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Abstract

NMR spectroscopy has been used to determine more than 11000 protein structures

in the Protein Data Bank (PDB). By providing geometric constraints between pairs of

nuclei in the protein, from NMR spectroscopy the 3D structure of the protein can be

obtained. The best established structural calculation methods use distance restraints

between pairs of hydrogen atoms provided by nuclear Overhauser effect (NOE). Since

the extraction of distance restraints from NOE can be challenging for large protein, the

use of the residual dipolar coupling (RDC) has become a popular alternative for protein

structuring.

In this thesis, integrated structural calculation approaches using restraints provided

by both NOE and RDC are studied. Since the optimization problems arise in structural

calculation are non-convex in nature, we devise convex relaxation methods to obtain

the global optimum of these problems. This is in contrast to traditional optimization

approaches such as simulated annealing that lack the guarantees of global optimal-

ity. In the first part of the thesis, we present a divide-and-conquer approach to solve

the structural determination problem from distance restraints. In this approach, small

fragments of the molecules are first built from distance restraints. Then in Chapter 2,

a global registration method is developed to stitch the small fragments into a global

structure. Such divide-and-conquer approach can shorten the running-time via parallel

computing. However, the divide-and-conquer approach is essentially a distance based

procedure in that it only uses distance restraints to build each fragment. Therefore in

Chapter 3, we present an integrated approach that directly uses both RDC and NOE to

construct the 3D structure of the protein with high accuracy. We apply our method to

the protein ubiquitin and obtain structure with 1 Å resolution. In Chapter 4, we de-

scribe a method for Saupe tensor estimation from RDC when having multiple protein

fragments. In particular, we study the bias arises in Saupe tensor estimation from the

structural noise of the protein fragments. We show how Saupe tensor estimation can
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be used to enhance the global registration method by aligning the small fragments to a

principal axis frame.
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Notations

We first summarize the notations that will be used throughout the thesis. We use upper

case letters such as A to denote matrices, and lower case letters such as a for vectors.

We use Id to denote the identity matrix of size d × d. We denote the diagonal matrix of

size n× n with diagonal elements c1, . . . , cn as diag(c1, . . . , cn). We will frequently use

block matrices built from smaller matrices. For some block matrix A, we will use Ai j to

denote its (i, j)-th block. The size of each block will be made clear in the context. For a

matrix A, we use A(p, q) to denote its (p, q)-th element. We use A� 0 to mean that A is

positive semidefinite, that is, uT Au≥ 0 for all u. We use O(d) and SO(d) to denote the

group of orthogonal matrices and special orthogonal matrices acting on Rd , We use ‖x‖

to denote Euclidean norm of x ∈ Rn (n will usually be clear from the context, and will

be pointed out if this is not so). We denote the trace of a square matrix A by Tr(A). The

Frobenius and spectral norms are defined as

‖A‖F = Tr(AT A)1/2 and ‖A‖sp = max
‖x‖≤1

‖Ax‖.

The Kronecker product between matrices A and B is denoted by A⊗ B [57]. The all-ones

vector is denoted by 1 (the dimension will be obvious from the context).

4



Chapter 1

Introduction

NMR spectroscopy has been used to determine more than 11000 protein structures

in the Protein Data Bank (PDB) [13]. In the nutshell, NMR spectroscopy experiments

provide geometric constraints between pairs of nuclei in the protein. With these pairwise

constraints one can hopefully determine the 3D structure of the protein. As demonstrated

in Figure 1.1, the typical NMR structural determination pipeline consists of the following

steps: (1) Peak picking from NMR spectra, (2) chemical shift assignment (spectral

assignment), (3) assignment of geometric restraints, and (4) structural calculation

[68]. However, unlike the case of X-ray crystallography, for NMR spectroscopy, the

process of going from experimental spectra to final 3D structure is not yet close to being

fully automated. This is largely due to the fact that there are typically ambiguities in

identifying peaks and assigning the chemical shifts, leading to constraints being placed

wrongly on pairs of atoms. Based on structures calculated from geometric constraints,

experts judgement is needed to correct peak lists and spectral assignment iteratively.

This process is not only tedious, but also allows the subjectivity of the practitioners to

influence the final protein structure [160, 68].

This thesis focuses on the step of calculating protein structure given the geometric

restraints. Although this step has a long history of being automated [39] and is generally
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Figure 1.1: The full procedure for protein structural determination. After picking
the resonance peaks, the chemical shift assignment procedure labels each nuclei in
the protein with experimentally measured resonance frequencies. Then the restraint
assignment procedure builds the interaction network of the nuclei from off-diagonal
peaks in 2D or 3D NMR spectra after chemical shift assignment. The resulting geometric
restraints between pairs of nuclei are then used as input for the structural calculation
procedure.
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considered as an “easier” problem than its preceding spectral assignment problem, im-

provement can still be made in terms of accuracy, speed, and its ability to include various

types of data. Such improvements will in turn benefit the entire structural determination

pipeline. Since it is often necessary to iterate between correcting spectral assignment and

re-calculating the protein structure, being able to calculate a structure rapidly enables

quick validation of the assignments. More recent measurements such as residual dipolar

coupling are also calling for protein structuring algorithms that can handle them more

efficiently than traditional methods based on simulated annealing. The usage of RDC can

greatly alleviate the computational burden in obtaining unambiguous distance restraints

assignment and is therefore of immediate interest to NMR practitioners. From a mathe-

matical point of view, the global optimization approaches that are widely used in protein

structural calculation generally lack the guarantees of obtaining global optimality in

polynomial time. Since the functions we are optimizing are typically non-convex, these

methods can fail to attain the “ground truth” protein structure even when supplied with

synthetic noiseless data. In this thesis, we aim to bring improvements in accuracy and

speed to the structural calculation procedure through the use of convex programming

relaxations. The main idea of such technique is to replace the non-convex optimization

problem with a convex surrogate problem. When the global optimums of the convex

problem and original non-convex problem coincide, the solution to the non-convex

problem can be retrieved efficiently via convex optimization.

1.1 The structural calculation problem

Before NMR spectroscopy experiments, we assume the protein sequence and its covalent

structure are known. This means the amino-acid type for each residual and the bond

length, bond angles are given. In NMR spectroscopy, different experiments can be devised

to measured different interactions between pairs of nuclei. Among all interactions the
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most commonly measured ones are the Nuclear Overhauser Effect (NOE) that provides

hydrogen-hydrogen distances, J-coupling that provides torsion angles and residual

dipolar coupling (RDC) that provides bond orientations. In this section we describe the

NOE and RDC in detail.

The NOE and RDC measurements are based on the dipole-dipole interactions between

pairs of nuclei. For two spin operators I1, I2, the energy of dipolar interaction can be

described by the Hamiltonian

HD =
µ0γmγnħh

2

4πd3
mn

(3
(Im · dmn)(In · dmn)

d2
nm

− ImIn) (1.1)

where dmn denotes the displacement vector between nuclei m and n, dmn denotes the

magnitude of displacement, γm,γn denotes the gyromagnetic ratios of the two nuclei.

This complicated looking Hamiltonian admits simple expression in the limit of high

magnetic field B, which is the case in a typical NMR experiment. In the high-field limit,

the Hamiltonian HD can be treated as a perturbation to the Zeeman splitting

HZ ∝ ImzB + InzB. (1.2)

using perturbation theory [95]. In this case, the components in HD that do not com-

mute with HZ can be dropped to obtain the first order perturbation to HZ [48, 78].

Assuming the global magnetic field points in the z-direction, the dipolar coupling can be

approximated as

HD ≈
µ0γmγnħh

2

4πd3
mn

(3 cos(θmn)
2 − 1)(3Imz Inz −

1
4
(I+mI−n + I−mI+n )) (1.3)

where I+j , I−j are the spin raising and lowering operators respectively and θmn is the angle

between dmn and the global magnetic field.
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1.1.1 Nuclear Overhauser effect (NOE)

As molecules tumble in the solution, the spatial component (3cos(θmn)2−1) of the dipolar

interaction HD averages to zero. However, the fluctuation of the dipolar interaction

induces cross-relaxation between the magnetization of nuclei m and n. Such transition

can be observed in the nuclear Overhauser effect spectroscopy (NOESY). The main

idea of NOESY is to invert the magnetization of the nuclei at equilibrium. Then the

non-equilibrium magnetization relaxes back to the original equilibrium state through

transition induced by time-dependent dipolar coupling. Details of such experiment can

be found in the excellent textbook [86, Chapter 8]. The exchange of magnetization

between two nuclei in close proximity can be observed via cross-peaks in the NOE

spectra. In Figure 1.2, we give an example of a 2D NOE spectra of hydrogen nuclei.

In such type of spectra, an off-diagonal peak at (ωm,ωn) indicates the existence of

cross relaxation between a pair of hydrogens with chemical shift ωm and ωn. However,

the NOESY can only provide short range distance measurements, typically for pairs of

hydrogens within 5 Å due to the 1/d6
mn dependence of the cross-peak intensity. Since

the dipolar coupling depends on 1/d3
nm, the fluctuation of dipolar coupling in time gives

rise to cross relaxation rate proportional to 1/d6
mn [113], which is a consequence of the

time-dependent perturbation theory [118, 93].

From the distances provided by NOESY cross-peaks, the best-established structural

determination methods solve variations of the following constraint satisfaction problem

Find x1, . . . , xK ∈ R3 such that d low
i j ≤ ‖x i − x j‖ ≤ dup

i j . (1.4)

in order to obtain the 3D coordinates of all K atoms in a protein. We note that since

torsion angle restraints can be regarded as distance restraints for nuclei that are three

bonds apart [30], it can be included in problem (1.4) just like NOE. The solution of

(1.4) can only be determined up to a rigid transformation, as any rigid transformation

9



Figure 1.2: Example of a 2D NOE spectra. The image is downloaded from [171].

preserves the pairwise distances.

1.1.2 Residual dipolar coupling (RDC)

The RDC of molecules can be measured when the molecule ensemble in solution exhibits

partial alignment with the magnetic field in a NMR experiment. In this case, the term

(3 cos(θmn)2 − 1) in (1.3) does not average to zero. Due to the 1/d3
mn dependence, such

effect can be measured with high precision and provides alignment information of a

specific bond to the magnetic field. This is in contrast to the NOE with 1/d6
mn dependence.

Hence the importance of RDC in obtaining high quality protein structures and studying

molecular dynamics has increased considerably over the last decade. For a detailed

survey of RDC and its applications we refer readers to [100, 143].

Let vnm be the unit vector denoting the direction of the bond between nuclei n and m.

Let b be the unit vector denoting the direction of the magnetic field. The RDC RDCnm

10



due to the interaction between nuclei n and m is

RDCmn = D0

�

3(bT vmn)2 − 1
2

�

t,e

(1.5)

where

D0 = −
γnγmh
2π2d3

nm

, (1.6)

and 〈 ·〉t,e denotes the ensemble and time averaging operator. The quantity RDCmn

provides the strength of dipolar coupling (1.3) when molecules are partially aligned.

Since the spectrum of the original Zeeman Hamiltonian HZ splits further under< HD >t,e

by an amount proportional to RDCmn, the RDC can be conveniently measured by the

splitting of resonance peaks in NMR spectra. As presented, RDC depends on the relative

angle between the magnetic field and the bond. In principle, extracting such angular

information from RDC could complement NOE and possibly other measurements for

determining the molecular structure.

It is conventional to interpret the RDC measurement in the molecular frame. More

precisely, we treat the molecule as being static in some coordinate system, and the

magnetic field direction being a time and sample varying vector. In this case the RDC

becomes

RDCnm = D0vT
nmSvnm, (1.7)

where the Saupe tensor S is defined as

S =
1
2
(3B − I3), B =




bbT
�

t,e
. (1.8)

B is known as the field tensor and I3 denotes the 3×3 identity matrix. We note that S is

symmetric and Tr(S) = 0. In order to use RDC for structural calculation or refinement

of a protein, S is usually first determined from a known structure (known vnm) that

is similar to the protein. To satisfy the assumption that the molecule is static in the
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molecular frame, a rigid fragment of the known structure has to be selected. S can be

determined if the fragment contains sufficiently many RDC measurements. Here we

discuss the singular value decomposition (SVD) approach [101] for estimating the Saupe

tensor that will be used many times in this thesis. Using the fact that S is symmetric and

Tr(S) = 0, eq. (1.7) can be rewritten as

RDCnm/D0 = (vnm
2
y − vnm

2
x)Sy y + (vnm

2
z − vnm

2
x)Szz

+ 2vnm x vnm ySx y + 2vnm x vnmzSxz + 2vnm y vnmzSyz, (1.9)

where vnmi, i = x , y, z are the different components of vnm in the molecular frame.

Hereafter we let rnm = RDCnm/D0, to which we refer as the RDC measurements. When

there are M RDC measurements, eq. (1.9) results in M linear equations in five unknowns

(Sy y , Szz, Sx y , Sxz and Syz), that can be written in matrix form as

As = r, s =

























Sy y

Szz

Sx y

Sxz

Syz

























∈ R5, r =











rn1m1

...

rnM mM











∈ RM , (1.10)

and A∈ RM×5.

Let the SVD of matrix A be

A= UΣV T , (1.11)

where U ∈ RM×5 is a column orthogonal matrix (i.e. U T U = I5), V ∈ R5×5 is an

orthogonal matrix, and Σ ∈ R5×5 is a positive diagonal matrix. We assume that M ≥ 5

and that A has full rank for otherwise there is no unique solution to the linear system
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(1.10). The estimator of the Saupe tensor entries s proposed in [101] is

ŝ = VΣ−1U T r. (1.12)

This is equivalent to the ordinary least squares (OLS) solution to the linear system (1.10),

given by

ŝ = (AT A)−1AT r. (1.13)

For this reason, we frequently refer to the SVD method for Saupe tensor estimation as

the OLS method. The computational aspects of employing the expressions in (1.12) and

(1.13) are discussed in [161]. Notice that the Saupe tensor estimator given by (1.12)

and (1.13), denoted Ŝ, is the solution to the optimization problem

min
S

M
∑

i=1

|rni mi
− vT

ni mi
Svni mi

|2 s.t. S is symmetric, Tr(S) = 0. (1.14)

As such, the OLS estimator is also the maximum likelihood estimator when the error on

dnm is assumed to be white Gaussian noise.

1.2 Our approach: convex optimization

In this section, we give a brief introduction to convex optimization, which is the main

tool we use to study the protein structural calculation problem. We first state a few

definitions and properties of convex sets and functions. These are standard materials

that can be found in many excellent convex optimization textbooks [120, 23, 14].

Definition 1.2.1. A setS ∈ Rd is convex if and only if for all x , y ∈ S , θ x+(1−θ )y ∈ S

for θ ∈ [0, 1].

Definition 1.2.2. A function f : S → R is convex if and only if for all x , y ∈ S , f (θ x +

(1− θ )y)≤ θ f (x) + (1− θ ) f (y) for θ ∈ [0,1]
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The importance of convex functions and convex sets is manifested in the following

theorem.

Theorem 1.2.3. For a convex function f : S → R where S ∈ Rd is a convex set, any local

minimizer of f is the global minimizer of f .

Therefore to solve the optimization problem

min
x∈S

f (x) (1.15)

where f and S are both convex, it suffices to find a x∗ ∈ S that minimizes f (x) locally.

This fact allows many instances of convex optimization problems to be solved efficiently.

For example, in the unconstrained optimization problem (i.e. S = Rd) where f is convex

and differentiable, the direct application of gradient descent yields the global minimizer

of the optimization problem. Therefore in the field of mathematical programming, often

convexity defines whether an optimization problem is easy or difficult. Rockafellar

plainly states that “the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity” [119].

1.2.1 Semidefinite programming

One of the most studied examples of convex optimization are the conic optimization

problem

min
x∈Rd

< c, x >K

s.t. < ai, x >K≤ bi, i = 1, . . . , m,

x ∈K , (1.16)

whereK is a cone in Rd and < ·, ·>K is the inner product specific to the coneK under

consideration. This problem encapsulates several instances of convex optimization
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problems that are solvable in polynomial time. A special case of conic optimization is

linear programming (LP), where the cone considered is the non-negative orthant. In

this thesis, we focus on the optimization problem over the cone of positive semidefinite

matrices

min
X∈Rd×d

Tr(CX )

s.t. Tr(AiX )≤ bi, i = 1, . . . , m,

X � 0, (1.17)

i.e. a semidefinite program. For LP and SDP, there exists polynomial time algorithm

to solve the associated conic optimization problem to arbitrary precision. In 1979,

Khachiyan proposed the polynomial time ellipsoid algorithm [88] to solve LP. Since the

ellipsoid algorithm is impractical to use in practice, in 1984 Karmarkar proposed the

more efficient interior point method [85] for LP, which paves a way to solving SDP in

reasonable amount of time. Besides interior point methods, more recently, first order

methods such as SDPLR [25] and alternating direction method of multiplier (ADMM)

[22, 157] have been employed to solve SDP of large sizes. We note that not every conic

optimization problem admits a polynomial time solutions. For example, optimization

over the cone of co-positive matrices is NP-hard [46] due to the difficulty of membership

testing.

1.2.2 Convex relaxation

Most problems encountered in realistic applications are non-convex. However, convex

optimization provides a way to obtain the global optimizer of a non-convex problem

via convex relaxation. In general, the idea of convex relaxation involves relaxing the

domain of a non-convex problem into a larger set that is convex. If the new domain is

close enough to the original domain, the solution to the new convex problem gives a
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close approximation to the original problem. Moreover, if the solution to the convex-

relaxed problem lies in the domain of the original problem, we are sure that such

solution presents a minimizer to the original non-convex problem. This is in contrast to

optimization techniques such as gradient descent or simulated annealing in that there

is no way to know the optimality of the solution. In the following, we provide a few

examples on the use of convex relaxation.

The bipartite graph matching problem [102] is one of the most well-known combi-

natorial optimization problem. A bipartite graph contains two partitions of nodes where

weighted edges only exist between the two partitions. Let the weight W (i, j) on an edge

(i, j) describes the utility of pairing of nodes i, j. The bipartite graph matching problem

can be defined as the combinatorial optimization problem

max
P∈Perm(n)

Tr(W P) (1.18)

where Perm(n) is the set of n× n permutation matrices. Intuitively, the solution to the

optimization problem provides matchings between the two partitions that maximize

the total utility. Despite the fact that the search space of this non-convex problem is

combinatorially large, this problem can be solved in polynomial time via LP. The trick is

to relax the domain of permutation matrices to the set of doubly stochastic matrices

DS(n) = {P | P1= 1, PT 1= 1, P ≥ 0},

and solve the LP

max
P∈DS(n)

Tr(W P). (1.19)

The Birkhoff-von Neumann theorem states that the set of doubly stochastic matrices is

a polytope where the vertices of the polytope are the permutation matrices [102]. In

other words, DS(n) forms the convex hull of Perm(n). Since the maximum of a generic
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linear function in a polytope necessarily occurs on an extreme point of the polytope,

the LP in (1.19) should always return a solution in Perm(n). This is a simple example

that illustrates how a convex relaxation exactly recovers the solution to the original

non-convex problem. This is enabled by a cost function with some nice structures, and a

relaxed domain that is sufficiently close to the original non-convex domain.

The previous LP example provides solution to a problem that is solvable in polyno-

mial time. Next we present a classic SDP relaxation to approximately solve a NP-hard

combinatorial problem, the Max-Cut problem [56]. The Max-Cut problem attempts to

find a partitioning of a graph such that the edges across the partitions are maximized.

Now let W ∈ Rn×n denotes the adjacency matrix of a graph. The Max-Cut problem can

be formulated as

max
x∈{±1}n

∑

i j

1− x(i)x( j)
2

W (i, j) (1.20)

where x(i) = 1 (x(i) = −1) indicates that node i belongs to the first partition (second

partition). From a complexity theory point of view, this problem is difficult due to its

NP-hardness. From an optimization point of view, the difficulty is due to the search

space that is non-convex and exponentially large (of size 2n), rendering the search of

global optimizer intractable. However, this problem admits an efficient SDP relaxation.

Let

X = x x T , (1.21)

or equivalently,

X � 0, rank(X ) = 1, (1.22)

the Max-Cut problem can be written as

max
X�0, rank(X )=1

∑

i j

1− X (i, j)
2

W (i, j), s.t. X (i, i) = 1. (1.23)

While this is just an equivalent formulation of the original Max-Cut problem in terms
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of the rank one matrix variable X , when the non-convex rank constraint is dropped, a

convex relaxation

max
X�0

∑

i j

1− X (i, j)
2

W (i, j), s.t. X (i, i) = 1. (1.24)

is obtained. In general, the solution X ∗ needs not be rank one, hence being non-integral.

However, a randomized rounding procedure is proposed [56] to round a high rank X ∗

to a rank one integer solution Xround with optimality guarantee. In particular,

EXround

�

∑

i j

1− Xround(i, j)
2

W (i, j)

�

≥ 0.878 max
x∈{±1}n

∑

i j

1− x(i)x( j)
2

W (i, j). (1.25)

where the expectation is taken over the randomly rounded solutions.

In many NP-hard problems, SDP relaxation can be used to identify polynomial-time

solvable instances for these problems (see [27, 1, 151, 79] for example). A good example

of such usage of SDP is the SNLSDP algorithm proposed to solve the distance geometry

problem, which is described later in (1.31). For these SDP relaxations, conditions on

the input data that ensure the convex relaxation has a unique solution in the original

domain can often be analyzed mathematically. This will be illustrated more clearly in

Chapter 2, where such uniqueness conditions are analyzed for the proposed convex

relaxation for the global registration problem.

1.3 Review of current structural calculation methods

In this section, we give an overview of the methods used in protein structural calculation.

1.3.1 NOE-based methods

We first survey the methods that focus on solving the distance geometry problem in

structural calculation. The distance geometry problem has a rather long history in the
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field of applied mathematics and it is sometimes coined the name graph realization or

graph embedding problem. It is known that if the full distance matrix D with entries

D(i, j) = ‖x i− x j‖ is available, the coordinates of the points can be obtained via spectral

method. Let X = [x1, . . . , xK] ∈ R3×K , it can be verified that

X T X = −
1
2

H(D� D)H (1.26)

where

H = IK − (1/K)11T (1.27)

and � is the Hadamard dot product. Therefore, given a distance matrix D the application

of Cholesky factorization to −(1/2) H(D � D)H results the desired coordinates. This

method is known as classical multidimensional scaling. However, the problem becomes

difficult in the presence of incomplete distance data. Indeed, [125] showed that the

distance geometry problem is NP-hard. However, since NP-hard is a worst-case notion of

computational hardness, it is possible that the average instances of the distance geometry

problem can be solved efficiently.

The transformation between the Gram matrix X T X and D� D in (1.26) gives rise

to early algorithms to solve for protein structure using distance measurements. [71]

constructs upper and lower bound to missing pairwise distances by applying triangle

and tetra-angle inequalities to known pairwise distances. Then distance matrices D

are then sampled according to the constructed bounds and CMDS is applied to check

whether a rank 3 embedding is obtained. It is obvious that this is a brute-force search

method and one might hope to improve the efficiency by optimization techniques. Local

optimization based on steepest descent or majorize-minimization [20] thus have been

applied to optimize the cost

∑

(i, j)∈ENOE

(‖x i − x j‖ − D(i, j))2 (1.28)
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in order to find the coordinates. However, these methods are plagued with local minima

issues.

In the field of biomolecular NMR, the mainstream approach to resolve the local

minima issue is through simulated annealing [91, 69, 35, 128]. In simulated annealing,

the “tunneling” mechanism pushes the solution out of a local minimum with probability

exp(−∆E/T ) where ∆E is the potential barrier. This procedure can be run for a long

period of time in order to increase the chances of escaping local minima. In principle, this

gives simulated annealing versatility to deal with arbitrary non-convex energy functions

and such versatility is often favored by NMR practitioners. The main disadvantages of

this type of methods are the speed and accuracy. Long cooling time may be required if

the energy landscape is rugged. Moreover, due to the stochastic nature of the algorithm,

even when the data is clean it is difficult to obtain a solution of high accuracy.

Within the last decade, the field of applied mathematics has witnessed a rapid devel-

opment of using convex relaxation methods, in particular, semidefinite programming

relaxation methods to solve non-convex problems with strong theoretical guarantees.

The general idea of convex relaxation is to replace a non-convex problem with a convex

surrogate problem such that the global optimums of these problems coincide. For the

distance geometry problem, [137, 17] apply this technique to minimize

∑

(i, j)∈ENOE

(‖x i − x j‖2 − D(i, j)2)2 (1.29)

to retrieve the 3D coordinates from the distances. To derive a convex relaxation, let

Y = X T X . Notice that since

Y = X T X ⇐⇒ Y � 0, rank(Y ) = 3, (1.30)
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the problem of finding an embedding from distances become

min
Y

∑

(i, j)∈ENOE

((ei − e j)
T Y (ei − e j)− D(i, j)2)2

s.t. Y � 0

Y 1= 0

rank(Y ) = 3 (1.31)

where the set of ei ’s is the canonical basis in RK . The second constraint implies X1= 0,

meaning the coordinates are centered at zero. This optimization problem is non-convex

due to the rank constraint on Y . A convex relaxation to this problem can be derived,

if the rank-3 constraint is dropped, by paying the price of enlarging the search space

from 3K number of variables (X ) to K2 number of variables (Y ). Such technique

of relaxing the rank constraint of a PSD variable will permeate this thesis. We note

that this convex relaxation has a physical interpretation, that is to find an embedding

in dimension K (instead of 3) that satisfies the distance constraints. By solving the

distance geometry problem through such convex relaxation, a class of distance geometry

problems that is solvable in polynomial time is identified. More precisely, if the given

distance measurements only admit a unique embedding in any dimension [137, 61], the

coordinates can be retrieved exactly via (1.31).

Though having a polynomial running time, SNLSDP can be expensive to use in

practice. Thus a number of approaches attempt to speed up the running time. [153]

proposes a further relaxation of SNLSDP by enforcing PSD constraints only on certain

subblocks of Y . Furthermore, under an ADMM optimization framework the computation

can be made parallelized [132]. [4] exploits the fact that in the presence of cliques

with exact distance measurements, the range of Y is restricted and hence Y can be

replaced by a smaller PSD variable. A separate line of research achieves speed up

via divide-and-conquer approach. Almost all approaches of this type are variations
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of the following theme: (1) Divide the points into overlapping patches, (2) embed

the patches in R3, (3) stitch the patches coherently. This kind of approach has been

applied successfully to the sensor network localization problem [169, 40], which is

basically the distance geometry problem in 2D. For the problem of determining the

molecular structure, while [41, 97] both use SNLSDP to embed the patches, there is a

significant difference in how the patches are stitched together. As mentioned earlier, the

solution to the distance geometry problem has a trivial rigid transformation ambiguity.

This ambiguity issue becomes a problem when using a divide-and-conquer approach.

After embedding each patch, the patch coordinates now have a rigid transformation

ambiguity that needs to be determined in order to ensure the patches that share common

points may be stitched coherently. [97] uses a sequential approach to build-up the

global molecular structure from smaller patches. It leverages the fact that a closed-form

solution can be obtained from singular value decomposition to determine the relative

rigid transformation between two patches. However, greedy sequential approach allows

error to accumulate, therefore [41] proposes a method to consider all the pairwise

transformations at once via a notion of diffusion of the orthogonal matrices. Still the

solution of [41] is not satisfactory, since the translations and orthogonal transformations

of the patches are considered separately under such framework.

We remark that a lot of tools developed for solving the distance geometry problem also

have applications in the field of sensor network localization (SNL). The SNL problem is an

instance of the distance geometry problem in 2D. In some sense, the 2D distance geometry

problem is simpler than its 3D version, in that there is combinatorial characterization

on the uniqueness of solution [73]. Moreover, in the SNL problem, often there are

anchor sensors that have known 2D coordinates. In many cases, it is also possible to

obtain angular information for sensors within close proximity [114]. From the domain

of SNL, the works most closely related to the approach presented in Chapter 2.6 are the

local to global approaches [62, 169, 133, 40]. Again, these methods generally start by
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identifying locally or globally rigid patches such that each patch is determined up to

an affine or rigid transformation, then the transformations are determined such that

relative relationship between the patches are preserved.

1.3.2 RDC-based methods

In [38], with RDC measured in two alignment media, a high resolution structure of

the ubiquitin is obtained via a simulated annealing based method. This stirs a great

interest in using RDC to obtain protein structures from solution NMR with resolution

comparable to X-ray structures. Introducing the RDC potential term

�

rnm −
(xn − xm)T S(xn − xm)

d2
nm

�2

. (1.32)

yields, however, a rugged energy landscape with sharp local minima that hinders the

success of finding the correct conformation in the absence of a good initial structure

[33, 11]. For example, [109] reports that direct minimization of the RDC potential using

simulated annealing can yield structures that are as much as 20 Å away from the ground

truth. When using simulated annealing, a popular approach to find the protein structure

with RDC being the main constraints is through molecular fragment replacement (MFR)

[92]. MFR finds homologous short fragments of the protein in the Protein Data Bank

with the aid of RDC and chemical shifts. The fragments are then merged together to

form an initial structure that will be locally refined by simulated annealing. However,

using existing structures as initialization might lead to model bias. Moreover, there is

still no guarantee that the initialization is good enough to avoid getting stuck at a local

minima. For example, [109] reports that direct minimization of the RDC potential using

simulated annealing can yield structures that are as much as 20 Å away from the ground

truth.

Besides stochastic optimization, more recently a number of deterministic approaches
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based on branch and prune [166, 30] and dynamic programming [109] have been

proposed to find the globally optimal backbone structure. In particular, RDC-ANALYTIC

[166, 150] exploits the fact that in the presence of two RDC measurements per amino-

acid, the torsion angles that determine the orientation of an amino-acid have 16 possibil-

ities, and a solution tree with a total of 16M possible structures can be built for a protein

with M amino-acids. The main advantage of branch and prune type methods is their

ability to deal with sparse RDC datasets when used with an efficient pruning device such

as the Ramachandran plot [116] (the empirical distribution of the torsion angles) and

NOE. The dynamic programming approach [109] attempts to improve the robustness of

the solution in tree searching based methods. However, as pointed out by the authors, it

cannot readily incorporate additional information such as dihedral angles and distance

restraints to improve the solution quality. Another approach with a similar flavor to

the tree-searching based methods, REDCRAFT [24], performs Monte-Carlo sampling of

the torsion angles of a protein according to Ramachandran plot. RDC measurements

are then used to select the possible torsion angles. In general, the methods based on

building a conformation space and pruning the unwanted conformations can lead to a

relatively slow running time. Both REDCRAFT and RDC-Analytics need an hour or two

to solve for the structure of typical size protein.

1.4 Main contributions

The main contribution in this thesis is to present fast and accurate algorithms for struc-

tural determination. In the first part of the thesis, we present a divide-and-conquer

approach to solve the structural determination problem from distance restraints. To

this end, in Chapter 2 we propose the Global Registration over Euclidean Transfor-

mation (GRET) method that stitches different parts of the protein coherently into a

global structure. This chapter is based on the work published in [32]. Unlike previous
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stitching methods that have been used to solve the distance geometry problem in a

distributed fashion, our proposed method solves for both orthogonal transformations

and translations for all protein fragments jointly under a maximum-likelihood estimation

framework. We show that the non-convex problem of global registration surprisingly

admits a Goemans-Williamson type Max-Cut SDP relaxation [56], allowing the problem

to be solved globally and efficiently. We prove that despite the convex relaxation, we

solve the global registration problem exactly when there is no noise in the data, and

stably in the presence of noise. In Chapter 2.6, we present how the proposed global

registration algorithm can be used to determine the structure of a protein and how

various NMR data types can be considered. Moreover, in Chapter 4 we show that if

given RDC data, the relative orientations of the Saupe tensors for each patch can be

used to enhance the results of global registration. During this study we observe that

whenever the structure of interest has large structural noise, the eigenvalues of the

estimated Saupe tensor have magnitude systematically smaller than their actual values.

This leads to systematic error when calculating the eigenvalue dependent parameters

such as tensor magnitude and rhombicity. We then propose a Monte Carlo simulation

method to remove such bias. We further demonstrate the effectiveness of our method

in the setting of a divide-and-conquer approach, i.e. when the eigenvalue estimates

from multiple template protein fragments are available and their average is used as an

improved eigenvalue estimator. We note that this chapter is based on [89] which is a

work to be submitted.

However, the divide-and-conquer procedure is essentially a distance based procedure

in that it only uses distance restraints when embedding each patch in R3 before the

stitching procedure. Thus it does not work well when the NOE restraint list is incomplete

or ambiguous. Indeed, in our simulation, we are only able to determine the structure

of the protein 1GB1 with an accuracy similar to the existing techniques. Therefore in

Chapter 3, we propose a RDC-based method for embedding that alleviates the burden

25



of using NOE for protein structuring. This chapter is based on the submitted work

[90]. We limit our attention to the calculation of protein backbone structure, leveraging

the RDC and NOE measurements for the backbone. Unlike previous convex relaxation

approaches that focused solely on distance constraints, we propose an SDP relaxation

for backbone structure determination that simultaneously incorporates both NOE and

RDC measurements. An additional advantage of this combination method is that it can

provide accurate solutions even when using RDC alone. Our proposed SDP algorithm

resolves the Open Problem posed in [45, Chapter 36]: “Use SDP and the concept of

distance geometry with angle restraints to model RDC-based structure determination.”.

Our algorithmic contribution is that we provide a solution of the non-convex structural

calculation problem by relaxing the search space to a set of positive semidefinite matrices

(PSD). Numerically, our proposed methods recover the optimal solution exactly when

there is no noise in the RDC, and stably when noise is added to the RDC. In some

sense, the structural calculation problem from RDC measurements can be regarded as

the distance geometry problem in a metric space (corresponding to the Saupe tensor)

different from the standard Euclidean space. Since the convex relaxations in [137, 17]

proposed for the distance geometry problem only involve the Gram matrix (inner product

matrix) of the atom coordinates in the Euclidean space, these methods do not readily

generalize to deal with RDC measurements that come from different inner product

spaces. Such complication gives rise to the open problem in [45] and our idea is to use

a convex relaxation that involves outer products of the atom coordinates to solve the

distance geometry problem in multiple inner product spaces. We further exploit the

fact that a protein backbone is better viewed as multiple rigid units that are chained

together, rather than just a loose set of points. The coordinates of the atoms can thus

be determined by the rotations of these rigid units. Our convex-relaxed optimization

problem explicitly solves for the rotations of individual units jointly instead of the atom

coordinates. This has the advantage of lowering the number of variables and allowing
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facile incorporation of chirality constraints. Unlike existing optimization approaches in

torsion angle space [69], with RDC measurements alone the cost and the constraints in

our formulation are separable in the optimization variables (the rotations), i.e. each

term in the cost and constraints only depends on a single rotation. This leads to an

extremely efficient convex program- RDC-SDP with running time of about an order of

magnitude faster than existing toolboxes that use RDC for de novo calculation of the

protein backbone [24, 166]. This is rather remarkable as the computational problem

of determining the orientations has its domain on the product manifold of special

orthogonal matrices, with a search space that is non-convex and exponential in size.

Fast and accurate determination of the initial structure could have potential applications

in quick validation of backbone and NOE resonance assignment [67, 167] or refining

Saupe tensor estimate through alternating minimization. To include both RDC and NOE

restraints, we propose a different SDP - RDC-NOE-SDP, at the expense of increasing the

running time. We also tested the algorithms in calculating the structure of ubiquitin

fragments from experimental RDC and NOE data deposited on the Protein Data Bank

(PDB). We successfully computed the backbone structure for short fragments of ubiquitin

(each consisting of 12 amino acids on average) up to 0.6 Å resolution. To further assess

the quality of our structural calculation procedure, we introduce a classical statistical

tool, the Cramér-Rao bound (CRB), which provides the minimum possible variance of

the estimated atomic coordinates for a given noise model on the RDC and NOE. For

most of the noise levels, our methods can achieve the CRB, even in the presence of only

RDC measurements.
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Chapter 2

Global registration over Euclidean

transforms (GRET) and distributed

protein structuring from NOE

The problem of point-cloud registration comes up naturally in distributed approaches

to molecular conformation [51, 42], and also in computer vision and graphics [129,

145, 159]. The registration problem in question is one of determining the coordinates

of a point cloud P from the knowledge of (possibly noisy) coordinates of smaller point

cloud subsets (called patches) P1, . . . , PM that are derived from P through some general

transformation. In this chapter, we consider the problem of rigid registration in which

the points within a given Pi are (ideally) obtained from P through an unknown rigid

transform. In some other applications [108, 145, 94], one is often interested in finding

the optimal transforms (one for each patch) that consistently align P1, . . . , PM . We note

that this can be seen as a sub-problem in the determination of the coordinates of P

[40, 121].
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2.0.1 Two-patch registration

The particular problem of two-patch registration has been well-studied [52, 76, 8]. In

the noiseless setting, we are given two point clouds {x1, . . . , xK} and {y1, . . . , yK} in Rd ,

where the latter is obtained through some rigid transform of the former. Namely,

yk = Oxk + t (k = 1, . . . , K), (2.1)

where O is some unknown d × d orthogonal matrix (that satisfies OT O = Id) and t ∈ Rd

is some unknown translation.

The problem is to infer O and t from the above equations. To uniquely determine O

and t, one must have at least K ≥ d + 1 non-degenerate points1. In this case, O can be

determined simply by fixing the first equation in (2.1) and subtracting (to eliminate t)

any of the remaining d equations from it. Say, we subtract the next d equations:

[y2 − y1 · · · yd+1 − y1] = O[x2 − x1 · · · xd+1 − x1].

By the non-degeneracy assumption, the matrix on the right of O is invertible, and this

gives us O. Plugging O into any of the equations in (2.1), we get t.

In practical settings, (2.1) would hold only approximately, say, due to noise or model

imperfections. A particular approach then would be to determine the optimal O and t

by considering the following least-squares program:

min
O∈O(d), t∈Rd

K
∑

k=1

‖yk −Oxk − t‖2
2. (2.2)

Note that the problem looks difficult a priori since the domain of optimization isO(d)×Rd ,

which is non-convex. Remarkably, the global minimizer of this non-convex problem

can be found exactly, and has a simple closed-form expression [50, 87, 74, 52, 76, 8].

1By non-degenerate, we mean that the affine span of the points is d dimensional.
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More precisely, the optimal O? is given by V U T , where UΣV T is the singular value

decomposition (SVD) of
K
∑

k=1

(xk − xc)(yk − yc)
T ,

in which xc = (x1 + · · ·+ xK)/K and yc = (y1 + · · ·+ yK)/K are the centroids of the

respective point clouds. The optimal translation is t? = yc −O?xc.

The fact that two-patch registration has a closed-form solution is used in the so-called

incremental (sequential) approaches for registering multiple patches [15]. The most

well-known method is the ICP algorithm [121] (note that ICP uses other heuristics and

refinements besides registering corresponding points). Roughly, the idea in sequential

registration is to register two overlapping patches at a time, and then integrate the

estimated pairwise transforms using some means. The integration can be achieved

either locally (on a patch-by-patch basis), or using global cycle-based methods such as

synchronization [129, 77, 134, 145, 152]. More recently, it was demonstrated that, by

locally registering overlapping patches and then integrating the pairwise transforms

using synchronization, one can design efficient and robust methods for distributed

sensor network localization [40] and molecular conformation [42]. Note that, while the

registration phase is local, the synchronization method integrates the local transforms

in a globally consistent manner. This makes it robust to error propagation that often

plague local integration methods [77, 152].

2.0.2 Multi-patch registration

To describe the multi-patch registration problem, we first introduce some notations.

Suppose x1, x2, . . . , xK are the unknown global coordinates of a point cloud in Rd .

The point cloud is divided into patches P1, P2, . . . , PM , where each Pi is a subset of

{x1, x2, . . . , xK}. The patches are in general overlapping, whereby a given point can

belong to multiple patches. We represent this membership using an undirected bipartite
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graph Γ = (Vx ∪ VP , E). The set of vertices Vx = {x1, . . . , xK} represents the point cloud,

while VP = {P1, . . . , PM} represents the patches. The edge set E = E(Γ ) connects Vx

and VP , and is given by the requirement that (k, i) ∈ E if and only if xk ∈ Pi. We will

henceforth refer to Γ as the membership graph.

 

P1 

P2 

P3 

P2 P3 

Figure 2.1: The problem of registering 3 patches on R2. One is required to find the
global coordinates of the points from the corresponding local patch coordinates. The
local coordinates of the points in patches P2 and P3 are shown (see (2.5) for the notation
of local coordinates). It is only the common points (belonging to two or more patches,
marked in red) that contribute to the registration. Note that sequential or pairwise
registration would fail in this case. This is because no pair of patches can be registered
as they have less than 3 points in common (at least 3 points are required to fix rotations,
reflections, and translations in R2). The proposed SDP-based algorithm proposed does a
global registration, and is able to recover the exact global coordinates for this example.

We assume that the local coordinates of a given patch can (ideally) be related to

the global coordinates through a single rigid transform, that is, through some rotation,

reflection, and translation. More precisely, with every patch Pi we associate some

(unknown) orthogonal transform Oi and translation t i. If point xk belongs to patch Pi,

then its representation in Pi is given by (cf. (2.1) and Figure 2.1)

x (i)k = OT
i (xk − t i) (k, i) ∈ E(Γ ). (2.3)
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Alternatively, if we fix a particular patch Pi, then for every point belonging to that patch,

xk = Oi x
(i)
k + t i (k, i) ∈ E(Γ ). (2.4)

In particular, a given point can belong to multiple patches, and will have a different

representation in the coordinate system of each patch.

We assume that we are given the membership graph and the local coordinates

(referred to as measurements), namely

Γ and {x (i)k , (k, i) ∈ E(Γ )}, (2.5)

and the goal is to recover the coordinates x1, . . . , xK , and in the process the unknown

rigid transforms (O1, t1), . . . , (OM , tM), from (2.5). Note that the global coordinates

are determined up to a global rotation, reflection, and translation. We say that two

points clouds (also called configurations) are congruent if one is obtained through a rigid

transformation of the other. We will always identify two congruent configurations as

being a single configuration.

Under appropriate non-degeneracy assumptions on the measurements, one task

would be to specify appropriate conditions on Γ under which the global coordinates can

be uniquely determined. Intuitively, it is clear that the patches must have enough points

in common for the registration problem to have an unique solution. For example, it is

clear that the global coordinates cannot be uniquely recovered if Γ is disconnected.

In practical applications, we are confronted with noisy settings where (2.4) holds

only approximately. In such cases, we would like to determine the global coordinates

and the rigid transforms such that the discrepancy in (2.4) is minimal. In particular, we

32



consider the following quadratic loss:

φ =
∑

(k,i)∈E(Γ )

‖xk −Oi x
(i)
k − t i‖2, (2.6)

where ‖·‖ is the Euclidean norm on Rd . The optimization problem is to minimize φ with

respect to the following variables:

x1, x2, . . . , xK ∈ Rd , O1, . . . , OM ∈O(d), t1, . . . , tM ∈ Rd .

The input to the problem are the measurements in (2.5). Note that our ultimate goal is

to determine x1, x2, . . . , xK ; the rigid transforms can be seen as latent variables.

The problem of multipatch registration is intrinsically non-convex since one is re-

quired to optimize over the non-convex domain of orthogonal transforms. Different

ideas from the optimization literature have been deployed to attack this problem, in-

cluding Lagrangian optimization and projection methods. In the Lagrangian setup, the

orthogonality constraints are incorporated into the objective; in the projection method,

the constraints are forced after every step of the optimization [115]. Following the

observation that the registration problem can be viewed as an optimization on the

Grassmanian and Stiefel manifolds, researchers have proposed algorithms using ideas

from the theory and practice of manifold optimization [94]. A detailed review of these

methods is beyond the scope of this chapter, and instead we refer the interested reader

to these excellent reviews [47, 2]. Manifold-based methods are, however, local in nature,

and are not guaranteed to find the global minimizer. Moreover, it is rather difficult to

certify the noise stability of such methods.

2.0.3 Contributions

The main contributions in this chapter can be organized into the following categories:
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1. Algorithm: In Section 2.1, we demonstrate that the above least-squares problem

can be reduced to the following subproblem:

max
O1,...,OM

M
∑

i, j=1

Tr(OiCi jO
T
j ) subject to O1, . . . , OM ∈O(d), (2.7)

where the block matrix C ∈ RMd×Md is positive semidefinite, and where we use

Ci j ∈ Rd×d(1 ≤ i, j ≤ M) to denote the (i, j)-th block of C . Given the solution

of (2.7), the desired global coordinates can simply be obtained through a linear

transformation of the solution.

Next, we observe that (2.7) can be relaxed into a tractable convex program, namely

a semidefinite program. This yields a tractable algorithm for global registration

that is described in Algorithm 2. The corresponding algorithm derived from the

spectral relaxation of (2.7), that was already considered in [94, 168, 59], is de-

scribed in Algorithm 1 for reference.

2. Exact Recovery: In Section 2.2, we study conditions on the coefficient matrix

C in (2.7) for exact recovery using Algorithms 1 and 2. In particular, we show

that the exact recovery questions Algorithms 2 about can be mapped into rigidity

theoretic questions that have already been investigated earlier. in [168, 59]. The

contribution of this section is the connection made between the C matrix in (2.7)

and various prior notions of rigidity considered in [168, 59]. In Section 2.3, we

present an efficient randomized rank test for C than can be used to certify exact

recovery (motivated by the work in [73, 60, 135]).

3. Stability Analysis: In Section 2.4, we study the stability of Algorithms 1 and 2

for the noise model in which the patch coordinates are perturbed using noise of
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bounded size (note that the stability of the spectral relaxation was not investigated

in [94]). Our main result here is Theorem 2.4.2 which states that, if C has a

particular rank, then the registration error for the semidefinite relaxation is within

a constant factor of the noise level. To the best of our knowledge, there is no

existing algorithm for multipatch registration that comes with a similar stability

guarantee.

4. Application: In Section 2.5, we present numerical results on simulated data to

numerically verify the exact recovery and noise stability properties of Algorithms

1 and 2. Our main empirical findings are the following:

(a) The semidefinite relaxation performs significantly better than spectral and

manifold-based optimization (say, with the spectral solution as initialization) in

terms of the reconstruction quality (see first plot in Figure 2.7).

(b) The relaxation gap is mostly zero for the semidefinite program (we are able to

solve the original non-convex problem) up to a certain noise threshold (see second

plot in Figure 2.7).

In Section 2.6, we apply our algorithm to determine the protein structure from

both simulated and experimental data in a distributed fashion.

2.0.4 Broader context and related work

The objective (2.6) is a straightforward extension of the objective for two-patches

[50, 52, 76, 8]. In fact, this objective was earlier considered by Zhang et al. for distributed

sensor localization [169]. The present work is also closely tied to the work of Cucuringu

et al. on distributed localization [40, 42], where a similar objective is implicitly optimized.

The common theme in these works is that some form of optimization is used to globally

register the patches, once their local coordinates have been determined by some means.
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There is, however, some fundamental differences between the various algorithms used

to actually perform the optimization. Zhang et al. [169] use alternating least-squares to

iteratively optimize over the global coordinates and the transforms, which to the best

of our knowledge has no convergence guarantee. On the other hand, Cucuringu et al.

[40, 42] first optimize over the orthogonal transforms (using synchronization [134]),

and then solve for the translations (in effect, the global coordinates) using least-squares

fitting. In this work, we combine these different ideas into a single framework. While our

objective is similar to the one used in [169], we jointly optimize the rigid transforms and

positions. In particular, the algorithms considered in Section 2.1 avoid the convergence

issues associated with alternating least-squares in [169], and is able to register patch

systems that cannot be registered using the approach in [40, 42].

Another closely related work is the paper by Krishnan et al. on global registration

[94], where the optimal transforms (rotations to be specific) are computed by extending

the objective in (2.2) to the multipatch case. The subsequent mathematical formulation

has strong resemblance with our formulation, and, in fact, leads to a subproblem that

is equivalent to (2.7). Krishnan et al. [94] propose the use of manifold optimization

to solve (2.7), where the manifold is the product manifold of rotations. However, as

mentioned earlier, manifold methods generally do not offer guarantees on convergence

(to the global minimum) and stability. Moreover, the manifold in (2.7) is not connected.

Therefore, any local method cannot solve (2.7) if the initial guess is on the wrong

component of the manifold.

It is exactly at this point that we depart from [94], namely, we propose to relax (2.7)

into a tractable semidefinite program (SDP). This was motivated by a long line of work

on the use of SDP relaxations for non-convex (particularly NP-hard) problems. See, for

example, [103, 56, 162, 111, 26, 96], and these reviews [146, 112, 170]. Note that for

d = 1, (2.7) is a quadratic Boolean optimization, similar to the MAX-CUT problem. An

SDP-based algorithm with randomized rounding for solving MAX-CUT was proposed in
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the seminal work of Goemans and Williamson [56]. The semidefinite relaxation that we

consider in Section 2.1 is motivated by this work. In connection with the present work,

we note that provably stable SDP algorithms have been considered for low rank matrix

completion [26], phase retrieval [27, 149], and graph localization [81].

We note that a special case of the registration problem considered here is the so-called

generalized Procrustes problem [63]. Within the point-patch framework just introduced,

the goal in Procrustes analysis is to find O1, . . . , OM ∈O(d) that minimizes

K
∑

k=1

M
∑

i, j=1

‖Oi x
(i)
k −Oj x

( j)
k ‖

2. (2.8)

In other words, the goal is to achieve the best possible alignment of the M patches

through orthogonal transforms. This can be seen as an instance of the global registration

problem without the translations (t1 = · · · = tM = 0), and in which Γ is complete. It

is not difficult to see that (2.8) can be reduced to (2.7). On the other hand, using

the analysis in Section 2.1, it can be shown that (2.6) is equivalent to (2.8) in this

case. While the Procrustes problem is known to be NP-hard, several polynomial-time

approximations with guarantees have been proposed. In particular, SDP relaxations of

(2.8) have been considered in [111, 136, 110], and more recently in [10]. We use the

relaxation of (2.7) considered in [10] for reasons to be made precise in Section 2.1.

2.0.5 Notations

We summarize the notations used in this chapter. We will frequently use block matrices

built from smaller matrices of size d × d, where d is the dimension of the ambient

space. For some block matrix A, we will use Ai j to denote its (i, j)-th block. We use O(d)

to denote the group of orthogonal transforms (matrices) acting on Rd , and O(d)M to

denote the M -fold product of O(d) with itself. We will also conveniently identify the

matrix [O1 · · ·OM] with an element of O(d)M where each Oi ∈O(d). We use eN
i denotes
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the all-zero vector of length N with 1 at the i-th position.

2.1 Spectral and semidefinite relaxations (GRET-SPEC

and GRET-SDP)

The minimization of (2.6) involves unconstrained variables (global coordinates and patch

translations) and constrained variables (the orthogonal transformations). We first solve

for the unconstrained variables in terms of the unknown orthogonal transformations,

representing the former as linear combinations of the latter. This reduces (2.6) to a

quadratic optimization problem over the orthogonal transforms of the form (2.7).

In particular, we combine the global coordinates and the translations into a single

matrix:

Z =
�

x1 · · · xK t1 · · · tM

�

∈ Rd×(K+M). (2.9)

Similarly, we combine the orthogonal transforms into a single matrix,

O = [O1 · · · OM] ∈ Rd×Md . (2.10)

Recall that we will conveniently identify O with an element of O(d)M .

To express (2.6) in terms of Z and O, we write xk − t i = Zeki, where

eki = eK+M
k − eK+M

K+i .

Similarly, we write Oi = O(eM
i ⊗ Id). This gives us

φ(Z , O) =
∑

(k,i)∈E(Γ )

‖Zeki −O(eM
i ⊗ Id)x

(i)
k ‖

2.
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Using ‖x‖2 = Tr(x x T ), and properties of the trace, we obtain

φ(Z , O) = Tr



[Z O]





L −BT

−B D









Z T

OT







 , (2.11)

where

L =
∑

(k,i)∈E

ekie
T
ki, B =

∑

(k,i)∈E

(eM
i ⊗ Id)xk,ie

T
ki, and (2.12)

D =
∑

(k,i)∈E

(eM
i ⊗ Id)xk,i xk,i

T (eM
i ⊗ Id)

T .

The matrix L is the combinatorial graph Laplacian of Γ [34], and is of size (K +M)×

(K +M). The matrix B is of size Md× (K +M), and the size of the block diagonal matrix

D is Md ×Md.

The optimization program now reads

(P) min
Z ,O

φ(Z , O) subject to Z ∈ Rd×(K+M), O ∈O(d)M .

The fact that O(d)M is non-convex makes (P) non-convex. In the next few Sections, we

will show how this non-convex program can be approximated by tractable spectral and

convex programs.

2.1.1 Optimization over translations

Note that we can write (P) as

min
O∈O(d)M

�

min
Z∈Rd×(K+M)

φ(Z , O)
�

.

That is, we first minimize over the free variable Z for some fixed O ∈O(d)M , and then

we minimize with respect to O.
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Fix some arbitrary O ∈O(d)M , and set ψ(Z) = φ(Z , O). It is clear from (2.11) that

ψ(Z) is quadratic in Z . In particular, the stationary points Z? = Z?(O) of ψ(Z) satisfy

∇ψ(Z?) = 0 ⇒ Z?L = OB. (2.13)

Note that the Hessian ofψ(Z) equals 2L, and it is clear from (2.12) that L � 0. Therefore,

Z? is a minimizer of ψ(Z).

If Γ is connected, then e is the only vector in the null space of L [34]. Let L† be

the Moore-Penrose pseudo-inverse of L, which is again positive semidefinite. It can be

verified that

LL† = L† L = IK+M − (K +M)−111T . (2.14)

If we right multiply (2.13) by L†, we get

Z? = OBL† + t1T , (2.15)

where t ∈ Rd is some global translation. Conversely, if we right multiply (2.15) by L

and use the facts that 1T L = 0 and B1 = 0, we get (2.13). Thus, every solution of (2.13)

is of the form (2.15).

Substituting (2.15) into (2.11), we get

ψ(Z?) = φ(Z?, O) = Tr(COT O) =
M
∑

i, j=1

Tr(OiCi jO
T
j ), (2.16)

where

C =
h

BL† IMd

i





L −BT

−B D









L†BT

IMd



= D− BL†BT . (2.17)

Note that (2.16) has the global translation t taken out. This is not a surprise since φ is

invariant to global translations. Moreover, note that we have not forced the orthogonal

constraints on O as yet. Since φ(Z , O) ≥ 0 for any Z and O, it necessarily follows
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from (2.16) that C � 0. We will see in the sequel how the spectrum of C dictates the

performance of the convex relaxation of (2.16).

In analogy with the notion of stress in rigidity theory [60], we can consider (2.6)

as a sum of the “stress” between pairs of patches when we try to register them using

rigid transforms. In particular, the (i, j)-th term in (2.16) can be regarded as the stress

between the (centered) i-th and j-th patches generated by the orthogonal transforms.

Keeping this analogy in mind, we will henceforth refer to C as the patch-stress matrix.

2.1.2 Optimization over orthogonal transforms

The goal now is to optimize (2.16) with respect to the orthogonal transforms, that is,

we have reduced (P) to the following problem:

(P0) min
O∈Rd×Md

Tr(COT O) subject to (OT O)ii = Id (1≤ i ≤ M).

This is a non-convex problem since O lives on a non-convex (disconnected) manifold [2].

We will generally refer to any method which uses manifold optimization to solve (P0)

and then computes the coordinates using (2.15) as “Global Registration over Euclidean

Transforms using Manifold Optimization” (GRET-MANOPT).

2.1.3 Spectral relaxation and rounding

Following the quadratic nature of the objective in (P0), it is possible to relax it into a

spectral problem. More precisely, consider the domain

S = {O ∈ Rd×Md : rows of O are orthogonal and each row has norm
p

M}.

That is, we do not require the d × d blocks in O ∈ S to be orthogonal. Instead, we only

require the rows of O to form an orthogonal system, and each row to have the same
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norm. It is clear that S is a larger domain than that determined by the constraints in

(P0). In particular, we consider the following relaxation of (P0):

(P1) min
O∈S

Tr(COT O).

This is precisely a spectral problem in that the global minimizers are determined from

the spectral decomposition of C . More precisely, let µ1 ≤ . . .≤ µMd be eigenvalues of C ,

and let r1, . . . , rMd be the corresponding eigenvectors. Define

W ? def
=
p

M
�

r1 · · · rd

�T
∈ Rd×Md . (2.18)

Then

Tr(CW ?T W ?) =min
O∈S

Tr(COT O) = M(µ1 + · · ·+µd). (2.19)

Due to the relaxation, the blocks of W ? are not guaranteed to be in O(d). We

round each d × d block of W ? to its “closest” orthogonal matrix. More precisely, let

W ? = [W ?
1 · · ·W

?
M]. For every 1≤ i ≤ M , we find O?i ∈O(d) such that

‖O?i −W ?
i ‖F = min

O∈O(d)
‖O−W ?

i ‖F .

As noted earlier, this has a closed-form solution, namely O?i = UV T , where UΣV T is the

SVD of W ?
i . We now put the rounded blocks back into place and define

O?
def
=
�

O?1 . . . O?M
�

∈O(d)M . (2.20)

In the final step, following (2.15), we define

Z?
def
= O?BL† ∈ Rd×(K+M). (2.21)
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The first K columns of Z? are taken to be the reconstructed global coordinates.

We will refer to this spectral method as the “Global Registration over Euclidean

Transforms using Spectral Relaxation” (GRET-SPEC). The main steps of GRET-SPEC are

summarized in Algorithm 1. We note that a similar spectral algorithm was proposed

for angular synchronization by Bandeira et al. [9], and by Krishnan et al. [94] for

initializing the manifold optimization.

Algorithm 1 GRET-SPEC

Require: Membership graph Γ , local coordinates {x (i)k , (k, i) ∈ E(Γ )}, dimension d.
Ensure: Global coordinates x1, . . . , xK in Rd .

1: Build B, L and D in (2.12) using Γ .
2: Compute L† and C = D− BL†BT .
3: Compute bottom d eigenvectors of C , and set W ? as in (2.18).
4: for i = 1 to M do
5: if W ?

i ∈O(d) then
6: O?i ←W ?

i .
7: else
8: Compute W ?

i = UiΣiV
T

i .
9: O?i ← UiV

T
i .

10: end if
11: end for
12: O?←

�

O?1 · · ·O
?
M

�

13: Z?← O?BL†.
14: Return first K columns of Z?.

The question at this point is how are the quantities O? and Z? obtained from GRET-

SPEC related to the original problem (P)? Since (P1) is obtained by relaxing the block-

orthogonality constraint in (P0), it is clear that if the blocks of W ? are orthogonal, then

O? and Z? are solutions of (P), that is,

φ(Z?, O?)≤ φ(Z , O) for all Z ∈ Rd×(K+M), O ∈O(d)M .

We have actually found the global minimizer of the original non-convex problem (P) in

this case.

Observation 2.1.1 (Tight relaxation using GRET-SPEC). If the d×d blocks of the solution
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of (P1) are orthogonal, then the coordinates and transforms computed by GRET-SPEC are

the global minimizers of (P).

If some the blocks are not orthogonal, the rounded quantities O? and Z? are only an

approximation of the solution of (P).

2.1.4 Semidefinite relaxation and rounding

We now explain how we can obtain a tighter relaxation of (P0) using a semidefinite

program, for which the global minimizer can be computed efficiently. Our semidefinite

program was motivated by the line of works on the semidefinite relaxation of non-convex

problems [103, 56, 146, 26].

Consider the domain

C = {O ∈ RMd×Md : (OT O)11 = · · ·= (OT O)M M = Id}.

That is, while we require the columns of each Md × d block of O ∈ C to be orthogonal,

we do not force the non-convex rank constraint rank(O) = d. This gives us the following

relaxation

min
O∈C

Tr(COT O). (2.22)

Introducing the variable G = OT O, (2.22) is equivalent to

(P2) min
G∈RMd×Md

Tr(CG) subject to G � 0, Gii = Id (1≤ i ≤ M).

This is a standard semidefinite program [146] which can be solved using software

packages such as SDPT3 [141] and CVX [64]. We provide details about SDP solvers and

their computational complexity later in Section 2.1.5.
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Let us denote the solution of (P2) by G?, that is,

Tr(CG?) = min
G∈RMd×Md

{Tr(CG) : G � 0, G11 = · · ·= GM M = Id}. (2.23)

By the linear constraints in (P2), it follows that rank(G?) ≥ d. If rank(G?) > d, we

need to round (approximate) it by a rank-d matrix. That is, we need to project it onto

the domain of (P0). One possibility would be to use random rounding that come with

approximation guarantees; for example, see [56, 10]. In this work, we use deterministic

rounding, namely the eigenvector rounding which retains the top d eigenvalues and

discards the remaining. In particular, let λ1 ≥ λ2 ≥ · · · ≥ λMd be the eigenvalues of G?,

and q1, . . . , qMd be the corresponding eigenvectors. Let

W ? def
=
�
Æ

λ1q1 · · ·
Æ

λdqd

�T
∈ Rd×Md . (2.24)

We now proceed as in the GRET-SPEC, namely, we define O? and Z? from W ? as

in (2.20) and (2.21). We refer to the complete algorithm as “Global Registration over

Euclidean Transforms using SDP” (GRET-SDP). The main steps of GRET-SDP are summa-

rized in Algorithm 2.

Similar to Observation 2.1.1, we note the following for GRET-SDP.

Observation 2.1.2 (Tight relaxation using GRET-SDP). If the rank of the solution of (P2)

is exactly d, then the coordinates and transforms computed by GRET-SDP are the global

minimizers of (P).

If rank(G?)> d, the output of GRET-SDP can only be considered as an approximation

of the solution of (P). The quality of the approximation for (P2) can be quantified using,

for example, the randomized rounding in [10]. More precisely, note that since D is
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Algorithm 2 GRET-SDP

Require: Membership graph Γ , local coordinates {x (i)k , (k, i) ∈ E(Γ )}, dimension d.
Ensure: Global coordinates x1, . . . , xK in Rd .

1: Build B, L and D in (2.12) using Γ .
2: Compute L† and C = D− BL†BT .
3: G?← Solve the SDP (P2) using C .
4: Compute top d eigenvectors of G?, and set W ? using (2.24).
5: if rank(G?) = d then
6: O?←W ?.
7: else
8: for i = 1 to M do
9: Compute W ?

i = UiΣiV
T

i .
10: O?i ← UiV

T
i .

11: end for
12: O?←

�

O?1 · · ·O
?
M

�

13: end if
14: Z?← O?BL†.
15: Return first K columns of Z?.

block-diagonal, (2.22) is equivalent (up to a constant term) to

max
O∈C

Tr(QOT O)

where Q = BL†BT � 0. Bandeira et al. [10] show that the orthogonal transforms (which

we continue to denote by O?) obtained by a certain random rounding of G? satisfy

E
�

Tr(Q O?T O?)
�

≥ α2
d ·OPT,

where OPT is the optimum of the unrelaxed problem (2.7) with Q = BL†BT , and αd

is the expected average of the singular values of a d × d random matrix with entries

iid N (0, 1/d). It was conjectured in [10] that αd is monotonically increasing, and the

boundary values were computed to be α1 =
p

2/π (α1 was also reported here [112]) and

α∞ = 8/3π. We refer the reader to [10] for further details on the rounding procedure,

and its relation to previous work in terms of the approximation ratio. Empirical results,

however, suggest that the difference between deterministic and randomized rounding is

46



small as far as the final reconstruction is concerned. We will therefore simply use the

deterministic rounding.

2.1.5 Computational complexity

The main computations in GRET-SPEC are the Laplacian inversion, the eigenvector

computation, and the orthogonal rounding. The cost of inverting L when Γ is dense is

O((K +M)3). However, for most practical applications, we expect Γ to be sparse since

every point would typically be contained in a small number of patches. In this case,

it is known that the linear system Lx = b can be solved in time almost linear in the

number of edges in Γ [138, 148]. Applied to (2.14), this means that we can compute L†

in O((K +M)|E(Γ )|) time (up to logarithmic factors). Note that, even if L is dense, it is

still possible to speed up the inversion (say, compared to a direct Gaussian elimination)

using the formula [75, 117]:

L† = [L + (K +M)−111T ]−1 − (K +M)−111T .

The speed up in this case is however in terms of the absolute run time. The overall

complexity is still O((K+M)3), but with smaller constants. We note that it is also possible

to speed up the inversion by exploiting the bipartite nature of Γ [75], although we have

not used this in our implementation.

The complexity of the eigenvector computation is O(M3d3), while that of the orthog-

onal rounding is O(Md3). The total complexity of GRET-SPEC, say, using a linear-time

Laplacian inversion, is (up to logarithmic factors)

O
�

|E(Γ )|(K +M) + (Md)3
�

.

The main computational blocks in GRET-SDP are identical to that in GRET-SPEC,

plus the SDP computation. The SDP solution can be computed in polynomial time
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using interior-point programming [163]. In particular, the complexity of computing an ε-

accurate solution using interior-point solvers such as SDPT3 [141] is O((Md)4.5 log(1/ε)).

It is possible to lower this complexity by exploiting the particular structure of (P2). For

example, notice that the constraint matrices in (P2) have at most one non-zero coefficient.

Using the algorithm in [72], one can then bring down the complexity of the SDP to

O((Md)3.5 log(1/ε)). By considering a penalized version of the SDP, we can use first-

order solvers such as TFOCS [12] to further cut down the dependence on M and d to

O((Md)3ε−1), but at the cost of a stronger dependence on the accuracy. The quest for

efficient SDP solvers is currently an active area of research. Fast SDP solvers have been

proposed that exploit either the low-rank structure of the SDP solution [25, 82] or the

simple form of the linearity constraints in (P2) [156]. More recently, a sublinear time

approximation algorithm for SDP was proposed in [54]. The complexity of GRET-SDP

using a linear-time Laplacian inversion and an interior-point SDP solver is thus

O
�

|E(Γ )|(K +M) + (Md)4.5 log(1/ε) + (Md)3
�

.

For problems where the size of the SDP variable is within 150, we can solve (P2) in

reasonable time on a standard PC using SDPT3 [141] or CVX [64]. We use CVX for

the numerical experiments in Section 2.5 that involve small-to-moderate sized SDP

variables. For larger SDP variables, one can use the low-rank structure of (P2) to speed

up the computation. In particular, we were able to solve for SDP variables of size up to

2000× 2000 using SDPLR [25] that uses low-rank based heuristics.
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2.2 Rigidity and exact recovery of GRET-SPEC and GRET-

SDP

We now examine conditions on the membership graph under which the proposed spectral

and convex relaxations can recover the global coordinates from the knowledge of the

clean local coordinates (and the membership graph). More precisely, let x̄1, . . . , x̄K be

the true coordinates of a point cloud in Rd . Suppose that the point cloud is divided into

patches whose membership graph is Γ , and that we are provided the measurements

x (i)k = ŌT
i ( x̄k − t̄ i) (k, i) ∈ E(Γ ), (2.25)

for some Ōi ∈O(d) and t̄ i ∈ Rd . The patch-stress matrix C is constructed from Γ and the

clean measurements (2.25). The question is under what conditions on Γ can x̄1, . . . , x̄K

be recovered by our algorithm? We will refer to this as exact recovery.

In order to determine the conditions of exact recovery, we need to introduce some

tools from rigidity theory. Rigidity theory studies the condition for a point-set to admit a

unique configuration (up to a global transformation), when the point-set is subjected to

pairwise geometric constraints, e.g. pairwise distances. To study exact recovery, here

we introduce two rigidity notions: affine rigidity and universal rigidity.

2.2.1 Affine rigidity and universal rigidity

We now formally define the notion of affine rigidity. Although phrased differently, it is

in fact identical to the definitions in [168, 59]. Henceforth, by affine transform, we will

mean the group of non-singular affine maps on Rd . Affine rigidity is a property of the

patch-graph Γ and the local coordinates (x (i)k ). In keeping with [59], we will together

call these the patch framework and denote it by Θ = (Γ , (x (i)k )).

Definition 2.2.1 (Affine Rigidity). Let y1, . . . , yK ∈ Rd be such that, for some affine
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transforms ρ1, . . . ,ρM ,

yk = ρi(x
(i)
k ) (k, i) ∈ E(Γ ).

The patch framework Θ = (Γ , (x (i)k )) is affinely rigid if y1, . . . , yK is identical to x̄1, . . . x̄K

up to a global affine transform.

Just as we defined affine rigidity earlier, we can phrase universal rigidity for a patch

system as follows [61].

Definition 2.2.2 (Universal Rigidity). Let x1, . . . , xK be points in Rs(s ≥ d) such that, for

some orthogonal Oi ∈ Rs×d and t i ∈ Rs,

xk = Oi x
(i)
k + t i (k, i) ∈ E.

We say that the patch framework Θ = (Γ , (x (i)k )) is universally rigid in Rd if for any such

(xk), we have xk = Ω x̄k for some orthogonal Ω ∈ Rs×d .

By orthogonal Ω we mean that the columns of Ω are orthogonal and of unit norm.

As we shall see later, the universal rigidity of a patch system is closely related to the

concept of universal rigidity in distance geometry.

2.2.2 Exact recovery

With the definitions from rigidity theory we are now ready to give conditions on exact

recovery. Define

Z̄ =
�

x̄1 · · · x̄K t̄1 · · · t̄M

�

∈ Rd×(K+M),

and

Ō = [Ō1 · · · ŌM] ∈ Rd×Md .
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Then, exact recovery means that for some Ω ∈O(d) and t ∈ Rd ,

Z? = ΩZ̄ + t1T .

Henceforth, we will always assume that Γ is connected (clearly one cannot have exact

recovery otherwise).

Before proceeding, we remark that the conditions for exact recovery have previously

been examined by Zha and Zhang [168] in the context of tangent-space alignment in

manifold learning, and later by Gortler et al. [59] using affine rigidity. Moreover, the

authors in [59] relate this notion of rigidity to other standard notions of rigidity, and

provide conditions on a certain hypergraph constructed from the patch system that can

guarantee affine rigidity. In this section we relate these rigidity results to the properties

of the membership graph Γ (and the patch-stress matrix C). We note that the authors in

[59] directly examine the uniqueness of the global coordinates, while we are concerned

with the uniqueness of the patch transforms obtained by solving (P1) and (P2). The

uniqueness of the global coordinates is then immediate:

Proposition 2.2.3 (Uniqueness and Exact Recovery). If (P1) and (P2) have unique solu-

tions, then GRET-SPEC and GRET-SDP return x̄1, . . . , x̄K up to a global rigid transform.

At this point, we note that if a patch has less than d + 1 points, then even when

x̄1, . . . , x̄K are the unique set of coordinates that satisfy 2.25, we cannot guarantee

Ō1, . . . , ŌM and t̄1, . . . , t̄M to be unique. Therefore, we will work under the mild assump-

tion that each patch has at least d+1 non-degenerate points, so that the patch transforms

are uniquely determined from the global coordinates.

Since each patch has d + 1 points, we now give a characterization of affine rigidity

that will be useful later on.

Proposition 2.2.4. A patch framework Θ = (Γ , (x (i)k )) is affinely rigid if and only if for any

F ∈ Rd×Md such that Tr(C F T F) = 0 we must have F = AŌ for some non-singular A∈ Rd×d .
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Before proceeding to the proof, note that Ō and Ḡ = ŌT Ō are solutions of (P1) and

(P2) (this was the basis of Proposition 2.2.3), and the objective in either case is zero.

Indeed, from (2.25), we can write Z̄ L = ŌB. Since Γ is connected,

Z̄ = ŌBL† + t1T (t ∈ Rd). (2.26)

Using (2.26), it is not difficult to verify that φ(Z̄ , Ō) = Tr(CḠ). Moreover, it follows

from (2.25) that φ(Z̄ , Ō) = 0. Therefore,

Tr(CḠ) = Tr(CŌT Ō) = 0. (2.27)

Using an identical line of reasoning, we also record another fact. Let F = [F1, . . . , FM]

where each Fi ∈ Rd×d . Suppose there exists y1, . . . , yK ∈ Rd and t1, . . . , tM ∈ Rd such

that

yk = Fi x
(i)
k + t i (k, i) ∈ E(Γ ). (2.28)

Then Y = [y1, . . . , yK , t1, . . . , tM] ∈ Rd×(K+M)d satisfies

Y = FBL† + t1T (2.29)

and Tr(C F T F) = 0.

of Proposition 2.2.4. For any F such that Tr(C F T F) = 0, letting [y1, . . . , yK , t1, . . . , tM] =

FBL†, we have 2.28. By the affine rigidity assumption, we must then have yk = Ax̄k+t for

some non-singular A∈ Rd×d and t ∈ Rd . Since each patch contains d+1 non-degenerate

points, it follows that F = AŌ.

In the other direction, assume that y1, . . . , yK ∈ Rd satisfy 2.28. Then we know

Tr(C F T F) = 0 and hence F = AŌ for some non-singular A. Using 2.29, we immediately

have yk = Ax̄k.
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P1 

P2 P3 

Figure 2.2: Instance of three overlapping patches, where the overlapping points are
shown in red. In this case, P3 cannot be registered with either P1 or P2 due to insufficient
overlap. Therefore, the patches cannot be localized in two dimension using, for example,
[169, 42] that work by registering pairs of patches. The patches can however be
registered using GRET-SPEC and GRET-SDP since the ordered patches P1, P2, P3 form a
graph lateration in R2.

Note that Tr(C F T F) = 0 implies that the rows of F are in the null space of C .

Therefore, the combined facts that Tr(C F T F) = 0 and F = AŌ for some non-singular

A∈ Rd×d is equivalent to saying that null space of C is within the row span of Ō. The

following result then follows as a consequence of 2.2.4.

Corollary 2.2.5. A patch framework Θ = (Γ , (x (i)k )) is affinely rigid if and only if the rank

of C is (M − 1)d.

The corollary gives an easy way to check for affine rigidity. However, it is not clear

what construction of Γ will ensure such property. In [168], the notion of graph lateration

was introduced that guarantees affine rigidity: Γ is said to be a graph lateration (simply

laterated) if there exists an reordering of the patch indices such that, for every i ≥ 2, Pi

and P1 ∪ · · · ∪ Pi−1 have at least d + 1 non-degenerate nodes in common. An example of

a graph lateration is shown in Figure 2.2.

Theorem 2.2.6 ([168]). If Γ is laterated and the local coordinates are non-degenerate

then the framework Θ is affinely rigid.

Next, we turn to the exact recovery conditions for (P2).The appropriate notion of
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Figure 2.3: This shows the body graph for a 3-patch system. The edges of the body graph
are obtained by connecting points that belong to the same patch. The edges within a
given patch are marked with the same color. GRET-SDP can successfully register all the
patches if the body graph is rigid in a certain sense.

rigidity in this case is that of universal rigidity. Following exactly the same arguments

used to establish 2.2.4, one can derive the following.

Proposition 2.2.7. A patch framework Θ = (Γ , (x (i)k )) is universally rigid in Rd if and

only if for any O ∈ Rs×d(s ≥ d) such that Tr(COT O) = 0 we must have O = ΩŌ for some

orthogonal Ω ∈ Rs×d .

The question then is under what conditions is the patch framework universally rigid?

This was also addressed in [59] using a graph construction derived from Γ called the

body graph. This given by ΓB = (VB, EB), where VB = {1,2, . . . , K} and (k, l) ∈ EB if and

only if xk and x l belong to the same patch (cf. Figure 2.3). Next, the following distances

are associated with ΓB:

dkl = ‖x
(i)
k − x (i)l ‖ (k, l) ∈ EB, (2.30)

where xk, x l ∈ Pi, say. Note that the above assignment is independent of the choice of

patch. A set of points (xk)k∈V in Rl is said to be a realization of {dkl : (k, l) ∈ E} in Rl if

dkl = ||xk − x l || for (k, l) ∈ E.

It is shown in [59] that Θ = (Γ , (x (i)k )) is universally rigid if and only if ΓB with
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distances {dkl : (k, l) ∈ E} has a unique realization in Rs for all s ≥ d. Moreover, in such

situation, using the distances as the constraints, an SDP relaxation was proposed in

[137] for finding the unique realization. We note that although the SDP in [137] has

the same condition for exact recovery as (P2), it is computationally more demanding

than (P2) since the number of variables is of O(K2) for this SDP, instead of O(M2) as in

(P2) (for most applications, M << K). Moreover, as we will see shortly, (P2) also enjoys

some stability properties which has not been observed for the SDP in [137].

Finally, we note that universal rigidity is a weaker condition on Γ than affine rigidity.

Theorem 2.2.8 ([137], Theorem 2). If a patch framework is affinely rigid, then it is

universally rigid.

In [59], it was also shown that the reverse implication is not true using an counter-

example for which the patch framework fails to be affinely rigid, but for which the body

graph (a Cauchy polygon) has an unique realization in any dimension [36]. This means

that GRET-SDP can solve a bigger class of problems than GRET-SPEC, which is perhaps

not surprising.

2.3 Randomized rank test for affine rigidity

Corollary 2.2.5 tells us by checking the rank of the patch stress matrix C , we can tell

whether a patch framework is affinely rigid. In this regard, the patch-stress matrix serves

the same purpose as the so-called alignment matrix in [168] and the affinity matrix in

[59]. The only difference is that the kernel of C represents the degree of freedom of the

affine transform, whereas kernel of alignment or affinity matrix directly tell us the degree

of freedom of the point coordinates. As suggested in [59], an efficient randomized test

for affine rigidity using the concept of affinity matrix can be easily derived. In this

section, we describe a randomized test based on patch stress matrix, which parallels

the proposal in [59]. This procedure is also similar in spirit to the randomized tests for
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generic local rigidity by Hendrickson [73], for generic global rigidity by Gortler et al.

[60], and for matrix completion by Singer and Cucuringu [135].

Let us continue to denote the patch-stress matrix obtained from Γ and the measure-

ments (2.25) by C . We will use C0 to denote the patch-stress matrix obtained from the

same graph Γ , but using the (unknown) original coordinates as measurements, namely,

x (i)k = x̄k (k, i) ∈ Γ . (2.31)

The advantage of working with C0 over C is that the former can be computed using just

the global coordinates, while the latter requires the knowledge of the global coordinates

as well as the clean transforms. In particular, this only requires us to simulate the global

coordinates. Since the coordinates of points in a given patch are determined up to a

rigid transform, we claim the following (cf. Section 2.7.1 for a proof).

Proposition 2.3.1 (Rank equivalence). For a fixed Γ , C and C0 have the same rank.

In other words, the rank of C0 can be used to certify exact recovery. The proposed

test is based on Proposition 2.7.1, and the fact that if two different generic configurations

are used as input in (2.31) (for the same Γ ), then the patch-stress matrices they produce

would have the same rank. By generic, we mean that the coordinates of the configuration

do not satisfy any non-trivial algebraic equation with rational coefficients [60].

The complete test is described in Algorithm 3. “Randomized Rank Test” (RRT). Note

that the main computations in RRT are the Laplacian inversion (which is also required

for the registration algorithm) and the rank computation.

2.4 Stability Analysis

We have so far studied the problem of exact recovery from noiseless measurements. In

practice, however, the measurements are invariably noisy. This brings us to the question
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Algorithm 3 RRT

Require: Membership graph Γ , and dimension d.
Ensure: Exact recovery certificate for GRET-SDP.

1: Build L using Γ , and compute L†.
2: Randomly pick {x1, . . . , xK} from the unit cube in Rd , where K = |Vx(Γ )|.
3: x (i)k ← xk for every (k, i) ∈ E(Γ ).
4: C0← D− BL†BT .
5: if rank(C0) = (M − 1)d then
6: Positive certificate for GRET-SPEC and GRET-SDP.
7: else
8: Negative certificate for GRET-SPEC.
9: GRET-SDP cannot be certified.

10: end if

of stability, namely how stable are GRET-SPEC and GRET-SDP to perturbations in the

measurements? Numerical results (to be presented in the next Section) show that both

the relaxations are indeed quite stable to perturbations. In particular, the reconstruction

error degrades quite gracefully with the increase in noise (reconstruction error is the

gap between the outputs with clean and noisy measurements). In this Section, we try to

quantify these empirical observations. In particular, we show that, for a specific noise

model, the reconstruction error grows at most linearly with the level of noise.

The noise model we consider is the “bounded” noise model. Namely, we assume that

the measurements are obtained through bounded perturbations of the clean measure-

ments in (2.25). More precisely, we suppose that we have a membership graph Γ , and

that the observed local coordinates are of the form

x (i)k = ŌT
i ( x̄k − t̄ i) + ε

(i)
k , ‖ε(i)k ‖ ≤ ε (k, i) ∈ E(Γ ). (2.32)

In other words, every coordinate measurement is offset within a ball of radius ε around

the clean measurements. Here, ε is a measure of the noise level per measurement. In

particular, ε = 0 corresponds to the case where we have the clean measurements (2.25).

Since the coordinates of points in a given patch are determined up to a rigid transform,
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it is clear that the above problem is equivalent to the one where the measurements are

x (i)k = x̄k + ε
(i)
k , ‖ε(i)k ‖ ≤ ε (k, i) ∈ E(Γ ). (2.33)

By equivalent, we mean that the reconstruction errors obtained using either (2.32) or

(2.33) are equal. The reason we use the latter measurements is that the analysis in this

case is much more simple.

The reconstruction error is defined as follows. Generally, let Z? be the output of

Algorithms 1 and 2 using (2.33) as input, and let

Z0
def
= [ x̄1 · · · x̄K 0 · · ·0] ∈ Rd×(K+M), (2.34)

where we assume that the centroid of { x̄1, · · · , x̄K} is at the origin.

Ideally, we would require that Z? = Z0 (up to a rigid transformation) when there is

no noise, that is, when ε = 0. This is the exact recovery phenomena that we considered

earlier. In general, the gap between Z0 and Z? is a measure of the reconstruction quality.

Therefore, we define the reconstruction error to be

η= min
Θ∈O(d)

‖Z? −ΘZ0‖F .

Note that we are not required to factor out the translation since Z0 is centered by

construction.

Our main results are the following.

Theorem 2.4.1 (Stability of GRET-SPEC). Assume that R is the radius of the smallest

Euclidean ball that encloses the clean configuration { x̄1, . . . , x̄K}. For fixed noise level ε ≥ 0

and membership graph Γ , suppose we input the noisy measurements (2.33) to GRET-SPEC.
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If rank(C0) = (M − 1)d, then we have the following bound for GRET-SPEC:

η≤
|E(Γ )|1/2

λ2(L)
(K1ε + K2ε

2),

where

K1 =
8πR
µd+1(C)

Æ

2MK |E(Γ )|(2+ K)d(d + 1)

�

4R

p

K |E(Γ )|
λ2(L)

+ 1

�

+
p

2+ K +M .

and

K2 =
8πR
µd+1(C)

Æ

2MK |E(Γ )|(2+ K)d(d + 1)

�

2

p

K |E(Γ )|
λ2(L)

+ 1

�

.

Here λ2(L) is the second smallest eigenvalue of L.

We assume here that µd+1(C) is non-zero2. The bounds here are in fact quite loose.

Note that when ε = 0, then by the admissibility assumption µd+1(C)> 0, and we recover

the perfect reconstruction results for GRET-SPEC.

Theorem 2.4.2 (Stability of GRET-SDP). Under the conditions of Theorem 2.4.1, we have

the following for GRET-SDP:

η≤
|E(Γ )|1/2

λ2(L)

�

32
Æ

2d(d + 1)(2+ K)|E(Γ )|µ−1/2
d+1 (C0)R+

p
2+ K +M

�

ε.

The bounds are again quite loose. The main point is that the reconstruction error

for GRET-SDP is within a constant factor of the noise level. In particular, when ε = 0

(measurements are clean), we recover the perfect reconstruction results.

The rest of this Section is devoted to the proofs of Theorem 2.4.1 and 2.4.2. First,

we introduce some notations.

Notations. Note that the patch-stress matrix in (P1) is computed from the noisy

2Numerical experiments suggest that this is indeed the case if rank(C0) = (M − 1)d. In fact, we notice
a growth in the eigenvalue with the increase in noise level. We have however not been able to prove this
fact.
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measurements (2.33), and the same patch-stress matrix is used in (P2). The quantities

G?, W ?, O?, and Z? are as defined in Algorithms 1 and 2 . We continue to denote the

clean patch-stress matrix by C0. Define

O0
def
= [Id · · · Id] and G0

def
= OT

0 O0.

Let e1, . . . , ed be the standard basis vectors of Rd , and let e be the all-ones vector of

length M . Define

si
def
=

1
p

M
e⊗ ei ∈ RMd (1≤ i ≤ d). (2.35)

Note that every d × d block of G0 is Id , and that we can write

G0 =
d
∑

i=1

Msis
T
i . (2.36)

We first present an estimate that applies generally to both algorithms. The proof is

provided in Section 2.7.2.

Proposition 2.4.3 (Basic estimate). Let R be the radius of the smallest Euclidean ball that

encloses the clean configuration. Then, for any arbitrary Θ,

‖Z? −ΘZ0‖F ≤
|E(Γ )|1/2

λ2(L)

�

R(2+ K)1/2‖O? −ΘO0‖F + ε(2+ K +M)1/2
�

. (2.37)

In other words, the reconstruction error in either case is controlled by the rounding

error:

δ = min
Θ∈O(d)

‖O? −ΘO0‖F . (2.38)

The rest of this Section is devoted to obtaining a bound on δ for GRET-SPEC and GRET-

SDP. In particular, we will show that δ is of the order of ε in either case. Note that the

key difference between the two algorithms arises from the eigenvector rounding, namely

the assignment of the “unrounded” orthogonal transform W ? (respectively from the
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patch-stress matrix and the optimal Gram matrix). The analysis in going from W ? to the

rounded orthogonal transform O?, and subsequently to Z?, is however common to both

algorithms.

We now bound the error in (2.38) for both algorithms. Note that we can generally

write

W ? =
�
p

α1u1 · · ·
p

αdud

�T
,

where u1, . . . , ud are orthonormal. In GRET-SPEC, each αi = M , while in GRET-SDP we

set αi using the eigenvalues of G?.

Our first result gives a control on the quantities obtained using eigenvector rounding

in terms of their Gram matrices.

Lemma 2.4.4 (Eigenvector rounding). There exist Θ ∈O(d) such that

‖W ? −ΘO0‖F ≤
4
p

M
‖W ?T W ? − G0‖F .

Next, we use a result by Li [98] to get a bound on the error after orthogonal rounding.

Lemma 2.4.5 (Orthogonal rounding). For arbitrary Θ ∈O(d),

‖O? −ΘO0‖F ≤ 2
p

d + 1 ‖W ? −ΘO0‖F .

The proofs of Lemma 2.4.4 and 2.4.5 are provided in Appendices 2.7.3 and 2.7.4. At

this point, we record a result from [107] which is repeatedly used in the proof of these

lemmas and elsewhere.

Lemma 2.4.6 (Mirsky, [107]). Let |||·||| be some unitarily invariant norm, and let A, B ∈

Rn×n. Then

||| diag(σ1(A)−σ1(B), · · · ,σn(A)−σn(B)) ||| ≤ |||A− B|||.
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In particular, the above result holds for the Frobenius and spectral norms.

By combining Lemma 2.4.4 and 2.4.5, we have the following bound for (2.38):

δ ≤ 8

√

√d + 1
M
‖W ?T W ? − G0‖F . (2.39)

We now bound the quantity on the right in (2.39) for GRET-SPEC and GRET-SDP.

2.4.1 Bound for GRET-SPEC

For the spectral relaxation, this can be done using the Davis-Kahan theorem [16]. Note

that from (2.18), we can write

1
M
(W ?T W ? − G0) =

d
∑

i=1

ri r
T
i −

d
∑

j=1

s js
T
j . (2.40)

Following [16, Ch. 7], let A be some symmetric matrix and S be some subset of the real

line. Denote PA(S) to be the orthogonal projection onto the subspace spanned by the

eigenvectors of A whose eigenvalues are in S. A particular implication of the Davis-Kahan

theorem is that

‖ PA(S1)− PB(S2) ‖sp ≤
π

2ρ(Sc
1, S2)

‖A− B‖sp, (2.41)

where Sc
1 is the complement of S1, and ρ(S1, S2) =min{|u− v| : u ∈ S1, v ∈ S2}.

In order to apply (2.41) to (2.40), set A = C , B = C0, S1 = [µ1(C), µd(C)], and

S2 = {0}. If rank(C0) = (M − 1)d, then PB(S2) =
∑d

j=1 s js
T
j . Applying (2.41), we get

‖W ?T W ? − G0‖sp ≤
Mπ

2µd+1(C)
‖C − C0‖F . (2.42)

Now, it is not difficult to verify that for the noise model (2.33),

‖C − C0‖F ≤ 2
Æ

K |E(Γ )|
�

�

4R

p

K |E(Γ )|
λ2(L)

+ 1
�

ε +
�

2

p

K |E(Γ )|
λ2(L)

+ 1
�

ε2

�

. (2.43)
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Combining Proposition 2.4.3 with (2.39),(2.42), and (2.43), we arrive at Theorem 2.4.1.

2.4.2 Bound for GRET-SDP

To analyze the bound for GRET-SDP, we require further notations. Recall (2.35), and let

S be the space spanned by {s1, . . . , sd} ⊂ RMd , and let S̄ be the orthogonal complement

of S in RMd . In the sequel, we will be required to use matrix spaces arising from tensor

products of vector spaces. In particular, given two subspaces U and V of RMd , denote by

U ⊗ V the space spanned by the rank-one matrices {uvT : u ∈ U , v ∈ V}. In particular,

note that G0 is in S ⊗ S.

Let A∈ RMd×Md be some arbitrary matrix. We can decompose it into

A= P +Q+ T (2.44)

where

P ∈ S ⊗ S, Q ∈ (S ⊗ S)∪ (S ⊗ S), and T ∈ S ⊗ S.

We record a result about this decomposition from Wang and Singer [152].

Lemma 2.4.7 ([152], pg. 7). Suppose G0 + ∆ � 0 and ∆ii = 0 (1 ≤ i ≤ M). Let

∆= P +Q+ T as in (2.44). Then

T � 0, and Pi j = −
1
M

M
∑

l=1

Tl l (1≤ i, j ≤ M).

It is not difficult to verify that Tr(C0G0) = 0 and that C0 � 0. From (2.36), we have

0= Tr(C0G0) =
d
∑

i=1

sT
i C0si ≥ 0.

Since each term in the above sum is non-negative, C0si = 0 for 1 ≤ i ≤ d. In other

words, S is contained in the null space of C0. Moreover, if rank(C0) = (M − 1)d, then

63



S is exactly the null space of C0. Based on this observation, we give a bound on the

residual T .

Proposition 2.4.8 (Bound on the residual). Suppose that rank(C0) = (M − 1)d. Decom-

pose ∆= P +Q+ T as in (2.44). Then

Tr(T )≤ 4µ−1
d+1(C0)|E(Γ )|ε2. (2.45)

Proof. The main idea here is to compare the objective in (P0) with the trace of T . To do

so, we introduce the following notations. Let λ1, · · · ,λMd be the full set of eigenvalues

of G? sorted in non-increasing order, and q1, . . . , qMd be the corresponding eigenvectors.

Define

O??
def
=
�
Æ

λ1q1 · · ·
Æ

λMdqMd

�T
∈ RMd×Md ,

and O??i to be the i-th Md × d block of O??, that is, O??
def
= [O??1 · · · O??M ].

By construction, G? = O??T O??. Moreover, by feasibility,

G?ii = O??i
T O??i = Id (1≤ i ≤ M).

Thus the d columns of O??i form an orthonormal system in RMd . Now define

Z??
def
= O??BL† ∈ RMd×(K+M).

In particular, we will use the fact that (Z??, O??) are the minimizers of the unconstrained

program

min
(Z ,O)

∑

(k,i)∈E(Γ )

‖Zeki −Oi x
(i)
k ‖

2 s.t. Z ∈ RMd×(K+M), O ∈ RMd×Md . (2.46)

Note that Tr(C0G?) = Tr(C0(G0 +∆)) = Tr(C0T). Now, by Lemma (2.4.7), T � 0.
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Therefore, writing

T =
∑

i

vi v
T
i (vi ∈ S̄),

we get

Tr(C0T ) =
∑

i

vT
i C0vi ≥ µd+1(C0)

∑

i

vT
i vi = µd+1(C0)Tr(T ).

Therefore,

Tr(T )≤ µ−1
d+1(C0) Tr(C0G?). (2.47)

We are done if we can bound the term on the right. To do so, we note from (2.46) that

Tr(C0G?) = Tr(C0O??T O??) = min
Z∈RMd×K+M

∑

(k,i)∈E(Γ )

‖Zeki −O??i x̄k‖2.

Therefore,

Tr(C0G?)≤
∑

(k,i)∈E(Γ )

‖Z??eki −O??i x̄k‖2.

To bring in the error term, we write

Z??eki −O??i x̄k = Z??eki −O??i x (i)k +O??i ε
(i)
k ,

and use ‖x + y‖2 ≤ 2(‖x‖2 + ‖y‖2) to get

Tr(C0G?)≤ 2
∑

(k,i)∈E

‖Z??eki −O??i x (i)k ‖
2 + 2|E(Γ )|ε2. (2.48)

Finally, using the optimality of (Z??, O??) for (2.46), we have

∑

(k,i)∈E(Γ )

‖Z??eki −O??i x (i)k ‖
2 ≤

∑

(k,i)∈E(Γ )

‖Z0eki − Id x (i)k ‖
2 ≤ |E(Γ )|ε2. (2.49)

The desired result follows from (2.47), (2.48), and (2.49).

Finally, we note that Tr(T ) can be used to bound the difference between the Gram
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matrices.

Proposition 2.4.9 (Trace bound). ‖W ?T W ? − G0‖F ≤ 2
p

2MdTr(T ).

Proof. We will heavily use decomposition (2.44) and its properties. Let G? = G0 +∆.

By triangle inequality,

‖W ?T W ? − G0‖F ≤ ‖
Md
∑

i=d+1

λi(G
?) uiu

T
i ‖F + ‖∆‖F

= ‖ diag(λd+1(G
?), . . . ,λMd(G

?)) ‖F + ‖∆‖F .

Moreover, since the bottom eigenvalues of G0 are zero, it follows from Lemma 2.4.6 that

the norm of the diagonal matrix is bounded by ‖∆‖F . Therefore,

‖W ?T W ? − G0‖F ≤ 2‖∆‖F . (2.50)

Fix {sd+1, . . . , sMd} to be some orthonormal basis of S̄. For arbitrary A∈ RMd , let

A(p, q) = sT
p Asq (1≤ p, q ≤ Md).

That is, (A(p, q)) are the coordinates of A in the basis {s1, ..., sd} ∪ {sd+1, . . . , sMd}.

Decompose ∆ = P +Q+ T as in (2.44). Note that P,Q, and T are represented in the

above basis as follows: P is supported on the upper d × d diagonal block, T is supported

on the lower (M −1)d× (M −1)d diagonal block, and Q on the off-diagonal blocks. The

matrix G0 is diagonal in this representation.

We can bound ‖P‖F using Lemma 2.4.7,

‖P‖2
F = M2‖P11‖2

F = ‖
M
∑

l=1

Tl l‖2
F ≤

�

Tr
�

M
∑

l=1

Tl l

�

�2
= Tr(T )2, (2.51)
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where we have used the properties T � 0 and Tl l � 0 (1≤ l ≤ M). In particular,

‖T‖F ≤ Tr(T ). (2.52)

On the other hand, since G0 +∆ � 0, we have (G0 +∆)(p, q)2 ≤ (G0 +∆)(p, p)(G0 +

∆)(q, q). Therefore,

‖Q‖2
F = 2

d
∑

p=1

Md
∑

q=d+1

Q(p, q)2 ≤ 2
d
∑

p=1

(G0 +∆)(p, p)
Md
∑

q=d+1

T (q, q).

Notice that 0= Tr(∆) = Tr(T ) + Tr(P). Therefore,

‖Q‖2
F ≤ 2MdTr(T )− 2Tr(T )2. (2.53)

Combining (2.50), (2.51), (2.53), and (2.52), we get the desired bound.

Putting together (2.39) with Propositions (2.4.3),(2.4.8), and (2.4.9), we arrive at

Theorem (2.4.2).

2.5 Simulations

We now present some numerical results on multipatch registration using GRET-SPEC

and GRET-SDP. In particular, we study the exact recovery and stability properties of

the algorithm. We define the reconstruction error in terms of the root-mean-square

deviation (RMSD) given by

RMSD= min
Ω∈O(d),t∈Rd

�

1
K

K
∑

k=1

‖Z?k −Ω x̄k − t‖2

�1/2

. (2.54)

In other words, the RMSD is calculated after registering (aligning) the original and the

reconstructed configurations. We use the SVD-based algorithm [8] for this purpose.
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We first consider a few examples concerning the registration of three patches in R2,

where we vary Γ by controlling the number of points in the intersection of the patches.

We work with the clean data in (2.25) and demonstrate exact recovery (up to numerical

precision) for different Γ .

In the left plot in Figure 2.4, we consider a patch system with K = 10 points. The

points that belong to two or more patches are marked red, while the rest are marked

black. The patches taken in the order P1, P2, P3 form a lateration in this case. As predicted

by Corollary 2.2.5 and Theorem 2.2.6, the rank of the patch-stress matrix C0 for this

system must be 2(3− 1) = 4. This is indeed confirmed by our experiment. We expect

GRET-SPEC and GRET-SDP to recover the exact configuration. Indeed, we get a very

small RMSD of the order of 1e-7 in this case. As shown in the figure, the reconstructed

coordinates obtained using GRET-SDP perfectly match the original ones after alignment.

We next consider the example shown in the center plot in Figure 2.4. The patch

system is not laterated in this case, but the rank of C0 is 4. Again we obtain a very small

RMSD of the order 1e-7 for this example. This example demonstrates that lateration is

not necessary for exact recovery.
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Figure 2.4: Instances of a three-patch systems in R2. Left: Patch system is laterated.
Center: Patch system is not laterated but for which C0 has rank 4. Right: The body
graph is universally rigid but rank(C0) = 3. The original coordinates are marked with ◦,
and the coordinates reconstructed by GRET-SDP with +.

In the next example, we show that the condition rank(C0) = (M−1)d is not necessary

for exact recovery using GRET-SDP. To do so, we use the fact that the universal rigidity of

the body graph is both necessary and sufficient for exact recovery. Consider the example
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shown in the right plot in Figure 2.4. This has barely enough points in the patch

intersections to make the body graph universally rigid. Experiments confirm that we

have exact recovery in this case. However, it can be shown that rank(C0)< (M−1)d = 4.
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Figure 2.5: Disjoint clusters for the PACM point cloud. Each cluster is marked with a
different color. The clusters are augmented to form overlapping patches which are then
registered using GRET-SDP.

We now consider the structured PACM data in R3 shown in Figure 2.5. The are a

total of 799 points in this example that are obtained by sampling the 3-dimensional

PACM logo [42, 51]. To begin with, we divide the point cloud into M = 30 disjoint

pieces (clusters) as shown in the figure. We augment each cluster into a patch by adding

points from neighboring clusters. We ensure that there are sufficient common points in

the patch system so that C0 has rank (M − 1)d = 87. We generate the measurements

using the bounded noise model in (2.33). In particular, we perturb the clean coordinates

using uniform noise over the hypercube [−ε,ε]d . For the noiseless setting, the RMSD’s

obtained using GRET-SPEC and GRET-SDP are 3.3e-11 and 1e-6. The respective RMSD’s

when ε = 0.5 are 1.4743 and 0.3823. The results are shown in Figure 2.6.

In the final experiment, we demonstrate the stability of GRET-SDP and GRET-SPEC by

plotting the RMSD against the noise level for the PACM data. We use the noise model in

(2.33) and vary ε from 0 to 2 in steps of 0.1. For a fixed noise level, we average the RMSD

over 20 noise realizations. The results are reported in the bottom plot in Figure 2.7.

We see that the RMSD increases gracefully with the noise level. The result also shows
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Figure 2.6: Reconstruction of the PACM data from corrupted patch coordinates (ε =
0.5). Left: GRET-SPEC, RMSD = 1.4743. Right: GRET-SDP, RMSD = 0.3823. The
measurements were generated using the noise model in (2.33).

that the semidefinite relaxation is more stable than spectral relaxation, particularly at

large noise levels. Also shown in the figure are the RMSD obtained using GRET-MANOPT

with the solutions of GRET-SPEC and GRET-SDP as initialization. In particular, we used

the trust region method provided in the Manopt toolbox [21] for solving the manifold

optimization (P0). For either initialization, we notice some improvement from the plots.

It is clear that the manifold method relies heavily on the initialization, which is not

surprising.
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Figure 2.7: Left: RMSD versus noise level ε. GRET-MANOPT1 (resp. GRET-MANOPT2)
is the result obtained by refining the output of GRET-SPEC (resp. GRET-SDP) using
manifold optimization. Right: Rank of G? in GRET-SDP.

Finally, we plot the rank of the SDP solution G? and notice an interesting phenomenon.
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Up to a certain noise level, G? has the desired rank and rounding is not required. This

means that the relaxation gap is zero for the semidefinite relaxation, and that we can

solve the original non-convex problem using GRET-SDP up to a certain noise threshold.

It is therefore not surprising that the RMSD shows no improvement after we refine the

SDP solution using manifold optimization. We have noticed that the rank of the SDP

solution is stable with respect to noise for other numerical experiments as well (not

reported here).

2.6 Distributed structural determination via GRET-SDP

We can readily use GRET to determine the protein structure under a divide-and-conquer

procedure. First we construct an adjacency matrix A∈ RK×K where A(i, j) = 1 indicates

atoms i and j are related via some distance measurements that arise from bond lengths,

bond angles, torsion angle restraints and NOE restraints. Our proposed algorithm

consists of the following steps: (1) Partition the distance graph with the adjacency

matrix A recursively using spectral clustering, (2) Embed using SNLSDP, (3) Stitch using

GRET. When breaking the distance graph into patches, we want to minimize the number

of inter-patch edges and maximize the edges within each patch, in order to retain as

many distance measurements as possible within patches in the embedding phase. This

can be achieve by the normalized cut (Ncut) algorithm proposed in [131] which splits

a graph into two disjoint partitions of similar size while minimizing the inter-partition

edges. To obtain multiple patches, we split the distance graph with adjacency matrix

A recursively, i.e. after every splitting, we apply Ncut again to each of the resulting

partitions. We recursively split the distance graph into disjoint partitions where each

partition has about 50 atoms. At this point every partitions do not share common atoms

with any other partition. Therefore for each partition, we add to it the atoms that are

connected to the partition with sufficient distance measurements. We start by adding
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those atoms that is most densely connected to the patch until the size of the patch is

about 80. We pay little effort in ensuring whether there is sufficient distance restraint

such that each patch will have a unique embedding, as in [41]. This is because to a

certain degree the molecule is flexible, rendering obtaining rigid patches unrealistic.

The hope is that the flexibility of the protein is not so large such that after SNLSDP

embedding, the coordinates of each patch are still determined approximately up to a

rigid transformation.

For simulation purpose, we take the coordinates of the structures deposited on

the PDB as ground truth and denote them as x̄1, . . . , x̄K . Then we randomly select

hydrogen-hydrogen distances within 6 Å and simulate distance bounds by the equations

d low
i j =max(‖ x̄ i − x̄ j‖(1− εlow

i j ), 1.8) dup
i j =min(‖ x̄ i − x̄ j‖(1+ ε

up
i j ), 6),

where εlow
i j ,εup

i j ∼ Uniform([0,η]). We note that the distance should always be larger

than the Van der Waal’s radius which is 1.8 Åfor hydrogen.

Again, we first check whether the distributed algorithm can exactly recover the

coordinates for the easy case of having a complete distance graph and noiseless distance

measurements (η= 0). For this simulation we use a small protein 2MCE [31] with 317

atoms. Instead of just simulating distances between hydrogen atoms, we simulate all the
�K

2

�

distances for this molecule using the structure deposited in the PDB. Indeed exact

recovery is demonstrated in Figure 2.8, with RMSD of 2.2e-6.

72



Figure 2.8: Comparison between the reconstruction of 2MCE from GRET (Blue) and the
ground truth (Red) given precise and complete set of distance restraints.

We now run simulations with a more realistic setting on three larger molecules,

1GB1[65], 2LUQ[70] and 2MBL. We demonstrate that our algorithm is able to find

molecule structure close to the ground truth from simulated distance bounds. For each

noise level η we average the results over 10 experiments. In this simulation we only

sample 30% of the hydrogen-hydrogen distances within 6 Å at random. We note that

at η = 0.8, the average gap between simulated upper and lower distance bounds is

similar to experimental data. We compare our results against the other two SDP based

distributed algorithms ASAP and DISCO for solving the molecular conformation problem.

Due to the global nature of the registration procedure, both GRET and ASAP have better

RMSD than DISCO. Although GRET and ASAP have similar performances in simulated

data, GRET outperforms ASAP in experimental data where there are fewer distance

restraint, as shown in Table 2.2.
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Protein Distances η Gap GRET ASAP DISCO

1GB1 NOE: 2400 0 0 0.40(0.20) 0.43(0.21) 0.46(0.22)

(855 atoms) Covalent: 2900 0.4 1.51 0.70(0.50) 0.72(0.51) 0.84(0.55)

0.8 2.60 0.85(0.70) 0.87(0.69) 1.22(0.92)

2LUQ NOE:5000 0 0 1.23(0.74) 1.23(0.73) 1.25(0.74)

(1409 atoms) Covalent: 4900 0.4 1.52 1.49(1.04) 1.49(1.01) 1.43(0.97)

0.8 2.51 1.75(1.31) 1.76(1.33) 1.94(1.48)

2MBL NOE:6000 0 0 0.59(0.42) 0.62(0.40) 0.78(0.51)

(1968 atoms) Covalent:6600 0.4 1.53 1.46(1.04) 1.39(1.11) 1.83(1.47)

0.8 2.66 2.00(1.44) 3.84(3.52) 2.09(1.90)

Table 2.1: Reconstruction error (in RMSD) for three molecules from simulated data.
In the column with the header “Distances”, we provide the number of simulated NOE
restraints and covalent geometry constraints used in the simulation. In the column with
the header “Gap”, we report the average gap between the upper and lower bound of
the distance restraints. The numbers in the columns with header “GRET”,“ASAP” and
“DISCO” are the RMSD of the reconstructions produced by each of the methods, and
the numbers in bracket are the RMSD for just the protein backbone. Each number is
averaged over 10 different noise realizations.

Distances GRET ASAP DISCO

NOE: 800 2.23(1.61) 2.93(2.22) 2.46(1.80)
Covalent: 2900

Table 2.2: Reconstruction error (RMSD) for the molecule 1GB1 (855 atoms). We
compare the reconstructions with the solution NMR structure deposited in the PDB.
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Figure 2.9: Comparison between the reconstruction from GRET (Blue) and the 1GB1
structure in the PDB (Gold).

2.7 Technical proofs

In this Section, we give the proof of Propositions 2.3.1 and 2.4.3, and Lemmas 2.4.4

and 2.4.5.

2.7.1 Proof of Proposition 2.3.1

We are done if we can show that there exists a bijection between the nullspace of C and

that of C0. To do so, we note that the associated quadratic forms can be expressed as

uT Cu= min
z∈R1×K+M

∑

(k,i)∈E(Γ )

‖zeki − uT
i x (i)k ‖

2,

and

vT C0v = min
z∈R1×K+M

∑

(k,i)∈E(Γ )

‖zeki − vT
i x̄k‖2.

Here u1, . . . , uM are the d × 1 blocks of the vector u ∈ RMd×1.

Now, it follows from (2.25) that there is a one-to-one correspondence between u

and v, namely

ui = Ōi vi (1≤ i ≤ M),
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such that uT Cu = vT C0v. In other words, the null space of C is related to the null space

of C0 through an orthogonal transform, as was required to be shown.

2.7.2 Proof of Proposition 2.4.3

Without loss of generality, we assume that the smallest Euclidean ball that encloses the

clean configuration { x̄1, . . . , x̄K} is centered at the origin, that is,

‖ x̄k‖ ≤ R (1≤ k ≤ K). (2.55)

Let B0 be the matrix B in (2.12) computed from the clean measurements, i.e., from

(2.33) with ε = 0. Let B0 +H be the same matrix obtained from (2.33) for some ε > 0.

Recall that Z0 = O0B0 L† (by the centering assumption in (2.34)). Therefore,

‖Z? −ΘZ0‖F = ‖O?(B0 +H)L† −ΘO0B0 L†‖F = ‖(O? −ΘO0)B0 L† +O?H L†‖F .

By triangle inequality,

‖Z? −ΘZ0‖F ≤ ‖O? −ΘO0‖F‖B0 L†‖F + ‖O?H L†‖F , (2.56)

Now

‖B0 L†‖F ≤ ‖L†‖sp‖B0‖F =
1

λ2(L)
‖B0‖F ,

where λ2(L) is the smallest non-zero eigenvalue of L. On the other hand,

B0 =
∑

(k,i)∈E(Γ )

(eM
i ⊗ Id) x̄keT

ki.

76



Using Cauchy-Schwarz and (2.55), we get

‖B0‖2
F =

∑

(k,i)∈E(Γ )

∑

(l, j)∈E(Γ )

Tr
�

eki x̄
T
k (e

M
i ⊗ Id)

T (eM
j ⊗ Id) x̄ l e

T
l j

�

=
∑

(k,i)∈E(Γ )

∑

(l,i)∈E(Γ )

x̄ T
k x̄ l eT

kiel i.

≤
∑

(k,i)∈E(Γ )

2R2 +
∑

(k,i)∈E(Γ )

∑

(l,i)∈E(Γ )

R2.

Therefore,

‖B0 L†‖F ≤ λ2(L)
−1
p

2+ K |E(Γ )|1/2R. (2.57)

As for the other term in (2.56), we can write

‖O?H L†‖F ≤ ‖L†‖sp‖O?H‖F = λ2(L)
−1‖O?H‖F .

Now

O?H = O?(B − B0) =
∑

(k,i)∈E(Γ )

O?i ε
(i)
k eT

ki.

Therefore, using Cauchy-Schwarz, the orthonormality of the columns of O?i ’s, and the

noise model (2.33), we get

‖O?H‖2
F =

∑

(k,i)∈E(Γ )

∑

(l, j)∈E(Γ )

(O?i ε
(i)
k )

T (O?j εl, j)e
T
kiel i

≤
∑

(k,i)∈E(Γ )

2ε2 +
∑

(k,i)∈E(Γ )

∑

(l,i)∈E(Γ )

ε2 +
∑

(k,i)∈E(Γ )

∑

(k, j)∈E(Γ )

ε2.

This gives us

‖O?H L†‖F ≤
p

2+ K +M |E(Γ )|1/2λ2(L)
−1ε. (2.58)

Combining (2.56),(2.57), and (2.58), we get the desired estimate.
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2.7.3 Proof of Lemma 2.4.4

The proof is mainly based on the observation that if u and v are unit vectors and

0≤ uT v ≤ 1, then

‖u− v‖ ≤ ‖uuT − vvT‖F . (2.59)

Indeed,

‖uuT − vvT‖2
F = Tr

�

uuT + vvT − 2(uT v)2
�

≥ Tr(uuT + vvT − 2uT v) = ‖u− v‖2.

To use this result in the present setting, we use the theory of principal angles [16,

Ch. 7.1]. This tells us that, for the orthonormal systems {u1, . . . , ud} and {s1, . . . , sd}, we

can find Ω1,Ω2 ∈O(Md) such that

1. Ω1[u1 · · ·ud] = [u1 · · ·ud]ΘT
1 where Θ1 ∈O(d),

2. Ω2[s1 · · · sd] = [s1 · · · sd]ΘT
2 where Θ2 ∈O(d),

3. (Ω1si)T (Ω2u j) = 0 for i 6= j, and 0≤ (Ω1si)T (Ω2ui)≤ 1 for 1≤ i ≤ d.

Here Θ1 and Θ2 are the orthogonal transforms that map {u1, . . . , ud} and {s1, . . . , sd} into

the corresponding principal vectors.

Using properties 1 and 2 and the fact3 that αi ≤ M , we can write

p
M ‖Θ1W ? −Θ2O0‖F ≤ ‖Ω1[α1u1 · · ·αdud]−MΩ2[s1 · · · sd]‖F +

�

d
∑

i=1

(M −αi)
2
�1/2

.

3To see why the eigenvalues of G? are at most M , note that by the SDP constraints, for every block Gi j ,

uT Gi j v ≤ (‖u‖2 + ‖v‖2)/2 (u, v ∈ Rd).

Let x = (x1, . . . , xM ) where each x i ∈ Rd . Then

x T Gx =
∑

i, j

x T
i Gi j x j ≤

∑

i, j

(‖x i‖2 + ‖x j‖2)/2= M‖x‖2.
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Moreover, by triangle inequality,

‖Ω1[α1u1 · · ·αdud]−MΩ2[s1 · · · sd]‖F ≤ M‖Ω1[u1 · · ·ud]−Ω2[s1 · · · sd]‖F+
�

d
∑

i=1

(M−αi)
2
�1/2

.

Therefore,

p
M ‖Θ1W ? −Θ2O0‖F ≤ M‖Ω1[u1 · · ·ud]−Ω2[s1 · · · sd]‖F + 2

�

d
∑

i=1

(M −αi)
2
�1/2

.

Now, using (2.59) and the principal angle property 3, we get

‖Ω1[u1 · · ·ud]−Ω2[s1 · · · sd]‖F ≤ ‖
d
∑

i=1

Ω1ui(Ω1ui)
T −

d
∑

i=1

Ω2si(Ω2si)
T‖F .

Moreover, using triangle inequality and properties 1 and 2, we have

M‖
d
∑

i=1

Ω1ui(Ω1ui)
T −

d
∑

i=1

Ω2si(Ω2si)
T‖F ≤ ‖W ?T W ? − G0‖F +

�

d
∑

i=1

(M −αi)
2
�1/2

.

Finally, note that by Lemma 2.4.6,

�

d
∑

i=1

(M −αi)
2
�1/2
≤ ‖W ?T W ? − G0‖F . (2.60)

Combining the above relations, and setting Θ = ΘT
1Θ2, we arrive at Lemma 2.4.4.

2.7.4 Proof of Lemma 2.4.5

This is done by adapting the following result by Li [98]: If A, B are square and non-

singular, and ifR(A) andR(B) are their orthogonal rounding (obtained from their polar

decompositions [74]), then

‖R(A)−R(B)‖F ≤
2

σmin(A) +σmin(B)
‖A− B‖F . (2.61)
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We recall that if A= UΣV T is the SVD of A, then R(A) = UV T .

Note that it is possible that some of the blocks of W ? are singular, for which the

above result does not hold. However, the number of such blocks can be controlled by

the global error. More precisely, let B ⊂ {1,2, . . . , M} be the index set such that, for

i ∈B , ‖W ?
i −Θ‖F ≥ β . Then

‖W ? −ΘO0‖2
F ≥

∑

i∈B

‖W ?
i −Θ‖

2
F = |B|β

2.

This gives a bound on the size of B . In particular, the rounding error for this set can

trivially be bounded as

∑

i∈B

‖O?i −Θ‖
2
F ≤

∑

i∈B

2d =
2d
β2
‖W ? −ΘO0‖2

F . (2.62)

On the other hand, we known that, for i ∈B c, ‖W ?
i −Θ‖F < β . From Lemma 2.4.6, it

follows that

|1−σmin(W
?
i )| ≤ ‖W

?
i −Θ‖sp < β .

Fix β ≤ 1. Then σmin(W ?
i )> 1− β , and we have from (2.61),

‖O?i −Θ‖F ≤
2

2− β
‖W ?

i −Θ‖F (i ∈B c) (2.63)

Fixing β = 1/
p

2 and combining (2.62) and (2.63), we get the desired bound.
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Chapter 3

RDC-based method for protein

structuring

In NMR spectroscopy, for large molecules the extraction of NOE restraints through

resonance assignment is difficult and often leads to missing, ambiguous, or incorrect

NOE distance measurements. Hence the inverse problem of positioning from distance

constraints alone, also known as the distance geometry problem, can be challenging and

even ill-posed [165]. In this case, the coordinates of the atoms obtained from the NOE

restraints may not have satisfactory accuracy. Thus in this chapter, we focus on using

RDC measurements

rnm =
(xn − xm)T S(xn − xm)

d2
nm

, (3.1)

to obtain atom coordinates with high accuracy. Throughout this chapter we assume that

S can be estimated a-priori [101, 172] and our goal is to determine the atom positions

given S.

The NOE and RDC constraints we described so far are in terms of the Cartesian

coordinates of the atoms. However, a protein can be viewed as an articulated structure

which is composed of rigid planes and bodies that are chained together via hinges [69].

As we will see in later sections of the chapter, the atom coordinates can therefore be
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expressed in terms of rotations associated with the rigid units. The determination of

the rotations from RDC and NOE then provides the protein structure. In a broader

context, our solution to the protein structuring problem presents a general strategy

for determining the pose of an articulated structure, a common problem that arises in

robotics and computer vision [55, 6]. The way we model the articulated structure from

rotation matrices results in a cost function and constraints that are separable in the rota-

tions, which in turn facilitates subsequent optimization. We also strengthen the convex

relaxation proposed in [7], which originally intends to minimize quadratic functions

involving orthogonal matrices, in order to deal with special orthogonal transformations.

This is particularly meaningful in practical applications as rigid units in an articulated

structure do not usually undergo a reflection. As shown by our numerical experiments,

the additional constraints specific to the special orthogonal group greatly enhance noise

stability.

The rest of the chapter is organized as follows. In Section 3.2, we formulate the

problem of backbone structure determination from RDC and NOE as a problem of finding

the pose of an articulated structure. In Section 3.3, we describe a semidefinate program

(SDP) for solving optimization problems involving quadratic functions of rotation and

we apply such SDP in Section 3.4 to determine the pose of an articulated structure.

In Section 3.5, we propose an alternate SDP to find the relative translations between

fragments, when estimating the full protein structure directly is not possible. In Section

3.6, we present the numerical results with synthetic data and also for experimental data

of ubiquitin (PDB ID: 1D3Z). In Section 3.8, we introduce the Cramér-Rao lower bound

for the structure determination problem from RDC.
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3.1 Notation

We use Id to denote the identity matrix of size d×d. We use Ai to denote the i-th column

of a matrix A. We use vec(A) to denote the vectorization of a matrix A, and mat(A) to

denote the inverse procedure. In this chapter we only use the mat(·) operation to form

a 3× 3 matrix from a column vector in R9. We denote the trace of a square matrix A

by Tr(A). The Kronecker product between matrices A and B is denoted by A⊗ B. The

all-ones vector is denoted by 1 (the dimension should be obvious from the context). The

i-th canonical basis vector is denoted as ei.

3.2 Problem Formulation

3.2.1 Protein backbone as articulated structure

An articulated structure is a chain of rigid units where one unit is “chained” together with

the next unit with non-overlapping joints (Figure 3.1a). When there is a joint between

two consecutive units, the relative translation is fixed but not the relative rotation. If

there are two non-overlapping joints between two consecutive units, there is only one

undetermined degree of freedom corresponding to a rotation around the axis defined

by the two joints. This structure is also referred to as the body-hinge framework [158]

in rigidity theory. Let an articulated structure be composed of K points residing in M

rigid units. For such structure, we define a set of points {Ji}Mi=1 as the joints between the

units where Ji ∈ {1, . . . , K}. The i-th unit is joined to the (i − 1)-th unit at Ji. Since the

coordinates in each unit are known a-priori up to a rigid transformation, we then use

x (i)k to denote the location of point k in the local coordinate system of the i-th rigid unit.

Notice that due to the rigid motion ambiguity, a Euclidean transform needs to be applied

to each of the local coordinates x (i)k for each i in order to form the global structure.

Let ζ(i)k be the global coordinate of point k in the i-th unit. For an articulated structure,
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it is possible to represent the global coordinates ζ(i)k using the rotations Ri, i = 1, . . . , M

associated with the M rigid units. For i = 1, we let

ζ
(1)
k = R1(x

(1)
k − x (1)J1

) + t (3.2)

which amounts to orienting the first rigid unit with R1 and adding a translation so that

ζ
(1)
J1

are placed at t ∈ R3. The coordinates for the i = 2 rigid unit can be obtained as

ζ
(2)
k = R2(x

(2)
k − x (2)J2

) + ζ(1)J2
. (3.3)

The above operations ensure that the i = 2 rigid unit is jointed to the i = 1 rigid unit at

joint J2, since one can verify that ζ(2)J2
= ζ(1)J2

. The same reasoning implies that in general

the recursive relationship

ζ
(i)
k = Ri(x

(i)
k − x (i)Ji

) + ζ(i−1)
Ji

(3.4)

should hold. Applying induction to (3.4) results

ζ
(i)
k = Ri(x

(i)
k − x (i)Ji

) +
i−1
∑

s=1

Rs(x
(s)
Js+1
− x (s)Js

) + t. (3.5)

The coordinate of each atom is thus expressed as a linear combination of the rotations

Ri ’s and a global translation t. As mentioned previously, when there are hinges in the

articulated structure the rotations have fewer degrees of freedom. To incorporate the

hinges, we define another set of joints {Hi}Mi=1 where {Hi}Mi=1 ∩ {Ji}Mi=1 = ;. Let v(i)kl be

the unit vector between the pair of points (k, l) in the frame of the i-th rigid unit. To

ensure two consecutive rigid bodies stay chained together by a hinge, Ri ’s should satisfy

the hinge constraints

Ri v
(i)
Hi Ji
= Ri−1v(i−1)

Hi Ji
, i = 2, . . . , M . (3.6)
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Using the above framework, we can reduce the problem of finding atomic coordinates

of a protein backbone into a problem of finding the special orthogonal transforms. This

is because the protein backbone can be modeled as an articulated structure composed of

peptide planes and CA-bodies. As depicted in Figure 3.1b, a peptide plane is a 2D rigid

plane consisting atoms from two consecutive amino acids: CA,C, O from one amino acid

and H,N, CA from the next amino acid. The CA-body is a 3D rigid body consisting of

five atoms CA,N, C,HA and CB all coming from one amino acid. The bonds (N, CA), (C,

CA) act like hinges between the rigid units.

𝑖𝑖 𝑖𝑖 − 1 

𝑖𝑖 − 2 

𝜁𝜁𝐽𝐽𝑖𝑖−2
(𝑖𝑖−2)

 

𝜁𝜁𝐻𝐻𝑖𝑖−2
(𝑖𝑖−2)

 

𝜁𝜁𝐽𝐽𝑖𝑖−1
(𝑖𝑖−1)

 

𝜁𝜁𝐻𝐻𝑖𝑖−1
(𝑖𝑖−1)

 

𝜁𝜁𝐽𝐽𝑖𝑖
(𝑖𝑖)

 

𝜁𝜁𝐻𝐻𝑖𝑖
(𝑖𝑖)

 

(a)

C

O

CA

N CA

H

HA
CBCA body

Peptide plane

NC

CA

O

H

(b)

Figure 3.1: (a): Example of an articulated structure with joints with indices Ji ’s (Red
dots) and Hi ’s. The hinges are represented by black bars in the figure. (b): Protein
backbone consists of peptide planes and CA bodies. These rigid units are chained
together at the bonds (N, CA) and (C,CA).

3.2.2 RDC data

In the setting of calculating protein structure, the RDC measurements described in (3.1)

can be used to constrain the rotation for each rigid unit. Within each rigid unit, in

principle all pairs of isotope-labeled atoms except those involving oxygen, O, can give

rise to RDC, although in practice only a subset of these pairs have their RDC measured.

Suppose N Saupe tensors for the protein in N different alignment media have been

predetermined. In the j-th alignment media, the RDC measurements for the i-th rigid

unit between the pair of atoms (n, m), denoted r( j)nm, can be modeled in the following
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way:

r( j)nm = v(i)nm
T
RT

i S( j)Ri v
(i)
nm, (n, m) ∈ ERDC i,

i = 1, . . . , M , j = 1, . . . , N . (3.7)

The set ERDC i is the set of edges that give rise to RDC in the i-th rigid unit, and S( j)

denotes the Saupe tensor in alignment media j. The orientation of the peptide planes and

CA-bodies can be obtained by solving equation (3.7) subject to the hinge constraint (3.6).

Due to experimental errors in measuring the RDC, (3.7) is only satisfied approximately,

and orientations can be estimated by minimizing the following cost

M
∑

i=1

N
∑

j=1

∑

(n,m)∈ERDC i

|v(i)nm
T
RT

i S( j)Ri v
(i)
nm − r( j)nm|

p (3.8)

subject to (3.6). In the cost function (3.8) each bond is counted once, including bonds

that lie in both the peptide plane and the CA-body (e.g., bond (C− CA)). The choice

of the parameter p depends on the specific noise model, and typical choices are p = 2

(least squares) and p = 1 (least unsquared deviations). We show in Section 3.8.2, the

minimization of (3.8) with p = 2 corresponds to a maximum likelihood estimation

when the noise on RDC is Gaussian. If robustness to outlier type noise is required,

p = 1 can be used instead. The difficulty of minimizing target function (3.8) lies in the

non-convex nature of both the cost and domain. Therefore, RDC measurements are

typically used when refining an existing, high quality structure derived from solving the

distance geometry problem from NOE or from homology modeling [33].

3.2.3 NOE data

We now rewrite the distance constraints in (1.4) in terms of the rotations. Instead of

working with bounds on distances, we use bounds on squared distances, for reasons
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that will become apparent in Section 3.3. Assuming i > j, from (3.5) we have

‖ζ(i)m − ζ
( j)
n ‖

2
2 = ‖Ri(x

(i)
m − x (i)Ji

) − R j(x
( j)
n − x ( j)J j

) +
i−1
∑

s= j+1

Rs(x
(s)
Js+1
− x (s)Js

)‖2
2. (3.9)

In this way, we write squared distances between two atoms, necessary for expressing

NOE measurements, as quadratic functions of Ri ’s. To satisfy the constraint (1.4), we

can minimize

max((d low
mn )

2 − ‖ζ(i)m − ζ( j)n ‖
2
2, 0)p + max(‖ζ(i)m − ζ( j)n ‖

2
2 − (d

up
mn)

2, 0)p (3.10)

where the choice of p again depends on the noise model. In practice, the NOE measure-

ments for the backbone atoms are more reliable and can also be treated as relatively

hard constraints.

3.3 Quadratic problem on O(3) and SO(3)

In this section, we introduce a novel convex relaxation to optimization problems of the

form

min
R

f (vec(R)vec(R)T ) such that R ∈ SO(3) (3.11)

where f is a convex function, upon which our method for estimating pose of an articu-

lated structure relies. We note that a convex relaxation has been proposed previously in

[7] to a close relative of problem (3.11), namely

min
R

f (vec(R)vec(R)T ) such that RT R= I3, RRT = I3 (3.12)

where R belongs to the orthogonal group. However, since we consider the group of

SO(3) instead of the orthogonal group we can further strengthen the relaxation in [7]

by relating matrices in SO(3) to their quaternion representation. Before proceeding we
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introduce some notations. The linear operator R : R9×9→ R3×3 is defined as

R(X )(i, j) = Tr(X i j) (3.13)

for any X ∈ R9×9 where X i j denotes the (i, j)-th 3×3 block in X . The operatorR enables

writing the product

AT B =R(vec(A)vec(B)T ). (3.14)

for any two 3× 3 matrices A and B. The linear operator L : R9×9→ R3×3 is defined as

L (X ) =
3
∑

i=1

X ii. (3.15)

Notice that for any 3× 3 matrices A, B,

ABT =L (vec(A)vec(B)T ). (3.16)

3.3.1 Convex relaxation: quadratic problem on O(3)

We first discuss the instance of solving equation (3.12) where we only consider variables

in the orthogonal group O(3). In order to derive a relaxation of (3.12), we define a new

variable

Y = vec(R)vec(R)T (3.17)

that consists of all degree 2 monomials of the elements of R. To enforce orthogonality,

we add the constraints

I3 = RRT =L (vec(R)vec(R)T ) =L (Y )

I3 = RT R=R(vec(R)vec(R)T ) =R(Y ) (3.18)
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Although at this point the two constraints are redundant as RT R = I3 if and only if

RRT = I3, its usefulness will be apparent when we apply convex relaxation. Using the

newly defined variable Y , we first consider rewriting the problem (3.12) as

min
Y,R

f (Y )

s.t. L (Y ) =R(Y ) = I3,

Y = vec(R)vec(R)T (3.19)

The last constraint is equivalent to Y � 0 and rank(Y ) = 1. We then drop the rank

constraint on Y and obtain the following SDP relaxation

min
Y

f (Y )

s.t. L (Y ) =R(Y ) = I3,

Y � 0. (3.20)

Semidefinite relaxation of this type was presented in [7]. It was further shown that for

f (Y ) = Tr((A⊗B)Y )where A, B are general symmetric matrices, the non-convex problem

in (3.19) can be solved exactly via this type of relaxation. Notice that if rank(Y ) = 1

such that Y = vec(R)vec(R)T for some R ∈ R3×3, the constraints L (Y ) =R(Y ) = I3 are

redundant. This is because I3 =L (Y ) = RRT implies RT is the inverse of R leading to

R(Y ) = RT R = I3. This argument does not work if Y 6= vec(R)vec(R)T for some R ∈ R3×3

hence L (Y ) 6= RRT and R(Y ) 6= RT R. In fact for the following Y with rank(Y ) = 3

where

Yii =











1 0 0

0 0 0

0 0 0











i = 1,2, 3, and Yi j = 0 for i 6= j,

Y � 0 satisfies L (Y ) = I3 but R(Y ) 6= I3. Therefore after the rank relaxation both the

constraints in (3.18) are needed and they are not redundant.
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3.3.2 Convex relaxation: quadratic problem on SO(3)

For physical problems, often we can further reduce the search space for R from O(3) to

SO(3) due to chirality constraints. It would be beneficial if we can include the constraint

det(R) = 1. We have seen that the orthogonality of R can be enforced through linear

constraints in (3.20) due to the fact that any degree 2 polynomial in R can be expressed

as a linear function of Y = vec(R)vec(R)T . However, the determinant constraint involves

a degree 3 polynomial in the entries of R hence it cannot be expressed by the variables in

(3.20). We therefore enforce chirality constraints by relating the columns of R through

the cross products. Let

Cross(A) :=











A(2,3)− A(3, 2)

A(3,1)− A(1, 3)

A(1,2)− A(2, 1)











(3.21)

for any A∈ R3×3. For two vectors v1, v2 ∈ R3, Cross(v1vT
2 ) = v1× v2 where v1× v2 denotes

the cross products between v1 and v2. For a rotation matrix R ∈ SO(3), the following

constraints

R1 = R2 × R3 = Cross(Y23), R2 = R3 × R1 = Cross(Y31), R3 = R1 × R2 = Cross(Y12)

(3.22)

specify the “handed-ness” of the coordinate frame established by R= [R1, R2, R3]. Here

Y = vec(R)vec(R)T and Yi j is the (i, j)-th 3× 3 block of Y . Let

X (Y ) :=
h

Cross(Y23) Cross(Y31) Cross(Y12)
i

,

problem in (3.11) can be written equivalently as

min
Y,R

f (Y )

s.t. L (Y ) =R(Y ) = I3,
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Y = vec(R)vec(R)T ,

R=X (Y ) (3.23)

Since the constraint Y = vec(R)vec(R)T is not convex, we replace it with Y � vec(R)vec(R)T ,

which results in a convex relaxation for quadratic problems on SO(3)

min
Y,R

f (Y )

s.t. L (Y ) =R(Y ) = I3,

Y � vec(R)vec(R)T ,

R=X (Y ) (3.24)

Interestingly in (3.24), R is in the convex hull of the rotation matrices. This can be seen

by relating the elements in SO(3) to their unit quaternion representations, as shown in

the appendix in Section 3.8.1.

We note that in [44], a similar convex relaxation using the cross products is proposed

to optimize quadratic functions with their domain being the Stiefel manifold

{Q ∈ R3×2 | QTQ = I2}.

As in (3.19), such an optimization problem is convex in the PSD variable

X = vec(Q)vec(Q)T � 0 (3.25)

if the rank-1 constraint on X is to be dropped. The orthogonality of the columns of Q

can be enforced through placing linear constraints on X , i.e.

Tr(X i j) =







1 if i = j

0 if i 6= j
(3.26)
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where X i j denotes the (i, j)-th 3× 3 block of X . In [44], an additional vector

Q3 :=Q1 ×Q2 = Cross(X12) (3.27)

is employed to further tighten this convex relaxation. Since the rows of the matrix

[Q1,Q2,Q3] are
h

Q1 Q2 Q3

ih

Q1 Q2, Q3

iT

� I3, (3.28)

implying the following convex constraint

X11 + X22 +Q3Q
T
3 � I3. (3.29)

This mimics the first constraint in (3.18) when dealing with orthogonal matrices. How-

ever, equality cannot be placed on equation (3.29) since this introduces non-convexity.

3.4 Quadratic problem of articulated structures

In this section, we propose two convex relaxations for finding the pose of an articulated

structure. In this case, we need to solve for the rotation of each of the M rigid units

subject to the hinge constraints in (3.6). We first define variables

R= [R1, . . . , RM] ∈ SO(3)M

and

Y = vec(R)vec(R)T . (3.30)

For convenience of indexing, in this section we view Y as a M ×M block matrix where

Yi j = vec(Ri)vec(R j)T . It is important to define such a matrix Y since the measurements

involve quadratic functions of rotation matrices.
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If the rigid units are not chained together, each Ri can be solved for via the convex

relaxation proposed in (3.24). However, in an articulated structure the rigid units are

not independent of each other but related via (3.6)

Ri v
(i)
Hi Ji
= Ri−1v(i−1)

Hi Ji
, i = 2, . . . , M (3.31)

which are linear constraints between Ri and Ri−1. Therefore all rotations have to be

optimized jointly. We now introduce a few redundant constraints. Equation (3.6) leads

to constraints on Y :

v(i−1)
Ji Hi

T
RT

i−1eT
k elRi−1v(i−1)

Ji Hi
= v(i)Ji Hi

T
RT

i eT
k elRi v

(i)
Ji Hi

∀ k, l = 1,2, 3, (3.32)

where ek ’s are the canonical basis vectors in R3. Writing the constraints using Y we get

Tr((v(i−1)
Ji Hi

v(i−1)
Ji Hi

T
⊗ ekel)Y(i−1)(i−1)) = Tr((v(i)Ji Hi

v(i)Ji Hi

T
⊗ ekel)Yii). (3.33)

In the same spirit, another set of constraints

v(i−1)
Ji Hi

= RT
i−1Ri v

(i)
Ji Hi

can be encoded as

v(i−1)
Ji Hi

=R(Y(i−1)i)v
(i)
Ji Hi

. (3.34)

The redundant constraints (3.33) and (3.34) will no longer be redundant when Y =

vec(R)vec(R)T is relaxed to Y � vec(R)vec(R)T .

Now, based on the convex relaxation (3.24) for the problem involving a single

rotation, together with the hinge constraints equations (3.6),(3.33) and (3.34), we

propose the following convex relaxation to solve for the rotations for an articulated
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structure:

(P1) min
Y,R

f (Y ) (3.35)

s.t. Y � vec(R)vec(R)T (3.36)

L (Yii) =R(Yii) = I3, i ∈ [1, M], (3.37)

Ri =X (Yii), i ∈ [1, M] (3.38)

Ri−1v(i−1)
Ji Hi

= Ri v
(i)
Ji Hi

, i ∈ [2, M], (3.39)

v(i−1)
Ji Hi

=R(Y(i−1)i)v
(i)
Ji Hi

, i ∈ [2, M], (3.40)

Tr((v(i−1)
Ji Hi

v(i−1)
Ji Hi

T
⊗ ekel)Y(i−1)(i−1))

= Tr((v(i)Ji Hi
v(i)Ji Hi

T
⊗ ekel)Yii), k, l ∈ [1,3], i ∈ [2, M] (3.41)

Here f is a convex function determined by the measurements. As before, the relaxation

is obtained by changing Y = vec(R)vec(R)T to (3.36).

The SDP problem (P1) involves a PSD variable of size (9M + 1) × (9M + 1). In

applications where the convex cost of (P1) can be decomposed as

f (Y ) =
M
∑

i=1

fi(Yii), (3.42)

i.e. each term in the cost involves a single rotation, the size of the variable used in

(P1) can be further reduced. In this case, we propose the following size-reduced convex
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relaxation

(P2) min
Y (i),Ri�0

M
∑

i=1

fi(Y
(i)) (3.43)

s.t. Y (i) � vec(Ri)vec(Ri)
T , (3.44)

L (Y (i)) =R(Y (i)) = I3, i ∈ [1, M], (3.45)

Ri =X (Y (i)), i ∈ [1, M] (3.46)

Ri−1v(i−1)
Ji Hi

= Ri v
(i)
Ji Hi

, i ∈ [2, M], (3.47)

Tr((v(i−1)
Ji Hi

v(i−1)
Ji Hi

T
⊗ ekel)R(Y (i)))

= Tr((v(i)Ji Hi
v(i)Ji Hi

T
⊗ ekel)R(Y (i))), k, l ∈ [1,3], i ∈ [2, M]. (3.48)

All the constraints of (P2) are implied by the constraints in (P1) except (3.40). Notice

that if the constraint (3.40) is not included in (P1), then (P2) and (P1) are in fact

equivalent under the assumption that the cost function satisfies (3.42). From a solution

Y (i)
?
, R?i of (P2), a solution Y ? in (P1) can be obtained by simply setting Y ?ii = Y (i)

?
and

Y ?i j = 0 for i 6= j, with the same R?i from (P2).

We pause here for a remark about the convex relaxation in (P1). If the function f

only depends on RT
i R j (which is the case when only NOE measurements are provided for

protein structural determination), it suffices to use a classic SDP proposed for rotation

synchronization problem involving a 3M × 3M rank-3 Gram matrix [134, 41]

G :=











RT
1

...

RT
M











h

R1 . . . RM

i

. (3.49)

Define the (i, j)-th 3× 3 block of G as Gi j, we can minimize f (G) ( f is convex) using

the Max-Cut type SDP relaxation [56]

min
G

f (G)
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s.t. Gii = I3,

G � 0,

v(i−1)
Ji Hi

= G(i−1)i v
(i)
Ji Hi

, i ∈ [2, M],

rank(G) = 3 (relaxed). (3.50)

In this context of f arising solely from NOE restraints, this program can be used to solve

the distance geometry problem. In this case, (P1) is an overly-relaxed convex relaxation

as there are many more variables in (P1) compare to (3.50), with the same number

of measurements. In the presence of both RDC and NOE constraints, (P1) is needed

instead since the cost depends on individual columns of Ri. We note that the problem

(3.50) is embedded in (P1). More precisely, letting Gi j := R(Yi j), the constraints in

(3.50) are implied by the constraints in (P1). While it is obvious to see this for the linear

constraints in (3.50), to see the PSD-ness of G, first let R∗ be the adjoint operator of R

defined through

Tr(BTR(A)) = Tr(ATR∗(B)) for any A∈ R9×9, B ∈ R3×3.

Then

R∗(B) = B ⊗ I3.

G � 0 follows from the fact that for any x ∈ R3M ,

x T Gx =
M
∑

i=1

M
∑

j=1

Tr(x T
i R(Yi j)x j)

=
M
∑

i=1

M
∑

j=1

Tr(Yi jR∗(x i x
T
j )) = Tr(Y (x x T ⊗ I3))≥ 0 (3.51)

if Y � 0.
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3.4.1 Convex relaxation for structural calculation: RDC-NOE-SDP

and RDC-SDP

When solving (P1) in the context of protein structural calculation from RDC and NOE,

we name the proposed method RDC-NOE-SDP. The RDC cost (3.8) in terms of Y is

defined as

f RDC(Y ) =
M
∑

i=1

N
∑

j=1

∑

ERDC i

|Tr((v(i)nmv(i)nm
T ⊗ S( j))Yii)− r( j)nm|

p. (3.52)

As for NOE, we simply note that the squared distances ‖ζ(i)m − ζ
( j)
n ‖

2
2 for (m, n) ∈ ENOE

are quadratic in Ri ’s (see Eq. (3.9)). Therefore the cost (3.10) can be written as

f NOE(Y ) =max((d low
mn )

2 − Tr(AmnY ), 0)p +max(Tr(AmnY )− (dup
mn)

2, 0)p (3.53)

using some coefficient matrices Amn’s.

Given only RDC measurement, we can solve (P2) with the RDC cost target equation

(3.8) to achieve a speed-up through reduction in variable size because the cost f RDC(Y )

is of the form of equation (3.42). We call this method RDC-SDP.

3.4.2 Rounding: projection and manifold optimization

In this section, we detail a rounding scheme to extract rotations from the solutions of

(P1) and (P2). We first examine the case of rounding from the solution of (P1). Denote

the solution to (P1) as Y ?, R?. When we apply the convex relaxation in (P1), it is possible

that Y ? 6= vec(R?)vec(R?)T . To round, we first apply a rank 1 approximation to Y ? via

the eigen-decomposition

Y ? =
∑

i

λiwiw
T
i . (3.54)

The rank-1 approximation to Y ? is then y? y?T , where

y? =
Æ

λ1w1 (3.55)
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and λ1 and w1 are the top eigenvalue and eigenvector of Y ?. We treat y? as a vector

composed of M blocks of 9× 1 smaller vectors and use y?i to denote the i-th block of y?.

To recover individual rotations, let

R̃i = argmin
R∈O(3)

‖R−mat(y?i )‖
2
F (3.56)

where O(3) is the group of orthogonal 3 × 3 matrices. For any matrix A, its closest

orthogonal matrix in Frobenius norm is given by by UV T where the orthogonal matrices

U , V ∈ R3×3 are obtained from the singular value decomposition (SVD) UΣV T of A.

Notice that y? has a sign ambiguity and we choose the sign of y? such that det(mat(y?i ))>

0 (and hence det(R̃i) > 0) for the majority of det(mat(y?i ))’s. For those mat(y?i ) with

negative determinants, we use

Udiag([1,1,−1])V T

as the projection of mat(y?i ) to the nearest special orthogonal matrix after SVD (also

known as Kabsch algorithm [84]). When dealing with clean data, we expect det(mat(y?i ))>

0 for all i with the proper choice of the global sign. Even in the presence of noise,

det(mat(y?i )) is rather stable and we have not encountered a case where det(mat(y?i ))

turns out to be negative in our numerical simulation study.

A similar rounding procedure can be applied after using (P2). After obtaining the

rank-1 approximation y?i y?i
T to Y (i)

?
, we find R̃i from

R̃i = argmin
R∈O(3)

‖R− det(mat(y?i ))mat(y?i )‖
2
F . (3.57)

Notice that although it is possible to directly round R?i obtained from (P1) and (P2),

empirically we observe obtaining the rotations from y?i is more robust to noise.

For the case when the solutions to (P1) and (P2) are not rank-1, the non-convex
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problem of finding the rotations of the rigid units is not solved exactly. After rounding

there is no guarantee that R̃i orient the rigid units optimally such that the costs (3.8) and

(3.10) are minimized. In this case, since the pose recovery problem for an articulated

structure is an optimization problem on the product of SO(3) manifolds, we use the

manifold optimization toolbox Manopt [21] to refine R̃i further in order to obtain

a solution with a lower cost. However, since Manopt only handles unconstrained

optimization problem on a Riemanian manifold, we have to use the penalty method to

handle the hinge constraint (3.6) of the type h(R) = 0 by adding a penalty (µ/2)‖h(R)‖2
2

with increasing µ. We note that without a good initialization, manifold optimization can

easily get stuck in a local minima as it is essentially a gradient descent based approach

that descends along the geodesics of a manifold.

3.4.3 Summary of the structural calculation algorithm

In this subsection we summarize the full procedures of RDC-NOE-SDP for structural

calculation. The procedure of RDC-SDP follows similarly. We first solve the convex

relaxed program (P1) to find the rotations that orient each rigid unit, under the hinge

constraints that chain the rigid units together. Since the solution to (P1) does not

necessarily yield transformations that satisfy the special orthogonality constraints, a

rounding procedure detailed in Section 3.4.2 is employed to ensure special orthogonality.

Using this approximate solution as a starting point, we further optimize the cost in (P1)

locally using the Manopt toolbox. The estimated rotations are then used to construct the

backbone coordinates using the recursive relation introduced in (3.4), and we denote

these coordinates as ζ(i)k

?
.
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Algorithm 4 RDC-NOE-SDP

Require: Local coordinates x (i)k , k = 1, . . . , K , i = 1, . . . , M , RDC and Saupe tensors in
N alignment media, and NOE measurements.

Ensure: Global coordinates ζ(i)k

?
, k = 1, . . . , K , i = 1, . . . , M .

1: Find the solution Y ? to problem (P1) with cost (3.52) and (3.53) using CVX.
2: Compute the top eigenvector y? of Y ?.
3: For i ∈ [1, M], R̃i = argmin

R∈O(3)
‖R − mat(y?i )‖

2
F . Pick the sign of y? such that

det(mat(y?i )) > 0 for most mat(y?i ). Use Kabsch algorithm to project mat(y?i ) to
SO(3) if det(mat(y?i ))< 0.

4: Refine R̃i, i = 1, . . . , M locally (e.g., using Manopt).
5: ζ

(1)
k

?
= R̃1(x

(1)
k − x (1)J1

), ζ(i)k

?
= R̃i(x

(i)
k − x (i)Ji

) + ζ(i−1)
Ji

?
for i ∈ [2, M].

3.5 Estimating pairwise translations between multiple

protein fragments

In the presence of RDC measurements, the backbone conformation of the full protein

can be determined from the calculated Ri ’s, up to a global translation. However, it is

usually the case that some of the amino-acid residues contain very few or no RDC’s being

measured. While RDC-SDP will certainly fail in these situations, using RDC-NOE-SDP is

also undesirable. As mentioned in Section 3.4, when the NOE set is the main constraint

placed on the protein structure, it is unnecessary to use (P1) but instead, a smaller

convex relaxation (3.50) can be used. The convex relaxation in (P1) is typically not

tight if the geometric constraints mainly come from the NOE data. In this case we need

to break up the protein and calculate the conformations for selected fragments of the

protein backbone. Therefore it is necessary to figure out the relative translation between

the fragments in order to combine the backbone segments coherently. In this section, we

propose a semidefinite relaxation that jointly uses NOE restraints between all fragments

to piece them together. Let there be F fragments. We denote the coordinate of the k-th

atom in the i-th fragment as z(i)k . We note that in this section, the superscript “(i)” is

no longer used as the index for rigid peptide plane or CA-body, but as the index of a

fragment composed of multiple amino acid residues. The goal is to find t1, . . . , tF ∈ R3
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such that

(d low
kl )

2 ≤ ‖z(i)k + t i − (z
( j)
l + t j)‖2

2 ≤ (d
up
kl )

2, (k, l) ∈ ENOE (3.58)

It should be understood that in this context, ENOE only contains the NOE distance

restraints between the fragments. The squaring of the constraint is important to obtain

a semidefinite relaxation to solve for the pairwise translations. Now let

T =

















tT
1

...

tT
N

I3

















h

t1 · · · tN I3

i

=

















tT
1 tT

1 . . . tT
1 tF tT

1

...
. . .

...
...

tT
F t1 . . . tT

F tF tT
F

t1 . . . tF I3

















∈ R(3+F)×(3+F) (3.59)

where T is rank 3 and positive semidefinite. Again, by writing (3.58) in terms of T

and by relaxing the rank 3 constraint for T we can solve for the pairwise translations

through the following semidefinite program

(P3) min
T�0,

eup
kl ≥0, elow

kl ≥0

∑

(k,l)∈ENOE

eup
kl + elow

kl − γTr(T ) (3.60)

s.t. 2(T (F + 1 : F + 3, i)− T (F + 1 : F + 3, j))T (z(i)k − z( j)l )

+ T (i, i) + T ( j, j)− 2T (i, j) + ‖z(i)k − z( j)l ‖
2
2 ≤ (d

up
kl )

2 + eup
kl , (k, l) ∈ Eup,

2(T (F + 1 : F + 3, i)− T (F + 1 : F + 3, j))T (z(i)k − z( j)l )

+ T (i, i) + T ( j, j)− 2T (i, j) + ‖z(i)k − z( j)l ‖
2
2 ≥ (d

low
kl )

2 − elow
kl , (k, l) ∈ Elow,

T (F + 1 : F + 3, F + 1 : F + 3) = I3

T1= 0. (3.61)

The last constraint is simply to remove the global translation ambiguity. Instead of

using (3.58) as hard constraints to find pairwise translations that satisfy them, we

penalize the violation of such bounds through the cost in (P3). This is necessary
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because errors in estimating individual fragment coordinates and also ambiguous NOE

assignments may cause violations of (3.58). After obtaining the solution T ?, we simply

use T ?(F + 1 : F + 3,1 : F) as the translations for the fragments. The extra maximum

variance unfolding [155] type regularization −γTr(T) prevents the fragments from

clustering too tightly by maximizing the spread of the translations [17].

We conclude this section with a toy example that demonstrates the superiority of

joint translation estimation using SDP. For the convenience of illustration, we provide the

example in 2D. In order to sequentially assemble the fragments from pairwise distances,

it is necessary that there is a pair of fragments where there are at least two distance

measurements between them. This is needed to fix the relative translation between

the two fragments with two degrees of freedom. In the toy example in Figure 3.2, this

necessary condition for greedy sequential methods is not satisfied, but even so with (P3)

we are able to recover the correct positions of the fragments. This property of (P3) is

quite important, since in practice there are typically only a few NOE restraints between

secondary elements of the protein backbone (with the exception of β strands) [109].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.2: Three fragments in 2D positioned by (P3) using the distance measurements
(Blue dotted lines). While it is impossible to determine the translations sequentially
with the distance measurement pattern shown here, with (P3) the three fragments can
be assembled jointly.
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3.6 Numerical experiments

3.6.1 Comparison to Cramér-Rao lower bound

In this section, we present the results of numerical simulations with synthetic data for

RDC-SDP and RDC-NOE-SDP. We first describe the noise model in our simulations. Let

ζ= [ζ1, . . . ,ζK] ∈ R3×K be the ground truth coordinates. We drop the superscript “(i)”

when denoting the atom coordinate since the membership of an atom to a rigid unit is

immaterial here. Now let ERDC be the set of atom pairs with RDC measured, and assume

that the RDC measurements are generated through

r( j)nm = vnm
T S( j)vnm +σε

( j)
nm, (n, m) ∈ ERDC, j = 1,2, (3.62)

where the bond direction vnm is related to the coordinates ζn,ζm through

vnm =
ζn − ζm

‖ζn − ζm‖2
. (3.63)

We assume ε( j)nm ∼ N (0,1) where N (0,1) is the standard normal distribution. While

it is quite common for different types of atomic pairs with RDC measured at different

levels of uncertainty, in this section we assume rnm’s are all corrupted by i.i.d. Gaussian

noise of same variance σ2 for the noise model introduced in (3.62).

In this simulation study, we use the α helix of the protein ubiquitin (residue 24

- residue 33) to generate synthetic RDC data. The data file for the PDB entry 1D3Z

contains RDC datasets measured in two alignment media. From the known PDB struc-

ture, we determine the two Saupe tensors S(1), S(2) in these alignment media and use

them for simulation purposes. We simulate synthetic RDC data using the noise model

(3.62) where atom pair directions are obtained from the ground truth PDB model. For

this simulation we use the pairs {(C, CA), (C,N), (N,H)} from the peptide plane, and

{(CA, HA), (CA,CB)} from the CA-body to generate RDCs, as the RDCs associated with
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these pairs are commonly measured. In addition to RDC measurements, we also run

the simulation with the aid of 16 NOE restraints on the backbone. The form of NOE

restraints is in terms of upper and lower bounds. To measure the quality of a coordinate

estimator ζ̂, we use the Root-Mean-Square-Distance (RMSD)

RMSD=

√

√

√‖ζ̂− ζ‖2
F

K
(3.64)

where ζ is the starting PDB model. We evaluate the RMSD for the atoms CA, CB, C, N,

H, O and HA in all amino acids.

We present the simulation results in Figure 3.3. We simulate RDC noise with σ ∈

[0, 5e− 5]. Every data point is averaged over 30 noise realizations of RDC. We compare

the scenarios of running (1) RDC-SDP without the chirality constraint (3.46), (2) RDC-

SDP and (3) RDC-NOE-SDP with hard distance constraints provided by NOE, both with

and without Manopt refinement after the SO(3) projection step. When there is no noise,

for all scenarios RDC-SDP and RDC-NOE-SDP exactly recover the rotations. This is a

property that simulated annealing based methods do not enjoy, as even without noise

these methods can still suffer from local minima issue. The simulation also highlights the

importance of the unit chirality constraint (3.46), as without such constraint RDC-SDP

fails to attain 1 Å RMSD at high noise level. If the chirality constraint is included, we can

achieve within 1 Å RMSD even without Manopt refinement. As expected, the inclusion

of NOE measurements in RDC-NOE-SDP can further reduce the RMSD. We also compare

the results of various schemes both before and after Manopt refinement, in order to show

that local refinement has limited effect on the solution quality hence it is crucial to have a

high quality initialization. We further compare our results against the Cramér-Rao lower

bound. The CRB provides an information-theoretic lower bound for the least possible

variance that can be achieved by any coordinate estimator. The derivation of the CRB is

given in Section 3.8.2. With RDC-SDP we are able to attain the CRB for moderate noise
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levels. In the case of RDC-NOE-SDP the CRB is attained at all noise levels. Here we

remark that we slightly abused terminology by referring to the normalized RDC as RDC,

where the un-normalized RDC is defined in (1.7). We emphasize that when σ = 5e-5,

the magnitude of noise on the un-normalized RDC is rather large. For example, since

the dipolar coupling constant for the N-H RDC is about 23 kHz, when σ = 5e-5 the

actual noise is 1.15 Hz. This is larger than the typical experimental uncertainty of N-H

RDC (<0.5 Hz) [78].
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RDC−SDP
(No chirality constraint/ No ManOpt)
RDC−SDP (No chirality constraint)
RDC−SDP (No ManOpt)
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RDC−NOE−SDP (No ManOpt)
RDC−NOE−SDP
CRB

Figure 3.3: Comparison between running RDC-SDP and RDC-NOE-SDP under 6 different
scenarios. We run RDC-SDP with and without the chirality constraints (3.46) both before
and after Manopt refinement. When we include NOE restraints using RDC-NOE-SDP,
the results are significantly improved and we are able to attain the CRB after Manopt
refinement.

We also provide a comparison of our methods with the molecular fragment replace-

ment (MFR) method proposed in [11] using the full ubiquitin sequence with 76 amino

acids and about 500 backbone atoms. We first give a brief introduction to the MFR

method. MFR is an RDC-based method that determines the structure of a protein through

finding homologous structures in the PDB for short fragments of the protein. For a short

fragment, candidate structures from the PDB are used to construct the coordinates in
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(3.1). Then a least-squares procedure detailed in the introduction is used to obtain the

Saupe tensor based on the experimentally measured RDC and the candidate structure.

If a PDB candidate structure gives a low residual in the least-squares fitting, it will be

deemed a structure similar to the protein fragment under inspection. Other experi-

mental information such as chemical shifts can also be compared to the information

recorded in the database to find a similar structure. The homologous structures for

short fragments of the protein are then merged and simulated annealing is applied

to further refine the structure based on the RDC measurements. In this numerical

study, we start simulated annealing with temperature of 600 K and cool down to 0

K in 30000 steps. For a fair comparison between MFR and our proposed methods,

we do not use chemical shift information for the MFR procedure but only RDC and

NOE. We again simulate RDC measurements from the noise model in (3.62) for the

bonds (C,CA), (C, N), (N, H), (CA, HA), (CA,CB), with noise levels σ = 2.5,5e − 5. We

supplement the RDC with 187 experimentally reported backbone NOE’s. For ubiquitin,

the experimentally measured backbone NOE restraints have very few violations. The

RMSD of five reconstructed ubiquitin fragments, each having 13 amino-acids on average,

is reported in Table 3.1. Here we use the same fragments as in Section 3.6.2 where

experimental data is used to reconstruct the ubiquitin structure. The choice of the

fragments will be detailed in Section 3.6.2 and Table 3.2. The overall RMSD of the

protein backbone is also reported after assembling the five fragments using (P3) in the

last column of Table 3.1. It is shown that the total RMSD obtained from RDC-SDP and

RDC-NOE-SDP is significantly lower than the RMSD from the MFR method. Since MFR

relies heavily on initialization, when the noise is high, the identification of a wrong

homologous structure can severely impact the solution quality of simulated annealing.

It is expected that RDC-NOE-SDP outperforms RDC-SDP, at the expense of using more

data, as in Figure 3.3. The total RMSD of the entire backbone is generally higher than

the RMSD of the fragments, due to the imprecision of the NOE restraints and error
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accumulation when assembling the fragments.

1 2 3 4 5 Full backbone

σ=2.5e-5 RDC-SDP 0.27 0.49 0.71 0.19 0.47 1.75

RDC-NOE-SDP 0.27 0.32 0.10 0.11 0.53 1.35

MFR 1.13 1.78 0.96 1.77 2.74 2.87

σ=5e-5 RDC-SDP 0.67 0.59 1.07 0.86 2.34 2.34

RDC-NOE-SDP 0.40 0.48 0.27 0.57 0.84 1.72

MFR 1.44 2.22 1.24 2.92 2.83 4.43

Table 3.1: RMSD (Å) of five ubiquitin fragments using RDC-SDP, RDC-NOE-SDP and MFR
from simulated data with noise levels σ=2.5e-5 and 5e-5. The residue number in each
fragment is reported in Table 3.2. The results are averaged over 10 noise realizations.

3.6.2 Experimental data for ubiquitin

In this section, we present results on the analysis of experimental RDC data obtained in

two alignment media for ubiquitin. We only consider the peptide planes and CA-bodies

coming from the first 70 amino acids since the last 6 residues are highly flexible and do

not contribute to rigid constraints. In real data there are on average 7 RDC measurements

per amino acid in two different alignment media, arising from the bonds (C, CA), (C,N),

(N,H), (CA, HA), (CA, CB). Unlike the simulated case, in experimental data there might

be missing RDC measurements for some bonds. We again supplement the RDC with 187

experimentally reported backbone NOE’s. We use both RDC-SDP and RDC-NOE-SDP to

solve the backbone structure of five ubiquitin fragments, each containing 12-13 residues

on average. We split the fragments at amino-acid sites where there are too few or no

RDC measurements. The results are summarized in Table 3.2. When using only RDC, it

is more difficult to determine the backbone structure near the starting and end point of

a fragment since RDC measurements are generally sparser in those regions. Therefore

the fragments we used for RDC-SDP sometimes have smaller size than the fragments

used for RDC-NOE-SDP which uses additional distance measurements. Typically, when
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using RDC-SDP, we can tell whether the rotation for a rigid unit is well-determined

by simply examining how well Y (i)
?

can be approximated by a rank 1 matrix. We can

exclude those rigid units near the end of a fragment that give rise to high rank solutions

when solving (P2). In terms of accuracy, due to the additional distance restraints, RDC-

NOE-SDP outperforms RDC-SDP. The average RMSD of the fragments are 0.67 Å and

0.57 Å for RDC-SDP and RDC-NOE-SDP respectively when comparing with the X-ray

structure 1UBQ. To provide a different perspective, we also compare the results from our

method with the high resolution NMR structure 1D3Z [38]. Since RDC-SDP only involves

PSD variables of size 9× 9, whereas RDC-NOE-SDP involves variable of size 9M × 9M ,

the running time of RDC-SDP is significantly lower than RDC-NOE-SDP. In particular,

the running time for (P2) in RDC-SDP is never more than 2 seconds but the running

time for (P1) in RDC-NOE-SDP can be as long as 5 minutes. When we combine the

fragments using (P3), the conformation errors of the whole protein backbone obtained

from fragments determined by RDC-SDP and RDC-NOE-SDP are 1.28 (1.25) Å and

1.07 (1.11) Å RMSD respectively when comparing to 1UBQ (1D3Z). In practice when

calculating the protein backbone structure, we may want to use RDC-SDP instead of

RDC-NOE-SDP to obtain an initial structure and add NOE measurements in the local

refinement stage if running time is a concern. Figure 3.4 further compares the backbone

traces obtained from our proposed methods and the X-ray structure. We also compare

our results with MFR in Table 3.2. Comparing to RDC-SDP or RDC-NOE-SDP, structures

calculated from MFR has a closer similarity to the X-ray structure 1UBQ, with average

fragment RMSD and overall RMSD being 0.54 Å and 0.87 Å respectively. Since our

proposed methods have not yet taken into accounts potential terms concerning radius

of gyration, Van der Waals lower bound and infeasibility of the torsion angles, it is

reasonable that the proposed methods still cannot compare with MFR.
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1 2 3 4 5

Residue No. RDC-SDP 2-7 10-18 22-36 39-53 54-70

RDC-NOE-SDP 1-7 10-18 22-36 37-53 54-70

MFR 2-7 10-18 22-36 39-53 54-70

RMSD (Å)

1UBQ

RDC-SDP 0.57 0.51 0.81 0.70 0.78

RDC-NOE-SDP 0.41 0.54 0.71 0.54 0.65

MFR 0.42 0.51 0.45 0.78 0.52

RMSD (Å)

1D3Z

RDC-SDP 0.56 0.48 0.78 0.62 0.73

RDC-NOE-SDP 0.42 0.52 0.72 0.47 0.59

MFR 0.40 0.46 0.42 0.71 0.44

Time (s) RDC-SDP 8 (0.5) 11 (0.5) 63 (2) 22 (1) 23 (1.3)

RDC-NOE-SDP 15 (6) 30 (17) 231 (162) 596 (450) 312 (281)

MFR 1560 (all 5 fragments)

Table 3.2: Results of computing the structure of five ubiquitin fragments using RDC-SDP,
RDC-NOE-SDP and MFR from experimental data. We compare with both the X-ray
structure 1UBQ and the high resolution NMR structure 1D3Z. The time in brackets is
the running time of the SDPs (P1) and (P2) used by RDC-NOE-SDP and RDC-SDP. The
excess time is due to Manopt refinement. For MFR we only report the total running time
for calculating the entire backbone.

3.7 Conclusion

We present two novel convex relaxations RDC-SDP and RDC-NOE-SDP to calculate the

protein backbone conformation from both RDC and NOE measurements. In simulations,

our methods exactly recover the protein structure when there is no noise, whereas

simulated annealing based methods can still suffer from local minima issue even when

the data is clean. In the presence of noise, the error of our solution comes close to the

CRB. We illustrate the robustness of our methods through comparing with the popular

MFR homology modelling method in the high-noise regime in simulations. We further

demonstrated the success of our methods by obtaining a backbone structure of 1 Å
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Figure 3.4: The trace of protein backbone drawn using N, CA and C. The black, blue
and red curves come from the X-ray model 1UBQ, RDC-SDP solution and RDC-NOE-SDP
respectively.

resolution for ubiquitin using real experimental data. Both proposed methods are fast in

practice, in particular RDC-SDP can determine a protein fragment of typical size in just

a few seconds. This is in sharp contrast to current methods such as MFR, RDC-Analytics

and REDCRAFT that have running time ranging from tens of minutes to two hours. This

property of our algorithm can be useful when iterating between estimating resonance or

NOE assignments and structural calculation [67]. In a broader context, the proposed

methods can also be applied to pose estimation problems for articulated structure in

computer vision and robotics.
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3.8 Appendix

3.8.1 Unit quaternions and quadratic problem on SO(3)

We first give a brief introduction to unit quaternions, where a detailed exposition can

be found in many other sources (e.g. [5]). The group of unit quaternions consists of

elements of the form

q = a+ bi+ cj+ dk

which is a linear combination of the basis 1, i, j,k and

a2 + b2 + c2 + d2 = 1

The basis satisfies the multiplication rules

i2 = j2 = k2 = ijk= −1 (3.65)

and these define the multiplication of any two quaternions. It is easy to see that the

inverse q−1 of a quaternion q is

q−1 = a− bi− cj− dk

The group of unit quaternions can be used to represent a rotation in SO(3). If we

parameterize the unit quaternion as q = cos(θ/2) + sin(θ/2)(ux i+ uy j+ uzk) it can be

regarded as a rotation around the axis [ux , uy , uz]T ∈ R3 by angle θ . More precisely, if

we are to rotate any vector v ∈ R3 using a quaternion, we simply let

ṽ = 0+ v(1)i+ v(2)j+ v(3)k
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and the rotation on v is applied through

qṽq−1 = 0+ ai+ bj+ ck (3.66)

The coefficients in front of i, j,k give the rotated v in R3. Notice that q and −q result in

the same rotation on the vector v. From (3.66), a relation between rotation matrices in

SO(3) and unit quaternions can be obtained (also known as Euler-Rodrigues formula).

If we treat the unit quaternion q as a vector in R4 such that ‖q‖2 = 1, the rotation matrix

it represents is given by

φ(q) =










1− 2q(3)2 − 2q(4)2 2(q(2)q(3)− q(4)q(1)) 2(q(2)q(4) + q(3)q(1))

2(q(2)q(3) + q(4)q(1)) 1− 2q(2)2 − 2q(4)2 2(q(3)q(4)− q(2)q(1))

2(q(2)q(4)− q(3)q(1)) 2(q(3)q(4) + q(2)q(1)) 1− 2q(2)2 − 2q(3)2











. (3.67)

This map φ is a surjective group homomorphism (epimorphism) from the group of unit

quaternions to SO(3). The kernel of this map is {[−1, 0, 0, 0]T , [1, 0, 0, 0]T}. This implies

for a matrix R ∈ SO(3), R= φ(q) = φ(−q) for a quaternion q. Therefore the group of

unit quaternions is known as the double cover of SO(3), in other words,

{{q,−q} | q ∈ R4,‖q‖2 = 1} ∼= SO(3). (3.68)

In light of this, if we construct the following set of rank-1 matrices

Quaternion2 := {Q ∈ R4×4 | Q = qqT ,‖q‖2 = 1} (3.69)

and define a function Φ via φ as

Φ(qqT ) := φ(q), (3.70)
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then the map

Φ : Quaternion2→ SO(3) (3.71)

is a bijection. It can be checked easily that the inverse map Φ−1 is

Φ−1(R) :=
1
4

� 1+R(1,1)+R(2,2)+R(3,3) R(3,2)−R(2,3)
R(3,2)−R(2,3) 1−R(2,2)−R(3,3)+R(1,1)
R(1,3)−R(3,1) R(1,2)+R(2,1)
R(2,1)−R(1,2) R(1,3)+R(3,1)

R(1,3)−R(3,1) R(2,1)−R(1,2)
R(1,2)+R(2,1) R(1,3)+R(3,1)

1−R(3,3)−R(1,1)+R(2,2) R(2,3)+R(3,2)
R(2,3)+R(3,2) 1−R(1,1)−R(2,2)+R(3,3)

�

(3.72)

The bijection between Quaternion2 and SO(3) leads to the simple proposition.

Proposition 3.8.1. R ∈ SO(3) if and only if Φ−1(R) ∈ Quaternion2.

Proposition 3.8.1 shows that we can use the constraint Φ−1(R) ∈ Quaternion2 to

enforce R ∈ SO(3). Notice that

Φ−1(R) ∈ Quaternion2 (3.73)

implies

Φ−1(R) = qqT for some q ∈ R4, ‖q‖2 = 1 (3.74)

hence

Φ−1(R)Φ−1(R) = Φ−1(R) (3.75)

This gives a linear constraint in Y and R. Indeed, if

vec(Φ−1(R)) := A





vec(R)

1





for some matrix A∈ R16×10, then

Φ−1(R)Φ−1(R) =
4
∑

i=1

�

A





vec(R)

1





h

vec(R)T 1
i

AT
�

ii
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=
4
∑

i=1

(A





Y vec(R)

vec(R)T 1



AT )ii

= Ψ

�





Y vec(R)

vec(R)T 1





�

(3.76)

where Ψ : R4×4→ R4×4 is yet another linear operator. Specifically in (3.76), for a matrix

X ∈ R16×16 we use X ii to denotes the i-th 4×4 block on the diagonal. In this way, (3.75)

can be written as

Φ−1(R) = Ψ
�





Y vec(R)

vec(R)T 1





�

. (3.77)

It can be verified that any R that satisfies the last constraint in (3.24) also satisfies

(3.77). This leads to the fact that R in (3.24) belongs to the convex hull of SO(3). To

see this, notice that if Y � vec(R)vec(R)T then





Y vec(R)

vec(R)T 1



� 0,

and so is

A





Y vec(R)

vec(R)T 1



AT

and its 4× 4 blocks along the diagonal. Therefore

Φ−1(R) = Ψ
�





Y vec(R)

vec(R)T 1





�

� 0,

in (3.24). We now state a theorem in [123, 124]:

Theorem 3.8.2. [123, Proposition 1].

conv(SO(3)) = {R ∈ R3×3 | Φ−1(R)� 0}. (3.78)
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Leveraging the theorem, we arrive at the conclusion that R in (3.24) is in the convex

hull of SO(3).

3.8.2 Cramér-Rao lower bound

In this section, we introduce a classical tool from statistics, the Cramér-Rao bound (CRB)

[29], to give perspective on the lowest possible error any unbiased estimator can achieve

when estimating coordinates from noisy RDC measurements. We first describe the CRB

for general point estimators. Let θ ∈ Rn be a multidimensional parameter which is to be

estimated from measurements x ∈ Rm. Suppose x is generated from the distribution

p(x |θ ). The Fisher information matrix is defined as the n× n matrix

I(θ ) = E[(∇θ ln p(x |θ ))(∇θ ln p(x |θ ))T ] (3.79)

where expectation is taken with respect to the distribution p(x |θ ) and the gradient ∇θ

is taken with respect to θ . For any unbiased estimator θ̂ of θ , that is E(θ̂) = θ , the

following relationship holds:

E[(θ̂ − θ )(θ̂ − θ )T ]� I(θ )−1 (3.80)

if I(θ ) is invertible. Therefore the total variance of the estimator θ̂ is lower bounded by

Tr(I(θ )−1). We also introduce the CRB in the case when θ and θ̂ are constrained to be

in the set {θ | f (θ) = 0} where f : Rn → Rk [140]. Let D f (θ) ∈ Rk×n be the gradient

matrix of f at θ with full row rank, and Q ∈ Rn×(n−k) be a set of orthonormal vectors

satisfying

D f (θ )Q = 0
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i.e. Q is an orthonormal basis of the null space of D f (θ ). In this case, for any unbiased

estimator θ̂ satisfying f (θ̂ ) = 0, the CRB is then

E[(θ̂ − θ )(θ̂ − θ )T ]�Q(QT I(θ )Q)−1QT (3.81)

if QT I(θ )Q is invertible.

We are now ready to investigate the CRB for estimating atomic positions from RDC

data. Let ζ= [ζ1, . . . ,ζK] ∈ R3×K be the coordinates of the atoms we want to estimate.

We aim to derive a lower bound for E[Tr((ζ̂−ζ)T (ζ̂−ζ))] for any unbiased estimator ζ̂

of ζ. We assume that the RDC measurements are generated through the noise model in

(3.62). We further assume that within each rigid unit, the distance between any pair of

atoms is fixed. We therefore have a set of equality constraints

d2
nm = ‖ζn − ζm‖2

2, (n, m) ∈ Efixed (3.82)

where Efixed consists of all atom pairs within each and every rigid unit. Without loss of

generality, we also consider the constraint

ζ1= 0 (3.83)

which implies the points ζ1, . . . ,ζK are centered at zero. This is due to the fact that

Tr((ζ̂− ζ)T (ζ̂− ζ)) = Tr((ζ̂c − ζc − t1T )T (ζ̂c − ζc − t1T ))

= Tr((ζ̂c − ζc)
T (ζ̂c − ζc)) + (1/K)‖t‖2

2

−2Tr((ζ̂c − ζc)
T t1T )

= Tr((ζ̂c − ζc)
T (ζ̂c − ζc)) + (1/K)‖t‖2

2

≥ Tr((ζ̂c − ζc)
T (ζ̂c − ζc)) (3.84)
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where ζc and ζ̂c denote the zero centered coordinates and coordinate estimators, and t is

the relative translation between ζ and ζ̂. Eq. (3.84) implies that deriving a lower bound

for E[Tr((ζ̂c − ζc)T (ζ̂c − ζc))] is sufficient for obtaining a lower bound for E[Tr((ζ̂−

ζ)T (ζ̂− ζ))]. When there are atoms that are constrained to lie on the same plane, we

need to add the constraint that any three vectors in the plane span a space with zero

volume, i.e.

det([ζi − ζ j,ζk − ζl ,ζm − ζn]) = 0 (3.85)

for atoms i, j, k, l, m, n in the same plane.

To obtain the CRB for estimating ζ from RDC data generated through (3.62), we

need to first derive an expression for the Fisher information matrix. From (3.62) and

(3.63), the likelihood function for the coordinates is

p({rnm}(n,m)∈ERDC
|ζ1, . . . ,ζK) =

Π
(n,m)∈ERDC

j=1,2

1
p

2πσ2
exp

�

−

�

(ζn − ζm)T S( j)(ζn − ζm)− r( j)nmd2
nm

�2

2d4
nmσ

2

�

(3.86)

and the log-likelihood is (up to an additive constant)

l({rnm}(n,m)∈ERDC
|ζ1, . . . ,ζK) = ln p({rnm}(n,m)∈ERDC

|ζ1, . . . ,ζK)

= −
∑

(n,m)∈ERDC
j=1,2

1
2d4

nmσ
2
((ζn − ζm)

T S( j)(ζn − ζm)− r( j)nmd2
nm)

2

= −
∑

(n,m)∈ERDC
j=1,2

1
2d4

nmσ
2
(eT

nmζ
T S( j)ζenm − r( j)nmd2

nm)
2, (3.87)

where enm = en − em. The derivative of l with respect to vec(ζ) is then

∇vec(ζ)l = −
∑

(n,m)∈ERDC
j=1,2

2(eT
nmζ

T S( j)ζenm − r( j)nmd2
nm)

d4
nmσ

2
(enmeT

nm ⊗ S( j))vec(ζ). (3.88)
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It follows from the noise model (3.62) and the independence of ε( j)nm’s that the Fisher

information matrix

I(ζ) = E((∇vec(ζ)l)(∇vec(ζ)l)
T )

= 4
∑

(n,m)∈ERDC
j=1,2

(enmeT
nm ⊗ S( j))vec(ζ)vec(ζ)T (enmeT

nm ⊗ S( j))

σ2d4
nm

. (3.89)

Having the Fisher information matrix, we now incorporate the constraints in (3.82)

and (3.83) in order to obtain a bound as in (3.81). Stacking the equality constraints

(3.82) into a |Efixed| × 1 matrix, we get

f (vec(ζ)) :=
h

eT
nmζ

Tζenm − d2
nm

i

(n,m)∈Efixed

= 0 (3.90)

The gradient matrix is thus

D f (vec(ζ)) = vec(ζ)T
h

(enmeT
nm ⊗ I3)

i

(n,m)∈Efixed

(3.91)

where D f (vec(ζ)) ∈ R|Efixed|×3K . We note that D f (vec(ζ)) is known as the rigidity matrix

[80], and the vectors in its null space indicate the direction of infinitesimal motion the

atoms can take without violating (3.82). Even in the case when all pairwise distances

between the atoms are known, there is still a 6-dimensional null space for D f (vec(ζ)),

corresponding to an infinitesimal global rotation and translation to the coordinates ζ

that preserves all pairwise distances. We now augment f (vec(ζ)) = 0 with the centering

constraint ζ1= 0, and this augments D f (vec(ζ)) with three rows 1T ⊗ I3, i.e.

D f (vec(ζ)) =





vec(ζ)T [(enmeT
nm ⊗ I3)](n,m)∈Efixed

1T ⊗ I3



 . (3.92)

The inclusion of such centering constraint eliminates the three dimensional subspace in
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the kernel of the rigidity matrix that corresponds to the translational degree of freedom.

Let Q be an orthonormal basis that spans the null space of D f (vec(ζ)). Together with

(3.89) and (3.81) we obtain the desired CRB. We omit detailing the derivative for

constraint (3.85) but simply note that the inclusion of such constraints eliminates the

out of plane infinitesimal motion for atoms lying on rigid planar unit.

Inclusion of NOE constraints

We have so far neglected the use of NOE measurements when deriving the CRB. Unlike

RDC, the NOE restraints remain more qualitative, with imprecise upper and lower bound

[19] due to the r−6 scaling of the interaction. Therefore it is conventional to treat the

backbone NOE as inequality constraints on distances. For an unbiased estimator θ̂ of the

parameter θ where both θ̂ and θ lie in the set {θ | f (θ) < 0}, it is shown in [58] that

the CRB is the same as the unconstrained case (3.80), since roughly speaking the CRB

only depends on the local curvature of the log-likelihood function around θ . Therefore

if the original coordinates and the coordinate estimators strictly satisfy the distance

constraints (1.4), then the CRB is the same as in the case with only RDC.

Infinitesimal rigidity and invertibility of the Fisher information matrix

In this subsection, we study the infinitesimal rigidity [99] of the protein structure

given RDC and distance measurements and how it guarantees invertibility of the Fisher

information matrix. Let a framework with coordinates ζ ∈ R3×K be constrained by

(ζn − ζm)
T (ζn − ζm) = d2

nm, (n, m) ∈ Efixed,

(ζn − ζm)
T S( j)(ζn − ζm) = r( j)nm, j = 1, . . . , N , (n, m) ∈ ERDC. (3.93)

In order to derive a condition for infinitesimal rigidity, we first let vec(ζ(s)) be a curve

in dimension R3K parameterized by s, where ζ(0) satisfies (3.93). Taking derivative of
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the constraints in (3.93) with respect to s at s = 0, we have





vec(ζ(0))T [enmeT
nm ⊗ I3](n,m)∈Efixed

vec(ζ(0))T [enmeT
nm ⊗ S( j)](n,m)∈ERDC, j∈[1,N]





d
ds

vec(ζ(0)) = R(ζ(0))
d
ds

vec(ζ(0)) = 0.

(3.94)

The null space of the generalized rigidity matrix R(ζ(0)) with dimension (|Efixed| +

|ERDC|)× 3K represents the direction of infinitesimal motion such that ζ(s) satisfies the

constraints (3.93) for infinitesimally small s. If R(ζ(0)) only has a three dimensional

nullspace, i.e. the global translations in x , y, z-directions, we say the framework ζ(0)

along with the constraints (3.93) is infinitesimally rigid.

Now we verify that the constrained Fisher information matrix is invertible if R(ζ(0))

has a three dimensional null space corresponds to global translation of the points.

Let Q again be the basis of the nullspace of D f (vec(ζ)) defined in (3.92) such that

D f (vec(ζ))Q = 0. Let v satisfies

QT I(ζ)Qv = 0

QT I(ζ)Qv = 0 if and only if v ∈ ker(Q) or Qv ∈ ker(I). Since the columns of Q are

linearly independent, Qv 6= 0 unless v = 0. This means QT I(ζ)Qv = 0 if and only if

v = 0 or Qv ∈ ker(I)∩ range(Q) = ker(I)∩ ker(D f (vec(ζ))). Therefore if

ker(I)∩ ker(D f (vec(ζ))) = ;,

or in other words

span
�

range(I)∪ D f (vec(ζ))
�

= R3K (3.95)

then QT I(ζ)Q is invertible. From the form of the (3.89), it is easy to show that the range
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condition (3.95) is satisfied if and only if the range of











1T ⊗ I3

vec(ζ(0))T [enmeT
nm ⊗ I3](n,m)∈Efixed

vec(ζ(0))T [enmeT
nm ⊗ S( j)](n,m)∈ERDC, j∈[1,N]











=





1T ⊗ I3

R(ζ(0))



 (3.96)

is R3K . Then we arrive at the conclusion that if the framework ζ is infinitesimally

rigid with the null space of R(ζ) being the global translations, the constrained Fisher

information matrix defined as QT I(ζ)Q is invertible.

In [166], it is shown that if there exists RDC measurements for a bond in the peptide

plane and a bond in the CA-body in a single alignment media, the solutions of the protein

structure form a discrete set. Therefore under this condition, there is no infinitesimal

motion other than global translation such that the protein framework satisfies the RDC

and NOE constraints. We can thus compute the CRB safely under such condition.
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Chapter 4

Bias correction in Saupe tensor

estimation

In this chapter, we study the bias in OLS Saupe tensor estimator from RDC using a

template protein structure. We first show how this problem naturally arises when using

RDC to enhance the global registration results. The RDC between nuclei n and m is

defined through the equation

rnm = vT
nmSvnm (4.1)

where vnm is the unit vector between nuclei n and m and S is the Saupe tensor. When

given multiple rigid protein fragments in different coordinate systems, the fragment

coordinate x (i)k for the k-th atom in the i-th protein fragment is related to the global

coordinate xk via

xk = Oi x
(i)
k + t i, (4.2)

where Oi is an orthogonal transform and t i is a translation. Then

vnm = Oi v
(i)
nm (4.3)
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where v(i)nm is the unit vector between atom n and atom m in the coordinate system of

the i-th protein fragment.

The Saupe tensor for fragment i, denoted S(i), can be obtained by solving the linear

systems

rnm = v(i)nm
T
S(i)v(i)nm (4.4)

if the fragment contains at least five bonds with RDC measured. The relationship between

vnm and v(i)nm in (4.3) implies that

OiS
(i)OT

i = S (4.5)

and

S(i)OT
i Oj = OT

i OjS
( j) (4.6)

for any i, j = 1, . . . , M . Intuitively, this means the orthogonal transformation Oi that

aligns the fragments must also align the Saupe tensor. The relationship in (4.6) can be

directly used to enhance the global registration results using RDC by augmenting the

cost function in GRET with a term

M
∑

i=1

∑

j>i

‖S(i)Gi j − Gi jS
( j)‖2

F . (4.7)

When the protein fragments structure are not determined exactly, the estimated

fragment Saupe tensor S(i)’s are corrupted. Observe that (4.5) implies in principle, all

S(i)’s share common eigenvalues. This observation can therefore be used to denoise S(i)’s,

by simply averaging the the eigenvalues of S(i)’s. However, the averaging procedure

cannot remove the bias error of S(i) due to noise on bond direction v(i)nm. Therefore

we study the bias error in Saupe tensor estimation and how it can be removed in the

subsequent sections in this chapter.

In the remaining sections, we first illustrate how the structural noise on the bond
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vectors of the template structure leads to bias in the OLS estimation of Saupe tensor

parameters. By structural noise, we mean the template structure used for Saupe tensor

fitting differs from the true structure of the molecule due to the flexibility of the protein.

Our simulation shows that when noise is added to the torsion angles of the protein

backbone, the magnitude of the estimated Saupe tensor eigenvalues are typically smaller

than their ground truth value, as demonstrated in Fig. 4.1. Our observation corroborates

with the simulation results reported in [173], in which i.i.d. noise is added to each bond

vector instead. In linear regression, such decrease in magnitude of the estimator in

the presence of noise on the regressor is commonly known as attenuation [28]. While

the focus of [173] is mainly to use Monte Carlo simulation to evaluate the uncertainty

of estimated alignment magnitude and rhombicity, we focus on using it to correct the

attenuation effect in the OLS Saupe tensor eigenvalues estimator. The method we

propose bears similarity with the statistical method simulation extrapolation (SIMEX)

[37, 139] that is frequently used to correct for the attenuation effect. Typically this

type of methods are parametric and require noise variance as input. We show that an

estimator of the noise magnitude can be obtained from the root mean square (RMS)

of the residual of OLS estimator. We further demonstrate the usefulness of removing

such bias when estimating the Saupe tensor eigenvalue from homology fragments of

ubiquitin, using RDCs measured in two different alignment medias. We note that there

are other approaches to improve the estimation of Saupe tensor in the presence of

structural noise by studying local bond orientations using multiple alignment medias

[105, 142, 106, 122]. However in this work, we intend to remove the bias in the Saupe

tensor eigenvalues in a single alignment media, when multiple Saupe tensor estimates

is available from a collection of predetermined molecular fragments.
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4.1 Notation

We summarize here the notation that is used in this particular chapter. Our notation

is consistent with existing literature on RDC and Saupe tensor estimation. For a 3× 3

matrix A, we use Ai j, i, j = x , y, z to denote the nine entries of the matrix. When A is

symmetric, we denote the eigendecomposition of A by

A= U(A)Λ(A)U(A)T ,

where U(A) is an orthogonal matrix (i.e. U(A)T U(A) = U(A)U(A)T = I3) and Λ(A) is a

diagonal matrix










λx(A) 0 0

0 λy(A) 0

0 0 λz(A)











(4.8)

that contains the eigenvalues of A on the diagonal in ascending order. For a vector v, we

often use v(i) to denote its i-th entry, and i = 1, . . . , n if v ∈ Rn. In the special case of

v ∈ R3, we use vx , vy , vz to denote each entry of the vector v. For a matrix A, we use Ai

to denote its i-th column.

4.2 Debiasing Saupe tensor eigenvalues in the presence

of structural noise

We now introduce a Monte Carlo method for correcting the bias in the eigenvalues of

the OLS estimator arising from structural noise. For a protein with N + 1 peptide planes,

we assume the {φi,ψi}Ni=1 torsion angles fully determine the backbone conformation.

The template structure torsion angles φ t
i ,ψ

t
i ’s are related to the true structure via

φ t
i = φi +σαi, ψt

i =ψi +σβi, i = 1, . . . , N , (4.9)
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where αi,βi ’s are i.i.d. random normal variables with mean 0 and variance 1. Henceforth

for a variable θ , we often make explicit the dependence on the torsion angles and noise

by writing θ as θ(φ t
i ,ψ

t
i ). We also assume that the normalized dipolar coupling r is

noiseless, i.e. r = A(φi,ψi)s, where s corresponds to the entries of ground truth Saupe

tensor S. The validity of this assumption is discussed in section 4.4. Our method consists

of the following steps:

(1) Compute

ŝ(φ t
i ,ψ

t
i ) = (A(φ

t
i ,ψ

t
i )

T A(φ t
i ,ψ

t
i ))
−1A(φ t

i ,ψ
t
i )

T r

.

(2) Generate n1 copies of Asim = A(φ t
i +σαi,ψ

t
i +σβi) by adding i.i.d. Gaussian

noise with variance σ2 to the torsion angles of the template structure.

(3) Find

ŝsim = ŝ(φ t
i +σαi,ψ

t
i +σβi) = (A

T
simAsim)

−1AT
simr.

(4) Let Ŝ and Ŝsim be the Saupe tensor estimators corresponding to ŝ and ŝsim. Let

ÔBias= 〈Λ(Ŝsim)〉sim −Λ(Ŝ)

denote the bias estimate for the eigenvalues of the OLS estimator Ŝ, where 〈·〉sim denotes

the averaging over n1 simulated template structures. We propose using

Λ̃= Λ(Ŝ)−ÔBias= 2Λ(Ŝ)− 〈Λ(Ŝsim)〉sim

as an estimator with less bias.

The rationale of our method relies on the intuition that upon adding noise of similar

magnitude to the linear system (1.10), the eigenvalues of the OLS estimator for the

simulated samples should be biased away from Λ(Ŝ) by an amount similar to difference
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between Λ(Ŝ) and the ground truth Λ(S). This is also the intuition behind twicing

[144], and related bootstrapped [49] biased reduced estimators. Alternatively, one

can understand this procedure from the viewpoint of the SIMEX technique [37] for

correcting bias resulting from regressor noise. Under SIMEX estimation framework one

would simulate Asim = A(φ t
i + kσαi,ψ

t
i + kσβi) with noise magnitudes of kσ for various

positive k to find out the dependency of Λ(Ŝsim) on k. The k = 0 point corresponds to the

case when no additional simulated noise is added, i.e. when the eigenvalue estimator is

Λ(Ŝ). From the extrapolation of the relation between Λ(Ŝsim) and k one can obtain a

debiased estimator at k = −1. Our method corresponds to the special case of SIMEX

where we only add simulated noise with magnitude kσ where k = 1. Our numerical

results shows that this suffices for the application of Saupe tensor eigenvalue estimation.

4.2.1 Estimating noise level σ

We note that there is a caveat when using this parametric Monte Carlo method, in that

it requires knowledge of the noise magnitude σ. Let the residual of the OLS estimator

be defined as

e ≡ r − Aŝ.

In the simple case when additive noise with variance σ2
add is added to the normalized

dipolar couplings r, and A has no structural noise, i.e. A= A(φi,ψi), the dependence

between the RMS of the residual, denoted RMS(e) and the noise magnitude can be

readily calculated. In particular, an unbiased estimator of σ2
add is given by [66]

Ôσ2
add =

M
M − 5

RMS(e)2.

Now in the case when there is noise on the design matrix A= A(φ t
i ,ψ

t
i ) due to noise

on the torsion angles (4.9), we show that there exists a linear dependence of RMS(e) on

σ. We define A0 = A(φi,ψi), and A(φ t
i ,ψ

t
i ) = A0 + E. In this notation, normalized RDC
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r = A0s. Then

‖e‖2
2 = ‖r − Aŝ‖2

2

= ‖A0s− A(AT A)−1AT (A0s)‖2
2

= sT AT
0(IM − A(AT A)−1AT )A0s. (4.10)

The second equality follows from the fact that IM − A(AT A)−1AT is a projection matrix.

From

AT
0(IM − A(AT A)−1AT )A0

= AT
0A0 − (A− E)T A(AT A)−1AT (A− E)

= AT
0A0 − AT A+ ET A+ AT E − ET A(AT A)−1AT E

= AT
0A0 − (A− E)T (A− E) + ET E − ET A(AT A)−1AT E

= ET (IM − A(AT A)−1AT )E, (4.11)

we get

‖e‖2
2 = sT ET (IM − A(AT A)−1AT )Es

≈ sT ET (IM − A0(A
T
0A0)

−1AT
0)Es

= sT ET PEs (4.12)

where P = IM − A0(AT
0A0)−1AT

0 is a projection operator projecting vectors in RM to RM−5.

We drop the terms involving entries of E raised to the power greater than 2 to obtain

the approximation in (4.12). Using Taylor expansion,

Ei j = Ai j − A0 i j

≈
N
∑

k=1

∂ Ai j(φ t
k,ψt

k)

∂ φ t
k

�

�

�

�

φk ,ψk

σαk +
∂ Ai j(φ t

k,ψt
k)

∂ψt
k

�

�

�

�

φk ,ψk

σβk

= Fi jσ. (4.13)
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Figure 4.1: Plot of the eigenvalues of the OLS estimator Ŝ normalized by the eigenvalues
of S v.s. σ. Increasing the noise level biases the eigenvalues towards zero. A fragment
of Ubiquitin composed of 7 amino acids and a specific Saupe tensor S is used for the
simulation and each point in the plot is computed from 200 different realizations of
αi,βi ’s.

Plugging this into (4.12), it is clear that ‖e‖2
2 depends linearly on σ2 and

〈RMS(e)2〉αi ,βi
≈

1
M
〈sT F T PFs〉αi ,βi

σ2 (4.14)

in the small noise regime. We therefore use

σ̂ =

√

√ M
sT F T PFs

RMS(e)

as the approximate noise magnitude when using the Monte Carlo method for bias

reduction. Although we do not have the parameters s, F and P derived from the ground

truth Saupe tensor and conformations, we can use ŝ as surrogate of s, and use the noisy

structure to derive an approximation of F and P.

4.3 Numerical results

We first demonstrate that σ̂ obtained through the simulation method in section 4.2.1 is

a good estimate of σ. For simulation purposes, we use a segment of Ubiquitin with 7

amino acids containing 21 N − H, C − CA and C − N bonds. In Fig. 4.2(left), we plot
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Figure 4.2: Left: Plot of σ̂ v.s. σ. For a given noise level σ, σ̂ is averaged over 200
different realizations of αi,βi ’s. Right: Histograms of the diagonal entries of Λ(Ŝ) and
Λ̃ obtained from 200 fragment conformations with 20◦ noise on the torsion angles. The
values ofΛ(S), 〈Λ(Ŝ)〉αi ,βi

and 〈Λ̃〉αi ,βi
are denoted by black, blue and red line respectively.

σ̂ v.s. σ. For each value of σ we calculate σ̂ for 200 realizations of S and {αi,βi}6i=1.

For a protein fragment with 7 residues, we let n2 = 200 in step (2) of the σ estimation

procedure in section 4.2.1. The simulation shows that σ̂ is rather close to σ, especially

when the angular noise is less than 12 degrees.

We next show that the SIMEX-like method proposed in section 4.2 is able to reduce

the bias in eigenvalue estimation, where the bias of an estimator θ̂ of parameter θ is

defined to be

Bias(θ̂ ) = 〈θ̂ 〉 − θ .

〈·〉 denotes averaging over the distribution of data. For this simulation, we use a specific

ground truth Saupe tensor and the aforementioned Ubiquitin fragment to generate clean

RDC measurements. From the fragment, 200 realizations of noisy conformation are

generated with σ = 20◦. To obtain Λ̃, we set n1 = 8000 when simulating Ab in step

(2) of the Monte Carlo procedure. In Fig. 4.2(right), we see that the values of 〈Λ̃〉αi ,βi

(Red dotted line) obtained from averaging over 200 samples are almost the same as

the eigenvalues of S (Black line), while there is a clear bias in the estimator Λ(Ŝ) (Blue

dotted line).
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4.3.1 Application: Saupe tensor estimation from multiple molecu-

lar fragments

While the proposed eigenvalue estimator Λ̃ has less bias, it is not necessary that Λ̃

has a lower mean squared error (MSE). This can be understood from the bias-variance

decomposition, which is a classical way in statistics to decompose the MSE of an estimator

θ̂ . The MSE of an estimator θ̂ admits the following decomposition

MSE(θ̂ ) = 〈(θ − θ̂ )2〉

= 〈(θ − 〈θ̂ 〉+ 〈θ̂ 〉 − θ̂ )2〉

= Bias(θ̂ )2 + Var(θ̂ ) + 2(θ − 〈θ̂ 〉)〈〈θ̂ 〉 − θ̂ 〉

= Bias(θ̂ )2 + Var(θ̂ ). (4.15)

Var(θ̂) denotes the variance of θ̂ . Although we achieve less bias with the estimator Λ̃,

we pay the price of having larger variance due to bias estimation involved in obtaining

Λ̃. This increase in variance can lead to Λ̃ having higher MSE than Λ(Ŝ). From this point

of view, when estimating the Saupe tensor eigenvalue using a single template fragment,

the Monte Carlo method for debiasing may seem unnecessary or even disadvantageous.

However, when multiple template fragments are available, the average of Λ̃ over these

fragments, denoted Λ̃ave, enjoys variance reduction proportional to the number of

fragments. Therefore in the case when there are many fragments, it is worth paying

the price of increased variance because the systematic bias error cannot be reduced via

averaging. In the rest of the section, we use Λave(Ŝ) to denote the average of Λ(Ŝ) over

multiple fragments.

We now demonstrate the usefulness of our method under the setting of Molecular

Fragment Replacement (MFR) [43, 92]. When RDCs are measured in two different

alignment medias for a protein of unknown structure, the MFR method can construct its

structure by combining short homologous fragments obtained from chemical shift and
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dipolar homology database mining. Typically for every protein fragment of 7 residues,

10 homologous structures are searched based on the similarity of chemical shifts and

the goodness of Saupe tensor fit to the observed RDC. When OLS is used to fit the Saupe

tensor with design matrix A constructed from homologous structures, one can average

all OLS eigenvalue estimated to obtain improved estimators of the parameters such

as alignment magnitude and rhombicity that depend on the eigenvalues [92]. These

parameters can in turn be used in a simulated annealing procedure such as XPLOR-NIH

[128] to refine the structure.

We first use synthetic data to demonstrate our method. We generate 12 random

Saupe tensors, by sampling two eigenvalues from the uniform distribution on [−10−3, 0]

and [0, 10−3] respectively, and extract the third eigenvalue by requiring Λ(S)x x+Λ(S)y y+

Λ(S)zz = 0. The orthogonal matrix U(S) is sampled uniformly from the group of 3× 3

orthogonal matrices, by computing the orthogonal factor in the polar decomposition

of a 3× 3 Gaussian random matrix [18]. After obtaining the RDC dnm’s from the clean

structure and the ground truth Saupe tensor, under each simulated alignment condition

we add structural noise of magnitude σ to every fragment of 7 amino acids of the

Ubiquitin structure obtained from X-ray crystallography (PDB ID 1UBQ). We evaluate

the estimators of the Saupe tensor eigenvalues Λave(Ŝ) and Λ̃ave computed from the

average of Λ(Ŝ) and Λ̃ of all fragments, by comparing their fractional errors averaged

over the 12 different Saupe tensors and torsion angle noise realizations in Fig. 4.3. The

fractional error is defined as

‖Λave(Ŝ)−Λ(S)‖F

‖Λ(S)‖F
and

‖Λ̃ave −Λ(S)‖F

‖Λ(S)‖F
.

In this simulation, the fractional error of Λave(Ŝ) is at least three times larger than Λ̃ave.

We finally apply this method to estimate the Saupe tensor of ubiquitin in two different

alignment medias using the experimental RDC data in [38]. From 600 homologous

132



0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

σ (Degree)

F
ra

ct
io

na
l e

rr
or

 

 

SVD (Debiased)

SVD

Figure 4.3: Plot of the fractional error of Λave(Ŝ) and Λ̃ave v.s. σ. Each data point is
averaged over 12 different Saupe tensor and noise realizations for 1UBQ. The plot shows
a clear advantage of the bias reduced estimator over the OLS estimator.

structures returned by MFR homology search, each containing 7 residues, we obtain

600 Saupe tensor estimates using OLS. Since we expect our method to have a significant

effect for fragments severely corrupted by structural noise, we average the fragments

with residual RMS above a certain threshold and plot Λave(Ŝ) and Λ̃ave normalized by

Λ(S) v.s. RMS thresholds. To get an approximate ground truth Saupe tensor S, we use

the high resolution Ubiquitin structure 1UBQ obtained from X-ray crystallography [147]

to fit the RDC data. We demonstrate the results in Fig. 4.4. Other than the estimators

for Λ(S)y y of the second alignment media which has a large percent error due to the

relatively small magnitude of Λ(S)y y , Λ̃ave typically achieves 0.9 of the ground truth

value, whereas Λave(Ŝ) can shrink to 0.8 of the value of Λ(S) when only the fragments

of high RMS are used in averaging. We therefore recommend the use of our proposed

bias removing method when estimating eigenvalues from multiple noisy fragments.
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Figure 4.4: Plot of the eigenvalue estimators normalized by Λ(S) v.s. residual RMS
thresholds. Estimators are obtained from experimental RDC measurements in two
different alignment medias. While the magnitude of Λ̃ave (Red curves) and Λave(Ŝ) (Blue
dotted curves) both decrease as low quality (high RMS) fragments are solely used in
averaging, Λ̃ave in general is within 90% of the ground truth value but Λ(S) drops to
80% of Λave(Ŝ). The value of Λ(S) for both alignment medias are indicated in the plot
title.
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4.4 Additive measurement noise on RDC v.s. structural

noise

So far we have been neglecting the presence of additive noise on rnm, which is considered

by [101]. We define the noisy RDC measurements corrupted by additive noise as

radd = r +σaddε (4.16)

where entries of the column vector ε are i.i.d random variables with mean zero. In this

section, we show using perturbation theory that this type of additive noise biases the

eigenvalue magnitude positively, therefore it cannot explain the magnitude shrinkage

we see when fitting the Saupe tensor to real RDC data (Fig. 4.4). Moreover, the order of

magnitude of this positive bias is not sufficient to explain the error between Ŝ and S.

This has been noted by the authors of [101] that in order to account for the size of the

OLS misfit, an uncertainly of 2-3 Hz for the RDC measurements is required although

the experimental uncertainty is only about 0.2-0.5 Hz. This is the reason why in this

chapter we focus on removing the bias that arises from structural noise.

Let

S = U(S)Λ(S)U(S)T (4.17)

be the eigendecomposition of S. Assuming the eigenvalues of S are nondegenerate, the

second order perturbation theory [95] states

λ j(Ŝ) ≈ λ j(S) + U(S)Tj (Ŝ − S)U(S) j

+
∑

k=x ,y,z,
k 6= j

(U(S)Tk (Ŝ − S)U(S) j)2

λ j(S)−λk(S)
. (4.18)
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Averaging the perturbation expansion over the distribution of ε, we get

λ j(Ŝ)≈ λ j(S) +
∑

k=x ,y,z,
k 6= j

〈(U(S)Tk (Ŝ − S)U(S) j)2〉ε
λ j(S)−λk(S)

. (4.19)

Here we use the fact that 〈Ŝ − S〉ε = 0 since

〈ŝ− s〉ε = 〈(AT A)−1AT (As+ ε)− s〉ε = 〈(AT A)−1ATε〉ε = 0

The expression in (4.19) reveals that in the presence of noise, the largest eigenvalue of Ŝ

is always greater than the largest eigenvalue of S, while the smallest eigenvalue behaves

in the exact opposite manner. Such effect of bias of pushing the extreme eigenvalues

outwards is also commonly seen in the context of estimating the extreme eigenvalues of

covariance matrices [126].

For this type of bias we now give an estimate of its order of magnitude. First we

bound the numerator in the second order correction term in (4.19):

(U(S)Tk (Ŝ − S)U(S) j)
2 = Tr((Ŝ − S)U(S) jU(S)

T
k )

2

≤ ‖Ŝ − S‖2
F‖U(S) jU(S)

T
k ‖

2
F

≤ 3‖ŝ− s‖2
2. (4.20)

The first inequality results from Cauchy-Schwarz inequality, and the second inequality

relies on the fact that ‖U(S) jU(S)Tk ‖F = 1 and ‖Ŝ−S‖2
F ≤ 3‖ŝ−s‖2

2, which can be verified

easily. It is a classical result [66] that the OLS estimator has covariance matrix

〈(ŝ− s)(ŝ− s)T 〉ε = σ2
add(A

T A)−1, (4.21)

therefore

〈‖ŝ− s‖2
2〉ε = σ

2
addTr((AT A)−1). (4.22)
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Now we make some assumptions in order to derive a “guesstimate” of Tr((AT A)−1). We

assume that the eigenvalues of AT A are similar to each other, which implies

λ(AT A)≈ Tr(AT A)/5= Tr(AAT )/5. (4.23)

In such case from Eq. (4.22) we get

〈‖ŝ− s‖2
2〉ε ≈ σ

2
add

5
λ(AT A)

=
25σ2

add

Tr(AAT )
. (4.24)

Here we locally denote Ai as the i-th row of A. If we assume M is sufficiently large, by

law of large number

1
M

Tr(AAT ) = (1/M)
M
∑

i=1

‖Ai‖2
2

≈ 〈(v2
x − v2

y)
2 + (v2

x − v2
z )

2 + (2vx vy)
2 + (2vy vz)

2 + (2vx vz)
2〉v, (4.25)

where 〈·〉v denotes the averaging over the distribution of bond direction v. Assuming

the bond directions distribute uniformly over the unit sphere in R3,

〈(v2
x − v2

y)
2 + (v2

x − v2
z )

2 + (2vx vy)
2 + (2vy vz)

2 + (2vx vz)
2〉v

= 2〈(v2
x − v2

y)
2〉v + 3〈(2vx vy)

2〉v

=

∫ 2π

0

∫ π

0

2sin4(γ)(sin2(κ)− cos2(κ))2

+3 sin4(γ)(2cos(κ) sin(κ))2
sin(γ)dγdκ

4π

=
4
3

. (4.26)

Based on these assumptions on the bond directions, we finally derive an estimate

〈‖ŝ− s‖2
2〉ε ≈

75
4M
σ2

add (4.27)
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by combining (4.24) and (4.26). We put this estimate into (4.20) and obtain an upper-

bound for the bias in (4.19). Taking λz(Ŝ) for example:

λz(Ŝ)−λz(S)®
1

λz(S)−λy(S)
225
4M

σ2
add (4.28)

We now give an estimate of the order of magnitude of the bias. Since the magnitude

of the extreme eigenvalues of the Saupe tensor is around 10−3, for example for the

two RDC datasets acquired for Ubiquitin, we simply assume λz(S)−λy(S)∼ 10−4. The

typical experimental uncertainty for RDC measurements is about 0.2 Hz - 0.5 Hz, and

the dipolar coupling constant D0 for e.g. N −H bonds, is about 23 kHz, therefore the

noise magnitude σadd of the additive noise on the normalized dipolar coupling is about

0.5/(23 × 103) ≈ 2 × 10−5. For a fragment of 7 amino acid, we have M = 21 RDC

measurements. Plugging these numbers into (4.28), we get

λz(Ŝ)−λz(S)® 10−5,

which amounts to 1% error when λz(S)∼ 10−3. This cannot explain the 10% or larger

error in fitting Saupe tensor to real RDC datasets using homology fragments in the

previous section.

We present a simulation to illustrate the bias in OLS eigenvalues estimation in the

presence of additive noise. We use the Saupe tensor eigenvalues for Ubiquitin in the

first alignment media presented in Fig. 4.4, and a Ubiquitin fragment consisting of 7

amino acids for this simulation. We generate noisy datasets using the noise model

radd = As+σaddε.

For every noise level, we average Λ(Ŝ) normalized by Λ(S) over 500 different realizations

of s and ε where entries of ε are i.i.d. random normal variables. The different realization
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Figure 4.5: Plot of the three eigenvalues of the OLS estimator Ŝ normalized by the
eigenvalues of S v.s. σadd under noise model (4.16). Each point is averaged over 500
noise and Saupe tensor realizations. Increasing the noise level biases the eigenvalues
positively, unlike the case for structural noise. At 10% noise level, the bias is about 3%.

of s are generated from S = U(S)Λ(S)U(S)T where Λ(S) is fixed but U(S) is sampled

uniformly from the orthogonal group in R3. We vary the orientation of the Saupe tensor

since it is clear from (4.19) that the bias depends on U(S). We changeσadd from 0 to 10%

of λz(S) and present the results in Fig. 4.5. We note again from previous calculations,

σadd ∼ 2× 10−5, which amounts to 2-3% of the λz(S) = 0.85× 10−3 considered. As

shown in the simulation and our crude estimate, such magnitude of noise gives rise

to bias error of about 1%. Even in the case of having very noisy RDC (having noise

magnitude 10% of λz(S)), the bias error caused by additive noise is around 3%. Whereas

in a typical MFR search with torsion angle tolerance being set to ±20◦ − 30◦ [164], the

simulation in Fig. 4.1 suggests structural noise can cause bias error sometimes much

greater than 10%. Therefore in this chapter we focus on removing the bias that arises

from structural noise. In the case when accurate template structure is available and the

additive noise is a concern, we refer readers to the appendix for the removal of such

bias using an analytic expression derived from perturbation theory.
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4.5 Conclusion

We observe a negative bias when estimating the Saupe tensor eigenvalues through the

classical SVD method, in the presence of structural noise on the template structure due

to torsion angle noise. We present a Monte Carlo method that simulates noise on the

template structure by perturbing the torsion angles and use the simulated structure to

estimate the bias in the eigenvalues. We demonstrate the effectiveness of our method in

reducing the error arising from bias when estimating Saupe tensor eigenvalues from

multiple protein fragments, which is a natural setting to consider when building protein

structure from homologous substructures.

4.6 Appendix

4.6.1 Removing bias from additive noise

Define a linear operator L : R5→ R3×3 that forms a Saupe tensor S from the vector s as

L(s) =











−s(1)− s(2) s(3) s(4)

s(3) s(1) s(5)

s(4) s(5) s(2)











, s ∈ R5. (4.29)

For the additive noise model (4.16) we have

Ŝ = L(ŝ) = L((AT A)−1AT radd) = S + L((AT A)−1ATε). (4.30)

We also define the adjoint operator of L, L∗ : R3×3→ R5 through the relation

Tr(X T L(y)) = L∗(X )T y, (4.31)
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for every y ∈ R5 and X ∈ R3×3. To obtain the form of L∗, we let y ∈ {e1, . . . , e5}, where

ei(i) = 1 and ei( j) = 0 if j 6= i. Plugging such y into Eq. (4.31), we get

L∗(X )(1) = −X x x + X y y

L∗(X )(2) = −X x x + Xzz

L∗(X )(3) = X x y + X y x

L∗(X )(4) = X xz + Xzx

L∗(X )(5) = X yz + Xz y (4.32)

Using such notion of the adjoint operator, the perturbation series in (4.19) can be written

as

〈λ j(Ŝ)〉ε ≈ λ j(S) +
∑

k=x ,y,z,
k 6= j

〈((ŝ− s)T L∗(U(S)kU(S)Tj ))
2〉ε

λ j(S)−λk(S)

= λ j(S) + Tr
��

∑

k=x ,y,z,
k 6= j

L∗(U(S)kU(S)Tj )L
∗(U(S)kU(S)Tj )

T

λ j(S)−λk(S)

�

Var(ŝ)
�

(4.33)

where

Var(ŝ)≡ 〈(ŝ− s)(ŝ− s)T 〉ε = (AT A)−1σ2
add. (4.34)

Therefore we can subtract the second order term in (4.33) to correct for the bias in the

eigenvalues. Although we do not know the eigenvectors and eigenvalues of S, we can

replace them with the eigenvectors and eigenvalues Ŝ. This change will only affect on

the higher order terms in the perturbation series.
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Chapter 5

Conclusion and outlook

In this thesis, we investigate the structural calculation problem arises from NMR spec-

troscopy. We bring improvement in terms of speed and accuracy in solving the non-convex

problems encountered using convex optimization. In particular, we propose a scalable

divide-and-conquer approach to solve the distance geometry problem via global regis-

tration. Furthermore, we provide the first convex programming approach to calculate

protein structure from NOE and RDC in an integrated manner. However, only towards

the end of my doctoral study I realized there is much yet to be studied. Therefore instead

of giving a conclusion, here we focus on giving a summary on a few problems we want

to tackle. The summary of the technical contributions can be found in each chapter.

The main difficulty of using NMR to determine the protein structure with weight

larger than 25 kDa is the degradation of signal to noise ratio [53]. Slower tumbling of

large molecules lead to enhanced spin-spin interaction, leading to faster relaxation of

magnetization. The direct result of fast relaxation is the broadening of the line shape

of resonance peaks. This issue is exacerbated by the large number of nuclei in large

protein which gives rise to many overlapping resonances. The expert knowledge of

a NMR practitioner is generally needed to manually filter the resonance peaks and

perform spectral assignment iteratively before structural calculation. Current automated
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spectral assignment procedures [3, 83, 127] are multi-step in nature, therefore allowing

error to accumulate and information to be lost easily. Hence from a computational

perspective, we hope to provide NMR spectroscopist with an automated procedure for

spectral assignment that uses NMR spectra in a direct manner, notwithstanding wrong

identification of peaks or missing peaks.

The challenge of spectral assignment can also be addressed with a more versatile

structural calculation algorithm that can work with various sets of data. In general it

is more difficult to obtain unambiguous spectral assignment of the side-chain atoms.

This leads to ambiguity in NOE assignment, especially for larger system. RDC on the

other hand provides a way to bypass NOE assignment to obtain a protein backbone

conformation. The large magnitude of N-H and CA-HA RDC can be detected rather

easily even for large protein, especially in deuterated protein sample [154]. The spectral

assignment can be validated easily if an accurate ab-initio structure of the backbone can

be derived from minimal set of RDC and backbone NOE. We also want to extend our

methods to deal with database derived restraints. For example, torsion angle restraints

can be derived from chemical shifts of backbone atoms using TALOS [130]. Furthermore,

side-chain rotamer library [104] can be used to model protein side-chains.

In the end, we remark that NMR spectroscopy is not defined by a single set of

experiment. Many different interactions can be measured with varying experimental

cost. Our final goal will be to design a complete pipeline for spectral assignment and

structural calculation that uses an optimally chosen set of measurements.
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