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Abstract 

  

Climate change has the potential to affect any transportation network that comprises 

embankments and cuttings built with soil material in an unsaturated state that is exposed to the 

climate. The BIONICS project (BIOlogical and eNgineering Impacts of Climate change on Slopes) aims 

to investigate how climate change will affect the serviceability and safety of earth structures. Part of 

the BIONICS project was to build a full-scale highly instrumented embankment combined with an 

automated climate control system.  

  

Studies on the fill material used in the construction of the BIONICS embankment were 

carried out to understand the hydro-mechanical behaviour of the material, which is a sandy clay of 

medium plasticity. This involved the determination of the soil water retention behaviour and the 

mechanical behaviour under unsaturated conditions. Soil water retention curves (SWRC) were 

determined by a series of tests performed on compacted samples comprising various techniques 

(filter paper, psychrometer, high capacity suction probe and pressure plate). Total and matric 

suction SWRC following primary drying paths from 25% of water content were determined. In 

addition, a series of tests with the filter paper on samples at lower water contents (15%, 20% and 

22%) was also performed. The SWRC following drying paths showed behavior similar to scanning 

curves intercepting the primary curve around 3000 kPa (11% water content). However, SWRCs that 

followed wetting paths showed atypical behaviour by intercepting the primary drying curve.  

 

For the investigation of the mechanical behaviour a series of constant water content triaxial 

tests were carried out in double cell triaxial cells on as-compacted samples, and also samples wetted 

and dried from as-compacted conditions of 15%, 20% and 22%. A test series of samples tested in a 

saturated state was also performed to provide a reference state for the unsaturated tests. The 
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unsaturated test series showed that the slope of the critical state line (CSL) in deviatoric stress space 

(M) was found to be similar for all water contents. The slope of the CSL in v-ln(p-uw) space (λ) was 

found to be similar for all water contents, however the CSL shifted position due to variation in the 

intercept, Γ. Since specimens were at high degrees of saturation, calculations based on effective 

stress showed a reasonable interpretation of the data. However, a better agreement was achieved 

using the Bishop’s average stress assumption. 

 

A new field measurement system to continuously measure pore water pressure at different 

depths using high capacity suction probes has been developed. This system was installed at the 

BIONICS embankment in two different panels (well and poorly compacted). In the well compacted 

panel pore water pressure behaviour had the tendency to increase with depth, always recording 

values that were slightly negative at shallower depths and positive at greater depths, showing 

profiles roughly parallel to the hydrostatic line suggesting that the material was close to saturation. 

In the poorly compacted panel the behaviour was found to be more variable showing abrupt 

reactions from the probes to weather events. 

 

The differences in behaviour between the well compacted and poorly compacted panels 

could be related to the laboratory investigations. The well compacted panel was more homogeneous 

and less permeable (10-11 m/s). The poorly compacted panel was more heterogenic, more 

permeable and hence, during monitoring, showed more dramatic changes in pore pressure 

compared to the well compacted panel.  
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1.1 Climate change 

 

 

In recent years much research has been directed towards climate change and its impacts. The 

recognition of global warming has led to a series of studies, in various disciplines, to understand its 

direct and indirect implications for the World in which we live. Social, political and economical 

problems related to climate change have been the focus of the majority of governments, recognizing 

climate change as a key factor of global change.  

 

One of the factors that can shape climate change is the variations on greenhouse gas 

emissions. Evidence of global warming derived from the increase in production of greenhouse gas 

since the Industrial Era has been presented in the IPCC 4th Assessment Report (IPCC, 2007), where it 

states that “Continued greenhouse gas emissions at or above current rates would cause further 

warming and induce many changes in the global climate system during the 21st century that would 

very likely be larger than those observed during the 20th century”.  

 

Different scenarios related with greenhouse gas emissions have been presented by Hulme et 

al (2001) of possible changes in weather variables for the UK. Hulme at al used a scale from low 

emissions to high emissions. A “low” scenario would involve reducing the amount of emissions being 

produced at the present time whereas “high” would imply  a continued increase in gas emissions. 

Shown in Figure 1.1 are visual presentations of predictions of climate change suggested by Hulme et 

al for two weather variables: temperature and precipitation. 
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Figure 1.1 – Climate change predictions for annual values of a) temperature and b) precipitation  for 

the UK (After Hulme et al, 2001). 

 

 It is important to understand in climate change that not only do predictions suggest that we 

will experience temperature changes but that we are also going to experience changes in the 

weather patterns. The seasonal behaviour will vary with climate change. For the UK it is expected 

that we will experience stronger winters with intense rain showers and dry summers with longer 

drying periods.  The role of climate change can be already observed in the UK with the recent events 

a) 

b) 
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of flooding (Carlisle in 2005 or Gloucestershire, Worcestershire and Yorkshire in 2007) where 

extreme rain events affected the population. 

 

 In Civil Engineering there is the need to understand the impact of climate changes on the 

infrastructure for the built environment such as embankments and cuttings. These comprises a large 

part of any transportation network. To avoid social and economical losses, there is the need to 

ensure that the infrastructure can cope with future climate events.  

 

 In order to study the implications of climate change on slopes the BIONICS project was 

instigated. BIONICS is an acronym for BIOlogical and eNgineering Impacts of Climate change on 

Slopes, funded by the Engineering and Physical Sciences Research Council. This aims to investigate 

the serviceability and safety of earth structures (embankments, cuttings). It involves various 

institutions; the project partners are the universities of Newcastle upon Tyne, Durham, Dundee, 

Nottingham Trent, Loughborough and Bristol, together with industrial stakeholders: British 

Waterways, Cementation Foundations, Skanska Ltd, CIRIA, Highways Agency, Geotechnical 

Observations Limited, Metronet Rail SSL Ltd, Mott McDonald, Network Rail, Rail Research UK, Rail 

Safety and Standards Board and the Scottish Crop Research Institute. 

 

 The part of the study involving Durham University under the BIONICS project had the 

following objectives: 

- To perform unsaturated laboratory testing for the characterization of the hydro 

mechanical behaviour of the fill material; 
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- To develop a multi measurement system for continuous monitoring of pore 

water pressure to install in the BIONICS embankment. 

  

1.2 Thesis structure 

 

 

 The thesis is divided into 10 chapters. Chapter 2 introduces the background to the work 

contained in subsequent chapters. Chapter 2 starts by introducing unsaturated soils and their 

general behaviour, followed by the experimental techniques available to study the water retention 

behaviour of unsaturated soils, for both laboratory and field environments. Some field investigations 

of unsaturated soils carried out throughout the world are also presented. The chapter continues 

with the most commonly used techniques for the mechanical testing of unsaturated soils, concluding 

with the available constitutive models for unsaturated soils.  

 

Chapter 3 presents the BIONICS embankment and the characteristics of the fill material 

followed by the instrumentation installed in the embankment and a climate control system. Chapter 

4 presents the sample preparation method procedures used for the BIONICS fill material to prepare 

samples for laboratory investigations. Assessment of the sample preparation methods at different 

conditions (as-compacted, wetted and dried conditions) is also presented in Chapter 4.  

 

The characterisation of the BIONICS fill material is divided into two chapters Chapter 5 and 

6. Chapter 5 describes the techniques used to determine the soil water retention curve (SWRC) of 

the BIONICS fill material in more detail. Total and matric suction SWRC are presented and an 

assessment of the quality of the measurement is made by comparing measurements obtained from 
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different techniques. The SWRC for the BIONICS fill material is presented and a description of the 

behaviour of the material is given. A study at lower water contents is also presented.  

 

Chapter 6 describes the mechanical behaviour of the BIONICS fill material in saturated and 

unsaturated conditions. The mechanical testing was carried out in a new double cell triaxial system 

involved constant water content triaxial tests at different confining pressures on samples at different 

initial conditions, prepared from as-compacted conditions (following the sample preparation 

method procedures described in Chapter 4) and subject to drying and wetting before testing. The 

results obtained were used to examine the mechanical behaviour of the BIONICS fill material within 

the critical state framework and comparisons are made with the results obtained from saturated 

tests.  

 

Chapter 7 and 8 are dedicated to the field study at the BIONICS embankment itself. Chapter 

7 presents in detail the continuous monitoring system for pore water pressure measurement at 

different depths developed, including the installation and modus operandi of the system at the 

BIONICS site (with installations in a well compacted panel and a second in a poorly compacted 

panel). Chapter 8 presents the field monitoring over 2 two years of continuous measurements in 

both panels. The influence of the weather behaviour during this time is compared with the pore 

water pressure measurements. A comparison between the measurements obtained from the 

different panels is discussed. Conditions of the fill material from samples obtained during installation 

were also analysed in the laboratory and compared with the previous measurements.  
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Chapter 9 correlates the data gathered in the previous chapters relating field and laboratory 

measurements in order to identify the hydro-mechanical behaviour. Chapter 10 summarizes the 

conclusions drawn from various parts of the thesis and recommendations for future work are given. 
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2 Literature review 
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2.1 Introduction 

 

 

The literature review in this thesis forms the background of information to all 

subsequent work. The topics include: understanding the behaviour of unsaturated soils, the 

different methodologies that can be implemented to study unsaturated soils, mechanical and 

hydraulic properties, and some of the available frameworks found in literature for presenting 

and explaining such information. 

 

2.2 Unsaturated soils 

 

Unsaturated soils are wide spread and are present in most engineered earth 

structures: earth dams, flood defences, railroad and road embankments, etc. While in 

saturated soils, the mechanical behaviour can be described by Terzaghi’s law for effective 

stress, in unsaturated soils, where the voids are filled with both air and water, the mechanical 

behaviour is much more complicated to understand. In unsaturated soils only recently has 

there been some agreement on the most acceptable stress state variables to use in practice 

(Fredlund and Rahardjo 1993). Fredlund and Morgenstern (1977) concluded that net normal 

stress and soil matric suction are the stress state variables appropriate for unsaturated soils. 

 

2.3 Phases of unsaturated soils 

 

In saturated soils the soil is composed of soil particles with voids filled with water and 

thus only two phases: solid and water need to be considered. In unsaturated soils the voids, 

are filled with water and air, therefore three recognisable phases exist: solid, water and air.  A 

fourth phase, the air-water interface, can also be considered due to its unique properties 
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(Fredlund and Morgenstern 1977). The most distinctive property of the air-water interface, 

also known as the contractile skin, is its ability to exert a tensile pull, or surface tension. Within 

a soil the contractile skin can act like a thin rubber membrane pulling soil particles together, 

leading to volumetric shrinkage under no changes of total stress while the soil specimen 

undergoes drying (Fredlund and Rahardjo, 1993).  

 

2.4 Soil suction 

 

Soil suction can be defined as the attraction that the soil exerts on free water if the 

two are placed in contact. This attraction can be stronger if the water inside the voids starts to 

evaporate.  Soil suction, or total suction, has two components: matric suction and osmotic 

suction. 

 

Total suction can be expressed by the following equation: 

 

ψ = (ua - uw) + π (2.1) 
 

 

where: 

 

ψ – total suction; 

(ua - uw) – matric suction, i.e. difference between pore air pressure (ua) and pore 

water pressure (uw): 

ua – pore-air pressure; 

uw – pore-water pressure; 

π – osmotic suction, i.e. equivalent suction associated with the osmotic potential of 

the pore water. 
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The matric suction is generated by the capillarity phenomenon associated with the 

existence of surface tension between water and air phases within the soil pores. Matric 

suction is thus dependent on the soil structure as it is affected by the pore size distribution of 

the soil. A finer grain size soil is capable of supporting a higher value of matric suction than a 

coarse grain size material. The water content of the soil also plays its role where the matric 

suction increases with the decrease of the water content within the soil. 

 

The osmotic suction is associated with salt concentration in the pore water. Changes in 

osmotic suction are generally less significant than changes in matric suction for most 

engineering problems although volume change behaviour (shrinkage and swelling) can be 

strongly influenced by osmotic suction. 

 

The total suction of the soil water can also be related to the partial saturated vapour 

pressure in equilibrium with the soil water (Richards, 1965), by the following equation: 

 

 

ψ = - 
RT 

ln ( 
ūν 

) 
νwoων ūν0 

(2.2) 

 

 

ψ – total suction (kPa); 

R – universal gas constant (8.31432 m3.Pa.K-1.mol-1); 

T – absolute temperature (273.16 + t) (K): 

  t – temperature (oC) 

νwo – specific volume of water (1/ρw) (m3.kg-1): 

  ρw – density of water (kg.m-3) 

ων – molecular mass of water vapour (kg.mol-1); 
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ūν/ ūν0 – RH - relative humidity: 

ūν – partial pressure of water vapour (kPa); 

ūν0 – saturation pressure of water vapour over a flat surface of pure water at 

same temperature (kPa). 

 

2.5 Soil water retention curve 

 

The ability of a soil to attract and retain water is an important property for each soil. A 

soil water retention curve (SWRC) is defined from the relationship between water content and 

suction. The water content can be expressed in various terms as gravimetric water content, w, 

volumetric water content, θ or even degree of saturation, Sr. These are intimately related as 

presented in Equation 2.3. 

 

θ = 	
w. Gs

1 + e
=

Sr. e

1 + e
  (2.3) 

 

Where: 

θ – volumetric water content  

w – gravimetric water content  

Sr – degree of saturation 

Gs – specific gravity of the soil 

e – void ratio 

 

The SWRC is dependent on various factors such as soil type, soil structure and 

mineralogy. The typical behaviour of a SWRC following a drying path is presented in Figure 2.1. 

Initially the suction increases while still maintaining a degree of saturation close to 100% (the 

boundary effect zone). The increase of suction does not change the saturation value 
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significantly since the magnitude of the suction value is not sufficient to drain the pores (Blight, 

1967). When the value of suction is sufficient to start draining the pores the air entry value 

(AEV) of the soil is reached. After the AEV is reached bulk water starts to be pulled from the 

largest pores and air starts to fill the pores. After this point is reached the soil is considered as 

being desaturated and the magnitude of suction necessary to pull water out of the pores may 

not need to increase significantly until a residual degree of saturation is reached (transition 

zone). By this point the bulk water has been drained and it is necessary to increase significantly 

the value of suction in order to change the degree of saturation (residual zone).  

 

 

Figure 2.1 – Schematic of a Soil Water Retention Curve (SWRC), Vanapalli et al. (1999).  

 

The shape of the SWRC is also dependent on the process by which it is obtained. If the 

soil is subject to drying or wetting paths, the obtained curves show different curves. This 

hysteretic behaviour is normally attributed to hydraulic hysteresis (Croney, 1952). The 

hydraulic hysteresis is often explained by the effects of pore entrapment (ink-bottle pores).  
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Clayey soils present an additional problem related with the shrink and swell behaviour 

that is characteristic of these materials. The observed hysteresis is even more complex due to 

rearrangement of the pores including pore size changes.  

 

A soil may not follow a continuous path from a totally dried or totally wetted state. It is 

very common to find soils in an intermediate stage in which the direction of water content 

change is reversed. SWRC obtained at intermediate stages are known as scanning curves. In 

Figure 2.2 two kinds of scanning curves are presented as simple examples: ascending scanning 

curve where the initial condition was reached while following a drying path and was 

subsequently wetted and a descending scanning curve where the intermediate stage starts on 

the wetting path of the SWRC and the material gradually dries until the drying path of the 

SWRC is reached. In reality any point between the wetting and drying paths can be obtained 

and by following wetting or drying the curve will eventually converge with one of the primary 

paths of the SWRC. 

 

 

Figure 2.2 - Hysteretic characteristics of SWRC (after Lourenço 2008) 
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The importance of the SWRC can be seen from studies where it can be used to 

estimate various properties such as shear strength, permeability and thermal coefficient 

(Barbour, 1998). 

 

2.6 Soil suction determination 

 

Soil suction can be determined using various techniques; an overview of the various 

methods can be found in: Fredlund and Rahardjo (1993), Lee and Wray (1995), Ridley and 

Wray (1996), Rahardjo and Leong (2006), Bulut and Leong (2008), Delage et al. (2008) among 

others. A wide range of systems and methods to measure suction are available in the market. 

However, only the methodologies used to produce this research are presented, namely: filter 

paper, psychrometer transistor and high capacity tensiometer (also known as suction probe) 

and the pressure plate technique. The measuring ranges of the most common techniques to 

determine the SWRC is presented in Table 2.1. 

 

Table 2.1 – Suction component, suction range and equilibration time for presented 

methodologies to determine SWRCs (adapted from Bulut and Leong, 2005). 

Suction Component Methodology 
Suction Range 

(kPa) 
Equilibration Time 

Total Suction 

Thermocouple Psychrometer 300 – 7000 1 hour 

Transistor Psychrometer 100 – 18000 1 hour 

Non-contact Filter Paper 400 – 30000 5 – 14 days 

Matric Suction 

Contact Filter Paper 30 – 30000 5 – 14 days 

Pressure Plate 0 – 1500 Days 

Tensiometer 0 – 1600 Hours 

 

 

2.6.1 Filter paper technique 

 

Marinho (1994) notes that the concept of the filter paper technique dates back to 

1916. Shull (1916) observed that by allowing dried seeds to absorb vapour at different 
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concentrations of sulphuric acid at known vapour pressures, after an equalisation period, it 

was possible to relate the weight of the seeds with the vapour pressure. A calibration relating 

the water content of the seeds with vapour pressure permitted the determination of soil 

suction. 

 

The concept of the seeds was replicated by Gardner (1937) who was the first to use 

dried filter papers. The introduction of an industrial process to produce the absorption method 

was the great innovation by Gardner which gave the technique more credibility (Marinho, 

1994). If the process of creating the filter paper was the same then filter papers would have 

unique properties. 

 

This technique is widely used nowadays in different laboratories. The major 

advantages of this technique are the ability to measure total and matric suction, low cost and 

the fact that it is one of the simpler techniques available. The wide range of measurement as 

presented in Table 2.1, is by far the greatest of the advantages in the filter paper technique. 

 

In the market there are two filter papers that are commonly used by different 

researchers: the Whatman 42 filter paper (e.g. Fawcett and Collis-George 1967; Hamlin 1981; 

Chandler and Gutierrez 1986; Chandler et al. 1991; Harrison and Blight 1998) and the 

Scheicher & Schuell No. 589 (e.g. McQueen and Miller 1968; Al-Khafaf and Hanks 1974; 

McKeen 1980; Harrison and Blight 1998).  

 

The principal of the filter paper technique is to measure suction indirectly by relating 

the water absorbed (by matric or by water vapour transfer) by the filter paper with suction by 

means of a calibration curve. Therefore the total suction is measured if the transfer is by water 

vapour and matric suction is measured if there is matric flow. 
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One of the procedures for the measurement of suction using filter paper was 

presented by Bulut et al. (2001). In this procedure the matric suction is determined by the 

middle filter paper (contact filter paper) of a sandwich of 3 filter papers which is placed in 

direct contact in the middle of the sample. For the total suction a single filter paper is placed at 

the top of the sample in a non-contact position, this is to allow the filter paper to absorb the 

water vapour that evaporates from the sample. This system is placed in a container to avoid 

influence from external humidity. After a period of equalisation, for both measurements, the 

water contents of the filter papers are determined and the value of suction is taken from a 

calibration curve.  The equalisation time is dependent on the calibration curve. Bulut et al. 

(2001) mention the fact that the container should be placed in a temperature controlled 

environment at 25oC for the duration of the equalisation. 

 

In the literature different calibration curves can be found; an overview of most of the 

calibration curves in existence was presented by Leong et al. (2002), where the authors 

compare different calibration curves with known data from the literature. An agreement of 

which calibration curve(s) to use has not been reached, some authors such as Leong et al. 

(2002) claiming that the responses of filter papers exposed to total suction and matric suction 

are different, while others claim that if enough time is given for the equilibrium period both 

total and matric calibration curves converge. In either case it is highly important to respect the 

guidance (such as equilibrium time) of each calibration curve when performing filter paper 

tests.  

 

There are some noticeable disadvantages in this technique since it is highly dependent 

on the operator input and the longer testing period (up to 14 days depending on the 

calibration curve). Adding the fact that it is an indirect measurement, where it is dependent on 

a calibration curve, makes it one of the least reliable techniques available. 
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2.6.2 Transistor psychrometer 

 

The transistor psychrometer measures total suction indirectly from the relative 

humidity (RH) generated by the soil sample inside a confined space.  

 

In the case of the SMI Psychrometer (Woodburn and Lucas, 1995) there are 12 probes 

and each probe has 2 transistors, one wet and one dry, see Figure 2.3. When a sample is 

placed inside the probe the RH of the air above the sample starts to change until it reaches an 

equilibrium with the soil. As water evaporates from the water drop on the wet transistor, this 

creates a variation in the output voltage between the 2 transistors, which relates to the RH. 

 

 
Figure 2.3 - Transistor psychrometer probe (after Bulut and Leong 2005). 

 

The RH relates to suction by means of a calibration. The calibration is performed on 

each probe by using different salt solutions at known total suction values. Usually NaCl is the 

most common salt; however, other salts can be used. 

 

As a system for measure total suction it is an improvement on the filter paper 

technique for total suction, since the operator has less direct effect on the measurement 

process and the measurement is obtained relatively fast (1 hour). However, the technique is 

more laborious, more costly and most importantly, it is extremely sensitive to temperature 
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changes. It presents the same disadvantage as the filter paper since it is still an indirect 

measurement of suction. 

 

2.6.3 High capacity suction probe 

 

The terminology of high capacity suction probe can differ; authors refer to this 

equipment variously as a suction probe or tensiometer. The terminology of “high capacity” 

marks it out as different from other tensiometers available, which are limited to measuring 

suctions below the normal cavitation limit of 100 kPa.  

 

The first high capacity suction probe was designed by Ridley and Burland (1993) at 

Imperial College London. This high capacity suction probe comprised a 1.5 MPa ceramic disc as 

a filter between the measuring device and the soil sample, followed by small water reservoir (3 

mm3) and an Entran Ltd EPX series electronic pressure transducer (3.5 MPa capacity) as the 

measuring device. When fully saturated, ceramic high air entry disc and water reservoir, the 

pressure transducer measured zero suction. When in contact with a soil sample with a certain 

value of suction, the water in the high capacity suction probe starts to be drawn towards the 

soil until equilibrium is reached. This induces a deflection on the pressure transducer due to 

the matric suction of the soil.  

 

Since then, various high capacity suction probes have been reported, where the 

working principle is generally the same, with variations in the ceramic disc, the water reservoir, 

the pressure transducer or size. A general overview from Delage et al. (2008) presented most 

of the high capacity suction probes in existence shown in Table 2.2. 
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  The high capacity suction probe used in this project was the Durham University – 

Wykeham Farrance (DU-WF) high capacity suction probe. This probe differs from the Ridley 

and Burland (1993) probe in the fabrication process and some internal changes: the water 

reservoir is 5 mm3 in volume and it uses a ceramic pressure transducer that is soldered to a 1.5 

MPa high AEV ceramic disc of 10mm thickness, see Figure 2.4, resulting in the dimensions of 

the high capacity suction probe being 35mm by Ø14mm. 

 

 

Table 2.2 - Effect of the pre-pressurisation pressure on the maximum sustained tension (after 

Delage et al, 2008). 

Authors 
Ceramic 

AEV 
(MPa) 

Max positive pressure 
(MPa) 

Max tension water 
(MPa) 

Ridley and Burland (1993) 1.5 6 1.37 

Ridley and Burland (1995) 
0.1 4 0.164 
0.5 4 0.74 
1.5 4 1.8 

Guan and Fredlund (1997) 1.5 12 1.25 
Meilani et al. (2002) 0.5 0.8 0.495 

Tarantino and Mongiovi (2002) 1.5 4 2.06 
Take and Bolton (2003) 0.3 1 0.53 

Chiu et al. (2005) 0.5 0.7 0.47 
Lourenco et al. (2006) 1.5 1 1.23 

He et al. (2006) 0.5 2 0.55 

Mahler and Diene (2007) 
0.5 0.6 0.8 
1.5 0.6 1.4 

 

 

1 – Saturated 1.5 MPa porous ceramic disc 

2 – Water reservoir 

3 – Pressure transducer 

4 – Stainless steel casing 

5 – Four core screened cable 

 

Figure 2.4 – Schematic of the DU-WF high capacity suction probe (after Lourenço, 2008). 
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Increasing the measuring range and the stability of the measurement has been the 

greatest concern in the development of these devices, however, in all devices the saturation 

process of these probes is the key factor towards a reliable measurement.  

 

2.6.3.1 Saturation 

 

The saturation process of the DU-WF high capacity suction as reported by Lourenço 

(2008) from initial dry conditions was by water infiltration under vacuum and subsequently 

pressurization of 1.5 MPa inside a saturation manifold developed by Donohgue (2006). This 

process of saturation is common to most high capacity suction probes. 

 

From non-dry conditions, if the probe has desaturated by cavitation, a 24 hours period 

should be sufficient for the re-saturation process.  

 

2.6.3.2 Calibration 

 

In these kind of probes the calibration of the pressure transducers is normally carried 

in the positive range and extrapolated to the negative range; however, it is suction that is the 

desired measured value i.e. negative pore water pressure. Tarantino and Mongiovi (2003) 

reported that extrapolating the positive to the negative range generated an error of the 

measurement of 1 to 1.5%, which was assumed to be satisfactory. 

 

The extrapolation from positive to the negative range for the DU-WF high capacity 

suction probe was studied by Lourenço (2008). Calibrations by extrapolation where made 

against a normal pressure transducer. In his work he showed that accuracy was dependent on 

the method in which the probe was calibrated. When calibrations were preformed inside the 
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saturation manifold the external forces from the holding system for the probe influenced the 

calibration. He concluded that for a more accurate calibration by extrapolation the calibration 

should be performed under the same conditions as the expected conditions of use.  

 

Lourenço et al. (2008) validated the extrapolated calibrations against known values of 

suction imposed by soil samples by axis translation technique and isotropic unloading. Good 

agreements were observed for both techniques; however better agreement was obtained with 

the isotropic unloading. He also obtained a good agreement for the calibrations when using a 

vacuum pump, where negative pore water pressures were applied down to -100 kPa. 

 

2.6.3.3 Advantages and disadvantages 

 

The advantages on using high capacity suction probes can be summarised as: direct 

measurement of matric suction, small size of equipment and short time of measurement (less 

than an hour). With a good system to saturate and good calibrations the measurement 

obtained from the probes are reliable and accurate. Also important, the device has the ability 

to measure in both the negative and positive range. 

 

The main disadvantages of these probes are cavitation and zero suction value. Drifting 

of the zero suction value are normally observed in these probes when used for a long period in 

the negative pressure range. With the DU-WF high capacity suction probe the observed 

variations have been small, ranging up to 5 kPa; when working in the small suction range this 

can induce some errors. 

 

2.6.4 Pressure Plate 
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The pressure plate differs from the remaining techniques since it does not measure 

but imposes suction to the soil sample, but is commonly used to determine SWRCs. Suction is 

imposed to the soil samples by controlling both pore air pressure and pore water pressure, the 

difference between the pressures defines the matric suction. 

 

The pressure plate apparatus consists of a pressure chamber, inside of which is a 

saturated high air entry value (HAEV) porous ceramic disc (Figure 2.5). The soil sample is 

placed on top of the HAEV during testing.  

 

The maximum differential pressure attainable by this kind of apparatus is dependent 

on the AEV of the HAEV porous ceramic disc inside the chamber. The AEV value is the 

maximum value of air pressure that can be applied to the camber before air entry (or 

“bubbling”) occurs (when air starts to flow through the HAEV porous ceramic disc).  The most 

common ceramic discs have AEV values of 500 kPa or 1500 kPa. 

 

 
Figure 2.5 – 5bar pressure plate apparatus (Lid open). 

 

The common methodology applied in this technique is, once the chamber is sealed, he 

pore water pressure is maintained at atmospheric values and the pore air pressure is increased 
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to imposing values above atmospheric pressure. When the desired values of both pore 

pressures (air and water) are achieved the soil sample is left to attain equilibrium. Water is 

expelled from the soil sample pores, passes through the HAEV porous disc and flows to a 

burette. The burette in this case is used to observe the amount of water that flows out of the 

sample which can be related back to the water content at this particular value of suction. 

Equilibrium is only achieved water flow stops. This process is repeated, imposing different 

values of suction (increasing the pore air pressure), to generate the SWRC. After the final 

suction stage the final water content can be determined and can be used to verify the indirect 

measurements of water content observed with the burette. 

 

At Durham University a different methodology was developed for this technique by 

Vaquero (2007) from an existing pressure plate apparatus manufactured by Soil Moisture 

Corp. of Santa Barbara, California. The normal single HAEV porous disc of 1500 kPa (AEV value) 

was replaced by 4 independent porous discs (100mm in diameter) of the same AEV value, 

enabling multi sample testing. The second modification related to the burette, where the 

measurement was performed by independent volume gauges (one volume gauge for each 

porous disc). A transducer is attached to the volume gauge and is connected to the automatic 

data acquisition system, which is then connected to a computer for scanning and recording of 

measurements (Figure 2.6).  
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Figure 2.6 - Setup of the pressure plate apparatus (After Vaquero 2007). 

 

2.7  Field testing 

 

All the techniques to measure soil suction presented in this literature review, apart 

from the pressure plate, have been suggested for use in field conditions. However, the high 

capacity suction probe or common tensiometers, which, measure suction continuously, 

directly and in a short time makes them most suitable and preferred for field measurement. 

The usage of these devices has been reported by a number of researchers. Field observations 

using high capacity suction probes (Ridley et al., 2003) have used “spot” measurements where 

the suction probe has been placed in contact with the soil to take a suction reading at a 

particular time; the suction probe was not left in place to take continuous readings with time. 

Cui et al (2008) have used high capacity suction probes for the continuous measurement of 

suction at an experimental embankment. Common tensiometers (capable of measuring to 100 

kPa suction) have also been reported in the literature for continuous monitoring; some of 

these reports are mention in the subsequent section. 

 

2.8 Rainfall induced landslides 
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Many slopes exist in soil where suctions are present. An increase in pore water 

pressure (loss of suction) within the soil leads to a decrease of strength and hence reduction in 

stability of the slope and ultimately failure.  

 

 

Figure 2.7 – Landslide risk world map overlaid by major landslides during 2003-2006 as the 

black dots (NASA map adapted from Hong et al., 2006, by Simmon, 2007). 

 

Hong et al. (2006) using data gathered by the Tropical Rainfall Measuring Mission 

(TRMM) satellite coupled with general information on topographic data, land cover 

classifications and soil types generated a rainfall induced landslide susceptibility world map 

where, the risk was quantified from slight to severe. The generated landslide risk map, shown 

in Figure 2.7, shows that landslides are prone to occur in most regions, with more impact in 

tropical regions such as the South East Asia.  

 

In the Hong Kong region various studies have been reported over the years on the 

monitoring of soil suction in various slopes. In this area the normal depth of the water table is 

greater than 10 metres; this is an important factor since at these depths the influence of the 
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water table on suction at shallower depths can be almost neglected and suctions become 

controlled entirely by environmental conditions (rainfall/evaportation) at the surface. The 

studies performed by Sweeney (1982), Chipp et al (1982), The Geotechnical Control Office 

(1982) and Ching et al (1984) shown that in dry seasons suctions greater than 80 kPa were 

recorded at shallow depths (in the cases where suction was 80 kPa the real value was possibly 

higher due to the use of conventional tensiometers with max range below 100 kPa) while 

fading to lower values in wet seasons. The major difference between the chosen sites reported 

by the authors was the existence or lack of cover. When coverage of the slope was present 

suction values tended to reduce less culminating in the observation of Au (1998) in which the 

difference in suction between exposed and covered slopes can explain why many covered 

steep slopes have remained stable. 

 

In Singapore similar studies have been conducted at shallow depths by Pitts and Cy 

(1987), Chatterjea (1989), Chatterjea (1994), Lim (1995), Lim et al (1996), Gasmo (1997), etc. 

The results obtained were similar in behaviour to the results obtained in Hong Kong. The 

measurements were obtained using conventional tensiometers with a range of 100 kPa. The 

measurements obtained show values as great as 80 kPa during the drier periods and a 

decrease in suction during wetter periods (intensive rainfall) even reaching small positive 

values of pore water pressure. Some studies were performed considering the coverage of the 

slope: Pitts and Cy (1987), Lim (1995) and Lim et al. (1996), Gasmo (1997). A general consensus 

was reached: vegetation accelerates the recovery of suction when compared to a bare surface 

while under a canvas covered surface small suctions can be maintained even during wetter 

periods. 

  

For all studies reported, in both Hong Kong and Singapore, the changes in suction due 

to rainfall infiltration has been observed as a gradual change from top to bottom, changes are 



28 

 

gradual and more noticeable at shallower depths. In Singapore, in particularly, the type of soil 

in the study showed that small amounts of rainfall were sufficient to reduce the suction to a 

value of zero, and those changes were almost immediate. 

 

Rainfall as failure trigger for landslides occurrence in Singapore, was analysed by Toll 

(2001), see Figure 2.8. Toll (2001) compared the rainfall data on the day of the landslide 

plotted against the antecedent rainfall over a five day period. From this it was observed that 

failure could occur in 1 day event but also due to an accumulation of rainfall, suggesting that 

the total rainfall over a period dictated the minimum conditions for failure, in this case 100 

mm. 

 

 

Figure 2.8 – Rainfall events leading to landslides in Singapore (after Toll, 2001). 

 

In Europe some studies have also been carried out. In problematic regions, such as the 

area surrounding the Vesuvius volcano in Naples, rainfall induced landslides of pyroclastic 

material is very frequent. Evangelista et al. (2008) monitored a site in the Naples region using 

conventional tensiometers at different depths. In their observations, in the cover layer, suction 

was affected by singular rainfall events usually maintaining higher suctions of 60-70 kPa 

(topping the range of the tensiometers in use) in summer (dry season) and dissipating during 
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the wetter periods (autumn and winter) (see tensiometers TL1 and TL2 in Figure 2.9). An 

interesting remark from the authors was that below the cover layer the suction variations 

followed the usual seasonal trend but were unaffected by singular rainfall events (see 

tensiometers TL3 and TL4 in Figure 2.9). Their continuous monitoring is still in use to 

understand the mechanisms of landslides in the region, where some assumptions point out for 

the occurrence of landslides in the layers below the cover (Papa et al., 2008).   

 

Apart from studies of the current behaviour of slopes some researchers started new 

investigations of landslides related with climate change. The general predictions for climate 

change are an increase of temperature globally. This means that glaciers will melt and the soils 

beneath the glacier will suffer from two different effects: the release of pressure from the 

disappearing glacier but also different regimes of infiltration caused by the melting of the ice. 

This has generated interest in areas such as Switzerland. Apart from the monitoring itself, the 

concern of the researchers were to achieve an installation system that would allow the 

monitoring in such climate conditions. Information on monitoring of suction in Alpine and Pre-

alpine regions can be found in Springman and Teysserie (2001) and Springman et al. (2003). 
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Figure 2.9 - Main monitoring results: a) Avella rain gauge readings; b) Monteforte rain gauge 

readings; c) total volume of tensiometer refilling; d) mean matric suction. After Evangelista et 

al. (2008). 
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Another effect of climate change is in the annual weather pattern. The changes in the 

weather behaviour can cause a multitude of problems for earth structures. Climate regions in 

which an almost homogeneous weather behaviour exists, for example the UK where only small 

variations of the weather throughout the seasons is noticeable, a change in the annual pattern 

can change the behaviour of slopes. The predictions for climate change, for the UK, suggest 

longer dry seasons and intense bursts of precipitation during the wet seasons. The possibility 

of volumetric changes during the different seasons topped by loss of stability due to rainfall 

infiltration that is higher than the current expectations can provoke serious reductions in 

serviceability for slopes that form the backbone of the transport network. 

  

2.9 Mechanical testing of unsaturated soils 

 

To understand the strength changes that can lead to the occurrence of landslides it is 

necessary to understand the mechanical behaviour of unsaturated soils. The mechanical 

behaviour of unsaturated soils has been studied by investigating different types of soil samples 

including compacted samples (Toll, 1990; Wheeler and Sivakumar, 1995), reconstituted 

samples (Cunningham et al., 2003) and intact samples (Futai and Almeida, 2005). Techniques 

usually employed in association with known techniques for saturated soils, such as the triaxial 

apparatus, for the study of the mechanical behaviour in unsaturated conditions are axis 

translation (e.g. Toll, 1990, Wheeler and Sivakumar, 1995), relative humidity (e.g. Oldecop and 

Alonso, 2000), osmotic (e.g. Dineen and Burland, 1995) and more recently a computer 

controlled technique based on the use of high capacity suction probes (e.g. Jotisankasa, 2005).  

 

The axis translation technique has been one of the techniques most widely used by 

researchers to study the mechanical behaviour of unsaturated soils using a triaxial cell. The 

origins of the Axis Translation Technique date from 1935 by Schofield and Hilf i(1956) in which, 
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providing that there are no changes in water content and suction, if the air pressure is raised 

subsequently the pore water pressure rises by the same amount. If the increase of pore air 

pressure is raised enough, to a value greater than the initial negative value of pore water 

pressure, then the pore water pressure becomes positive, enabling the reading of pore water 

pressure using conventional pressure transducers. Bishop and Donald (1961) developed a 

double wall triaxial cell capable of controlling independently both air pressure and water 

pressure, which enabled the control of suction during the test. In the axis translation technique 

the maximum value of suction attainable is dependent on different parts of the triaxial 

apparatus: the cell robustness, the air entry value of the porous stone (that separates the 

sample from the pore water pressure mechanism) and the achievable air pressure. There are 

other limitations for this technique: the long duration of the test and the possibility of air 

diffusion through the porous stone. 

 

The relative humidity control system is a technique adapted by Al Mukhtaret et al 

(1993) to geotechnics, particularly for testing soils at suctions above 1 MPa. It began as a soil 

science system, essentially based on controlling the relative humidity of the air surrounding 

the soil sample. By doing so, the total suction can also be controlled through its relationship 

with relative humidity, although an independent suction measurement is needed to guarantee 

the suction equilibrium. Advances in this independent suction measurement have been 

presented by Blatz and Graham (2003): whilst testing a high plasticity clay, they incorporated a 

thermocouple psychometer to measure suction. 

 

 The Osmotic system was developed by Zur (1966) and has been widely used ever since 

in works such as Cui and Delage (1996), Dineen (1997), Colmenares (2002) among others. In 

the osmotic system, a semi permeable membrane is used to separate the sample from a 

solution of a large molecular weight substance (usually Polyethylene Glycol, PEG). Since this 
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membrane is permeable to water but not to PEG, by osmosis, the water flows from the soil 

across the membrane to the PEG solution until the osmotic potential of the PEG solution is 

equalled by the soil suction. The suction applied is therefore a function of the concentration of 

the PEG solution; this means that when the concentration of the PEG solution increases so 

does the suction and vice-versa. 

 

More recently, Cunningham (2000) at Imperial College developed a technique for 

suction measurement that encompasses the flow of dry air across the surface of the soil 

sample. This air-regulated system comprises suction probes for independent suction 

measurement and uses the flow of dry air across the base of the soil sample, drying the soil 

sample and, in consequence, causing an increase in suction. Cunningham used this system in 

situations in which suction usually decreases (loading and shearing stages of tests); his 

objective was to keep a constant suction value, so the measurements from the suction probes 

were used to control the flow of air and, by that means, keep a constant suction value. 

 

2.10 Constitutive models 

 

Based on such experimental investigation, constitutive models have been proposed to 

describe the mechanical behaviour of unsaturated soils. Bishop (1959) tried to describe the 

mechanical behaviour of unsaturated soils using a single effective stress variable, as an 

extension to the saturated effective stress, incorporating pore air pressure and pore water 

pressure as in equation 2.4. Bishop included a parameter in the formulation, Χ, related to the 

degree of saturation representing the contribution made by either water or air in the voids. 

 

� =  − 	�. �� −	�1 − ��. �� (2.4) 

 



34 

 

Describing the behaviour of unsaturated soils by a single stress variable was 

discouraged by Jennings and Burland in 1962. The problem of using a single stress variable is 

that it was incapable of reproducing the behaviour of collapsible soils. Jennings and Burland 

showed this by experimenting on silt samples at constant applied stress during inundation 

where samples reduced in volume while pore water pressure was still increasing.   

 

To overcome the limitation of a single stress variable more recent constitutive models 

use two or more variables to describe the behaviour of unsaturated soils. These separated 

stress variables are net stress, in the two possible forms of (σ - ua) and (σ – uw), and matric 

suction (ua - uw). To describe satisfactorily the volumetric response of unsaturated soils two of 

the variables are sufficient (Fredlund and Morgenstern, 1978). The net stress is a tensorial 

variable, expressed as: 
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The matric suction is, instead, a scalar variable, expressed as: 

 

wa uus −=  (2.6) 
 

 

The most common and recent constitutive models for unsaturated soils are described 

below. 

 

2.10.1 Critical state framework for saturated soils 
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Most recent constitutive models to describe the mechanical behaviour of unsaturated 

soils derive from the critical state framework for saturated soils. 

 

The critical state theory underlines the principle that a soil under stress ultimately 

reaches a state of plastic behaviour characterized by continuous deformation without any 

further increase in stress, idealizing the limits of possible states at which the soil can exist. The 

critical state framework can explain the behaviour of shear and volume changes of saturated 

soils under external loading. 

 

The first elasto-plastic critical state model was Cam clay (Schofield and Wroth, 1968), 

although later a second model emerged, named Modified Cam clay (Roscoe and Burland, 

1968). 

 

The elasto-plastic critical state models are simplified by a certain number of 

assumptions that helps explaining the stress-strain behaviour and considers the complex 

nature of soils (Kurtay and Reece, 1970): 

- Soil is considered to be homogeneous and isotropic; 

- The mechanical behaviour can be expressed in terms of appropriate stress states 

variables, 

- The mechanical behaviour is described by a macroscopic continuum mechanics 

model; 

- There are no time dependent aspects for the mechanical behaviour; 

- And finally, the soil is not viscous. 
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Assuming the assumptions presented, the sate variables to describe the mechanical 

behaviour are effective mean effective stress (p’), deviatoric stress (q) and specific volume (ν) 

which can be defined as: 

 

�� =
� + � + �

3
− �� =

′� + ′� + ′�

3
= � − �� 

(2.7) 

 
 

� = � − � = 	′� − ′� 
(2.8) 

 
 

� = 1 + � 
(2.9) 

 

Where 

p – mean stress 

e – void ratio 

σ1,σ2,σ3 – principal stresses 

σ’1,σ’2,σ’3 – principal effective stresses 

 

Under triaxial conditions where σ2 is equal to σ3, equation 2.7 takes the form of 

equation 2.10. 

 

�� =
� + 2�

3
− �� (2.10) 

 

Or in terms of principal effective stresses: 

 

�� =
′� + 2′�

3
 (2.11) 

 

The critical state can be defined by unique lines in two two-dimensional planes, one 

line is defined in the q-p’ plane, stress plane (plane where no volume changes occur) and the 

second unique line is defined in the specific volume – effective stress plane, ν-p’ plane (plane 

without the shear stresses). 
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From the two-dimensional planes new parameters to describe the critical state line 

can be obtained: 

 

� =  − ! ln �′ in the ν-p’ plane (2.12) 
 

� = $�′ 
 
in the q-p’ plane 

 
(2.13) 

 

Where, 

λ – slope of critical state line on the ν-p’ plane; 

Γ – intercept of the critical state line on the ν axis; 

M - slope of critical state line on the q-p’ plane. 

 

M can be seen as a friction parameter, from M the internal friction angle at the critical 

state can be determined from equation 2.16. 

 

The internal effective friction angle (∅�) can be determined from: 

sin ∅� =
′� − ′3

′� + ′3
 (2.14) 

 

Following the derivation from equation 2.14, where: 

	
′� − ′�
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=
3$

$ + 6
 (2.15) 

 

 

This provides the possibility of determining the critical state friction angle using 

equation 2.16: 

 

∅′ = arcsin	�
3$

$ + 6
� (2.16) 
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2.10.2 The Barcelona Basic Model 

 

The Barcelona Basic Model (BBM) was presented by Alonso et al (1990) as an 

extension of the Modified Cam Clay (MCC) framework (Burland, 1965a; Roscoe and Burland, 

1968) for the partly saturated case. There are a few main stress variables involved in this 

model, namely: 

 

Mean net stress(tensor) �" = � − �� =
1

3
�� + 2�� − �� (2.17) 

Deviatoric stress (tensor) � = �� − ��� − �� − ��� = � − � (2.18) 

Matric suction (scalar) - = ��� − ��� (2.19) 

 

In the BBM, along the s - p’’ space, a yield line (also known as the Load Collapse (LC) 

yield curve) separates a zone of quasi-elastic behaviour from a zone where plastic compression 

occurs, representing the locus of volumetric yield points in the s : p’’ plane. According to this 

model, yield can either occur due to an increase in the mean net stress or a decrease in matric 

suction. The yield line itself describes the onset of irreversible compressive phenomena, no 

matter which stress path causes them, but the mechanical response of the soil is basically the 

same when inducing yield by wetting or loading. The BBM also states that, within the quasi-

elastic region, any path will lead to recoverable elastic volumetric strains. 

 

The BBM is a strain hardening type of model, and states that plastic deformations 

result in an expansion of the quasi-elastic region, i.e. pushing the LC yield line to the right in 

the s : p’’ space. However, no matter what causes the LC yield line to move (wetting or 

loading), its movement represents the same value of volumetric strains. 

 



39 

 

The model also implies that a soil is saturated when matric suction equals zero, which, 

in reality, might not be true. Saturated soil can display suction values and, on the other hand, it 

has also been shown that partly saturated soils can have null matric suction. This is one of the 

main reasons why some researchers have been trying to improve this model, taking the fact 

that it represents basic concepts on partly saturated soils mechanical behaviour, namely: 

 

- the increasing magnitude of the collapse strains with constant increasing load 

- the collapse on wetting under constant load 

- the increasing yield stress with increasing suction when loading at constant suction. 

 

To overcome the questions that arose from BBM, new types of elasto-plastic models 

have been presented (Gallipoli et al. (2003a), Wheeler et al. (2003)), using two independent 

modified stress variables. These last two models, which will be described below, have 

successfully reproduced important concepts of the behaviour of partly saturated soils (that 

were not reproduced by earlier models such as BBM). Apart from accounting for irreversible 

changes of void ratio during the wetting-drying cycle, these models also encompass the history 

of suction (meaning that a soil response to compression at constant suction will depend on the 

previous history of suction) and present smooth transitions from fully saturated to partly 

saturated behaviours. 

 

The main idea behind these models is to separate the two mechanical effects that a 

partly saturated soil experiences, an influence of both the degree of saturation of the soil and 

the distribution of water in it – these will affect the two stress variables used for the Wheeler 

and Gallipoli models. 
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The first variable, related to the distribution of water in soil, is a function of the 

effective stress, imposed on the soil skeleton and the bulk water in soil - Bishop’s average 

skeleton stress (Jommi, 2000) in the form of equation 2.20 which is based on equation 2.4. 

 

                             p* = p – [ Sr.uw + ( 1 – Sr ).ua] (2.20) 
 

Where, 

 p* - Bishop’s average stress skeleton 

 p – total stress 

 Sr – degree of saturation 

 uw – pore water pressure 

 ua – pore air pressure 

 

The second variable, although interpreted differently by Wheeler and Gallipoli, is 

related to the water menisci, more precisely, to the stabilisation that these water menisci 

provide at the inter-particle contacts of the soil. This effect ends up as being accounted for as a 

function of suction, porosity and degree of saturation. 

 

Below, the models proposed by Wheeler and Gallipoli are presented, due to their 

capability of incorporating important effects in soil behaviour and their realistic approaches in 

modelling partly saturated soils. 

 

2.10.3 Wheeler model 

 

Wheeler et al (2003) present a model that assumes that soil stability reflects the 

variation of stabilising forces at interpaticle contacts, taking into consideration the 

phenomenon of hydraulic hysteresis. The phenomenon of hydraulic hysteresis (that can be 
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represented by a Soil Water Retention Curve – SWRC) explains how two soils can present 

similar values of matric suction and yet contain different amounts of fluid within the soil’s 

pores. Wheeler was able to incorporate this effect (and the influence it has on soil mechanical 

behaviour) by distinguishing bulk and meniscus pore fluid. Soil behaviour is, then, dependent 

on the proportion of meniscus and pore fluid within the soil skeleton, or, in other words, the 

degree of saturation of the soil – so it is possible to say that two samples with similar values of 

matric suction, dry densities and subjected to the same external load, but presenting different 

degrees of saturation, represent two different states of a soil. The influence of the degree of 

saturation on soil behaviour is due to differences in the contact forces that result from fluid 

filled pores as opposed to samples where only menisci are present. When menisci are present, 

an additional stabilising force is present at interparticle contacts. The position of the SWRC  

can also be affected by volumetric deformations. During compression, when voids become 

smaller, higher values of suction are required to maintain the saturation degree – this will shift 

the SWRC to the right. 

 

The Wheeler et al model is, therefore, able to couple hydraulic and mechanical 

processes, using elasto-pastic processes for both cases. This coupling is possible due to two 

separate phenomena: 

- elasto-plastic deformation of the soil skeleton by loading 

- elasto-plastic inflow and outflow of fluid from interparticle pores. 

 

The behaviour of the soil is said to be controlled by two independent stress variables: 

p*, also known as Bishop’s stress (which represents total stress, pore fluid pressure and gas 

pressure effect on the soil skeleton) and s*, also known as modified suction (which represents 

the stabilizing effect of menisci at interparticle contacts). As for strain variables, Wheeler et al 
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present two conjugate strain variables: volumetric strains (dεV) and the degree of saturation (-

dSr). 

 

As in Alonso et al (1990) model, plastic volumetric deformations can be modelled using 

a Load Collapse (LC) yield line. However, Wheeler considers this line to be straight and vertical 

in the s*:p* plane, stating that the reason for this is that the stabilizing force present on the 

menisci is constant and independent of suction. Soil stability is a result of the number of 

interparticle contacts presenting menisci and not a result of the matric suction value. When, 

during loading, the LC yield line is crossed, the soil sample experiences compressive plastic 

volumetric strains, which lead to a shifting in position of the LC yield line. Wetting or drying the 

soil sample to the point where plastic changes in the degree of saturation occur also changes 

the number of menisci at interparticle contacts and, as a consequence, the LC yield line will 

also shift (to the right, expanding the yield locus, on drying or to the left, contracting the yield 

locus, on wetting). Irreversible changes in the degree of saturation occur when either a Suction 

Decrease (SD) or a Suction Increase (SI) line are crossed, which is when the scanning curve 

meets the main branches of the SWRC (see Figure 2.10). 

 

If, during loading, the LC yield line is crossed and plastic volumetric strains occur, the 

SWRC position shifts, and the SI and SD yield lines will also move in a coupled way (Figure 

2.10).  

 

According to this model, elastic behaviour is the one enclosed within the SI, SD and LC 

lines in the s*:p* space; any path that crosses any of these three lines will result in either 

plastic volumetric strains or irreversible changes in the degree of saturation. 
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Figure 2.10 – Coupled movement of the SI and SD caused by plastic volumetric yielding:  

a) Stress path b) SWRC (after Wheeler et al., 2003). 
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Wheeler et al model is, then, capable of reproducing a series of important aspects of 

soil behaviour, being able of modelling particular phenomena such as: 

 

- the swelling or collapse on wetting 

- the transition between the saturated and partly-saturated states of a soil 

- plastic compression during drying on a wetting-drying cycle 

- changes in degree of saturation due to hydraulic hysteresis 

- the influence of wetting-drying cycles on subsequent mechanical responses of a soil 

during loading. 

 

Most of the above aspects cannot be modelled by a single LC yield line (or curve) or 

excluding the effect of hydraulic hysteresis. The model presented by Wheeler also has the 

advantage of allowing the prediction of a smooth transition from unsaturated to saturated 

behaviour. However, only qualitative predictions have been attained so far, and some 

assumptions in the model still require experimental verification and validation. 

 

2.10.4 Gallipoli model 

 

Whilst the Wheeler et al (2003) model focuses on the different behaviour of fluid and 

gas filled pores, a slightly different approach is used by Gallipoli et al (2003a), focusing on soil 

variables in terms of stress, pore gas pressure, pore fluid pressure and degree of saturation. 

 

Gallipoli et al (2003a) present a model that also encompasses two independent stress 

variables, but this model explicitly accounts for the effects of plastic changes in degree of 

saturation on the stress-strain behaviour of partly saturated soils. The stress variables used on 

the model by Gallipoli are: 
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σ*, known as the average skeleton stress, which is equivalent to Bishop’s stress  

 ξ, is the bonding variable that accounts for the menisci bonding effect at interparticle 

contacts. 

 

Gallipoli suggested that the presence of menisci and the bonding effect provided by 

these are the main reason for void ratio increase with increasing suction of samples that yield 

along a normal compression line. Comparing the normal compression lines at constant suction 

of soil samples with different values of matric suction (Figure 2.11a)), Gallipoli observed a 

relationship between the void ratio of the partly saturated samples (e) and the saturated 

samples (es) yielding along a normal compression line of constant suction and subjected to the 

same skeleton stress (Figure 2.11b)). This relationship is related to the bonding effect of 

menisci and, therefore, with the bonding variable ξ. 

 

Although the authors have found the relationship between the ratio e/es and the 

bonding variable ξ holds true both on isotropic and anisotropic loading, the mathematical 

formulation has only been given for the isotropic stress space so far. According to this, a 

normal compression state surface is defined in the e: p*: ξ space, modeling plastic volumetric 

compression. Similarly to the models described above, the normal compression state surface 

represents states of yielding, where paths below it are related to entirely elastic processes and 

paths along it represent elasto-plastic changes in void ratio. 

 

Since the ratio e/es is constant, for a given value of ξ, the normal compression lines for 

different values of ξ are straight (Figure 2.12a)). Elastic changes in void ratio depend on 

changes on p* and are not influenced by ξ. 
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To include the effects of hydraulic hysteresis and plastic changes in void ratio on the 

variation of the degree of saturation, Gallipoli suggested that the mechanical formulation he 

had attained should be used together with models such as the ones by Vaunat el al (2000) or 

Gallipoli et al (2003b), although this latter work does not specifically cover hydraulic hysteresis 

but only changes in the SWRC due to void ratio variations. In addition, the model presented by 

Gallipoli does not distinguish expansive from non-expansive soils. 

 

Still, it allows a prediction of important aspects of soil behaviour, namely partly 

saturated soil behaviour and both expansive and non-expansive soils. Some of these aspects, 

which cannot be reproduced with a single LC yield line as previous models advocate, include 

the development of plastic compressive strains on drying (during a wetting-drying cycle) and 

also the importance of suction history on stress-strain behaviour during isotropic loading at 

constant matric suction along the normal compression line. 
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Figure 2.11 - a) Normal Compression Line at constant suction b) Relationship between ratio 

e/es and bonding factor ξ during isotropic virgin loading at constant suction (Gallipoli 

et al., 2003a, experimental data from Sharma, 1998). 

b) 

a) 
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Figure 2.12 - Yield locus derivation in the isotropic plane for the Gallipoli et al. (2003a) model: 

a) change of void ratio; b) stress path (Gallipoli et al., 2003a). 

 

a) 

b) 
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2.10.5 Toll framework for unsaturated soil behaviour 

 

Toll (1990) put forward a framework that tried to explain the behaviour of unsaturated 

soils in terms of total stresses and suction acting within compacted soils, while testing the 

framework on Kiunyu gravel (a lateritic gravel). Like in the BBM, this framework was based on 

the critical state model for saturated soils with total stresses and suction considered separately 

to describe the unsaturated behaviour. Toll’s approach differed to the BBM by giving 

importance to soil fabric in which the contributions of total stress and suction to shear 

strength are expressed as two individual stress ratios heavily dependent on the degree of 

saturation. 

 

The importance of the soil fabric in compacted clays is discussed in Toll (1990) 

reporting the observation of Croney et al (1958) which describes the fabric of compacted clays 

as being composed by aggregates of clay particles (or clays plackets) separated by 

comparatively large air voids. Brackley (1973, 1975) suggested that within the clay aggregates 

the voids are saturated while the voids between the aggregates are filled with air. The 

distribution and the size of the clay aggregates influences the inter aggregate void space, 

which in turn, influences the behaviour of a compacted soil. If suction was large enough in the 

inter aggregates voids the aggregates of clay particles could behave as individual larger 

particles, behaving similarly to soils with coarser grading. On the other hand, if the suction was 

reduced the aggregates could become unstable, with possibilities in the reduction in volume 

(collapse). 

 

The proposed framework by Toll describes the behaviour of unsaturated compacted 

soils at the critical state is expressed as: 

 

� = $��� − ��� + $���� − ��� (2.21) 
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� = Γ/0 − λ/ ln�p − u/� − λ0ln	�u/ − u0� (2.22) 

 

where, 

q – deviator stress 

p – total stress 

ua - uw – matric suction 

ua – pore air pressure 

uw – pore water pressure 

Ma – total stress ratio 

Mw – suction ratio 

ν – specific volume 

Γaw – intercept in the ν space 

λa – slope of the critical state derived from the total stress 

λw – slope of the critical state derived from suction 

 

In equations 2.21 and 2.22 the parameters Ma, Mw, λa, λw, and Γaw are functions of the 

degree of saturation and fabric of the soil. The dependence of these parameters on the degree 

of saturation has to be determined experimentally. In this framework the degree of saturation 

is used as an indicator, although with some limitations, of the fabric.  

 

To fully describe the unsaturated soil behaviour at the critical state using this 

framework it is required 5 dimensions: p-ua, ua – uw, q, ν and Sr (degree of saturation). 

 

Toll and Ong (2003) also applied this framework to a residual sandy clay soil from 

Singapore and found that the functions that related Ma and Mw to degree of saturation, when 

normalised, were similar to that for the lateritic gravel. 
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2.11 Chapter summary 

 

The literature review presented in this chapter focused on topics that are relevant for 

the subsequent work presented in the following chapters. The topics include: understanding 

the behaviour of unsaturated soils, the different methodologies that can be implemented to 

study unsaturated soils, mechanical and hydraulic properties, and some of the available 

frameworks found in literature for presenting and explaining such information. 

 

To understand the behaviour of unsaturated soils it is imperative to understand the 

basic concepts presented in the first sections of this chapter: the nature of unsaturated soils; 

the phases of unsaturated soils (soil, water, air and air-water), soil suction and water retention 

behaviour. 

 

Soil suction can be determined using various techniques; however, only the 

methodologies used to produce this research were presented, namely: filter paper, 

psychrometer transistor, high capacity suction probe and the pressure plate technique. For 

each technique the concept behind the measurement, advantages and disadvantages were 

presented. Since part of this research was also to monitor suction outside a controlled 

environment the work carried out by other researchers including methodologies and major 

findings were presented. 

 

Importance was given to the hydro-mechanical testing of unsaturated soils in which 

the available methodologies found in the literature: axis translation, relative humidity, osmotic 

and a computer controlled technique based on the use of high capacity suction probes were 

presented. 
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This chapter finishes by presenting some of the available frameworks found in 

literature for presenting and explaining the behaviour of unsaturated soils: the Barcelona basic 

model or BBM, the Gallipoli model, the Wheeler model and the Toll framework for 

unsaturated soil behaviour.  
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3 The BIONICS embankment 
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3.1 Introduction 

 

 

The BIONICS project (BIOlogical and eNgineering Impacts of Climate change on Slopes), 

funded by the Engineering and Physical Sciences Research Council, aims to investigate the 

serviceability and safety of earth structures (embankments, cuttings). The rationale for the project is 

that future climate scenarios for the UK (UK Climate Impacts Program, UKCP09) present concerns for 

engineers about the performance of earth structures that form the transportation network. Intense 

rainfall and longer drier periods, as are predicted for the UK, might greatly affect the stability of 

slopes and foundations that are the base of the complex and extended transportation network 

throughout the UK. Problems such as shrinkage settlements of foundations due to drought and 

failure of slopes due to intense rainfall are experienced to some extent nowadays, but are more 

likely to occurr with future climate change. 

 

The BIONICS project involves various institutions; the project partners are the universities of 

Newcastle upon Tyne, Durham, Dundee, Nottingham Trent, Loughborough and Bristol, together with 

industrial stakeholders: British Waterways, Cementation Foundations, Skanska Ltd, CIRIA, Highways 

Agency, Geotechnical Observations Limited, Metronet Rail SSL Ltd, Mott McDonald, Network Rail, 

Rail Research UK, Rail Safety and Standards Board and the Scottish Crop Research Institute. 

 

Part of the BIONICS project was to build a full-scale test embankment, the BIONICS 

embankment, where a climate control system backed by extensive instrumentation and laboratory 

testing would generate information on the effects of climate change on earth structures. The 
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gathered information could, subsequently, be used to validate analytical methodologies that would 

enable assessment of other earth structures.  

 

3.2 The embankment 

 

The BIONICS embankment is an experimental embankment that was built with the intention 

of providing some insight into the consequences of climate change on earth structures. The 

embankment was built in 2005 at Nafferton farm, near Newcastle upon Tyne (Marker A in Figure 

3.1). The embankment physical dimensions are of moderate scale: 90 metres long by 6 metres high 

and 29 metres wide at the base (Figure 3.2) with side slopes of 1 in 2 and a 5m width crest. The end 

slopes of the embankment were constructed with reinforced soil with an inclination of 450. 

 

 

Figure 3.1 – Location of the embankment (Google maps, 2009). 

 

 

The embankment was divided into six different panels (not accounting for the end slopes) for 

the multidisciplinary tests that were proposed in the BIONICS project plan. Figure 3.2 shows the 6 
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panels, where the outermost panels are used for biological studies; panels of 4 metres in length. The 

four central panels with 18 metres length represent two different types of constructions methods 

commonly found throughout the UK, differing in the compaction method applied. 

 

 

Figure 3.2 – BIONICS embankment plan view and cross section. 

 

Panels A and D in Figure 3.2 (known as poorly compacted panels, PCP) represent the railway 

embankments resembling existing old structures from Victorian times In this kind of embankment, 

compaction was not controlled during construction and they frequently do not incorporate any 

drainage measures. These panels were built in layers of up to 1 metre and simply compacted using a 

JCB digger to resemble the commonly-used poor compaction methods, see Figure 3.3. This kind of 

embankment is still present nowadays throughout the UK and ageing is one of the more noticeable 

problems presented to engineers due to its heterogeneous evolution.  



 

Figure 3.3 – Construction of a poorly compacted panel using a JCB

Panels B and C in Figure 

highway embankments, different

compacted. Layers in panel B and C were compacted according to Method 3 as set out in the 

Highways Agency Specification for Highway Works (Highways Agency, 1998). The fill was placed in 

300mm layers and was subjected to 9 passes by a self propelled vibrating smooth drum roller

Figure 3.4. 

 

Figure 3.4 - Construction of a well

1m layer 

Impermeable 

membrane 

JCB digger 

 

Construction of a poorly compacted panel using a JCB, (Hughes, 2005)

 

igure 3.2 (known as well compacted panels, WCP)

different to the Victorian embankments by being more uniform and better 

Layers in panel B and C were compacted according to Method 3 as set out in the 

s Agency Specification for Highway Works (Highways Agency, 1998). The fill was placed in 

300mm layers and was subjected to 9 passes by a self propelled vibrating smooth drum roller

 

well compacted panel using a self propelled vibrating smooth drum roller

(Hughes, 2005). 
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, (Hughes, 2005). 

(known as well compacted panels, WCP) represent modern 

bankments by being more uniform and better 

Layers in panel B and C were compacted according to Method 3 as set out in the 

s Agency Specification for Highway Works (Highways Agency, 1998). The fill was placed in 

300mm layers and was subjected to 9 passes by a self propelled vibrating smooth drum roller, see 

ng a self propelled vibrating smooth drum roller, 
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Vertical impermeable membranes were placed between panels and end slopes to ensure 

engineering and hydraulic isolation as shown in Figures 3.3 and 3.5. 

 

At the top of the embankment a 0.5 metres thickness of coarse material was built. The coarse, 

free draining material was placed in order to simplify boundary conditions by preventing surface 

cracking along the crest of the embankment but still to allow water access to the crest of the 

embankment, Figure 3.5. Mainly composed of basalt it was proposed due to its qualities as being 

mineralogically inert and not reactive with the underlying fill so as not to alter the fill material 

properties.  

 

 

Figure 3.5 – Perspective of the BIONICS embankment at the end of construction, (Hughes, 2005). 

 

3.2.1 The fill material 

 

The fill material used to build the BIONICS embankment was a glacial till, a very common 

material spread throughout the Northeast of England, normally widely graded and heterogeneous 

sediments of glacial origin with no stratification.  

 

Impermeable 

membranes 

Coarse layer 
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The material that was selected for the construction of the BIONICS embankment was a 

single sourced material from a stock pile in County Durham (Hughes et al., 2005) with the general 

particle size distribution (PSD) curve shown in Figure 3.6 where the material was found to be 

composed by 12% of gravel, 16% of sand, 35% of silt and 37% of clay. The high percentage of clay 

minerals lead to the classification of the material as a sandy clay soil. 

 

 

Figure 3.6 – Particle size distribution of the BIONICS fill material. 

 

From the PSD in Figure 3.6 the effective size (d10) was smaller than 0.002mm and d60 (60% of 

material passed) is around 0.02mm resulting on an estimated uniformity coefficient cu higher than 

10. This classifies the material as well graded.  

 

The Atterberg limits obtained by cone penetrometer test for the Liquid Limit (LL) and the 

rolled thread for the Plastic Limit (PL) (BS 1377, 1990: Tests 4.3 and 5.3) are shown in Table 3.1, 
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which classifies the fill material as being of intermediate plasticity according to the Casagrande 

plasticity chart (BS 1377, 1990).  

 

Table 3.1 – Atterberg Limits for the BIONICS fill material. 

Natural water content 

Wn 

(%) 

Liquid limit 

LL 

(%) 

Plastic Limit 

PL 

(%) 

Plasticity Index 

PI 

Liquidity Index 

LI 

22.6 43.3 23.7 19.6 -0.05 

 

The Activity (A) of clay minerals of fill material can be determined by dividing the PI by the 

percentage of clay material (Skempton, 1953). In this case the clay minerals of the fill material are 

considered to be inactive, since A=0.53, smaller than 0.75 in accordance with Skempton’s 

classification. 

 

Two compaction curves were obtained for the BIONICS soil by the BS light 2.5 kg hammer 

(Proctor) compaction test and by the BS heavy 4.5 kg hammer (Modified Proctor) compaction test 

(BS1377, 1990: Tests 3.3 and 3.5), using a mechanical compaction machine. They were performed 

with the objective of determining the maximum dry density for the material, and hence, the 

correspondent (optimum) water content. Samples were tested under different water contents (10%, 

13%, 15%, 20 and 22%) and compaction curves defined by plotting water content against dry 

density. In practical engineering, compaction of earth structures should be performed close to Wopt, 

given that at these values the material presents the best performance. 

 

In the case of the fill material at the BIONICS embankment, presented in Figure 3.7, it was 

determined that for the normal Proctor test the maximum dry density of 1.71 Mg/m3 was achieved 

at Wopt of 15.5%. For the modified test a higher maximum dry density was achieved of 1.80 Mg/m3 at 

Wopt of 13%. 

200mm 
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Figure 3.7 – BIONICS fill material - light and heavy compaction curves. 

 

During construction some values were taken to assess each layer compaction level (Hughes et 

al., 2007) and are presented in Figure 3.8. It is shown that most of the construction was performed in 

the wet part of the compaction curve, with water contents ranging from 15% to 24%. It can be 

observed also that for the well compacted panels built using modern construction techniques the 

achieved density is close to the curve of the Proctor compaction test, while the densities achieved 

for the poorly compacted panels the densities were generally smaller. Average values of the in-site 

densities for both construction techniques are presented in Table 3.2. Table 3.2 also shows the 

average values of percentage of air voids and degree of saturation during construction. 
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Table 3.2 – Average values for various properties of both poor and well compacted panels (After Hughes et al., 

2007). 

 
Bulk Density 

(Mg/M
3
) 

Water Content 

(%) 

Dry Density 

(Mg/M
3
) 

Air voids (%) 
Degree of 

saturation (%) 

“Poor” 

compaction 
1.93 20.7 1.6 6.0 85.3 

Good 

compaction 
2.01 20.1 1.7 3.2 91.4 

 

 

Figure 3.8 – Compaction curves versus field measurements (Panels A&D – Poorly compacted; B&C – Well 

compacted). 

 

Higher achieved density means a lesser permeable material, this is noticeable on the results 

from laboratory permeability tests performed at Newcastle University showing the well compacted 

panels as having permeability of 8.77x10-11 m/s in comparison with the poorly compacted panels of 

1.6x10-10 m/s, (Hughes, 2007). However, in both cases the material presents quite low values of 

permeability. 

 

3.3 Instrumentation 
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  As an experimental embankment the BIONICS embankment was intended to be used in the 

future as a platform for new testing methodologies that can help the investigation and 

determination of soil properties.  

 

At present, the instrumentation at the BIONICS embankment can be divided into two major 

groups, a general description of the instrumentation throughout of the embankment is shown in 

Table 3.3.  

 

Table 3.3 – Summary of the embankment instrumentation, after (Hughes et al., 2009). 
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The first group includes the general instrumentation commonly found in most instrumented 

embankments and are validated equipment. The second group comprises all the newly developed 

technologies. Both groups of instrumentation are widely distributed through the embankment in all 

kind of panels, as it can be observed in the Instrumentation Plan for the well compacted panel B in 

(Figure 3.9). 

 

 

Figure 3.9 – Instrumentation plan for panel B: a) cross section and b) plan view. (After Hughes et al., 2009).  
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The general instrumentation can be divided into two subgroups; the classical 

instrumentation composed of extensometers, at the centre of the crest in each panel, various 

inclinometers in both North and South slopes with a total of six per panel and standpipe piezometers 

spread out through the embankment to measure pore water pressure. Adding to the classical 

instrumentation, the specialised equipment group such as collecting points to determine the surface 

runoff and flushable piezometers, from GEOobservations, to measure negative pore water pressure 

(suction) were also installed. Due to limitations of the range in flushable piezometers, around -100 

kPa, four high capacity suction probes from GEOobservations were used in dry vertical boreholes, 

with a greater range than the flushable piezometer of -2000 kPa. Also in this group is included the 

Theta probes that measure volumetric water content at different shallow depths ranging up to 

600mm.  

 

Three different weather stations were used to monitor the climate at the embankment. One 

of the weather stations is located 300 metres from the embankment and monitors the annual 

weather pattern (i.e. rainfall, air speed, etc), also belonging to the Nafferton Ecological Farming 

Group of Newcastle University. The other two weather stations (micro weather stations) were 

installed on top of the North and South slopes of the embankment. The latter two weather stations 

were used to monitor the climate effects when the climate control system is in operation. 

 

The newly developed techniques group comprises the acoustic waveguide system from 

project ALARMS (Assessment of Landslides using an Acoustic Real Time Monitoring System), 

developed by Loughborough University, intended to “listen” to the formation of shear surfaces 

inside the embankment and the Durham University-Wykenham Farrance Ltd. field high capacity 

suction measurement system to monitor the evolution of pore water pressure both with depth and 
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in time at a single location enabling the creations of continuous suction profiles. The latter 

equipment is part of this study and will be described later in this work.  

 

3.3.1 Climate control system 

 

A climate control system was developed at the embankment to be able to impose different 

scenarios predicted for climate change. A major concern that engineers face with assessing earth 

structures, is whether structures can deal with the actual climate patterns and maintain their 

serviceability when facing different climate patterns (intense rainfall and longer dry periods).  

 

The system employed at the BIONICS embankment can recreate extreme scenarios; 

designed to reproduce intense rainfall and dry events. To reproduce dry events segments of the 

embankment were covered with transparent flexible roofing, see Figure 3.10. This system features 

the possibility of pulling back the cover if desired. This special roofing system was expensive, 

therefore it was only installed on the south slope of panels C (well compacted) and D (poorly 

compacted). With this design, precipitation from natural climate events can be prevented from 

reaching the embankment. Due to its proximity to the surface, 1 metre high, temperature loss is also 

greatly reduced. By reducing infiltration and by reducing the temperature loss higher rates of 

evaporation are generated resulting in drying on panels C and D. 
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Figure 3.10 – Construction of the covering system during spring of 2009. 

 

To reproduce extreme rainfall events, rainfall sprinklers mounted in poles were installed on 

panels A and B (see Figure 3.11), as shown in Figure 2.8. The position of the sprinklers on the 

embankment ensured a spatially uniform rainfall at the ground surface with appropriate droplet 

sizes. 

 

 

Figure 3.11 – Sprinkler system (after Hughes 2007). 

 

Both systems are remotely controlled by computer, making the climate control system 

completely autonomous. 

Panel C Panel D 
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3.4 Final remarks 

 

 

With the predicted changes to the climate in the future the behaviour of old and modern 

earth structures can change. The change in weather patterns is the biggest concern. The changes in 

pore water pressure due to these processes (longer dry periods and short bursts of intense rainfall) 

could greatly affect the stability of earth structures. 

The BIONICS embankment is a highly valuable potential tool to study the effect of climate 

change. Built with material that is present in various earth structures throughout the UK and 

resembling different structures (old and modern), with its disposition of panels, it can be related to 

other existing structures. The climate control system backed by a wide range of instrumentation can 

be used to generate a clear view of the behaviour of the embankment through different climate 

events. It also enables the testing of new field methodologies that can help future design of earth 

structures. 

 

The end result of the BIONICS project is to generate enough data to help the development of 

new or existing analytical methodologies so that the stability and serviceability of existing and future 

earth structures can be predicted. 
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4. Laboratory sample preparation methodology 
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4.1 Introduction 

 

 This chapter presents the methodology necessary to perform testing to describe the hydro-

mechanical behaviour of the BIONICS fill material. In addition to describing the methodology utilised, 

the problems encountered throughout the testing programme and their solutions are also outlined. 

 

One of the most important features of testing soils is to have good and reliable sample 

preparation procedures. This enables replication and confidence in the obtained results. 

Consideration was given to performing the testing on samples obtained from the BIONICS 

embankment after construction. However, the difficulty in obtaining sufficient specimens and in 

ensuring reproducibility between specimens precluded this approach. Therefore, dynamic (drop-

hammer) compaction was adopted. 

 

 To attempt to describe the mechanical behaviour and have some understanding of the 

hydraulic behaviour, constant water content tests were performed in the triaxial cell apparatus. 

Suctions were measured during testing using high capacity suction probes. 

  

4.2 Sample preparation 

 

Samples were compacted using drop-hammer (dynamic) compaction to obtain densities 

resembling construction conditions (as will be demonstrated later). For normal compaction testing a 

mould of 115 mm high by 105mm diameter was used (BS 1377: Part 4, 1990). For triaxial testing, 

specimens with a height:diameter ratio of 2:1 are required. To attempt a better representation of 
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field conditions a sample size of 100mm diameter was decided on, so the sample height needed to 

be 200mm. The level of compaction was maintained as equivalent to BS Light (Proctor) compaction, 

but a 100mm diameter by 200mm high split mould was used. Therefore, the soil was compacted in 6 

layers of approximately 33mm each (compared to 3 layers of 38mm for conventional compaction 

testing). 

 

Table 4.1 – Compaction procedure 

 
BS1377-4 

Light (Proctor) compaction 

BS1377-4  

Heavy (Proctor) 

compaction 

Compaction 

procedure adopted 

Height (mm) 115  115 200  

Diameter (mm) 105  105 100 

Nr. of blows per layer 27 27 27 

Nr. of layers 3 3 6 

Ram weight (kg) 2.5 4.5 2.5 

 

Table 4.2 shows the results of compaction tests carried out in the 200mm high mould using 

the compactive effort described in Table 4.1. The material tested was the original material taken 

from the BIONICS site used without any sieving prior to testing. Repeat tests were performed for 

two water contents (15% and 20%). The obtained results for dry density at 15% water content for 

the original material show a variation of 0.075 Mg/m3 but at the wetter level, 20%, the difference 

was smaller (0.016Mg/m3). 

 

Table 4.2 – Comparison of dry density for samples at the same water content. 

 
Compaction Curve  

BSL 200 
Repeat tests 

Water content Dry density values for different samples 

% Mg/m
3
 

10 1.716   

13 1.721   

15 1.745 1.805 1.820 

20 1.681 1.689 1.697 

22 1.635   
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The variation in density of 0.075 Mg/m3 (equivalent to 4%) was thought to be too high and 

was attributed to the presence of larger particles. To suppress this variation in the obtained 

densities the material was sieved through a 2.8mm sieve to remove the larger particles 

corresponding to 11.5% of the total material. The results of compaction tests on this sieved material 

are shown in Table 4.3. Better results were obtained with a variation of 0.019Mg/m3 (1%). 

Therefore, all further testing was carried out on material sieved through a 2.8mm sieve. 

 

Table 4.3 - Comparison of dry density for sieved samples 

 BSL 200 S Repeat tests 

Water content 
Dry density values for different 

samples 

% Mg/m
3
 

10 1.666   

13 1.698   

15 1.719 1.715 1.734 

16 1.697   

20 1.667   

22 1.626   

 

The sample preparation methodology used concluded as following: 

• The soil was dried to atmosphere; 

• The soil was sieved through a 2.80 mm mesh to remove larger particles; 

• The soil was oven drying for a minimum period of 24 hours; 

• 4 bags each with 1000 g of soil were prepared, to simplify calculations for the 

amount of water needed; 

• Water was added to achieve the desired water content; 

• The bags were left to equalise for 24 hours for homogenisation of the water content 

within the soil; 

• The soil was compacted using a drop-hammer compaction machine. 
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4.3 BIONICS laboratory soil 

 

As noted in the previous section the original material was sieved through a 2.80mm mesh to 

reduce variation in density. Therefore, the material used for testing would present different 

behaviour to that obtained for the original material reported in Chapter 3.  

 

The particle size distribution for the sieved soil is presented in Figure 4.1. Four particle size 

distribution curves were obtained. The initial part of all curves in Figure 4.1 was obtained from one 

test of dry sieving 3000g of material through sieves from 2.80mm down to the size of 0.063 mm 

sieve in accordance with BS1377 Part 2 (1990). The material passing this sieve was subjected to 

pipette sedimentation analysis using the pipette method. Sedimentation analysis tests were 

performed on four independent samples resulting in the four particle size distributions curves 

obtained in Figure 4.1.  

 

Since the Atterberg limits (liquid limit, plastic limit, plasticity index and liquidity index) and 

specific gravity are obtained on material passing 425µm, these test results will have the same values 

as for the non sieved material. 

 

Clay activity (A) for the sieved material is 1.3, calculated as PI/Clay fraction, classifying the 

BIONICS laboratory material according to activity as normal.  When compared with the unsieved 

material this increase on the activity resulted from the increase in percentage of the clay material of 

the sieved material. 
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Figure 4.1 – Particle distribution curves for the sieved material. 

 

 Another change to the material is in the reference compaction curve. Different compaction 

curves were obtained for different samples and for different compactive efforts. Each compaction 

curve was labelled in accordance to the employed compactive effort followed by the height of the 

sample compacted. Where BS stands for British standard, L (light) or H (heavy) represents the 

compactive effort while the number 100 and 200 refers to the height of the sample compacted. For 

the compaction curve obtained for the sieved material the letter S was added at the end of the label. 

Compaction curves for the original material, using the BS1377 procedure (BSL100 and BSH100) and 

the modified procedure for the 200mm high mould (BSL200 and BSH200) are presented in Figure 

4.2. A test on the sieved material is also shown (BSL200 S). A noticeable reduction in the dry density 

is clearly observed when comparing the compaction curves obtained for the original material 

(BSL200) and that obtained for the sieved material (BSL200 S). For the BSL200 S test the optimum 

water content and maximum dry density were Wopt =15% and γd max = 1.719 Mg/m3. Another 
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observation is the close proximity of BSL200 S with the light proctor compaction curve BSL100. In 

any case, the compaction curve BSL200 S was the reference compaction curve for all subsequent 

testing. 

 

The compaction curves BSL200 S and BSL100 demonstrate a good comparison with 

measurements obtained during the construction of the BIONICS embankment (Hughes, 2005) as 

shown in Figure 4.3. Therefore, the sample preparation procedures lead to material of very similar 

density as was found to be present in the BIONICS embankment. 

 

 

Figure 4.2 – Results obtained for the compaction curves defined 
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Figure 4.3 – Different compaction curves related with field measurements obtained for each panel 

of the BIONICS embankment. 

  

4.4 Drying and wetting procedures 

 

 

To study the performance of the soil when subjected to various climate conditions it was 

decided to perform constant water triaxial tests on samples with different water contents for the 

same initial conditions. In other words, subsequently to compaction, samples with similar water 

content would be subjected to drying or wetting procedures, prior to the triaxial testing, in order to 

replicate different climate conditions.  

 

 The drying and wetting procedures were implemented to attain precise target water 

content. To determine the target water content a simple calculation was preformed prior to the 

desired procedure: 
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)w1(mm d +=  ( 4.1) 

 

Where, m is the total mass, md is the dry mass and w the water content of the sample. 

 

After compaction the total mass (minitial) was determined by weighting the sample on a 

balance while the water content (winitial) was determined from the leftovers from the compaction. 

During wetting or drying the value of the dry mass remains constant while trying to achieve the 

target water content (wfinal). Combining the two stages, after compaction and after drying or 

wetting, with the E.q. 4.1 E.q 4.2 can be obtained.  

)w1(

)w1(m
m

initial

finalinitial
final +

+×
=  (4.2) 

  

Drying and wetting procedures were defined to achieve the target mass calculated according 

to Eq. 4.2.  

 

 To validate the wetting and drying procedures an assessment of the distribution of the water 

content throughout the sample was performed in an attempt to achieve the most homogeneous 

distribution. This assessment involved the determination of the water content in the vertical 

direction as well as in the radial direction of samples (this procedure was also implemented in the 

compaction curve to assure the same homogeneity in the samples as-compacted). 
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As soon as the sample achieved the target water content/target mass from the application 

of the drying or wetting procedure, some samples were sliced into six layers (layer 1 is located at the 

top of the sample and 6 at the bottom; see Figure 4.4). Each layer was subdivided into three radial 

zones: outer ring, middle ring and core (Figure 4.5). And the water content was determined for each 

parcel of the layer. 

 

Four water content values were measured from the outer ring and the middle ring; only two 

measurements of water content were taken from the core of the layer. A total of 10 water content 

values are therefore measured for each layer. 

 

 

 

Figure 4.4 – Samples slices for vertical water 

content determination. 

Figure 4.5 – Illustration of the zones for radial 

water content determination. 

 

A typical result for a sample compacted at 20% water content is shown in Figure 4.6. The 

water content varied from 19% in layer 1 (top) to 20.9% for layer 6 (bottom). This shows that the 

water content was higher at the bottom than at the top of the sample. This is likely to be due to 

drying from the top (exposed) surface while compacting.  
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Figure 4.6 – water content distribution for a sample with 20% of water content. 

 

4.4.1 Drying procedure 

 

The drying procedure employed was air drying. Samples were left to dry to the atmosphere, 

while the sample mass was continuously measured. This was carried out inside a temperature 

controlled laboratory to ensure constant conditions (temperature) while drying. As soon as the 

sample reached the target mass (and hence target water content) it was wrapped in cling film and 

left to equalise. By sealing the sample and allowing a period of equalisation, the water inside the 

sample should distribute in a more homogeneous form. Tests were performed on different samples 

for various equalisation periods: 3 to 10 days. 

 

The water content determination tests, were performed both on sieved and unsieved 

material. The results of these tests are summarized in Table 4.4: 
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Table 4.4 – Drying procedures water content results. 

Compaction 

type 
Test no. 

Initial 

water 

content 

Final water 

content after 

drying 

Equalisation 

period 

Final water content 

after equalisation 

Test  

total 

duration 

BSL 200 U Dry 1 20 % 13.5 % 3 days 13.5 % 10 days 

BSL 200 U Dry 2 20 % 14.1 % 5 days 14.1 % 13 days 

BSL 200 S S Dry 1 20 % 14.8 % 5 days 14.8 % 13 days 

BSL 200 S S Dry 2 20 % 15.7 % 10 days 15.7 % 17 days 

  

 

As explained previously in this section, the samples were left to dry to atmosphere, having 

initial water content around 20% and expecting to achieve a target water content value of 15%. The 

results presented on Table 4.4 show that the samples dried more than was needed due to poor 

control of the weight during the tests. However, the purpose of these tests was to find the best 

period of equalisation for the samples to obtain a homogeneous water content value throughout its 

layers (see Figure 4.4 as reference for the distribution of the layers).  The lack of measurements in a 

radial distribution is due to the fact that it was found that the samples that were tested were too dry 

(brittle) to implement the core cutting, which would have destroyed the layer. 

 

The differences in water content between U Dry 1 and U Dry 2 were due to poor control of 

the final weight in these two samples. They were both targeted at 15% but were dried to 13.5% and 

14.1% respectively. Similarly, S Dry 1 and S Dry 2 were dried to different water contents of 14.8% 

and 15.7% respectively. 
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Figure 4.7 – Drying procedure: variation of water content in depth. 

 

By observing the vertical variation of water content in Figure 4.7, the more homogeneous 

water content distribution encountered was for the sample S Dry 2 with an equalisation period of 10 

days. 

 

4.4.2 Wetting procedure 

 

The procedure to increase the water content within the sample is a more laborious system 

when compared to the drying procedure. A system was developed that could wet the samples 

homogeneously and uniformly by using mini-foggers. 

 

Mini-foggers are used to create mist on top of small pounds as a gardening bedazzlement 

product. The creation of finer particles of water suspended in the air is derived from the cavitation 

of water through ultrasounds without causing temperature changes, this is ideal for wetting soil 
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samples. By surrounding a sample in a mist the absorption of water will be homogeneous increasing 

its water content in a continuum.  

 

A humidifying chamber was built to accommodate the mini-foggers; the scheme is shown in 

Figure 4.8. 

 

Figure 4.8 – Scheme of the humidification chamber. 

 

The chamber was a plastic box and the mini-foggers were positioned inside a water reservoir 

positioned at a higher level than the samples. The fog descends around the reservoir and by 

constantly flowing mist from the reservoir it fills the chamber, see Figure 4.9. The samples were 

placed on a porous disc which served as a pedestal to avoid absorption of accumulated water from 

the bottom of the chamber. The weight of samples was checked regularly to achieve the desired 

water content.  

 

By not causing a significant increase of heat inside the chamber and by creating a 

homogeneous distribution of water around the sample this system was adopted as the wetting 

procedure. The only disadvantage on using mini-foggers is that it is time consuming for wetting to 
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take place, requiring between two to four weeks to achieve the desired water content  for the 

sample (the higher the desired water content the longer the wetting time). 

 

 

Figure 4.9 – Humidification chamber. 

 

Even with this procedure the distribution of water within the sample could still be uneven, 

with more present at the outskirts of the sample than in the core. Therefore, after wetting, the 

samples were wrapped in cling film and left to equalise. To validate this procedure, and to chose the 

best equalisation period, samples were compacted with a initial water content value close to 15% 

and were humidified/wetted until the desired water content was reached – in this case 20%. Tests 

were performed on sieved and unsieved material. The obtained results are summarized in Table 4.5.  

 

Table 4.5 – Wetting procedure water content results. 

Compaction 

type 
Test no. 

Initial water 

content 

Calculated water content 

after humidification 

Equalisation 

period 

Final average water 

content after equalisation 

BSL 200 U Wet 1 15 % 20 % 1 week 20.4 % 

BSL 200 U Wet 2 15 % 20 % 2 weeks 19.8 % 

BSL 200 U Wet 3 15 % 22 % 2 weeks 19.1 % 

BSL 200 S S Wet 1 15 % 20 % 2 weeks 19.1 % 

BSL 200 S S Wet 2 15 % 20 % 3 weeks 20.1 % 

 

For the unsieved material (U) two types of tests were carried out: 

Fog 

Reservoir 



84 

 

 

- Direct humidification, where the sample was humidified to a final water content of 20% (U 

Wet 1 to 2); 

 

- Overshooting, where the sample was humidified to a higher water content than was 

required for the test and then allowed to dry back to the intended value of 20% (U Wet 3 to 4).  

 

For sieved material (S) only one type of test was carried out where the sample was 

humidified to a final water content of 20% (S Wet 1 and 2); 

 

Figure 4.10 shows the results for one week of equalisation, where it can be seen that the 

scatter in the water content for test U Wet 1 is as large as 6% for the radial variation and 10% in the 

vertical variation of the water content. 

 

Figure 4.10 – Water content (vertical and radial) scattering after one week of equalisation for test U 

Wet 1(for layer position see Figure 4.4). 
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Figure 4.11 – Water content (vertical and radial) scattering after two weeks of equalisation for test U 

Wet 2(for layer position see Figure 4.4). 

 

By increasing the equalisation time to two weeks the water content tends to be more 

homogeneous reducing the vertical - 4.5% - and radial – close to 2% - scattering of values (see Figure 

4.11). From both Figures 4.10 and 4.11 it can be clearly observed the influence of the time allowed 

for the samples to equalise, reducing close to 4% for both vertical and radial distribution of water 

content.  

 

The use of sieved material, test S Wet 1, reduced the scattering even more, decreasing to 3% 

in the vertical variation of water content and less than 2% in the radial variation on the water 

content (see Figure 4.12).  
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Figure 4.12 – Water content (vertical and radial) scattering for two weeks of equalisation for sieved 

material, test S Wet 1. 

 

Besides the improvement obtained by increasing the equalisation time an attempt to further 

improve the distribution was performed by overshooting the target water content followed by 

drying  with the intention of reducing the difference between core and outer ring. In all previous 

tests the core tended to be more dried. But also, to achieve a better vertical distribution where in all 

previous cases the tendency was to have a wetter top and drier bottom. Figure 4.13 present such 

test, U Wet 3, in which it was used the same equalisation time of 2 weeks. 

 

  Overshooting the water content appears to give better results than only leaving the 

material to equalise directly for two weeks. Although the scattering in water content, in both 

directions, is lower (see Figure 4.13) when overshooting takes place (suggesting a more 

homogeneous sample in water content throughout the sample), sample characteristics change, most 

importantly the fabric. By allowing the sample to absorb more water, the clay particles, in 

particularly, tend to increase in size which leads to a certain arrangement of the particles inside the 

sample, also altering the size of the voids. While drying the sample, afterwards, the opposite takes 
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place evolving in a new rearrangement. Considering the activity of the clay particles of the sample 

used in this work classified as normal, some uncertainties are present making it impossible to assure 

that using these samples would provide appropriate results.  

  

 

Figure 4.13 – Water content (vertical and radial) scattering for two weeks of equalisation with 

overshooting the water content value, test U Wet 3. 

 

 Since the overshooting of the target water content was considered to be inappropriate to 

produce reliable results the only option to improve the quality of the samples regarding the 

distribution of the water content was to increase the equalisation period, hence test S Wet 2. When 

allowing a period of equalisation of 3 weeks the water content distribution (Figure 4.14) presented a 

much lower scatter. In comparison with Figure 4.6 and 4.13 the distribution is very similar presenting 

a variation of at most 2% vertically and 1% horizontally. The sample still presented a drier bottom 

than the top; however, it was considered that extending the equalisation period would present 

some problems with the following testing. Notice that the total time from preparation and 

compaction until the point where the sample would be placed in a triaxial cell for testing would take 

already 1.5 months.  
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Figure 4.14 – Water content (vertical and radial) scattering for three weeks of equalisation for the 

sieved material, test S Wet 2. 

 

 

From the homogeneity of the water content through the sample achieved the equalisation 

period selected was 3 weeks. 

 

In all tests there is a noticeable decrease in water content with depth. This observed result 

could be due to the sample preparation methodology followed. During compaction, the sample was 

compacted in layers, as explained in section 4.2 in this Chapter. By doing so, the level of compaction 

can increase with depth, as a result of the additional energy transfer during the compaction of the 

subsequent layers. Therefore, the bottom layer may achieve a slightly greater level of compaction 

than the top layer. This could result in slightly different fabrics with depth, in which the bottom layer 

(being more compacted) would have less void space in comparison with the top layers. This 

difference between the layers could condition the retention behaviour resulting in the observed 

differences in water content with depth during wetting. 
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4.5 Conclusions 

 

 

A successful sample preparation procedure was achieved that allowed replication of samples 

with same dry density for the same water content.  However, to achieve it the maximum particle 

size of the soil was reduced by sieving through a 2.8 mm grid. The sieved material was classified as a 

sandy clay material.  

 

Good agreement was observed between the densities obtained in the laboratory (using BS 

light (Proctor) compaction applied to 200mm high and 100mm diameter specimens) with the values 

obtained from field measurements.  

 

Drying and wetting processes were developed from as compacted conditions and was 

assessed. Water content distribution after these processes was shown to be reasonably similar 

throughout the full size sample tested, but largely dependent on the equalisation time period. 
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5 Soil Water Retention Curve determination for 

the BIONICS fill material 
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5.1 Introduction 

 

In unsaturated soils, a key factor in the study of the pore water pressure generated in 

the soil is the Soil Water Retention Curve (SWRC). The SWRC can be determined by an array of 

different techniques as presented in the literature review (Chapter 2). SWRCs were obtained in 

terms of total and matric suction for specimens of the BIONICS soil (using the modified grading 

used for other laboratory tests). 

 

It is known that SWRC presents hysteric behaviour, meaning the SWRC obtained will be 

different depending on the path chosen to obtain the curve (drying or wetting). To obtain the 

primary drying branch of the SWRC, the initial conditions must be a fully saturated sample; 

otherwise, for samples starting from an unsaturated condition, the curve obtained will be on 

what is called a scanning curve (representing a state between the primary drying curve and 

primary wetting curve).  

 

The initial part of this chapter presents experimental work on samples that were initially 

saturated.  These tests were carried out by other authors, namely Sérgio Lourenço, a former 

PhD student and Teiko Noguchi, a former MEng student, both of Durham University. Sections 

5.2-5.4 are based on the work of Noguchi (2009) who worked with the author on the 
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determination of the SWRC following a drying path using different techniques. Further results 

by Lourenço (2008) are also referred to in these sections.  Section 5.5 reports results obtained 

by the author on samples from different initial compaction water contents. Tests were 

performed to determine both drying and wetting curves from different initial compaction 

conditions. 

 

5.2 Measurement techniques of soil suction 

 

5.2.1 Transistor Psychrometer 

 

A 12-probe transistor psychrometer was used to obtain the SWRC for total suction. The 

device was the heavily-insulated laboratory model manufactured by Soil Mechanics 

Instrumentation (SMI) (Figure 5.1).  The SMI psychrometer in Durham University’s Civil 

Engineering Laboratory was positioned inside a temperature controlled room, since the 

equipment is very sensitive to temperature changes. As stated in the manual of the SMI 

psychrometer the temperature differences should be no more than 1ºC during the test 

duration. Even though the device was positioned inside the temperature controlled room and 

had internal insulation, an insulation chamber was also used to assure even better 

temperature control. The insulation chamber was custom built in the School of Engineering 

Mechanical Workshop. The custom built chamber was constructed to fit the dimensions of the 
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12-probe SMI psychrometer with insulation provided by a layer of polystyrene 15 cm thick all 

around the equipment enhanced by the wooden box (1cm thick), see Figure 5.1. An insulated 

lid to cover the box was also provided, with the same thickness of insulation. 

 

 

 
Figure 5.1 - Photos of the 12-probe transistor psychrometer heavily-insulated with polystyrene. 

 

5.2.1.1 Calibration 

 

The transistor psychrometer was calibrated before any soil suction measurements 

were taken following the procedure stated in the SMI Manual for the 12-probe Transistor 

Psychrometer (SMI, 2004). The psychrometer was stabilized overnight using filter papers 

saturated with distilled water, in order to produce a relative humidity of 100% inside the 

probes (which corresponds to total suction of 0kPa). A trimming potentiometer was used in the 

probe head to zero the probe outputs. The calibration of the probes was done using filter 

papers saturated with standard salt solutions; these were prepared with appropriate 
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concentrations to give equivalent relative humidity, ranging from 10 kPa to 10000 kPa. After 

calibrating the probes, they were cleaned with distilled water to avoid any contamination to 

the probe tips; also, for the same reasons, the water drop of the wet transistor was replaced. 

To ensure the calibration had been carried out correctly, the calibration tests were repeated 

three times and any unreliable results were ignored. Figure 5.2 presents an example of a set of 

calibration tests conducted for probe 1. 

 

The calibration curve of log (kPa) versus log (mV) was produced for each probe using 

the output values. Figure 5.3 presents the calibration data obtained for probe1: not much 

difference was observed in the output voltage between total suctions of 10kPa and 100kPa. A 

similar trend was observed for the remaining probes, indicating that using the transistor 

psychrometer to obtain accurate measurements of total suction below about 100kPa would be 

difficult. Therefore, the calibration line was produced using data obtained from 100kPa to 

10000kPa suction solutions (Figure 5.4) and the transistor psychrometer was used to 

determine the total suction above 100kPa. From the twelve probes of the SMI Psychrometer, 

only ten of them were found to been working properly (probe 8 and 11 were not functioning). 
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Figure 5.2 – Sequence of calibration tests showing the results for probe 1 (after Noguchi, 

2009). 

 

 

Figure 5.3 – Calibration data obtained for the probe 1 (after Noguchi, 2009). 
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Figure 5.4 – Calibration curve determined for the probe 1 (after Noguchi, 2009).

 

5.2.1.2 Measurement of Soil Suction

 

Disc samples were taken from BIONICS soil samples. The samples were prepared as in 

Chapter 4, by compacting at gravimetric water content of 25%, and sliced to a thickness of 

16mm and a diameter of 100mm. The samples were left to air dry to obtain five different 

gravimetric water contents (25%, 20%, 15%, 10% and 5%). From each disc sample,

were cut using standard 35mm long, 15mm diameter sampling tubes. For soft samples (the 

ones with higher water contents) a more cautious approach was used, where, the sampling 

tube was placed on top of the disc sample and pushed carefully into 

sample inside the sampling tube. The end plug was then carefully pushed into the end of the 

Calibration curve determined for the probe 1 (after Noguchi, 2009).

Measurement of Soil Suction 

Disc samples were taken from BIONICS soil samples. The samples were prepared as in 

hapter 4, by compacting at gravimetric water content of 25%, and sliced to a thickness of 

16mm and a diameter of 100mm. The samples were left to air dry to obtain five different 

gravimetric water contents (25%, 20%, 15%, 10% and 5%). From each disc sample,

were cut using standard 35mm long, 15mm diameter sampling tubes. For soft samples (the 

ones with higher water contents) a more cautious approach was used, where, the sampling 

tube was placed on top of the disc sample and pushed carefully into it so to produce a sub

sample inside the sampling tube. The end plug was then carefully pushed into the end of the 
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Calibration curve determined for the probe 1 (after Noguchi, 2009). 

Disc samples were taken from BIONICS soil samples. The samples were prepared as in 

hapter 4, by compacting at gravimetric water content of 25%, and sliced to a thickness of 

16mm and a diameter of 100mm. The samples were left to air dry to obtain five different 

gravimetric water contents (25%, 20%, 15%, 10% and 5%). From each disc sample, sub-samples 

were cut using standard 35mm long, 15mm diameter sampling tubes. For soft samples (the 

ones with higher water contents) a more cautious approach was used, where, the sampling 

it so to produce a sub-

sample inside the sampling tube. The end plug was then carefully pushed into the end of the 
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psychromer sampling cup.  

 

After stabilizing and zeroing the psychrometer, the sampling cups were placed on the 

end of the probes, sealed with electric tape, and quickly replaced into the insulated container. 

The psychrometer was allowed to equalize for one hour while the data logger was set to take 

output readings every 5 minutes. After one hour of equalization, calibration curves for the soil 

samples were used to determine the total suction of the soil. Soil samples were then removed 

for water content measurement and the next set of sample was placed on the probes. Two sets 

of measurements were undertaken for each water content value. The detailed procedures of 

the soil suction measurement are described in SMI (2004). 

 

5.2.2 Filter Paper 

 

The filter paper method used originates from the technique by Bulut et al (2001). The 

BIONICS soil sample prepared as described in chapter 4 at a gravimetric water content of 25% 

was sliced to form sub-samples of 25mm thickness and these were air dried to the atmosphere 

until they reached the desired gravimetric water contents of 25%, 20%, 15%, 10%, and 5%. The 

sub-samples were then trimmed to smaller discs of 55mm diameter and 20mm thickness 

(diameter to match the Whatman 42 filter paper dimensions). Each set of soil suction 

measurements followed the arrangement shown in Figure 5.5: two of the small discs from sub-
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samples at the same water content were placed on top of each other and a sandwich of 3 

Whatman 42 filter papers was placed in between, with the middle filter paper of this sandwich 

(in-contact filter paper) being used to measure matric suction. 

 

 

 

Figure 5.5 – Arrangement of filter papers and samples for the filter paper technique. 

 

Electrical tape was used to tape together this set of disc samples with filter papers in 

between. Another Whatman 42 paper filter (non-contact) was used to measure total suction. 

In order to ensure that this non-contact filter paper was kept completely separate from the soil 

sample, a 10mm high PVC ring was used between the soil sample and the paper filter. This set 

was then placed in a glass jar, which was quickly closed, and its lid was also taped with 

electrical tape. Four layers of cling film were used to wrap the jar and, finally, the glass jar was 

coated in paraffin wax so to prevent exchanges of air. Three of these sets were prepared for 

each water content value. 

1. Non-contact filter paper for total suction 

measurement 

2. PCV ring to avoid contact between non-

contact filter paper and sample 

3. Soil sample 

4. In-contact filter paper for matric suction 

measurement (one filter paper in between 

two protective filter papers) 
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The jar was allowed to equalize in a water bath at 25ºC for a period of 14 days,; after 

this period, the paraffin wax and the cling film layers were removed and the filter papers and 

soil samples were weighted as quickly as possible to an accuracy of 0.0001g. Afterwards, the 

filter papers and soil samples were oven-dried, which allowed a calculation of their water 

content and the determination of the corresponding suction (using an appropriate calibration 

equation). 

 

5.2.3 Pressure Plate 

 

The pressure plate apparatus used in this study was a 1500kPa range Soil Moisture 

Corp. pressure chamber in the configuration of Figure 2.6. Modifications to the original set up 

were carried out to allow independent multi sample testing (up to 4) by the substitution of the 

original porous ceramic disc with 4 independent ceramic discs with an air entry value similar to 

the original disc (1500 kPa), each of them connected to a different volume gauge (replacing the 

burette). As in Figure 2.6, the air supply was provided by nitrogen bottles instead of the 

laboratory air-compressor, allowing the possibility of imposing higher air pressures within the 

chamber. Before testing, the ceramic discs were saturated. This procedure is crucial for this 

testing technique, since for reliable measurements all air bubbles must be removed from 

ceramic discs. The saturation procedure adopted was as follows: the ceramic discs were placed 

inside the pressure plate apparatus submerged in deaired water (the deaired water level was 
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2cm above the discs). After tightly fastening the lid of the pressure plate, air pressure was 

increased slightly in steps to push water through the discs. This procedure lasted until no air 

bubbles were observed emerging from the discs. This procedure was performed prior to any 

testing carried out in the pressure plate apparatus. 

 

The BIONICS sample prepared as outlined in Chapter 4 was sliced to a thickness of 20 

mm and trimmed to a diameter of 75 mm. The sample was then placed on the saturated 

porous ceramic plate in a 1500kPa range Soil Moisture Corp. pressure chamber, ensuring an 

intimate contact between the sample and the plate. The chamber was filled with water to a 

shallow depth (below the ceramic plate) in order to humidify the air inside the chamber, to 

avoid excess drying of the sample. The chamber was tightly fastened; air pressure was applied 

inside the chamber and water pressure was applied underneath the plate to impose the 

desired value of matric suction on the sample (the difference between air and water pressure). 

Pressure was applied to the water reservoir underneath the plate through a volume gauge to 

measure the volume of water flowing in or out of the specimen as the suction was changed. 

Applying pressure to the water reservoir had the advantage of preventing dissolved air from 

coming out of the solution after passing through the ceramic plate; since a high air pressure is 

applied in the chamber, water passing through the ceramic plate has a high amount of 

dissolved air which, if no pressure is applied underneath the ceramic plate, might come out of 
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the solution and cause interruption of the water flow. In this case, applying pressure on the 

water reservoir prevents a misleading reading of the water volume change in the gauge. The 

volume change measured by the gauge is a function of both the volume changes due to air 

diffusion and water flow throughout the ceramic plate. In some cases, the air diffusion rate of 

the porous ceramic plate is negligible, but sometimes it can be significant enough to influence 

the resulting SWRC (Vaquero, 2007); although theoretical predictions of the volume of diffused 

air have been attempted, the many factors affecting the diffusion rates make them unreliable 

(Fredlund and Rahardjo, 1993). Identifying the air diffusion rate through the ceramic plate is 

then advisable (especially when the volume gauge measurement is the only process available 

to determine water volume change of a soil sample) in order to correct the measurements of 

volume change in the gauge. 

 

A PC equipped with the TRIAX data acquisition software (Toll, 1999) was used for 

monitoring the volume change in the gauge and the pressures applied, logging the data every 

30 minutes (during the experimental period). When the volume change read by the gauge was 

less than 0.35cc/day, the sample was considered to have reached equalization (Vaquero, 2007). 

After equalization, the sample was taken out of the pressure chamber and measured: weight 

was measured to the nearest 0.01g and dimensions were measured with an accuracy of 

0.01mm using vernier callipers. 
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After the measurements were taken, the soil sample was placed back on the plate and 

the process was repeated for increasing pressures. The highest suction imposed was 1100 kPa, 

corresponding to an air pressure application of 1310 kPa and an applied water pressure of 210 

kPa. When the experiment was finished, the soil sample was oven-dried to determine dry 

mass, and the water content of the sample at different suction stages was back calculated. 

 

5.2.4 DU-WF High capacity suction probe 

 

5.2.4.1 Continuous Drying 

 

The soil sample prepared was sliced and trimmed to a 20 mm thick sub-sample of 

75mm of diameter. The continuous drying apparatus was set up as shown in Figure 5.6.  

 

 

Figure 5.6 – Experimental setup for the continuous drying test (after Noguchi, 2009). 

 

A high capacity suction probe was inserted through a support plate, from below, 

through a rubber O-ring. The soil sub-sample was placed on the support plate, and an intimate 
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contact between the sample and the high capacity suction probe was ensured, with the suction 

probe being gently pushed into the sample to an approximate depth of 2mm. This whole setup 

was placed upon a digital weighting scale and connected to a PC with TRIAX software; in order 

to minimize the influence of the suction probe cable on the weighing, its cable was fixed on a 

support (Lourenço, 2008). TRIAX software was set to take output readings every 10 minutes. 

The sample was left to dry to the atmosphere – during this time, the high capacity suction 

probe continuously read the matric suction and the digital weighting scale measured the 

change in the total mass (which represented the water loss from the sample). The mass 

measurement was later used to back calculate the soil water content throughout the test. 

 

5.2.4.2 Stage Drying 

 

The soil sub-sample was prepared in the same way as the ones for continuous drying. 

However, in stage drying, after each stage of drying the suction measurement was taken after 

the sub-sample was sealed inside a confined chamber to ensure the suction had equalised 

throughout the specimen. The sub-sample was air dried to the desired water content and 

equalized, for a period of 24 hours, inside the confined container used for the measurement 

(with 20mm by 100mm of diameter). A high capacity suction probe was inserted through the 

rubber O-ring at the bottom of the container so that the sample rested on it by its own weight. 
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In order to overcome situations when the sample was dried and hardened (and, therefore, an 

intimate contact was difficult to attain), a thin film of water was applied on the face of the high 

capacity suction probe before inserting it. The suction probe read the suction until equalization 

was observed. The sample was then taken out of the confined container and allowed to dry 

again, so the procedure was repeated for successive different water contents. The test was 

carried out in a temperature control room. 

 

5.3 SWRCs obtained by the different methodologies 

 

5.3.1 Transistor Psychrometer 

 

The total suction SWRC determined by Noguchi (2009) using the transistor 

psychrometer technique is shown in Figure 5.7. For each probe, the corresponding calibration 

curve was used to determine the total suction from the output voltage measured. Suction 

values below 100kPa were discarded (since the psychrometer showed no reliability in 

measurements of suction below that value) and the calibration curves were developed for 

suctions between 100kPa and 10000kPa. Even so, a considerable scatter of results is still 

observable. Up to 500kPa suction, the scattering of the SWRC corresponds to values from 15% 

to 25% of gravimetric water content. 
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Figure 5.7 – Total suction WRC determined using the psychrometer (after Noguchi, 2009). 

 

5.3.2 Filter Paper 

 

The relationship between the water contents of the filter paper and the corresponding 

soil sample at the end of the 14-day equalization period is shown in Figure 5.8. For the in-

contact filter paper, the moisture flow is via liquid transfer whereas for the non-contact filter 

paper the moisture flow is via vapour transfer (Noguchi, 2009). The water content of the in-

contact filter paper (which is measuring the matric suction) is, therefore, much higher than the 

water content of the non-contact filter paper (which is measuring the total suction). However, 

below a gravimetric content of 11%, there is no significant difference between the water 

contents of in-contact and non-contact filter papers. This suggests that, below this value, the 
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samples are so dry that there is no continuous water path between the soil samples and the in-

contact filter paper (so most of the moisture flow occurs via vapour transfer rather than liquid 

transfer). Leong et al (2002) also state that beyond 1000 kPa suction the filter paper measures 

only total suction, regardless of whether the filter paper is in-contact or non-contact. 

 

 

Figure 5.8 – Water contents of filter papers and corresponding soil samples at the end of 

equalisation period (after Noguchi, 2009). 

 

The SWRCs were determined using three different calibration equations for the 

Whatman 42 filter paper suggested by different authors, all of which are presented below. 
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    (5.1 – for matric suction) 
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    (5.2 – for total suction) 

 

- Hamblin (1981): 

fwlog683.3022.8log −=Ψ         (5.3) 

 

- Leong et al (2002): 

fw0229.0909.2log −=Ψ  47≥fw       (5.4.a) 

fw0673.0945.4log −=Ψ   47<fw      (5.4.b) 

 

In all of these equations, Ψ  represents the soil suction (kPa), Ψlog  is the logarithm 

of the soil suction (base 10) and fw  is the filter paper water content in percentage. 

 

Some authors state that the calibration equations for both total and matric suction 

should be given by different equations. However, other studies suggest that if, during total 

suction measurement, the filter paper is allowed to equalize fully, then the matric suction 

calibration equation is valid for total suction determinations, which means there is no need for 

separate equations for total and matric suction determinations (Marinho, 2004, Stenke et al 

2006). Therefore the matric suction calibration equations (Equation 5.4.a and 5.4.b) were 
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applied to both total and matric suction determinations in this study. The total and matric 

suction SWRCs determined using the calibration equations mentioned above are shown in 

Figure 5.9 and 5.10 respectively. The comparison between the total and matric suction SWRCs 

can be seen in Figure 5.11 (taking Hamblin equation as an example). Figure 5.11 shows that 

below a gravimetric water content of 11% (beyond about 1000kPa suction) the total and matric 

suction SWRCs come together (as also observed in Figure 5.8). 

 

 

Figure 5.9 – Total suction SWRCs determined using the filter paper (after Noguchi, 2009). 
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Figure 5.10 – Matric suction SWRCs determined using the filter paper (after Noguchi, 2009) 

 

 

Figure 5.11 – Comparison between the total and matric suction SWRCs determined using the 

filter paper (after, Noguchi 2009). 
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 In Figure 5.11 different values for total and matric suction can be observed which 

suggests that the component of osmotic suction was present in the soil, suggesting the pore 

water contained salts. However, as stated previously, the reason for the apparent presence of a 

osmotic suction value may be due solely to the equalisation time during each test not being 

sufficient. As stated by Marinho (2004) if the filter papers are allowed to fully equalise both 

curves should come together which may have not been the case in these tests. 

 

5.3.3 Pressure Plate 

 

The SWRCs determined by Noguchi (2009) using the pressure plate technique are 

shown in Figure 5.12. This figure also includes the results from Lourenço (2008), which can be 

directly compared with the ones obtained by Noguchi, since the pressure plate apparatus, the 

soil specification and the soil sample preparation procedure were the same for both 

experiments. Measurements for Samples 1 and 2 were taken only up to 300kPa suction since 

the ceramic plates on which the samples were placed were 500kPa plates and blow-through 

occurred before achieving an imposed suction of 400kPa. Similarly, Sample 3 was measured 

only up to 600kPa suction, since an inappropriate procedure in the experiment lead to cracking 

of the ceramic plate under an imposed suction of 700kPa. 
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Figure 5.12 – Matric suction SWRCs determined using the pressure plate (after Lourenço, 2008, 

and Noguchi, 2009). 
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and same suction was again imposed on them. The second weighing was done 48 hours after 
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0.35cc/day.  

 

5.3.4 High capacity suction probe 

 

The SWRCs determined from two continuous drying tests and stage drying test are 

shown in Figure 5.13. 

 

 

Figure 5.13 – Matric suction SWRCs determined using the high capacity suction probe (after 

Noguchi, 2009). 
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explanations for these results: a) non-equalization of water content inside the soil sample or b) 

non-intimate contact between the high capacity suction probe and the soil sample. 

 

a) Soil samples dry from the margin, where the high capacity suction probe is placed. 

Therefore the high capacity suction probe measures a higher suction at the beginning and, 

after equalization, suction would normally reduce. However, if equalization of water content is 

not achieved inside the soil sample when the measurement is taken, the suction value 

obtained would be higher than the actual value. 

 

b) Stage drying test includes a lot of operator intervention, which can be a source of 

error. At every drying stage, the high capacity suction probe is placed on the sample ensuring 

an intimate contact, but this contact becomes more difficult as the sample gets drier. Pushing 

the high capacity suction probe into the sample deforms the surface of the sample (Figure 

5.14) and this deformation can also be one of the reasons why intimate contact achievement is 

more difficult for successive suction measurements. 
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Figure 5.14 – Deformation of soil sample caused by the high capacity suction probe, (After 

Lourenço, 2008). 

 

The SWRC determined from the continuous drying test 1 was compared with the tests 

carried out by Lourenço (2008) in Figure 5.15. As for the pressure plate technique results, a 

direct comparison between this work and the results by Lourenço (2008) was possible due to 

same soil specifications and same soil sample preparation procedures on both experiments. 

The continuous drying test 1 was in good agreement with the tests carried out by Lourenço 

(2008), which is a good indicator of the repeatability of the high capacity suction probe 

technique. These results also account and support the reproducibility of the SWRCs 

determined using the high capacity suction probe technique. 
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Figure 5.15 – Comparison between the continuous drying test 1 (grey symbols) and all drying 

tests obtained by Lourenço (2008) (lines correspond to four continuous drying tests and white 

symbols for four stage drying tests) (after Noguchi, 2009). 

 

5.4 Soil water retention curves for the BIONICS soil 

 

5.4.1 Total Suction SWRCs 

 

The SWRCs determined using the total suction measurement techniques (i.e. the 

transistor psychrometer and the non-contact filter paper) are shown in Figure 5.16 (results 

determined using the transistor psychrometer are shown as an envelope). Comparing the 

SWRCs present in Figure 5.16, the one obtained from the psychrometer seems to fall at lower 

values than the ones obtained using the non-contact filter paper technique. Although both 
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techniques present significant scattering in the obtained results, it seems that the SWRC 

resulting from filter paper calibration equations suggested by van Genuchten and Hamblin 

shows better agreement with those resulting from the psychrometer than Leong et al. 

 

 

Figure 5.16 – Comparison of total suction SWRCs between the transistor psychrometer and the 

non-contact filter paper (After Noguchi, 2009). 

 

5.4.2 Matric Suction SWRCs 

 

Figure 5.17 shows the comparison of the SWRCs determined using different matric 

suction measurement techniques: pressure plate results are shown as an envelope, high 
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filter paper technique results are represented as triangle, circle and square symbols. 
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Figure 5.17 – Comparison between all matric suction SWRCs (A
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11m/s, the area of the sample (in contact with the ceramic plate) was 4.49x10-3m2 and that to 

release the pressure and take the sample away from the ceramic plate could take up to 30 

minutes, the possible volume of water that the soil sample could absorb was 2.48x10-10m3, (or 

2.49x10-4g). Around 1.56g of water are necessary to increase the water content in the sample 

by 1%; it is then possible to state that, considering the low value calculated, absorption has no 

significant effect on the water content of the sample. 

 

It was then concluded that the absorption of water was not the main reason behind 

the high water content of the soil samples. Other reasons might explain this higher water 

content determined for the pressure plate. 

 

The way water is expelled from the soil samples can have a significant effect on its 

water content. If a soil sample is drying to the atmosphere, water in its pores can cavitate due 

to soil suction, allowing movement of water towards the surface of the soil sample which can 

then evaporate. However, when the soil sample is placed inside the pressure chamber, since it 

is subjected to a water pressure of 200 kPa, cavitation is prevented. Although the soil sample, 

at the end of the suction stage, was exposed to atmospheric pressure again, possible cavitation 

occurring in the pores will, at this point, be a slower process. Since water pressure is imposed 

on the soil sample again, it is likely that the pores would become saturated with water again. 
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So, at the same suction value, the soil sample from the pressure plate can present higher water 

content than the sample being dried to the atmosphere. 

 

Another possible reason for this is the way that the soil sample and the ceramic plate 

are placed in contact. An intimate contact between the soil sample and the ceramic plate 

enables a water path between the two. If this contact is not intimate, there might not be a 

sufficient contact surface to assure that water path, which could result in an insufficient water 

flow from the soil sample through the plate. A sample under these conditions could therefore, 

by the end of the experiment, present higher water content. 

 

 

Figure 5.18 – Comparison between all matric suction SWRCs against degree of Saturation 

(obtained from Noguchi data, 2009). 
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 Nonetheless from Figure 5.17 the SWRC for the BIONICS fill material presents a 

characteristic bimodal curve and presenting a very clear residual water content of 4%. The AEV, 

air entry value, could be determined from Figure 5.18, where matric suction was plotted 

against the degree of saturation resulting in a value around 200 kPa. 

 

5.4.3 Comparison between Total and Matric Suction SWRCs 

 

 

Figure 5.19 presents all but the non-contact filter paper determined SWRCs. 

 

Figure 5.19 – Comparison between the transistor psychrometer and all matric suction SWRCs 

(After Noguchi, 2009). 

 

Results from the transistor psychrometer show a huge scatter and it is possible to 
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observe overlapping with the matric suction SWRCs. 

 

For gravimetric water contents below 16%, and suctions over 1000 kPa, the high 

capacity suction probe shows the highest suction measurements. An explanation for this might 

be, similarly to what happens and has been discussed above for the in-contact paper filter 

technique, the discontinuity on water paths between the sample and the high capacity suction 

probe when the soil sample is very dry. Continuous water paths between the soil sample and 

the high capacity suction probe water reservoir are more difficult. Also, since BIONICS soil has a 

shrinking behaviour (Lourenço 2008), the drying of the soil can also create a gap between the 

sample and the surface of the high capacity suction probe, where the suction probe loses the 

connection with the soil surface. These factors together would result in an over withdrawal of 

water from the high capacity suction probe reservoir, causing higher suction measurements, 

measuring suction of the air instead of the soil. 

 

In all the obtained measurements a factor has to be added, related with the 

preparation method. The use of a dynamic process to compact samples can also affect the pore 

distribution and size throughout the samples. This can explain part of the observed scattering 

in techniques that rely on various samples, (variation between samples due to the preparation 

method), such as the filter paper and transistor psychrometer. 
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The shrinking behaviour of the BIONICS fill material studied by Lourenço (2008) was 

performed on a set of tests prepared at an initial water content of 25% that were dried to 

determine the shrinkage limit. By measuring the volume changes with a mercury porometer 

the shrinkage limit was found to be approximately 14% of water content.  

 

Studies to understand the behaviour of suction – water retention and volumetric 

behaviour of the BIONICS fill material were carried out by Lourenço (2008). Using high capacity 

suction probes drying/wetting cycles were imposed on samples prepared at 25% Hysteric 

behaviour was observed. Furthermore, while measuring volumetric changes on those samples 

Lourenço concluded that the behaviour of suction – water retention and volumetric behaviour 

of the BIONICS fill material was essentially controlled by the shrinkage/swelling behaviour.  

 

5.5 SWRCs for specimens compacted at lower water contents 

 

The previous sections report on the study of SWRC for the BIONICS fill material 

determined on initially saturated specimens carried out by Noguchi and Lourenco. In this 

section, a series of tests was performed on specimens prepared at different initial water 

contents.  These tests were carried out by the author. Tests were also performed on 
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specimens that had been wetted or dried prior to testing. This study was performed with the 

only technique that could measure high values of suction (>2MPa), the filter paper technique. 

Samples were prepared, according to the preparation method used for the SWRC, at different 

water contents (10%, 13%, 15%, 20% and 22%).  Further specimens were also wetted or dried 

to the remaining water contents, i.e. for 15% samples were wetted to 20% and 22%, while 

other samples were dried to 10% and 13%. 

 

The curves obtained for all water contents are presented for both total and matric 

suction using Van Genuchten calibration curves in Figures 5.20 to 5.24. The Van Genuchten 

curves seemed to give realistic comparisons with the psychrometer, pressure plate and suction 

probe for both total and matric suction in the earlier tests reported. In Figure 5.21 for matric 

suction the curves following drying paths show an apparent trend of being lower than the 

primary drying curve from 25% obtained by Noguchi (2009), where they all gather together at 

10-11% of water content, around 1500-2000 kPa, suggesting the behaviour of scanning curves.  

For total suction, as shown in Figure 5.20, the trend is maintained, although less evident due to 

the large scatter in these readings.  
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Figure 5.20 – SWRCs for all water contents for total suctions. 

  

Figure 5.21 – SWRCs following a drying path for all water contents for matric suction. 
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Figure 5.22 shows the matric suction SWRC following drying path with the degree of 

saturation. Due to changes in methodology, volumetric measurements were only obtained in 

the later tests for water contents 20% and 22% of water content. Comparing them with the 

primary drying curve obtained by Noguchi (2009) the two curves 20% and 22% fall under, 

therefore showing the behaviour of a scanning curve, although eventually reaching the 

primary curve. 

 

 

Figure 5.22 – SWRCs following a drying path for all water contents for matric suction-degree of 

saturation. 
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The behaviour of the SWRCs obtained following a wetting path shown untypical 

behaviour. As it is observed from Figure 5.23 the SWRC that followed a wetting path moved 

towards to the primary drying curve, where it should have moved towards the primary wetting 

curve. Although the primary wetting curve was not determined the impression of behaviour of 

the SWRC that followed a wetting path seems different from what would be expected. The 

SWRCs that followed a wetting path seem to cross the primary drying curve in an ascending 

form, where the SWRC obtained from 10% of water content was to first to cross at 300 kPa of 

suction followed by the SWRC for the water content of 13%, 15% and so on. 

 

  

Figure 5.23 – SWRCs following a wetting path for all water contents for matric suction. 
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Similar results were observed in the matric suction – degree of saturation 

relationship for the SWRCs show in Figure 5.24. The lack of tests where volumetric 

measurements were obtained was not sufficient to fully understand the behaviour of the 

SWRCs that followed a wetting path. A general trend of the SWRCs was observed in Figure 5.24 

where the SWRCs were overlapping each other showing different water retention behaviour. 

 

 

  

Figure 5.24 – SWRCs following a wetting path for all water contents for matric suction-degree 

of saturation. 
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5.6 Conclusions 

 

This chapter presents the soil water retention curves (SWRCs) of the BIONICS fill 

material. The techniques involved in the determination of the SWRC were: high capacity 

suction probe, transistor psychrometer, filter paper and pressure plate. In the pressure plate 

suction is imposed by elevated air pressure (axis translation), whereas suctions are measured 

after natural drying in the other techniques.  

 

Two types of SWRC were obtained, both following a drying path: one referenced to total 

suction, obtained from the measurements of the transistor psychrometer and non-contact 

filter paper and a second set of curves referenced to matric suction using measurements 

obtained from the high capacity suction probe, in contact filter paper and pressure plate. 

Scatter was present in both SWRCs, a factor that can be attributed to the inaccuracies 

associated to the particular testing techniques used as well as variations in samples that are 

inevitable when carrying out measurements on compacted samples. 

 

On the matric suction SWRC, very good agreement was observed between 

measurements carried out by two different researchers (Noguchi and Lourenço) for both high 
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capacity suction probe and pressure plate, showing the test methods provide reasonable 

repeatability. 

 

 In terms of the curves obtained the SWRCs showed the expected shape, the bimodal 

curvature. The matric suction SWRC presented an air entry value close to 200-300 kPa for the 

BIONICS fill material and a residual gravimetric water content of 4%.  

 

One important study performed as part of the characterisation of BIONICS material, was 

that scanning curves were obtained from different starting water contents using the filter 

paper technique. From this study it was clear the differences between the scanning curves and 

the primary drying SWRC. For both total and matric suction SWRCs, the drying scanning curves 

tended to merge around 11% (equivalent to a suction of 3000kPa). 

 

The SWRCs that followed wetting paths showed atypical behaviour tending to intercept 

the primary drying curve at high water contents / low values of suction. Although the primary 

wetting curve was not determined in this study it generated the idea that the path followed by 

the SWRCs was different than the expected. In the matric suction – degree of saturation 
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relationship the tendency showed overlapping of the SWRCs with each other by still showing 

the atypical behaviour of intercepting the primary drying curve. 
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6 Mechanical behaviour of the BIONICS material 
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6.1 Introduction 

 

 

To determine the mechanical behaviour of the BIONICS material a triaxial testing 

program was developed, where samples were tested at constant water content in unsaturated 

conditions. Considering the low permeability of the soil being studied, see Chapter 3, whatever 

the trigger would be to cause failure of an earth structure built with such material, it would be 

expected to occur while maintaining a constant water content. The pore water pressure was 

continuously monitoring using a high capacity suction probe during testing. Each test involved 

a stage of constant water content compression (CWC), where the sample was subjected to an 

increase in confining pressure (net stress) after which the pore water pressure was allowed to 

equalise. The specimen could change in volume during this stage due to expellation of air, but 

no flow of water should occur.  After the constant water content compression, each sample 

was subjected to a shearing stage, where the sample was loaded axially until failure, while 

maintaining constant confining pressure. The triaxial testing program also included a series of 

saturated consolidated drained triaxial tests, to provide a reference for the testing program on 

unsaturated samples. 
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The triaxial testing program was performed on samples compacted at specific water 

contents being: 15% (the optimum water content, Wopt), 20% and 22%. Testing was restricted 

to this range of water content due to limitations of the suction range of the high capacity 

suction probe (2 MPa). In order to achieve an insight into the behaviour of samples subject to 

wetting and drying (due to climate influences), a further series of samples was prepared at 

these water contents that were wetted and dried after compaction.  The wetting and drying 

was carried out outside the triaxial cells, as described in Chapter 4 and placed inside double 

cell triaxial cells and subjected to CWC and subsequent shearing. 

 

This Chapter starts by presenting the saturated test series including equipment, test 

procedures and results, followed by the unsaturated constant water test series in the same 

order. 

 

6.2  Saturated triaxial tests 

 

 To create a reference for the constant water triaxial testing for unsaturated samples, 

conventional consolidated triaxial tests were performed on fully saturated samples. Samples 

were prepared according to the sample preparation methodology (section 4.2) and were 

saturated inside the triaxial apparatus prior to consolidation and shearing. 
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In this case, due to equipment availability, the samples tested were 38mm diameter by 

76mm and were tested in conventional triaxial cells using the configuration in Figure 6.1. The 

conventional triaxial cells were suited for the testing since the tests were performed in 

saturated conditions and the volume was being measured directly based on water flow out of 

the sample. The test consisted of three stages: saturation, consolidation and shearing.  

 

Saturation was imposed by maintaining an elevated back pressure applied to the top 

and bottom of the sample (300 kPa) in order to dissolve any air in the sample. By maintaining 

the cell pressure at 5 kPa above the back pressure, the effective stress was maintained close to 

zero, at 5 kPa or less. To monitor the saturation progression, the B value was measured. The B 

value is the ratio of pore water pressure in response to an increase of cell pressure (Δu/Δσc) in 

which, for fully saturated samples the B value should be equal to 1. In triaxial testing it is 

common practice to saturate the sample until a B-value of 0.95 is achieved (BS 1377: 1990), 

which for soft clays resembles 99.9% in the degree of saturation (Black and Lee, 1973). To 

monitor the evolution of the B value the cell pressure was increased by 100 kPa and 

measurements (pore water pressure) were taken on the pressure transducers connected to 

the top cap and base pedestal, while maintaining undrained conditions by closing all drainage 

valves.  When a satisfactory B-value was achieved (>=0.95) the test entered its second phase. 
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Letter 

A Volume gauge – sample  

B Volume change transducer – sample 

C Pressure transducer – cell pressure 

D Volume gauge – cell 

E Volume change transducer – cell 

F Pressure transducer – back pressure bottom 

G Pressure transducer – back pressure top 

H Sample 

I Load cell 

J Axial displacement transducer 

K Loading frame 

L Top cap with porous disc 

M Bottom cap with porous disc 

 

Figure 6.1 – Triaxial testing apparatus for saturated samples. 

 

The sample was then be subjected to consolidation, where the confining pressure was 

raised to a desired value to impose a known effective stress, but always maintaining back 

pressure at 300 kPa. Consolidation was continued until no further significant volume change 
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was recorded in the volume gauge, considered to be a constant change rate of volume close to 

0.009 cm3/hr.   

 

After consolidation was complete, drained shearing was started at a rate of 0.005 

mm/min..  

 

The accuracy for each type of measuring equipment used during the saturated tests is 

presented in Table 6.1. The accuracy was determined differently for the different types of 

equipment used: during experimental procedures or prior to the experimental work in order to 

observe fluctuations in the recorded value. Accuracy values that were obtained between 

experiments where performed to the: volume gauge filled with water, displacement 

transducer and positioned at mid travel and load cell at rest. The accuracy for the pressure 

transducers was obtained while the cell was at a constant confinement pressure. 

 

Table 6.1 – Accuracy of the measuring equipment used in saturated triaxial testing. 

Measuring equipment Unit Accuracy 

Volume gauge cm3 ±0.002 

Displacement transducer Mm ±0.005 

Pressure transducer kPa ±0.2 

5 KN load cell N ±0.5 
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6.2.1 Triaxial testing program 

 

 

The tests performed for the saturated triaxial testing program can be seen in Tables 

6.2. The saturated tests (S) were identified in the form Sxx(yy) by the as-compacted water 

content (xx), and confining pressure applied during the triaxial testing (yy).  Table 6.2 also 

presents the initial conditions of the samples (water content, dimensions, density, etc) and the 

test conditions including the total duration of each test. 

 

Table 6.2 – Triaxial testing program for the saturated test series, showing testing conditions. 

Test 

no. 

As-compacted Test conditions 

Water 

content 

Dimensions Density Void 

ratio 

Degree of 

Saturation 
Confining 

pressure 
Duration

*
 height Area Volume Bulk Dry 

h A V ρ ρd e Sr 

% cm cm
2 

cm
3 

Mg/m
3
 Mg/m

3
 - % kPa Days 

S15(50) 14.63 7.69 11.44 88.0 2.164 1.888 0.43 92 50 30 

S15(150) 14.75 7.63 11.39 86.9 2.176 1.896 0.43 94 150 10 

S15(300) 14.75 7.60 11.52 87.6 2.142 1.867 0.45 89 300 3 

S20(50) 19.70 7.51 11.51 86.5 2.029 1.695 0.59 90 50 6 

S20(150) 19.70 7.59 11.55 87.7 2.032 1.697 0.59 90 150 6 

S20(300) 19.70 7.56 11.58 87.5 2.020 1.687 0.60 88 300 4 

S22(50) 21.78 7.39 11.28 83.3 2.052 1.685 0.60 97 50 7 

S22(150) 21.78 7.41 11.40 84.4 2.032 1.669 0.62 95 150 4 

S22(300) 21.78 7.41 11.31 83.9 2.041 1.676 0.61 96 300 8 

*- duration of the triaxial test (saturation, consolidation and shearing), not considering sample preparation time. 

 

 

6.2.2 Saturated tests results 
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The saturated tests were performed using the setup presented in Figure 6.1. The 

samples used were of smaller size compared with the samples for the triaxial testing program 

for unsaturated samples due to limitations on the equipment available. However, sample 

preparation remained the same in all prepared samples; in the case of the saturated tests, the 

specimens used were cored from a compacted sample, where the source sample was prepared 

in the same way as those used for the unsaturated constant water content tests. From each 

compacted sample it was possible to core three specimens for the saturated test series. This 

meant that the tests were performed on specimens taken from a single compacted sample, 

thus the initial water contents obtained for each group of subsamples in Table 6.2 had the 

same value, apart from S15(50) which originated from a different batch.  

 

The samples when placed inside the cell were subjected to saturation, where the 

degree of saturation was raised to 100%. Table 6.3, presents the conditions for the end of the 

saturation and consolidation stages of each specimen tested. As expected samples when 

wetted increased in volume after saturation, and with consolidation this volume decreased, as 

shown in Figure 6.2.  The changes in sample volume were determined by measuring the 

changes of fluid volume inside the triaxial cell. This procedure is not ideal, since the perspex 

cell itself can change in volume. However, it provides an approximation of the changes in 

volume of the sample.  
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Table 6.3 – Conditions at start and end of the consolidation stage for the saturated testing 

series. 

Test 

No. 

Initial 

Water 

content Consolidation 

Volume 
Dry 

density 
void ratio 

Degree of 

Saturation 

V ρd e Sr 

% cm
3
 Mg/m

3
 

 
% 

S15(50) 14.63 
Initial 91.1 1.744 0.55 100 

Final 89.2 1.782 0.52 
 

S15(150) 14.75 
Initial 92.7 1.788 0.51 100 

Final 89.9 1.844 0.47 
 

S15(300) 14.75 
Initial 91.1 1.789 0.51 100 

Final 85.9 1.897 0.42 
 

S20(50) 19.70 
Initial 87.0 1.686 0.60 100 

Final 85.1 1.724 0.57 
 

S20(150) 19.70 
Initial 88.7 1.678 0.61 100 

Final 84.3 1.758 0.54 
 

S20(300) 19.70 
Initial 89.2 1.656 0.63 100 

Final 83.8 1.763 0.53 
 

S22(50) 21.78 
Initial 84.1 1.670 0.62 100 

Final 82.5 1.702 0.59 
 

S22(150) 21.78 
Initial 86.3 1.633 0.66 100 

Final 81.7 1.724 0.57 
 

S22(300) 21.78 
Initial 85.0 1.654 0.63 100 

Final 81.0 1.735 0.56 
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Figure 6.2 – Consolidation stage for each respective sample. 

 

After consolidation the final stage of shearing was started. The shearing stage was 

performed under drained conditions, meaning water could flow in or out of the sample 

without significant increase in pore water pressure, the maximum variation observed was 

found to be smaller than 3 kPa. The final conditions of each sample tested are presented in 

Table 6.4. 
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Figure 6.3 shows the variation in the deviatoric stress with axial strain for all saturated 

tests at the different confining pressures used during each test. It can be seen that samples 

prepared at 15% of water content failed between 3% of axial strain at 50 kPa of confinement 

up to 8% at 300 kPa of confinement. The samples prepared at higher water contents tended to 

fail at higher values of axial strain between 10% at 50 kPa of confinement up to 17% at 300% 

of confinement. 

 

Table 6.4 – Saturated test series: sample characteristics at the end of each saturated test. 

Test 

No. 

Initial 

Water 

Content 

Final 

Water 

Content 

Sample 

weight 

Dry 

density 

void  

ratio 

ρd e 

% % g Mg/m
3
 

 

S15(50) 14.63 21.85 193.7 1.701 0.59 

S15(150) 14.75 18.77 196.6 1.744 0.55 

S15(300) 14.75 17.82 192.1 1.826 0.48 

S20(50) 19.70 21.78 176.1 1.711 0.58 

S20(150) 19.70 19.44 176.6 1.790 0.51 

S20(300) 19.70 18.50 175.4 1.839 0.47 

S22(50) 21.78 22.25 170.1 1.689 0.60 

S22(150) 21.78 21.47 166.8 1.767 0.53 

S22(300) 21.78 21.73 165.9 1.778 0.52 
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Figure 6.3 - Deviatoric stress-strain relationships for the saturated test series. 

 

 Figure 6.4 presents the relation between axial and volumetric strains developed 

through the shearing stage of each sample (Compressive strains are shown as positive). It is 

observable that most of the samples are still changing in volume at the end of each saturated 

test, specially the samples that were prepared at 15% of water content. Figures 6.5 to 6.7 

show the stress paths for each test.  
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Figure 6.4 - Volumetric-axial strain relationships for saturated samples. 

 

 

Figure 6.5 – Stress paths for the saturated samples with as-compacted water content of 15%. 
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Figure 6.6 – Stress paths for the saturated samples with as-compacted water content of 20%. 

 

Figure 6.7 – Stress paths for the saturated samples with as-compacted water content of 22%. 
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6.2.3 Critical state limit analysis for the saturated tests 

 

The end points of the tests at which a state of plastic behaviour characterized by 

continuous deformation without any further increase in stress was observed are presented in 

Table 6.5. These are assumed to be close to Critical State conditions, although with 

reservations, as it has been shown volumetric deformations were still occurring at the ends of 

the tests, as can be seen in Figure 6.4.  

 

As the table shows, the critical state points were achieved at high values of axial strain 

(εa), reaching values from 25% up to 40%. Of course, at such large axial strains there can be 

concerns about non-uniformity of deformations and constraints due to boundary conditions. 

Nevertheless, it does seem that strains in excess of 25% are needed before the deviator stress 

and volumetric strains start to level off at constant values suggesting the critical state is being 

achieved.  
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Table 6.5 – Critical state points of each saturated test. 

Test w(ac) wi p' q εa e ν Sr 

No. % % kPa kPa (%) 
 

1+e (%) 

S15(50) 14.63 21.85 81.0 79.4 26.38 0.59 1.59 100 

S15(150) 14.75 18.77 210.0 160.4 25.46 0.55 1.55 100 

S15(300) 14.75 17.82 438.0 400.8 38.63 0.48 1.48 100 

S20(50) 19.7 21.78 79.7 83.2 28.06 0.58 1.58 100 

S20(150) 19.7 19.44 240.5 255.5 28.74 0.51 1.51 100 

S20(300) 19.7 18.5 417.5 344.7 40.56 0.47 1.47 100 

S22(50) 21.78 22.25 88.0 97.2 33.19 0.60 1.60 100 

S22(150) 21.78 21.47 236.7 251.6 33.22 0.53 1.53 100 

S22(300) 21.78 21.73 454.7 451.4 30.28 0.52 1.52 100 

 

The final specific volume values are plotted against mean effective stress, p’ in Figure 

6.8. The slope of the critical state lines in the ν – p’ plane (λ) was found to be 0.051 for samples 

saturated from 22%, 0.062 for the samples saturated from 15% and 0.066 for samples 

saturated from 22% with intercepts (Γ) of 1.820 for samples saturated from 22%, 1.866 for 

samples saturated from 15% and 1.870 for samples saturated from 20%. While in Figure 6.9 

the slope of the CSL in the plane q – p’, M, was found to be 0.90 for samples saturated from 

15% and 20% and 1.01 for samples saturated from 22%. 



 

Figure 6.8 – Critical state line of the saturated test series in ν

 

From equation 2.15 the critical state friction angle for the saturated tests was found to 

be 23o for samples saturated from 15% and 22% and to be 25

 

Similar results were obtained for the samples that were saturated from 15% and 20%, 

suggesting a similar critical state limit, while for samples saturated from 22%, the critical state 

limit differed significantly.  

Critical state line of the saturated test series in ν-ln(p’) plane.

From equation 2.15 the critical state friction angle for the saturated tests was found to 

for samples saturated from 15% and 22% and to be 25o for samples saturated from 22%.

lar results were obtained for the samples that were saturated from 15% and 20%, 

suggesting a similar critical state limit, while for samples saturated from 22%, the critical state 
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ln(p’) plane. 

From equation 2.15 the critical state friction angle for the saturated tests was found to 

for samples saturated from 22%. 

lar results were obtained for the samples that were saturated from 15% and 20%, 

suggesting a similar critical state limit, while for samples saturated from 22%, the critical state 



 

Figure 6.9 - Critical state line of the sat

 

 During the triaxial tests, the samples did not fully reach a critical state. The observed 

trends in Figure 6.3 suggest that the critical state would be reached at lower values of 

deviatoric stress, which would result in 

being similar for all water contents. For the saturated tests M was found to be 0.93.

 

Critical state line of the saturated test series on q-p’ plane.

During the triaxial tests, the samples did not fully reach a critical state. The observed 

trends in Figure 6.3 suggest that the critical state would be reached at lower values of 

deviatoric stress, which would result in the slope of the critical state in the q

being similar for all water contents. For the saturated tests M was found to be 0.93.
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p’ plane. 

During the triaxial tests, the samples did not fully reach a critical state. The observed 

trends in Figure 6.3 suggest that the critical state would be reached at lower values of 

the slope of the critical state in the q-p’ plane (M) 

being similar for all water contents. For the saturated tests M was found to be 0.93. 
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The observed trends in Figure 6.4 suggest that samples would continue to dilate, 

increasing in specific volume. On the critical state in the ν-p’ plane, this would suggest higher 

intercepts of the critical state line on the ν axis (Γ) for each water content. However, due to the 

scatter and overlap present in Figure 6.8, it was impossible to infer if the intercepts would 

differ between the different water contents. Therefore, the interpretation of critical state for 

the ν-p’ plane was based on Figure 6.8.  The intercept of the critical state line in ν axis (Γ) and 

slope of the critical state lines in the ν – p’ plane (λ) was considered to be unique for all water 

contents, Γ =1.868, while, λ=0.062.  

 

6.3 Constant water content triaxial testing 

 

To describe the mechanical behaviour of the BIONICS soil, constant water content 

tests (Fredlund and Rahardjo, 1993) were carried out. The constant water content triaxial 

testing consisted of two stages:  

 

- The specimen was subjected to constant water content compression under 

isotropic conditions at a fixed confining pressure σ3 until the volume stabilised and 

the pore water pressure equilibrated.  
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- The specimen was sheared, under constant water content conditions by increasing 

the deviatoric stress (σ1- σ3); in each test the shearing stage was continued to 

reach 20% strain, to attempt to observe ultimate conditions. Pore-water pressure 

changes during shear were measured.  

 

6.3.1 Wykeham Farrance double cell triaxial cell 

 

6.3.1.1 The double cell principle for testing unsaturated samples 

  

 

The samples prepared with the BIONICS material were unsaturated. The presence of 

air in an unsaturated soil poses a problem due to its compressibility when attempting to 

monitor the volume change of a sample while testing (consolidation/compression or shearing). 

The traditional method for sample volume change used in triaxial testing of saturated soils, of 

measuring the pore fluid that leaves or enters the sample, is no longer sufficient as water 

volume and sample volume are not linked in an unsaturated soil. To monitor volume change of 

unsaturated samples the simplest arrangement is to monitor the volume of the fluid (i.e. 

water) that leaves or enters the cell (Bishop and Donald, 1961). Using a single wall cell, i.e. the 

traditional triaxial system, built in Perspex the indirect method to monitor the volume of fluid 

is not very reliable due to elastic behaviour from the Perspex part of the cell when varying 
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pressure and also creep, which occurs under constant stress. These changes are due to water 

absorption, thermal expansion and cell volume changing with cell pressure (Wheeler, 1988); 

although small, these still impose significant variations on the results obtained in terms of 

volume measured.  

 

To overcome these difficulties, a double cell was preferred, such as the Wykeham 

Farrance (WF) double cell triaxial cell (Figure 6.10a)). The cell volume resulting from changes in 

cell pressure is greatly reduced by having two cells as the inner cell is subject to equal 

pressures on both sides of the cell wall. The WF design is similar to the Wheeler modified 

triaxial cell (Wheeler, 1988). However, the WF double cell system differs from the Wheeler cell 

by having an interior cell wall made of glass instead of Perspex; with the intention to eliminate 

the water absorption by the wall of the inner cell. One second important feature of the WF 

double cell triaxial cell is being double celled, meaning that also the top cap of the inner cell is 

subjected to equal pressures inside and out. With this configuration and by applying an equal 

cell pressure inside and outside the inner cell the expansion of the cell is eliminated, hence, no 

volume change is caused by cell pressure. The dimensions of the double cell triaxial cell are 

presented in Table 6.6 and the cell components are shown in Figure 6.10b) and c). 
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Figure 6.10 – Wykeham Farrance double cell triaxial system a) fully assembled, b) without 

outer cell top cap and c) view of the inner cell. 

 

 

 

Table 6.6 – Dimensions of the double cell triaxial cell, after Lourenço (2008). 

Dimensions of the DCTC   

Height 41.6 cm 

Inner cell inner diameter 19 cm 

Inner cell outer diameter 20 cm 

Outer cell inner diameter 22.35 cm 

Volume of water in the inner cell 11794.8 cm3 

Volume of water in the outer cell 3251.66 cm3 

 

a) b) 

c) 
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Calibrations were preformed on the WF double cell triaxial for creep under a constant 

pressure. The inner and outer cells were filled with de-aired water and afterwards a constant 

pressure of 600kPa was applied in both cells. The pressure was maintained for an extended 

period (weeks) to observe and quantify possible creep of the inner cell. Later, pressure cycles 

were performed to verify the volume changes due to pressure changes. A full view of the test 

can be observed in Figure 6.11. 

 

 

Figure 6.11 – Volume changing of the inner cell as a response to pressure. 

  

It was observed that at a constant pressure of 600 kPa there was a small flow of water 

entering the inner cell ranging between 0.0016 to 0.0027  cm3/hour.  
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 Pressure cycles were performed by changing the pressure initially starting from 600 

kPa, then decreasing in increments of 100 kPa to 100 kPa with a further reduction of 50 kPa 

and then increasing back to 600 kPa. These cycles had the intention of observing the reaction 

of the cell to pressure changes but also to attempt to estimate the flow rates for other 

pressures.  

 

 Figures 6.12 to 6.14 show the obtained flow rates when increasing pressures for cycles 

1, 2 and 4. It can be observed that a fixed flow rate was not achieved for the reason that the 

cell did not reach an equilibrium state; however, the flow rates generated were extremely low 

reaching a maximum for a pressure of 400 kPa (0.0042 cm3/hour during cycle 2).  

 

Figure 6.12 – Rates of volume change for 1st 

cycle (increasing pressure). 
 

Figure 6.13– Volume changing rates for 2nd 

cycle. 
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Figure 6.14 – Rates of volume change for 4th cycle. 

 

Cycle 3 was preformed differently; the pressure was reduced from 600 to 300 kPa and 

the cell was left to equalise, the observed flow rate entering the cell was as small as 0.0008 

cm3/hour. Afterwards, the pressure was increased in regular steps of 100 kPa reaching 600 

kPa. The obtained rates can be observed in Figure 6.15. 

 

 

Figure 6.15 – Volume changing rates for 3rd cycle. 
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In conclusion, the creep effect on the double cell triaxial cells was found to be minimal, 

as low as 0.0008 cm3/hour reaching a maximum of 0.0042 cm3/hour. During testing this creep 

effect would have: during 3 months of testing at constant pressure (such as the constant water 

content compression stage) a maximum increase of the measurement by 9 cm3 and, during 24 

hours (such as a shearing stage) a maximum increase by 0.1 cm3. When compared with the 

volume of sample at study, 1571 cm3, this represents an error of 0.6% for the period of 3 

months and as low as 0.006% for 24 hours.   

 

The calibration also included the effect of volume changing due to the penetration of 

the loading shaft into the inner cell. The piston was pushed inside the inner cell increasing its 

volume inside the inner cell. The load cell was lowered by 8mm inside the inner cell at a rate of 

0.05 mm/min and maintaining a constant pressure of 1500 kPa, as presented graphically in 

Figure 6.16. This meant that, considering the diameter of the shaft of the load cell as 25 mm, 

where each millimetre of travel from part of the piston represents an increase 0.49 cm3, a 

displacement of 3.93 cm3 of water exiting the inner cell should have been observed. In fact, 

the measured volume was slightly higher, 4.24 cm3, resulting in a difference of 0.31 cm3.  
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Figure 6.16 – Volume change originated by the displacement of the piston of the load 

cell entering the inner cell.  

 

The volume was measured using a volume gauge using a bellofram skirt, where, for a 

good operation of this system it necessary to ensure that no air bubbles are trapped inside. To 

eliminate air bubbles the common practice is to flush de-aired water a number of times 

through the system while allowing full travel of the bellofram skirt, eliminating air bubbles 

trapped inside both the volume gauge and in the wrinkles of the bellofram when compressed. 

However, being enclosed in a metallic frame, it is impossible to completely assure the lack of 

air bubbles inside.  
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It is possible that the differences between measured and expected values in Figure 

6.16 could be related with the performance of the volume gauge itself. When pressure is 

building up, with water flow entering the cell, the volume gauge will respond accordingly. 

However, when the flow of water is exiting the cell, i.e. by the loading piston entering the cell 

at a constant pressure, the volume gauge lags in response. In summary, the change in direction 

of the water flow could possibly result in the differences between the predicted and measured 

values. 

 

A close examination of pressure changes in Figure 6.16 can give the necessary 

explanation for the difference between measured and expected volumes. Close to the start it 

was observed a sudden increase in pressure (0.3 kPa) coinciding with the sudden increase in 

volume change, this could be attributed to the start of the stretching of the bellofram skirt; 

after this first peak both measured and expected volumes coincide until the moment where a 

negative pressure peak occurred where, both curves start to diverge significantly. This negative 

peak, of less than 0.2 kPa, could coincide with an air bubble occluded inside a wrinkle that 

emerged while the bellofram was being stretched. In fact, the fitted curve considering an air 

bubble of 0.31 cm3, see Figure 6.16, precisely shows this. After the dissolution of the air bubble 

into water, assumed to be completely dissolved at 5.66 mm of piston displacement, the 

measured value started to coincide with the new fitted curve.  



159 

 

The information presented clearly shows that the WF double cell triaxial cell is 

adequate for the triaxial testing of unsaturated samples where, volume changes can be 

accurately measured indirectly from the changes of cell volume changes during i.e. shearing. 

However, it is important to acknowledge the fact that even with the precaution of flushing the 

volume gauge in the full travel of the bellofram skirt, it was impossible to remove all the air 

bubbles from the volume gauge. In a real test, where the volume changes would be greater, 

the influence of such air bubble would not greatly affect the measured value and could be 

almost, if not completely, neglected bearing in mind that the possible occluded air inside the 

volume gauge remains small. 

 

6.3.1.2  Other observations about the WF double cell  

 

One important deficiency encountered while testing with the WF double wall cell was 

the design of the top caps in both the inner and outer cells. It was found that a substantial 

volume of air was always trapped in the top of both cells when filling the cell.  

 

Considering that volumetric measurement is made indirectly, having air bubbles 

trapped will affect greatly the obtained results. However, if the cell is pressurised the air 

bubbles are compressed and eventually dissolve in the water. The effect of the air bubbles was 
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observed during calibration. In Figure 6.11 the volume was still changing inside the cell at a 

constant pressure of 600 kPa even after a month period. This could mean that the air bubbles 

were still being compressed into solution even after such a long equalisation period. 

Nevertheless, providing the pressure remains constant through the test the effects of initial air 

bubbles on the volumetric measurement can be neglected.  

 

If air bubbles do remain, if the pressure changes it will affect the volumetric 

measurement as air is compressible, which could explain the erratic behaviour observed in 

Figures 6.12-6.15 during the pressure cycles.  

 

The solution was to pressurise the cell while maintain the sample net stress close to 

zero so no deformation (consolidation) of the sample should occur. This was achieved by 

creating a new stage in the constant water content test, named the equilibrium stage. In the 

equilibrium stage, apart from increasing the pressure in both cells to the desired confining 

pressure, a positive air pressure with the same value was imposed within the sample, thus 

maintaining the net stress equal to zero. This stage was maintained until stable readings were 

achieved on the volume gauge, meaning that all air in the inner cell had been 
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compressed/dissolved. After this stage the constant water content compression stage could be 

started. 

 

Initially it was intended to use only one hydraulic pump to pressurise the whole system 

(inner and outer cell). However, some increase in pressure in the outer cell was observed 

when the load cell was entering the inner cell. In this configuration the pressure was controlled 

only by the pressure transducer measuring the pressure in the inner cell. This increase in 

pressure in the outer cell, while maintaining the pressure constant in the inner cell endangered 

the glass wall of the inner cell. To avoid failure of the glass wall, both cells were separated by a 

valve and a second pump was installed, with each pump controlled independently by separate 

pressure transducers as shown in Figure 6.1. The cause of the pressure rise in the outer cell 

was not fully identified, but it was thought to be due to sticking of the volume gauge allowing a 

differential pressure to build up between the pressure at the base of the gauge (feeding the 

outer cell) and the top (feeding the inner cell). 

 

6.3.2 Constant water content tests 
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To perform the constant water content (CWT) tests on unsaturated samples the 

equipment configuration presented in Figure 6.17 was utilized. 

 

 

Letter Valves 

A Volume gauge 1 Main deaired water supply  

B Volume change transducer 2a Water supply/pressure line – inner cell 

C Pressure transducer 2b Water supply/pressure line – outer cell 

D Load cell 3 Separator valve 

E Axial displacement transducer 4a Bleed valve – hydraulic pump 

F Mini LVDT 4b Bleed valve – hydraulic pump 

G Suction probe 5 Overlap – volume gauge 

H Loading frame 6 Bleed valve – volume gauge 

I Sample 7 Main valve - inner cell 

J Inner cell 8 Main valve - outer cell 

K Outer cell 9 Drain valve - inner cell 

 10 Drain valve - outer cell 

 11 Bleed valve – outer cell 

 12 Bleed valve – inner cell 

 13 Air supply – sample 

 

Figure 6.17 – Constant water content triaxial testing apparatus. 

 

Referring to Figure 6.17, the components used in the testing were as follows: 
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- The confining pressure (σ3) was imposed in the inner cell by a stepper motor 

driven hydraulic pump built by Wykeham Farrance. It was measured using a 2000 

kPa pressure transducer C in the water pressure line; to maintain a constant 

pressure in the outer cell a similar configuration was adopted, resulting in both 

cells being completely independent from each other. 

 

- A Wykenham Farrance loading frame H was used to provide a constant rate of 

displacement 0.025mm/min, with displacement measured by the vertical 

displacement transducer E. Measurements of axial stress (σ1) were taken inside 

the cell by a 10 kN capacity load cell D; 

 

- The volumetric behaviour of the sample (εv) was measured at the volume gauge A, 

built in Durham University’s School of Engineering workshop. This is a rolling 

bellofram device of the type developed at Imperial College (Maswoswe, 1985). By 

measuring the flow of water of the inner cell and maintaining the principle that 

water is incompressible, the volume changes observed on the volume gauge A 

were due to volumetric changes in the sample. To achieve a reliable measurement 
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in such a manner, the presence of air bubbles had to be completely eliminated in 

order to consider the water as incompressible, something that will be discussed 

further in this chapter.  

 

- Vertical deflections (εa) were determined from the axial displacement transducer, 

with 75 mm range, mounted externally and also using sample-mounted mini linear 

variable differential transformers F (mini LVDTs), with a nominal range of 5mm but 

actually capable of operating over a 10 mm range. 

 

- Pore water pressure (uw) was measured by a WF-DU high capacity suction probe 

(also referred to in the literature as a high capacity tensiomenter) G placed at in 

bottom platen in direct contact with the sample.  

 

 

- The bottom platen had a flat surface with 2 air lines (see Figure 6.18); the 

intention of these tests was to perform constant water content triaxial tests while 

measuring the evolution of suction using a suction probe. By measuring the pore 

water pressure directly using a high capacity suction probe without the 
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implementation of axis translation there was no need to install an high air entry 

value stone in the platen.  

 

- The air lines were used to impose air pressure within the sample while the cell was 

equilibrating during the equilibrium staged mentioned in Section 6.3.1.2. The value 

of air pressure applied was dependent on the confining pressure, being 5 kPa 

lower than the confining pressure, to avoid the inflation of the rubber membrane 

surrounding the sample. 

 

 

Figure 6.18 – Close view of the pedestal on the triaxial frame, with 2 nozzles and high capacity 

suction probe. 

 

The whole system was connected to a personal computer with Windows XP as 

operating system. In the case of this testing program 2 types of computers were used: 1 

PentiumTM 4 and 2 PentiumTM D (core duo), with RAM equal or above 1 Gb. Older computers 

High capacity suction probe 

Air line 



166 

 

with a lower RAM value had communication speed difficulties when working with the two 

hydraulic pumps. The software Triax, a dedicated computer control system for triaxial testing 

(Toll, 1999), was used to control inner and outer cell pressures, loading rate of the loading 

frame and to record data from all the measurement equipment into a file compatible with 

Microsoft ExcelTM spreadsheet software. 

 

The accuracy for each type of measuring equipment used during testing is presented in 

Table 6.7. In similarity with the accuracies determined for the equipment used in the  

saturated tests, the accuracy was determined differently for the different types of equipment 

used: during experimental procedures or prior to the experimental work in order to observe 

fluctuations in the recorded value. Accuracy values that were obtained between experiments 

where performed to the: volume gauge filled with water, displacement transducer and mini 

LVDTs positioned at mid travel, high suction probe placed under free water (suction equal to 0) 

and load cell at rest. The accuracy for the pressure transducers was obtained while the cell was 

at a constant confinement pressure. 

 

 

 



167 

 

Table 6.7 – Accuracy of the measuring equipment used in saturated triaxial testing. 

Measuring equipment Unit Accuracy 

Volume gauge cm3 ±0.002 

Displacement transducer mm ±0.005 

Mini LVDT mm ±0.002 

Pressure transducer kPa ±0.2 

High capacity suction probe kPa ±0.5 

10 KN load cell N ±2 

 

 

The constant water tests were performed on compacted samples according to the 

preparation methodology presented in Chapter 4 and were carried out using the Double Cell 

Triaxial Cells (DCTCs) described in Section 6.3.1. Table 6.8 presents the triaxial testing program. 

In similarity with the saturated testing series each test was indentified in the forms Cxx(yy) by 

the as-compacted water content (xx) and confining pressure (yy) for samples tested as-

compacted, Dxx(yy) for samples dried from as-compacted conditions and Wxx(yy) for samples 

wetted from as-compacted conditions. 
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Table 6.8 - Triaxial testing program for the constant water content test series. 

Test 

no. 

As-compacted  Test conditions 

Water content 

(%) 
AC/W/D* 

Water content 

(%) 

Confining pressure 

(kPa) 

Duration** 

Days 

C15(50) 1 14.77 AC 14.77 50 10 

C15(50) 2 14.75 AC 14.75 50 52 

C15(150) 15.17 AC 15.17 150 15 

C15(300) 14.62 AC 14.62 300 20 

W15-19(150) 15.21 Wetted 18.45 150 125 

W15-19(300) 15.44 Wetted 19.37 300 46 

W15-20(50) 14.61 Wetted 19.70 50 45 

W15-20(150) 15.09 Wetted 19.75 150 86 

W15-22(50) 14.67 Wetted 21.24 50 79 

W13-17(300) 13.24 Wetted 17.09 300 105 

C20(50) 19.41 AC 19.41 50 14 

C20(150) 19.77 AC 19.77 150 31 

C20(300) 1 19.37 AC 19.37 300 18 

C20(300) 2 20.17 AC 20.17 300 88 

D20-15(50) 19.72 Dried 15.08 50 17 

D20-15(150) 19.15 Dried 15.56 150 17 

D20-15(300) 18.75 Dried 15.19 300 14 

W20-21(150) 19.24 Wetted 20.68 150 70 

W20-22(50) 19.40 Wetted 21.53 50 66 

W20-22(300) 19.89 Wetted 21.29 300 24 

C22(50) 21.82 AC 21.82 50 65 

C22(150) 21.16 AC 21.16 150 46 

C22(300) 22.01 AC 22.01 300 61 

D22-20(50) 21.96 Dried 19.44 50 12 

D22-20(150) 1 21.92 Dried 19.78 150 18 

D22-20(150) 2 22.09 Dried 20.08 150 16 

D22-19(150) 21.37 Dried 19.04 150 34 

D22-16(50) 21.45 Dried 16.84 50 22 

D22-16(300) 21.00 Dried 15.80 300 35 

D22-14(150) 21.74 Dried 13.97 150 33 

* - process involved in the change of the water content for testing:  as-compacted (AC), wetted (W) or dried (D). 

** - duration of the time spent of each sample during testing, without sample preparation time. 

 

 

The samples used for the CWT tests were 100 mm diameter by 200 mm high, larger 

than the sample size on the saturated tests were 38 mm diameter by 74 mm high. This had an 

influence of the duration of the test, where samples could remain inside the DCTC for periods 

of more than 4 months (W15-19(150)). The main factor in determining this duration was the 

water content of the samples tested, as mentioned, different samples were tested as-

compacted, wetted or dried from an as-compacted condition. The tests which the duration 
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took the longest time were the tests in which samples were wetted from 15% of as-compacted 

water content.  

 

6.3.3 Constant water content tests results 

 

6.3.3.1 Initial conditions 

 

Tables 6.9, 6.10 and 6.11 presents the initial conditions of the samples at the start of 

each constant water content test. These initial conditions refer to the point when the samples 

were placed inside the triaxial cell, where w(ac) and wi represent water content obtained after 

compaction and initial water content at the start of the test. Also presented are the initial 

suction, sample dimensions, etc. Table 6.9 refers to the tests performed on samples that were 

prepared at the 15% as-compacted condition, with a total of 10 CWT tests: 4 samples were 

tested as-compacted, 4 samples were wetted to 20% and the remaining 1 sample was wetted 

to 22%.  Included in this table is a sample that was wetted from 13% to 17%, in fact the later 

sample (test W13-17) was intended to be a sample wetted from 15% to 22%, however a 

confusion with the initial measurement of water content resulted in different conditions. Table 

6.10 refers to the tests performed on samples that were prepared at the 20% as-compacted 

condition, with a total of 10 CWT tests: 4 samples were tested as-compacted, 3 samples were 
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dried to 15% and the remaining 3 samples were wetted to 22%. Table 6.11 refers to the tests 

performed on samples that were prepared at the 22% as-compacted condition, with a total of 

10 CWT tests: 3 samples were tested as-compacted, 3 samples were dried to 15% and the 

remaining 4 samples dried to 22%. 

 

 

 

 

 

Table 6.9 – Initial conditions at the start of the constant water tests for samples compacted at 

15%. 

 
Water 

content 
Weight Dimensions 

Dry 

density 
Void 

ratio 
Degree of 

Saturation 
Initial 

Suction 
Test 

No. 
Wcac Wci  Length Area Volume ρd e Sr si 

 % % g cm cm
2 cm

3 Mg/m
3  % kPa 

C15(50) 1 14.77 14.77 3521 20.32 81.71 1660 1.839 0.47 87.91 227 

C15(50) 2 14.75 14.75 3550 20.28 83.16 1687 1.831 0.48 83.77 420 

C15(150) 15.17 15.17 3520 20.31 82.89 1684 1.815 0.49 83.80 255 

C15(300) 14.62 14.62 3549 20.30 82.84 1682 1.837 0.47 83.87 420 

W15-19(150)  15.21 18.45 3729 20.82 87.03 1812 1.715 0.58 93.83 7 

W15-19(300) 15.44 19.37 3631 20.77 86.06 1788 1.693 0.60 90.56 17 

W15-20(50) 14.61 19.70 3720 20.78 86.09 1789 1.732 0.56 96.51 35 

W15-20(150)  15.09 19.75 3717 20.86 87.55 1827 1.667 0.62 95.84 3 

W15-22(50) 14.67 22.00 3684 20.90 87.11 1821 1.659 0.63 94.43 0.3 

W13-17(300) 13.24 17.09 3719 20.86 87.20 1819 1.676 0.61 96.99 2 
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Table 6.10 – Initial conditions at the start of the constant water tests for samples compacted at 

20%. 

 
Water 

content 
Weight Dimensions 

Dry 

density 
Void 

ratio 
Degree of 

Saturation 
Initial 

Suction 
Test 

No. 
Wcac Wci  Length Area Volume ρd e Sr si 

 % % g cm cm
2 cm

3 Mg/m
3  % kPa 

C20(50) 19.41 19.41 3495 20.33 82.35 1674 1.748 0.55 96.08 19 

C20(150) 19.77 19.77 3431 20.31 80.12 1657 1.728 0.56 94.77 15 

C20(300) 1 19.64 19.64 3459 20.52 81.71 1676 1.725 0.57 93.55 11 

C20(300) 2 20.17 20.17 3445 20.55 81.71 1678 1.709 0.58 93.69 18 

D20-15(50) 19.72 15.08 3318 19.74 79.93 1578 1.828 0.48 85.11 600 

D20-15(150) 19.15 15.56 3352 19.81 81.71 1618 1.792 0.51 82.76 264 

D20-15(300) 18.75 15.19 3326 19.91 79.82 1590 1.816 0.49 84.05 350 

W20-21(150) 19.24 20.68 3522 20.29 85.16 1728 1.677 0.61 95.12 4 

W20-22(50) 19.40 21.53 3527 20.35 84.05 1710 1.709 0.58 96.08 4 

W20-22(300) 19.89 21.29 3482 20.26 84.86 1719 1.670 0.62 92.99 5 

 

 

 

Table 6.11 – Initial conditions at the start of the constant water tests for samples compacted at 

22%. 

 
Water 

content 
Weight Dimensions 

Dry 

density 
Void 

ratio 
Degree of 

Saturation 
Initial 

Suction 
Test 

No. 
Wcac Wci  Length Area Volume ρd e Sr si 

 % % g cm cm
2 cm

3 Mg/m
3  % kPa 

C22(50) 21.82 21.82 3376 20.52 83.32 1710 1.621 0.67 88.34 5 

C22(150) 22.16 22.16 3358 20.51 83.32 1709 1.609 0.68 88.03 7 
C22(300) 22.01 22.01 3357 20.52 82.60 1695 1.624 0.66 89.50 7 

D22-20(50) 21.96 19.98 3234 20.17 79.64 1606 1.678 0.61 88.41 95 
D22-20(150) 1 21.92 19.78 3261 20.09 80.66 1620 1.680 0.61 87.80 2.5 

D22-20(150) 2 22.09 20.08 3376 20.57 82.86 1704 1.649 0.64 84.94 107 
D22-19(150) 21.37 19.04 3334 20.44 82.97 1696 1.651 0.64 80.84 91 

D22-16(50) 21.45 16.84 3198 19.17 80.09 1536 1.782 0.52 88.13   

D22-16(300) 21.00 15.80 3186 19.52 77.86 1520 1.811 0.49 86.65 131 
D22-14 (150) 21.74 13.97 3173 19.51 77.99 1521 1.830 0.48 79.18 243 

 

  



172 

 

It can be seen in all tables that the samples tested at the same water content (wi) had 

similar values for most variables in terms of weight, dimensions, dry densities, void ratio and 

degree of saturation, although, showing some differences in the suction values.  

 

It was clear from the tables 6.9, 6.10 and 6.11 that the dimensions increased with the 

increase of water content when wetted or dried from an as-compacted condition. As expected, 

dry density and suction was generally higher in samples tested at wi close to 15%. Higher dry 

density would be expected as this coincides with optimum water content, and suctions would 

be expected to be highest as it is the driest water content.  

 

In all tables (Tables 6.9-6.11) it can be observed that the volume of sample was 

different depending on the water content tested. Samples that were wetted from an as 

compacted condition increased in volume while sample that were dried decreased in volume. 

For example, from Table 6.10, in C20(150) the initial volume was 1674 cc (sample tested as 

compacted), while in D20-15(150) (sample tested dried to 15%) the volume after drying was 

1618 cc and in W20-21(150) (sample tested wetted to 22%) the volume after wetting was 1728 

cc.  
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The suction values measured at the start of the tests proved to be well inside the 

measurements obtained with the in-contact filter paper technique in section 5.5 in the 

previous chapter, as is shown in Figures 6.19 – 6.21. Some scatter was observed for the CWT 

tests at the lower levels of suction (<100 kPa) at wci higher than 20%, especially for samples 

where the wcac was 15% and 22%. 

 

 

 

  

Figure 6.19 - Matric suction of in-contact filter paper and high capacity suction probe for 15%. 
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Figure 6.20 – Matric suction of in-contact 

filter paper and high capacity suction probe 

for 20%. 

Figure 6.21 – Matric suction of in-contact 

filter paper and high capacity suction probe 

for 22%. 

 

 

6.3.3.2 Constant water compression  

 

After the initial equilibrium stage, when volume change stabilized it was considered 

that the double cell triaxial cell had achieved equilibrium and all air bubbles had been 

dissolved. When this was achieved the constant water compression stage started. Table 6.12, 

6.13 and 6.14 shows the conditions of each sample at the time of the start and end of the 

constant water compression stage. In this stage each sample was subjected to isotropic stress. 

During this stage, the void space of each sample reduced, increasing the saturation level. 

Albeit, on the CWT tests that were performed on dried samples (D20-15(50), D20-15(150) and 

D20-15(300) in Table 6.13 and D22-20(50), D22-19(150), D22-20(150) 1, D22-20(150) 2, D22-

16(50), D22-16(300) and D22-14(150) in Table 6.14) and on samples tested at 15% of water 
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content at as-compacted conditions (C15(50) 1, C15(50) 2, C15(150) and C15(300) in Table 

6.12) volumetric changes were almost negligible. 

 

The general tendency in all tests during the constant water compression stage was for 

the pore water pressure to decrease, apart from test D20-15(150). During the compression 

stage with the size reduction of the samples it would be expected that the pore water pressure 

would increase, as a reduction in sample size implies voids getting smaller which relates to 

increase in the degree of saturation under constant water conditions. However, in the case of 

these CWT tests, before the compression stage there was the equilibrium stage where, air 

pressure was applied to the samples. It seems the dissipation of air pressure was not as 

immediate as expected, instead a gradual dissipation over time explains the observed 

abnormality. Therefore, although the initial values of pore water pressure at the start of the 

compression stage were influenced by the previous equilibrium stage at the end of the 

compression stage the air pressure had totally dissipated, specially helped by the long duration 

of this stage.  

 

In all tables (6.12 to 6.14), samples tested with Wci close to 15% remained with 

negative pore water pressure values (suction) during the compression stage. Tested samples 
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with Wci close to 20% reached only small negative values of pore water pressure at the end of 

the compression stage, at lower values of confinement (50 and 150kPa). Samples that were 

wetted from as-compacted conditions, whatever the as-compacted water content, always 

maintained positive values of pore water pressure during the constant water compression 

stage. 

 

Table 6.12 – Sample conditions at the start and end of the constant water compression for 

samples compacted at Wc(ac) close to 15%. 

 
Test 

No. 

 Volume 
Dry 

density 

Void 

ratio 

Degree of 

saturation 

Pore water 

pressure 

Confining 

pressure  
 

 
 

cm
3
 Mg/m

3
 

 
% kPa kPa 

Wci 

close 

to 

15% 

C15(50) 1 
Initial 1660 1.840 0.47 87.94 -210.8 

50 
Final 1653 1.848 0.46 89.20 -241.5 

C15(50) 2 
Initial 1687 1.834 0.47 84.12 -74.3 

50 
Final 1679 1.843 0.47 85.42 -185.8 

C15(150) 
Initial 1683 1.816 0.49 83.96 -173.2 

150 
Final 1681 1.818 0.49 84.22 -236.2 

C15(300) 
Initial 1676 1.847 0.46 85.35 -148.8 

300 
Final 1664 1.860 0.45 87.28 -176.7 

Wci 

close 

to 

20% 

W15-19(300) 
Initial 1788 1.702 0.59 88.97 283.2 

300 
Final 1735 1.753 0.54 96.62 153.7 

W15-19(150) 
Initial 1812 1.737 0.56 89.71 136.3 

150 
Final 1774 1.775 0.52 95.40 39.7 

W15-20(50) 
Initial 1789 1.737 0.56 95.73 4.5 

50 
Final 1777 1.749 0.55 97.65 2.1 

W15-20(150) 
Initial 1827 1.699 0.59 90.37 99.4 

150 
Final 1796 1.729 0.56 94.70 43.8 

Wci 

close 

to 

22% 

W15-22(50) 

Initial 1821 1.669 0.62 92.64 24.9 

50 

Final 1792 1.695 0.59 96.57 9.4 

 W13-17(300) 
Initial 1819 1.746 0.55 84.27 294.7 

300 
Final 1757 1.808 0.49 93.33 73.3 
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Table 6.13 – Sample conditions at the start and end of the constant water compression for 

samples compacted at Wc(ac) close to 20%. 

 

Test 

No. 

 Volume 
Dry 

density 

Void 

ratio 

Degree of 

saturation 

Pore water 

pressure 

Confining 

pressure  
 

 
 

cm
3
 Mg/m

3
 

 
% kPa kPa 

Wci 

close 

to 

20% 

C20(50) 
Initial 1674 1.753 0.54 91.75 17.5 

50 
Final 1664 1.763 0.53 93.35 -10.1 

C20(150) 
Initial 1627 1.753 0.54 95.28 77.2 

150 
Final 1600 1.782 0.52 99.95 -1.1 

C20(300) 1 
Initial 1676 1.717 0.57 91.24 218.2 

300 
Final 1667 1.727 0.56 92.70 206.5 

C20(300) 2 
Initial 1677 1.722 0.57 86.55 154.5 

300 
Final 1638 1.763 0.53 92.36 97.6 

Wci 

close 

to 

15% 

D20-15(50) 
Initial 1578 1.827 0.48 84.97 -695.1 

50 
Final 1574 1.831 0.48 85.57 -681.9 

D20-15(150) 
Initial 1618 1.792 0.51 82.76 -245.2 

150 
Final 1616 1.794 0.51 83.05 -261.1 

D20-15(300) 
Initial 1590 1.815 0.49 83.94 -22.5 

300 
Final 1586 1.820 0.49 84.61 -353.2 

Wci 

close 

to 

22% 

W20-21(150) 
Initial 1710 1.686 0.60 92.66 49.4 

150 
Final 1664 1.733 0.56 99.91 26.9 

W20-22(50) 
Initial 1728 1.670 0.62 94.04 18.0 

50 
Final 1708 1.689 0.60 97.0 12.5 

W20-22(300) 
Initial 1719 1.670 0.62 92.99 287.7 

300 
Final 1710 1.679 0.61 94.32 274.1 
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Table 6.14 – Sample conditions at the start and end of the constant water compression for 

samples compacted at Wc(ac) close to 22%. 

 
Test 

No. 

 Volume 
Dry 

density 

Void 

ratio 

Degree of 

saturation 

Pore water 

pressure 

Confining 

pressure  
 

 
 

cm
3
 Mg/m

3
 

 
% kPa kPa 

Wci 

close 

to 

22% 

C22(50) 
Initial 1710 1.615 0.67 87.52 23.9 

50 
Final 1688 1.635 0.65 90.32 9.5 

C22(150) 
Initial 1709 1.608 0.71 81.30 117.6 

150 
Final 1735 1.583 0.68 84.44 77.3 

C22(300) 
Initial 1695 1.620 0.67 82.30 224.3 

300 
Final 1658 1.655 0.63 86.95 147.5 

Wci 

close 

to 

20% 

D22-20(50) 
Initial 1606 1.738 0.56 94.59 -75.8 

50 
Final 1603 1.742 0.55 95.17 -50.7 

D22-20(150) 1 
Initial 1620 1.672 0.62 86.69 33.2 

150 
Final 1606 1.686 0.60 88.70 -0.2 

D22-20(150) 2 
Initial 1704 1.646 0.64 84.58 11.9 

150 
Final 1690 1.661 0.63 86.47 -4.1 

D22-19(150) 
Initial 1647 1.686 0.60 85.31 - 

150 
Final 1631 1.702 0.59 87.55 0.8 

Wci 

close 

to 

15% 

D22-16(50) 
Initial 1536 1.798 0.50 90.44 - 

50 
Final 1529 1.806 0.50 91.61 -299.1 

D22-16(300) 
Initial 1520 1.818 0.49 87.70 - 

300 
Final 1521 1.816 0.49 87.43 -131.3 

D22-14(300) 
Initial 1521 1.829 0.48 79.04 -40.0 

150 
Final 1515 1.837 0.47 80.09 -179.1 

 

6.3.3.3 Shearing 

  

 The start of the shearing stage, in this study, coincides with the end of the constant 

water compression stage, thus the conditions at which the samples entered the shearing stage 

correspond to the final values on Tables 6.12, 6.13 and 6.14. 
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 The measurements during the shearing stage are presented in Figures 6.22 to 6.39. To 

help in the visualization of the behaviour, for the different variables presented, constant water 

tests that were performed at the same Wc(ac) were represented in the same colour scheme. 

Each set of tests presents the same colour graduation through the various plots. Refer to 

Tables 6.12, 6.13 and 6.14 to link the respective CWT with the initial shearing stage values. 

 

 Figures 6.22, 6.28 and 6.34 shows typical stress-strain relationships for the constant 

water content tests. The shearing stage in each test started with a rapid increase of deviatoric 

stress over a small range of the axial strain which was followed by a continued increase in 

deviatoric stress in a wider range of axial strain. After these two phases of increase of 

deviatoric stress two different end conditions were observed: the first was observed in the 

tested samples that had Wci close to 15% (C15(50) 1, C15(50) 2, C15(150), and C15(300) in 

Figure 6.22; D20-15(50), D20-15(150) and D20-15(300) in Figure 6.28 and D22-16(50), D22-

16(300) and D22-14(150) in Figure 6.34) where a strength peak was followed by an abrupt 

decline on the deviatoric stress over a short range of axial strain followed by a continued 

reduction in deviatoric stress over a wide range of axial strain; for the remaining tests after the 

maximum deviatoric stress was achieved, the deviatoric stress was maintained at almost a 

constant level. 
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 Pore water pressure behaviour during the shearing stage changed, and in general the 

tendency was similar in all tests. Pore water pressure increased with the initial contraction as 

the load was initially applied and, when samples started to dilate, it coincided with the 

decrease in pore water pressure, see Figures 6.23 and 6.24, for tests performed on samples 

with Wci close to 15%; Figures 6.29 and 6.30, for tests performed on samples with Wci close to 

20%; Figures 6.35 and 6.36, for tests performed on samples with Wci close to 22%. 

 

The stress path achieved in each test is presented in Figure 6.25 (for samples prepared 

from samples with Wc(ac) close to 15%), Figure 6.31 (for samples prepared from samples with 

Wc(ac) close to 20%) and Figure 6.37 (for samples prepared from samples with Wc(ac) close to 

22%) where, p-uw represents mean net stress minus pore water pressure. In the case of 

saturated tests it would be mean effective stress, however, as  the specimens were not 

saturated, p-uw cannot be taken as effective stress. As expected, samples that were tested at 

Wci close to 15%, coinciding to the higher values of suction in this testing program (lowest 

values of pore water pressure) experienced the highest changes in deviatoric stress. Opposing 

to the CWT tests, where samples with Wci close to 22% experienced the lowest changes of 

deviatoric and p-uw. 



 

Changes in void ratio experienced during shearing by each test are presented in 

Figures 6.27, 6.33 and 6.39.  

 

Figure 6.22 – Deviatoric stress

Changes in void ratio experienced during shearing by each test are presented in 

 

Deviatoric stress- strain relationships for samples with Wc(ac) of 15%.
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Changes in void ratio experienced during shearing by each test are presented in 

 

h Wc(ac) of 15%. 



 

Figure 6.23 – Variation of pore water pressure with axial strain for samples with Wc(ac) of 

 

Figure 6.24 – Volumetric

Variation of pore water pressure with axial strain for samples with Wc(ac) of 

15%. 

 

 

Volumetric-axial strain relationships for samples with Wc(ac) of 15%.
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Variation of pore water pressure with axial strain for samples with Wc(ac) of 

 

axial strain relationships for samples with Wc(ac) of 15%. 
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Figure 6.25 – Constant water content stress paths in the (p-uw)-q plane for samples with 

Wc(ac) close to 15%. 

 

 

Figure 6.26 – Deviatoric stress- pore water pressure relationships for samples with Wc(ac) of 

15%. 

 



 

Figure 6.27 – Void ratio 

 

Figure 6.28 – Deviatoric stress

Void ratio - (p-uw) relationships for samples with Wc(ac) of 15%.

Deviatoric stress- strain relationships for samples with Wc(ac) of 20%.
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) relationships for samples with Wc(ac) of 15%. 

 

strain relationships for samples with Wc(ac) of 20%. 



 

Figure 6.29 – Variation of pore water pressure with axial strain for samples with Wc(ac) of 

Figure 6.30 – Volumetric

 

Variation of pore water pressure with axial strain for samples with Wc(ac) of 

20%. 

 

Volumetric-axial strain relationships for samples with Wc(ac) of 20%.
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Variation of pore water pressure with axial strain for samples with Wc(ac) of 

 

Wc(ac) of 20%. 



 

Figure 6.31 – Constant water content stress paths in the (p

Figure 6.32 – Deviatoric stress

 

Constant water content stress paths in the (p-uw)-q plane for samples with 

Wc(ac) close to 20%. 

 

Deviatoric stress- pore water pressure relationships for samples with Wc(ac) of 

20%. 
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q plane for samples with 

 

pore water pressure relationships for samples with Wc(ac) of 



 

Figure 6.33 – Void rat

Figure 6.34 – Deviatoric stress

Void ratio - (p-uw) relationships for samples with Wc(ac) of 20%.

 

Deviatoric stress- strain relationships for samples with Wc(ac) of 22%.
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) relationships for samples with Wc(ac) of 20%. 

 

strain relationships for samples with Wc(ac) of 22%. 



 

Figure 6.35 – Variation of pore water pressure with axial strain for samples with Wc(ac) of 

 

Figure 6.36 – Volumetric

 

Variation of pore water pressure with axial strain for samples with Wc(ac) of 

22%. 

Volumetric-axial strain relationships for samples with Wc(ac) of 22%.
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Variation of pore water pressure with axial strain for samples with Wc(ac) of 

 

axial strain relationships for samples with Wc(ac) of 22%. 



 

Figure 6.37 – Constant water content stress paths in the (p

Figure 6.38 – Deviatoric stress

 

Constant water content stress paths in the (p-uw)-q plane for samples with 

Wc(ac) close to 22%. 

 

Deviatoric stress- pore water pressure relationships for samples with Wc(ac) of 

22%. 
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q plane for samples with 

 

ships for samples with Wc(ac) of 



 

 

Figure 6.39 – Void ratio 

  

6.3.3.3.1  Maximum deviatoric stress results

   

Table 6.15, 6.16 and 6.17 presents the conditions at which each test achieved 

maximum deviatoric stress, for samples tested at Wc(ac)

respectively. It was noticed that conditions were different for different tests at this stage, as 

has been mentioned. The tests that were performed at values in which 

the maximum value of deviatoric stress was achieved at negative values of pore water 

pressure. This was also true in tests where 

Void ratio - (p-uw) relationships for samples with Wc(ac) of 22%.

Maximum deviatoric stress results 

Table 6.15, 6.16 and 6.17 presents the conditions at which each test achieved 

ic stress, for samples tested at Wc(ac) close to 15%, 20% and 22% 

It was noticed that conditions were different for different tests at this stage, as 

has been mentioned. The tests that were performed at values in which Wci 

e maximum value of deviatoric stress was achieved at negative values of pore water 

pressure. This was also true in tests where Wci was close to 20% when the confining pressure 
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) relationships for samples with Wc(ac) of 22%. 

Table 6.15, 6.16 and 6.17 presents the conditions at which each test achieved 

close to 15%, 20% and 22% 

It was noticed that conditions were different for different tests at this stage, as 

 was close to 15% 

e maximum value of deviatoric stress was achieved at negative values of pore water 

was close to 20% when the confining pressure 
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was 50 kPa, although in this case the pore water pressures had small negative values. The 

remaining tests reached this level at positive values of pore water pressure.  

 

Table 6.15 – Conditions of each sample at maximum deviatoric stress for samples with Wc(ac) 

close to 15%. 

 Test 

No. 

Dry 

density 

Void 

ratio 

Degree of 

saturation 

Mean net 

stress 

Deviatoric 

stress 

Pore 

water 

pressure 

p-uw 

 
Mg/m

3
 

 
% kPa kPa kPa kPa 

Wci 

close 

to 

15% 

C15(50) 1 1.835 0.47 87.19 200.4 450.8 -242.8 443.2 

C15(50) 2 1.826 0.48 83.03 204.1 461.4 -210.2 414.4 

C15(150) 1.827 0.48 85.53 355.4 616.0 -292.3 647.7 

C15(300) 1.836 0.47 83.65 523.9 671.7 -287.8 811.7 

Wci 

close 

to 

20% 

W15-19(150) 1.739 0.55 90.05 220.2 210.7 17.3 202.9 

W15-19(300) 1.710 0.58 90.17 367.3 201.9 160.2 207.1 

W15-20(50) 1.712 0.58 92.01 97.31 141.6 -35.4 132.7 

W15-20(150) 1.686 0.60 88.53 202.9 158.4 55.1 147.8 

Wci 

close 

to 

22% 

W15-22(50) 1.646 0.64 89.39 91.3 123.3 -17.9 109.2 

 
W13-17(300) 1.773 0.52 88.06 423.2 368.9 71.2 352.0 

 

Table 6.16 – Conditions of each sample at maximum deviatoric stress for samples with Wc(ac) 

close to 20%. 

 Test 

No. 

Dry 

density 

Void 

ratio 

Degree of 

saturation 

Mean net 

stress 

Deviatoric 

stress 

Pore 

water 

pressure 

p-uw 

 
Mg/m

3
 

 
% kPa kPa kPa kPa 

 

Wci close 

to 

20% 

C20(50) 1.728 0.56 88.12 93.0 128.2 -34.9 127.9 

C20(150) 1.756 0.54 95.87 220.3 209.5 13.6 206.7 

C20(300) 1 1.708 0.58 89.82 366.5 199.5 251.1 115.4 

C20(300) 2 1.727 0.57 87.18 391.1 271.9 146.2 244.8 

Wci close 

to 

15% 

D20-15(50) 1.834 0.47 85.97 246.0 588.0 -387.1 633.1 

D20-15(150) 1.788 0.51 82.23 321.1 512.6 -224.2 545.4 

D20-15(300) 1.818 0.49 84.35 508.4 624.6 -126.6 635.0 

Wci close 

to 

22% 

W20-21(150) 1.692 0.60 93.47 190.7 121.1 18.6 172.1 

W20-22(50) 1.658 0.63 92.34 85.4 105.6 3.5 81.9 

W20-22(300) 1.646 0.64 89.62 327.9 83.4 263.5 64.4 
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Table 6.17 – Conditions of each sample at maximum deviatoric stress for samples with Wc(ac) 

close to 22%. 

 
Test 

No. 

Dry 

density 

Void 

ratio 

Degree of 

saturation 

Mean net 

stress 

Deviatoric 

stress 

Pore 

water 

pressure 

p-uw 

 
Mg/m

3
 

 
% kPa kPa kPa kPa 

Wci close 

to 

22% 

C22(50) 1.61 0.68 86.80 76.4 78.7 5.4 71.0 

C22(150) 1.56 0.74 78.24 182.0 95.2 87.8 94.1 

C22(300) 1.62 0.67 81.80 341.5 124.2 213.3 128.2 

Wci close 

to 

20% 

D22-20(50) 1.726 0.57 92.87 98.9 146.4 -37.3 136.2 

D22-20(150) 1 1.667 0.62 85.97 216.2 198.3 -0.3 216.5 

D22-20(150) 2 1.647 0.64 84.60 221.2 212.6 16.7 204.6 

D22-19(150) 1.671 0.62 83.39 221.2 211.7 5.6 215.6 

Wci close 

to 

15% 

D22-16(50) 1.808 0.49 91.99 200.1 449.8 -258.9 458.9 

D22-16(300) 1.820 0.49 87.95 489.8 568.7 -112.4 602.2 

D22-14(150) 1.829 0.48 79.05 358.8 626.3 -270.6 629.4 

 

The axial strain at which each test achieved the maximum deviatoric stress are 

presented in Tables 6.18, 6.19, 6.20 and 6.21. This time the data is gathered by Wci and 

confining pressure. For samples tested at Wci close to 15% it was observed that the maximum 

deviatoric stress was reached at lower axial strain values when compared with Tables 6.19 and 

6.20: for confining pressures of 50 kPa the axial strain was between 6-9% in Table 6.18 while in 

Table 6.19 axial strain values reached values from 17-21% and in Table 6.20 18-27%. The same 

analogy was also observed for the remaining confining pressures.  
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Table 6.18 – Strain conditions at maximum deviatoric stress for samples with Wci close to 15%. 

Confining 

pressure Test 

No. 

Water content Strain Deviatoric 

Stress 

Pore 

water 

pressure Wc(ac) Wci Axial Volumetric Shearing 

kPa % % εa(%) εv(%) εs(%) kPa kPa 

50 

C15(50) 1 14.77 14.77 6.409 -0.730 6.768 450.8 -242.8 

C15(50) 2 14.75 14.75 9.014 -0.914 9.552 461.4 -210.2 

D20-15(50) 19.72 15.08 9.393 0.153 9.579 588.0 -387.1 

D22-16(50) 21.45 16.84 9.615 0.136 9.818 449.8 -258.9 

150 

C15(150) 15.17 15.17 10.818 0.702 10.892 616.0 -292.3 

D20-15(150) 19.15 15.56 13.469 -0.335 14.101 512.6 -224.2 

D22-14(150) 21.74 13.97 17.787 -0.420 18.871 626.3 -270.6 

300 

C15(300) 14.62 14.62 22.572 -1.148 24.578 671.7 -287.8 

D20-15(300) 18.75 15.19 11.966 -0.143 13.945 624.6 -126.6 

D22-16(300) 21.00 15.80 14.911 0.191 15.477 568.7 -112.4 

 

 

Table 6.19 – Strain conditions at maximum deviatoric stress for samples with Wci close to 20%. 

Confining 

pressure Test 

No. 

Water content Strain Deviatoric 

Stress 

Pore 

water 

pressure Wc(ac) Wci Axial Volumetric Shearing 

kPa % % εa(%) εv(%) εs(%) kPa kPa 

50 

W15-20(50) 14.61 19.70 17.974 -1.954 19.641 141.6 -35.4 

C20(50) 19.41 19.41 21.026 -2.062 23.138 128.2 -34.9 

D22-20(50) 21.96 19.98 15.067 -0.879 16.034 146.4 -37.3 

150 

 

W15-19(150) 15.21 18.45 18.424 -2.041 20.177 210.7 17.3 

W15-20(150) 15.09 19.75 23.953 -2.511 26.705 158.4 55.1 

C20(150) 19.77 19.77 18.161 -1.448 19.666 209.5 13.6 

D22-20(150) 1 21.92 19.78 21.383 -1.193 23.224 198.3 -0.3 

D22-20(150) 2 22.09 20.08 16.274 -0.853 17.351 212.6 16.7 

D22-19(150) 21.37 19.04 23.425 -1.851 25.836 211.7 5.6 

300 

W15-19(300) 15.44 19.37 24.130 -2.515 26.914 201.9 160.2 

C20(300) 1 19.64 19.64 14.168 -1.159 15.153 199.5 251.1 

C20(300) 2 20.17 20.17 21.912 -2.067 24.160 271.9 146.2 
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Table 6.20 – Strain conditions at maximum deviatoric stress for samples with Wci close to 22%. 

Confining 

pressure Test 

No. 

Water content Strain Deviatoric 

Stress 

Pore 

water 

pressure Wc(ac) Wci Axial Volumetric Shearing 

kPa % % εa(%) εv(%) εs(%) kPa kPa 

50 

W15-22(50) 14.67 21.24 27.873 -2.994 31.580 123.3 -17.9 

W20-22(50) 19.40 20.68 19.108 -1.893 20.894 105.6 3.5 

C22(50) 21.82 21.82 18.927 -1.603 20.584 78.7 5.4 

150 
W20-21(150) 19.24 21.53 21.682 -2.470 24.044 121.1 18.6 

C22(150) 22.16 22.16 16.317 -1.624 17.677 95.2 87.8 

300 
W20-22(300) 19.89 21.29 17.239 -1.987 18.832 83.4 263.5 

C22(300) 22.01 22.01 21.548 -2.442 23.879 124.2 213.3 

 

Table 6.21 - Strain conditions at maximum deviatoric stress for the sample with Wci close to 

17%. 

Confining 

pressure Test 

No. 

Water content Strain Deviatoric 

Stress 

Pore 

water 

pressure Wc(ac) Wci Axial Volumetric Shearing 

kPa % % εa(%) εv(%) εs(%) kPa kPa 

300 W13-17(300) 13.24 17.09 17.545 -1.980 19.172 368.9 71.2 

 

 

6.3.3.3.2 Constant water content tests observations 

  

The peaks in stress-strain behaviour observed during shearing, see Figures 6.22, 6.28 

and 6.34, on samples tested at a Wci close to 15%, were shown by samples with starting values 

of pore water pressure that were negative, from: samples tested as-compacted at 15% of 

water content (tests C15(50) 1, C15(50) 2, C15(150) and C15(300) in Figure 6.22); and samples 

compacted at water contents of 20% and 22% and dried to 15% (tests D20-15(50), D20-

15(150) and D20-15(300) in Fig 6.28 and tests D22-16(50), D22-16(300) and D22-14(150) in Fig. 
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6.34). The drying resulted in massive pore water pressure reduction reaching negative pore 

water pressure sufficient enough to be maintained during shearing.  

 

Strength peaks were not evident in the remaining tests i.e. in tests where the Wci was 

20% or 22%, in which pore water pressure was mainly positive from the start. During the 

shearing stage, as is observable in Figures 6.23, 6.29 and 6.35, even samples that had small 

negative values of pore water pressure after the compression stage increased to positive 

values during shearing, apart from the test dried from 22% to 20% at 50 kPa of confinement, 

D22-20(50). 

 

The patterns of deviatoric stress with axial strain in Figures 6.22, 6.28 and 6.34 can be 

explained by the modes of failure. The samples tested at a Wci close to 15%, as Figure 6.40 

illustrates, failed by the formation of a shear surface, resulting in the strength peaks and 

brittleness that can be seen in the stress strain relationships. Other samples that failed by 

bulging symmetrically under considerable deformations in a plastic and ductile manner and 

reached higher values of axial strain without the formation of shear planes, see Figure 6.41.  
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In terms of the critical state limit, the type of failure, under unsaturated conditions, 

implies different approaches. For the CWT tests in which samples bulged, samples failed in a 

plastic and ductile manner. The systematic deformations mean that the variables based on 

principal stresses and strains were appropriate in describing the mechanical behaviour, as 

stresses and deformations can be assumed to be reasonably uniform throughout the 

specimen. For the CWT tests in which samples developed shear surfaces, there would be 

concerns that the deformations become highly non-uniform, and the overall stresses and 

strains no-longer represent the specimen as a whole. In this case, the assessment of the critical 

state point was based on an analysis of each test, mainly on Figures 6.27, 6.33 and 6.39 for the 

constant water content tests C15(50) 1, C(50) 2, C15(150), C15(300), D20-15(50), D20-15(150), 

D20-15(300), D22-16(50), D22-16(300) and D22-14(150) to determine the point whenever the 

void ratio changed dramatically. It was assumed that behaviour after this point could no longer 

represent the critical state. 
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Figure 6.40 – Typical shape of failure on 

samples tested for with Wci close to 15%. 

Figure 6.41 – Typical shape of failure on 

samples tested with Wci close to 20% and 22%. 

 

6.3.4 Critical state limit 

 

The conditions of the samples at critical state are shown in Table 6.22, 6.23 and 6.24. 

For samples that failed by bulging, the end of test data has been taken to represent critical 

state. However, as mentioned, some samples failed with shear surfaces. In these cases, the 

stress-strain and volumetric strain data was examined for each test result individually. If sharp 

changes in deviator stress or volume strain were noted, then the point immediately before 

such changes were taken as critical state points.   
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In Table 6.22 and 6.23 some tests were not used for the determination of the critical 

state line, the tests that were not used were: C20(50), C20(150), C20(300) and D20-15(50) 

(samples prepared from Wc(ac) close to 20%) and D22-20(50) (samples prepared from Wc(ac) 

close to 22%). C20(150) was not used for the determination of the critical state due to 

unreliability of the values measured by the load cell used. While C20(50), C20(300) 1, D20-

15(50) and D22-20(50) presented some discrepancies in relation with the general tendency 

observed in terms of volumetric measurements. 

 

Table 6.22 – Critical state parameters for samples with Wc(ac) close to 15%. 

Test Wc(ac) Wci p uw p-uw q e ν Sr 

No. % % kPa kPa kPa kPa 
 

1+e (%) 

C15(50) 1 14.77 14.77 169.3 -291.7 461.0 357.5 0.49 1.49 81.76 

C15(50)2 14.75 14.75 190.7 -252.8 443.5 421.7 0.49 1.49 81.89 

C15(150) 15.17 15.17 324.0 -326.7 650.7 521.7 0.50 1.50 82.19 

C15(300) 14.62 14.62 521.3 -286.1 807.4 663.7 0.48 1.48 82.12 

W15-19(150) 15.21 18.45 217.4 0.3 217.1 202.0 0.56 1.56 88.37 

W15-19(300) 15.44 19.37 365.5 156.1 209.4 196.6 0.58 1.58 89.69 

W15-20(50) 14.61 19.70 90.3 -48.0 138.3 120.8 0.60 1.60 89.39 

W15-20(150) 15.09 19.75 201.5 52.8 148.7 154.7 0.64 1.64 83.24 

W15-22(50) 14.67 22.00 89.5 -19.5 109.0 118.7 0.65 1.65 91.03 

W13-17(300) 13.24 17.09 398.8 45.2 353.6 296.8 0.55 1.55 83.32 
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Table 6.23 – Critical state parameters for samples with Wc(ac) close to 20%. 

Test Wc(ac) Wci p uw p-uw q e ν Sr 

No. % % kPa kPa kPa kPa 
 

1+e (%) 

C20(300)2 20.17 20.17 384.1 117.3 266.7 251.8 0.58 1.58 94.25 

D20-15(150) 19.15 15.56 312.5 -259.3 571.8 487.3 0.51 1.51 82.73 

D20-15(300) 18.75 15.19 487.4 -157.1 644.6 562.3 0.49 1.49 83.19 

W20-22(50) 19.4 21.53 85.3 -9.6 94.9 91.2 0.66 1.66 88.44 

W20-22(300) 19.89 21.29 328.8 250.3 78.5 76.0 0.68 1.68 84.25 

W20-21(150) 19.24 20.68 188.4 8.5 179.9 115.1 0.61 1.61 91.13 

 

 

Table 6.24 – Critical state parameters for samples with Wc(ac) close to 22%. 

Test Wc(ac) Wci p uw p-uw q e ν Sr 

No. % % kPa kPa kPa kPa 
 

1+e (%) 

C22(50) 21.82 21.82 74.8 -0.1 74.9 74.5 0.68 1.68 86.44 

C22(150) 22.16 22.16 180.9 86.8 94.1 92.7 0.71 1.71 81.34 

C22(300) 22.01 22.01 340.9 208.6 132.3 123.0 0.68 1.68 87.39 

D22-20(150) 1 21.92 19.78 216.0 -0.7 216.7 197.8 0.60 1.60 88.68 

D22-20(150) 2 22.09 20.08 215.9 -0.2 216.1 198.1 0.66 1.66 82.19 

D22-19(150) 21.37 19.04 218.7 -0.1 218.8 205.7 0.62 1.62 82.42 

D22-16(50) 21.45 16.84 179.8 -276.3 456.1 389.2 0.50 1.50 90.77 

D22-16(300) 21.00 15.8 466.7 -142.4 609.1 499.8 0.51 1.51 84.13 

D22-14(150) 21.74 13.97 325.0 -290.8 615.9 525.0 0.51 1.51 74.32 

 

 

Figure 6.42 presents the critical state point achieved by each constant water content 

test, identified by water content at compaction. A linear regression through the critical state 

points gave the slope of the critical state lines on the ν – p-uw space (λ) as being 0.088 for 

samples tested that had Wc(ac) close to 22%, 0.087 for samples tested that had Wc(ac) close 

to 20% and 0.102 for samples tested that had Wc(ac) close to 15%. The critical state line for 
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saturated samples is also shown in the figure for reference. In Figure 6.42, samples that were 

tested with a Wc(ac) closer to 22% presented higher values in the ν – (p-uw) plane, explained 

by the initial 22% water content that represents a lower degree of saturation when compared 

with samples wetted from the 15% and 20%.   

 

 

Figure 6.42 – Critical state line of the constant water tests by Wc(ac) including the saturated 

test series on ν-(p-uw) plane. 

 

Figure 6.43 presents the critical state points over the stress plane (q – (p - uw) plane). 

In the same analogy, a regression analysis was carried out on the critical state points for each 



 

group of tests at similar compaction water content. The resulting M value

and 0.854 for samples that Wc(ac) were 15%, 20% and 22%, respectively. Apart from the 

critical state lines of the constant water content tests, the resulting CSL of the saturated tests 

is also shown.  

 

Figure 6.43 – Critical state li

 

 Table 6.25 presents a resume of the critical state line parameters determined from the 

constant water content and saturated tests. In the stress plane (q vs. 

group of tests at similar compaction water content. The resulting M values were: 0.838, 0.863 

and 0.854 for samples that Wc(ac) were 15%, 20% and 22%, respectively. Apart from the 

critical state lines of the constant water content tests, the resulting CSL of the saturated tests 

Critical state line of the constant water tests by Wc(ac) including the saturated 

test series on q-(p-uw) plane. 

Table 6.25 presents a resume of the critical state line parameters determined from the 

constant water content and saturated tests. In the stress plane (q vs. P-uw) similar M values 
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were obtained for the constant water tests, giving similar critical state friction angles (φ'cv) of 

22o.  

 

Table 6.25 – Critical state line parameters of saturated and constant water content tests 

including the resulting friction angle.  

 ν – (p-uw) plane q – (p-uw) plane 

 Γ λ M φφφφ'c 

Saturated tests 1.868 0.062 0.93 24o 

CWT test with Wc(ac) close to 22% 2.162 0.102 0.85 22o 

CWT test with Wc(ac) close to 20% 2.062 0.087 0.86 22o 

CWT test with Wc(ac) close to 15% 2.054 0.088 0.84 22o 

   

The slope of critical state line on the (ν-p-uw) plane (λ) for the constant water content 

tests seem to be similar in values, however the intercept of the critical state line in ν axis (Γ) 

increasing with the increase of the Wc(ac) tested.  

 

 Comparing with the parameters determined in the saturated tests to the CWT tests on 

the stress plane, a certain similarity was observed: M differed by 0.09 resulting in the 

saturated tests to have a φ' 2o higher.  
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However, in the plane ν – (p-uw) some differences were observed between the 

saturated tests and CWT tests. The presence of suction in some of the samples tested in CWT 

series resulted in increased Γ and λ in comparison with the saturated tests.  

  

A different approach for the analysis of the critical state is to use the average skeleton 

stress assumption (like the Bishop stress) which incorporates the degree of saturation as 

shown in Equation 2.20, however during  testing pore air pressure (ua) was maintained at zero 

which results in Equation 6.1. Table 6.26 presents the obtained values using Bishop stress. 

 

�∗ = � − 67. �� (6.1) 
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Table 6.26 - Critical state parameters for the CWT tests using the Bishop stress (p*). 

Test Wc(ac) Wci p uw Sr p* q e ν 

No. % % kPa kPa (%) kPa kPa   1+e 

C15(50) 1 14.77 14.77 169.3 -291.7 81.76 407.8 357.5 0.49 1.49 

C15(50)2 14.75 14.75 190.7 -252.8 81.89 397.7 421.7 0.49 1.49 

C15(150) 15.17 15.17 324 -326.7 82.19 592.5 521.7 0.5 1.5 

C15(300) 14.62 14.62 521.3 -286.1 82.12 756.2 663.7 0.48 1.48 

W15-19(150) 15.21 18.45 217.4 0.3 88.37 217.1 202 0.56 1.56 

W15-19(300) 15.44 19.37 365.5 156.1 89.69 225.5 196.6 0.58 1.58 

W15-20(50) 14.61 19.7 90.3 -48 89.39 133.2 120.8 0.6 1.6 

W15-20(150) 15.09 19.75 201.5 52.8 83.24 157.5 154.7 0.64 1.64 

W15-22(50) 14.67 22 89.5 -19.5 91.03 107.3 118.7 0.65 1.65 

W13-17(300) 13.24 17.09 398.8 45.2 83.32 361.1 296.8 0.55 1.55 

C20(300)2 20.17 20.17 384.1 117.3 94.25 273.5 251.8 0.58 1.58 

D20-15(150) 19.15 15.56 312.5 -259.3 82.73 527.0 487.3 0.51 1.51 

D20-15(300) 18.75 15.19 487.4 -157.1 83.19 618.1 562.3 0.49 1.49 

W20-22(50) 19.4 21.53 85.3 -9.6 88.44 93.8 91.2 0.66 1.66 

W20-22(300) 19.89 21.29 328.8 250.3 84.25 117.9 76 0.68 1.68 

W20-21(150) 19.24 20.68 188.4 8.5 91.13 180.7 115.1 0.61 1.61 

C22(50) 21.82 21.82 74.8 -0.1 86.44 74.9 74.5 0.68 1.68 

C22(150) 22.16 22.16 180.9 86.8 81.34 110.3 92.7 0.71 1.71 

C22(300) 22.01 22.01 340.9 208.6 87.39 158.6 123 0.68 1.68 

D22-20(150) 1 21.92 19.78 216 -0.7 88.68 216.6 197.8 0.6 1.6 

D22-20(150) 2 22.09 20.08 215.9 -0.2 82.19 216.1 198.1 0.66 1.66 

D22-19(150) 21.37 19.04 218.7 -0.1 82.42 218.8 205.7 0.62 1.62 

D22-16(50) 21.45 16.84 179.8 -276.3 90.77 430.6 389.2 0.5 1.5 

D22-16(300) 21 15.8 466.7 -142.4 84.13 586.5 499.8 0.51 1.51 

D22-14(150) 21.74 13.97 325 -290.8 74.32 541.1 525 0.51 1.51 

 

From the critical state points obtained in Table 6.26 the critical state lines in the q-p* 

plane were generated, Figure 6.44, and the ν – p* plane, Figure 6.45. As it is shown in Figure 

6.44, by incorporating the degree of saturation, all the critical state points (saturated and 

unsaturated) fit on a single regression line. The slope of the critical state line in the stress plane 

(q vs. p* plane) was found to be M=0.91, resulting in a critical state friction angle (φ'cv) of 23o.  
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Figure 6.44 - Critical state line of the constant water tests by Wc(ac) including the saturated 

test series on p*-q plane. 

 

In the ν – p* plane (Figure 6.45), however, different regressions for the critical state 

points for different Wc(ac) were obtained, as in ν – p-uw plane in Figure 6.42. This time, for the 

CWT tests λ increased with as-compacted water content (Wc(ac)) ranging 0.109 for samples 

with Wc(ac) close to 22%, 0.098 for samples with Wc(ac) close to 20% and 0.091 for samples 

with Wc(ac) close to 15%.  

 



206 

 

Table 6.27 summarises the obtained critical state parameters using the Bishop stress. 

Although a better fitting of the critical state points was achieved in the stress plane, on the 

volumetric plane different parameters were obtained for different water contents as-

compacted as in similarity with the analysis performed without the incorporation of the 

degree of saturation.  

 

 

Figure 6.45 - Critical state line of the constant water tests by Wc(ac) including the saturated 

test series on ν-p* plane. 

 

 

 



207 

 

Table 6.27 - Critical state line parameters of saturated and constant water content tests 

including the resulting friction angle using Bishop stress. 

 
ν – p* plane 

ν – p’ plane 

q – p* plane 

q – p’ plane 

 
Γ λ M ∅′ 

Saturated tests 1.868 0.062 

0.91 230 

CWT test with Wc(ac) close to 22% 2.2 0.109 

CWT test with Wc(ac) close to 20% 2.125 0.098 

CWT test with Wc(ac) close to 15% 2.065 0.091 

 

  Nevertheless, from the analysis performed using a critical state approach, it could be 

determined that the mechanical behaviour of the BIONICS fill material is governed by the 

initial water content, the as-compacted condition of the samples showed to have more 

influence on the mechanical behaviour of the material than the processes of wetting and 

drying. The similarity in the critical state parameters M in stress plane and λ obtained for the 

volumetric plane clearly shows this, although major differences were observed in the intercept 

of the critical state line in the ν axis (Γ) in the volumetric plane. 

 

 An alternative framework for analysing the material behaviour that was considered 

was Toll’s framework for unsaturated soil behaviour (Toll, 1990). However, since the data 

presented generally has high degrees of saturation (>80%) it was felt that approaches based on 
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p-uw and p* were sufficient. Toll’s approach suggests that the stress ratios (Ma and Mb) 

approach similar values to the saturated stress ratio at degrees of saturation above 80%. 

 

6.4 Conclusions 

 

 

This chapter presented an attempt to describe the mechanical behaviour of the fill 

material of the BIONICS embankment. A testing program involving a series of constant water 

content triaxial tests backed by a small series of saturated tests was carried out.  

 

While the saturated tests were performed in conventional triaxial cells, the constant 

water content tests were performed in a double cell triaxial cell. The two cell arrangement 

where the outer cell surrounds the inner cell, enables a more accurate measurement of the 

volume change of samples when the sample voids are not saturated. Two features makes the 

DCTC a suitable piece of equipment to carry out triaxial tests on unsaturated samples: the wall 

of the inner cell being made in glass eliminates the water absorption problem identified in cell 

walls built in Perspex, hence improving the accuracy of the cell volume changes; and the 

possibility of placement of a high capacity suction probe in the pedestal inside the inner cell 

enabling pore water pressure measurements directly in the sample without the necessity of 
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using pore air pressures to simulate matric suction. Since the pressure is maintained equal in 

both cells (inner and outer), the pressure surrounding the wall of the inner cell will be the 

same, eliminating the majority of deformations of the wall reducing the error in the 

measurement of the volume changes inside the cell.  

 

Constant water tests were carried out on samples at pre-determined water contents 

(15%, 20% and 22%). From these starting water contents samples were tested under dried, 

wetted or as-compacted conditions. Testing was carried out at different confining pressures 

(50, 150 and 300kPa).    

 

Sets of critical state parameters were determined from the triaxial tests for each 

starting water content, where similarities in ν-(p-uw) plane and the q – (p-uw) were obtained. 

The slope of critical state line on the ν-( p-uw) plane (λ) and slope of critical state line on the q-( 

p-uw) plane (M) did not differ much from the different water contents tested, 0.088, 0.087 and 

0.102 for λ and 0.84, 0.86 and 0.85 for M, respective to Wc(ac) close to 15%, 20% and 22%. 

Only the intercept of the critical state line in ν axis (Γ) differed, increasing with an increase in 

water content (at compaction), 2.054 (Wc(ac) close to 15%) to 2.062 (Wc(ac) close to 20%) to 

2.162 (Wc(ac) close to 22%).  
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With an approach using Bishop stress (p*) a better fitting was achieved in the stress 

plane where it was possible to bring together all the critical state points in the same critical 

state line, where M was found to be 0.91. However, in the ν – p* plane, different critical state 

lines were obtained for different as-compacted water contents, as in the ν – p-uw plane, 

increasing the difference between as-compacted conditions when compared.  

 

The comparison of the critical state parameters of the constant water content test and 

the saturated test suggested that samples that were tested at the higher values of suction 

(samples tested at water contents close to 15%) increased the failure and critical strength of 

the material, the samples tested in these conditions had lower degree of saturation with a 

lower void ratio resulting in stiffer samples.  

 

The mechanical behaviour of the BIONICS fill material was found to be governed by 

the initial conditions, the as-compacted conditions. Whatever the process involved in the 

testing, wetting or drying, did not seem to influence the behaviour when the differences in 

initial pore water pressure were taken into account. 
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7 Design and installation of a continuous 

monitoring system for pore water pressure at the 

BIONICS embankment. 
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7.1 Introduction 

 

 

 

Pore water pressure can have a negative impact on slope stability; an increase in pore 

water pressure results in a decrease of effective stress (or suction in an unsaturated soil) 

leading to loss of strength. Few measuring systems exist in the market that can provide 

measurements of the “full range” of pore water pressure, meaning, negative (suction) and 

positive measurements. The majority of the existing systems that do provide measurements in 

the “full range” are limited either by climate conditions (i.e. GeoObservations high capacity 

probe, since it is recommended for use only with dry weather) or by the maximum range of 

measurements (i.e. jet fill tensiometers, flushable piezometers that are limited by cavitation to 

-100 kPa) or even by the capability of providing continuous monitoring. This chapter presents a 

system developed at Durham University School of Engineering using a variation of the Durham 

University - Wykeham Farrance – (DU-WF) high capacity suction probe for field use that is 

capable of continuous long-term monitoring, whatever the weather conditions, in the “full 

range” of pore water pressure. The positioning of the suction probes allows measurement of 

pore water pressure in the same vertical line at the measuring point enabling the creation of 

suction profiles. Two systems to systematically monitor pore water pressure in time and with 

depth were installed at the BIONICS embankment referred to previously in Chapter 3. 
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7.2 Pre conditions for the design 

 

The measuring system that would be installed at the BIONICS embankment had to obey 

to various conditions: to provide continuous monitoring in time and with depth, to be easily 

installed in two boreholes at the embankment taking account of the final dimensions allowed 

for the monitoring system, to be easy to use  and to satisfy safety conditions at the site.  

 

The choice of the type of probe to be used, the DU-WF high capacity suction probe, 

influenced greatly the final design of the monitoring system: cavitation is always a concern in 

these types of probes and therefore there was a necessity for allowing these probes to be 

easily removed and inserted; the DU-WF high capacity suction probe needed to be adapted for 

field conditions; a 5 Volts supply was necessary to power the probes and a datalogger was 

required to log the  measurements continuously in field conditions. 

 

7.3 The monitoring system 

 

The monitoring system design can be described as follow: 
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• Borehole Probe Locator to allow installation of the probes in one borehole and 

allow  the probes to be removed or replaced; 

• Five DU-WF high capacity suction probes adapted to field conditions were used 

in each Borehole probe locator; 

• A data logger and a computer to retrieve the data from the probes. 

• Saturation vessels for the probes to allow transportation from the laboratory to 

the embankment and to allow saturation through pressurisation. The design of 

these vessels also allows field calibration of the probes, if necessary. 

 

The first concern was the location of the logger, which was installed at the top of the 

embankment sealed in a cemented metal box to minimize the length of cable necessary to 

reach the high capacities suction probes and also to reduce the amount of cables running over 

the embankment.  The logger could not be powered by a 240V AC power supply because of 

safety concerns of operating in wet, outdoors conditions and having high voltage cables 

trailing across the embankment, therefore the power had to be reduced to 24V DC (minimum 

required by the logger). This was provided by a power converter placed in the site hut near the 

embankment, where the computer was also located. The connection between the logger and 

power converter and the communication link to the computer (necessary to store the 

measurements obtained from the probes) was made by a single multi-core cable stretching for 
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70 metres. In case of power surges a USP system was added to the system as a backup battery 

that could sustain the computer and logger for a maximum period of 30 minutes.  

 

To process the information obtained from the probes the software Triax was used, as for 

laboratory procedures. For each probe, the software converts the electrical signal from the 

probes into pore water pressure by means of a specific calibration. 

 

7.3.1 Borehole Probe Locator 

 

The Borehole Probe Locator (BPL) is the central part of the monitoring system. The BPL is a 

hollow PVC pipe with outer diameter of 90mm (due to installation constraints of a maximum 

borehole radius size of 100mm) with a wall thickness of 10mm and length of 3 metres, see 

Figure 7.1. Both ends were sealed to prevent infiltration; the bottom end had a PVC cap 

backed by layers of silicone sealer while the top seal was created with layers of foam and 

silicone.  
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Figure 7.1 – Borehole Probe Locator. 

 

Inside the BPL casing were 5 flexible reinforced plastic hoses with 19mm internal 

diameter. These flexible hoses were used to guide the probes to their measuring position. The 

measuring points of the BPL (hereafter called Suction Stations), are the exit points where the 

probes are in contact with the fill material of the embankment. In the three metre height of 

the BPL the suction stations are positioned at 0.5, 1, 1.5, 2, 2.5 and 3 metres, as presented in 

Figure 7.2. Limitations regarding the diameter of the BPL forced the number of probes to be 

limited to 5. It also limited the exit angle at the suction station to 45º, as shown in Figure 7.3a 

and 7.4, except the suction station located at the base at 3 metres, which is vertical, Figure 

7.3b. 

 



 

Figure 7.2 – Schematic of the BPL

 

To locate the probe in each suction station an aluminium fitting

the diameter from 19mm (ID of the flexible hose) to 14mm (diameter of the probe) see 

7.4. The inner diameter of the fitting 

prevent movement of soil particles 

protruding past the edge of the suctions station w

suction station at 3 metres). T

open borehole. 

0.5

1.5

3.0

 

 Flexible hoses

 

Schematic of the BPL. 
Figure 7.3 – a) Lateral and b)

stations. 

the probe in each suction station an aluminium fitting was fitted

the diameter from 19mm (ID of the flexible hose) to 14mm (diameter of the probe) see 

of the fitting providing a tight fit with the diameter of the probe 

movement of soil particles into the guide tube. The part of the aluminium fitting 

edge of the suctions station was cut off, see Figure 7.4 (except at th

. This was to prevent the BPL from jamming when installing 

2.0

1.0

Suction station 

Flexible hoses a) 

b) 
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b) bottom suction 

was fitted to reduce 

the diameter from 19mm (ID of the flexible hose) to 14mm (diameter of the probe) see Figure 

with the diameter of the probe was to 

part of the aluminium fitting 

7.4 (except at the 

when installing in an 
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Figure 7.4 – Schematic of Lateral suction station showing the interaction of aluminium fitting and 

flexible hose; showing the cut face in dashed line. 

 

This design was needed because of the possibility of cavitation of the DU-WF high 

capacity suction probes, preventing the probe from providing reliable measurements. With 

this configuration of guide tubes, the probes can be easily inserted and removed when 

necessary.  

 

7.3.2 DU-WF high capacity suction probe for field use 

 

The probe to be used at the BIONICS embankment was chosen to be the DU-WF high capacity 

suction probe, which is a variation from the laboratory probe used in the constant water 

content triaxial testing and characterisation of the soil water retention curve presented in 
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earlier chapters. The field version of the suction probe had the same characteristics as the 

laboratory version having the same  high air entry value porous disc of 1.5MPa, a small water 

reservoir and a 2MPa ceramic pressure transducer (Lourenço, 2006), with the arrangement 

shown in Figure 7.5. For good operation of the probes they have to be fully saturated. 

 

 

 

Figure 7.5 – DU-WF high capacity suction probe for field use. 

 

Measurements taken during construction of the embankment justified the usage of 

such high capacity probes to monitor suction during the life span of the embankment. As 

shown in Figure 7.6 a) and b) values of suction greater than 100 kPa were observed at different 

layers in most panels; a suction value that exceeds the range of most of the existing equipment 

found in practice, e.g. the flushable piezometer of GeObservations. The measurements 

obtained during construction in Figure 7.6 for both panels show that in the well compacted 

panels higher values of suction were measured than in the poorly compacted panels. .  This 

Pressure transducer 

Water reservoir 

Ceramic disc with high air entry value 

Smoothed front corners 
Conical ring 
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could be due to greater compaction inducing additional suctions due to the tendency of the 

BIONICS sandy clay to dilate under loading, as seen in Chapter 6. Compaction –induced 

shearing would cause a reduction in pore water pressure i.e. an increase in suction. 

 

  

 

Figure 7.6 – a) Soil suctions recorded in samples taken from the “poorly” compacted sections of the 

embankment (Panels A and D), and b) Soil suctions recorded in samples taken from the “well” 

compacted sections of the embankment (Panels C and D). (After Hughes, 2007). 
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To allow installation of the probes in the field, the shape of these probes had to be 

modified. The electrical cables of the probes were extended to 11 metres.  To stiffen the cable 

a nylon tube with a length of 10 metres and 8mm of diameter was fitted over the connecting 

cable, enabling the probes to be pushed and pulled in and out of position. This also protected 

the electrical cable to avoid damage. 

 

To ease the progression of the probes during insertion and removal when passing 

through the guide tube and aluminium fittings at the suction stations, the front corners of the 

suction probes were smoothed and a conical ring was fitted at the back end, see Figure 7.5, to 

prevent the probe snagging.  

 

To achieve good contact between the probes and fill material of the embankment a 

paste of sieved material from the embankment fill was added to the front end of each suction 

probe (roughly 1 mm thickness) as shown in Figure 7.7. The paste was fully saturated, which 

resulted in pore water pressures close to 0kPa. By doing so it enabled full contact between the 

probe preventing any misreading during monitoring and also avoiding cavitation by drying out 

while positioning the probes in place. Using a paste of the same material as the embankment 

meant that it would have the same properties as the fill (such as air entry value) and would not 
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affect the long-term readings of suction. However, it was necessary to allow for an 

equilibration period between the probe, paste and fill material after installation. 

 

 

Figure 7.7 – Application of the soil paste on a suction probe. 

 

7.3.2.1 Saturation 

 

Prior to any usage of the DU-WF high capacity suction probes it was necessary to 

saturate each probe. The initial saturation of the probe is very important for the correct 

operation of these high capacity suction probes. The saturation process for the field version of 

the DU-WF high capacity suction was similar to the saturation process adopted for the 

conventional version of the DU-WF suction probes used in the laboratory. The suction probes 

Paste 

Suction probe 
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were saturated inside a saturation manifold (Figure 7.8). The suction probes were fixed inside 

the manifold, which was initially subjected to a vacuum and subsequently filled with de-aired 

water while maintaining the vacuum. The water was then pressurized to around 1500 kPa. The 

suction probes were left exposed to such pressure for a period of two weeks. This full 

saturation process, including the initial application of vacuum followed by an extended 

pressurization period of two weeks, was only needed for the first saturation or in the event 

that the probe had cavitated and had been left unsaturated for a long period. However, for re-

saturation shortly after cavitation had occurred, a pressurization interval of 24 hours was 

usually enough. During usage, however, given that visits to the site were scheduled every 2 

weeks, a longer pressurization of 2 weeks was often adopted for re-saturation following 

cavitation. 

 

 

Figure 7.8 – Saturation manifold (Donoghue, 2006). 

 

Pressurisation screw 

Pressure transducer 
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The saturation of the probes was performed in the Laboratory, due to difficulties of 

installing such a system in the field but also because it was easier to monitor and control the 

process in the laboratory. 

 

7.3.2.2 Calibration 

 

Lourenço et al (2009) showed that calibrations of the DU-WF high capacity suction 

probe can be conducted in the positive pressure range and extrapolated to the negative 

pressure range. Two calibrations procedures were selected: a laboratory based calibration 

procedure, which would correspond to the initial calibration of the probes; and a field based 

calibration procedure, allowing the possibility of calibration of the probes in field conditions if 

necessary. The laboratory based calibration procedure was conducted only once, before 

installation of the system in the field, and could potentially be affected by changes in 

connection arrangements and slight differences in the power supply voltage between the 

laboratory and the field set-up. The field based procedure allowed the calibration to be 

performed using the exact set-up as was used in the field.  
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Lourenço et al suggested the following procedure as the most satisfactory for 

calibrating the probes. The probes were submersed in water in a triaxial cell and the pressure 

was gradually increased in steps to a maximum of 600 kPa. The obtained calibration in the 

positive pressure range would afterwards be extrapolated to the negative pressure range. 

However, such a set-up (triaxial cell) could not be used in the field, so a saturation manifold 

was used (Figure 7.8). The saturation manifold pressurises the chamber by the means of a 

pressurisation screw, which can be regulated by the readings obtained by a pressure 

transducer. The pressure transducer was powered by a battery (5V) that could be used in the 

field and this was calibrated using a dead-weight calibrator in the laboratory. Therefore, this 

provided a reliable reference pressure reading for field calibration. Again, the measurements 

are extrapolated from the positive pressure range to the negative pressure range. 

  

The disadvantage of this technique was that Lourenço et al found that the calibration 

was affected by the manner in which the probes were fixed in the saturation manifold. It was 

also difficult to maintain a constant pressure using the pressurisation screw for values greater 

than 400 kPa. However, the lack of availability of a pressurising system in the field made it the 

only available contender for the purpose of conducting calibrations in field conditions.  
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7.3.3 Installation concerns 

 

Before installation of the system at the BIONICS embankment a number of issues had 

to be addressed regarding the installation of the BPLs in the borehole.  

 

The first concern was the issue of contact between the BPL and the embankment 

material. Consideration was given to using a grout mixture to fill and seal any gap between the 

BPL (90mm diameter) and the drilled borehole (100 mm diameter) or whether the natural 

closure of the borehole once the BPL was placed in position would be sufficient to ensure a 

seal.  

 

7.3.3.1 Grout test 

 

Studies regarding the performance of the high capacity suction probes were 

performed on a grout mixture that had been used for similar equipment such as the 

GeoObservation flushable piezometers present at the embankment. The grout mixture was 

composed by 44% of cement, 3% of bentonite and 53% of water. The test consisted of 

preparing two layers inside a container: one layer of fill material and another layer of grout 
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and to subjecting both ends to drying stages while measuring suction with a high capacity 

probe. The size of the layer of the grout mixture was prepared to replicate the expected 

maximum length of 20 mm between probes and fill material, see Figure 7.9. For comparison 

purposes the same high capacity probe was used for measuring suction in both layers (top and 

bottom). Except, when deliberately inducing drying, both ends were sealed to avoid 

dehydration when measurements were being taken. Figure 7.10 shows the procedure during 

the test. 

 

  
Figure 7.9 – Grout test scheme. Figure 7.10 – Grout test set up. 

 

Initially there was a good agreement in the readings for both grout and fill material 

achieving similar results where the difference was no greater than 20 kPa, see Figure 7.11 and 

7.12. However, when a greater drying stage was achieved a very significant difference of 

almost 300 kPa was observed (Figure 7.13). Therefore, while a suction equilibrium between 

the fill and the grout was being achieved at suctions up to 300 kPa, above this value readings 
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on the grout side showed much larger readings than that observed in the fill. From this it was 

concluded that the grout was not an option since readings obtained during construction 

showed suction values near 400 kPa. Therefore, the contact from part of the BPL with the fill 

material of the embankment relied entirely on the natural closure of the borehole. The natural 

closure of boreholes has been observed at the embankment by Hughes (2005) where 

boreholes previously drilled in the embankment had closed up quite quickly. 

 

 

Figure 7.11 – Pore water pressure measurements on fill material and grout mixture after the first drying 

stage. 

 



 

Figure 7.12 – Pore water pressure measurements on fill material and grout mixture after the 

Figure 7.13 – Pore water pressure measurements on fill material and grout mixture after the 

 

e water pressure measurements on fill material and grout mixture after the 

drying stage. 

 

Pore water pressure measurements on fill material and grout mixture after the 

stage. 
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e water pressure measurements on fill material and grout mixture after the second 

 

Pore water pressure measurements on fill material and grout mixture after the final drying 
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7.3.3.2 Suction station plug 

 

During installation, the probes were not present in the BPL to prevent any damage to 

the probes. To prevent soil entering the guide tubes and potentially blocking them, plugs were 

placed in the suction stations. These plugs were designed to have the same dimensions as the 

probes and to occupy similar space at the different suction stations.  

 

The suction station plugs remained in place for the 2 months period until the gap 

between the wall of the BPL and the fill material closed, prior to the installation of the suction 

probes. The ability to retrieve the plugs gave reassurance that the guide tubes and suction 

stations were clear and the probe would be able to travel to and be correctly positioned at the 

desired suction station. 

 

The plugs were also used to replace the probes whenever there was any malfunction of 

a probe, such as poor saturation, cavitation, etc. 

 

7.4 Installation of the monitoring system at the BIONICS embankment 
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As explained in Chapter 3 the BIONICS embankment was built using two different 

construction methods, panels A and C were “poorly compacted” (built to resemble old 

Victorian embankments) and panels B and D were “well compacted” (resembling modern 

construction methods), see Figure 7.14. To allow a comparison of the behaviour of each 

construction method it was decided to drill two boreholes in panels A and B to accommodate 

two BPL i.e. one in a poorly compacted panel and one in a well compacted panel.  

 

In late February 2007 two boreholes of 3.5 metres deep (3 metres in the fill material 

plus 0.5 metres through the overlying coarse layer) were cut, roughly 2 metres from the 

impermeable membrane at the limit of the crest of the embankment close to the south slope 

as presented in Figure 7.14. The boreholes was carried out using a Premier Tracker Compact 

110 Series percussive driven sampling rig, Figure 7.15, involving recovery of the samples in 1 

metre sections, Figure 7.16. Later, the recovered samples were tested to obtain some 

information on the state of the fill material such as water content and void ratio. The BPLs 

were inserted into position, Figure 7.17, while fitted with suction station plugs. The top of each 

BPL was enclosed within a bin which was placed through the overlying coarse layer (see 

Figures 7.18a and b) to prevent any further infiltration of water and to allow better clearance 

for the top of the flexible hoses. At the same time, preparations were made to install the 
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logger enclosure at the top of the embankment. A heavy, sturdy metal casing was cemented to 

the top of the embankment mid-way between the two BPLs, Figure 7.19. 

 

Uncertainties about how long it would take before the closure of the boreholes led to a 

waiting period of 2 months. After this two months, in April 2007, the first batch of 5 DU-WF 

high capacity suction probes for field use, logger, computer and accessories (cables, power 

converter, etc) were installed. Initially just 5 probes were installed at the shallower suction 

stations, 3 probes in panel B (well compacted panel) and the other 2 in panel A (poorly 

compacted). The remaining probes were installed as soon as they were ready for field use. 
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Figure 7.14 – Bionics embankment plan view with marked location of the BPLs. 

 

 

 

Figure 7.15 – Cutting of the borehole. Figure 7.16 – Recovering the core of the borehole. 
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Figure 7.17 – Insertion of the BPL in the borehole 
Figure 7.18 –Top of the BPL a) without 

and b) with the bin protection.  

 

 

Figure 7.19 – Final arrangement of the equipment on the crest of the embankment. 

 

a) 

b) 

Logger enclosure 

BPL in panel B 

BPL in panel A 

Site hut 
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7.5 Continuous monitoring 

 

Initially, the monitoring system was intended to perform continuously without 

intervention, meaning the probes would be left at the respective suction station only to be 

removed due to poor saturation, cavitation, re-calibration or other malfunction.  

 

However, checks on the zero readings of the probes after some time (September 2007) 

showed that a noticeable creep developed. This could be seen when removing the probes and 

plunging them in free water. They should read zero pressure under these conditions, but it was 

found that the zero value could shift by up to 5 kPa. This was consistent with observations by 

Lourenco (2008), who noted a suction induced shift. Clearly such shifts are more of a concern 

at low suctions as a change in reading of the order of 5 kPa would be a significant error. In fact, 

initial results showed that low suctions were observed, as will be described in Chapter 8. For 

this reason visits were made to the field each fortnight to retrieve the probes from their 

respective suction station, clean them of any paste left on the front face and plunge them in 

free water. A reset of the calibration of each probe was then imposed to set them back to a 

zero reading; afterwards the probes were refitted with a new layer of paste and were placed 

back into their respective position. This process will be called the reset stage in later 

discussions. 
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It was assumed that any drift in the zero value would be related to time. To correct for 

this drift, the obtained results, between visits, were then recalculated using a linear 

relationship and by doing so would eliminate the drift effect of extended time usage of the 

probes.  

 

7.6 Conclusion 

 

In this chapter the evolutionary process from design to installation and modus operandi 

of the monitoring system for pore water pressure at the BIONICS embankment was presented. 

 

Measurement of pore water pressure during construction of the embankment 

suggested that suctions in the fill material would exceed the 100 kPa suction limit of 

conventional tensiometers. This lead to the usage of DU-WF high capacity suction probes that 

have a wide range of measurement on both negative and positive pressure range. To allow 

their usage in field conditions the design of the probes had to be modified to work with the 

Borehole Probe Locators. 
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The development of the Borehole Probe Locators with their suction stations allowed the 

correct positioning of the probes in contact with the fill material of the embankment. They 

provide the opportunity to measure suction profiles with depth within a single borehole. The 

installation of two of these systems in different panels (built under different conditions) 

enhances the possibility of obtaining a comparison of the evolution of pore water pressure 

with time and in depth in the long term. 
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8 Field monitoring 
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8.1 Introduction 

 

The following chapter will present the measurements of pore water pressure obtained for 

the BIONICS embankment and will discuss the response of the fill material of the BIONICS 

embankment to climate events by considering the annual patterns of changes of pore water 

pressure. Details of the instrumentation system used for monitoring were previously described in 

Chapter 7. 

 

8.2 Initial conditions of the fill material pre monitoring 

 

During the installation of the Borehole Probe Locators (BPLs) in 2007, two years after the 

construction of the embankment, the cores recovered from the boreholes were preserved in order 

to perform a set of tests to describe the initial conditions of the material (water content, void ratio 

and degree of saturation). Each core was divided in different sections of 1 metre that comprises the 

full length of the borehole: 0-1m, 1-2m and 2-3m. 

 

After the retrieval of the core from each borehole, it was wrapped in cling film and placed in 

sealed plastic bags. Table 8.1 shows the water contents obtained for both cores with depth. The 

amount of tests performed was dependent on the quality of recovery of the core of each section, 

but a minimum of 4 water contents were possible to be obtained. The water content tests shown 

that the top section on both cores were the wettest section ranging from 20.9% in the well 

compacted panel and 23.7% on the poorly compacted panel. 
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Table 8.1 – Water content values in the full depth of the borehole cores for both well and poorly compacted 

panels. 

Water content (%) 

Depth Well compacted Poorly compacted 

 

0-1 m 

18.59 24.85 
21.33 23.27 
21.81 24.76 
21.10 23.52 
21.54 22.06 
20.59 
21.23 

Average 20.88 23.69 

1-2 m 

18.12 19.93 
21.16 22.26 
19.38 21.83 
19.83 17.42 
21.54 20.84 

21.20 
Average 20.01 20.58 

2-3 m 

20.90 21.33 
19.19 21.79 
19.75 21.24 
19.08 21.00 

20.89 
Average 19.73 21.25 

 

In the core of the well compacted panel borehole, on average, the water content decreased 

gradually with depth showing a decrease of 1% from the top to the final section. In the poorly 

compacted panel the water content in depth changes significantly, more than 3% to the middle 

section, and more than 2% to the final section. These variations on the poorly compacted panel are 

the expected result for a more permeable and a result of a less controlled construction. 

 

To evaluate the void ratio and degree of saturation of the core of the boreholes in each 

section smaller samples were cut using a sampler of 20mm by 55mm (diameter) to be able to 

determine the volume of the subsamples with vernier callipers. Table 8.2 presents the final results 



241 

 

showing differences in both parameters between both cores of the different panels. As expected the 

void ratio on the poorly compacted panel was slightly higher when compared with the results for the 

well compacted panel, 0.66-0.70 and 0.59-0.64 respectively. Dry density was also calculated from 

the void ratio in Table 8.2. 

 

Table 8.2 – Water content, Void ratios (e) and resulting degrees of saturation (Sr), dry densities (γd) in the full 

depth of the borehole cores for both well and poorly compacted panels. 

 
Well compacted panel B 

 
Poorly compacted panel A 

 
 

borehole samples 
  

borehole samples 
  

Depth e Sr Wc γd e Sr Wc γd 

  
(%) (%) Mg/m

3
 

 
(%) (%) Mg/m

3
 

 
0.65 73.72 17.7 1.64 0.65 99.19 23.7 1.64 

0-1 m 
0.66 89.62 21.9 1.63 0.68 98.90 25.0 1.61 

0.62 87.17 20.0 1.67 
    

 
0.63 89.64 20.8 1.66 

    
Average 0.64 85.04 20.1 1.65 0.66 99.04 24.3 1.62 

         
1-2 m 0.63 94.29 22.1 1.65 0.71 92.80 24.2 1.59 

 
0.62 82.19 19.0 1.66 0.69 94.71 24.0 1.60 

Average 0.63 88.24 20.5 1.66 0.70 93.76 24.1 1.59 

         
2-3 m 0.57 90.92 20.3 1.72 0.68 81.18 19.1 1.61 

 
0.61 87.34 20.6 1.68 0.68 82.30 17.0 1.61 

Average 0.59 89.13 20.4 1.70 0.68 81.74 18.0 1.61 

 

In terms of degree of saturation the poorly compacted panel was almost saturated (99%) in 

the top metre reducing with depth down to 82% at 3 metres. In the well compacted panel an 

inversion was observed with the degree of saturation increasing from 85% up to 89%. Still it is 

reasonable to conclude that the degree of saturation in the well compacted panel remained almost 

constant when compared with the variation of almost 20% in the poorly compacted panel, a result 

of the different construction methods employed on the different panels.  
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The description of the initial characteristics also involved the study of the hydraulic 

properties of each core of the boreholes. Soil water retention curves (SWRC) were obtained using 

involving high capacity suction probe, by stage drying, as presented in chapter 5. Two samples from 

the section 0-1m from each borehole were used to determine the SWRCs and are presented in 

Figure 8.1.  

 

 

Figure 8.1 – SWRCs obtained from samples of the first metre of the cores of the boreholes of the well and 

poorly compacted panels compared with results from SWRCs (drying path) obtained in Chapter 5. 

   

From Figure 8.1 there are noticeable differences in the hydrological characteristics of both 

boreholes. The curvature of the SWRC for both samples differs. In the well compacted panel higher 

values of suction were achieved at higher water contents while on the poorly compacted panel 

changes in the water content related to smaller variations in suction up to 14% of water content. 
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The obtained SWRCs should be only considered qualitatively since the test was performed under no 

confining pressure, a factor that differs from the actual reality in the field.  

 

Also in Figure 8.1 are presented the SWRCs that followed drying paths determined in 

Chapter 5. Before comparing results it is necessary to note that the borehole samples tested were 

recovered two years after the construction of the embankment, therefore different water retention 

behaviour was expected. Comparing the results of all SWRCs presented in Figure 8.1 it was observed 

that the SWRC obtained from the core of the poorly compacted panel was comparable with the 

SWRC dried from 15% on the high range of the measured suction while at low ranges of suction the 

values move towards SWRC dried from 20%. While the SWRC for samples retrieved from the core of 

the well compacted panel fell at slightly higher values when compared with the primary drying curve 

obtained by Noguchi. 

 

8.3 Weather data 

 

 

Weather data during the pore water pressure monitoring at the BIONICS embankment was 

recorded primarily by a nearby weather station complemented by two mini weather stations located 

in the slopes of the embankment itself, as presented in Chapter 3. Figure 8.2 shows the monthly 

natural precipitation and average minimum and maximum temperatures during the monitoring 

period. 

 



 

Figure 8.2 – Natural precipitation and temperature (minimum and maximum) monthly averages recorded at 

the BIONICS site during the pore water pressure monitoring.

  

In Figure 8.2 it can be seen that th

months, although this might not have been expected. This is due to sparse intense showers events 

during these periods occurring in the region. Annual precipitation generally maintained constant 

through the years of monitoring (600 mm).

 

The highest monthly precipitation occurred in September 2008 with more than 158mm 

while May 2008 was the month with least precipitation of only 8.4mm. Although, the precipitation 

was higher during the summer months, these coin

higher which results in more evaporation. These two factors, rainfall events and evaporation 

precipitation and temperature (minimum and maximum) monthly averages recorded at 

the BIONICS site during the pore water pressure monitoring. 

In Figure 8.2 it can be seen that the months with more precipitation were the summer 

months, although this might not have been expected. This is due to sparse intense showers events 

during these periods occurring in the region. Annual precipitation generally maintained constant 

ears of monitoring (600 mm). 

The highest monthly precipitation occurred in September 2008 with more than 158mm 

while May 2008 was the month with least precipitation of only 8.4mm. Although, the precipitation 

during the summer months, these coincide with periods when the temperature was also 

higher which results in more evaporation. These two factors, rainfall events and evaporation 
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combined with the hydraulic characteristics of the material are major factors that will control the 

pore water pressure behaviour at the site.

 

With the climate control system, the sprinkler system was used to apply more water to the 

embankment during pre determined periods. The total precipitation at the site, combining natural 

rainfall and that induced by the climate

 

 Figure 8.3 – Total precipitation (natural + induced by the climate control system) and temperature (minimum 

and maximum) recorded at the BIONICS site during the pore water pressure monitoring.

 

 Various types of rainfall patterns were used for the precipitation applied by the climate 

control system, based on climate change predictions (Stephenson, 2008). An initial test for 

combined with the hydraulic characteristics of the material are major factors that will control the 

sure behaviour at the site. 

With the climate control system, the sprinkler system was used to apply more water to the 

embankment during pre determined periods. The total precipitation at the site, combining natural 

rainfall and that induced by the climate control system) is presented in Figure 8.3.

Total precipitation (natural + induced by the climate control system) and temperature (minimum 

and maximum) recorded at the BIONICS site during the pore water pressure monitoring.

of rainfall patterns were used for the precipitation applied by the climate 

control system, based on climate change predictions (Stephenson, 2008). An initial test for 
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With the climate control system, the sprinkler system was used to apply more water to the 

embankment during pre determined periods. The total precipitation at the site, combining natural 

control system) is presented in Figure 8.3. 

Total precipitation (natural + induced by the climate control system) and temperature (minimum 

and maximum) recorded at the BIONICS site during the pore water pressure monitoring. 

of rainfall patterns were used for the precipitation applied by the climate 

control system, based on climate change predictions (Stephenson, 2008). An initial test for 
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commissioning the climate control system was carried out during 19-21 of May 2008 and added 

27.5mm over a period of 3 days (above total ambient conditions of 0.2mm). This was  followed by an 

inundation test, where the precipitation rate was increased, resulting on 363mm in 19 days from 26 

May until 13 June 2008 (above total ambient conditions of 18.8mm). The final test performed was 

simulating a storm event during the period of 30 June until 2 July where 66mm were added (above 

the total ambient conditions of 3mm). A similar test to the storm event simulation started in June 

2009 (Nattrass, 2009). 

 

8.4 Monitoring of pore water pressure 

 

The DU-WF high capacity suction probes were installed in the BPLs starting from 4th of April 

2007. An initial batch of 5 high capacity suction probes was installed and Table 8.3 presents the 

dates of subsequent installation of all high capacity suction probes. The depths of the probes are 

related to the depth referenced to the top of the fill material in Figure 3.2 (Chapter 3), excluding the 

coarse layer, 0.5 metres thick, that was placed above. 

 

Table 8.3 – Installation dates and depths of the high capacity suction probes in the well and poorly compacted 

BPLs. 

Borehole Probe Locator Suction station 
Depth 

(m) 
Installation date 

Well 
Compacted 

Panel 

SS1 0.5 4th April 2007 
SS2 1.0 4th April 2007 
SS3 1.5 4th April 2007 
SS4 2.0 17th May 2007 
SS5 3.0 17th May 2007 

Poorly 
Compacted 

Panel 

SS1 0.5 4th April 2007 
SS2 1.0 4th April 2007 
SS3 1.5 4th May 2007 
SS4 2.0 4th May 2007 
SS5 3.0 20th September 2007 
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As explained in the Chapter 7, it was found that the zero values of the suction probes were 

drifting with time.  From the 20th of September 2007 the reset stage was added to the Modus 

Operandi in use, whereby the probe zeros were checked and set back to zero, and this practice has 

continued until today.  

 

8.4.1 Monitoring pre-“reset stage” 

 

The monitoring carried from April until September in 2007, named pre-“reset” stage 

monitoring, was the period where the high capacity suction probes were tested in a non-controlled 

environment (i.e. outside the laboratory) for the first time. Various uncertainties with the equipment 

had to be analysed: the ability of the probes to measure for an extended time, the quality of the 

measurement, the quality of the protection on the probe (electrical cable protection) and to test the 

insertion and removal of the probes from the respective suction station.  

 

The pre-“reset” stage period was disregarded from the monitoring data set for further 

analysis, but some of the data is presented here to demonstrate the lessons learnt. Due to the 

similarity of behaviour from the probes between the two BPLs only one set of data discussed in this 

chapter (from the well compacted panel). The measured values of pore water pressure for the well 

compacted panel during this period are presented in Figure 8.4.  One factor that affected the 

monitoring was power cuts on the main power line that resulted in gaps in the collected data. Power 

cuts occurred 4 times during the initial period of monitoring (2-13 June, 6-13 July, 25-26 July and 17-

23 August). If a power cut happened between visits (usually every 2 weeks) the computer logging 

system would be shut off and would only be restarted on the following visit, losing all the data in 

between. At this time, there was no wireless connection to the site that could have allowed checking 
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of satisfactory operation between site visits. The problem of power cuts was only resolved close to 

the end of September when a backup battery powered system was installed. 

 

 

Figure 8.4 – Pore-water pressure records for the well compacted panel and rainfall during the pre-reset stage 

monitoring. SS (X.Xm) indicates suction station at X.X metres depth. 

 

From Figure 8.4 the initial period between 4th of April and 15th of May was considered an 

equalisation period, probably representing the final period of closure of the soil around the 

boreholes. Therefore, the large variations in the recorded values were expected. Beyond the 15th of 

May until 5th of September all 5 probes were left measuring, although the suction probe installed in 

suction station 4 (SS4) had to be removed for saturation, as will be explained later and only started 

continuous measuring with valid results from 13th of June. During this period, reaction from some of 
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the probes was evident when rainfall events occurred, showing large increases in pore water 

pressure values at all depths. However noticeable also was the fact that there was a downward 

trend in the measurements with time. In the long term the probes showed a tendency to measure 

lower values of pore water pressure than expected. This was evident even during the longer wetter 

periods, June and July, where it was expected that the recorded values would either maintain or 

increase in pore water pressure values. The observation of this downward shift coincided with 

observations obtained in the laboratory that at the end of a test using this type of probe small shifts 

in the zero value occurred, especially during tests carried out at low levels of suction. A test to check 

the shift of the zero value of the calibration of the suction probes was carried out at the 

embankment on the 5th September 2007 where the probes were removed from the respective 

suction stations and were plunged into free water. The probes were reset so they read a zero value 

(reset stage) and were then placed back into each respective suction station. Problems with use of 

the software lead to losses of some of the recorded values but for two probes placed at SS2 and SS3 

the differences between the final and post reset values were quite evident. The probe at SS2 shown 

an increase from a negative value of -4.3 kPa to 6.9 kPa, and similarly the probe at SS3 increased 

from 3.6 kPa to 20.7 kPa. These observations of the differences in the measured values lead to the 

implementation of a reset stage in every following visit. 

 

During the pre-“reset” stage other observations were made on the reliability of the high 

capacity suction probes, such as the case of the probe installed at SS4. As shown in the highlighted 

area A in Figure 8.4, the probe shown symptoms of poor saturation showing scattering in the 

measurements. The probe was removed on 1st June from SS4 and was re-saturated during two 

weeks (period between visits) and was reinstalled after this period. From the 13th June, as is easily 

observable in Figure 8.4, the scatter in the measurement of the probe installed at SS4 reduced 
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dramatically, the scatter was comparable with the remaining probes. This demonstrates how 

important and crucial the saturation stage is in the usage of these probes. 

 

To validate the quality of the probes regarding the obtained measurement, the probe from 

SS1 was switched with the probe from SS5 (without reset being performed), during the time period 

highlighted as the area B in Figure 8.4. The measurements obtained by the probe installed on SS5 

were congruent with the other measurements obtained at the same location both before and after 

the probes were switched. The same was observed on SS1. The measurements taken during the time 

period highlighted in Figure 8.4 were in accordance with the other measurements recorded before 

and after that probe was installed, showing a maximum error between the switched probes of 5 kPa. 

This gives a degree of confidence in the measurements obtained. 

 

The results obtained from the monitoring showed a considerable difference to the initial 

results obtained for pore water pressures measured during construction (compare Figure 8.4 with 

Figure 7.6 in Chapter 7 that shows the initial values). The initial values of pore water pressure during 

construction were as low as -400 kPa while the measured values of pore water during this initial 

monitoring were generally positive.  

 

The small values of suction observed did throw into question the usage of the DU-WF high 

capacity suction probes with a range exceeding -2 MPa. Clearly, probes with such a large range were 

not required for this period of monitoring. It also raised the question of appropriate accuracy for the 

small suctions being measured. An error for the equipment of 0.5% would represent 10 kPa. While 

10 kPa in 400 kPa would not be too significant, in values close to zero, the error has a much greater 

influence. As will be presented further in this chapter, in both well and poorly compacted panels the 
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recorded values of pore water pressure ranged from -10 kPa up to 30 kPa. That is not to say there 

might not be larger negative values in the future that might require the capacity of the DU-WF 

devices. In any case, while the actual values could be overestimated / underestimated due to errors 

in the measurement, the overall trend in pore water pressure should still be clearly defined.  

 

8.4.2 Field monitoring 

 

 

Following the decision to start periodic resets of the zero value of the calibration of each 

probe, the monitoring data considered in this study started in September 2007 and finished in June 

2009. The probes are still recording at the field, but the work presented will only consider data up to 

June 2009. Continuous monitoring of pore water pressure was performed in both poorly compacted 

and well compacted panel to depths of 3m. 

 

8.4.2.1 Factor affecting the probe usage with the new procedure 

 

 

With the new reset procedure the probes needed to be removed from the respective suction 

station more regularly then initially expected. As was mentioned in Chapter 7, to protect the 

electrical cable of the probes a Ø8 mm nylon tube was used; this nylon tube was glued to the end of 

the probe itself with “Nomorenails” adhesive backed by silicon sealant due to its hydrophobic 

properties. In each reset stage the probes would be removed and inserted back into each respective 

suction station; this regular removal of the probes added some strain to the sealant and after some 

reset stages the sealant started to fail. This meant the probes could fail in the event of infiltration of 

water into the electrical connections.  
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This problem of infiltration of water to the electrical connections did occur resulting in mis-

functioning of the probe. In this event the probe would be removed from the respective suction 

station, brought to the laboratory and left to dry inside an oven at a constant temperature of 60-750 

C. The time needed for the probes to recover was not time dependant, in some cases more than 2 

months were necessary. After recovery the probe would be taken back to the field and a new 

calibration would be performed using the field calibration suction vessel (see Figure 7.8 in Chapter 7) 

before installation in the respective suction station.  

 

8.4.2.2 Monitoring on the well compacted panel 

 

 

Figure 8.5 shows the record of pore water pressure in the well compacted panel B together 

with the observed rainfall for the period September 2007-June 2009. Inspection of Figure 8.5 

indicates that the high capacity suction probes at all suction stations react to rainfall. When the rain 

is absent the probes tend to maintain the same value, although there is a general tendency for pore 

water pressure to decrease gradually with time (due to drying). At all suction stations in the well 

compacted panel the probes presented similar response to changes of climatic conditions showing 

analogous trends of variation with time. 

 

The general tendency with depth was an increase of pore water pressure; in the shallower 

suction station (SS1) pore water pressures down to small negative values (-10 kPa) were recorded 

and the largest values up to greater than 30 kPa were observed at 3 metres (SS5).  A discussion of 

the results for each suction station in the well compacted panel (Figure 8.5) is presented 

independently as follows. 
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Figure 8.5 – Pore-water pressure records for the well compacted panel and rainfall. SS (X.X) indicates suction 

station at X.X metres depth and vertical dashed lines represent the reset stages. 

 

SS1, the shallowest suction station at the depth of 0.5 metres on the fill material, presented 

as expected the lowest values of pore water pressure, in similarity with other observations from 

other researchers (i.e. work performed in Hong Kong (Gasmo, 1997) and Singapore (Tsaparas et al, 

2003)). The recorded values at this location ranged between -10 kPa and 15 kPa. 

 

In the almost two years of monitoring, in SS1 the probe recorded the lower values of pore 

water pressure during the colder months (autumn and winter seasons), a fact that is explained by 

the elevated precipitation during the summer months. Measurements close to -10 kPa of pore water 

pressure were recorded in the autumn months of 2007 followed by positive oscillations until January 
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2008 reaching up to 10 kPa. The tendency that followed was a gradual reduction of pore water 

pressure reaching values close to 0 kPa until May 2008. In June 2008 the probe stopped working due 

to infiltration of water in the electrical system and had to be taken back to the laboratory and was 

not placed back until August of the same year. This probe missed the first batch of water infiltration 

tests using the climate control system (June and July 2008), and when it was placed back in the 

respective suction station the pore water pressure value was as high as 10 kPa oscillating according 

to rainfall events but maintaining values close to the same value. When the precipitation reduced 

the pore water pressure started to drop and returning to values around 5 kPa between October and 

November 2008. In November 2008 the probe again suffered from problems related to water 

infiltration on the electrical system and was removed from monitoring until May 2009. At this time 

the probe was recording values close to zero and with time the pore water pressure reduced to a 

negative value of -10 kPa. In June 2009 the second batch of infiltration tests using the climate 

control system started and from the start the probe reacted positively to the infiltration tests. The 

pore water pressure has gradually increased after a first abrupt jump culminating with a final 

recorded value close to 10 kPa.  

 

The probe located at SS2 (1.0 m) maintained continuous monitoring of pore water pressure 

throughout the whole period of monitoring, showing no problems of infiltration or cavitation. Like all 

the probes installed at the well compacted panel BPL the probe showed  analogous behaviour to the 

probe located at SS1, meaning higher values of pore water pressure during the hotter months 

concomitant with the period of more precipitation and showing reductions during the months when 

lesser precipitation occurred. Due to its greater depth the pore water pressures recorded increased 

in range when compared with the values obtained in SS1, ranging between values close to 0 and 15 

kPa. As in SS1, the probe located at SS2 started by recoding pore water pressure between 0 to 10 

kPa during the autumn months of 2007, increasing to sporadic values of 15 kPa during the intense 



255 

 

rainfall periods of January of the following year. From these occurrences the pore water pressure 

gradually dropped reaching values close to 0 kPa at March 2008, increasing in value with the start of 

a wetter period in April and maintaining a constant value around 10 kPa until mid November 2008 

apart from June (time of the infiltration tests) where the pore water pressure values were as high as 

15 kPa, but reducing to lower values after the infiltration tests to 10 kPa. Between November and 

December reductions to values close to zero were again recorded increasing after to a value close to 

5 kPa in April-May 2009, increasing again to 12 kPa when the second batch of infiltration tests 

started in June 2009. 

 

At SS3 the behaviour of the probe installed was thought to be erratic in the initial stages, 

although it showed the same general behaviour as the remaining probes for most of the monitoring 

time. However, after some of the reset stages the probe shown discrepancies in readings, from a 

period of positive measurements to negative values after the reset stage. This probe was taken back 

to the laboratory for evaluation in mid May 2008. After the evaluation and re-saturation of the 

probe followed by re-calibration in the field the probe was again placed in the same position for 

monitoring at the end of July 2008. From this period the probe behaviour seemed more consistent 

by recording values consistent with the other probes. It started by showing reduction in values from 

a value of 22 kPa of pore water pressure to a value close 5 kPa. The probe installed at SS2 (mid 

November 2008) recorded similar values until the January 2009. Oscillations on the recorded values 

were observed in February, as in the other probes installed, reaching almost 20 kPa, followed by 

dissipation of the pore water pressure, only to increase to values close to 15 kPa at the start of the 

second infiltration test at the end of the monitoring period presented in this work. 
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At SS4 the same analogous behaviour can be observed. However, in this case the probe got 

stuck in the suction station. This meant the probe was never reset and therefore the recorded values 

can be only be analysed in a qualitative manner. When compared with the other probes installed at 

the different suction stations this probe showed the same oscillation related with rainfall events: 

increasing after the events followed by the dissipation on the recorded pore water pressure. This 

probe started to show symptoms related with saturation in the end of March 2008, as had been 

observed during the pre reset stage monitoring (not presented in Figure 8.4). A forced retrieval of 

the probe was attempted which culminated with the complete loss of probe (we were left with the 

cable in our hands). The head of the probe is still in the suction station and it is impossible to replace 

it. 

 

In SS5, the probe located at the lowest depth (3.0 m), recorded the highest values of pore 

water pressure, as high as 35 kPa. Throughout the monitoring presented, this probe recorded 

oscillations between 20 and 35 kPa in a comparable manner to all other probes in the well 

compacted panel.  During September 2007 until February 2009, it reached a minimum value of 15 

kPa in the last days of February 2009. This probe suffered from water infiltrations related problems 

in mid March 2009 and was retrieved and taken back to the laboratory for evaluation. After the 

recovery this probe was placed in a different suction station, SS3 of the poorly compacted panel, due 

a major loss of high capacity suction probes in this BPL.  

 

 From the monitoring in all suction stations on the well compacted panel it was possible to 

elaborate pore water pressure profiles. To create the profiles the information obtained on the first 

day of recorded values for each month was used. For the well compacted panel this information was 

divided into years to produce Figures 8.6: a) 2007, b) 2008 and c) 2009. To try to obtain an 



 

understandable picture of the evolu

colour scheme used in each figure (from brown in January to purple in December).

 

 

 

a) 

b) 

understandable picture of the evolution of the pore water pressure of each profile; refer to the 

colour scheme used in each figure (from brown in January to purple in December).
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tion of the pore water pressure of each profile; refer to the 

colour scheme used in each figure (from brown in January to purple in December).  

 

 



 

Figure 8.6 – Pore water pressure profiles along depth in the well compacted panel for first day of

according to different years: 

 

From the pore water pressure profiles for the well compacted panel a clearer view of the 

observations that have been presented so far can be obtained: the tendency of the pore water 

pressure to increase to higher values during the summer months while dissipating afterwards. In the 

final months of 2007 (Figure 8.6a), the pore water pressure reduced in the shallow depths with slight 

increases at greater depths, this excludes the results from 

paragraph related to this suction station. The final results for 2007 were a small negative value of 

kPa at 0.5 metres increasing to values close the 30 kPa at 3.0 metres (SS5). In January 2008 

(coincident with significant rainfall events) the values of pore water pressure increased to above the 

hydrostatic line for most of the full extent of the profile, decreasing in the following months due to a 

dryer period with smaller rainfall events. With the start of the summe

started to increase, reaching similar values of pore water pressure as were recorded in January of 

the same year, the wet summer of 2008 was the cause of such an increment. With the reduction of 

rainfall events the pore water pres

 

c) 

water pressure profiles along depth in the well compacted panel for first day of

according to different years: a) 2007 b) 2008 c) 2009. 

From the pore water pressure profiles for the well compacted panel a clearer view of the 

observations that have been presented so far can be obtained: the tendency of the pore water 

re to increase to higher values during the summer months while dissipating afterwards. In the 

8.6a), the pore water pressure reduced in the shallow depths with slight 

increases at greater depths, this excludes the results from SS3 (1.5 m deep) as explained in the 

paragraph related to this suction station. The final results for 2007 were a small negative value of 

kPa at 0.5 metres increasing to values close the 30 kPa at 3.0 metres (SS5). In January 2008 

ficant rainfall events) the values of pore water pressure increased to above the 

hydrostatic line for most of the full extent of the profile, decreasing in the following months due to a 

dryer period with smaller rainfall events. With the start of the summer the pore water pressure 

started to increase, reaching similar values of pore water pressure as were recorded in January of 

the same year, the wet summer of 2008 was the cause of such an increment. With the reduction of 

rainfall events the pore water pressure dropped again, only to increase again in April and May 2009.
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water pressure profiles along depth in the well compacted panel for first day of each month 

From the pore water pressure profiles for the well compacted panel a clearer view of the 

observations that have been presented so far can be obtained: the tendency of the pore water 

re to increase to higher values during the summer months while dissipating afterwards. In the 

8.6a), the pore water pressure reduced in the shallow depths with slight 

SS3 (1.5 m deep) as explained in the 

paragraph related to this suction station. The final results for 2007 were a small negative value of -5 

kPa at 0.5 metres increasing to values close the 30 kPa at 3.0 metres (SS5). In January 2008 

ficant rainfall events) the values of pore water pressure increased to above the 

hydrostatic line for most of the full extent of the profile, decreasing in the following months due to a 

r the pore water pressure 

started to increase, reaching similar values of pore water pressure as were recorded in January of 

the same year, the wet summer of 2008 was the cause of such an increment. With the reduction of 

sure dropped again, only to increase again in April and May 2009. 
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One interesting observation that can be taken from the pore water pressure profiles was the 

extent of influence of the changes recorded at different depths. It was quite noticeable that at 

greater depths (3.0 m) changes in pore water pressure were still evident when compared with 

shallower depths (0.5 m).  

  

During the summer months of 2008 (Figure 8.6b)) the recorded values of pore water 

pressure in all probes maintained higher levels above the hydrostatic line. This raised the possibility 

that the probes might have overestimated the real values. However, it has to be remembered that a 

0.5 metre thick coarse layer of ballast exists above the clay fill. It is possible that water retention 

within this layer could explain the reason for such apparently abnormal pore water pressures. The 

raised pore water pressure values would be consistent with the coarse ballast layer being flooded, 

thereby shifting the hydrostatic profile by 5 kPa. The closeness observed of the pore water pressures 

in depth on the pore water pressure profiles with the hydrostatic line gives the idea that the 

material is close to saturation.  

 

8.4.2.3 Monitoring on the poorly compacted panel 

 

 

The monitoring data for the poorly compacted panel is only presented from the start of the 

use of the reset stage as for the well compacted panel. As presented in the Chapter 3 this panel was 

constructed differently from the well compacted panel. The expected behaviour for this panel would 

be of more noticeable differences in pore water pressure in comparison with the measurements 

obtained for the well compacted panel, due to higher permeability. The monitoring for the poorly 

compacted panel is presented in Figure 8.7. From Figure 8.7 it is observable that during monitoring 
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the probes reacted to the weather behaviour: increase of pore water pressure during extended 

rainfall periods followed by reductions during periods with less rainfall events. 

 

 

Figure 8.7 – Pore-water pressure records for the poorly compacted panel and rainfall. SS (X.X) indicates suction 

station at X.X metres depth and vertical dashed lines representing the reset stages. 

  

From Figure 8.7 each probe was analysed and the results are discussed for each suction 

station in the following paragraphs. 

 

In SS1 (0.5 m deep) at the start of the monitoring (September-October 2007) the probe 

recorded small variations between 0 and -3 kPa until the period of greater rainfall activity in January, 
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where the pore water pressure rose to values close to 10 kPa. After individual rainfall events an 

abrupt rise in pore water pressure was followed by a rapid reduction. At this depth, positive values 

of pore water pressure were maintained during periods of continued precipitation, in fact during 

January 2008 this probe recorded values between 10 kPa and 5 kPa. With a period of sparser rainfall 

events (February until April 2008) negative values were again recorded at SS1. Apart from some 

sporadic rainfall events where pore water pressure rose to positive values, it maintained values close 

to -5 kPa. With the start of another wetter period (during April) the pore water pressure rapidly rose 

again to positive values between 3 and 5 kPa. Although there was no recorded values during the first 

two weeks of May and considering the observed behaviour at this location so far, a possible negative 

value should have been reached explaining the fact that during the first batch of infiltration tests 

carried out at the embankment (June 2008) this probe started by recording small negative values 

followed by a gradual increase to 10 kPa. At the end of the infiltration tests, first week of July, the 

probe maintained a constant value of 5 kPa. After the infiltration tests the probe stopped working 

due to water infiltration into the electrical connections. The period when no values were recorded 

was quite extended, almost 10 months, due to a long recovery time for the probe and because there 

were no replacement probes. The probe was reinstalled mid May 2005 recording values close to 5 

kPa, a fact possibly explained by the previous rainfall events. Showing similar behaviour as 

previously, a fast reduction to zero was recorded during the period where less precipitation was 

observed, only to rise again, to values close to 10 kPa, with the start of the second batch of 

infiltration tests in June 2009. In general at this location (SS1) the probe showed abrupt behaviour 

with rainfall events, increasing rapidly, followed by fast reduction of pore water pressure, which can 

be explained by the permeability of this panel. 

 

The probe installed in SS2 (1.0 m) was the only probe in the poorly compacted panel that 

maintained continuous readings without suffering from any problems related with water infiltration 
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into the electrical system. The initial value (end of September and beginning of October 2007) was 

close to 5 kPa coincident with some precipitation.  As in SS1, during a period where the precipitation 

decreased (October until mid November 2007) so did the value of pore water pressure, this time to 

negative values around -8 kPa.  At this depth the reaction to a single rainfall event was still very 

quick; between November and December 2007 jumps in the readings from negative to positive 

values of pore water pressure, almost 20 kPa of difference, were recorded. More significant, 

however, was the time that it took the pore water pressure to drop back to negative values when no 

or small events of rainfall occurred, which was less than one week. From January until February 

2008, after the rapid increase in the recorded value of pore water pressure caused by the intense 

rainfall event at the 1st of January the following rate of reduction of the pore water pressure 

decreased in comparison with previous events due to the smaller, but continuous, rainfall events 

always maintaining positive pore water pressure values. By the time that rainfall events ceased 

completely (late February) the rapid reduction occurred, as observed previously, culminating with 

negative values of pore water pressure close to -10 kPa. During March 2008, the probe was retrieved 

for inspection when it stopped recording. Although it was retrieved and taken back to the laboratory 

the problem was related with the respective channel in the logger and, as soon it was changed (the 

channel in the logger) the probe continued the monitoring. The probe returned to SS2 on the 1st of 

April. The pore water pressure values recorded straight after were abnormal when compared to 

previous observations during rainfall events; the pore water pressure values increased to a positive 

value. However, during this period, even with constant precipitation, the pore water pressure was 

constantly decreasing, recording the lowest recorded value at this depth of -17 kPa. From May 2008 

until April 2009 almost daily precipitation was observed, a fact that explains the positive pore water 

pressure values recorded. Apart from oscillations related with periods of less precipitation, the pore 

water pressure kept between 5 up to 15 kPa. With the start of another drier period, the pore water 

pressure at SS2 started to drop, reaching values close to zero only to increase again with the single 

rainfall events of May 2009 followed again by rapid reduction. In June, at the end of the monitoring 
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period which coincided with the second batch of infiltration tests at the embankment, the pore 

water pressure increased to values close to 10 kPa and maintained the same values afterwards. 

 

By the time of the post reset stage of monitoring there was no probe positioned at SS3. 

From all the probes, including the probes in the well compacted panel, the probe at SS3 was the first 

to stop recording due to water infiltration into the electrical system. The probe was recovered and 

only placed back in the respective position in April 2008. In mid May the probe stopped working 

again, but during this period (April/May) the recorded values were similar in value and behaviour 

with the probe at SS2. As presented in SS2, this result was considered abnormal; since the period 

coincides with daily rainfall events increases in pore water pressure values were expected, not a 

drop. Since there was no previous information at this depth no further conclusion on the obtained 

measurements can be made. Back in the laboratory it was impossible to recover the probe from the 

second failure due to water infiltration. The recorded values in mid May 2009 were performed with 

the probe that was transferred from SS5 in the well compacted panel. From this date, the pore 

water pressure behaviour was very similar with the remaining probes, showing increases in the pore 

water pressure value during rainfall events followed by reduction when limited rainfall events were 

observed. The pore water pressure values recorded were close to 10 kPa, with the lowest (during 

the reduction period) being 5 kPa. 

 

In SS4, 2.0 metres deep, the rapid changes in the pore water pressure to higher values 

influenced by the weather conditions was still evident. Abrupt jumps of 20 kPa were recorded by the 

probe. Reduction of pore water pressure, when the conditions permitted, was also observed. From 

the beginning, the probe located at SS4 recorded small negative values of pore water pressure (-10 

kPa) which, with time, was considered erroneous, since after the second reset the probe was 
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recording positive values of 5 kPa with no clear evidence of a significant rainfall event that could 

justify it. After the second reset stage, until the rainfall event in mid December 2007, the pore water 

pressure gradually increased from 5 kPa to 10 kPa. During this event the pore water pressure 

increased abruptly to 32 kPa, the highest value of pore water pressure recorded in all the monitoring 

carried out on the poorly compacted panel. Subsequence oscillations on the pore water pressure 

between singular rainfall events were observed (November-December 2007). In the second half of 

December, during a period of less precipitation, a clear reduction of the pore water pressure was 

observed, reducing to a value of 12 kPa. In the beginning of 2008 (January/February) an initial abrupt 

jump of the pore water pressure reaching 25-26 kPa was recorded, with subsequent daily 

precipitation, this value was maintained, only to change again during the drier period of  February-

March 2008. A longer period of reduction of pore water pressure, in comparison with shallower 

probes, was observed during February-March 2008, culminating in values of pore water pressure 

around zero. Within April, the precipitation intensified and remained constant resulting in an 

increase in the pore water pressure, this time to values not greater than 12 kPa. Previous to the 

infiltration test there was no evident precipitation and since no data was recorded, it is likely that 

the pore water pressure decreased to lower values (possibly negative), an assumption based on the 

observed behaviour of the pore water pressure at SS4. This can explain the fact that during the 

infiltration tests the first abrupt jump is missing. With the continuous infiltration of water into the 

embankment the pore water pressure at SS4 increased continuously, from 0 kPa in 14th May up to 

15 kPa in 20th July. The probe stopped recording in mid August 2008 and it was impossible to recover 

it. With no replacement probes the monitoring at this depth stopped at 21st August 2008. 

  

 At SS5 (3.0 m deep) the pore water pressure behaviour with time was less reactive in 

comparison with the remaining probes. From the beginning of the monitoring until the first intense 

rainfall event in mid November the probe recorded values of pore water pressure between small 
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negative values down to -5 kPa and zero. With the rainfall events, this probe started to show the 

abrupt jumps that were recorded in all other suction stations. Differences in the behaviour of pore 

water pressure were observed, comparible with those observed at the same period at the remaining 

suction stations: the abrupt jumps were less significant with a maximum jump of 9 kPa and the 

general tendency during this period was that the pore water pressure seemed to increase gradually 

with time (possibly showing some water retention at this depth). The short time of monitoring for 

this probe (19th September 2007 until the 1st April 2008) showed small differences in behaviour of 

pore water pressure suggesting that at this depth the influence of the weather was less evident. For 

the gradual increase of pore water pressure with time at this depth, a continuous infiltration can be 

suggested, which can be related with the suggestion for the higher values of pore water pressure 

above hydrostatic values in the well compacted panel monitoring.  

 

 The recorded values of pore water pressure of the poorly compacted panel were used to 

generate pore water pressure profiles, as for the well compacted panel. Figure 8.8 presents the pore 

water pressure profiles obtained. From the profiles it is evident that pore water pressure changes 

are different with depth, in the case of 2007 as an example, pore water pressure at 0.5 m was close 

to hydrostatic values in September and December, while during October and November values 

reduced to close to zero; at 1.0 m the profile shows that pore water pressure in September was 

negative (-15 kPa) increased to positive in October, reducing to small negative values in November 

and increasing back to positive in December. This heterogeneous behaviour between probes can be 

observed in the remaining profiles.  
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Figure 8.8 – Pore water pressure profiles along depth in the poorly compacted panel for first day of each 

month according to different years: a) 2007 b) 2008 c) 2009. 

b) 

c) 

a) 
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The heterogenic behaviour of the probes observed in the profiles for the poorly compacted 

panel can be related with single climatic events; as was mentioned in the description of the 

monitoring during rainfall events, abrupt jumps in the recorded pore water pressure were observed 

and normally reduced rapidly afterwards when the climatic conditions permitted. These rapid 

changes can be related with the permeability of the material that allowed a faster flow of water 

inside this panel, during both rainfall events (infiltration) and drier periods (evaporation). The record 

result of January is a clear evidence of this: the 1st of January coincides with a major rainfall event 

and the values of pore water pressure up to 2 metres deep were greatly affect by it, reaching values 

above the hydrostatic line, apart from SS5 at 3 metres where the pore water pressure changed 

significantly less. 

 

8.4.3 Well compacted panel versus poorly compacted panel 

 

The generated data of pore water pressure for both poorly compacted and well compacted 

panels showed similarities and differences between panels.  

 

The similarities refer to the rapid response on the part of the high capacity suction probes 

installed related with the climatic events; positive response to rainfall events and gradual reduction, 

during periods with less precipitation activity, on the recorded pore water pressure.  

  

Although the behaviour of the probes was similar to climatic events, the actual pore water 

pressure behaviour when compared between panels could not be more different. In the well 

compacted panel, the pore water pressure changed almost in sync at different depths, resulting in 

the pore water pressure gradually increasing with depth, closely following the hydrostatic line in the 
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pore water pressure profiles. In the poorly compacted panel the story was more varied, where the 

pore water pressure changes were independent of depth. Changes in pore water pressure on the 

poorly compacted panel were more dramatically related to singular rainfall events, with abrupt 

positive changes on the pore water pressure in all the monitored depths, being more evident down 

to 2 metres. The behaviour of pore water pressure in the poorly compacted panel did not show any 

consistency, and did not showing any clear relation between probes at different depths. 

 

The data therefore shows clear differences between the panels which can be explained by 

the different compactive effort employed during construction. Being more permeable the pore 

water pressures in the poorly compacted panel were prone to bigger changes, thus abrupt jumps 

were observed during rainfall events, and the reduction in pore water pressure after a rainfall event 

was vastly faster when the conditions permitted. 

 

In terms of the actual values of pore water pressure measured in both panels, the well 

compacted panel showed measurements of pore water pressure closely following the slope of the 

hydrostatic line. This suggests there was limited water flow inside the panel as the pressure head 

profile would not encourage this. However, the observed oscillations between negative to positive 

values in the poorly compacted panel could be related to permeability. However, in this case the 

value of the permeability was sufficient to allow a more varied water flow inside the panel. 

 

8.5 Conclusions 
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The monitoring of pore water pressure at the BIONICS embankment had the intention to 

generate sufficient data to explain the behaviour of pore water pressure in time and with depth.  

Monitoring was performed for two different compaction conditions, a poorly compacted and a well 

compacted panel, promoted the comparison of pore water pressure between different conditions. 

The different values on water contents and void ratio (with differences also in degrees of saturation) 

obtained from the cores indicated the different environments for the monitoring. These differences 

would greatly influence the recorded values of pore water pressure at the different panels, even 

though both responded to the observed weather at the site (natural and induced). 

 

 The initial monitoring (pre-“reset stage” monitoring) lead to major findings and generated 

some concerns about the usage of high capacity suction probes in field conditions. However, it has 

been shown that the suction probes have the capacity for long-term measurement. Swapping the 

location of the probes showed reproducibility of measurements. The importance of saturation to 

ensure reliable measurements has been demonstrated. However, the probes were unable to 

maintain a constant zero value of the calibration, which lead to the implementation of reset stages 

every two weeks where the probes were reset back to zero values.  

 

Due to the constant movement of the probes (in and out of the Borehole Probe Locator) 

needed to implement regular resetting, a new technical problem arose. This movement gradually 

destroyed the sealant used between the protective nylon tube and the electrical cable. With the loss 

of this defence, water could infiltrate the electrical system of the probes which jeopardised the 

monitoring. A recovery methodology was developed and in the majority of the recorded cases was 

successful. 

 



270 

 

The responses of the probes (in both panels) during the monitoring were consistent with the 

reaction to weather events. Under a single rainstorm or after continued precipitation, values of pore 

water pressure increased positively and reductions in pore water pressure were observed only when 

precipitation was less intense. 

 

The monitoring of the well compacted panel showed that the pore water pressure behaviour 

had the tendency to increase with depth, always recording values either, slightly negative at 

shallower depths and positive at greater depths. This general increase with depth followed closely 

the hydrostatic line (shown in the profiles) leading to the assumption that the material was close to 

saturation.  

 

A different behaviour was observed on the poorly compacted panel. Pore water pressure 

behaviour was more heterogeneous, showing no relation with depth as in the well compacted panel. 

The reactions of the probes to weather events were more dramatic with abrupt jumps, increasing up 

to 20 kPa, and a more rapid reduction of pore water pressure when conditions permitted. This 

behaviour of pore water pressure was more evident at depths less than 2 metres. Being more 

permeable than the well compacted panel, the water flow within the poorly compacted panel was 

more rapid resulting in the observed behaviour of pore water pressure. 
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9 From the laboratory to the field 
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9.1 Introduction 

 

 

The experimental study of the BIONICS fill material has been carried out in both laboratory 

and field conditions. From the laboratory experimental chapters, Chapters 5 and 6, the hydraulic and 

mechanical properties of the fill material were determined on compacted samples.  For the field 

work, an extended period of monitoring of pore water pressure has been presented in Chapter 8. 

This chapter intends to correlate these results in an attempt to take the results obtained in the 

laboratory to the field. 

 

9.2 Initial construction conditions 

 

 

9.2.1 Initial conditions at the embankment 

 

 

To correlate the data from field and laboratory, in an attempt of describing the possible 

behaviour of BIONICS embankment fill material, it is important to acknowledge the initial conditions 

at construction. As has been described in Chapter 3, the BIONICS embankment, with glacial till as a 

fill material, was built to resemble embankments commonly found throughout the transportation 

network in the NE of England, divided in panels representing two different construction methods. 

During construction two of the panels were compacted according to Method 3 as set out in the 

Highways Agency Specification for Highway Works (Highways Agency, 1998) (the well compacted 

panels), and 2 other panels were constructed where compaction was not controlled in order to 

simulate compaction methods of Victorian times (the poorly compacted panels). Differences in the 

fill material properties from both compaction methods were presented in Table 3.3, in Chapter 3, 

where differences were found between the two. The well compacted panels presented generally 
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better characteristics. The measured permeability values showed that the well compacted panels 

were the less permeable, where laboratory permeability tests results ranged in values greater than 

10-11 opposing to 10-10 obtained for the poorly compacted panel. Preliminary results obtained in the 

field for the top metre on each individual panel by Natrass (2009), using a Guelph permeameter, 

suggests that at field conditions the permeability was much higher increasing to average values close 

to 10-8 in the case of poorly compacted panels and 10-9 for the well compacted panels.  

 

More importantly, regarding the laboratory work performed, were the initial conditions in 

terms of water content and dry densities. The initial water content and the dry densities varied 

during construction. However, it can be assumed that water content during construction was 

between 17% and 24%, and dry densities between 1.60 to 1.73 Mg/m3 for the most of the 

determinations of both construction methods, as shown in Figure 3.10.  

 

Table 9.1 – Water content and dry density of the BIONICS fill material at construction from the first 

three 3 metres.  

Well compacted panel B Poorly compacted panel A 

at-construction at-construction 

Depth γd  Wc γd  Wc 

m Mg/m
3
 (%) Mg/m

3
 (%) 

Layer 1 0.3 1.68 19.7 1.71 19.5 

Layer 2 0.6 1.61 23.2 1.63 18.3 

Layer 3 0.9 1.61 20.4 1.67 19.9 

Layer 4 1.2 1.70 18.8 1.63 22.2 

Layer 5 1.8 1.68 20.7 1.65 21.0 

Layer 6 2.1 1.64 21.4 1.65 20.5 

Layer 6 2.4 1.72 18.2 - - 

Layer 7 2.7 1.71 18.4 - - 

Layer 8 3.0 1.68 20.4 1.61 20.1 

 

Table 9.1 presents a more detailed information on the values of dry density and water content 

for the top 3 metres of panel A (poorly compacted) and panel B (well compacted) presented in 
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Figure 3.10 referent to the comparison of the compaction curves with field results obtained during 

construction in Chapter 3. It is also important to mention that the monitoring of pore water pressure 

carried out in the BIONICS embankment was performed down to the depth of 3 metres on these 

panels. 

 

From Table 9.1 on average, for the first three metres, both panels present slightly different 

conditions, as previously mentioned. At depth, in panel B, the dry density tended to increase from 

an average value of 1.63 Mg/m3 in the first metre to 1.67 Mg/m3 in the second metre to a higher 

value of 1.70 Mg/m3 in the third metre; in the same analogy, the correspondent water contents 

decrease from 21% at the top metres to 20% reducing further to 19% at 3 metres.   In the poorly 

compacted Panel A, during construction dry densities were slightly smaller below one metre, around 

1.65 Mg/m3 and seemed to decrease with depth, although there is a lack of information between 2 

and 3 metres deep. 

 

9.2.2 Laboratory and field soil material comparison 

 

The values of dry density and water content seemed to agree with the wet part of the curve of 

the compaction curve from the BS Light (2.5 kg) compaction test obtained in the laboratory, see 

Figure 3.10. The same analogy could not be obtained for the dry side of the compaction curve for 

the values obtained in the field at lower water contents, especially for the values obtained for the 

well compacted panel, where these values tended to be higher in comparison. The original fill 

material, however, was found to be too heterogeneous, being difficult to give reproducible densities 

in the laboratory.  Thus the BIONICS soil was sieved using a 2.80 mm mesh to reduce the observed 

heterogeneity (Chapter 4). Larger samples (200mm by Ø100mm) were compacted under the sample 

preparation methodology developed in chapter 4 at different water contents (10%, 13%, 15%, 20% 
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and 22%) and these gave an close agreement with the measurements obtained from the field, in 

similarity with the light compaction curve, in Figure 4.3 the BSL – 200 S.  

 

As described in chapter 7, core samples were retrieved from each borehole of panels A 

(poorly compacted panel) and B (well compacted panel) in 2007, two years after the construction. In 

Chapter 8 the results of water content and density were reported in Table 8.2. The comparison of 

Table 8.2 with 9.1 shows that after two years the material in the poorly compacted panel on average 

had a higher water content value and lower dry densities for the first 2 metres deep, on the first 

metre the average value of dry density changed from 1.67 Mg/m3 (during construction) to 

1.62Mg/m3 while the average water content increased from 19% to 24 % and in the second metre 

changes in dry density were from 1.64 Mg/m3 during construction to 1.59 Mg/m3 and water content 

increased from 21% to 24%. At 3 metres there was a noticeable decrease of the water content 20% 

to 18% where no variation in the dry density was observed. 

 

On the well compacted panel little seemed to change over the two years that separated the 

measurements apart from the first metre, where, the water content reduced by 1%, although this 

might not be statistically significant. 

 

From the core samples, differences in the water retention properties of both panels were 

shown in Figure 8.1 (reproduced again in this chapter as Figure 9.1), which were determined by high 

capacity suction probes. Also shown in Figure 9.1 are the water retention curves following drying 

paths that were obtained in the laboratory using the sieved material. The results from the core 

samples are drying curves from the natural water contents: 22% in the case of the well compacted 

panel and 20% in the case of the poorly compacted panel presented again as Figure 9.1. 
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Figure 9.1 - SWRCs obtained from samples of the first metre of the cores from boreholes in 

the well and poorly compacted panels compared with results from SWRCs on laboratory compacted 

samples (drying path). 

 

From Figure 9.1 it can be observed that the water retention curve obtained for the well 

compacted material fell at higher values than the SWRC (primary drying curve in the figure). The 

water retention curve obtained for the poorly compacted panel, however, showed some degree of 

agreement with the SWRCs that were dried from different water contents as observed in the figure. 

The behaviour of the two SWRCs obtained from core samples was dependent on the initial 

conditions. For the SWRC obtained for the well compacted panel the initial conditions were: water 

content of 21.3%, void ratio 0.64 meaning a degree of saturation close to 90% and recording a 

suction of 66 kPa by the high capacity suction probe; while for the SWRC obtained from core 

samples of the poorly compacted panel the initial conditions were: water content 20.2%, void ratio 

0.66 hence a degree of saturation close to 83% and suction of 27 kPa. The difference between the 
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two SWRCs is evident from the start: higher degree of saturation corresponding to a higher suction 

for the well compacted SWRC against an initial lower degree of saturation with lower value of 

suction on the SWRC for the poorly compacted panel. Due to the manner in which the tests were 

carried out the volumetric changes of the sample due to drying was not determined, and because 

shrinking behaviour was observed during the tests it makes impossible to infer the air entry values 

based on changes in degree of saturation. However it is possible to recognize that it would be the 

first to desaturate due to the nature with higher void ratio, lower density and higher permeability of 

the poorly compacted panel and the initial value of degree of saturation. 

 

The initial suctions for the cores taken from the embankment (values of 66kPa for the well-

compacted panel and 27kPa for the poorly compacted panel, in Fig 9.1) are smaller than the 

observed values of suction during construction presented in Chapter 7 (Fig 7.6) ranging between 

values of 75 to 400 kpa for the well compacted panels and between 50 to 160 for the poorly 

compacted panels. These cores were taken from the embankment in the Spring of 2007 during the 

installation of the borehole probe locators. After two years of the embankment being subject to 

precipitation, it was shown that suctions had reduced significantly. Moreover, the obtained 

measurements were also obtained under no confinement at the laboratory which was different from 

the field conditions. Under confinement, as it was presented in Chapter 8, suction reduced even 

further to small values of suction at the shallower depths to positive values of pore water pressure 

at deeper depths on both well and poorly compacted panels. 

 

9.3 Climate conditions and influence on the pore water pressure 
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Pore water pressure measurements in the field correlated with recorded precipitation in two 

of the panels of the embankment (well compacted panel B and poorly compacted panel A), were 

presented in chapter 8 and are again shown as Figures 9.2 for the well compacted panel and Figure 

9.3 for the poorly compacted panel. 

 

 

Figure 9.2 – Pore-water pressure records for the well compacted panel and rainfall. SS (X.X) indicates 

suction station at X.X metres depth and vertical dashed represent the reset stages. 

 

In the well compacted panel, Figure 9.2, pore water pressure behaviour had the tendency to 

increase with depth; always recording either small negative values at shallower depths and positive 

values at the deeper depths. However, in the poorly compacted panel, reactions to weather events 

were more evident with abrupt positive jumps in the pore water pressure followed by a dissipation 

period when weather conditions permitted.  
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Figure 9.3 – Pore-water pressure records for the poorly compacted panel and rainfall. SS (X.X) 

indicates suction station at X.X metres depth and vertical dashed representing the reset stages. 

 

The pore water pressure behaviours for the first three metres observed in both panels have 

shown that the fill material reacted differently to weather conditions. An important observation was 

the dramatic behaviour of pore water pressure in the poorly compacted panel when compared with 

the better engineered well compacted panel.  In the particular case of the BIONICS embankment this 

behaviour can only be explained from the nature of the properties of the material at the given 

conditions. The permeability of the poorly compacted panel is higher when compared with the well 

compacted panel resulting in faster flow of water in different forms such as liquid water (infiltration) 

or vapour water (evaporation) resulting in the observed sharp reactions from the high capacity 

suction probes during different climate conditions.  
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Differences arise when comparing the initial values of pore water pressure obtained from the 

core samples from both panels with the observed changes in pore water pressure in depth and in 

time during monitoring. During monitoring, in both panels, the values of pore water pressure were 

only slightly negative (-5 to -10 kPa) or positive (reaching up to 30 kPa) never reaching the measured 

pore water pressures of -27 (poorly compacted) and -66 kPa (well compacted) measured during the 

trials for the determination of the SWRCs for the core samples. There are two possibilities to explain 

such inconsistency: the manner in which core samples were retrieved and transported and the 

ballast layer that serves as a boundary condition for the numerical modelling.  

 

The core samples were retrieved from the embankment and taken to the laboratory, from 

retrieval until testing, changes in water content were only minimised and not totally eliminated, 

which, by drying, would increase the value of suction.  

 

In order to make the numerical modelling of the embankment easier, a boundary condition 

was created in the form of a ballast layer of 0.5 m thickness at the top of the embankment which lies 

above both locations of the BPLs. This layer made it impossible to make observations of the surface 

of the fill material where the possibility of water being retained could exist. In the event of such a 

case, water that would be retained underneath the ballast layer would have a major impact on the 

natural behaviour of the internal flow of water since there would be no, or limited, runoff and the 

water would slowly infiltrate the embankment increasing the actual water content of the fill material 

making the changes in pore water pressure less evidently related to climate conditions. Being a 

coarse material the water flows through the ballast layer rapidly and could lie above the less 

permeable surface of the fill material. As it has 0.5 m thickness it could also act as a cover for this 

water resulting in the reduction of actual evaporation.  
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9.4 Future climate scenarios and pore water pressure 

 

During the monitoring of 2007-2009 pore water pressure in both panels varied from small 

negative to positive. This suggests that the embankment is close to saturation. However, this might 

not be true for future climate scenarios.  

 

Climate change predictions suggest that we will experience temperature changes and this will 

lead to changes in the weather patterns. For the UK it is expected that we will experience stronger 

winters with intense rain showers and dry summers with longer drying periods.  

 

In terms of pore water pressure response within the BIONICS embankment, during extended 

dry periods pore water pressure are likely to change to negative values, possibly reaching lower 

values than those observed during the period presented (2007-2009). Moreover, there is also the 

possibility that negative pore water pressures may exist at greater depths. During winter months it is 

likely that pore water pressure will increase to positive values, up to hydrostatic levels, as it has been 

observed so far. Therefore, higher fluctuations of pore water pressure between seasons should be 

expected, which could lead to a decrease in serviceability of infrastructure embankments. 

 

9.5 Mechanical behaviour of the well compacted panel B 

 

 

From what has been presented through this chapter the well compacted panel seems to 

present more similarity with the samples prepared in the laboratory. The densities are more similar 
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to those reported in Chapter 8 and the SWRCs for the sample taken from the well compacted panel 

coincides  with the drying path for laboratory prepared samples (although the SWRC for the poorly 

compacted panel did present more similarities with the determined SWRCs involving drying from 

lower water contents than the primary drying SWRC). Of course, some cautiousness has to be 

considered when comparing SWRCs since laboratory prepared samples were wetted or dried only 

once from as compacted conditions, whereas the weather records show reversals of wetting and 

drying in the field. 

 

The better engineered well compacted panel, resembling modern highway embankments, has 

not responded so dramatically to the weather patterns observed at the BIONICS site, as is observed 

from Figure 9.2, despite the fact of pore water pressure still reached hydrostatic values. The 

observed smaller variations in pore water pressure in depth (variations were less than 15 kPa, 

compared with almost 20 kPa for the poorly compacted panel) and the fact that less dramatic events 

due to climate conditions were recorded indicates a more homogeneous structure. This of course is 

a direct cause of the methodology used for the construction of each panel. Albeit being built of the 

same material, the higher density achieved during construction on the well compacted panel 

resulted in a less permeable material which in turn affected the hydraulic behaviour of the material 

by reducing the water infiltration rate.  

 

The mechanical behaviour described in Chapter 6 can only be representative of the stage of 

construction since weather cycles of precipitation/evaporation occurred subsequently in the field 

but no cyclic tests were performed in order to observe the behaviour during the later stages. The 

lack of equipment to measure strength parameter in the embankment also impedes better 

correlations of field and laboratory behaviour. 
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Therefore, at construction, since the values of dry density were close to 1.6-1.7 Mg/m3 and 

water content ranged between 17% - 24% from the described mechanical behaviour in Chapter 6 the 

Critical State Line (CSL) for construction conditions were the values presented around the 

parameters of critical state of 20% and 22% Wc(ac) as shown in Table 9.2. 

 

Table 9.2 – Critical state parameters representative of the initial conditions during construction.  

 
ν – (p-uw) plane 

 

q – (p-uw) plane 

 

 Γ λλλλ M ∅′8 

CWT test with Wc(ac) close to 22% 2.162 0.102 0.85 22o 

CWT test with Wc(ac) close to 20% 2.062 0.087 0.86 22o 

 

 

Since the mechanical testing is only representative of the initial conditions, only broad 

observations are possible. The pore water pressure changes were relatively small during the 

monitoring. Through the years of monitoring, values close to hydrostatic were observed which is 

representative of water contents higher than 22%. This would suggest the behaviour would be 

characterised by small changes in strength. Based on the results with 50 kPa of confinement 

achieved by samples tested at 22% of water content as compacted and dried to 20% and tests 

carried out on samples wetted from 20% to 22% of water content it can be foreseen that changes in 

shear strength would be much smaller than 50 kPa (as observed in the tests) as at the monitored 

depths the confining stress is expected to be much lower (perhaps 20-30kPa).  Furthermore, during 

the monitoring period there was no evidence of any significant movement of the embankment, 

meaning that the changes of pore water pressure were not sufficient to influence the stability of the 

embankment. In all panels of the BIONICS embankment the measurements obtained from both 

inclinometers and extensometers fell within small changes, inside the accuracy of the measuring 

equipments (Hughes et al. 2009). 
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The same observations could be made for the poorly compacted panel, however due to a 

more dramatic behaviour of pore water pressure during monitoring and acknowledging the 

heterogeny of the fill material it is more difficult to infer that all the material would behave in a 

similar manner. Nevertheless, if such is not true and the material does behave in similar manner the 

behaviour in terms of changes in strength on the material would be expected to be higher than in 

the well compacted panel, using the recorded values of pore water pressure present in Figure 9.3 as 

a reference. 
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10 Conclusions and further work 
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10.1 Conclusions 

 

Slopes in embankments and cuttings comprise a large part of a transportation network 

therefore it is important to understand the impact of climate changes on this part of the network 

infrastructure. The BIONICS embankment is a highly valuable potential tool to study the effect of 

climate change. Built with material that is present in various earth structures throughout the UK and 

resembling different structures (old and modern), with its disposition of panels, it can be related to 

other existing structures. The climate control system backed by a wide range of instrumentation can 

be used to generate a clear view of the behaviour of the embankment through different climate 

events. It also enables the testing of new field methodologies that can help future design of earth 

structures. 

 

Throughout the study various conclusions have been drawn relative to each subject of study. 

In this final chapter a summary of these conclusions is presented. 

 

10.1.1  BIONICS fill material at the laboratory 

 

An important aspect of doing studies on soils is to have a sample preparation procedure that 

can be replicated. The original material from the BIONICS fill material was found to be to 

heterogenic. Therefore, the material was sieving to a maximum particle size dimension of 2.80 mm. 

Processes to wet and dry samples were developed in order to achieve uniform water contents, 

including a new mechanism to wet the samples using mini-foggers.  
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The soil water retention curve for the BIONICS fill material was investigated using an array of 

different techniques. SWRCs following drying paths were determined for total and matric suction by 

other researchers. The matric suction SWRC presented a typical bi-modal curvature with a residual 

gravimetric water content of 4%. The air entry value was determined to be around 220 – 300 kPa. 

The study of SWRC starting from lower water contents also added more information on the 

behaviour of the BIONICS fill material.  SWRCs that followed drying paths seemed to behave as 

scanning curves joining the primary drying curve obtained by Noguchi (2009) at similar value of 11% 

of gravimetric water content, around 3000 kPa of suction. The SWRCs curves that followed wetting 

paths, however, show instead atypical behaviour, where they seemed to follow paths joining the 

primary drying curve. 

 

The mechanical behaviour study involved constant water content triaxial tests on as-

compacted, wetted and dried conditions from samples with initial water content of: 15%, 20% and 

22% at different confining pressures. Under a critical state limit framework the material seemed to 

present similar behaviour, where it was found that the slope of the critical state line (CSL) in 

deviatoric stress space (M) was found to be similar for all water contents. The slope of the CSL in v-

ln(p-uw) space (λ) was found to be similar for all water contents, however the CSL shifted position 

due to variation in the intercept, Γ.  Since specimens were at high degrees of saturation, calculations 

based on effective stress showed a reasonable interpretation of the data. However, by using the 

Bishop’s average skeleton stress a better agreement was reached in the p*-q plane where all water 

contents tested fitted on a single line where M was found to be 0.91. However, in the ν – ln (p*) 

plane, different critical state lines were obtained for different as-compacted water contents.  

 

10.1.2  BIONICS fill material at the site 
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A new field measurement system to continuously measure pore water pressure at different 

depths using high capacity suction probes has been developed in this study. Two of these systems 

were installed at the BIONICS embankment (well and poorly compacted panels) and have 

continuously monitored pore water pressure changes since April 2007.  

 

The observed behaviour of pore water pressure was different in both panels. In the well 

compacted panel pore water pressure behaviour had the tendency to increase with depth, always 

recording values that were slightly negative at shallower depths and positive at greater depths, 

showing profiles which were roughly parallel to  the hydrostatic line suggesting that the material was 

close to saturation. In the poorly compacted panel the behaviour was found to be more variable 

showing abrupt reactions from the probes to weather events. 

 

10.1.3  Correlation of the field and laboratory data 

 

 

The samples prepared in the laboratory most closely represent the well compacted panel. The 

densities are more similar and the SWRCs for the sample taken from the well compacted panel 

coincides  with the drying path for laboratory prepared samples (although the SWRC for the poorly 

compacted panel did present more similarities with the determined SWRCs involving drying from 

lower water contents than the primary drying SWRC).  

 

The better engineered well compacted panel, resembling modern highway embankments did 

not responded so dramatically to the weather patterns observed at the BIONICS site, despite the fact 

of pore water pressure still reached hydrostatic values. The observed smaller variations in pore 
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water pressure in depth and the fact that less dramatic responses to climate conditions were 

recorded indicates a more homogeneous structure. The higher density achieved during construction 

on the well compacted panel resulted in a less permeable material which in turn affected the 

hydraulic behaviour of the material by reducing the water infiltration rate.  

 

The pore water pressure changes were relatively small during the monitoring. Through the 

years of monitoring, values close to hydrostatic were observed which is representative of water 

contents higher than 22%. The laboratory measurements would suggest the behaviour would be 

characterised by small changes in strength. Based on samples tested at water contents of 20 or 22% 

it can be foreseen that changes in shear strength would be much smaller than 50 kPa. 

   

10.2 Present and Future work 

 

This thesis has focused on the determination of the hydro-mechanical behaviour of the fill 

material of the BIONICS embankment using state-of-the-art double cell triaxial cells in conjunction 

with high capacity suction probes. It also reports on the determination of SWRCs using different 

methodologies (filter paper, psychrometer, pressure plate and high capacity suction probes). 

Furthermore, a novel system was developed for measuring pore water pressure in field conditions 

using the DU-WF high capacity suction probe. When combined, this information provides the 

necessary experimental data to facilitate coupled numerical modelling of the hydrological and 

mechanical behaviour of the BIONICS embankment. 

 

The BIONICS study will continue for many years as further climate experiments and seasonal 

variations in monitoring are required to build up a full database of embankment performance data. 
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Once a full set of data is available it will be possible to refine the numerical models and therefore, to 

develop a greater understanding of the potential impacts of climate change on infrastructure slopes. 

The work carried out as part of this thesis has been an essential first step in the process to achieving 

this goal. 

 

10.3  Further work 

 

 

To correlate the data from the field with laboratory data it would be necessary to carry out a 

series of triaxial tests where the water content was cycled using a wetting/drying system. When 

compared with the constant water content tests, these tests would take a longer time thus the 

starting point for a new researcher would be to carry the tests on an as-compacted gravimetric 

water content of 20%-22% resembling the average initial conditions of the well compacted panel. 

 

For the poorly compacted panel a sample preparation methodology should be determined. A 

more irregular compaction methodology should be considered, enabling a different distribution of 

voids and creation of larger voids in the sample. This would mean a total new series of tests for the 

hydro-mechanical behaviour. 

 

To fully understand the behaviour of the BIONICS fill material the wetting primary curve 

should be obtained first which would help in the understanding of the SWRCs obtained in this work. 

The study would involve samples that had to be completely dried. This study could prove to be 

challenging since there are no techniques for accurate measurements of suction that are reliable at 

extremely low water contents. 
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 Improvement on the field system for continuous measurement of pore water pressure 

should include the use of TDRs (Time Domain Reflectometer) that measure volumetric water content 

close or even at the same position as the suction probes, creating the possibility of generating 

continuous relations of pore water pressure with volumetric water content. This would allow the 

possibility of observing how the SWRC changes in the field. 

 



292 

 

References 

 

Al-Khafaf, S. and Hanks, R. J., (1974) Evaluation of the Filter Paper Method for Estimating Soil 

Water Potential, Soil Science, Vol. 117, No. 4, pp. 194–199. 

Al Mukhtar, M., Robinet, J. C. and Liu, C. W. (1993). Hydro-mechanical behaviour of partially 

saturated low porosity clays. Engineering fills (eds. B.G. Clarke, C.J.F.P. Jones, and A.I.B. Moffat) 

Thomas Telford, London, 87-98 

Alonso E. E., Gens A. and Josa A. (1990). A constitutive model for partially saturated soils. 

Geotechnique 40, No. 3, 405-430. 

Au, S W C (1998) Rain-Induced Slope Instability in Hong Kong, Engineering Geology, Vol. 51, 

No. 1,pp. 1-36. 

Barbour, S. L. (1998). Nineteenth Canadian Geotechnical Colloquium: the soil–water 

characteristic curve, a historical perspective. Can. Geotech. J. 35, No. 5, 873–894. 

Bishop, A. W. and Donald, I. B. (1961). The experimental study of partly saturated soils in the 

triaxial apparatus. Proc. 5th Int. Conf. Soil Mech. Found. Engng, Paris 1, 13–21. 

Black D. K. and Lee K. L. (1973), Saturating Laboratory Samples by Back Pressure, ASCE Journal 

Soil Mech. Found. Eng. Div., Vol. 99, SM1, pp. 75-95.  

Blatz, J. A. and Graham, J. (2003). Elastic-plastic modelling of unsaturated soil using results 

from a new triaxial test with controlled suction. Geotechnique 53, No. 1, 113-122 

Blight, G. E. (1967). Effective stress evaluation for unsaturated soils. ASCE Journal of Soil 

Mechanics and Foundations Engineering Division, vol. 93, SM2, 25-148. 

British Standard Institute (1990), BS 1377-4: Methods of test for Soils of civil engineering 

purposes Part 4: Compaction-related tests, BSI, Milton Keynes. 

Bulut, R., Leong, E. C. (2008). Indirect measurement of suction. Geotech. Geol. Eng. Vol.26, N. 

6, pp. 633-644.  

Bulut, R., Lytton R. and Wray W. (2001) Suction measurements by filter paper method. 

American Society of Civil Engineers Geotechnical Special Publication No.115 pp 243-261. 

Burland, J.B., (1965a). The yielding and dilation of clay. Correspondence. Geotechnique, 15, 

211-214. 

Chandler, R. J., Crilly, M. S., and Montgomery-Smith, G., (1992). A Low Cost Method of 

Assessing Clay Desiccation for Low- Rise Buildings, Proceedings of the Institution of Civil Engineers, 

Vol. 92, No. 2, pp. 82–89 

Chandler, R. J. and Gutierrez, C. I. (1986). The filter paper method of suction measurement. 

Geotechnique, vol. 36, n.2, 265-268 



293 

 

Chatterjea, K (1989) Observations on the Fluvial and Slope Processes in Singapore and their 

Impact on the Urban Environment, PhD Thesis, National University of Singapore. 

Chatterjea, K (1994) Dynamics of Fluvial and Slope Processes in the Changing Geomorphic 

Environment of Singapore, Earth Surface Processes and Landforms, Vol. 19, pp. 585-607 

Ching, R K H, Sweeney, D J and Fredlund, D G (1984) Increase in Factor of Safety due to Soil 

Suction for Two Hong Kong Slopes, Proc. 4th Int. Symp. on Landslides, Toronto, Vol. 1, pp. 617-623. 

Chipp, P N, Henkel, D J, Clare, D G and Pope, R G (1982) Field Measurement of Suction in 

Colluvium Covered Slopes in Hong Kong, Proc. 7th Southeast Asian Geotechnical Conf., Hong Kong, 

pp. 49-62. 

Colmenares-Montanez, J.E., (2002). Suction and volume changes of compacted sandbentonite 

mixtures. PhD thesis, University of London (Imperial College), London, UK. 

Croney, D. (1952). The movement and distribution of water in soils. Geotechnique, 3(1):1–16. 

Cunningham, M. R. (2000). The mechanical behaviour of a reconstituted, unsaturated soil. 

Ph.D. thesis, Imperial College of Science, Technology and Medicine, University of London. 

Cui Y. J. and Delage P. (1996). Yielding and plastic behaviour of an unsaturated compacted silt. 

Geotechnique 46, 291-311. 

Cui, Y.J., Tang, A.M., Mantho, A.T. and De Laure, E. (2008). Monitoring field soil suction using a 

miniature tensiometer. Geotechnical Testing Journal 31 (1), 95–100. 

Cunningham, M. R., Ridley, A. M., Dineen, K. and Burland, J. J. (2003). The mechanical 

behaviour of a reconstituted unsaturated silty clay. Geotechnique 53, No. 2, 183–194 

Delage P., Romero E.E., Tarantino A. (2008) Recent developments in the techniques of 

controlling and measuring suction in unsaturated soils 1st European Conference on Unsaturated 

Soils, Durham, UK, 33-52 

Dineen K. (1997). The influence of suction on compressibility and swelling. Ph.D. thesis, 

Imperial College of Science, Technology and Medicine, University of London. 

Dineen, K. and Burland, J.B. (1995), A new approach to osmotically controlled oedometer 

testing, Unsaturated Soils, Alonso and Delage (eds), 2, 459-465 

Donoghue, A.M. (2006). The performance effects of suction probe saturation in laboratory 

testing applications, MEng. Report, Durham University. 

Evangelista A., Nicotera M.V., Papa R. and G. Urciuoli G. (2008) Field investigation on 

triggering mechanisms of fast landslides in unsaturated pyroclastic soils, 1st European Conference 

on Unsaturated Soils, Durham, UK, 909-915 

Fawcett, R.G. and Collis-George, N. (1967). A filter paper method for determining the moisture 

characteristics of soil. Australian Journal of Experimental Agriculture and Animal Husbandry, n.7, 

162-167. 



294 

 

Fredlund D. G. and Morgenstern N. R. (1977). Stress state variables for unsaturated soils. J. 

Geotech. Eng. Div., ASCE 103, GT5, 447-466 

Fredlund, D. G. and Rahardjo, H. (1993). Soil mechanics for unsaturated soils. New York: Wiley. 

Futai, M. M. and Almeida, M. S. S. (2005), An experimental investigation of the mechanical 

behaviour of an unsaturated gneiss residual soil, Geotechnique 55, No. 3, 201-213 

Gallipoli, D., Gens, A., Sharma, R. and Vaunat, J. (2003a). An elasto-plastic model for 

unsaturated soil incorporating the effects of suction and degree of saturation on mechanical 

behaviour, Geotechnique 53, No. 1, 123–135 

Gallipoli, D., Wheeler, S. J. and Karstunen, M. (2003b). Modelling the variation of degree of 

saturation in a deformable unsaturated soil. Geotechnique 53, No. 2. 105-112 

Gardner, R. (1937). A method of measuring the capillary tension of soil moisture over a wide 

moisture range. Soil Science, vol. 43, 277-283. 

Gasmo, J M (1997) Stability of Unsaturated Residual Soil Slopes as Affected by Rainfall, MEng 

Thesis, School of Civil and Structural Engineering, Nanyang Technological University. 

Geotechnical Control Office (1982) Mid-levels study: Report on Geology, Hydrology and Soil 

Properties, GCO Report, Hong Kong: Geotechnical Control Office. 

Google maps, http://maps.google.co.uk/ 

Hamblin, A.P. (1981). Filter paper method for routine measurements of field water potencial. 

Journal of Hydrology, 53, 355-360 

Harrison, B. A. and Blight, G. E., (1998) The Effect of Filter Paper and Psychrometer Calibration 

Techniques on Soil Suction Measurements, Proceedings of the Second International Conference on 

Unsaturated Soils, Vol. 1, International Academic Publishers, Beijing, China, pp. 362–367. 

HIGHWAYS AGENCY (1998). Specification for Highway Works. The Stationary Office, London. 

Hilf, J. W. (1956). An investigation of pore-water pressure in compacted cohesive soils. 

Technical Memorandum 654. Denver: US Bureau of Reclamation. 

Hong, Y., Adler, R., and Huffman, G. ( 2006). Evaluation of the potential of NASA multi-satellite 

precipitation analysis in global landslide hazard assessment. Geophysical Research Letters, 33 

Hughes, P. (2005) personal communication. 

Hughes, P., Glendinning, S. and Mendes, J. (2007). Construction Testing and Instrumentation of 

an infrastructure testing embankment, Proc. Expert Symposium on Climate Change: Modelling, 

Impacts and Adaptations, Singapore, pp. 159-166. 

Hughes, P.N., Glendinning, S., Mendes, J., Parkin, G., Toll, D.G., Gallipoli, D., Miller, P. (2009). 

Full-scale testing to assess climate effects on embankments. Special Issue of Engineering 

Sustainability, Institution of Civil Engineers, 162, No. ES2, pp. 67-79. 



295 

 

Hughes, P.N., Glendinning, S, Toll, D.G.(2005) REPORT ON THE DESIGN AND CONSTRUCTION 

OF THE BIONICS EMBANKMENT 

Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell, T. D., Jones, R. G., Lowe, J., Murphy, 

J. M., Hassell, D., Boorman, P., McDonald, R. and Hill, S. (2002) Climate Change Scenarios for the 

United Kingdom: The UKCIP02 Scientific Report. Tyndall Centre for Climate Change Research, School 

of Environmental Sciences, University of East Anglia, Norwich, UK.  

Jotisankasa, A. (2005), Collapse behaviour of a compacted silty clay, PhD Thesis, Imperial 

College. 

Karube, D., Kato, S., Hamada, K. and Honda, M., (1995). The relationship between the 

mechanical behaviour and the state of pore water in unsaturated soil. Accepted for publication in 

JSCE Journal of Geotechnical Engineering. 

Lee, H.V., Wray, W.K. (1995). Techniques to evaluate soil suction – a vital unsaturated soil 

water variable. Unsaturated soils, Alonso and Delage (eds) 2, 615-622. 

Leong E. C., He L., and Rahardjo H. (2002) Factors Affecting the Filter Paper Method for Total 

and Matric Suction Measurements. J Geotechnical Testing, Vol. 25, No. 3 pp 321-332. 

Lim, T T (1995) Shear Strength Characteristics and Rainfall-Induced Matric Suction Changes in 

a Residual Soil Slope, MEng Thesis, School of Civil and Structural Engineering, Nanyang Technological 

University, Singapore 

Lim, T T, Rahardjo, H, Chang, M F and Fredlund, D G (1996) Effect of Rainfall on Matric 

Suctions in a Residual Soil Slope, Canadian Geotechnical Journal, Vol. 33, pp. 618-628. 

Lourenço, S.D.N. (2008). Suction Measurements and Water retention in unsaturated soils, Phd 

Dissertation, Durham University 

Lourenço, S.D.N., Gallipoli, D., Toll, D.G. and Evans, F. D., (2006). Development of a commercial 

tensiometer for triaxial testing of unsaturated soils. In Fourth International Conference on 

Unsaturated Soils, Carefree – Arizona – USA, Geotechnical Special Publication No. 14., Reston: ASCE, 

Vol.2, pp. 1875-1886.  

Marinho, F.A.M. (1994). Medição de sucção com o método do papel fitro. Proc. X Congresso 

Brasileiro de Mecanica dos Solos e Engenharia de Fundações. Vol 2, 516522. 

McQueen, I. S. and Miller, R. F., (1968b) Calibration of a Wide-Range Gravimetric Method for 

Measuring Moisture Stress, Soil Science, Vol. 106, No. 3, pp. 225–231. 

McKeen, R. G., (1980) Field Studies of Airport Pavements on Expansive Soils, 4th International 

Conference on Expansive Soils, pp. 242–261. 

Nattrass, W. (2009) personal communication 

Noguchi, T. (2009) Comparison of Major Suction Measurement Techniques Used to Determine 

the Soil Water Retention Curves, MEng Final Year Project Report, Durham University. 



296 

 

Oldecop, L.A. and Alonso E.E. (2000), A model for rockfill compressibility, Geotechnique 51, 

No. 2, 127-139 

Papa, R., Evangelista, A., Nicotera, M.V. and Urciuoli, G. (2008). Mechanical properties of 

unsaturated pyroclastic soils affected by fast landslide phenomena. 1st European Conference on 

Unsaturated Soils, Durham, UK, 917-923 

Pitts, J and Cy, S (1987) Insitu Soil Suction Measurements in Relation to Slope Stability 

Investigations in Singapore, Proc. 9th European Conf. on Soil Mechanics and Foundation Engineering 

(ed. Hanrahan, E T, Orr, T L L and Widdis, T F), Rotterdam: Balkema, Vol. 1, pp. 79-82. 

Richards, S.J., (1965). Soil suction measurements with tensiometers. In: Methods of Soil 

Analysis, Monograph No. 9, American Society of Agronomy, Madison, 153-163. 

Ridley, A. M., Dineen, K., Burland, J. B. and Vaughan P. R. (2003). Soil matrix suction: some 

examples of its measurement and application in geotechnical engineering. Geotechnique 53, No. 2, 

241–253 

Ridley, A.M. and Burland, J.B., (1993). A new instrument for the measurement of soil moisture 

suction. Geotechnique, 43, No. 2, 321-324. 

Ridley, A. M. and Wray, W. K. (1996). Suction measurement: theory and practice. A state-of-

the-art-review. Proc. 1st Int. Conf. Unsaturated Soils, Paris 3, 1293–1322. Roscoe, K.H. and Burland, 

J.B., (1968). On the generalised stress-strain behaviour of “wet” clay. Engineering Plasticity (Heyman, 

J. and Leckie F.A., eds.) Cambridge University Press, Cambride, 535-609. 

Schofield, A. N. and Wroth, C. P. (1968). Critical state soil mechanics, McGraw Hill, London. 

Shull, C. A. (1916). Measurement of the surface forces in soils. The Botanical gazette, vol. LXII, 

n.1, 1-31. 

Simmon, R. (2007) http://earthobservatory.nasa.gov/Features/LandslideWarning/. 

Sivakumar, V. (1993). A critical state framework for unsaturated soil. Ph.D. thesis, University of 

Sheffield, UK. 

Skempton, A. W. (1953), The colloidal activity of clays, Proc. 3rd ICSMFE, Zurich, 1, 57-61. 

SMI Soil Mechanics Instrumentation (2004) Manual for the 12-probe transistor psychrometer. 

Adelaide, South Australia. 

Springman, S.M., Jommi, C., Teysserie, P. (2003). Instabilities on moraine slopes induced by 

loss of suction:a case history. Geotechnique 53, No. 1, 3-10. 

Springman, S.M. and Teysserie, P. (2003). Artificially induced rainfall instabilities on moraine 

slopes. In Kühne M et al (eds), Proceedings of the international conference on landslides, Davos, 

VGE, Essen, 209-223. 



297 

 

Stenke, F., Toll, D.G., and Gallipoli, D. (2006) Comparison of suction measurement techniques 

for three clayey soils. Proceeding 4th International Conference on Unsaturated Soils, Phoenix, USA, 

Geotechnical Special Publication No. 14., Reston: ASCE, Vol.2, pp 1451-1461.  

Stephenson, I. B. (2008) Pore water pressures in embankments: soil compaction influencing 

water infiltration and its effect on pore water pressures, Msc dissertation, School of Civil Engineering 

and Geosciences, Newcastle University. 

Sweeney, D J (1982) Some Insitu Soil Suction Measurements in Hong Kong's Residual Soil 

Slopes, Proc. 7th Southeast Asian Geotechnical Conf., Hong Kong, pp. 91-106. 

Tarantino, A. and Mongiovi, L. (2003) Calibration of tensiometer for direct measurement of 

matric suction. Geotechnique 53, No.1, 137-141 

Tarantino, A. and Tombolato, S. (2005) Coupling of hydraulic and mechanical behaviour in 

unsaturated compacted clay. Geotechnique 55, No. 4, 307-317 

Toll, D.G. (1999) A Data acquisition and control system for geotechnical testing. Computing 

developments in civil and structural engineering (eds. B. Kumar and B.H.V. Topping), Edinburgh: Civil-

Comp Press, pp 237-242. 

Toll, D.G. (2001). Rainfall-induced Landslides in Singapore, Proc. Institution of Civil Engineers: 

Geotechnical Engineering, Vol. 149, No. 4, pp. 211–216. 

Toll, D. G. and Ong, B. H. (2003). Critical-state parameters for an unsaturated residual sandy 

clay. Geotechnique 53, No. 1, 93–103. 

Tsaparas, I., Rahardjo, H., Toll, D.G., Leong, E. (2003) Infiltration characteristics of two 

instrumented residua soil slopes. Canadian Geotechnical Journal, 40, pp. 1012-1032. 

Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity 

of unsaturated soils. Soil Sci. Soc. Am. J., pp. 892-898. 

Vaquero, J.L. (2007) Soil suction measurement using the pressure plate technique within the 

MUSE network, Project report, Durham University.  

Vaunat, J., Romero, E. and Jommi, C., (2000). An elastoplastic hydromechanical model for 

unsaturated soils. Proceedings of the International Workshop on Unsaturated Soils, Trento, 121-138. 

Wheeler, S. J., Sharma, R. J. and Buisson, M. S. R. (2003). Coupling of hydraulic hysteresis and 

stress–strain behaviour in unsaturated soils. Geotechnique 53, No 1, 41-54 

Wheeler, S. J. and Sivakumar, V. (1995). An elastoplastic critical state framework for 

unsaturated soil. Geotechnique 45, No. 1, pp. 35-53. 

Woodburn, J.A. and Lucas, B. (1995) New Approaches to the Laboratory and Field 

Measurement of Soil Suction, Unsaturated Soils. Alonso, E.E. and Delage, P. (eds) Unsaturated Soils 

(UNSAT 95) Proc. 1st Int. Conf., Paris, France. Rotterdam: Balkema, Vol. 2, pp 667671. 



298 

 

Zur, B. (1966). Osmotic control of the matric soil-water potential. Soil Science. 102, 394-398. 

 

  

 

 


