained were compared with measurements 

on two AREVA transformers obtaining limited errors. It is important to note that both the 

calculated and the measured values are smaller than the ones recommended in the standards 

for the rating and the calculation of the ageing. 

Further work was done in Liverpool by Tang (80), (81), and (82) based on the thermal-

electrical analogy. In those cases, the authors used a lumped parameter model (more or less 

refined depending on the publications) to calculate with greater accuracy the intermediate 
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parameters used in the standards. The model was tested on National Grid measured data. In 

(83) Radakovic and Feser suggest how to use a set of differential equations to calculate the 

hot-spot temperature. They suggest also how to calculate the necessary parameters with short 

circuit thermal measurements. Using differential equations, the model is strictly dependent on 

the initial hot-spot temperature, which is unknown in general; the same authors discuss this 

and other problems in (84). 

An analytical model is proposed in (85) by Pradhan and Ramu. Aware of the need of 

design data, the authors suggest a method to calculate the necessary parameters from test 

measurements. Furthermore, in (85) they develop the model to introduce the effect of winding 

inhomogeniety. Some papers suggest improvements to the current used standards, focusing 

only on some particular aspect of the existing industrial models. 

In (86) the dynamic behaviour under current step changes is studied: real measurements 

are compared with the IEEE model and an improved model consisting in a double time 

constant is suggested. In (87) Tojo uses a simple model for the calculation of the main 

parameters to suggest an improved loading guide. In the work by Lachman et al. described in 

(88), the model described in the IEEE relevant standard is used in an algorithm that not only 

considers the real-time state of the machine, but takes also into account any long term 

deterioration in the thermal performance. Finally, research has been carried out about 

transformers life and ageing. Among them Pandey (89) describes laboratory tests on the 

insulation paper, describing the ageing on the temperature. 

2.3 Environmental condition modelling 

In power systems, the modelling of environmental conditions is usually related to wind 

farm power output forecast or assessment. On the contrary, very little work was carried out 
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for assessing real-time component rating. Noteworthy exceptions are presented in (90) where 

meteorological readings from a few meteorological stations are used for calculating soil 

temperature over a large area to estimate electric cable real-time ratings. In order to do this, 

the authors suggest the use of a finite elements solution of Poisson’s equation, with real-time 

boundary conditions determined at the soil surface. Similarly in (91) weather readings from a 

reduced number of meteorological stations are used for calculating atmospheric 

environmental condition values over a large area in order to calculate real-time overhead line 

ratings. The solution proposed is based on the inverse distance interpolation technique. 

2.3.1 Wind speed and direction 

Due to the complex nature of the problem and the number of possible applications, wind 

field modelling has attracted the attention of many researchers, both in the area of wind farm 

power output forecast and in general meteorology. A history of computational modelling 

techniques for wind resource assessment is given in (92) and a comparison of different wind 

field modelling techniques for wind energy applications is presented in (93). In (94) a 

nonlinear model for wind direction forecast is proposed and its improved performance over 

standard models is demonstrated through simulation analysis. The problem of turbine micro-

siting is addressed in (95) where the linear model used in Wasp (described and tested in (96)) 

and the CFD nonlinear model are compared with wind measurements showing how CFD 

should be preferred to linear models in complex terrains. Other studies are not linked with 

wind farm power output prediction or assessment but are still interested in wind field 

modelling at a scale suitable for the real-time rating system developed. 

In (97) a three dimension finite element code is developed for the wind field adjustment 

problem described in (98), providing accurate numerical solutions with low computational 
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cost and memory storage requirements. Another three-dimensional wind field modelling 

algorithm is described in (99) showing good agreement between calculated and measured 

data. 

2.3.2 Air temperature and solar radiation 

Air temperature presents a reduced variability with respect to wind direction and speed 

and therefore it is possible to obtain accurate and precise results with simple interpolation 

techniques. Therefore, the attention of researchers has been focused on the interpolation 

improvement through the introduction of correction for other parameters such as altitude, 

solar radiation and precipitations. A comparison of different spatial interpolation techniques, 

such as weighted averages or linear regression is presented in (100), finding highest errors for 

all the different models when estimating temperature at high elevation. Altitude correction is 

studied also in (101), where two different techniques for air temperature interpolation and 

altitude correction are compared. Between the two techniques: the authors identified 

temperature potential calculation from the hydrostatic equation as the most suitable method 

for air temperature correction. 

Another fundamental parameter influencing air temperature is solar radiation. The study 

presented in (102) shows that the solar radiation influence correction methodology proposed 

is able to reduce air temperature interpolation error. An inverse distance exponential weighted 

average, coupled with a precipitation correction is presented in (103) and the comparison with 

two meteorological station datasets indicated a good coincidence between model predictions 

and observations. The application to air temperature interpolation of the geostatistical 

technique of Kriging is studied in (104) where seven different approaches are compared in 

terms of mean absolute error and bias. Regarding solar radiation, considerable research has 
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been undertaken in order to estimate it for renewable energy production, as in (105), or for 

use in agriculture, as in (106). They both use interpolation algorithms of locally measured 

solar radiation values. A different approach considering ground albedo and cloud effect and 

based on satellite images analysis is described in (107). Finally, a comparison between linear 

regression and different types of neural networks for solar radiation estimation is presented in 

(108), showing that linear regression is able to produce more precise results. 

2.3.3 Soil temperature and thermal resistivity 

Particular attention is given in power system engineering to soil temperature and 

thermal resistivity measurement and estimation, because of their direct influence on buried 

electric cable rating. In (90) for example a dynamic soil model is used for calculating soil 

temperature at cable burial depth, with an error of ±2°C at a distance of 25km. These 

parameters are also studied for applications in biological systems. In (109) two models based 

respectively on heat transfer, empirical observation and a third hybrid model developed by the 

authors are compared with measured data, showing how the hybrid model produces more 

accurate approximations. In another study (110), the traditional geostatistical technique of 

Kriging is modified in order to reduce error and results uncertainty in spatial-temporal soil 

temperature interpolation. Finally, in (111) a radial neural network is used for calculating both 

soil temperature and soil moisture at different depths. 

2.4 Power System State estimation 

Electrical state estimation is an established research branch in power systems. It makes 

use of real-time measures of the state of the network at regular intervals for producing a 
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representation of the state of the whole network. This is particularly important in distribution 

networks where most of the components are not monitored and the increase of distributed 

generation is likely to add new challenges to traditional operating practices. The estimation 

can be based on measurements of the topology of the network and on the solution of 

Kirchhoff’s law on each node as suggested in (112). The author suggests the use of real-time 

voltage measurements at the distribution transformers and a probabilistic model of their load 

profile in order to reduce the number of necessary measurements while increasing estimation 

precision with the consideration of voltage phase angles. 

The reduction of the estimation error is achieved considering the expected load profile 

at the transformer. A more comprehensive approach is described in (113) where generalised 

state estimation is described and its potential for estimating not only power flows and voltage 

excursion, but also network topology and even static network parameters is highlighted. The 

works summarises also fundamental techniques for identifying the observable part of the 

network and for processing bad data. Input uncertainty in power system state estimation is 

described also in (114), where a methodology based on linear programming is suggested for 

identifying input uncertainty consequences. The weighted least square method is used, as in 

previous work for calculating a “central” power flow solution at each node. Then linear 

programming is used for defining the boundaries of the confidence interval. 

Currently power system component ratings are based on conservative assumptions 

based on historical environmental conditions, as described in (115) and (30). A similar 

approach is described in (116), where a methodology for calculating component rating 

considering the combination of historical environmental conditions, loads and expected costs 

related to thermal overloads is adopted. This approach is challenged in research showing the 

advantages for distribution network operators arising from the adoption of a real-time rating 

system. A quantitative estimation of the possible headroom unlocked by the adoption of real-
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time ratings for overhead lines, electric cables and power transformers is presented in (117) 

and overhead lines are identified as the component type with highest possible gains. The 

effect of weather variability on the rating of power transformers is studied in (17) where it is 

shown that the rating of transformers positioned at the base of wind turbines may presently be 

oversized by up to 20%. A similar study described in (16) compares the power flow to the 

conductor real-time rating in an overhead line connecting a wind farm. In this research it was 

highlighted that high power flows resulting from wind generation at high wind speeds could 

be accommodated since the same wind speed has a positive effect on the line cooling. This 

observation makes the adoption of real-time rating systems relevant in applications where 

strong correlations exist between the cooling effect of environmental conditions and electrical 

power flow transfers. An application of real-time rating for wind farm connections in the UK 

is described in (3), where particular attention is given to the necessity to combine the real-

time rating system with devices able to manage the non-firm connection of distributed 

generation. 

In (34), (118), (119) the influence of component thermal model input errors on the 

accuracy of real-time rating systems is studied. The application of different state estimation 

techniques, such as affine arithmetic, interval arithmetic and Monte Carlo simulations was 

studied for overhead lines, electric cables and power transformers. Errors of up to ±20% for 

an operating point of 75ºC, ±29% for an operating point of 60°C and ±15% for an operating 

point of 65°C were found when estimating the operating temperature of overhead lines, 

electric cables and power transformers respectively. In order to reduce this error, the 

opportunity to use an expert system for enhancing rating estimation is explored in (53), where 

electric cable ratings estimated with physical models are refined with an expert system 

identifying the most suitable model according to past experience. In (5) a system combining 

distributed thermal sensing, physical models and learning algorithm is used for estimating 
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enhanced line rating forecasts. Another expert system informed by short term real-time ratings 

is described in (120) along with its indoor and outdoor test and its possible application during 

outages. 

2.5 Conclusion 

In light of the present literature review, the main research trends for the different 

relevant topics were identified. In the area of DTR, two main solutions are explored: 

component temperature measurements and component temperature estimation through 

external parameter measurements. It was verified that the first method is more precise and 

expensive, but not necessarily more reliable, due to the dependence on communications 

devices. Component temperature estimation through external parameter measurements was 

then confirmed as the most suitable for a practical application in the distribution network. 

Regarding overhead lines due to the extensive research carried out on overhead lines’ thermal 

modelling and due to its simplicity, further work in this field is not considered necessary. In 

the area of electric cables, particular attention is given to the calculation of parasitic losses in 

the sheath or the armour, and to the determination of the external resistance. Numerical 

modelling is used to study the influence of particular configurations of cable banks and to 

determine the value of the external resistance. 

Study of the transient and the behaviour during step changes and short circuits is also 

important. The study on the external conditions is probably the most important for this 

research. In the area of power transformers, studies were carried out in particular on the 

dynamic behaviour of the machine. Even if the majority of the models proposed are 

constituted of thermal-electrical analogies, numerical modelling is of great importance. The 

author’s opinion is that more attention has to be given to the modelling of the external heat 
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exchange, in this case being the link between the machine and the external world. An analysis 

of the literature published on this topic shows the existence of several gaps and that work still 

has to be carried out in order to have the theoretical knowledge necessary for the creation of a 

working and secure real-time rating system. In particular, it was found that the electric 

network is not considered a “system” with regards to its thermal behaviour. Every component 

is considered by itself since conservative ratings are then adopted. The influence on the 

network management of components with different rating is not considered and no method is 

suggested to identify them. In addition it was found that the greatest part of the literature 

regarding component rating is focused on the thermal modelling but not on the determination 

of the external parameters influencing the rating itself. The result consists of a great number 

of very precise models that have to be used with conservative inputs. 

Finally, very little literature was found on thermal state estimation and no complete 

system is described. The subsequent study on environmental condition estimation techniques 

highlighted the presence of different possible solutions for calculating the different 

parameters, mainly based on interpolation with weighted averages followed by corrections 

based on physical or empirical relations. Although these models can be applied directly for 

atmospheric parameters such as wind speed and direction, air temperature and solar radiation, 

a model able to calculate all the soil parameters necessary for buried electric cable rating was 

not found. 

The research presented in this thesis adds to the work described above by describing the 

principles behind a different real-time rating system and its validation against field data. The 

proposed solution makes use of sophisticated estimation algorithms, which have threefold 

benefit: Firstly, the requirements for a large number of equipment installations in order to 

monitor large network areas are reduced. Secondly, the capital cost of the system is reduced. 

Thirdly, the estimation algorithm offers a robust solution, which maintains operational 
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security in the case of measurement or communication failures. Furthermore, the rigorous test 

carried out on different components in the same network for an extended period provides a 

detailed description of system behaviour under different operational conditions. 
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Chapter 3    Algorithm development: 

Modelling 

3.1 Component modelling 

3.1.1 Overhead lines 

Overhead line ratings are constrained by a necessity to maintain statutory clearances 

between the conductor and other objects. Temperature rise causes conductor elongation, 

which, in turn, causes an increase in sag. The line sag (c#�0) depends on the span length 

(c#9�2), the tension (*P), the perpendicular force applied to the conductor such as weight or 

wind pressure (*9) inclusive of the dynamic force of the wind and the length of the span. The 

sag can be calculated as a catenary or its parabolic approximation, as given in Equation 1. To 

calculate the tension, it is necessary to solve the thermal-tensional equilibrium of the 

conductor, as shown in Equation 2. For calculating the conductor operating temperature at a 

given current, or the maximum current for a given operating temperature, it is necessary to 

solve the energy balance between the heat dissipated in the conductor by the current, and the 

thermal exchange on its surface, as given in Equation 3. This model is obtained omitting the 

effect of creep. General information on conductor rating can be found in (36). 

 c#�0 � ��
��

 ¡i`D ¢��£��¤¥
¦��

§ ¨ 1© ª ��£��¤¥«
¬��  (1) 
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 H�����­z�,¦ ¨ z�,^¯ ° ±��²«£«x³5³¦´��²« µ ¨ *P^ � ±��««£«x³5³¦´��«« µ ¨ *P¦ (2) 

 p� ° p/ � p# ° p6 (3) 

3.1.1.1 Detailed analysis of each term 

In this section a detailed description of the most important terms of the equations 

described in Section 3.1.1 is given1. 

The term *9 in Equation 1 represents the force applied to the conductor. This is the sum 

of the gravity and the dynamic force applied by the wind and can be calculated as in Equation 

4 (43). The first can be calculated as the sum of the weight of the conductor (*9,0) and of the 

hypothetical ice (*9,��F) present on it and the second is proportional to the conductor area and 

the kinetic energy of the air flow. These two forces are supposed to be applied in vertical and 

horizontal direction. 

 *9�l¶=^� �  ­*9,0 ° *9,��F¯¦ ° ­(./�0)����/�`¦ ¯¦©²« (4) 

The terms H��� and �� in Equation 2 (21) (respectively the young modulus and the 

thermal expansion coefficient) are referred to the whole conductor and they can be calculated 

as in Equation 5 and Equation 6 for a steel core conductor. 

                                                 
1 In order to help the reader in understanding the thermal equations without using the 

nomenclature, a summary of the symbols used is given. c· �J · Kg=^ · K=^�,  specific heat ) �¶�,    conductor diameter H �o��,    Young’s modulus ¹ �l�,    conductor tension Xu  �� · ¶=^ · [=^�,  fluid thermal conductivity w �N · m=^�,   weight per unit length ºJ �¶ · `¨1�,   flow speed � �[=^� ª :̂,   volumetric thermal expansion coefficient Δz �[�,    temperature gradient between the conductor and the 
environment � �l · ` · ¶=¦�,   dynamic viscosity ρ �Kg · m=¦�,   fluid density 
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 H����l� � H��� ° H#�# (5) 

 ���[=^� � x¤5¤½¤tx�5�½�x¤5¤tx�5�  (6) 

The effect of different environmental conditions on conductor sag is shown in Figure 2. 

It is possible to see how a real-time rating system limiting the current to the maximum design 

temperature, would prevent the conductor to exceed vertical and horizontal clearances. The 

simulation was carried out for a Lynx conductor with a maximum design temperature of 50ºC 

with perpendicular winds from 1 to 25m/s. For each point the relative wind speed is reported 

in brackets on the chart. 

The two extreme points corresponds to extreme rating conditions: null wind speed and 

conductor temperature of 50ºC (completely vertical) and a wind speed of 25m/s on a 

conductor with an ice cover of 12mm, corresponding to an extreme winter storm, whilst the 

crosses represents conductor position for intermediate values of wind speed (without ice). 

 

 

Figure 2: Maximum conductor sag under different wind speeds 2 

                                                 
2 A: z� � 50À, ºu � 0 ¶`=^, ice thickness = 0 
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The term p# in Equation 3 takes into account the effect of solar radiation. This can be 

divided in direct solar radiation (y/,.�/) which transmit energy only on the surface directly 

exposed to the sun, and diffuse solar radiation (y/,.�uu) which considers also other surfaces. 

The energy adsorbed by the conductor is proportional to those radiations, to the exposed areas 

and to an absorption factor (��e#), as described in Equation 7. Even if diffuse radiation can be 

a considerable percentage of the total solar radiation, usually it is not considered in practical 

applications as the rating is calculated for worst case scenarios. Typical values for the 

parameter ��e# range from 0.3 to 0.9 for new and old conductors respectively. 

 p#��¶=^� � ��e#­y/,.�/ · )� ° y/,.�uu · Á)�¯ (7) 

The term p/ in Equation 3 takes into account the effect of irradiative heat exchange. 

This is proportional to the difference of the forth power of the temperatures (absolute) of the 

bodies through the Stephen-Boltzmann ¢�#e    Â�«ÃÄ© � 5.67 · 10=¬§ constant and an empirical 

emission constant (�F�). Equation 8 describes the heat exchange between the conductor and 

the atmosphere. Typical values for the parameter �F� range from 0.23 to 0.91 for new and old 

conductors respectively. 

 p/��¶=^� � �F��#eÇz�´ ¨ z�´ÈÁ)� (8) 

The term p6 in Equation 3 takes into account the transformation of energy into heat in 

the conductor by Joule. This is proportional to the resistance UÉz� , VÊ of the cable and the 

square of the current as in Equation 9. 

 p6��¶=^� � UÉz� , VÊ · V¦ (9) 

The term p� in Equation 3 takes into account the convective heat exchange. This is 

proportional to the temperature difference between the conductor and the environment 

                                                                                                                                                         
B: z� � ¨6À, ºu � 25 ¶`=^, ice thickness = 12 mm 
Conductor type: LYNX, span: 200 m 
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through the fluid thermal resistivity (�CD�) and the Nusselt number (lm), as reported in 

Equation 10. The Nusselt number is a dimensionless parameter defined as in Equation 11 

depending on characteristics of the fluid such as viscosity, thermal conductivity, density, 

temperature and speed and characteristics of the surface, such as temperature or dimension. 

The Nusselt number is usually calculated as a function of other dimensionless parameters as 

in Equation 11, each one considering a particular aspect. 

 p���¶=^� � �f·É:³=:³Ê3³·�P�¤  (10) 

 lm � D · )� · �CD� � JÉoU, va, TUÊ (11) 

The Prandtl number (oU) is defined as the ratio between the viscous diffusion and the 

thermal diffusion (heat transmission by convection or conduction) of the fluid as in Equation 

12. The Grashof number (TU), described in Equation 13, is defined as the ratio between the 

buoyancy and the viscous forces acting on the fluid. The Reynolds number represent the ratio 

between inertia and viscous forces, as described in Equation 14  

 oU � � · (CD� · �CD� (12) 

 TU � 0·½¤ËÌ·É:³=:³Ê·3³ÍÉÎ �¤⁄ Ê«  (13) 

 va � �¤·3³·Â#Î  (14) 

In natural convection (�` � 0) the Reynolds number is null, and the Nusselt number 

can be written as a function only of the Grashof and Prandtl numbers, as shown in Equation 

15. On the other hand in forced convection (�` Ð 0) dynamic forces prevail and the Nusselt 

number can be written as function of the Prandtl and the Reynolds number, as in Equation 16. 

In addition, the Nusselt number can depend also on the direction of the flow; it is therefore 

possible to add a correction factor depending on the incidence angle of the flow on the 

conductor. 
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For the formulae used in industry and in the rest of the work, the reader is invited to 

consult Sections 3.1.1.2 and 3.1.1.3. 

 lm � JÉoU, TUÊ (15) 

 lm � JÉoU, vaÊ (16) 

3.1.1.2 Comparison of standards currently in use 

This section presents a comparison of the methods for rating overhead lines currently 

accepted in industry. The need of this comparison and the decision of using industry accepted 

standards are driven by the necessity to implement the real-time rating system in a real 

network and the use of widely accepted and already used models will increase the confidence 

in the practical utility of the tool. The sources considered are: 

− Energy Networks Association ER P27 (121) 

− IEC TR 61597-1995 (21) 

− CIGRE WG 22.12, ELECTRA No. 144, Oct. ’92 (22) 

− IEEE 738-1993 (20) 

The first document consists of a list of conservative static seasonal ratings for different 

overhead lines conductors, in pre and post fault conditions and for different maximum 

operating temperatures. These ratings, derived from (10) are calculated so that, with typical 

UK meteorological conditions, there is a 0.1% probability of exceeding the rated temperature, 

and a 0.01% probability of exceeding the rated temperature of more than 5°C. 

In the other three documents, models for rating overhead line conductors are described. 

The structure is based on the energy balance described in Equation 3, but different formulae 

are used for calculating the different terms, in particular for the convective heat exchange, and 

input and intermediate parameters. 
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Regarding the electric resistance calculation, the three documents propose a linear 

correction with temperature as in Equation 17. In (21) and (22) values for the parameter �Y 

are suggested, however in (20), the use of tabular values for conductor resistance provided in 

(122) is suggested. 

 UÉzÊ�Ñ¶=^� � UÉz>Ê�1 ° �/Éz� ¨ z>Ê� (17) 

Regarding the skin effect, both (21) and (20) suggests the method described in (122) 

rather than (22) describe a correction of the final value of the current as reported in Equation 

18, where the coefficients (+3/5 are given for different types of conductor shape. 

 V5W��� � V3W­∑ (+3/5 · V+Ó+Ô> ¯=²« (18) 

Regarding temperature distribution inside the conductor, only (22) provides a method 

for calculating the temperature inside the conductor, for steel core or aluminium conductors. 

The method is described in Equation 19 but considering the little temperature difference 

usually present between the core and the surface, it is suggested to assume a constant 

temperature equal to the surface one. In this formula pP;P represents the total heat gain and if 

the steel core is not present it is possible to assume )�;/F � 0. 

 z�,�;/F�[� � z�,#f/u. ° Õ�Ö�¦× �CD� ¢¦̂ ¨ 3³3³=3³ÖÌØ b] 3³3³ÖÌØ§ (19) 

Regarding solar gain, the three sources report similar models, described in Equation 20, 

where only direct solar radiation is taken into account. In (20) and (22) a method for 

calculating a static value for solar radiation according to location latitude, altitude, 

atmosphere (industrial – non industrial) and time is given. 

 p#��¶=^� � ��e#)�y/,.�/ (20) 

Regarding irradiative heat exchange, the three models refers to the basic formula 

described in Equation 8. 
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Major differences appear when considering convective heat exchange, since different 

formulae are available for calculating the Nusselt number in different conditions. Firstly, it is 

necessary to divide between natural and forced convection, as said in Section 3.1.1.1 and then 

these two phenomena can be divided in turn in laminar and turbulent convection. 

A division between laminar and forced natural convection is done in (22). This 

difference is not considered in (20) and the effect of natural convection is not considered at all 

in (21). Formulae for calculating the Nusselt number in natural convection are described in 

Equation 21 and Equation 22 for (22) and (20) respectively3. 

 lm � �^ÉTUoUÊÙ² (21) 

 lm �CD�⁄ � �¦ · ��>.Ú · )�>.ÛÚ · Éz� ¨ z�Ê^.¦Ú (22) 

Laminar and turbulent condition for forced convection are considered both in (22), 

where the roughness of the conductor is also considered, and in (20) but not in (21). Formulae 

for calculating the Nusselt number in forced convection are described in Equation 23, 

Equation 24 and Equation 25 for (21), (22) and (20) respectively4. 

 lm � �Ü,^ · vaÙÍ,² ° �Ü,¦ · vaÙÍ,« (23) 

 lm � �´ · vaÙÄ (24) 

 lm � �Ú,^ ° �Ú,¦vaÙÝ (25) 

                                                 

3 A^ � Þ0.850.48 for GrPr�10¦ · 10´�GrPr�10´ · 10Ó� à, B^ �  Þ0.180.25 for GrPr�10¦ · 10´�GrPr�10´ · 10Ó� à, A¦ � 0.283 

 
4 AÜ,^ � 0.65, AÜ,¦ � 0.23, BÜ,^ � 0.2, BÜ,¦ � 0.61, 

A´ � á0.6410.1780.048   Re â 2650Re ã 2650Re ã 2650 à   R � anyR â 0.05R ã 0.05, B´ � á0.4710.6330.8    Re â 2650Re ã 2650Re ã 2650 à   R � anyR â 0.05R ã 0.05  

The parameter R is the roughness of the conductor, defined as the ratio between the radius 
of the single wire and the diameter of the whole cable AÚ,^ � ä1.010   Re â 2000Re ã 2000 à, AÚ,¦ � ä 0.3710.1695  Re â 2000Re ã 2000 à, BÚ � ä0.520.6   Re â 2000Re ã 2000 à 
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Forced convection Nusselt number is influenced also by flow direction. This is 

considered in (22) and in (20) but not in (21). Formulae for calculating the effect of wind 

direction are reported in Equation 26 and Equation 27 for (22) and (20) respectively. 5 

 lmÉ�jÊ � lmn>­�Ó,^ ° �Ó,¦ `\]ÙæÉ�jÊ¯ (26) 

 lmÉ�jÊ � lmn>­�Û,^ ¨ ¡i`É�jÊ ° �Û,¦ ¡i`É2�jÊ ° �Û,Ü `\]É2�jÊ¯ (27) 

Other difference between the models is represented by the calculation method of 

physical parameters such as air thermal conductivity or viscosity. In (21) constant values are 

given, in (22) linear functions for approximating parameters behaviour with temperature are 

given and in (20) polynomial approximations up to the 6th order are used. In the latter two 

documents, a correction of air density with the height is included. 

3.1.1.3 Models implemented in the algorithm 

For the practical implementation of the real-time rating in the state estimation 

algorithm, the model described in (21) was chosen, integrating it with parts taken from (22) 

when considered necessary. The main reason behind this decision is that this model tends to 

be more conservative than the other two, increasing the confidence in the security of the real-

time rating system without reducing significantly its advantages. 

Solar gain and irradiative heat exchange are calculated using Equation 8 and Equation 

20 respectively. Convective heat exchange is calculated using Equation 23 and the wind 

direction correction described in Equation 26. For low wind speeds (Ws ≤ 0.5 m/s) the natural 

convection model reported in Equation 21 is used. 

                                                 

5 AÓ,^ � 0.42, AÓ,¦ � Þ0.680.58  δ�0° · 24°�δ�24° · 90°� à, BÓ � Þ1.080.9   δ�0° · 24°�δ�24° · 90°� à, AÛ,^ � 1.194, AÛ,¦ � 0.194, AÛ,Ü � 0.368  
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3.1.2 Electric cables 

Electric cables are made of a metallic conductor of copper or aluminium protected by a 

series of layers of insulating materials and metallic protections, each one with a different 

function. Insulating layers, in paper or plastic, reduces the ability of the conductor to dissipate 

in the environment the heat produced by Joule effect and metallic protections allow eddy 

currents resulting in additional heat to dissipate. Furthermore the media surrounding the cable: 

ground, air or water, introduces an additional thermal resistance. 

The maximum operating temperature of the conductor is determined by the necessity of 

not damaging the insulation. Its mechanical properties reduce with age, and ageing is a 

process accelerated by the temperature6. In particular, cases, such as cables in galleries or in 

soil where drying-out must be prevented, cable surface temperature represents the limiting 

parameter. 

Considering the thermal resistance of the layers (vCD), the conductor and soil 

temperatures (z�, z#) and the losses generated by Joule effect, a first linear approximation of 

an underground cable current carrying capacity can be calculated using the Fourier law 

described in Equation 28. Losses can be considered proportional to the losses by Joule effect 

in the conductor, with a multiplication ((6) factor taking into account the losses due to eddy 

currents in protection metallic sheets as in Equation 29. The resulting cable ampacity is 

reported in Equation 30. 

 z��[� � z� ° vCD · p6 (28) 

 p6��¶=^� � (6 · U · V¦ (29) 

 V��� � é :³=:�Wê·/·YP� (30) 

                                                 
6 Material ageing can be seen as a chemical reaction, accelerated by the temperature. An 

example of ageing speed calculation is given in Section 3.1.3.2 



47 
 

This model can be refined considering the number of conductors present in the cable 

core (]), the dielectric losses in the insulation (p.), the losses ratio between metallic sheet and 

conductor ((�,^) and between armour and conductor ((�,¦) and different thermal resistances 

for each insulating layer (vCD+) as shown in Equation 31. 

 V��� � ë É:³=:¤Ê=ÕìÇ²«YP�²t2ÉYP�«tYP�ÍtYP�ÄÊÈ/·ÇYP�²t2­^tW³,²¯YP�«t2­^tW³,²tW³,«¯ÉYP�ÍtYP�ÄÊÈ (31) 

The model described above requires detailed knowledge of the electric cable 

installation. However, this information may not always be available and therefore it is 

difficult to make practical use of the model. In these circumstances, an alternative model, 

described in (47) and summarised in Equation 32, may be used. The rated current of electric 

cables (I0) is given in tables depending on the standardised cable cross-sectional area (��), 

conductor temperature (z�), voltage level (~) and laying conditions (trefoil, flat formation; in 

air, in ducts or direct buried). The dependence of the cable ampacity on external temperature 

and soil thermal resistivity (�CD#) is made linear through the coefficients (�:) and (��P��) 
respectively. 

 V � V;É�, z� , ~, b�í\]QÊ · Ç�: · ­z# ¨ z#,>¯È · Ç��P�� · ­�CD# ¨ �CD#,>¯È (32) 

Since this research concerns the influence of environmental conditions on component 

ratings, the effect of the voltage level, which influences the dielectric loss, is not considered. 

The effect of the heating given by adjacent components is also neglected as it is assumed that 

each cable has already been de-rated to take this effect into account. 

3.1.2.1 Detailed analysis of each term 

In this section a detailed description of the most important terms of the equations 

described in Section 3.1.2 is given. 
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The term p. represents the dielectric loss per unit length for the insulation surrounding 

the conductor. This depends on current frequency (J), insulation capacitance ((�B), voltage 

to earth (~) and insulation loss factor ((�2#), and can be calculated as in Equation 33. 

Insulation capacitance can be calculated considering insulation relative permittivity (���9), 

and insulation internal ()�) and external diameter ()F), as shown in Equation 34. 

 p.�� · ¶=^� � 2ÁJ · (�B · ~¦ · (�2# (33) 

 (�B�* · ¶=^� � ���9 · ¢18 · b] îØîË § · 10=^n (34) 

Thermal resistances for the different insulating layers (vCD+Ô^,Ü) can be calculated as in 

Equation 35 and depends on layer thermal resistivity (�CD+) and layer internal ()�) and 

external diameter ()F). Regarding external thermal resistivity (vCD´) different models have 

been proposed for different situations such as cables in air, buried in ground or in ducts, in 

trefoil or flat configuration. A complete description of such cases can be found in (46). Here 

the case of a cable buried in the ground in trefoil formation is reported in Equation 36 where 

soil thermal resistivity (vCD´), cable external diameter ()F) and cable burial depth (cef/��6) 
are taken into account. 

 vCD�Ô^,Ü � �P�Ë¦× b] ¢1 ° 2 3Ø=3Ë3Ë § (35) 

 vCD´ � �P��¦× · ¢b] ´£ïðÌË¤ê3Ø ° 2 · b] ¦£ï3Ø § (36) 

The electric resistance per length unit (U) is influenced by conductor temperature (z�) 

through the resistance rise on temperature factor (�/), current frequency (J) through a skin 

effect factor ((/#) and conductor diameter ()�) and axes distance (c�dF#) through a proximity 

effect factor ((/9) as in Equation 37. Formulae for calculating the intermediate parameters 

reported in Equation 37 are given in (46) for different cable architectures and laying 

conditions. 
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 UÉz� , J, )� , c�dF#Ê�Ñ · ¶=^� �
U¦> · ­1 ° �/Éz� ¨ z>Ê¯ · ¢1 ° (/#Éz� , JÊ ° (/9Éz� , J, )� , c�dF#Ê§ (37) 

A complete description of calculating methods for the parameters (/# and (/9, with 

different cable architectures and laying conditions can be found in (46). 

The value of the rated current (V;) used in Equation 32, is not calculated but given in 

(47) in tables taking into account conductor material (copper or aluminium), cross sectional 

area (��) and temperature (z�), cable architecture (single, dual or three-core), insulation type 

(paper or extruded) bonding, voltage level (~) and laying formation (trefoil or flat). 

Correction tables are given also for the spacing between cables and for installation (direct 

buried in ground, buried in ducts, in air). The same document (47) provides tabled values for 

the coefficients (�:) and (��P��), for different laying formation, installation and conductor 

rated temperature. 

3.1.2.2 Comparison of standards currently in use 

The two main industrial standards currently used for electric cables rating in the UK are: 

− IEC 60287 (46) 

− ENA P17 (47) 

These two documents propose two different models, summarised in the ampacity 

calculation methods described in Equation 31 and Equation 32, therefore, it is not possible to 

carry out a complete analysis of the differences as in Section 3.1.1.2 and Section 3.1.3.2. 

3.1.2.3 Model implemented in the algorithm 

The detailed model described in (46) requires a considerable amount of information 

about the installed equipment. Furthermore, considering that the real-time rating system 
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should be used on existing networks with old equipment and that the state estimation 

algorithm used and described in Equation 31 requires reduced calculation time for component 

rating, the linearised ampacity calculation described in Equation 32 has been chosen. Tabular 

values reported in (47) have been used for calculating the intermediate parameters. 

3.1.3 Power transformers 

Power transformers are more complex than overhead lines and electric cables, therefore 

it is necessary to understand correctly their structure and cooling system to apply the thermal 

model used for their rating. Transformers are constituted by a magnetic circuit made of iron 

and an electric circuit made by insulated conductors wrapped around the core. These two 

basics component are called respectively “core” and “windings” in this document. These two 

parts are immersed in a tank of coolant oil, and a heat exchanger, more or less complex 

according to the size of the transformer, is connected to the tank. This coolant circuit is 

moved with natural convection, but pumps can be used in larger transformers. In Figure 3 an 

example of the coolant circuit is shown. 

Transformer maximum operating rating is influenced by maximum oil temperature 

which, if exceeded, can damage the transformer in two ways. Firstly, a temperature exceeding 

of 120ºC-140ºC can induce the formation of bubbles in the coolant oil, which in turn is liable 

to cause an insulation breakdown due to the local reduction of dielectric insulation strength. 

Bubble formation is influenced also by moisture content, gas concentration and pressure, as 

described in (123). Secondly, high temperatures increase the ageing rate of the winding 

insulation. 
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Figure 3: Transformers: coolant circuit 

 

In addition, this effect is influenced by the content of moisture and other chemicals as 

described in (124), but since these parameters are not influenced by the loading and external 

parameter history of the transformer, they are not taken into account in this research. 

Regarding the effect of ageing due to the temperature, this parameter accelerates chemical 

reactions leading to the oxidation of the insulation paper, as shown in Equation 38. 

 ñ � JÉi\b BUiBaUC\a`, zÊ (38) 

For these reasons maximum operating temperature should not exceed the rated value. 

The thermal model consists of a heat balance between the power dissipated in the winding and 

iron core, and the heat transferred to the environment via the refrigerating circuit. The model 

is then refined considering a temperature gradient between the bottom and the top of the 

windings, in order to consider the effect of the coolant oil being warmed while rising to the 
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entrance of the heat exchanger. An excellent description of a transformer thermal model can 

be found in (76). 

Considering the thermal resistance between the winding and the oil (vCDA), the thermal 

resistance between the heat exchanger and the air (vCDwx) and the power dissipated into the 

core and the winding (rs�ftuF), it is possible to calculate the hot-spot temperature (zw|) as in 

Equation 39. 

 zw| � z� ° rs�ftuFÉvCDA ° vCDwxÊ (39) 

Usually the tank is fitted with a considerable quantity of oil in order to reduce 

temperature differences and provide a considerable thermal inertia, allowing short-time 

overloads to be withstood by the transformer without risk of failure. The dynamic behaviour 

of the transformer is usually modelled with a first order differential equation, resulting in an 

exponential passage between the initial and final state, as in Equation 40, where zu,� are the 

final and initial temperatures, and � is the transformer thermal constant. 

 zu � z� ° ­zu ¨ z�¯a�ò (40) 

3.1.3.1 Analysis of each term 

In this section a detailed description of the most important terms of the equations 

described in Section 3.1.3 is given7. 

The term ñ in Equation 38 represents the insulation ageing speed. This can be 

considered as a chemical reaction involving the oxidation of winding insulation and can be 

calculated using the Arrhenius law, as in Equation 41. 

                                                 
7 ��`�,   time constant ( �ó · XQ=^�,  thermal capacitance H�  �ó�,   reaction activation energy 

rs
d  ���,   losses 

v �ó · [=^�,  gas constant 

v:,� �[ · �=^�,  thermal resistance 
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 ñ � (ôa=õÌö÷ (41) 

The losses in the core and in the windings, represented as rs�ftuF in Equation 39, is 

usually written considering the ratio ¢[6;## � øs ùØøs³ð§ between these two terms as in Equation 

42, being the losses in the iron caused by eddy currents and correlated with the current (and so 

the losses) circulating in the windings. 

 rs�ftuF � rs�f ° rsuF � rs�fÉ1 ° [6;##Ê � V¦vAÉ1 ° [6;##Ê (42) 

The thermal resistances vCDÂ and vCDwx in Equation 39 can be written as in Equation 

43, where the heat transfer coefficient ÉDÊ depends on the Nusselt number, as in Equation 11. 

The Nusselt number in turn can be calculated as in Equation 15 considering natural 

convection. 

 vCD+ � ÉD · �Ê=^ (43) 

Finally the time constant � in Equation 40, can be calculated as the product of the 

thermal resistance and capacitance of the coolant circuit, as shown in Equation 44. The 

thermal capacitance (CD can be calculated as the sum of the thermal capacitance of the 

different part of the transformer, such as iron core, winding, oil and tank. The thermal 

resistance can be calculated as the ratio between the temperature difference at the ends of the 

thermal resistance (e.g. between oil and ambient temperature) and the thermal power flowing 

through it (e.g.: total losses as calculated in Equation 42). 

 � � (CD · vCD (44) 

3.1.3.2 Comparison of standards currently in use 

This section presents a comparison of the methods for rating power transformers 

currently accepted in industry. They have been chosen for the same reason discussed in 

Section 3.1.1.2: to inform the state estimation with models already used in industry for 
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facilitating the acceptance of the methodology developed in this research in real world 

applications. The sources considered are: 

− IEC 60076-7 (71) 

− IEEE C57.91 (72) 

− ENA P15 (125) 

In these documents models for calculating insulation ageing, hot spot temperature 

intermediate parameters and time response to changes are described. (72) and (71) reports 

models different in some part and (125) presents corrections to the model described in (71). 

Regarding the dependence of ageing on temperature, in (72) a formula derived from the 

Arrhenius equation is used rather than in (71) and (125) where the Montsinger approximation 

is used. In Equation 45 and Equation 46 the relative ageing calculation method respectively 

for (72) and (71) is shown. Different reference temperatures are also considered: in (72) a 

maximum hot spot temperature of 108°C is used and in (71) and (125) a maximum operating 

temperature of 98°C is considered. 

 �Qa\]Q/ � a±²ÝúúÍûÍ =²Ýúú÷üý µ
 (45) 

 �Qa\]Q/ � 2÷üýþÍ�²æ  (46) 

Regarding the calculation of steady state hot-spot temperature (72) and (71) present the 

same method, even if in (71) the steady state value have to be obtained considering the limit 

of a transformation of the dynamic model. In (125) a temperature resistance correction factor 

is introduced. The difference between ambient temperature and hot-spot temperature is 

calculated as the sum of the maximum temperature gradient between environment and oil and 

the maximum temperature gradient between oil and windings as in Equation 47. The model 

considers a temperature gradient between the bottom and the top of the tank, with the highest 

temperatures in the upper part. The method for calculating maximum ambient-oil and oil-
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winding temperature gradient is shown in Equation 48 and Equation 49 where the temperature 

gradient in standard condition ∆z�,Y is multiplied by a correction factor depending on the load 

ratio ¢[6;�. � £;�.£;�.ú§ and the losses ratio in standard condition vY. 

 zw| � z� ° ∆z�=� ° ∆z�=w| (47) 

 ∆z�=� � ∆z�=�,> �^tÃêÖ��ÃêÖ¤ì«
^tÃêÖ��,ú �W÷,Ö

 (48) 

 ∆z�=w| � ∆z�=w|,Y · [6;�.W÷,� (49) 

In (125) a correction factor É(Ê for winding resistance, and hence losses, dependence on 

winding temperature is introduced, as shown in Equation 50 and the correction factor can be 

calculated as in Equation 51. In this model, there is a distinction between the losses ratio in 

standard condition [6;##,> � øs ùØøs³ð,ú with the average winding temperature ÉzAÊ at 75°C and the 

real losses ratio [6;## � øs ùØøs³ð. 

 ∆z�=� � ∆z�=�,Y �^tW÷,ÌÃêÖ��ÃêÖ¤ì«
^tÃêÖ��,ú �W÷,Ö

 (50) 

 (:,/ � (:,/=>[6;## ° ^=ÃêÖ��ÃêÖ�� , º\CD (:,/=> � Ú>Û.Út:�¬ÚÚ  (51) 

Regarding the dynamic behaviour, (72) and (125) report the same model based on an 

exponential variation between two steady state conditions, as in Equation 40. In (71) a more 

complex model is used. This is reported in Equation 52 and considers the evolution of two 

different parts of the system: the oil and the metallic part constituted by windings and iron 

core. In Equation 52 the first function is for an increase in temperature, and the second for a 

decrease. The time dependant functions ­��ÉCÊ¯ are reported in Equation 53. 

 

���
�	 zw|ÉCÊ � z� ° ∆z�=�,� ° Ç∆z�=�,u ¨ ∆z�=�,�È�̂ ÉCÊ°∆z�=w|,� ° ­∆z�=w|,u ¨ ∆z�=w|,�¯�¦ÉCÊ

zw|ÉCÊ � z� ° ∆z�=;,u ° Ç∆z�=�,� ¨ ∆z�=;,uÈ�ÜÉCÊ ° ∆z�=w|,u
à (52) 
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��
�
�	 �̂ ÉCÊ � 1 ¨ a þ�
÷,²²òÖ
�¦ÉCÊ � (:,¦^ �1 ¨ a þ�
÷,²²ò�� ¨ ­(:,¦^ ¨ 1¯�1 ¨ a þ�òÖ 
÷,««⁄ �

�ÜÉCÊ � a þ�
÷,²²òÖ

à (53) 

3.1.3.3 Model implemented in the algorithm 

The models described in Section 3.1.3.2 are used for the calculation of transformers hot 

spot temperature, and in order to obtain the corresponding rating, it is necessary to calculate 

iteratively the solution. In the algorithm, the Newton-Raphson method is used to find the 

solution of Equation 39 transformers: basic thermal model Equation 39, where each term is 

calculated using the steady state solution of Equation 52. The correction for resistance 

variation with temperature described in Equation 50 has not been used because of the 

additional information on transformers characteristics required. An initial function for 

calculating the maximum power allowable considering the thermal inertia and the possibility 

of allowing an increase of relative ageing for a given amount of time has been discarded 

because of the difficulties of integrating it into the rest of the control. 

3.1.4 Sensitivity analysis 

It can be seen from the work presented above that many diverse parameters affect the 

rating of power system components. These parameters may be categorized into component 

properties, geographical properties, and environmental conditions. For the purposes of the 

real-time rating estimation, component properties and geographical properties are assumed to 

be constants of the system. Therefore, the thermal models presented were underpinned by a 

sensitivity analysis that gave an indication of the influence of environmental conditions on 

power system component ratings. The sensitivity analysis was carried out such that one 
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parameter was varied at a time while all other parameters were maintained at their credible 

midrange values. A summary of the results of this analysis is presented in Table 2 and shows 

the percentage variation in component rating for a given percentage variation of 

environmental conditions from credible mid-range parameter values. 

 

Table 2: Environmental condition sensitivity analysis (parameter variation versus rating variation) 

 Overhead lines Electric cables Transformers 
 (Lynx 50) (150mm2) (ONAN 45) 

parameter Ws Wd Ta 8 Sr RT Ts Ta 
(credible mid-
range value) 

(8m/s) (
×́ U�j) (15°C) (500W/m2) (1.2WK/m) (10°C) (15°C) 

V
ar

ia
tio

n 
fr

om
 m

id
-

ra
ng

e 
va

lu
e -50% -23.86% -11.38% +10.80% +0.72% +31.46% +3.00% +6.11% 

-25% -10.73% -4.97% +5.52% +0.36% +12.36% +1.50% +3.09% 
-10% -4.07% -1.85% +2.24% +0.15% +6.18% +0.60% +1.24% 
10% +3.84% +1.66% -2,29% -0.15% -4.49% -0.60% -1.25% 
25% +9.22% +3.82% -5.81% -0.36% -8.99% -1.50% -3.16% 
50% +17.40% +6.54% -11.96% -0.73% -16.48% -3.00% -6.40% 

 

Moreover, in the sensitivity analysis, the soil thermal resistance is assumed to take into 

account the effect of rainfall. It can be seen that the rating of overhead lines is particularly 

sensitive to the environmental conditions of wind speed, wind direction, and ambient 

temperature, and that the rating of electric cables is particularly sensitive to the thermal 

resistance of the surrounding medium. Furthermore, a series of credible worst-case scenarios 

were selected to give an indication of the minimum component rating that would potentially 

result from the deployment of a real-time rating system. In this worst case analysis the 

following values were specified: Ta = 38.5 ◦C (the maximum temperature registered in 

England, August 2003) (126); Ws = 0,Wd = 0, Sr = 0W/m2 (from studies carried out at CERL, 

the highest conductor temperature excursions are recorded at times of low wind speed where 

there is negligible solar radiation) (115); Ts = 20 ◦C (46) and ρths−T = 3Km/W (47). The 

resulting rating multipliers of the standard static component rating were 0.81, 0.86, and 0.78 

for overhead lines, electric cables, and power transformers, respectively. 

                                                 
8 For Ta and Tc, the percentage variation is done considering a minimum temperature of 

0°C 
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3.2 Environmental condition modelling 

As described in Section 1.4 the real-time rating system developed in this project makes 

use of a limited number of meteorological measurements in selected areas of the network in 

order to estimate component ratings in a wide geographical area. It is therefore necessary to 

process this information for calculating environmental conditions for the location of every 

component of the network. This section describes the approach adopted to estimate, correct 

and interpolate environmental conditions to represent more accurately the actual 

environmental operating conditions for sections of the UK power system in different 

geographical areas. 

3.2.1 Interpolation 

The inverse distance interpolation technique (127) allows environmental conditions to 

be determined over a wide geographical area using a reduced set of inputs. This is attractive 

for situations where a large amount of installed measurements may be financially unattractive 

to the distribution network operator. The technique is also computationally efficient and 

allows the input locations to be readily adapted. Wind direction, air temperature and solar 

radiation values were included within interpolations but did not require the application of a 

correction factor. At each point in the geographical area (X) the value of the parameter (�) 

representing the environmental condition can be estimated as a weighted average of the 

parameter values known at \ points. The weighting factor is a function of the distance between 

the points as shown in Equation 54. 
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 �g � ∑ 
 ²�Ë,�« ·���Ë
∑ 
 ²�Ë,�« �Ë

 (54) 

The wind speed correction process is described in Section 3.2.2. The soil parameter 

correction process is described in Section 3.2.3. 

3.2.2 Wind speed correction 

Ground roughness influences wind speed profiles and may lead to differences between 

the wind speed recorded by anemometers and the actual wind speed passing across an 

overhead line, particularly if the anemometer and overhead line are installed at different 

heights. This may be corrected using the wind profile power law given in Equation 55. The 

wind speed at two different heights is linked with the ground roughness through the exponent 

[`Da�U. Values of [`Da�U for different ground types may be found in (43). 

 �` � �`� · ¢�ÌØù�¤ §Ã#�F�/¤ · ± �³�ÌØùµÃ#�F�/³
 (55) 

Using Equation 55, the anemometer wind speed (�`�) at the meteorological station 

height (��) is extrapolated to a reference height (�/Fu, in this case 100 metres) to remove 

ground roughness dependence represented by the parameter [`Da�U�. The values from 

different anemometer locations may then be interpolated, using Equation 54 as described in 

Section 3.2.1, to provide a wind speed estimate at the reference height for a particular 

geographical location. The ground roughness at this location is then taken into account 

through the coefficient [`Da�U� along with the conductor height (��) in Equation 55 to 

estimate the wind speed (�`) across the overhead line. In Figure 4 a graphical example of the 

soil surface roughness effect on wind speed vertical profile is provided. 
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Figure 4: Soil surface roughness effect on wind speed vertical profile, example 

 

Regarding wind direction, Equation 54 can be used for wind direction interpolation, 

although it can provide erroneous values for particular input datasets. In particular, when 

multiple meteorological stations record concurrent values of wind direction from North-

North-West (NNW) and North-North-East (NNE). In this case the interpolation may produce 

distorted results because averaging wind direction values in the region of NNW to N (337.5°-

360°) together with values in the region of N to NNE (0°-22.5°) produces wind direction 

estimates in the region SSW to SSE (157.5°-202.5°), which represents a 180° phase shift 

between real and calculated wind direction. This does not render equation (8) inappropriate to 

use because, due to the angular nature of the wind direction, a phase shift in wind-conductor 

angle of 180° has the same cooling effect as the wind-conductor angle without the phase shift. 

Therefore, an error of 200° in wind direction has the same effect on conductor temperature 

calculation as an error of ±20°. 
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3.2.3 Soil temperature and thermal resistance modelling 

Electric cable ratings are dependent on soil temperature and soil thermal resistivity, as 

well as cable construction, burial layout and burial depth (which is typically 0.8–1 metre). 

Because of practical difficulties of measuring soil thermal resistivity, it was decided to 

measure the soil water content and to extrapolate the soil thermal resistivity (�CD#) as in 

Equation 56 using the soil thermal diffusivity (�CD#Ê, the dry soil density (�#), and the soil 

thermal capacity ((CD#). Soil thermal diffusivity (�#=:) and soil thermal capacity are 

influenced by soil composition (l) and water content (�) and can be calculated using 

Equation 57 and Equation 58 according to (128). 

 �CD# � É�CD# · �# · (CD#Ê=^ (56) 

 �CD# � ¨14.8 ° 0.209 · l ° 4.79 · � (57) 

 (CD# � ¨0.224 ¨ 0.00561 · l ° 0.753 · �# ° 5.81 · � (58) 

Since Equation 57 and Equation 58 make use of location dependent parameters such as 

soil density and soil composition, first the soil water content is interpolated as in Equation 54 

and then the soil thermal resistivity is calculated. 

In addition to this, a series of dynamic soil models have been considered for different 

system configurations where the installation of temperature sensors at the depth of the cable 

or the measurement of ground water content was not possible, or previously installed 

meteorological stations should be used. Even if these models have not been used in the final 

algorithm, they are reported here. If it is not possible to measure soil temperature at cable 

burial depth, a depth-dependent soil temperature distributions may be calculated using the 

Fourier law, as explained in (129) and shown in Equation 59. 

 
�:��P � ��� ¢�CD# · �:��� § (59) 
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Boundary conditions can set up with a constant temperature of 10À at a depth of 2 

metres for the lower layer and measured soil temperature readings for the upper layer. If it is 

no possible to measure the ground water content at the desired depth, it can be determined 

using the closed form of Richard’s Equation (130) as described in Equation 60 after the 

calculation of the unsaturated hydraulic diffusivity (�#=Z) and the unsaturated hydraulic 

conductivity (X#=Z) as described in (131). 

 
�Z�P � ��� ¢�CD# · �Z�� ° X#=Z§ (60) 

In order to solve Equation 60, boundary and initial conditions must be specified. A 

constant water content equal to the saturation value can be set at a depth corresponding to the 

water table. The ground-level water content can be calculated from rainfall values (bU) using 

the model described in Equation 61, where [U�\]^ and [U�\]¦ can be calculated using (132) 

 
.Z.P � ¨[U�\]^ · �ÉCÊ ° [U�\]¦ · bUÉCÊ (61) 

3.3 Conclusion 

Component thermal models widely used both in industry and in academia have been 

used for describing power system components thermal behaviour. This choice was driven by 

the intention to build the research on a solid base, building confidence in the suitability of the 

system developed in this research for field tests and to facilitate the development in 

commercial applications. 

The model used for overhead lines conductor rating is based on the IEC standard (21) 

for overhead conductors rating, enriched by the wind direction correction proposed by the 

CIGRE Working Group 12 (22). The flexible algorithm structure allows manufacturers to 

apply the rating model preferred by each particular customer or even to implement their own 
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model. Between the three models considered, the CIGRE model is more detailed but it was 

discarded because of the greater number of parameters necessary while the IEEE (20) model 

was not used because UK overhead lines rating is based on the IEC method. 

Also for electric cables available industrial standards were used. Of the two considered 

rating methods, the IEC (46) and the ENA (47) one, the second was chosen for a practical 

implementation in the code. The IEC standard requires an excessive number of cable 

construction parameters that were difficult to identify for the old components usually installed 

on the UK distribution network. Therefore the less detailed method based on tabulated rating 

values and tabulated correction coefficients for the different environmental conditions 

described in (47) was preferred. 

The procedure of comparing different standard models for component rating and then 

selecting the most suitable was also followed for power transformers. The three models 

considered were the IEC loading guide (71), the IEEE loading guide (72) and the ENA 

loading guide (125). Very little differences exists between these three documents and the IEC 

method was chosen also in this case because of its use for transformer rating in the UK and in 

the network used for validation. 

Regarding environmental conditions modelling there are no standard methods already 

used by the electric transmission and distribution industry that could be easily applied in this 

project. Furthermore, the complexity of the physical phenomena behind environmental 

conditions variation is often very complex, nonlinear and chaotic, requiring considerable 

computational resources. Considering these two constraints, but also the fact that currently no 

method is officially used for environmental condition calculation in the electricity distribution 

industry, the following approach was adopted. The value of each parameter is interpolated in 

each component location from the values measured in meteorological stations of known 
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location and corrections considering aspects of the natural phenomenon described are applied 

where possible. A list of possible improvements is provided in Section 8.5. 

Wind speed and directions are strictly correlated parameters since they are used for 

describing the air flow and for this reason they are interpolated separately in the algorithm. 

Wind speed interpolation is corrected for taking into account the effect of soil surface 

roughness both on wind speed measurement at the meteorological stations and in each 

conductor location. This adds a possible source of error in the estimation of soil surface 

roughness parameters, but it is expected that this error is limited in comparison with the error 

of the simple interpolation. 

Wind direction is simply interpolated and it was explained in Section 3.2 how the error 

generated by the algorithm for particular sets of data has a reduced effect on conductor 

temperature calculation and hence on conductor rating calculation. An alternative solution 

would have been to transform the wind description in polar coordinates (wind speed and wind 

direction) in a description in Cartesian coordinates (latitudinal and longitudinal wind speed) 

and then to interpolate these two values for calculating again in each conductor location the 

absolute value of wind speed and the angle relative to the conductor. This was not done in 

order not to influence wind direction calculation with the potential error generated by wrong 

soil surface roughness coefficient estimation. Air temperature and solar radiation calculation 

are based on simple inverse distance interpolation without additional correction. 

The opportunity of introducing altitude correction for air temperature was considered 

but a practical implementation in the algorithm was discarded. The little altitude excursion in 

the test area would not have made a rigorous test possible and the correction could have 

become an additional non-measurable source of error. For the same reason the solar radiance 

is simply interpolated and no additional correction for local factors that could potentially 

modify readings value were implemented in the algorithm. 
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Regarding soil environmental conditions influencing electric cables rating, additional 

calculations were necessary in order to calculate the required parameters values. Initially only 

soil temperature readings at 5cms of depth and no soil thermal resistivity readings were 

available. Therefore, a complex soil dynamic model was developed for calculating soil 

temperature at electric cables burial depth and soil thermal resistivity from rainfall readings. 

Later, the test site was instrumented with a soil moisture sensor (linearly dependent with soil 

thermal resistivity) and a soil temperature sensor placed at cables burial depth. The 

interpolation of these values is expected to produce a reduced error with respect to the 

dynamic soil behaviour model developed in the first part of the project. 
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Chapter 4    Algorithm development: 
Estimation technique 

4.1 Review of possible techniques 

A review of other work carried out on the topic of power component real-time rating 

estimation is presented in Section 2.4. In this section, the estimation problem and the data 

structure is described. Then the main candidates for implementation into the algorithm are 

analysed, compared and the final candidate selected. 

4.1.1 Data and models structure 

Here the physical problem that is required to be solved and the logical passage to its 

solution are clarified. 

− Output: NC estimations of the state (rating) of NC network components, 

with an estimation of the minimum, maximum and average probable 

value. 

− Input: NM measurements of NP external parameters from NM 

meteorological stations and NT component temperature measurements. 

The problem can be broken down in two parts: 

− The NMxNP measurements are used to calculate NMxNC estimations of the 

NP external parameters for the NC components locations. 
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− Then for each component, the NP parameters are used to calculate its state. 

In order to carry out this thermal state estimation it is therefore necessary not only to 

know the physics of the problem, but also to have access to a number of intermediate 

calculations and possibly to store data. Finally, it is necessary to note that the methods to 

calculate the external parameters and the ratings are not only non-linear, but often iterative 

and numerical. Therefore, it will not be possible to act during the process of the calculation of 

the thermal stare estimation, but only on the calculated data. 

4.1.2 State estimation techniques 

The ideal state estimation technique used in the algorithm must satisfy a number of 

requisites often conflict with each other. The technique selected must produce precise and 

accurate estimation of component ratings. It must be able to carry out the calculations 

necessary for estimating the rating of different components such as overhead lines, electric 

cables and power transformers as described in Section 3.1. The technique selected must also 

be able to estimate environmental conditions using the models described in Section 3.2 and 

possibly to be able to integrate more complex models in the future. Furthermore it must be 

able to perform the estimation in real-time, and therefore it must not be excessively 

computationally intensive. A list of the requirements used for selecting the state estimation 

technique used is reported below: 

− Use of non-linear models 

− Open to accept further models development 

− Reduced computational intensity requested 

At first, analysis of the problem of the considerable number of nonlinear relations 

between the different parameters influencing power system component ratings suggested that 
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traditional estimation techniques based on linear algebra would not have been suitable for this 

problem. Considering the previous experiences reported in Section 2.4, the following 

techniques were considered for a practical implementation in the state estimation algorithm 

developed: 

− Maximum Likelihood Method 

− Weighted Least Square Method 

− Interval Arithmetic 

− Affine Arithmetic 

− Monte Carlo Method 

The Maximum Likelihood method is used for identifying the optimal set of function 

parameters to represent more precisely a set of data. A state estimation with this method 

would require the definition of parametric models for each parameter, followed by an 

estimation of the parameters with the use of measured data. A complete description of this 

method and its application can be found in (133) or (134). Given a probability density 

function JÉ�;rÊ where X is a set of n measured variables xi and Q is a set of l parameters ql, 

the likelihood function is defined as in Equation 62. The problem is then to search the set Q 

that maximise the likelihood function. For this task, Equation 63 or Equation 64 can be used. 

 cÉ�, rÊ � ∏ JÉ��;rÊ�Ô^,2  (62) 

 
.£.Õ� � 0 � ∏ JÉ��;rÊ�Ô^,2 ,�� � 1, b (63) 

 
.£.Õ� � 0 � ∑ b]�JÉ��;rÊ��Ô^,2 ,�� � 1, b (64) 

In addition, the Weighted Least Square Estimation is used for identifying the optimal 

parameters of a function previously defined for approximating the measured data. A complete 

description of this method and its application can be found in (133) or (134). 
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Considering a set of n measurements xi and the parametric function used for their 

approximation í � JÉ�;rÊ the sum of squares function is defined as in Equation 65, where 

wi is the relative weight for the i th term. By solving the system of equations described in 

Equation 66, it is possible to find the set of parameters Q minimising Equation 65. The 

solution of this system can be done with a numerical method such as the Newton-Raphson 

and reciprocal of the variance is usually used as the weight wi. 

 c � ∑ º��í� ¨ JÉ��; pÊ�¦�Ô^,2  (65) 

 
.£.Õ� � 0 � ..Õ� ∑ º��í� ¨ JÉ��; pÊ�¦,�� � 1, b�Ô^,2  (66) 

Interval Arithmetic, like Affine Arithmetic, is a self validating method (118). This 

means that the computational algorithm can track the accuracy of the computed quantities, so 

that the amplitude of the error can be know a posteriori (135). In Interval Arithmetic, each 

quantity � is represented by an interval or by an array with the extremes value of the interval 

 �#f9��2u ©. The intervals are manipulated, subtracted or multiplied so that each computed interval 

contains the unknown value of the real quantity �. Examples of basic operations in Interval 

Arithmetic are described in Equation 67, Equation 68 and Equation 69. The main problem of 

this technique is that it tends to overestimate the amplitude of the interval, especially in 

iterative calculations. 

 � ° í � ��#f9 ° í#f9��2u ° í�2u � (67) 

 � · í � �¶\]­��2u · í�2u;��2u · í#f9; �#f9 · í�2u; �#f9 · í#f9¯¶��­��2u · í�2u;��2u · í#f9; �#f9 · í�2u;�#f9 · í#f9¯� (68) 

 �� � ��#f9���2u� � (69) 

In Affine Arithmetic (34) each partially unknown quantity x is represented by an affine 

form which is a polynomial as in Equation 70. In Equation 70, the terms �� are known 
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coefficients and the terms �� � �¨1; 1� are independent sources of uncertainty, called noise. 

Examples of basic operations in Interval Arithmetic are described in Equation 71, Equation 72 

and Equation 73. Particular attention has to be given when it is necessary to obtain an affine 

form Z from a non-affine operation f(x,y). In this case, a further term kkz ε  representing the 

residual approximation error has to be added. 

 � � �> ° �^�^ ° �° �2�2 (70) 

 � ° í � É�> ° �>Ê ° É�^ ° �^Ê�^ ° �° É�2 ° �2Ê�2 (71) 

 �� � ��> ° ��^�^ ° �° ��2�2 (72) 

 � � � � É�> � �Ê ° �^�^ ° �° �2�2 (73) 

The Monte Carlo method consists of an iterative evaluation of results of deterministic 

models relative to randomly selected input values (136). Considering for example the function 

of two variables described in Equation 74, where the input variables are not completely 

known and they can assume random values in the intervals described in Equation 75. The 

Monte Carlo method calculates n times the value of the variable º with randomly selected 

values of the variables � and í as in Equation 76. The calculation can be refined with the use 

of probability density functions in order to select more often the more probable values of each 

input parameter. 

 º � JÉ�, íÊ (74) 

  � � Ç��2u;  �#f9Èí � Çí�2u;  í#f9Èà (75) 

 áº^ � JÉ�^, í^Ê…º2 � JÉ�2, í2Êà (76) 

The analysis of these techniques, according to the requirements described at the 

beginning of this section, suggested that the Monte Carlo method was the most appropriate 

for the real-time state estimation system under development. The Maximum Likelihood 
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Method was discarded because it is not designed for giving information about the estimation 

error and another method should have been developed for this scope. For the same reason also 

the Weighted Least Square Method was not selected. The Interval Arithmetic technique was 

discarded because of its tendency to overestimate interval amplitudes especially in iterative 

calculations (34). This method would calculate every time the worst and best scenario only, 

giving excessive weight to extreme conditions with a limited probability to verify. 

The Affine Arithmetic was discarded because it was felt that the transformation of the 

many non linear equations used in the models would have let to a reduction in the precision of 

the result of the estimation. Furthermore, the Monte Carlo method has the advantage of 

describing the probability structure of the results, allowing the controller or the distribution 

network operator to select a probability value for the rating when operating the network. 

Furthermore, a degree of customisation between the estimation precision and the estimation 

computational-time is allowed in the Monte Carlo method. This would allow the algorithm to 

be used in different applications such as the real-time distributed generator output controlled, 

with high computational speed and medium precision, and an off-line planning tool, with low 

computational speed but the possibility to simulate a considerable number of scenarios. 

4.2 Monte Carlo simulation 

4.2.1 Structure 

As mentioned in 4.1.2, the Monte Carlo method consists of an iterative evaluation of 

results of deterministic models relative to randomly selected input values (136). These inputs 

are randomly generated from probability density functions describing parameter probabilistic 

structure and the results generated by the deterministic model in different trials can be 
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represented in turn by probability distributions. In Figure 5 a visual representation of a generic 

Monte Carlo simulation is given. 

 

 

Figure 5: Monte Carlo method example 

 

The simulation starts collecting parameter readings in a period dt (a). For each 

parameter (x, y, z), a probability density function is calculated from the measured data (b) as 

described in Section 4.2.3 and the cumulative density function is calculated by integration 

from the probability density function. At this point (c), a random value for the probability is 

generated for each parameter, and inverting the cumulative density function, the 

corresponding parameter value is selected, as described in Section 4.2.2. The random variate 

generated is then used (d) for calculating the output of a model. The different models used in 

this research are described in Section 3.1 and Section 3.2. The two steps (c) and (d) are 
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repeated l times, where l is calculated as described in Equation 77 and the model’s results 

are stored (e) for further analysis. Finally, a probability density function for approximating the 

output is generated (f) from the l simulation results as in step (b). In a real-time rating system 

deployment the parameter w could be the wind speed across an overhead line conductor and 

the parameters x, y and z could be the wind speed in measured by three meteorological 

stations. Alternatively, the parameter w could be the conductor rating and the parameters x, y 

and z could be wind speed, wind direction and air temperature in the conductor location. 

The thermal state estimation algorithm developed is divided in two steps: Firstly, 

environmental conditions measured in different meteorological stations are used for 

estimating environmental conditions in a single component location. This estimation is 

performed for wind speed, wind direction, air temperature, solar radiation, soil temperature 

and soil thermal resistivity, as described in Section 3.2. Secondly, when an estimation of the 

environmental conditions is available for the component location, the component thermal 

rating is estimated. The algorithm is able to estimate real-time thermal ratings for overhead 

lines, electric cables and power transformers, as described in Section 3.1. A graphical 

description of the complete state estimation for an overhead line conductor is described in 

Figure 6. Wind speed is measured in a time interval dt in three meteorological stations (a1,2,3). 

At the same time, the same meteorological stations measures also wind direction (b), air 

temperature (c) and solar radiation (d) and these data are sent to a centralised server (currently 

through GPRS). At this point, the algorithm performs a Monte Carlo simulation (e), as 

described above and in Figure 5, in order to estimate wind speed in the conductor location 

(e1). Monte Carlo simulations are carried out also for the other parameters (f, g, h). 

Environmental conditions estimations (e1, f1, g1, h1) for the conductor location are then used 

in another Monte Carlo simulation (i) which estimates conductor current carrying capacity 

(i1).
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Figure 6: Example of overhead line rating estimation 
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Monte Carlo estimation precision depends on the number of simulations carried out. A 

limited number of simulations would reduce the computational-time since it is necessary to 

sample sufficiently the probability density function of every parameter and to consider a 

sufficient number of parameter combinations. In the algorithm developed the simulation 

number is calculated as in Equation 77 (137) which links together the number of samples ("), 

the standard deviation of the results (#$) and a selected error value (%"). 

 �� � Ü·&'d'·(�Ë (77) 

Equation 77 shows that the number of iteration is proportional to the square of the ratio 

between the dimensionless range of the results É3�� ��⁄ Ê and the accepted results’ error 

É��Ê. This also means that if a higher precision is requested and the expected error is halved, 

the number of iterations and hence the estimation computational power will increase fourfold. 

Another consequence of Equation 77 is that the estimation of parameters with a broad relative 

range, such as wind speed, wind direction or solar radiation, would require more calculation 

than the estimation of less variable parameters such as conductor temperature, considering the 

same expected error. 

4.2.2 Variate generation 

In statistics, a variate is the random numerical value of a variable defined in a sample 

space. For each simulation, a random value in the sample range is selected for each input and 

used for calculating the model’s output. One of the main principles behind the Monte Carlo 

method is to carry out for each parameter value in the range defined by its probability density, 

a number of random simulations proportional to its probability. In order to do so, probability 

density functions are used to describe the probabilistic structure of the parameter, and an 

adequate technique must be used for the selection of the particular parameter value from the 
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probability density function. The probability density function selected for the implementation 

of this algorithm, along with other potential candidates, is described in Section 4.2.3. The 

random number generation technique implemented in the algorithm along with other potential 

candidate techniques is described in Section 4.2.4. In this Section, the technique used for 

generating the variate for each simulation along with other potential candidates is described. 

The variate generation technique used in the algorithm must be precise and not 

computationally intensive. The two criteria used for selecting the variate generation technique 

are reported below: 

− Simplicity 

− Fast 

Among the most common methods used for variate generation in Monte Carlo 

simulations, the following were initially selected for a possible implementation in the real-

time rating estimation algorithm. 

− Inverse transform method 

− Composition method 

− Acceptance-rejection method 

The inverse transform method (136) consists of inverting the cumulative density 

function describing the probability structure of a parameter. Selecting a random value for the 

probability (o), the corresponding vale for the parameter É�Ê is calculated as in Equation 78. 

 � � ()*=^Éo;��Ê (78) 

The composition method is based on the assumption that is possible to represent a 

generic cumulative density function as a weighted sum of other cumulative density functions, 

as in Equation 79, where the coefficients �� satisfy the conditions in Equation 80. In this way, 

is possible to split the range of the parameter � and to sample each interval with a simple 

cumulative density function. 
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 ()*É�Ê � ∑ �� · ¡jJ�É�Ê2�Ô^  (79) 

 �� ã 0, ∑ ��2̂Ô^ � 1 (80) 

The acceptance rejection method is based on a principle similar to the Monte Carlo 

integration. Considering a probability density function bounded on a finite interval [a,b] and 

with ¡ � `mB­o)*É�Ê¯, as described in Figure 7. The method generates an independent pair 

of values � and í, with the conditions described in Equation 81. Then if í â o)*É�Ê, the 

value � is accepted and if í ã o)*É�Ê the value � is rejected. In the example in Figure 7 the 

couple É�^, í^Ê is rejected whereas the couple É�¦, í¦Ê is accepted. 

 Þ� â � â %0 â í â ¡à (81) 

 

 

Figure 7: Acceptance rejection method 

 

After considering these different techniques, the inverse transform method was chosen 

for the implementation in the algorithm. The composition method requires a more complex 

algorithm for taking into account the array of different cumulative density functions and its 

success depends on the methodology adopted for creating the different cumulative density 

functions. Therefore its implementation would be not simple, and potentially non precise. The 

acceptance-rejection method was discarded because in particular circumstances it can become 

computationally inefficient since the area below the probability density function can be many 

times smaller than the area outside. For these reasons, its implementation would have been 

simple, but would not have allowed the computational-time to be reduced in every situation. 
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The inverse transform method on the contrary presents intermediate characteristics, such as a 

moderately difficult implementation and a moderate computational-time, caused by the non 

closed form of the Beta function and the necessity of inverting iteratively the cumulative 

density function in Equation 78. The particular attention put in the inversion algorithm 

designed, based on the secant method (138), allowed to overcome this problem. 

4.2.3 Probability density function 

The probability density function of a random variable is a function describing the 

density of probability at each point in the sample space. It enables the calculation of the 

probability of the random variable falling within a given interval by calculating the integral, 

called cumulative density function of the probability density function in the given interval. In 

the Monte Carlo method, the probability density function is used to describe the probability 

structure of input and output variables and to increase the result precision, allowing a greater 

number of simulations to be carried out for the more probable values of each parameter. 

Although the Monte Carlo method can work with different probability density 

functions, for the practical realisation of the algorithm it was decided to use only one. This 

decision was taken in order to reduce the complication of the algorithm in prevision of its use 

by third party developers. The selected probability density function must be defined in a 

bounded interval, since practical experience suggests that the environmental conditions 

recorded in a short period do not present infinite values or values particularly detached from 

the average. It must also be continuous in the defined interval, since it represents continuous 

phenomena. Finally, the probability density function must be flexible and all the possible 

phenomena involved in the thermal state estimation should be summarized using the same 

probability density function without losing accuracy. This is to make the thermal state 
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estimation algorithm less complex and moreover to facilitate the interface with other 

applications. A list of the requirements of the selected probability density function is provided 

below: 

− Defined in a bounded interval 

− Continue 

− Flexibility 

Among the probability density functions available in literature (139), (140), discrete 

distributions and distributions defined over an infinite interval were discarded. After a review 

of the remaining distributions, the elimination of monotone distributions such as the 

Exponential distribution or the Uniform distribution, the following were considered suitable 

for the implementation in the algorithm: 

− Beta distribution  

− Kumaraswamy distribution 

− Triangular distribution 

− Truncated Normal distribution 
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The Beta probability density function and cumulative density function for the interval 

[0,1] are given in Equation 82 and Equation 83 respectively. In these equations, the 

parameters B and p are the shape parameters and � is the variable. According to their values, 

the Beta probability density function can assume different shapes, as shown in Figure 8. 

 

 o)*½É�;B, pÊ����=^� � ÉdÊ�þ²É^=dÊ)þ²
* P�þ²É^=PÊ)þ².A²ú  (82) 

 ()*½É�;B, pÊ � * �Éº;B, pÊjºd> � * ÉAÊ�þ²É^=AÊ)þ².A+¤* P�þ²É^=PÊ)þ².P²ú  (83) 

 

 

Figure 8: Beta distribution for different shape parameters values 
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The Kumaraswamy distribution is very similar to the Beta distribution, but easier to use 

thanks to its closed form as it is possible to see in the probability density function and 

cumulative density function for the interval [0,1] reported in Equation 84 and Equation 85 

respectively. In these equations, the parameters B and p represents the shape parameters and � 

represents the variable. In Figure 9 different Kumaraswamy probability density functions with 

different combinations of the shape parameters are reported. 

 

 o)*ÃÉ�;B, pÊ � Bp�9=^É1 ¨ �9ÊÕ=^ (84) 

 ()*ÃÉ�;B, pÊ � 1 ¨ É1 ¨ �9ÊÕ=^ (85) 

 

 

Figure 9: Kumaraswamy distribution for different shape parameters values 
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The triangular distribution approximates data probability density with a simple triangle 

as it can be seen from its probability density function and cumulative density function 

reported in Equation 86 and Equation 87 for the interval [0,1]. The parameter ¡ is the only 

shape parameter of the equation and represents the mode of the distribution, as shown in 

Figure 10. 

 

 o)*:É�;�, %, ¡Ê � , ¦d�¦É^=dÊÉ^=�Ê
 \J 0 â � â ¡

¡ â � â 1à (86) 

 ()*:É�;�, %, ¡Ê � , d«
�1 ¨ É^=dÊ«É^=�Ê

 \J � â � â ¡
¡ â � â %à (87) 

 

 

Figure 10: Triangular distribution for different sh ape parameter values 

 

  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00

P
D

F
ΤΤ ΤΤ

(x
;c

)

x

c= 0 c=0.25
c=0.5 c=0.75
c= 1



83 
 

The truncated normal distribution is based on the normal distribution but it is defined 

over a bounded interval. Considering the normal distribution probability density function and 

cumulative density function reported in Equation 88 and Equation 89, where B and p 

represents the shape parameters, equivalent to the average and the standard deviation of the 

distribution. The truncated normal distribution probability density function and cumulative 

density function in the interval [0,1] can be obtained as in Equation 90 and Equation 91. The 

influence of the shape parameters can be seen in Figure 11. 

 o)*�É�;B, pÊ � ^9√¦× a=É)þ.Ê««�«  (88) 

 ()*�É�;B, pÊ � ^9√¦× * a=É)þ.Ê««�«d=∞
jm (89) 

 o)*�:É�;B, pÊ � /3�0Éd;9,ÕÊW3�0É^;9,ÕÊ=W3�0É>;9,ÕÊ (90) 

 ()*�:É�;�, �Ê � W3�0Éd;9,ÕÊW3�0É^;9,ÕÊ=W3�0É>;9,ÕÊ (91) 

 

 

Figure 11: Truncated normal distribution for differ ent shape parameters values 
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The comparison of these distributions is based on the objective concept of “flexibility”, 

representing the last point in the list of requirements for the general probability density 

function reported at the beginning of this section. This is a qualitative parameter, and the 

decision was based on the personal judgement of the author on the ability of each probability 

density function to describe the data available at the time of the decision. A revision carried 

out in a second phase, showed that it was not necessary to modify the selection or to introduce 

additional probability density functions for describing the available data. The triangular 

distribution was discarded because of its characteristic of increasing the weight of the “tale” 

of the distribution, and its inability to describe “u-shaped” distributions. 

The Truncated normal distribution was discarded also because its inability to describe 

“u-shaped” distributions. Although it would have been possible to create new distributions 

based on these two able to overcome these limits, it was decided to use a distribution already 

existing and proven. For this reason, the Kumaraswamy and the Beta probability density 

function were finally selected to be implemented in the algorithm. This is because of their 

flexibility to represent symmetrical and asymmetrical distributions as well as bell-shaped or 

u-shaped distributions, as seen in Figure 8 and Figure 9. Finally the Beta distribution was 

chosen because of the possibility to use the simple method for estimating its parameters 

described in Equation 94-Equation 97. The main limitation of the Beta distribution is 

represented by its non-closed form, therefore particular attention was given to reducing the 

computational-time of the algorithm used for the calculation of its probability density function 

and cumulative density function. The Beta probability density function and cumulative 

density function are now reported in the more general case of the interval [�, %] instead of the 

interval [0,1], along with the procedure used for calculating shape parameters from measured 

data. 

 o)*½É�;B, p, �, %Ê � Éd=�Ê�þ²Ée=dÊ)þ²
Ée=�Ê�1)þ² * A�þ²É^=PÊ)þ².A²ú  (92) 
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 ()*½É�;B, p, �, %Ê � * �Éº;B, p, �, %Êjºd� � * ÉA=�Ê�þ²Ée=AÊ)þ².A+¤Ée=�Ê�1)þ² * P�þ²É^=PÊ)þ².P²ú  (93) 

The shape parameters p and q can be calculated from data series analysis using Equation 

94 and Equation 95 where �� and ��  can be calculated as in Equation 96 and Equation 97 and 

�� and ��  are the average and the standard deviation of the data series. 

 B � �� ¢Î2É^=Î2Ê&2« ¨ 1§ (94) 

 p � É1 ¨ ��Ê ¢Î2É^=Î2ÊÎ2 ¨ 1§ (95) 

 �� � Î'=�
e=�  (96) 

 ��¦ � &'«
Ée=�Ê« (97) 

Due to the non-linearity and the closed form of Equation 93, its inversion for the inverse 

transform method is realised through an iterative algorithm based on the secant method (138). 

4.2.4 Random number generation 

Random numbers represent a fundamental part of the Monte Carlo method. Therefore, 

particular care is taken for the deterministic generation of random sequences presenting all the 

important statistical properties of true random sequences. 

The two methods considered for using random numbers in the algorithm are: 

− Physically generated random numbers 

− Linear congruential generator 

Physically generated random numbers are based on the measurement of phenomena 

such as atmospheric parameters variation, universal background radiation or the noise of a 

computer processor. These methods can be particularly slow, and of difficult application in an 

algorithm. A solution is represented by storing random numbers generated with such methods 
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in an array and using them scrolling consecutively through the array. This method would 

allow the use of real random numbers sacrificing memory. 

The linear congruential generator is a simple algorithm based on Equation 98 (136). 

 o2 � ­XY,^ · o2=^ ° XY,¦¯¶ij­XY,Ü¯ (98) 

The terms o2 and o2=^ in Equation 98 represent respectively the probability to calculate 

and the probability calculated at the previous step and the terms XY,^, XY,¦ and XY,Ü are called 

respectively the multiplier, the increment and the modulus. Since the sequence o>, ô , …, o2 

will repeat itself after at most XY,Ü steps, its value is selected as the large prime number that 

can be accommodated by the computer. The linear congruential random number generator 

was preferred in the practical implementation of the algorithm because of its speed and its 

wide use in a wide range of applications. 

4.3 Conclusion 

The real-time rating algorithm developed is not only composed by a library of 

component and environmental condition models but also by a framework for interpreting 

input and output data and for dealing with corrupted data caused by measurement or 

communication failures. The Monte Carlo method was preferred to other methodologies 

because of its ability to create a probabilistic description of models results. This was 

considered particularly important for interpreting the consequences of environmental 

conditions’ uncertainty and variability. Furthermore, the probabilistic description of the 

results was considered fundamental for quantifying the risk associated with the single rating 

estimation with a twofold benefit: Firstly, real-time rating risk can be set as the same risk 

already adopted for seasonal static ratings but for a reduced observation period. Secondly, it 
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has a positive impact on estimation reliability with respect to measurement and 

communication failures, increasing gradually the confidence band. 

Particular attention was given during the code development phase to the creation of a 

stable, fast and clearly structured algorithm. In order to avoid developing a particular solution 

for a particular case, a generic Monte Carlo method algorithm was built and then used with 

different models for component rating or environmental condition interpolation. This allowed 

flexibility in code realisation and is expected to facilitate future code improvements and 

model refinement. Attention also was given to estimation computational-time, a crucial factor 

in a real-time tool. Code architectures that would have resulted in a simpler but slower code 

have been discarded and the database was designed for facilitating data reading. Particular 

attention was given to the design of selected code areas such as random number generation 

and numerical function inversion of the probability density function. 
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Chapter 5    Software design and 

development 

5.1 Introduction 

The aim of this section is to describe the algorithm developed in order to perform the 

real-time rating estimation. This detailed description is conceived also as a reference for 

maintaining and improving the present code and for building new applications exploiting the 

whole algorithm or some of its parts. The algorithm is firstly conceived for use in a real-time 

distributed generator power output controller, and secondly as an off-line planning tool. 

The requirements of the algorithm to develop can be summarised as follows: 

– The algorithm must carry out the real-time rating estimation as described 

in the sections 3.1, 3.2 and 4.2. 

– The rating estimation for a circuit must be carried out in a time compatible 

with the necessity of the distributed generator power output controller (15-

30 min) 

– The algorithm must be easy to maintain and improve, and comply with 

relevant industrial standards where necessary. 

– The algorithm must be called by third party software independently from 

their programming languages or machine operating systems 
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A schematic view of the Real-time thermal rating algorithm in the general architecture 

of the control is given in Figure 12. 

 

 

Figure 12: Real-time thermal rating algorithm in the control architecture 
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availability of existing open source libraries. Considering the advantages and disadvantages of 

the different programming languages and the resources available, the programming language 

chosen was VB.Net. 

The database used in the development phase of the project is Microsoft Access. This is 

because it is particularly straightforward to create applications that make use of this database 

management software, while it is not necessary to have it installed on the machine where the 

algorithm is running, (the database management is included in the .NET framework 2.0). 

Furthermore, its practical graphical user interface allows analysis of partial results, facilitating 

the debugging and validation process. 

For the program, three different programming paradigms were used according to their 

suitability for each particular task: service oriented architecture, object oriented programming 

and imperative programming. Although several definitions exist for the different 

programming paradigms, the differences between the three are clear and can be summarised 

as follows: Service oriented architecture is based on the concept of creating a series of 

interoperating services, sharing a common interface protocol. Object oriented programming 

uses collections of attributes and methods for describing real-world objects. Imperative 

programming consists of a series of instructions for the computer to perform. 

The service oriented architecture is present in the web service used as interface between 

the thermal state estimation algorithm and the distributed generation power output controller. 

The object oriented programming is present in the description of the real-world objects used 

in the algorithm. Finally, imperative programming is present in the code specifying the 

actions of the different methods. This allowed exploiting the potential of each paradigm: 

object oriented programming is an excellent tool for describing real world objects and their 

interactions, like the interaction between the environment and a conductor. But this is not the 

most appropriate solution for performing the mathematical passages for calculating 
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component rating or for carrying out the Monte Carlo simulation. For these tasks, the more 

traditional imperative programming was used. It is also necessary to note that, although only 

one web service for calculating circuit real-time rating estimation was created, the algorithm 

is built with a series of integrated functions describing the structure of a complex network of 

services. This would allow with the creation of adequate interface wrapping codes, the 

development of a family of web methods based on the algorithm and able to perform single 

tasks like the rating of a single component or the calculation of a random number, reducing 

the granularity of the web service. 

In summary, the algorithm developed can be described as follows: a web service with a 

single method provides the interface between the algorithm and any other program or website 

with a standard interface protocol. The web service makes use of a complex algorithm based 

on the object oriented programming paradigm, divided in six classes and with access to 

several databases. 

These are then used to describe respectively electric networks component thermal 

behaviour, environment and probability distributions respectively. The object oriented 

programming is also used for coding the thermal state estimation and the Monte Carlo 

simulation, although these two classes consist of lists of methods. A sixth class is used for 

providing active data storage and ancillary methods used in the whole algorithm. Databases 

are used for storing static information relative to network components and geographical data 

and dynamic real-time environmental readings. 

5.2 Classes 

The aim of this section is to describe each class of the algorithm, with its attributes and 

its methods. A scheme representing the static structure and the relations between different 
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classes is shown in Figure 13. For each class and its sub-classes an accurate description is 

given, specifying the type of each attribute and the function of each method. Classes are also 

described visually according to the unified modelling language (UML), with each class 

represented as a rectangle divided in three horizontal sections: in the top section, there is the 

name of the class, in the middle section there is a list of the attributes and in the bottom 

section there is a list of the methods. For each attribute and each method the type of the output 

is also given. For reasons of clarity and space, attributes and methods are not shown in Figure 

13. A detailed description of each class is provided in the Appendix. The chart shows also 

class level and dependence relationships. 

Class level relationships, represented with solid lines, indicate that one class inherits 

methods and attributes of the other. Dependence relationships indicate that a class makes use 

of another class and is represented with a dashed line. An example is given in Figure 14, 

where three classes developed in the algorithm are represented with their relationships. The 

class “Web Service” has no attributes and one method called “Circuit_TSE”. The class PDF 

has two attributes: “Name” and “Type” but no methods. Finally, the class “Beta” has six 

attributes and one method “Estimate Parameters”. The class Beta is a subtype of the class 

PDF since different PDFs could be created. Therefore, their relationship is represented with a 

solid line. The class “Web Service” is not similar to the class PDF, but it makes use of the 

class PDF for representing estimation outputs. Therefore, their relationship is represented 

with a dotted line. This example is purely explicative and for a complete description of each 

class, the reader is invited to consult the Appendix. 

 



93 
 

 

Figure 13: Class diagram, example 
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Figure 14: Whole system class static diagram 
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The task of the class “Web Service” is to act as an interface between the algorithm and 

other programs, such as the distributed generators power output controller developed in this 

research project. This class has a single method that calls in turn a method of the “TSE” class. 

The TSE class supervises the series of actions necessary to carry out the thermal state 

estimation of a single circuit, by using methods of the “Monte Carlo Method” class. The 

“Monte Carlo Method” class contains the method necessary for carrying out a single Monte 

Carlo estimation for environmental conditions or component rating. In this process, it uses 

methods and attributes of the classes “Environment”, “Component” and “PDF”, where the 

models and the methods necessary for modelling environmental conditions, power system 

components and probability density functions are implemented. Finally, the class “Auxiliary 

Procedures” contains attributes and methods of general utility that can be accessed in any part 

of the program, such as the access to databases. This solution allows a simpler algorithm 

structure and facilitates software maintenance and new features development. 

5.3 Databases 

This section describes the databases used by the thermal state estimation algorithm for 

storing static data regarding the electric network and its geographical area, and the real-time 

environmental parameters. Other two ancillary databases created in the software development 

and validation phases for storing errors logs and simulation results have been maintained for 

their expected utility in software maintenance and for the use of the algorithm as an off-line 

planning tool. The approach followed during the software development phase was to create an 

interface with the databases in each class. This allowed modifying the structure of each 

database, their number and the database software used without impacting on the whole 
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algorithm. The development started with MS Access because of its availability on the 

machine and later a MySQL database was introduced. 

As introduced before, the algorithm makes use of the five databases listed and described 

below: 

– Component 

– Environment 

– Geographical 

– Errors 

– Simulation output 

The database “Component” is used for storing information regarding the network, with 

its circuits, circuit section and transformers. This database presents the most complex 

structure among the other databases used in the algorithm with a table describing the 

components as members of a network, tables describing the characteristics of the single 

component and finally tables describing the characteristics of the generic component type. A 

more detailed description of the database is provided in the Appendix. The database software 

currently used for this task is MS Access. 

Environmental conditions are stored in the database “Environment”. This database 

presents a table listing the existing weather station on the network and a reference to their 

location, and one table for each weather station, with historical readings of the environmental 

condition recorded in the particular meteorological station. The database software used for 

this application is MySQL, in order to facilitate the integration with the on-line database used 

in the field trial. 

Geographical information such as location coordinates, height and soil roughness are 

stored in the database “Geographical”. This database is composed by a single table listing all 
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the information mentioned above accessible using a location ID. The reason of two separate 

databases for geographical and network information is that this facilitates the utilization of 

existing databases in a future commercial version of the system. 

The last two databases have been created during the development phase, but they have 

been maintained in the final version because of their utility. The database “errors” contains 

logs written by the program in case of errors and information on the decisions taken in 

consequence of these errors. Originally conceived for the phase of code debugging, the 

database and the associate functions are now used for keeping track of the decisions taken in 

coincidence of missing or bad data. The database “Simulation results” finally is used for 

storing long sequences of state estimations. Created for the algorithm validation, it was 

maintained in order to facilitate the development of an off-line planning tool. 

5.4 Structure of the algorithm 

The aim of this section is to describe the dynamic behaviour of the classes and the 

databases described in the previous sections and their methods. A detailed description of the 

process and the dataflow is reported in the Appendix. 

The web service is used as the external interface of the algorithm. Its inputs are two 

strings corresponding to the time and the name of the circuit to be rated. The web service 

opens the connections with the databases and starts the circuit thermal state estimation. A 

flow chart describing the algorithm for the thermal rating estimation of a circuit is shown in 

Figure 15. Firstly, circuit data relative to the selected circuit are loaded from the off-line 

database and the instance of each circuit section is populated with these data. Then the most 

updated environmental condition readings at every meteorological station are loaded. The 
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data of each meteorological station are used for populating an instance of the class 

“Environment for Observation”. At this point, for each section of the circuit, the algorithm 

estimates environmental conditions in its location. The estimation is done for every 

environmental condition using the Monte Carlo Method algorithm described below. The 

environmental condition estimation produces an array of probability density functions 

describing the environment in the circuit section location. This is used for estimating 

component thermal rating, using again the same Monte Carlo Method algorithm described 

below. When thermal ratings for each circuit section have been estimated, the rating of the 

whole circuit is estimated by sampling the combined PDF of each section. 

 

 

Figure 15: Circuit thermal rating algorithm, flow c hart 
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Particularly important in the circuit state estimation algorithm is the Monte Carlo 

method algorithm described in the flow chart reported in Figure 16. At the beginning, a 

minimum number of iterations is fixed and an array for storing the results of the simulations is 

declared. Then the first set of iterations is carried out. At the first step a variate, containing a 

set of random values for each input parameter selected according to its PDF is generated. The 

random variate is then used for calculating the result of the particular model. At this stage, the 

model for interpolating environmental parameters or the component thermal models can be 

used. 

 

 

Figure 16: Monte Carlo method algorithm, flow chart 
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Model’s results are stored in the array. When the fixed number of iterations is 

completed, the array with the stored values is used for calculating the minimum necessary 

number of iterations for the selected estimation precision. If this number is larger than the one 

previously used, the cycle is started again for a number of iteration equal to the difference 

between the two numbers. Finally, the array containing the simulations results is used for 

calculating the probability density functions’ parameters. A detailed data flow of the 

algorithm, highlighting the different functions used and their dependence is reported in Figure 

17 and a more detailed description of the algorithm is provided in the Appendix. 
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Figure 17: Circuit real-time rating estimation functions and data flow 
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5.5 Conclusion 

This section described the power system real-time rating estimation algorithm 

developed in the framework of the research project aimed at realising a real-time distributed 

generator power output controller based on power system component thermal properties. The 

algorithm written in the language VB.Net is composed by a web service that acts as an 

interface with other programs. The actual code, written according to the object oriented 

programming paradigm, is divided in six classes. It uses three databases for storing static 

information such as network components and geographical related data and dynamic data 

such as real-time environment conditions readings. Each class is described carefully, 

specifying the nature of each attribute and the behaviour of each method. A description of the 

static structure of the classes and of the dynamic data flow during the estimation of the real-

time rating is also provided. Initial algorithm requirements have been satisfied, a simplified 

version of the algorithm is installed in two relays in the test network where open and closed 

loop tests must be carried out. Furthermore, the whole algorithm is being implemented in 

commercial products by AREVA, a consortium partner. In order to carry out the real-time 

rating estimation, classes for describing the thermal behaviour of power system components 

and the environment have been developed. Furthermore the code necessary for performing 

generic Monte Carlo simulations and in particular environmental condition and component 

rating estimations have been written. 

One of the main constraints for the algorithm was the ability to carry out the real-time 

rating estimation of a circuit in a time compatible with the exigencies of the of the distributed 

generator power output controller. The controller calculates distributed generators’ set points 
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with a frequency of 30 minutes, therefore the estimation time should be a fraction of this time. 

Currently, as shown in Section 6.3, the estimation time for a single component is in the range 

of 2.3 seconds, a period that would allow the rating of a circuit made of 10 components to be 

estimated in less than 30 seconds, and the rating of the 10 most thermally vulnerable 

components in less than 3 minutes. Therefore, the computational-time has been found to 

satisfy the initial requirements. 

This performance was obtained thanks to the general structure of the algorithm, the 

optimization of the code in particularly critical functions and to the choice of the precision 

accepted for the Monte Carlo simulation. This last parameter can be customised, and in 

further application of the code, it will be possible to increase estimation precision at the 

expenses of computational-time or vice versa. In order to ensure the possibility of improving 

and developing additional applications based on the code, the algorithm was written following 

a clear object oriented approach, assigning meaningful names to attributes and functions and 

providing extensive documentation. Furthermore, the dynamic structure of the algorithm, 

made of different functions calling each other allows simple improvements to be made to part 

of the code without touching other parts. 

The presence of an object passed though the whole process, an instance of the 

“Auxiliary_Procedures.Configuration” class, and containing basic data and the connections to 

the databases, allows additional data to be passed to each function and each function to access 

any database in whatever part of the program. This is expected to facilitate improvements on 

the existing code. Finally, in order to allow third party applications to use the algorithm, a 

web service was developed for acting as interface. Web services are designed to support 

interoperable machine-to-machine interaction over a network. A second web service was 

realised for allowing the distributed generator power output controller to interrogate the 
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databases used by the real-time rating estimation algorithm. This is an example of the 

interoperability allowed by web services: since the first code does not have a direct access to 

the “Environment” database, the creation of a web service wrapping an existing method, was 

considered the most efficient solution. 
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Chapter 6    Validation 

6.1 Validation strategy 

For practical applications, the state estimation algorithm must produce accurate and 

precise rating estimates, whilst being computationally efficient and robust to measurement 

and communication failures. Furthermore, the estimation is strongly influenced by the models 

used, which also have to be accurate and precise. Therefore a testing strategy aimed at 

evaluating each one of these characteristics was developed. A summary of the results of this 

study was published in (141) 

6.1.1 What to measure 

Four parameters suitable for defining the performance algorithm developed have been 

identified and the algorithm was divided in two parts to be separately studied. The parameters 

identified are: 

− Accuracy. It can be defined as the degree of approximation of a calculated 

parameter to its true value; in this work accuracy is measured with the average 

error between estimated and measured values. 
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− Precision. It can be defined as the measure of agreement between independent 

calculations. In this work the precision of the estimation is measured with the 

estimation standard deviation. 

− Robustness. It can be defined as the ability of the algorithm to provide 

estimates in case of measurement or communication failures. In this work 

robustness is measured with the change of the estimation average error and 

average standard deviation. 

− Computational efficiency. It can be defined as the ability of the algorithm to 

perform estimations in a given timeframe. In this work the speed of the 

algorithm is measured with the average time necessary to produce temperature 

estimations for one component. 

Often the terms “accuracy” and “precision” are confused and considered as synonyms, 

but they represents two different and fundamental concepts in errors and measurement theory. 

Therefore, a brief clarification is given here with the help of Figure 18. 

 

 

Figure 18: Accuracy and precision 
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It is important to remember that accuracy and precision are two qualitative and not 

quantitative terms, therefore it is important to define the method used to measure them (142). 

Furthermore the Monte Carlo method used and described in Section 4.2, provides an estimate 

with a probability distribution. Therefore, each estimation is given with a measure of its own 

precision. 

The algorithm was then divided in two main parts: 

− Models. Described in Section 3.1 and Section 3.2 they are used for calculating 

the value of non measured parameters and they are based on empirical or 

theoretical approximations of physical phenomena. They can be divided in turn 

in two parts: 

– Component models 

– Environmental conditions models 

The value of the models used is measured calculating the accuracy and 

precision. 

− State estimation. This part of the algorithm is described in Section 4.2 and is 

used for estimating the rating of the conductor taking into account input 

uncertainties and measurement and communication failures. This part of the 

algorithm is validated through all the four parameters listed above. 

Furthermore, since each estimation is given with an interval and a probability 

density function, the precision of each estimation is also measured. 
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6.1.2 Datasets for validation 

The thermal state estimation algorithm developed has been validated on measured data 

from a portion of ScottishPower network where meteorological stations and conductor 

temperature measurement devices were installed. The network is composed of 132kV 

overhead lines with Lynx conductors with a maximum operating temperature of 50ºC. A 

schematic view of the network and a map of the monitored area are given in Figure 19. The 

circuits shown in the map are highlighted in the schematic network view. 

The 132kV network in this area comprises two circuits: one built in the east-west 

direction connecting the distribution network to local loads; the other built in the north-south 

direction connecting a local substation and a distributed generator. From a geographical point 

of view, the area is characterised by hills, valleys and the coast line running in the east-west 

direction. The different soil roughness of these areas was estimated observing satellite images. 

The prevailing wind direction is north to south. It is anticipated that this will considerably 

influence the rating of the circuits described above in the following manner: over the course 

of the year, the east-west running circuit will experience greater cooling than the north-south 

circuit. 

Weather measurements for the period 07/12/2008-18/02/2009 were used for carrying 

out the validation. For each meteorological station five minute averaged values of wind speed, 

wind direction, air temperature and solar radiation were available. Furthermore, in each 

meteorological station location, five minute averaged readings for conductor temperature and 

current were available. A summary of the environmental conditions recorded during the 

observation period is given in Table 3. Average wind speed is the parameter presenting the 

greatest variation in the different locations, passing from a value of 5.4m/s in MS 5 to a value 
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of 2m/s in MS 3. The distance between these two meteorological stations is 11km, but 

differences in ground roughness between the urban and rural environment of MS 3 and MS 5 

respectively influence wind speed as described in Equation 55. 

 

 

Figure 19: Monitored network area 
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Table 3: Frequency percentages of measured environmental conditions at the five meteorological stations 
and measured current flowing in the conductor in the same locations for the period 07/12/2008-18/02/2009. 

W
s 

[m
/s

] 

 
0≤Ws≤0.4 0.4<Ws≤4.6 4.6<Ws≤8.8 8.8<Ws≤13 13<Ws≤17.2 17.2<Ws≤21.4 

MS 1 12.6% 61.2% 13.1% 1.4% 0.0% 0.0% 

MS 2 8.5% 58.1% 19.0% 0.6% 0.0% 0.0% 

MS 3 12.6% 34.2% 4.5% 0.0% 0.0% 0.0% 

MS 4 10.0% 57.7% 20.3% 2.9% 0.3% 0.0% 

MS 5 1.5% 42.6% 40.9% 9.4% 2.4% 1.2% 

 

       

W
d 

[d
eg

] 

 
0≤Wd≤5 5<Wd≤76 76<Wd≤147 147<Wd≤218 218<Wd≤289 289<Wd≤360 

MS 1 0.9% 9.2% 26.3% 37.0% 14.7% 11.4% 

MS 2 0.5% 4.7% 32.2% 36.0% 14.1% 12.0% 

MS 3 0.6% 6.1% 31.2% 26.3% 24.6% 10.8% 

MS 4 0.2% 2.8% 43.7% 28.3% 15.2% 9.5% 

MS 5 0.4% 4.4% 16.0% 41.7% 25.9% 11.3% 

 

       

T
a 

[°
C

] 

 
Ta≤-3 -3<Ta≤0.5 0.5<Ta≤4 4<Ta≤7.5 7.5<Ta≤11 11<Ta≤14.5 

MS 1 1.9% 15.6% 32.1% 33.3% 15.4% 1.0% 

MS 2 2.5% 12.7% 29.6% 30.9% 20.4% 3.5% 

MS 3 4.2% 15.8% 29.1% 29.9% 17.7% 2.8% 

MS 4 1.8% 10.7% 26.4% 33.9% 22.0% 4.7% 

MS 5 0.0% 12.6% 33.4% 37.7% 14.9% 1.1% 

 

       

S
r 

[W
/m

2 ] 

 
0≤Sr≤5 5<Sr≤112 112<Sr≤219 219<Sr≤326 326<Sr≤433 433<Sr≤541 

MS 1 2.3% 46.9% 10.2% 4.8% 0.8% 0.1% 

MS 2 2.1% 55.2% 6.3% 0.4% 0.0% 0.0% 

MS 3 2.1% 57.6% 5.3% 1.0% 0.1% 0.0% 

MS 4 1.8% 48.0% 11.0% 4.2% 0.6% 0.1% 

MS 5 2.1% 50.3% 9.8% 3.8% 0.6% 0.1% 

 

       

I [
A

] 

 
0≤I≤20 20<I≤64 64<I≤108 108<I≤152 152<I≤196 196<I≤240 

MS 1 1.7% 28.6% 38.8% 21.8% 8.3% 0.4% 

MS 2 1.3% 19.9% 38.4% 23.7% 13.1% 3.0% 

MS 3 1.6% 26.7% 37.0% 21.1% 8.0% 0.5% 

MS 4 14.2% 50.4% 16.4% 13.4% 0.5% 0.0% 

MS 5 23.3% 46.5% 22.4% 1.6% 0.0% 0.0% 

 

6.1.3 How to measure it 

Different methods were developed for validating the different parts of the algorithm. 

The validation was also possible thanks to data provided by ScottishPower EnergyNetworks 
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and described in Section 6.1.2. The data available influenced the procedure used for the 

validation and limited the number of parameters that was possible to measure. In particular 

only overhead lines temperature and environmental conditions influencing this parameter 

were monitored. Therefore no validation was possible for electric cables and power 

transformers rating models and for soil temperature and soil thermal resistivity estimation. In 

order to test the analytical models used for environmental condition estimations, 

meteorological readings in each of the five locations were compared with values estimated in 

the same place. In each case, the simulation was performed without considering the data for 

the location studied and analytical models were populated with directly measured 

environmental conditions as given in Section 3.2, without using the Monte Carlo state 

estimation algorithm. 

For example, the air temperature at location MS 1 was calculated using Equation 54 and 

measured values from MS 2 to 5. These values were then compared with data measured in 

MS 1, the latter measurement being considered as the true value of the parameters. 

Component ratings can not be directly measured, but rather calculated from standard based 

models. Therefore, conductor temperature was used for validation purposes since conductor 

operating temperatures can be directly measured and estimated values can be directly 

compared with measured values. In order to validate the model used for conductor rating, 

measured conductor temperatures were compared with conductor temperature calculated 

using the environmental conditions recorded in the same location. In this case, only the 

analytical models given in Section 3.1.1 were used. 

This process was repeated in order to validate conductor rating models for each 

meteorological station location. For example, the conductor temperature in location MS 1 was 

calculated using Equation 3 and measured environmental conditions local to MS 1. This value 
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was compared to the monitored conductor temperature at location MS 1. An analysis of the 

model validations studies is given in Section 6.2. In order to validate the thermal state 

estimation algorithm, estimated conductor temperatures in each of the five locations were 

compared with measured conductor temperatures. For example, conductor temperature in 

location MS 1 was estimated as described in Section 3.1.1.3 measured values from MS 2 to 5 

and compared to the measured conductor temperature at MS 1. An analysis of the state 

estimation validation study is given in Section 6.3. In this case, the Monte Carlo state 

estimation algorithm described in Section 6.3 was used. Results are presented with a chart 

comparing estimated and measured conductor temperature and a table reporting, for each 

monitored conductor, average error and standard deviation. The average estimation standard 

deviation is also given, along with the average standard deviation of the measured conductor 

temperature over a period of 30 minutes. 

6.2 Model validation 

6.2.1 Overhead line conductor rating model validation 

The model described in Section 3.1.1.3 was tested on the five measurement points MS 

1-5 with the methodology exposed in Section 6.1: For each measurement, point 

environmental conditions over the period 07/12/2008-18/01/2009 were used for calculating 

conductor temperature and these results were compared with conductor temperature readings 

in the same location. Figure 20 shows the comparison between calculated and measured 

values for the first week of simulation for the location MS 2. Figure 20 shows good agreement 
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between calculated and measured values, with the greatest error associated with spikes in 

measured conductor temperature not present in the trace produced by calculation. 

 

 

Figure 20: Conductor temperature, comparison between calculated and measured values in MS 2 for the 
period 07-13/12/2008 
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Figure 21: Conductor temperature, comparison between calculated and measured values in MS 1, MS 3, MS 4 and MS 5 (clockwise) for the 
period 07-13/12/2008  
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The error average value and the error standard deviation relative to the whole 

observation period for the five measured location are reported in Table 4. MS 1 and MS 2 

reports the greatest values for these two parameters. This is most likely due to the wrong 

estimation for fixed inputs values such as line orientation and conductor absorption and 

emission coefficients. MS 5 register on the contrary a null average error, and an error standard 

deviation of 1.2°C, representing the more accurate result of the whole test. 

Figure 22 shows the error probability density function and cumulative density function 

relative to the whole period for the location MS 2, chosen because of its largest error standard 

deviation, more suitable for highlighting particulars. It is possible to see that negative errors 

are more probable than positive errors. This means that the model tends to underestimate 

conductor temperature and therefore to overestimate conductor rating, with potential 

dangerous consequences in practical applications. 

Finally, in Table 5, a study on the correlation between the error in conductor 

temperature calculation and the environmental conditions for the five measurement locations 

is reported. In general, this correlation is small or very small, also because the five parameters 

act together in influencing the conductor temperature. From this table, it is possible to make 

hypotheses on the main sources of error. Considering wind speed, the correlation between 

error and wind speed is positive in all the five locations. 

 

Table 4: Conductor temperature, error average and standard deviation 

 MS 1 MS 2 MS 3 MS 4 MS 5 

Err. Average [°°°°C] -2.4 -1.8 -1.5 -1.0 0.0 

Err. St. Dev. [°°°°C] 2.1 2.6 1.7 0.9 1.2 
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Figure 22: Conductor temperature, error PDF and CDF 
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suggested in (22). However, this value tends to increase with ageing; therefore, a higher value 

could have been used in these cases. 

Finally, it is not possible to obtain particular information from the analysis for the 

correlation between error and current, since current values tend to be very similar in the five 

locations. This is true especially in MS 4 and MS 5. Furthermore, the resistance considered 

for the conductors is the same. Therefore, differences in the correlation parameter have to be 

considered as the consequence of errors caused by other parameters. A difference between 

standard conductor electrical resistance per unit length and the actual value could influence 

this parameter, but its change in sign for different locations and the lack of information on the 

installed equipment, do not allow hypotheses to be carried out in this direction. 

 

Table 5: Correlation between conductor temperature calculation and environmental condition values. 
Absolute values greater than 0.1 are highlighted 

 Ta Ws Wd Sr I 
MS 1 0.12 0.15 -0.01 -0.18 0.04 
MS 2 0.29 0.31 0.14 -0.19 -0.19 
MS 3 0.14 0.08 0.08 -0.24 -0.01 
MS 4 0.07 0.09 0.02 -0.21 0.09 
MS 5 0.03 0.03 -0.06 -0.20 0.09 

 

6.2.2 Environmental conditions models validation 

6.2.2.1 Wind speed 

Wind speed calculation is described in Section 3.2, and here the results of the test 

carried out as described in Section 6.1 are reported. In Figure 23 the comparison between 

calculated and measured wind speed values for the measurement location MS 2 in the period 
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07-14/12/2008. According to the description of the methodology in Section 6.1 this means 

that calculations were carried out using both the interpolation method described in Section 3.2 

and the soil roughness correction method described in Equation 56, using wind speed 

measurements from the other four locations MS 1, MS 3, MS 4 and MS 5. Figure 23 shows in 

general good agreement between calculated and measured values, with highest error values in 

correspondence of spikes or periods of higher measured wind speed standard deviation. 

 

 

Figure 23: Wind speed, comparison between calculated and measured values for MS2 in the period 07-
13/12/2008 
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the accuracy of the estimation of ground roughness parameters in the different locations. In 

the calculation of the average error, an error in ground roughness coefficient estimation in a 

measured location has a weight considerably higher than the same error in another location. 

Therefore, a negative average error would suggest that wind speed tend to be underestimated, 

so an excessive ground roughness was considered for that location. This would suggest also 

that in MS 3 the ground roughness was underestimated and that a higher value should be used. 

 



120 
 

 

 

 

Figure 24: Wind speed, comparison between calculated and measured values for MS 1, MS 3, MS 4 and MS 5 (clockwise) in the period 07-
13/12/2008 
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In Figure 25, where the error probability density function and cumulative density 

function for wind speed calculation in MS 2 are reported, it is possible to see that the mode 

tends to correspond with the average and it is close to zero, as the average error value of -0.3 

m/s reported in Table 6 suggests. 

 

Table 6: Wind speed, error average and standard deviation 

 MS 1 MS 2 MS 3 MS 4 MS 5 

Err. Average [m/s] 0.0 -0.3 1.8 -0.8 -0.8 

Err. St. Dev. [m/s] 0.9 1.4 1.5 1.3 1.3 
 

 

Figure 25: Wind speed, error PDF and CDF 
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row) is the only presenting positive values. In that line there are also the highest values of the 

column, because of the highest error measured in that location. On the contrary when the 

influence of this measurement point on the others is considered (vertical highlighted column), 

the correlation parameter is the lowest of the each row. 

This is because, wind speed measurements in MS 3, filtered with the ground roughness 

coefficient, gives values that are the less accurate of the whole series. It is possible to see that 

in general the correlation parameter tend to be higher for measurement locations that are next 

to each other, as for example MS 1 and MS2. 

 

Table 7: Correlation between wind speed calculation error and wind speed measurement in the other 
locations 

 Ws 1 Ws 2 Ws 3 Ws 4 Ws 5 
Ws 1  -0,31 -0,08 -0,11 0,12 
Ws 2 -0,39  -0,27 -0,24 -0,02 
Ws 3 0,61 0,57  0,61 0,58 
Ws 4 -0,37 -0,34 -0,32  -0,37 
Ws 5 -0,25 -0,19 -0,16 -0,38  

 

6.2.2.2 Wind direction 

The ability of the inverse distance interpolation to calculate wind direction was tested 

with the same technique used for wind speed calculation validation. A first qualitative 

analysis can be done analysing Figure 26 where calculated wind direction values for the first 

week in location MS 2 are compared with wind direction readings in the same location. 

Figure 26 shows that values calculated with the inverse interpolation technique can represent 

a good approximation of real conditions and can also follow very rapid wind direction 

changes, like on 13/12/2008. On the other hand, Figure 26 shows also periods with 

considerable error, like on 09-10/12/2008, where calculations produced a considerable error in 
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correspondence of a relatively constant measured wind direction. No measurement errors 

were identified in the other meteorological stations and in the same period, considerable error 

was measured also for wind speed calculation (see Figure 23).This suggests that there is room 

for improving the model used for air flow calculation. 

 

 

Figure 26:  Wind direction, comparison between calculated and measured values 
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Figure 27: Wind direction, comparison between calculated and measured values for MS 1, MS 3, MS 4 and MS 5 (clockwise)in the period 07-
13/12/2008  
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A quantitative analysis of wind direction calculation validation is given in Table 8 

where the error average and standard deviation relative to the whole validation period are 

reported for each measurement location. The average error absolute value is below 15 degrees 

in each location except MS 5, and the error standard deviation range between 39 degrees in 

MS 2 and 54 degrees in MS 1. In Figure 28 the error probability density function and 

cumulative density function for MS 2 are reported, highlighting the considerable spread of the 

results. Considering that the effect of wind direction on conductor rating described in 

Equation 26 has a period of 90 degrees, error values reported in Table 8 and Figure 28 are 

excessive. 

 

Table 8: Wind direction, error average and standard deviation 

 MS 1 MS 2 MS 3 MS 4 MS 5 

Err. Average [deg] 8 3 -7 12 -23 

Err. St. Dev. [deg] 54 39 47 51 46 
 

 

Figure 28: Wind direction, error probability densit y function and CDF 
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The correlation between the error in wind direction calculation in each location and 

wind direction measurement in the other locations used as inputs is reported in Table 9. 

Considering the high value for error standard deviation, the correlation parameter tends to be 

low in most of the cases. An exception is represented by MS 4, which presents the highest 

values for the correlation parameters, especially in reference to MS 1 and MS 2. On the other 

hand, MS 5 has very low correlation parameter value compared to the other measurement 

points. But because of the considerable average error reported in Table 8 this must be 

attributed to the fact that in that location wind direction tends to be less correlated with wind 

direction compared to other locations. Another distinctive feature is the fact that the 

correlation parameters in the column of MS 1 and MS 2 tend to have the same absolute value 

but sometimes with different sign. Even if this is most likely not a coincidence, an explication 

for this phenomenon was not found. 

 

Table 9: Correlation between wind direction calculation error and wind direction measurement in the 
other locations 

 Wd 1 Wd 2 Wd 3 Wd 4 Wd 5 
Wd 1  0,34 0,08 0,47 0,17 
Wd 2 0,26  0,03 -0,47 0,02 
Wd 3 -0,10 0,10  0,18 0,09 
Wd 4 0,32 -0,33 0,11  -0,15 
Wd 5 0,26 0,26 0,23 0,11  

 

6.2.2.3 Air temperature 

The application to air temperature calculation of the inverse distance interpolation was 

carried out as described in Section 6.1. From the qualitative analysis of Figure 29 where 

calculated values for MS 2 over the first week are compared with measured values, it is 

possible to see a good agreement between the two time series. The main error here is 



127 
 

represented by conservative assumptions made by the algorithm in correspondence of 

measurement or communication failures. This phenomenon is particularly clear on the 7th and 

the 12th of December 2008. 

 

 

Figure 29: Air temperature, comparison between calculated and measured values 

 

The comparison between air temperature measurements and air temperature calculation 

for the other four measurement points is reported in Figure 30. 
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Figure 30: Air temperature, comparison between calculated and measured values for MS 1, MS 3, MS 4 and MS 5 (clockwise)in the period 07-
13/12/2008  
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A quantitative analysis of the results is reported in Table 10, where the error average 

and standard deviation for air temperature estimation are shown for the five measurement 

points. The model produces the most accurate and precise results in MS 2 and MS 4 while in 

MS 1 and MS 5 the greatest average error and error standard deviation are recorded. When 

these error values are compared with air temperature range in Table 3, air temperature 

calculation results the one with the smallest relative error. In Figure 31 error probability 

density function and cumulative density function are reported for air temperature estimation 

in MS 2, highlighting the tight error spread for this parameter. 

 

Table 10: Air temperature, error average and standard deviation 

 MS 1 MS 2 MS 3 MS 4 MS 5 

Err. Average [°°°°C] 0.8 0.2 0.9 -0.3 0.4 

Err. St. Dev. [°°°°C] 1.5 1.4 1.8 1.6 2.0 

      
 

 

Figure 31: Air temperature, error PDF and CDF 
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Finally, in Table 11 the correlation parameters between air temperature calculation in 

each measurement location and the value of air temperature readings in the other 

measurement locations used as input is reported. In general, there is little correlation between 

these parameters. On the other hand cells relative to MS 1 and MS 5, the measurement 

locations with the lowest accuracy and precision according to Table 10, presents particularly 

high or low values. This is probably due to the fact that they are at the boundaries of the 

measurement area and the interpolation technique used reduces its accuracy when 

extrapolating data. This observation could be used in future when studying the optimal 

placement of meteorological stations. 

 

Table 11: Correlation between air temperature calculation error and air temperature measurements in 
the other locations 

 Ta 1 Ta 2 Ta 3 Ta 4 Ta 5 
Ta 1  0,05 0,07 0,07 0,03 
Ta 2 0,79  -0,13 -0,11 -0,09 
Ta 3 0,79 -0,11  -0,11 -0,07 
Ta 4 0,83 0,08 0,07  0,00 
Ta 5 0,76 0,48 0,47 0,42  

 

6.2.2.4 Solar radiation 

The application to solar radiation calculation of the inverse distance interpolation was 

carried out as described in Section 3.2. From the qualitative analysis of Figure 32, where 

calculated values for MS 2 over the first week are compared with measured values, there is a 

considerable difference between estimated and measured data. This is due to local cloud 

coverage or other local conditions such as local soil reflection not taken into account in the 

model described in Section 3.2. 
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Figure 32: Solar radiation, comparison between calculated and measured values 

 

The comparison between solar radiation measurements and wind speed calculation for 
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Figure 33: Solar radiation, comparison between calculated and measured values for MS 1, MS 3, MS 4 and MS 5 (clockwise) in the period 07-
13/12/2008  
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The considerable error can be seen in Table 12 where the error average and standard 

deviation relative to the whole observation period are reported for the five measurement 

points. In location MS 2, the highest error average and the lowest error standard deviation are 

recorded. In this case, the observation of the error probability density function shown in 

Figure 34 along with error cumulative density function, provides valuable information. The 

probability density function in Figure 34 can be considered as composed by two different 

probability density functions: the main one has an average close to zero and a reduced 

standard deviation, the second has the average around 50 W/m2 and a larger standard 

deviation. The presence of this second “component” of the error suggests the existence of 

another phenomenon not considered in the model. 

 

Table 12: Solar radiation, error average and standard deviation 

 MS 1 MS 2 MS 3 MS 4 MS 5 

Err. Average [W/m2] -10 21 20 -11 -7 

Err. St. Dev. [W/m2] 44 27 43 39 42 
 

 

Figure 34: Solar radiation, error PDF and CDF 
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Finally, the analysis of the correlation between calculation error in each measurement 

point and the value of measured solar radiation in the other four measurement points is 

reported in Table 13. Correlations parameters related to MS 1 are the ones with the highest 

absolute values and the ones related to MS 5 have the lowest absolute values of the table. 

 

Table 13: Correlation between solar radiation calculation error and solar radiation measurement in the 
other locations 

 Sr 1 Sr 2 Sr 3 Sr 4 Sr 5 
Sr 1  -0,32 0,02 -0,54 -0,39 
Sr 2 0,52  -0,13 -0,02 -0,07 
Sr 3 0,20 -0,17  -0,14 -0,11 
Sr 4 -0,37 -0,17 -0,09  -0,06 
Sr 5 -0,21 0,16 0,09 0,08  

 

6.3 State estimation validation 

The Monte Carlo based state estimation algorithm described in Chapter 4 was tested as 

described in Section 6.1: conductor temperatures in each of the five locations, estimated with 

the method described in Section 4.2, were compared with measured conductor temperatures. 

Figure 35 shows the comparison between estimated conductor temperature and measured 

conductor temperature in location MS 2 during the first week of simulations. This chart 

displays strong similarities with Figure 20. However, the main differences in estimated 

conductor temperatures arise from missing data at MS 1, 3, 4 and 5. At these points in time 

the algorithm makes conservative assumptions of the environmental conditions local to MS 2 

and therefore the predicted conductor operating temperature is higher. 
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Figure 35: Conductor temperature estimation, comparison between estimated and measured values 

for MS2 in the period 07-13/12/2008 
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Figure 36: Conductor temperature estimation and error in MS2 for the day 09/12/2008 
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Figure 37: Conductor temperature, comparison between estimated and measured values for MS 1, MS 3, MS 4 and MS 5 (clockwise) in the 
period 07-13/12/2008 
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An optimal value for the estimation standard deviation would be similar to the measured 

standard deviation but here it is roughly one third. This can be explained in two ways: Firstly, 

the steady state model used for conductor temperature calculation does not take into account 

the dynamic behaviour of the conductor, producing a less variable estimation, as seen in 

Figure 35. Secondly, this parameter is influenced by the number of simulations carried out, 

but this number is voluntarily kept low in order to reduce the computational-time because of 

the use of this algorithm in an online controller. 

 

Table 14: Conductor temperature estimation, average computational-time, error average and standard 
deviation, estimation average standard deviation 

 MS 1 MS 2 MS 3 MS 4 MS 5 
Time [s] 2.24 2.16 2.23 2.21 2.23 
Error Average [°C] -2.2 -1.9 -1.2 -1.9 1.4 
Error St.Dev. [°C] 2.2 2.4 2.3 1.9 1.9 
Estimated St.Dev. [°C] 0.118 0.120 0.121 0.119 0.121 
Measured St.Dev. [°C] 0.355 0.355 0.355 0.447 0.447 

 

The behaviour of the state estimation algorithm for measurement and communication 

failure was studied at location MS 2 by introducing a variable percentage of missing data into 

the input parameters of MS 1, 3, 4 and 5. Figure 39 shows changes in estimation average error 

and estimation standard deviation for different percentages of missing data. The meaningful 

observation occurs when 1% or more of the data is missing. Considering the average error in 

the region of 1% to 5% of data missing, the estimation average error increases linearly from 

2.6ºC to 5.4ºC. Considering the standard deviation in the region of 1% to 5% of data missing, 

a similar linear behaviour is displayed and the standard deviation of conductor temperature 

estimates increases from 0.12 ºC to 0.14 ºC. 
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Figure 38: Conductor temperature estimation, error PDF and CDF 
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Figure 39: Performance degradation in consequences of measurement or communication failures 
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6.4 Discussion 

Considering that, at present, distribution network operators have limited knowledge of 

the actual operating temperatures of overhead lines conductors, the results presented in this 

thesis are very encouraging and demonstrate the potential for the adoption of sophisticated 

state estimation algorithms in future network operation. In order to reduce the risk of a 

localised hotspot, when making an assessment of the real-time thermal rating for a long 

overhead line circuit, the overhead line can be divided into sections to represent the variation 

of external parameters such as line orientation or soil roughness. 

The section of overhead line with the lowest rating represents the weakest point of the 

overhead line system and therefore this lowest rating can be adopted as the real-time rating for 

the entire overhead line. The simulation results reported in Section 6.3 confirms that the 

thermal state estimation algorithm developed is able to estimate conductor temperature, and 

therefore line rating, with a good degree of accuracy. Considering that typical overhead line 

design operating temperature in UK ranges from 50°C to 75°C, the maximum average error 

measured (-2.2°C) represents maximum average errors of -4.4% and -2.9% for the respective 

conductor operating temperatures. 

Furthermore, the extensive tests carried out on the algorithm allow sources of error to be 

identified. In light of this, the following suggestions for estimation error reduction are made. 

Regarding environmental conditions, the interpolation method used has proven efficient for 

air temperature estimation. However, it was less successful in estimating wind speed and wind 

direction in all operating conditions. A more accurate estimation of the soil roughness 

parameters used in Equation 55 (they have been estimated observing satellite images) and a 

more complex wind flow modelling algorithm with computational fluid dynamics is likely to 



141 
 

increase the accuracy of environmental condition estimations. Commercial or open source 

software packages such as the ones used for wind farm design could easily be integrated in 

the algorithm, although this solution would be more computationally intensive. Since this 

state estimation algorithm was developed to inform an online control algorithm for the power 

output of distributed generation, computational efficiency was one of the main priorities. 

Regarding solar radiation estimation, the model proposed does not consider the effect of 

cloud coverage or local environmental factors such as reflection from surfaces in proximity to 

the meteorological station. Regarding conductor temperature, a correct measurement of 

conductor parameters and in particular of conductor resistance and line direction, would help 

to increase the accuracy of the model. Work is ongoing at Durham University for improving 

the quality of the estimation produced by the thermal state estimation algorithm in light of 

these findings. 

6.5 Conclusion 

The real-time rating estimation algorithm developed for the project “active network 

management based on components thermal properties” was extensively tested with field data 

in order to assess its performance in terms of accuracy, precision, computational-time and 

behaviour toward measurement and communication failure. This was considered an important 

step in anticipation of the open and closed loop trials expected to conclude the project in 

2010. A methodology for quantifying the qualitative parameters describing the performance 

of the algorithm was developed and described in Section 6.1. Environmental conditions 

recorded in five points on the test network where the active network management system will 

be deployed were used for the validation, along with overhead line conductor temperature 
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measured at the same points. The time series used cover a period of 71 days, from 07/12/2008 

to 18/02/2009. Unfortunately, the data sets used did not included measurement of power 

transformers hot spot temperature and load, or measured of buried electric cable temperature 

along with surrounding soil temperature and thermal resistivity. This prevented testing of the 

rating estimation performance for these other fundamental components of the electric 

network. An average error of −2.2°C, −1.9°C, −1.2°C, −1.9°C, and 1.4 °C was measured for 

the estimation of conductor temperature in the five locations when comparing estimates to 

measured results. The main source of error was ascribed to the physical models used for 

describing overhead line conductor thermal behaviour, in particular the use of a steady state 

model. Uncertainty in weather stations installation information and on estimated values for 

parameters such as ground roughness were also identified as potential sources of error. 

Finally, suggestions on possible future development that could lead to improvements in 

algorithm performance were given, identifying further research areas. 
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Chapter 7    Real-time rating impact 

quantification 

The aim of this study is to provide quantitative evaluation of real-time rating potential. 

Simulations were carried out calculating, for each component location, environmental 

condition values, as described in Section 3.2. These values were then used for calculating 

component real-time ratings using the models described in Section 3.1. Results were analysed 

to investigate the influence of environmental conditions on overhead lines, electric cables and 

power transformer ratings. Simulation results were analysed in three different ways: (i) 

comparing the rating cumulative probabilities of different component types against one 

another within the same network and environmental conditions, (ii) comparing the GWh 

headroom of four different overhead line types subjected to four different UK climates and 

(iii) assessing the increased energy throughput from DG that may be accommodated by using 

real-time ratings, as opposed to seasonal ratings, for a single overhead line. 

7.1 Datasets 

MetOffice datasets were used, referring to four British airports: Bishopton (Glasgow), 

Valley (Anglesey), Woodford (Manchester) and Heathrow (London). The data comprised 
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hourly averages of wind speed, wind direction, air temperature, solar radiation and soil 

temperature throughout the calendar year 2005. 

In Figure 40 it is possible to observe the different site characteristics for the wind speed: 

Valley, on the west coast of Wales, is the windiest area with the highest maximum wind speed 

values and a probability distribution (PD) with the lowest peak. Heathrow, which is located in 

an urban environment, has wind speeds that are generally lower and more concentrated in the 

range between 2-7 m/s. As seen in Figure 41, air temperature appears to be the least variable 

parameter. Different sites may be differentiated by average temperature values. In Figure 42, 

the behaviour of the soil temperature is illustrated. Whereas the air temperature shows a 

variation with one peak across the year, soil temperature appears to vary with multiple peaks. 

Regarding wind direction, the presence of prevalent winds from the West and the North-West 

in the range 180°-360° was noted for all areas. Some areas also exhibited site-specific 

prevalent wind directions, for example from the South-West in Woodford and from North-

North-West in Bishopton. Regarding solar radiation, no significant differences between the 

four sites were found. 

 

 

Figure 40: Wind speed probability distribution 
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Figure 41: Air temperature probability distribution  

 

 

Figure 42: Soil temperature probability distribution 
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future for real-time rating validation purposes. Voltage levels in the four networks studied 

vary from 6.6kV to 132kV. The ScottishPower EnergyNetworks Site network is shown in 

Figure 43 and has a meshed topology, with a prevalence of Lynx 175mm2 overhead lines. 

The network also has eleven electric cable circuits of 150mm2 at the 33kV level and 

thirteen power transformers rated at 45MVA, 60MVA, 90MVA and 240MVA. UKGDS A, 

shown in Figure 44, has six overhead line circuits with Zebra and Lynx conductors rated at 

50°C, 65°C and 75°C, twelve electric cables circuits with 150mm2 and 240mm2 conductors, 

and sixteen transformers with ratings from 14MVA to 500MVA. UKGDS B, shown in Figure 

45, consists of six overhead lines with Zebra and Lynx conductors, eight electric cable circuits 

with 150 mm2 conductors and thirteen power transformers, with ratings from of 21MVA and 

500MVA. UKGDS C, shown in Figure 46, is characterized by a prevalence of electric cable 

circuits and power transformers. It comprises two overhead lines with Zebra conductors, 

twelve electric cable circuits with 150mm2 and 240mm2 conductors and eighteen power 

transformers with ratings from 14MVA to 500MVA. Electrical parameters for modelling the 

UKGDSs may be found in (143) and technical characteristics for the overhead lines may be 

found in (121). 

 

 

Figure 43: Site trial 
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Figure 44: UKGDS A 

 

 

Figure 45: UKGDS B 

 

 

Figure 46: UKGDS C 
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Finally, a summary of the components present in each network is provided in Table 15. 

 

Table 15: Network components 

Network Component Number of 
components 

SITE Overhead line (Lynx 50) 11 
SITE Electric cable (150mm2) 11 
SITE Power transformer (OFAF 240) 5 
SITE Power transformer (ONAN 45) 5 
SITE Power transformer (ONAN 60) 2 
SITE Power transformer (ONAN 90) 1 
UKGDS_A Overhead line (Lynx 50) 1 
UKGDS_A Overhead line (Lynx 65) 3 
UKGDS_A Overhead line (Zebra 75) 2 
UKGDS_A Electric cable (150mm2) 4 
UKGDS_A Electric cable (240mm2) 10 
UKGDS_A Power transformer (ODAF 500) 1 
UKGDS_A Power transformer (ONAN 23) 1 
UKGDS_A Power transformer (ONAN 60) 6 
UKGDS_A Power transformer (ONAN 90) 2 
UKGDS_A Power transformer (ONAN 14) 2 
UKGDS_B Overhead line (Lynx 65) 4 
UKGDS_B Overhead line (Zebra 75) 2 
UKGDS_B Electric cable (150mm2) 7 
UKGDS_B Electric cable (240mm2) 1 
UKGDS_B Power transformer (ODAF 500) 2 
UKGDS_B Power transformer (ONAN 100) 1 
UKGDS_B Power transformer (ONAN 21) 2 
UKGDS_B Power transformer (ONAN 23) 5 
UKGDS_B Power transformer (ONAN 45) 2 
UKGDS_B Power transformer (ONAN 90) 1 
UKGDS_C Overhead line (Zebra 50) 2 
UKGDS_C Electric cable (150mm2) 1 
UKGDS_C Electric cable (240mm2) 9 
UKGDS_C Power transformer (ODAF 500) 1 
UKGDS_C Power transformer (ONAN 60) 1 
UKGDS_C Power transformer (ONAN 14) 1 
UKGDS_C Power transformer (ONAN 23) 10 
UKGDS_C Power transformer (ONAN 60) 1 
UKGDS_C Power transformer (ONAN 14) 2 
UKGDS_C Power transformer (ONAN 23) 1 
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7.2 Results 

In order to quantify the influence of environmental conditions on power system ratings, 

simulations were carried out on the networks described in Section 7.1 subjected to a range of 

UK climatic conditions. For each scenario, the minimum, maximum and average rating values 

together with additional potential annual energy throughput (in GWh) were calculated and the 

results are tabulated in Table 16. This data may be summarised as follows: The average rating 

of overhead lines ranged from 1.70 to 2.53 times the static rating with minimum and 

maximum ratings of 0.81 and 4.23 respectively. The average rating of electric cables ranged 

from 1.00 to 1.06 times the static rating with minimum and maximum ratings of 0.88 and 1.23 

respectively. The average rating of power transformers ranged from 1.06 to 1.10 times the 

static rating with minimum and maximum ratings of 0.92 and 1.22 respectively. 

 

Table 16: Simulation results, component ratings and theoretical headroom 

Component 
Static 
rating 
[MVA] 

RTR Av. 
[MVA] 

RTR 
Min. 

[MVA] 

RTR 
Max. 

[MVA] 

RTR 
Headroom 

[GWh/year] 
Overhead line (Lynx 50) 89 213 84 419 988.48 
Overhead line (Lynx 65) 108 220 94 390 898.94 
Overhead line (Zebra 50) 154 328 125 595 1359.66 
Overhead line (Zebra 75) 206 402 178 731 1576.20 
Electric cable (150mm2) 21 21 18 25 2.94 
Electric cable (240mm2) 30 32 27 37 13.33 
Power transformer (ODAF 500) 500 532 469 580 282.41 
Power transformer (OFAF 240) 240 258 223 284 154.75 
Power transformer (ONAN 100) 100 108 92 120 70.80 
Power transformer (ONAN 90) 90 97 83 108 63.72 
Power transformer (ONAN 60) 60 65 55 72 42.48 
Power transformer (ONAN 45) 45 49 41 54 31.87 
Power transformer (ONAN 23) 23 25 21 28 16.28 
Power transformer (ONAN 21) 21 23 19 25 14.87 
Power transformer (ONAN 14) 14 15 13 17 10.80 
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7.2.1 Rating comparison of different component types 

In Table 17, the simulation results for the Site network exposed to the Valley climatic 

scenario are given. For each component type, the average, minimum and maximum real-time 

rating is given, and the additional headroom theoretically obtainable with real-time ratings (as 

opposed to seasonal ratings) is quantified. The additional headroom was calculated by 

summing the difference between the real-time rating and the seasonal ratings across the year 

in hourly intervals. 

 

Table 17: Simulation results for SITE network components exposed to the Valley climatic scenario 

Component 
Static 
rating 
[MVA] 

RTR 
Average 
[MVA] 

RTR 
Min 

[MVA] 

RTR 
Max 

[MVA] 

Additional 
RTR 

headroom 
[GWh/year] 

Electric cable (150mm2) 21 21 19 23 1.83 
Power transformer (ONAN 45) 45 48 44 52 30.7 
Power transformer (OFAN 240) 240 257 235 276 149.1 
Overhead line (Lynx 50) 89 253 107 419 1342 

 

For overhead lines, the seasonal ratings reported in (121) were used for this calculation. 

In Figure 47, the rating cumulative probabilities for the four components described in Table 

17 are shown. Real-time ratings have been normalized using the static component rating. 

From inspection of Figure 47 it is evident that overhead lines show the greatest potential for 

rating exploitation. As seen in Table 16, electric cable and power transformer ratings have a 

limited variability. This is because soil temperature, soil thermal resistivity and air 

temperature are much less variable than wind speed and direction and it is these latter 

parameters that greatly influence the rating of overhead lines. By representing component 

ratings as cumulative probabilities, the potential comparison with power transfer duty (PTD) 

curves is facilitated. Moreover, distribution network operators are able to specify a probability 
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with which they are comfortable to operate a particular component and an assessment of the 

corresponding rating may be made. 

 

 

Figure 47: Rating cumulative probability for SITE network components exposed to the Valley climatic 
scenario 
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Figure 48: Magnified rating cumulative probability for SITE network components exposed to the Valley 
climatic scenario 
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variations. Variation bars are representative of the possible headroom ranges simulated. The 

size of the variation band is determined by the number of components existing within each 

case study network. A large variation band represents a frequently occurring component. 
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By inspecting the position of the lower variation band, it is evident that the additional 

headroom is greater for conductors with a greater initial static rating, and this effect is 

accentuated by conductor rated temperature. This is because the conductor temperature rise 

above ambient temperature multiplies the heat exchange coefficient as seen in Equation (6). 

Regarding the influence of the climates, Valley exhibits the highest average wind speed 

values and Bishopton the lowest average temperatures as seen in Figure 40 and Figure 41. 

Since overhead line ratings are more sensitive to wind speed than air temperature, the climate 

of Valley leads to the greatest overhead line power transfer headroom. Clearly, from this 

evidence the value of adopting a real-time rating system is dependent on geographical 

location. 

 

 

Figure 49: Influence of different UK climates on overhead lines power transfer headroom 

 

Therefore, any utility interested in deploying a real-time rating system should conduct a 

site specific study to assess the value of real-time ratings as the output varies according to 

climate, and therefore the economic value is different. Furthermore, the quantification 

assessment presented in Section 7.2 allows a conservative approach to be adopted in 
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developing real-time rating systems since an investor may choose to utilise the rating seen at 

the bottom of the variation band. 

 

7.2.3 Power transfer accommodation assessment 

This section presents a methodology for quantifying the practically exploitable 

headroom for the specific case of a 132kV Lynx overhead line conductor with a maximum 

operating temperature of 50°C subjected to the Valley climate in the Site network. This 

location was selected since it is an area attractive to prospective wind farm development. The 

practically exploitable headroom was quantified as follows: Meteorological wind data from 

the Valley site was used together with the GE 3.6MW wind turbine power curve (144) to 

assess the power generated throughout the year and transferred through the overhead line 

conductor. 

Clearly, the exposure of the overhead line conductor to environmental conditions varies 

as a function of line orientation and ground roughness. Therefore when making an assessment 

of the real-time thermal rating, the overhead line was divided into sections to represent the 

variation in these parameters. The section of overhead line with the lowest rating represents 

the weakest point of the overhead line system and therefore this lowest rating was adopted as 

the real-time rating for the entire overhead line. By comparing the power transfer across the 

year with the overhead line rating, for both seasonal and real-time rating regimes, the wind 

farm installed capacity was sized to correspond to a line cumulative overload probability of 

1/1000 (8.76 hours/annum). 
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Results are summarized in Figure 50, where the line real-time rating cumulative 

probability, along with the inverse cumulative probability for two different power transfer 

duties, seasonal and switchgear ratings are represented. The cumulative probability curve (the 

real-time rating distribution) may be interpreted by selecting an acceptable probability at 

which the component may be operated, for example 0.1 (10%). This corresponds to a rating of 

149 MVA. Therefore there is the probability of 10% that during the course of the year the 

rating is less than or equal to 149 MVA (conversely there is a 90% probability that the rating 

is greater than 149 MVA). Similarly, the inverse cumulative probability (curves 1 and 2) may 

be interpreted by selecting a power transfer duty value, for example 76 MVA on the power 

transfer duty 2 curve. This corresponds to a probability of 10%. Therefore, there is a 

probability of 10% that during the course of the year power transfer duty 2 is greater than or 

equal to 76 MVA (conversely there is a 90% probability that the power transfer duty is less 

than 76 MVA). 

For the seasonal rating regime an installed capacity of 89 MW (25 turbines) could be 

accommodated and an annual energy yield from the wind farm of 245 GWh could be attained. 

For the real-time rating regime, an installed capacity of 137 MW (38 turbines) could be 

accommodated and an annual energy yield from the wind farm of 377 GWh could be attained. 

This represents an increase in installed capacity and annual energy yield of 54% which is 

specific to the weather data used, the type of conductor, the risk at which the distribution 

network operator is prepared to operate the asset and the type of turbine selected. An annual 

energy yield increase of 54% would significantly enhance the revenue stream of a wind farm 

developer, demonstrating the value of a real-time rating approach. However, this is only 10% 

of the theoretical average additional headroom for this type of overhead line conductor 

exposed to the Valley climate, as seen in Figure 49. 
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Installing a larger capacity of distributed generation together with the adoption of an 

online power output controller (145) could allow a greater percentage of the theoretical 

average additional headroom to be realised whilst maintaining an acceptable level of risk to 

the distribution network operator. An estimation of the losses associated with the two PTD 

curves was carried out in the following way: From the average environmental conditions at 

the Valley site and from the average value of the power transfer, the average conductor 

temperature was calculated. From this, the average conductor resistance was calculated and, 

using the hourly values of the power transfer, it was possible to obtain the losses arising from 

Joule effect for the whole year. Loss values of 0.12% and 0.19% of the entire annual energy 

throughput were obtained for PTD 1 and PTD 2 respectively. 

 

 
Figure 50: Cumulative probability comparison for a Lynx conductor in the Valley scenario 
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7.2.4 Impact of different control strategies 

This last case was analysed in greater detail in order to assess the economical advantage 

of the implementation of a real-time rating-based distributed generation control respect of a 

static-rating-based distributed generation control or traditional network reinforcement. This 

was done in a joint research with S. C. E. Jupe, the other PhD student in Durham working on 

the same projects, and these results have been published in (145). The simulation results 

presented in this section considers a 150 MW off shore wind farm connected to the 7 km 

overhead line described above in order to create the necessity of a constraint. A degree of 

conservatism was added considering daily minimum ratings instead of the hourly ratings used 

for the study in Section 7.2.3. The other cases considered were: the use of the minimum static 

seasonal rating (89 MVA) of the existing line through the year, the use of continuous seasonal 

ratings on the existing line (89, 103 and 111 MVA for summer, spring/autumn and winter 

respectively), and the construction of a new line with an UPAS conductor (summer rating 176 

MVA). 

The five solutions for controlling the distributed generation output considered in this 

analysis are: 

1) Tripping based on static yearly rating 

2) Tripping based on static seasonal ratings 

3) Control based on static seasonal ratings and load demand 

4) Control based on real-time ratings and load demand 

5) Network reinforcement for unconstrained connection 

The tripping solution implemented in the cases 1 and 2 consists of reducing the 

distributed generator output to a value corresponding to the rating of the line (static yearly or 
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seasonal) plus the base load of an eventual local load. This solution, particularly simple, does 

not require excessive measurement or communication infrastructure and the cost of the local 

relay necessary to carry out the operation is estimated at £10k. The control solution, 

implemented in the cases 3 and 4, consists of constraining the distributed generator with a 

more complex system taking into account real-time local demand and, respectively in case 3 

and 4, static seasonal or real-time rating, approximated here with the daily minimum. The 

estimated cost for the monitoring and regulation equipment used in case 3 is estimated at 

£50k, and the cost of the demand-following distributed generator output control based on real-

time ratings is estimated at £100k. Finally, the case of network reinforcement able to remove 

any thermal constraints to the generator is simulated with the construction of a new overhead 

line equipped with 300mm2 UPAS conductors with a maximum operating temperature of 

75°C and with a minimum summer rating of 176 MVA. The cost of this reinforcement is 

estimated at £2M. 

The annual energy yield at the DG connection busbar was calculated for each solution, 

by integrating the real power output of the DG scheme across the year in 30 minute intervals. 

The per unit electrical losses (I2R) resulting from each solution implementation were 

calculated using the current flowing in the overhead line with per unit resistances of 0.0070 

and 0.0041 for the ‘Lynx’ and ‘UPAS’ conductors respectively.  These were then summated 

across the year on a half-hourly basis to produce annual energy loss figures.  For each solution 

the net annual revenue was calculated by multiplying the annual energy yield at the 

distributed generator connection bus by £101.43/MWh (£52.15/MWh wholesale electricity 

price (146) + £49.28/MWh ‘Renewables Obligation Certificate’ sale price (147)) and making 

an adjustment for the cost of the losses incurred by transferring this energy to the slack busbar 

(calculated as the annual energy losses multiplied by the wholesale electricity price). 
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The basic tripping scheme based on summer static ratings (Case 1) was taken as the 

datum solution with a capital cost of £10k and net annual revenue of £42.35M (based an 

energy yield at the DG connection busbar of 418.1GWh and 1.3 MWh lost through power 

transfer to the slack bus).  The estimated marginal costs (due to additional network costs), 

predicted marginal revenues (due to additional energy yield) and marginal losses (resulting 

from electrical power transfer to the slack busbar and changes in electrical resistance of the 

line) were compared to this solution.  This allowed a basic Net Present Value comparison of 

the alternative solutions, based on their relative marginal costs and marginal revenues. A 10% 

discount rate and 20 year economic life was assumed (148). 

The capital cost of the wind farm itself was neglected as this would be constant across 

each solution. Furthermore, because the wind farm is connected at via a single overhead line, 

any faults or scheduled maintenance on this line will cause it to shut down.  Since such events 

have an equal constraint on the energy yield of each solution this effect was neglected.  All 

the costs within the financial evaluations are estimates of equipment costs, based on the most 

appropriate data available at the time of consideration.  

The results from the quantification methodology are summarised in Table 18. 

 

Table 18: Quantification methodology results 

Solution 1 2 3 4 5 
Marginal Cost [£k] 0 0 40 90 1990 
Marginal Annual Energy 
Yield [%] 0 4.93 5.24 10.75 10.76 

Marginal Annual Energy 
Losses [%] 0 18.41 18.99 43.39 -16.31 

Marginal Net Annual 
Revenue [£M] 0 2.08 2.21 4.53 4.58 

Marginal 20 Year NPV  
at 10% dcf [£M] 0 17.71 18.76 38.46 36.97 
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For this case study, it appears that controlling DG output to follow load demand based 

on a single summer static rating (Case 3) yields greater revenue for the developer than 

switching ratings on a seasonal basis and tripping DG as a result (Case 2).  DG tripping based 

on seasonal thermal ratings (Case 2) requires a lower initial investment, however, the risk on 

the part of the DNO is greater if seasonal ratings are utilised. This is due to the possibility of 

an anomalous hot day occurring when ratings have been relaxed.  This risk may be mitigated 

by investment in a dynamic thermal ratings system to provide accurate knowledge of the 

current thermal status of the network.   

Economically, the most attractive solution to the developer is the CCM based on 

component dynamic thermal ratings and load demand (Case 4).  The annual revenue of the 

project is increased by £4.53M and shows the highest marginal net present value at £38.46M.  

For this case study, this solution appears to be more attractive than the alternative 

reinforcement option (Case 5).  This provides an unconstrained energy yield (and hence 

maximum annual revenue) but would require an extra capital investment of £1.99M to 

upgrade the overhead line. Network reinforcement (Case 5) would reduce network losses 

relative to the other solutions since the larger cross-sectional area of the conductor would 

reduce the electrical resistance to power flow. However, despite increasing electrical losses 

through implementing the constrained connection management solution described in case 4, 

the cost of capital for the DG developer is likely to make the active management solutions, 

with lower upfront costs, a more attractive investment. 
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7.3 Conclusion 

In this study, it was found that overhead lines exhibit the greatest potential real-time 

rating exploitation since they exhibit the greatest rating variability. Furthermore, it was found 

that power transformers and electric cables have a lower real-time rating exploitation potential 

relative to overhead lines. The analysis showed that the average rating of overhead lines, 

electric cables and power transformers ranged from 1.70 to 2.53, 1.00 to 1.06 and 1.06 to 1.10 

times the static rating, respectively. The value of adopting a real-time rating system is 

dependent on geographical location, with the average ratings for the networks exposed to the 

climate of Valley and Glasgow exceeding the average rating of the networks exposed to the 

climates of Woodford and Heathrow. Therefore, any utility interested in deploying a real-time 

rating system should conduct a site specific study to assess the value of real-time ratings as 

the output varies according to climate, and therefore the economic value is different. 

The increase in power transfer from DG that could be accommodated through a real-

time thermal rating system implementation was investigated. For a Lynx overhead line 

conductor with a maximum operating temperature of 50°C it was found that a GWh energy 

throughput increase of 54% could be accommodated by operating the line with a real-time 

rating regime as opposed to a seasonal rating regime. It was also demonstrated that a 

constrained connection manager informed by dynamic thermal ratings was the most cost 

effective solution for facilitating wind generation access to the case study network when 

compared to alternative solutions. In particular it was found that in the case considered, a real-

time rating system would allow a power transfer comparable with the one of a new line with a 

rating equal or greater than the wind farm capacity, but with a front investment twenty times 

smaller. 
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Chapter 8    Discussion 

This work describes the real-time thermal state estimation system for power system 

components of the distribution network realised at Durham University. This was developed 

within the framework of the project “Active network management based on component 

thermal properties”, partially funded by the Department for Business Innovation and Skills 

and involving Durham University, ScottishPower EnergyNetworks, AREVA-T&D, PB Power 

and Imass. 

The system is developed for estimating, in real-time, the rating of overhead line 

conductors, electric cables and power transformers over a wide geographical area from a 

minimum number of meteorological stations located in the same geographical area. The 

system automatically identifies thermal bottlenecks and for each circuit in the network 

provides a real-time rating based on the rating of its most vulnerable component. Furthermore, 

the algorithm follows a probabilistic approach in rating calculation, integrating environmental 

condition variability and measurement uncertainty in order to provide a range of ratings 

characterised by their own probability. This allows the distribution network operator to 

operate the network at a selected risk level and reproduce in real-time the probabilistic 

approach already used for power system components static seasonal rating. The description of 

the real-time rating algorithm is followed by a quantification of the potential advantages 

arising from the installation of a real-time rating system on a portion of distribution network. 

This helped to quantify the potential exploitable headroom of each power system component 
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type and to quantify the actual extra amount of power that it could be possible to transfer on 

an overhead line connecting a wind farm. The work also presents a validation of the algorithm 

developed and of the models used for environmental conditions interpolation and for 

component rating against field data. 

8.1 Real-time rating system 

8.1.1 Modelling 

Component thermal models widely used both in industry and in academia have been 

used for describing power system components thermal behaviour. Behind this choice, there 

was the desire of building the rest of the research on solid bases, building confidence on the 

suitability of the system developed in this research for field tests and facilitating the 

development of commercial applications. 

The model used for overhead lines conductor rating is based on the IEC standard (21) 

for overhead conductors rating, enriched by the wind direction correction proposed by the 

CIGRE Working Group 12 (22). The flexible algorithm structure, allows manufacturers to 

apply the rating model preferred by each particular customer or even to implement their own 

model. Between the three models considered, the CIGRE model is more detailed but it was 

discarded because of the greater number of parameters necessary, while the IEEE (20) model 

was not used because UK overhead lines rating is based on the IEC method. Also for electric 

cables, available industrial standards were used. Of the two considered rating methods, the 

IEC (46) and the ENA (47) one, the second was chosen for a practical implementation in the 

code. The IEC standard requires an excessive number of cable construction parameters that 

were difficult to identify for the old components usually installed on the UK distribution 

network. Therefore the less detailed method based on tabulated rating values and tabulated 
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correction coefficients for the different environmental conditions described in (47) was 

preferred. The procedure of comparing different standard models for component rating and 

then selecting the most suitable was followed also for power transformers. The three models 

considered were the IEC loading guide (71), the IEEE loading guide (72) and the ENA 

loading guide (125). Very little difference exists between these three documents and the IEC 

method was chosen also in this case because of its use for transformer rating in the UK and in 

the network used for validation. 

Regarding environmental conditions modelling there are no standard methods already 

used by the electric transmission and distribution industry that could be easily applied in this 

project. Furthermore, the complexity of the physical phenomena behind environmental 

conditions variation is often very complex, nonlinear and chaotic, requiring often considerable 

computational resources. Considering these two constraints, but also the fact that currently 

any method is officially used for environmental condition calculation for conductor rating 

calculation in the electricity distribution industry, the following approach was adopted. The 

value of each parameter is interpolated in each component location from the values measured 

in meteorological stations of known location and corrections, which consider aspects of the 

natural phenomenon described, are applied where possible. Wind speed and directions are 

strictly correlated parameters since they are used for describing the air flow and for this 

reason they are interpolated separately in the algorithm. Wind speed interpolation is corrected 

for taking into account the effect of soil surface roughness, both on wind speed measurement 

at the meteorological stations and in each conductor location. This adds a possible source of 

error in the estimation of soil surface roughness parameters, but it is expected that this error is 

limited in comparison with the error of the simple interpolation. Wind direction is simply 

interpolated and it was explained in Section 3.2 how the error generated by the algorithm for 
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particular sets of data has a reduced effect on conductor temperature calculation and hence on 

conductor rating calculation. An alternative solution would have been to convert the wind 

description given in polar coordinates (wind speed and wind direction) to a Cartesian 

coordinates (latitudinal and longitudinal wind speed). These values would then have been 

interpolated for calculating again in each conductor location the absolute value of wind speed 

and the angle relative to the conductor. This was not done in order not to influence wind 

direction calculation with the potential error generated by wrong soil surface roughness 

coefficient estimation. 

Air temperature and solar radiation calculations are based on simple inverse distance 

interpolation without additional correction. The opportunity of introducing altitude correction 

for air temperature was considered but a practical implementation in the algorithm was 

discarded. The presence of little altitude excursion in the test area would not have made a 

rigorous test possible, and the correction could have become an additional non-measurable 

source of error. For the same reason the solar radiance is simply interpolated and no 

additional correction for local factors that could potentially modify readings value were 

implemented in the algorithm. Furthermore, air temperature is dependent also on wind 

direction, since winds from different directions would bring in an area air from areas with 

potentially different environmental conditions. An example could be a costal area, where a 

change in wind direction could expose the network to air from the sea, with different a 

different temperature from the air from the mainland. Another example could be that in 

general in the UK southern winds tend to be warmer than northern winds. 

Regarding soil environmental conditions, influencing electric cables rating, additional 

calculations where necessary in order to calculate the necessary parameters values. Initially 

only soil temperature readings at 5cms of depth and no soil thermal resistivity readings were 
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available. Therefore, a complex soil dynamic model was developed for calculating soil 

temperature at electric cables burial depth and soil thermal resistivity from rainfall readings. 

Later, the test site was instrumented with a soil moisture sensor (linearly dependent with soil 

thermal resistivity) and a soil temperature sensor placed at cables burial depth. The 

interpolation of these values is expected to produce a reduced error with respect to the 

dynamic soil behaviour model developed in the first part of the project. 

In conclusion, it is necessary to highlight that these models have been developed and 

tested considering a network area of a typical British rural network supplied by a substation. 

This was estimated in an average of 400 km2, roughly equivalent to a square with an edge of 

20 km. The flexible structure of the algorithm makes possible to increase the number of 

meteorological stations, both to increase the density of measurement on the area, and to 

increase the area observed. Therefore it would be easy to increase the scale of the are 

monitored, although it is reasonable to expect that for considerably larger areas more refined 

meteorological models would be necessary. 

8.1.2 Thermal state estimation 

In order to make an appropriate use of the models described in Chapter 3, a suitable 

estimation technique was studied. The development of an estimation technique for the real-

time rating of power system components is a consequence of the interest in developing a 

system able to deal with input uncertainty and measurement and communication failures, with 

the ability of estimating the thermal state of a wide network area. A first analysis of the 

problem shows that the considerable number of nonlinear relations between the different 

parameters which influence power system component ratings, suggests that traditional 

estimation techniques based on linear algebra would not have been suitable for this problem. 
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After a comparison of estimation techniques previously tested for power system 

components thermal rating, the Monte Carlo method was finally selected and appropriate 

methodologies were defined for each part of the method. The Monte Carlo method is a 

methodology with a series of steps, but different approaches and techniques can be adopted at 

each step and for linking the different passages. A single probability density function, the 

Beta distribution, was used for describing the probability density of all of the variable 

parameters of the problem. This decision was taken in order to reduce the complication of the 

algorithm in provision of its use by third party developers. 

Attention was given also to the selection of a suitable variate generation method, in 

order to have precise and fast sampling of different parameters probability distributions. 

Finally, the inverse transform method was selected. During the development of the research, 

possible improvements were identified and Section 8.5 describe the ones that have not been 

implemented because they would have required additional studies or because their possible 

positive outcomes where not clearly defined. 

8.1.3 Software design and development 

In order to produce real-time rating estimation for the power system components 

comprised in a wide network area, an algorithm integrating static and dynamically updated 

databases and the models described in Chapter 3 were developed. The development process 

started with the definition of fundamental requirements of the algorithm, along with the 

definition of the expected output and the available inputs. The algorithm for power system 

component real-time rating was written in the language VB.Net and is composed by: a web 

service, the actual code and three databases. 
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The web service acts as an interface with other programs. The code is written according 

to the object oriented programming paradigm and divided into six classes describing the 

methods and the data structure of the problem. The databases are used for storing static 

information, such as network components and geographical related data, and dynamic data, 

such as real-time environment conditions readings. Initial algorithm requirements have been 

satisfied, a simplified version of the algorithm is installed in two relays in the test network, 

where open and closed loop tests must be carried out and the whole algorithm is being 

implemented in commercial products by AREVA, a consortium partner. A critical part of the 

development was represented by the necessity of carrying out the rating estimation in a period 

of time compatible with the exigencies of the active distributed generator power output 

controller. 

The controller calculates distributed generators set points with a frequency of 30 

minutes, therefore the estimation time should have been a fraction of this time. Currently, as 

shown in 6.3, the estimation time for a single component is in the range of 2.3 seconds, a 

period that would allow the rating of a circuit made of 10 components in less than 30 seconds, 

and the rating of the 10 most thermally vulnerable components in less than 3 minutes. 

Therefore the computational-time satisfy the initial requirements. This performance was 

obtained thanks to the general structure of the algorithm, the optimization of the code in 

particularly critical functions and to the choice of the precision accepted for the Monte Carlo 

simulation. 

This last parameter can be customised, and in further applications of the code it will be 

possible to increase estimation precision at the expense of computational-time or vice versa. 

In order to assure the possibility of improving and developing additional applications based 

on the code, the algorithm was written following a clear object oriented approach, with a 
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dynamic structure of the algorithm, made of different functions calling each other. This allows 

improvements to be made in single parts of the code, without influencing other parts. Finally, 

in order to allow third party applications to use the algorithm, a web service was developed to 

act as an interface. Web services are designed to support interoperable machine-to-machine 

interaction over a network. During the development of the code, several possible 

improvements were identified. They are reported in Section 8.5. 

8.1.4 Validation and impact quantification 

The validation, described in Chapter 5 was only carried out on overhead line conductors 

because of the lack of available data for electric cables and power transformer temperatures. 

Furthermore, because of the impossibility to measure the conductor rating directly for a 

particular conductor maximum operating temperature, the component thermal model was used 

for calculating the conductor temperature corresponding to the measured current. The 

comparison showed good agreement between calculated and measured overhead line 

conductor temperatures, with an average error for the five points considered from 0°C to -

2.4°C and an error standard deviation from 0.9°C to 2.6°C, over a period of 71 days. This 

error value is considered encouraging and it is expected that a revision of the thermal model 

used, especially regarding the values of constants used for heat exchange calculation, would 

improve these values considerably. 

The validation described in Chapter 5 was carried out for the four atmospheric 

environmental condition considered: wind speed, wind direction, air temperature and solar 

radiation. Soil parameters such as soil temperature and soil thermal resistance have not been 

validated because the network area was not instrumented with sensors for these environmental 

conditions. 
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Regarding wind speed calculation, the comparison between measured values in each 

meteorological station location with wind speed calculated with the interpolation of wind 

speed measurements from the other four meteorological stations presents an average error 

range between -0.8 m/s and 1.8 m/s and the average standard deviation ranges from 0.9 m/s to 

1.5 m/s. These values are considered satisfactory for the use in the real-time rating system 

developed, although an improved airflow model and a better knowledge of local 

environmental conditions, such as surface soil roughness, are expected to reduce the 

calculation error. Regarding wind direction, the comparison between calculated and measured 

data presents good agreement. As explained in Section 3.2, the algorithm used produces a 

result shift of about 180° in correspondence of input values corresponding to winds from the 

north. Although this is reflected in the considerable nominal average errors, which ranges 

from -23° to 12° and in the considerable average error standard deviation, which ranges from 

39° to 54°, its influence in conductor temperature estimation is considerably smaller. 

Conductor temperature is influenced by wind-conductor relative angle and not by the 

absolute wind direction, and this parameter has a period of 180°. Regarding air temperature, 

the comparison between measured and calculated values in the five meteorological stations 

presents an average error ranging from -0.3°C to 0.9°C with an average error standard 

deviation ranging from 1.4°C to 2.0°C. These values are considered satisfying and it is not 

expected to considerably reduce these error values without considerably increasing the 

number of meteorological stations. Finally, regarding solar radiation, the validation of the 

inverse distance interpolation technique calculation with measured data presents mixed 

results. The average error ranges from -11W/m2 to 20W/m2, with an error standard deviation, 

which ranges from 27W/m2 to 44W/m2. These errors are presumably caused by local 

conditions, such as shading or reflection from local surfaces not taken into account in the 
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model. In particular since the meteorological stations used for validation were mounted on 

overhead line towers, if they are not facing the south it is probable that the solar radiation 

sensor is shaded for part of the day, altering in this way both the initial data used for 

simulation and the readings used for comparison. 

The validation presented in Chapter 5 represents a quantification of the ability of the 

real-time state estimation algorithm to produce accurate, precise, reliable and fast component 

rating estimations. As for the component model validation it was not possible to directly 

measure the real-time rating, conductor temperature calculated considering the measured 

current flowing in the conductor was compared with the conductor measured temperature. 

From a quantitative point of view average error range from -2.2°C to 1.4°C and average error 

standard deviation range from 1.9°C to 2.4°C in correspondence of the five temperature 

measurement points. These values are in line with component model errors, this means that 

additional errors introduced with the environmental conditions estimation does not have an 

particularly negative impact on the final conductor temperature (and hence conductor rating) 

estimation. 

The real-time rating algorithm validation also shows that the algorithm is able to carry 

out the temperature estimation for a conductor in a period between 2.16s and 2.24s. This 

means that the algorithm can rate an overhead line circuit divided in 10 sections in less than 

30s, a result in line with the requirements of a real-time controller. Considering that the Monte 

Carlo based system developed provides a confidence range for the results, its standard 

deviation at every rating was compared with the measured conductor temperature standard 

deviation relative to the same time period. This comparison shows that the estimated standard 

deviation ranges between the 27% and the 33% of the measured standard deviation. 
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The reason for this difference must be found in the structure of the Monte Carlo method 

and in particular in the method used for assessing the simulation precision: In order to reduce 

the computational-time, this was set to a fixed value of 5% for every parameter, both for 

environmental conditions estimation and in conductor temperature estimation. However, since 

these two estimations are in series, the error is increasing. This value was chosen as a 

compromise between estimation precision and computational-time. This was done 

considering also that improved precision would considerably increase the number of 

necessary simulations and that extreme results present in the “tale” of the distribution are 

likely to represent volatile conditions not representative of the state of the conductor over the 

period of 30 minutes considered. 

On the other hand, the comparison between the simulation standard deviation, 

influenced by input variability, and the simulation error, influenced by model’s errors, shows 

that the errors in the models used for environmental condition and conductor temperature 

calculation represent the main source of error in the algorithm. In the following section, a 

possible methodology for taking into account model errors is suggested. The real-time rating 

algorithm validation measured also expected performance degradation in correspondence of 

missing data relative to measurement or communication failures. The test shows that rating 

accuracy and precision decrease linearly with a linear increase of the percentage of missing 

inputs. This is in line with the requirements of the real-time state estimation algorithm. 

Finally, studies were also carried out in order to assess the possible outcomes in term of 

increased network transmission capacity arising from the implementation of a real-time rating 

system. The study confirmed that overhead lines exhibit the greatest potential real-time rating 

exploitation since they exhibit the greatest rating variability and that power transformers and 

electric cables have a slight real-time rating exploitation potential relative to overhead lines. It 
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was confirmed that the value of adopting a real-time rating system is dependent on 

geographical location. Therefore, any utility interested in deploying a real-time rating system 

should conduct a site specific study to assess the value of real-time ratings with respect to 

climate variation. 

The increase in power transfer from DG that could be accommodated through a real-

time thermal rating system implementation was investigated. For a Lynx overhead line 

conductor with a maximum operating temperature of 50°C it was found that a GWh energy 

throughput increase of 54% could be accommodated by operating the line with a real-time 

rating regime as opposed to a seasonal rating regime. It was also demonstrated that a 

constrained connection manager informed by dynamic thermal ratings was the most cost 

effective solution for facilitating wind generation access to the case study network when 

compared to alternative solutions. 

Validation results are clearly influenced by the test site location and by the 

measurement timeframe. The test location, on the north coast of Wales and close to wind farm 

perspective areas is characterised by high wind speeds. The meteorological station of Valley 

is in fact the one with the highest average wind speed and lowest average air temperature of 

the four meteorological stations used in Chapter 7. It is reasonable to expect that the same test 

real time rating system would have behaved in a different way if deployed in a site close to 

the weather station of Heathrow, with the highest average temperature and lowest average 

wind speed. However, it is also reasonable to expect that the different behaviour of the 

thermal state estimation algorithm would not have altered the measured performance in terms 

of estimation accuracy and precision. These two parameters in fact do not depends on 

macroscopic yearly meteorological site characteristics, but on meteorological parameters 

behaviour in a timeframe of about half hour. The test site and timeframe anyway, do not allow 
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reproducing a complete series of conditions to what the thermal state estimation algorithm can 

be faced. High air temperature and low wind days are not included, as they are not included 

periods with high power flows in the circuits. As a result conductor temperature was often 

considerably below the maximum design operating temperature. 

8.2 Real-time rating system for distributed generation control 

A description of the distributed generation output control informed by component 

thermal properties developed in parallel with the real-time rating algorithm is described in this 

section. 

The controller aims to maximise the power output of distributed generators taking into 

account the real-time ratings of the network area where the generators are connected and 

dispatching real and reactive power set points to each generator. This involves solving two 

problems: to identify the generators contributing to the thermal overload of a particular 

network component and to curtail them according to a suitable scheme. The controller must 

also to keep voltages within their operating limits and consider measurement and 

communication failures for providing a graceful and conservative degradation in control 

performance. 

The control methodology developed in order to maximise power output from multiple 

distributed generators schemes considering real-time component rating is summarised in 

Figure 51. The real-time control is based on a previous network analysis, which assesses the 

power flow sensitivity of each component relative to each generator. A list of the most 

thermally vulnerable components is then realised and used for establishing the priority of the 

circuits to monitor. The priority list is also used  to reduce the number of components for what 

is necessary to estimate a real-time rating. The first step of the algorithm is to check the 
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integrity of the network through the analysis of the position of the switchgears. If the 

algorithm identifies the presence of outages, safety values for distributed generators set points 

are applied. 

Once this security check is passed, the algorithm runs a power flow simulation and calls 

the real-time rating estimations for the components resulting overloaded. At this point, if the 

control identify thermal overloads, necessary constraints are calculated according to the 

selected curtailment strategy. Otherwise, the algorithm verifies the possibility to relax existing 

constraints if additional capacity became available. 
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Figure 51: Control algorithm flowchart 

 

Different strategies have been studied in this project for curtailing single or multiple 

schemes of distributed generator in presence of thermal overloads in their proximity or in 

other areas of the network. Regarding multiple distributed generation schemes, the following 

strategies have been studied for possible implementation, all based on the power flow 

sensitivity factor methodology, in order to solve thermal problems occurring in network 

locations far from the generation connection: 
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– Egalitarian curtailment 

– Technically most appropriate curtailment 

The first approach consists of curtailing distributed generators schemes in reverse order 

respect to their connection to the network. In this way, the generator installed first, will not be 

constrained because of the excessive power flow generated by another generator installed 

later in time. This solution can be applied with simple contractual agreements between 

distribution network operators and generator developers. Two other methodologies have been 

studied in order to maximise multiple generator output. The egalitarian approach consists of 

reducing of a similar percentage, the output of all the generators involved in the creation of a 

thermal overload. This approach has the advantage to broadcast a single signal to all the 

generators, and since a reduction in percentage terms is given, generators producing more 

power and for this reason contributing more to the thermal overload, are constrained more. 

Finally, in the technically most appropriate approach, generators are ranked according 

to their sensitivity factor with respect to the circuit experiencing the thermal overload and are 

constrained in this order. In this way, the generator in the position to contribute more directly 

to the solution of the problem is called to solve it first. It is important to note that, although 

particularly interesting from a technical and economical point of view, the last two 

approaches, would need a compensation scheme to be instituted amongst the different 

generators connected to the network, in order to compensate the generators with the highest 

priority connection of the eventual losses in production. 

8.3 Real-time rating system site trial 

In Figure 52 an overview of the real-time rating system developed is reported, and the 

figures from Figure 53 to Figure 55 show particular aspects of the practical implementation. 
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Figure 52: Schematic representation of the real-time rating system developed 

 

A portion of ScottishPower EnergyNetworks distribution network (a) where thermal 

overloads are expected in consequence of the connection of new wind farms was used for 

installing and testing the equipment. In two substations (b1,2) a kit (c) composed of a 

meteorological station (c1) and a control relay (c2) with a simple rating algorithm installed. 

Thanks to a modem (c3) the relay is able to communicate through the internet (d) with a 

remote server (e) (currently located in AREVA-T&D’s laboratories (f)). In the remote server, 

there is a more complex real-time rating estimation algorithm (which is the result of the 

research described in this work) and a distributed generator power output control algorithm, 

which can send optimized set-points to a remote wind farm (h). The server can also 

communicate information regarding the thermal state of the distribution network through an 

internal network (i) or the public internet to display only screen (j) in control rooms or to an 

operator (k). 
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As previously mentioned the distributed generator power output control informed by the 

real-time thermal rating algorithm is installed in the delocalised server. This algorithm 

considers the inputs from the meteorological stations installed in the two substations and 

calculate real-time ratings for different sections of each line, in order to identify potential 

thermal bottlenecks. Furthermore, the algorithm provides a range of possible component 

ratings, each one characterised by its own probability. Selecting a defined probability allows 

the operator to quantify and maintain network operational risk within accepted values. 

The two relays installed in the substations have the role of final protection for the 

equipment of the network and they are not related to the distributed generation power output 

control. A simpler version of the real-time rating algorithm is installed in the substation relays 

and the ratings calculated in the delocalised server are compared in real-time with the 

calculations that consider the readings from a single meteorological station. A rating 

calculated in this way is more variable and typically higher than a rating calculated by the 

server, which interpolates environmental conditions in order to identify local hot-spots on the 

network. If for some reason the rating calculated by the relay is lower than the rating 

calculated by the server, or there is no signal from the server, the control relay takes the 

necessary measures in order to prevent damages to the installed network components. 

The following figures show different characteristics of the solution implemented in the 

test site. Figure 53 shows the meteorological station in one of the two substations (a) and the 

three visible sensors (b) for wind speed and direction, solar radiation and pressure. Wind 

speed and direction are measured with a two axes ultrasonic anemometer: a solution without 

moving parts and thus reduced maintenance costs. The air temperature sensor is in the main 

body of the station. Two other sensors, for soil temperature and soil thermal resistivity 

measurement, are not visible and are buried in the ground in the proximity of the monitored 
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outside world. The system developed makes wide use of existing technologies such as remote 

controlled meteorological stations, flash memory PCs and existing telephone lines (usually 

available in a substation environment and interchangeable with GPRS). This considerably 

reduced the installation cost
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Figure 53: Meteorological station in a distribution substation and particular. a) pressure sensor, b) solar 
radiation sensor, c) 

 the user interface of the control relay is displayed and in 

output doors are shown. Figure 55 (a) shows the connections with the environmental 

Figure 55 (b) shows the modem used for the connection with the 

outside world. The system developed makes wide use of existing technologies such as remote 

controlled meteorological stations, flash memory PCs and existing telephone lines (usually 

lable in a substation environment and interchangeable with GPRS). This considerably 

the installation cost, focusing resources on the algorithmic and experimental part of 

Figure 56 a portion of overhead line in the test area is shown.

Meteorological station in a distribution substation and particular. a) pressure sensor, b) solar 
radiation sensor, c) wind speed and direction sensor 
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Figure 55: Substation relay: a) input from meteorological station (Figure 1). b) modem for communication 

 

Figure 

Figure 54: Substation relay user interface 

Substation relay: a) input from meteorological station (Figure 1). b) modem for communication 
to the outside world 

Figure 56: 132kV overhead line in the site trial area 
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Substation relay: a) input from meteorological station (Figure 1). b) modem for communication 
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Chapter 9    Conclusion and Further 
Work 

9.1 Conclusion 

This work described the real-time thermal state estimation system for distribution 

network power system components realised at Durham University in the framework of a 

partially Government-funded research and development project. The system involves the use 

of a limited number of meteorological stations, a series of analytical models for estimating 

component ratings and a Monte Carlo based algorithm. This takes into account input 

uncertainty and provides safe estimations in case of measurement or communication failure. 

The system was realised for meeting fundamental requisites identified after 

consultations with distribution network operators and design and protection engineers from 

different firms of the research consortium. These requisites have been listed in Section 1.5 

and particulars of their implementation are reported in the list below. 

– Cost-effective installation and maintenance is obtained thanks to the system 

structure, based on a limited number of meteorological stations. The cost of the 

whole active network management solution was estimated in the region of 

£100k. 

– Maintenance of statutory clearings is satisfied maintaining conductor operating 

temperature below the line design maximum operating temperature, as explained 

in section 3.1.1. The error in conductor temperature estimation identified in 
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Chapter 6 must be taken into account in further developments preceding a 

commercial application. 

– In order to not inflict permanent damage to the components, the system prevent 

the temperature of each part of each component of the network to exceed it’s 

maximum continuous operating temperature. 

– Maintaining component operating temperature within design limits prevent also 

to reduce significantly its operating life. On the other hand the study shown that 

increased power flows are likely to increase electrical cable and power 

transformer insulation ageing speed but this can be seen as a sign of a more 

efficient asset’s utilisation. 

– Safe estimation in case of measurement or communication failures is provided 

thanks to a series of filters applied to input data. The extensive algorithm 

validation described in Chapter 6 shown how algorithm performance 

degradation, in terms of accuracy and precision, advances linearly with the 

proportion of missing or corrupted data and without a sudden fall in 

performance. 

A series of possible dangerous situations were identified in section 1.5 and the solutions 

identified are here listed. 

– In order to prevent that a sudden drop in wind speed would leave an overhead 

line with a power flow greater than its real time rating, rating estimation time 

was reduced in order to allow more frequent estimations to be carried out. An 

appropriate interface with the power flow control scheme is also necessary for 

this cope. 
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– A non secure network operation due to inadequate network thermal state 

estimation is prevented thanks to the extensive validation carried out and 

described in Chapter 6. The test showed an average error between -2.2°C to 

1.4°C in overhead line conductor temperature estimation over a period of 71 

days and identified in component thermal model used for rating calculation the 

main source of error. 

– To prevent the case of thermal overloads not relieved because of the temporal or 

the spatial resolution of the real-time rating system, a series of approaches have 

been developed. Firstly, component thermal state estimation time vas reduced to 

an average of 2.16-2.24 seconds. Secondly, in order to allow the system to detect 

local hotspot in a circuit, each circuit was divided into several sections 

characterised by uniform line direction and environment. The rating of each 

section is then calculated separately and the rating of the most constrained 

component is used as the rating of the whole circuit. 

– The event of a thermal overload on a non-monitored components is avoided 

thanks to the system architecture based on the estimation of component rating, 

and not on direct component thermal measurement. 

The development of the real-time rating system was also supported by studies 

highlighting potential benefits and issues arising from a practical implementation. A summary 

of the point that the researched answered is provided in the list below. 

– Previous project on power system thermal monitoring have been identified and 

discussed in Section 2.4. The most relevant were identified in (6) and (9). 
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– A suitable architecture for the real-time rating system able to satisfy the points 

identified in the research objectives listed in Section 1.5 was identified. The 

solution proposed is described in detail in Chapter 5. 

– The impact of the implementation of a real-time rating system on renewable 

energy integration was studied and the results are reported in Chapter 7. The 

research showed that, in the case of a wind farm, the additional annual energy 

yield from distributed generation that could potentially be accommodated 

through deployment of a real-time thermal rating system was found to be 54% of 

the line static summer rating for the case considered. 

– Situations where real-time ratings could be applied and should not be applied 

have been identified. Not heavily loaded circuits where limited hours of thermal 

overloads are expected belong to the first category, and the presence of a power 

flow control scheme was found essential for the application of real-time ratings. 

– The increased component rating (in MVA) and the increased power transmission 

capacity (in MWh) obtainable with the use of real-time rating was also 

quantified as described in section 7.2. It was found that the average rating of 

overhead lines, electric cables and power transformers ranged from 1.70 to 2.53, 

1.00 to 1.06 and 1.06 to 1.10 times the static rating, respectively. It was also 

fount that, considering the minimum rating uplift measured for each component 

type, the implementation of a real-time rating system could increase the energy 

transferred through overhead lines, underground cables and power transformers 

by the 70%, 0% and 6% respectively. 

Although this research can be considered concluded, a number of further research areas 

have been identified and described in the following section. 
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9.2 Further work 

9.2.1 Modelling 

The validation described in Chapter 5 proved that the thermal model used for 

calculating overhead line conductor temperature and hence conductor rating represents a 

source of error. Although this error was considered acceptable, further studies correlating 

environmental condition and conductor temperature measurements could lead to 

improvements in the rating algorithm increasing its accuracy. Unfortunately, the dataset used 

for the real-time rating algorithm validation did not comprised buried electric cables 

temperatures and soil parameters measurements. Therefore, a similar study should be 

undertaken also for buried electric cables. As for electric cables, the power transforming 

rating model was not tested in the validation of the real-time rating algorithm. In addition, an 

extended validation of the thermal model used with field data would be useful. 

Although these results are referred only to overhead line conductors, the assessment of 

the potential of a real-time rating system described in Section 7.2.1 shown that overhead line 

conductors, being the most exposed power system component type, present the largest 

possible headroom. Electric cables and power transformers, with their higher insulation and 

thermal capacitance, would present more accurate results with the use of dynamic models. 

Regarding wind speed and direction modelling, the algorithm realised could be improved in 

several ways. 

Firstly, the direct interpolation of wind direction produces errors for a reduced inputs 

dataset. Although it is explained how the consequences of this error are reduced, it could be 

removed with a numerical data pre-processing. Instead of interpolating separately wind speed 

and direction, it is possible to decompose the wind in its longitudinal and latitudinal 
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components. These two components can then be interpolated in the component location and 

there used again for calculating wind speed and direction on the conductor. Computational 

fluid dynamics techniques could be also used for improving wind speed and direction 

estimation in overhead lines conductor locations. 

Although this method is more computationally intensive than the interpolation 

technique used and it would not be possible to use it with the Monte Carlo estimation 

algorithm, the improved accuracy could justify the calculation of few samples. This can be 

done with a computational fluid dynamic algorithm specifically written for the real-time state 

estimation algorithm, or integrating commercial software packages. 

Regarding air temperature, it could be possible to introduce an altitude correction factor 

to take into account the variation of air temperature at different altitudes. This would be 

necessary in a mountain region where components can be placed at considerably different 

altitudes. Regarding solar radiation, the interpolation used in the algorithm produced 

considerable errors in the estimation of peak values. It is therefore necessary first to carry out 

a site visit in order to assess the presence of shading from trees or other obstacles on the solar 

radiation sensor. Then it is necessary to improve the model for taking into account shading 

and reflection from local surfaces with different reflection coefficients. The system of models 

used for describing soil dynamic behaviour and for estimating soil temperature at cables 

burial depth and soil thermal resistance have not been tested against field data as for 

atmospheric parameters. Therefore, an extended validation such as the one carried out for 

wind speed, wind direction, air temperature and solar radiation estimation should be carried 

out in order to assess the accuracy of the models. This is a necessary step for a future 

deployment of the real-time rating algorithm for cable systems extended over large areas. 
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Finally, considering the similarities between the interpolation method used and a neuron 

of an artificial neural network, it would be worthy to investigate the possible use of a neural 

network for estimating all the environmental conditions in each component location. Such 

system would calculate first the optimal weighting for estimating environmental conditions in 

meteorological station locations for particular inputs datasets, for interpolating them in a 

second step to the component location. This is expected to improve environmental condition 

estimation accuracy. 

9.2.2 Estimation technique 

Possible improvements identified during this research regarding the estimation 

technique adopted have been implemented during the work. The Beta distribution used in the 

algorithm proved to be as flexible as expected in describing the probability distribution of 

different phenomena and it was not felt necessary to add additional distributions, also in order 

not to increase the algorithm complexity. Additional studies could be carried out on “extreme 

values theory” and its application for improving estimation performance. 

9.2.3 Software design and development 

A potential improvement identified during the algorithm validation described in Chapter 

5 is the real-time rating accuracy and precision self assessment. This consists of comparing in 

real-time meteorological stations readings against environmental conditions estimated in the 

meteorological station location without the use of the readings from that meteorological 

station in order to assess in real-time the error introduced by the models. The error calculated 

at every meteorological station can then be interpolated and used for correcting environmental 

condition estimation in other component locations. The same can be done comparing 
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conductor temperature estimation with measured conductor temperature, taking into account 

the error given by the thermal model used for calculating the real-time rating. This is expected 

to improve considerably the accuracy of the algorithm, correcting in particular models’ 

inaccuracies or errors. 

9.2.4 Validation and impact quantification 

Regarding the validation of the real-time rating system, further work should be carried 

out for testing the performance of the algorithm for electric cables and power transformers 

rating. The use of the system only for overhead lines conductor real-time rating does not 

allow exploiting fully the potential of the real-time state estimation developed, which allows 

network operators to monitor the thermal state of a wide network area. Although overhead 

lines are the most critical component because of their exposure to environmental condition 

and their rating dependence to the considerable variability of wind speed and direction, it is 

believed that tests should be carried out before utilising the algorithm on circuits comprising 

electric cables and power transformers. 

Furthermore, the whole system is still in test and open- and closed- loop trials will take 

place in 2010. These tests would allow validation of the combined behaviour of the real-time 

rating system and the distributed generator power output controller, identifying possible 

improvements and further research areas. Additional work could also be carried out in the 

area of the quantification of the impact of real-time rating systems on the distribution 

network. In particular, it would be necessary to consider the effect of additional constraints 

such as voltage rise and fault level rise that could potentially limit the benefits described in 

Section 7.2.3. Finally, a study was carried out on the combined us of real-time rating and 

distributed generators power output control, but real-time rating can also be applied in 
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combination with other active network management techniques, such as demand side 

management or energy storage. 

9.2.5 Off-line planning tool 

The primary application for the algorithm developed in this research, is for calculating 

real-time ratings to be used in the active distributed generators control algorithm described in 

Section 8.2. However, it is felt that the work done could be used in applications regarding 

other aspects of the interaction between the power system and the environment. 

The algorithm developed can be used with little modifications for carrying out real-time 

rating feasibility studies. This will be necessary before the installation of any real-time rating 

system, both based on component temperature monitoring and on environmental condition 

monitoring. An off-line planning tool based on the real-time rating algorithm could be used in 

several scenarios. A simple case, similar to the one analysed in Section 7.2.3 and Section 

7.2.4, consists of the connection of a single wind farm on an existing line and in the 

estimation of the expected curtailment experienced by the wind farm before and after the 

installation of a real-time rating system. In another situation, it is possible to imagine a 

distribution network operator planning the construction of a new line for connecting a zone 

with new wind farms developments to the existing network.  

Future connected generation can only be estimated roughly, since different wind farm 

developers could not be able or interested in completing the generation plant. In these cases, 

low estimates could prevent the potential of an area to be completely exploited. Alternatively, 

high estimates could result in assets underutilisation. A preliminary study assessing the impact 

of a real-time rating system would allow the distribution network operator to plan a 



191 
 

connection for a reasonable expected generation, being able at the same time to offer further 

non firm connections contracts based on the line real-time rating.  

This kind of planning studies can be carried out both with the use of historical-time 

series of environmental data and with the use of the Monte Carlo method already 

implemented in the code or a combination of the two, according o the availability of existing 

data. In this case, the Monte Carlo method would be used with estimated probability 

distributions in the case of parameters for what historical-time series are difficult to find or are 

particularly corrupted. This could also be used to assist network operations during planned 

outages. The installation of a real-time rating system could unlock additional capacity in a 

network area stressed by the presence of work reducing the capacity of particular circuits. 

This would allow more flexible planning and if necessary, longer outages. 

9.2.6 Rating forecast 

Another possible implementation of the work carried out in this research is the 

development of a tool able to forecast component ratings with different time horizons. A 

similar application would be useful in an active controller similar to the one developed in this 

research project, or as an information tool for the control room. It is expected that the passage 

from a reactive to a predictive control methodology would allow a more secure operation of 

the network and moreover an improved management of the operating risk. It would not be 

difficult to adapt the probabilistic-based data structure of the algorithm to the wide variation 

of weather forecasts, that could be obtained from existing meteorological offices or though 

data series analysis. Figure 57, from the preliminary study reported in (149), shows an 

example of rating forecasts for the day 18/09/2008, represented from the reference time of 

midnight. 
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Two main considerations arise from the observation of these results: As expected, the 

error increases with the distance of the forecast from the reference time. At 6pm, the 

possibility to have a real time rating below the value of the static seasonal rating is forecasted. 

In this case, the minimum forecasted rating in the late afternoon corresponds with the daily 

peak for the power transfer on the line. If the line utilization increased because of an increased 

connection of distributed generation, this would create a problem and the necessity to curtail 

part of the generation. On the other hand, the ability to forecast this situation and to quantify 

its probability, would allow appropriate decisions for generation control to be taken. 

Considering the different precision found for different time horizons, it is recommended to 

take into account this parameter, along with the distance from the forecast reference time, 

when developing control strategies for power flow management. 

Existing load forecast methodologies could be combined with rating forecast in order to 

improve network management. Rating forecast could be particularly useful for managing load 

growth where this causes the exceeding of the thermal capacity of a line or a transformer for a 

reduced number of hours per year. This phenomenon is more visible at higher voltage levels 

in the distribution network. Different techniques should be used for forecasting environmental 

conditions and component ratings at different time horizons. 

In particular, time series analysis could be used for short range rating forecasting and 

commercial meteorological office forecasts can be used for long term rating forecasts. In 

summary, the work carried out in this research could have outcomes in other areas of the 

power system industry such as the ones mentioned above. For this reason, in the development 

of the real-time rating algorithm an open architecture that would have facilitated the 

integration possible future functionalities was adopted. 

 



193 
 

 

Figure 57: Rating forecast at different time horizons 
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Algorithm details 

Classes 

Component 

The class “Component” is designed for describing the structure and the thermal 

behaviour of electric network component. It is the most complex class of the algorithm, 

compose by six sub-classes describing respectively an electric network, the electric circuit, 

the single element of the circuit, the general parameters of each element, overhead line 

conductors, electric cables and power transformers. The static structure of the class is 

described in Error! Reference source not found.. 

The main idea behind the architecture of this class is that a network is modelled as a list 

of circuits and a circuit is modelled as a list of elements. Each element can be an overhead 

line, an electric cable or a power transformer. Substations can be modelled or as independent 

circuits, or the transformer can be considered the final or initial element of a circuit, 

replicating the same transformer for the high and low voltage circuit. 
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Figure A - 1: Component_Class static diagram 

 

Component.Network 
Error! Reference source not found. shows the graphical representation for the sub-

class “Network”. This class has only two attributes:  

– Name 

– Network_Circuits 

Whilst the name is a single string, the list of circuit is an array of instances of the 

“Circuit” class. The class has also two functions: 

– Load_Data 

– Find_Circuits_in_Network 

The method “Load_Data” takes the network name as input and returns an instance of 

the “Network” class populated with the parameters read into the database. The method 

Component

Network

Circuit

Element

General_Param...

OHL

UGC

PTR
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“Find_Circuits_in_Network” return a list of the names of the circuits belonging to the 

network, and it is used in the method “Load_Data” 

 

Table A - 1: Component.Network class 

Component.Network 

Name  

Circuit_Components 

String 

Component.Circuit() 

Load_Data(Name, Configuration) 

Find_Circuits_in_Network(Name, Configuration) 

Component.Network 

String() 
 

Component.Circuit 
The “Circuit” class has two attributes and three methods. The two attributes are: 

– Name 

– Circuit_Components 

In this case too, the name is a string, whilst “Circuit_Components” is an array of 

instances of the class “Element”, described later. The three methods of the class are: 

– Load_Data 

– Find_Components_in_Circuit 

– Circuit_Rating 

The method “Load_Data” uses the circuit name as input and returns an instance of the 

“Circuit” class populated with the parameters read into the database. The method 

“Find_Components_in_Circuit” return a list of the names of the elements belonging to the 

circuit, and it is used in the method “Load_Data”. The method Circuit_Rating takes as input a 

Circuit object and the time, for returning a value of the rating of the circuit, calculated as the 

rating of the component with the lowest rating in the circuit. Error! Reference source not 

found. shows the representation for the sub-class “Circuit”. 
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Table A - 2: Component.Circuit class 

Component.Circuit 

Name String 

Circuit_Components 

String 

Component.Element() 

Load_Data(Name, Configuration) 

Find_Components_in_Circuit(Name, Configuration) 

Circuit_Rating(Name, Configuration) 

Component.Circuit 

String() 

Single 
 

Component.Element 
The “Element” class has four attributes and six methods. The four attributes are: 

– General_Parameters 

– OHL_Parameters 

– UGC_Parameters 

– PTR_Parameters 

These attributes are instances of classes specifically designed for describing electric 

network component thermal properties and they are described later in this section. The six 

methods of the class are: 

– Calculate_Rating_MVA 

– Calculate_Static_Rating_MVA 

– Get_Power_Flow 

– Calculate_Temperature 

– Get_Component_Type 

– Load_Data 

The method “Calculate_Rating_MVA” returns a single value for the rating in MVA of 

the single component, whilst the method “Calculate_Static_Rating_MVA” returns a single 

value corresponding to the static seasonal rating for that component in the period 

corresponding to the time of the request. This latter function is not longer used in the 

algorithm but was kept for possible future improvements. The function 
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“Calculate_Temperature” returns the temperature of the component. It makes use of the 

method “Get_Power”Flow” which obtains current readings from the observation database. If 

component power flow is not measured, the function returns the component rated maximum 

temperature. The method “Get_Component_Type” returns the type of component (between 

overhead lines, electric cables and power transformers) and is used in several parts of the 

algorithm for selecting the right method corresponding to the component type described by 

the object. Finally the function “Load_Data” returns the instance of the “Element” class 

corresponding to the component’s name. A representation of the “Element” class is shown in 

Error! Reference source not found.. 

 

Table A - 3: Component.Element class 

Component.Element 

General_Parameters 

OHL_Parameters 

UGC_Parameters 

PTR_Parameters 

Component.General_Parameters 

Component.OHL 

Component.UGC 

Component.PTR 

Calculate_Rating_MVA(Component, Environment, 
Configuration) 

Calculate_Static_Rating_MVA(Component, Time, 
Configuration) 

Get_PowerFlow(Element, Date, Configuration) 

Calculate_Temperature(Load, Component, Environment, 
Configuration) 

Load_Data(Name, Configuration) 

Get_Component_Type(Name, Configuration) 

Single 

 

Single 

 

Single 

Single 

 

Component.Element 

String 
 

Component.General_Parameters 
The class “General_Parameters” has no methods and thirteen attributes. The attributes 

are: 

– Name 

– Type 

– Type_Specification 
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– Circuit 

– Network 

– Rating_MVA 

– Rated_Voltage 

– Real_Time_Rating 

– Spring_Rating_MVA 

– Summer_Rating_MVA 

– Autumn_Rating_MVA 

– Winter_Rating_MVA 

– Place 

These attributes represents a list of the attributes of every element independently from 

their type. The attributes “Name”, “Circuit” and “Network” are strings for the storage of the 

component’s name and the names of the circuit and the network to which it belongs. The 

attributes “Type” and “Type_Specification” are used for storing respectively the component 

type (overhead line, electric cable or power transformer) and an additional description relative 

to the component. The latter attribute is not used actively in the algorithm but was added for 

facilitating the offline data analysis. The attributes “Real_Time_Rating” and “Rating_MVA” 

are used for storing the real-time rating in Amperes if applicable (not for power transformers) 

and in MVA, whilst “Rated_Voltage” stores a value corresponding the component rated 

voltage (in this case too, not for power transformers) and is used for calculating the rating in 

MVA for the component. Component seasonal static ratings are stored in the attributes 

“Spring_Rating_MVA”, “Summer_Rating_MVA”, “Autumn_Rating_MVA”, and 

“Winter_Rating_MVA”. Although spring and autumn rating are currently the same, it was 

decided to leave an additional attribute in case of future modifications of the static rating or 
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the use of the algorithm in countries with different regulations. Finally the attribute “Place” is 

an instance of the class “Environment.Place” containing all the geographical information 

relative to the component location such as latitude, longitude or soil roughness. 

A representation of the “General_Parameters” class is shown in Error! Reference 

source not found.. 

 

Table A - 4: Component.General_Parameters 

Component.General_Parameters 

Name 

Type 

Type_Specification 

Circuit 

Network 

Rating_MVA 

Rated_Voltage 

Winter_Rating_MVA 

Spring_Rating_MVA 

Summer_Rating_MVA 

Autumn_Rating_MVA 

RealTime_Rating 

Place 

String 

- 

- 

- 

Single 

- 

- 

- 

- 

- 

- 

- 

Environment.Place 

  
 

Component.OHL 
The class “Component.OHL” (OHL is an acronym for “OverHead Line”) provides a 

representation of the thermal behavior of an overhead line conductor. The class has nine 

attributes and thirteen methods used mainly for calculating the component real-time rating. 

The nine attributes are: 

– Conductor_Code 

– Line_Dir_Nord 

– Height 

– Rated_Temperature 
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– Emissivity 

– Absorbivity 

– Diameter 

– Resistance20 

– Th_Res_Coeff 

The attribute “Conductor_Code” is used for describing the type of conductor. 

“Line_Dir_Nord” describe the clockwise angle in degrees between the axis of the component 

and the north, “Height” describes the height of the conductor from the soil and 

“Rated_Temperature” is used for storing the value of the maximum design rated temperature. 

The attributes “Emissivity” and “Absorbivity” are used to store the value for the conductor’s 

surface emissivity and absorbivity factor used for calculating the radiative heat exchange and 

the solar gain. The attribute “Diameter” is used to store the value of the conductor’s diameter 

used in all heat exchange formulae. Finally the attributes “Resistance20” and 

“Th_Res_Coeff” represents respectively the conductor’s electrical resistance at 20°C and the 

conductor’s electrical resistance rate of change with the themperature. 

The methods of the class “Component.OHL” are: 

– Calculate_Rating_MVA 

– Calculate_Static_Rating 

– Calculate_Current 

– Calculate_Component_Temperature 

– Calculate_Resistance 

– Calculate_Solar_Radiation 

– Calculate_Radiative_Heat_Hexchange 

– Calculate_Convective_Heat_Hexchange 
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– Calculate_Corrected_Convective_Heat_Hexchange 

– Calculate_Nusselt_Forced 

– Calculate_Nusselt_Natural 

– Calculate_Angle_Correction 

– Load_Data 

These methods are mainly developed for calculating conductor rating, except for 

“Load_Data” and “Caclulate_Component_Temperature”. The first return an instance of the 

class “Component.OHL” populated with the data read in the static parameters database and 

corresponding to the component named in the input. The second returns component 

temperature, and can be used only if the current flowing in the conductor is monitored locally. 

The method “Calculate_Static_Rating” return the static seasonal rating of the conductor 

corresponding to the season, whilst the method “Calculate_Rating_MVA” returns the real-

time rating in MVA. Because of the importance of this method in the whole algorithm, 

particular attention is given in its description. The method “Calculate_Rating_MVA” has for 

input one instance of the class “Component.OHL” and one instance of the class 

“Environment.Environment_for_Rating” and returns as output a single vlue for the 

component rating. It makes use of the method “Component.OHL.Calculate_Component_ 

_Current” and then converts the value in Amper given by this method in MVA thanks to 

the component rated voltage stored in the attribute “Component.OHL.Rated_Voltage”. 

 



A 11 
 

Table A - 5: Component.OHL class 

Component.OHL 

Conductor_Code 

Conductor_Old_Code 

Line_Dir_Nord 

Height 

Rated_Temperature 

Emissivity 

Absorbivity 

Resistance20 

Diameter 

Th_Res_Coeff 

String 

- 

Single 

- 

- 

- 

- 

- 

- 

- 

Calculate_Rating_MVA(Component, Environment, 
Configuration) 

Calculate_Static_Rating(Component, Time, Configuration) 

Calculate_Current(Component, Environment, Configuration 

Calculate_Component_Temperature(Recorded, 
Component,Environment,Configuration) 

Calculate_Resistance(Component,Environment, Temperature, 
Configuration) 

Calculate_Solar_Radiation(Component, Environment, 
Configuration) 

Calculate_Radiative_Heat_Exchange(Component, Environment, 
Configuration) 

Calculate_Convective_Heat_Exchange(Component, 
Environment, Configuration) 

Calculate_Corrected_Convective_Heat_Exchange(Component, 
Environment, Configuration) 

Convective_Nusselt_Forced(Component, Environment, 
Configuration) 

Convective_Nusselt_Natural(Component, Environment, 
Configuration) 

Convective_Angle_Correction(Wind_Direction, 
Line_Direction,Configuration) 

Load_Data(Name, Configuration) 

Single 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component.Element 
 

The method “Component.OHL.Calculate_Component_Current”, which uses the same 

inputs of the method “Component.OHL.Calculate_Rating_MVA”, calculates component 

rating with the energy balance described in Section 3.1.1 and calls the methods 

“Calculate_Resistance”, “Calculate_Solar_Radiation”, 

“Calculate_Radiative_Heat_Hexchange”, and “Calculate_ 
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_Corrected_Convective_Heat_Hexchange” for calculating respectively conductor 

electrical resistance, solar radiation gain, radiative heat exchange and convective heat 

exchange. The method “Calculate_Corrected_Convective_Heat_Hexchange” calls in turn the 

methods “Calculate_Nusselt_Forced”, “Calculate_Nusselt_Natural” and “Calculate_Angle_ 

_Correction”. 

 

Component.UGC 
The class Component.UGC is designed for describing the thermal behaviour of electric 

cables. UGC is an acronym for UnderGround Cables, definition used in the first part of the 

project for defining insulated electric cable, in opposition with the bare conductors used in 

overhead lines. Lately the more common terminology “electric cable” was adopted, but the 

acronym UGC survived in this part of the code. 

The class has twenty attributes and five methods, mostly used for calculating the real-

time conductor rating. The twenty one attributes of the class are: 

– Code 

– Laying 

– Configuration 

– Bonding 

– Drying_Out 

– Area 

– Rated_Current 

– Corr(i)_(K) (i=1,4 – K=A,C) 

The attribute “Code” describes cable characteristics and is used as a key for retrieving 

information from the database. The attribute “Laying” described the laying condition of the 

cable and is a string with three possible values: BGr (directly buried in the ground), BDu 
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(buried in duct), Air (laid in air). The attribute “Configuration” describes the geometrical 

configuration of the cable system and is a string with two possible values. Tr (trefoil) and Fl 

(flat). The attribute “Bonding” describes the bonding to earth of the metallic insulation, is a 

string with two possible values: S (single bounded) and B (bounded at both ends) although 

more possibilities could be considered. The attribute “Drying_Out” describes if it is admitted 

a drying out of the soil surrounding the cable or not, and it has two possible values: Y (yes) 

and N (no). The attribute Area represents in squared millimeters the conductor cross sectional 

area. The “Code” is composed by the series of the values of the fields “Area”, 

“Configuration”, “Laying”, “Bonding” and “Drying_Out”; for example a cable with a 

150mm2 conductor, laid directly in the ground in flat configuration, bounded at both sides and 

with no drying out allowed would be represented by the code “150BGrFlBN”. 

Finally the attributes “Corr(i)_(K)” where i can assume the integer values from 1 to 4 

and K can assume the values A, B or C, represents the coefficients of the cubic interpolation 

of the dependence between cable rating and respectively (for each value of the index i) soil 

temperature, soil thermal resistivity, air temperature and soar radiation. 

The five methods of the class are: 

– Calculate_Rating_MVA 

– Calculate_Static_Rating 

– Calculate_Current 

– Calculate_Component_Temperature 

– Load_Data 

The method “Calculate_Rating_MVA” returns a single value of the component rating in 

MVA. In order to do this, it calls the method “Calculate_Current”, which calculates conductor 

rating considering the cubic interpolation of the dependence between rating and external 
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conditions summarised in the coefficients Corr(i)_(K) and the external conditions described in 

the object “environment” given as input. The method “Calculate_Static_Rating” returns the 

conductor seasonal static rating and the method “Load_Data” returns an instance of the object 

“Component.Element” populated with the parameters read in the database. 

A representation of the class “Component.UGC” according to the unified modeling 

language is shown in Table A - 6. 

 

Table A - 6: Component.UGC class 

Component.UGC 

Code 

Laying 

Configuration 

Bonding 

Drying_Out 

Area 

Rated_Current 

Corr(i)_(K) (i=1,4 – K=A,C) 

String 

- 

- 

- 

- 

Single 

- 

- 

Calculate_Rating_MVA(Component, Environment, Configuration) 

Calculate_Static_Rating(Component, Environment, Configuration) 

Calculate_Current(Component, Environment, Configuration) 

Calculate_Component_Temperature(Component, Environment, Configuration) 

Load_Data(Name, Configuration) 

Single 

 

- 

 

- 

- 

Component.Element 
 

Component.PTR 
Power transformer thermal behaviour is modelled in the class “Component.PTR” (PTR 

is an acronym for “Power TRansformer”), characterised by sixteen attributes and five 

methods. The sixteen attributes are: 

– Code 

– Voltage_Ratio 

– Cooling 

– Oil_Exponent 
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– Loss_Ratio 

– Hot_Spot_Temperature 

– Hot_Spot_Factor 

– Oil_Time_Constant 

– Rated_Ambient_Temperature 

– Hot_Spot_Rise 

– Average_Winding_Rise 

– HotSpot_TopOil_Gradient 

– Average_Oi_Rise 

– TopOfWinding_Oil_Rise 

– Bottom_Oil_Rise 

The attribute “Component.PTR.Code” is used to describe the type of transformer, with 

information regarding the size and the cooling system, whilst “Voltage_Ratio” represent the 

voltage ratio at the ends of the transformers. The attribute “Cooling” is used for storing values 

regarding transformer cooling method and can have four values, according to (71) ON: for oil 

immersed transformers with natural convection, OF for oil immersed transformers with forced 

convection, OD for oil immersed transformers with direct convection and finally ONAN for 

small (<20MVA) oil immersed transformers with natural convection. The other attributes 

describe parameters cited in (71) and necessary for transformer thermal rating. Their value 

can be found in (71). 

The five methods of the class “component.PTR” are: 

– Calculate_Rating_MVA 

– Calculate_Static_Rating 

– Calculte_Hot_Spot_Temperature 
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– Calculate_Load_on_Temperature 

– Load_Data 

The method “Component.PTR.Calculate_Rating_MVA” returns a single value for the 

component rating in MVA using one instance of the “Component.PTR” class and one 

instance of the “Environment.Environment_for_Rating_Class” as input. In order to calculate 

transformer real-time rating, the method “Component.PTR.Calculate_Rating_MVA” calls the 

method “Component.PTR.Load_on_Temperature”, which returns a dimensionless value for 

the transformer rating that must be multiplied by the transformer static rating. Since in (71) a 

model for calculating transformer hot spot temperature depending on external condition and 

load is provided, this method finds a solution solving iteratively the equation provided in 

Section 3.1.3 calling the method “Component.PTR.Calculate_Hot_Spot_Temperature”. The 

method “Component.PTR.Calculate_Static_Rating” returns the static rating of the 

transformer. Finally the method “Component.PTR.Load_Data” returns a instance of the 

“Component.Element” class populated with the parameters read on the static database and 

corresponding to the component name taken as input. 

A visual representation of the class “Component.PTR” is shown in Table A - 7. 
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Table A - 7: Component.PTR class 

Component.PTR 

Code 

Voltage_Ratio 

Cooling 

Oil_Exponent 

Winding_Exponent 

Loss_Ratio 

HotSpot_Temperature 

HotSpot_Factor 

Oil_Time_Constant 

Rated_Ambient_Temperature 

HotSpot_Rise 

Average_Winding_Rise 

HotSpot_TopOil_Gradient 

Average_Oil_Rise 

TopOfWinding_Oil_Rise 

Bottom_Oil_Rise 

String 

- 

- 

Single 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Calculate_HotSpotTemperature(Component, Environment, Configuration) 

Load_on_Temperature(Component, Environment, Configuration) 

Calculate_Rating_MVA(Component, Environment, Configuration) 

Calculate_Static_Rating(Component, Environment, Configuration) 

Calculate_Component_Temperature(Component, Environment, Configuration) 

Load_Data(Name, Configuration) 

Single 

- 

- 

- 

- 

Component.Element 
 

Environment 

The class “Environment”, shown in Error! Reference source not found. and Error! 

Reference source not found., is designed for modelling environmental condition for 

component rating. It has no attributes, six methods and three sub-classes, designed to describe 

and to be appropriate data structure for the environment read in weather stations, the 

environment necessary for calculating component rating and the geographical location. The 

static structure of the class is described in Error! Reference source not found.. 

The decision of creating two different sub-classes for the representation of the 

environment read in weather stations (Environment.Environment_for_Observation) and the 

environment use for component rating (Environment.Environment_for_Observation) was 
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taken after the following consideration: Component thermal models are already developed 

and describe clearly the environmental parameters necessary for the rating of each component 

type. On the other hand environmental conditions that are not directly involved in component 

rating can influence other environmental condition directly responsible for component rating 

changes. An example of this is the use of the rainfall for calculating soil thermal resistivity, or 

air pressure could be used for improving wind speed and direction calculation. Therefore, in 

order to facilitate further developments of the algorithm it was decided to create to separate 

the “Environment_for_Observation” class from the “Enironment_for_Rating” class, 

facilitating the future increasing of the number of measured parameters. 

For practical reasons, The sub-class “Environment.Component_Reading”, containing 

the data structure describing component electrical and electrical parameters readings and 

necessary for conductor temperature estimation used in the code validation process, was 

created in the class “Environment” instead than the class “Component”. This is due to the fact 

that even if it is referred to an electrical component, its structure and its behaviour are much 

more similar to the class “Environment.Environment_for_Observation”. Furthermore the 

methods of this class are used to read in the real-time database and therefore they are called 

together with the methods of the class “Environment.Environment_for_Observation”. 

Therefore it was decided to create the sub-class “Component_Reading” inside the class 

“Environment”. 
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Figure A - 2: Environment class static structure 

 

The six methods of the class “Environment” are: 

– Search_Data 

– Environment_Parameter_Estimation 

– Find_Environmental_Readings 

– Inverse_Distance_Interpolation_Fun 

– Distance 

– Refine_Wind_Speed 

The methods “Search_Data” returns an array of probability distributions and is used 

directly by the class Thermal_State_Estimation. In order to read data from the weather 

stations, it calls the function “Find_Environmental_Readings” and converts the array of single 

values of this function in a probability distribution thanks to the method 

“Montecarlo_Method.MCM_Populate_PDF” for each environmental condition. The method 

“Environmental_Parameter_Estimation” returns a single vale for the estimated value of a 
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single environmental condition in the desired location. It makes use of the method 

“Inverse_Distance_Interpolation_Fun” which in turn makes use of the methods “Distance” 

and “Refine_Wind_Speed”. This last method is called when the environmental condition 

interpolated is the wind speed. Thanks to the structure of the program, it is possible modify 

the model used for environmental condition calculation at the level of the method 

“Environmental_Parameter_Estimation”, changing the input structure, and the methods 

called. 

 

Table A - 8: Environment class 

Environment 

  

Search_Data(Time, Configuration) 

Environment_Parameter_Estimation(Name, Parameters(), Latitude(), Longitude(), Place, 
Configuration) 

Find_Environmental_Readings(Station_Name, Parameter_Name, Time_Min, Time_Max, 
Configuration) 

Inverse_Distance_Interpolation_Fun(Parameter(), Latitude(), Longitude(), Place, 
Configuration) 

Distance(Lat1, Long1, Lat2, Long2) 

Refine_Wind_Speed(Wind_Speed_1, Height_1, Reference_Height, Ground_Type, 
Configuration) 

PDF.Beta() 

Single 

 

Single() 

 

- 

Single 

- 

 

Environment_for_Rating 
The sub-class “Environment.Environment_for_Rating”, represented in Error! 

Reference source not found., is designed for representing the environment necessary for 

calculating component ratings. It has six attributes and two methods, although it is mainly 

used in the algorithm for its attributes. 

The six attributes of the class are: 

– Wind_Speed 

– Wind_Direction 

– Air_Temperature 
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– Solar_Radiation 

– Soil_Temperature 

– Soil_Thermal_Resistivity 

– Place 

Their names are descriptive of their function and they are all single values except the 

attribute “Place” that is an instance of the class “Environment.Place”. 

The two methods of the class are: 

– Calculate_Environment_for_Rating 

– Season_for_Rating 

The method “Calculate_Environment_for_Rating” reads environmental readings in 

weather stations and returns an instance of the “Environment.Environment_for_Rating” class 

with the calculated environmental condition in the component location. The difference 

between this method and the method “Environment.Read_Data” described in Section 0 is that 

the one belonging to this class reads and returns instantaneous values of weather readings, no 

probability distributions based on a period of readings. For this reason it is not used in the 

thermal state estimation: it was created to perform off-line simulations and it is maintained for 

future development of the algorithm as an off-line analysis tool. In order not to generate 

confusion this method is placed in this sub-class instead than the more general Environment 

class with other similar methods. The method “Season_for_Rating” return a string with the 

name of the season corresponding to the time given as input. This method is used for 

calculating component static seasonal rating. 
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Table A - 9: Environment.Environment_for_Rating class 

Environment.Environment_for_Rating 

Wind_Speed 

Wind_Direction 

Air_Temperature 

Solar_Radiation 

Soil_Temperature 

Soil_Thermal_Resistivity 

Place 

Single 

- 

- 

- 

- 

- 

Environment.Place 

Calculate_Environment_for_Rating(Observation_Array(), Place, 
Configuration) 

Season_for_Rating(Time) 

Environment.Environment 

_for_Rating 

 

String 
 

Environment_for_Observation 
The sub-class “Environment.Environment_for_Observation”, represented in Error! 

Reference source not found., is designed for representing the environment arising from 

meteorological stations observations. It has eight attributes and three methods. The Eight 

attributes of the class are: 

– Station_Name 

– Wind_Speed 

– Wind_Direction 

– Air_Temperature 

– Solar_Radiation 

– Soil_Temperature 

– Soil_Thermal_Resistivity 

– Place 

Their names are descriptive of the parameters that they represent and they are all single 

values except the attribute “Place” that is an instance of the class “Environment.Place” and 

the attribute “Station_Name” that is a string. The three methods of the class are: 

– Read_Environment_in_Station 
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– Find_Observations 

– Load_Weather_Station_Data 

These three functions are strictly linked between each other and work together in the 

following way: firstly the method “Load_Weather_Station_Data” is called. The method 

returns an array of instances of the class “Environment.Environment_for_Observation” 

populated only with the attributes “Station_Name” and “Place”. This array is then passed to 

the method “Find_Observations” which calls, for each element of the array, the method 

“Read_Environment_in_Station”. This method read in the database values for the 

environmental condition for a given period of time and populates the instance of the instance 

with the messing data relative to the weather. 

 

Table A - 10: Environment.Environment_for_Observation 

Environment.Environment_for_Observation 

Station_Name 

Wind_Speed 

Wind_Direction 

Air_Temperature 

Solar_Radiation 

Soil_Temperature 

Soil_Thermal_Resistivity 

Place 

String 

Single 

- 

- 

- 

- 

- 

Environment.Place 

Read_Environment_in_Station(Observation, Time, Configuration) 

Find_Observations(Time, Observation_Array(), Configuration) 

Load_Weather_Station_Data(Configuration) 

Environment.Environment_for_Observation 

Environment.Environment_for_Observation() 

- 
 

Place 
The sub-class “Environment.Place” is designed for representing geographical locations 

for components and meteorological stations. It has five attributes and one method. 

The five attributes are: 

– GeoID 

– Ground_Type_Turbulence 
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– Latitude 

– Longitude 

– Altitude 

The attribute “GeoID” is a string defining the geographical location with an 

identification used as key to read information in the geographical database. The attribute 

“Ground_Type_Turbulence” is a string defining the roughness class of the soil used for 

refining the wind speed. The attributes “Latitude”, “Longitude” and “Altitude” represents the 

geographical coordinates of the location. “Latitude” and “Longitude” can be expressed in 

whatever Cartesian reference system but they must be coherent with the system used in the 

whole database. 

The only method of the class “Environment.Place” is: 

– Find_Place_Coordinates 

This method returns an instance of the “Environment.Place” class populated with data 

read in the database and corresponding to the location specified by the field “geoID”. 

A representation of the class “Environment.Place” is provided in Error! Reference 

source not found.. 

 

Table A - 11: Environment.Place cass 

Environment.Place 

GeoID 

Ground_Type_Turbulence 

Latitude 

Longitude 

Altitude 

String 

- 

Single 

- 

- 

Find_Place_Coordinates(GeoID, Configuration) Environment.Place 
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Monte Carlo Method 

The class Monte_Carlo_Method contains the methods necessary for performing the 

Monte Carlo simulation for environmental parameters interpolation and component rating. 

The methodology adopted is aimed at allowing the algorithm to be fast but at the same time 

applicable easily to any model. The methodology followed is described here: 

Firstly, an array of probability distributions of the model’s input is generated. Since the 

array is a linear structure but model’s inputs can be contained in different objects, a specific 

function for creating the array for each particular model is necessary. The array is then passed 

to the Monte Carlo simulation function which, for a defined number of times, calculates a 

single value for each parameter from the probability distributions and then run the specific 

model. Since the Monte Carlo simulation reason with arrays but the single model reason with 

objects, an intermediate function for converting the list of values to the objects used in the 

models is necessary. When a fixed number of simulations are performed, the variance of the 

results is analysed and the necessary number of simulation necessary for achieving the 

expected precision of the simulation is calculated. The previous steps are then repeated for the 

calculated number of times. Finally, the results of each simulation, stored in an array of single 

numbers are used for calculating the probability distribution of the Monte Carlo simulation 

returned as the output of the method. 

In order to perform this simulation, the class “Monte_Carlo_Method” has eleven 

methods but no attributes. The methods of the class are: 

– MCM_Simulation 

– MCM_Cicle 

– MCM_Generate_Variate 

– MCM_Model_Output 
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– MCM_Random_Number_Generator 

– MCM_Iteration_Number 

– MCM_Populate_PDF 

– MCM_Environment_Fun 

– MCM_Component_Fun 

– Prepare_Input_for_Environment_MCS 

– Prepare_Input_for_Component_MCS 

The method “MCM_Simulation” is the front-end method responsible for coordinating 

the whole Monte Carlo simulation. It returns an instance of the PDF.Beta class with the 

probability distribution of the results using as inputs an array of instances of the PDF.Beta 

class representing the probability distributions of the inputs, the name of the model with 

which to carry out the simulation, and the precision error accepted. The method 

“MCM_Simulation” calls the method “MCM_Cicle”, “MCM_Iteration_Number” and 

“MCM_Populate_PDF”. The method “MCM_Cicle” in turn calls the methods 

“MCM_Generate_Variate” and “MCM_Model_Output” and the method 

“MCM_Generate_Variate” calls the method “MCM_Random_Number_Generator”. In 

“MCM_Generate_Variate” each component of the input array of probability distributions is 

analysed for extracting a single value which is used to populate another array of probability 

distributions but with single values. 

This is done because of the flexibility of the class PDF.Beta which can contain 

probability distributions but also strings or single values for representing textual and constant 

inputs. For this reason each element is firstly scanned to identify to which type it belongs 

(text, constant number, probability distribution), then it simply pass constant numbers and 
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textual values to the output. If the element is a probability distribution the method firstly calls 

the method “MCM_Random_Number_Generator” and then the method “PDF.Beta.Calculate_ 

_Inverse_CD” which inverts the cumulative probability distribution and returns the 

value of the variable corresponding to the selected probability. The method 

“MCM_Random_Number_Generator” makes use of the built-in visual basic function for 

returning random numbers. But this function, which is based on the processor’s clock, can 

return a different random number only every one millisecond. This was not acceptable 

considering the number of parameters that must be processed in every simulation, the number 

of simulations to carry out and the real-time nature of the application designed. For this 

reason the seed of the random number generator is created with a combination of the 

processor’s clock time and a number updated every time that a function is called and passed 

by the Configuration object present in every function and method. 

These methods represent the core of the Monte Carlo simulation, but other ancillary 

functions have been created to facilitate and standardize the input-output process. The method 

“MCM_Populate_PDF” returns a structured instance of the PDF.Beta class populated 

according to the input. The particularity of this function is that it can recognise the type of 

input and to perform the necessary operations, in particular it automatically calculates Beta 

PDF parameters for a generic array of single values given as input. The methods 

“Prepare_Input_for_Environment_MCS” and “Prepare_Input_for_Component_MCS” are 

used for converting the objects containing information necessary to run the models into arrays 

of probability distributions. Their structure is influenced by the information structure 

available in the class “Thermal_State_Estimation”, from where the function 

“MCM_Simulation” is called. Similarly the methods “MCM_Environment_Fun” and 
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“MCM_Component_Fun” are used for converting the array resulting from the method 

“MCM_Generate_Variate” into the objects used by the respective models. 

A representation of the class “Monte_Carlo_Method” is shown in Error! Reference 

source not found.. 

Table A - 12: Monte_Carlo_Method class 

Monte_Carlo_Method 

MCM_Simulation(Input_Array(), Model_Name, Err, Configuration) 

MCM_Cicle(Input_Array(), Model_Name, Configuration) 

MCM_Generate_Variate(Input_Array(), Configuration) 

MCM_Model_Output(Variate(), Model_Name, Configuration) 

MCM_Random_Number_Generator(Configuration) 

MCM_Iteration_Number(Data_Array(), err, Configuration) 

MCM_Populate_PDF(Name, Type, Value, Configuration) 

MCM_Environment_Fun(Variate(), Configuration) 

MCM_Component_Fun(Variate(), Configuration) 

Prepare_Input_for_Environment_MCS(Parameter_Name, Environment_Observation(), Place, 
Configuration) 

Prepare_Input_for_Component_MCS(Environment(), Component, Configuration) 

PDF.Beta 

Single 

PDF.Beta 

Single 

- 

Integer 

PDF.Beta 

Single 

- 

PDF.Beta() 

 

- 
 

Thermal State Estimation 

The “TSE” class (TSE is an acronym for “Thermal State Estimation”) contains the 

methods necessary for carrying out the thermal state estimation of power system networks. It 

has no attributes and nine methods. The nine circuits are: 

– Network_Thermal_State_Estimation 

– Circuit_Thermal_State_Estimation 

– Component_Thermal_State_Estimation 

– Get_Circuit_Data 

– Get_Component_Data 

– Get_Environmental_Data 

– Calculate_Environmental_Parameters_PDF 
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– Calculate_Component_Rating_PDF 

– Calculate_Circuit_Rating 

– Add_PDF_Obj_to_PDF_Array 

The methods “Network_Thermal_State_Estimation”, 

“Circuit_Thermal_State_Estimation”, and “Component_Thermal_State_Estimation” 

coordinate the other methods for estimating respectively the rating of each circuit in the 

network, the rating of a single circuit and the rating of a single component. The method 

“Network_Thermal_State_Estimation” calls iteratively the method 

“Circuit_Thermal_State_Estimation”. But the method “Circuit_Thermal_State_Estimation” 

does not calls the method “Component_Thermal_State_ 

_Estimation” but uses autonomously the same functions in order to reduce repetitive 

executions of the same calculations and to reduce circuit estimation computational-time. This 

is because the active distribution generation output controller developed in this research 

project in parallel with the thermal state estimator will ask selectively for the rating of 

potentially vulnerable circuits. 

Both “Circuit_Thermal_State_Estimation” and 

“Component_Thermal_State_Estimation” return an instance of the PDF.Beta class 

corresponding to the rating of the circuit or the component specified at the time specified. 

Even if the algorithm could autonomously identify the current time and find the most updated 

environmental condition readings, it was decided to let the user to specify the time for two 

reasons: 

– The user can specify a time in the past, in this way the algorithm would 

search in the database for historical values of the environmental 

parameters and the algorithm can be used for off-line analysis. 
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– The user can specify a time in the future, and the algorithm would provide 

a forecast of circuit rating. Rating forecast aroused during the research as 

an interesting possible further research field and for this reason the 

algorithm was developed for facilitating the introduction of this 

improvement. Currently if a date for what they do not exist records is 

given, the algorithm returns a conservative and static value for the rating, 

that can be considered valid also for the future. 

Both methods make use of the methods “Get_Environmental_Data” and respectively of 

the methods “Get_Circuit_Data” and “Get_Component_Data”. The first method returns an 

array of instances of the class “PDF.Beta” corresponding to the information necessary to 

perform the environmental condition estimation with the Monte Carlo method. This function 

is called only one time in the method “Circuit_Thermal_State_Estimation” and its output is 

used for the environment state estimation in the position of each component. This is done in 

order to reduce the number of queries to the database that can result particularly expensive in 

time. The other two methods return an instance respectively of the class “Component.Circuit” 

and “Component.Element”, used for the component rating estimation. 

The method “Calculate_Environmental_Parameters_PDF” returns an array of instances 

of the class “PDF.Beta” that is used for component rating estimation and has already the 

structure necessary for the Monte Carlo simulation. The method “Calculate_Circuit_Rating” 

and "Calculate_Component_Rating” manage the different functions necessary for estimating 

circuit and component thermal rating respectively. In the method “Calculate_Circuit_Rating” 

in particular, the array of probability distributions of the components of the circuit is scanned 

for calculating the minimum rating corresponding to each probability. The results are then 

summarised in a final probability distribution representative of the rating of the whole circuit. 
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Finally the method “Add_PDF_Obj_to_PDF_Array” is simply used for facilitating the 

creation of array of probability distributions, a structure widely used in the algorithm. 

A representation of the class “TSE” is reported in Error! Reference source not found.. 

 

Table A - 13: Thermal State Estimation class 

TSE 

Network_Thermal_State_Estimation(Name, Time, Configuration) 

Circuit_Thermal_State_Estimation(Name, Time, Configuration) 

Component_Thermal_State_Estimation(Name, Time, Configuration) 

Get_Circuit_Data(Name, Configuration) 

Get_Component_Data(Name, Configuration) 

Get_Environmental_Data(Time, Configuration) 

Calculate_Environmental_Parameters_PDF(Environment(),  

place, Configuration) 

Calculate_Component_Rating_PDF(Environment(),Component Configuration) 

Calculate_Circuit_Rating(Component_Rating(), Configuration) 

Add_PDF_Obj_to_PDF_Array(PDF_Obj, Array(), Configuration) 

PDF.Beta() 

PDF.Beta 

- 

Component.Circuit 

Component.Element 

PDF.Beta() 

PDF.Beta() 

PDF.Beta 

PDF.Beta 

PDF.Beta 

PDF.Beta() 
 

Probability Density Function 

The class “PDF” (PDF is an acronym for Probability Density Function) is designed for 

describing data probability density function structures, with the necessary parameters and the 

functions necessary for creating and extracting the desired data from this non-standard type of 

data. Since probability distributions are widely used in the state estimation this class has a 

particular importance in the structure of the algorithm. The class is conceived as a container 

of sub classes representing different probability distributions, as shown in Error! Reference 

source not found.. 

During the development of the program, the use of a single, well chosen probability 

distribution proved to give acceptable results and the development of other distribution was 
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suspended. The structure of the class was not modified and the development of new 

distribution can be seen as a possible further development of the work with low priority. 

 

Figure A - 3: PDF class static structure 

 

As said above, the algorithm uses exclusively the Beta probability distribution, encoded 

in the class “PDF.Beta”. The class has 10 attributes and five methods. Since only the Beta 

PDF is used, this class is conceived for describing also different types of data such as string 

and constant values. The ten attributes are: 

– Name 

– Type 

– String_Value 

– Min 

– Max 

– Alpha 

– Beta 

– Mean 

– Variance 

– Static_Value 
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The attribute “Name” is a string used for storing the name of the variable described by 

the PDF. The attribute “Type” is a string and can have three values: “Name”, “Constant” and 

“Range”, used respectively for describing textual variables, single numbers or probability 

distributions. The attribute “String_Value” is used for the textual values if the attribute 

“Type” value is “Name”, otherwise, this field is empty. The attribute “Static_Value” is used 

for storing the value of the variable when the attribute “Type” value is “Constant”, otherwise 

this field is empty. The attributes “Min”, “Max”, Mean” and “Variance” along with “Alpha” 

and “Beta” are used for storing information regarding the time series corresponding to the 

probability distribution and the shape parameters of the distribution. These fields are empty if 

the value of the attribute “Type” is not “Range”. 

The five methods of the class are: 

– Estimate_BetaPDF_Parameters 

– Calculate_PD 

– Calculate_Beta_Function 

– Calculate_CD 

– Calculate_Inverse_CD 

The method “Estimate_BetaPDF_Parameters” uses an array of single numbers as input 

for calculating the parameters of the Beta PDF that are used to populate an instance of the 

“PDF.Beta” class returned as output. The method “Calculate_PD” calculate the value of the 

probability density of a particular PDF corresponding to a given parameter value, calling the 

method “Calculate_Beta_Function” during the process. The method “Calculate_CD” return 

the cumulative probability of a probability distribution corresponding to a given parameter 

value. Finally the method “Calculate_Inverse_CD” returns the value of the variable 

corresponding to the probability given as input calling iteratively the method “Calculate_CD”. 
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A summary of the class “PDF.Beta” is shown in Table A - 14. 

 

Table A - 14: PDF.Beta class 

PDF.Beta 

Name 

Type 

String_Value 

Min 

Max 

Alpha 

Beta 

Mean 

Variance 

Static_Value 

String 

- 

- 

Single 

- 

- 

- 

- 

- 

- 

Estimate_BetaPDF_Parameters(Data_Array()) 

Calculate_PD(Variable, PDF) 

Calculate_Beta_Function(Variable, PDF) 

Calculate_CD(Variable, PDF) 

Calculate_Inverse_CD(Probability, PDF) 

PDF.Beta 

Single 

- 

- 

- 
 

Auxiliary Procedures 

The class “Auxiliary_Proceures” has been designed for containing classes and methods 

used in the algorithm for data management but not necessary related to the thermal state 

estimation. This class is a container of two sub classes: “Auxiliary_Proceures.Configuration” 

and “Auxiliary_Procedures.Manage_DB”. The first one define the “Configuration” class as a 

list of parameters used in several part of the algorithm through an instance of this class 

created at the beginning of the simulation and passed in every function. The second one 

contains methods for opening, closing and writing into databases. 

Originally also the function of reading into databases was present in this class, but in 

order to reduce component thermal state estimation computational-time, very specific 

methods for reading component properties and environmental parameters have been designed 
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and included in the most appropriate class. A visual representation of the class 

“Auxiliary_Procedures” and its sub-classes is shown in Figure A - 4. 

 

 

Figure A - 4: Auxiliary_Procedures class static structure 

 

The class “Auxilary_Procedures.Configuration” is used for defining an object which, 

present in every step of the algorithm, allows basic information to be accessible in any point 

of the algorithm. The presence of this object is considered particularly useful in phases of 

software maintenance or upgrading, since would allow an easy method for testing new 

methods or procedures requiring different inputs without modifying completely the data flow 

structure of the whole algorithm. It is recommended to remove additional attributes in the 

class after the testing period when not strictly necessary in order to invalidate the future 

possibility of software improvements. The class has fourteen attributes and one method. The 

fourteen attributes are: 

– Component_Connection 

– Environment_Connection 

– Geo_DB_Connection 

– Output_Connection 

– Errors_Connection 
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– Message_String 

– Altitude_Ref_for_WS_Correction 

– Alternative_WS 

– Alternative_WD 

– Alternative_TA 

– Alternative_SR 

– Alternative_TS 

– Alternative_STR 

– Count 

The attributes “Component_Connection”, “Environment_Connection”, 

“Geo_DB_Connection”, “Output_Connection” and “Errors_Connection” are connections to 

the databases used in by the algorithm. The attribute “Message_String” is a string and is used 

for passing error messages between different methods, in particular to the method 

“Auxiliary_Class.Manage_DB.Write_Errors”. The attribute “Altitude_for_WS_Correction” 

contains the value for the reference height used for wind speed correction due to soil 

roughness. The attributes “Alternative_WS”, “Alternative_WD”, “Alternative_TA”, 

“Alternative_SR”, “Alternative_TS” and “Alternative_STR” are used for storing the 

emergency values for wind speed, wind direction, air temperature, solar radiation, soil 

temperature and soil thermal resistivity to be used in case of errors in data reading or 

calculations. Finally the attribute “Count” is an integer that is updated every time that a 

function is called and is used for improving the quality of the random number generator. The 

only method of the class is: 

– Configuration 
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This method returns an instance of the class “Auxiliary_Procedures.Configuration” 

populated with the necessary parameters. In particular it calls the method 

“Auxiliary_Procedures.Manage_DB.Manage_DB” in order to open the connection with the 

databases and to store them in the attributes of the instance. 

A representation of the class “Auxiliary_Procedures.Configuration” is shown in Error! 

Reference source not found.. 

 

Table A - 15: Auxiliary_Procedures.Configuration class 

Auxiliary_Procedures.Configuration 

Component_Connection 

Environment_Connection 

Geo_DB_Connection 

Output_Connection 

Errors_Connection 

Message_String 

Altitude_Ref_for_WS_Correction 

Alternative_WS 

Alternative_WD 

Alternative_TA 

Alternative_SR 

Alternative_TS 

Alternative_STR 

Count 

OleDbConnection 

- 

- 

- 

- 

String 

Single 

- 

- 

- 

- 

- 

- 

Integer 

Configuration(Action, Configuration) 
Auxiliary_Procedures_ 

.Configuration 
 

The class “Auxiliary_Procedures.Manage_DB” is contains the methods necessary for 

opening, closing and writing specific output into particular databases. The class has no 

attribute and three methods: 

– Manage_DB 

– Write_Ratings_PDF 

– Write_Errors 
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The method “Manage_DB” open and closes the database specified in the input 

“DB_Name” according to the action specified in the input “DB_Action”. If the action is 

“Open” then the method returns the open connection and if the action is “Close” then the 

method closes the connection given as input and returns a closed connection. The method 

“Write_Ratings_PDF” is a subroutine specialised in writing in an output database designed 

for storing simulation results and used in the algorithm validation phase. This method was 

maintained because of its potential utility when using the algorithm as an off-line planning 

tool. The method “Write_Errors” is specialised in writing messages in the database “Errors” 

created for storing a log with the description of the error every time that an error arises in the 

running of the program. This method was created during the algorithm development phase, 

but it was not removed for its utility phases of software maintenance or improvement. A 

representation of the class “Auxiliary_Procedures.Manage_DB” is shown in Error! 

Reference source not found.. 

 

Table A - 16: Auxiliary_Procedures.Manage_DB class 

Auxiliary_Procedures.Manage_DB 

Manage_DB(DB_Name, DB_Action, Connection) 

Write_Ratings_PDF(Time, PDF, Configuration) 

Write_Errors(Description, Configuration) 

OleDbConnection 

 

Web Service 

The role of the Web Service is to create a standard interface between the thermal state 

estimation algorithm and the distribute generator output controller. It allows also the 

algorithm to be installed on a server and to be consulted by remote applications and websites. 

The Web Service developed has two methods: 

– NMS_Data 
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– TSE_Circuit_Rating_Single_String 

The method “NMS_Data” was build for facilitating the distributed generation output 

controlle access to the MySQL database with real-time electrical readings. This algorithm in 

fact has no direct access to the database, but relies on this web service. The method returns a 

string with the value of the requested parameter value at the time requested. Both inputs are 

passed through textual values, for facilitating data tansfer between potentially different 

algorithm, programming languages and operating systems. The method 

“TSE_Circuit_Rating_Single_String” returns a sting with a single value corresponding to the 

real-time circuit rating relative to a selected probability, calculated by the thermal state 

estimation algorithm. Currelty, in anticipation of the distributed generation real-time output 

controller open and closed loop tests, the minimum circuit rating is returned. Also in this web 

method, inputs and outputs are excanged in the format of strings. A representation of the web 

service “Service” is shown in Table A - 17. 

Table A - 17: Web service class 

Service 

NMS_Data(Time, Parameter) 

TSE_Circuit_Rating_Single_String(Time, Circuit_Name) 

String 

- 
 

A module was created for demonstrating the possibility of accessing remotely to the 

thermal state estimation algorithm, arousing consortium partners’ interest in the technology. 

The module was installed on a server of Imass, a consortium partner, and allowed other 

members to consult the algorithm from their offices, building confidence for the practical 

implementation of this technology in practical industrial applications although it is based on 

meteorological historical data. 
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Databases 

The table “Component_General” contains the parameters necessary for populating the 

attributes of the class “Component.General_Parameters” and can be accessed using the field 

“Component_Name” as key, although an indipendent numerical key is provided. The tables 

“Components_OHL” and “Components_OHL_Conductor” are used for storing data relative 

to the particular overhead line and to the conductor respectively and they can be accessed 

using the fields “Name” and “Code” respectively. The information contained in these two 

tables is used for populating the attributes of the class “Component.OHL”. 

The tables “Components_UGC” and “Components_UGC_Cable” are used for storing 

data relative to the particular electric cable and to the conductor respectively and they can be 

accessed using the fields “Name” and “Code”. The information contained in these two tables 

is used for populating the attributes of the class “Component.UGC”. finally the tables 

“Components_PTR” and “Components_PTR_Transformer” are used for storing data relative 

to the particular transformer and to the transformer type respectively and they can be accessed 

using the fields “Name” and “Code”. The information contained in these two tables is used 

for populating the attributes of the class “Component.PTR”. 

 



 

Figure 

 

Historical environmental condition readings are stored in the “Environment” database. 

As said before, real-time environmental conditions are retrieved from an on

database, but this is relative to a part of the project not yet ultimate, therefore here the first 

MS Access database is described. 

– Info_WS 

– WS_(Name,i)

A diagram of the relations between the tables of the database “Environment” is shown 

in Error! Reference source not found.

 

Figure A - 5: Database_Components tables and relations diagram

Historical environmental condition readings are stored in the “Environment” database. 

time environmental conditions are retrieved from an on

database, but this is relative to a part of the project not yet ultimate, therefore here the first 

MS Access database is described. The database “Environment” has two and plus tables:

WS_(Name,i) 

A diagram of the relations between the tables of the database “Environment” is shown 

Error! Reference source not found.. 
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Database_Components tables and relations diagram 

Historical environmental condition readings are stored in the “Environment” database. 

time environmental conditions are retrieved from an on-line MySQL 

database, but this is relative to a part of the project not yet ultimate, therefore here the first 

The database “Environment” has two and plus tables: 

A diagram of the relations between the tables of the database “Environment” is shown 



 

Figure A 

 

The table “Info_WS” contains a list of the meteorological stations installed in the area, 

whilst the tables “WS_(Name,i)”, one for each meteorological station, contains the readings 

of each environmental condition, along with a timestamp for the period when they have been 

recorded. 

Geographical based information are stored in a separate database, currently a MS 

Access database, but in future it is expected to substitute it with the dat

GIS program. The table, called “Coordinates” is shown in 

 

Figure A - 6: Database "Environment" tables and relations diagram

The table “Info_WS” contains a list of the meteorological stations installed in the area, 

whilst the tables “WS_(Name,i)”, one for each meteorological station, contains the readings 

f each environmental condition, along with a timestamp for the period when they have been 

Geographical based information are stored in a separate database, currently a MS 

Access database, but in future it is expected to substitute it with the database of a professional 

The table, called “Coordinates” is shown in Figure A - 7 
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Database "Environment" tables and relations diagram 

The table “Info_WS” contains a list of the meteorological stations installed in the area, 

whilst the tables “WS_(Name,i)”, one for each meteorological station, contains the readings 

f each environmental condition, along with a timestamp for the period when they have been 

Geographical based information are stored in a separate database, currently a MS 

abase of a professional 
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As said before other two databases have been created for software maintenance and 

validation purposes: the database “Errors” and the database “Output”. The database “Errors” 

has a single table “Errors” used for storing errors logs generated by the algorith

is characterised by a timestamp and by a string, mentioning the function where the error 

appeared, the type of error and the decision taken by the algorithm. The most common error 

recorded is the lack of data in the “Environment” database for

followed by the forced assumption of conservative static values for the corresponding 

environmental parameter. A visual description of the table “Errors” of the database “Errors” is 

shown in Figure A - 8. 

 

Figure A 

 

The last database created for the algorithm validation process is the database “Output”

where the ratings for each component of the network can be stored for each timestamp in the 

table “Ratings_PDF”. This table has a field for storing the timestamp of the simulated output, 

 

Figure A - 7: Database "Geo_DB" table "Coordinates" diagram

As said before other two databases have been created for software maintenance and 

validation purposes: the database “Errors” and the database “Output”. The database “Errors” 

has a single table “Errors” used for storing errors logs generated by the algorith

is characterised by a timestamp and by a string, mentioning the function where the error 

appeared, the type of error and the decision taken by the algorithm. The most common error 

recorded is the lack of data in the “Environment” database for a particular time, error that is 

followed by the forced assumption of conservative static values for the corresponding 

environmental parameter. A visual description of the table “Errors” of the database “Errors” is 

 

Figure A - 8: Database "Errors", table "Errors" diagram

The last database created for the algorithm validation process is the database “Output”

the ratings for each component of the network can be stored for each timestamp in the 

table “Ratings_PDF”. This table has a field for storing the timestamp of the simulated output, 
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"Coordinates" diagram  

As said before other two databases have been created for software maintenance and 

validation purposes: the database “Errors” and the database “Output”. The database “Errors” 

has a single table “Errors” used for storing errors logs generated by the algorithm. Each entry 

is characterised by a timestamp and by a string, mentioning the function where the error 

appeared, the type of error and the decision taken by the algorithm. The most common error 

a particular time, error that is 

followed by the forced assumption of conservative static values for the corresponding 

environmental parameter. A visual description of the table “Errors” of the database “Errors” is 

Database "Errors", table "Errors" diagram  

The last database created for the algorithm validation process is the database “Output”, 

the ratings for each component of the network can be stored for each timestamp in the 

table “Ratings_PDF”. This table has a field for storing the timestamp of the simulated output, 



 

and all the fields necessary for storing the information contained in the a

“PDF.Beta”. A visual description of the table “Ratings_PDF” of the database “Output” is 

shown in Figure A - 9. 

 

Figure A 

 

Data Flow 

Firstly, it calls the methods “TSE.Get_Circuit_Data”, for loading circuit static data from 

the “Components” database in an instance of the “Component.Circuit” class and 

“TSE.Get_Environmental_Data”, for loading the readings of environmental conditions in an 

array of probability density functions objects. After this, the method 

“TSE.Circuit_Thermal_State_Estimation” calls iteratively the method 

“TSE.Calculate_Environmental

_PDF” and “PDF.Beta.Add_PDF_Obj_to_Array” for each component in the circuit. 

These methods perform respectively: the estimation of environmental conditions in the 

component location, the estimation of the 

real-time component rating probab

and all the fields necessary for storing the information contained in the a

“PDF.Beta”. A visual description of the table “Ratings_PDF” of the database “Output” is 

 

Figure A - 9: Database "Output", table "Ratings_PDF" diagram

Firstly, it calls the methods “TSE.Get_Circuit_Data”, for loading circuit static data from 

the “Components” database in an instance of the “Component.Circuit” class and 

“TSE.Get_Environmental_Data”, for loading the readings of environmental conditions in an 

array of probability density functions objects. After this, the method 

“TSE.Circuit_Thermal_State_Estimation” calls iteratively the method 

“TSE.Calculate_Environmental_Parameters_PDF”, “TSE.Calculate_Component_Rating

_PDF” and “PDF.Beta.Add_PDF_Obj_to_Array” for each component in the circuit. 

These methods perform respectively: the estimation of environmental conditions in the 

component location, the estimation of the component real-time rating, the insertion of the 

time component rating probability distribution in an array. 
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and all the fields necessary for storing the information contained in the attributes of the class 

“PDF.Beta”. A visual description of the table “Ratings_PDF” of the database “Output” is 

Database "Output", table "Ratings_PDF" diagram 

Firstly, it calls the methods “TSE.Get_Circuit_Data”, for loading circuit static data from 

the “Components” database in an instance of the “Component.Circuit” class and 

“TSE.Get_Environmental_Data”, for loading the readings of environmental conditions in an 

array of probability density functions objects. After this, the method 

“TSE.Circuit_Thermal_State_Estimation” calls iteratively the method 

_Parameters_PDF”, “TSE.Calculate_Component_Rating_ 

_PDF” and “PDF.Beta.Add_PDF_Obj_to_Array” for each component in the circuit. 

These methods perform respectively: the estimation of environmental conditions in the 

time rating, the insertion of the 
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Finally, the method “TSE.Calculate_Circuit_Rating” returns the probability distribution 

for the whole circuit real-time rating. This object is returned in turn by the method 

“TSE.Circuit_Thermal_State_Estimation” to the web method, which calculates the rating 

value corresponding to a selected probability, closes the connections with the databases and 

returns the single value as output. 

The first two methods are now analysed in detail. The method “TSE.Get_Circuit_Data”, 

creates a list of the names of the components belonging to the circuit reading in the database 

“Components” with the circuit name given as input as a key. Then it calls iteratively the 

method “Component.Circuit.Load_Data” which reads component data into the database 

“Components” and populates with the correct values an instance of the class 

“Component.Element”. The method “TSE.Get_Circuit_Data” calls the method 

“Environment.Search_Data” which finds, in the database “Enironment”, name nd locations of 

the weather stations installed in the area. Then for each weather station and for each 

parameter, creates a PDF object populated with the values read in the “Environment” 

database, using the methods “Environment.Find_Environmental_Readings”, 

“Montecarlo_Method.MCM_Populate_PDF” and “PDF.Beta.Add_PDF_Obj_to_Array”. 

The methods “TSE.Calculate_Environmental_Parameters_PDF” and “TSE.Calculate_ 

_Component_Rating_PDF” have a similar structure, but are specialised respectively in 

environmental condition estimation and component rating estimation. 

The method “TSE.Calculate_Environmental_Parameters_PDF” calls iteratively for each 

environmental condition the methods 

“Montecarlo_Method.Prepare_Input_for_Environment_MCS”, “Montecarlo_Method.MCM_ 

_Simulation” and “PDF.Beta.Add_PDF_Obj_to_Array”. The array of PDF object 

generated is given as input to the method “TSE.Calculate_Component_Rating_PDF” which 
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calls in turn the methods “Montecarlo_Method.Prepare_Input_for_Component_MCS”, and 

“Montecarlo_Method..MCM_Simulation”. The method “Montecarlo_Method.Prepare_Input_ 

_for_Environment__MCS” and 

“Montecarlo_Method.Prepare_Input_for_Component_MCS” transform their inputs in a list of 

probability distributions that can be used directly by the method 

“Montecarlo_Method.MCM_Simulation”. 

The method “Montecarlo_Method.MCM_Simulation” supervises the Monte Carlo 

simulation with the particular model selected and the inputs given. Firstly, it calls N times the 

method “Montecarlo_Method.MCM_Cicle”, then, with the method 

“Montecarlo_Method.MCM_Iteration_Number” verifies if the number of iterations N is 

acceptable for the precision requested; if the condition if verified the method returns the 

solution of the “Montecarlo_Method.MCM_Cicle”, otherwise it calls the method 

“Montecarlo_Method.MCM_Cicle” until the condition is not verified. The method 

“Montecarlo_Method.MCM_Cicle” calls in sequence the methods 

“Montecarlo_Method.MCM_Generate_Variate” and “Montecarlo_Method.MCM_ 

_Model_Output”. 

The first method, transforms the list of probability distribution get as input in a list of 

constant parameters, whilst the second calls the appropriate method according to the model 

name given as input: for environmental parameters it calls the method 

“Montecarlo_Method.MCM_Environment_Fun” and for a component, it calls the method 

“Montecarlo_Method.MCM_Component_Fun”. The methods “Montecarlo_Method.MCM_ 

_Environment_Fun” and “Montecarlo_Method.MCM__Component_Fun” call 

respectively the methods “Environment.Environment_Parameter__Estimation” and 
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“Component.Element_Calculate_Rating_MVA” after converting the list of constant values 

given as input in the structured objects necessary for the models. 
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Figure A - 10: Circuit real-time rating estimation functions and data flow 
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Abstract: This article describes research that aims to realize a real-time rating (RTR) system for
power system components. The RTR technology is regarded with interest due to its potential to
unlock network power transfer capacity, improve power flow congestion management flexibi-
lity, and facilitate the connection of distributed generation. The solution described in this work
involves the use of a limited number of meteorological stations and a series of analytical models
for estimating component ratings. The effect of data uncertainty is taken into account by an esti-
mation algorithm based on theMonte Carlomethod. Estimations of conductor temperature and
environmental conditions have been validated against measured data in five different network
locations. Average errors of−2.2,−1.9,−1.2,−1.9, and 1.4 ◦Cwere found for the five different net-
work locations over a period of 71 days when comparing estimates to measured results. Results
analysis identified that the models used were the main source of error. The estimation of wind
directionandsolar radiationwas themost sensitive toerrors in themodels.Therefore, suggestions
are made regarding the improvement of these models and the RTR estimation system.

Keywords: overhead line, real-time, rating, Monte Carlo, validation

1 INTRODUCTION

This article describes a real-time rating (RTR) esti-
mation algorithm for overhead lines developed at
Durham University and its validation against field
data. The solution described in this work involves
the use of a limited number of meteorological sta-
tions and a series of analytical models for estimating
component ratings. The research builds on previous
work [1], which quantified the influence of envi-
ronmental conditions on power system ratings and
identified overhead lines as the power system com-
ponent with the greatest potential for RTR exploita-
tion. Estimated values for conductor temperature and
for the environmental conditions influencing compo-
nent rating are compared with measured values and
the estimation error is then analysed. Environmen-
tal conditions were assessed by processing the data
monitoredatfivemeteorological station locations.The
number and location of the meteorological station

∗Corresponding author: School of Engineering, Durham University,

South Road, Durham DH1 3LE, UK.

email: andrea.michiorri@durham.ac.uk

installations were driven by physical constraints of
the particular site. The concept behind RTR is that
power system component ratings are influenced by
environmental conditions such as wind speed, wind
direction, air temperature, and solar radiation and
are therefore continuously varying. Real-time moni-
toring of component temperature or environmental
conditions allows the exploitation of additional head-
room. This headroom is currently neglected by the
prevalent use of conservative static ratings based on
seasonal worst case scenarios. For the purpose of this
research, RTRs are defined as a time-variant rating
that can be practically exploited without damaging
components or reducing their life expectancy. Actual
measurements of environmental conditions are used
as the input to steady-state thermal models. In order
to calculate and exploit the RTR, it is assumed that
a limited number of local environmental condition
measurements are available and that there are no
outages (planned or unplanned) present within the
electrical power system. Short-term transients, taking
into account the thermal capacitance of power sys-
tem components, are not included within the RTR
assessment. It is felt that this would not materially
affect the GWh/annum throughput of energy within
the electrical power system. The research described
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in this article forms part of a UK Government partly
funded project [2] that aims to develop and deploy an
online power output controller for distributed genera-
tion (DG) based on component RTRs. In this project, a
DG power output controller compares RTRs with net-
work power flows and produces set points that are
fed back to the DG operator for implementation. The
research consortium includes ScottishPower Energy-
Networks, AREVA T&D, PB Power, Imass, and Durham
University. The article is structured in the following
way: section 2 provides an overview of relevant work.
In section 3, the estimation algorithm used for com-
ponent RTRs is described. Section 4 describes the
validation of the algorithm estimates against mea-
sured data, and in section 5, conclusions are drawn
from the work carried out and the scope for further
work is identified.

2 RELEVANTWORK

Currently, power system component ratings are based
on conservative assumptions based onhistorical envi-
ronmental conditions, as described in references [3]
and [4]. A similar approach is described in refer-
ence [5], where amethodology for calculating compo-
nent ratings considering the combination of historical
environmental conditions, loads and expected costs
related to thermal overloads is adopted.This approach
is challenged in research showing the advantages for
distribution network operators (DNOs) arising from
the adoption of an RTR system. A quantitative esti-
mation of the possible headroom unlocked by the
adoption of RTRs for overhead lines, electric cables,
and power transformers is presented in reference [1]
and overhead lines are identified as the component
typewith the highest possible gains.The effect of envi-
ronmental condition variability on the rating of power
transformers is studied in reference [6], where it is
shown that the rating of transformers positioned at
the base of wind turbines may at present be oversized
by up to 20 per cent. A similar study described in ref-
erence [7] compares the power flow to the conductor
RTR in an overhead line connecting a wind farm. In
this research, it was highlighted that high-power flows
resulting from wind generation at high wind speeds
could be accommodated since the same wind speed
has a positive effect on the line cooling. This obser-
vation makes the adoption of RTR systems relevant in
applications where strong correlations exist between
the cooling effect of environmental conditions and
electrical power flow transfers. An application of RTR
for wind farm connections in the UK is described
in reference [8], where particular attention is given
to the necessity to combine the RTR system with
devices able to manage the non-firm connection of
DG. The application of an RTR system for the Spanish
transmission grid is described in reference [9]. Here a

minimal number of meteorological stations are used
to gather real-timedata.Thesedata are thenprocessed
using ameteorological model based on theWind Atlas
Analysis and Application Program (WAsP) [10], tak-
ing into account the effect of obstacles and ground
roughness, and finally the rating is calculated. The
experience of the Dutch companies NUON and KEMA
on temperature monitoring of overhead lines, electric
cables, and power transformers is described in refer-
ence [11]. Research on the area of state estimation
techniques for component rating proved the neces-
sity for reliable and accurate environmental condition
monitoring in order to obtain accurate component
rating estimates. In references [12] to [14], the influ-
ence of component thermal model input errors on
the accuracy of RTR systems is studied. The applica-
tion of different state estimation techniques, such as
affine arithmetic, interval arithmetic, andMonteCarlo
simulations, was studied for overhead lines, electric
cables, and power transformers. Errors of up to ±20
per cent for an operating point of 75 ◦C, ±29 per cent
for an operating point of 60 ◦C and±15 per cent for an
operating point of 65 ◦C were found when estimating
the operating temperature of overhead lines, electric
cables, and power transformers, respectively. In order
to reduce this error, the opportunity to use an expert
system for enhancing rating estimation is explored in
reference [15], where electric cable ratings estimated
with physical models are refined with an expert sys-
tem identifying the most suitable model according to
past experience. In reference [16], a system combin-
ing distributed thermal sensing, physical models, and
learning algorithm is used for estimating enhanced
line rating forecasts. Another expert system informed
by short-termRTRs is described in reference [17] along
with its indoor and outdoor test and its possible appli-
cation during outages. The research presented in this
article adds to the work described above by describ-
ing the principles behind a different RTR system and
its validation against field data. The proposed solu-
tionmakesuseof sophisticatedestimationalgorithms,
which have threefold benefits: first, the requirements
for a large number of equipment installations in order
to monitor large network areas are reduced. Second,
the capital cost of the system is reduced. Third, the
estimation algorithm offers a robust solution, which
maintains operational security in the case of mea-
surement or communication failures. Furthermore,
the rigorous test carried out on different components
of the same network for an extended period pro-
vides adetaileddescriptionof systembehaviourunder
different operational conditions.

3 RATING ESTIMATION ALGORITHM

The estimation of the RTR of power system compo-
nents is a problemcharacterizedbynon-linearmodels
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and input uncertainty. Therefore the Monte Carlo
methodwas considered themost appropriate solution
both for the estimation of environmental conditions
in each component location and for the estimation of
component rating.

3.1 Analytical models

In these sections, themodels used for calculating over-
head line ratings and environmental condition values
are described. For safe network operation, the line
design operating temperature must not be exceeded
in order to avoid damaging the component. For over-
head lines in particular, a temperature rise leads to
a reduction in conductor tension and to an increase
in the sag. Typical values for maximum conductor
temperature are between 50 and 90 ◦C. Component
temperature is not a constant value but depends upon
the energy balance between the heat produced inside
the component and the heat exchange on its sur-
face. However, the heat exchange is mainly influenced
by the temperature difference between the cable and
the environment and by other external factors such
as wind speed or solar radiation. By considering the
heat dissipated by the Joule effect (I 2R), the heat
exchanged by convection (qc) and radiation (qr), and
the solar radiation (qs), the energy balance for an over-
head line conductor is described in equation (1) taken
from [18]

I 2R + qs = qc + qr (1)

Theheat exchange terms in equation (1) are calculated
according to equations (2), (3), and (4)

qs[W/m] = αabs Sr Dc (2)

qr[W/m] = αem σSB [T 4
c − T 4

a ] π Dc (3)

qc[W/m] =
Nu (Tc − Ta)

Dc ρtha
(4)

The Nusselt number (Nu) in equation (4) is calculated
according to equation (5), where theReynolds number
(Re) and the direction correction coefficient (Kdir) are
calculated as in equations (6) and (7) taken from [19]

Nu = (0.65Re0.2 + 0.23Re0.61) Kdir (5)

Re = 1.644× 109 Ws Dc

(

Tc + Ta

2

)−1.78

(6)

Kdir = Kdir−1 + Kdir−2 sin
Kdir−3(δ) (7)

Environmental condition values are read in real
time at selected locations in the network area and are
used for estimating environmental conditions in every
component location. For this purpose, the inverse
distance interpolation technique [20] described in
equation (8) is used. At each point (k) in the

geographical area, the value of the parameter (w)
representing the environmental condition can be esti-
mated as a weighted average of the parameter values
known at i points. Theweighting factor is a function of
the distance between the points.

wk =
6i[(1/l2i,k)wi]

6i(1/l2i,k)
(8)

This technique is used for the estimation of wind
speed (Ws), wind direction (Wd), air temperature (Ta)
and solar radiation (Sr). For wind speed estimation,
the ground roughness effect is taken into account and
an additional correction, based on the use of the wind
profile power law [21] and described in equation (9),
is used

Wsc =Wsa
(

href

ha

)Ksheara (

hc

href

)Kshearc

(9)

The wind speed at two different heights is linked
with the ground roughness through the exponent
Kshear. Values of Kshear for different ground types
may be found in reference [1].
Using equation (9), the anemometer wind speed

(Wsa) at the meteorological station height (ha) is
extrapolated to a reference height (href ), in this case
100m, to remove ground roughness dependence rep-
resented by the parameter Kshear. The values from
different anemometer locations may then be inter-
polated, using equation (8), to provide a wind speed
estimate at the reference height for a particular geo-
graphical location. The ground roughness at this
location is then taken into account through the coeffi-
cient Kshearc along with the conductor height (hc) in
equation (9) to estimate the wind speed (Wsc) across
the conductor. Regarding wind direction, equation (8)
can be used for wind direction interpolation although
it can provide erroneous values for particular input
datasets, in particular when multiple meteorological
stations recordconcurrent valuesof thewinddirection
from north–north–west (NNW) and north–north–east
(NNE). In this case, the interpolation may produce
distorted results because averagingwinddirection val-
ues in the region of NNW to N (337.5◦–360◦) together
with values in the region of N to NNE (0◦–22.5◦) pro-
duces wind direction estimates in the regions SSW
to SSE (157.5◦–202.5◦), which represents a 180◦ phase
shift between the real and calculated wind direc-
tions. This does not render equation (8) inappropriate
to use because, due to the angular nature of the
wind direction, a phase shift in wind-conductor angle
of 180◦ has the same cooling effect as the wind-
conductor angle without the phase shift. Therefore,
an error of 200◦ in the wind direction has the same
effect on conductor temperature calculation as an
error of±20◦.
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3.2 TheMonte Carlomethod

The Monte Carlo method consists of an iterative eval-
uation of results of the deterministic models relative
to randomly selected input values [22]. These inputs
are randomlygenerated fromprobabilitydensity func-
tions (PDF) describing parameter probabilistic struc-
ture and the results generated by the deterministic
model in different trials can be represented in turn by
probability distributions. In Fig. 1, a visual represen-
tation of the Monte Carlo-based solution used in this
work is given. The simulation starts collecting param-
eter readings in a period dt (a). For each parameter
(x, y, z), a PDF is calculated from the measured data
(b) as described in section 3.2.1 and the cumulative
density function (CDF) is calculated by integration
from the PDF. At this point (c), a random value for
the probability is generated for each parameter, and
inverting the CDF, the corresponding parameter value
is selected, as described in section 3.2.2. The random
variates generated are then used (d) for calculating the
output of a model. The different models used in this
research are described in section 3.1. The two steps
(c) and (d) are N repeated times, where N is calcu-
lated as described in section 3.2.3 and the model’s
results are stored (e) for further analysis. Finally, a
PDF for approximating the output is generated (f)
from the N simulation results as in step (b). In an

Fig. 1 Monte Carlo method example

RTRsystemdeployment, theparameterw couldbe the
wind speed across an overhead line conductor and the
parameters x, y, and z couldbe thewind speedasmea-
sured by three meteorological stations. Alternatively,
the parameter w could be the conductor temperature
and theparametersx, y, and z couldbe thewindspeed,
wind direction, and air temperature in the conduc-
tor location. For conductor temperature estimation,
the state estimation algorithm is used in two ways:
first, for estimating environmental condition values
in the conductor location from environmental condi-
tionmeasurements at themeteorological stations, and
Second, for estimating conductor temperature from
the estimated environmental conditions local to the
conductor.

3.2.1 Probability density function

The PDF of a random variable is a function describing
the density of probability at each point in the sample
space. It enables the calculation of the probability of
the random variable falling within a given interval by
calculating the integral, called CDF, of the PDF in the
given interval. In the Monte Carlo method, the PDF is
used to describe the probability structure of input and
output variables and to increase the result precision,
allowing a greater number of simulations to be carried
out for the more probable values of each parameter.
Themost commonPDFs are the constant and the nor-
mal, although in this work the Beta PDF was chosen
because of its flexibility [23]. In equations (10) and
(11), the Beta PDF and the Beta CDF are given. In these
equations, the parameters a and b represent the lower
and upper bounds, while the parameters p and q are
the shape parameters and x is the variable. Accord-
ing to their values the Beta PDF can assume different
shapes, as shown in Fig. 2

PDFβ(x;p,q,a,b)[[x]−1]

=
(x − a)p−1(b − x)q−1

(b − a)p+q−1
∫1
0

wp−1(1− w)q−1dw
(10)

Fig. 2 Beta PDF for different values of the shape param-

eters
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CDFβ(x;p,q,a,b) =
∫ x

a

β(w;p,q,a,b)dw

=
∫x

a
(w − a)p−1(b − w)q−1dw

(b − a)p+q−1
∫1
0

wp−1(1− w)q−1dw
(11)

The shape parameters p and q can be calculated
fromdata series analysis using equations (12) and (13),
where x̄ and σ̄ 2 can be calculated as in equations (14)
and (15) and xm and σ 2m are the average and standard
deviation of the data series [23].

p = x̄

(

x̄(1− x̄)

σ̄ 2
− 1

)

(12)

q = (1− x̄)

(

x̄(1− x̄)

σ̄ 2
− 1

)

(13)

x̄ =
xm − a

b − a
(14)

σ̄ 2 =
σ 2m

(b − a)2
(15)

3.2.2 Variate generation

For each simulation, a random value in the sam-
ple range is selected for each input and is used for
calculating themodel’s output. In the algorithmdevel-
oped, a pseudorandom linear congruential generator,
described in equation (16) [22], is used for calculating
a probability (P) in the interval [0,1]

Pn+1 = (kR,1Pn + kR,2)mod(kR,3) (16)

In equation (16), the multiplier (kR,1) and the incre-
ment (kR,2) are calculated at each step considering
the time of the processor’s clock and the iteration
number of the general algorithm, while the modu-
lus (kR,3) is constant. This was done to improve the
ability of the algorithm to generate uncorrelated ran-
dom numbers. The probability Pn+1 is then used for
calculating a variate for each input parameter with
the inverse transform method. The CDF described in
equation (11) is inverted in order to find the param-
eter value (x) corresponding to the given probability
(P) as in equation (17). Because of the non-linearity
of equation (11), its inversion is realized through an
iterative algorithm based on the secant method [24]

x = CDF−1
β (P;p,q,a,b) (17)

3.2.3 Calculation of the required number
of simulations

Monte Carlo estimation precision depends on the
number of simulations carried out. A limited number
of simulations would reduce the computational time,
since it is necessary to sample sufficiently the PDF of
every parameter and to consider a sufficient number
of parameter combinations. In this work the simula-
tion number is calculated as in equation (18), which

links together the number of samples (N ), the stan-
dard deviation of the results (σm) and a selected error
value (ǫN )

ǫN =
3 σm

xm
√

Ni

(18)

In the algorithmdeveloped, first anacceptable value
for the error is defined and a fixed number of sim-
ulations (N0 = 50) is carried out and, then, from the
average and standard deviation of the results the nec-
essary number of iterations (Ni) is calculated. If Ni >

N0, then it is necessary to carry out Ni − N0 more
simulations.

4 VALIDATION

In this section, the methodology used for validating
the algorithm is described and test results are reported
and discussed, analysing the strengths and limitations
of the proposed RTR algorithm.

4.1 Testing strategy

For practical applications, the state estimation
algorithm must produce accurate and precise rating
estimates while being computationally efficient and
robust to measurement and communication failures.
Furthermore, the estimation is strongly influenced
by the models used, which also have to be accu-
rate and precise. Therefore, a testing strategy aimed
at evaluating each one of these characteristics was
developed.

1. Accuracy can be defined as the degree of approxi-
mation of a calculated parameter to its true value;
in this work, accuracy ismeasured with the average
error between estimated andmeasured values.

2. Precision can be defined as ameasure of agreement
between independent calculations. In this work,
the precision of the estimation is measured with
the estimation standard deviation.

3. Robustness can be defined as the ability of the
algorithm to provide estimates in the case of mea-
surement or communication failures. In this work,
robustness is measured with the change of the
estimation average error and average standard
deviation.

4. Computational efficiency can be defined as the
ability of the algorithm to perform estimations in
a given timeframe. In this work, the speed of the
algorithm is measured with the average time nec-
essary to produce temperature estimations for one
component.

In order to test the analytical models used for
environmental condition estimations, meteorological
readings in each of the five locations were compared
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with values estimated in the same place. In each
case, the simulation was performed without consid-
ering the data for the location studied; and analytical
models were populated with directly measured envi-
ronmental conditions as given in section 3.1, without
using the Monte Carlo state estimation algorithm. For
example, the air temperature at locationMS 1was cal-
culated using equation (8) and measured values from
MS 2 to 5. These values were then compared with
data measured in MS 1, the latter measurement being
considered as the true value of the parameters. Com-
ponent ratings cannotbedirectlymeasured, but rather
calculated from standard-based models. Therefore,
the conductor temperature was used for validation
purposes since conductor operating temperatures can
be directly measured and estimated values can be
directly compared with measured values. In order to
validate the model used for conductor rating, mea-
sured conductor temperatures were compared with
the conductor temperature calculated using the envi-
ronmental conditions recorded in the same location.
Also in this case only the analytical models given in
section 3.1 were used. This process was repeated in
order to validate conductor rating models for each
meteorological station location. For example, the con-
ductor temperature in location MS 1 was calculated
using equation (1) and measured environmental con-
ditions local to MS 1. This value was compared to the
monitored conductor temperature at location MS 1.
An analysis of the model validation studies is given
in section 4.3.1. In order to validate the thermal state
estimation algorithm, estimated conductor tempera-
tures in each of the five locations were compared with
measured conductor temperatures. For example, the
conductor temperature in locationMS1wasestimated
using equations (1) and (9) andmeasured values from
MS 2 to 5 and was compared to the measured con-
ductor temperature at MS 1. An analysis of the state
estimation validation study is given in section 4.3.2. In
this case, the Monte Carlo state estimation algorithm
described in section 3.2 was used.

4.2 Case study

The thermal state estimation algorithm developed
has been validated on measured data from a portion
of ScottishPower network, where five meteorolog-
ical stations and conductor temperature measure-
ment devices were installed. The network is com-
posed of 132 kV overhead lines with Lynx conductors
with a maximum operating temperature of 50 ◦C. A
schematic view of the network and amap of the mon-
itored area are given in Fig. 3. The circuits shown in
the map are highlighted in the schematic network
view. The 132 kV network in this area comprises two
circuits: one built in the east–west direction connect-
ing the distribution network to local loads and the

Fig. 3 Monitored network area

other built in the north–south direction connecting
a local substation and a distributed generator. From
a geographical point of view, the area is characterized
by hills, valleys, and the coast line running in the east–
west direction. The different soil roughnesses of these
areas was estimated by observing satellite images. The
prevailing wind direction is north to south. It is antic-
ipated that this will considerably influence the rating
of the circuits described above in the following man-
ner: over the course of the year, the east–west running
circuit will experience greater cooling than the north–
south circuit. Meteorological measurements for the
period7December2008 to18February2009wereused
for carrying out the validation. For each meteorologi-
cal station, fiveminute averaged values of wind speed,
wind direction, air temperature, and solar radiation
were available. Furthermore, in each meteorological
station location, five minute averaged readings for
conductor temperature and current were available. A
summary of the environmental conditions recorded
during the observation period is given in Table 1.
Average wind speed is the parameter presenting the
greatest variation in the different locations, passing
from a value of 5.4m/s in MS 5 to a value of 2m/s
in MS 3. The distance between these two meteoro-
logical stations is 11 km, but differences in ground
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Table 1 Frequency percentages of measured environmental conditions at the five meteorological stations and

measured current flowing in the conductor in the same locations for the period 7 December 2008 to 18

February 2009

Ws (m/s) 06Ws6 0.4 0.4<Ws6 4.6 4.6<Ws6 8.8 8.8<Ws6 13 13<Ws6 17.2 17.2<Ws6 21.4
MS 1 12.6% 61.2% 13.1% 1.4% 0.0% 0.0%
MS 2 8.5% 58.1% 19.0% 0.6% 0.0% 0.0%
MS 3 12.6% 34.2% 4.5% 0.0% 0.0% 0.0%
MS 4 10.0% 57.7% 20.3% 2.9% 0.3% 0.0%
MS 5 1.5% 42.6% 40.9% 9.4% 2.4% 1.2%

Wd (◦) 06Wd6 5 5<Wd6 76 76<Wd6 147 147<Wd6 218 218<Wd6 289 289<Wd6 360
MS 1 0.9% 9.2% 26.3% 37.0% 14.7% 11.4%
MS 2 0.5% 4.7% 32.2% 36.0% 14.1% 12.0%
MS 3 0.6% 6.1% 31.2% 26.3% 24.6% 10.8%
MS 4 0.2% 2.8% 43.7% 28.3% 15.2% 9.5%
MS 5 0.4% 4.4% 16.0% 41.7% 25.9% 11.3%

Ta (◦C) Ta 6 −3 −3 < Ta 6 0.5 0.5 < Ta 6 4 4<Ta 6 7.5 7.5 < Ta 6 11 11 < Ta 6 14.5
MS 1 1.9% 15.6% 32.1% 33.3% 15.4% 1.0%
MS 2 2.5% 12.7% 29.6% 30.9% 20.4% 3.5%
MS 3 4.2% 15.8% 29.1% 29.9% 17.7% 2.8%
MS 4 1.8% 10.7% 26.4% 33.9% 22.0% 4.7%
MS 5 0.0% 12.6% 33.4% 37.7% 14.9% 1.1%

Sr (W/m2) 06 Sr6 5 5< Sr6 112 112< Sr6 219 219< Sr6 326 326< Sr6 433 433< Sr6 541

MS 1 2.3% 46.9% 10.2% 4.8% 0.8% 0.1%
MS 2 2.1% 55.2% 6.3% 0.4% 0.0% 0.0%
MS 3 2.1% 57.6% 5.3% 1.0% 0.1% 0.0%
MS 4 1.8% 48.0% 11.0% 4.2% 0.6% 0.1%
MS 5 2.1% 50.3% 9.8% 3.8% 0.6% 0.1%

I (A) 0 6 I 6 20 20 < I 6 64 64 < I 6 108 108 < I 6 152 152 < I 6 196 196 < I 6 240
MS 1 1.7% 28.6% 38.8% 21.8% 8.3% 0.4%
MS 2 1.3% 19.9% 38.4% 23.7% 13.1% 3.0%
MS 3 1.6% 26.7% 37.0% 21.1% 8.0% 0.5%
MS 4 14.2% 50.4% 16.4% 13.4% 0.5% 0.0%
MS 5 23.3% 46.5% 22.4% 1.6% 0.0% 0.0%

roughness between the urban and rural environments
of MS 3 and MS 5, respectively, influence wind speed
as described in equation (9).

4.3 Results and discussion

In this section, the results of the simulations carried
out using the system described in section 3.2 are com-
pared with the inputs described in section 4.1. The
results are analysed according to the methodology
described in section 4.1.

4.3.1 Model validation

Environmental condition models and conductor rat-
ingmodels were tested as described in section 4.1.The
comparison between estimated and measured values
for all the models is shown in Fig. 4 and a quantitative
analysis of the error is shown in Table 2. For illustra-
tive purpose, the data shown in Fig. 4 are relative to
MS 2 and to the limited period 7 December 2008 to
13 December 2008. Regarding wind speed and direc-
tion estimation, there is generally good agreement
between estimated and measured data, but on par-
ticular occasions the interpolation method described
in equation (8) produces a considerable error. This
is shown clearly in Figs 4(a) and (b) in the period
9 November 2008. Regarding the wind direction, the

phase shift in results that potentially occurs when
the interpolation in equation (8) is used may be seen
for estimated values corresponding to measured val-
ues in the region of 360◦. Regarding air temperature
estimation, Fig. 4(c) shows good agreement between
estimated and measured data. Here, the effect of
conservative assumptions in the case of missing or
unacceptable data is evident in the estimates pro-
duced for the days 7December 2008 and 12December
2008. Regarding solar radiation, there is a considerable
difference between estimated and measured data, as
shown in Fig. 4(d). This is due to local cloud cover-
age or other local conditions such as reflection from
surfaces in proximity to the meteorological station
that are not taken into account. Regarding conductor
temperature, there is good agreement between esti-
mated and measured values, with the greatest error
associated with spikes in the measured conductor
temperature not present in the trace produced by cal-
culation. This is because the model used does not
consider the dynamic behaviour of the conductor,
which increases the error in cases where there is a
response to rapid changes in current. In Table 2, the
average error and the error standarddeviation for each
parameter in each location are reported for the period
7December 2008 to 18 February 2009. Regardingwind
speed, the estimation in location MS 3 presents an
average error considerably higher than the others and
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Fig. 4 Comparison between calculated and measured data in the period 7 December 2008 to 13

December 2008 for the locationMS2: (a)wind speed, (b)winddirection, (c) air temperature,

(d) solar radiation, and (e) conductor temperature

error standard deviation is also the highest. This is
expected to be caused by errors in ground parameter
estimation. Imprecise values for conductor parame-
ters such as line orientation or conductor resistance
are expected to be the main causes for the high aver-
age error and high error standard deviation for the
conductors in locations MS 1 and MS 2, respectively.
Errors for the other parameters can only be associated
with imprecision in the model used.

4.3.2 State estimation validation

The Monte Carlo-based state estimation algorithm
described in section 3.2 was tested as described in
section 4.1 and the results are summarized in Table 3.
Particular attention was paid to reducing the estima-
tion computational time, and in all the five exam-
ples, the average computational time is between 2.16
and 2.24 s. This simulation was carried out using a

0.625GHz processor and the computational time can
be considerably reduced by increasing the parameter
ǫN , currently set at 5 per cent for every parameter.
Regarding the estimation average error, its value is in
line with the model average error reported in Table 2
but the standard deviation tends to be higher. The
estimation standard deviation is also compared to the
standard deviation of the measured temperature over
a period of 30m. An optimal value for the estimation
standard deviation would be similar to the measured
standard deviation, but here it is roughly one third.
This canbeexplained in twoways:first the steady-state
model used for conductor temperature calculation
does not take into account the dynamic behaviour of
the conductor, producing a less variable estimation,
as seen in Fig. 4(e). Second this parameter is influ-
enced by the number of simulations carried out, but
this number is voluntarily kept low in order to reduce
the computational time because of the use of this
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Table 2 Error average and standarddeviation for eachmodel andeachmeteorological station for

the period 7 December 2008 to 18 February 2009. The highest values for each parameter

are highlighted

Parameter Ws (m/s) Wd (◦) Ta (◦C) Sr (W/m2) Tc (◦C)

MS 1 Error average 0.0 8 0.8 −10 −2.4
Error standard deviation 0.9 54 1.5 44 2.1

MS 2 Error average −0.3 3 0.2 21 −1.8
Error standard deviation 1.4 39 1.4 27 2.6

MS 3 Error average 1.8 −7 0.9 20 −1.5
Error standard deviation 1.5 47 1.8 43 1.7

MS 4 Error average −0.8 12 −0.3 −11 −1.0
Error standard deviation 1.3 51 1.6 39 0.9

MS 5 Error average −0.8 −23 0.4 −7 0.0
Error standard deviation 1.3 46 2.0 42 1.2

Table 3 Conductor temperature state estimation error analysis at the five meteorological

stations for the period 7 December 2008 to 18 February 2009

MS 1 MS 2 MS 3 MS 4 MS 5

Time (s) 2.24 2.16 2.23 2.21 2.23
Error average (◦C) −2.2 −1.9 −1.2 −1.9 1.4
Error standard deviation (◦C) 2.2 2.4 2.3 1.9 1.9
Estimated standard deviation (◦C) 0.118 0.120 0.121 0.119 0.121
Measured standard deviation (◦C) 0.355 0.355 0.355 0.447 0.447

algorithm in an online controller. Figure 5 shows the
comparison between estimated conductor tempera-
ture andmeasured conductor temperature at location
MS 2 during the first week of simulations. This chart
displays strong similarities with Fig. 4(e). However,
the main differences in estimated conductor temper-
atures arise from missing data at MS 1, 3, 4, and 5.
At these points in time, the algorithm makes conser-
vative assumptions of the environmental conditions
local to MS 2 and, therefore, the predicted conduc-
tor operating temperature is higher. The behaviour
of the state estimation algorithm for measurement
and communication failure was studied at location
MS 2 by introducing a variable percentage of miss-
ing data into the input parameters of MS 1, 3, 4, and 5.
Figure 6 shows changes in estimation average error

and estimation standard deviation for different per-
centages of missing data. Themeaningful observation
occurs when 1 per cent or more of the data is miss-
ing. Considering the average error in the region of 1–5
per cent of data missing, the estimation average error
increases linearly from 2.6 to 5.4 ◦C. Considering the
standard deviation in the region of 1–5 per cent of
data missing, a similar linear behaviour is displayed
and the standard deviation of conductor temperature
estimates increases from 0.12 to 0.14 ◦C. Finally, in
order to give a qualitative and quantitative descrip-
tion of the error, conductor temperature error PDF
and CDF are reported in Fig. 7. This helps us to see
in greater detail the data summarized in Table 3. From
Fig. 7, the error distribution is not symmetrical with
the average lower than the mode. This means that the

Fig. 5 Comparison between conductor temperature estimation and conductormeasured temper-

ature in location MS 2 for the period 7 December 2008 to 13 December 2008
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Fig. 6 Performance degradation in consequences of

measurement or communication failures at

location MS 2 for the period 7 December 2008

to 18 February 2009

Fig. 7 Probability and CDF for the error in conductor

temperature estimation. Location MS 2, period

7 December 2008 to 18 January 2009

system tends to underestimate conductor tempera-
ture and therefore to overestimate its current-carrying
capacity.

4.3.3 Discussion

Considering that, at present, DNOs have limited
knowledge of the actual operating temperatures of
overhead line conductors, the results presented in this
article are extremely encouraging and demonstrate
the potential for the adoption of sophisticated state
estimation algorithms in future network operation. In
order to reduce the risk of a localized hotspot, when
making an assessment of the real-time thermal rat-
ing for a long overhead line circuit, the overhead line
can be divided into sections to represent the varia-
tion of external parameters such as line orientation or
soil roughness. The section of the overhead line with
the lowest rating represents the weakest point of the
overhead line system and therefore this lowest rating
can be adopted as the RTR for the entire overhead
line. The simulation results reported in sections 4.3.1
and 4.3.2 confirm that the thermal state estimation

algorithm developed is able to estimate the conduc-
tor temperature, and therefore line rating, with a good
degree of accuracy. Considering that the typical over-
head line design operating temperature in UK ranges
from 50 to 75 ◦C, the maximum average error mea-
sured (−2.2 ◦C) represents maximum average errors
of −4.4 per cent and −2.9 per cent for the respec-
tive conductor operating temperatures. Furthermore,
the extensive tests carried out on the algorithm allow
sources of error to be identified. In light of this, the
following suggestions for estimation error reduction
are made. Regarding environmental conditions, the
interpolation method used has proven efficient for air
temperature estimation. However, it was less success-
ful inestimating thewindspeedand thewinddirection
in all operating conditions. A better estimation of the
soil roughness parameters used in equation (9) and
a more complex wind flow modelling algorithm with
computational fluid dynamics are likely to increase
the accuracy of environmental condition estimations.
Commercial or open source software packages such
as the ones used for wind farm design could easily
be integrated in the algorithm, although this solution
would be more computationally intensive. Since this
state estimation algorithm was developed to inform
an online control algorithm for the power output of
DG, computational efficiency was one of the main
priorities. Regarding solar radiation estimation, the
model proposed does not consider the effect of cloud
coverage or local environmental factors such as reflec-
tion from surfaces in proximity to the meteorological
station. Regarding conductor temperature, a correct
measurement of conductor parameters and, in partic-
ular, of conductor resistance and line direction would
help us to increase the accuracy of the model.Work is
ongoing at DurhamUniversity for improving the qual-
ity of the estimation produced by the thermal state
estimation algorithm in light of these findings. Fur-
thermore, in order to enhance the flexibility of the
algorithm, research is carried out for producing rating
forecasts at different time horizons [25].

5 CONCLUSION

This article has described an RTR estimation system
developed at DurhamUniversity along with its valida-
tionusing field data.The solutionproposed consists of
the use of a limited number ofmeteorological stations
for measuring real-time meteorological information.
These are used in a state estimation algorithm based
on the Monte Carlo method and on physical mod-
els for calculating environmental conditions in every
network component location and component rating.
The estimation error for every environmental condi-
tion and for conductor temperature was measured in
five different locations over a period of 71 days. An
average error of−2.2,−1.9,−1.2,−1.9, and 1.4 ◦C was
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measured for the estimation of conductor tempera-
ture in the five locations when comparing estimates
to measured results, and the main source of error was
ascribed to the physical models used. Suggestions on
how to further reduce this error were given, alongwith
the identification of further research areas.
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APPENDIX

Notation

a beta distribution function minimum value
b beta distribution function maximum value
Dc conductor diameter (m)
h reference height (m)
ha height of the anemometer (m)
hc height of the conductor (m)
i index
I current (A)
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kR,i congruential random number generator,
parameters

Kdir direction coefficient
Kdir−i direction coefficient parameters
Kshear ground roughness coefficient
li,k distance between location i and k (m)
MS i meteorological station
N iteration number
Nu Nusselt number
p beta distribution function shape parameter
P probability
q beta distribution function shape parameter
qc convective heat exchange (W/m)
qr radiative heat exchange (W/m)
qs solar gain (W/m)
R conductor resistance per unit length (Ä/m)
Re Reynolds number
Sr solar radiation (W/m2)
t time (s)
Ta air temperature (◦C)
Tc conductor temperature (◦C)
w conductor temperature (◦C)

w generic variable
Wd wind direction (◦C)
Ws wind speed (m/s)
Wsa measured wind speed at the anemometer

(m/s)
Wsc calculated wind speed on the conductor

(m/s)
x generic variable
x̄ beta distribution dimensionless average
xm beta distribution average
y generic variable
z generic variable

αabs conductor absorption coefficient
αem conductor emission coefficient
δ wind-conductor relative angle (rad)
ǫN dimensionless precision
ρtha air thermal resistivity (mK/W)
σ̄ beta distribution dimensionless standard

deviation
σm beta distribution standard deviation
σSB Stefan–Boltzmann constant (W/m−2/K4)
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Abstract: This article presents research that seeks to assist distribution network operators in
the adoption of real-time thermal rating (RTR) systems. The exploitation of power system rating
variations is challengingbecauseof thecomplexnatureof environmental conditions suchaswind
speed.The adoption of an RTR systemmay overcome this challenge and offers perceived benefits
such as increased distributed generation (DG) accommodation and avoidance of component
damage or premature ageing. Simulations, using lumped parameter component models, are
used to investigate the influence of environmental conditions on overhead line, electric cable,
and power transformer ratings. Key findings showed that the average rating of overhead lines,
electric cables, and power transformers ranged from 1.70 to 2.53, 1.00 to 1.06, and 1.06 to 1.10
times the static rating, respectively. Since overhead lineswere found to have the greatest potential
for rating exploitation, the influence of environmental conditions on four overhead line typeswas
investigatedand itwas shownthat thevalueofanRTRsystemis locationdependent. Furthermore,
the additional annual energy yield from DG that could potentially be accommodated through
deployment of an RTR system was found to be 54 per cent for the case considered.

Keywords: overhead lines, electric cables, power transformers, real-time ratings, distributed
generation

1 INTRODUCTION

This article describes the offline simulation of power
systemthermalmodelspopulatedwithhistorical envi-
ronmental conditions in order to derive real-time
thermal ratings (RTRs). This information is used to
quantify (in GWhs) the exploitable headroom that
may be achieved by implementing an RTR system
within distribution networks. In many cases the cur-
rent carrying capacity of power system components
is limited by a maximum allowable operating temper-
ature. Actual component operating temperatures are
determined by the ability of components to dissipate
to the environment the heat produced by the Joule
effect and by environmental conditions such as ambi-
ent temperature and wind speed, which are continu-
ously varying. As a result, the current carrying capacity

∗Corresponding author: School of Engineering, Durham University,

South Road, Durham, DH1 3LE, UK.

email: andrea.michiorri@durham.ac.uk

of components may be continually assessed and this
is proportional to the RTR in MVA. For the purpose
of this research, RTRs are defined as a time-variant
rating that can be practically exploited without dam-
aging components or reducing their life expectancy.
Actualmeasurementsof environmental conditionsare
used as the input to steady-state thermal models. In
order to calculate and exploit the RTR, it is assumed
that local environmental conditionmeasurements are
available and that there are no outages (planned or
unplanned) present within the electrical power sys-
tem. Short term transients, taking into account the
thermal capacitance of power system components,
are not included within the RTR assessment. It is felt
that this would not materially affect the GWh/annum
throughput of energy within the electrical power sys-
tem. Themechanisms of heat exchange underpinning
component ratings are well documented [1–3]. How-
ever, the estimationof component operating tempera-
tures (and thus current carrying limits) is a non-trivial
task. This is because of the complexity of monitor-
ing and modelling environmental conditions. For this
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reason component ratings based on fixed assump-
tions of environmental conditions are often used by
distribution network operators (DNOs). The imple-
mentation of an RTR system has the potential to give
DNOs greater visibility of network operating condi-
tions thus reducing the risk of exceeding the compo-
nent maximum operating temperature. This could be
used both offline, to inform power system planning,
and online, within future operational philosophies, in
order to increase cautiously the utilization of power
system components. However, system implementa-
tion requires a number of challenges to be overcome,
including the measurement, estimation and commu-
nication of real-time component temperatures, and
environmental conditions. At the distributionnetwork
level these are likely to be dispersed over complex
terrains throughout wide geographical areas contain-
ing significant numbers of power system components.
The research described in this article forms part of a
UK Government part-funded project [4] that aims to
develop and deploy an online power output controller
for distributed generation (DG) based on component
RTRs. In this project a DG power output controller
compares RTRs with network power flows and pro-
duces set points that are fed back to the DG operator
for implementation, as shown in Fig. 1. The research
consortium includes ScottishPower EnergyNetworks,
AREVA T&D, PB Power, and Imass and Durham Uni-
versity.
The article is structured in the followingway: section

2 provides an overview of relevant work. In section
3, the models developed for network components
and environmental conditions are described. Section
4 describes the component data, the environmen-
tal condition data, and the RTR simulation approach
and, in section 5, simulation results are presented and
discussed.

Fig. 1 DG power output controller informed by RTRs

2 RELEVANTWORK

Significant research has been carried out at the trans-
mission level for RTR applications. Research tends to
focus on overhead lines, which, because of their expo-
sure to the environment, exhibit the greatest rating
variability. A description of the cost and suitability
of different uprating techniques for overhead lines is
described in reference [5], taking into account differ-
ent operating conditions. This work shows how RTRs
can be amore appropriate solution thannetwork rein-
forcement when connecting new customers to the
network who are able to curtail their generation out-
put or reduce their power demand requirement at
short notice. Similarly, experience regarding thermal
uprating in the UK is reported in reference [6] where
it was suggested that RTRs could give overhead lines
an average uprating of 5 per cent for 50 per cent of
the year. An example of an RTR application for trans-
mission overhead lines of Red Eléctrica de España is
described in reference [7], where a minimal amount
of weather stations are used to gather real-time data.
The data are then processed using a meteorological
model based on the Wind Atlas Analysis and Appli-
cation Program (WAsP) [8], taking into account the
effect of obstacles and ground roughness, and finally
the rating is calculated. A similar system was devel-
oped in the USA by EPRI in the late 1990s, which
considered overhead lines, power transformers, elec-
tric cables, and substation equipment. The system is
described in reference [9] and preliminary results of
field tests are given in reference [10]. A key finding
was that up to 12 h of low wind speeds (<0.76m/s)
were observed during the field tests, which there-
fore suggests that overhead line RTRs may be lower
than seasonal ratings for extended periods of time.
Furthermore, a strong correlation was found to exist
between independent air temperature measurements
distributed along the lengths of the overhead lines. At
the distribution level, an RTR project carried out by
the Dutch companies NUON and KEMA is described
in reference [11] that demonstrates the operating tem-
peraturemonitoring of overhead lines, electric cables,
and power transformers.
The advantages of an RTR system for the connec-

tion of DG, especially wind power, are reported in
various sources, each of which considers only sin-
gle power system components. It is demonstrated in
reference [12] that the rating of transformers posi-
tioned at the base of wind turbines may presently
be oversized by up to 20 per cent. Moreover, in ref-
erence [13] the power flowing in an overhead line
close to a wind farm is compared to its RTR using
WAsP. In this research, it was highlighted that high
power flows resulting from wind generation at high
wind speeds could be accommodated since the same
wind speed has a positive effect on the line cooling.
This observation makes the adoption of RTR systems
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relevant inapplicationswhere strongcorrelationsexist
between the cooling effect of environmental condi-
tions and electrical power flow transfers. Moreover,
in references [14] to [16] the influence of component
thermal model (CTM) input errors on the accuracy of
RTR systems is studied. The application of different
state estimation techniques, such as affine arithmetic,
interval arithmetic, and Montecarlo simulations was
studied for overhead lines, electric cables, and power
transformers. Errors of up to ±20 per cent for an
operating point of 75 ◦C, ±29 per cent for an operat-
ing point of 60 ◦C and ±15 per cent for an operating
point of 65 ◦C were found when estimating the oper-
ating temperature of overhead lines, electric cables,
and power transformers, respectively. This highlights
the necessity to have reliable and accurate environ-
mental condition monitoring. The thermal models,
used to estimate RTRs for different types of power
system components, are fundamental to this research
as the accuracy of the models influences significantly
the accuracy of RTRs obtained. Particular attention
was given to industrial standards because of their
wide application and validation both in industry and
academia. For overhead lines, the model is described
in references [17] and [18] that has been developed
into industrial standards [1, 19, 20] by the IEC, CIGRE,
and IEEE, respectively. Static seasonal ratings for dif-
ferent standard conductors and for calculated risks are
provided by the Electricity Network Association (ENA)
in reference [21]. Thermal model calculationmethods
for electric cable ratings aredescribed in reference [22]
and developed into an industrial standard by the IEC
in reference [2]. The same models are used by the
IEEE in reference [23] and the ENA in reference [24]
to produce tables of calculated ratings for particu-
lar operating conditions. Power transformer thermal
behaviour is described in reference [25] with further
modelsdescribed in the industrial standards [3,26,27]
by the IEC, IEEE, and ENA, respectively.
The research presented in this article adds to the

work described above by modelling the influence of
environmental conditions on multiple power system
component types simultaneously. This is of particu-
lar relevance in situations where the increased power
flow resulting from the alleviation of the thermal con-
straint on one power system component may cause
an entirely different component to constrain power
flows. Furthermore, with the expected proliferation
of DG the resulting power flows are likely to affect
many components and it is important to take a holis-
tic view of power system thermal ratings. Since this
research project aims to develop and deploy an eco-
nomically viable real-time system, it is important that
algorithms are developed with fast computational
speeds using a minimal amount of environmental
condition monitoring. Thus an inverse distance inter-
polation technique is used for modelling environ-
mental conditions across a wide geographical area,

which offers faster computational speeds than appli-
cations such as WAsP. Beyond the research described
above, this article also aims to quantify the annual
energy throughput that may be gained through the
deployment of an RTR system.

3 MODELLING APPROACH

3.1 Components

In order to assess, in a consistent manner, component
RTRs because of the influence of environmental con-
ditions, thermal models were developed based on IEC
standards [1–3] for overhead lines, electric cables, and
power transformers, respectively. Where necessary,
refinements were made to the models using [19, 24].
Steady-state models have been used in preference to
dynamicmodels since this would provide amaximum
allowable rating for long termpower systemoperation.
Moreover, the estimation of final steady-state com-
ponent temperatures after a transient has occurred
is influenced by initial conditions, which must also
be estimated. It is felt that with the resolution of the
available data (comprising hourly averaged environ-
mental conditions) it is extremely difficult to obtain
an acceptable precision for dynamic models, particu-
larly for overhead lineswith time constants of less than
an hour.

3.1.1 Overhead lines

Overhead line ratings are constrained by a necessity to
maintain statutory clearances between the conductor
and other objects. The temperature rise causes con-
ductor elongation which, in turn, causes an increase
in sag. The line sag S depends on the tension H , the
weight m applied to the conductor inclusive of the
dynamic force of the wind and the length of the span.
The sag can be calculated as a catenary or its parabolic
approximation, as given in equation (1). To calculate
the tension, it is necessary to consider the thermal-
tensional equilibrium of the conductor, as shown in
equation (2). For calculating the conductor operating
temperature at a given current, or the maximum cur-
rent for a given operating temperature, it is necessary
to solve the energy balance between the heat dissi-
pated in the conductor by the current, and the thermal
exchange on its surface, as given in equation (3)

S =
H

mg

[

cosh

(

mgL

2H

)

− 1

]

≈
mgL2

8H
(1)

EAβ
(

Tc,2 − Tc,1

)

+
(

m2
1g 2L2EA

24H 2
1

)

− H1

=
(

m2
2g 2L2EA

24H 2
2

)

− H2 (2)

qc + qr = qs + I 2r (3)
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The formulae proposed in reference [1] were used
for the calculation of the contribution of solar radi-
ation qs, radiative heat exchange qr, and convective
heat exchange qc. These equations are shown in
equations (4) to (6), respectively

qs = αD Sr (4)

qr = εσS−B(T 4
c − T 4

a )πD (5)

qc = πNuλ(Tc − Ta) (6)

The influences of wind direction and natural convec-
tion on convective heat exchange are not considered
in reference [1]. However, in this research these effects
were considered to be important, particularly as a
wind direction perpendicular to the conductor would
maximize the turbulence around the conductor and
hence the heat exchange on its surface whereas a
wind direction parallel to the conductor would reduce
the heat exchange with respect to perpendicular wind
direction. Therefore, the modifications proposed in
reference [19] and given in equations (7) and (10)
were used. It is possible to calculate the Nusselt num-
ber Nu from the Reynolds number Re as shown in
equation (8). The Reynolds number can be calculated
using equation (9)

Kdir = Kdir−1 + Kdir−2 sin
Kdir−3(Wd) (7)

Nu = Kdir(0.65 Re0.2 + 0.23 Re0.61) (8)

Re = 1.644 × 109 Ws D

(

Tc + Ta

2

)−1.78

(9)

For null wind speeds, theNusselt numbermust be cal-
culated as in equation (10) where Gr is the Grashof
number, calculated as in equation (11), and Pr is the
Prandtl number

Nu = Knat−1(Gr Pr)Knat−2 (10)

Gr =
D3(Tc − Ta)g

[(Tc + Ta)/2]ν2
(11)

It should be noted that for wind speeds between
0–0.5m/s the larger of the Nusselt numbers resulting
from equations (8) and (10) should be used.

3.1.2 Electric cables

The current carrying capacity of electric cables is lim-
ited by the maximum operating temperature of the
insulation. Sustainedhigh currentsmay generate tem-
peratures in exceedance of the maximum operating
temperature, causing irreversible damage to the cable.
In extremecases thismay result in complete insulation
deterioration and cable destruction.
References [2], [22], and [23] were used to model

the conductor temperature in steady-state conditions.
This accounts for the heat balance between the power

dissipated in the conductor by the Joule effect, and
the heat dissipated in the environment through the
thermal resistance RT of the insulation and the soil as
shown in equation (12). The electrical current rating
may then be calculated, as shown in equation (13)

I 2r =
1T

RT

(12)

I =

√

1T

rRT

(13)

Refinements incorporating dielectric losses qd, eddy
currents and circulating currents in metallic sheaths
(λ1,2), resistance variation with temperature, skin
and proximity effects, and the thermal resistance of
each insulating layer RT,i lead to the more complex
equation (14)

I =

√

√

√

√

√

1T − qd[1/2 RT,1 + n(RT,2 + RT,3 + RT,4)]
r(Tc)[RT,1 + n(1 + λ1)RT,2

+n(1 + λ1 + λ2)(RT,3 + RT,4)]

(14)

Thermal resistances for cylindrical layers are calcu-
lated with equation (15) and soil thermal resistance is
modelled with equation (16). Other calculation meth-
ods [2] have to be utilized when operating conditions
differ from those stated above (for example when the
cable is in a duct or in open air)

RT−1,2,3 =
ρs−T

2π
ln

(

1 + 2
D − d

d

)

(15)

RT−4 =
ρs−T

2π
ln

2zb

D
+

√

(

2zb

D

)2

+ 1 (16)

The model described above requires detailed knowl-
edge of the electric cable installation. However, this
information may not always be available and there-
fore it is difficult tomake practical use of themodel. In
these circumstances an alternative model, described
in reference [24] and summarized in equation (17),
may be used. The rated current of electric cables I0 is
given in tables depending on the standardized cable
cross-sectional area and laying conditions (trefoil, flat
formation; in air, in ducts, or directly buried). The
dependence of the cable ampacity on external tem-
perature and soil thermal resistivity is made linear
through the coefficients ξT and ξρ , respectively.

I = I0(A,V , laying)[ξT(Ts − Ts rated)][ξρ(ρs,T − ρs T rated)]

(17)

Since this research concerns the influence of environ-
mental conditions on component ratings, the effect
of the voltage level V , which influences the dielectric
loss qd in equation (14) is not considered. The effect
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of the heating given by adjacent components is also
neglected as it is assumed that each cable has already
been de-rated to take this effect into account.

3.1.3 Power transformers

The model described in reference [3] was used to cal-
culate the winding hot spot temperature for power
transformers. This is the most important parameter
since hotspot temperature exceedance can damage
the transformer in two ways. First, a temperature
exceedance of 120–140 ◦C can induce the formation
of bubbles in the coolant oil, which in turn is liable
to cause an insulation breakdown because of the
local reduction of dielectric insulation strength. Sec-
ond, high temperatures increase the ageing rate of
the winding insulation. For this reason the maximum
operating temperature should not exceed the rated
value. The thermal model consists of a heat balance
between the power dissipated in the winding and iron
core, and the heat transferred to the environment
via the refrigerating circuit. Considering the thermal
resistance between the winding and the oil (RT,W),
the thermal resistance between the heat exchanger
and the air (RT,HE) and the power dissipated into the
core (I 2rwindings), it is possible to calculate the hot spot
temperature THS as in equation (18)

THS = Ta + I 2rwindings(RT,W + RT,HE) (18)

Equation (18) is discussed in reference [25] leading
to the IEC standard model for rating oil-filled power
transformers as shown in equation (19)

THS = Ta + (TTO − Ta)

(

1 + RK 2

1 + R

)x

+ (THS − TTO)K y

(19)

The maximum rating can be obtained by iteration,
once the hot spot temperature has been set, and
tabulated values for the parameters can be found
in reference [3] for transformers with different types
cooling system. Correction factors in reference [3] can
be used to model other operating conditions such
as transformers operating within enclosures. Trans-
former cooling systems are classifiedwith an acronym
summarizing (a) the coolant fluid: oil (O) or air (A);
(b) the convection around the core: natural (N), forced
(F) or direct (D); (c) the external refrigerating fluid:
air (A) or water (W); and (d) the external convection
method: natural (N) or forced (F). Typically distri-
bution transformers have ONAN or ONAF cooling
systems.

3.2 Environmental conditions

This section describes the approach adopted to
estimate, correct, and interpolate environmental

conditions to represent more accurately the actual
environmental operatingconditions for sectionsof the
UK power system in different geographical areas.

3.2.1 Environmental condition interpolation

The inverse distance interpolation technique [28]
allows environmental conditions to be determined
over a wide geographical area using a reduced set of
inputs. This is attractive for situations where a large
amount of installedmeasurements may be financially
unattractive to the DNO. The technique is also com-
putationally efficient and allows the input locations
to be readily adapted. The wind speed correction pro-
cess is described in section 3.2.2. The soil parameter
correction process is described in section 3.2.3. Wind
direction, air temperature, and solar radiation val-
ues were included within interpolations but did not
require the application of a correction factor. At each
point in thegeographical areak thevalueof theparam-
eter Z representing the environmental condition can
be estimated as a weighted average of the parame-
ter values known at i points. The weighting factor is a
function of the distance between the points as shown
in equation (20)

Zk =
∑

i (1/d2
i,k)Zi

∑

i 1/d2
i,k

(20)

3.2.2 Wind speed correction

Ground roughness influences wind speed profiles
and may lead to differences between the wind speed
recorded by anemometers and the actual wind speed
passing across an overhead line, particularly if the
anemometer and overhead line are installed at dif-
ferent heights. This may be corrected using the wind
profile power law given in equation (21). The wind
speedat twodifferent heights is linkedwith the ground
roughness through the exponent Kshear. Values of
Kshear for different ground types may be found in
reference [29]

Ws = Wsa

(

zref

za

)Ksheara (

zc

zref

)Kshearc

(21)

Using equation (21), the anemometer wind speedWsa
at theweather station height za is extrapolated to a ref-
erenceheight zref (in this case 100m) to removeground
roughness dependence represented by the parameter
Ksheara. The values from different anemometer loca-
tions may then be interpolated, using equation (20)
as described in section 3.2.1, to provide a wind speed
estimate at the reference height for a particular geo-
graphical location. The ground roughness at this
location is then taken into account through the coef-
ficient Kshearc along with the conductor height zc in
equation (21) to estimate the wind speed (Ws) across
the overhead line.
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3.2.3 Soil parameter estimation

Electric cable ratings are dependent on soil temper-
ature and soil thermal resistivity, as well as cable
construction, burial layout, and burial depth (which
is typically 0.8–1m). MetOffice [30] datasets con-
tain information regarding soil temperatures at a
depth of 0.3m. However, no information was avail-
able from this source regarding soil thermal resistivity.
Depth-dependent soil temperature distributions may
be calculated using the Fourier law [31] as shown in
equation (22)

dTs

dt
=

d

dz

[

δs−T(θ)
dTs

dz

]

(22)

Boundary conditions were set upwith a constant tem-
perature of 10 ◦C at a depth of 2m for the lower layer
andMetOffice soil temperature readings for the upper
layer. Soil thermal resistivity ρs−T, may be calculated
from equation (23) using the soil thermal diffusivity
δs−T, the dry soil density ρs−density , and the soil thermal
capacity Cs−T

ρs−T = (δs−T ρs−densityCs−T)
−1 (23)

Soil thermal diffusivity δs−T and soil thermal capacity
are influenced by soil composition N and water con-
tent θ and can be calculated using equations (24) and
(25) [32]

δs−T(θ) = −14.8+ 0.209N + 4.79θ (24)

Cs−T = −0.224− 0.00561N + 0.753 ρs−density + 5.81θ
(25)

Ground water content may be determined using the
closed form of Richard’s equation [33] as described
in equation (26) after the calculation of the unsat-
urated hydraulic diffusivity δs−θ (θ) and the unsatu-
rated hydraulic conductivity ks−θ (θ) as described in
reference [34]

dθ

dt
=

d

dz

[

δs−θ (θ)
dθ

dz
+ ks−θ (θ)

]

(26)

In order to solve equation (26), boundary and initial
conditions must be specified. A constant water con-
tent equal to the saturation value was set at a depth
of 2.5m, corresponding to the water table. Further-
more, the ground-level water content was linked to
MetOffice rainfall values lr using the model described
in equation (27), where Krain1 and Krain2 can be
calculated using [35]

dθ

dt
= −Krain1θt + Krain2lr(t) (27)

3.2.4 Sensitivity analysis

It can be seen from the work presented above that
there are many diverse parameters that affect the rat-
ing of power system components. These parameters
may be categorized into component properties, geo-
graphical properties, and environmental conditions.
A list of the parameters used in the offline simula-
tions is given inTable 1. For the purposes of the offline
simulations, component properties and geographical
properties were assumed to be constants of the sys-
tem. Therefore, the thermal models presented were
underpinned by an extensive and rigorous sensitiv-
ity analysis that gave an indication of the influence of
environmental conditions on power system compo-
nent ratings. The sensitivity analysis was carried out
such that one parameter was varied at a time while
all other parameters weremaintained at their credible
mid rangevalues. A summaryof the results of this anal-
ysis is presented in Table 2 and shows the percentage
variation in component rating for a given percentage
variation of environmental conditions from credible
mid-range parameter values. Moreover, in the sensi-
tivity analysis, the soil thermal resistance is assumed
to take into account the effect of rainfall. It can be seen
that the rating of overhead lines is particularly sen-
sitive to the environmental conditions of wind speed,
winddirection, andambient temperature, and that the
rating of electric cables is particularly sensitive to the
thermal resistance of the surrounding medium.
Furthermore, a series of credible worst case scenar-

ioswere selected to give an indication of theminimum
component rating that would potentially result from
the deployment of a real-time rating system. In this
worst case analysis the followingvalueswere specified:
Ta = 38.5 ◦C (the maximum temperature registered
in England, August 2003) [30]; Ws = 0,Wd = 0, Sr =
0W/m2 (from studies carried out at CERL, the high-
est conductor temperature excursions are recorded at
times of lowwind speedwhere there is negligible solar
radiation) [36]; Ts = 20 ◦C [2] and ρs−T = 3Km/W [24].
The resulting rating multipliers of the standard static
component rating were 0.81, 0.86, and 0.78 for over-
head lines, electric cables, and power transformers,
respectively.

4 SIMULATION APPROACH

In Fig. 2, a general description of the simulation
algorithm, with the different software applications, is
provided. The algorithm uses three databases to store
networkcomponentdata,weathermeasurementdata,
and calculated rating data, respectively. It comprises
two main applications: the environmental condition
processor for simulating weather data, described in
section 3.2 and the CTMs for calculating component
ratings, as described in section 3.1. A third application
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Table 2 Environmental condition sensitivity analysis (parameter variation versus rating variation)

Electric cables Transformers
Overhead lines (Lynx 50) (150mm2) (ONAN 45)

Parameter (credible

mid-range value) Ws (8m/s) Wd
(

π

4
rad

)

Ta (15
◦C) Sr (500W/m2) RT (1.2WK/m) Ts (10

◦C) Ta (15
◦C)

Variation from
mid-range value

−50% −23.86% −11.38% +10.80% +0.72% +31.46% +3.00% +6.11%

−25% −10.73% −4.97% +5.52% +0.36% +12.36% +1.50% +3.09%
−10% −4.07% −1.85% +2.24% +0.15% +6.18% +0.60% +1.24%
10% +3.84% +1.66% −2.29% −0.15% −4.49% −0.60% −1.25%
25% +9.22% +3.82% −5.81% −0.36% −8.99% −1.50% −3.16%
50% +17.40% +6.54% −11.96% −0.73% −16.48% −3.00% −6.40%

Fig. 2 Simulation scheme

(coordination) was added to supervise the simula-
tion dataflow. The offline simulation algorithm com-
putes component real-time ratings with a temporal
resolution of 1 h.

4.1 Weather

MetOffice datasets were used, referring to four
British airports: Bishopton (Glasgow), Valley (Angle-
sey), Woodford (Manchester), and Heathrow (Lon-
don). The data comprised hourly averages of wind
speed, wind direction, air temperature, solar radia-
tion, and soil temperature throughout the calendar
year 2005. In Figs 3 to 5, the data from those sites are
summarized and compared.
In Fig. 3, it is possible to observe the different site

characteristics for the wind speed: Valley, on the west
coast of Wales, is the windiest area with the highest
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Fig. 5 Soil temperature PD

maximum wind speed values and a probability distri-
bution (PD) with the smallest peak. Heathrow, which
is located in an urban environment, has wind speeds
that are generally lower and more concentrated in the
range between 2–7m/s. As seen in Fig. 4, air tem-
perature appears to be the least variable parameter.
Different sites may be differentiated by average tem-
perature values. In Fig. 5, the behaviour of the soil
temperature is illustrated. Whereas the air tempera-
ture shows a variation with one peak across the year,
soil temperature appears to vary with multiple peaks.
Regarding wind direction, the presence of preva-

lent winds from the west and the north-west in the
range 180–360◦ was noted for all areas. Some areas
also exhibited site-specific prevalent wind directions,
for example from the south-west in Woodford and
from north-north-west in Bishopton. Regarding solar
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radiation, no significant differences between the four
sites were found.

4.2 Networks

In order to simulate in a rigorous manner the influ-
ence of environmental conditions on power system
ratings, three network models were adapted from
the United Kingdom Generic Distribution Systems
(UKGDSs) [37], each of which contain the three com-
ponent types considered in this article. Moreover, a
portion of the ScottishPower EnergyNetworks distri-
bution network was included in simulations as this
will be instrumented in the near future for RTR val-
idation purposes. Voltage levels in the four networks
studied vary from 6.6 to 132 kV.
The ScottishPower EnergyNetworks Site network is

shown in Fig. 6 and has a meshed topology, with a
prevalence of Lynx 175mm2 overhead lines. The net-
work also has eleven electric cable circuits of 150mm2

at the 33 kV level and 13 power transformers rated
at 45MVA, 60MVA, 90MVA, and 240MVA. Topologi-
cal representations of the UKGDSs can be found in
Appendix 3. Technical characteristics for the overhead
linesmay be found in reference [21]. UKGDS_A has six
overhead line circuits with Zebra and Lynx conductors
rated at 50, 65, and 75 ◦C, 12 electric cables circuits
with 150 and 240mm2 conductors, and 16 transform-
erswith ratings from14 to500MVA.UKGDS_Bconsists
of six overhead lines with Zebra and Lynx conductors,
eight electric cable circuits with 150mm2 conductors
and13power transformers,with ratings fromof 21 and
500MVA.UKGDS_C is characterizedbyaprevalenceof
electric cable circuits and power transformers. It com-
prises two overhead lines with Zebra conductors, 12
electric cable circuits with 150 and 240mm2 conduc-
tors and 18 power transformers with ratings from 14

Fig. 6 Site trial

to 500MVA. Electrical parameters for modelling the
UKGDSs may be found in reference [37].

5 RESULTS AND ANALYSIS

In order to quantify the influence of environmental
conditions on power system ratings, simulations were
carried out on the networks described in section 4.2
subjected to a range of UK climatic conditions. For
each scenario the minimum, maximum, and aver-
age rating values together with additional potential
annual energy throughput (in GWh) were calculated
and the results are tabulated in Appendix 3. These
data may be summarized as follows: the average rat-
ing of overhead lines ranged from 1.70 to 2.53 times
the static rating with minimum and maximum rat-
ings of 0.81 and 4.23, respectively. The average rating
of electric cables ranged from 1.00 to 1.06 times the
static rating with minimum and maximum ratings of
0.88 and 1.23, respectively.The average rating of power
transformers ranged from 1.06 to 1.10 times the static
rating with minimum and maximum ratings of 0.92
and 1.22, respectively.
Simulations results were analysed in three different

ways:

(a) comparing the rating cumulative probabilities of
different component types against one another
within the same network and environmental con-
ditions;

(b) comparing the GWh headroom of four different
overhead line types subjected to four different UK
climates;

(c) assessing the increased energy throughput from
DG that may be accommodated by using RTRs,
as opposed to seasonal ratings, for a single over-
head line.

5.1 Rating comparison of different component
types

In Table 3, the simulation results for the site net-
work exposed to theValley climatic scenario are given.
For each component type the average, minimum, and
maximum RTRs are given, and the additional head-
room theoretically obtainable with RTRs (as opposed
to seasonal ratings) is quantified. The additional
headroom was calculated by summing the difference

Table 3 Simulation results for SITE network components exposed to theValley climatic scenario

Additional RTR
Static rating RTR average RTRminimum RTRmaximum headroom

Component (MVA) (MVA) (MVA) (MVA) (GWh/year)

Electric cable (150mm2) 21 21 19 23 1.83
Power transformer (ONAN 45) 45 48 44 52 30.7
Power transformer (OFAN 240) 240 257 235 276 149.1
Overhead line (Lynx 50) 89 253 107 419 1342
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between the RTR and the seasonal ratings across the
year in hourly intervals. For overhead lines, the sea-
sonal ratings reported in reference [21] were used
for this calculation. In Fig. 7(a), the rating cumula-
tive probabilities for the four components described
in Table 3 are shown. RTRs have been normalized
using the static component rating. From inspection
of Fig. 7(a) it is evident that overhead lines show the
greatest potential for rating exploitation. As seen in
Fig. 7(b), electric cable and power transformer ratings
have a limited variability. This is because soil temper-
ature, soil thermal resistivity, and air temperature are
much less variable than wind speed and direction and
it is these latter parameters that greatly influence the
rating of overhead lines. This is in agreement with
the analysis in section 4.1. By representing compo-
nent ratings as cumulative probabilities, the potential
comparison with power transfer duty (PTD) curves
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Fig. 7 (a) Rating cumulative probability for SITE net-

work components exposed to the Valley cli-

matic scenario and (b) magnified rating cumu-

lative probability for SITE network components

exposed to theValley climatic scenario

is facilitated. Moreover, DNOs are able to specify a
probability with which they are comfortable to oper-
ate a particular component and an assessment of the
corresponding rating may be made.

5.2 Rating comparison of overhead line types

It was shown in Fig. 7 and Table 3 that overhead lines
exhibit the greatest potential for RTR exploitation.
Therefore, in Fig. 8 the average headroom for different
overhead line types, exposed to different climatic
scenarios, is compared. For each case, the average
headroom is given along with theminimum andmax-
imum headroom. Headroom variations exist since
differences in component orientation and component
location result in rating variations. Variation bars are
representative of the possible headroom ranges sim-
ulated. The size of the variation band is determined
by the number of components existing within each
case study network. A large variation band represents
a frequently occurring component. By inspecting the
position of the lower variation band it is evident that
theadditionalheadroomisgreater for conductorswith
a greater initial static rating, and this effect is accentu-
ated by conductor rated temperature. This is because
the conductor temperature rise above ambient tem-
perature multiplies the heat exchange coefficient as
seen in equation (6).
Regarding the influence of the climates, Valley

exhibits the highest average wind speed values and
Bishopton the lowest average temperatures as seen in
Figs 3 and 4. Since overhead line ratings aremore sen-
sitive towindspeed thanair temperature theclimateof
Valley leads to the greatest overhead line power trans-
fer headroom. Clearly from this evidence the value of
adopting anRTR system is dependent on geographical
location. Therefore, any utility interested in deploying
an RTR system should conduct a site specific study to
assess the value of RTRs as the output varies accord-
ing to climate, and therefore the economic value is
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different. Furthermore, the quantification assessment
presented in Fig. 8 allows a conservative approach
to be adopted in developing RTR systems since an
investor may choose to utilize the rating seen at the
bottom of the variation band.

5.3 Power transfer accommodation assessment

This section presents a methodology for quantifying
the practically exploitable headroom for the specific
case of a 132 kV Lynx overhead line conductor with a
maximum operating temperature of 50 ◦C subjected
to the Valley climate in the site network. This location
was selected since it is an area attractive to prospective
wind farm development. The practically exploitable
headroom was quantified as follows: meteorological
wind data from the Valley site were used together
with the GE 3.6MW wind turbine power curve [38]
to assess the power generated throughout the year
and transferred through the overhead line conductor.
Clearly the exposure of the overhead line conductor to
environmental conditions varies as a function of line
orientation and ground roughness. Therefore, when
making an assessment of the RTR, the overhead line
was divided into sections to represent the variation in
these parameters. The section of overhead line with
the lowest rating represents the weakest point of the
overhead line system and therefore this lowest rating
was adopted as the RTR for the entire overhead line.
By comparing the power transfer across the year with
the overhead line rating, for both seasonal and RTR
regimes, the wind farm installed capacity was sized
to correspond to a line cumulative overload probabil-
ity of 1/1000 (8.76 h/annum). Results are summarized
in Fig. 9, where the line RTR cumulative probability,

along with the inverse cumulative probability for two
different PTDs, seasonal and switchgear ratings are
represented. The cumulative probability curve (the
RTR distribution) may be interpreted by selecting an
acceptable probability at which the component may
be operated, e.g. 0.1 (10 per cent). This corresponds
to a rating of 149MVA. Therefore, there is the proba-
bility of 10 per cent that during the course of the year
the rating is 6149MVA (conversely there is a 90 per
cent probability that the rating is>149MVA). Similarly
the inverse cumulative probability (PTD curves 1 and
2) may be interpreted by selecting a PTD value, e.g.
76MVA on PTD 2 curve. This corresponds to a proba-
bility of 10 per cent. Therefore there is a probability of
10 per cent that during the course of the year PTD 2 is
>76MVA (conversely there is a 90 per cent probabil-
ity that the PTD is <76MVA). For the seasonal rating
regime an installed capacity of 89MW (25 turbines)
could be accommodated and an annual energy yield
from the wind farm of 245GWh could be attained.
For the RTR regime, an installed capacity of 137MW
(38 turbines) could be accommodated and an annual
energy yield from the wind farm of 377GWh could
be attained. This represents an increase in installed
capacity and annual energy yield of 54 per cent, which
is specific to theweatherdataused, the typeof conduc-
tor, the risk at which the DNO is prepared to operate
the asset and the type of turbine selected. An annual
energy yield increase of 54 per centwould significantly
enhance the revenue stream of a wind farm devel-
oper, demonstrating the value of an RTR approach.
However, this is only 10 per cent of the theoretical
average additional headroom for this type of over-
head line conductor exposed to the Valley climate,
as seen in Fig. 8. Installing a larger capacity of DG
together with the adoption of an online power output
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controller [39] could allow a greater percentage of the
theoretical average additional headroom to be real-
ized while maintaining an acceptable level of risk to
the DNO.
An estimation of the losses associated with the two

PTD curves was carried out in the following way: from
the average environmental conditions at theValley site
and from the average value of the power transfer, the
average conductor temperature was calculated. From
this, the average conductor resistance was calculated
and, using the hourly values of the power transfer, it
was possible to obtain the losses arising from Joule
effect for the whole year. Loss values of 0.12 and 0.19
per cent of the entire annual energy throughput were
obtained for PTD 1 and PTD 2, respectively.

6 CONCLUSIONS

This article described the offline simulation of power
systemthermalmodelspopulatedwithhistorical envi-
ronmental conditions in order to derive RTRs. This
information was used to quantify (in GWhs) the
exploitable headroom that may be achieved by imple-
menting an RTR system within distribution networks.
Power system component models were developed
based on IEC standards and environmental condi-
tions were corrected and interpolated to represent, as
closely as possible, actual network operating condi-
tions. Component data and environmental condition
data were used to populate the models in simula-
tion to derive component RTRs. For a wide number of
power system components and environmental condi-
tions the minimum, maximum, and average ratings
were quantified together with the additional power
transfer headroom. This information is likely to be of
use to DNOs in planning and operating future dis-
tribution networks that may be reaching a level of
power transfer saturation. It was found that overhead
lines exhibit the greatest potential RTR exploitation
since they exhibit the greatest rating variability. Fur-
thermore, it was found that power transformers and
electric cables have a slight RTR exploitation poten-
tial relative to overhead lines. The value of adopting
an RTR system is dependent on geographical loca-
tion. Therefore any utility interested in deploying an
RTR system should conduct a site specific study to
assess the value of RTRs as the output varies accord-
ing to climate, and therefore the economic value
is different.
The increase in power transfer from DG that could

be accommodated through an RTR system imple-
mentation was investigated. For a Lynx overhead line
conductor with a maximum operating temperature
of 50 ◦C it was found that a GWh energy through-
put increase of 54 per cent could be accommo-
dated by operating the line with an RTR regime as

opposed to a seasonal rating regime.Work is continu-
ing in this area to realize the potential of RTR system
implementations.
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APPENDIX 1

Notation

A conductor cross-sectional area (m2)
Cs−T soil thermal capacitance (J/kg/K)
d internal diameter (m)
di−k distance from weather station to

component (m)
D external diameter (m)
E Young’s modulus of conductor (Pa)
g gravitational acceleration (m/s2)
Gr Grashof number
H tension (N)
i index
I current (A)
I0 electric cable rated current (A)
k number of weather stations
ks−θ soil unsaturated hydraulic conductivity

(m/s)
K load ratio
Kdir wind direction influence coefficient
Kdir−1,2,3 wind direction coefficient constants
Knat−1,2 natural convection coefficients
Krain1 normalized soil water loss (day−1)

Krain2 normalized net rainfall coefficient
(day−1/mm)

Kshear,a ground roughness factor at the weather
station

Kshear,c ground roughness factor at the
conductor

lr rainfall (mm)
L span (m)
m mass per unit length (kg/m)
n number of conductors in the cable
N sum of sand and clay percentage
Nu Nusselt number
P real power set point dispatched to

generator (MW)
Pr Prandtl number
qc heat exchanged per unit length by

convection (W/m)
qd dielectric loss per length unit (W/m)
qr heat exchanged per unit length by

irradiation (W/m)
qs heat gained per unit length by solar

radiation (W/m)
Q reactive power set point dispatched to

generator (MVAr)
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r conductor resistance per length unit
(Ä/m)

rwindings transformer windings resistance (Ä)

R ratio between windings and core losses
RT thermal resistance (m K/W)
RT,HE transformer heat exchanger thermal

resistance (m K/W)
RT,W windings to oil thermal resistance

(m K/W)
Re Reynolds number
S sag (m)
Sr solar radiation (W/m)
t time (s)
Ta air temperature (K)
Tc conductor temperature (K)
THS hot spot temperature (K)
Ts soil temperature (K)
TTO top oil temperature (K)
V voltage (V)
Wd wind conductor angle (rad)
Ws wind speed (m/s)
x transformer oil exponent
y transformer winding exponent
zb cable burial depth (m)
zc,ref ,a conductor, reference, and weather

station heights for wind correction (m)
Zk generic environmental condition

parameter

α absorption coefficient
β conductor thermal expansion

coefficient (K−1)

δs−T soil thermal diffusivity (m2/s)
δs−θ soil unsaturated hydraulic diffusivity

(m2/s)
1T temperature difference (K)
ε emission coefficient
θ gravimetric water content
λ air thermal conductivity (W/m/K)
λ1,2 ratio betweenmetal sheath losses and

total losses
ν kinematic viscosity (m2/s)
ξT electric cables rating temperature

correction factor (K−1)

ξρ electric cables rating thermal resistivity
correction factor (W/m/K)

ρs−density dry soil density (kg/m3)

ρs−T soil thermal resistivity (m K/W)
σS−B Stephen–Boltzmann constant

(W/m2/K4)

APPENDIX 2

UKGDS networks

In Figs 10 to 12, a description of the UKGDS networks
used is given.

Fig. 10 UKGDS_A

Fig. 11 UKGDS_B

Fig. 12 UKGDS_C

APPENDIX 3

Simulation results

This section provides a summary of the simulation
results. For each climate and each network, the aver-
age, minimum, and maximum calculated ratings are
given in Table 4, along with the static rating and the
average annual headroom for each component type.
Overhead lines are described with their conductor
codes and rated temperature, electric cables with the
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Table 4 Simulation results, component ratings, and theoretical headroom

Static rating RTR average RTRminimum RTRmaximum RTR headroom
Component (MVA) (MVA) (MVA) (MVA) (GWh/year)

Overhead line (Lynx 50) 89 213 84 419 988.48
Overhead line (Lynx 65) 108 220 94 390 898.94
Overhead line (Zebra 50) 154 328 125 595 1359.66
Overhead line (Zebra 75) 206 402 178 731 1576.20

Electric cable (150mm2) 21 21 18 25 2.94
Electric cable (240mm2) 30 32 27 37 13.33

Power transformer (ODAF 500) 500 532 469 580 282.41
Power transformer (OFAF 240) 240 258 223 284 154.75
Power transformer (ONAN 100) 100 108 92 120 70.80
Power transformer (ONAN 90) 90 97 83 108 63.72
Power transformer (ONAN 60) 60 65 55 72 42.48
Power transformer (ONAN 45) 45 49 41 54 31.87
Power transformer (ONAN 23) 23 25 21 28 16.28
Power transformer (ONAN 21) 21 23 19 25 14.87
Power transformer (ONAN 14) 14 15 13 17 10.80

conductor cross-sectional area, and power transformers with the cooling method and the rating. In Table 5, a list
of the components within each network is given.

Table 5 Network components

Number of
Network Component components

SITE Overhead line (Lynx 50) 11
SITE Electric cable (150mm2) 11
SITE Power transformer (OFAF 240) 5
SITE Power transformer (ONAN 45) 5
SITE Power transformer (ONAN 60) 2
SITE Power transformer (ONAN 90) 1

UKGDS−A Overhead line (Lynx 50) 1
UKGDS−A Overhead line (Lynx 65) 3
UKGDS−A Overhead line (Zebra 75) 2
UKGDS−A Electric cable (150mm2) 4
UKGDS−A Electric cable (240mm2) 10
UKGDS−A Power transformer (ODAF 500) 1
UKGDS−A Power transformer (ONAN 23) 1
UKGDS−A Power transformer (ONAN 60) 6
UKGDS−A Power transformer (ONAN 90) 2
UKGDS−A Power transformer (ONAN 14) 2

UKGDS−B Overhead line (Lynx 65) 4
UKGDS−B Overhead line (Zebra 75) 2
UKGDS−B Electric cable (150mm2) 7
UKGDS−B Electric cable (240mm2) 1
UKGDS−B Power transformer (ODAF 500) 2
UKGDS−B Power transformer (ONAN 100) 1
UKGDS−B Power transformer (ONAN 21) 2
UKGDS−B Power transformer (ONAN 23) 5
UKGDS−B Power transformer (ONAN 45) 2
UKGDS−B Power transformer (ONAN 90) 1

UKGDS−C Overhead line (Zebra 50) 2
UKGDS−C Electric cable (150mm2) 1
UKGDS−C Electric cable (240mm2) 9
UKGDS−C Power transformer (ODAF 500) 1
UKGDS−C Power transformer (ONAN 60) 1
UKGDS−C Power transformer (ONAN 14) 1
UKGDS−C Power transformer (ONAN 23) 10
UKGDS−C Power transformer (ONAN 60) 1
UKGDS−C Power transformer (ONAN 14) 2
UKGDS−C Power transformer (ONAN 23) 1
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ABSTRACT 

Currently the operators of electrical distribution 

networks face a number of challenges, such as load 

growth, the proliferation of distributed generation and 

ageing infrastructure. This is drawing attention to 

techniques which will allow more efficient asset 
utilisation and facilitate network dynamic management. 

Power system component real-time ratings are a cost 

effective solution for increasing network power transfer 

capacity. Instantaneous ratings can be used for this 

purpose, but distribution network operator decision 

making capability regarding network power flow 
management would be enhanced by the adoption of 

rating forecasts. Therefore this paper presents an 

investigation into the technical challenges and potential 

benefits of power system component rating forecasts. 

Weather forecasts are used with power system component 
thermal models and a state estimation technique for 

calculating rating forecasts at different time horizons. 

1 INTRODUCTION 

The rating of power system components is influenced by 
external parameters such as wind speed or air 
temperature, but the possibility of exploiting any increase 
in rating is problematic due to the variability of these 
external parameters. The technique referred to as “real-
time ratings” involves real-time measurement of 
component temperatures and external parameters, such as 
air temperature or wind speed, in order to estimate 
component real-time ratings. Durham University is 
participating in a collaborative project with AREVA 
T&D, Imass, PB Power and ScottishPower 
EnergyNetworks, which aims to develop, install and test 
a power output control system for distributed generation 
informed by dynamic thermal ratings. Within this 
research, dynamic thermal ratings are defined as a time-
variant rating which can be practically exploited without 
damaging components or reducing their lifetime. Actual 
environmental parameter measurements are used as the 
input to steady state thermal models and it is assumed 
that there are no outages (planned or unplanned) present 
within the electrical power system. Previous research [1] 
has demonstrated the suitability of real-time ratings for 
distributed generation power output control. This paper 
describes research with a different approach: weather 
forecasts are used for producing rating forecasts for 
different time horizons. A number of perceived benefits 
are expected to be yielded by this approach: Firstly a 
reduction in the number of on-site weather stations would 
be possible since the necessary information could be 
gathered from meteorological offices. Secondly the 

availability of rating forecasts would enhance the 
decision making capability of distribution network 
operators regarding network power flow management. 
Decisions would be informed by both the instantaneous 
ratings as well as rating forecasts for different time 
horizons. Another innovation described in this paper is 
the utilization of an estimation technique, in order to 
assess the error associated with rating forecasts. The 
knowledge of the error associated with the use of state 
estimation techniques would potentially increase the 
distribution network operator’s confidence in real-time 
rating systems. This paper is structured in the following 
way: Firstly a survey of related work is presented. Then 
the methodology used in the research is described and the 
data used for the simulations and the case study are 
presented and finally simulation results are given and 
conclusions are drawn. 

2 RELATED WORK 

This work aims to combine two different areas of 
research: power system component real-time ratings and 
forecast techniques. Research has been carried out on the 
two topics, but not on their combination. The concept 
behind real-time ratings is described in [1]. The 
description of an application of a real-time rating system 
for the transmission network in the region of Madrid is 
provided in [2]. In this case, a low number of weather 
stations are used to estimate wind speed and direction 
over a wide geographical area and these estimations are 
used for calculating the real-time rating of an overhead 
line. The Electric Power Research Institute (EPRI) 
developed a similar system in the late 1990s considering 
overhead lines as well as other power system 
components. In [3] and [4] the system and field test 
results are reported. It was found that for a complete 
network, rating increases of up to 15% of the static value 
were possible. Forecast techniques have been applied to 
predict energy demand and wind power production. In [5] 
different techniques for load demand forecasts such as 
ARIMA modelling, adapted exponential smoothing and 
weather forecasts were compared and it was found that 
the combination of weather forecasts and exponential 
smoothing provide a better approximation for load 
demand forecasts beyond one hour ahead. Another 
approach, described in [6], bases the energy demand 
forecast on weather ensemble forecasts- a method which 
provides a probability distribution of the possible weather 
parameter values. This method is considered for a time 
horizon of up to 10 days. Regarding wind power 
forecasts, in [7] the system used in the on-line 
management of the Spanish transmission system is 
described. It makes use of several models and of adaptive 
estimation for the parameters. The final prediction is then 
obtained as a weighted average of the results of the 
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different models. From the analysis of the research 
described above, it is possible to highlight the 
requirement for work in the area of components real-time 
rating forecasts. This paper aims to suggest a possible 
methodology for filling this gap. 

3 METHODOLOGY 

The research described in this paper adopts the following 
approach: Component thermal models available in 
literature are used for calculating component rating for 
particular weather conditions. A state estimation 
technique based on Montecarlo method is used for giving 
a more complete description of the possible states of the 
system, providing the minimum, maximum, average and 
standard deviation of the rating forecasts according to the 
possible forecasted weather conditions. Historical 
weather forecast data from the National Oceanic and 
Atmospheric Administration (NOAA) [8] is used as 
inputs to these models. 

3.1 State estimation 

In this section a description of the algorithm responsible 

for the state estimation is given. The aim of this 

algorithm is to provide a reliable estimation of circuit 

ratings described by an appropriate cumulative 

probability function. The circuit has been divided in 

several parts, for taking into account different soil 

roughness and line orientation. This makes it possible to 

calculate descriptors such as the minimum, maximum, 

average and standard deviation of the rating estimation. 

The algorithm developed is briefly illustrated in Figure 1, 

where it is possible to see the following steps: 

1. Forecasted weather data is read from an external 

source (in this case the database “a”). This data, 

comprising the minimum, maximum, average and 

standard deviation of each parameter in the given 

period, is described in Section 3.3. 

2. A set of values for weather parameters is calculated 

in the following way: From the data read in “1” the 

parameters of a cumulative probability function are 

calculated. In this case the Beta probability function 

is used. A random value for the probability is 

selected and from the cumulative probability function 

the corresponding parameter value is found. This is 

repeated for each weather parameter. 

3. For each component of the circuit the rating is 

calculated using the models described in Section 

3.2.1. The result is stored temporary in “b”. 

4. The circuit rating is calculated selecting the minimum 

rating of each component. The results are temporarily 

stored in “c”. 

5. The steps from 2 to 4 are repeated for a fixed number 

of times N. 

6. The precision of the result is compared with a 

predefined value. If the result is not acceptable, a new 

value for N is calculated and the steps from 2 to 5 are 

repeated 

7. Circuit ratings stored in “c” are analysed in order to 

calculate the minimum, maximum, average value and 

standard deviation for each time horizon. 

 
Figure 1: Montecarlo simulation basic flow chart 

3.2 Models 

3.2.1 Overhead line rating 

The fundamental idea behind component ratings is that 

the operating temperature limit of the component must 

not be exceeded in order to avoid damaging the 

component. For overhead lines in particular, a 

temperature rise leads to a reduction in conductor tension 

and to an increase in the sag. Typical values for 

maximum conductor temperature are between 50 ºC and 

90 ºC. Component temperature is not a constant value but 

depends upon the energy balance between the heat 

produced inside the component and the heat exchange on 

its surface. The energy dissipated depends on the load, 

however the heat exchange is mainly influenced by the 

temperature difference between cable and the 

environment and by other external factors such as wind 

speed or solar radiation. Considering the heat dissipated 

by the Joule effect (I2R), the heat exchanged by 

convection (Qc) and radiation (Qr), and the solar radiation 

(Qs), the energy balance for an overhead line conductor is 

described in Equation (1). 

  (1) 

Different methods have been suggested for the 

calculation of each one of these parameters. In this 

research the methodology previously described in [1] was 
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3.2.2 Environmental condition interpolation 

The inverse distance interpolation technique [9] allows 

environmental conditions to be determined over a wide 

geographical area using a reduced set of inputs. In this 

case meteorological inputs are the weather forecasts from 

the NOAA at a height of 10m from the ground. Wind 

speed is corrected with the method described in Section 

3.2.3. Wind direction, air temperature and solar radiation 

values were included within interpolations but did not 

require the application of a correction factor. At each 

point in the geographical area (k) the value of the 

parameter (Z) representing the environmental condition 

can be estimated as a weighted average of the parameter 

values known at i points. The weighting factor is a 

function of the distance between the points as shown in 

Equation (2). 
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3.2.3 Wind speed correction 

Ground roughness influences wind speed profiles and 

may lead to differences between the wind speed 

estimated at a given height and location and the actual 

wind speed passing across an overhead line. This may be 

corrected using the wind profile power law given in 

Equation (3). The wind speed (ws) at two different 

heights (z1 and z2) is linked with the ground roughness 

through the exponent Kshear. Values of Kshear for different 

ground types may be found in [10]. 
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Using Equation (3) the forecasted wind speed is 

extrapolated to a reference height (in this case 100 

meters) to remove ground roughness dependence. The 

values from different forecast locations may then be 

interpolated, using Equation (2), to provide a wind speed 

forecast estimate at the reference height for a particular 

geographical location. The ground roughness at this 

location is then taken into account and Equation (3) is 

used to estimate the wind speed across the overhead line. 

3.3 Data 

For the study described in this paper, weather forecasts 

from the NOAA [8] for the test area in Wales with a time 

step of 6 hours have been used. Data is described in  

Table 1. 

Table 1 weather forecast for 18/09/2008 on test area 

 Time horizon [h] 

 0 6 12 18 24 

Ws [m/s] 1.8 2.5 1.7 1.2 3.4 

Wd [deg] 178 196 189 301 216 

Ta [°C] 10.3 9.8 16.1 12.9 12 

The Montecarlo simulation does not require simple 

parameter values, but a description of their probability, 

with the minimum, maximum, average and standard 

deviation. These values can be obtained with ensemble 

forecasts or time series analysis. In this study the 

precision of the forecast for different time horizons has 

been estimated from the precision of the forecast for each 

parameter in the period between 08-18/08/2008. 

Table 2 Forecast error minimum, maximum average 

and standard deviation 

  Time horizon [h] 

 [%] 6 12 18 24 

W
s 

min -28.30 -17.78 -30.19 -38.55 

max 13.79 50.00 27.27 83.33 

st dev 14.24 21.60 18.17 38.96 

W
d

 min -1.94 -3.33 -2.78 -8.33 

max 15.83 1.67 20.83 23.61 

st dev 5.00 1.44 6.70 8.11 

T
a

 min -15.86 -9.93 -20.27 -16.22 

max 1.57 4.80 31.07 15.84 

st dev 6.07 5.78 12.06 8.51 

The network studied is part of the Manweb distribution 

network situated in an area attractive to prospective wind 

farm development. It is composed of a 132kV Lynx 

overhead line conductor with a maximum operating 

temperature of 50 C connecting two towns 7 km apart. 

The line passes through the two towns in an area 

characterised mainly by the presence of grass and 

inhabited areas. This is important since the different in 

ground roughness influences the value of wind speed as 

calculated in Equation (3). In Figure 2 a representation of 

the network studied is provided. 

 
Figure 2: Network and site schematic representation 

4 RESULTS AND DISCUSSIONS 

The simulation results are shown in Table 3 and Figure 3, 
where the rating forecasts for the whole day are 
represented from the reference time of midnight. Two 
main considerations arise from the observation of these 
results: As expected, the error increases with the distance 
of the forecast from the reference time. At 6pm the 
possibility to have a real time rating below the value of 
the static seasonal rating is forecasted. 
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Table 3 Rating forecast in MVA for different time 

horizons 

 Time horizon [h] 

[MVA] 0 6 12 18 24 

min  108 109 75 85 

max  142 134 141 152 

aver 138 133 122 98 130 

st dev  9 9 24 17 

In this case the minimum forecasted rating in the late 

afternoon corresponds with the daily peak for the power 

transfer on the line. If the line utilization increased 

because of an increased connection of distributed 

generation, this would create a problem and the necessity 

to curtail part of the generation. On the other hand, the 

ability to forecast this situation and to quantify its 

probability, would allow appropriate decisions for 

generation control to be taken. Considering the different 

precision found for different time horizons, it is 

recommended to take into account this parameter, along 

with the distance from the forecast reference time, when 

developing control strategies for power flow 

management. 

 
Figure 3: Rating forecast 

5 CONCLUSION 

In this paper a methodology for overhead line rating 
forecasts has been presented. This is based on the 
research regarding distribution network real-time rating 
estimations developed at Durham University. Weather 
forecasts were used with component thermal models and 
a state estimation technique based on the Montecarlo 
method in order to calculate a probability distribution for 
each circuit component’s rating for different time 
horizons. The results have then been collated for 
calculating line rating probability distribution, and 
metrics such as minimum, maximum, average and 
standard deviation of the rating forecasts. The simulation 
highlights that the estimation precision tends to decrease 
with the distance from the reference time. It was also 
shown how a possible rating lower than the static 
seasonal rating was forecasted 18 hours ahead of the 
reference time. The work presented in this paper on rating 
forecasts is expected to enhance distribution network 
operator decision making capabilities regarding network 
power flow management. This is because decisions may 
be informed not only by instantaneous rating estimates, 
but also by the forecasted ratings for different time 

horizons. Work is continuing in this area to realise the 
potential of forecasted real-time ratings for electrical 
distribution networks. 
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ABSTRACT: This paper presents the technical 

considerations and economics of a number of solutions that 
would allow a greater installed capacity of distributed 
generation to be connected to, and managed within, the 
distribution network. The paper describes the various 
solutions and compares their relative energy yield and 
economics.  It was found that a distributed generation 
constrained connection manager informed by dynamic 
thermal ratings is the most attractive solution for 
developers wishing to connect wind generation to this case 
study network when compared to alternative solutions.  
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I. INTRODUCTION 
 

In order to meet the United Kingdom (UK) government’s 
environmental targets for 2010, approximately 10GW of 
additional distributed generation (DG) will have to be 
connected to UK distribution networks [1].  As this growth 
in DG is realised, power flows within distribution networks 
are expected to become increasingly congested.  This may 
act as a barrier, inhibiting the amount of DG that can 
connect to the network and may impact on the energy yield 
(and hence profitability) of existing schemes as network 
capacity becomes saturated.  Thus methods to manage the 
connection of DG schemes, in light of power flow 
constraints, could be beneficial both in the UK and 
internationally.   The current practices regarding DG 
connections may: 

 
1) Constrain the size of schemes at the planning stage to 

the existing capacity of the network based on static 
component thermal ratings. 

2) Entail relatively high network reinforcement costs to 
connect schemes in excess of the network’s current 
capacity. 

3) Involve basic ‘tripping’ schemes to manage the DG 
output at times of constraint. 

 
 
 
 

 
 
 

 

For the case study considered, comprising DG with an 
intermittent power output, this paper demonstrates that the 
energy yield from the unconstrained reinforcement solution  
is only slightly more than that delivered by an alternative 
operational solution utilising dynamic circuit ratings.  DG 
constrained connection managers (CCMs) are one 
approach that facilitates a greater energy yield from DG 
schemes based on the available network capacity.  It is 
acknowledged that asset ratings are not a static 
phenomenon but vary as a result of the prevailing 
meteorological conditions throughout the year.  Thus 
increased amounts of electricity can be passed through 
distribution networks if the thermal limits of the network 
components are calculated from present conditions rather 
than from a fixed seasonal figure. 

For the purpose of this research, dynamic thermal ratings 
(DTRs) are defined as a time-variant rating which can be 
practically exploited without damaging components or 
reducing their lifetime.  Actual environmental parameter 
measurements are used as the input to steady state thermal 
models.  In order to calculate and exploit the DTR, it is 
assumed that local environmental parameters are available 
and that there are no outages (planned or unplanned) 
present within the electrical power system.  Short term 
transients, taking into account the thermal capacitance of 
power system assets are not included within the DTR 
assessment.  It is felt that this would not affect the 
MWh/annum throughput of energy within the electrical 
power system. 

The 132kV section of the network presented in this paper 
is a subsection of a wider trial network forming the 
research basis for the ‘Active Control of Distributed 
Generators based on Component Thermal Properties’ [2].  
The collaborative project (involving AREVA T&D, 
Durham University, Imass, PB Power and ScottishPower 
EnergyNetworks) aims to develop, install and test a CCM 
for DG informed by DTRs.  

This paper makes a comparison between a network 
reinforcement solution, two DG tripping solutions and two 
CCM solutions. Each solution would allow a greater 
installed capacity of DG to be connected to a single point 
within the distribution network.  The CCM solutions 
increase in sophistication both in the manner in which the 
DG power output is controlled (demand-following as 
opposed to tripping) and by utilising different component 
rating regimes.  By incorporating a backup trip protection 
system into the more sophisticated solutions, the risk of 
CCM system failure is minimised and thus the security of 
the network is maintained.  An energy yield, electrical loss 
and economic evaluation show that, in this case, a CCM 
informed by DTRs is the most attractive solution for 
facilitating DG developer revenue gains when compared to 
the alternative solutions. 

 
 
 
 

II. BACKGROUND 
 



Dynamic Thermal Ratings 
 

Conductor temperature rise is influenced by the ability of 
the component to dissipate to the environment the heat 
produced by the Joule effect governed by external 
conditions such as ambient temperature and wind speed. 

Due to the extreme variability and unpredictability of 
meteorological conditions, fixed seasonal conditions are 
used at present to determine the most appropriate 
component rating.  A DTR approach to network 
management consists of estimating or measuring 
component temperatures and real current carrying 
capacities, in order to allow the utilisation of power system 
components to be safely increased but maintained within 
continuous design specifications. 

Research carried out at Durham University aiming to 
develop a DTR system shows, for typical UK climates, that 
there is an average exploitable headroom for overhead 
lines, underground cables and power transformers in the 
region of 150%, 12% and 15%, respectively, beyond the 
static component rating,. This is in agreement with the 
findings described in [3]. 

The DTR system under development at Durham 
University comprises a number of different weather 
stations and temperature measurement devices, placed in 
different locations over a wide network area. These are 
connected to a centralised computer which is responsible 
for estimating the current carrying capacities of the 
network component based on the present meteorological 
conditions. This information may then be used as a 
decision support tool for the secure operation of the 
distribution network. 
 
DG Constrained Connection Managers 
 

Engineering Technical Recommendation (ETR) 124 [4] 
presents a number of different solutions that may be 
developed to actively manage the power flows associated 
with the connection of a single DG scheme.  The most 
basic systems involve the disconnection of DG in the event 
that the power output from the DG scheme exceeds the 
capability of the network (assessed as static capacity of 
network assets plus the minimum load demand).  This 
solution may be developed further by actively switching 
between seasonal fixed ratings and adjusting the number of 
disconnected generators accordingly.  More sophisticated 
CCM solutions are developed from the principle of 
generation power output control, utilising technologies 
such as the pitch control of wind turbine blades to capture a 
desired amount of wind energy.  In this approach the 
powers flowing in the critical feeders of the network are 
monitored, taking load demand into account, and the power 
exported from the DG scheme is controlled to ensure the 
capability of the network is not exceeded.  This may be 
developed as a CCM utilising static asset ratings, with 
demand-following control of the DG output, or as a CCM 
utilising asset dynamic thermal ratings, with demand-
following control of the DG output. 

 
 

III. OVERHEAD LINE DYNAMIC RATING 
 
This paper focuses on the application of a DTR system to 

overhead lines, but it has also been applied to cables and 

power transformers.  The fundamental concept behind the 
component rating is that the temperature limits of the 
power component must not be exceeded in order to avoid 
damaging the component. For overhead lines in particular, 
a temperature rise leads to a reduction in conductor tension 
and to an increase in the sag. Typical values for maximum 
conductor temperature are between 50ºC and 90ºC. 

Component temperature is not a constant value but 
depends upon the energy balance between the heat 
produced inside the component and the heat exchange on 
its surface. The heat dissipated depends on the electrical 
current flowing in the conductor as well as the conductor’s 
resistance to the current flow. However, the heat exchange 
is mainly influenced by the temperature difference between 
the conductor and ambient environmental conditions, and 
by other external factors such as wind speed or solar 
radiation. 

Considering the heat dissipated by the Joule effect (I2R), 
the heat exchanged by convection (Qc) and radiation (Qr), 
and the solar radiation (Qs), the energy balance for an 
overhead line conductor is described in Equation (1). 

 
 2 1,s c rRI Q Q Q Wm− + = +  

  (1)   

 
The heat gained by solar radiation can be calculated as in 

Equation (2) considering solar radiation (Ws), conductor 
diameter (D) and an absorption coefficient (α) 

 
 

s sQ W Dα=      (2)
   

The radiative heat exchange depends on conductor 
temperature (Tc), ambient temperature (Ta), the Stefan-
Boltzman constant (σ) and an emission coefficient (ε), as 
reported in Equation (3). 

 
 ( )4 4

r c aQ T T Dεσ π= −     (3)

   
Finally the convective heat exchange depends on air 

thermal conductivity (λ) and the Nusselt number (Nu) 
 

 ( )c c aQ Nu T Tπ λ= −     (4)

   
The Nusselt number can be calculated using a wind 

direction correction factor (Kdir) and the Reynolds number 
(Re) as in Equation (5). 

 

 ( )0.2 0.610.65 Re 0.23 RedirNu K= ⋅ ⋅ + ⋅  (5) 

 
The wind direction correction factor and the Reynolds 

number can, in turn, be calculated using in Equations (6) 
and (7), using wind direction (Wd), wind speed (Ws) and 
empirical parameters (A, B, C) 

 
 ( )sinC

dir dK A B W= +    (6)
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More information about the overhead line thermal model 

may be found in [5] and [6].  The simulated daily dynamic 



thermal rating of a Lynx conductor is given in Figure 1 for 
the calendar year 2005.  The simulation used the model 
described in Equations (1) to (7) and historical 
meteorological data for the ‘Valley’ area of Wales, UK.  
As a comparison, the seasonal ratings for the conductor are 
also plotted in Figure 1. 
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Figure 1- Rating variation of Lynx overhead line 

 
IV. CASE STUDY NETWORK 

 
The case study network shown in Figure 2 is derived 

from a section of ScottishPower’s distribution network.  
Although it is not displayed in Figure 2, Engineering 
Recommendation P2/6 [7] ‘security of supply’ 
requirements are met for the connected load through an 
underlying meshed 33kV infrastructure.  An installed wind 
capacity of 150MW was selected to create a constrained 
connection.   

 

 
 

Figure 2 – The 132kV network 
Analytical Considerations 
 

The constrained connection configurations were 
simulated through an offline analysis of the typical half-
hourly regional loading and wind farm output data for the 
calendar year 2005.   

Table 1 displays the ratings used in the energy yield 
quantification analyses. The static and seasonal ratings 
were based on the SP Manweb Long Term Development 

Statement [8].  The average simulated daily minimum DTR 
is also given in Table 1.  Offline analysis showed that a 
thermal constraint would be met in this section of the 
network before voltage or fault-level limitations.  

 
Table 1 - Summary of Ratings Utilised 

 
Conductor 

Type 
Rating 

Condition 
Rating 

(A) 
Rating 
(MVA)  

Lynx 
 

Static 390 89 

Lynx Seasonal Summer 
Continuous 

390 89 

Lynx Seasonal Spring / 
Autumn Continuous 

450 103 

Lynx Seasonal Winter 
Continuous 

485 111 

Lynx DTR (Average Daily 
Minimum ) 

695 159 

Upas 
 

Static 770 176 

 
V. SOLUTION DESCRIPTIONS 

 
Solution 1:  DG tripping based on a static assessment of 
network availability  
Solution 2:  DG tripping based on component seasonal 
thermal ratings 
Solution 3:  DG output control through a CCM based on 
component static thermal ratings and load demand 
Solution 4: DG output control through a CCM based on 
component dynamic thermal ratings and load demand 
Solution 5: Network reinforcement to provide an 
unconstrained connection. 
 

Each section below assesses the strengths and weaknesses 
of the particular solution, describes the algorithm used to 
manage the DG output and gives an approximate cost of 
the solution installation. 
 
Tripping Solutions 

 
The tripping solution schematic is shown in Figure 3 and 

implements the algorithm given in Equation (8).   
 

If:  Current > Rating   (8) 
Then:  ‘Trip’ DG to Rating + Base Load 

  
When this algorithm is implemented with the static rating 

of 390A, the DG output will be tripped to 434A at unity 
power factor (390A rating + 44A base load) if the current 
flow in the line exceeds 390A.  This corresponds to the 
implementation of Solution 1.   

Similarly, in a seasonal rating implementation [9], such 
as Solution 2, the DG output will be tripped to the seasonal 
rating plus the base load if line flow exceeds the seasonal 
rating.  These solutions are conservative as they do not 
account for the dynamic nature of the load and thus they 
trip generators off rather than constraining them back.  
Furthermore, the seasonal rating approach bears the latent 
risk of an anomalous ‘hot day’ where the prevailing 
meteorological conditions mean that assets may be rated 
higher than it should be.  
 



Estimated Basic Tripping Relay Cost: 
Local tripping relay  £10k 
 
 

 
 
 

Figure 3 – The DG trip solution with static or seasonal 
thermal ratings 

 
Constrained Connection Management Solutions 
 

Figure 4 shows the schematic that allows the algorithm in 
Equation (9) to be implemented to control the DG output 
based on static or dynamic network availabilities and load 
demand.   
 

If:  Current > Rating   (9) 
Then: Control DG output to  
 Rating + Load Demand 

 
Control algorithm (9), implemented with a static rating of 

390A, corresponds to Solution 3.  The CCM solutions are 
more sophisticated than the DG trip options and have the 
potential to offer energy yield gains by taking into account 
the dynamic nature of the load demand.  Additional power 
flow monitoring equipment is required to facilitate a 
demand-following DG output control regime.  

In the case of the DTR-informed system (Solution 4), 
additional thermal and meteorological monitoring is also 
required.  To ensure the safe and secure operation of the 
network assets, each CCM solution requires an auxiliary 
trip system, which calculates the same ratings as the control 
system, to act as a backup in the case of CCM system 
operation failure. 
 
Estimated cost of demand-following DG output control 
based on static/seasonal ratings: 
Monitoring and Regulation Equipment:   £50k 
 

Estimated Cost of demand-following DG output control 
based on DTRs: 
Monitoring and Regulation Equipment: £100k 
 

 
  
 

Figure 4 – The demand-following DG output control 
solution with static or dynamic thermal ratings 

 
Network Reinforcement Solution 
 

The network reinforcement option (Solution 5) would 
require a replacement 132kV overhead line to be 
constructed and the existing overhead line to be de-
commissioned.  It is assumed that the replacement line 
conductor is ‘Upas’ 300mm2 AAAC.  If this conductor is 
tensioned to maintain statutory ground clearances [10] at 
an operational temperature of 75oC, the rating would be 
sufficient to provide an unconstrained annual energy yield 
from the DG scheme.  However, it requires the largest 
capital investment [11] and could take several years to be 
installed due to the lengthy environmental assessments, 
planning permission, commissioning and building 
processes.  
 
Estimated Reinforcement Cost: 
Installation of up-rated 132kV line (7km) £2M 

VI. QUANTIFICATION METHODOLOGY 
 
Weather data from Valley (Wales, UK) was used to 

estimate weather parameter values along the length of the 
overhead line. These, in conjunction with the model 
described previously, were used to calculate a series of 
daily thermal ratings for the studied line. The method 
detailed in [5] was used for the overhead line modelling, 
with the correction for wind direction, as given in [6]. 

Control algorithms (8) and (9) were applied to the case 
study network (with the relevant rating operating regime) 
and the necessary constraints were implemented offline.  
The annual energy yield at the DG connection busbar was 



calculated for each solution, by integrating the real power 
output of the DG scheme across the year in 30 minute 
intervals.  The per unit electrical losses (I2R) resulting from 
each solution implementation were calculated using the 
current flowing in the overhead line with per unit 
resistances of 0.0070 and 0.0041 for the ‘Lynx’ and ‘Upas’ 
conductors respectively.  These were then summated across 
the year on a half-hourly basis to produce annual energy 
loss figures.  For each solution the net annual revenue was 
calculated by multiplying the annual energy yield at the DG 
connection bus by £101.43/MWh (£52.15/MWh wholesale 
electricity price [12] + £49.28/MWh ‘Renewables 
Obligation Certificate’ sale price [13]) and making an 
adjustment for the cost of the losses incurred by 
transferring this energy to the slack busbar (calculated as 
the annual energy losses multiplied by the wholesale 
electricity price).    

The basic tripping scheme based on summer static ratings 
(Solution 1) was taken as the datum solution with a capital 
cost of £10k and net annual revenue of £42.35M (based an 
energy yield at the DG connection busbar of 418.1GWh 
and 1.3 MWh lost through power transfer to the slack bus).  
The estimated marginal costs (due to additional network 
costs), predicted marginal revenues (due to additional 
energy yield) and marginal losses (resulting from electrical 
power transfer to the slack busbar and changes in electrical 
resistance of the line) were compared to this solution.  This 
allowed a basic Net Present Value (NPV) comparison of 
the alternative solutions, based on their relative marginal 
costs and marginal revenues. A 10% discount rate and 20 
year economic life was assumed [14]. The capital cost of 
the wind farm itself was neglected as this would be 
constant across each solution. Furthermore, because the 
wind farm is connected at via a single overhead line, any 
faults or scheduled maintenance on this line will cause it to 
shut down.  Since such events have an equal constraint on 
the energy yield of each solution this effect was neglected.  
All the costs within the financial evaluations are estimates 
of equipment costs, based on the most appropriate data 
available at the time of consideration. 

 
VII. RESULTS 

 
The results from the quantification methodology are 

summarised in Table 2.   
 
 
Solution 1:  DG tripping based on a static assessment of 
network availability 
Solution 2:  DG tripping based on component seasonal 
thermal ratings 
Solution 3:  DG output regulation through a DGCCM based 
on component static thermal ratings and load demand 
Solution 4: DG output regulation through a DGCCM based 
on component dynamic thermal ratings and load demand 
Solution 5: Network reinforcement to provide an 
unconstrained connection   
 

Table 2 – Quantification Methodology Results 
 

S
ol

ut
io

n 

M
ar

gi
na

l C
os

t 
(£

k)
 

M
ar

gi
na

l A
nn

ua
l 

E
ne

rg
y 

Y
ie

ld
 a

t D
G

 
C

on
ne

ct
io

n 
B

us
 (

%
) 

M
ar

gi
na

l A
nn

ua
l  

E
ne

rg
y 

Lo
ss

es
 

(%
) 

M
ar

gi
na

l N
et

 A
nn

ua
l 

R
ev

en
ue

 
(£

M
) 

M
ar

gi
na

l 2
0 

Y
ea

r 
N

P
V

 @
 1

0%
 d

cf
 

(£
M

) 

1 0 0.00 0.00 0.00 0.00 
2 0 4.93 18.41 2.08 17.71 
3 40 5.24 18.99 2.21 18.76 
4 90 10.75 43.39 4.53 38.46 
5 1990 10.76 -16.31 4.58 36.97 

 
VIII. DISCUSSION 

 
For this case study, it appears that controlling DG output 

to follow load demand based on a single summer static 
rating (Solution 3) yields greater revenue for the developer 
than switching ratings on a seasonal basis and tripping DG 
as a result (Solution 2).  DG tripping based on seasonal 
thermal ratings (Solution 2) requires a lower initial 
investment, however, the risk on the part of the DNO is 
greater if seasonal ratings are utilised.  This is to due the 
possibility of an anomalous hot day occurring when ratings 
have been relaxed.  This risk may be mitigated by 
investment in a dynamic thermal ratings system to provide 
accurate knowledge of the current thermal status of the 
network.   

Economically, the most attractive solution to the 
developer is the CCM based on component dynamic 
thermal ratings and load demand (Solution 4).  The annual 
revenue of the project is increased by £4.53M and shows 
the highest marginal NPV at £38.46M.  For this case study, 
this solution appears to be more attractive than the 
alternative reinforcement option (Solution 5).  This 
provides and unconstrained energy yield (and hence 
maximum annual revenue) but would require an extra 
capital investment of £1.99M to upgrade the overhead line.  

Network reinforcement (Solution 5) would reduce 
network losses relative to the other solutions since the 
larger cross-sectional area of the conductor would reduce 
the electrical resistance to power flow.  However, despite 
increasing electrical losses through implementing a CCM 
solution, the cost of capital for the DG developer is likely 
to make the active management solutions, with lower 
upfront costs, a more attractive investment.  

IX. CONCLUSION 
 

This paper has presented the technical solutions that 
would allow a greater installed capacity of distributed 
generation to be connected to, and managed within, the 
distribution network.  This could be of value in situations 
where power flows have become congested as a result of 
distributed generation proliferation.  For each solution the 
annual energy yield was quantified and used as a basis to 
compare solutions using an estimate of their relative Net 
Present Value to the distributed generation developer.  It 
was demonstrated that a constrained connection manager 
informed by dynamic thermal ratings was the most cost 
effective solution for facilitating wind generation access to 
the case study network when compared to alternative 



solutions.  Work is continuing in this area to realise the 
potential of constrained connection manager solutions. 
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