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Abstract

During the development of multicellular organisms, cells acquire information about their

position in the embryo in response to morphogens whose concentrations vary along the

anteroposterior axis. In this thesis, we provide an information-theoretic definition of

positional information and demonstrate how it can be quantified from experimental data.

We start by setting up the mathematical framework and qualitatively discuss which features

of expression patterns can contribute to positional information. Then, using the four major

gap genes (Hunchback, Krüppel, Giant, and Knirps) of Drosophila as an example, we

focus on the experimental standards that need to be met to accurately compute positional

information from imunofluorescence stainings. We show that imunofluorescence makes it

possible to extract not only very accurate mean profiles but also statistical noise and noise

correlations from gene expression profile distributions and we use this analysis to extract

gap gene profile dynamics with 1-2 min precision and to quantify their profile reproducibility.

Finally, we describe how to quantify positional information, in bits, from the experimental

gap gene profiles previously generated. Our results show that any individual gene carries

nearly two bits of information and that, taken together, these four gap genes carry enough

information to define a cell’s location along the anteroposterior axis of the embryo with an

error bar of half the intercellular distance. This precision is nearly constant along the length

of the embryo and nearly enough for each cell to have a unique identity. We argue that

this constancy is a signature of optimality in the transmission of information from primary

morphogen inputs to the output of the gap gene network.
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Introduction

Multicellular organisms develop from a single fertilized egg that repeatedly divides, leading

to a complex system of cells with distinct shapes and functions. This process, through which

cells and tissues are structured to give the organism its characteristic shape and function, is

called ‘morphogenesis’. During morphogenesis cells choose from a variety of fates. That is,

they undergo ‘differentiation’. While all cells contain identical genetic information stored

in their DNA, in order to differentiate, they express only a subset of genes [Alberts et al.,

2002,Huang et al., 2005]. As an example in humans, the difference between a liver cell and

a skin cell comes from the set of genes they are expressing.

Differentiation occurs in spatial patterns and that have different levels of reproducibility.

For some tissues, cell differentiation does not have to be spatially reproducible from one

individual to the other, for instance, in the case of the skin cells that form fingerprint patterns.

In some other cases though, having similar fates at similar locations across individuals is

crucial, like the position of the head, arms and legs with respect to the body plan. In

the latter case, which is what we are interested in here, cells have to adopt fates that are

correlated with their location in the embryo or, in other words, they need to acquire some

information about their position before making any decision.

In order to understand embryonic development, it is thus crucial to question how the

observed patterns of cell differentiation are established and to quantify the reproducibility

up to which this differentiation happens. In particular, if cells acquire information about

their position, we want to first identify the means by which this information is conveyed.

In this introduction, we first explain how positional information is set up by signaling

molecules called ‘morphogens’ that act in a concentration-dependent manner. Then, using
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early Drosophila development as an example, we describe how this positional information is

transmitted in the course of the first three hours of embryogenesis, and eventually leads into

different cell fates. Namely, we describe the successive types of genes that are involved in

that transmission and their interactions. Finally, we list a set of quantitative questions that

arise when looking at the system from a physicist’s point of view.

An introduction to ‘morphogens’

The discovery of the mechanisms that determine cell fate is in itself a thrilling scientific

saga (see [Ephrussi & St Johnston, 2004] for a complete review). It was first suggested at

the beginning of the 20th century by Wilson and Conklin that cells adopt different fates

by ‘sensing’ the presence or absence of chemicals located outside of them in the cytoplasm.

Conklin observed in sea squirt eggs that cells segregated in different lineages (muscle or

notochord) depending on which region they where developing in, thus suggesting that these

regions were containing fate-determining factors [Conklin, 1905]. Wilson observed in snail

eggs that the presence of a protrusion called the polar lobe determined which cells formed

the muscles, shell gland, mouth and foot, and concluded that the polar lobe contained some

factors necessary for cell differentiation [Wilson, 1904]. Yet one had to wait until 1974 before

Illmensee and Mahowald undoubtedly proved the existence of these cytoplasmic determinants

by transplanting the pole plasm of Drosophila from the anterior to the posterior of the egg

and observing the formation of pole cells [Illmensee & Mahowald, 1974]. At the same time,

some experiments by Boveri and Morgan showed that specific regions of the embryo can

have long-range effects on the development of the rest of the organism. Experiments from

Boveri on sea urchin in 1901 suggested that its developmental pattern could be determined

by opposite animal and vegetal ‘gradients’ [Boveri, 1901], while Morgan’s experiments on

regeneration of flat worms lead him to postulate the existence of ‘formative substances’ that

influenced the developmental plan of the embryo [Morgan, 1904,Morgan, 1905].

In the middle of the last century, Turing coined the term ‘morphogens’ to describe these

long-range effect cytoplasmic determinants [Turing, 1952]. He used mathematical models to

show that a simple reaction-diffusion process could lead cell differentiation through a process

of self-organization. In this class of models, which were further developed by Gierer and
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Figure 1: Illustration of Wolpert’s French flag model (1969). Cells read out the morphogen
concentration in a threshold-like manner. Originally, all cells are equivalent and could
potentially adopt any of the three fates (blue, white, or red). After the gradient is established,
they read and compare their concentrations with a set of thresholds. The fate they adopt
then correlates with their position or, in other words, they acquire positional information
from the morphogen gradient.

Meinhart, competition between local self-enhancement and long-range inhibition amplifies

local inhomogeneities to generate a stable pattern [Gierer & Meinhardt, 1972,Meinhardt,

1989]. These mechanisms may indeed underlie the pigmentation patterns seen in certain

animal coats like the stripe patterns in the zebra or the angelfish [Painter et al., 1999,Wolpert

et al., 2002].

In parallel, an alternative line of thought suggested that the symmetry breaking, which

appears during embryonic development, is predetermined by some prior, asymmetrically

localized factor. In this view, morphogens are produced in cells that are located in a spatially

restricted source region, diffuse along the main axis of the egg, and are degraded throughout

the embryo or possibly only in a sink region located at some distance to the source [Lawrence,

1966, Stumpf, 1968]. This setup leads to the formation of a graded profile of morphogen

concentration. In 1969, Wolpert postulated that the fates of cells are determined by the

local concentrations of these graded profiles, which contain positional information about the

distance to the morphogen source as shown on Figure 1 [Wolpert, 1969]. In other words,

undifferentiated cells measure the concentration of a chemical substance that exists in a

gradient along some embryonic axis. Different concentration thresholds induce different cell
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fates. This particular activity has come to define the concept of a morphogen in the modern

sense of the term [Slack, 2001].

Up to this point, however, the concept of a morphogen remained a theoretical one,

with no clear experimental evidence of its existence. One had to wait until 1988 and the

groundbreaking work of Driever and Nüsslein-Volhard to identify the Drosophila maternal

effect gene bicoid (bcd), the first gene displaying the characteristics of Wolpert’s definition of

a morphogen [Driever & Nüsslein-Volhard, 1988a,Driever & Nüsslein-Volhard, 1988b,Driever

& Nüsslein-Volhard, 1989,Driever et al., 1989]. Driever and Nüsslein-Volhard developed very

pure antibodies against Bicoid that allowed the visualization of its protein distribution in the

Drosophila embryo. They showed that it establishes a concentration gradient that extends

from an anterior high point over more than 50% of the embryo. More importantly, they

demonstrated that the dosage and shape of the gradient was correlated with the final cuticle

pattern. Thus Bicoid acts as a ‘transcription factor’. That is to say, it can regulate the

activity of other genes at different concentration thresholds to pattern the anteroposterior

axis of the embryo. This work ended over 80 years of speculation over whether morphogen

gradients exist and the nature of the molecules involved. Subsequently, many more embryonic

morphogens were discovered both in Drosophila [Neumann & Cohen, 1997] and in other

organisms including vertebrates such as chick [McMahon et al., 2003] and zebra fish [Chen

& Schier, 2001].

Developmental plan of Drosophila

The concept of the morphogen is useful for visualizing cell differentiation in the embryo:

a determinant spreads from a localized source, forms a concentration gradient across the

embryo and cells adopt fates that are correlated with the concentration of this determinant.

In other words, the morphogen provides an original chemical coordinate system that has

to be ‘read out’ by the cells. Yet it is not clear at this stage by which means this reading

process is happening.

Those means were actually discovered before the existence of morphogen gradients was

proven. In the late ‘70s Nüslein-Volhard chose to identify the unknown molecules involved

in the patterning of the embryo by a genetic approach rather than a biochemical one. Her
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successful analysis of maternal-effect mutations that affect the dorsoventral patterning of

the embryo [Nüsslein-Volhard, 1977] lead her and Wieschaus to propose a systematic genetic

approach to discover the genes responsible for Drosophila axis formation. They performed

saturation mutageneses for zygotic mutants that affect the patterning of the embryonic

cuticle [Nüsslein-Volhard & Wieschaus, 1980] and found that the embryo is patterned by

a hierarchical network of about 40 interacting genes composed of three layers: the gap

genes, the pair rule genes, and the segment polarity genes. Subsequent molecular analysis

showed that these genes encode transcription factors, hence allowing the layers to interact

to generate progressively finer patterns of gene expression [Lawrence, 1992].

In a broad overview, the developmental plan of Drosophila is as follows (summarized in

Figure 2, see [Jaeger, 2011] for a complete review):

1. After fertilization, bcd and nos mRNAs, which are sequestered into the anterior

and posterior poles of the egg, are translated and their proteins diffuse towards the

posterior and the anterior regions, respectively. The Bcd protein prevents translation

of maternal cad mRNAs, which are originally uniformly distributed throughout the

whole embryo [Dubnau & Struhl, 1996,Rivera-Pomar et al., 1996]. At the same time,

Nos protein prevents translation of the maternal hb mRNAs, which are also originally

uniformly distributed [Murata & Wharton, 1995]. Thus the embryo is roughly divided

into two broad regions: the anterior half containing Bcd and maternal Hb proteins,

and the posterior half containing Cad proteins (and Nos, which is believed to have no

role in AP patterning other than being a translational repressor of maternal Hb [Irish

& Lehmann, 1989,Hülskamp et al., 1989,Struhl, 1989]).

2. The next step in the segmentation process is the response of the zygotic genome to

this maternal information, resulting in activation of the gap genes1. In the anterior

half, the genes giant (gt) and and hunchback (hb) are activated as a response to Bcd

and maternal Hb. In the posterior half, the gene knirps (kni) and gt are activated as a

response to Cad. In the central region, the gene Krüppel (Kr) is activated. All these

genes encode transcription factors that create cross-regulatory interaction between

1The name ‘gap genes’ refers to their mutant phenotype as mutations in these genes affect several
contiguous segments [Nüsslein-Volhard & Wieschaus, 1980].
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Figure 2: Schematic picture of the gene cascade, which regulates Drosophila melanogaster
anteroposterior axis. A) In the first 3 hours of development, the embryo experiences
13 successive mitotic divisions and remains syncytial (without cell membranes between
nuclei) until cellularization occurs during n.c 14. Gastrulation begins immediately after
cellularization is complete approximately 3 hours after fertilization. The cephalic furrow is
formed with a precision of a single row of cells. B) The regulatory hierarchy of the Drosophila
segmentation gene network. First, maternal gradients are expressed across the whole embryo
(Bicoid protein distribution shown as an example). They regulate the zygotic gap genes,
expressed in broad overlapping domains (Giant protein shown as an example). Gap genes
and pair-rule genes together regulate pair-rule genes, which are expressed in 7 stripes (Hairy
protein shown as an example). Pair-rule genes in turn regulate segment-polarity genes, which
are expressed in 14 stripes (Engrailed RNA shown as an example [Swantek & Gergen, 2004]).
These stripes constitute the segmentation pre-pattern and correspond to the positions of
parasegmental boundaries later in development. Embryos are shown with the anterior pole
to the left and the dorsal side to the top.
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them (see [Rivera-Pomar et al., 1996, Sánchez & Thieffry, 2001] for a review).The

result is the subdivision of the zygote space into subspaces defined by broad expression

domains.

3. In turn, the gap genes transmit the morphogenetic information to the segmentation

gene hierarchy with ever more refined spatial patterns of expression, namely the pair-

rule genes, which are expressed in seven stripes. Some pair-rule genes are needed for

the formation of even segments and others for the formation of odd segments. Finally,

the pair-rule genes determine the activity of the segment polarity genes. Each of these

is expressed as 14 stripes, one stripe corresponding to each segment.

Eventually the network generates distinct rows of nuclei that express the downstream

genes in unique and distinguishable patterns [Gergen et al., 1986].

Precision and reproducibility during embryonic development

The final developmental pattern of Drosophila shows two remarkable features that one

shouldn’t confuse:

1. The expression domains of the genes involved in the anteroposterior patterning are

precise [Crauk & Dostatni, 2005,Gregor et al., 2007a], meaning that, in a given embryo,

neighboring cells can adopt different fates.

2. The patterns of gene expression are reproducible [Houchmandzadeh et al., 2002,Gregor

et al., 2007a], meaning that the fate of the cells and their position are strongly correlated

across embryos.

To illustrate this with a simple example, let us consider the formation of the cephalic

furrow. The fact that its formation begins with a single row of initiator cells demonstrates

the precision of the process. On the other hand, the fact that this row of initiator cells is

systematically located at a fractional length of 33% of the anteroposterior axis demonstrates

its reproducibility.

From the physics point of view, it is remarkable that such precision and reproducibility can

be achieved in such a short amount of time using only a handful of genes. Gene expression is
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subject to intrinsic fluctuations that trace back to the randomness associated with regulatory

interactions between molecules present at low absolute copy numbers. Moreover, there is

random variability not only within, but also between, embryos, for instance in the strength of

the morphogen sources. These biophysical limitations in the number of signaling molecules,

available time for morphogen readout, and reproducibility of the initial and environmental

conditions place severe constraints on the ability of the developmental system to generate

reproducible gene expression patterns.

Although there is a consensus that particular genes carry positional information, much

less is known quantitatively about how much information is being represented. Do the

relatively broad, smooth expression profiles of the gap genes, for example, provide enough

information to specify the exact pattern of development, cell by cell, along the anteroposterior

axis? How much information does the whole embryo actually use in making this pattern?

Answering these questions is important because we know that crucial molecules involved in

the regulation of gene expression are present at low concentrations and even low absolute

copy numbers, so that expression is noisy [Elowitz et al., 2002,Ozbudak et al., 2002,Blake

et al., 2003,Rosenfeld et al., 2005,Golding et al., 2005,Gregor et al., 2007a,Tkacik et al.,

2008], and this noise must limit the transmission of information [Tkacik et al., 2008, Ziv

et al., 2007, de Ronde et al., 2010, Tkacik & Walczak, 2011]. Is it possible, as suggested

theoretically [Tkacik et al., 2008,Tkacik et al., 2009,Walczak et al., 2010,Tkacik & Walczak,

2011], that the information transmitted through these regulatory networks is close to the

physical limits set by the bounded concentrations of the different transcription factors? To

answer this and other questions, we need to measure positional information quantitatively,

in bits. We do this here using the gap genes in Drosophila as an example.

Overview of this work

In chapter 1, we define the positional information carried by a set of morphogens following

Shannon’s original work [Shannon, 1948]. First, we start by asking which features of the

morphogens (mean profile, variance and correlations) are informative to the cells from the

positional point of view and we show, through schematic examples, how they influence

positional information. Then, we make the case that the relevant metric to quantify positional
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information is the mutual information I (in its information-theoric definition) between the

gene expression levels and the position. It is defined as a single number that tells us how

much information cells can use overall from a set of morphogens. In particular, we claim

that I is the only quantity that takes into account all the features described earlier. Finally,

we establish the link between the mutual information and and the limits of local position

decoding. In particular, we show how positional information puts mathematical limits on

the precision up to which cells can infer their location and show how information can be

‘mapped’ along the anteroposterior axis of the embryo.

In chapter 2, we describe and discuss the protocols that we used to experimentally

measure the positional information carried by the four gap genes, Hunchback (Hb), Krüppel

(Kr), Giant (Gt) and Knirps (Kni). In particular, we present a set of careful control

measurements that demonstrate clearly to what extent immunofluorescence protocols can be

used for gene expression level quantification. We start by showing how the four genes can

be simultaneously quantified in a single embryo. Then, we calibrate the developmental time

point of fixed embryos with a precision of 1 - 2 min using live membrane furrow invagination

as a calibrator. This allows us to sort out embryos precisely according to time and to limit

experimental errors due to developmental time misidentification. Finally we identify the

sources of experimental error which can perturb our measurement of the biologically relevant

variance of profiles across the embryo. We show that antibody stainings provide an accurate

way to measure mean expression profiles and that the vast majority of the observed variance

is indeed biologically meaningful and cannot be only imputed to experimental biases.

Finally, in Chapter 3, we describe how the above experimental data are processed to

quantify the positional information carried by the four gap genes. First, we start by covering

the technical details related to the application of positional information formalism to real

data sets. In particular, we show how to deal with a finite number of samples and introduce

different approximation methods to estimate the information carried by one gene. Then, we

move on to the case of multiple genes and use the experimental data described in Chapter

2 to compute the positional information carried by the gap genes hb, kr, gt, and kni. We

then quantify the positional error up to which cells can estimate their location based on the

readout of these four gap genes.
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Chapter 1

Positional information in the

context of embryonic development

1.1 Introduction

The concept of positional information has been widely used as a qualitative descriptor

and has had enormous success in shaping our current understanding of spatial patterning

in developing organisms [Wolpert, 1969, Wolpert, 1971, Tomlinson et al., 1987, Fasano &

Kerridge, 1988,Moses & Rubin, 1991,Reinitz et al., 1995] (see [Wolpert, 1996] for a complete

review). Mathematically, however, positional information has never been rigorously defined.

Specific morphological features during early development have been studied in great detail

and shown to occur reproducibly across wild-type embryos [Lecuit et al., 1996, Jaeger &

Reinitz, 2006,Jaeger & Irons, 2008], while perturbations to the morphogen system resulted in

systematic shifts of these same features [Kraut & Levine, 1991,Capovilla et al., 1992,Rivera-

Pomar et al., 1995]. This established a causal—but not quantitative—link between the

positional information encoded in the morphogens and the resulting body plan. Building

on previous as well as new results, we provide the missing quantitative link by proposing a

mathematical formalism for positional information.

In Drosophila, the entire body plan of the future adult organism is established by a

hierarchical network of interacting genes during the first three hours of embryonic develop-
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ment. The hierarchy is composed of three layers: long-range protein gradients that span the

entire long axis of the egg, gap genes expressed in broad bands, and pair-rule genes that are

expressed in a regular seven-striped pattern. The genes encode transcription factors, hence

allowing the layers to interact. Positional information is provided to the system solely via

the first layer, which is established from maternally supplied and highly-localized mRNA

that act as protein sources for the maternal gradients. The network then uses these inputs to

generate distinct rows of nuclei that express downstream genes in unique and distinguishable

patterns.

It is remarkable that such precision can be achieved in such a short amount of time using

only a handful of genes. Gene expression is subject to intrinsic fluctuations, which trace

back to the randomness associated with regulatory interactions between molecules present

at low absolute copy numbers. Moreover, there is also random variability across embryos:

for instance, in the strength of the morphogen sources. These biophysical limitations—in

the number of signaling molecules, in the time available for morphogen readout, in the

reproducibility of the initial and environmental conditions—place severe constraints on the

ability of the developmental system to generate reproducible gene expression patterns.

Traditionally, precision and reproducibility have been thought of as the ability to generate

spatially sharp boundaries between broad bands of gene expression, where each gene would

be either “on” or “off” in each of the expression domains. This view, which starts with the

assumption that there are only two biologically meaningful levels of expression, has been

challenged recently by showing that the morphogen bicoid transmits 1.5 bits of information

to the gap gene hunchback ; this would suffice for three (instead of two) distinguishable

levels of hunchback response [Tkacik et al., 2008]. Moreover, a total of, say, four gap genes,

each of which can provide at most one bit (“on” or “off”) of information, cannot suffice to

specify > 24 nuclear rows uniquely, even in principle. Taken together, these considerations

indicate that gap genes could be more than just “binary switches,” encoding a single bit

of positional information each in their expression domains. To address these conflicting

interpretations rigorously, we need to be able to make quantitative statements about the

positional information of the spatial gene expression profiles, without presupposing which

features of the profile (e.g. sharpness of the boundary, size of the domains, position-dependent
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variability etc) actually encode this information.

Here we make the case that the relevant measure for positional information is the

mutual information I — a central information-theoretic quantity defined by Shannon in

the 40s [Shannon, 1948] — between expression profiles of the gap genes and position in the

embryo. Briefly, this quantity, measured in bits, roughly counts (the binary logarithm of) the

number of rows along the axis of the embryo that have distinguishable gene expression levels,

given gene expression noise within an embryo and gene profile variability across embryos

in a population. In other words, 2I is an upper bound to the possible number of distinct

cellular identities. We show how positional information puts mathematical limits to the

ability with which cells in the developing embryo can infer their position if they respond

to gap gene concentrations (and thus the morphogen gradient) alone. This allows us to

quantitatively decide whether the picture of sharp “on”/“off” domains of gene expression is

sufficient, and to ask how variability across embryos impedes the ability of the patterning

system to transmit positional information.

In this chapter, we set out to achieve the following goals: first, we give positional

information a formal definition within the context of Shannons information theory [Shannon,

1948] and, second, we identify features of developmental gene expression that increase or

decrease the information. We start by establishing the information-theoretic framework for

positional information of gene expression patterns. To develop an intuition, we begin with

a one-dimensional toy example of a single gene, which we later generalize to a many-gene

system. We present scenarios where positional information is stored in different qualitative

features of gene expression patterns. To capture this intuition mathematically, we give a

precise definition of positional information for one gene and for multiple genes. Finally, we

show how a quantitative formulation of positional information is related to “decoding,” i.e.

the ability of the nuclei to infer their position in the embryo.
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1.2 Features of spatial gene expression profiles that carry

positional information

Let us consider the simplest possible example where the expression of a single gene varies

with position x along the axis of a one-dimensional embryo. We choose units of length

such that x = 0 corresponds to the anterior pole and x = 1 to the posterior pole. Suppose

we are able to quantitatively measure the gene profile in N embryos, labeled with index

µ = 1, . . . ,N . These quantitative experiments are providing us with G(µ)(x), where G is the

quantitative readout in embryo µ of the gene expression level, e.g. the light intensity profile

of fluorescently labelled antibodies against a particular gene product. From a collection

of embryos—after suitable data processing steps described later—we can then extract two

statistics: the position-dependent “mean profile,” capturing the prototypical gene expression

pattern, and the position-dependent variance across embryos, which measures the degree of

embryo-to-embryo variability or the reproducibility of the mean profile. We can transform

the measurements G(x) into profiles g(x) with rescaled units, such that the mean profile

ḡ(x) is normalized to 1 at the maximum and to 0 at the minimum along x. After these

steps, our description of the system consists of the mean profile, ḡ(x), and the variance in

the profile, σ2
g(x).

How much can a nucleus learn about its position if it expresses a gene at level g? We will

compare three idealized cases, where we pick the shape of ḡ(x) by hand and assume, for the

start, that the variance is constant, σ2
g(x) = σg. The first case is illustrated in Figure 1.1 A,

where a step-like profile in ḡ splits the embryo into two domains of gene expression: an

anterior “on” domain, where ḡ(x) = 1 for x < x0, and an “off” domain in the posterior,

x > x0, where ḡ(x) = 0. This arrangement has an extremely precise, indeed infinitely sharp,

boundary at x0; if we think that the precision of the boundary is the biologically relevant

feature in this system, this arrangement would correspond to an ideal gene. But how much

information can nuclei extract from such a profile? If x0 were 1/2, the boundary would

reproducibly split the embryo into two equal domains: based on reading out the expression

of g, the nucleus could decide whether it is in the anterior or posterior, a binary choice that

is equally likely prior to reading out g. The positional information needed (and provided by
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Figure 1.1: Positional information encoded by a single gene. Shown are three hypothetical
mean gene expression profiles ḡ(x) as a function of position x, with spatially constant
variability σg. A) A step function carries (at most) 1 bit of positional information, by
perfectly distinguishing between “off” (not induced, posterior) and “on” (fully induced,
anterior) states. B) The boundary of the sigmoidal g(x) function is now wider, but the total
amount of encoded positional information can be higher than 1 bit because the transition
region itself is distinguishable from the “on” and “off” domains. C) A linear gradient has
no well-defined boundary, but nevertheless provides a further increase in information—if σg
is low enough—by being equally sensitive to position at every x.

such a sharp profile!) to make a clear two-way choice between two a priori equally likely

possibilities equals 1 bit.

Can a profile of a different shape do better? Figure 1.1 B shows a somewhat more

realistic sigmoidal shape that has a steep, but not infinitely sharp, transition region. If the

variance is small enough, σ2
g � 1, this profile can be more informative about the position.

Nuclei far at the anterior still have ḡ ≈ 1 (full induction or the “on” state), while nuclei at

the posterior still have ḡ ≈ 0 (the “off” state). But the graded response in the middle defines

new expression levels in g that are significantly different from both 0 and 1. A nucleus with

g ≈ 0.5 will thus “know” that it is neither in the anterior nor in the posterior. This system

will therefore be able to provide more positional information than the sharp boundary which

is limited by 1 bit. Clearly, this conclusion is valid only insofar as the variance σ2
g is low

enough; if it gets too big, the intermediate levels of expression in the transition region can

no longer be distinguished and we are back to the 1 bit case.

The extreme contrast to the infinitely sharp gradient is the linear gradient, depicted in

Figure 1.1 C. Wolpert already proposed that linear gradients might be efficient in encoding
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positional information [Wolpert, 1969], and indeed we can extend the argument for the

sigmoidal case to convince ourselves that if σ2
g is not a function of position, the linear

gradient is the best choice. Consider starting at the anterior and moving towards the

posterior: as soon as we move far enough in x that the change in ḡ(x) is above σg, we have

created one more distinguishable level of expression in g, and thus a group of nuclei that, by

measuring g, can differentiate themselves from their anteriorly-positioned neighbors. Finally,

this reasoning gives us a hint about how to generalize to the case where the variance σ2
g

depends on position, x. What is important is to count, as x covers the range from anterior

to posterior, how much ḡ(x) changes in units of the local variability, σg(x)—it will turn out

that this is directly related to the mutual information between g and position.

Thus a sharp and reproducible boundary can correspond to a profile that does not

encode a lot of positional information, and a linear profile where the boundary is not even

well-defined can encode a high amount of positional information. Ultimately, whether or not

there are intermediate distinguishable levels of gene expression depends on the variability in

the profile. Therefore, any measure of positional information must be a function of both

ḡ(x) and σ2
g(x).

Does the ability of the nuclei to infer their position automatically improve if they can

simultaneously read out the expression levels of more than one gene? Figure 1.2 A shows

the case where two genes, g1 and g2, do not provide any more information than each one

of them provides separately, because they are completely redundant. Redundant does not

mean equal—indeed, in Figure 1.2 A the profiles are different at every x—but they are

perfectly correlated (or dependent): knowing the expression level of g1 one knows exactly

the level of g2, so g2 cannot provide any additional new information about the position.

The situation is completely different if the two profiles are shifted relative to each other

by, say, 25% embryo length. Note that none of the individual profile properties have changed:

both are still infinitely sharp with two states of gene expression, and half of the nuclei express

in each state. However, the two genes now partition the embryo into 4 different segments:

the anterior-most domain which is combinatorially encoded by the gene expression pattern

ḡ1 = ḡ2 = 0, the second domain with ḡ1 = 0, ḡ2 = 1, the third domain with ḡ1 = ḡ2 = 1

and the last domain with ḡ1 = 1, ḡ2 = 0. Upon reading out g1 and g2, a nucleus, a priori

16



located in any of the four domains, can unambiguously decide on a single one out of the

four possibilities. This is equivalent to making 2 binary decisions and, as we will later show,

to 2 bits of positional information.

Finally, the most subtle case is depicted in Figure 1.2 C. Here, the mean profiles have

exactly the same shapes as in Figure 1.2 B. What is different, however, is the correlation

structure of the fluctuations. In certain areas of the embryo the two genes are strongly

positively correlated, while in the others they are strongly negatively correlated. If these

areas are overlaid appropriately on top of the domains defined by the mean expression

patterns, an additional increase in positional information is possible. In the admittedly

contrived but pedagogical example of Figure 1.2 C, the mean profiles and the correlations

together define 8 distinguishable domains of expression, combinatorially encoded by 2 genes.

Nuclei, having simultaneous access to the concentrations of the two genes, can compute

which of the eight domains they reside in, although it might not be easy to implement such a

computation in molecular hardware. Picking one of 8 choices corresponds to making 3 binary

decisions, and thus to 3 bits of positional information. Note that in this case, each gene

considered in isolation still carries 1 bit as before, so that the system of two genes carries

more information than the sum of its parts—such a scheme is called synergistic encoding.

In sum, we have shown that the mean shapes of the profiles, as well as their variances and

correlations, can carry positional information. Extrapolating to 3 or more genes, we see that

the number of pairwise correlations increases and in addition higher-order correlation terms

appear. Formally, positional information could be encoded in all of these features, but would

become progressively harder to extract. Nevertheless, a principled and assumption-free

measure should combine all statistical structure into a single number, a scalar quantity

measured in bits, that can “count” the number of distinguishable expression states (and

thus positions), as illustrated in the examples above.

1.3 Defining positional information

Using real data, determining the “distinguishable states” of gene expression is more compli-

cated than in our toy models: the mean profiles have complex shapes and the (co)variability
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Figure 1.2: Positional information encoded by two genes. Spatial gene expression profiles
are shown in the top row, while the bottom row schematically enumerates all distinguishable
combinations of gene expression across the embryo. A) Genes g1, g2 are step functions,
each encoding 1 bit of information. While the profiles are not the same, they are perfectly
redundant, and the total number of jointly encoded “states” is only 2; this setup thus conveys
only one bit of positional information, the same as each gene alone. B) The mean profiles
of g1, g2 have been displaced such that the redundancy is broken and the total information
encoded is 2 bits (4 distinct states of joint gene expression). C) If in addition to the mean
profile shape the downstream layer can read out the (correlated) fluctuations of g1, g2, a
further increase in information is possible. In this toy example, fluctuations are correlated
(+) and anti-correlated (−) in various spatially separated regions, which allows the embryo
to use this information along with the mean profile shape to distinguish 8 distinct regions,
bringing the total encoded information to 3 bits.
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depends on position. In the ideal case, where we could measure joint expression patterns

of N genes {gi}, i = 1, . . . , N (for example N = 4 for four gap genes in Drosophila), in

a large set of embryos, we could fully describe the position dependence of the expression

levels with a conditional probability distribution P ({gi}|x). Concretely, for every position x

in the embryo we would construct an N dimensional histogram of expression levels across

all recorded embryos, which (when normalized) would yield the desired P ({gi}|x). This

distribution contains all the information about how expression levels vary across embryos in

a position-dependent fashion. For instance,

ḡi(x) =

∫
dNg giP ({gj}|x), (1.1)

σ2
i (x) =

∫
dNg (gi − ḡi(x))2 P ({gj}|x), (1.2)

Cij(x) =

∫
dNg (gigj − ḡi(x)ḡj(x))P ({gj}|x), (1.3)

are the mean profile of gene gi, the variance across embryos of gene gi, and the covariance

between genes gi and gj , respectively. In principle, the conditional distribution contains

also all higher-order moments that we could extract by integrating over appropriate sets

of variables. Realistically, we are often limited in our ability to generate enough samples

to construct P ({gi}|x) by histogram counts, especially when considering several genes

simultaneously; the number of samples needed grows exponentially with the number of genes,

N . However, estimating the mean profiles on the left-hand sides of Eqs. (1.1-1.3) can often

be achieved from data directly. A reasonable first step (but one that has to be independently

verified) is to assume that the joint distribution P ({gi}|x) of N expression levels {gi} at a

given position x is Gaussian, and that it can be constructed using the measured mean values

and covariances:

P ({gi}|x) = (2π)−N/2|C(x)|−1/2 exp

−1

2

N∑
i,j=1

(gi − ḡi(x))[C−1(x)]ij(gj − ḡj(x))

 (1.4)

We emphasize that this Gaussian approximation is not required to theoretically define

positional information, but that it will turn out to be convenient when working with

19



experimental data, as we will see in Chapter 3; in the cases of one or two genes it is often

possible to proceed without making this approximation, which provides a convenient check

for its validity.

While the conditional distribution, P ({gi}|x), captures the behavior of gene expression

levels at a given x, it is often useful to ask questions about the range of gene expression

in the embryo as a whole. How often is the expression level larger than, say, 0.5? What is,

in general, the correlation between the expression levels of gene 1 and gene 2? The global

structure is encoded in the total distribution of expression levels, which can be obtained by

averaging the conditional distribution over all positions:

P ({gi}) = 〈P ({gi}|x)〉x =

∫ 1

0
dx P ({gi}|x), (1.5)

where 〈·〉x denotes averaging over x. Note that we can think of Eq. (1.5) as a special case of

averaging with a position-dependent weight,

P ({gi}) =

∫
dx P (x)P ({gi}|x), (1.6)

where P (x) is chosen to be uniform. As we shall see, in our case P (x) will be the distribution

of possible nuclear locations along the AP axis, which is roughly uniform.

When formulated in the language of probabilities, the relationship between the position

x and the gene expression levels can be seen as a statistical dependency. If we knew this

dependency were linear, we could measure it using, e.g., a linear correlation analysis between

x and {gi}. Shannon has shown [Shannon, 1948] that there is an alternative measure of

total statistical dependence (not just of its linear component), called the mutual information,

which is a functional of the probability distributions Pg({gi}) and P ({gi}|x), and is defined

by

I(x→ {gi}) =

∫
dx Px(x)

∫
dNg P ({gi}|x) log2

P ({gi}|x)

P ({gi})
. (1.7)

This positive quantity, measured in bits, tells us how much one can know about the gene

expression pattern if one knows the position, x. It is not hard to convince oneself that

the mutual information is symmetric, that is I({gi} → x) = I(x → {gi}) = I({gi};x).
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This is very attractive: we do the experiments by sampling the distribution of expression

levels given position, while the nuclei in a developing embryo implicitly solve the inverse

problem—knowing a set of gene expression levels, they need to infer their position. A

fundamental result of information theory states that both problems are quantified by the

same symmetric quantity, information I({gi};x). Furthermore, mutual information is not

just one out of many possible ways of quantifying the total statistical dependency, but rather

the unique way that satisfies a number of basic requirements, for example that information

from independent sources is additive [Shannon, 1948,Cover & Thomas, 1991].

The definition of mutual information in Eq. (1.7) can be rewritten as a difference of two

entropies (which are always nonnegative):

I({gi};x) = S[P ({gi})]− 〈S[P ({gi}|x)]〉x, (1.8)

where S[p(x)] is the standard entropy of the distribution p(x) measured in bits (hence log

base 2):

S[p(x)] = −
∫
dx p(x) log2 p(x). (1.9)

Equation (1.8) provides an alternative interpretation of the mutual information I({gi};x)

which is illustrated on the main panel of Figure 1.3. In the case of a single gene g, the “total

entropy” S[P (g)], represented on the left, measures the range of gene expression available

across the whole embryo. This total entropy, or dynamic range, can be written as the sum of

two contributions. One part is due to the systematic modulation of g with position x, and this

is the useful part (the “signal”), or the mutual information I({gi};x). The other contribution

is the variability in g that remains even at constant position x; this represents “noise” that

carries no information about position, and is formally measured by the average entropy of

the conditional distribution (the noise entropy), 〈S[P (g|x)]〉x. Positional information carried

by g is thus the difference between the total and noise entropies, as expressed in Eq. (1.8).

Mutual information is theoretically well founded, and is always non-negative, being

0 if and only if there is no statistical dependence of any kind between the position and

the gene expression level. Conversely, if there are I bits of mutual information between
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the position and the expression level, there are ∼ 2I({gi};x) distinguishable gene expression

patterns that can be generated by moving along the anterior-posterior (AP) axis, from

the head at x = 0 to the tail at x = 1. This is precisely the property we require from

any suitable measure of positional information. We therefore suggest that, mathematically,

positional information should be defined as the mutual information between expression level

and position, I({gi};x).

1.4 Decoding position and positional error

Thus far we have discussed positional information in terms of the statistical dependency

and the number of distinguishable levels of gene expression along the position coordinate.

To present an alternative interpretation, we start by using the symmetry property of the

mutual information and rewrite I({gi};x) as

I({gi};x) = S[P (x)]− 〈S[P (x|{gi})]〉P ({gi}), (1.10)

i.e., the difference between the (uniform) distribution over all possible positions of a cell in

the embryo, and the distribution of positions consistent with a given expression level. Here,

P (x|{gi}) can be obtained using Bayes’ rule from the known quantities:

P (x|{gi}) =
P ({gi}|x)P (x)

P ({gi})
. (1.11)

The total entropy of all positions, S[P (x)] in Eq. (1.10), is independent of the particular

regulatory system – it simply measures the prior uncertainty about the location of the cells

in the absence of knowing any gene expression level. If, however, the cell has access to the

expression levels of a particular set of genes, this uncertainty is reduced, and it is hence

possible to localize the cell much more precisely; the reduction in uncertainty is captured by

the second term in Eq. (1.10). This form of positional information emphasizes the decoding

view, that is, that cells can infer their positions by simultaneously reading out protein

concentrations of various genes (Figure 1.3).

Positional information is a single number: it is a global measure of the reproducibility in
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Figure 1.3: The mathematics of positional information and positional error for one gene. A
schematic representation of the mean profile of gene g (thick black line) and its variability
(shaded envelope) across embryos. Nuclei are distributed uniformly along the AP axis, which
is mathematically equivalent to saying that the prior distribution of nuclear positions P (x)
is uniform (shown at the bottom). For each position x, the gap gene expression levels P (g|x)
are, in this example, Gaussian. The total distribution of expression levels across the embryo,
P (g), is determined by averaging P (g|x) over all positions, and is shown on the left. The
positional information I(g;x) can be computed by averaging the difference of entropies of
P (g) and P (g|x) over all positions x, as in Eq. (1.8). Inset: Decoding, or estimating the
position of the nucleus, from a measured expression level g∗. Prior to the “measurement,”
all positions are equally likely. After observing the value g∗, the positions consistent with
this measured value are drawn from P (x|g∗). The best estimate of the true position, x∗, is
at the peak of this distribution, and the positional error, σx(x), is the distribution’s width.
Due to the symmetry of mutual information, positional information I(g;x) is also equal to
the average difference between the entropy of the uniform distribution P (x) and the entropy
of P (x|g).
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the patterning system. Is there a local quantity that would tell us, position by position, how

well cells can read out their gene expression levels and infer their location? Is positional

information “distributed equally” along the AP axis, or is it very non-uniform, such that

cells in some regions of the embryo are much better at reproducibly assuming their roles?

Estimation theory tells us that the optimal estimator of the true location x of a cell, once

we (or the cell) measure the gene expression levels {g∗i }, is the maximum a posteriori (MAP)

estimate, x∗({g∗i }) = argmax P (x|{g∗i }). In cases like ours, where the prior distribution

P (x) is uniform, this equals the maximum likelihood (ML) estimate,

x∗({g∗i }) = argmax P ({g∗i }|x); (1.12)

thus, for each expression level readout, this “decoding rule” gives us the most likely position

of the cell, x∗. The inset of Figure 1.3 illustrates the decoding in the case of one gene.

How well can this (optimal) rule perform? The expected error of the estimated x∗ is

given by σ2
x(x∗) = 〈(x− x∗)2〉, where brackets denote averaging over P (x|{g∗i }). This error

is a function of the gene expression levels; however, we can also evaluate it for every x,

since we know the mean gene expression profiles, ḡi(x), for every x. Thus, we define a new

quantity, the positional error σx(x), which measures how well cells at a true position x are

able to estimate their position based on the gene expression levels alone. This is the local

measure of positional information that we were aiming for.

Independently of how cells actually read out the concentrations mechanistically, it can

be shown that σx(x) cannot be lower than the limit set by the Cramer-Rao bound [Cover &

Thomas, 1991]:

σ2
x(x) ≥ 1

I(x)
, (1.13)

where I(x) is the Fisher information given by

I(x) = −
〈
∂2 logP ({gi}|x)

∂2x

〉
P ({gi}|x)

. (1.14)

Despite its name, the Fisher information I is not an information-theoretic quantity and

unlike the mutual information I, the Fisher information depends on position. Is there
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a connection between the positional error, σx(x), and the mutual information I({gi};x)?

Below, we sketch the derivation, following [Brunel & Nadal, 1998], demonstrating the link

for the case of one gene, g.

Let’s assume that the Gaussian approximation of Eq. (1.4) holds and that the distribution

of the levels of a single gene at a given position is

P (g|x) =
1√

2πσ2
g(x)

exp

{
−1

2

(g − ḡ(x))2

σ2
g(x)

}
. (1.15)

We can use the Gaussian distribution to compute the Fisher information in Eq (1.14); if

the noise is small, σg � ḡ, we find that

σ2
x(x) ≥ 1

I(x)
=

(
dḡ

dx

)−2

σ2
g(x). (1.16)

This result is intuitively straightforward: it is simply the transformation of the variability in

gene expression, σ2
g(x), into an effective variance in the position estimate, σ2

x(x), and the

two are related by slope of the input/output relation, ḡ(x).

A crucial next step is to think of x as determining gene expressions gi probabilistically,

and the x̂ as being a function of these gene expression levels—that is, when computing

x∗ neither we nor the nuclei have access to the true position. This forms a dependency

chain, x→ {gi} → x∗. Since each of these steps is probabilistic, it can only lose information,

such that by information processing inequality [Cover & Thomas, 1991] we must have

I({gi};x) ≥ I(x∗;x). The mutual information between the true location and its estimate is

given by

I(x̂;x) = S[P (x∗)]− 〈S[P (x∗|x)]〉P (x). (1.17)

Under weak assumptions, the first term in our case is approximately the entropy of a uniform

distribution. While we don’t know the full distribution P (x∗|x) and thus cannot compute its

entropy directly, we know its variance, which is just the square of the positional error, σ2
x(x).

Regardless of what the full distribution is, its entropy must be less or equal to the entropy

of the Gaussian distribution of the same variance, which is S[P (x∗|x)] = log2

√
2πeσ2

x(x)
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bits. Putting everything together, we find that:

I({gi};x) ≥ I(x∗;x) ≥ −1

2
〈log2

(
2πeσ2

x(x)
)
〉x. (1.18)

Therefore, positional information I({gi};x) puts an upper bound to the average ability of

the cells to infer their locations, that is, to the smallness of the positional error σx(x). In

a straightforward generalization of a single gene case, the positional error for the multiple

genes case is given by:

σ2
x(x) ≥

 N∑
i,j=1

dḡi
dx

[C(x)−1]ij
dḡj
dx

−1

, (1.19)

where Cij is the covariance matrix of the profiles, as defined in Eq. (1.3). This extends

the fundamental connection, Eq. (1.18), between the positional information and positional

error, to the case of multiple genes. Importantly, all quantities—the mean profiles and their

covariance—in Eq. (1.19) can be obtained from experimental data, so σx(x) is a quantity

that can be estimated.

In sum, we have shown that a rigorous mathematical framework of positional information

can quantify the reproducibility of gene expression profiles in a global manner. By framing

the cells’ problem of finding their location in the embryo in terms of an estimation problem,

we have shown that the same mathematical framework of positional information places

precise constraints on how well the cells can infer their positions by reading out a set of

genes. These constraints are universal: regardless of how complex the mechanistic details

of the cells’ readout of the gene concentrations levels are, the expression level variability

prevents the cells from decreasing the positional error below σx. The concept of positional

error easily generalizes to the case of multiple genes, and it clearly shows how positional

information is distributed along the AP axis.
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Chapter 2

Quantification of the gap genes

dynamics and reproducibility

2.1 Introduction

The final macroscopic outcome of developmental processes in multicellular organisms results

in structures that are remarkably similar between individuals of a given species. This repro-

ducibility has its origins in the reproducible spatial patterns of morphogen concentrations

in the early embryo [Lawrence, 1992]. To fully understand the source and maintenance of

this reproducibility, a number of conceptual and technical challenges need to be overcome.

Conceptually, we are seeking to uncover novel quantitative traits in developmental regulatory

networks, such as the time dependence of simultaneously measured expression levels, and

their position-dependent variances and cross-correlations across populations of comparable

embryos. Technically, such quantities must be measured in a way that is not biased by

systematic experimental errors.

Quantitative data in this field is largely based on immunofluorescence staining [Surkova

et al., 2008, Fowlkes et al., 2008, Ay et al., 2008, Pisarev et al., 2009], a technique that is

restricted to fixed tissue and induces inherent experimental error due to variable conditions.

These fluctuations are thought to have only a minor effect on the measurement of the

mean expression profiles [Myasnikova et al., 2009]. If one is interested in quantifying
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the variations that naturally arise from embryo to embryo, however, these experimental

errors are bound to distort the signal. Moreover, the fact that this technique uses fixed

tissues makes gene expression dynamics difficult to reconstruct, and because the number of

simultaneously stainable genes is limited, comparisons of different genes at any given time

point are restricted.

Here we address these issues in the context of the gap gene network in the early fly

embryo and show that precise measurements in conjunction with proper quantification

of experimental errors enables (i) simultaneous spatial and temporal monitoring of gene

expression levels; (ii) quantification of reproducibility at an unprecedented level of precision;

and (iii) hitherto unmatched access to questions about the interactions between the genes.

In embryos of the fruit fly Drosophila melanogaster, the earliest sign of a reproducible

pattern has been found in the gradient of Bicoid (Bcd), which is the primary anterior

determinant of patterning along the major body axis, and which is established by maternally

deposited mRNA at the anterior pole of the egg [Ephrussi & St Johnston, 2004]. In its main

region of activity between 10 and 60% egg length (EL), the gradient has been shown to be

reproducible to ∼10% in Bcd concentration across different embryos, which translates into a

positional accuracy of 1− 2% EL [Gregor et al., 2007a].

Bcd, acting as a transcription factor, triggers the expression of Hunchback (Hb) and

other downstream zygotic genes such as the gap, pair-rule, and segment polarity genes that

interact with each other according to a complex network [von Dassow et al., 2000,Tomancak

et al., 2007, Fakhouri et al., 2010, Jaeger, 2011] and, three hours after fertilization, form

precise patterns in which neighboring cells have readily distinguishable levels of gene

expression [Gergen & Wieschaus, 1986], and which are reproducible from embryo to embryo

[Houchmandzadeh et al., 2002,Gregor et al., 2007a]. In order to understand the strategies

that nature uses to make embryonic development so reproducible, it is crucial to precisely

monitor the variations over time in gene expression levels across embryos [Gregor et al.,

2007b]. In particular, what is the final reproducibility at gastrulation and how does it

compare to the reproducibility of the Bcd gradient [Gregor et al., 2007a]? How does the

gap gene network responds to the Bcd input [Ochoa-Espinosa et al., 2009] and transmit

reproducibility from Bcd to the pair-rule genes [Spirov & Holloway, 2003,Manu et al., 2009]?
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In this paper, we present a set of methods and a number of careful control measurements

that clearly demonstrate to what extent antibody stainings can be used for quantitative

analysis. First, we developed a new set of antibodies for the four major gap genes, Hunchback,

Krüppel (Kr), Giant (Gt) and Knirps (Kni), which allows us to stain individual embryos

with all four antibodies at once, and hence to extract causal intergenic relationships of

these genes at the particular developmental time point of the embryo’s fixation. Second,

we calibrate the developmental time point of fixed embryos with a precision of 1− 2 min

using live membrane furrow invagination as a calibrator. Third, we identify 8 sources of

experimental measurement errors, and show that the combined sum of these errors for any

gene is less than 20% of the total variance in our data set, leaving ∼80% of the variance

open for biological interpretation.

To demonstrate the potential of this approach, we connect the dynamics and repro-

ducibility of the gap gene expression patterns with the positional precision of various position

markers. Concretely, we compute the positional error of 20 individual position markers (such

as boundary positions and the positions of the peak concentrations of all four major gap

genes) in a set of 163 embryos. We show that at any time during nuclear cycle (n.c.) 14

all markers of all genes are reproducible above one internuclear distance. We further see a

dynamic increase of this reproducibility (averaged over all markers) from one internuclear

distance at the beginning of n.c. 14 to half an internuclear distance 40−45 min later. Further

analysis of the gap gene dynamics reveals that this reduction coincides with an overall

zenith of the gap gene network, when all gap genes simultaneously peak in their maximum

concentration as well as their maximum boundary slopes. These results lead us to postulate

that collective network dynamics increase positional accuracy from the one internuclear

distance level inherent to the Bcd gradient to half a internuclear distance observed in the

pair-rule genes along the central 80% of the length of the embryo.

2.2 Quadruple antibody stainings in individual embryos

When labeling different proteins with fluorescent probes in the same tissue, there are two

main limitations. The first limitation is biochemical: antibodies are raised in specific
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Figure 2.1: Spectral imaging settings for simultaneous measurements of four fluorescent
dyes. Absorption (dashed lines) and emission (solid lines) spectra of the dyes used for 4
simultaneous immunostainings; laser excitation wavelengths (black arrows) and bandwidths
of the emission filters for each detection channel (light color patches) are indicated.

host animals, so each antibody used to label a given tissue had to be made in a different

animal, of which only a limited number exist commercially. The second limitation is optical:

secondary antibodies are conjugated with fluorophores whose absorption and emission spectra

can significantly overlap, which leads to crosstalk between the different optical channels,

making quantification of co-labelled proteins challenging. Some attempts have been made

in the past to try to overcome those limitations (direct labeling, use of quantum dots as

fluorescent probes [Choi et al., 2009], spectral imaging [Dickinson et al., 2001], blind source

separation [Neher et al., 2009]) but there has been to our knowledge no attempt to use the

classic immunofluorescence staining protocol to simultaneously quantify more than three

co-labelled proteins with high precision.

To overcome the biochemical limitation, we developed a new set of primary polyclonal

antibodies against three of the four main gap genes [Kosman et al., 1998]. All antibodies

were raised in a different host species (rat anti-Kni, guinea pig anti-Gt, and mouse anti-Hb),

allowing us to use them in combination with a rabbit anti-Kr antibody (gift of C. Rushlow)

to simultaneously stain of all four major gap genes in the same embryo without the risk of

cross-reactivity between reagents.
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Figure 2.2: Systematic errors of gap gene expression profiles. A) Optical sections through
the midsagittal plane of a single Drosophila embryo with co-immunofuorescence staining
against the four gap genes Kni (green), Kr (yellow), Gt (orange) and Hb (red); scalebar
100µm.B) Raw intensity profiles (dorsal side) of 23 selected embryos (light colors); embryo
depicted above is highlighted in darker color. C) Quantification of spectral crosstalk and
fluorophore bleed-through. For each channel, the average intensity profile I of 10 embryos
immunofluorescently labeled with three antibodies lacking the specific antibody corresponding
to that optical channel is shown in gray. Black dashed line shows a cross-talk estimate
using a reconstruction algorithm (see text). Average profiles from B are shown in color. D)
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Squared mean dorsal profiles (light color) and corresponding time-corrected variances (dark
color) measured across 23 embryos (δFC = 10− 20µm) as a function of fractional egg length
x/L. Estimated summed total variance from major sources of measured systematic errors
(staining, imaging, orientation, and time) are shown in blue. E) Standard deviation of gene
expression levels in time-corrected normalized profiles (color) and standard deviation due to
systematic error (blue) as a function of gene expression level g (for 100 equally spaced bins
along the AP-axis). F) For each gap gene, we show a scatter plot of the variances due to
the major sources of systematic error versus the total variance measured across embryos:
imaging and staining (light grey), age (dark grey), and orientation (black). For each source
of systematic error, data points were fitted with a straight line; slopes represent estimated
average contributions to the overall variance. For reference, dashed line represents the case
σ2

g = σ2
err.

To overcome the optical limitation, we chose fluorophores that maximized the span of

the employable laser excitation wavelengths to limit simultaneous excitation of multiple

fluorophores, and we adjusted the bandwidths of the emission channels in order to mini-

mize simultaneous emission from multiple fluorophores in the same imaging channel (see

Figure 2.1).

We used this setup to stain and image a batch of 163 Drosophila embryos at the

blastoderm stage. A typical embryo imaged in all four channels is depicted in Figure 2.2 A.

Typical intensity profiles extracted from these images are shown in Figure 2.2 B, and

cross-talk between channels is quantified in Figure 2.2 C.

2.3 Developmental time measurements in fixed embryos

2.3.1 Finding a ‘clock’ for the embryos

The Drosophila gap genes are endogenously transcribed for a time span of 1− 2h ending

with gastrulation, 3h after the onset of embryonic development. During this entire time,

the patterns of gene expression change significantly. When quantifying the reproducibility

or the dynamics of these patterns in fixed embryos, it is crucial to determine each individual

embryo’s age with high fidelity. To this end, we limit our analysis to n.c. 14, the 1h time

window before gastrulation. During this time, cell membranes form across the entire embryo

surface, and we can use the progression of this cellularization process (by measuring the

depth δFC of the membrane furrow canal (FC)) as a ‘clock’ to estimate the age of the embryo

(see Figure 2.3) [Lecuit et al., 2002].
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Figure 2.3: Timing of gene expression profiles in fixed embryos. A) Depth of FC (δFC)
during blastoderm cellularization measured along the dorsal side of a live-imaged wild-type
embryo during n.c. 14. Dashed line corresponds to the onset of n.c. 14. Inset shows a bright
field microscopy image of a fraction (40-50%EL) of the dorsal side of the embryo at time
point indicated by orange dot; scale bar 10µm. δFC was measured as indicated by orange
bar. B) Invagination of the membrane for 8 embryos (gray lines) with binned means and
standard deviations in black. The mean of the onsets of n.c. 14 is indicated as a red dashed
line and their standard deviation is represented by the error bar of the red square. Profile in
A is shown in blue. Scale on the right shows the adjusted length measured in fixed embryos
(on average 5%EL shrinkage w.r.t living embryos, see Online Methods). Inset shows the
measurement error of the age estimation of the embryo as a function of time. C) Raw dorsal
Gt intensity profiles of 87 embryos imaged in their midsagittal plane (DV orientation) with
δFC = 0−40µm (gray) and a subset of 23 embryos with δFC = 10−20µm (light orange). The
mean intensity profile of the 23 embryos is shown in black and its minimum and maximum in
the 10-90%EL region are shown as dashed lines (defining the minimum (0) and maximum (1)
gene expression levels, respectively). D) Intensity measured at x/L=0.72 (gray dotted line
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in C) as a function of δFC, each point representing a different embryo. The 23 points of the
10− 20µm batch are plotted in light orange. The black line represents a nearest neighbor
averaging with a Gaussian filter (σ = 5µm). Insert shows light orange data points with
weighted average subtracted, i.e. time-corrected. E) Variance of Gt gene expression levels
computed on the same 23 embryos shown in panel C before (light orange) and after (dark
orange) time correction, respectively . Error bars obtained by bootstrapping. F) Estimation
of residual variance in age determination (gray) due to measurement uncertainty of δFC

after time-correction of the profiles (see Online Methods); for comparison, the variance of
the time-corrected normalized profiles is plotted in dark orange. For a similar analysis for
other gap genes see Figures 2.4 and 2.6.

To evaluate the precision of this method, we compare δFC across live-imaged embryos as

shown in Figure 2.3 A. After profile alignment and correction for tissue shrinkage due to the

fixation process, we find that the standard deviation of δFC across embryos never exceeds

1µm, which translates into a temporal precision of ∼2 min during the first 30 min of n.c. 14

and into less than 1 min during the next 30 min as shown in Figure 2.3 B (inset).

Hence, using this clock we can precisely select embryos for any given developmental

time point during n.c. 14. Figure 2.3 C shows qualitatively how time selection reduces the

variability of intensity profiles across embryos.

The precision of 1− 2 min with which we can determine embryo age during n.c. 14 allows

us to correct embryo-to-embryo intensity profile fluctuations that are due to the underlying

pattern dynamics. Hence for each position we compute the average time dependence of

the expression level for each gene and use that average to apply a zero-order correction to

the variances of the gene expression profiles (Figure 2.3 D). For profiles of embryos pooled

together in the particular time window of δFC = 10− 20µm (corresponding to 37− 49 min

into n.c. 14) we find that in the case of Gt this correction is on average 15% of the original

variance (Figure 2.3 E). For the other genes this time correction similarly reduces the profile

variances by 10-20% on average, as shown in Figure 2.4.

2.3.2 Correction for profile normalization and time dependence

The 87 embryos co-immunostained against Kni, Kr, Gt and Hb and imaged in DV orientation

were sorted w.r.t. increasing FC depth δFC. For each optical channel k and fractional length

x/L, the intensity cloud Ik,x/L(δFC) was fitted using a Gaussian-weighted average of standard

deviation σ = 2.5µm (see Figure 2.3 D for Gt at x/L = 0.72). For each time bin these
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Figure 2.4: Reduction of gene expression profile variance due to time correction. Comparison
of the time-corrected (dark colors) and non-time-corrected (light colors) variances in gene
expression for each gap gene computed over 23 embryos (DV orientation only, δFC =
10− 20 µm). Error bars have been obtained by exhaustively bootstrapping over all subsets
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fits were subtracted from the raw intensity profiles. Time-corrected intensity profiles were

converted into gene expression profiles as follows: we determined the background intensity

Imin (resp. maximum intensity Imax) of the whole batch as the minimum (resp. maximum)

intensity of any mean of 10 age-consecutive profiles; Imin was subtracted from each intensity

profile and the resulting curve was rescaled by 1/(Imax− Imin), so that the maximum average

gene expression level over the course of n.c. 14 is 1. (Note: to avoid confusion when double-

labeling axes, we sometimes call the maximum gene expression level G0 as in Figure 2.13

and Figure 2.14.)

2.4 Systematic and statistical error quantification

When quantifying fluctuations of developmental processes such as the reproducibility across

embryos, it is crucial to establish the contributions of the various systematic errors to the

measured levels of gene expression. These errors induce extra variance in the levels across a

population of embryos, masking the true statistical variance that naturally arises from the

intrinsic variability of embryonic development. For an analysis of gap gene reproducibility to

be meaningful, it is crucial to measure systematic error contributions as precisely as possible

in order to be convinced that the sum of all systematic variances is only a small fraction of

the overall variance σ2
g .

To this end, we first verified the linearity between immunofluorescence intensity and
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protein concentration (Figure 2.5), and then we assessed the contributions of 6 possible

sources of systematic errors in our experiments susceptible to perturb our measurement of

σg.

1. The gap gene expression profiles change during the course of n.c. 14 such that the

uncertainty in our estimation of an embryo’s exact age can induce inconsistencies

within a set of randomly selected embryos (Figure 2.3 F and Figure 2.4).

2. Laser fluctuations and photon detection induce noise in the imaging process (Figure 2.8).

3. Primary and secondary antibodies have non-specific binding properties (Figure 2.8 F )

that affect the overall staining quality (Figures 2.7 B-C and 2.8).

4. There is potential cross-talk between neighboring optical channels (Figure 2.1).

5. Errors on the determination of the focal plane affect the profile extraction.

6. The profiles depend on the azimuthal embryo orientation which is hard to precisely

control when mounting the samples (Figures 2.9-2.11). Figure 2.2 D shows in blue

our estimate of the summed total variance σ2
err induced by these sources of systematic

errors.

For any of the gap genes, it represents on average less than 20% of the gene expression

variance σ2
g measured across embryos (Figure 2.2 E). The major sources of systematic errors

stem from embryo orientation, age determination, and the imaging process. They are highly

gene dependent but none is larger than 13% of σ2
g (see Figure 2.2 F).

We conclude that the largest contribution to σ2
g (∼80%) is statistical and is hence due

to biological fluctuations across embryos, and that our experimental method is suitable

to quantify the gap gene expression patterns and analyze their reproducibility. Note that

whenever the measured total variance of gene expression levels across embryos is used,

one should be aware that one is working with an overestimate of the underlying biological

variance and that measures of reproducibility are lower bounds on what nature can potentially

achieve.
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Figure 2.5: Linearity of gap gene antibody stainings. An embryo containing a Gt-YFP fusion
protein was formaldehyde fixed at approximately 40 min into n.c. 14, stained with a guinea
pig anti-Gt primary antibody and an Alexa-647 conjugated secondary antibody, and imaged
via confocal microscopy. A) Image of YFP fluorescence; scale bar is 100µm.) B) Image of
immunofluorescence of same embryo as in A. Yellow square in A and B corresponds to a
50× 50 pixel window used to determine background intensity. C) Scatter plot of raw nuclear
intensities, in gray, and their binned average (black) computed over 15 equally populated
bins (see Online Methods). Red dot shows mean intensity measured in yellow square in A
and B. Standard deviations for each bin are smaller than the width of the black and red
dots.

2.4.1 Linearity of antibody stainings

A fixed embryo of a Gt-YFP transgenic fly (gift of Michael Ludwig [Ludwig et al., 2011]) was

co-labeled with a fluorescent antibody against Gt (Figure 2.5 A) and nuclear fluorescence

was compared to endogenous YFP fluorescence (Figure 2.5 B). To control for the difference

in backgrounds, intensities were also compared over a 50× 50 pixel window in a region were

gt is not expressed. As shown on the scatter plot of Figure 2.5 B, the immunostaining and

autofluorescence intensities are linearly related to each other. This result is all the more

convincing because the linear interpolation of the means of nuclear intensities, computed

across equally populated bins, also fits the background intensity (symbolized by a red point).

2.4.2 Embryo age determination

Despite all our efforts to precisely time embryo age, a fraction of the variance of the time-

corrected profiles is still due to our systematic error in estimating the age of the embryo;

due both to the limited reproducibility of δFC(t) in the live imaging (Figure 2.3 B) and our
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Figure 2.6: Residual gene expression profile variance due to measurement error in δFC. For
each gap gene, the estimate of the residual time variance due to the uncertainty (±1 µm) on
the measure of δFC is shown in gray (see also Online Methods). For reference, the variances
of the time-corrected normalized profiles is shown in dark colors.

measurement error of δFC in fixed tissues. The live imaging reproducibility error is estimated

to 0.6µm by averaging the standard deviation of the 8 gray curves over the whole n.c. 14

on the main panel of Figure 2.3 B . The measurement error was estimated to 0.7µm by

manually measuring δFC 5 times for all 163 embryos presented randomly and computing the

average standard deviation over embryos. Hence the resulting total uncertainty on δFC is
√

0.62 + 0.72 ∼1µm. To find the contribution of this error to the observed variance, we

added a Gaussian 1µm noise to the original δFC’s of the 80 profiles shown in Figure 2.3 D-E

and computed the variance of the newly time-corrected profiles σ′g(x). The variance σage(x)

due to the error in age determination was then estimated as the extra variance introduced by

the perturbation in δFC compared to the original data set, σage(x) = σ′g(x)− σg(x) (see gray

curve in Figure 2.3 F). By plotting σage vs σg and then fitting it with a straight line (see

Figure 2.2 F), we find that the systematic error for embryo age determination contributes

for Giant on average 13% (slope of the fit) to the total variance measured across the batch

in the δFC = 10− 20µm window (for other gap genes, see Figure 2.6).

2.4.3 Fluorophore cross-talk

A series of four control experiments was performed. In each experiment embryos were labeled

as before with the omission of one of the four secondary antibodies, i.e. the one for which

fluorophore cross-talk was assessed in that experiment. Embryos were imaged with the same

experimental conditions as the quadruple staining batch, and dorsal intensity profiles for
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each channel were extracted from the images as described above (images were selected for a

FC depth of δFC = 10− 20µm). Average intensity profiles measured in each channel are

shown in Fig. 1C on a log-linear scale with the corresponding secondary antibody present

(reference signal in dark color) and absent (control signal in gray). For any experiment, the

mean intensity profile Ĩi(x) measured in channel i can be written as a sum over 4 channels

k as Ĩi(x) =
∑4

k=1Ck→iIk(x) + bk, where C is a matrix of unit diagonal terms and where

the off-diagonal terms represent the crosstalk contribution of channel k to channel i; bk

is a positive constant for the contribution of the autofluorescence of heat fixed wild-type

embryos to the signal in channel k, and Ik(x) is the intensity of channel k without any

cross-talk or autofluorescence contributions. To determine the off-diagonal coefficients of

C, Ĩcont
i (x) =

∑4
k=1
k 6=i

Ck→iIk(x) + bk of the ith control experiment was computed, where the

mean intensities Ik(x) were approximated to first order by the measured mean intensities

Ĩk(x), with all secondary antibodies present. Coefficients ck→i and bk were obtained by

minimizing the Euclidean distance between Ĩcont
i (x) and

∑
k ck→iIk(x) for any channel i.

The final Ck→i’s and the bk’s are given by

C =



1 0 0 0

0 1 0.0085 0

0 0.0001 1 0.0029

0 0 0.0006 1


,

and B =

(
73.7 0 0 0

)
. The corresponding estimated mean control profiles are plotted

in black dashed lines on the bottom panel of Figure 2.3 C.

2.4.4 Imaging process

A single wild-type embryo was fixed and incubated simultaneously with rat anti-Hb and

guinea pig anti-Hb antibodies. After excessive rinsing it was incubated in Alexa conjugated

anti-rat(488nm), anti-guinea pig(546nm), and anti-guinea pig(647nm) antibodies and imaged

twice on each of the three optical channels. For each channel, the nuclear intensities of the

two successive images are scatter plotted Figure 2.8 A-C. After correction for the systematic

error due to photobleaching and change in laser power (change in the slope of a linear
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Figure 2.7: Imaging noise and antibody non-specificities. A) Schematic representation of a
simultaneous staining process by two distinct primary anti-Hb antibodies and their respective
secondary antibodies conjugated with differently colored dyes. The systematic error σI in
nuclear intensity measured in each optical channel comes from imaging noise (mainly due to
photon counting and laser intensity fluctuations) as well as the random binding processes
for primary and secondary antibodies. B) Scatter plot of the nuclear intensities from two
channels with different anti-Hb antibodies and Alexa conjugated dyes (anti-rat(488) and
anti-guinea pig(546)). Two dashed lines define the minimum (red dot) and the maximum
gene expression levels, Imin and Imax, respectively. Inset shows dependence of measurement
noise σI (standard deviation of the distance of the points to the diagonal divided by

√
2)

as a function of the mean intensity I, computed over 40 equally spaced bins along the
whole intensity range (only data points with five or more nuclei are shown). Standard
deviation of zero expression level region shown as a red dot. C) Rescaled measurement noise
σg = σI/(Imax − Imin) (computed from the data shown in inset of panel B) as a function
of the gene expression level g. Red dot shows the background noise, and two dashed lines
represent the 1% and 4% measurement noise levels, respectively. Error bars computed by
bootstrapping.
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fit to these data is less than 2%), the standard deviation of the intensity σI is plotted

as a function of its mean I for 40 bins equally spaced in intensity, as shown in insets of

Figure 2.8 A-C (for consistency, only bins with 5 or more nuclei are shown). For each optical

channel, the background intensity Imin is determined as the average intensity of ten randomly

selected nuclei in the 60 − 70% EL region, and the maximum gene expression intensity

Imax by averaging over the 10 brightest nuclei in the image. The standard deviation of the

background is less than 0.5% of the total amplitude of the signal Imax − Imin (background

noise), and the standard deviation within each bin is on average 1% of the gene expression

level after background subtraction and normalization by Imax − Imin (measurement noise).

2.4.5 Antibody non-specificities

Secondary antibodies. Using the same data as described above in Figure 2.8, panel E compares

the nuclear intensities for the two stainings with identical primary antibodies (guinea pig

anti-Hb) but with secondary antibodies of different colors (Alexa-546 and Alexa-647 guinea

pig). Applying the same noise analysis as in the previous section, we find a background

noise of 1.7% of the total amplitude of the signal and the measurement noise to be equal

to 0.7% of the gene expression level after background subtraction and normalization by

Imax − Imin. After subtracting the imaging noise, we find that the sole secondaries generate

a background noise equal to
√

0.72 − 0.52 = 0.5% of the maximum level of gene expression

and a measurement noise less than
√

1.72 − 12 = 1.4% of the gene expression level. All error

bars of standard deviations have been obtained by bootstrapping.

Primary antibodies. Using the same data as described above in Figure 2.8, panel D compares

the nuclear intensities for the two stainings with primary antibodies raised in two different

animals and with secondary antibodies that are Alexa conjugated with two different colors,

anti-rat(488nm) and anti-guinea pig(546nm), respectively. A background noise equal to
√

12 − 0.72 = 0.7% of the maximum level of gene expression is detected, and a measurement

noise less than
√

2.72 − 1.72 = 2.1% of the maximum gene expression level. All error bars of

standard deviations have been obtained by bootstrapping.
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Figure 2.8: Systematic error contributions due to noise in the imaging process, and due to
non-specificities of primary and secondary antibodies. An embryo, heat fixed approximately
40 min into n.c. 14, was stained with two different primary antibodies (rat and guinea pig
anti-Hb) and three different secondary antibodies (Alexa conjugated 488 anti-rat, 546 anti-
guinea pig, 647 anti-guinea pig). Embryo imaged in three different channels via confocal
microscopy can be seen at top (green-488, yellow-546, red-647). A-C) Scatter plots of the
raw nuclear intensities (712 nuclei) from two independent successive imaging sequences,
taken in the same channel (light colored dots, repeat sequence on the y-axis). Blue dots
represent the measurement of the background, performed by averaging the intensity over 10
nuclear size masks randomly selected in the 60-70%EL region of the embryo. The dark color
lines are linear fits to the raw nuclear intensities, and the black dashed line corresponds to
equal intensities on the x- and y-axis (slope=1). Insets show intensity measurement noise
σI as a function of mean intensity computed across 40 equally spaced bins along the full
intensity spectrum. For consistency only bins with 10 or more points are shown. D) Scatter
plot of the nuclear intensities from channels with different primary and secondary antibodies
(anti-rat(488) and anti-guinea pig(546)). Two dashed lines show were the zero and one levels
of gene expression are determined. Inset shows the measurement noise of the intensity as a
function of the mean intensity. E) Scatter plot of the nuclear intensities from channels with
different secondary antibodies (anti-guinea pig(546) and anti-guinea pig(647)). Inset as in D.
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2.4.6 Focal plane determination

For each individual embryo the focal plane has to be hand adjusted before image acquisition.

Using the bright field channel, we adjust the focal plane to be at the midsagittal plane of the

embryo but estimate our uncertainty to be 6µm, or one nuclear diameter. The resulting

error is estimated by computing the variances of nuclear intensities across 7 images taken at

consecutive heights spaced by 1µm in a single embryo.

2.4.7 Embryo azimuthal orientation

The inability to control the azimuthal angle around the embryo’s AP-axis when acquiring

two-dimensional images is the biggest contribution to the overall systematic error. For this

reason we present two independent methods to estimate this error.

First method. 46 embryos with 10 < δFC < 20µm were manually separated into two

equally likely orientations: DV, when imaged closer to the midsagittal plane (23 embryos

〈|φ1|〉 ' 22.5◦) and LR, when imaged closer to the coronal plane (23 embryos 〈|φ2|〉 ' 67.5◦)

(see Figure 2.9 A-B). The dependence on azimuthal angle of each gene in the dorsal region

was estimated as dI(x)/dφ = (IDV(x)− ILR(x))/45. The error on the intensity measurement

induced by this azimuthal dependence was then estimated by propagating the corresponding

variance σI = σφ · dI/dφ (see Figure 2.9 C), assuming that embryos in the DV orientation

have their absolute azimuthal angles uniformly distributed between 0◦ and 45◦. The error in

the intensity values was converted into an error in gene expression levels σg by dividing σI

by the squared amplitude of the measured intensities.

Second method. We imaged the dorsal surface and the coronal plane of a single embryo

flattened and co-immunostained against the gap genes. The embryo was chosen such that

its FC depth (12µm) falls within the same depth window as above (10 < δFC < 20 µm).

For each gap gene, the average intensity of all identifiable nuclei was extracted, and the

azimuthal angle with the midsagittal plane was computed by φ = 90× y/ymax, where y is

the distance from the nuclei to the dorsal line represented as a dashed line in Figure 2.10,

and ymax is the the distance from the outer edge of the embryo to the AP-axis. Nuclei

were sorted in 10◦ wide bins ranging from −55◦ to 55◦, represented by colors ranging from
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Figure 2.9: Contribution of azimuthal embryo orientation uncertainty to Gt gene expression
profile reproducibility I. A) Schematic representation of the absolute azimuthal angle
distribution of the embryos depending on their imaging plane. B) Mean and standard
deviation of dorsal time-corrected Gt intensity profiles of embryos whose imaging plane is
closer to the midsagittal plane (dark orange, DV orientation, 23 samples, δFC = 10− 20 µm)
or closer to the coronal plane (light orange, LR orientation, 23 samples, δFC = 10− 20 µm)
C) Linear estimate of the DV dependence of raw dorsal Gt intensity at the fractional egg
length x/L = 0.2. The systematic error in intensity due to embryo orientation uncertainty
of the dark brown profiles σI (shown in black) is estimated by propagating the uncertainty
on the azimuthal angle σφ (uniform distribution φ = 0− 45◦), σI = σφ · dI/dφ, where dI/dφ
is the slope of the dashed line (see text). D) Variance of Gt gene expression profiles due
to embryo orientation uncertainty (in black), computed as σ2

g = σ2
I/(Imax − Imin)2; total

variance of gene expression profiles of the time corrected dorsal profiles is shown in dark
orange for comparison.
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Figure 2.10: Contribution of azimuthal embryo orientation uncertainty to Gt gene expression
profile reproducibility II. The dorsal side of a flattened embryo (fixed 40 min after the onset
of n.c. 14 (FC depth = 12µm) and immunostained against kni, kr, gt and hb) was imaged.
A) Nuclear mask of the embryo. Each nucleus was assigned an ‘angle’ φ defined as y/ymax,
where y is the y-coordinate of the nucleus and ymax the y-coordinate of the outline (in
black) at the same AP position (x-coordinate). B) Gt profiles for each bin. C) Dependence
of intensity on angle. Intensity measured in each bin is plotted for x/L = 0.38 (�) and
x/L = 0.55 (◦). Typical eye-selection allows allows for discrimination of embryos for which
the midsaggital plane lies within −40◦ < φ < 40◦ (black lines). D) Mean and standard
deviation of Gt intensity profiles computed across the the 7 profiles in the −40◦ < φ < 40◦

bin. Inset shows the standard deviation as a function of the mean for 100 equally spaced
points along the AP-axis, with the blue dot representing the standard deviation of the
background intensity. E) Variance of the 7 previous profiles plotted as a function of the
fractional length (dashed grey line); total variance of gene expression profiles of the time
corrected dorsal profiles is shown in dark orange for comparison; plain black line shows an
estimation of the variance induced by the embryo orientation uncertainty by the alternative
method of Fig. S6.
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Figure 2.11: Contribution of azimuthal embryo orientation uncertainty to gap gene expression
profile reproducibility. For each gap gene, the estimate of the variance due to the uncertainty
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x/L; estimated as in Fig. 2.9 (black plain line) and as in Fig. 2.10 (gray dashed line). The
variances of the time-corrected normalized profiles are shown as a reference in dark colors.

blue to red. For each bin a mean nuclear intensity profile along the AP-axis was extracted,

illustrated in Figure 2.10 B-C for Gt intensity profile I(x/L) as a function of the angle φ.

The dependence on φ is shown at the position of highest and lowest levels of gene expression

(x/L = 0.38 and x/L = 0.55) . For each AP position x/L, the mean level of gene expression

g(x/L) was computed and its standard deviation across angle bins σ2(x/L) is shown for

angles varying from −40◦ to 40◦ (which we estimate to be our range of misidentification of

the dorsal line). The mean profile and corresponding standard deviation for Gt is represented

as a function of x/L in Figure 2.10 D. Results are in good agreement with the first method

(see Figure 2.10 E for Gt and Figure 2.11 for the other gap genes).

2.5 Dynamics of gap gene expression profiles

The results in the preceding three sections allow us to fully reconstruct the dynamics of the

four major gap gene expression profiles from fixed tissue: simultaneous labeling of the four

genes in single embryos preserves temporal causality; embryos can be staged with a temporal

precision of 1 − 2 min; and systematic errors are low and controllable. We merged and

age-classified the dorsal intensity profiles of Hb, Kr, Gt, and Kni simultaneously extracted

from 80 embryos during n.c. 14. Profiles were rescaled such that their maximum level of

gene expression over the course of n.c. 14 is 1 for each gap gene. Chronologically ordered

1 min snapshots were generated by time-averaging intensities at each position with a 3 min
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Figure 2.12: Dynamics of the main boundaries of the gap gene expression profiles. A)
Positions of anterior (/) and posterior (.) borders (inflection points) of the gap gene
expression profiles as a function of time. Color code for different genes as above. As a
guide-to-the-eye, the peaks of the major stripes are plotted in dashed lines and the interstripe
local minimum of Gt is plotted in dotted line. B) Developmental progression of the intensity
at the posterior Kr border (yellow) and the anterior Kni border (green). For each embryo and
each gene, intensity at the inflection point is plotted as a function of embryo age in n.c. 14
(dim dots). Darker circles represent the averages and standard deviations of the intensities
of these data points over 8 equally populated time-bins (10 embryos per bin). Data have
been normalized by Imax, the maximum intensity reached over all embryos, positions, and
bins during n.c. 14. C) Developmental progression of the absolute value of the slope at the
Kr (yellow) and Kni (green) crossing as in B. D) Summary of the time dependences of the
inflection point intensities for all gap gene borders (green and yellow lines correspond to the
dark circles in B (for all stripes, anterior and posterior intensities almost fall on the top of
each other). E) Summary of the time dependences of the inflection point slopes of all gap
gene borders (green and yellow lines correspond to dark circles in C).
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wide gaussian distribution to produce a movie of the gap gene time-dependence during the

entire course of n.c. 14.

To analyze the statistical properties of gap gene dynamics, embryos were sorted according

to their age and divided in 8 equally populated time bins T1 − T8 with 10 samples each and

whose average ages range from 15 to 55 min after the onset of n.c. 14. For each embryo and

each gene, we tracked the position of the peaks in gene expression as well as the position of

the inflection points (i.e. pattern boundaries) in the region of transition between high and

low levels of gene expression. The locations of these markers shift during n.c. 14, as shown in

Figure 2.12 A, some by almost 10%EL. Notice that gene expression patterns tend to be more

dynamic near the edges of the embryo, where the terminal group genes are active. Overall

our analysis of these shifts is in good agreement with previous reports [Jaeger et al., 2004].

To understand how the average levels of gene expression change with time, we monitor the

immunofluorescence intensity of the boundary inflection points as well as the absolute value

of the slope at these points as a function of embryo age. In Figure 2.12 B andFigure 2.12 C we

analyze the intensity of two of these points at x/L ' 58%, where the expression boundaries of

Kr and Kni intersect. We find that the intensities and the slopes of the borders simultaneously

reaches their maximum around 42 min after the onset of n.c. 14. Remarkably, this trend is

conserved for the borders of all other gap genes (Figure 2.12 D and Figure 2.12 E), except

for the intensity of the main Hb border, which peaks at 34 min. These results suggest that

the collective intrinsic dynamics of the gap gene network has a culmination point at 42 min,

where one should expect the network to hold special properties.

2.6 Reproducibility of gap gene expression profiles

Next, we examined how the reproducibility of the profiles evolves over time during n.c. 14,

using the distributions of the positional markers described in Figure 2.12 in eight different

time bins T1 − T8 for increased statistical significance. We define the marker reproducibility

σx/L as the standard deviation across embryos of the markers’ fractional positions x/L. In

Figure 2.13 A these standard deviations are plotted as a function of their respective mean

fractional position for time bins T1, T6, and T8 (blue data; all T1 − T8 inFigure 2.14).
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Figure 2.13: Temporal evolution of gene expression profile reproducibility. A) Reproducibility
(standard deviations σx/L) of the marker positions in Fig. 4A as a function of fractional egg
length x/L (left border /, right broder ., local max ∆, and local min ∇) for 3 specific time
windows (T1 = 10− 25 min, T6 = 41− 45 min, and T8 = 51− 55 min) are shown in blue. The
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positional error σ̂x achieved by simultaneously decoding the four gap genes is shown in black
for 100 AP positions (see Online Materials). For reference, mean and standard deviation of
the gap genes profiles are shown in the background in dark and light colors, respectively
(gap gene color code as above), scaled between zero and their maximum expression level G0.
B) Time dependences of the average reproducibility

〈
σx/L

〉
of the markers in Fig. 4A (80

dorsal profiles were sorted according to age and then divided into 8 bins of 10 profiles). For
each time bin (see Fig. S10) the average and standard deviation across the blue markers is
shown as a function of time. The three time bins in A are depicted with filled blue circles.
For comparison, the maximum positional reproducibility of Bcd profiles 15 min into n.c. 14
(average between 10− 60% EL) [Gregor et al., 2007a] is shown with a violet square, and the
average positional reproducibility of the pair rule genes rnt, eve and prd 45 min into n.c. 14 is
shown with a magenta square [Dubuis et al., 2011]. For reference, the internuclear distance
and the half-internuclear distance are shown in dotted and dashed lines, respectively.

For the time class T6 (41 − 45 min), we notice three interesting features. First, for

all genes, σx/L is independent of position, which is only observed in this particular time

window if the embryos have been sorted out by age and orientation (see Figure 2.15). In

particular, the constancy of σx/L across the Hb/Kr, Kr/Kni, Kni/Gt, and Gt/Hb borders

hints at a mutual regulation of these genes, rather than a uni-directional repression, in

which case it would have a smaller variance than the gene it regulates. Second, the value

of σx/L is on average approximately half the inter-nuclear distance in n.c. 14 (i.e. 4µm or

0.85%EL, see Figure 2.14 B). Hence, at this level of reproducibility, nuclei located on the

gap gene boundaries have already 15 min prior to gastrulation access to a measure of their

position with an error smaller than half the distance to their closest neighbors. Although

this might not be enough to distinguish themselves from their neighbors with 100% accuracy,

it suggests that the level of reproducibility necessary to form the cephalic furrow at the time

of gastrulation (∼1%EL) is already achieved earlier during n.c. 14 in several regions of the

embryo.

The third feature concerns how the markers’ reproducibility changes over the course of

n.c. 14. For each time window we averaged the σx/L across all markers and mapped the

result
〈
σx/L

〉
as a function of time, shown in Figure 2.13 B. The variance of the gap genes

decreases during the first 35 min, forms a bottle neck that has its minimum at 42 min, and

finally increases again until gastrulation. The dynamics of gap gene reproducibility are

remarkably correlated with the overall gap gene dynamics uncovered in Figure 2.12, giving

us a hint of a functional significance for the collective network dynamics. The reproducibility

50



evolves in time and increases synchronously from one nuclear distance to half a nuclear

distance, and thus these dynamics can be seen as the driving element in a relay process

where the gap gene network obtains a reproducibility from the Bcd input of one nuclear

distance [Gregor et al., 2007a], and subsequently passes a two-fold higher reproducibility on

to the the pair-rule genes toward the end of n.c. 14.

Can we understand from our data how this observed rise in reproducibility is achieved?

We define a new quantity, the positional error σ̂x resulting from the simultaneous position

decoding of the four gap genes, and look at its temporal progression during n.c. 14 (black

curve in Figure 2.13 A and Figure 2.14). Initially, transcriptional inputs and gap gene

interactions prior to n.c. 14 have already generated profiles whose decoding leads to a

positional error of less than one internuclear distance in the 40-80%EL region (T1). Next,

secondary stripes emerge from the interactions between Gt and Hb and between Gt and Kr,

reducing the positional error to less than one internuclear distance also in the 10-40%EL

and 90-80%EL regions (T4). The subsequent dynamics of the gap gene network lead to more

reproducible profiles overall and positional error eventually reaches its minimum of half a

nuclear distance everywhere in the 41 − 45 min window (T6). Reproducibility eventually

deteriorates during the last 10 min of n.c. 14, just before gastrulation (T7 − T8).

2.7 Discussion

Simultaneous quantification of gene expression profiles and their variability over the course

of embryonic development is crucial for understanding the mechanisms that lead to the

formation of organisms with a reproducible body plan. Not only do they provide an estimate

of the physical limits reached by the system, but they also provide insights on how these limits

are achieved. Here we have shown that immunofluorescent techniques, handled properly, are

suitable to make such measurements with high accuracy and precision. We have illustrated

this by monitoring, for the first time, the simultaneous expression dynamics of the four gap

genes Hb, Kr, Gt, and Kni during n.c. 14, and by quantifying the origin of the positional

accuracy of reproducible profiles.

A methodical analysis of the different sources of experimental errors shows that 20%
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Figure 2.14: Developmental progression of gap gene expression profile reproducibility.
Position dependence of the reproducibility of the markers, computed as the standard
deviation of their positions across embryos (left border /, right boder ., local max 4, and
local min 5) for 8 time windows covering 90% of n.c. 14 (T1 = 10− 25 min, T2 = 26− 29 min,
T3 = 30− 33 min, T4 = 34− 36 min, T5 = 37− 40 min, T6 = 41− 45 min, T7 = 46− 50 min,
and T8 = 51−55 min) are shown in blue. The positional error σ̂x obtained by simultaneously
decoding all four gap genes (four-dimensional extension of Fig. S10F) is shown in black for
100 AP positions. For reference, the mean and standard deviation of the gap gene profiles
are shown in the background in dark and light colors, respectively. Profiles have been scaled
such that the maximum level of gene expression of their mean over the 8 time windows is G0.
The internuclear distance and half-internuclear distances are shown as dotted and dashed
lines, respectively.
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on panel A. B) Schematic representation of the reproducibility of a border across profiles
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of the total variability of our gene expression profiles is due to systematic errors that are

inherent to our protocols. This leaves 80% of the observed embryo-to-embryo variability

as potentially biologically meaningful statistical fluctuations. In particular, this result

makes our experimental method suitable to study the limits by which nuclei can read out

transcription factor concentrations [Tkacik et al., 2008,Tkacik et al., 2009], and it will enable

us to measure the precision with which individual nuclei can infer their position based on

the simultaneous measurement of multiple input transcription factor concentrations.

The analysis of the gap genes dynamics and the evolution of their variability during

n.c. 14 suggests that nature uses a ‘relay-type’ strategy to refine the knowledge that nuclei

have about their position from fertilization to gastrulation: Reproducibility is inherent in

Bcd, then passed on to the gap genes early n.c. 14, and relayed further to the pair-rule

genes late n.c. 14. At the Bcd level, the physical mechanisms that establish the maternal

gradient already allow nuclei to achieve position decoding up to one nuclear distance. This

reproducibility increases further to a half-nuclear distance at the peak of gap gene expression,

15 min before gastrulation.

This cartoon-like reconstruction of the gap gene dynamics should stimulate the devel-

opment of more straightforward experimental methods to quantify the time evolution of
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morphogens expression levels. In particular, it would be crucial to simultaneously monitor

the concentration of several morphogens in living embryos. Such methods, which rely on

live imaging of embryos expressing molecular fusions of fluorescent proteins are known to

be perturbed by photobleaching and the folding and maturation times of the fluorescent

proteins [Little et al., 2011]. Therefore, the method presented here will serve as a fiducial

mark to assess the validity of those future versions of transgenic flies expressing fluorescent

proteins.

2.8 Materials and Methods

Antibody preparation. To allow simultaneous imaging of proteins encoded by all four gap
genes, we generated polyclonal antibodies in mice, rats and guinea pigs to His-Trx tagged
full-length Hb, Kni and Gt fusion proteins [Kosman et al., 1998]. To image Kr protein, we
use a Rabbit anti-Kr antibody generated by Chris Rushlow.

Antibody staining and confocal microscopy. All embryos were collected at 25◦C and
dechorionated in 100% bleach for 2 minutes, heat fixed in a saline solution (NaCl,Triton
X-100) and vortexed in a vial containing 5 mL of heptane and 5 mL of methanol for one
minute to remove the vitelline membrane. They were then rinsed and stored in methanol at
-20 C. Embryos were then labelled with fluorescent probes. We used rat anti-Kni, guinea
pig anti-Gt, rabbit anti-Kr, and mouse anti-Hb. Secondary antibodies were respectively
conjugated with Alexa-488 (rat), Alexa-568 (rabbit), Alexa-594 (guinea pig) and Alexa-647
(mouse) from Invitrogen, Grand Island, NY. Embryos were mounted in Aqua-Poly/Mount
(Polysciences Inc., Warringyon, PA). Samples were imaged on a Leica SP5 laser-scanning
confocal microscope and image analysis routines were implemented in Matlab software
(MathWorks, Natick, MA). Images were taken with a Leica 20× HC PL APO NA 0.7 oil
immersion objective, and with sequential excitation wavelengths of 488, 546, 594 and 633
nm. The bandwidth of the detection filters were set up as shown in Figure 2.1 to minimize
fluorophore cross-talk while still allowing good detection in each optical channel. For each
embryo, three high-resolution images (1024× 1024 pixels, with 12 bits and at 100 Hz) were
taken along the anterior-posterior axis (focused at the midsagittal plane) at 1.7× magnified
zoom and averaged together. With these settings, the linear pixel dimension corresponds
to 0.44 ± 0.01µm. All embryos were prepared, and images were taken, under the same
conditions: (i) all embryos were heat fixed together, (ii) embryos were stained and washed
together in the same tube, and (iii) all images were taken with the same microscope settings
in a single acquisition cycle.

Measurements of the invagination depth of the membrane furrow canals. We
used the depth of the furrow canal (FC) during blastoderm cellularization as a ‘clock’ to
estimate the age of the embryo (origin taken at the onset of nuclear n.c. 14). To assess the
precision of this clock, movies of the invagination process on the dorsal side of 8 wild-type
embryos (one frame per minute) were taken using bright field microscopy. For each embryo
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i, the onset of n.c. 14 was identified as the frame where the nuclear membrane is the most

dissolved during mitosis 13. The depth δ
(i)
FC of the FC was monitored as a function of absolute

time until gastrulation as shown on 2.3 A,. To compare the growth of the cellularization

membrane across embryos, the time traces δ
(i)
FC(t) (i = 1 . . . 8) were aligned frame by frame,

allowing an arbitrary shift in time ∆Ti (to compensate for inaccuracies in determining the

onset of n.c. 14) and a shift in depth ∆δ
(i)
FC (to compensate for inaccuracies in determining

the apical membrane; constrained by a maximum amplitude of 1µm). Shifts were optimized

by minimizing the Euclidean distance χ2 =
∫
t

∣∣∣δ̃(i)
FC(t)−

〈
δ̃

(i)
FC(t)

〉∣∣∣2dt, where each δ̃
(i)
FC(t)

is given by δ̃
(i)
FC(t) = δ

(i)
FC(t + ∆Ti) + ∆δ

(i)
FC, and 〈〉 denotes averaging across embryos. To

estimate the temporal error σt on an embryo’s age, we propagated the positional error σδ
(error bars in 2.3 B) of the measurement of the furrow canal depth as σt = σδ · |dδ/dt|−1 (see
inset in 2.3 B). Correction for embryo deformation due to fixation procedure was evaluated
by comparing the AP and DV lengths of live with fixed embryos. Both dimensions shrink by
∼5%, leading to a corrected FC depth δfixed

FC shown in green on the right axis of Figure 2.3 B.

Expression profile quantification. Profiles were extracted by sliding, in Matlab software,
a disk of the size of a nucleus along the edge of the embryo in the midsagittal plane and
computing the average intensity of its pixels [Houchmandzadeh et al., 2002]. The coordinates
of the disk centers were projected on the anteroposterior axes of the embryo. The dorsal
and ventral profiles were separately extracted. For consistency, only dorsal profiles are used
in our analysis.

Identification of the Nuclei. For experiments requiring nuclear intensity quantification
(see Figures 2.5, 2.7, 2.8, and 2.10), we used the average intensity of the different optical
channels to identify nulcei. We first examine each pixel x in the context of its 11× 11 pixel
neighborhood; let the mean intensity in this neighborhood be Ī(x) and the variance be
σ2(x). We construct a normalized image, ψ(x) = [I(x) − Ī(x)]/σ(x), which is smoothed
with a Gaussian filter (standard deviation 2 pixels) and thresholded with a threshold
optimized by eye-inspection. Locations of nuclei were assigned as the center of mass in the
connected regions above threshold. Each nuclear mask was manually corrected to avoid
misidentifications.

Determination of boundary positions and peaks in gene expression.
Semi-automatic identification of expression peaks. Each raw intensity profile was binned
(1000 points) and linearly filtered by computing, for each bin, the average intensity taken
over the 30 nearest neighbor bins (corresponding to 3%EL, or approximately two internuclear
distances). The effect of this operation is to limit intensity variations due to the presence
of the nuclei and thus to compute an average nuclear/cytoplasmic intensity. A region of N
bins around the presumed boundary was manually identified (e.g. 60-100%E.L, or N = 400
bins for the posterior stripe of Hb). To avoid identifying local extrema solely due to higher
nuclear concentrations, we randomly picked up N/3 uniformly distributed bins in that region
and computed the peak intensities and positions over the 10% intensity of highest (resp.
lowest) bins. We similarly defined for each embryo and each profile the maximum intensity
Imax as well as the background intensity Imin.
Boundary identification. A region of N bins was manually identified at the presumed location
of the half-maximum intensity point of the boundary (e.g. 30-70%EL, or N = 400 bins, for
the main border of hb). The code required the finding of two neighboring data points in
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that region with higher and lower intensities than (Imax + Imin)/2 (given the sharp slope of
the border, false positives were extremely rare and manually corrected). The intensity and
position of the half-maximum amplitude bin was then identified as the mean intensity and
position of the two neighboring points. The slope was determined by fitting the points in
the 3%EL neighboring region with a straight line (which corresponds to approximately two
internuclear distances).

Influence of the age and orientation window on the reproducibility of the mark-
ers To address the contribution of our sorting method to the value and constancy of σx/L
we compared our results to the reproducibility that is achieved across 163 quadruple stained
embryos, without proper age and orientation classification (gray data points in 2.15. In this
case, we find that the standard deviation across embryos is on average more than twice
as large as in our original measurement, which can be explained by the fact that σ(x/L)
now includes the dependence of time in the profiles along the entire n.c. 14, as well as the
dependence on embryo orientation w.r.t the dorsal side. The resulting reproducibility of the
markers as a function of x/L tends to be higher at the anterior and posterior ends of the
embryo, where the orientation greatly influences the patterns of gene expression and where
the time shift of the markers is most important.

Reproducibility quantification of Bcd, and the pair pair-rule genes. The repro-
ducibility of Bcd was quantified by averaging the effective rms error σ(x) in positional
readout over the 20-60% EL region (15 embryos live-imaged 15 min after entry into mitosis
13, [Gregor et al., 2007a]. The reproducibility of the pair rule genes was quantified by mea-
suring the standard deviation of the position of the peaks of the 7 stripes of Even-Skipped
and Runt across 12 embryos selected in a 40 to 50 min time window after the beginning of
n.c. 14 [Dubuis et al., 2011].

Computation of σx. For a single gene g, we compute the positional error for 100 equally
spaced positions along the AP axis, using σx(x) = σg(x) |dḡ/dx|−1. At each point the error
bars on the positional error are estimated by bootstrapping over 10 samples of size N/2,
where N is the number of profiles collected for gene g. The positional error at a given x can
be visualized as the AP distance between the intersection points of ḡ(x) and a rectangle
of width σg(x). The positional error is smaller in the regions of high profile slope, where
the variations in gene expression are reliably translated into variations in position. In a
straightforward generalization of the single gene case the positional error for the multiple
gene case is given by:

σ2
x(x) =

 N∑
i,j=1

dḡi
dx

[C(x)−1]ij
dḡj
dx

−1

,

where Cij is the covariance matrix of the profiles that is directly estimated from the quadruple
staining at each position x. The positional error at a given x can be visualized as the AP
distance between the positions of the intersection points of ḡ(x) and a cylinder whose base
is the ellipsoid in the {hb, kr} plane such that

∑
i,j(gi(x)− ḡi)[C−1(x)]ij(gj(x)− ḡj) ≤ 1/4.

Note that the optimal positional decoding performed with several genes (e.g., N = 2) at
a given x does not correspond to the positional error carried by the gene with the least
individual positional error at that position, i.e. the combined error can be smaller than the
individual errors due to the noise averaging by the N readouts and the correlation structure.
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Chapter 3

Positional information carried by

the four main gap genes

3.1 Introduction

So far, we have developed the conceptual tools that are necessary to rigorously define

positional information and we have shown that all features required for the computation

can be measured experimentally. Now we wish to actually compute the quantities defined in

Chapter 1 to estimate how much information is carried by the four gap genes of Drosophila.

Is this information comparable to the information that the embryo uses at the time of

gastrulation? Is it enough to specify the position of each cell along the anteroposterior

axis? These questions are all the more interesting since the processes that govern pattern

formation in the embryo are driven by molecules that are present at low concentrations,

such that noise inevitably limits transmission of information through the different regulatory

layers of the network [Elowitz et al., 2002, Tkacik et al., 2009, Tkacik & Walczak, 2011].

Some theoretical studies have suggested that the transmitted information is close to the

maximum allowed by the physical limits on the system [Tkacik et al., 2008]. Armed with

the tools developed in Chapter 1, we can now test these ideas on experimental data and

gain more insights about the strategies that nature uses to make embryonic development so

reproducible.
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In this chapter, we cover the technical details of applying positional information and

positional error formalism to real data sets, using the four major gap genes in early Drosophila

development as a test case. We start by presenting the necessary statistical techniques to

consistently merge data from separate pairwise gap gene immunostaining experiments into

a single dataset. We then estimate mutual information directly from data for one and for

two gap genes. To generalize the method to higher dimensions, we introduce the Gaussian

noise approximation and an adaptive Monte Carlo integration scheme and we extract the

information jointly carried by all four gap genes. This analysis leads us to some insights on

how information is coneyed through the layers of the Drosophila regulatory network.

3.2 Inference methods

3.2.1 Estimating information with limited amounts of data

Measuring positional information from a finite number N of embryos is challenging due

to estimation biases. Good estimators are thus often more complicated than the naive

approach, which consists of applying Eq. (1.7) directly to an estimate of P ({gi}, x) obtained

by simply histogramming the data. Here we start by introducing this naive estimator, which

we subsequently develop into a series of better estimators, based on an idea termed direct

estimation [Strong et al., 1998,Slonim et al., 2005].

The easiest way to obtain an estimate for P ({gi}, x) is to convert the range of continuous

values for gi and x into b discrete adaptive bins; we can then create a histogram of the

joint distribution of {gi} and x from N embryos, and normalize it to obtain P̃b,N ({gi}, x),

the estimate of the joint distribution. We can compute a naive estimate of the positional

information, IDIR
b,N ({gi};x) by using P̃ directly in Eq. (1.7):

IDIR
b,N ({gi};x) = −

∑
{gi}

P̃b,N ({gi}, x) log2

[
P̃b,N ({gi}, x)

P̃b,N ({gi})P̃b,N (x)

]
(3.1)

where the subscripts indicate the explicit dependence on sample size and number of adaptive

bins.P̃b,N ({gi}) and P̃b,N (x) are obtained by summing P̃b,N ({gi}, x) along the appropriate

dimensions. It is known that naive estimators suffer from estimation biases that scale
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as 1/N and 1/bN+1 (as we are partitioning not only the N genes but also the x axis).

Using techniques discussed in [Strong et al., 1998, Slonim et al., 2005], we can obtain a

direct estimate of the mutual information by first computing a series of naive estimates

for a fixed value of b and for fractions of the whole data set. Concretely, we pick fractions

n = [0.95 0.9 0.85 0.8 0.75 05] × N of the total number of samples N . At each fraction,

we randomly pick n embryos 100 times and compute 〈IDIR
b,n ({gi};x)〉 (where averages are

taken across 100 random data subsets). This gives us a series of data points that can be

extrapolated to an infinite data set by fitting a linear model for 〈IDIR
b,n ({gi};x)〉 vs 1/n

(Fig. 3.1 A). The intercept of this linear model yields IDIR
b,n→∞({gi};x) and we can repeat this

procedure for a set of ever more adaptive bins. To avoid overpartioning the data, we first need

to define a bin number limit b∗ (depending on N ) for which the 1/n extrapolation is valid.

This is done by analyzing the same data set but now shuffled and finding the critical number

of bins for which the extrapolated information Ishuffled
b,∞ ({gi};x) is zero within error bars. The

inset of Fig. 3.1 B shows that for the analyzed hb profiles (N=23), b∗ = 50. Extrapolating

IDIR
b,∞ ({gi};x) to 1/b2 → 0 for b < b∗, we obtain the final estimate IDIR

b→∞,n→∞({gi};x), called

direct estimate (DIR) of positional information (red dot in Fig. 3.1 B). No prior knowledge

about the shape of the distribution P ({gi}|x) is assumed by the direct estimation method.

A potential disadvantage of this method is that it still requires a substantial amount of data

(large N ) because de-biasing extrapolations can only work when under-sampling is in the

assumed scaling regime. In practice, our current data sets suffice for the direct estimation of

positional information carried by one gap gene.

In order to extend this method to more than two genes, one needs to resort to approxima-

tions for P ({gi}|x), the simplest of which is the Gaussian approximation, shown in Eq. (1.4).

In this case, we can write down the entropy of P ({gi}|x) analytically. For a single gene we

get

S[P (g|x)] =
1

2
log2

(
2πeσ2

g(x)
)
, (3.2)

while the straightforward generalization to the case of N genes is given by

S[P ({gi}|x)] =
1

2
log2

(
(2πe)N |C(x)|

)
, (3.3)
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where |C(x)| is the determinant of the covariance matrix Cij(x). From Eq. (1.8) we know

that positional information I(g;x) = S[P (g)]− 〈S[P (g|x)]〉x. Here the second term (“noise

entropy”) is therefore easily computable from Eq. (3.2). The first term (“total entropy”) can

be estimated as above by the direct method, i.e. histogramming P (g) for various sample

sizes n and bin sizes ∆, and extrapolating n→∞ and ∆→ 0 (Fig. 3.1 C). This combined

procedure, where we evaluate one term in the Gaussian approximation and the other one

directly, has two important properties. First, the total entropy is usually much better

sampled than the noise entropy, because it is based on the values of g pooled together

over every value of x; it can therefore be estimated in a direct (assumption-free) way even

when the noise entropy cannot be. Second, by making the Gaussian approximation for the

second term, we are always overestimating the noise entropy and thus underestimating the

total positional information, because the Gaussian distribution is the maximum entropy

distribution with a given mean and variance (other, non-Gaussian distributions with the

same mean and variance can only have smaller entropies). Therefore, in a scenario where the

first term in Eq. (3.2) is estimated directly, while the second term is computed analytically

from the Gaussian ansatz, we always obtain a lower bound on the true positional information

(Fig. 3.1 D). We call this bound the first Gaussian approximation (FGA).

For three or more gap genes the amount of data can be insufficient to reliably apply

either the direct estimate or FGA, and one needs to resort to yet another approximation,

called second Gaussian approximation (SGA). As in the FGA, for the second Gaussian

approximation we also assume that P ({gi}|x) ≈ G({gi}; ḡi(x), Cij(x)) is Gaussian, but we

make another assumption in that P ({gi}) obtained by integrating over these Gaussian

conditional distributions is a good approximation to the true P ({gi}). The total distribution

we use for the estimation is therefore:

P ({gi}) =

∫ 1

0
dx P ({gi}|x). (3.4)

For each position, the noise entropy in Eq. (3.3) is proportional to the logarithm of the

determinant of the of the covariance matrix, which scales as 1/n if estimated from a limited

number n of samples. We therefore estimate the information ISGA
n ({gi};x) for fractions
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Figure 3.1: Estimates of positional information (in bits) carried by the gap genes in the
10-90% egg length region, using various approximations. A,B) Direct estimate of positional
information carried by hb (dorsal profiles, δFC = 10− 20 µm, N = 23). Blue points show the
dependence of IDIR

b,n (hb;x) on n for different choices of b (each line corresponds to a different

number of adaptive bins). By extrapolating IDIR
b,n (hb;x) with respect to 1/n we obtain

IDIR
b,∞ (hb;x) for various bin sizes b. In B, each green square is an extrapolation for an infinite

number of samples estimated in A, for the chosen value of b. The red dot represents the
final estimated information, obtained by extrapolating b→ 0; here IDIR(hb;x) = 2.19± 0.05
bits. C) First Gaussian approximation. Green dots show the dependence of the information
estimate on the bin size; each point is an extrapolation to infinite number of samples. We
find IFGA(hb;x) = 2.15 ± 0.07 bits. D) Comparison of the first Gaussian approximation
with the direct estimate, computed from the dorsal profiles of hb (red), kr (yellow), gt
(orange), and kni (green) with δFC = 10− 20 µm. The two approximations give the same
result within the error bars. E) Second Gaussian approximation. Green dots show the
dependence of the information estimate on the bin size. In the infinite sample limit, we find
ISGA(hb;x) = 2.15± 0.05 bits. F) Comparison of the second Gaussian approximation with
the direct estimate, computed from the dorsal profiles of the gap genes with δFC = 10−20 µm.
Color as in D.
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of the whole data set and then extrapolate for n → ∞ (Fig. 3.1E). For single genes, the

second Gaussian approximation is in good agreement with the direct estimate, as shown in

Fig. 3.1F, where most points fall onto the diagonal.

The second Gaussian approximation relies on our ability to (i) estimate well the covariance

matrix Cij(x) between gap genes i and j at every position x, and (ii) carry out the non-trivial

integration in Eq. (3.4) when distributions are high dimensional. Both issues are discussed

in detail below.

3.2.2 Inferring consistent covariance matrices from partial measurements

To compute positional information from our data using the second Gaussian approximation,

we need to measure N mean profiles, ḡi(x), and the N × N covariance matrix, Cij(x).

Measuring individual gap gene expression profiles using, e.g., immunostaining is a standard

experimental technique in developmental biology. In contrast, estimating the covariance

matrix, Cij(x), would require simultaneously labeling all N gap genes in each embryo using

fluorescent probes of different colors. While simultaneous stainings of two genes are not

unusual, it is not easy to scale the method up to more genes while maintaining a precise and

quantitative readout. Hence, in this section we present a technique that allows estimation of

a consistent N ×N covariance matrix based on a collection of embryos stained for different

pairs of gap genes. To test the validity of our approach, we also performed a simultaneous

recording of all 4 gap genes in Drosophila embryos which allows us to quantitatively compare

the two alternative methods.

Estimating a joint covariance matrix from pairwise staining experiments is a non-

trivial problem for two reasons. First, each diagonal element of the covariance matrix,

i.e. the variance of an individual gap gene, is measured in multiple experiments, but the

obtained values might vary due to statistical and systematic measurement errors. Second,

true covariance matrices are positive definite, i.e. det(C(x)) > 0, a property that is not

guaranteed by naively filling in different terms of the matrix by computing them across sets

of embryos collected in different experiments. This is a consequence of small sampling errors

that can strongly influence the determinant of the matrix. We therefore need a principled

way to find a single best and valid covariance matrix from multiple partial observations, a
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problem that has had considerable history in statistics and finance [Ait-Sahalia & Kimmel,

2007,Phillips & Yu, 2009,Lee & Liu, 2012].

We start by considering a number Nij of embryos that have been co-stained for the pair

of gap genes (i, j). Let the full dataset consist of all such pairwise stainings: for N gap genes,

this is a total of
(
N
2

)
pairwise experiments, where i, j = 1, . . . , N and i < j. Thus, in the

case of the four major gap genes in Drosophila embryos, hb, kr, gt and kni (in that order),

the total number of recorded embryos is N =
∑

(i,j)Nij , where the sum is across all six

pairwise measurements: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). These pairwise measurements

give us estimates of the mean profiles and the 2× 2 covariance matrices for each pair (i, j):

ĝi(x) =
1

Nij

Nij∑
µ=1

g
(µ)
i (x), (3.5)

Ĉij(x) =
1

Nij

Nij∑
µ=1

(g
(µ)
i (x)− ĝi)(g(µ)

j (x)− ĝj). (3.6)

The index µ enumerates all the embryos recorded in a pairwise experiment (i, j). For

four gap genes and six pairwise experiments, we will get six 2× 2 partial covariance matrices

Ĉ, and 6 × 2 estimates of the mean profile ĝ. Our task is to find a single set of 4 mean

profiles ḡi(x), and a single 4× 4 covariance matrix Cij(x), that fits all pairwise experiments

best. In the next paragraphs, we will show how this can be computed for the arbitrary case

of N gap genes.

To infer a single set of mean profiles ḡi(x) and a single consistent N × N covariance

matrix Cij(x), we use maximum likelihood inference. We assume that at each position x

our data is generated by a single N -dimensional Gaussian distribution of Eq. (1.4) with

unknown mean values and an unknown covariance matrix, which we would like to find, but

we can only observe two of the mean values and a partial covariance in each experiment; the

other variables are integrated over in the likelihood.

Following this reasoning, the log likelihood of the data for pairwise staining (i, j) at
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position x is

Lij =
1

Nij
log

∫ ∏
k 6=i,j

dgk P ({gi}|x) (3.7)

=
1

Nij
ln

Nij∏
µ=1

1

2π
√
CiiCjj − C2

ij

× exp

[
−1

2

Cjj(g
(µ)
i − ḡi)2+Cii(g

(µ)
j − ḡj)2−2Cijg

(µ)
i g

(µ)
j

CiiCjj − C2
ij

]
,

where the log likelihood L, as well as the mean profiles, covariance elements and the

measurements all depend on x.

Since all pairwise experiments are independent measurements, the total likelihood Ltot(x)

at a given position x is the sum of the individual likelihoods

Ltot(x) =
∑
(i,j)

Lij(x) (3.8)

After some algebraic manipulation, the total log likelihood can thus be written as:

Ltot(x)=−
∑
(i,j)

ln(2π)+ln
(
Cii(x)Cjj(x)−C2

ij(x)
)

(3.9)

+Cjj(x)
Ĉij(x)− 2ḡi(x)ĝi(x) + ḡ2

i (x)

Cii(x)Cjj(x)− C2
ij(x)

+Cii(x)
Ĉjj(x)− 2ḡj(x)ĝj(x) + ḡ2

j (x)

Cii(x)Cjj(x)− C2
ij(x)

+2Cij(x)
Ĉij(x)−ĝi(x)ḡj(x)−ĝj(x)ḡi(x)+ḡi(x)ḡj(x)

Cii(x)Cjj(x)−C2
ij(x)

,

where ĝi(x) and Ĉij(x) are the experimentally determined profiles and covariance elements

defined in Eqs. (3.5,3.6). For each position x, we search for ḡi(x) and Cij(x) that maximize

Ltot(x). Before proceeding, however, we have to guarantee that the search can only take

place in the space of positive semi-definite matrices Cij(x) (i.e. det C ≥ 0). We enforce this

constraint by spectrally decomposing Cij and parametrizing it in its eigensystem [Pinheiro
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& Bates, 1996]. To this end, we write

C(x) = PDPT, (3.10)

where D is a diagonal matrix parametrized with the variables α1, . . . , αN that determine

the diagonal elements in D, i.e. Dii = exp(αi). The orthonormal matrix P is decomposed

as a product of the N(N − 1)/2 rotation matrices in N dimensions:

P =

N(N−1)/2∏
k=1

Rk(ϕk), (3.11)

where Rk(ϕk) is a rotation matrix that can be written as:

Rk(ϕk)=



1

. . .

1

cos(ϕk) 0 · · · 0 − sin(ϕk)

0 1 0

...
. . .

...

0 1 0

sin(ϕk) 0 · · · 0 cos(ϕk)

1



. (3.12)

In the representation given by Eq (3.10), the likelihood is a function of N values ḡi, N

parameters αi, and N(N − 1)/2 angles ϕk at each x. In case of 4 gap genes, this is a total

of 14 parameters that need to be computed by maximizing Ltot(x) at each location x.

There is no guarantee that there is a unique minimum for the log likelihood; moreover,

there could exist sets of covariance matrices that all lead to essentially the same value

for Ltot(x). To break these degeneracies, we regularize the likelihood by penalizing the

matrices that have (almost) singular determinants. This is equivalent to picking, out of all

the matrices that fit the data equally well, the covariance matrix corresponding to the most
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random (maximum entropy, or largest determinant) distribution. Thus, we maximize:

L̃tot(x) = Ltot(x)− λ |C(x)| (3.13)

where λ is a regularization parameter: larger values of λ will favor more “spherical” dis-

tributions, while small values will allow distributions that can be very squeezed in some

directions. The value of λ depends on the dataset; one way to determine it is to find the

maximum log likelihood L first without regularizer and assess the error bar on this estimate

by bootstrapping, and then select the regularizer λ with the largest possible value such that

L̃(x) remains within the statistical error of L. Using this criterion, we found that the value

λ = 0.05 worked well for our dataset.

To compute ḡi(x) and Cij(x), we initialize ḡi(x) to the mean profile across all pairwise

experiments (i, j); we initialize αi to the mean of the log of the diagonal terms Ĉii; and we

initialize all rotation angles ϕk = 0. Nelder-Mead simplex method is used to maximize L̃tot(x)

[Lagarias et al., 1998]. Finally, we compute C(x) from αi and ϕk using Eqs (3.10,3.11,3.12).

To check the validity of this algorithm, we performed an experiment in which we stained

embryos simultaneously for all four gap genes gi (hb, kr, gt, and kni, respectively). We split

the dataset obtained from this staining into six “virtual” pairwise experiments, i.e. into

experiments that recorded simultaneously gap genes (1,2), (1,3), (1,4), (2,3), (2,4) and (3,4).

We used the maximum likelihood merging method outlined above to compute ḡi(x) and

Cij(x) (denoted by a subscript ML) for these virtual datasets. The same quantities can also

be evaluated directly from the quadruple staining (denoted by a subscript 4G). Figure 3.2

shows that both the inferred mean profiles and the covariance matrix elements match the

directly measured values, validating the correctness of our inference method.

Qualitatively the two methods show a near perfect overlap. We assess the similarity ξ

between these two sets of curves by comparing the Euclidean distance between the estimated

and the true result with the Euclidean distance between the expected result and its mean

over x:

ξ =
1

1 +

√∫ 1
0 dx|fML(x)−f4G(x)|2∫ 1

0 dx|f̄4G−f4G(x)|2

(3.14)
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Figure 3.2: Merging data sets using maximum likelihood reconstruction. A) Mean hb
profiles as a function of relative egg length extracted from quadruply-stained embryos (black),
from quadruply-stained embryos after application of maximum likelihood method (see text,
cyan), and from pairwise-stained in independent experiments after application of maximum
likelihood method (magenta). Inset : Similarity ξ (see text), comparing either the cyan or
magenta curve to the black reference. ξ = 0.5 corresponds to the similarity between the
black curve and its average over x (dotted line in main panel). B) Same comparison as in A
for hb profile variances. C) Same comparison as in A for the cross-correlation between hb
and kr profiles. D) Same comparison as in A for the determinant of the covariance matrix.
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where ξ = 1 is a perfect match, ξ = 0.5 the similarity between f4G and its mean f̄4G and

ξ → 0 the similarity between two very different curves, or even cases where the inferred

curve has divergences along the AP axis. This metric is particularly relevant for assessing

curves that reproduce the details of position dependence better than a model that is simply

a constant along AP, equal to the mean value. The mean profiles (Fig. 3.2 A) and the

elements of the consistent 4× 4 covariance matrix (Fig. 3.2B and 3.2 C) have similarities

greater than 0.99, validating the convergence of the algorithm.

The method was then applied to six pairwise immunostaining experiments that have

been carried out on different embryo collections and imaged on different days. Qualitatively

the matchup with the quadruple staining is still astoundingly good: similarities for the

various quantities in Fig. 3.2 range from 0.70 to 0.91. In particular, we see a bit more noise

in the merged pairwise experiments compared to the quadruplet staining, which is to be

expected, because the pairwise experiments also include experiment-to-experiment variance

which the quadruplet does not. Clearly, however, most of the mean and covariance behavior

is consistent between different experiments. The maximum likelihood method can therefore

be used to reconstruct the N mean profiles and the N ×N covariance matrix of a set of

N genes by simply using N(N − 1)/2 pairwise experiments of co-stained embryos. This

represents an important advance and a powerful tool in connecting theoretically relevant

quantities to what can be practically measured.

3.2.3 Monte Carlo integration of total entropy

To apply the second Gaussian approximation to three or more gap genes, we need not only

a consistent estimate of the mean profiles and the covariance, but also have to compute

the total entropy, S[P ({gi})], by integrating P ({gi}|x) over all x as prescribed by Eq. (3.4).

The straightforward way to numerically evaluate this integral would be to partition the

integration domain [0, 1]N into a grid with grid spacing ∆g in each dimension, evaluate the

conditional distribution P ({gi}|x) on the grid for each x, and average the results to get

P ({g}). Unfortunately, for 3 or 4 gap genes this is numerically infeasible because of the

curse of dimensionality for any reasonably fine-grained partition.

To address this problem we make use of the fact that on most of the integration domain
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Figure 3.3: Monte Carlo integration of the total information for two genes. A) Heat map
of the total probability distribution P ({hb, kr}) computed by using the sampled means and
covariance matrix, and assuming a Gaussian distribution for P ({hb, kr}|x) at each position.
B) Adaptive partitioning of the integration domain for the {hb, kr} distribution generated
by the Monte Carlo algorithm for Nboxes = 1000. C) Convergence of the estimated positional
information ISGA carried by hb and kr, computed for N = 15 embryos as the number of boxes
increases. D) The dependence of positional information on the number of samples, N . Blue
data point corresponds to the converged information computed in C. Error bars are computed
by bootstrapping over ten subsets of size n/2. We find ISGA({Hb,Kr};x) = 3.53 ± 0.05
bits.

P ({gi}) is zero (Fig. 3.3 A). This is due to the fact that the variability among embryos is

small, which means that most of the probability weight is concentrated in the small volume

around the path traced out by ḡi(x) as x changes from 0 to 1. We thus designed a method

that partitions the whole integration domain adaptively into volume elements such that the

total probability weight in every box is approximately the same.

The following algorithm was used to compute the total entropy, S[P ({gi})]:

1. The whole domain for {gi} is recursively divided into boxes such that no box contains

more than 1 percent of the total volume.

2. For each box i with volume ωi, we use Monte Carlo sampling to randomly select
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t = 1, . . . , T points gt in the box and approximate the weight of the box i as π(i|x) =

ωiT
−1
∑T

t=1 P (gt|x); we use T = 100.

3. Analogously, we evaluate the approximate total weight of each box π(i), by pooling

Monte Carlo sampled points across all x.

4. π(i|x) and π(i) are renormalized to ensure
∑

i π(i|x) = 1 for every x and
∑

i π(i) = 1.

5. The conditional and total entropies are computed as Snoise = −〈∑i π(i|x) log2 π(i|x)〉x
and Stot = −∑i π(i) log2 π(i).

6. The positional information is estimated as I({gi};x) = Stot − Snoise.

7. The box i∗ = argmaxiπ(i) with the highest probability weight π(i∗) is split into two

smaller boxes of equal volume ω(i∗)/2, and the estimation procedure is repeated by

returning to step 2. Additional Monte Carlo sampling only needs to be done within

the newly split box; for the other boxes old samples can be reused.

8. The algorithm terminates when the positional information achieves desired convergence.

Fig. 3.3 A and 3.3 B show how the partitioning works in a case of two genes ({hb, kr})

which is easy to visualize. This partition is spatially highly refined where the distribution

P ({hb, kr}) has a lot of weight and remains coarse elsewhere. This numerical integration of

the information converges to a limit value as the number of boxes increases (Fig. 3.3 C).

To correct for the dependancy on the finite sample size, we randomly select fractions of

the data, n = [0.95 0.9 0.85 0.8 0.75 0.5]×N , where the total number of recorded embryos

is N . As in direct estimation, we run the above algorithm using the means and covariance

matrix computed from 10 random subsets at each data fraction, and extrapolate towards

n→∞, as shown in Fig. 3.3 D.

3.2.4 Decoding positional information from experimental data

To see how the availability of positional information changes along the AP axis, we use

Eq. (1.19) to compute and plot the positional error, first for a single gene, and then for a

gene pair, using experimentally measured mean profiles and the profile covariance matrix.

70



0
0.5

1 0

0.5

1
0

0.5

1

Hb
x/L

K
r

0 0.5 1

0

0.1

x/L

σ
x

1% EL

F

0 0.5 1

0

0.5

1

C

E

x/L

K
r

σ
x

σ
g

0 0.5 1

0

0.1

1% EL

D

x/L

σ
x

0 0.5 1

0

0.5

1

A

H
b

σ
x

σ
g

0 0.5 1

0

0.1

1% EL

B

σ
x

Figure 3.4: Positional error for a single gene and a pair of genes. A) Mean dorsal hb
profile and standard deviation across 24 embryos (age: 35 to 45 min into nuclear cycle14)
as a function of fractional egg length. The inset shows a close-up of the transition region
with the positional error σx geometrically determined from the mean ḡ(x) and the standard
deviation σg of the profiles. B) Positional error for hb as a function of position, computed
using Eq. (3.15), for 100 bins along the AP axis. The dashed line is a reference for σx = 0.01
or 1% EL. Error bars are obtained by bootstrapping 10 times over N/2 embryo subsets. C)
Mean profile and standard deviation for kr from the same data set as in A. D) Positional
error for kr as a function of position (as in B). E) Three-dimensional representation of
hb and kr profiles from A and C as a function of relative position. Gray curve shows the
mean and standard deviations in the hb-kr plane; c.f. their joint distribution in Fig. 3.3A.
Black curve shows the joint hb-kr mean expression as a function of position x. F) Positional
error computed using Eq. (1.19) for a pair of genes, hb and kr, using their mean expression
behavior and covariance shown in E.
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For a single gene g, we compute the positional error for 100 equally spaced positions

along the AP axis, using

σx(x) = σg(x) |dḡ/dx|−1. (3.15)

At each point the error bars on the positional error are estimated by bootstrapping over

10 samples of size N/2, where N is the number of profiles collected for gene g. Fig. 3.4

illustrates this procedure geometrically for the case of hb (Fig. 3.4A) and kr (Fig. 3.4 C). The

positional error at a given x can be visualized as the AP distance between the intersection

points of ḡ(x) and a rectangle of width σg(x). The positional error is smaller in the regions

of high profile slope, where the variations in gene expression are reliably translated into

variations in position (Fig. 3.4 B and 3.4 D).

A similar analysis for a pair of genes is shown in Figs. 3.4 E and F. Note that the

optimal positional decoding performed with several genes (e.g., N = 2) at a given x does

not correspond to the positional error carried by the most informative gene at that position;

the combined error can be smaller than the individual errors due to the noise averaging by

the N readouts and the correlation structure of the profiles. Fig. 3.4 E and 3.4 F illustrate

how σx is constructed geometrically for the case of N = 2 genes (here hb and kr measured

simultaneously). The positional error at a given x can be visualized as the AP distance

between the positions of the intersection points of ḡ(x) and a cylinder whose base is the

ellipsoid in the {hb, kr} plane such that
∑

i,j(gi(x)− ḡi)[C−1(x)]ij(gj(x)− ḡj) ≤ 1/4.

3.3 Results

3.3.1 Information carried by individual genes and pairs

We applied the different information estimation methods described in the previous section

to measure the positional information carried by the individual gap genes, kni, kr, gt and

hb, as well as the six corresponding pairs (dorsal profiles, 35-45 minutes into cycle 14). The

results are summarized in Table 3.1, where we see that various estimation methods agree to

within 4% on average. The positional information carried by individual genes is always in

the range of 1.5-2.5 bits. This indicates that each gap gene provides more information about
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kni kr gt hb

DIR 1.67± .05 1.72± .05 1.65± .05 2.19± .04
FGA 1.60± .05 1.71± .06 1.64± .06 2.15± .05
SGA 1.66± .05 1.70± .05 1.64± .04 2.15± .04

kni/kr kni/gt kni/hb kr/gt kr/hb gt/hb

SGA 3.22 + 0.06 3.25 + 0.07 3.25 + 0.07 3.21 + 0.05 3.53 + 0.06 3.37 + 0.01

Table 3.1: Information (in bits) carried by single genes and gene pairs, using different
methods. For single genes we computed the information and the error bar using the
direct estimate (DIR), the first Gaussian approximation (FGA) and the second Gaussian
approximation (SGA), as described in the Materials and Methods section. As expected, the
first Gaussian approximation is a lower bound of the direct estimate. For the pairs, we only
used the second Gaussian approximation.

position than the traditional “decision threshold” that would separate the “on” and “off”

domains of expression. We will explore this result in detail later.

By comparing the information carried by pairs of genes with the sum of the informations

carried by each gene separately, we notice that pairs are redundant but that the redundancy

is small (15-20% on average). This is expected because gap genes are often expressed in

complementary regions of the embryo and will thus mostly convey new information about

position. Unlike our toy examples in Chapter 1, real gene expression levels are continuous

and noisy, and some degree of redundancy might be useful in mitigating the effects of noise,

as has been shown in other biological information processing systems. Taken together, we

see that positional information increases with the addition of the second gene by much more

than 0.5 bits, as would be expected for fully redundant case on theoretical grounds, and also

faster than for the theoretical case of non-redundant (but non-interacting) genes, where the

increase for the second gap gene would be limited to 1 bit [Tkacik et al., 2009]. The ability

to generate non-monotonic profiles of gene expression (e.g. bumps) is therefore crucial for

high information transmissions achieved in Drosophila gap gene network [Walczak et al.,

2010].

3.3.2 How much information does the embryo use?

If the expression profile of each gap gene were described by on/off domains with sharp

boundaries, not only would a single gene carry at most one bit of information, but four

genes taken together could carry at most four bits - and this would happen only if the
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Figure 3.5: Reproducibility of multiple pattern elements along the anteroposterior axis.
Top panel: optical section through the midsagittal plane of a Drosophila embryo with
immunofuorescence staining against Eve protein; scale bar is 100 µm. Middle panels:
normalized dorsal profiles of fluorescence in- tensity from 12 embryos selected in a 40 to 50
min time window after the beginning of nuclear cycle 14 (light blue lines); dorsal profile of
top panel embryo is in darker blue. Zooming in on a single peak (as shown at right), we can
measure the standard deviation of both the expression level and position of this element in
the pattern. Bottom panel summarizes results from such measurements on Even-skipped
(blue) and Runt (magenta), plotting the standard deviation of the position σx as a function
of the mean position x, together with a similar measurement on the reproducibility of the
cephalic furrow. Note that all of the elements are positioned with 1% accuracy or better.
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spatial arrangement of the different expression domains was carefully aligned to minimize

redundancy. Four bits of information corresponds to, at most, 16 reliably distinguishable

states encoded by these genes, which seems insufficient to account for the complex final

pattern. But how much information does the embryo really need, or use? At best, every

nucleus could be labelled with a unique identity, so that with N nuclei the embryo could

make use of log2N bits. Along the anteriorposterior axis, we can count nuclei in a single

midsagittal slice through the embryo, and in the middle 80% of the embryo where the images

are clearest we have N = 58± 4 along the dorsal side and N = 59± 4 along the ventral side,

where the error bars represent standard deviations across a population of 57 embryos in

nuclear cycle 14, corresponding to 5.9± 0.1 bits of information. But do individual cells in

fact know their identity? More precisely, are the elements of the anteroposterior pattern

specified with single cell resolution?

There are several experiments suggesting that elements of the final body plan of the

maggot can be traced to identifiable rows of cells along the anteroposterior axis [Gergen &

Wieschaus, 1986], which is consistent with the idea that each row of cells has a reproducible

identity. More quantitatively, we can ask about the reproducibility of various pattern

elements in early development, elements that appear not long after the expression patterns

of the gap genes are established. A classic case is the cephalic furrow, which can be observed

in live embryos and is known to have a position along the anteroposterior axis that is

reproducible with ∼ 1% accuracy (see, for example, [Gregor et al., 2007a]). Is the cephalic

furrow special, or can the embryo more generally position pattern elements with ∼ 1%

accuracy? The striped patterns of pair rule gene expression allow us to ask about the

position of multiple pattern elements, seven peaks and six troughs of expression along the

anteroposterior axis. As shown in Fig. 3.5, all of these elements have positions that are

reproducible to within 1% of the embryo length. This strongly suggests that all cells “know”

their position along the anteroposterior axis with ∼ 1% precision.

3.3.3 Decoding the positional information carried by the four gap genes

Do the four gap genes, taken together, carry enough information to specify position with

∼ 1% accuracy suggested in the previous section? To answer this, we start by looking
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Figure 3.6: Positional error as a function of position. Upper left panel: geometrical
interpretation of the positional error of a single gene at a given position. σx(x) is proportional
to the reproducibility of the profiles and is inversely proportional to the derivative of the
mean profile. The upper right panel summarizes the positional error carried by Hunchback
for a hundred points along the anteroposterior axis. Lower panel: total positional error
carried by the four gap genes (in black), from Eq. 1.19; Error bars are from bootstrapping.
For reference, the individual positional errors are plotted in lighter colors in the background.
Note that the total positional error is nearly constant and equal to 1% of the total egg
length.

76



more directly at how the information is encoded and to use the positional error σx defined

in Eq. 1.19. Measurements of σx are summarized in Fig. 3.6. Remarkably, the reliability

of position estimates based on the four gap genes is ∼ 1%, almost precisely equal to the

observed reproducibility with which pattern elements are positioned along the AP axis. This

is strong evidence that the gap genes, taken together, carry the information needed to specify

the full pattern. Further, this positional accuracy is almost constant along the length of the

embryo, which again is consistent with what we see in Fig. 3.5. This constancy emerges in a

nontrivial way from the expression profiles, the noise levels, and the correlation structure of

the noise. If we try to make estimates based on one gene, we can reach ∼ 1% accuracy in a

very limited region of the embryo, and estimates from the different genes have their optimal

precision in different places. The detailed structure of the spatial profiles insures that these

signals can be combined to give nearly constant accuracy.

Figure 3.7 gives us some clue on how the gap genes “tile” the AP axis and how this

constancy is achieved. By reading out single genes the nuclei can already achieve positional

errors of less than 1.5% egg length in specific regions, but can be very bad in determining

position in other regions of the embryo. Looking more closely, we note that the lowest

positional errors are consistently achieved in transition regions, where the expression level

changes steeply with position, and not in regions of stable response; in a way, the transition

regions can be thought of as mini-gradients that carry useful information. As we pointed

out in Chapter 1, the ability to use the transition regions is by no means obvious, but is a

consequence of the overall high levels of reproducibility achieved by the gap gene system.

We can easily imagine a fly that has the same mean profiles, but a different structure of

variability encoded in the covariance matrix Cij(x), such that transition regions contribute

no discriminatory ability and all positional information comes from properly decoding the

domains where the expression levels plateau.

Let’s now focus on the information itself. If the errors in estimating position really

are Gaussian, then according to Eq. 1.18 I = 〈log2[L/σx
√

2πe]〉, where L is the length

of the embryo and 〈. . . 〉 denotes an average over the possible position dependence of the

error σx. With σx/L ∼ 0.01, we have I ∼ 4.57 ± 0.02 bits. On the other hand, we can

use our measurements of the means and the covariance matrix as well as the Monte Carlo
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Figure 3.7: Positional error along the AP axis of the embryo. A) Map of the local positional
error as a function of position, for a segment in the embryo between 10-90% egg length. Each
row represents positional error from a single gap gene, except for the top row which shows
decoding for all 4 gap genes simultaneously. Information estimates using SGA are shown
next to each row. Shade of gray (colorbar) indicates the positional error (σx < 1.5% = black,
σx < 3% = grey, σx > 3% = white). B) Comparison of the regions where σx < 1.5% EL
(shaded regions) for each gene with the corresponding mean profile (lines), for kn (green),
kr (yellow), gt (orange), and hb (red). Consistently, the regions providing lowest positional
errors are the regions where gap gene expression changes quickly with position (transition
regions).

78



integration of the total entropy described in section3.2.3, and we find I = 5.0± 0.23 bits.

These estimates supports our approximations, and gives us confidence that the measurement

of σx on Fig. 3.6 really does characterize the encoding of positional information by the gap

genes.

We notice that our estimate of the positional information carried by the four gap genes

doesn’t exactly match the I = 5.9 bits that one would need to undoubtedly distinguish the

∼ 60 rows of cells along the dorsal side of the embryo (as explained in the previous section).

So, “where is the missing bit?”. What our results show is actually that the information

carried by the gap genes allows to decode ∼ 25 states which is roughly half of the number

of nuclei along the dorsal side of the embryo. However the distribution of σx suggests that

the information carried is uniformly distributed along these nuclei. So, the gap genes are

not specifying the position of every other nucleus but instead are providing just enough

information to each nucleus to decode its position with half an internuclear distance precision.

This result is all the more convincing that this is actually the positional accuracy that is

achieved a few minutes later by the pair-rule genes.

3.3.4 How much can the embryo achieve with on/off decoding

To better understand the previous results and contrast them with the picture where each gap

gene profile can individually be either “off” or “on”, but no information can be encoded in

the transition regions, we built a model as follows. We assumed that there exists a separate

threshold in the expression level of each of the four gap genes which separates the “on” and

“off” states for each individual profile of that gene. We can look for these threshold levels

computationally (by exhaustively trying all the settings) and find such a combination of

four thresholds that, were gap gene expressions really binary, the gap genes would provide

the largest amount of positional information. We argue that since this is the theoretical

maximum given the measured mean profiles and variances of gap gene expression, the fly

could not do better with binary expression levels and “on” / “off” domains alone.

In detail, we quantize each gap gene gi with an individual threshold θi that discriminates

the gene expression levels of each individual profile g
(j)
i into two (“on” if g

(j)
i > θi, “off”

if g
(j)
i < θi) and then search for the set of thresholds {θi} that maximize the information
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carried altogether by the four quantized gap genes, defined as in Eq. (1.8), where the {g}’s

are now 4-digit binary patterns (with 0 corresponding to “off” and 1 corresponding to “on”).

To compute the first term of the formula (total entropy), we quantize the mean profile

of each gap gene and define p({g}) as the occurrence frequency of the pattern {g} in the

10-90% EL region. To compute the second term of the formula (noise entropy), we notice

that p({g}|x) is 0 or 1 “almost everywhere”, except at each border k of the {g} domain,

which fluctuates with a standard deviation σx(k) = σg(xk) · |dḡ/dx|−1
x=xk

� 1. If we assume

these fluctuations to be Gaussian (as previously), then each border contributes by 2.6σx(k)

bits to the noise entropy (see Appendix). Now, we allow each individual threshold θi to

be 10, 20, . . . 90% of the maximum gene expression level and we exhaustively search for the

set of thresholds that maximizes the total information carried by the quantized profiles.

Figure 3.8 shows the binary gene expression domains, the corresponding 4-digit code, and,

the fluctuations of the borders of the binary patterns.

In this optimal binary representation, all gap genes carry less than one bit of information.

Furthermore, the total information does not exceed 2.8 bits, 30% smaller than 4 bits, the

maximum amount of information available in theory to 4 binary genes. Even in this best

case scenario, the nature loses more than one bit of information (and thus half of the

distinguishable states) compared to the available total capacity. The reason for this is the

uneven use of different expression combinations. Clearly, the information carried by the

quantized profiles is maximized when each of the 24 binary combinations is used with equal

probability (in this case, along ∼ 6% of AP length for each pattern) along the AP axis of

the embryo. What we see, however, is that patterns are used in region sizes that range from

1% EL (e.g. 0111) to 20%EL (e.g. 0011). This encoding not only decreases the positional

information available, but also means that the positional error is strongly nonuniform along

the AP axis: the uncertainty about the true position is very large in larger regions encoded

by the single combination.

In sum, even if we (or the fly) were to make an optimal partition of the expression profiles

into binary “on” / “off” domains, between a third and a half of total positional information

would be lost, as well as the ability to decode the position precisely anywhere along the

AP axis. This drop in the ability of the “binarized” patterning system to encode positional
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Figure 3.8: The binary view of the gap gene system. For each gap gene i, we quantize each

of the profiles g
(j)
i previously used such that the level of gene expression is “on” (or 1) if gi

is greater than a threshold θi, and 0 otherwise. Here we show the resulting domains of gene
expression (dark color bars) as well as their fluctuations (in grey) for a set of thresholds that
maximize the total information in the 10− 90% EL region (θkni = 0.1, θkr = 0.1, θgt = 0.1,
θhb = 0.4). For reference, the mean profiles are plotted in dim color in the background.
Information carried by the quantized profiles of the individual genes is shown on the left.
The joint pattern of gap gene activity at each position is represented by a four-digit binary
code (shown above), and the total information encoded jointly by the “on”/“off” gap gene
expression domains is computed as explained above.
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information is in part caused by the fact that single genes really carry much more than 1

bit of information and thresholding destroys this excess capacity. But even taking this into

account, we note that thresholding into domains does not decrease the ability of each single

gene to much below 1 bit; indeed, the genes on average encode still > 0.7 bits each (out of

1 bit maximum). What happens is that the resulting joint combination of patterns and

domains, if binary as assumed here, is far from optimal for encoding positional information

and reaching a low and stable positional error.

3.3.5 A signature of optimization?

The discussion thus far concerns the amount of information that actually is transmitted by

the levels of gap gene expression. But we know that the capacity to transmit information

is strictly limited by the available numbers of molecules, and that significant increases

in information capacity would require vastly more than proportional increases in these

numbers [Tkacik et al., 2009]. Given these limitations, however, cells can still make more or

less efficient use of the available capacity. To maximize efficiency, the input/output relations

and noise characteristics of the regulatory network must be matched to the distribution

of input transcription factor concentrations [Tkacik et al., 2008]. This matching principle

has a long history in the analysis of neural coding [Barlow, 1959,Laughlin, 1981,Brenner

et al., 2000], and in [Tkacik et al., 2008] it was suggested that the regulation of Hunchback

by Bicoid might provide an example of this principle. Here we consider the generalization

of this argument to the gap gene network as a whole. If we imagine that there is a single

primary morphogen, then the expression levels of the different gap genes, taken together,

can be thought of as encoding the concentration c of this morphogen. By analogy with

Eq. 1.19, these expression levels can be decoded with some accuracy σeff(c), which itself

depends on the mean local concentration. The key result of [Tkacik et al., 2008] is that,

when noise levels are small, all the symbols in the code should be used in proportion to their

reliability, or in inverse proportion to their variability. Thus, if we point to a cell at random,

we should see that the concentration of the primary morphogen is drawn from a distribution
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Pinput(c) =
1

Z
· 1

σeff
c (c)

(3.16)

where the constant Z is chosen to normalize the distribution. But the input is a morphogen,

so its variation is connected with the physical position x of cells along the embryo: we should

have c = c(x). Then if the cells are distributed uniformly along the length of the embryo,

the probability that we find a cell at x is just P (x) = 1/L, and hence we must have

Pinput(c) dc = P (x) dx =
dx

L
(3.17)

which implies that

Pinput(c) =
1

L

∣∣∣∣dc(x)

dx

∣∣∣∣−1

. (3.18)

We have two expressions for the distribution of input transcription factor concentrations:

Eq 3.18, which expresses the role of the input as morphogen, encoding position x, and

Eq 3.16, which expresses the solution to the problem of optimizing information transmission

through the network of genes that respond to the input. Putting these expressions together,

we have

Z

L
=

1

σeff
c (c)

∣∣∣∣dc(x)

dx

∣∣∣∣ = σx(x), (3.19)

where in the last step we recognize the equivalent positional noise σx(x) by analogy with

Eq 1.19. Thus, optimizing information transmission predicts that the positional uncertainty

σx(x) will be constant along the length of the embryo, as observed in Fig. 3.6. A more

detailed version of this argument is given in the Appendix.
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Conclusion

The final result of embryonic development appears precise and reproducible. Less is known

quantitatively about the degree of this precision and about the stages of development at

which precision first becomes apparent. Our central result is that, in the early Drosophila

embryo, the patterns of gap gene expression provide enough information to specify the

positions of individual cells with a precision of ∼ 1% along the anteroposterior axis. This

is the same precision with which subsequent pattern elements are specified, from the pair

rule expression stripes through the cephalic furrow, so that all the required information

is available from a local readout of the gap genes. The precise value of the information

that we observe is also interesting. It corresponds to any nucleus being able to locate it

self with an error bar that is smaller than the distance to its neighbor, but it not quite

large enough to specify the position of every cell uniquely. The difference between these

statements is that when we make an estimate with error bars, the estimate comes from

a distribution with tails, and the (small) overlap of the tails of these distributions means

that one cannot quite identify every cell. It is possible that cells do not quite have unique

identities or that the missing information is hiding in correlations among the errors at

different points. Although the gap genes encode position with an error bar, the difference in

positions coded by expression levels in neighboring cells could have a much smaller error

bar. While further experiments are required to settle this issue, we find it remarkable that

the gap gene expression levels carry so much information such that an enormously precise

pattern is available very early in development. The information that gene expression levels

can carry about position is limited by noise. Because the concentrations of transcription

factors are low, and because the absolute copy numbers of the output proteins are small,
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there are physical sources of noise that cannot be reduced without the embryo investing

more resources in making these molecules. Given these limits, it still is possible to transmit

more information through the gap gene network by “matching” the distribution of input

signals to the noise characteristics of the network. Although this matching condition is in

general complicated, in the limits that the noise is small it can be expressed very simply:

the density of cells along the anteroposterior axis should be inversely proportional to the

precision with which we can infer position by decoding the signals carried in the gap gene

expression levels. Since cells are almost uniformly distributed at this stage of development,

this predicts that an optimal network would have a uniform precision, and this is what we

find. This uniformity emerges despite the complex spatial dependence of all the ingredients,

and thus seems likely to be a signature of selection for optimal information transmission.
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Appendix A

Methods

A.1 Integration of the noise entropy for the gap gene quan-

tization

Here we show how to integrate the noise entropy part of the information in the case of the

gap gene quantization. For a given binary word {g}, p({g}|x) log2 p({g}|x) is zero for almost

all x except in the regions where p({g}|x) quickly transitions between 0 and 1. At a given

border k located in xk, we assume that the fluctuations of the transition positions of the

individual quantized profiles follow a Gaussian distribution of standard deviation σx(k)� 1

so that, near the border k, the conditional probability p({g}|x) can be written as an error

function:

p({g}|x) =

∫ x

−∞
dx′

1√
2πσ2

x(k)
exp

[
−(x′ − xk)2

2σ2
x(k)

]
(or the corresponding complementary function). We can then numerically integrate the

corresponding term in the noise entropy:

−
∫
dx p({g}|x) log2 p({g}|x) ' 1.3σx(k). (A.1)

At a given border, the two neighboring words each contribute by 1.3σx(k) bits so that

the border contributes in total by 2.6σx(k) bits to the noise entropy. Note that as the
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σx(k)’s go to zeros, the noise entropy term cancels, as expected.

A.2 Maximizing the flow of information through the network

A.2.1 Optimal input distribution

During the early developmental process, the positional information is orignally encoded

in some maternal gradients, namely Bicoid, Nanos and Torso, and flows through the gene

network. In this section we show that the constancy of the positional error σx(x) observed

previously is the consequence of maximizing this flow, suggesting that the gene network is

operating close to optimal capacity.

For the sake of simplicity, we consider the case where the information flows from a single

input transcription factor c to a set of N genes g1, . . . , gN . The information transmitted by

the input to the output is the mutual information between the distributions of c and {g}

and can be written as

I (c; {g}) =

∫
dc

∫
dg P (c, {g}) log2

[
P (c, {g})
P (c)P ({g})

]
= −

∫
dc Pinput(c) log2 Pinput(c)

−
∫

dg Poutput({g})
[
−
∫

dc P (c|{g}) log2 P (c|{g})
]

(A.2)

with

Poutput({g}) =

∫
dc Pinput(c)P ({g}|c). (A.3)

Using Bayes’ rule we can rewrite

P (c|{g}) = P ({g}|c)Pinput(c)/

∫
dc Pinput(c)P ({g}|c) (A.4)

and it becomes clear that the transmitted information depends only on two factors: the

distribution of inputs Pinput(c) and the structure of the gene network encoded in P ({g}|c).
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If this the first is properly adjusted according to the second, then the gene network can

maximize the positional information transmission from the input to the output.

From now, we are going to assume that the noise in the system is small so that the

information can be written

I (c; {g}) = −
∫

dc Pinput(c) log2 Pinput(c)

−
∫

dc Pinput(c)

[
−
∫

dc P (c|{g(c)}) log2 P (c|{g(c)})
]
. (A.5)

To find the distribution of inputs Pinput(c) that maximizes the information flow satisfies∫
dc Pinput(c) = 1, we introduce a Lagrange multiplier and solve

δ

δPinput(c)

[
I (c; {g})− λ

∫
dc Pinput(c)

]
= 0, (A.6)

which leads to

Popt(c) =
1

Z
exp

[
ln(2)

∫
dc P (c|{g(c)}) log2 P (c|{g(c)})

]
, (A.7)

where Z is a normalization constant such that
∫

dc Pinput(c) = 1. Now if we make the same

assumption than in the rest of this article, which is that the noise is Gaussian

P (c|{g}) =
1√

2πσ2
c (g)

exp

[
−(c− c(g))2

2σ2
c (g)

]
, (A.8)

then we have that
∫

dc P (c|{g(c)}) log2 P (c|{g(c)}) = 1/2 log2[2πσ2
c (g)] and equation A.7

becomes

Popt(c) =
1

Z ′
· 1

σ2
c (g)

, (A.9)

where Z ′ is another renormalization constant. As discussed in [Tkacik et al., 2008], this

tells us that the system can optimize information transmission by using the symbols c in

proportion to their reliability.
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A.2.2 Constancy of the positional error

If the maternal input is an “image” of the position and that the nuclei are uniformly

distributed along the anteroposterior axis, we must have:

P (c) dc = P (x) dx =
dx

L
. (A.10)

By plugging this in equation A.9, we obtain

σx(x) =
Z ′

L
= Cte. (A.11)

Thus, optimizing the information flow through the network predicts that the positional

error should be constant along the embryo, as observed in figure 3.6.
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