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Abstract

In this dissertation, we introduce a numerical scheme to construct asymptotically

anti-de Sitter spacetimes with Lorentzian signature, focusing on cases that preserve

five-dimensional axisymmetry. We study the field theories that are dual to these

spacetimes by appealing to the AdS/CFT correspondence in the regime where the

gravity dual is completely described by Einstein gravity.

The numerical scheme is based on generalized harmonic evolution, and we begin by

obtaining initial data defined on some Cauchy hypersurface. For the study described

in this dissertation, we use a scalar field to source deviations from pure AdS5, and

obtain data that correspond to highly deformed black holes. We evolve this initial

data forward in time, and follow the subsequent ringdown. What is novel about this

study is that the initial horizon geometry cannot be considered a small perturbation

of the final static horizon, and hence we are probing an initial non-linear phase of the

evolution of the bulk spacetime.

On the boundary, we find that the dual CFT stress tensor behaves like that of

a thermalized N = 4 SYM fluid. We find that the equation of state of this fluid is

consistent with conformal invariance, and that its transport coefficients match those

previously calculated for an N = 4 SYM fluid via holographic methods. Modulo a

brief transient that is numerical in nature, this matching appears to hold from the

initial time onwards.

We transform these solutions computed in global AdS onto a Minkowski piece of

the boundary, and examine the temperature of the corresponding fluid flows. Under

this transformation, the spatial profile of temperature at the initial time resembles a

Lorentz-flattened pancake centered at the origin of Minkowski space. By interpreting

the direction along which the data is flattened as the beam-line direction, our initial

data can be thought of as approximating a head-on heavy ion collision at its moment

of impact.
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Chapter 1

Introduction

It has been hoped since the beginnings of the AdS/CFT correspondence, first formu-

lated in [1–3], that gauge-gravity dualities would eventually be used to relate gravi-

tational calculations to experimentally testable predictions in gauge theory. Over the

past several years, there has been a flurry of activity in applying AdS/CFT to prob-

lems in high energy and condensed matter physics, which began with the discovery

of the strongly-coupled quark-gluon plasma formed in heavy ion collisions. Recent

proposals have suggested application to other systems, including those that exhibit

superconductivity, the quantum hall effect, and superfluidity. For some review articles

see [4–11]. Though conformal field theories (CFTs) cannot model the exact properties

of all of these physical phenomena, it is hoped that they nevertheless capture aspects

of the essential physics. In the strong coupling limit of the boundary CFT, the duality

maps CFT states to bulk gravity configurations in an asymptotically anti-de Sitter

(AdS) spacetime, and there are many cases where the latter theory is more tractable

than the former. In many if not most of the model problems studied to date, the

gravity description has involved black holes; aside from the interesting philosophical

questions this poses, the implication is that one needs to study bulk solutions within

the strong-field regime of general relativity. In situations where exact solutions are
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not known, or perturbative expansions about known solutions are inadequate to cap-

ture the non-linear dynamics, numerical solution of the Einstein field equations for

an asymptotically AdS spacetime is required.

Numerical relativity has seen significant progress in recent years modeling dy-

namical, strong-field geometries, though the majority of applications have been to

compact object collisions in asymptotically flat spacetimes. For some review articles

see [12–15]. The asymptotic structure of AdS is drastically different from that of flat

space; in particular the boundary of AdS is time-like and in causal contact with bulk

geometric structures, on time scales relevant to the boundary physics. This poses

unique challenges for numerical evolution. The majority of existing literature on nu-

merical solution in AdS has focused on black hole formation in spherically-symmetric

spacetimes i.e. 1 + 1 dimensional simulations where the boundary is a single point,

significantly simplifying its treatment. This was done in 3 dimensions [16–18], 4 di-

mensions [19], 5-dimensions [20] and in the general D-dimensional [21, 22] case. A

notable exception is a study of colliding shockwaves in 5-dimensional AdS (AdS5),

with application to heavy ion collisions [23] (and see [24, 25] for follow-up studies).

Planar symmetry was imposed in two spatial dimensions, reducing the problem to a

2 + 1 dimensional simulation. Their approach was based on a null (characteristic)

evolution scheme which is well-adapted to describing such colliding plane waves. This

method simplifies the treatment of the AdS5 boundary, though is difficult to generalize

to situations with less symmetry. A more recent related study of boundary hydro-

dynamics via numerical solution of the full field equations in the bulk was presented

in [26]; though the evolution was effectively 1 + 1 dimensional, the space-plus-time

decomposition, as used here, in principle allows for a straightforward extension to

situations with less symmetry.

Inspired by the growing success of gauge/gravity dualities, we are initiating a

new program to solve the Einstein field equations in asymptotically AdS5 spacetimes,
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based on the generalized harmonic (GH) evolution scheme presented in [27, 28]. These

methods were introduced in the context of asymptotically flat spacetimes, and it turns

out to be a rather non-trivial exercise to adapt them to AdS5. The main purpose of

this dissertation is to describe, in detail, the steps taken towards achieving a stable

Cauchy evolution code in spacetimes that are asymptotically AdS5. We will focus on

a first study, published in [29], where we impose an SO(3) symmetry for simplicity.

Since the method we use is based on Cauchy evolution, it should be straightforward

to relax this symmetry restriction for future studies, at the expense of computational

complexity. As a sample application, we study the quasi-normal ringdown of initial

data describing highly distorted black holes formed from scalar field collapse, and

extract the stress energy tensor of the dual conformal field theory defined on the

R×S3 boundary. The SO(3) symmetry we impose here is precisely the one identified

in [30–33] to study generalizations of Bjorken flow.

To make more sense of this entire program, the opening discussion in Chapter 1 will

begin by motivating the effort in terms of the heavy ion physics it is intended to clarify.

This will be followed by a didactic discussion of general relativity, including the GH

formulation that we will use to write the Einstein field equations in a manifestly

hyperbolic form, and the formulation attributed to Arnowitt, Deser, and Misner

(ADM) that we will use to construct initial data based on a conformal decomposition,

restricted to time-symmetric initial conditions. We end Chapter 1 with relevant facts

about asymptotically AdS5 spacetimes.

We will begin Chapter 2 by writing down the explicit initial data equation for

scalar field matter, since we will be using a scalar field to source deviations from

pure AdS5. We will then describe an explicit implementation of the GH formalism.

Crucial to the stability of this scheme is the asymptotic nature of the so-called source

functions that in GH evolution are traditionally associated with coordinate degrees

of freedom. Here, in contrast to asymptotically flat spacetimes, we will find that
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their asymptotic form can not be freely specified if the metric deviation is to be non-

singular in the approach to the AdS5 boundary. This and other subtleties related to

evolution will be clarified and addressed here. We discretize the field equations using

finite difference methods, and the details of the numerical methods that we use to

solve the initial data and evolution equations will be discussed.

Each solution we obtain will be a global spacetime that is asymptotically AdS5,

which we will describe by (t, r, χ, θ, φ) spherical coordinates adapted to its R × S3

boundary. The solutions we consider will be axisymmetric in the sense of an SO(3)

symmetry that acts to rotate the 2-spheres parametrized by θ, φ. In the boundary

CFT, we will see that the way in which this symmetry manifests itself hinges on the

way we choose to embed Minkowski space in R×S3. We will work out this embedding

in detail in Chapter 3, where we will also discuss how to reconstruct the boundary

CFT stress tensor, as well as how to determine the extent to which this CFT stress

tensor behaves hydrodynamically.

Results from a study of highly deformed black holes, their subsequent evolution

and ringdown, and the stress tensor of the corresponding states in the dual bound-

ary CFT, will be presented in Chapter 4. First, we will find that we can solve for

arbitrarily strong initial data: the initial slice can be made to contain an apparent

horizon, and this horizon can be made arbitrarily large by adjusting (for example)

the amplitude of the initial scalar field profile. What is novel about the subsequent

evolution of this initial data is that the horizon geometry cannot be considered a

small perturbation of the final static horizon, and hence we will be probing an initial

non-linear phase of the evolution of the bulk spacetime. Shortly after the initial time,

the metric can be described by a combination of quasi-normal modes and what appear

to be gauge modes. We will find frequencies that are consistent with the linear modes

found in perturbative studies of static black holes, and in modes at higher angular

number, we will find evidence of non-linear mode-coupling. On the boundary, the
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dual CFT stress tensor behaves like that of a thermalized N = 4 super-Yang-Mills

(SYM) fluid. We will find that the equation of state ε = 3P of this fluid is consistent

with conformal invariance (here, ε and P are the rest frame density and pressure of

the fluid, respectively), and that its transport coefficients match those previously cal-

culated for an N = 4 SYM fluid via holographic methods. Modulo a brief transient

that is numerical in nature, this matching appears to hold from t = 0 onwards.

Finally, we will transform solutions computed in global AdS onto a Minkowski

piece of the boundary, and examine the temperature of the corresponding fluid flows.

Under this transformation, the spatial profile of temperature at the initial time re-

sembles a Lorentz-flattened pancake centered at the origin of Minkowski space. By

interpreting the direction along which the data is flattened as the beam-line direction,

this initial data can be thought of as an approximate gravity dual description of a

head-on heavy ion collision at its moment of impact. We will conclude in Chapter 5

with a summary of our findings and a discussion of future work.

Appendix A, contains a discussion of how our asymptotic metric boundary con-

ditions relate to the boundary conditions derived in [34] for linearized gravitational

perturbations on an AdS background that lead to well-defined dynamics. Appendix B

contains some technical details on the effect of matter backreaction on the asymp-

totic metric fall-off, and Appendix C contains a representative sample of the finite

difference stencils we use to represent first and second derivatives. Throughout, we

use geometric units where Newton’s constant G and the speed of light c are set to 1.

1.1 Heavy Ion Collisions

The approach of applying gauge-gravity dualities to real-world experiments was pi-

oneered in heavy ion physics, the leading facility for which is the Relativistic Heavy

Ion Collider (RHIC) at the Brookhaven National Laboratory. At RHIC, gold atoms
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are boosted to relativistic speeds with Lorentz factors in excess of hundreds, and are

collided with a variety of impact parameters. In this dissertation, we will focus on

the zero impact parameter case of head-on heavy ion collisions. Following the mo-

ment of impact, the constituent quarks and gluons form a thermal state with a peak

temperature T ≈ 300 MeV1. The resulting state of matter is called the quark-gluon

plasma.

The collective motions of this plasma were found to be consistent with a relativistic

fluid with very low viscosity[36–39]. In particular, hydrodynamic fits to RHIC data

were found to be consistent with a very small ratio of shear viscosity to entropy density

η/s � 1. The first attempts to analytically describe the hydrodynamical expansion

of this fluid resulted in the Bjorken flow model[40]. Letting the head-on collision

take place along the x3 axis, this model is defined by rotational symmetry about the

x3 axis, translation symmetry along the transverse radius x⊥ from the x3 axis, and

boost invariance in the x3 direction. This boost invariance along x3 completely fixes

the longitudinal flow to be v3 = x3/t in the Bjorken model, where v3 is the velocity

profile in the x3 direction and t is the time from impact. Meanwhile, the translational

symmetry along x⊥ makes radial flow impossible in this model. Of course, in a real

quark-gluon plasma, both longitudinal flow and radial flow are present, and as this

flow progresses, the plasma expands and cools. Wherever the plasma has cooled

sufficiently, its constituents revert back into a gas of hadrons. We can estimate the

time scale for this to occur: the radius of a gold atom at rest is approximately 7 fm,

so we can expect the plasma to have fully hadronized at times much later than 7

fm/c.

Many of the most interesting heavy ion collision processes are not accessible via

perturbative calculations in QCD, and the time evolution of the quark-gluon plasma

lies squarely in this class of processes. To get a handle on this system, an alternative

1For a reference energy scale, note that lattice quantum chromodynamics (QCD) estimates place
the critical temperature Tc above which QCD deconfines at about[35] Tc ≈ 170 MeV.
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description in terms of gravity is highly desirable. Unfortunately, QCD has no known

gravity dual description. Known concrete realizations of the gauge/gravity duality,

such as the AdS/CFT correspondence, typically involve a quantum field theory with

conformal symmetry: a CFT. In the absence of an AdS/QCD correspondence, we

will instead take advantage of the AdS/CFT correspondence, which is a conjecture

that provides a one-to-one dictionary between a 5-dimensional asymptotically AdS

spacetime with an excited state of the conformal field theory N = 4 SYM. To do so,

we will “approximate” QCD by a CFT toy model in the form of N = 4 SYM.

Our strategy in this dissertation is as follows: 1) we will first numerically construct

the gravity side of the duality, 2) use it to reconstruct the boundary CFT using the

AdS/CFT dictionary, 3) then compare the results of this gravity model to real-world

quark-gluon plasma flows. Ideally, this comparison should be made using a dual

gravity process that results in a dynamical collision, in order to most closely mimic

a head-on heavy ion collision while keeping the number of tunable parameters at a

minimum. In an ideal gravity model, essentially the only tunable parameters should

be the choice of collision participants that would act as proxies for gold atoms, and

the choice of speed at which the collision occurs. This dissertation represents a first

step towards this goal: we will prepare gravitational initial data that approximately

describes a head-on heavy ion collision at its moment of impact, then follow its time

evolution according to the Einstein field equations of general relativity.

1.2 General Relativity

General relativity describes the physics of gravity, and is based on the key insight that

the effects of gravity are indistinguishable from accelerated motion. This equivalence

principle makes it natural to suggest that gravity and acceleration are one and the

same phenomenon. The theory of general relativity takes this phenomenon to be
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geometric in nature: matter impinges upon the geometry of space and time, and

experiences accelerated motion as a consequence of that change in geometry, in a

sense that we will now make precise.

1.2.1 Einstein Field Equations

In the theory of general relativity, space-time is a differential manifold M equipped

with a metric g. The metric encodes the geometry of the space-time, specifically by

enabling us to measure the lengths of local vectors defined on a tangent space TpM

at some point p ∈ M , and the angles between such vectors. Each point p ∈ M can

be locally specified by coordinates xµ, and each vector in TpM can be written down

in terms of basis vectors ∂/∂xµ, whose cotangent vectors dxµ (or one-forms) in T ∗pM

are such that dxµ (∂/∂xν) = δµν .

In local coordinates, the metric takes the form of a non-degenerate symmetric

matrix

ds2 = gµνdxµdxν (1.1)

whose inverse gµν is such that gµαgαν = δµν . Lengths and angles of vectors v, w ∈ TpM

are determined via an inner product induced by the metric2

vαwα = gµνv
µwν . (1.2)

A vector v is time-like if vαvα < 1, space-like if vαvα > 1, and null if vαvα = 0.

On a differentiable manifold, there are many ways of defining the derivative of

vector fields or other tensors such that it is invariant under a change of coordinates

xµ → xµ
′
. For our purposes, we need only consider one possibility known as the

Levi-Civita connection, or metric compatible covariant derivative. It can be defined

via its effect on the basis vectors of TpM . The covariant derivative of ∂/∂xν in the

2This justifies the line element notation “ds2” for the metric.
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∂/∂xµ direction is

∇ ∂
∂xµ

∂

∂xν
= Γκµν

∂

∂xκ
. (1.3)

The coefficients Γκµν are known as the Christoffel symbols, which take the local form3

Γκµν =
1

2
gκα (gνα,µ − gµν,α + gαµ,ν) . (1.4)

This covariant derivative allows a notion of curvature that takes the difference

between infinitesimally transporting a vector ∂/∂xµ either along ∂/∂xν then along

∂/∂xλ, or along ∂/∂xλ then along ∂/∂xν . More concisely,

(
∇ ∂

∂xλ
∇ ∂

∂xν
−∇ ∂

∂xν
∇ ∂

∂xλ

) ∂

∂xµ
= Rκ

µλν
∂

∂xκ
. (1.5)

The coefficients Rκ
µλν are the components of the Riemann curvature tensor, which

takes the local form

Rκ
µλν = Γκνµ,λ − Γκλµ,ν + ΓκλβΓ

β
νµ − ΓκνβΓ

β
λµ, (1.6)

whose contraction forms the Ricci tensor

Rµν = Rα
µαν , (1.7)

which can be further contracted to form the Ricci scalar

R = gµνRµν . (1.8)

The Einstein field equations is the relation that couples matter to the geometry

of space-time, as encoded in the metric. Writing the stress tensor of matter as Tµν ,

3Here, we write ∂f/∂xµ = f,µ for the derivative of f with respect to xµ.
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and the cosmological constant as Λ, the field equations are

Rµν −
1

2
Rgµν + Λgµν = 8πTµν . (1.9)

These equations can be derived from a variation principle, arising as the Euler-

Lagrange equations of the Einstein-Hilbert action with cosmological constant and

matter contributions, whose Lagrangian density is simply

L =
1

16π
(R− 2Λ) + Lm. (1.10)

This Lagrangian density is consistent with the principle that physics should be in-

dependent of a coordinate description, since R and Λ transform as scalars under

coordinate transformations xµ → xµ
′
, and the Lagrangian density of matter Lm also

does so by construction. In D dimensions, this diffeomorphism invariance of the the-

ory manifests itself as D functions-worth of redundancies in (1.9), which must first

be fixed via a choice of coordinates, called a gauge choice, before (1.9) can be solved.

1.3 Generalized Harmonic Formalism

Generalized harmonic formalism is based on a choice of coordinates xµ where each

coordinate satisfies a scalar wave equation with a source function Hµ: 4

�xµ =
1√
−g

∂

∂xα
(√
−ggαµ

)
= −gαβΓµαβ ≡ Hµ, (1.11)

4As can be seen from (1.11) Hµ is not a vector in the sense of its properties under a coordinate
transformation, rather it transforms as the trace of the metric connection. For more details see [12,
27, 41, 42]. One can introduce additional geometric structure in the form of a background metric
and connection to write the GH formalism in terms of “standard” tensorial objects. However, in a
numerical evolution one must always choose a concrete coordinate system, and hence the resulting
equations that are eventually discretized are the same regardless of the extra mathematical structure
introduced at the formal level.
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where g is the determinant of the metric, and Γµαβ are the Christoffel symbols. To see

why this has proven to be so useful for Cauchy evolution, where a solution for the

metric gµν is solved for given data at some initial Cauchy hypersurface supplemented

by boundary conditions at spatial infinity, let us begin by rewriting the field equations

(1.9) in trace-reversed form

Rµν = T̄µν , (1.12)

where

T̄µν = − 2

2−D
Λdgµν + 8π

(
Tµν −

1

D − 2
Tα

αgµν

)
(1.13)

When viewed as a set of second-order differential equations for the metric gµν , the

field equations in the form (1.12) do not have any well-defined mathematical charac-

ter (namely hyperbolic, elliptic or parabolic), and in fact are ill-posed. Fixing this

character requires choosing a coordinate system. Cauchy evolution is well-posed if

and only if the evolution equations are strongly hyperbolic, and a well-known way to

arrive at a set of strongly hyperbolic equations is to impose harmonic coordinates,

namely (1.11) with Hµ = 0. Specifically, this condition (and its gradient) can be

substituted into the field equations to yield a wave equation for the principal part

of each metric element, gαβ∂α∂βgµν + ... = 0, where the ellipses denote lower order

terms.

One potential problem with harmonic coordinates, in particular in a highly dy-

namical, strong-field spacetime evolved via a Cauchy scheme, is that beginning from a

well-defined initial data surface t = const. which is everywhere space-like, there is no

guarantee that t, subject to the harmonic condition, will remain time-like throughout

the spacetime as evolution proceeds. If ∂/∂t becomes null or space-like at a point,

standard numerical techniques will break down. A solution to this, first suggested

in [41], is to make use of source functions (as originally introduced in [43]). Note

that any spacetime in any coordinate system can be written in GH form; the cor-
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responding source functions are simply obtained by evaluating the definition (1.11).

Thus, trivially, if there is a well-behaved, non-singular coordinate chart that covers

a given spacetime, then there is a GH description of it. The difficulty in a Cauchy

evolution is that this chart is not known a-priori, and the source functions Hµ must

be treated as independent dynamical fields. Finding a well-behaved coordinate chart

then amounts to supplementing the Einstein field equations with a set of evolution

equations for Hµ.

1.3.1 Einstein Field Equations in Generalized Harmonic

Form

We begin by writing out the left-hand side of 1.12 explicitly

Rµν = Γανµ,α − Γααµ,ν + ΓααβΓ
β
νµ − ΓανβΓ

β
αµ (1.14)

= −1

2
gαβgµν,αβ + gαβgβ(µ,ν)α +

1

2
gαβ,α (gαβ,ν − gνµ,β + gβν,µ)

−
(
log
√
−g
)
,µν

+
(
log
√
−g
)
,β

Γβµν − ΓανβΓ
β
αµ.

We now use the fact that

Hν ≡ �xν = gανΓβαβ + gαν,α

or equivalently

Hµ ≡ gµνH
ν = Γβµβ + gµνg

αν
,α = Γβµβ − gαβgµβ,α. (1.15)

12



Computing the covariant derivative of (1.15) and comparing to (1.14) reveals that5

H(µ,ν) =
(
log
√
−g
)
,µν
− gαβ,(νgµ)β,α − gαβgβ(µ,ν)α

= −Rµν −
1

2
gαβgµν,αβ − ΓανβΓ

β
αµ − gαβ,(µgν)α,β

+
(
log
√
−g
)
,β

Γβµν +
1

2
gαβ,α (gαβ,ν − gνµ,β + gβν,µ)

= −Rµν −
1

2
gαβgµν,αβ − ΓανβΓ

β
αµ − gαβ,(µgν)α,β + HαΓ

α
µν . (1.16)

The field equations in GH form are the trace-reversed field equations (1.12) with

T̄µν given by (1.13) and Rµν given by (1.16):

−1

2
gαβgµν,αβ − gαβ,(µgν)α,β −H(µ,ν) + HαΓ

α
µν − ΓαβµΓ

β
αν

=
2

3
Λ5gµν + 8π

(
Tµν −

1

3
Tα

αgµν

)
. (1.17)

The full GH system of equations thus consist of (1.17), together with the relevant

evolution equations for the matter, and a set of equations for the source functions

which we write symbolically as

Lµ[Hµ] = 0. (1.18)

1.3.2 Generalized Harmonic Constraints

Even though Hµ are now treated as independent functions, we are only interested

in the subset of solutions to the expanded system (1.17),(1.18) that satisify the GH

constraints (1.11). Introducing

Cµ ≡ Hµ −�xµ, (1.19)

5Here we have used the identity (log
√
−g),α = Γβ

αβ .
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we seek solutions to (1.17),(1.18) for which Cµ = 0. It is thus in our interests to

determine the conditions under which a Cauchy evolution satisfies Cµ = 0 for all

time.

To do this, first notice that an equivalent way of obtaining (1.17) from (1.12) is

to subtract ∇(µCν) from Rµν , so that

Rµν −∇(µCν) − T̄µν = 0. (1.20)

The effect of this subtraction becomes obvious when we rewrite the Ricci tensor, as

we have done in (1.14), explicitly in terms of �xµ

Rµν = −1

2
gαβgµν,αβ − gαβ,(µgν)α,β −∇(µ�xν) − ΓαβµΓ

β
αν . (1.21)

We see that the subtraction of ∇(µCν) is simply designed to replace the ∇(µ�xν) term

in Rµν by an equivalent ∇(µHν) term. We also see that a solution of the Einstein

field equations (1.12) is also a solution of (1.20), as long as the constraints Cµ = 0

are satisfied.

Taking the divergence of (1.20), we obtain

∇µRµν −
1

2
�Cν −

1

2
∇µ∇νCµ −∇µT̄µν = 0. (1.22)

To simplify this expression, we use the contraction of the second Bianchi identity

∇µRµν =
1

2
∇νR

=
1

2
∇ν

[
∇αCα + T̄α

α

]
=

1

2
∇ν∇αCα +

1

2
∇νT̄

α
α (1.23)
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and the definition (1.5) of the Riemann tensor to commute covariant derivatives

∇µ∇νCµ = gαβ∇α∇νCβ

= gαβ [∇ν∇αCβ −Rγ
βανCγ]

= ∇ν∇αCα + CµRµν

= ∇ν∇αCα + Cµ
[
∇(µCν) + T̄µν

]
= ∇ν∇αCα + Cµ∇(µCν) + CµT̄µν . (1.24)

The divergence (1.22) of the GH evolution equations then becomes

�Cν = −Cµ∇(µCν) − CµT̄µν − 2∇µT̄µν +∇νT̄
α
α. (1.25)

To simplify this expression, we note from (1.13) that

∇µT̄µν = 8π

(
− 1

D − 2
∇νT̄

α
α

)
(1.26)

and that

∇νT̄
α
α = 8π

(
− 2

D − 2
∇T̄α

α

)
. (1.27)

We thus see that the last two terms in (1.25) exactly cancel, revealing that Cµ satisfies

the following hyperbolic equation:

�Cν = −Cµ∇(µCν) − CµT̄µν . (1.28)

For a Cauchy evolution of the system (1.17),(1.18), we need to specify initial data in

the form

gµν |t=0, ∂tgµν |t=0, (1.29)
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subject to the constraints

Cµ|t=0 = 0, ∂tC
µ|t=0 = 0. (1.30)

Thus, if we imagine (analytically) solving (1.17),(1.18) using initial data satisfying

(1.30) supplemented with boundary conditions consistent with Cµ = 0 on the bound-

ary for all time, then (1.28) implies that Cµ will remain zero in the interior for all

time.

At the level of the discretized equations, however, Cµ is only zero up to trunca-

tion error. This is not a priori problematic: numerically one only ever gets a solution

approximating the continuum solution to within truncation error. However, expe-

rience with asymptotically-flat simulations suggest that in some strong-field space-

times, equation (1.28) for Cµ admits exponentially growing solutions (the so-called

“constraint-violating modes”). At any practical resolution, this severely limits the

amount of physical time for which an accurate solution to the desired Cµ = 0 Ein-

stein equations can be obtained. In asymptotically flat spacetimes, supplementing

the GH harmonic equations with constraint-damping terms as introduced in [44] sup-

presses these unwanted solutions. Anticipating similar problems in AAdS spacetimes,

and that constraint damping will similarly help, we add the same terms to (1.17),

and arrive at the final form of our evolution equations

− 1

2
gαβgµν,αβ − gαβ,(µgν)α,β −H(µ,ν) + HαΓ

α
µν − ΓαβµΓ

β
αν

− κ
(
2n(µCν) − (1 + P )gµνn

αCα

)
=

2

3
Λ5gµν + 8π

(
Tµν −

1

3
Tα

αgµν

)
. (1.31)
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Here, the unit time-like one-form nµ is defined as in (1.34), and the constraint damping

parameters κ ∈ (−∞, 0] and P ∈ [−1, 0] are arbitrary constants. In all simulations6

described here, we use κ = −10 and P = −1.

1.4 ADM Formalism

The ADM formalism [45] is based on a choice of coordinates that naturally arises

from a space + time decomposition which casts the metric in the form

gµνdxµdxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt). (1.32)

Here, the latin indices i, j only sum over the spatial coordinates, and γij is the d-

metric induced on a space-like hypersurface Σt at some t. Its pullback to the full

D = d + 1 dimensional spacetime takes the local form

γµν = gµν + nµnν . (1.33)

where

nµ = −α∂µt (1.34)

is the unit time-like one-form normal to the Σt hypersurface. In this formalism,

the coordinate degrees of freedom are fixed via a choice of the lapse function α and

the shift vector βi that appear in (1.32). Again performing the pullback to the full

D = d+1 dimensional spacetime, the lapse and shift are geometrically related to the

time-like vector ∂/∂t and the unit normal nµ by

(
∂

∂t

)µ
= βµ + αnµ. (1.35)

6We did not perform any systematic survey by varying κ or P , though with a little experimen-
tation found the exact value of κ was not too important to achieve effective constraint damping,
though we found that it was important to keep P close to −1.
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In this dissertation, we will use the ADM formalism to set initial data on Σt=0.

1.4.1 ADM Initial Data

Initial data for Cauchy evolution of the Einstein field equations (1.9) is not freely

specifiable, but is subject to a set of D constraint equations: the D − 1 non-trivial

components of the momentum constraints, and the Hamiltonian constraint. There

are many conceivable ways of finding initial data that are consistent with these con-

straints; here, we adapt to AAdS5 spacetimes the traditional ADM-based conformal

decomposition approach often used in asymptotically flat spacetimes. See [46] for a

recent review. To simplify the treatment here, we restrict initial data to a moment of

time symmetry, and we use a scalar field to source non-trivial deviations from pure

vacuum AdS5.

Specifying time symmetric initial data is equivalent to demanding that the ex-

trinsic curvature of the initial t = 0 slice Σt=0 vanishes. The extrinsic curvature of a

constant t slice Σt of the spacetime is defined as

Kµν = −γµ
αγν

β∇(αnβ) = −1

2
Lnγµν . (1.36)

The ADM constraint equations are found by contracting the Einstein field equa-

tions (1.9) once with the unit normal to the Σt surfaces nµ, giving the local form

nν
(

Rµν −
1

2
Rgµν − 8πTµν

)
= 0. (1.37)

To see how (1.37) is related to the GH constraints (1.30), one can show (see for

e.g. [42]) that if (1.30) are satisfied, then (1.37) will also be satisfied at t = 0. To see

this, notice from (1.20) that

R = gαβ∇αCβ + 8π

(
− 2

D − 2
Tα

α

)
. (1.38)
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This can be used to rewrite (1.20) as

Rµν −
1

2
Rgµν − 8πTµν −∇(µCν) +

1

2
gαβ∇αCβgµν = 0, (1.39)

whose projection onto the Σt surface with normal one-form nµ gives

nν
(

Rµν −
1

2
Rgµν − 8πTµν

)
−1

2
nν∂νCµ−

1

2
nνΓαµνCα+

1

2
nν
(
gαβgµν − gαµg

β
ν

)
∇αCβ = 0,

(1.40)

which implies the desired result.

Conversely, the relation (1.40) shows that if (1.37) are satisfied at t = 0 together

with Cµ|t=0 = 0 (this latter condition is satisfied trivially, since Hµ|t=0 is computed

by substituting (1.29) into (1.11)), then ∂tC
µ|t=0 = 0. Thus, the problem of obtaining

initial data that satisfy (1.30) is entirely equivalent to solving (1.37). Note that the

new constraint damping terms that were introduced in (1.31) are homogeneous in

Cµ, and hence do not alter these relations between solutions of the Einstein evolution

equations and ADM constraints with those of the corresponding GH equations. The

exception is that the constraint propagation equation (1.28) picks up additional terms,

again homogeneous in Cµ (see for example [44]).

The D − 1 spatial components of (1.37) form the momentum constraints

DνK
µν − γµνDνK = 8πjµ, (1.41)

where Dµ = γµ
ν∇ν is the derivative operator intrinsic to Σt, and

jµ = −Tαβn
αγµβ (1.42)

is the momentum of any matter in the spacetime. Time symmetry Kµν |t=0 = 0

requires that in order for (1.41) to be satisfied, it suffices to arrange for the matter
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momentum density jµ to vanish everywhere on Σt=0. The remaining time component

of (1.37) forms the Hamiltonian constraint, the solution of which is the subject of the

following.

1.4.2 Hamiltonian Constraint

The temporal component of (1.37) forms the Hamiltonian constraint

(4)R + K2 −KµνK
µν − 2Λ5 = 16πρE, (1.43)

where (4)R is the Ricci scalar of the geometry intrinsic to Σt, and

ρE = Tµνn
µnν (1.44)

is the energy density on Σt. At a moment of time symmetry (1.43) simplifies to

(4)R− 2Λ5 = 16πρE. (1.45)

Following the conformal approach, we will solve this equation by requiring that our

spatial 4-metric γij be conformal to the 4-metric γ̂ij of a spatial slice of vacuum AdS5

γij = ζ2γ̂ij

γij = ζ−2γ̂ij, (1.46)

for some positive smooth function ζ on Σt=0 with boundary condition ζ|∂Σ = 1.

The conformal form of the Hamiltonian constraint can be obtained as follows.

First, consider the difference between the Christoffel symbols of the Levi-Civita con-

nection D associated with the 4-metric γij, and those of the Levi-Civita connection D̂

associated with the conformal 4-metric γ̂ij. The difference of these Christoffel symbols
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forms the components of a tensor

Ck
ij = Γkij − Γ̂kij. (1.47)

Given a tensor of rank (p, q), the components of its covariant derivatives with

respect to different connections are related in terms of Ck
ij by

DkT
i1...ip

j1...jq = D̂kT
i1...ip

j1...jq +

r=p∑
r=1

Cir
kaT

...a...
j1...jq −

r=q∑
r=1

Ca
kjrT

i1...ip
...a..., (1.48)

where Di is the covariant derivative with respect to γij, and D̂i is the covariant

derivative with respect to γ̂ij.

Direct computation also reveals that the Ck
ij components can be expressed as

Ck
ij =

1

2
γkl
(
D̂iγlj + D̂jγil − D̂lγij

)
. (1.49)

Using (1.46), we can replace γij and γij in (1.49) with their corresponding expres-

sions in terms of the conformal objects ζ, γ̂ij, and γ̂ij, giving

Ck
ij =

1

2
ζ−2γ̂kl

(
D̂i(ζ

2γ̂lj) + D̂j(ζ
2γ̂il)− D̂l(ζ

2γ̂ij)
)

=
1

2
ζ−2γ̂kl

(
γ̂ljD̂iζ

2 + γ̂ilD̂jζ
2 − γ̂ijD̂lζ

2
)

=
1

2
ζ−2

(
δkjD̂iζ

2 + δkiD̂jζ
2 − γ̂ij γ̂

klD̂lζ
2
)

= δkjD̂i ln ζ + δkiD̂j ln ζ − γ̂klD̂l ln ζγ̂ij (1.50)

where in the last line we have used the relation D̂j ln ζ = 1
n
ζ−nD̂jζ

n. A useful con-

traction can be computed by noting that γ̂ij γ̂ij = δii = 4, so

Ck
kj = D̂j ln ζ + 4D̂j ln ζ − D̂j ln ζ

= 4D̂j ln ζ. (1.51)
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Taking the definition for the Riemann curvature components (1.5) which we repeat

here for some vector field with components V i

(4)Rk
lijV

l = (DiDj −DjDi) V k. (1.52)

Tracing over its first and third indices, we can express the result in terms of D̂ using

(1.48) to see that (4)R and (4)R̂ are related by

(4)Rij = (4)R̂ij + D̂kC
k
ij − D̂iC

k
kj + Ck

ijC
l
lk − Ck

iaC
a
kj. (1.53)

Using (1.50) and (1.51), we can now eliminate all occurrences of Ck
ij in (1.53), in

favor of conformal objects

(4)Rij = (4)R̂ij +
(
2D̂iD̂j ln ζ − γ̂klD̂kD̂l ln ζγ̂ij

)
−
(
4D̂iD̂j ln ζ

)
+
(
δkjD̂i ln ζ + δkiD̂j ln ζ − γ̂klD̂l ln ζγ̂ij

)(
4D̂k ln ζ

)
−
(
δkaD̂i ln ζ + δkiD̂a ln ζ − γ̂klD̂l ln ζγ̂ia

)
(
δajD̂k ln ζ + δakD̂j ln ζ − γ̂alD̂l ln ζγ̂kj

)
= (4)R̂ij − 2D̂iD̂j ln ζ − γ̂klD̂kD̂l ln ζγ̂ij

+2D̂i ln ζD̂j ln ζ − 2γ̂klD̂k ln ζD̂l ln ζγ̂ij.

(1.54)
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The relation between scalar curvatures (4)R and (4)R̂ can be found by contracting

(1.54) with respect to γij = ζ−2γ̂ij, and using

D̂iD̂j ln ζ = D̂i

(
ζ−1D̂jζ

)
= ζ−1D̂iD̂jζ + D̂iζ

−1D̂jζ

= ζ−1D̂iD̂jζ − ζ−2D̂iζD̂jζ

= ζ−1D̂iD̂jζ − D̂i ln ζD̂j ln ζ, (1.55)

so that we have

(4)R = γij((4)R)ij

= ζ−2γ̂ij
(

(4)R̂ij − 2D̂iD̂j ln ζ − γ̂klD̂kD̂l ln ζγ̂ij

+2D̂i ln ζD̂j ln ζ − 2γ̂klD̂k ln ζD̂l ln ζγ̂ij

)
= ζ−2

(
(4)R̂− 2γ̂klD̂kD̂l ln ζ − γ̂kl4D̂kD̂l ln ζ

+2γ̂klD̂k ln ζD̂l ln ζ − 2γ̂kl4D̂k ln ζD̂l ln ζ
)

= ζ−2
(

(4)R̂− 6γ̂klD̂kD̂l ln ζ − 6γ̂klD̂k ln ζD̂l ln ζ
)

= ζ−2((4)R̂)− 6ζ−3γ̂klD̂kD̂lζ. (1.56)

The Hamiltonian constraint (1.45) can then be expressed as

(4)R̂− 6ζ−1γ̂αβD̂αD̂βζ − ζ22Λ5 = 16πζ2ρE, (1.57)

where D̂α is the covariant derivative operator compatible with γ̂µν , and (4)R̂ is the

corresponding Ricci scalar. (4)R̂ is readily computed from the spatial part of the AdS5

metric (1.59), giving a constant (4)R̂ = −12/L2 = 2Λ5. This lets us rewrite (1.57) as

γ̂αβD̂αD̂βζ −
1

3
Λ5ζ +

1

3
(Λ5 + 8πρE) ζ3 = 0. (1.58)
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Notice that the Hamiltonian constraint (1.58) does not contain the lapse function

α; this is consistent with the understanding that unlike a specification of the lapse

α, which encodes the manner in which data evolves away from the initial slice, the

Hamiltonian constraint may only set data intrinsic to the initial slice itself. Further-

more, by restricting our attention to conformally AdS initial data, we have written

this Hamiltonian constraint as a non-linear elliptic equation for the conformal factor

ζ. This equation can be solved once the matter content is specified, which amounts

to specifying ρE.

1.5 Asymptotically Anti-de Sitter Spacetimes

1.5.1 AdS5 Spacetime

The metric of AdS5 is the maximally symmetric vacuum solution of the Einstein

field equations (1.9) in D = 5 dimensions, with a negative cosmological constant

Λ ≡ Λ5 < 0. In terms of the global coordinates xµ = (t, r, χ, θ, φ) that cover the

whole spacetime, this solution is

ds2 ≡ ĝµνdxµdxν (1.59)

= −f(r)dt2 +
1

f(r)
dr2 + r2dΩ3

2

where we have defined f(r) = 1 + r2/L2 for convenience. Here, dΩ3
2 = dχ2 +

sin2 χ
(
dθ2 + sin2 θdφ2

)
is the metric of the 3-sphere parametrized by angles χ, θ, φ,

and L is the AdS radius of curvature, related to the cosmological constant by Λ5 =

−(D − 1)(D − 2)/(2L2) = −6/L2. We are free to set the AdS length scale L, which

is the scale with respect to which all other lengths are measured. In the code we set

L = 1, though we will continue to explicitly display L in all of the following, unless

otherwise indicated.
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Due to the significance of the AdS5 boundary in the context of AdS/CFT, it is

useful to introduce a “compactified” radial coordinate ρ so that the boundary is at a

finite ρ. We choose

r =
ρ

1− ρ/`
, (1.60)

where ` is an arbitrary compactification scale, independent of the AdS length scale

L, such that the AdS5 boundary is reached when ρ = `. In our code and in all of the

following, we set ` = 1, though note that this scale is implicitly present since ρ has

dimensions of length. Transforming to the ρ coordinate, the metric (1.59) takes the

form:

ds2 =
1

(1− ρ)2

(
−f̂(ρ)dt2 +

1

f̂(ρ)
dρ2 + ρ2dΩ3

2

)
(1.61)

where f̂(ρ) = (1− ρ)2 + ρ2/L2.

AdS5 can also be described as the universal cover of the hyperboloid XA in R4,2

defined by the locus

− (X−1)2 − (X0)2 +
i=4∑
i=1

(X i)2 = −L2. (1.62)

This space has symmetry group SO(4, 2) whose transformations preserve the

quadratic form (1.62). The metric of AdS5 is then the metric ĝµν induced on the

above hyperboloid from the flat metric ĜAB of an R4,2 ambient space. Here the

metric ĜAB is simply given by Ĝ = diag(−1,−1, 1, 1, 1, 1). The hyperboloid can be

more efficiently described in terms of embedding coordinates xµ defined by a set of

embedding functions XA(xµ), so that the induced metric ĝµν on the hyperboloid is

ĝµν =

(
∂XA

∂xµ

)(
∂XB

∂xν

)
ĜAB. (1.63)
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The global coordinates xµ = (t, r, χ, θ, φ) can then be thought of as corresponding

to a choice of embedding functions

X−1 =
√

r2 + L2 cos(t/L)

X0 =
√

r2 + L2 sin(t/L)

X1 = r sin χ sin θ sin φ

X2 = r sin χ sin θ cos φ

X3 = r sin χ cos θ

X4 = r cos χ. (1.64)

Notice that t = 0 and t = 2πL are identified on the hyperboloid, so that there are

closed time-like curves in this space. AdS5 is defined as the hyperboloid’s univer-

sal cover precisely to remove these closed time-like curves. This universal cover is

obtained by unwrapping the S1 parametrized by t on the hyperboloid, which would

then run from −∞ to ∞ in AdS5.

1.5.2 Boundary of AdS5

The boundary of AdS5 differs dramatically from that of asymptotically flat space-

times. To see this, let us first remember how the analogous story unfolds in the

familiar setting of Minkowski space, whose metric in polar coordinates ηµνdxµdxν =

−dt2 + dr2 + r2dΩ2 can be rewritten through a series of coordinate transformations

u± = t± r, ũ± = arctan u± = (T ±R)/2 to read

ds2 =
1

4 cos2 u+ cos2 u−

(
−dT 2 + dR2 + sin2 RdΩ2

)
. (1.65)

Through this conformal compactification, the infinite region t ∈ (−∞,∞), r ∈ [0,∞)

is mapped to the interior of a compact region defined by |T ± R| < π. Given that
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T is a time-like coordinate and R > 0 is a space-like coordinate, this region is the

triangle T ∈ [−π, π], R ∈ [0, π] in the T, R plane—see Fig. 1.1. Consequently, the

boundary consists of the two null surfaces of future/past null infinity, meeting at

spatial infinity. Spatial infinity in Minkowski space is thus not in causal contact with

its interior. Notice that the geometry of Minkowski space is conformal to a patch

T ∈ [−π, π] of the Einstein static universe.

The conformal compactification of AdS5 is achieved7 by the spatial coordinate

transformation r/L = tan R, which brings its metric (1.59) into the form

ds2 =
L2

cos2 R

(
−dt2 + dR2 + sin2 RdΩ3

2
)

(1.66)

where the infinite region r ∈ [0,∞] is mapped to the interior of a compact region

R ∈ [0, π/2]—see Fig. 1.2. This halved range of R implies that anti-de Sitter space

is conformal to one-half of the Einstein static universe. More crucially, we have not

rescaled the time coordinate t in this compactification. The important consequence

is a spatial infinity that runs along the t direction: it is time-like and thus causally

connected to the interior.

A proper treatment of the AdS boundary is crucial to a solution of the Cauchy

problem in an asymptotically AdS spacetime. Without some specification of bound-

ary conditions at time-like infinity, only a small wedge to the causal future of an

initial space-like foliation can be solved for. This is in contrast with asymptotically

Minkowski spacetimes, where the specification of initial data on a slice that reaches

spatial infinity is sufficient to evolve the entire interior. Such an approach to initial

data is not useful in the asymptotically AdS case, particularly in problems that are

relevant to AdS/CFT: for these problems, the time-like boundary must be included

as part of the spacetime.

7In practice, we compactify using (1.60), but for the current didactic discussion we choose the
compactification that most closely resembles its Minkowski space analog.
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1.5.3 Asymptotically AdS5 Spacetimes

An asymptotically AdS5 (AAdS5) spacetime is one that shares the boundary structure

of AdS5. In particular, it must have SO(4, 2) as its asymptotic symmetry group. To

write down the asymptotics of the fields in such a spacetime, let us decompose the

metric by writing

gµν = ĝµν + hµν (1.67)

where hµν is the deviation of the full metric gµν from the metric ĝµν of AdS5.

The matter-free asymptotics of hµν corresponding to an AAdS5 spacetime were

found in [47], by requiring that these deviations hµν satisfy boundary conditions at

spatial infinity that i) are invariant under the SO(4, 2) symmetry group of AdS5, ii)

include the AdS-Schwarzschild black hole metric as a special case, and iii) yield finite

values for the conserved quantities associated with the spacetime. These results are

also consistent with the Fefferman-Graham construction when mapped to a Poincaré

patch [48] of AdS (see Appendix A). To describe these conditions, we begin by noting

that a typical generator ξµ of SO(4, 2) has components with asymptotics

ξm = O(1)

ξr = O(r)

ξm,r = O(r−3)

ξr,r = O(1), (1.68)

where the index m denotes the non-radial coordinates (t, χ, θ, φ). Since we need to

ensure that SO(4, 2) is an asymptotic symmetry, we are interested in satisfying the

Killing equation in an asymptotic sense

Lξgµν = O(hµν), (1.69)
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so that for all generators ξµ of SO(4, 2), the Lie derivative of each metric component

along ξµ approaches zero with the appropriate power of r as r →∞. In other words,

we are looking for an asymptotic form of the metric deviation hµν ∼ rpµν , such that

this asymptotic form is preserved by the coordinate transformations that correspond

to the generators ξµ. Direct calculation reveals that (1.69) holds when prr = −D− 1,

prm = −D, pmn = −D + 3. Since we are interested in the case of D = 5 dimensions,

the vacuum boundary conditions read

hrr = frr(t, χ, θ, φ)
1

r6
+O(r−7)

hrm = frm(t, χ, θ, φ)
1

r5
+O(r−6)

hmn = fmn(t, χ, θ, φ)
1

r2
+O(r−3). (1.70)

By construction, these boundary conditions are preserved under SO(4, 2), are

broad enough to encompass the hµν corresponding to AdS-Schwarzschild black holes,

and always yield a finite spacetime mass. These boundary conditions are valid for

vacuum AAdS5 spacetimes, and as we shall see, for spacetimes containing localized

matter distributions that fall-off sufficiently quickly near the boundary.

1.5.4 Scalar Fields in Asymptotically AdS5 Spacetimes

As we will be coupling matter to gravity, it is important to know how the presence

of matter alters the vacuum boundary conditions (1.70). To understand just the

asymptotics, it suffices to consider a static spherically symmetric scalar φ = φ(r) of

mass m, for which the Klein-Gordon equation

�φ = m2φ (1.71)

29



takes the form [
rD

L2
+

D − 2

r
+ ĝrr

∂

∂r

]
∂φ

∂r
= m2φ. (1.72)

The static ansatz φ(r) ∼ r−∆ yields a quadratic equation for ∆, whose solutions are

the powers of allowed fall-offs. The asymptotics for a scalar field of mass m are thus

described by

φ =
A

rd−∆
+

B

r∆
, (1.73)

∆ =
d

2
+

√(
d

2

)2

+ L2m2, (1.74)

which gives ∆ = 2 +
√

4 + m2 in D ≡ d + 1 = 5 dimensions. The usual vacuum

boundary conditions given in (1.70) can accomodate a scalar field with a vanishing

A = 0. We show in Appendix B that such a scalar field does not alter the boundary

conditions (1.70), essentially because it falls off sufficiently quickly near the boundary.

Matter configurations studied in this dissertation involve only scalar fields of this

type.

30



i
+

J +

i
0

J−

i
−

Figure 1.1: The conformal diagram of Minkowski space. The boundary consists of
the point at spatial infinity i0, and the null surfaces at future null infinity J + and
past null infinity J −. In this compactification, future time-like infinity i+ and past
time-like infinity i− are represented by points. Dashed lines are constant t surfaces,
and solid lines are constant r surfaces.
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i
+

i
−

Figure 1.2: The conformal diagram of anti-de Sitter space. The boundary consists
of the time-like surface J ; past and future time-like infinity are represented by the
points i− and i+, respectively. Conventions used here are the same as those in Fig. 1.1
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Chapter 2

Numerical Evolution of

Asymptotically AdS Spacetimes

In this chapter we describe the ingredients we have found necessary to achieve stable

evolution of AAdS5 spacetimes within the GH formalism. The solutions in this initial

study preserve an SO(3) symmetry, which is sufficiently general to be physically

relevant, as well as capture many of the problems and issues that need to be resolved

for stable evolution. Chief among these are (a) decomposing the metric into a form

that analytically factors out the AdS divergences, and dividing out sufficient powers

of 1− ρ from what remains, allowing us to set boundary conditions that impose the

desired leading-order deviation from AdS, and (b) imposing an asymptotic gauge in

terms of the source functions Hµ of the GH formalism that is consistent with the

desired fall-off. These two issues are in fact intimately related in AAdS spacetimes—

asking for coordinates where the leading-order metric deviations are non-singular in

the approach to the boundary, together with a choice of the form of the background

(singular) AdS metric, completely fixes any residual gauge freedom. The next few

sections will address each of the ingredients of the GH formalism.
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2.1 Initial Data with Scalar Matter

We begin by writing down an explicit form for the matter source term in (1.58) using

scalar field matter content. Scalar fields are particularly convenient for our purposes,

since their energy density constitutes a parameter with which we can tune the initial

data. Considering cases of incrementally larger energy density then allows us to

approach the dynamical, strong field regime in a controlled fashion.

The Lagrangian density of a scalar field φ with a potential V (φ) is given by

L(φ, ∂µφ) = −1

2
gαβ∂αφ∂βφ− V (φ). (2.1)

Varying the action constructed from (2.1) with respect to the metric gαβ gives an

energy-momentum tensor

Tµν = ∂µφ∂νφ− gµν

(
1

2
gαβ∂αφ∂βφ + V (φ)

)
. (2.2)

Substituting (1.34), (1.33), (1.46), and (2.2) into (1.44), then using the restriction of

time-symmetry, which for the scalar field amounts to setting ∂tφ|t=0 = 0, we obtain

ρE = ζ−2γ̂ij∂iφ∂jφ + V (φ). (2.3)

The Hamiltonian constraint (1.58) thus takes the explicit form

γ̂klD̂kD̂lζ −
1

3
(Λ5 − 8πγ̂ij∂iφ∂jφ)ζ

+
1

3
(Λ5 + 8πV (φ)) ζ3 = 0. (2.4)

The choice of φ on the spatial slice is completely arbitrary. For the tests and quasi-

normal mode study described in this dissertation, we restrict ourselves to free, mass-

less fields i.e. V (φ) = 0. For the spatial profile of these fields, we use the following
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5-parameter generalized Gaussian function:

φ(ρ, χ) = q4(1 + ρ)4A0 exp

(
−(R(ρ, χ)−R0)

2

δ2

)
(2.5)

where

R(ρ, χ) =

√
x(ρ, χ)2

wx
2

+
y(ρ, χ)2

wy
2

x(ρ, χ) = ρ cos χ

y(ρ, χ) = ρ sin χ. (2.6)

Here, A0 is the maximum amplitude, R0 fixes the radial position of the maximum,

δ sets the overall compactness of the profile, and wx,wy can be adjusted to set the

relative compactness of the profile in the x,y directions. The q4 factor ensures that

this profile has the correct fall-off for a massless scalar field, consistent with (1.73)

and (1.74)1; this is supplemented by a (1+ρ)4 factor to maintain the original Gaussian

profile’s even character near the origin.

2.2 Evolution Variables and Boundary Conditions

The boundary is crucial for evolution in asymptotically AdS5 spacetimes. To find the

most natural variables to evolve in this setting, we first need to gain some intuition

on how the fields behave near the boundary at ρ = 1. To begin, let us again use

(1.67) to decompose the metric gµν into a pure AdS5 piece ĝµν and a deviation hµν .

From the point of view of the evolution equations (1.31), this decomposition allows

us to analytically eliminate a subset of asymptotically singular terms representing

the pure AdS solution. From the point of view of the boundary conditions (1.70),

1The q4 prefactor on the right side of (2.5) means that we are not deforming the CFT by the
dimension 4 operator dual to the massless scalar φ.
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this decomposition guides our choice of variables that are most suitable for Cauchy

evolution.

Our choice of evolution variables is largely motivated by considerations similar

to those that arise when numerically solving hyperbolic partial differential equations

(PDEs) whose domain includes a formally singular boundary, where one seeks solu-

tions that remain regular at the boundary (see for example [49], where this method

was introduced to study the evolution of gravitational waves in axisymmetry in a do-

main that includes the axis of symmetry). Before listing the variables that we use to

represent the metric deviation in AAdS spacetime, let us first colloquially describe the

reasoning behind their definitions. We will not prove that the following is a correct (or

complete) characterization of the AAdS boundary behavior of our coupled system of

PDEs (1.71),(1.18),(1.31); rather we will take the empirical approach that if by using

this regularization scheme we are able to obtain stable, convergent numerical solu-

tions, then this strongly suggests that the regularization is consistent, at least for the

set of initial data considered. Though note that in [34] a complete characterization

of boundary conditions consistent with stable evolution for linearized gravitational

perturbations on an AdS background was given. As discussed in Appendix A, the

boundary conditions we describe below are consistent with the Friedrich self-adjoint

extension of the operator describing the scalar sector of gravitational perturbations.

Thus, insofar as the linear problem guides the full non-linear problem, we can have

some confidence that the following prescription is well-posed.

To illustrate, consider a function f(t, q, χ, θ, φ) that can be expanded in a power

series in q, where the boundary is located at q = 0:

f = f0 + f1q + f2q
2 + f3q

3 + ... (2.7)
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Here, f0, f1, f2, f3, ... are functions of t, χ, θ, φ. Now suppose that for a regular solution

(which in our case means a solution consistent with the desired AAdS fall-off) the first

n terms of the RHS are required to be zero, and that the n-plus-first term describes the

leading-order behavior for the particular physical solution of interest. At first glance,

this would suggest that we need to supply n + 1 boundary conditions. However, if

f satisfies a hyperbolic PDE with “standard” characteristic structure i.e. with an

inward and outward propagating mode in each spatial direction, then we are usually

only free to choose 1 boundary condition, effectively fixing the mode propagating

into the domain. Furthermore, at a singular boundary where we demand regularity,

one is often not free to choose even this ingoing mode—the outgoing mode together

with regularity completely fixes it. As proposed in [49], a solution is to define a new

evolution variable f̄ via

f(t, q, χ, θ, φ) ≡ f̄(t, q, χ, θ, φ)qn−1, (2.8)

and demand that f̄ satisfy a Dirichlet condition f̄(t, q = 0, χ, θ, φ) = 0 at the bound-

ary. Plugging this into (2.7) gives

f̄ = ... + fn−2q
−1 + fn−1 + fnq + fn+1q

2 + ... (2.9)

One can see that if we choose regular initial data for f̄ that has f̄(t = 0, q = 0) = 0,

this eliminates all the components of f with undesired fall-off at t = 0. This will give

a regular solution (analytically) for all time if the differential equation for f admits a

unique solution consistent with the desired fall-off. Note that by factoring out n− 1

powers of q, we have assumed that the nature of the boundary is such that we are

not free to specify the leading-order behavior encoded in fn as a formal boundary

condition, i.e. initial data together with evolution should uniquely determine it (if

this were not the case, one could factor out an additional power of q, and explic-
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ity set fn). As described in more detail in Appendix A, this is consistent with the

analysis of [34] on admissible boundary conditions for linearized gravitational pertur-

bations of AdS. This is also the picture that arises in more formal derivations of the

fluid/gravity correspondence in terms of derivative expansions of the field equations,

where demanding normalizability at the boundary and regularity in the bulk (outside

of black hole singularities) effectively constrains the gravitational dynamics of the

bulk to have as many “degrees of freedom” as the dual boundary fluid dynamics. For

a review, see for example [50].

Applying the above reasoning to our metric fields gµν , we construct regularized

metric variables ḡµν that asymptotically fall-off as ḡµν ∼ q:

gtt = ĝtt + q(1 + ρ)ḡtt

gtρ = ĝtρ + q2(1 + ρ)2ḡtρ

gtχ = ĝtχ + q(1 + ρ)ḡtχ

gρρ = ĝρρ + q(1 + ρ)ḡρρ

gρχ = ĝρχ + q2(1 + ρ)2ḡρχ

gχχ = ĝχχ + q(1 + ρ)ḡχχ

gθθ = ĝθθ + q(1 + ρ)(ρ2 sin2 χ)ḡψ

gφφ = ĝφφ + q(1 + ρ)(ρ2 sin2 χ sin2 θ)ḡψ (2.10)

The term in the metric gµν that is conformal to S2 can be kept track of by a single

variable ḡψ, since we are considering solutions that preserve an SO(3) symmetry

that acts to rotate this S2; the ρ2 sin2 χ and ρ2 sin2 χ sin2 θ that appear in (2.10)

are factored out to reflect this invariant S2. Additionally, the Taylor expansion of

tensorial quantities in polar-like coordinates are typically either even or odd in ρ

about ρ = 0; the (1 + ρ) that appear in (2.10) have been factored out to ensure that

the ḡµν have the same even/odd character as the gµν in the limit ρ → 0.
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Using the regularized variables defined in (2.10), the boundary conditions (1.70)

can be fully captured by a simple set of Dirichlet boundary conditions at spatial

infinity:

ḡtt|ρ=1 = 0

ḡtρ|ρ=1 = 0

ḡtχ|ρ=1 = 0

ḡρρ|ρ=1 = 0

ḡρχ|ρ=1 = 0

ḡχχ|ρ=1 = 0

ḡψ|ρ=1 = 0. (2.11)

We use standard results for the origin regularity conditions, which in our context

read:

∂ρḡtt|ρ=0 = 0

∂ρḡtχ|ρ=0 = 0

∂ρḡρρ|ρ=0 = 0

∂ρḡχχ|ρ=0 = 0

∂ρḡψ|ρ=0 = 0

ḡtρ|ρ=0 = 0

ḡρχ|ρ=0 = 0. (2.12)
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Similar regularity conditions apply on axis:

∂χḡtt|χ=0,π = 0

∂χḡtρ|χ=0,π = 0

∂χḡρρ|χ=0,π = 0

∂χḡχχ|χ=0,π = 0

∂χḡψ|χ=0,π = 0

ḡtχ|χ=0,π = 0

ḡρχ|χ=0,π = 0. (2.13)

Elementary flatness imposes an additional relation among the metric variables on

the axis, ensuring that no conical singularities arise there. Given our axial Killing

vector ∂φ, with norm-squared ξ = gφφ, this statement is made precise by the condi-

tion [51]

gµν∂µξ∂νξ

4ξ

∣∣∣∣
χ=0,π

= 1, (2.14)

which evaluates to the following in terms of our regularized metric variables:

ḡχχ|χ=0,π = ρ2 ḡψ|χ=0,π . (2.15)

We ensure that this relationship is satisfied by explicitly setting ḡχχ in terms of ḡψ

on the axis as dictated by (2.15), instead of applying the regularity condition for ḡχχ

as displayed in (2.13).

To find the appropriate regularized source function variables H̄µ, we insert the

above expressions (2.10) for the metric components into the definition (1.11) to find

how the source functions deviate from their AdS5 values Ĥµ near the boundary.

Factoring out the appropriate powers of q so that Ĥµ(q = 0) = 0, and adding powers
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of (1 + ρ) to maintain the same expansions near the origin, we obtain

Ht = Ĥt + q3(1 + ρ)3H̄t

Hρ = Ĥρ + q2(1 + ρ)2H̄ρ

Hχ = Ĥχ + q3(1 + ρ)3H̄χ (2.16)

with boundary conditions:

H̄t

∣∣
ρ=1

= 0

H̄ρ

∣∣
ρ=1

= 0

H̄χ

∣∣
ρ=1

= 0

(2.17)

origin regularity conditions:

∂ρH̄t

∣∣
ρ=0

= 0

∂ρH̄χ

∣∣
ρ=0

= 0

H̄ρ

∣∣
ρ=0

= 0. (2.18)

and axis regularity conditions:

∂χH̄t

∣∣
χ=0,π

= 0

∂χH̄ρ

∣∣
χ=0,π

= 0

H̄χ

∣∣
χ=0,π

= 0. (2.19)
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We also need a regularized massless scalar field variable φ̄ that asymptotically falls

off as φ̄ ∼ q, so we let

φ = q3(1 + ρ)3φ̄. (2.20)

with boundary condition:

φ̄
∣∣
ρ=1

= 0 (2.21)

origin regularity condition:

∂ρφ̄
∣∣
ρ=0

= 0.

(2.22)

and axis regularity condition:

∂χφ̄
∣∣
χ=0,π

= 0.

(2.23)

2.3 Source Functions

2.3.1 Gauge Choice

Choosing GH gauge conditions in AAdS5 spacetimes is somewhat more subtle than in

the usual asymptotically flat case. Roughly speaking, it turns out that it is not enough

to simply demand that the metric and source functions satisfy the requisite rates of

fall-off approaching the boundary as indicated in (2.10) and (2.16); rather, there are

further restrictions amongst the leading-order behavior of certain fields that need to

be explicitly enforced, so that the requisite fall-off is preserved during evolution.
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To show this more clearly, we expand the regularized metric variables ḡµν , source

functions H̄µ, and scalar field φ̄ in power series about q = 0

ḡµν = ḡ(1)µν(t, χ, θ, φ)q + ḡ(2)µν(t, χ, θ, φ)q2 +O(q3) (2.24)

H̄µ = H̄(1)µ(t, χ, θ, φ)q + H̄(2)µ(t, χ, θ, φ)q2 +O(q3) (2.25)

φ̄ = φ̄(1)(t, χ, θ, φ)q + φ̄(2)(t, χ, θ, φ)q2 +O(q3) (2.26)

and substitute these expressions into the field equations (1.31). Since the GH form

of the field equations results in PDEs where the principle part of each equation is a

wave operator acting on the metric (this fact guides our numerical solution method),

we will schematically write this perturbative expansion of the field equations for the

leading component ḡ(1)µν of ḡµν as follows

�̃ḡ(1)µν = ... (2.27)

where we use the symbol �̃ to denote a wave-like operator active within the (t, χ, θ, φ)

subspace, and containing terms of the form c0 · ∂2ḡ(1)µν/∂t2 − c1 · ∂2ḡ(1)µν/∂χ2 + ....

Here, c0, c1, ... are coefficient functions that are in general different for each component

of the field equations, but are regular and finite on the boundary. Their particular

form is unimportant here, as we are interested in highlighting the leading-order terms

sourcing the wave-like equation on the RHS of (2.27).
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In this notation, the field equations near q = 0 read

�̃ḡ(1)tt = (−8ḡ(1)ρρ + 4H̄(1)ρ)q
−2 +O(q−1)

�̃ḡ(1)tρ = (−60ḡ(1)tρ − 8 cot χḡ(1)tχ + 24H̄(1)t − ḡ(1)tt,t

+2ḡ(1)tχ,χ + 2ḡ(1)ρρ,t − ḡ(1)χχ,t − 2ḡ(1)ψ,t − 2H̄(1)ρ,t)q
−2 +O(q−1)

�̃ḡ(1)tχ = O(q−1)

�̃ḡ(1)ρρ = (−8ḡ(1)tt − 24ḡ(1)ρρ + 8ḡ(1)χχ + 16ḡ(1)ψ + 16H̄(1)ρ)q
−2 +O(q−1)

�̃ḡ(1)ρχ = (−60ḡ(1)ρχ − 8 cot χḡ(1)χχ + 8 cot χḡ(1)ψ + 24H̄(1)χ

+ḡ(1)tt,χ − 2ḡ(1)tχ,t + 2ḡ(1)ρρ,χ + ḡ(1)χχ,χ − 2ḡ(1)ψ,χ − 2H̄(1)ρ,χ)q
−2 +O(q−1)

�̃ḡ(1)χχ = (8ḡ(1)ρρ − 4H̄(1)ρ)q
−2 +O(q−1)

�̃ḡ(1)ψ = sin2 χ(8ḡ(1)ρρ − 4H̄(1)ρ)q
−2 +O(q−1), (2.28)

and again we re-emphasize that �̃ is used to schematically denote a regular wave op-

erator, though its specific form is in general different for each equation. For reference,

we also list the leading-order behavior of the GH constraints (1.19):

Ct = (20ḡ(1)tρ − 8H̄(1)t + ḡ(1)tt,t − 2ḡ(1)tχ,χ + ḡ(1)ρρ,t + ḡ(1)χχ,t + 2ḡ(1)ψ,t)q
4 +O(q5)

Cρ = (8ḡ(1)tt + 8ḡ(1)ρρ − 8ḡ(1)χχ − 16ḡ(1)ψ − 8H̄(1)ρ)q
3 +O(q4)

Cχ = (20ḡ(1)ρχ − 8H̄(1)χ − ḡ(1)tt,χ + 2ḡ(1)tχ,t + ḡ(1)ρρ,χ − ḡ(1)χχ,χ + 2ḡ(1)ψ,χ)q
4 +O(q5).

(2.29)

In order for the evolution to be consistent with each metric component’s desired

fall-off indicated in (2.10), the leading-order “source” on the right-hand side of each

equation in (2.28) must scale as q0 due to the Dirichlet boundary conditions (2.11).

This implies that all terms of order q−2 and q−1 must vanish, and it would thus appear

as though there were an additional hierarchy of constraints that need to be satisfied
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before the leading-order dynamics in the q0 term becomes manifest (note that these

constraints are not simply the GH constraints (2.29)). This is, in part, an artifact of

having decomposed the field equations in a near-boundary expansion such as (2.24):

when solving the full equations consistently (i.e., with a Cauchy evolution scheme and

initial data satisfying the constraints, along with stable, consistent boundary condi-

tions as discussed in the previous sections), one usually expects that the evolution

will “conspire” to preserve what appears as constraints in the perturbative expansion.

However, there are two potential complications in the AAdS case, highlighted in the

above by the fact that the leading-order power in the expansions diverge as q−2.

First, in the GH method, one is free to choose H̄µ as the gauge, and though the

structure of the field equations guarantee that the resultant solution will be consistent,

there is no guarantee that a given choice of H̄µ will preserve the desired asympotic

fall-off of the metric (2.10). Case in point, suppose that we started with some initial

value H̄µ(t = 0), and wanted to evolve to a gauge that in time becomes harmonic

with respect to pure AdS, namely H̄µ(t � 0) = 0 so that Hµ(t � 0) = Ĥµ in (2.16).

Then (2.28) for ḡ(1)tt immediately tells us that either ḡ(1)ρρ must evolve to 0, or ḡ(1)tt

ceases to remain regular. Whichever scenario unfolds, this choice of gauge leads to a

representation of the metric that is not consistent with the fall-off assumed in (2.10),

and as discussed in Sec. 2.2, it would generically be difficult (or even impossible) to

come up with a numerical scheme to stably evolve such a situation.

Second, the form of the equations in (2.28) imply that regularity requires a del-

icate cancellation between terms in the near-boundary limit. Thus any truncation

error introduced by a numerical scheme must be sufficiently small to effectively scale

by some high power of q in the limit. In a typical finite difference scheme, the closest

point to the boundary will be q = h , where h is the mesh-spacing there. Naively

then, from (2.28) one would expect to need a discretization scheme that has local

convergence order n+2 to obtain global nth order convergence of the solution. Fortu-
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nately, this naive argument apparently does not hold with our code and the situations

we have explored to date: we observe global second-order convergence using second-

order accurate finite difference discretization. We are not sure why this is so; again,

it could simply be that the near-boundary expansion is giving a misleading picture of

the nature of evolution of the full set of equations, or it could be due to the particular

asymptotic gauge choice we use, described in the remainder of this section.

We have experimented with a small handful of gauge choices which were unstable,

including evolution to harmonic with respect to AdS (H̄µ(t > 0) → 0, though as

argued above one expects problems with this), and a fixed gauge (∂H̄µ/∂t = 0, and

we note that our initial data is fully consistent with all the “constraints” in (2.28)

and (2.29)). When a numerical solution is unstable, it is often difficult to isolate the

source: the gauge could be inconsistent in the sense discussed above, the discretization

scheme could be unstable for the particular set of equations, there is a bug, etc. So

here we simply list the asymptotic gauge condition we have empirically found to be

stable (see the following section for an explicit expression of the particular source

functions used in this study):

H̄t

∣∣
ρ=1

=
5

2
ḡtρ|ρ=1

H̄ρ

∣∣
ρ=1

= 2 ḡρρ|ρ=1

H̄χ

∣∣
ρ=1

=
5

2
ḡρχ|ρ=1 . (2.30)

This choice was in part motivated by the asymptotic form of the field equations, in

that these conditions, in conjuction with the GH constraints (2.29) explicitly eliminate

many of the order q−2 terms that appear in (2.28). However, this is almost certainly

not a unique choice for stability, and one can anticipate that modifications would be

required if, for example, the code is used to explore situations with less symmetry, or
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to study scenarios where the boundary theory is “deformed” in a manner that alters

the leading-order AAdS asymptotics.

2.3.2 Implementing the Gauge Choice

As described in Sec. 2.3.1, we are not free to arbitrarily choose the leading-order be-

havior of the source functions approaching the AdS boundary if subsequent evolution

of the field equations is to preserve the desired asymptotic form for the metric (1.70).

Specifically, we want to consider a class of gauges that satisfy the asymptotic condi-

tions (2.30).

A naive implementation of (2.30), wherein one would set Hµ(t > 0) everywhere on

the grid to the values prescribed by (2.30), would result in a discontinuous gauge at

t = 0, as our method of solving for the initial data in general gives a different form for

Hµ(t = 0) on the interior. This is rather common in GH evolution i.e. the initial data

provides source functions that are different from that of the target gauge, and the

usual way to deal with this is to construct a hybrid gauge that smoothly transitions

in time from the initial gauge to the target gauge. The specific transition we use is as

follows. Denote the source functions coming from the initial data by H̄
(0)
µ ≡ H̄µ

∣∣
t=0

,

and define the functions Fν to be the asymptotic constraints trivially extended into

the bulk2:

Ft(t, ρ, χ) ≡ 5

2
ḡtρ(t, ρ, χ)

Fρ(t, ρ, χ) ≡ 2ḡρρ(t, ρ, χ)

Fχ(t, ρ, χ) ≡ 5

2
ḡρχ(t, ρ, χ). (2.31)

2Of course, a more general implementation could allow for an arbitrary gauge in the bulk that
only asymptotically approaches (2.30) as ρ → 1, though for the spacetimes we have evolved to-date
this simple choice has worked well.
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Then, we choose

H̄µ(t, ρ, χ) = H̄(0)
µ (t, ρ, χ) [g(t, ρ)]

+ Fν(t, ρ, χ) [1− g(t, ρ)] , (2.32)

with

g(t, ρ) = exp(−z(t, ρ)4), (2.33)

z(t, ρ) =
t

ξ2f(ρ) + ξ1[1− f(ρ)]
, (2.34)

and

f(ρ) =


1 ρ ≥ ρ2

1− y3(6y2 − 15y + 10) ρ2 ≥ ρ ≥ ρ1

0 otherwise

, (2.35)

where y(ρ) = (ρ2 − ρ)/(ρ2 − ρ1)), and ξ1, ξ2, ρ1 and ρ2 are user-specified constants.

The time-transition function g is such that g(0, ρ) = 1, ġ(0, ρ) = 0, g̈(0, ρ) = 0, and

lim
t→∞

g(t, ρ) = 0; it is designed to give (2.32) the correct initial and target values, and

transition between the two in a continuous fashion. The function f(ρ), on the other

hand, is such that f(ρ1) = 0, f ′(ρ1) = 0, f ′′(ρ1) = 0 and f(ρ2) = 0, f ′(ρ2) = 0,

f ′′(ρ2) = 0; it is designed to let the transition occur with characteristic time ξ1

for radii ρ < ρ1, interpolating to a characteristic time of ξ2 for radii ρ ≥ ρ2. It

is important near the boundary to reach the target gauge quickly, as this is where

the delicate cancellations made possible by the gauge (2.30) are crucially needed.

Accordingly, ξ2 is generally set to a small number. On the other hand, it may not

be desirable to have such rapid gauge dynamics in the interior, and ξ1 thus allows us

to independently control the characteristic gauge evolution time there. On a typical

run, we set ρ1 = 0.0, ρ2 = 0.95, ξ1 = 0.1, ξ2 = 0.0025.
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2.3.3 Initializing the 5-metric at t = 0

Our goal in this section is to describe a choice of ḡtν |t=0, ∂tḡtν |t=0 such that the

source functions at t = 0, as evaluated via (1.11), are compatible with our target

gauge (2.30). (The spatial components of the initial data ḡij|t=0 and ∂tḡij|t=0 come

from the solution to the constraint equations described in Sec. 2.1). In the notation

of the power-series expansion about q = 0 performed in the previous section, the

leading-order coefficients of (1.11) evaluated using (2.10) read

H̄(1)t =
5

2
ḡ(1)tρ +

1

8
ḡ(1)tt,t −

1

4
ḡ(1)tχ,χ +

1

8
ḡ(1)ρρ,t

+
1

8
ḡ(1)χχ,t +

1

4
ḡ(1)ψ,t

H̄(1)ρ = ḡ(1)tt + ḡ(1)ρρ − ḡ(1)χχ − 2ḡ(1)ψ

H̄(1)χ =
5

2
ḡ(1)ρχ −

1

8
ḡ(1)tt,χ +

1

4
ḡ(1)tχ,t +

1

8
ḡ(1)ρρ,χ

−1

8
ḡ(1)χχ,χ +

1

4
ḡ(1)ψ,χ. (2.36)

Similarly, the leading-order coefficients of (2.30) read

H̄(1)t =
5

2
ḡ(1)tρ

H̄(1)ρ = 2ḡ(1)ρρ

H̄(1)χ =
5

2
ḡ(1)ρχ. (2.37)

Inspection of the above relations, together with our choice of time symmetry

(∂tḡij|t=0 = 0), shows that the following is required to leading order approaching

ρ = 1 :

ḡtt|t=0 = (ḡρρ + ḡχχ + 2ḡψ)|t=0 (2.38)

∂tḡtt|t=0 = 0 (2.39)

∂tḡtχ|t=0 = ∂χḡχχ|t=0 . (2.40)
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In practice we impose (2.39) and (2.40) over the entire computational domain, and

impose (2.38) in an asymptotic sense: we set ḡtt|t=0 = 0 for ρ < ρ0, where ρ0 < 1 is

a user-specified parameter, and smoothly transition to (2.38) as ρ → 1. In this way,

we keep the form of ḡtt|t=0 as simple as possible in the interior. The relations (2.36)

and (2.37) leave the remaining metric variables ḡtρ|t=0, ∂tḡtρ|t=0 and ḡtχ|t=0 uncon-

strained, and we again take the simplest choice and set them to zero. In ADM

language, these conditions amount to a choice of initial lapse, shift and their first

time derivatives.

2.4 Numerical Solution Methods

The primary challenge in dealing with AAdS spacetimes lies in the nature of the

boundary, which must largely be dealt with analytically, as discussed in detail in the

previous section. Once this is done, the numerical discretization and solution method

is rather conventional. The methods we use are very similar to those described in [27],

and so we simply list them here, referring the reader to [27] for the details.

All equations and boundary conditions are discretized using second-order accurate

finite difference methods; see Appendix C. The only non-trivial boundary conditions

are the Neumann conditions at the origin (ρ = 0), and the regularity conditions on

the axis (χ = 0, π). The discretized Hamiltonian constraint (2.4) is solved using a full

approximation storage (FAS) multigrid algorithm with v-cycling, and Newton-Gauss-

Seidel iteration for the smoother. The evolution equations for the metric (1.31) and

scalar field (1.71) (with energy-momentum tensor (2.2)), are discretized after substi-

tuting in the definitions for our regularized metric variables (2.10), scalar field (2.20),

and source functions (2.16). The corresponding regular fields (ḡµν , φ̄) are solved for

using an iterative, Newton-Gauss-Seidel relaxation procedure. In this study we have
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not explored any dynamical gauge evolution equations for H̄µ, and simply set them

to prescribed functions of the ḡµν as outlined in the next section.

We use the excision method to solve for black hole spacetimes, which involves

excising a portion of the grid within the apparent horizon (AH), thus removing the

geometric singularity from the computational domain. Due to the causal structure

of the spacetime within the horizon, all physical characteristics of the equations flow

out of the domain (i.e. into the excised region). Thus excision implies that the

usual field equations are still solved on the excision surface, except that centered

difference stencils are replaced with sideways stencils where appropriate, in order to

reference information that is only from the outside of the excision surface (in other

words, no boundary conditions are placed there). We search for the AH using a

flow method; the excision surface is defined to be a surface with the same coordinate

shape as the AH, but some fraction 1 − δex smaller, where we typically use δex ∈

[0.05, 0.2]. One issue with using polar-like coordinates is that it incurs a rather severe

restriction on the Courant-Friedrichs-Lewy (CFL) factor λ that defines the time step

∆t ≡ λ min(∆ρ, ∆χ), where ∆ρ and ∆χ are the mesh spacings in ρ and χ respectively.

Roughly speaking, with a uniform discretization in ρ and χ, the condition for stability

is λ < ρmin, where ρmin is the smallest non-zero coordinate within the discrete domain.

Ostensibly this occurs next to the origin, where ρmin = ∆ρ, so in the limit of high

resolution the time-step size can become prohibitively small. For the tests and results

presented here, we sidestep this issue by only studying black hole spacetimes, where

excision removes the origin from the computational domain.

Kreiss-Oliger dissipation [52], with reduction of order approaching boundaries as

described in [53], is used to help damp unphysical high-frequency solution components

that sometimes arise at grid boundaries, in particular the excision surface; we typically

use a dissipation parameter of ε = 0.35.

51



We use the PAMR/AMRD 3 libraries to provide support for running in parallel on

Linux computing clusters. The libraries also support adaptive mesh refinement

(AMR), though all results described here are unigrid.

3http://laplace.physics.ubc.ca/Group/Software.html
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Chapter 3

Reconstructing Boundary CFT

Observables

3.1 The Stress Energy Tensor of the Dual CFT

Here we briefly mention the most relevant entry in the AdS/CFT dictionary for this

dissertation, namely the one that enables us to extract the expectation value 〈Tµν〉CFT

of the CFT stress energy tensor from the asymptotic behavior of the metric:1

〈Tµν〉CFT = lim
q→0

1

q2
(q)Tµν . (3.1)

Here, q = 1−ρ (though more generally q is a smooth positive scalar with a simple zero

at the AAdS boundary), and (q)Tµν is the Brown-York quasi-local stress tensor [54].

For AAdS5 spacetimes, the quasi-local stress tensor defined on a q = const. time-like

1The full expression for the boundary stress tensor includes a factor of 1/G, where G is Newton’s
constant, corresponding to a scaling as N2 in the large N gauge theory dual to AdS5. We have
omitted the factor of 1/G from (3.1) in keeping with our standard convention that G = 1. When
quoting explicit numerical results for the boundary stress tensor, we will also set L = 1. By doing
so we are restricting to a specific count of degrees of freedom in the boundary theory; but since the
scaling of 〈Tµν〉 is straightforward, there is no significant loss of generality.
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hypersurface ∂Mq was constructed in [55], and is given by

(q)T 0
µν =

1

8π

(
(q)Θµν − (q)ΘΣµν −

3

L
Σµν + (q)Gµν

L

2

)
. (3.2)

Here, (q)Θµν = −Σα
µΣ

β
ν∇(αSβ) is the extrinsic curvature of the time-like surface ∂‘,

Sµ is a space-like, outward pointing unit vector normal to the surface ∂Mq, Σµν ≡

gµν − SµSν is the induced 4-metric on ∂Mq, ∇α is the covariant derivative operator,

and (q)Gµν is the Einstein tensor associated with Σµν . The last two terms in (3.2) are

counterterms designed to exactly cancel the divergent boundary behavior of the first

two terms of (3.2) evaluated in pure AdS5.

A feature of the stress tensor (3.2) is that it is non-vanishing even when the geom-

etry is that of pure AdS5. This non-vanishing piece was already noticed in [55], and

was correctly identified as the contribution from the Casimir energy of the boundary

CFT: this CFT is defined on a manifold with topology R × S3, and so can have

a non-vanishing vacuum energy. Since this Casimir contribution is non-dynamical,

we consider it as part of our background vacuum and simply subtract it from (3.2),

obtaining

(q)Tµν = (q)T 0
µν − tµν . (3.3)

Setting L = 1, the non-zero components of the Casimir contribution tµν are ttt =

3q2/(64π), tχχ = q2/(64π), tθθ = q2 sin2 χ/(64π), and tφφ = tθθ sin2 θ.

In terms of the regularized metric variables (2.10), and setting L = 1, the stress

energy tensor of the boundary CFT (3.1) evaluates to
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〈Ttt〉CFT =
1

64π
(−24ḡρρ,ρ − 32ḡχχ,ρ − 64ḡψ,ρ)

〈Ttχ〉CFT =
1

2π
(−ḡtχ,ρ)

〈Tχχ〉CFT =
1

64π
(−32ḡtt,ρ + 24ḡρρ,ρ + 64ḡψ,ρ)

〈Tθθ〉CFT =
sin2 χ

64π
(−32ḡtt,ρ + 24ḡρρ,ρ + 32ḡχχ,ρ

+32ḡψ,ρ).

(3.4)

and 〈Tφφ〉CFT = sin2 θ 〈Tθθ〉CFT.

3.2 Hydrodynamic Description of the Boundary

CFT

3.2.1 Extracting Fluid Variables

Essentially all known physical systems at sufficiently high temperature, including

those described by quantum field theories, exhibit hydrodynamic behavior on large

scales once local thermodynamic equilibrium has been attained. In the gauge/gravity

duality, stationary black holes are dual to equilibrium thermal states, and studies

have shown that perturbations of the bulk spacetime manifest as hydrodynamic be-

havior in the boundary CFT. See [50] for a recent review, and [56] for a review of the

“blackfolds” approach, which is similar in spirit but connects the dynamics of a per-

turbed black brane with that of an enclosing world-volume via a derivative expansion

of the Einstein field equations. Here, we have studied the evolution of initially highly

distorted black holes, far from the perturbative regime, and so the question naturally

arises: at what time does hydrodynamics become a good description of the bound-
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ary state? More precisely, we would like to know whether the extracted 〈Tµν〉CFT on

the R× S3 boundary is that of the particular kind of fluid predicted by the duality,

namely an N = 4 SYM fluid with equation of state ε = 3P (where ε and P are the

energy density and isotropic pressure in the rest frame of the fluid, respectively), and

transport coefficients that match those found via holographics methods [57].

In a low-energy effective description, the hydrodynamic stress tensor can be ex-

pressed as a velocity-gradient expansion, i.e. as a power series in the covariant gradi-

ents of a local fluid 4-velocity one form uν :

Tµν = (ε + P )uµuν + Pgµν − 2ησµν + Πµν , (3.5)

where we have introduced the (symmetric, traceless) shear tensor

σµν =⊥µα⊥νβ ∇(αuβ) −
1

d− 1
∇αu

α ⊥µν , (3.6)

and subsumed all higher-order terms under Πµν . All covariant differentiation is per-

formed with respect to the boundary metric gµνdxµdxν = −dt2 + dχ2 + sin2 χ(dθ2 +

sin2 θdφ2), and ⊥µν in (3.6) is the projector onto the spatial slices orthogonal to the

fluid 4-velocity

⊥µν= gµν + uµuν . (3.7)

In this sub-section, we will for now ignore the higher-order terms, i.e. we set Πµν = 0.

In terms of mapping from stress tensor to hydrodynamic variables this should be a

good approximation except in situations where the shear σµν of the flow becomes

small, which does occur periodically during the evolution of the distorted black holes

discussed here. These higher order terms would lead to additional problems regarding

the uniqueness of the mapping that we will now attempt. In the sub-section following

this one, we will employ a different strategy and will instead extract a minimal subset,
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then, assuming an N = 4 SYM fluid, test for consistency with higher order transport

coefficients (instead of trying to directly measure all these quantities, as we will now

proceed to do).

Let us first identify a set of independent fluid variables which we can use to

characterize the stress tensor. This set certainly includes ε and P , the energy density

and isotropic pressure in the rest frame of the fluid, respectively. Given the SO(3)

symmetry of our solutions, the (unit) 4-velocity vector must take the form uµ =

γ(1, v, 0, 0) in (t, χ, θ, φ) coordinates, with γ = 1/
√

1− v2. This gives us a third

fluid variable to add to our list: v, the χ-coordinate velocity of the flow. As for the

shear σµν , notice that it is symmetric, traceless and satisfies the identity uµσµν = 0.

Together with the imposed SO(3) symmetry, these imply that σµν only has one degree

of freedom in d = 4 dimensions. Thus defining σχχ = σ, one can straightforwardly

show that the only other non-zero components of σµν are:

σtχ = −vσ, σtt = v2σ, σθθ =
σφφ

sin2 θ
= −sin2 χ

2γ2
σ. (3.8)

Given how η and σ always appear as a product in (3.5), we treat the two as a single

quantity ησ for the purposes of extraction. Thus, ignoring the higher-order terms Πµν ,

the variables (ε, P, v, ησ), each of which is a function of (t, χ) in general, completely

describes a conformal fluid flow on R× S3 that preserves our SO(3) symmetry.

On the gravity side, the quantities we measure are the components of the boundary

stress tensor, which we denote Tµν ≡ 〈Tµν〉CFT in this section and the next, for the

sake of brevity. In SO(3) symmetry, there are 5 non-zero stress tensor components,
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4 of which are independent. We can relate these 4 to the fluid variables via (3.5):

Ttt = (ε + P )
1

1− v2
− P − 2ησv2

Ttχ = −(ε + P )
v

1− v2
+ 2ησv

Tχχ = (ε + P )
v2

1− v2
+ P − 2ησ

Tθθ = sin2 χ
(
P + ησ(1− v2)

)
(3.9)

where Tφφ = sin2 θTθθ. Inverting these relations in favor of the rest-frame hydrody-

namic quantities (ε, P, v, ησ), and defining the auxiliary quantities

Ξ ≡
√

(Tχχ + 2Ttχ + Ttt)(Tχχ − 2Ttχ + Ttt)

Tψ ≡ Tθθ
sin2 χ

, (3.10)

we obtain

ε =
1

2
(Ttt − Tχχ + Ξ)

P =
1

6
(Ξ + Tχχ + 4Tψ − Ttt)

v =
Ξ− Tχχ − Ttt

2Ttχ

ησ =
[
−T 3

χχ + T 2
χχ (−Ξ + Tψ − 2Ttt)

+Tχχ (Tψ (Ξ + 2Ttt) −Ttt (Ξ + Ttt)− 4T 2
tχ

)
+Tψ

(
Ttt (Ξ + Ttt) + 4T 2

tχ

)
−2T 2

tχΞ
]
/ [6Ξ] ,

(3.11)

3.2.2 Extracting Transport Coefficients

In this section, we present an alternative method for comparing 〈Tµν〉CFT with the

stress tensor of an N = 4 SYM fluid. To accomplish this, let us first add as many
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higher-order terms Πµν to the hydrodynamic stress tensor (3.5) as is presently known,

which includes viscous corrections up to second-order in the gradient expansion. This

gives four additional higher-order transport coefficients to supplement the shear vis-

cosity η: the stress relaxation time τπ, the shear vorticity coupling τω, the shear-shear

coupling ξσ, and the Weyl curvature coupling ξC . Our strategy here will be different

from the one described in the previous sub-section, where we had first extracted all

hydrodynamic variables from the CFT stress tensor components, then exhibited ev-

idence that the conformal constitutive relations hold. Instead, we will now assume

that the conformal constitutive relations hold at the outset, allowing us to reconstruct

the hydrodynamic stress tensor order by order using only the energy density ε and

the fluid four-velocity uµ.

This reconstruction takes the form

Tµν =
∞∑
i=0

T (i)
µν (3.12)

where T
(0)
µν corresponds to the stress tensor of an ideal relativistic fluid, and T

(i)
µν ac-

counts for the ith-order correction in a velocity-gradient expansion. These corrections

are explicitly given in [57] for an N = 4 SYM fluid:

T (0)
µν = εuµuν + P ⊥µν

T (1)
µν = −2ησµν

T (2)
µν = −2η

[
−τπu

λDλσµν + τω
(
ωµ

λσλν + ων
λσλµ

)]
+ξσ

[
σµ

λσλν −
⊥µν

3
σαβσαβ

]
+ ξCCµανβu

αuβ

(3.13)
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where Cµανβ is the Weyl tensor and D is the Weyl covariant derivative defined in [57].

One further input are the constitutive relations for our N = 4 SYM fluid:

ε =
3Nc

2

8π2
(πT )4 = 3P

η =
Nc

2

8π2
(πT )3

τπ =
2− ln 2

2πT

τσ =
ln 2

2πT

ξσ = ξC =
4η

2πT
(3.14)

where Nc
2/(8π) = 1/(16πG), and T is the temperature of the fluid which we measure

from the energy density ε. The raw materials from which each T
(i)
µν is built can be

written in terms of CFT stress tensor components as

ε =
1

2
(Ttt − Tχχ + Ξ)

uχ =
−2Ttχ√

−4T 2
tχ + (Ttt + Tχχ + Ξ)2

(3.15)

where Ξ is defined by (3.10).

3.3 Passing to Minkowski Space

Up to a conformal transformation, R× S3 is the covering space of Minkowski space,

R3,1. Therefore, we can obtain the CFT stress tensor T R3,1

ab on R3,1 by restricting

T R×S3

µν to an appropriate patch of R × S3, then conformally mapping to Minkowski

space. There are many ways of doing this, simply because there are many ways of

positioning the Minkowski space patch within R × S3. We will mostly focus on one

particular choice of patch which admits a fluid flow reminiscent of a head-on heavy

ion collision—though, as on R × S3, the initial conditions are characterized by full
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stopping rather than approximate rapidity independence. More specifically, the t = 0

timeslice in R × S3 with time-symmetric bulk initial data as described in Sec.1.4.1,

corresponds to an t′ = 0 timeslice in Minkowski space where the fluid is stationary,

and compressed into a region which is axisymmetric and significantly oblate. This is

intended to be compared to the state of two heavy nuclei which have just achieved

full overlap, though because the initial velocity profile is zero, a better analogy may

be a quark-gluon plasma in a trap.

The subsequent evolution of the fluid comprises two distinct types of expansion:

longitudinal expansion along the axis of symmetry, and radial expansion. Overall, the

flow preserves an SO(3) subgroup of the conformal group SO(4, 2) (as it must since

the black hole to which it is dual has an SO(3) symmetry), but due to our choice of

embedding of Minkowski space in R×S3, this SO(3) is not the obvious one composed

of rotations around a point in a single timeslice. Rather, it is the conformal SO(3)

symmetry used in [30–33] to study generalizations of Bjorken flow. Rotations around

the axis of symmetry of the Minkowski space flow form an SO(2) subgroup of the

conformal SO(3) symmetry. The rest of this SO(3) is composed of special conformal

transformations, corresponding to conformal Killing vectors of Minkowski space.

In order to map R × S3, covered by global coordinates xµ = (t̃, χ̃, θ̃, φ̃), to R1,3,

covered by coordinates xa = (t′, x1, x2, x3), we use the transformations

t′/L =
sin t̃/L

cos t̃/L + cos χ̃

x1/L =
sin χ̃(

cos t̃/L + cos χ̃
) sin θ̃ cos φ̃

x2/L =
sin χ̃(

cos t̃/L + cos χ̃
) sin θ̃ sin φ̃

x3/L =
sin χ̃(

cos t̃/L + cos χ̃
) cos θ̃ . (3.16)
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The appearance of the AdS scale L on the right hand side of (3.16) is essential: only

with this factor will (3.16) lead to a conformal mapping of the metric

ds2
R×S3 = gR×S3

µν dxµdxν

= −dt̃2 + L2(dχ̃2 + sin2 χ̃2dθ̃2 + sin2 χ̃2 sin2 θ̃2dφ̃2) (3.17)

to the standard Minkowski metric

ds2
R3,1 = gR3,1

ab dxadxb = −(dt′)2 + (dx1)
2 + (dx2)

2 + (dx3)
2 . (3.18)

The appearance of L on the left hand side of (3.16) is inessential: it could be re-

placed by any quantity with dimensions of length. Doing so would amount to alter-

ing Minkowski space by an uniform dilation of both time and space. The conformal

mapping (3.16) is accompanied by the following rule for metric components:

gR3,1

ab = W 2∂xµ

∂xa
∂xν

∂xb
gR×S3

µν , (3.19)

where

W =
1

cos t̃/L + cos χ̃
. (3.20)

The Minkowski space patch on R×S3 is the connected region including (t̃, χ̃) = (0, 0)

where W > 0. This region is easily seen to be the region −π < t̃/L < π with

0 ≤ χ < π − |t̃/L|.

We have used coordinates (t̃, χ̃, θ̃, φ̃) on R×S3, instead of our previous coordinates

(t, χ, θ, φ), in order to preserve our freedom to position the patch in any way we wish

on R× S3. For example, we could set t̃ = t− t0 in order to “center” the Minkowski

space patch on a global time t = t0. For our current purposes of describing a fluid

flow reminiscent of a head-on heavy ion collision, the most useful choice is to set t̃ = t,
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φ̃ = φ, and

χ̃ =
π

2
− arctan

(
sin χ cos θ√

cos2 χ + sin2 χ sin2 θ

)
θ̃ =

π

2
− arctan (cot χ csc θ) . (3.21)

This mapping is an isometry of S3, and composing it with the mapping (3.16) gives

t′/L =
sin t/L

cos t/L + sin χ cos θ

x1/L =
sin χ

(cos t/L + sin χ cos θ)
sin θ cos φ

x2/L =
sin χ

(cos t/L + sin χ cos θ)
sin θ sin φ

x3/L =
cos χ

(cos t/L + sin χ cos θ)
. (3.22)

Additionally, one may show by plugging (3.21) into (3.20) that

W =
1

cos(t/L) + cos θ sin χ
. (3.23)

The reason that the final mapping (3.22) is a good idea for producing a flow remi-

niscent of a central heavy ion collision is that the origin of Minkowski space maps to

an equatorial point (χ, θ) = (π/2, 0) on S3, where the fluid density is at its peak on

the initial timeslice. (Note that the coordinate φ on S3 becomes the usual angle φ

around the symmetry axis in Minkowski space, but the coordinate θ on S3 is more

closely related to transverse radius from the symmetry axis in Minkowski space than

it is to the angle of latitude with respect to the symmetry axis.)

The stress tensor transforms under conformal mappings as

T R3,1

ab = W−2∂xµ

∂xa
∂xν

∂xb
T R×S3

µν . (3.24)
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If we assume the inviscid hydrodynamical form of the stress tensor, Tµν = εuµuν +

ε ⊥µν /3, then one can straightforwardly show that uR3,1

a = W ∂xµ

∂xa uR×S3

µ and εR3,1
=

W−4εR×S3
. Up to a constant factor specifying the number of degrees of freedom, the

temperature of a conformal fluid is T = ε1/4. Setting L = 1, the quantity we are

going to plot is

T ≡ W−1ε1/4 , (3.25)

where T = T R3,1
is (up to the aforementioned constant factor) the temperature in

Minkowski space and ε = εR×S3
is the energy density on R× S3.
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Chapter 4

Dynamics of Deformed AdS Black

Holes

We now describe the dynamics of deformed AdS black holes obtained with the code.

First, in Sec. 4.1, we demonstrate that our numerical solutions are converging to so-

lutions of the Einstein field equations at a rate that tends towards one that scales

quadratically with mesh spacing. In Sec. 4.2, we show solutions of the Hamiltonian

constraint with a scalar field source (2.4), demonstrating that this approach is ca-

pable of producing initial data containing trapped surfaces. Then, in Sec. 4.3 we

show the evolution of initial data describing highly deformed black holes that sub-

sequently shed their asymmetries via quasi-normal ringdown. A proper extraction

of quasi-normal modes, and in particular a meaningful comparison with perturbative

calculations where these modes can be defined, requires the identification of a refer-

ence background metric and a transformation of the solution to a gauge consistent

with that of the perturbative calculations. We have made no attempt in this direc-

tion, besides matching the areal radius on the extraction sphere, and do in fact see

what appear to be gauge modes. Nevertheless, we can extract the leading order linear

quasi-normal modes, and for the higher angular number modes, use a simple forced
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harmonic oscillator model to identify what appear to be non-linearly excited harmon-

ics of the lower angular modes. In Sec. 4.4 we discuss the extracted boundary stress

energy tensor of these solutions and analyse how well the CFT state can be described

by hydrodynamics. We find that the extracted stress energy tensor is consistent, es-

sentially to within numerical truncation error, with that of a viscous, conformal fluid

from t = 0 onwards. We then transform these solutions onto a Minkowski piece of

the boundary, and find an initial fluid geometry that resembles a Lorentz-flattened

pancake. Defining the beam-line direction as the one along which the initial data is

flattened, the evolution of this fluid exhibits both longitudinal and radial flow relative

to the beam-line, with most of the energy flowing along the longitudinal directions.

4.1 Convergence Tests

To check the stability and consistency of our numerical solutions we employ a pair of

standard convergence tests. Here we show convergence results from one typical repre-

sentative case, namely strong scalar field initial data with non-trivial χ-dependence.

Specifically, the initial data parameters (2.5) used were A0 = 10.0, R0 = 0.0, δ = 0.2,

wx = 4.0, wy = 16.0. The resulting evolution describes a highly deformed black hole

which settles down to an AdS-Schwarzschild solution with outermost apparent hori-

zon radius rh = 5.0. The physics of this solution will be discussed in the rest of this

chapter, together with additional tests showing conservation of the boundary stress

energy tensor.

First, we must determine whether the evolution is stable and consistent. Assuming

that the solution admits a Richardson expansion, we compute the rate of convergence

Q(t, xi) at each point on the grid for a given field

Q(t, xi) =
1

ln(2)
ln

(
f4h(t, x

i)− f2h(t, x
i)

f2h(t, xi)− fh(t, xi)

)
. (4.1)
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Figure 4.1: Convergence factors (4.1) for the ḡρρ grid function, constructed from a
simulation run at 4 different resolutions; the highest resolution run has mesh spacing
h/2. Here the L2-norm of the convergence factors are taken over the entire grid.
The trends indicate that this grid function is converging to second-order. Other grid
functions exhibit similar trends.

Here, f∆ denotes one of ḡµν , H̄µ, φ̄ from a simulation with mesh spacing ∆. Given

that we use second-order accurate finite difference stencils, with 2 : 1 refinement in ∆

between successive resolutions, and similarly in the time-step ∆t, since we keep the

CFL factor at a constant λ = 0.2, we expect Q to asymptote to Q = 2 in the limit

∆ → 0.

Second, to determine whether we are converging to the correct solution, i.e. to a

solution of the Einstein field equations, we compute an independent residual of the

field equations. This is obtained by taking the numerical solution and substituting it

into a discretized version of Gµν + Λ5gµν − 8πTµν . Since the numerical solution was

found solving the GH form of the field equations, we do not expect the independent

residual to be exactly zero; rather, if the solution is correct the independent residual

should be purely numerical truncation error, and hence converge to zero. Thus, we
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Figure 4.2: Convergence factors for the independent residual (4.2), constructed from
simulations run at 4 different resolutions; the highest resolution run has mesh spacing
h/2. At each point on the grid an L∞ norm is taken over all components of the
independent residual, and what is shown here is then the L2-norm of this over the
entire grid. The trends in this plot indicate second-order convergence.

can compute a convergence factor for it by using only two resolution results via

QEFE(t, xi) =
1

ln(2)
ln

(
f2h(t, x

i)

fh(t, xi)

)
. (4.2)

Here, f∆ denotes a component of Gµν +Λ5gµν−8πTµν . Again, given our second-order

accurate finite difference stencils and with 2 : 1 refinement in ∆ between successive

resolutions, we expect Q to approach Q = 2 as ∆ → 0.

Figs. 4.1 and 4.2 show L2-norms of (4.1) and (4.2) respectively, obtained from

evolving the particular initial data described above. We used 4 different resolutions

to help see the trends in the respective Q’s. At early times, the solution is not yet

in the asymptotic scaling regime for the convergence factors, however that they are

typically greater than 2 indicates that the solution error is nevertheless small. Also,
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the trends going to higher resolution, in particular at later times, appear consistent

with second-order convergence.

The early-time deviations in Fig. 4.2 coincide with an initial transient associated

with the gauge transition described by (2.32), that emanates from the boundary

and dissipates as it travels further into the interior. This transient is clearly seen as a

temporary dip in the point-wise convergence factors for independent residuals near the

boundary; taking the L2-norm as was done in Fig. 4.2 to some extent masks this dip,

though is still visible with the highest resolution curve in that plot. Nevertheless, this

transient converges away in the sense that the region of the domain affected shrinks

as resolution is increased.

4.2 Strong-field Solutions of the Hamiltonian Con-

straint

To generate black holes spacetimes, we choose initial data where the deviation from

pure AdS is sourced by a highly compact distribution of scalar field energy, with

profile given by (2.5). In this dissertation we only consider free, massless scalar fields,

so V (φ) = 0 in (2.3). In this section, we begin by focusing on spherically symmetric

initial data, so wx = wy = 1 in (2.5).

Fig. 4.3 summarizes solutions of the Hamiltonian constraint (2.4) by plotting the

maximum value of the conformal factor versus the maximum of the scalar field (both

maxima occur at the origin of the domain for these initial data). Let us begin by

contrasting the qualitative behavior of this plot with its counterpart in the asymp-

totically flat case, presented in [58]. This earlier work employed the conformal thin

sandwich method to solve the constraints. There, it was discovered that there exists a

critical point above which no numerical solutions for the initial data could be found,

and where the conformal factor diverges as the amplitude approaches the critical
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Figure 4.3: Maximum conformal factor vs. maximum amplitude of an initial scalar
matter distribution, with Gaussian profile (2.3) with A = φmax, δ = 0.2 (with AdS
scale L = 1), wx = wy = 1 and R0 = 0. We differentiate between “strong-field” and
“weak-field” data based on whether there is a trapped surface present on the initial
slice or not, respectively. (Though of course this distinction is somewhat arbitrary,
particularly since subsequent evolution of weak-field data could eventually result in
black hole formation, as argued in [19] even for arbitrarily small amplitude initial
data.) The value of φmax beyond which trapped surfaces are found in the initial data
is indicated by the dashed vertical line. The open circles denote numerical solutions,
while the solid lines are fits to the data, as shown.

point. Even more surprisingly, it was found that generalizing to the extended con-

formal thin sandwich method gives rise to a branch point instead of a critical point,

with solutions along the upper branch exhibiting non-uniqueness for any given set of

initial data.

In contrast, we find no divergent behavior in the conformal factor, nor any be-

havior suggesting the non-uniqueness of solutions φmax, at least in the regime where

the cosmological length scale is relevant1. Furthermore, the linear dependence of

1We have not investigated the limit where the characteristic scale in the initial data δ is much less
than the cosmological scale L, where one might intuitively expect L to become irrelevant in governing

70



3.38 Φm ax
0.5
- 3.01

0.267 Φm ax
2

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Φm ax

M

Figure 4.4: AdS mass vs. maximum amplitude of massless scalar matter, with Gaus-
sian profile defined by A = φmax, (x0, y0) = (0, 0), δ = 0.2. Conventions are the
same as those used in Fig. 4.3. In cases where trapped surfaces are present (to the
right of the dashed vertical line), an estimate of the mass based on the area of the
apparent horizon gives a value very close the asymptotic mass plotted here, though
systematically smaller (the two values would essentially be indistinguishable on the
scale of this figure, hence we only show the asymptotic mass to avoid clutter).

the maximum of the conformal factor versus amplitude for large amplitude data sug-

gests that the AdS5 Hamiltonian constraint admits conformal solutions for arbitrarily

strong initial matter distributions. Of course, given the presence of the cosmologi-

cal constant and its relevance on these scales, it is not too surprising that we find

such qualitatively different behavior compared to the asymptotically flat case. From

a more formal perspective, the local existence and uniqueness of solutions to non-

linear elliptic PDEs can be understood by applying a maximum principle, where the

signs and relative magnitudes of coefficients in the PDE are crucial; from standard

the local nature of the solution, and results consistent with the asymptotically flat case [58] may be
recovered.
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results [59] in the theory of elliptic PDEs, it is easy to see that a negative cosmological

constant helps to ensure that such a maximum principle holds.

Fig. 4.4 shows a plot of the conserved mass M of the spacetime versus scalar field

amplitude, computed from the quasi-local stress tensor (3.3) as follows. We take a

spatial t = const. (here t = 0) slice in ∂Mq, with induced 3-metric σµν , lapse N and

shift N i such that Σµνdxµdxν = −N2dt2 +σij(dxi+N idt)(dxj +N jdt), then compute

M = lim
q→0

∫
Σ

d3x
√

σN((q)Tµνu
µuν) (4.3)

where uµ is the time-like unit vector normal to t = const. Note that for a vacuum

AdS-Schwarzschild black hole, this prescription gives a result consistent with the

usual definition of its mass from the analytic solution, namely M = 3π (r0
2/8), where

r0 = rH
√

1 + r2
H/L2, given a horizon with areal radius rH .

4.3 Quasinormal Ringing

As a first application of our evolution scheme, we study the quasi-normal ringdown

of an initially highly distorted (i.e. non-spherical) black hole. Here we focus on

the dynamics of the bulk, and in the following sections discuss the corresponding

dynamics of the CFT boundary stress tensor. For some previous work on the subject

see for example [60–65]. For a review of black hole quasi-normal modes in AdS

see [66]. Again, we use large-amplitude scalar field data to create an initial slice

of the spacetime containing a trapped surface, and here introduce a non-trivial χ-

dependence by adjusting the shape of the profile through the parameters wx and wy

as defined in (2.5). Specifically, unless otherwise stated we choose R0 = 0.0, δ = 0.2,

wx = 4.0, wy = 16.0, and vary the amplitude A0 to control the size of the resultant

black hole.

72



0 5 10 15 20 25

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

t

ceq �cp
wy�wx=32

wy�wx=4

wy�wx=1.1

Figure 4.5: The ratio ceq/cp of proper equatorial to polar circumference of the appar-
ent horizon versus time. wy/wx denotes parameters in the initial data describing the
scalar field profile (2.5), and wy/wx = 4 is the canonical case studied in this disserta-
tion, though for interest we also show examples representing a weaker and stronger
initial asymmetry. In all cases, the final black hole has radius rh ≈ 5. Note that a
geometric sphere has ceq/cp = 1, whereas a geometric disk has ceq/cp = π/2. Thus,
even the wy/wx = 4 case is initially a rather large deformation of the 3-sphere; the
curve for the more extreme case wy/wx = 32 implies that at early times the Gaussian
curvature is negative over at least some regions of the horizon.

First, to demonstrate that we are looking at relatively large perturbations of the

spherical black hole, in Fig. 4.5 we plot the ratio of the equatorial ceq to polar cp

proper circumferences of the apparent horizon versus time2. A geometric sphere has

ceq/cp = 1, whereas a geometric disk ceq/cp = π/2. Initial data with parameters wx,

wy such that wy/wx = 4, which was the case that was studied in detail in Sec. 4.1,

corresponds to a ratio of ceq/cp(t = 0) ≈ 1.2, indicating a fairly sizeable initial

deformation. For certain quasi-normal mode and hydrodynamic extraction results

2Note that the apparent horizon is to some extent slicing dependent. However, given the sym-
metries in our problem, in particular that t = 0 is a moment of time-symmetry (where we see the
largest deformation of the horizon), it is difficult to imagine how the intrinsic geometry of the appar-
ent horizon does not give a good indication of the relative magnitude of the spacetime perturbation.
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in the following sections, we will also consider initial data with wx, wy such that

wy/wx = 32, which corresponds to a very large initial deformation ceq/cp(t = 0) ≈ 2.2.

To extract the quasi-normal modes, the first step would be to transform our

metric to a gauge consistent with standard perturbative calculations for quasi-normal

modes. This is a rather non-trivial step in general, and we do not take it here.

Nevertheless, as we shall see, our asymptotic gauge choice is sufficiently close to

that of the perturbative calculations. This is supported by the fact that artifacts

introduced by our non-standard gauge choice, which take the form of modes that are

pure gauge, are very small in amplitude relative to the quasi-normal modes.

The spatial dependence of quasi-normal modes in AdS5 can be decomposed into

the spherical harmonics of S3; see [67]. Recall the standard spherical harmonics on

S2:

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l + m)!
Pm
l (cos θ) exp(imφ) (4.4)

where the associated Legendre polynomials are defined as:

Pm
l (x) =

(−1)m

2ll!

d(l+m)

dx(l+m)
(x2 − 1)l. (4.5)

The scalar3 spherical harmonics on S3 are then given by:

S(klm) = (−1)kil(2l)!!

√
2(k + 1)(k − l)

π(k + l + 1)!

×C l+1
k−l(cos χ) sinl(χ)Ylm(θ, φ) (4.6)

3In addition to the scalar harmonics, the metric also in general admits vector V(klm) (1 ≤ l ≤ k)
and tensor harmonics T(klm) (2 ≤ l ≤ k), but our SO(3) symmetry precludes the excitation of
these modes: the vector and tensor harmonics require θ dependence (i.e. l 6= 0) that our symmetry
does not allow.
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where the Gegenbauer polynomials are defined as:

Ca
k (x) =

(−2)k

k!

Γ(k + a)Γ(k + 2a)

Γ(a)Γ(2k + 2a)
(1− x2)−a+1/2

× dk

dxk
(1− x2)k+a−1/2. (4.7)

Our restriction to solutions that preserve a symmetry in θ, φ mandates that we have

l = 0, m = 0.

The time dependence of the quasi-normal modes are described by a sum of damped

sinusoids of the form

An exp (−iωnt− iϕn) . (4.8)

Here, An is the amplitude of a mode with frequency ωn = ωnr + iωni and phase ϕn.

The integer n indexes the mode frequency: n = 0 denotes the lowest frequency, or

fundamental, and each n > 0 denotes the nth overtone.

4.3.1 Scalar Spherical Harmonics of the Metric

For the metric, the S(klm) scalar harmonics are restricted by 0 ≤ l ≤ k. The k = 1

mode is not associated with any physical degrees of freedom [68], and these can be

ignored; indeed our choice of initial data where the scalar field profile is symmetric

about χ = π/2 prevent these from being excited. The k = 0 mode corresponds

to a perturbation of a black hole that is itself spherically-symmetric in all the S3

angles χ, θ, φ. Thus, as a consequence of Birkhoff’s theorem, we might also expect

to ignore this k = 0 case as we have with k = 1. However, despite this reasoning,

we see non-trivial dynamics in the data’s projection onto the k = 0 scalar harmonic.

To understand why, recall that we have not transformed our metric to a gauge that

is consistent with the standard one assumed by the perturbative calculations for

quasi-normal modes. Consequently, the metric components that we extract generally
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contain both physical quasi-normal modes as well as contributions from gauge modes

that are introduced by our non-standard choice of time-slicing, and of the r and χ

coordinates on each slice. This gauge contribution is of course present in the data for

all k, and is most obvious in the k = 0 projection since it contains no physical quasi-

normal modes. For k ≥ 2, this gauge contribution manifests itself as a decaying mode

(i.e. a mode whose frequency has a negligibly small real part). In the following, we

consider the k ≥ 2 modes of the metric, taking into account this gauge contribution.

Fig. 4.6 shows a representative metric variable projected onto the S(200) (k = 2)

scalar harmonic, for a simulation with final state horizon radius rh = 5 and initial

asymmetry wy/wx = 4. The quasi-normal mode frequencies extracted from this

representative metric variable are displayed in Table 4.1. This analysis was repeated

for several simulations with varying rh but fixed wy/wx = 4. Fits to damped sinusoids

yield n = 0 fundamental frequencies with imaginary parts ωi that scale as ∼ 1/rh,

and real parts ωr that are largely insensitive to these changes in rh.

Obtaining the S(200) harmonic’s n = 1 overtone from the metric variables is more

difficult, largely because it decays much more quickly than the n = 0 fundamental.

To obtain good fits, we focus on an early-time segment of the data, and substract

the n = 0 fit, then fit to the remainder. The quasi-normal frequencies extracted in

this way are tabulated in Table 4.2. This table shows that the n = 1 fundamental

frequencies ωr and ωi both scale linearly with rh. To compare with earlier work, notice

that these extracted frequencies for the n = 1 overtone are a close match to the first

set of “fast-modes” found in [65], and that the extracted frequencies for the n = 0

fundamental closely match the low-lying “slow-modes” found in the same study.

Discrepancies with the linear quasi-normal mode description start to appear in

the next highest scalar harmonic S(400) (k = 4): direct fitting yields a dominant

frequency that does not match [65]. The k = 4 fundamental mode with frequency
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fund. k=2
rh
L

=12.2 (1.640± 0.007)− i(0.902± 0.067) L
rh

rh
L

=11.3 (1.640± 0.005)− i(0.895± 0.058) L
rh

rh
L

=10.5 (1.641± 0.002)− i(0.876± 0.039) L
rh

rh
L

=9.0 (1.643± 0.003)− i(0.864± 0.028) L
rh

rh
L

=6.5 (1.650± 0.0007)− i(0.841± 0.010) L
rh

rh
L

=5.0 (1.661± 0.0006)− i(0.837± 0.005) L
rh

rh
L

=4.5 (1.666± 0.0006)− i(0.823± 0.004) L
rh

rh
L

=4.0 (1.675± 0.0005)− i(0.823± 0.003) L
rh

rh
L

=3.3 (1.692± 0.0004)− i(0.808± 0.002) L
rh

Table 4.1: The fundamental (n = 0) quasi-normal mode frequencies ωr−iωi extracted
from the metric variable ḡχχ. These are shown for various horizon radii rh of the final
state AdS-Schwarzschild black hole and for SO(4) quantum numbers k = 2, l =
0, m = 0. Uncertainties are estimated from convergence studies.

1st overt. k=2
rh
L

=12.2 (3.497± 0.131) rh
L
− i(2.087± 0.142) rh

L
rh
L

=11.3 (3.320± 0.156) rh
L
− i(2.185± 0.174) rh

L
rh
L

=10.5 (3.378± 0.339) rh
L
− i(2.120± 0.368) rh

L
rh
L

=9.0 (3.256± 0.078) rh
L
− i(2.100± 0.125) rh

L
rh
L

=6.5 (3.329± 0.178) rh
L
− i(2.091± 0.091) rh

L
rh
L

=5.0 (3.103± 0.264) rh
L
− i(2.626± 0.495) rh

L
rh
L

=4.5 (3.217± 0.084) rh
L
− i(2.718± 0.130) rh

L
rh
L

=4.0 (3.274± 0.051) rh
L
− i(2.688± 0.070) rh

L
rh
L

=3.3 (3.318± 0.059) rh
L
− i(2.914± 0.307) rh

L

Table 4.2: The first overtone (n = 1) quasi-normal mode frequencies ωr−iωi extracted
from the metric variable ḡχχ. These are shown for various horizon radii rh of the final
state AdS-Schwarzschild black hole and for SO(4) quantum numbers k = 2, l =
0, m = 0. Uncertainties are estimated from convergence studies.

ω4 ≈ 2.949 + i3.428/rh is present, but is overshadowed by a mode with frequency

ωdbl4 ≈ 3.312+ i1.627/rh, which is close to double that of the k = 2 fundamental ω2 ≈

1.652 + i0.826/rh that appears in Table 4.1. We expect that this frequency-doubling

in the k = 4 modes arises from a non-linear mode-coupling, which we attempt to

model as a damped harmonic oscillator driven at double the frequency of the k = 2

fundamental mode. Given a k = 2 fundamental mode Ψ2(t) = A2 exp (−iω2t), the
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k = 4 mode Ψ4(t) in this simple model satisfies

∂2
tΨ4 + k2

4Ψ4 − λ4∂tΨ4 = B exp (−2iω2t) , (4.9)

λ4 = ω4i, k2
4 = (ω4r)

2 + (ω4i)
2 (with the r and i subscripts denoting the real and

imaginary components of the corresponding number respectively), and we expect the

driving amplitude B to scale as B ∼ (A2)
2.

The solution of (4.9) is a sum of the k = 4 fundamental and the driven mode

Ψ4(t) = A4 exp (−iω4t) + Adbl
4 exp (−2iω2t) , (4.10)

where A4 is a constant depending on the initial data, and Adbl
4 is a (complex) constant

depending upon the other parameters of the model via

Adbl
4 = (ω̃r + iω̃i)

−1B, (4.11)

where we have introduced for notational convenience ω̃i = 4ω2r(2ω2i − ω4i) and ω̃r =

(ω4r)
2 + (ω4i)

2 − 4 ((ω2r)
2 − (ω2i)

2 + ω4iω2i).
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wy

wx
A4 Adbl

4 Ag
4

1.1 (1.49± 0.09)× 10−3 (6.44± 0.02)× 10−3 (4.40± 0.03)× 10−4

4 2.75± 0.01 9.62± 0.01 0.508± 0.030
32 (5.39± 0.04)× 101 (1.16± 0.01)× 102 1.59± 0.06

wy

wx
ωg4i ∆ϕ

Adbl
4

(A2)2
× 103

1.1 (1.23± 0.23) L
rh

0.832± 0.011 4.03± 0.02

4 (1.26± 0.04) L
rh

0.873± 0.032 4.00± 0.02

32 (1.16± 0.01) L
rh

0.894± 0.066 4.60± 0.02

Table 4.3: Extracted parameters from the k = 4 fit corresponding to Fig. 4.7 at
wy/wx = 4, as well as for the largest and smallest wy/wx cases considered. The fit
includes the fundamental k = 4 mode with extracted amplitude A4, a mode that
has twice the frequency of the k = 2 fundamental mode with extracted amplitude
Adbl

4 , and a putative gauge mode Ag
4 exp(−ωg4it). The model for the mode coupling

discussed in the text predicts a phase difference between the frequency-doubled k = 4
mode and its k = 2 fundamental mode source of ∆ϕ ∼ 0.842, and that Adbl

4 scales as
the square A2; these two quantities are shown in the last two columns of the table,
and indicate the solution is reasonably consistent with the model. Uncertainties are
estimated via convergence.
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Figure 4.6: The leading-order behavior of the metric variable ḡχχ near the boundary
q = 0, projected onto the S(200) scalar harmonic by (Gχχ)k=2 =

∫
dΩ3(ḡχχ/q)S(200),

plotted over a global time interval of t ∈ [0, 8π] (open circles). A fit (solid line)
(Gχχ)fitk=2 = A2 exp (−iω2t− iϕ2) is extracted using the data inbetween the dashed
vertical lines, giving A2 = 39.8, ω2 = 1.661 + i0.837/rh, and ϕ2 = 1.05. The inset
shows a logarithmic plot of the data and the fit over the full global time interval.
Other metric variables show similar behavior.
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Figure 4.7: The leading-order behavior of the metric variable ḡχχ near the boundary
q = 0, projected onto the S(400) scalar harmonic by (Gχχ)k=4 =

∫
dΩ3(ḡχχ/q)S(400),

plotted over a global time interval of t ∈ [0, 8π] (open circles). A fit (solid line)
(Gχχ)fitk=4 = Ag

4 exp (−iωg4it) + A4 exp (−iω4t− iϕ4) + Adbl
4 exp

(
−iωdbl4 t− iϕdbl4

)
is ex-

tracted using the data inbetween the dashed vertical lines. This is a fit to a gauge
mode, and two damped sinusoids with fixed frequencies ω4 ≈ 2.949 + i3.428/rh and
ωdbl4 = 2ω2 ≈ 2× (1.652+ i0.826/rh) (see Table 4.3 for the corresponding parameters
of the fit). The inset shows a logarithmic plot of the data and the fit over the full
global time interval. Other metric variables show similar behavior.
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Figure 4.8: The normalized residuals for the k = 2 and k = 4 fits, corresponding to

Fig. 4.6 and Fig. 4.7, respectively, where (Rχχ)k =
(
(Gχχ)k − (Gχχ)fitk

)
/
∣∣∣(Gχχ)fitk )

∣∣∣.
This quantity shows the extent to which the projection of the metric element ḡχχ onto
the S(k00) harmonic fails to be described by the sum of the k quasi-normal mode,
gauge mode, and for the k = 4 case the non-linear mode. At times before t ≈ 1, the
residual becomes large going to smaller t due to a growing phase offset between the
data and the fit, and at very early times there is an additional contribution from the
early-time transient. There is a slight increase in the residual at late times, because
the deformation decays exponentially, so a small phase difference between the fit and
data will result in a normalized residual that grows with time.
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Figure 4.9: The normalized difference (Pχχ)kmax =(∫
dΩ3(ḡχχ/q)

2 −
∑k=kmax

k=0 (Gχχ)2
k

)
/
∣∣∫ dΩ3(ḡχχ/q)

2
∣∣. For the wy/wx = 4 case,

the contribution due to the k > 2 (k > 4) modes constitutes ≈ %2 (%0.1) of the
metric perturbation, and decreases with time (the metric modes decay faster with
higher k).
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Our strategy is to compare the predictions of this simplified model of non-linear

mode-mixing to the parameters extracted from the fits. In particular (4.11) gives

us quantitative predictions for the relative amplitude and phase difference between

the frequency-doubled k = 4 mode and the k = 2 fundamental mode that sources

it: that the phase difference should be ∆ϕ = arctan(ω̃i/ω̃r), and that Adbl
4 should

scale as (A2)
2. To test these predictions, we fit the k = 4 data to two damped

sinusoids simultaneously (in addition to the decaying gauge mode), though fixing

their frequencies to ω4 and 2ω2. We can then check if the extracted amplitude and

phase of the frequency doubled mode matches the model prediction. The results,

presented in Table 4.3 for three values of wy/wx, and an example fit is shown in

Fig. 4.7 for the wy/wx = 4 case, show good agreement with the model.

To quantify precisely how well the fits describe the actual data, we compute a

residual that measures the difference between the data and the fits. This residual

quantifies the part of the dynamics that we have not been able to fit to with linear

quasi-normal modes supplemented by the pure decay gauge mode, and in the k = 4

case, the mode arising from non-linear mode-mixing modeled by (4.9). The solid blue

curve of the first panel of Fig. 4.8 depicts a normalized residual that is generated from

the fit shown in Fig. 4.6.

To illustrate the dependence on wy/wx, this analysis is repeated for the largest

and smallest wy/wx we have considered. The solid blue curve shows that the fit

to the k = 2 fundamental quasi-normal mode for t & 1 captures all but ≈ 1% of

the perturbation projected onto the S(200) harmonic, for the wy/wx = 4 case. The

other curves show that a similar fit does worse for larger wy/wx, which is consistent

with the expectation that other unmodeled effects (i.e. those not accounted for by

the linear quasi-normal modes and our simplified model of the gauge and non-linear

effects) should become more significant for data with larger deformations. Similarly,

the solid blue curve of the second panel in Fig. 4.8 depicts the normalized residual
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corresponding to the fit shown in Fig. 4.7. It shows that for t & 1, the fit to the

fixed-frequency k = 4 fundamental mode, the frequency-doubled k = 2 mode and

single gauge mode captures all but ≈ 5% of the solution projected onto the S(400)

harmonic for wy/wx = 4. Again, the corresponding residual grows with larger initial

asymmetry.

Finally, to quantify how much of the full solution is not accounted for by the

S(200) and S(400) harmonics that we discussed above, we look at the normalized

difference between the square of the full solution integrated over the 3-sphere, and

the sum of the squares of all projections onto the S(k00) harmonics for all k ≤ kmax.

The result of this procedure is summarized in Fig. 4.9.
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4.3.2 Scalar Spherical Harmonics of the Scalar Field

For perturbations of the scalar field, these S(klm) scalar harmonics exist for all k ≥ 0.

Fig. 4.10 shows the scalar field projected onto the 3-sphere (k = 0), for a simulation

with initial wy/wx = 4 and whose final state black hole has horizon radius rh = 5.

The quasi-normal mode frequencies extracted from the scalar field are collected in

Table 4.4 for the n = 0 fundamental mode and Table 4.5 for the n = 1 first overtone.

This was done for several rh cases, wherein each pair of fundamental and first

overtone was found by a simultaneous non-linear least-squares fit to two damped

sinusoids, corresponding to the n = 0 fundamental and the n = 1 overtone, each

of the form (4.8). The n = 0 fundamental frequencies ωr and ωi scale linearly with

rh, and their dependence on k shows that ωr increases with k and that ωi decreases

with k. The n = 1 first overtone frequencies ωr and ωi also scale linearly with rh,

as with the n = 0 frequencies; however, the dependence on k differs from the n = 0

fundamental case in that the ωr and ωi both increase with k. To make contact with

earlier work on quasi-normal modes in AdS, we note that the frequencies extracted

for the n = 0 fundamental are a close match to those found in the seminal study [60]

on this subject.
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Figure 4.10: The leading-order behavior of the scalar field variable φ̄ near the bound-
ary q = 1, projected onto the 3-sphere by Φk=0 =

∫
dΩ3(φ̄/q)S(000), and plot-

ted over a global time interval of t ∈ [0, 0.62] (open circles). A fit (solid line)
Φfit
k=0 = A0 exp (−iω0t− iϕ0) is extracted using the data inbetween the dashed verti-

cal lines, giving A0 = 64.4, ω0 = 3.11rh − i2.62rh, and ϕ0 = −0.454. The inset shows
a logarithmic plot of the data and the fit over the full global time interval.
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fund. k=0
rh
L

=12.2 (2.95± 0.13) rh
L
− i(2.67± 0.02) rh

L
rh
L

=11.3 (2.95± 0.14) rh
L
− i(2.64± 0.04) rh

L
rh
L

=10.5 (2.96± 0.14) rh
L
− i(2.64± 0.05) rh

L
rh
L

=9.0 (2.99± 0.15) rh
L
− i(2.63± 0.07) rh

L
rh
L

=6.5 (3.06± 0.14) rh
L
− i(2.62± 0.14) rh

L
rh
L

=5.0 (3.11± 0.09) rh
L
− i(2.62± 0.20) rh

L
rh
L

=4.5 (3.18± 0.06) rh
L
− i(2.67± 0.22) rh

L
rh
L

=4.0 (3.21± 0.001) rh
L
− i(2.67± 0.23) rh

L
rh
L

=3.3 (3.33± 0.08) rh
L
− i(2.71± 0.20) rh

L

fund. k=2
rh
L

=12.2 (3.96± 0.03) rh
L
− i(2.33± 0.07) rh

L
rh
L

=11.3 (3.94± 0.02) rh
L
− i(2.30± 0.08) rh

L
rh
L

=10.5 (3.95± 0.01) rh
L
− i(2.29± 0.08) rh

L
rh
L

=9.0 (3.95± 0.002) rh
L
− i(2.26± 0.09) rh

L
rh
L

=6.5 (3.96± 0.05) rh
L
− i(2.23± 0.07) rh

L
rh
L

=5.0 (3.94± 0.05) rh
L
− i(2.21± 0.04) rh

L
rh
L

=4.5 (4.00± 0.06) rh
L
− i(2.24± 0.04) rh

L
rh
L

=4.0 (3.99± 0.06) rh
L
− i(2.24± 0.03) rh

L
rh
L

=3.3 (4.05± 0.08) rh
L
− i(2.27± 0.03) rh

L

fund. k=4
rh
L

=12.2 (4.93± 0.007) rh
L
− i(1.83± 0.05) rh

L
rh
L

=11.3 (4.90± 0.003) rh
L
− i(1.80± 0.04) rh

L
rh
L

=10.5 (4.92± 0.002) rh
L
− i(1.78± 0.04) rh

L
rh
L

=9.0 (4.90± 0.02) rh
L
− i(1.72± 0.02) rh

L
rh
L

=6.5 (4.80± 0.01) rh
L
− i(1.65± 0.003) rh

L
rh
L

=5.0 (4.79± 0.08) rh
L
− i(1.60± 0.02) rh

L
rh
L

=4.5 (4.87± 0.11) rh
L
− i(1.69± 0.04) rh

L
rh
L

=4.0 (4.83± 0.12) rh
L
− i(1.76± 0.04) rh

L
rh
L

=3.3 (4.9± 0.1) rh
L
− i(1.89± 0.05) rh

L

Table 4.4: The fundamental (n = 0) quasi-normal mode frequencies ωr−iωi extracted
from the scalar field variable φ̄, from evolution of initial data as described in the first
paragraph of Sec. 4.3. These are shown for various horizon radii rh of the final state
AdS-Schwarzschild black hole with SO(4) quantum numbers k ≥ 0, l = 0, m = 0.
Uncertainties are estimated from convergence studies.
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1st overt. k=0
rh
L

=12.2 (5.66± 0.24) rh
L
− i(2.90± 0.28) rh

L
rh
L

=11.3 (5.65± 0.27) rh
L
− i(2.91± 0.30) rh

L
rh
L

=10.5 (5.69± 0.30) rh
L
− i(2.94± 0.32) rh

L
rh
L

=9.0 (5.76± 0.38) rh
L
− i(3.00± 0.36) rh

L
rh
L

=6.5 (5.98± 0.62) rh
L
− i(3.19± 0.42) rh

L
rh
L

=5.0 (6.20± 0.96) rh
L
− i(3.54± 0.51) rh

L
rh
L

=4.5 (6.41± 1.13) rh
L
− i(3.82± 0.57) rh

L
rh
L

=4.0 (6.58± 1.36) rh
L
− i(4.24± 0.68) rh

L
rh
L

=3.3 (7.02± 1.78) rh
L
− i(5.34± 1.04) rh

L

1st overt. k=2
rh
L

=12.2 (6.36± 0.26) rh
L
− i(3.28± 0.15) rh

L
rh
L

=11.3 (6.36± 0.31) rh
L
− i(3.32± 0.16) rh

L
rh
L

=10.5 (6.41± 0.35) rh
L
− i(3.37± 0.14) rh

L
rh
L

=9.0 (6.50± 0.45) rh
L
− i(3.52± 0.16) rh

L
rh
L

=6.5 (6.78± 0.71) rh
L
− i(4.02± 0.08) rh

L
rh
L

=5.0 (7.15± 1.02) rh
L
− i(4.96± 0.17) rh

L
rh
L

=4.5 (7.45± 1.19) rh
L
− i(5.61± 0.32) rh

L
rh
L

=4.0 (7.71± 1.44) rh
L
− i(6.67± 0.76) rh

L
rh
L

=3.3 (8.04± 1.74) rh
L
− i(9.35± 2.38) rh

L

1st overt. k=4
rh
L

=12.2 (7.60± 0.17) rh
L
− i(4.11± 0.17) rh

L
rh
L

=11.3 (7.59± 0.23) rh
L
− i(4.31± 0.14) rh

L
rh
L

=10.5 (7.63± 0.26) rh
L
− i(4.56± 0.14) rh

L
rh
L

=9.0 (7.74± 0.39) rh
L
− i(5.22± 0.10) rh

L
rh
L

=6.5 (8.04± 0.79) rh
L
− i(7.92± 0.41) rh

L
rh
L

=5.0 (7.40± 1.43) rh
L
− i(8.69± 1.87) rh

L
rh
L

=4.5 (7.63± 2.19) rh
L
− i(8.78± 1.74) rh

L
rh
L

=4.0 (7.77± 1.82) rh
L
− i(9.94± 3.02) rh

L
rh
L

=3.3 (7.68± 1.32) rh
L
− i(12.7± 4.7) rh

L

Table 4.5: The first overtone (n = 1) quasi-normal mode frequencies ωr−iωi extracted
from the scalar field variable φ̄, from evolution of initial data as described in the first
paragraph of Sec. 4.3. These are shown for various horizon radii rh of the final
state AdS-Schwarzschild black hole and for harmonics with SO(4) quantum numbers
k ≥ 0, l = 0, m = 0. Uncertainties are estimated from convergence studies.
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4.4 Dual Boundary CFT

In the remainder of this chapter, we finish our discussion by studying the boundary

behavior that corresponds to the representative numerical solutions we have analyzed

thus far. Specifically, we will extract the stress tensor of the boundary CFT that is

dual to an asymptotically AdS spacetime describing the quasi-normal ringdown of a

deformed black hole with initial asymmetry wy/wx = 4 or wy/wx = 32, which settles

down at late times to the AdS Schwarzschild solution with horizon radius rh = 5.

4.4.1 Conserved and Traceless CFT Stress Tensor

First, for a consistency check of expressions (3.4), we test whether (to within trun-

cation error) the stress tensor is traceless and whether it is conserved with respect

to the Levi-Civita connection on the R × S3 boundary. Results for the trace and

two non-trivial components of the divergence are displayed in Fig. 4.11 and 4.12,

respectively. These plots demonstrate that as resolution is increased, we are indeed

converging to a CFT stress tensor that is conserved and traceless, i.e. to matter

that obeys the hydrodynamic equations of motion, and whose equation of state is

consistent with conformal invariance. Note that the early-time transient related to

the initial gauge dynamics discussed in Sec. 4.1 is also visible in these plots, though

as with the independent residual it also converges away in the sense that it occupies

a smaller region of the spacetime domain with increased resolution.

In Figs. 4.13, 4.14, 4.15 and 4.16 we display representative components of the

boundary CFT stress tensor on R × S3 spacetime diagrams, specifically the energy

density 〈Ttt〉CFT and S2 component of the pressure 〈Tθθ〉CFT for the wy/wx = 4 and

wy/wx = 32 cases. At t = 0 the boundary state is clearly inhomogeneous, and in time

evolves to a homogeneous state in a manner that mirrors the quasi-normal decay of

the spacetime to a static black hole.
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Figure 4.11: The trace 〈T µ
µ〉CFT of the boundary stress tensor, constructed from

a simulation run at 4 different resolutions, labeled by the mesh spacing relative to
the highest resolution run h. Here the L2-norm of 〈T µ

µ〉CFT is taken over the entire
grid, and the trends indicate convergence to a trace-free stress tensor with increasing
resolution.
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Figure 4.12: Two components of the divergence of the stress tensor, ∇µ 〈Tµt〉CFT

(top) and ∇µ 〈Tµχ〉CFT (bottom), constructed from a simulation run at 4 different
resolutions, labeled by the mesh spacing relative to the highest resolution run h/2.
The L2-norm of the respective components are taken over the entire grid, and the
trends indicate convergence to a conserved stress tensor with increasing resolution.
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Figure 4.13: The energy density 〈Ttt〉CFT of the boundary CFT, displayed on a (t, χ)
spacetime diagram, extracted from the rh = 5 quasi-normal black hole ringdown
simulation described in Sec. 4.3, with initial wy/wx = 4.
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Figure 4.14: The energy density 〈Ttt〉CFT of the boundary CFT, displayed on a (t, χ)
spacetime diagram, extracted from the rh = 5 quasi-normal black hole ringdown
simulation described in Sec. 4.3, with initial wy/wx = 32.
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Figure 4.15: The S2 component 〈Tθθ〉CFT of the boundary CFT stress tensor, displayed
on a (t, χ) spacetime diagram, extracted from the rh = 5 quasi-normal black hole
ringdown simulation described in Sec. 4.3, with initial wy/wx = 4.
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Figure 4.16: The S2 component 〈Tθθ〉CFT of the boundary CFT stress tensor, displayed
on a (t, χ) spacetime diagram, extracted from the rh = 5 quasi-normal black hole
ringdown simulation described in Sec. 4.3, with initial wy/wx = 32.
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4.4.2 Fluid Variables

In Sec. (4.4.1), we showed that convergence trends in the solution imply that in the

continuum limit, 〈Tµν〉CFT is conserved and traceless. Thus, two necessary ingredients

are already satisfied: conservation is required for the effective hydrodynamic variables

to satisfy the Navier-Stokes equations, and for an isotropic fluid, tracelessness implies

ε = 3P . In this section we show that one can map 〈Tµν〉CFT to a corresponding set of

hydrodynamic variables, and that essentially from the initial time, their behavior is

consistent with that of an N = 4 SYM fluid, at least to within truncation error.

Let us now map the boundary CFT stress tensor components 〈Tµν〉CFT to hydrody-

namic variables as described in Sec. 3.2.1, using (3.11). By itself, the mapping (3.11)

is not profound: the stress tensor with our symmetries has four independent compo-

nents, and we have simply mapped them to a new set of four variables (ε, P, v, ησ).

The crucial question though is whether these variables behave as those of a conformal

fluid. The answer appears to be yes, even for these initially highly distorted black

holes4.

To support this claim, we first note that in all cases we have looked at to date, we

are able to perform the inversion (3.11) to obtain real-valued hydrodynamic variables

that satisfy ε ≥ 0, P ≥ 0 and v ∈ (−1, 1). Fig. 4.17 shows an example of v(t, χ),

from the rh = 5 quasi-normal ringdown case discussed before. This suggests the stress

tensor is consistent with that of some fluid. To check that it is a conformal fluid, in

the top panel of Fig. 4.19 we show the quantity (ε−3P )/ε resulting from the evolution

at several different resolutions, using the same initial data (to contrast with Fig. 4.11,

here we are not merely testing that the stress tensor is traceless, but rather the more

restrictive property that it arises from fluid flow where in the rest frame of the flow

4A few of the explicit examples shown here correspond to a “moderately” distorted initial black
hole, with rh = 5 and ceq/cp(t = 0) ≈ 1.2—see Fig. 4.5, though the same conclusions hold for the
most distorted cases we have looked at to date (ceq/cp(t = 0) ≈ 2.2), where the fluid velocity reaches
a maximum |v| ≈ 0.54—see Fig. 4.17.
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the pressure is isotropic). At any given resolution, this quantity is certainly nonzero

due to truncation error; however, except for a transient at the initial time, the trends

show that it is converging to zero, at or better than first order5. In other words,

this says that after the initial transient, the boundary stress tensor behaves like a

fluid with equation of state ε = 3P to within numerical truncation error. Fig. 4.20

is a close-up of the early transient behavior seen in Fig. 4.19, and as before for the

convergence of the solution discussed in Sec. 4.1, it appears to be converging away in

the sense that it affects a smaller region in time as resolution increases.

An alternative way to present this information is displayed in the bottom panels

of Fig.’s 4.19 and 4.20. Here, assuming first order convergence of the extracted

quantities, we take the finest resolution result as the continuum solution with an

uncertainty (from truncation error) given by the magnitude of the difference between

the finest and next-to-finest resolution results; this error is shown as the shaded region

about the finest resolution curve. For subsequent time-series plots we will display the

data in this format.

From this data we might also try to extract the lowest-order transport coefficient,

namely the shear viscosity η, but here we encounter the two primary limitations of

this sub-section’s extraction method. First, this method only allows us to extract

the product ησ, so in order to find η we must divide by an independent calculation

of σ. Such a calculation may be achieved by substituting the extracted velocity

field into (3.6), which yields σ|v, so we can compute ησ/σ|v ≈ η. Given our time-

symmetric initial data, this σ|v has zeros at t = 0, and periodically after that. Even

though the “true” ησ necessarily has zeros at exactly the same times, the extracted

ησ will not, because we have ignored the Πµν higher-order contributions in the map.

Thus, such a calculation of ησ/σ|v ≈ η has the unattractive feature of diverging

5That the rate of convergence is closer to first order is due to how we extrapolate the solution to
the boundary to extract the stress tensor components—the underlying solution for the metric still
shows second-order convergence as discussed in Sec. 4.1.
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whenever σ|v = 0. Secondly, and more crucially, this method does not readily extend

to allow the extraction of the higher-order transport coefficients. To remedy these

shortcomings, we will now make use the method described in Sec. 3.2.2 to analyze

the hydrodynamic behavior of 〈Tµν〉CFT.

4.4.3 Transport Coefficients

We are now in the position to ask whether the boundary flow is consistent with

an N = 4 SYM fluid, and if so, the extent to which higher-order corrections are

important in describing it. We address these questions by comparing each of the

reconstructed stress tensors
∑imax

i=0 T
(i)
µν for imax = 0, 1, 2 to the full boundary CFT

stress tensor of the numerical solution, as described in Sec. 3.2.2. The results of this

comparison are summarized in Figs. 4.23 and 4.24 for a representative stress tensor

component (normalized by the energy density ε). The plots in Fig. 4.23 are from

the wy/wx = 4 solution, where the maximum velocity in the flow reaches ≈ 0.12 (see

Fig. 4.17), and Fig. 4.24 is from the most asymmetric initial data case wy/wx = 32 that

exhibits a maximum velocity of ≈ 0.54. For the former case, the solution converges

to behavior that is different from ideal hydrodynamics by at most ≈ 0.5% (modulo

the transient near t = 0); the inclusion of first-order and second-order corrections

successively decrease this difference to a level which is essentially zero to within

truncation error. The analogous plots for the larger asymmetry case in Fig. 4.24

show deviations from ideal hydrodynamics of up to 2.5%; adding first order corrections

reduces the maximum deviation to ≈ 1.5%, and second-order corrections to just under

≈ 1%. This is a rather remarkable level of consistency, in particular considering the

trends in Fig. 4.24 as succesively higher order viscous corrections are added.
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Figure 4.17: The velocity field v of the fluid describing the boundary CFT, displayed
on a t, χ spacetime diagram, extracted from the rh = 5 quasi-normal black hole
ringdown simulation described in Sec. 4.3, with initial wy/wx = 4.
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Figure 4.18: The velocity field v of the fluid describing the boundary CFT, displayed
on a t, χ spacetime diagram, extracted from the rh = 5 quasi-normal black hole
ringdown simulation described in Sec. 4.3, with initial wy/wx = 32.
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Figure 4.19: The quantity (ε−3P )/ε, which measures the extent to which the hydro-
dynamic description is that of a fluid with equation of state ε = 3P , constructed from
simulations run at 4 different resolutions, labeled by the mesh spacing relative to the
highest resolution run h/2. What is shown at each time is the L2-norm of (ε− 3P )/ε
taken over the entire grid. Except possibly for an early transient (see Fig. 4.20), that
this quantity is converging to zero shows that ε = 3P to within truncation error.
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Figure 4.20: An expanded view of Fig. 4.19 at early times.
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Figure 4.21: The quantity (ε− 3P )/ε, where the finest resolution data in Fig. 4.19 is
interpreted as the continuum solution to within an uncertainty (shaded region). This
uncertainty is obtained from the magnitude of the difference between the highest and
next to highest resolution data in Fig. 4.19 (this assumes first order convergence of
the extracted quantities).
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Figure 4.22: An expanded view of Fig. 4.21 at early times.
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Figure 4.23: The normalized mismatch between 〈Tµν〉CFT and the reconstructed hy-

drodynamic
∑imax

i=0 T
(i)
µν with viscous corrections up to order imax = 0, 1, 2, for a simu-

lation with initial wy/wx = 4, and final rh = 5. Here, ∆T imax
µν ≡ 〈Tµν〉CFT−

∑imax

i=0 T
(i)
µν .

In each panel, the highest resolution data (dashed line) is displayed with an estimated
uncertainty (shaded region). Ideal hydrodynamics (top) shows a small mismatch; this
is reduced after including 1st order viscous corrections (middle), and is zero to within
truncation error when 2nd order viscous corrections are added (bottom).
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Figure 4.24: The same set of plots as described in Fig. 4.23, though here from the
simulation of the wy/wx = 32 initial data. Notice the larger relative mismatches at a
given order of the expansion compared to the wy/wx = 4 case in Fig. 4.23, and that
there is still a small residual even after including all corrections through second order.
The trend going from ideal (top) to second order viscous hydrodynamics (bottom)
suggests that third and higher order corrections could further reduce the mismatch.
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4.4.4 CFT on a Minkowski Piece of the Boundary

Thus far, in the field theory dual of deformed black holes, we have focused on fluid

flows on the boundary of global AdS5, namely R× S3. As is clear from section 4.4.1,

and in particular from Fig. 4.14, the fluid flow is essentially a compressive wave which

starts with its peak at the equator of S3 and then travels to the poles and back,

oscillating and damping out toward a static configuration where the temperature on

S3 is everywhere constant. In this section, we would like to make closer contact with

real-world fluid flows by conformally mapping our extracted boundary solution on

R× S3 onto a corresponding flow in Minkowski space.

The conformal mapping described in Sec. 3.3 can be used to compute the tem-

perature (3.24) in Minkowski space. We do this using data from the same simulation

that generated Fig. 4.14; this simulation is characterized by an initial asymmetry of

wy/wx = 32. Each panel in Fig. 4.25 is taken from a t′ = const slice. The temperature

is displayed as an x⊥ − x3 profile, where we define x⊥ as

x⊥ =
√

x1
2 + x2

2, (4.12)

and x1, x2, and x3 are as defined in (3.16). Since the transformation to Minkowski

space preserves the original φ-symmetry in global AdS, one can recover the full spatial

dependence by simply rotating each of these x⊥ − x3 profiles about the x3 axis.

We are justified in defining the temperature (3.25) starting at Minkowski time

t′ = 0 because, by construction, our initial data perfectly conforms to the inviscid

hydrodynamic ansatz. Moreover, again by construction, the velocity field vanishes

exactly on the initial timeslice. Thus we are describing a version of the Landau-

Khalatnikov full-stopping scenario [69, 70], but with radial flow explicitly included.

The results of section 4.4.3, in particular Figs. 4.23 and 4.24, show that hydrodynamics
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remains approximately valid throughout the evolution, with modest contributions

from shear viscosity and small contributions from second-order transport coefficients.

To quantify the initial anisotropy in the temperature profile, we employ two

slightly different quantities. The first is 〈(x⊥)2/ 〈(x3)
2〉, where 〈A(x⊥, x3)〉 =∫

dx⊥dx3T (x⊥, x3)
4A(x⊥, x3)/

∫
dx⊥dx3T (x⊥, x3)

4 is the energy-weighted average of

some function A(x⊥, x3) defined on the initial t′ = 0 slice and at φ = 0. This quantity

evaluates to 〈(x⊥)2/ 〈(x3)
2〉 = 6.94 with the data displayed in Fig. 4.25. Alterna-

tively, we can also obtain the widths δ⊥ and δ3 such that T 4(δ⊥, 0) = T 4(0, 0)/2 and

T 4(0, δ3) = T 4(0, 0)/2. From these, we construct the ratio (δ⊥)2/(δ3)
2; this evaluates

to (δ⊥)2/(δ3)
2 = 18.7 with the data6.

6The extent to which
〈
(x⊥)2

/ 〈
(x3)2

〉
and (δ⊥)2/(δ3)2 differ reflects the extent to which the

temperature profile deviates from a perfect Gaussian. As a measure of anisotropy, the ratio of
widths at half-max (δ⊥)2/(δ3)2 is the more faithful of the two.
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Figure 4.25: Temperature T defined in (3.25), for a simulation run with wy/wx = 32
initial data, whose final state black hole has horizon radius rh = 5. Each plot depicts
the spatial profile of temperature in the x⊥−x3 plane, taken at a constant t

′
slice and

at φ = 0. One can recover the full spatial dependence by simply rotating each of these
x⊥ − x3 profiles about the x3 axis. By interpreting the x3 axis as the longitudinal
beam-line, and x⊥ as the transverse radius from the x3 axis, the initial data in the top
panel can be thought of as approximating a head-on heavy ion collision at its moment
of impact. The subsequent panels shows that the resulting fluid flow exhibits both
longitudinal and radial expansion.
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Chapter 5

Conclusion

5.1 Discussion

We have described a generalized harmonic scheme for solving the Einstein field equa-

tions on asymptotically anti-de Sitter spacetimes in 4+1 dimensions. Though re-

stricting to SO(3) symmetry in the initial code, we expect that many of the methods

developed here to achieve stable, consistent evolution will carry over to scenarios with

less symmetry. This will be needed to tackle the main motivation for developing this

code, namely to obtain the gravity dual to a heavy ion collision, and its subsequent

quark-gluon plasma formation.

As a first application, we studied the quasi-normal ringdown of highly distorted

black holes, and the corresponding behavior of the stress energy tensor of the dual

CFT on the boundary of the spacetime. We find quasi-normal mode frequencies

that are consistent with previously published linear modes, as well as modes that

can be modeled as arising from non-linear mode-coupling. We further find purely

decaying modes that we attribute to gauge. To be certain this is the case would

require transforming the solution to coordinates fully compatible with perturbative
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calculations, which is a rather non-trivial task numerically, and so we relegate this to

a future study.

The boundary stress energy tensor exhibits correspondingly large initial fluctua-

tions, yet we find that its behavior is consistent to better than 1% with that of an

N = 4 SYM fluid with equation of state ε = 3P , and with corresponding transport

coefficients, essentially from t = 0 onwards. This is in contrast to the numerical

results reported in [23–26], where only after a certain time did the boundary behav-

ior approach that of a fluid. However, those studies looked at scenarios more akin

to black hole formation, i.e. beginning with states that do not contain large black

holes (or black branes), with the black holes forming at later times. Such processes

are expected to be dual to thermalization, whereas our study is that of equilibration

beginning from an inhomogeneous though thermal state. Nevertheless, it is curious

that the link between Einstein and Navier-Stokes seems to be holding even in these

far-from-equilibrium scenarios, and it will be interesting in future work to explore

how far this relationship extends. Recently it was shown that the Rayleigh-Plateau

instability in a fluid stream and the Gregory-Laflamme instability of a black string

are at least qualitiatively similar [71]. These findings similarly suggest that, in some

situations, the physics described by the Einstein and Navier-Stokes equations could

exhibit similarities even in the most non-linear, near-singular regimes.

By passing to an appropriate Minkowski patch of the boundary of global AdS5,

we are able to extract a fluid flow which starts from a compressed disk and leads

to expansion both in the radial and longitudinal directions. The SO(3) symmetry

is still present, but as a conformal symmetry rather than an isometry of the flow.

This flow exhibits the main qualitative features of the full-stopping scenario in heavy

ion collisions, which, though generally considered implausible in light of asymptotic

freedom, has some interesting phenomenological successes [72].
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5.2 Future Work

A direction for future study that could be accomplished within the simplification of

the current SO(3) symmetry is to couple gravity to additional forms of matter. In

the context of AdS/CFT, it is interesting to consider tachyonic scalar fields, since

these amount to relevant operator insertions in the boundary CFT. As one might

expect, the resulting deformation is dramatic: on the gravity side, these tachyonic

scalars back-react in such a way as to significantly change the boundary conditions of

the metric. The evolution of such systems in the full non-linear regime is unknown,

though hopefully methods similar to those introduced here will be able to handle such

spacetimes with “deformed” AAdS boundaries. These methods are also applicable

to AAdS spacetimes with different boundary topology, which (with the appropriate

matter content) are of interest to condensed matter applications of the duality.

The next natural step is to relax our current symmetries, to a gravitational model

that admits a boundary description with variations in two spatial directions. This

would allow us to model a heavy ion collision in its entirety, beginning at a time

before the heavy ions collide. The geometry at the moment of impact could then

be allowed to arise dynamically, so that the only tunable parameters in this model

would be the type of gravitational objects that act as proxies for the heavy ions,

and the speed at which they collide. This dissertation represents a necessary first

step towards this type of gravitational model, and towards a more robust comparison

between the dynamics of asymptotically AdS spacetimes and real-world quark-gluon

plasma flows.
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Appendix A

Boundary Conditions for

Linearized Gravitational

Perturbations of AdS

A theorem due to Fefferman and Graham [48] states that a distinguished coordinate

system (z, xi) exists on the Poincaré patch of any asymptotically AdS5 spacetime M

in which the metric takes the form

G =
L2

z2

(
dz2 + gijdxidxj

)
(A.1)

and that there is a convergent power series solution for the gij coefficients in (A.1)

given by

gij = g(0)ij + g(2)ijz
2 + g(4)ijz

4 + 2h(4)ijz
4 log z +O(z6) (A.2)

(the boundary ∂M is located at z = 0).

Let us first translate this statement to global AdS5 coordinates (t, r, χ, θ, φ). Since

the Fefferman-Graham theorem, as originally stated, is adapted to the Poincaré patch

of AdS, we will have to content ourselves with a partial translation i.e. one that is

112



only valid in a restricted region of global AdS. The relationship between the Poincaré

coordinates (t′, z) and the global coordinates (t, r) is given by

z

L
=

1√
1 + r2/L2 cos t′/L + r/L cos χ

. (A.3)

Since we are mainly interested in radial dependence, we will restrict ourselves to slices

of t = 0, χ = π/2, in which case the leading-order relationship between z and r near

the boundary at z = 0, or equivalently r →∞, is simply

z

L
=

L

r
+O(1/r2). (A.4)

In terms of the global coordinate q = 1/(1+ r) introduced in Sec. 3.1, and setting

L = 1 for convenience, to leading-order, we have z = 1/r +O(1/r2) = q +O(q2) near

the q = 0 boundary. So the Fefferman-Graham theorem’s power series solution in

these coordinates on a t = 0, χ = π/2 slice reads just like (A.2)

gij = g(0)ij + g(2)ijq
2 + g(4)ijq

4 + 2h(4)ijq
4 log q +O(q6) (A.5)

(the boundary ∂M is located at q = 0).

The g(0)ij corresponds to the non-radial components of the pure AdS5 metric. The

g(2)ij can be expressed, as was done explicitly in [73], in terms of the Ricci tensor R(0)ij

and the scalar curvature R(0) constructed from g(0)ij, and is thus fixed. The leading-

order dynamics then first appears1 in the terms controlled by g(4)ij. Inspecting (A.5),

this implies that the leading-order asymptotics is gij ∼ q2, in agreement with the

boundary conditions we wrote down in Sec. 2.2.

We can now show how our metric boundary conditions (1.70) relate to those de-

rived by Ishibashi and Wald in [34]. Working perturbatively, they derive conditions

1In D = d + 1 dimensions, the leading-order dynamics appears in the g(d)ij term, since g(n)ij for
n < d are determined by g(0)ij .
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under which a metric perturbation must have its boundary behavior enforced by ex-

plicit boundary conditions. The fields governing the perturbations, which we collec-

tively denote by f , are decomposed in terms of spherical harmonics Sk(Ωi) according

to

f =
1

r3/2

∑
kS

Φk(t, r)Sk(Ωi). (A.6)

The Φ fields for the tensor and vectors modes of the gravitational perturbations

are shown to require no boundary conditions at infinity (see Proposition 3.1 and

its preceding discussion in [34]). However, the scalar modes of the gravitational

perturbations require boundary conditions, and their corresponding Φ are shown to

behave asymptotically as

Φ = G0(r)
[
2a0 log(1/r) + b0 + 2L2/r2 log(1/r) + ...

]
(A.7)

where the function G0(r) is asymptotically given by

G0(r) ∼
1

r1/2
. (A.8)

In terms of the global coordinate q, the implication is that for the scalar modes

of the gravitational perturbations the near-boundary behavior is

gij ∼ 2a0q
2 log(q) + b0q

2 + 2c0q
4 log(q) + ... (A.9)

For the scalar modes, imposing boundary conditions amounts to setting the ratio

b0/a0. Comparing (A.9) to (A.5), we see that the choice picked out by coordinates

that are Fefferman-Graham-like near the boundary is b0/a0 → ∞ i.e. a0 = 0. This

removes the logarithmic branch controlled by a0, so the leading-order asymptotics is

gij ∼ q2.
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Appendix B

Effect of Scalar Backreaction on

Metric Fall-off

Here we compute the effect that a static spherical distribution of massless scalar would

have on the AAdS5 metric. The configuration only has radial dependence φ = φ(r),

so the metric must take the form

ds2 = −
(
1 + r2 +O(r−1)

)
dt2 +

1(
1 + r2 − µ(r)

r

)dr2 + r2dΩ3
2 (B.1)

where µ(r) grows slower than r3 as r → ∞ in order to preserve the value of the

cosmological constant. We have set L = 1, so that Λ5 = −6. In a previous section,

we had used the AdS5 Klein-Gordon equation (1.72) in spherical symmetry to find the

general leading order behavior (1.73) of scalar fields in AdS5. We now find the metric

fall-off behavior when scalar back-reaction is taken into account, limiting ourselves

to the hρρ component of the metric deviation and using the compactified coordinate

ρ = r/(1+ r). In order to find this fall-off, the strategy is to solve for µ(r) as a power
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series in r, from which we can reconstruct

hρρ =

(
∂r

∂ρ

)2

hrr =
µ(r)

r
(B.2)

where we have used ∂r/∂ρ = 1/(1− ρ)2 ∼ r2 along with hrr = grr − ĝrr and

grr =
(
1 + r2 − µ(r)/r

)−1
=

1

r2

[
1 +

µ(r)

r3
+O(r−5)

]
. (B.3)

We can deduce the asymptotic behavior of µ(r) from the the Hamiltonian con-

straint1

(4)R− 2Λ5 = 16πρE. (B.4)

where

(4)R = 2Λ5 +
2 + r2(5 + 3r2)

(r + r3)2
µ′(r) +

r(5 + 3r2)

(r + r3)2
µ(r) (B.5)

is the Ricci scalar associated with the 4-metric on the slice, and

ρE =
1

2
(1 + r2 − µ(r)/r)(φ′(r))2 +

1

2
m2φ2 (B.6)

is the scalar field energy density. Keeping only the terms in (B.4) that dominate at

large r, we obtain the form of the Hamiltonian constraint near the boundary

µ′(r)

r2
+

µ(r)

r
(φ′(r))2 ∼ r2(φ′(r))2 + m2φ2. (B.7)

The scalar field goes as φ(r) ∼ r−∆ near the boundary for some ∆, so we see that

the right-hand-side of (B.7) goes as r−2∆. Matching the left and right-hand sides, we

conclude that

µ(r) ∼ r3−2∆ (B.8)

1See Sec. 1.4.2.
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and consequently,

hρρ ∼ r2−2∆. (B.9)

To make use of what we have learnt, first suppose that we have a scalar with

negative m2 < 0. From (1.73) and (1.74), a non-zero A branch describes the leading

behavior for large r, and is defined by a fall-off power of ∆ = ∆+ = 2 −
√

4 + m2.

Then equation (B.9) predicts that matter backreaction induces a metric deviation

hρρ ∼ r−2+2
√

4+m2
that is larger than the vacuum metric fall-off we assumed in (2.10)

and in (2.11). This case corresponds to a tachyonic scalar configuration. These con-

figurations are stable in AdS as long as its mass satisfies the Breitenlohner-Freedman

bound [74] given by −(D−1)2/(4L2) = −4 < m2 in D = 5 dimensions: it is stable in

the sense that its conserved energy functional remains positive in the function space

of all fluctuations for which the energy functional remains a convergent integral. The

qualitative reason for the positivity of this energy functional in AdS is that despite

the negative unbounded potential of the tachyonic scalar, the positive kinetic terms

in the energy functional dominate the negative potential terms so long as the scalar

falls off sufficiently quickly near the boundary2.

For this dissertation, we focus on scalars with m2 ≥ 0. Again looking at (1.73),

(1.74), notice that we must now turn off the A branch in order to have a scalar

field that vanishes at infinity, which is required for any scalar field configuration

with finite energy. The result is a localized matter distribution defined by a fall-off

power ∆ = ∆+ = 2 +
√

4 + m2. Applying our result (B.9) to this case, we find

that backreaction induces a metric deviation hρρ ∼ r−2−2
√

4+m2
that is subleading

compared to the vacuum metric fall-off (2.11), and thus leaving it unchanged.

2A scalar with the critical fall-off behavior goes as φ ∼ r∆c for ∆c = (D − 1)/2 = 2 in D = 5
dimensions; the BF bound can be inferred from this observation.
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Appendix C

Finite Difference Stencils

f,t (fn+1
i,j − fn−1

i,j )/(2∆t)

f,ρ (fni+1,j − fni−1,j)/(2∆ρ)

f,χ (fni,j+1 − fni,j+1)/(2∆χ)

f,tt (fn+1
i,j − 2fni + fn−1

i,j )/∆t2

f,ρρ (fni+1,j − 2fni + fni−1,j)/∆ρ2

f,χχ (fni,j+1 − 2fni + fni,j−1)/∆χ2

f,tρ (fn+1
i+1,j − fn+1

i−1,j − fn−1
i+1,j + fn−1

i−1,j)/(4∆t∆ρ)

f,tχ (fn+1
i,j+1 − fn+1

i,j−1 − fn−1
i,j+1 + fn−1

i,j−1)/(4∆t∆χ)

f,ρχ (fni+1,j+1 − fni+1,j−1 − fni−1,j+1 + fni−1,j−1)/(4∆ρ∆χ)

Table C.1: A representative sample of the second order accurate finite difference
stencils that are used to represent differential equations by difference equations.
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