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DURHAM UNIVERSITY

Abstract

SCHOOL OF ENGINEERING AND COMPUTING SCIENCES

Doctor of Philosophy

Randomised Algorithms on Networks

by Sepehr Meshkinfamfard

Networks form an indispensable part of our lives. In particular, computer networks

have ranked amongst the most influential networks in recent times. In such an ever-

evolving and fast growing network, the primary concern is to understand and analyse

different aspects of the network behaviour, such as the quality of service and efficient

information propagation. It is also desirable to predict the behaviour of a large computer

network if, for example, one of the computers is infected by a virus. In all of the

aforementioned cases, we need protocols that are able to make local decisions and handle

the dynamic changes in the network topology. Here, randomised algorithms are preferred

because many deterministic algorithms often require a central control. In this thesis, we

investigate three network-based randomised algorithms, threshold load balancing with

weighted tasks, the Pull-Moran process and the coalescing-branching random walk.

Each of these algorithms has extensive applicability within networks and computational

complexity within computer science. In this thesis we investigate threshold-based load

balancing protocols. We introduce a generalisation of protocols in [2, 3] to weighted

tasks.

This thesis also analyses an evolutionary-based process called the death-birth update,

defined here as the Pull-Moran process. We show that a class of strong universal

amplifiers does not exist for the Pull-Moran process. We show that any class of selective

amplifiers in the (standard) Moran process is a class of selective suppressors under the

Pull-Moran process. We then introduce a class of selective amplifiers called punk

graphs.

Finally, we improve the broadcasting time of the Cobra walk analysed in [4], for ran-

dom regular graphs. Here, we look into the Cobra approach as a randomised rumour

spreading protocol.
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Chapter 1

Introduction

1.1 Introduction to Networks and Background to Thesis

Networks are an indispensable part of our lives. We, and our relationships with each

other form a large network called human society. Generally speaking, a network is a col-

lection of individuals (also known as nodes) that are connected to each other through a

certain behaviour. For example, biological networks are defined by relationships among

biological organisms and economic networks capture the economic relationships among

buyers (or consumers) and sellers (or producers) [5]. More recently, an emerging net-

work exists in the form of computer networks, and these are amongst the most influential

networks in our daily lives. According to the United Nations International Telecommu-

nications Union (ITU), the number of Internet users reached 3 billion by the end of

2014. More strikingly, the number of global mobile-broadband subscriptions reached 2.3

billion by 2014, and this remains the fastest growing market segment, with continuous

double digit growth rates in 2014 [6]. In such an ever-evolving and fast growing network,

the primary concern is to understand and analyse different aspects of the network be-

haviour. One of these aspects is the quality of service. For example users of an Internet

service provider should be able to access the Internet without any disconnection issues.

Considering the scale of such a large network, in order to maintain a good service it

is practically impossible to control the whole system centrally. Instead, it is of great

importance to design protocols that can tackle this issue locally. Another fundamental

aspect is to observe information dissemination throughout the network. There have been

several deterministic and randomised protocols introduced and analysed in this respect

[7–11]. On the one hand, it is important to facilitate efficient information propagation

in applications such as broadcasting and load balancing. On the other hand it is desir-

able to predict the behaviour of a large computer network if, for example, one of the

1
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computers (or servers) is infected by a virus. In all of the aforementioned cases, we

need protocols that are able to make local decisions and handle the dynamic changes in

the network topology. Here, randomised algorithms are preferred because many deter-

ministic algorithms often require a central control, and they also struggle to cope with

changes in the topology of a network.

1.2 Randomised Algorithms

Randomness plays an important role in a wide range of sciences including economy,

biology and genetics, as well as in computer science where it is used for modelling and

analysing algorithms. A randomised algorithm is a type of algorithm with a degree of

randomness in making decisions. Intuitively, it can be considered as a protocol that flips

a coin before determining what to do next. When designing deterministic algorithms

the goal is to show that the algorithm resolves the problem correctly and as quickly as

possible.

Deterministic algorithms always solve the problem correctly. The challenge is to find

robust algorithms in which the number of steps taken to solve a problem is polynomial

in the size of input. This is not always the case for deterministic algorithms. For

many problems, a randomised algorithm is simpler and/or faster than a deterministic

algorithm [12]. However randomised algorithms, as well as being dependent on the input

size, also introduce an aspect of probability throughout their execution. This means that

the outcome of a randomised algorithm may vary even for a fixed input. In addition

to input data, randomised algorithms receive some probabilistic bits throughout their

execution. Here, the goal is to design algorithms with a relatively good performance

(i.e. short run-time), for every input.

There are two types of randomised algorithms; Las Vegas algorithms and Monte Carlo

algorithms, originally named by László Babai [13]. A Las Vegas algorithm is a ran-

domised algorithm that always gives the correct answer, as for a deterministic algorithm.

However, the running time of a Las Vegas algorithm is a random variable. Conversely, a

Monte Carlo algorithm is a randomised algorithm where the running time is determinis-

tic but it gives a result that can be incorrect with a certain probability (i.e. correctness

is not guaranteed). However, if a Monte Carlo algorithm is run for an arbitrarily large

number of iterations, with independent random choices at each iteration, then the error

probability can be made arbitrarily small. Randomised algorithms developed by Solo

and Strassen [14] and Rabin [15] are some of the key studies on the application of such

algorithms to number theory and computational geometry. Today, randomisation has

become a very significant aspect in designing algorithms. There are two types of features
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that make randomised algorithms more advantageous [16]; for the same problem, the

running time or the required space of a randomised algorithm is often smaller than that

of the best known deterministic algorithm. Also if we look in detail at the randomised

algorithms designed to date, then we observe that they are very simple to understand

and easy to implement. However, in analysing randomised algorithms we are faced with

the same difficulties as for deterministic algorithms. The first goal is to design a rea-

sonably efficient randomised algorithm that gives us a correct answer during a bounded

running time. The second goal is to analyse the performance of the algorithm. In this

respect the analysis, although difficult, can benefit from probabilistic methods due to

the randomisation. Furthermore, when analysing the performance of distributed systems

where the components form a network, randomised algorithms often require informa-

tion from only the adjacent components in the network rather than global information

about all components in the system. Therefore, compared to deterministic algorithms,

randomised algorithms may require less space or storage.

When analysing randomised algorithms we are usually interested in the expected running

time for the worst case scenario. This is the average number of time-steps, over all

possible outcomes of the random bits, needed for the algorithm to perform when the

worst input data is given.

Here our goal is to investigate three network-based randomised algorithms, thresh-

old load balancing with weighted tasks, the Pull-Moran process and the coalescing-

branching random walk. These goals are explained in the following section.

1.3 Aims and Outline of the Thesis

In this thesis, we investigate three network-based randomised algorithms, threshold load

balancing with weighted tasks, the Pull-Moran process and the coalescing-branching

random walk. Each of these algorithms has extensive applicability within networks and

computational complexity within computer science.

In Chapter 2, we investigate balls-into-bins games in networks. The Balls-into-bins game

is the process of randomly allocating m balls between n bins (m > n) under different

conditions. Here, balls represent data or tasks and bins represent processors or storage.

In particular we will investigate a specific type of this protocol where each bin is a node

in a network and has a threshold that represents the capacity of the bin. Balls are

initially allocated randomly between the bins and they are able to migrate from one bin

into an adjacent bin in the network. Here, the goal is to find the estimated run-time

of the process until all thresholds are satisfied. These algorithms provide a useful tool
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for maintaining the quality of service for users in a network based system. Most of the

conducted studies are based on uniform tasks (balls) in this respect. Here, our focus

is on the generalisation of threshold-based models, which are introduced in [2, 3], to

weighted tasks.

In Chapter 3, we study the dynamics of two different species, called mutant (or infected)

and non-mutant (or non-infected), in different networks. In practice, mutants may

represent influential people in a society (or a social network) or alternatively they can

be seen as computers in a network that are infected by a virus. Our main focus is on

the Moran process. In the Moran process [17], a network may consist of a non-mutated

population with a single mutant individual. From this initial state, we are interested

in the situation where the mutated individual infects other individuals and eventually

takes over the entire population. The probability of this occurring is known as the

fixation probability. Motivated by the study in [18, 19], here we investigate the death-

birth update (or the Pull-Moran process as we call it) which investigates the likelihood

that an individual is influenced by another in the network. The Pull-Moran protocol

is independent of any global knowledge such as the total number of mutants in the

network. This is advantageous in real-world applications because studying how different

individuals are influenced by their neighbours (or circle of friends) is of great importance.

The Pull-Moran also shows behaviour which are in contrast with the standard Moran

process.

In Chapter 4, we study another network-based protocol called the coalescing-branching

(Cobra) walk, introduced in [4], which is a modification of the simple random walk. The

Cobra walk is designed to investigate the time taken for an epidemic disease to affect

a large fraction, or all of the components, of a network. A Cobra walk is an iterative

process where at each iteration every active node randomly chooses k neighbours in the

network. These neighbours are labelled as active in the next iteration. In practice, any

active node can represent an individual that has a piece of data or rumour or has been

infected with a virus. Here, the goal is to estimate an upper bound on the broadcasting

(or covering) time, that is the time taken for all nodes to have activated at least once. We

are particularly interested in the broadcasting time of a Cobra walk on random regular

graphs. Unlike [4], we analyse the Cobra walk within a broadcasting framework, where

we improve the lower bound on the broadcasting time of random regular graphs.

Finally, we finish this chapter by introducing some definitions that are widely used

throughout this thesis.
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1.4 Definitions

Here, we will give an outline of the technical tools and methods used throughout the

rest of this thesis. Most of the definitions in this section are mainly extracted from [38],

[39] and [40].

1.4.1 Graphs

A graph is an ordered pair G = (V,E) where V is the set of vertices (or nodes) and

E is the set of edges. An edge is denoted by (u, v) where u, v ∈ V . The vertices u, v

are adjacent if (u, v) ∈ E. For each v ∈ V , the neighbourhood N(v) of v is the set of

all vertices adjacent to v. Also let degree of v, denoted by deg v (or d(v)), be the total

number of all vertices in N(v). The order of a graph n := |V | is the total number of

vertices. The following are the definitions of the classes of graphs that are used in this

chapter.

Definition 1.1. A d-regular graph is a graph in which all vertices have the same degree

d.

Definition 1.2. A graph G(V,E) is called complete (also known as clique) if G is a

(n− 1)-regular graph where |V | = n.

1.4.2 Markov Chain

A random process X = {Xt : t ∈ T} is a collection of random variables defined on a

set Ω. If t denotes time, which often is the case, X can be interpreted as a the value

of a random variable changes over time. If Ω is a countably finite set then X is called

a discrete finite process. Similarly, if T is a countably infinite set then X is called a

discrete time process.

A (finite) Markov chain is a discrete time stochastic process of moving among the ele-

ments (or states) of a finite set Ω subject to a matrix P of transition probabilities. Given

the current state i ∈ Ω, the element Pi,j of the transition matrix is the probability of

moving to state j ∈ Ω from i at any time-step t = 1, 2, · · · . Therefore, based on the

definition P is stochastic which means
∑

j Pi,j = 1. More formally we have

Definition 1.3. A sequence of discrete time random variables (Xt)t≥0 is called a Markov

chain if

Pr [Xt+1 = it+1|X0 = i0, X1 = i1, . . . , Xt = it] = Pr [Xt+1 = it+1|Xt = it] = Pit+1,it .

(1.1)
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According to the above definition, the state Xt+1 is independent of the history of the

random process in getting to the state Xt, and only relies on Xt. Therefore, the afore-

mentioned feature is called memoryless property or Markovian property.

Define Xt = q(t) = (q
(t)
1 , q

(t)
2 , . . . , q

(t)
n ) where q(t) is the probability distribution vector at

each time-step t ≥ 0. It is easy to prove that q(t+1) = q(t)P where P is the transition

matrix. Thus q(t) = q(0)Pt by induction, where q(0) is the initial distribution.

Definition 1.4. A distribution π on Ω is called the stationary distribution if π = πP ,

where P is the transition matrix of a Markov chain.

Based on Definition 1.4, if there is a possibility for a Markov chain to reach a stationary

distribution then it will keep that distribution in future.

1.4.3 Random Walks on Graphs

Definition 1.5. Given a connected, undirected graph G(V,E) with |V | = n and |E| = m,

a simple random walk starts at a node n0. Being at a node nt at time-step t, it moves

to a node in N(nt) with probability 1/d(nt). The sequence (Xt = nt)t≥0 is a Markov

chain with transition matrix P where

Pi,j =

1/d(i) if (i, j) ∈ E

0 otherwise.
(1.2)

In the following, we show that a random walk on a non-bipartite undirected graph

G(V,E) with |V | = n and |E| = m converges to a stationary distribution π = (π1, π2, . . . , πn),

where

π(v) =
d(v)

2m
, v ∈ V (1.3)

is the stationary distribution. Particularly the stationary distribution is the uniform

distribution for all regular graphs, i.e. π(v) = 1/n where n = |V |. Because
∑

v∈V d(v) =

2m then we have ∑
v∈V

d(v)

2m
=
∑
v∈V

πv = 1.

Therefore π is a probability distribution over all v ∈ V . Based on the definition of the

stationary distribution, π = πP where P is the transition matrix of the Markov chain
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formed by a random walk. Given that N(v) the neighbours of v, we have

∑
v∈N(v)

d(v)

2m

1

d(v)
=
d(v)

2m
.

Definition 1.6. The hitting time Hu,v(G) of graph G(V,E) is the expected time taken

for a random walk to reach the vertex v when starting from u.

Definition 1.7. The maximum hitting time H(G) is

H(G) := maxu,vHu,v(G) (1.4)

Definition 1.8. For a non-bipartite graph G with transition matrix P , if dist(t) =

maxi |Pi,j(t) − π(i)| then the mixing time τ(G) = min{t : dist(t) ≤ ε}, where Pi,j
(t) =

(P t)i,j and ε is an arbitrary constant.

Intuitively, we are interested in the time τ(G) for which if t > τ(G) then the random

walk distribution is almost π.

If λ1 ≥ λ2 ≥ · · ·λn are the eigenvalues of the transition matrix of a random walk on a

graph G and let λ = min{|λ2|, |λn|}.

Theorem 1.9 (Theorem 5.1. [38]). For a random walk starting at node i we have

|pi,j(t) − π(i)| ≤ n

√
d(j)

d(i)
λt. (1.5)

Definition 1.10. Suppose λ1 ≥ λ2 ≥ . . . λn be the eigenvalues of P the transition matrix

of a random walk on a graph G. The spectral gap of P is defined as

µ := 1− max
2≤i≤n

{|λi|}.

Definition 1.11. The cover time C(G) of a graph G is defined as the expected number

of time-steps taken for a random walk to reach every node.

Example 1.1. The cover time on a path with n nodes is Θ(n2).

Consider a random walk on a path with nodes 1, 2, · · · , n. We are interested in finding

the time it takes for a random walk to start from vertex 1 and end at vertex n. But first

we need to observe hi,j , (i < j), the hitting time of reaching j having started the walk

from i. For 2 ≤ i ≤ n− 1 we have

hi,i+1 =
1

2
· 1 +

1

2
(1 + hi−1,i + hi,i+1). (1.6)
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There are only two choices when starting from i; either walking to i+ 1, which takes 1

move, or walking to i − 1 and then going back to i + 1 ,which takes 1 + hi−1,i + hi,i+1

moves. Solving Eqn. (1.6) for hi,i+1, we get

hi,i+1 = 2 + hi−1,i.

Solving the recurrence, subject to the fact that h1,2 = 1 yields

hi,i−1 = 2i− 1.

Hence

h1,n =
n−1∑
i=1

hi,i+1 =
n−1∑
i=1

(2i− 1)

= 2

n−1∑
i=1

i−
n−1∑
i=1

1

= n(n− 1)− (n− 1)

= (n− 1)2.

(1.7)

In Table 1.1 you can find the hitting time and cover time of some of the typical graph

classes.

Table 1.1: Summary of hitting time and cover time of typical graphs [67]

Graph Cover time hitting time

Cycle Θ(n2) Θ(n2)

2-dimensional grid Θ(n log2 n) Θ(n log n)

d-dimensional grid, d > 2 Θ(n log n) Θ(n)

Hypercube Θ(n log n) Θ(n)

Complete graph Θ(n log n) Θ(n)

Regular Expanders Θ(n log n) Θ(n)



Chapter 2

Threshold Load Balancing with

Weighted Tasks

2.1 Introduction

In this chapter, our focus is on specific load balancing protocols for weighted tasks.

Most of the balls-into-bins approaches, analysed from a theoretical point of view, were

based on uniform balls. The novelty of our model lies in using weighted balls instead

of uniform ones. Load balancing is the process of allocating tasks (or data) between

servers (or hard disks) in an efficient way and/or within an efficient time. In computer

science, we often face challenges regarding the allocation of data to a limited number

of hard discs, each with a limited capacity for data storage. Similarly, processing tasks

can be limited by a restricted number of servers. Tasks can be uniform or non-uniform

and each server can have a different processing speed. Therefore, subject to different

constraints we need different kinds of modelling strategies. Specifically, here we are

interested in studying the protocols that allocate non-uniform (weighted) tasks between

the servers with a defined threshold. In order to balance the load in such protocols

we take advantage of Balls-into-bins schemes in the context of user-based or resource-

based models. These concepts are explained in Section 2.1.2. In the following, after an

introduction to the balls-into-bins games, we investigate two different protocols subject

to the weighted tasks. In Section 2.1.3 we will review some of the related works which

have been conducted in this framework and finally our main results will be shown in

Sections 2.3 and 2.4.

9
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2.1.1 Balls into Bins Games

Balls-into-bins games describe the process of randomly allocating m balls between n

bins (m > n) under different conditions. Here balls represent data or tasks and bins

represent processors or storage. The conditions are the rules under which the balls are

distributed between the bins. In computer science balls-into-bins games are useful tools

to analyse the load balancing. In other words, they are studied in order to build up

new strategies that help us in both balancing the load and reducing the maximum load

over all of the bins. Based on the conditions of various balls-into-bins protocols, we can

have homogeneous or non-homogeneous (weighted) balls or bins, various distribution

probabilities and even different networks of bins in the case of distributed systems. One

of the basic models is the single choice balls-into-bins where each ball is allocated to a

single bin selected u.a.r . We define the load of a bin as the number of balls allocated

to that bin. Then, an interesting question is: what is the maximum load, over all bins,

based on the number of balls m and bins n? Or, if the upcoming ball is allowed to

select more than one random bin and is allocated to the least loaded one, does the

maximum load change? In the model we develop in this chapter, we consider that the

balls are already allocated into bins, which resemble vertices in a network. Also each

bin is associated with a threshold that represents the capacity of that bin. The balls are

allocated u.a.r , such that some bins may initially be filled above threshold. Balls can

migrate from their current bin to an immediate neighbour, and these processes can occur

in parallel. With each bin having a defined threshold, we are interested in analysing the

time it takes to reach the state where the load in every bin is below the threshold. In

the next section we discuss this protocol for both resource-based and user based models.

2.1.2 Resource-Based and User-Based Models

Managing distributed systems is a rising demand. In these systems, where the compo-

nents (computers, servers etc.) are located on a network, global optimisation in order

to maintain the quality of service may no longer be efficient or valid. For instance,

consider a popular software upgrade which has been released, and all the users want to

download sizeable files of the newest version. In another example, consider the users of

a wireless network wanting to receive the best service. In both examples, users try to

make connection with the least-loaded server. Therefore, in order to find an efficient

approach that guarantees the quality of the service, we require load balancing protocols

in which the (selfish) users are able to move (migrate) from one server to another within

a distributed network, see [2, 20].
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When studying threshold-based load balancing in distributed systems, here we will con-

sider a network of bins each with an identical threshold. We are interested in analysing

the performance of this model which mostly depends on the maximum load of each of the

bins. Here, the performance is defined by the balancing time (run-time), i.e. the time it

takes for the process to reach the state where the load in every bin is below threshold.

We particularly focus on two different types of balancing protocols - the resource-based

protocols and the user-based protocols. In resource-based protocols, each overloaded

resource, that is the resource with a load above the threshold, is eligible to send tasks

to its neighbouring resources. Moreover, our analysis of resource-based protocols will

consider arbitrary graphs. For each graph, we have calculated two different balancing

times subject to the tight threshold and the above average threshold. In user-based

protocols, each task located at an overloaded resource decides weather or not to migrate

to a neighbouring resource. From the network point of view, we only investigate the

balancing time of user-based protocols applied on complete graphs. We review some of

the studies that have been carried out on the related frameworks in the next section.

2.1.3 Related Work

The related approaches in this chapter are categorised based on four different types of

load balancing models: the simple balls-into-bins games with no migration, load bal-

ancing protocols with migration, threshold based protocols and finally protocols that

consider weighted tasks.

2.1.3.1 Simple Balls into Bins games

There are numerous papers that have discussed balls-into-bins games with uniform balls.

In [21], Raab and Steger show that for m = n in a single choice balls-into-bins game the

maximum load is of the order of lnn
ln lnn ·(1+o(1)). Later this model was generalised to the d

choice model where each ball chooses d ≥ 2 bins on his arrival and then allocates himself

to the least loaded one. Particularly for the case where d = 2, (i.e. the two choice game)

and m = n, further investigation shows that the maximum load is exponentially lower

than that of a single choice game. In [22], Azar, Broder, Karlin and Upfal investigate the

so called d-choice balls-into-bins game by introducing the Greedy[d] protocol. They

show:

Theorem 2.1 (Theorem 1.1. [22]). Suppose that m balls are sequentially placed into n

boxes. Each ball is placed in the least full box, at the time of the placement, among d

boxes, d ≥ 2, chosen independently and uniformly at random. Then after all the balls

are placed,
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• with high probability, as n −→∞ and m ≥ n, the number of balls in the fullest box

is (1 + o(1)) ln lnn
ln d + Θ(m/n);

• in particular, as n −→ ∞ and m = n, the number of balls in the fullest box is

(1 + o(1)) ln lnn
ln d + Θ(1).

Regarding the weighted balls-into-bins games, there has much research carried out in

both single choice [23–25] and multiple choice [26] balls-into-bins games. We will discuss

the weighted case in Section 2.1.3.4 in more detail.

2.1.3.2 Load Balancing Protocols with Migration

Various centralised and distributed load balancing protocols have been developed and

analysed. In [20], Vöcking outlines selfish load balancing techniques including efficiency

analysis and computational complexity. The goal is to reach the Nash Equilibrium,

i.e. the state where no user can improve their quality of service via migration. In

[27], Goldberg introduces randomised local searches where the tasks randomly make

self-improving moves independent of each other in a distributed system. Initially, each

task is allocated to a resource then, in every time step, a task and a resource are

chosen u.a.r and the task moves to the resource if the resulting cost is lower. The

proposed randomised algorithm shows an improvement in the expected time to reach

a Nash equilibrium. Even-Dar and Mansour [28] analyse a load balancing protocol

with three distinct features: (1) all identical tasks that share a resource will adopt

the same policy, (2) no user moves from an under-loaded resource, and (3) no user

can move from an overloaded resource to another overloaded one. Here an overloaded

(under-loaded) resource had a load greater (less) than m/n where n and m are the

number of resources and the number of tasks respectively. It is shown that the balance

state (Nash equilibrium) is reached within O(log logm + log n) time steps for identical

tasks. However, the number of time steps is polynomial for non-uniform tasks even

for only two resources. The authors in [29] propose another method in which, unlike

[28], each task only needs to know the load of its current resource and the load of

a randomly-chosen alternative. They show that their approach converges to a Nash

equilibrium in an expected time of log log(m) + n4 steps. In [30], Brenbrink, Hoefer

and Sauerwald, for identical machines in a network G(V,E), find an expected time of

O(∆/µ2 ·(lnm+lnn)+|E|·∆/µ2)) to reach a Nash equilibrium, where ∆ is the maximum

degree in the network, µ2 is the second smallest eigenvalue of the Laplace matrix of G

and m,n are the number of tasks and machines respectively. They generalise the work

in [28] to load balancing over machines (resources) with different speeds in complete

graphs. Particularly, they show that their protocol converges to the Nash equilibrium
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in O(ln(m) · poly(n) · poly(smax)) on any graph, where smax is the maximum speed over

all machines.

When analysing weighted tasks in a threshold based system, we make a distinction

between threshold based protocols and the protocols considering weighted balls, and

review the related works belong to each of these categories separately.

2.1.3.3 Threshold Based Protocols

In [31], the authors investigated a parallel balls-into-bins protocol where excess balls,

subject to a given threshold T , are rethrown in the next round. Here, they analyse

the trade-off between the threshold T and the number of rounds r. In particular they

find for a threshold T = Ω( r
√

log n log log n), r rounds of communication are sufficient

to balance the load, where n is the number of unit-sized balls as well as bins. From

a threshold point of view, the work presented in [2, 3] is the most relevant to our

study. The protocols discussed in [3] are user-controlled and resource-controlled and

both models are applied on complete graphs. In case of above average threshold, for

both user-controlled and resource controlled, they lower bound the balancing time by

log(m), where m is the number of balls. Also, by applying an arbitrary threshold,

they show a bound of m · log2(n), where n is the number of bins, for balancing time

for the user-controlled case. The balancing times of both user-controlled and resource-

controlled models demonstrated in [2] are basically the generalisation of the protocols

in [3] to arbitrary graphs. For resource-controlled protocols, in [2], the authors show

a bound of O(H(G) · log(m)) for the balancing time, where H(G) is the maximum

hitting time between any pairs of nodes in an arbitrary graph G. For above average

threshold, i.e. the threshold of each resource is > m
n , they show the balancing time

is roughly of the order of O(τ(G) · log(m) + H(G) · log(n)), where τ(G) is the mixing

time of graph G, and the bound is tight. As for the user-controlled case, they introduce

two different balancing stages. In the approximate balancing stage, similar bounds

of O(H(G) · log(m)) and O(τ(G) · log(m)) are shown for arbitrary and above average

threshold respectively. Moreover, they show that the time taken to reach a completely

balanced state, is bounded by O(n5 · H(G) · log(m)). In [32], the authors introduce two

sequential balls-into-bins protocols called Adaptive and Threshold. In both approaches

they show that, within O(m) rounds of allocation time, it is possible to achieve a load

of dmn + 1e which is close to the optimal maximum load m/n.
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2.1.3.4 Weighted Tasks

The idea of weighted balls was first introduced in [23], where the authors adapt the idea

of parallel balls-into-bins games in [33] and generalise it to weighted tasks. They show

a maximum load of γ · (m/n · wavg + wmax) within O (log log n/(log γ · ((m/n) ·∆ + 1))

rounds of communication, where wmax and wavg are the maximum and average weights

respectively and ∆ = wavg/wmax. Single-choice and multiple-choice balls-into-bins with

weighted tasks are investigated in [34]. Here, the authors analyse the aforementioned

protocols subject to different weight distributions as well as the order in which balls

are allocated. In [35], the authors investigate the two-choices balls-into-bins procedure

where m weighted tasks are allocated into n bins. Based on the power of two choices,

each task is allocated to the least loaded of the two randomly chosen bins. Particularly,

the authors show that as long as the weight distribution has a finite second moment and

satisfies a mild technical condition, the gap between the load of the heaviest bin and the

load of the average bin is independent of the number balls. In [36] the authors introduce

the (1 + β)-choice balls-into-bins where each ball is allocated to a random bin with

probability 1− β and the least loaded of two randomly chosen bins with probability β,

for some parameter β ∈ (0, 1). For the aforementioned process, the authors show that the

gap between the load of the most loaded bin and the average is Θ(log n/β), independent

of m. Moreover, they show that the gap remains Θ(log n/β) in the weighted case for a

large class of weight distributions. A user-controlled balls-into-bins game is investigated

in [29] where m balls are randomly distributed among n bins at the beginning. The

approach is working in parallel rounds. In every round each ball is free (with a certain

probability) to choose a bin randomly and allocate himself to that bin if the load of

the selected bin is less than the load of the bin he currently resides in. The upper

bound of the balancing time was determined to be log log(m) + n4 for this case. The

generalization of the user-controlled protocol in [29] to weighted balls is analysed in [37].

Specifically they find an upper bound of O(nm∆3ε−2) for the expected time to reach

an ε-Nash equilibrium. The latter protocols are then generalised to weighted balls and

non-uniform resources with different speeds.

2.1.4 Our Contribution

Here, we investigate threshold based load balancing protocols for weighted tasks. We

generalise the work developed in [2, 3] to the case of weighted tasks (users). Particularly,

we study resource-controlled and user-controlled protocols. We analyse each class of the

aforementioned protocols based on two types of thresholds. These are the loose (or

above average) threshold, which is larger than the average load W/n by some constant
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factor, and the tight threshold which is the average weight W/n. Here, W is total weight

of all tasks and n is the number of resources. We will present our analysis for the two

categories of protocols, with respect to above average and tight thresholds.

In Section 2.3 , we study resource-controlled protocols on an arbitrary graph G. For

the above average threshold case in Theorem 2.6 we show that the balancing time is

O(τ(G) · logm) with high probability, where τ(G) is the mixing time of a random walk

on G and m is the number of tasks. Our bound, which is independent of the weights of

the tasks, improves the expected balancing time O(H(G) · log n + τ(G) · logm) for the

uniform tasks presented in [2]. Here H(G) is the hitting time of a random walk on G.

As for the tight threshold case, in Theorem 2.11, we show that the expected balancing

time has a bound of O(H(G) · logm). This bound is tight (see Observation 2.12), and

independent of weight and it matches the bound in [2] for uniform tasks.

In Section 2.4, we apply user-controlled protocols to complete graphs. For the above

average threshold case, in Theorem 2.17, we show a bound ofO(wmax/wmin·logm) on the

expected balancing time, where wmax and wmin are the maximum and minimum weight

of all tasks. For tight thresholds, in Theorem 2.18 we show a bound of O(wmax/wmin ·
logm
n2 ). Our bounds, for both above average and tight thresholds, match the abounds in

[3] for unit-weight tasks. However, for weighted tasks, our bounds include an additional

factor of wmax/wmin.

2.2 Notation

Assume [m] = {1, 2, · · · ,m} are a set of tasks and [n] = {1, 2, · · · , n} are set of resources.

Assume the resources are connected via an arbitrary graph denoted by G(V,E). Let

d(i) be the degree of node i ∈ [m] and ∆ be the maximum degree, i.e. ∆ = maxid(i).

Define wi ∈ N to be the associated weight of each task i ∈ [m]. Define wmax = maxiwi

be the maximum weight. Similarly let wmin be the minimum weight where wmin ≥ 1.

If this is not the case then we can simply adjust other parameters such that wmin = 1.

Let W =
∑m

i=1wi represent the total weight of all tasks. In our setting all of the actions

are taking place in an iterative fashion. If xr(t) denotes the load of resource r at time t

then we define

x(t) = (x1(t), x2(t), · · · , xn(t))

to be the load vector of the system at the beginning of time t, i.e. before any balancing

takes place. Let

X(t) = (X1(t), X2(t), · · · , Xn(t))
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denote the state of the system at the beginning of time-step t, where Xr(t) is the random

variable that denotes the load of resource r at time t. Let br(t) be the number of tasks

on resource r at time t.

For an undirected, connected graph G let Pi,j be the probability that the random walk

moves from vertex i to vertex j. We consider standard random walks for non-regular

graphs with transition matrix P, where Pi,j = 1/d for i 6= j and (i, j) ∈ E and Pi,i =

(d − di)/d, where d is the maximum degree of the graph. We define Pt to be the tth

power of P. Then P ti,j is the probability that a random walk starting from vertex i is

located at vertex j after t steps. The stationary distribution of the random walk on G

is called π(G) and it is the uniform distribution for this random walk. Note that the

results in this chapter hold for all random walks in which the stationary distribution

equals the uniform distribution.

2.3 Resource-Controlled Migration

In this section, we investigate the so called resource-controlled migration where resources

(or nodes) are in charge of balancing the load in an iterative fashion. Tasks, currently

assigned to a resource r in a distributed system, are only allowed to move to the neigh-

bour(s) of r. As a consequence, every resource only needs to know about the global

threshold and its own current load. Our main results in this section are based on two

different sets of thresholds namely the above average threshold Tr = (1+ε) ·W/n+wmax

where ε ≥ 0, and the tight threshold Tr = W/n+ 2wmax. We need to tackle some new

challenges for the weighted case which are not present in the uniform case. One of the

main challenges is to have a well-defined value of the total weight of overloaded (un-

happy) tasks on a resource, i.e. the sum of the weight of overloaded tasks on a resource

r has to be unique. However, this may not be the case if we simply change the order of

the non-uniform tasks in an overloaded resource. To resolve this issue we need to specify

an ordering for tasks residing in a resource. Although the ordering we use is arbitrary

due to the parallel nature of our protocol, having a fixed order is sufficient to find a

solution. The other challenge relates to the definition of unhappy or overloaded tasks.

Unlike the uniform-sized tasks case, in weighted case we may have the situation where

a task with weight ≥ 2 is partially above and partially below the threshold. If such a

task is not classified as unhappy then it may cause a potential decrease if it moves to

an overloaded resource, in the case where the below threshold part is much larger than

the above part. Hence, we need to take the partially above tasks into consideration.
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We assume that every resource stores all its tasks in a stack data structure. However,

in case of several tasks arriving at a bin simultaneously, within a time-step, the tasks

are stored in an arbitrary order.

Definition 2.2. The height hir(t) of task i on resource r ∈ [n] at time t is the sum of

the weights of all tasks in the stack data structure that are positioned before i.

Definition 2.3. Subject to the global threshold Tr, we define a task r to be partially

above (cutting) the threshold Tr if hir(t) < Tr and hir(t) + wi > Tr.

Based on Definition 2.3, each task stored at resource r ∈ [n] can be completely above,

completely bellow or cutting the threshold. Let Iar (t) and Ibr(t) be the sets of tasks, on

resource r at the beginning of time-step t, that are completely above and completely

below the threshold respectively; they can also be empty. Define Icr(t) to be the set

containing the task on resource r that is partially above (cutting) the threshold at the

beginning of time-step t.

Definition 2.4. A task i is accepted by resource r if the height of the task i plus its

weight is less than or equal to the threshold, i.e. hir(t) + wi ≤ Tr. We call these tasks

inactive. Similarly the tasks that are not accepted by a resource are called active.

Initially tasks are randomly distributed between all of the resources. Then, according

to Algorithm 2.3.1, the tasks in an overloaded resource that are labelled as inactive are

allowed to move to a neighbouring resource that is randomly chosen. In this regard, we

can think of each active task as undertaking a random walk through the network until

it is accepted by a resource at which point it becomes inactive.

Note that when the task is labelled as inactive, i.e. when it is accepted by a resource at

any time-step t, it will not leave that resource again.

Algorithm 2.3.1 Resource Controlled

for all resources r in parallel do
if xr(t) > Tr then

Remove any task i ∈ Iar (t)∪Icr(t) and reallocate the task to a neighboring resource
that is chosen according to transition matrix P .

Assign new heights to all migrated balls

2.3.1 Above Average Threshold

In this section, we assume that thresholds are larger by some constant factor than the

average load W/n. More specifically, we assume that Tr = (1 + ε) ·W/n+wmax where ε

is a non-negative constant. In the following we explain that the balancing time has the
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order of O(τ(G) · logm). Intuitively, taking advantage of the above-average threshold,

we find a constant fraction of the resources, called under-loaded resources, that are able

to receive a task with any weight (≤ wmax) in the first step. Then we lower bound the

probability of the active tasks landing on the under-loaded resources after running the

algorithm for enough time-steps.

The next lemma gives us an estimate of the probability that a randomly chosen resource

has a load less than or equal to the threshold. We use the outcome of the next lemma

to prove the main result of this section. Here Xr(t) is the random variable that denotes

the load of resource r at time t.

Lemma 2.5. If r is a resource chosen uniformly at random at time-step t. Then

P [Xr(t) ≤ Tr] ≥ ε/(1 + ε).

Proof. Base on a simple pigeon-hole argument, at any point in time (it could be either

before or after task reallocations) there exists a fraction of ε/(1 + ε) resources that are

able to store an additional task of any weight, ≤ wmax, without violating the threshold.

We prove it by contradiction. Assume that this is not the case which means that there

are at least

(1− ε/(1 + ε)) · n+ 1

many resources with a weight at least (1 + ε) ·W/n. Hence

((1− ε/(1 + ε)) · n+ 1)(1 + ε) ·W/n > W,

Which is a contradiction.

Theorem 2.6 is our main result with respect to the above average threshold and it holds

for any arbitrary graph G. The result is stated in terms of the performance of random

walks on G which forms a Markov chain. Here τ(G) is the mixing time, see Definition

1.8, of the aforementioned Markov chain. Particularly if G is a complete graph Theorem

2.6 achieves a bound of O(logm) for balancing time.

Theorem 2.6. Let Tr = (1+ε) ·W/n+wmax. Assume that G is an arbitrary graph with

mixing time τ(G). Let c be an arbitrary constant. Then, with a probability of 1 − n−c

all tasks are allocated after

4(c+ 1) · τ(G) · logm

log(1 + ε)

time steps.
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Proof. According to Algorithm 2.3.1, we can think of every active task performing a

random walk subject to the transition matrix P until it is accepted by a resource,

meaning that it reaches a resource that has a load small enough to be able to accept the

task. Again based on the protocol, if a task is accepted by a resource then the task will

become inactive and keep that status onwards. We divide the time-steps into phases of

length 2τ(G), where τ(G) is the mixing time of the Markov chain formed by the random

walk on G. We fix a phase j and active task i and assume that task i remains active in

the last step of phase j. Let ri,j denote the resource that the active task i visits at the

last time-step of phase j. Here, we utilise a lemma introduced in [2].

Lemma 2.7 (Lemma 2.1. [2]). Let G be an arbitrary graph. Let P be the transition

matrix of a random walk on G. For any two nodes i, j and t ≥ 4 log n/µ, where µ is the

spectral gap of P,

πi − n−3 ≤ Pt
i,j ≤ πi + n−3.

Therefore, assuming that τ(G) = 4 log n/µ, it follows that for every k ∈ [n]

πi − n−3 ≤ P [ri,j = k] ≤ πi + n−3. (2.1)

Now from Lemma 2.5 together with 2.1, it follows that the probability that task i is

accepted at the last time-step of phase j is at least

εn

1 + ε
·
(

1

n
− 1

n3

)
≥ ε

2(1 + ε)
. (2.2)

Let’s assume that after ` many phases, with ` = (c+1)·logm/ log(1+ε), there still exists

a task i that is still active. Being active after ` phases, a task i has not been accepted

by any resource at any of the (last) time-steps of the ` phases. Therefore, according to

Eqn. (2.2), the probability that the task i was not accepted by any resource at any of

the (last) time-steps of each of ` phases, pi, is

pi =

(
1− ε

2(1 + ε)

)`
=

(
2 + ε

2(1 + ε)

)`
≤
(

1

1 + ε

)`
= (1 + ε)−(c+1)·logm/ log(1+ε)) =

(
1

m

)c+1

.

(2.3)

Since the probability that all the tasks are allocated within ` step is
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1−
m∑
i=1

pi,

the result occurs after τ(G) · ` many steps for m > n.

2.3.2 Tight Threshold

In this section, we investigate a tighter threshold. We assume that

Tr = W/n+ 2wmax.

Our main result is Theorem 2.11, which is a bound for the balancing time which is stated

in terms of the maximum hitting time H(G), see Definition 1.7. The following is the

main idea of our proof.

Analysing the so-called resourced-control protocols under a tight threshold is more chal-

lenging than for the above average threshold setting where we could easily capitalise on

a fraction of bins that are able to accept tasks of any weight. As in [2], here we need

to introduce a potential function that counts the weight of unhappy (active) tasks, that

are both above threshold and partially above threshold tasks. The next step is to show

that the potential function does not increase, and this is obtained by following the defi-

nition of the potential. If we consider the weight of unhappy, i.e. tasks then in just one

time-step they may end up being unhappy again, resulting in no change the potential,

or they may be accepted by a resource that leads to a decrease in the potential. Finally

we compare the resource-controlled protocols with another protocol, in which we assign

each unhappy task to one of the resources such that the load of any resource is at most

W/n+ wmax, to show that after 2H(G) time-steps the expected potential drop is large

enough. Note that the potential drop is in expectation and therefore we need to use

Theorem 2.10 (drift theorem) for bounding the balancing time.

We say that an allocation of the weighted tasks to the resources is proper if all the

resources have a load below or equal to W/n + wmax. One can find a trivial proper

assignment by using the simple first fit rule. As we mentioned, in order to analyse the

resource-controlled protocol we introduce a potential function Φ that counts the total

weight of the tasks that are either partially above the threshold, see Definition 2.3, or

completely above the threshold. Let Ia(t) be the set of all the tasks that are above

threshold, i.e.
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Ia(t) =
⋃
r∈[n]

Iar (t).

Similarly let Ib(t) (Ic(t)) be the set of all the tasks that are below (partially above

(cutting)) the threshold.

For any t ≥ 0 the potential function Φ is defined as

Φ(X(t)) =
∑

i∈Ia(t)∪Ic(t)

wi. (2.4)

For any t > 0 the potential change between subsequent states X(t) and X(t + 1) is

defined as

∆Φ(t+ 1) = Φ(X(t))− Φ(X(t+ 1)) (2.5)

In the following observation we show that the Φ is non-increasing.

Observation 2.8. For any t > 0 we have

∆Φ(t+ 1) ≥ 0.

Proof. Based on the definition, at any time t > 0, any task i ∈ [m] can either be in

Ic(t)∪ Ia(t) or Ib(t) and not both of them. For the ease of presentation we assume that

the protocol considers the task sequentially in an arbitrary order. In the following, we call

a step where one of the tasks is considered a sub-step. We know that a task i is allowed

to move to a randomly chosen neighbouring resource if and only if i ∈ Ic(t)∪Ia(t) at the

beginning of step t. Suppose that task i is one of the tasks that are eligible to move and

it moves to a randomly chosen neighbouring resource in sub-step t′. At the beginning of

step t+ 1, there are only two possible cases for the task i, either i ∈ Ic(t+ 1)∪ Ia(t+ 1)

or i ∈ Ib(t + 1). For the first case the potential remains unaffected, and for the second

case ∆Φ(t+ 1) = wi.

The next lemma finds a lower bound for the potential decrease during one time-step.

Lemma 2.9. If Tr = W/n+ 2wmax,

E [∆Φ(t+ 2H(G)) | X(t) = x(t)] ≥ Φ(X(t))

4
.
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Proof. We consider a phase of length 2H(G), where H(G) is the maximum hitting time,

see Definition 1.7. At the beginning of each phase each active task is assigned to a

resource, called the target resource, such that the maximum load of any resource is at

most W/n+ wmax. Then for every active task we place a token on its current resource

and let the tokens perform a random walk of length H(G). If a token lands on the target

resource of the corresponding task then the task is marked blue, otherwise the task is

marked red. Let B and R be the set of blue and red tasks respectively. Also let W (B)

and W (R) be the total weight of the blue and red tasks respectively. Note that

Φ(X(t)) = W (B) +W (R)

since Φ(X(t)) is the weight of the active tasks at the beginning of time-step t.

Let X ′(t) be the state in which all the task are assigned to the very same target resources

as in X(t). Furthermore, all the blue tasks are allocated to their targets. We define

∆Φ′(t+2H(G)) to be the potential drop as a result of the blue tasks’ allocation in X ′(t)

in 2H(G) time. We know that the expected time for a random walk on graph G to hit

the target resource is the maximum hitting time H(G). We use the Markov inequality,

P [X > a] ≤ E [X]

a

where X is a random variable and a > 0. It shows that the probability of a random walk

hitting its target resource after 2H(G) time-steps is at least 1/2. Therefore we have

∆Φ′(t+ 2H(G)) ≥ Φ(X(t))/2.

Now we inspect the original process where every active task takes a random walk until

it is accepted by a resource that has sufficient space to accept it. We want to show

∆Φ(t+ 2H(G)) = Φ(X(t))− Φ(X(t+ 2H(G))) ≥ ∆Φ′(X(t+ 2H(G)))

2
≥ Φ(X(t))

4
.

Without loss of generality, we can assume that each task, as long as it is not accepted by

any resource, pursues its corresponding token. If it were accepted by one of the resources

it is marked as inactive and its random walk terminates. We divide all the resources

into two different sets. The resources that are not able to accept all of the incoming

tasks throughout a phase, 2H(G) time-steps, are labelled as Full. Note that the load

of a Full resource has to be larger than W/n+wmax by the end of a phase. A resource
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that is not categorized as Full is called good. A good resource is able to accept all of

the incoming tasks within a phase without crossing the W/n+ wmax line.

Moreover, we categorise all blue and red tasks into three different sets. The set of blue

tasks that are accepted by a good resource during a phase is denoted by Bg. Similarly,

Rg are the red tasks that are accepted by a good resource. It follows that Rg and Bg

are tasks which have not taken the position of any other task at its target resource. The

tasks Bf (Rf ) are blue (red) tasks that are accepted by a Full resource in a phase.

Lastly, the blue and red tasks that remain active and are not accepted by any resource

at the end of a phase are denoted by Bn and Rn respectively. Therefore we have

∆Φ′(X(t+ 2H(G))) = W (B) = W (Bg) +W (Bf ) +W (Bn)

and

Φ(X(t))− Φ(X(t+ 2H(G))) = W (Bg) +W (Bf ) +W (Rg) +W (Rf ).

Firstly, we show that W (Bf ) +W (Rf ) ≥W (Bn) and then we prove our claim, i.e.

∆Φ(t+ 2H(G)) ≥ 1

2
∆Φ′(t+ 2H(G)).

In order to show that W (Bf ) +W (Rf ) ≥W (Bn), let `b be the total weight of the tasks

that are accepted by resource b at the beginning of the phase. Then it follows that

W (Bn) ≤
∑

b∈Full

W

n
+ wmax − `b. (2.6)

The equality in Eqn. (2.6) is valid because
∑

b∈FullW/n+wmax− `b is an upper bound

for the total weight of the blue tasks that are able to be assigned to a Full resource

during a phase. Also we have

W (Rf ) +W (Bf ) ≥
∑

b∈Full

W

n
+ wmax − `b. (2.7)

Based on the definition of a Full resource, which is a resource with a load larger than

W/n+ wmax, Eqn. (2.7) holds. Note that Tr = W/n+ 2wmax.

Now we show that
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∆Φ(t+ 2H(G)) ≥ 1

2
∆Φ′(t+ 2H(G)).

Clearly W (Bg) ≥ 0 and W (Rf ) ≥ 0, and therefore W (Bg)+W (Rf ) ≥ 0. Adding W (Rf )

on both sides gives

W (Bg) + 2W (Rf ) ≥W (Rf ).

Adding a W (Bf ) on both sides gives

W (Bg) + 2W (Rf ) +W (Bf ) ≥W (Rf ) +W (Bf )

Since W (Bf ) +W (Rf ) ≥W (Bn) we have

W (Bg) + 2W (Rf ) +W (Bf ) ≥W (Bn).

Dividing both sides by 2 gives

W (Bg)/2 +W (Rf ) +W (Bf )/2 ≥W (Bn)/2.

Adding W (Bg)/2 +W (Bf )/2 on both sides gives

W (Bg) +W (Rf ) +W (Bf ) ≥W (Bg)/2 +W (Bf )/2 +W (Bn)/2

=
1

2
(W (Bg) +W (Bf ) +W (Bn)).

The LHS is just ∆Φ(t + 2H(G)) −W (Rg), and the RHS is 1
2∆Φ′(t + 2H(G)), so we

obtain

∆Φ(t+ 2H(G))−W (Rg) ≥
1

2
∆Φ′(t+ 2H(G)),

and as W (Rg) ≥ 0 the claim of ∆Φ(t + 2H(G)) ≥ 1
2∆Φ′(t + 2H(G)) follows. This

concludes the proof of this lemma.

We use the following Drift Theorem to prove the main result of this section. Note

that there exists different versions of the so called drift theorem mainly to analyse the

run-time of randomised algorithms and we have selected the following one.

Theorem 2.10 (Theroem 2. [41]). Let S ⊆ R be a finite set of positive numbers with

minimum smin. Let {V (t)}t∈N be a sequence of random variables over S ∪ {0}. Let T

be the random variable that denotes the first point in time t ∈ N for which V (t) = 0.

Suppose that there exists a constant δ > 0 such that

E [V (t)− V (t+ 1) | V (t) = s] ≥ δs (2.8)
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holds for all s ∈ S with P [V (t) = s] > 0. Then for all s0 ∈ S with P [V (0) = s0] > 0,

E [T | V (0) = s0] ≤ 1 + ln(s0/smin)

δ
. (2.9)

Intuitively, Theorem 2.10 gives an upper bound on the expected run-time of a sequence

of random variables, defined on a finite set, with a bounded decline in expectation.

Theorem 2.11. Assume Tr = W/n + 2wmax. Let H(G) be the hitting time of the

random walk on G with uniform stationary distribution. Let T be the time it takes until

all tasks are allocated. Then

E [T ] = O (H(G) · ln(W )) .

Proof. As the potential change, within 2H(G) time, is bounded by W from above, we

can conclude the result using Theorem 2.10 (drift theorem).

The following Observation shows that the bound presented in Theorem 2.11 is tight

for the protocol discussed in this section. Note that for weighted tasks the bound in

Theorem 2.11 is not tight since the total weight W can be super-polynomial, i.e. it is not

bounded above by any polynomial in m, the number of tasks. Therefore in Observation

2.12 we consider an amount m of unit-size tasks.

Observation 2.12. There is a class of graphs such that the resource based protocol

converges to a balanced state in an expected number of steps of Ω (H(G) · logm) for tight

thresholds.

Proof. We use the same argument as [2] to show the tightness of the bound. In Theorem

3.7 [2], the authors investigate a graph G′(V,E) that consists of two cliques V1 and V2

each of size n/2. The two cliques are connected by a total of k edges, where 1 ≤ k ≤ 1
5n

2.

Every vertex in each clique is connected to at least bk/(n/2)c and at most dk/(n/2)e
vertices of the other clique. Here instead of two cliques connected to each other by a

total of k edges, we introduce the following graph G. Consider G consists of a clique K

with n− 1 nodes and a single node u. Moreover, we assume u is connected to exactly k

nodes of the clique for some arbitrary k < n. First, we show that the maximum hitting

time of G is Θ(n2/k). Consider we are at any of the vertices in the clique, which are

connected to u. Then we choose to go to u with probability k/n in total (k vertices

connected to u). Therefore it takes about n/k steps for a random walk to choose to go

to u. Now, if we are at one of the vertices in the clique, which is not adjacent to u, it
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takes approximately Θ(n) to go to a vertex that is adjacent to u. Hence, in total, it

takes H(G) = Θ(n2/k) steps to go from any vertex in the clique to u. As for allocating

tasks, we first distribute the tasks on the nodes in K such that every node in K has a

load of m/n and the remaining tasks are all allocated to an arbitrary node in K. We

call this initial state x0. To reach the balance state while starting from x0, there are

Φ(x0) = m/n random walks starting from K that have to reach vertex u. We first need

to bound the probability of these random walks staying in K within t time steps. We

use the following lemma that concerns graph G′(V,E) (defined above) in [2] to finish

our proof.

Lemma 2.13 (Lemma 3.8. [2]). Consider a random walk that starts at a vertex in V1

with bk/(n/2)c neighbours in V2. Then, for any integer t, the probability that the random

walk stays within V1 for t step is at least

4−
16kt
n2
− 1

2

We can use the above lemma for our case by swapping V2 with a vertex u with out loss

of generality. Because all of the random walks are independent, after t steps at least

one walk remains in the clique with a probability of at least 1− (1− 4−
16kt
n2
− 1

2 )Φ(x0). For

t =
log4 Φ(x0)− 1

2
16k · n2 the latter probability is 1− (1− 1

Φ(x0))Φ(x0) ≥ 1− 1
e . Hence, we can

achieve an expected balancing time of

Ω (H(G) log(m/n)) = Ω (H(G) log(m))

for m� n.

2.4 User-Controlled Migration

In this section, we will investigate the so called user-controlled protocols applied on com-

plete graphs. According to user-controlled protocols every task located at an overloaded

resource decides whether or not to migrate to a neighbouring resource.

2.4.1 Model and Definitions

As for user-controlled migration, we assume that the tasks are stored in the resources

based on a stack data structure. Let G be an arbitrary graph that represents the network

of a distributed system. Let n and m be the number of resources and the number of

tasks respectively. Also W is the total weight of the tasks. Define wmax as the maximum
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weight of any task. Recalling the Definitions 2.2 and 2.3 in Section 2.3, we assume that

the height hir(t) of task i on resource r ∈ [n] at time t is the sum of the weights of all

tasks in the data structure that are positioned before i. Subject to the global threshold

Tr, we define a task r to be partially above (cutting) the threshold Tr if hir(t) < Tr and

hir(t) +wi > Tr. We say a resource is over-loaded if its load is larger than the threshold

Tr. We are now ready to define the potential function.

Definition 2.14. The potential of an over-loaded resource r at a time-step t is denoted

by φr(t) and it counts the weight of the task which is partially above (cutting) the thresh-

old (if there is any) together with the task(s) that is(are) above the threshold, if there is

any.

The potential Φ(t) at any time-step t is defined as follows

Φ(t) =

n∑
i=1

φi(t).

Let xr(t) be the load (total weight of the tasks in r) of resource r ∈ [n] at time-step

t. Also let br(t) be the number of the tasks in r at time-step t. If it is clear from the

context that t is fixed then we only use the notations φr, br, and xr.

Then, according to the user-controlled migration protocols (Algorithm 2.4.1), tasks may

leave an overloaded resource r with a probability α ·
⌈
φr(t)
wmax

⌉
· 1
br(t)

, with 0 < α < 1, and

move to a randomly chosen neighbouring resource.

Algorithm 2.4.1 User-Controlled

for all All users do in parallel do
Let r(i) be the resource storing user i.
if xr(i) > Tr then

i migrates to a resource chosen u.a.r with probability α ·
⌈

φr
wmax

⌉
· 1
br

.

In order to achieve an upper bound for the balancing time we follow almost the same line

of argument presented in [2] with some modifications for the weighted case. According

to the protocol, all the tasks located in an overloaded resource are allowed to leave

their current resource with the same probability. This feature has both advantages and

disadvantages. On one hand it facilitates the migration of the surplus tasks, which

eventually leads to a decrease in potential. But on the other hand it motivates all the

other tasks to leave and this acts to increase the potential. Therefore, we only need to

show that the potential drop exceeds the potential increase.

Even though the potential is defined based on the weight of above and partially above

threshold tasks, in reality our analysis and calculations are based on the number of tasks
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above threshold, see Eqn. (2.10). We can explain the reason for using such a potential

in an example. Consider a situation where there are some noticeable number of slightly

overloaded resources with only a partially above threshold task of weight wmax and no

above threshold tasks. In this specific case, it is likely that any of these large tasks

will move to other slightly overloaded resources, since the migration probability is the

same for every task in a resource, and this will increase the weighted based potential

dramatically. As a consequence, we can address this issue by using a potential that

counts the number of tasks located above the threshold.

2.4.2 Above Average Thresholds

In this section we assume that the threshold Tr = (1 + ε)W/n + wmax where W is

the total weight of the tasks and ε > 0. Analysing the potential change, we assume

that the tasks are stored in a stack data structure in a resource. We presume that the

tasks are leaving an overloaded resource one after another subject to the order of their

heights in the stack. Furthermore, for the sake of analysis, we assume tasks are moving

sequentially, i.e. tasks leave the first resource, and then the second resource and so on.

For a fixed t the potential Φ(t+ 1):

• decreases by wi for every task i which was above the threshold (hr(t) + wi > Tr)

and then migrates to a resource r′ such that hr′(t+ 1) + wi ≤ Tr.

• does not change for every task i which was above the threshold (hr(t) + wi > Tr)

and then migrates to a resource r′ such that hr′(t+ 1) + wi > Tr.

• increases by wi for every task i which was below the threshold (hr(t) + wi ≤ Tr)

and then migrates to a resource r′ such that hr′(t+ 1) + wi > Tr.

We begin with the following Observation.

Observation 2.15. Let t be an arbitrary time step and φr(t) > 0. Then the number of

tasks required to leave r such that xr(t+ 1) < Tr is at least

φ′r =

⌈
φr
wmax

⌉
.

At this stage we only focus on the potential change during a fixed time-step. We initially

calculate the potential change for the case where wmin = wmax and then generalise it to

non-identical weighted tasks.



Chapter 2. Threshold Load Balancing with Weighted Tasks 29

If wmin = wmax = 1, then

E [∆φr|i balls leave] ≥


ε

1+ε · i if i ≤ φ′r balls leave

φ′r − i if i > φ′r balls leave
(2.10)

The number of tasks leaving in the first case is less than φ′r which means that they

can only reduce the potential if they land on resources with enough empty capacity.

According to Lemma 2.5, at any point in time there exists a fraction of ε/(1+ε) resources

that are able to store an additional task of any weight ≤ wmax without violating the

threshold. Therefore the potential change in the first case is ε/(1 + ε) · i. In the second

case we consider the worst case scenario where on one hand φ′r above threshold tasks

leave r and move to another over-loaded resource and on the other hand an additional

(i− φ′r) tasks located below the threshold leave resource r and end up in an overloaded

resource.

In the weighted context, like the uniform case, the potential decreases if i ≤ φ′r tasks leave

and move to resources with enough empty capacity. One can assume that the expected

size of a leaving task is xr/br because all tasks can leave with the same probability. In

case of i > φ′r tasks leaving resource r, similar to the uniform case, we disregard any

above threshold tasks in r that move to another resource and become below threshold,

hence decreasing the potential.

Therefore, we can bound the potential change as follows.

E [∆φr|i balls leave] ≥


ε

1+ε · i ·
xr
br

if i ≤ φ′r balls leave

(φ′r − i)xrbr if i > φ′r balls leave

According to the definition of φ′r, in the first case, the potential decreases in expectation

by xr
br

for each leaving task, although the height of this leaving task is below the threshold.

In Lemma 2.16 we find a lower bound for the total expected potential drop during a

single time-step.

Lemma 2.16. Let α = ε
120(1+ε) in Algorithm 2.4.1. Assume Tr = (1 + ε) ·W/n+wmax

and Φ(X(t)) > 0. We have

E [∆Φ(t+ 1) | X(t) = x(t)] ≥ 1

2
· ε

1 + ε
· Φ(X(t)).

Proof. We consider two different cases, the potential drop and the potential increase.

Define pr(i) as the probability that exactly i many tasks leave resource r. As mentioned
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before, all the tasks in an over-loaded resource have the same probability to leave. Define

the random variable Yr(i) as follows

Yr(i) =

1 if task i on resource r leaves

0 otherwise.

Now we have

E [∆φr(t+ 1) | X(t) = x(t)] =

br∑
i=0

E [∆φr|i balls leave] · pr(i)

≥
φ′r∑
i=1

ε

1 + ε
· i · xr

br
· pr(i)−

br∑
i=φ′r+1

i · xr
br
· pr(i)

≥ xr
br

br∑
i=1

ε

1 + ε
· i · pr(i)− 2

xr
br

br∑
i=φ′r+1

i · pr(i)

=
xr
br

ε

1 + ε
· E

[
br∑
i=1

Yr(i)

]
− 2 · xr

br

br∑
i=φ′r+1

i · pr(i),

the last equality is valid because all the tasks in an over-loaded resource have the same

probability to leave. Since

E [Yr(i)] = α ·
⌈

φr
wmax

⌉
· 1

br
,

then E
[∑br

i=1 Yr(i)
]

= α ·
⌈

φr
wmax

⌉
. In the next step we calculate an upper bound for the

potential increase, i.e.
∑br

i=φ′r+1 i · pr(i).

In this regard the lesser the value of φ′r ≥ 1 the greater the value of
∑br

i=φ′r+1 i · pr(i). It

follows
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br∑
i=φ′r+1

i · pr(i) =

br∑
i=φ′r+1

i

(
br
i

)(
α

⌈
φr
wmax

⌉
· 1

br

)i
·
(

1− α
⌈

φr
wmax

⌉
· 1

br

)br−i

≤
br∑

i=φ′r+1

i

(
br
i

)(
α

⌈
φr
wmax

⌉
· 1

br

)i

≤
br∑

i=φ′r+1

i

(
α
e · br
i
·
⌈

φr
wmax

⌉
· 1

br

)i

≤
br∑

i=φ′r+1

i

α e · br⌈
φr

wmax

⌉⌈ φr
wmax

⌉
· 1

br

i

≤
∞∑
i=2

i(eα)i ≤ 30α2,

the second inequality is valid because(
br
i

)
≤ br

k

i!
≤
(
br · e
i

)i
.

Let α = ε
120(1+ε) then

E [∆φr(t+ 1) | X(t) = x(t)] ≥ ε

(1 + ε)

⌈
φr
wmax

⌉
· α · xr

br
− 60α2 · xr

br

≥ α · ε

2(1 + ε)
· xr
br
· φr
wmax

≥ α · ε

2(1 + ε)
· wmin
wmax

· φr.

Summing over all resources r ∈ [n] with φr ≥ 1 we have

E [∆Φ(t+ 1) | X(t) = x(t)] ≥ α · ε

2(1 + ε)
· wmin
wmax

· Φ(X(t)).

Using Lemma 2.16, the main result of this section follows.
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Theorem 2.17. Assume Tr = (1 + ε) ·W/n + wmax and α = ε
120·(1+ε) . Let T be the

time it takes until all tasks are allocated. Then

E [T ] = 2 · 1 + ε

α · ε
· wmax
wmin

· logm.

Proof. The result is following from Lemma 2.16 together with Theorem 2.10 (Drift

Theorem).

2.4.3 Tight Threshold

In this section, given Tr = W/n + wmax (tight thresholds), we investigate the user-

controlled protocols on a complete graph. Theorem 2.18 is the main result of this

section.

Theorem 2.18. Assume Tr = W/n + wmax and α ≤ 1
120n . Let T be the time it takes

until all tasks are allocated. Then

E [T ] =
2 · n
α
· wmax
wmin

· logm.

Proof. We can trivially argue that at any time-step (before or after task migration) there

exists at least one resource that can accept an additional task of any weight (≤ wmax).

As a consequence, the result follows by replacing ε/(1 + ε) with 1/n and setting α� 1
n

in the proof of Theorem 2.17.

2.5 Conclusion

In this chapter we investigated threshold-based load balancing protocols. We introduced

a generalisation of the protocols presented in [2, 3] to weighted tasks. As for resource-

controlled protocols, in the above average threshold case our bound is independent of the

weights of the tasks and it improves the expected balancing time O(H(G) · log n+ τ(G) ·
logm) for uniform tasks in [2]. In the tight threshold case, we show that the expected

balancing time is O(H(G) · logm). This bound is tight and independent of weight and

it matches the bound in [2] for uniform tasks. As for user-controlled protocols, we have

only considered complete graphs. For the above average threshold case, we show a

bound of O(wmax/wmin · logm) on the expected balancing time. In tight threshold case,

in we show a bound of O(wmax/wmin ·
logm
n2 ). Our bounds match the bounds in [3] for

unit-weight tasks. But for weighted tasks, our bounds include an additional factor of

wmax/wmin.



Chapter 3

Evolutionary Dynamics of the

Pull-Moran Process

3.1 Introduction

Evolution in biology is based on the idea that an organism’s genes largely determine its

observable characteristics and its fitness in a given environment. Organisms that are

more fit will tend to produce more offspring and consequently the frequency of these

genes within the population will increase [42]. This is the basis of Darwin’s theory of

natural selection - beneficial (or fitter) genes tend to survive over time as they present a

higher rate of reproduction. Evolution is the outcome of such mechanisms. Evolution-

ary dynamics is the study of mathematical principles in the evolution of populations.

For instance, in evolutionary game theory the competition between individuals can be

modelled as strategies in game theory [43–46]. An organism’s genetically-determined

characteristics and behaviours are like its strategy in a game, its fitness is like its pay-

off, and this pay-off depends on the strategies (characteristics) of the organisms with

which it interacts [42]. Furthermore, evolutionary dynamics are frequently used to study

the evolution of homogeneous populations. In this sense a homogeneous population is

one in which each member can interact with any other member of the population. Here,

observing the interaction between different species and their birth-death rate within a

population is the matter of interest. Moreover, some game theory ideas like reaching

(birth-death) equilibrium or dynamics such as domination (or extinction) of certain

species, called the mutants, in a given population have been studied. Mutants acquire

different fitness rates to the other individuals in the population. In practice, mutants

can resemble influential people in a society (or a social network) or they can be seen as a

computer in a network that is infected by a virus. Population and evolutionary dynamics

33
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of such systems have been widely studied [47–53], where it is normally assumed that the

the population is homogeneous i.e. each individual is able interact with all others within

the population. In such dynamics, the Moran process is one of the most studied models.

In the Moran process [17], given a homogeneous population with a single mutant indi-

vidual, we would like to know the probability of the mutant descendants taking over the

whole population. This probability is called the fixation probability. In a Moran process

the fixation probability is proportional to the fitness of the mutant. Generally speaking,

human societies or social networks are never homogeneous, as certain individuals in cen-

tral positions may be more influential than others [54]. Lieberman, Hauert and Nowak

[18] introduced a new process applied to structured populations or networks. This is

the generalisation of the Moran process with homogeneous populations to structured

populations where individuals are arranged on a (connected) graph. In this setting the

structure of the graph could also play an important role in the fixation process. In some

cases fixation can be independent of the fitness due to the structure of a graph, and the

fixation state may also be amplified in particular graphs. In this chapter our main goal

is to observe the behaviour of the Pull-Moran process (also known as the death-birth

update) and show that it is very different from that of the structured Moran process. In

the following, after an introduction to the Moran process, we review the related studies

that have been conducted in Sections 3.2 and 3.2.2. In Section 3.3 we review the concept

of the Pull-Moran process together with its application on star graphs. In the remain-

der of the chapter we will analyse the Pull-Moran process on different graph classes

and prove our main results.

3.1.1 Moran Process

The Moran process (also known as the birth-death update), first introduced by P. Moran

in [17], is an iterative random process applied on a homogeneous population of size N ,

where all the individuals can interact with each other. In this chapter we use the def-

inition of the Moran process as presented in [18]. Initially the process starts with all

identical individuals with fitness 1 except one mutant chosen u.a.r from the population

that has fitness r. In every iteration an individual is chosen, with a probability propor-

tional to its fitness, for reproduction. Thereafter, the offspring of the chosen individual

replaces another individual in the population chosen u.a.r. If that individual was a

non-mutant, we say it has been infected (or become mutated).

Let Xn be the number of infected individuals (mutants) at the step n. According to this

definition, S = {0, 1, . . . , N} is the set of all possible states and i ∈ S is the number of

infected vertices. Particularly, i = 0 and i = N are called extinction and fixation states
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respectively. For each i, j ∈ S the probability of moving to state j form i is

Pi,j = Pr[Xn+1 = j|X0 = i0, · · · , Xn−1 = in−1, Xn = i] = Pr[Xn+1 = j|Xn = i]

and therefore the Moran process forms a Markov chain. Note that, according to the

definition of the Moran process, given a state i the next state can only be i+ 1 or i− 1.

According to [18], the fixation probability of the Moran process, i.e. the probability of

the whole population becoming mutated, is

ρ =
1− 1/r

1− 1/rN
(3.1)

Here, fitter mutants (r > 1) have a certain chance to take over the whole population

whilst unfit mutants (r < 1) are likely to become extinct. However, in both of these

cases these outcomes are not guaranteed.

3.2 Related Studies

Similar dynamic processes to the one described above have been investigated before.

Models that share the same terms such as infection and individual interactions include

the voter model and the rumour spreading models like PUSH and PULL [55–57]. How-

ever, these approaches do not follow evolutionary rules, for example fitness, which are

considered in the Moran process. The Moran process terminates when it reaches either

fixation, where all the population become mutants, or extinction, where all mutants be-

come extinct. We define fr(G) is the fixation probability of an undirected connected

graph G, with a randomly placed mutant of fitness r. Generally speaking, the fixation

probability can be modeled and computed by standard Markov chain techniques. The

authors in [18] introduced a Moran process applied on a structured population. They

assume that each individual occupies a vertex in a graph so that the interactions between

individuals are reduced down to the edges of a connected graph. More formally, individ-

uals are labelled i = 1, 2, · · · , N . Like the Moran process, in every iteration an individual

i is chosen randomly based on its fitness. However, it can only choose an individual j

u.a.r to replace with its offspring if (i, j) is an edge in the population graph. In other

words, the offspring of an individual can only take the place of the neighbours of that

individual. Note that if the underlying graph is a complete graph then the structured

process will become the original Moran process on a homogeneous population with no

spatial structure. The goal in the structured process is also to calculate the fixation

probability starting with a randomly placed mutant. Furthermore, classifying the types
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of graphs with the same fixation probability, or finding general lower (or upper) bounds

for arbitrary graphs have been also a matter of discussion. Particularly in [18, 54], the

authors initiate the discussion by introducing the Isothermal Theorem. This theorem

indicates that for all regular graphs ( i.e. graphs in which all edges have the same de-

gree), the fixation probability is equal to ρ = 1−1/r
1−1/rN

. This is exactly the same as the

fixation probability of the standard Moran process ,i.e. with no structure applied. They

also consider each vertex to have a temperature based on how often it is replaced by the

offspring of other individuals. A vertex is labelled hot if it is replaced often and cold if

it is replaced rarely. The authors in [54] use ρ as a measure to classify arbitrary graphs.

They divided graphs into two categories. Suppressor graphs have a fixation probability

less than ρ, and amplifier graphs have a fixation probability greater than ρ. Star graphs

are proved to be suppressors in [18]. In [58], Broom and Rychtář calculate the fixation

probability by solving a linear system of equations or by using numerical methods. In

particular they compute the fixation probability for star and path graphs and make a

numerical comparison between path and cycle graphs. However, in order to calculate

the fixation probability for a graph of size n using exact methods, it is necessary to

solve a linear system of 2n equations. For large n this is not computationally reason-

able and therefore this approach is only applicable to a limited number of symmetrical

graphs, where the symmetry reduces the number of equations. As for directed graphs, in

[18], Lieberman et al. also investigate the fixation probabilities of some layered directed

graphs, such as superstar, funnel and metafunnel, where their extreme behaviours would

help in finding the fixation probability.

Some other studies have been carried out using approximation methods due to the

complexity of the exact method. In [59], the authors use Monte-Carlo techniques to

construct fully polynomial randomised approximation schemes for the probability of

fixation, where r ≥ 1, and the probability of extinction, where r > 0. Finally they

introduce general bounds for the fixation probability of all connected undirected graphs

that are fr(G) ≥ 1
n and fr(G) ≤ 1− 1

n+r . Some other studies focus on the relationship

between the structure of a graph and its fixation probability and specifically in finding

a method to categorise arbitrary graphs based on their fixation probability. The idea

behind this chapter is extracted from [19] where the authors introduce a different termi-

nology for measuring the success of a mutant, i.e. fixation, in a structured population.

In preference to the random placement of a mutant in the population graph, they count

the number of vertices in the graph that can guarantee (w.h.p.) the fixation if they are

chosen for the initial mutant placement. In this respect, they try to find the graphs that

accommodate a relatively large number of strong/weak vertices. We will explain their

approach in more detail in Section 3.2.1 since our research is carried out based on their

definitions.
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3.2.1 Suppressors and Amplifiers of Selection

A new notion of fixation probability is introduced in [19]. Here, the authors consider

a mutant placed at a particular vertex v in the graph, i.e. the mutant is no longer

placed u.a.r . Each vertex is then considered to have its own fixation probability based

on the overall success of the mutant when starting from that vertex. Then the fixation

probability of a graph G = (V,E) is fr(G) = 1
n

∑
v∈V fr(v) where n = |V |. Based on

their definition a graph G is a (h(n), g(n))-selective amplifier if there exists at least h(n)

vertices with fr(v) ≥ 1− c(r)
g(n) for an appropriate function c(r) of r. Similarly a graph G

is a (h(n), g(n))-selective suppressor if there exist at least h(n) vertices with fr(v) ≤ c(r)
g(n)

for an appropriate function c(r) of r. Based on these new measures of fixation, they find

a particular class of graphs, called urchin graphs, which exhibit interesting behaviour.

An urchin consists of a clique of size n and an independent set of size n where there

is a perfect matching between the clique and the independent set. Urchin graphs are

discussed further in Section 3.6.1. They show that urchin graphs are (Θ(n), n)-selective

amplifiers, otherwise known as strong selective amplifiers. They also introduce another

group of graphs, called φ(n)-urchin, which fit into the suppressors category. In particular:

Theorem 3.1 (Theorem 5. [19]). For every function φ(n), where φ(n) = Ω(1) and

φ(n) ≤
√
n, then family of φ(n)-urchin graphs is a class of ( n

φ(n)+1 ,
n

φ(n))-selective sup-

pressor

Furthermore, they improved both the lower bound and upper bound first introduced

in [59]. Particularly, they show that there is no graph that belongs to the class of

(Θ(n), c(r)

n3/4+ε )-selective amplifiers. In other words, there is no graph G with fr(G) <

1 − c(r)

n3/4+ε . For the lower bound, they introduce the Thermal Theorem in which they

show that for any vertex v of an undirected graph G and r > 1, the fixation probability

fr(v) has a lower bound of r−1
r+deg v/degmin

where deg v is the degree of vertex v and degmin

is the minimum degree in G. This new lower bound is better than the bound presented

in the isothermal theorem in [18] specifically for large n.

3.2.2 The Pull-Moran (Death-Birth) Protocol

Our focus in this chapter is mainly on a type of evolutionary dynamics called the death-

birth update, which we term the Pull-Moran protocol. Here, at each time step, a

random individual is selected to die. Thereafter, the vacant place is filled by one of its

neighbours which is chosen with a probability proportional to the fitness. In the rumour

spreading setting the Moran process, i.e. replacing a neighbour with the offspring of the
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chosen individual, resembles the Push strategy whilst the death-birth protocol resem-

bles the Pull strategy. This is the idea behind naming the latter as the Pull-Moran

protocol. In [60], the authors show that the star graph, which is a selective amplifier un-

der the Moran process, becomes a selective suppressor under the death-birth protocol.

Ohtsuki and Nowak in [61] study evolutionary game dynamics in structured popula-

tions. Here, the fitness of an individual is locally determined from interactions with

its neighbours in the graph. Each player is a vertex of the graph where birth-death,

death-birth and imitation are the update rules. They also introduce a system of ordi-

nary differential equations that show how the expected frequency of each strategy in a

game on a graph changes over time. Kaveh, Komarova and Kohandel [62] show how the

isothermal theorem can be formulated for death-birth processes. Finally, Hindersin and

Traulsen [63] show that almost any undirected random graph is a selective amplifier for

the birth-death process, and the same class of graphs are selective suppressors for the

death-birth process.

3.2.3 Our Contribution

Instead of analysing the influence of individuals with different fitnesses, we focus on

the likelihood that an individual is influenced (or killed) by another in the network.

We call this the Pull-Moran process. If one of the important motivations behind the

structured Moran process is to analyse the behaviours in social networks, where some

individuals are more influential than others, then studying how different individuals are

influenced by their circle of friends is also of great importance. In the Pull-Moran

process global information, such as the total number of mutants in the system, is not

required. Furthermore, motivated by the study conducted in [19], we analyse the be-

haviour of the Pull-Moran process subject to different classes of graph including regular

graphs and selective suppressors. Our analysis is divided into three different sections;

the non-existence of the graphs that have a very large total fixation probability, the rel-

ativity of the fixation probabilities of a vertex with respect to the standard Moran and

the Pull-Moran processes, and finally the relativity of the total fixation probabilities

of a regular graph with respect to the standard Moran and the Pull-Moran processes.

In Section 3.5 we first show that a class of strong universal amplifiers does not exist.

Specifically, in Theorem 3.7 we show that there is no graph G such that fr(G) ≥ 1− c(r)
n .

In Section 3.6.1 we will show that urchin graphs are strong selective suppressors. We

then, in Theorem 3.9, show that for an arbitrary node in an arbitrary graph G, the upper

bound on the fixation probability in the Pull-Moran is related to the lower bound on

the fixation probability in the standard Moran. Particularly, in Corollary 3.10 we show

that any class of selective amplifiers in the (standard) Moran process belongs in the
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selective suppressor class under the Pull-Moran process. In Observation 3.11, again

we show that the upper bound on the fixation probability of any vertex in a regular

graph G under the standard Moran approach is related to the lower bound of the same

vertex under the Pull-Moran approach. In Theorem 3.12 we improve the results in

Observation 3.11 and show that the total fixation probability of a regular graph in the

Pull-Moran process is upper bounded by the total fixation probability of the same

graph under the standard Moran process. Finally, in Section 3.8, we introduce a class of

graphs called punk graphs and show that they are practically selective amplifiers under

the Pull-Moran process. To the best of our knowledge punk graphs are the first known

selective amplifiers in this framework.

3.3 Model and Definitions

Like the structured Moran process, the Pull-Moran process is also applied on a struc-

tured population. Similarly, it is initiated by placing a mutant with fitness r in the

population graph and it is terminated by fixation or extinction of the mutant. However,

the Pull-Moran’s iterative protocol is very different from that of the standard Moran

process. Here, at each time step a vertex is chosen u.a.r and then it will be replaced by

the offspring of one of the neighbouring vertices chosen randomly based on their fitnesses

(see Algorithm 3.3.1). Comparing to the standard Moran, the Pull-Moran approach

resembles the pull version of the standard Moran. Following the same definitions as

in [19], our goal is to find upper and lower bounds on fr(G) for an arbitrary graph G

and also to discover other types of graph that represent known amplifier or suppres-

sor classes. Before we define our model, we need to review some of the key definitions

Algorithm 3.3.1 The Pull-Moran

while not Fixation nor Extinction do
Choose vertex v in G u.a.r
Choose one of the neighbours (of v) randomly based on their fitnesses
Replace v with the chosen neighbour

introduced in [19] in more detail.

According to the nature of the Pull-Moran process, as for the structured Moran at

each time step there are three different possibilities; the possibility that one of the

normal vertices becomes infected (i.e. it turns into a mutant), the possibility that

a Mutant becomes disinfected and finally the possibility that the number of mutants

remain unchanged. For each graph G = (V,E) let St ⊆ V be the set of infected

vertices (mutants) at the end of time step t then, based on the above argument, we have
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St+1 := St \ {u} or St+1 := St ∪ {v} or St+1 := St where u ∈ St and v ∈ V \ St. Also we

define the constant r to be the fitness of the mutant.

Definition 3.2. The fixation probability of the set S ⊆ V denoted by fr(S) is the prob-

ability of reaching the fixation having set all v ∈ S as mutant at the beginning.

Based on the above definition, fr(∅) = 0, fr(V ) = 1.

Definition 3.3. Let G be a class of undirected graphs. If there exists an n0 ∈ N, r0 > 1

and some function c(r), such that for every graph G ∈ G with n ≥ n0 vertices and for

every r > r0

• if fr(G) ≥ 1− c(r)
g(n) then G is a class of g(n)-universal amplifiers

• if there exists a subset S of at least h(n) vertices of G, such that fr(v) ≥ 1− c(r)
g(n)

for every vertex v ∈ S, then G is a class of (h(n), g(n))-selective amplifiers.

Definition 3.4. Let G be an infinite class of undirected graphs. If there exists functions

c(r) and n0(r), such that for every r > 1 and for every graph G ∈ G with n ≥ n0(r)

vertices

• if fr(G) ≤ c(r)
g(n) then G is a class of g(n)-universal suppressors

• if there exists a subset S of at least h(n) vertices of G, such that fr(v) ≤ c(r)
g(n) for

every vertex v ∈ S, then G is a class of (h(n), g(n))-selective suppressors.

Definition 3.5. If G is a class of n-universal ((Θ(n), n))-selective) suppressors then

G is called a class of strong universal (selective) suppressors. Also if G is a class of n-

universal ((Θ(n), n))-selective) amplifiers then G is labelled as a class of strong universal

(selective) amplifiers.

As an initial example, we apply the Pull-Moran to more symmetric graphs such as the

star graph. Here, finding the exact formulation of the fixation probability is not the

goal, instead we are interested in calculating a lower bound on the fixation probability

of the infected center of the star using methods that reduce the corresponding stochastic

process to a less complex one. Influenced by the amplifying feature of the star, we then

introduce the first known class of amplifiers under Pull-Moran process in Section 3.8.

3.4 The Pull-Moran on Star

When calculating the fixation probability of a star, we deal with two different types

of vertices; the center of the star and the leaves. Therefore, we need to consider two
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· · ·

· · ·

Figure 3.1: Pull-Moran chain for star

different (Markov) processes; the process in which the center is infected and the process

in which the center is not infected (see Figure 3.1).

Let Qi,on be the fixation probability given that i infected vertices (mutants) exist on

the graph along with an infected center (in total there are i+1 infected vertices) and

let Qi,off be the fixation probability given i infected vertices with a non-infected center

(see Figure 3.2). We assume that P i→i+1
on is the probability of moving from the state

with i infected leaves to the state with i+ 1 infected leaves whilst the center is infected

throughout the transformation. Similarly let P i→i−1
off be the probability of moving from

a state with i infected leaves and a non-infected center to a state with i − 1 infected

leaves and a non-infected center. Furthermore, we assume P ion→off is the probability of

moving from the state with i infected leaves and an infected center to a state with i

infected leaves and a non-infected center and finally P ioff→on is the probability of moving

from a state with i infected leaves and a non-infected center to a state with the same

number of infected leaves and an infected center. Therefore, for a star G(V,E) with

|V | = N + 1, |E| = N we have:

(0, on) (1, on) · · · (i, on) · · · (N − 1, on) (N, on)

(0, off) (1, off) · · · (i, off) · · · (N − 1, off)

Figure 3.2: Pull-Moran transitions in star

Qi,on = P ion→offQi,off + P i→i+1
on Qi+1,on + (1− P ion→off − P i→i+1

on )Qi,on (3.2)
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Qi,off = P ioff→onQi,on + P i→i−1
off Qi−1,off + (1− P ioff→on − P i→i−1

off )Qi,off (3.3)

Where

P i→i+1
on =

N − i
N + 1

P ion→off =
1

N + 1
· N − i
ri+N − i

P ioff→on =
1

N + 1
· ri

ri+N − i

P i→i−1
off =

i

N + 1
.

Solving Eqn. (3.2) and Eqn. (3.3) for Qi,off and Qi,off respectively yields

Qi,on =
1

αi + 1
Qi,off +

αi
1 + αi

Qi+1,on (3.4)

Qi,off =
αi

αi + r
Qi−1,off +

r

αi + r
Qi,on (3.5)

where αi = ri+N − i.

Calculating the exact fixation probability for a star graph is not as straightforward as

we mentioned before. However, we can utilize some methods that will help in finding

the upper and lower bounds on the fixation probability of certain vertices. Particularly,

in this section, we are interested in finding a lower bound for the fixation probability of

a process initiated with an infected center.

In order to lower bound the fixation probability of a star given an infected center, we

need to adopt a policy in favour of non-infected nodes. In other words, if we manipulate

the process in a way that the non-mutant vertices are more beneficial than the mutants

then the new fixation probability of the mutants will be reduced when compared to the

original process. Here, we assume that the transition from a state with i infected leaves

and a non-infected center (i, off), instead of going to the state with i− 1 infected leaves

and a non-infected center (i− 1, off), goes directly to the state (0, off), see the difference

between Figure 3.3 and Figure 3.2. More formally, Eqn. (3.5) will change to

Qi,off = 0 +
r

αi + r
Qi,on. (3.6)

Therefore from Eqn. (3.4) and Eqn. (3.6) it follows that
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start

(0, on) (1, on)

· · ·
(i, on) (i+ 1, on)

· · ·
(N, on)

(0, off) (1, off)

· · ·
(i, off) (i+ 1off)

· · ·
(N, off)

Figure 3.3: Manipulated Pull-Moran chain in star

Qi,on =
αi

1 + αi
Qi+1,on +

1

αi + 1

(
r

r + αi

)
Qi,on (3.7)

solving for Qi,on,

Qi,on =
αi + r

αi + r + 1
Qi+1,on. (3.8)

By induction we have

Q0,on =

(
α0 + r

α0 + r + 1
· α1 + r

α1 + r + 1
· · · αN−1 + r

αN−1 + r + 1

)
QN,on

=
α0 + r

α0 + r + 1
· α1 + r

α1 + r + 1
· · · αN−1 + r

αN−1 + r + 1

=
N + r

N + r + 1
· (r − 1) +N + r

(r − 1) +N + r + 1
· · · (r − 1)(N − 1) +N + r

(r − 1)(N − 1) +N + r + 1

≥
(

N

N + 1

)N
=

1(
N+1
N

)N ≥ 1

e

3.5 Non-existence of Strong Universal Amplifiers

In the following we will present our main results regarding the so-called Pull-Moran

process. Our analysis is divided into three different sections, the non-existence of the

graphs that have a very large total fixation probability, the relativity of the fixation

probabilities of a vertex with respect to the standard Moran and the Pull-Moran pro-

cesses, and finally the relativity of the total fixation probabilities of a regular graph

with respect to the standard Moran and the Pull-Moran processes. According to Def-

inition 3.5, G is a class of strong universal amplifiers if fr(G) ≥ 1 − c(r)
n . In [19], the

authors show that a class of strong universal amplifiers cannot exist (Theorem 3.6).
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Theorem 3.6 (Theorem 1. [19]). For any function g(n) = Ω(n
3
4

+ε) for some ε > 0,

there exists no graph class G of g(n)-universal amplifiers for any r > r0 = 1.

Following the same approach in [19], we want to find an upper bound for universal

amplifiers when r > 1. In other words, we want to show that for all classes of universal

amplifiers (Definition 3.5), we have fr(G) ≤ 1− 1
n1−δ .

Theorem 3.7. For any function g(n) = Ω(n1−δ) for some δ > 0, under the Pull-

Moran process, there exists no graph within the class of g(n)-universal amplifiers given

r > r0 = 1.

Proof. We assume that G is a class of g(n)-universal amplifiers. Therefore for every

G(V,E) ∈ G with |V | = n > n0 vertices, the fixation probability of G is fr(G) ≥
1 − c(r)

g(n) ≥ 1 − 1
n1−δ for r > 1 and a δ < 1. From every v ∈ V we calculate an upper

bound for fr(v) by assuming that fixation is obtained if the process infected two vertices

given v itself is infected. More formally, for every vertex v of graph G(V,E) under the

Pull-Moran approach, let S1 be the state where v is the only infected vertex and S2(u)

be the state where v, u (u ∈ N(v)) are infected. Also let p2(u) be the probability of

transition from state S1 to S2(u) and p1 is the probability of transition from state S1 to

the state S0 = ∅, where no vertex is infected. Then based on these definitions

fr(v) =
∑

u∈N(v)

p2(u)fr(S2(u)) + p1fr(S0) +

1− p1 −
∑

u∈N(v)

p2(u)

 fr(v).

Solving for fr(v)

fr(v) =

∑
u∈N(v) p2(u)fr(S2(u)) + p1fr(S0)∑

u∈N(v) p2(u) + p1

=

∑
u∈N(v) p2(u)fr(S2(u))∑
u∈N(v) p2(u) + p1

(3.9)

as fr(S0) = 0.

Since ∑
u∈N(v)

p2(u) =
∑

u∈N(v)

(
1

n
· r

r + deg u− 1

)
and

p1 =
1

n
· 1,
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then we have

fr(v) =

∑
u∈N(v) p2(u)fr(S2(u))∑
u∈N(v) p2(u) + p1

≤
∑

u∈N(v) p2(u) · 1∑
u∈N(v) p2(u) + p1

(3.10)

Therefore

fr(v) ≤
r
n

∑
u∈N(v)

1
r−1+deg(u)

r
n

∑
u∈N(v)

1
r−1+deg(u) + 1

n

= 1− 1

r
∑

u∈N(v)
1

r−1+deg(u) + 1
(3.11)

We define Rv =
∑

u∈N(v)
1

r−1+deg(u) . It follows

fr(G) =
1

n

∑
v∈V

fr(v) ≤ 1

n

(
n−

∑
v∈V

1

r ·Rv + 1

)
. (3.12)

Following the definition

1

n

(
n−

∑
v∈V

1

r ·Rv + 1

)
≥ 1− 1

n1−δ . (3.13)

Hence

∑
v∈V

1

r ·Rv + 1
≤ nδ (3.14)

To reach the contradiction, we need to show that Eqn. (3.14) is not valid.

If Qv =
∑

u∈N(v)
1

deg(u) then

∑
v∈V

Rv ≤
∑
v∈V

Qv = n. (3.15)

Now, considering Eqn. (3.14) and Eqn. (3.15), We will prove that
∑

v∈V
1

r·Rv+1 is min-

imum if Rv = Rw for every v, w ∈ V . We reach the proof by contradiction. Assume

there exist v1, v2 ∈ V with Rv1 6= Rv2 such that
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∑
v∈V \{v1,v2}

1

r ·Rv + 1
+

1

r ·Rv1 + 1
+

1

r ·Rv2 + 1

≤
∑

v∈V \{v1,v2}

1

r ·Rv + 1
+

2

r · (Rv1 +Rv2)/2 + 1
.

(3.16)

Hence
1

r ·Rv1 + 1
+

1

r ·Rv2 + 1
≤ 2

r · (Rv1 +Rv2)/2 + 1
.

Therefore r2(Rv1 −Rv2)2 ≤ 0 that is a contradiction with Rv1 6= Rv2 .

Since
∑

v∈V Rv ≤
∑

v∈V Qv = n then Rv ≤ 1 for every v ∈ V and therefore

∑
v∈V

1

r ·Rv + 1
≥ n

r + 1

Hence, from Eqn. (3.14), it follows that

n

r + 1
≤ nδ

which contradicts our assumption given a sufficiently small δ.

3.6 The Bridge Thermal Theorem and Strong Suppressors

Considering the Pull-Moran as the running process, we initially reintroduce urchin

graphs this time as a class of strong selective suppressors. Urchin graphs were primarily

introduced in [19] as a class of strong amplifier in the context of structured Moran

processes. Thereafter, motivated by the contrasting behaviour of the aforementioned

processes on the urchin graph, we build our main claim of this section in the Bridge

Thermal Theorem.

3.6.1 A Class of Strong Selective Suppressor

According to the Definition 3.4 in [19], G is a class of (h(n), g(n))-selective suppressors if

there exists a subset S of at least h(n) vertices of G ∈ G, such that fr(v) ≤ c(r)
g(n) for every

vertex v ∈ S. The authors in [19] also introduced a class of graphs called urchin, which

consist of a clique of size n and an independent set of size n where there is a perfect
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matching between the clique and independent set, see Figure 3.4. Applying the standard

structured Moran they show that urchin graphs are (Θ(n), n)-selective amplifiers, also

known as strong selective amplifiers. Applying the Pull-Moran process on the same

category of graphs, we will show that urchin graphs are strong suppressors in our case.

”n-clique”

Figure 3.4: The urchin graph with 2n vertices

For ease of reference, a vertex in the clique section of the urchin is called a clique vertex

and a vertex located in the independent set is called a tail vertex. In the following we

show that fr(v) ≤ c(r)
n for a tail vertex v, which would prove that urchin graphs are

strong suppressors in this case.

Observation 3.8. Urchin graphs are strong selective suppressors.

Proof. We will try to upper bound the fixation probability of the urchin given an infected

tail. Assume vt is a tail vertex of an urchin graph G of size 2n (Figure 3.4). Let fr(vt)

be the fixation probability starting from the infected vertex vt. Also let S0 be the state

where all the vertices are uninfected (extinction). Define S1 as the state where vt and its

corresponding (clique vertex) neighbour are infected. If p1 is the probability of transition

from the state where vt is infected to the state S1 and p2 is the probability of a transition

from the state with infected vt to the state S0, then

fr(vt) = p1fr(S1) + p2fr(S0) + (1− p1 − p2)fr(vt).

Solving for fr(v) we obtain
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fr(vt) =
p1fr(S1) + p2fr(S0)

p1 + p2
(3.17)

where p1 = 1
2n ·

r
n−1+r and p2 = 1

2n · 1.

From Eqn. (3.17) and the fact that fr(S0) = 0 it follows

fr(vt) =
p1

p1 + p2
· fr(S1)

=
1

2n ·
r

n−1+r
1

2n ·
r

n−1+r + 1
2n

· fr(S1)

=
r

2r + n− 1
· fr(S1)

≤ r

n− 1
· 1.

(3.18)

This completes the proof of the observation.

3.6.2 The Bridge Thermal Theorem

As was mentioned in the previous section, in an urchin graph a tail vertex has a high

fixation probability under the standard Moran regulations whilst the same vertex can

play the role of a strong suppressor in the Pull-Moran framework. This is the motivation

behind the following theorem. In this section we introduce the The Bridge Thermal

Theorem where we show that, in all vertices, the behaviour of the Pull-Moran depends

on the behaviour of the standard Moran. Specifically, we observe that a vertex v can

act very differently under the two known protocols i.e. the Moran and the Pull-Moran

protocols. Inspired by the Thermal theorem [19], which shows a general upper bound on

the fixation probability, and the fact that we are bridging the Moran and Pull-Moran

processes, we call this The Bridge Thermal Theorem. Let fr(v) (f ′r(v)) be the fixation

probability of vertex v when applying the standard Moran (Pull-Moran) process. We

want to show that the upper bound of f ′r(v) is related to the lower bound of fr(v).

Theorem 3.9 (Bridge Thermal Theorem). Let fr(v) and f ′r(v) be the fixation probabil-

ities of vertex v ∈ V by applying the standard Moran and the Pull-Moran on a graph

G(V,E) respectively. For every vertex v and r > 1 we have f ′r(v) ≤ r2 · q if fr(v) ≥ 1− q
where q ∈ [0, 1].

Proof. We prove this theorem by contradiction. Assume

f ′r(v) > r2 · q. (3.19)
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Let S1 be the state that v is the only infected vertex and S2(u) be the state that v, u,

where u ∈ N(v), are infected, subject to the standard Moran process. Also let p2(u)

be the probability of transition from state S1 to S2(u) and p1 is the probability of

transition from state S1 to the state S0 = ∅, where no vertex is infected. Then based

on the definition

fr(v) =
∑

u∈N(v)

p2(u)fr(S2(u)) + p1fr(S0) +

1− p1 −
∑

u∈N(v)

p2(u)

 fr(v).

Solving for fr(v)

fr(v) =

∑
u∈N(v) p2(u)fr(S2(u)) + p1fr(S0)∑

u∈N(v) p2(u) + p1

=

∑
u∈N(v) p2(u)fr(S2(u))∑
u∈N(v) p2(u) + p1

(3.20)

as fr(S0) = 0.

Since ∑
u∈N(v)

p2(u) =
∑

u∈N(v)

(
r

r + n− 1
· 1

deg v

)
=

r

r + n− 1

and

p1 =
∑

u∈N(v)

1

r + n− 1
· 1

deg u
,

then from Eqn. (3.20) we have

fr(v) =

∑
u∈N(v) p2(u)fr(S2(u))∑
u∈N(v) p2(u) + p1

≤
∑

u∈N(v) p2(u) · 1∑
u∈N(v) p2(u) + p1

=
r

r+n−1
r

r+n−1 + 1
r+n−1

∑
u∈N(v)

1
deg u

=
r

r +
∑

u∈N(v)
1

deg u

.

(3.21)

Similarly, for every vertex v of graph G(V,E) under the Pull-Moran approach, let S′1 be

the state where v is the only infected vertex and S′2(u) be the state where v, u (u ∈ N(v))

are infected. Also let p′2(u) be the probability of transition from state S′1 to S′2(u) and

p′1 is the probability of transition from state S′1 to the state S′0 = ∅, where no vertex is

infected. Then based on these definitions
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f ′r(v) =
∑

u∈N(v)

p′2(u)f ′r(S
′
2(u)) + p′1f

′
r(S
′
0) +

1− p′1 −
∑

u∈N(v)

p′2(u)

 f ′r(v).

Solving for f ′r(v)

f ′r(v) =

∑
u∈N(v) p

′
2(u)f ′r(S

′
2(u)) + p′1f

′
r(S
′
0)∑

u∈N(v) p
′
2(u) + p′1

=

∑
u∈N(v) p

′
2(u)f ′r(S2(u))∑

u∈N(v) p
′
2(u) + p′1

(3.22)

as fr(S
′
0) = 0.

Since ∑
u∈N(v)

p′2(u) =
∑

u∈N(v)

(
1

n
· r

r + deg u− 1

)
and

p′1 =
1

n
· 1,

then from Eqn. (3.22) we have

f ′r(v) =

∑
u∈N(v) p

′
2(u)f ′r(S

′
2(u))∑

u∈N(v) p
′
2(u) + p′1

≤
∑

u∈N(v) p
′
2(u) · 1∑

u∈N(v) p
′
2(u) + p′1

=

∑
u∈N(v)

r
r+deg u−1

1 +
∑

u∈N(v)
r

r+deg u−1

.

(3.23)

According to the assumption and From Eqn. (3.21)

1− q ≤ fr(v) ≤ r

r +
∑

u∈N(v)
1

deg u

. (3.24)

Therefore

q ≥ 1− r

r +
∑

u∈N(v)
1

deg u

=

∑
u∈N(v)

1
deg u

r +
∑

u∈N(v)
1

deg u

(3.25)

From Eqn. (3.19), Eqn. (3.23) and Eqn. (3.25) follows

1

r2
·
∑

u∈N(v)
r

r+deg u−1

1 +
∑

u∈N(v)
r

r+deg u−1

≥ 1

r2
· f ′r(v) > q ≥

∑
u∈N(v)

1
deg u

r +
∑

u∈N(v)
1

deg u

. (3.26)
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Hence

1

r2
·
∑

u∈N(v)
r

r+deg u−1

1 +
∑

u∈N(v)
r

r+deg u−1

>

∑
u∈N(v)

1
deg u

r +
∑

u∈N(v)
1

deg u

⇒r2 ·

(
1 +

1∑
u∈N(v)

r
r+deg u−1

)
< 1 +

r∑
u∈N(v)

1
deg u

(3.27)

since
∑

u∈N(v)
r

r+deg u−1 ≤ r ·
∑

u∈N(v)
1

deg u we have

r2 ·

(
1 +

1

r ·
∑

u∈N(v)
1

deg u

)
< 1 +

r∑
u∈N(v)

1
deg u

⇒r2 +
r∑

u∈N(v)
1

deg u

< 1 +
r∑

u∈N(v)
1

deg u

⇒r2 < 1.

(3.28)

Which contradicts with our assumption r > 1.

In the next corollary we generalise the results in [63] to arbitrary graphs and show that

all strong amplifiers of the structured Moran process are actually playing the role of

strong suppressors subject to the Pull-Moran process.

Corollary 3.10. If G is a class of (h(n), g(n))-selective amplifiers in the standard Moran

process then G is a class of (h(n), g(n))-selective suppressors under the Pull-Moran

process.

Proof. If G is a class of (h(n), g(n))-selective amplifiers then for every graph G(V,E) ∈ G
with n ≥ n0 vertices and for every r > r0, where n0 ∈ N, r0 > 1 and c(r) is a function

of r, there exists a subset S ⊆ V of at least h(n) vertices such that fr(v) ≥ 1− c(r)
g(n) for

every vertex v ∈ S. From Theorem 3.9 it follows that f ′r(v) ≤ r2·c(r)
g(n) for every vertex

v ∈ S, subject to the Pull-Moran protocol. This completes the proof as G is a class of

(h(n), g(n))-selective suppressors base, see Definition 3.3.

3.7 The Pull-Moran on Regular graphs

As in the previous section, we first analyse the fixation probability of the Pull-Moran

applied on a clique as the underlying graph. Then we improve the result of the so called

Bridge Thermal Theorem for the case of regular graphs in both the standard Moran and

the Pull-Moran processes.



Chapter 3. Pull-Moran 52

3.7.1 The Pull-Moran on Clique Graphs

First, we consider the Pull-Moran on a clique of size N . Note that considering the

clique as the underlying graph can be interpreted as assuming the population to be

homogeneous with no spatial structure [18, 64, 65]. Let S = {1, 2, · · · , N} be the set

of states and let state i ∈ S be the number of infected vertices. Particularly, i = 0

and i = N are the extinction and fixation states respectively. We define the fixation

probability Qi as the probability of reaching fixation from state i. In other words, Qi is

the fixation probability given that i many infected nodes currently exist in the network.

Moreover, according to the definition of the Pull-Moran, given a state i then the next

state after one round of the process can only be i+ 1 or i− 1 or i itself. In this section

we will calculate Q1, which is the fixation probability of the Pull-Moran protocol given

a randomly placed mutant with fitness r, in a non-structured population.

We have

Qi = Pi,i−1Qi−1 + (1− Pi,i−1 − Pi,i+1)Qi + Pi,i+1Qi+1 (3.29)

where Pi,i+1 is the probability of moving from state i to i+1 and Pi,i−1 is the probability

of moving from state i to i− 1.

If P = (Pi,j) is the transition matrix of the Pull-Moran model then in order to find a

solution Q = (Q0, Q1, . . . , Qn) we need to solve the equation system PQ = Q subject to

the boundary conditions Q0 = 0 and QN = 1. Solving this system of equations is not

always easy, but here the symmetric shape of the clique helps to simplify the problem.

Here, we follow the proof in [65]. From Eqn. (3.29) we get

Pi,i−1(Qi −Qi−1) = Pi,i+1(Qi+1 −Qi).

Dividing both sides by Pi,i+1 we get

Pi,i−1

Pi,i+1
(Qi −Qi−1) = Qi+1 −Qi. (3.30)

Defining γi =
Pi,i−1

Pi,i+1
as the birth-death rate and letting hi = Qi −Qi−1 in Eqn. (3.30), it

follows that

hi+1 = γihi (3.31)
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Using recursion

hi+1 = h1

i∏
j=1

γj . (3.32)

Also, based on the boundary conditions

N−1∑
i=0

hi+1 = QN −Q0 = 1− 0 = 1 (3.33)

We have

1− h1 = −h1 +
N−1∑
i=0

hi+1 =
N−1∑
i=1

hi+1 = h1

N−1∑
i=1

i∏
j=1

γj

and therefore from Eqn. (3.33)

h1 + h1

N−1∑
i=1

i∏
j=1

γj = 1. (3.34)

Since h1 = Q1 −Q0 = Q1 then

Q1 =
1

1 +
∑N−1

i=1

∏i
j=1 γj

. (3.35)

Now, we need to calculate Pi,i+1 and Pi,i−1. For a clique with N vertices we have

Pi,i+1 =
N − i
N

· ri

ri+N − i− 1
.

In simple terms, after choosing a non-infected vertex (with probability N−i
N ), we need

to choose one of its infected neighbours (with probability ri
ri+N−i−1).

Similarly,

Pi,i−1 =
i

N
· N − i
r(i− 1) +N − i

.

Consequently,

γi =
Pi,i−1

Pi,i+1
=

i
N ·

N−i
r(i−1)+N−i

N−i
N · ri

ri+N−i−1

>
1

r

for r > 1.
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Finally, from Eqn. (3.35), it follows

Q1 =
1

1 +
∑N−1

i=1

∏i
j=1 γj

<
1

1 +
∑N−1

i=1
1
ri

=
1− 1

r

1− 1
rn

where
1− 1

r

1− 1
rn

is the fixation probability of any vertex in a regular graph subject to the

standard Moran process.

3.7.2 The Bridge Isothermal Theorem

In the next observation, by considering regular graphs as the population structure,

we reduce the general upper bound on the fixation probability in the Bridge Thermal

Theorem.

Observation 3.11. Let fr(v) and f ′r(v) be the fixation probabilities of vertex v ∈ V ap-

plying the standard Moran and the Pull-Moran respectively on a regular graph G(V,E).

If fr(v) ≥ 1− q for all vertices v and r > 1 then we have f ′r(v) ≤ r · q .

Proof. Let d be the degree of every vertex in G. Similarly to Eqn. (3.19), assume that

f ′r(v) > r · q. (3.36)

Then, by replacing deg u = d for every v in Eqns. (3.21)-(3.25), similarly to Eqn. (3.26),

it follows that

1

r
· rd

rd+ r + d− 1
≥ 1

r
· f ′r(v) > q ≥ 1

r + 1

⇒ rd

rd+ r + d− 1
>

1

r + 1

⇒rd+ d > rd+ r + d− 1

⇒r < 1.

(3.37)

which contradicts with the fact that r > 1.

Although Observation 3.11 reduces the upper bound of the fixation probability for reg-

ular graphs by a factor of r in comparison to the Bridge Thermal Theorem 3.9, the

upper bound is still large. Precisely, the original Isothermal Theorem for the standard

Moran process in [18] indicates that for all regular graphs (graphs where all edges have

the same degree), the fixation probability fr(G) = 1−1/r
1−1/rn . Since G is regular we have
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fr(v) = fr(G) =
1− 1/r

1− 1/rn
≥ 1− 1/r (3.38)

and applying Theorem 3.11, f ′r(v) ≤ r.1r = 1 which is not helpful.

In the next theorem we reduce the upper bound introduced in Observation 3.11 subject

to a more restricted value of r.

Theorem 3.12 (Bridge Isothermal Theorem). Let fr(v) and f ′r(v) be the fixation prob-

abilities of vertex v ∈ V applying the standard Moran and the Pull-Moran respectively

to a regular graph G(V,E). Then f ′r(G) ≤ fr(G) = 1−1/r
1−1/rn for r ≥

√
d+ 1 where d is the

degree of each v ∈ V .

Proof. We fix r ≥
√
d + 1. Let fr(v) and f ′r(v) be the fixation probabilities of vertex

v ∈ V while applying the standard Moran and the Pull-Moran respectively on a graph

G(V,E). We prove our claim by contradiction. Suppose

f ′r(v) >
1− 1/r

1− 1/rn
(3.39)

for some v ∈ V .

Moreover from Eqn. (3.23) and Eqn. (3.39) we have

∑
u∈N(v)

r
r+deg u−1

1 +
∑

u∈N(v)
r

r+deg u−1

≥ f ′r(v) > fr(v) =
1− 1/r

1− 1/rn
. (3.40)

Since deg v = deg u = d and 1−1/r
1−1/rn > 1− 1

r

d·r
r+d−1

1 + d·r
r+d−1

> 1− 1

r

⇒1 +
r + d− 1

d · r
<

r

r − 1

⇒(r − 1)2 < d

⇒r <
√
d+ 1.

(3.41)

which contradicts with our assumption. Thus,

f ′r(v) ≤ 1− 1/r

1− 1/rn
(3.42)
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for all v ∈ V and therefore

f ′r(G) ≤ fr(G).

3.8 A Class of Selective Amplifiers for the Pull-Moran

Process

In this section we introduce a class of graphs G = {Gn : n ≥ 1} called punk graphs.

Here Gn(V,E) has |V | = n · k + n vertices consisting of a ring with n · k vertices and

an independent set of n vertices in the ring. Each vertex in the independent set is

connected to exactly k vertices, see Figure 3.5. Considering the fixation power of the

center of a star graph, the punk graph is basically formed from merging several stars

together. For ease of reference, a vertex in the ring is called a ring vertex and a vertex

in the independent set is called a blade vertex. We want to show that the blade vertices

are amplifiers. Note that punk graphs are formed out of merging n many stars with k

many leaves together. Here we are inspired by the fact that an infected center of a star

graph would amplify the fixation.

k · n-ring

Figure 3.5: The punk graph with n · k + n vertices (k = 3, n = 4)

Finding a lower bound on the fixation probability of the punk graph with an infected

blade vertex is not as easy as for other symmetric graphs. Unlike star or urchin graphs,

which only have two different stochastic processes, in punk graphs all of the ring vertices

connected to a blade vertex have different stochastic processes. This makes it difficult to
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prove that punk graphs are selective amplifiers theoretically. However, our simulations

for different numbers of n and r shows that the rate of fixation, given an infected blade

vertex, is relatively high. Figure 3.6 shows the fixation rate of the aforementioned

process, where n = k and r = 3, 5 and 10. Here we can observe that for a large enough

value of r (≥ 5), the fixation is independent of r as n (or k) grows. Moreover, for large

values of n the fixation is almost inevitable.
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Figure 3.6: Fixation rate of the Pull-Moran process given an infected blade

Now, in order to find a practical lower bound on the total fixation probability of the

punk graph, we will carry out a more detailed analysis. Let V1 (V2) be the set of all

ring vertices (all blade vertices) and for each v ∈ V1 (u ∈ V2), let fr(v) (fr(u)) be

its corresponding fixation probability. As mentioned previously, the diversity of ring

vertices in terms of different stochastic processes is our main challenge. Therefore, we

define f1 = minv∈V1 fr(v) as the lower bound for all the fixation probabilities of ring

vertices. Also let f2 = fr(u) for each u ∈ V2. Note that the fixation probabilities

of all blade vertices are equal. Now, according to the definition of the total fixation

probability, we have

fr(G) ≥ n · k
n · k + n

f1 +
n

n · k + n
f2. (3.43)

First, we estimate f1. There exists a ring vertex v ∈ V1, with fr(v) = f1. Assume that v

is connected to ring vertices w1, w2 and a blade vertex u. Let {v, u} be the state where

vertices v, u are both infected. Similarly, let {v, w1} and {v, w2} be the states where
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v, w1 and v, w1 are infected, respectively. Also let ∅ be the extinction state. Now, we

have

f1 = p1 · fr(∅) + p2 · fr({v, u}) +
p3

2
· fr({v, w1})

+
p3

2
· fr({v, w2}) + (1− p1 − p2 − p3) · f1,

(3.44)

where p1 is the probability that v becomes uninfected, p2 is the probability that v infects

u and finally p3 is the probability that v infects either w1 or w2.

Since fr(∅) = 0, fr({v, u}) > f2, fr({v, w1}) > f1 and fr({v, w2}) > f1, then from

Eqn. (3.44) we have

f1 > p2 · f2 + p3 · f1 + (1− p1 − p2 − p3) · f1.

Therefore,

f1 >
p2

p1 + p2
· f2 =

r
r+k−1

1 + r
r+k−1

· f2

since p2 = 1
|V | ·

r
r+k−1 and p1 = 1

|V | · 1.

Hence,

f1 >
r

2r + k − 1
· f2 (3.45)

Finally, from Eqn. (3.43) and Eqn. (3.45), it follows

fr(G) ≥ k(r + 1) + 2r − 1

(2r + k − 1)(k + 1)
· f2. (3.46)

The next set of simulations are based on the above analysis. Here, for different values

of k (k = n), we simulate the LHS of equation Eqn. (3.46) by randomly placing the first

mutant in the punk graph and counting the number of fixations in 100 iterations. We

also calculate the RHS of Eqn. (3.46) by simulating f2, that is the rate of the fixation

given an infected blade vertex, and then multiply it by α(k, r) = k(r+1)+2r−1
(2r+k−1)(k+1) , see

Figures 3.7, 3.8 and 3.9.

In these three figures, the red, black and blue lines show α(k, r) · f2, fr(G) and f2

respectively. All three figures show that the lower bound that is calculated in Eqn. (3.46)
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Figure 3.7: Fixation rate of fr(G), f2 and α(k, r) · f2 with n = k and r = 10
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Figure 3.8: Fixation rate of fr(G), f2 and α(k, r) · f2 with n = k and r = 5

is valid. In particular, for smaller values of r, our simulations show that the approximated

lower bound (the red line) is closer to the actual value of the total fixation probability

(the black line). However, generally speaking, the approximated lower bound shrinks

as n (or k) grows. This is not unexpected because f2 ≤ 1 and α(k, r) decreases as k

increases. So we can conclude that our analysis of the punk graph leads to a valid lower
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bound for the total fixation probability of the punk graph. However, the approximate

bound for the fixation probability of the ring vertices (i.e.f1) is not possibly good enough

to give us a better result.
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Figure 3.9: Fixation rate of fr(G), f2 and α(k, r) · f2 with n = k and r = 3

3.9 Conclusion

In this chapter we analysed an evolutionary based process called the Pull-Moran process

(also known as death-birth update), motivated by studies in [18, 19]. The advantage of

the Pull-Moran process is that it is independent of any global information such as the

total number of infected nodes in a network. We proved the existence of strong selective

suppressors. Following the definition of strong universal amplifiers in [19], we showed

that a class of strong universal amplifiers does not exist for the Pull-Moran process.

We showed that any class of selective amplifiers in the (standard) Moran process is a

class of selective suppressors under the Pull-Moran process. As for regular graphs, we

proved that the total fixation probability of a regular graph in the Pull-Moran process

is upper bounded by the total fixation probability of the same graph under the standard

Moran process. Finally, we introduced a class of graphs called punk graphs. Through

simulations, we showed that they are good candidates for amplifying the fixation process

under the Pull-Moran protocol. However, calculating a promising theoretical lower

bound on the total fixation probability of punk graphs will remain an open question.



Chapter 4

Coalescing-Branching Walk

4.1 Introduction

In this section we will analyse a type of random walk called the coalescing-branching

(Cobra) random walk. Cobra walks, first introduced in [4], are a modified version of

the standard random walk, with the main parameter called the branching factor k. Like

the simple random walk, Cobra walks start from an arbitrary vertex that is labelled

active. In practice, any active node may possess a piece of information (a rumour) or

be infected by a virus. We are interested in the propagation of this rumour or virus

throughout the network. A Cobra walk is an iterative process where at each iteration

every active node chooses k many neighbours u.a.r, which are then activated in the

next iteration. This is called the branching feature, where each active vertex initiates k

independent random walks. The other distinguishing feature of the Cobra walk is its

coalescence. Here, all the independent random walks that choose the same vertex in an

iteration will coalesce into one single walk. More precisely, a vertex is active at a time

step t if and only if it is chosen by an active node at time step t− 1. The Cobra walk

can be analysed as a modification of known processes such as simple/multiple random

walks [66, 67]. It can also be observed in a rumour spreading setting [68, 69]. In the

following, we review some of the studies carried out in these frameworks and show the

similarities and differences between the Cobra walk and other processes.

4.1.1 Random Walks

A simple random walk is a stochastic process (a finite Markov chain) on a given graph

with an arbitrary starting point. During each iteration, a random walk moves from

the current node to one of the neighbouring nodes which is chosen u.a.r. Note that a

61
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simple random walk is basically a cobra walk with branching factor 1. One of the most

important parameters when analysing the efficiency of a random walk is the cover time.

The cover time of a random walk on an underlying graph (or network) is the expected

time taken for a random walk to visit all of the vertices at least once [70, 71]. Bounding

the cover time of random walks on different graphs has been extensively studied [72–75].

Particularly, in [76, 77], Feige calculates general upper and lower bounds for the cover

time. He shows that the cover time of a random walk on all undirected connected graphs

of size n takes a value between Θ(n log n) and Θ(n3). He also shows that the bounds

are tight i.e. Θ(n log n) is the cover time for clique graphs and Θ(n3) is the cover time

for the graph called the lollipop.

4.1.2 Parallel Random Walks

The parallel random walks (also known as many random walks) approach is one of the

similar known approaches to the Cobra walk. A special case of the parallel walks

process is introduced in [78] where the starting points are picked out of the stationary

distribution. Cooper, Frieze and Radzik in [66] investigate different random walk models

such as multiple walks, particles with a finite life, talkative particles, predator-prey,

sticky particles and explosive particles. In [67], Alon et al. study the expected cover

time of k-many independent random walks on different graph classes such as cycle, d-

dimensional grid, hypercube and expander, as summarised in Table 4.1. Particularly,

Table 4.1: Result summary of parallel random walks in [67] (∀ε > 0)

Graph Cover time sped-up cover time

Cycle n2/2 Θ
(
n2/2
log k

)
2-dimensional grid Θ(n log2 n) Θ

(
n log2 n

k

)
, k < O(log1−ε)

d-dimensional grid, d > 2 Θ(n log n) Θ
(
n logn
k

)
, k < O(log1−ε)

Hypercube Θ(n log n) Θ
(
n logn
k

)
, k < O(log1−ε)

Complete graph Θ(n log n) Θ
(
n logn
k

)
, k < n

Expanders Θ(n log n) Θ
(
n logn
k

)
, k < n
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for the special case of expander graphs they prove a linear speed-up when k ≤ n. They

also show that if there is a large gap between the cover time and the hitting time of

a graph then k random walks (for k sufficiently small) covers the graph k times faster

than a single random walk. Here, the hitting time of a graph is the expected time taken

for a random walk to move from a vertex v to a vertex u maximized over all pairs of u

and v. In [79], applying k independent random walks, the authors calculate the precise

upper and lower bounds on the order of speed-up in different graph classes. Comparing

Cobra walk and k parallel random walks, the two protocols are in some ways similar

since, in every iteration, multiple nodes may select their neighbours u.a.r. However,

there are some differences between the two mechanisms. As an example, the expected

cover time of k parallel random walks on a line graph is Ω(n2/ log k) for 1 ≤ k ≤ n (see

[67]) whilst a Cobra walk, with branching factor k = 2, has an expected cover time of

O(n) on the same graph. Furthermore, unlike the Cobra walk, where the number of

active nodes may be changing at every iteration, in k parallel random walks the number

of active nodes is always constant and is equal to k. Moreover in the Cobra walk the

process dependencies, caused by the coalescing mechanism, make it more challenging to

analyse the cover time when compared to parallel random walks.

4.1.3 Rumour Spreading

Gossip-based (also known as epidemic) algorithms have been extensively applied for

designing simple and powerful tools for propagating information within different net-

works. In this context, randomised rumour spreading is arguably the most well-studied

approach in the class of gossip-based algorithms for disseminating information on a large

scale. In this respect, Pull, Push and Push-Pull, introduced in [80], are widely stud-

ied methods in spreading rumours across a network. The main idea discussed in [80]

is to design simple and reliable algorithms in order to propagate updates amongst all

replica sites in a network. In all three of the aforementioned algorithms, the rumour

is initially received by a vertex chosen u.a.r and then spread among all the vertices

iteratively. In the Push protocol, at each iteration every active node that has received

the rumour in a previous round then chooses a neighbour u.a.r and sends the rumour to

that neighbour. In the Pull approach, at each iteration every inactive node chooses a

neighbour u.a.r and then receives the rumour, if the chosen neighbour has the rumour.

Finally, in the Push-Pull protocol, which is a combination of Push and Pull algo-

rithms, in every iteration each node contacts a random neighbour then, if one of them

has the rumour, it passes it on to the other one. Each of these approaches have been

widely studied. As for the Push method, Feige, Peleg, Raghavan and Upfal, in [81],

find a bound of O(log n) on the broadcast time (also known as cover time) of hypercube



Chapter 4. Cobra Walk 64

and dense random graphs. In [82], Elsässer and Sauerwald show that the Push algo-

rithm spreads a rumour in a n-dimensional star graph (different from the star graph)

within O(log n) time. The same authors in [83] find a correlation between the mixing

time and the broadcasting time, where a rapid mixing time leads to a fast broadcasting

time. They also carried out some analysis on the broadcasting time of a certain class

of Cayley graphs which includes star graphs, pancake graphs and transposition graphs.

The broadcast time of the Push method on random graphs is studied in [84] where the

authors show that the bound on the broadcast time in random regular graphs is the

same as that of complete graphs. Later, Fountoulakis and Panagiotou generalise the

bound in [84] to random regular graphs in [85]. Elsässer and Sauerwald, in [86] and

Elsässer, in [87], study the broadcast time and the total number of the transmissions of

the rumour of the Push-Pull strategy for random graphs. Another study is carried out

in [56] on the broadcasting time of the Push-Pull method in random regular networks.

Karp, Schindelhauer, Shenker and Vöcking study the Push-Pull strategy for complete

graphs in [88]. Specifically, they show that the Push-Pull strategy reduces the num-

ber of transmissions of the rumour in the Push protocol, that is Θ(n log n), down to

Θ(n log log n).

One of the most studied methods in measuring the broadcast time of randomised ru-

mour spreading in a network is to investigate the expansion properties of the network.

Specifically, the conductance (see Definition 4.6) of a graph has been widely studied as a

measure of the graph expansion. The conductance of a (connected) graph (also known

as the Cheeger constant), denoted by φ, is the minimum ratio of the edges leaving a set

of vertices over the edges incident to that set [68]. In other words, in well connected

graphs the conductance is large, and it is small for graphs that are not well connected.

In this respect, Chierichetti, Lattanzi and Panconesi [11] show that the Push and the

Pull strategies are not necessarily very fast in networks that have a large conductance.

In particular they prove that the expected broadcast time of the aforementioned strate-

gies on the star graph, with a constant conductance, is of polynomial order. However,

using the Push-Pull strategy, the same authors in [89] show that the broadcast time

for any graph is O(φ−6 log4 n) with high probability. The authors in [69] improve the

bound in [89] to O((log φ−1)2φ−1 log n). Finally, Giakkoupis in [68] shows that for any

graph with n vertices and conductance φ, and for any start vertex, the broadcast time

of the Push-Pull strategy is O(φ−1 log n) rounds with high probability. He also shows

that the aforementioned bound is tight for the case where φ = Ω(1/n). Among all

the reviewed methods, the rumour spreading Push protocol is possibly the closest ap-

proach to the Cobra walk. Recall that at each iteration in the Push protocol every

active node chooses a neighbour u.a.r and then pushes the information to the neighbour.

Again, comparing the push based rumour spreading strategy and the Cobra walk, they
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are somewhat similar as, in every iteration, several nodes can be active in a given step.

However, the coalescing mechanism introduces a significant difference between the Co-

bra walk and the Push protocol. More precisely, the number of active nodes in rumour

spreading is monotonically non-decreasing whereas in a Cobra walk the number of ac-

tive nodes may decrease due to the coalescing mechanism. However, by introducing two

new protocols namely Cobra Push and Cobra Pull (see Section 4.4), we are able to

analyse the Cobra protocol as a rumour spreading approach.

4.1.4 Cobra Walks

Apart from biological aspects, the network structure of an affected population is of great

significance in the study of epidemic diseases. In order to find out how likely a disease

can spread among the individuals in a population, we need to carefully observe the un-

derlying social network of that population. In computer science, the SIS (Susceptible

Infected Susceptible) model attempts to capture the dynamics in the spreading of infor-

mation, for example a rumour or a computer virus, in a fixed population, for example

social networks or social networks. In SIS, there is no restriction on the possibility of

reinfection. Conversely, in the SIR (Susceptible Infected Recovered) model, re-infection

is not allowed. SIS-type epidemic models have been extensively studied [10, 90, 91].

Here, the main focus is on the persistence time and the epidemic density of such mod-

els. In [4], Dutta, Pandurangan, Rajaraman and Roche introduce the Cobra walk in

order to investigate the time taken for a SIS-type process to affect a large fraction or

the entirety, of a network, i.e. the cover time. The cover time of the Cobra walk has

been observed on different graph classes in [4]. Here, the authors show that the cover

time of the Cobra walk for tree, finite 2-dimensional grids and finite d-dimensional

grids are O(n log n), O(
√
n log n) and O(n1/d log n) respectively. For a complete graph

they show a cover time of O(log n). Particularly, their main result is a high probability

bound, of size O(log2 n), for the cover time of Cobra walks on d-regular expanders

subject to a sufficiently large k. To achieve that, they consider two different phases. In

the first phase they show that there are at least δn (δ > 0) number of vertices covered

after O(log n) time steps. In the second phase, after the Cobra walk activates a set of

size Ω(n), a different approach is used to prove that the Cobra walk can achieve a full

coverage in O(log2 n) time. In simple random walks, in order to calculate the maximum

hitting time, one could easily run the algorithm for O(log n) periods of length equal to

the maximum hitting time and the result follows from Matthews’ Theorem 4.3. How-

ever, as for Cobra walks, this is not very straightforward as we know nothing about the

distribution of the δn activated vertices. In the following we will show that it is possible
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to approach the Cobra walk protocol using a different method in order to improve the

broadcasting time on d-regular expanders.

4.2 Our Contribution

Improving the broadcasting time of the Cobra walk analysed in [4], for regular expander

graphs, is the main motivation behind this chapter. In this chapter we analyse the

broadcasting time of the Cobra protocol for random regular graphs. Here, we look into

the Cobra approach as a randomised rumour spreading protocol, see Section 4.1.3. In

order to take advantage of rumour spreading features, we consider a Cobra walk as

a modified Push strategy called the Cobra Push protocol. We then show that it is

possible to improve the result in [4] for random regular graphs. In the following, we will

first define Cobra Push, Cobra Pull and Cobra Push & Pull protocols. Then, in

Section 4.5, we will show that T = O(log n) rounds of Cobra Push & Pull is enough

to broadcast a rumour to all vertices of a random regular graph. Finally we will show

that the same amount of time, i.e. T = O(log n), is only sufficient for the Cobra Push

protocol to cover the graph.

4.3 Model and Definitions

All the definitions of this section are mostly extracted from [4]. Let G(V,E) be a

connected undirected graph where V and E are the vertex and edge set respectively.

According to [4], a coalescing-branching (Cobra) random walk on G with branching

factor k starts at some arbitrary v ∈ V . In the initial state at t = 0 a pebble is placed at

v. Then in every iteration, every pebble in G copies itself k−1 times. This means that at

the end of the copying phase k many pebbles exist at the vertices which originally had a

pebble. Thereafter, each pebble independently chooses a neighbour of its current vertex

u.a.r and moves to it. This is called branching. After the new placement has occurred,

if two or more pebbles choose the same vertex they coalesce into a single pebble, and

the process begins again. The process is summarised in Algorithm 4.3.1. Note that in

a Cobra walk, a vertex may be visited more than once. An active set, St, is the set of

all vertices of G that have a pebble at time t.

As [4] is the main motivation behind our study in this section, we will show some of

their key definitions and results.

Definition 4.1. The inclusive neighbourhood of S denoted by N(S) is

S ∪ {v : (v, w) ∈ E for some w ∈ S},



Chapter 4. Cobra Walk 67

Algorithm 4.3.1 The Cobra random walk with branching factor k

while all vertices are visited by a Cobra-walk (pebble) do
for all pebble do

Clone the pebble, located at vertex v, k − 1 times
Choose one of the neighbours (of v) uniformly at random and move the pebble
to it
Coalesce the pebbles arrived on the same vertex

and ∂S = N(S) \ S is defined as the outer boundary of S.

Definition 4.2 ([4]). The cover time of a Cobra walk on G is defined by maxv∈V τv

where τv is the minimum time for a Cobra walk, starting from v, such that u ∈ St for

all u ∈ V − v for some t ≤ τv. Similarly, the expected cover time of a Cobra walk is

defined by maxv∈V E [τv].

4.3.1 General Bounds and Matthews’ Theorem

Several studies have been carried out on identifying general bounds for the cover time

of arbitrary graphs. Aleliunas, Karp, Lipton, Lovász and Rackoff [92] show that for

any graph G(V,E) the cover time C(G) has an upper bound of O(2|E|(|V | − 1)). Feige

introduces general upper [93] and lower [94] bounds on the cover time of a random walk

on an arbitrary connected graph. More precisely, he shows that

(1− o(1)) · n log n ≤ C(G) ≤ (1 + o(1)) · 4

27
· n3

and that both bounds are tight. The expected cover time of a complete graph is

Θ(n log n) and the expected cover time of a lollipop graph (a path of length n/3 con-

nected to a clique of size 2n/3) is Θ(n3) respectively. Another important result that

shows a very tight connection between the cover time and hitting time of a connected

graph is introduced by P. Matthews in [95, 96].

Theorem 4.3 (Matthews’ Theorem [95, 96]). Let C(G) be the cover time from any node

of a connected graph

hmin ·Hn ≤ C(G) ≤ hmax ·Hn

where hmin (hmax) is the minimum hitting time (maximum hitting time) and

Hk = 1 + 1/2 + · · ·+ 1/n = ln(k) + Θ(1)

is the kth harmonic number.
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A simple but intuitive proof of the Matthews’ theorem for a weaker upper bound of

2 log2 n, discussed in [38], is as follows.

Lemma 4.4 (Lemma 2.8. [38]). Let b be the expected number of steps before a random

walk visits more than half of the nodes, and let h be the maximum hitting time between

any two nodes. Then b ≤ 2h.

Proof. Without loss of generality assume that n = 2k + 1 is an odd number. Let tv be

the first time that vertex v is visited. Also let Ch be the time it takes for the random

walk to visit more than half of the vertices i.e. k + 1 vertices. Therefore

∑
v

tv ≥ (k + 1)Ch

Hence

b = E [Ch] ≤ 1

k + 1

∑
v

E [tv]

≤ n

k + 1
h < 2h

(4.1)

According to Lemma 4.4, in 2h steps the random walk visits more than half of the

vertices. Following the same argument, in the next 2h steps more than half of the

remaining unvisited vertices will be covered. Therefore after about 2h log2 n steps all

the vertices will be visited.

4.3.2 Expander Graphs and Measures of Expansion

Expander graphs are connected undirected graphs with two very distinctive properties;

they are relatively sparse, i.e. they have relatively few number of edges, and they

have strong connectivity properties. The extent of connectivity of expander graphs is

measured by quantities such as the vertex expansion or edge expansion. Let G(V,E) be

an undirected and connected graph. For every set of vertices S ⊆ V , let ∂S be the outer

boundary of S, see Definition 4.1.

Definition 4.5. The vertex expansion of G (also known as Cheeger constant), 0 <

α(G) ≤ 1 is defined by

α(G) = min
0<|S|≤n

2

|∂S|
|S|

. (4.2)
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Intuitively, in well-connected expanders subject to the vertex expansion every set of

vertices, that is not very large, should have many neighbours.

For every two sets of vertices U,W ⊆ V , let E(U,W ) = {(u,w) ∈ E : u ∈ U,w ∈W} be

the set of the edges between U and W . Also define the volume of S ⊆ V as vol(S) =∑
v∈S d(v).

Definition 4.6. The edge expansion of G (also known as conductance) 0 < φ(G) ≤ 1 is

defined by

φ(G) = min
S⊆V

0<vol(S)≤vol(V )/2

E(S, V \S)

vol(S)
. (4.3)

Note that vol(V ) = 2|E|. In [97], Sauerwald and Stauffer show that

(δ/∆)φ(G) ≤ α(G) ≤ ∆ · φ(G), (4.4)

where δ and ∆ are the minimum and maximum degrees of G respectively. Intuitively,

φ(G) is large for well-connected graphs and small for the graphs that are not well-

connected. We will use Definition 4.2 and Definition 4.6 later in the proof of Lemma 4.10.

4.3.3 Random Regular Graphs

A random d-regular graph is a graph that is chosen u.a.r from the probability space of

all d-regular graphs with the same number of vertices.

Definition 4.7 ([98]). Suppose n and d such that 3 ≤ d < n and r · n is even. Let

G(n, dreg) be the probability space on all d-regular graphs where each graph has the same

probability. Then we call an element of this probability space, a random d-regular graph.

Several models for generating random regular graphs have been introduced [99–101].

The pairing model is one of the most studied models in this respect [100]. Consider

a family of n sets of filled with d nodes (n · d nodes in total). Each of these sets is

regarded as d-many copies of every vertex. Consider a random matching of these sets.

The result is either a random d-regular graph or a graph with multiple edges or loops.

In the latter, we do the algorithm again. Note that each random d-regular graph is an

expander w.h.p. [102].

4.4 Cobra Push and Cobra Pull Protocols

Here, we look into the Cobra approach as a randomised rumour spreading protocol.

In order to take advantage of rumour spreading features, we consider the Cobra walk
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protocol as a new Push strategy called Cobra Push. Formally, in each round of the

Cobra Push protocol every active node forwards the message to k randomly selected

neighbours, see Algorithm 4.4.1.

Algorithm 4.4.1 The Push Cobra protocol

1: for every active node v do
2: for each of k messages do
3: selects a random neighbour of v and moves to it

We define nodes to be active if and only if they have received the message in the previous

round (for the first time or more often) from one or more neighbours. In each round of

the Cobra Pull protocol, every node sends requests to k randomly chosen neighbours

and they, in turn, reply with the message if and only if they themselves are active, see

Algorithm 4.4.2.

Algorithm 4.4.2 The Pull Cobra protocol

1: for every node v do
2: sends requests to k randomly selected neighbours
3: for each active selected neighbour do
4: sends the rumour to v

The main result of this chapter is the following theorem.

Theorem 4.8. The Cobra protocol covers random regular graphs in time O(log n),

w.h.p.

In the following, we show that T = O(log n) rounds of Cobra Push & Pull (see

Algorithm 4.5.1) is enough to broadcast a rumour to all vertices of a random regular

graph and finally we show that the same amount of time, i.e. T = O(log n), is enough

for only the Cobra Push protocol (or the generic Cobra protocol) to cover the graph.

4.5 Cobra Push & Pull Protocol

The main result of this section is Theorem 4.9.

Theorem 4.9. Let G be a random d-regular graph. The Push & Pull Cobra protocol

covers G in time O(log n), w.h.p.

Where, for T = Θ(log n), the Push & Pull Cobra protocol is as follows, see Algo-

rithm 4.5.1.

To prove Theorem 4.9, first we show that, after Θ(log n) rounds of Cobra Push, more

than half of the nodes are active.
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Algorithm 4.5.1 The Push & Pull Cobra protocol

1: for T rounds do
2: Cobra Push
3: for T rounds do
4: Cobra Pull

Lemma 4.10. Let G be a random d-regular graph, d ≥ 3. Let k ≥ d. There exists a

constant β > 1/2 such that for some T = Θ(log n) there are βn many active nodes in

round T of Cobra Push, w.h.p..

Proof. Let St be the set of active vertices in step t, st = |St|. Let N(St) denote the

inclusive neighbourhood of St, and let nt = |N(St)|. Furthermore, let `t = nt/st (then

|N(St)| = `t · |St|, and in particular |N(St)| − |St| = nt − st = st · `t − st = (`t − 1) · st).

The set-up and the first few steps of this proof (up until Eqn. (4.9)) follow that of the

proof of Lemma 12 in [4]. Here, we want to show that for any t ≥ 0, the cobra walk

with active set St such that st ≤ βn, E[st+1] ≥ (1 + µ)st for some µ > 0. Instead,

we show that the number of nodes in N(St) that are not selected by the Cobra walk

is sufficiently small, i.e. E[|N(St) − St+1|] ≤ nt − (1 − µ)st. For each u ∈ N(St), we

define a random variable Xu that takes value 1 if u /∈ St+1 and 0 otherwise. Then

Pr[Xu = 1] = (1 − 1/d)k·du , where du is the number of the neighbours of u in St.

Therefore,

E[|N(St)− St+1|] =
∑

u∈N(St)

E[Xu] =
∑

u∈N(St)

(1− 1/d)k·du ≤
∑

u∈N(St)

exp(−k · du
d

).

Since
∑

u∈N(St)
du = d|St| and the RHS of the above inequality is a convex function,∑

exp(−k·du
d ) is maximised when all the values of du are equal to either 1 or d (with an

exception of possibly one du). Now, let R1 (respectively R2) be the number of nodes in

N(St) with du = 1 (du = d). Then

R1 +R2 = |N(St)| (4.5)

R1 + dR2 = d|St|, (4.6)

solving for R1 and R2, we have
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R1 =
d

d− 1
(|N(St)| − |st|) (4.7)

R2 =
1

d− 1
(d|St| − |N(St)|). (4.8)

Thus

E[|N(St)−|St+1|] ≤
d

d− 1
(|N(St)|−|St|) ·exp(−k/d)+

1

d− 1
(d · |St|−|N(St)|) ·exp(−k)

(4.9)

In our notation, the RHS becomes

d

d− 1
(`t − 1) · st · exp(−k/d) +

1

d− 1
(d− `t) · st · exp(−k).

We want to show that

`tst −
[

d

d− 1
(`t − 1) · st · exp(−k/d) +

1

d− 1
(d− `t) · st · exp(−k)

]
≥ (1 + µ)st (4.10)

for some constant µ ∈ (0, 1). `tst is the maximum number of active nodes we can hope

for in the next step. (Notice that `t is a static property of the graph, depending on

the expansion – for any subset of vertices there is a fixed neighbourhood, and this `t

simply expresses the size of that for whatever happens to be our current St.) From that

we subtract the “bad nodes”, those counted inside the big square brackets. The result

should at least be larger by a constant factor > 1 than what we have got now, in step t.

We can divide through by st and obtain

`t −
[

d

d− 1
(`t − 1) · exp(−k/d) +

1

d− 1
(d− `t) · exp(−k)

]
≥ 1 + µ. (4.11)
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We solve this for µ:

µ ≤ `t −
[

d

d− 1
(`t − 1) · exp(−k/d) +

1

d− 1
(d− `t) · exp(−k)

]
− 1

= (`t − 1)−
[

d

d− 1
(`t − 1) · exp(−k/d) +

1

d− 1
(d− `t) · exp(−k)

]
= (`t − 1)− (`t − 1)

d

d− 1
· exp(−k/d)− 1

d− 1
(d− (`t − 1)− 1) · exp(−k)

= (`t − 1)− (`t − 1)
d

d− 1
· exp(−k/d) + (`t − 1)

1

d− 1
exp(−k)− (d− 1)

1

d− 1
exp(−k)

= (`t − 1)− (`t − 1)
d

d− 1
· exp(−k/d) + (`t − 1)

1

d− 1
exp(−k)− exp(−k)

= (`t − 1) ·
[
1− d

d− 1
· exp(−k/d) +

1

d− 1
exp(−k)

]
− exp(−k) (4.12)

As stated above, `t is implicitly bounded by the expansion. The classic vertex expansion

α is defined to be

α = min
0≤|S|≤n/2

|N(S) \ S|
|S|

.

Recall that with our definitions, N(S) is the inclusive neighbourhood of S, and the

vertex expansion measures the ratio of the exclusive neighbourhood versus starting set.

Therefore,

nt/st = `t ≥ 1 + α ⇔ `t − 1 ≥ α (4.13)

We now wish to replace the dependence in Eqn. (4.12) of µ on `t by one on α instead,

using Eqn. (4.13). This gives us

µ ≤ α ·
[
1− d

d− 1
· exp(−k/d) +

1

d− 1
exp(−k)

]
− exp(−k). (4.14)

We define f(α, d, k) to be the RHS of Eqn. (4.14). For there to be the possibility of

finding a constant µ > 0 we need to have f(α, d, k) > 0 as well, that is

α ·
[
1− d

d− 1
· exp(−k/d) +

1

d− 1
exp(−k)

]
− exp(−k) > 0
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and, equivalently,

α >
exp(−k)

1− d
d−1 · exp(−k/d) + 1

d−1 exp(−k)

=
exp(−k)

d−1
d−1 −

d
d−1 · exp(−k/d) + 1

d−1 exp(−k)

=
(d− 1) · exp(−k)

(d− 1)− d · exp(−k/d) + exp(−k)
(4.15)

Eqn. (4.15) now imposes a lower bound on the vertex expansion onto our set-up. Let’s

define a(d, k) to be the RHS of Eqn. (4.15):

a(d, k) =
(d− 1) · exp(−k)

(d− 1)− d · exp(−k/d) + exp(−k)
.

It is known [103] that for any d ≥ 3, almost all d-regular graphs have edge expansion at

least cd ·d (if nd is even), where cd depends only on d and not on n. In fact, cd ≥ 0.18 for

all d ≥ 3, and cd → 1/2 as d→∞. Furthermore, whenever a graph has edge expansion

φ, then from Eqn.(4.4) its vertex expansion is at least φ/d, implying that almost all

d-regular graphs (d ≥ 3) have vertex expansion at least 0.18.

It is easy to verify that a(d, k) ≤ 0.18 for all d ≥ 3 and k = k(d) ≥ d. Note that we can

also show that a(d, k) ≤ 0.18 when k ≥ log(d) and a large d.

It follows that a(d, k) ≤ 0.18 ≤ α, and almost all d-regular graphs satisfy Eqn. (4.15).

The vertex expansion property holds true for any subset of size at most n/2. This

implies that E[st+1] ≥ (1 + µ)st, where µ = minα,d,k f(α, d, k)/2, so long as st ≤ n/2.

Using the same arguments as in Lemma 13. and Lemma 14. in [4], it follows that, with

probability 1− n−c, there are βn active nodes after Θ(log n) many steps.

In the next lemma we show that, given more than half of the nodes are active, the Pull

Cobra protocol can inform all the nodes in O(log n) time.

Lemma 4.11. Let G(V,E) be a random d-regular graph. Assume there are constants

β > 1/2 such that at least βn are active. Then O(log n) rounds of the Pull Cobra

protocol inform all nodes of G, w.h.p.

Proof. Let S be the set of active nodes, where |S| ≥ β ·n > n/2. We want to prove that

the Cobra Pull protocol will cover any vertex v ∈ V \S in O(log n) time. For every

v ∈ V \S, consider an instance of Cobra Push starting from v and running for t time
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steps. This process can be described as a tree (a directed acyclic graph) rooted from v.

An edge (u,w) is in the tree if and only if u sends a message to a node w via the Cobra

Push process within time t. Note that external nodes of the tree are active nodes of the

Cobra Push process after t steps. Now, let Iv be the set of external nodes of the tree

after t1 = O(log n) rounds of Cobra Push. According to Lemma 4.10, when k ≥ d,

Iv ≥ n/2 + 1 with probability 1 − n−c. From the pigeon-hole principle, we know that

there exists a vertex sv such that sv ∈ S∩ Iv. Now, let pt1 be the probability of reaching

sv from v, via the Cobra Push strategy, after t1 = O(log n). By Lemma 4.12, pt1 is

also the probability of the event in which we start from sv and reach v, via the Cobra

Pull strategy, after t1 = O(log n). We know pt1 ≥ 1 − n−c. Therefore, we inform all

vertices of V \S from S, with probability at least (1− n−c)|V \S| ≥ (1− n−c)n/2.

Now, we show a lemma which compares the probability that a message is sent from

node u to v via Cobra Push with the probability that it is sent from u to v via Cobra

Pull. We use similar arguments in Lemma 4.1 of [68]

Lemma 4.12. Let ECPush(v, u, t) be the event that vertex u learns a rumour from vertex

v after t rounds of the Push Cobra algorithm; and let ECPull(v, u, t) be the same event

under the Pull Cobra algorithm. Then, Pr(ECPush(v, u, t)) = Pr(ECPull(u, v, t)).

Proof. Let EPush(u, v, t) (EPull(u, v, t)) be the event that Cobra Push (Cobra Pull)

starting from a single node u informs a node v after exactly t rounds. The execution

of Cobra Push (Pull) can be described as a directed acyclic graph (DAG). Nodes of

the DAG are labelled with the IDs of nodes in G. Note that labels are not necessarily

unique. Edges represent the random choices of the algorithm. For Cobra Push, an

edge (u, v) is in the DAG if and only if node u sends the message to a node v.

A node v makes a successful request if it sends a request to an active node. For Cobra

Pull, an edge (u, v) is in the DAG if and only if node v makes a successful request to

a node u.

Recall by definition a node is active in timestep t if and only if it receives the message in

timestep t− 1. The events EPush(u, v, t) (EPull(u, v, t)) can therefore be described by a

path of length t. We will describe an edge as being activated if and only if one or more

messages traverses it. Let pt := u, u1, u2, . . . , ut−1, v be a path of length t that satisfies

EPush(u, v, t). The probability that an edge (ui−1, ui) is not activated using Cobra

Push, given that ui−1 is active, is (1 − 1/d)k. Therefore the probability that the edge

(ui−1, ui) is activated using Cobra Push given that ui−1 is active is 1− (1− 1/d)k.
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Let the path p′t := v, v1, v2, . . . , vt−1, u be such that it satisfies EPull(v, u, t). Recall that

(v, v1) is an edge if v1 makes a successful request to v. The probability that an edge

(vi−1, vi) exists is 1−(1−1/d)k for similar reasons to those used above for Cobra Push.

The probability of the path described occurring is given by the product of the above

probabilities.

Given that the paths described are unique we can conclude that

Pr (EPull(v, u, t)) = Pr (EPush(u, v, t)) .

Using previous lemmas, we are now ready to prove the main result of this section The-

orem 4.9.

Proof of Theorem 4.9. Consider the case where we start from an arbitrary active vertex

u ∈ G. Consider an instance of Cobra Push starting from vertex u. According to

Lemma 4.10, this instance of Cobra Push (when k ≥ d) will reach an active set S,

where S ≥ n/2 + 1, with probability at least 1 − n−c after t1 = O(log n) time. By

Lemma 4.11, after (extra) t1 = O(log n) rounds of the Cobra Pull strategy, we inform

every v ∈ V \S with probability at least (1 − n−c)|V \S|. Hence, starting from u, after

O(log n) rounds of Cobra Push & Pull strategy, we inform all the vertices with

probability at least (1− n−c)|V \S|+1 ≥ (1− n−c)n/2. This completes the proof.

The proof of Theorem 4.8 trivially follows from the above lemmas and theorem when

the branching factor k is sufficiently large (k ≥ d).

4.6 Simulations

Although our analysis of the Cobra walk requires a branching factor k to be larger

than d, in practice it does not need to be that large. Figure 4.1 shows the percentage

of active and covered nodes of a 10-regular graph with 1 million nodes as a function of

time. Here, for different values of k = 2, 6 < 10 the algorithm performs well.

4.7 Conclusion

In this chapter we analysed the so called Cobra walk introduced in [4]. We modelled the

Cobra walk in a rumour spreading framework, where we examined it as a modification
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Figure 4.1: Percentage of active/covered nodes for k = 2, 6 as a function of time

of the Push strategy. Specifically, we improve the cover time of the Cobra walk for

random regular graphs. Here, we show that it is possible to reduce the broadcasting time

of the cobra walk from log2(n) to log(n) at the cost of having to increase the branching

factor k. However, the branching factor can be reduced to log(d) when d is sufficiently

large.
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[87] Robert Elsässer. On the communication complexity of randomized broadcasting in

random-like graphs. In SPAA 2006: Proceedings of the 18th Annual ACM Sympo-

sium on Parallelism in Algorithms and Architectures, Cambridge, Massachusetts,

USA, July 30 - August 2, 2006, pages 148–157, 2006. doi: 10.1145/1148109.

1148135. URL http://doi.acm.org/10.1145/1148109.1148135.

[88] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor
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