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The Impact of Petri Nets on System-of-Systems 
Engineering 

Kirsten Sinclair 
 

Abstract 
 
The successful engineering of a large-scale system-of-systems project towards 
deterministic behaviour depends on integrating autonomous components using 
international communications standards in accordance with dynamic requirements. 
To-date, their engineering has been unsuccessful: no combination of top-down and 
bottom-up engineering perspectives is adopted, and information exchange protocol 
and interfaces between components are not being precisely specified. Various 
approaches such as modelling, and architecture frameworks make positive 
contributions to system-of-systems specification but their successful implementation 
is still a problem.  
 
One of the most popular modelling notations available for specifying systems, UML, 
is intuitive and graphical but also ambiguous and imprecise. Supplying a range of 
diagrams to represent a system under development, UML lacks simulation and 
exhaustive verification capability. This shortfall in UML has received little attention 
in the context of system-of-systems and there are two major research issues: 
 
1. Where the dynamic, behavioural diagrams of UML can and cannot be used to 
model and analyse system-of-systems 
2. Determining how Petri nets can be used to improve the specification and analysis of 
the dynamic model of a system-of-systems specified using UML  
 
This thesis presents the strengths and weaknesses of Petri nets in relation to the 
specification of system-of-systems and shows how Petri net models can be used 
instead of conventional UML Activity Diagrams. The model of the system-of-systems 
can then be analysed and verified using Petri net theory. The Petri net formalism of 
behaviour is demonstrated using two case studies from the military domain. The first 
case study uses Petri nets to specify and analyse a close air support mission. This case 
study concludes by indicating the strengths, weaknesses, and shortfalls of the 
proposed formalism in system-of-systems specification. The second case study 
considers specification of a military exchange network parameters problem and the 
results are compared with the strengths and weaknesses identified in the first case 
study.  
 
Finally, the results of the research are formulated in the form of a Petri net 
enhancement to UML (mapping existing activity diagram elements to Petri net 
elements) to meet the needs of system-of-systems specification, verification and 
validation. 
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Chapter 1 Introduction 
 

1.1 Context 
The engineering of modern, dynamic, large-scale distributed systems so that their 
overall behaviour reflects stated requirements is an achievement much sought after in 
both private and public sectors. These complex systems, or systems-of-systems, are 
uniquely composed of multiple (mainly legacy) component parts integrated 
dynamically using standardised communications to deliver a particular application. 
Presently, this integration is difficult and unsuccessful [1, 3, 124], with verification 
and validation of the resulting system-of-systems only undertaken post-
implementation (when it is often too late). Failure to meet the required outcomes 
impacts negatively on cost, safety, reliability, and worse case, human life.  
 
Consequently, it is desirable for the problem and solution design specification of these 
large-scale systems-of-systems to offer a high degree of reassurance that the physical 
implementation achieved using the design will preserve the functional and non-
functional requirements of the co-ordinator(s). This requires a suitable means of 
capturing, verifying and validating the design of the system-of-systems prior to its 
actual solution manifestation. 
 
The design specification of a system can be produced using various methods 
including textual documentation, or modelling languages such as the de-facto Unified 
Modelling Language (UML) [11]. Complete, consistent, and correct design 
specification requires consideration of the use of UML in the context of large-scale 
system-of-systems problem and solution specification and where the Petri net formal 
notation can be used to enhance UML.  
 

1.2 Area of Interest 
The term ‘system-of-systems’ has been in use for at least a decade but as yet there is 
still no universal agreement on a definition. Definitions in the literature have often 
been flawed, failing to differentiate between a system-of-systems and a collection of 
large-scale systems, or treating a system-of-systems as similar to any other system. 
System-of-systems is defined for the thesis to show the concept is different to that of a 
traditional system.   
  
In order to provide a definition of a system-of-systems, it is necessary to start by 
considering definitions for a system.  
 
The concept of a system arose from the 1940’s when several disciplines and 
technologies were integrated to achieve goals which otherwise would not have been 
achievable. For example, integration of high and low altitude radars, ground and air 
communications links and human decision makers for the Battle of Britain can be 
viewed as an early complex system. In a complex system, the behaviour of its 
elements and how they act together to form the behaviour of the whole must be 
understood. Elements of a complex system can be composed of simple or complex 
systems. Bar-Yam [26] suggests that: 
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‘the complexity of a system is the amount of information needed in order to describe 
it. The complexity depends on the level of detail required in the description’. 
 
ISO/IEC Standard 15288 [5] defines a system as a: 
 
‘combination of interacting elements organised to achieve one or more stated 
purposes’ 
 
This definition is recursive and implies that a system defined in this way can apply to 
both the smallest subcomponent and the largest aggregation of systems. Another 
definition of a system provided by the International Council on Systems Engineering 
(INCOSE) [6] reinforces this:  
 
‘a system is a construct or collection of different elements that together produce 
results not obtainable by the elements alone. The elements, or parts, can include 
people, hardware, software, facilities, policies, and documents; that is, all things 
required to produce systems-level results. The results include system level qualities, 
properties, characteristics, functions, behaviour and performance. The value added by 
the system as a whole, beyond that contributed independently by the parts, is 
primarily created by the relationship among the parts; that is, how they are 
interconnected’.  
 
[6] emphasises that a system produces results unachievable by the components alone 
and is further illustrated by Rechtin [33] in this example: 
 
‘imagine that your automobile was completely disassembled and laid out on your 
driveway. All the elements individually would be just as before, all in working order. 
But you would have no transportation. Transportation, the unique system function, 
only exists when all the elements are connected together and function as a whole’. 
 
A system can be seen as an entity that is capable of interacting with its environment 
(i.e. everything other than the system) and can react differently over the progression 
of time to the same input activity. For example, in a timer-controlled heating system 
the sensed temperature depends on the current time. Together with the thermostat, the 
sensed temperature dictates whether or not the heating system is switched on. As a 
result, the system can react in a different way at different times to the same sensed 
temperature. Therefore, a system can be viewed as a collection of parts whose 
behaviour is dictated by the interfaces that define its boundary. System state can also 
influence its potential behaviour. It is this behaviour that the user of a system is 
concerned with, i.e. the activity at system interfaces.  
 
An interface is defined as a point of interaction between a system and its environment. 
An interface can be an output (information is produced for the system environment), 
an input (information is taken from the environment) or a bi-directional interface. 
Communication among systems is carried out using messages, i.e. data structures 
formed for the purpose of communication among systems. A system’s behaviour is 
the sequence of send and receive operations and is normally characterised by send 
operations. Links between the interfaces of two or more interacting systems are 
known as connections and these are governed by a set of rules which are defined as 
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protocols. Each interface has a set of attributes associated with it which control the 
possible types of interaction. For example, information encoding, structure, meaning 
and timing of information exchanges control interaction at the interface. Interfaces 
must be compatible (directly or following adaptation) in order to integrate them.  
 
Recursive decomposition can be performed on a system to obtain its interacting parts. 
These may also be systems that can be further decomposed. This process can be 
stopped when the details of a component system are of no relevance to the particular 
project. Another term, ‘system of interest’, also helps to specify the level of detail the 
discussion of a system is taking place at. ISO/IEC Standard 15288 [5] defines ‘system 
of interest’ as the system whose lifecycle is under consideration. Usually systems 
contain subsystems which are made up of components which in turn contain units. A 
unit is the smallest managed part. For example, a sensor system may comprise an 
information processing subsystem (controller) and a mechanical subsystem (sensor 
element). The controller records the sensed information and passes the information to 
the sensor interface in a message.  
 
Over time, systems have grown to include many systems of increased complexity and 
descriptions like ‘subsystem’, ‘component’, and ‘unit’ become recursive. ISO/IEC 
Standard 15288 [5] uses the term ‘system element’ to make the concept of a system 
more flexible and describe the parts from which a system of interest is composed. 
Therefore, depending on the system of interest, system elements can be systems in 
their own right, subsystems, components or units. 
 
The following definition from IEEE Standard 1220 [7] reinforces that a system also 
has a lifecycle and implied supporting infrastructure: 
 
‘a set or arrangement of elements [people, products (hardware and software) and 
processes (facilities, equipment, material and procedures)] that are related and whose 
behaviour satisfies operational needs and provides for the lifecycle sustainment of the 
Products’.  
 

1.2.1 Approach for Developing Systems  
The effort to understand the lifecycle of systems has been through systems 
engineering. Systems engineering as a discipline was born during the Second World 
War in order to cope with the increase in complexity of systems. It uses a process 
model to support a system’s lifecycle. INCOSE [6] define systems engineering as: 
 
‘an engineering discipline whose responsibility is creating and executing an 
interdisciplinary process to ensure that the customer and stakeholder's needs are 
satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner 
throughout a system's entire life cycle’.  
 
It is an interdisciplinary approach concerned with the design, architecting and 
integration of elements to form a system. Systems engineering aims to address the 
business and technical needs of all system owners by delivering a product which 
meets their needs. The process involved uses a management process to organise the 
technical effort and is usually comprised of seven tasks: state the problem; investigate 
alternatives; model the system; integrate; launch the system; assess performance; and 
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re-evaluate. The various technical stages are linked via models such as the ‘Waterfall 
Model’ or ‘Vee Model’. 
 
In systems engineering efforts there are usually several systems involved. These are: 
the system that the user operates (‘end product’); the system that supports the end 
product (‘enabling system’); the system that is used to develop the end product 
(‘process system’); and systems for test, deployment, training and management. Each 
of these are designed and built using methods, toolsets and quality assessments. 
Systems engineering is a process that is comprised of activities that define the 
requirements for a system, transform these requirements into a system using 
development and deploy the system operationally. The systems engineer adopts a 
process oriented view of these activities and takes into account the needs of the 
customer, system implementation team and systems to be integrated.  
 

1.2.2 Characteristics of a Traditional System 
In summary, traditional deterministic systems exhibit the following characteristics:  
 
1. Formal requirements engineering with traceability from requirements to design 

(formal is taken here to mean an established process, whereas the term 'formal 
method' relates to mathematically-based techniques for system specification). 

2. Architecture and design well understood. 
3. Application of standard processes to building them by a central authority. 
4. Availability of staff trained in systems engineering. 
5. Support toolsets (such as Integrated Development Environments) for their 

construction. 
6. Evolution done by well understood process. 
7. Application of models to link technical stages e.g. Vee Model. 
8. Verification, validation and testing process, technologies and toolsets well 

understood and practised with available statistical results. 
9. Metrics and optimisation of process well understood e.g. Capability Maturity 

Model Integration (CMMI) has several process models which can be used to 
refine an organisation’s systems engineering processes. 

10. Well understood problem areas. 
11. Autonomy is exhibited by the system as a whole rather than its parts. 
12. Parts are engineered purposely for the system of interest and may not be useful 

in any other system. 
13. Connectivity is engineered into the system and normally kept to a minimum 

between subsystems. 
14. Desirable behaviour is designed for and undesirable behaviour reduced via 

testing. This includes provision of fault tolerance, essential for many real-time 
systems.  

 

1.3 The System-of-Systems Concept 
Historical applications of the system-of-systems term (mainly within defence sector 
applications) have existed for decades. Projects including communications satellites, 
space flight and nuclear-powered submarines are classified as systems-of-systems or 
complex systems with increased technological risk, design constraints and auditing.  
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1.3.1 Characteristics of Complex Systems 
Expanding on the definition of complex systems provided earlier in section 1.2, 
Sheard [27] defines a complex system as: 
 
'…systems that do not have a centralising authority and are not designed from a 
known specification, but instead involve disparate stakeholders creating systems that 
are functional for other purposes and are only brought together in the complex system 
because the individual "agents" of the system see such co-operation as being 
beneficial for them' . 
 
Sheard [27] goes on to summarise a number of characteristics for complex systems: 
 
1. Their structure and behaviour is not deducible or inferable from the structure and 
behaviour of the component parts. 
2. Their elements adapt to the environment as they evolve. 
3. They have a large number of autonomous, heterogeneous elements. 
4. They display emergent macro-level behaviour from the actions and interactions of 
the individual agents. 
5. They exhibit non-deterministic behaviour. 
6. They include not only component systems but also the designers and users of the 
component systems. 
7. They are not green field projects where the development begins at the same time. 
 
Autonomous is taken here and in the remainder of this document to mean elements 
capable of independent action or decision-making. From the definitions and 
characteristics above for complex systems it would seem non-deterministic system-of-
systems are complex systems. This is further reinforced by Keating et al [9]. They 
summarise the definitions for system-of-systems suggested by several researchers and 
state their view of a system-of-systems as being:  
 
‘comprised of multiple autonomous embedded complex systems that can be diverse in 
technology, context, operation, geography and conceptual frame’.  
 
However, it is not clear from this definition how a system-of-systems differs from a 
system. The Defence Industrial Strategy [21] uses this definition for a system-of-
systems:  
 
‘these contain systems which have purpose and are viable independent of the System-
of-Systems, but which can when acting together perform functions unachievable by 
the individual systems acting alone. For instance, the future aircraft carrier, combining 
its aircraft carrier group with its own sensors, communications and command systems 
and weaponry and interacting with wider networks, represents a System-of-Systems’. 
 
Caffal et al [8] define system-of-systems as:  
 
‘an amalgamation of legacy systems and developing systems that provide an enhanced 
military capability greater than any of the individual systems within the system of 
systems’. 
 
Gaudel et al [10] suggest this definition:  
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‘A system constructed from autonomous component systems, where autonomous 
means independence with respect to existence, operation and/or evolution’. 
 
The key points from these definitions would appear to be the ability of the component 
systems to function independently of one particular system-of-systems and that 
system-of-systems are an integration of legacy and new technology systems.  
 
Certain attributes of systems are particularly relevant to their integration into a 
system-of-systems and relate to autonomy, controllability and encapsulation. 
Autonomy is concerned with independence of a component system in relation to its 
existence, operation and evolution. It is important to discover whether the component 
system was purposely built for one particular system-of-systems (custom-off-the-
shelf) or re-used (legacy component). Also, component systems involved in a system-
of-systems can operate and evolve under independent management (controlled by 
service level agreements), under no contract or under the same control as the system-
of-systems. Unless the component system has been specifically built for the system-
of-systems, information on the following may not be readily available: construction 
and verification methods used by designers; assurance relating to dependability, 
security and safety; formal semantics of the services offered by each component 
system; and adaptability of the component systems. In combining the systems 
together, systems engineering practice recommends hiding complex connectivity 
detail between elements through encapsulation. In a system-of-systems, connectivity 
needs to be established between legacy and new systems. This implies that it may be 
necessary to expose internal element details to facilitate connectivity.  
 
It is likely that each autonomous legacy system was developed according to its own 
rules and conventions concerning data structure, information exchange protocols and 
error handling. It is also likely that any legacy systems to be integrated will be 
incompatible at the connection level. In this case, the connection has to try and 
reconcile these conventions to enable communication (an additional requirement of 
the system-of-systems may be to tolerate such failures of component systems).  
 

1.3.2 Characteristics of a System-of-Systems 
A system-of-systems can be seen as having similar characteristics as those of a 
complex system. DeLaurentis et al [2] confirm that a system-of-systems is not merely 
‘a simplistic box-inside-a-box approach’ (e.g. a power supply unit within an aircraft) 
but that there are distinguishing traits associated with them. The traits associated with 
a system-of-systems are described by Maier [4], Boardman et al [22] and DeLaurentis 
et al [2] as: 
 
1. Heterogeneity: each component system is distinct with different important 

characteristics and can operate to different timescales.  
2. Emergence: a system-of-systems exhibits capability that its component systems 

cannot achieve independently or as a subset. Dyson [12] suggests 'Emergent 
behaviour is that which cannot be predicted through analysis at any level 
simpler than that of the system as a whole. Emergent behaviour, by definition, is 
what's left after everything else has been explained'. Fisher [13] describes 
emergent behaviour as '..actions that cannot be localised to any single 
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component of the system..' and '..the unavoidable result of interactions among 
autonomous entities and thus will occur in systems of systems whether by 
accident or intention'. Fisher [13] labels the emergent products or services of 
these interactions between autonomous constituents as 'cumulative effects' 
where constituents are any automated or human participant. 

3. Operational and Managerial Independence: component systems within a system-
of-systems exhibit ‘autonomy’ in that they are able to function usefully alone 
and their behaviour may differ from that fulfilled by the system-of-systems. 
Component systems are usually acquired individually. 

4. Evolutionary Behaviour: component systems can be added, amended or 
withdrawn over time.  

5. Geographical Distribution: component systems are often geographically 
dispersed and are likely to exchange information (not physical mass or energy) 
via communication networks. 

6. Inter-disciplinary: system-of-systems typically integrate a variety of engineered 
systems using many disciplines (engineering, game theory, uncertainty, 
mathematics, economics and management). 

7. System of Networks: rules of interaction govern the connectivity between 
component systems and the topology can change over time. 

8. Belonging: component systems opt to join based on a cost-benefit basis, belief 
in the overall system-of-systems goal, and to try and enhance their own goals. 

9. Diversity in system-of-systems function: achieved through component system 
autonomy, belonging and open connectivity. 

 
In addition, there are two other traits: 
 
10. Funding: planning, incentive and budgeting systems are often not synchronised 
with the development of the system-of-systems [31].  
11. Verification and validation: there is no method for verifying and validating the 
system-of-systems prior to implementation. Verification and validation normally takes 
place post-implementation when it is too late.  
 
These traits are now examined in more detail below.  
 
For operational and managerial independence, a system-of-systems is composed of 
components capable of independent action or decision-making (i.e. autonomous 
elements). If a system-of-systems is decomposed, each component could perform 
independently of the others and be useful in its own right (i.e. has ‘a life of its own’). 
In contrast to the earlier Rechtin [33] example of a car in section 1.2, in a system-of-
systems the individual components would not remain laid out on the driveway for 
assembly. Able to operate when disassembled from the whole, the elements have their 
own purposes independent of each other and are acquired, integrated and managed 
separately. Examples fulfilling this characteristic are the internet and military joint 
operations where different agencies own different systems in each system-of-systems. 
 
As well as autonomous elements, another important enabling concept in system-of-
systems is communication between these elements. In traditional systems engineering, 
integration is a centrally controlled process used to combine elements into a system. 
With a system-of-systems, autonomous elements can only contribute to system-wide 
goals via co-operative interactions with other elements. The process used to combine 
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autonomous elements to form the system-of-systems is interoperation. Interoperation 
methods should take into account that system-of-systems do not have clearly defined 
boundaries; all outcome information is often unavailable; requirements are dynamic 
and imprecise; centralised control is unlikely; system-of-systems are expected to be 
resilient to unreliability in other elements and unexpected events external to the 
system; and the continuous adaptive, evolving and emergent behaviour of a system-
of-systems is directly influenced by human elements. 
 
Continuous evolutionary development in system-of-systems is also enabled by 
operational and managerial independence. A system-of-systems is not fully formed or 
complete and purposes are added or modified with accumulated experience. 
Autonomy of elements means each can be designed, implemented and evolved 
independently of the systems in which it will be integrated. These independently 
operated elements with evolving purpose and structure interact with other elements 
they have no control over. In traditional systems, evolution was rarely considered as 
an integral part of their development. Two forms of evolution must be considered 
within a system-of-systems: evolution of the elements and evolution of the system-of-
systems as a whole. 
 
In system-of-systems, evolution of independent elements greatly increases the 
complexity of their interactions with other elements as they are developed or 
upgraded on uncoordinated timescales. This evolution also includes elements 
associated with information exchange, i.e. the protocols and interfaces. Since there is 
no comprehensive capture of the interface and protocol requirements for a system-of-
systems, there is no means of ensuring that its elements achieve adequate interactions 
or interoperability with other elements.  
 
The internet demonstrates evolutionary behaviour. Computers and networks offering 
new services are frequently introduced or modified. The World Wide Web 
Consortium (W3C), and a collection of owners (developers, and users) collaborate via 
bottom-up discussion to produce the standards (Request for Comments or RFCs) by 
which the world wide web operates.  
 
Evolution, and operational and managerial independence are also encouraged by 
geographic distribution of elements (but can also occur without it). Here, individual 
elements can be distributed over large geographic areas exchanging information and 
producing emergent behaviour as seen in the case of the internet. 
 
The earlier descriptions of emergent behaviour in section 1.3.2 are unclear as to 
whether it can be predicted or analysed. Global properties can be service-based (e.g. 
performance, or safety) or product-based (e.g. electricity generation from a national 
power grid). An example of emergent behaviour is road congestion during rush hour 
where slow progress emerges as a global, service-based property of the road system. 
Here, the congestion can be reasonably predicted based on the number of vehicles 
involved but it may be extremely difficult to analyse and explain exactly how this 
global property was achieved. Other examples of emergence include: trees and their 
forest; a mobius strip where one-sidedness is the emergent property obtained by 
twisting and attaching the ends of a rectangular strip of paper; an orchestra using its 
components to produce a symphony; military network-centric operations, e.g. the 
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networking of sensors, decision-makers and platforms for shared situational 
awareness and improved decision-making.  
 
Recent public sector approaches to procurement aim to move the focus away from 
specific individual systems meeting particular performance requirements to solutions 
emerging to meet broad sets of needs or capability (e.g. vision for Air Traffic 
Management or the US Army Future Force/UK Future Integrated Soldier 
Technology). Capability requires the co-operation of multiple constituent systems 
within a system-of-systems. It is anticipated that this approach will enable 
organisations like the military to prepare for the unknown as it is unlikely all required 
information and collaborations will be known in advance. 
 
In the defence sector, systems to support military strategic vision are realised through 
defence acquisition initiatives such as the UK Ministry of Defence's (MoD) 'Smart 
Acquisition' initiative offering tools and processes within the associated Acquisition 
Operating Framework [14]. The goal of smart acquisition is to:  
 
'…acquire defence capability faster, cheaper, better and more effectively integrated'.  
 
Here, defence capability is defined by the MoD Acquisition Operating Framework 
[14] as: 
 
'the ability to generate an operational outcome or effect in the context of defence 
planning, Capability is the enduring ability to generate a desired effect'.  
 
This means military equipment should no longer be replaced on a like-for-like basis. 
Instead, the acquisition operating framework tries to ensure delivery of fully 
integrated defence solutions. When a gap in capability is identified between predicted 
capability requirements and those covered by ongoing projects and existing systems, 
the acquisition lifecycle process is invoked to explore, procure and manage capability 
solutions. Within the acquisition operating framework, systems are specified and 
procured through independent projects to meet their own set of user requirements 
within established time and budgets. Ideally, military strategic vision will then be 
realised by combining the effects of these independently acquired systems into the 
desired defence capability.  
 
Given the independence of component systems and the aims of smart acquisition, 
there are still funding issues for systems-of-systems. Unlike traditional systems 
engineering projects, systems-of-systems (particularly in the defence sector) are 
differentiated by the huge number of legacy systems from which they will be 
composed. Defence system-of-systems' requirements tend to have a much shorter 
lifecycle than that of the entities developed to realise them [68, 14]. These legacy 
entities are the result of lengthy, expensive procurement processes. When it comes to 
integrating these legacy and new technology entities, funding has tended to be 
piecemeal [15] with a lack of co-ordination between the agencies involved and 
appreciation of the additional resources needed to integrate and realise the overall 
system-of-systems from these component systems. Consequently, projects such as 
Future Integrated Soldier Technology have been delayed and procurement budgets 
eroded even further [16].  
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The lack of co-ordination mentioned above is not helped by the fact procurement of 
component systems and subsequent trade-off analysis according to capability 
demands clear understanding of the particular defence problem being addressed. 
Smart acquisition uses systems engineering processes to help system through-life 
management and is characterised by the MoD Concept, Assessment, Development, 
Manufacture, In-Service and Disposal (CADMID) initiative. The objective of systems 
engineering is to steer practitioners towards demonstrating that the implemented 
system meets the requirements expressed by the customer. The 'Vee' Model [18] is 
often used within CADMID to decompose the system lifecycle from customer 
requirements to detailed system level requirements and then compose the elements 
back into an operational system. The 'Vee' Model refers to verification (has the system 
been built in the right way?) and validation (has the right system been built?) between 
the decomposition of the system levels on the left hand side of the model and the 
composed system on the right hand side of the model. In the workshop summarised by 
[31], one of the key issues related to requirements management for a system-of-
systems was that:  
 
'there is no method for validating and adjudicating interoperability requirements in the 
documentation process; interoperability requirements are not defined early or 
identified as a common development goal'. 
 
Another key issue reported them as being: 
 
'not clearly documented or configuration controlled/managed; they cannot be further 
allocated, derived, or met'. 
 
A separate issue is the fact that where requirements are captured, it is usually in static, 
textual format which can be ambiguous, inaccurate, lengthy, incomplete, and difficult 
to comprehend. Consequently, within defence, it is normally tangible, operational 
analysis that is relied upon during the lifecycle of a system to decide between 
alternative solutions. Modelling and simulation for validation of intangible design 
seem to be in their infancy in terms of their potential to system-of-systems 
engineering [19].   
 
From the definitions and discussion of a system it can be generalised that a system-of-
systems is a system in the sense that both are made up of parts, relationships and an 
end result which is greater than the sum of its parts. However, using the 
characteristics in this section associated with a system-of-systems, it can be seen that 
it is possible to differentiate between a traditional system and a system-of-systems. 
Composition of a traditional deterministic system involves a greater degree of pre-
meditation and control within the established systems engineering framework. 
Composing systems-of-systems from predominantly legacy components (and new 
technology systems) to fulfil a desired need is much more challenging.  
 
In a system-of-systems, a large number of integrated autonomous components exhibit 
behaviour not necessarily present in any one of them and each is likely to be managed 
separately from the system-of-systems. Here, an element of uncertainty prevails as a 
set of component systems co-operate to form a system-of-systems with ability 
perceived to be far superior to that of a mere component system. These diverse 
component systems co-operate by forming their own (dynamic) connections between 
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interfaces within a communication infrastructure but there is no assurance in place 
that the required behaviour from the co-operation is actually achieved. There is also 
ambiguity in terms of the funding of such co-operations and resulting incentive for 
achieving successful co-operation amongst component systems. 
 

1.3.3 Thesis Definition of System-of-Systems  
The previous discussion leads to a suggested definition of a system-of-systems for the 
purposes of this thesis as: 
 
‘a large-scale system engineered for desirable behaviour from autonomous component 
systems that have existence, and purpose beyond that of one particular system. By 
forming connections using well-defined interfaces and protocols, these diverse, 
independently owned component systems create a series of stable states of 
deterministic system-of-systems behaviour. Typically, the component systems can be 
part of multiple systems-of-systems’.  
 

1.3.4 Summary 
The concept of system-of-systems now appears to be firmly recognised as a particular 
kind of modern, large-scale system and a consequence of advances in computing and 
communications technology. Using several characteristics unique to systems-of-
systems (although it is not a requirement for a system of interest to have them all), 
many modern systems are classifiable as systems-of-systems rather than traditional 
systems.  
 
It is highly unlikely that a system-of-systems will be designed and built completely 
anew. Typically, it will be assembled from shared, reusable component systems 
developed for multiple purposes. 
 
The following conclusions can be drawn between a traditional system and a system-
of-systems: 
 
Feature Traditional System System-of-Systems 
Elements All known and visible. Dynamic and often unknown at 

requirements, design, or build 
time.  

Purpose Known by system owner and 
elements. 

Behaviour spectrum ranging 
from fully-engineered to fully 
emergent (and continuously 
evolving). Purpose can be 
determined co-operatively, and 
may be unknown by elements. 

Control Hierarchical structure and 
centrally-controlled by a system 
owner. 

Element owners are unlikely to 
have control over usage of their 
element within the system-of-
systems. 

Requirements Managed by system owner and 
tend to be detailed system 
specifications. 

Inadequate requirements 
specification and ownership at 
system-of-systems problem and 
solution design level. 
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Feature Traditional System System-of-Systems 
Ownership All elements are managed by 

system owner. 
Elements are managed 
independently and co-ordinated 
for the system-of-systems. 

Boundaries Clearly bounded. Unbounded and may be part of 
larger system-of-systems. 

Visibility All structure can be seen and 
managed. 

Structure likely to be beyond 
control and visibility. 

Unification Centrally controlled integration 
process. 

Interoperation between 
elements. 

Standards Standard processes for 
development, and systems 
implement relatively stable 
standards. 

No standard development 
process. System-of-systems 
implement relatively stable 
standards across a wider set of 
component systems. Standards 
are key to interoperability. 

Interfaces and Protocols Connectivity tends to be 
minimised and uses well-
defined, relatively stable 
interfaces and protocols. 

Key enabler of interaction 
between component systems. A 
large number of (mainly legacy) 
component systems implement 
relatively stable interfaces and 
protocols. Inadequate capture of 
interface and protocol 
requirements for system-of-
systems. 

Verification and Validation Well understood processes for 
testing supported by 
technologies and toolsets to help 
ensure undesirable behaviour 
reduced. 

Testing normally carried out 
post-implementation in ad-hoc, 
trial-based manner (at the 
systems-level). Inadequate 
verification and validation at the 
system-of-systems problem and 
design level. 

Funding Single source of funding. Multiple sources of funding 
make it difficult to co-ordinate 
resources for development of 
system-of-systems. 

Table 1.1 ‘Why Isn’t This Just a Scaling Issue?’ adapted from Smith [23] pp.15-17 

 
In discussing systems that are composed of systems, different terms such as ‘system-
of-systems and its component systems’ or ‘system and its subsystems’ could be used. 
Here, ‘system-of-systems and its component systems’ is used to describe systems in 
which the components are systems and ‘system’ is used to refer to systems in general. 
 
Although systems-of-systems have been around for at least fifty years, it is clear from 
Table 1.1 that the main problems in their engineering surround requirements 
specification, interfaces and protocols specification, and verification and validation of 
the design specification. These are summarised as follows: 
 
1. There is no adequate capture of their problem and solution design specification 
(particularly information exchange specification) at the system-of-systems level.  
2. Assurance that the design will lead to desirable implemented behaviour (through 
verification and validation) is also lacking. 
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1.4 Discussion of Problem 
To help meet the need to successfully engineer systems-of-systems towards 
deterministic behaviour, this thesis addresses the problem of their behaviour 
specification, together with verification and validation of this design specification in 
order to provide assurance that the physical implementation of the design will behave 
as expected. 
 
Organisations must respond to continuous change, especially in information 
technology, if they are to compete, and thrive. Consequently their mission strategies 
seek to take advantage of new technology as quickly as possible. Ultimately, it is the 
flexibility offered by the integration of (existing and new technology) individual 
systems that will enable collection, processing and delivery of information needed to 
support organisational decision processes in a timely manner. Core to this industry 
vision is the successful engineering of large-scale systems-of-systems which behave 
as desired. Unfortunately, deficiency in interoperability between component systems 
is the persistent problem that has plagued such integration.  
 
The engineering and implementation of systems-of-systems provide organisations 
with a means of responding quickly to changes in their operational environment. For 
example, in the defence sector, systems-of-systems such as the US Army Future 
Combat Systems program (part of the US Army Future Force capability initiative) 
[20] aims to exploit advances in communications technologies to integrate soldiers 
with ground and air platforms by 2014. Component systems include the 
communications network, soldier, and fourteen independent manned and unmanned 
combat systems. Benefits of the integration are expected to include: improvements 
regarding speed and accuracy of operations; the ability of individual component 
systems to be configured in support of strategic and tactical level activities; the ability 
to reach globally diverse, distributed sites; the potential to combine situational 
awareness, command and control, weapons, protection, recovery, and logistics 
systems; and the ability to connect joint services, support agencies, and coalition 
partners.  
 
As well as new technologies, there will be further diverse, unpredictable changes in 
political environments. Consequently, continuous revision of strategies, doctrine, and 
operational procedures will be vital. Again, the emphasis will be on adapting solutions 
to meet emerging operational challenges. Producing the required capability relies on 
successful integration of suitable constituent systems. Systems-of-systems will need 
to be configured and reconfigured to varying timescales depending on the operational 
context and will rely on components which continue to evolve without consultation.  
 
The successful composition of component systems continues to be elusive given past 
and present examples. The recent (May 2008) British Airways Heathrow Terminal 5 
baggage-handling failure was reported to have resulted in financial losses for British 
Airways of £16m. The overall purpose of this system-of-systems was accurate 
baggage-tracking (and improvement of British Airways' lost baggage record) and it 
integrates security, network, barcode baggage-tracking, baggage-reconciliation, 
manual baggage handling, self-service check-in, flight data, flight bookings, and 
third-party baggage-reconciliation (existing and new) component systems. [3] 
summarises evidence submitted to the Transport Select Committee regarding the 
causes for the failure. Lack of testing of the implemented system-of-systems; errors in 
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the transmission of data between the baggage-handling and baggage-reconciliation 
systems; and errors in the transmission of flight data between BAA and a third-party 
contractor were reported to have played a significant part in the cancellation of five 
hundred flights and manual processing of approximately twenty-three thousand bags 
over five days.  
 
The Theatre Battle Management Core System studied in [1] is an air command and 
control system-of-systems integrated to perform secure, automated air battle planning 
and management for the US Air Forces and land, and maritime allies. Component 
systems were mainly legacy, including the Joint Maritime Command Information 
System, and Contingency Theatre Automated Planning System, Wing Command and 
Control System, Integrated Imagery and Intelligence System, Airborne Warning and 
Control System, and Joint Surveillance Target Attack Radar System. Interfaces were 
listed to over twenty systems.  
 
[1] reported the system-of-systems actual delivery was to be eighteen months 
following award of contract. Instead, it was delivered three years late with cost 
estimates at tens of millions of dollars. Key reasons for this delay were: governmental 
instruction for the contractor to prioritise improvement of the legacy Contingency 
Theatre Automated Planning System component system; immaturity of modern third-
party software applications and their failure to operate over the legacy 
communications components; requirements creep (a requirements baseline was not 
established for Theatre Battle Management Core System by the government. Initially, 
the government expected the contractor to control the requirements baseline); and 
pressure from the user community for the Theatre Battle Management Core System 
meant the test planning process was short-circuited leading to test failure on two 
occasions (the contractor was originally given the role of orchestrating testing). 
 
Wentz’s testimony of Bosnia [32] provides further insight into the difficulties 
achieving an integrated communications and information system-of-systems (CIS) in 
the military domain: 
 
‘the challenge facing NATO and the nations was to build a long haul and regional CIS 
network out of a mixture of military and commercial equipment that would vary 
widely in age, standards, and technology and would be built very quickly once given 
the order to deploy. Putting the pieces of the puzzle together would most likely not 
result in a true system of systems. Furthermore, there would be a need to interface 
systems that had not been planned or designed for interfacing. The independent 
national systems would be tied together, not engineered as a single system. Given the 
uncertainty of the situation it would most likely be a case of integrating what you get, 
not necessarily what you need, and then making the best of it’. 
 
One of the conclusions in Table 1.1 (section 1.3.4) was that systems-of-systems rely 
on this communication (usually realised by information technology) between 
constituent systems. The present means of integrating the systems involved in a 
military mission are tactical data links. These support message transfer within the 
system-of-systems. As discussed, these constituent systems are non-trivial systems in 
their own right i.e. they are not controllable, 'simple' systems built from basic parts 
using fixed interfaces. Their integration in a system-of-systems is achieved by a 
communication service between interfaces of the component systems. At an interface, 
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a component system’s specification can be reduced to the functional and timing 
description of services required for the integration along with its quality of service. As 
indicated by [3, 32, 133, 134], as well as ensuring selection of constituent systems 
whose behaviour is likely to contribute to the overall purpose of the system-of-
systems, their integration involves enabling the required level of communication 
between them. 
 
This required level of communication is the foundation of the integration process and 
is termed 'interoperability'. Interoperability is now defined for the purposes of this 
thesis.  
 
Environmental object data captured by sensors requires frequent interoperable 
exchanges of complex information between systems. Simpler web browser 
communication between a customer and a home banking system also demands 
interoperability. Due to different contextual interpretations of interoperability, many 
definitions exist for it, including these four from the IEEE [36]: 
 
'the ability of two or more systems or elements to exchange information and to use the 
information that has been exchanged'. 
 
'the capability for units of equipment to work together to do useful functions'. 
 
'the capability, promoted but not guaranteed by joint conformance with a given set of 
standards, that enables heterogeneous equipment, generally built by various vendors, 
to work together in a network environment'. 
 
'the ability of two or more systems or components to exchange information in a 
heterogeneous network and use that information'. 
 
These IEEE definitions are incorporated into definitions of interoperability used by 
the US Department of Defence (DoD): 
 
'the ability of systems, units, or forces to provide services to and accept services 
from other systems, units, or forces, and to use the services so exchanged to 
enable them to operate effectively together' [17]. 
 
'The condition achieved among communications-electronics systems or items of 
communications-electronics systems equipment when information or services can 
be exchanged directly and satisfactorily between them and/or their users. The 
degree of interoperability should be defined when referring to specific cases. For 
the purposes of this instruction, the degree of interoperability will be determined 
by the accomplishment of the proposed Information Exchange Requirement 
(IER) fields' [34]. 
 
These definitions do not qualify what services are referred to in each case but the 
fourth definition below from the MoD's Integration Authority [38] refers to 
communication and information services and it is assumed that the same 
communication and information services are referred to by [17, 34]. 
 
'(1) Ability of information systems to communicate with each other and exchange 
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information. (2) Conditions, achieved in varying levels, when information systems 
and/or their components can exchange information directly and satisfactorily among 
them. (3) The ability to operate software and exchange information in a heterogeneous 
network (i.e., one large network made up of several different local area networks). (4) 
Systems or programs capable of exchanging information and operating together 
effectively' [35]. 
 
This definition of Communication/Information Systems/Services (CIS) 
interoperability was put forward by the MoD's Integration Authority: 
 
'The ability of systems, units or forces to provide (communication / information) 
services to and accept (such) services from other systems, units or forces and to use 
the services so exchanged to enable them to operate effectively together [25]' [38]. 
 
Interoperability is defined for the purposes of this project as:  
 
'the ability of a set of communicating entities to exchange specified data by electronic 
means and operate effectively using that data according to specified operational 
processes'. 
 
Achieving interoperability between systems that originally did not interact or within 
new systems has posed a difficult challenge for the public and private sectors. 
Reasons for this include: at the start of a system-of-systems development project often 
little is known about interoperability requirements. Systems that will interoperate may 
not yet be conceived or constraints imposed by existing systems compromise 
approaches to achieving interoperability; maintaining compatibility with older 
systems sometimes conflicts with achieving interoperability between newer systems; 
lack of maintenance funding to cover upgrades or fixes for older systems; 
interoperability between systems is specified in transitive form. This implies that 
because system A is interoperable with system B and system B is interoperable with 
system C, then system A will be interoperable with system C; standards and models 
for architecture have been developed to ensure interoperability but contain 
ambiguities and inconsistencies. Used in isolation these standards are insufficient for 
achieving interoperability; the complexity of the systems being built mean a high 
number of contractors are required. Processes have not been established between 
contractors to ensure required levels of interoperability; ambiguity of terms used inter 
and intra-organisationally can be conflicting; and operational context addresses how a 
system is used and is described in military doctrine. For interoperability between 
multiple systems, doctrine also must be interoperable. 
 
In order to pinpoint the aspect of interoperability this thesis addresses, it is useful to 
identify interoperability in terms of the Open Systems Interconnection (OSI) Seven 
Layer Model shown in Fig. 1.1: 
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Fig. 1.1 'OSI Seven Layer Model and Interoperability' 

 
In the OSI Model (Fig.1.1), physical exchange of data takes place at the physical 
layer, e.g. via telephone or radio links. Encryption, error correction and link 
management are example functions of the data link and network layers. Procedural 
interoperability takes place over the next upper four layers with the transport layer 
looking after correct message exchange and the session layer addressing message 
sequencing. The presentation layer deals with message formatting. At the application 
layer, messages are presented to the host and interpreted by application layer 
protocols such as Simple Mail Transport Protocol (SMTP), or File Transfer Protocol 
(FTP), or an application programming interface such as Winsock or Berkeley sockets. 
In each case, a well-defined, standard interface is provided detailing the information 
messages that can be sent and received to each application. The OSI model could also 
be extended with additional layers above the application layer such as a 'host operator 
application' layer representing the programs the host operator can interact with 
through a human-computer interface (and the information messages associated with 
the host operator application), or a 'human-to-human' layer, representing 
interoperability at the host operator level (i.e. operator interpretation of the host 
operator application they are interacting with).  
 
This thesis is concerned with messages constructed and exchanged to satisfy 
associated system-of-systems information exchange requirements at a 'host operator 
application' level. 
 



 18

Fratricide of friendly soldiers during operations such as Desert Storm to liberate 
Kuwait (1991) highlighted the ultimate penalty of the military's inability to assure 
interoperability. In response, the military moved towards a standards-based approach 
(with mandatory compliance) to development of systems-of-systems. However, 
building military systems-of-systems has to take into account a huge number of 
legacy systems from which systems-of-systems will be composed. The majority of 
these existing systems do not comply with the current version of standards. This is 
due to the rate of technology change or fact their development preceded the 
introduction of a common set of standards. Each legacy system has been developed 
independently according to different versions of military rules and standards covering 
data representation and protocols. To make matters worse, these text-based standards 
are often ambiguous, open to interpretation by system designers, and can be deviated 
from. Unsurprisingly, legacy systems to be integrated often fail upon connection or 
compromise the stability of existing services offered by other component systems. 
 
These legacy systems cannot simply be discarded as many have taken as long as 
fifteen years to acquire at significant cost. Vast amounts of data on reliability exist in 
the software that re-writing would eradicate. In addition, defence budget cuts and the 
lengthy timescale required for procurement ensure the longevity of these existing 
systems (typically up to thirty years). Legacy systems continue to present an 
integration challenge to both the commercial and defence sectors. However, it is the 
attributes of high quantity, long lifecycle, and long acquisition cycle belonging to 
military legacy systems that make their integration a particularly unique problem for 
defence.  
 
To tackle this problem, there needs to be a comprehensive system-of-systems 
description available to all designers by which interfaces can be determined. Without 
such a description and framework to achieve, designs will fail to achieve 
interoperability. As part of their common standards approach, both defence and 
commercial sectors evolved architecture frameworks such as the Zachman Framework 
[28], Department of Defence Architectural Framework (DoDAF) [29], and Ministry 
of Defence Architecture Framework (MoDAF) [30] to adequately describe systems-
of-systems.  
 
An architectural framework such as that standardised by ISO/IEC 42010 [37] aims to 
provide a basic framework or checklist for describing the content of an architecture, 
taking into account the environment of the system of interest. IEEE 1471 upon which 
[37] is based, defines an architecture as: 
 
'the fundamental organisation of a system embodied in its components, their 
relationships to each other and to the environment and the principles guiding its 
design and evolution'. 
 
Architectural descriptions are structured to meet the needs of the system owners (e.g. 
users, developers, component vendors, maintainers) using multiple views of the 
system, with each view covering an identified set of system concerns (e.g. reliability, 
functionality, security, data integrity, usability). In order to comply with ISO/IEC 
42010 [37], an architectural description has to identify the owners of the system and 
their concerns; define viewpoints to address those concerns; define views of the 
architecture satisfying those viewpoints; and document rationale for decisions made in 
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the architectural description. ISO/IEC 42010 [37] defines a framework for an 
architectural description but does not recommend a process on how to produce one. 
Usually an organisation undertaking architecture description does so within the 
context of a well-defined engineering process. The intended consequence of using 
architecture frameworks is more understandable architectural descriptions, leading to 
improved architectures and system products.  
 
Design and construction of a new building is a useful parallel to architecture 
frameworks drawn from the civil engineering discipline. In designing a multi-storey 
building, an architect will elicit customer requirements and translate them into various 
views (blueprints) of the proposed structure. A civil engineer will then develop 
structural drawings and plans to build the new structure. The civil engineer builds the 
structure using the framework from the architect, i.e. the set of blueprints for the 
proposed building which has different views covering the physical construction of the 
building; detailed construction of each floor; heating and air-conditioning systems; 
and plumbing, electrical wiring, and communications. These blueprints provide the 
concept of the proposed building to help all owners understand the design being 
proposed.  
 
Building such a complex structure without a visual framework would result in 
disaster. Here, the set of blueprints present many views of the new building, each of 
which is important to its overall construction. Compare this with a criminal trial in 
which the prosecutor combines physical evidence, motive, timing of events, and 
defendant accessibility to the scene of the crime in order to present a visual picture to 
the jury. Failure of the prosecutor to provide this integration of views on the crime 
means the jury may not be able to visualise a realistic picture of it. Relaying the 
concepts of a problem to be solved using multiple viewpoints are key to design of 
complex systems. Here, presenting the problem concept is essential to shared 
understanding of the problem. Multiple views enrich the conceptual view of the 
problem and the potential solutions to it.  
 
Architecture frameworks provide a means to visually describe architecture products. 
They do not prescribe how to do this with a process. Even the boundaries of the 
traditional systems engineering process are stretched by systems-of-systems 
integration problems [9, 24]. The reality is that most large-scale engineering projects 
which follow traditional systems engineering practices are less successful [24]. It is 
widely assumed that for system-of-systems applications, new technology will be used; 
the new technology is based on a clear understanding of the principles that govern the 
system-of-systems; project objectives and specifications are clearly understood; and a 
design will be implemented based upon these specifications so that the application 
will be achieved.  
 
In reality, it is highly unlikely that only new technology will be used for systems-of-
systems. In addition, there may not be a clear understanding of the governing factors 
of the system-of-systems due to their complex characteristics. Of equal importance 
are the human, organisational, policy and political environments that influence 
feasible solutions [9]. While the overall purpose of the system-of-systems mission 
might be clear in high-level, abstract form, the specific objectives are most likely 
poorly defined and ambiguous [9, 24]. There can be no conception or a priori 
planning of how a system, and systems-of-systems will evolve in the future. 
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Traditional systems engineering fails to take into account the ambiguity and 
requirements shift present in dynamic systems-of-systems environments [9]. It tends 
to place human, organisational, policy, and political environments in the background 
during system problem analysis and resolution. Systems-of-systems integration means 
addressing these environments as key constraints during these phases [9]. Traditional 
systems engineering succeeds in realising complete system solutions through iterative 
development processes where as design of systems-of-systems often means 
deployment of a partial solution followed by iterative development again. This goes 
against traditional systems engineering which usually aims to complete design with 
implementation of the system [9]. 
 
System-of-system designers either lack such an architecture framework showing how 
system components should interface, interact, and fulfil overall system requirements 
or a suitable process based on systems engineering principles for building one. The 
architecture framework should help define the system-of-systems in terms of 
component systems and the interactions between these components. Also, the 
resulting architectural description can serve to document the rationale for design 
decisions, helping to audit requirements and their realisation. Although an 
architectural description will not guarantee that a system meets its requirements, a 
poorly designed architecture makes it nearly impossible for designers to develop a 
system that meets its requirements.  
 
This is further supported by [31] where issues hindering system-of-systems 
interoperability were summarised as: unclear requirements documentation and poor 
configuration management; no method for validating and governing interoperability 
requirements; interoperability requirements are not defined early or identified as a 
common development goal; no path leading to a view (architecture) that can be used 
for a statement of specification for a material developer or test criteria by the 
developer; no direct link from requirements to end product; no tools to adequately 
model interoperability; the need to wait until post-integration to check whether 
interoperability has been achieved (on a trial and error basis); lack of application of 
systems engineering principles to capability development and gap analysis (multiple 
uncoordinated organisations work on solutions to solve similar problems); system-of-
systems 'lessons learned' are not managed so the benefits of experience and impact of 
'requirements creep' are not considered; and finally, inter-agency system-of-systems 
requirements are not clear, interoperability is not guaranteed and testing results are 
questionable. 
 
New layers of functionality are often added to implementations initiated from poorly 
designed system architecture views with no clear insight into the overall organisation 
of the system-of-systems. Where there are detailed system specifications, these tend to 
address the 'leaf' level of the system-of-systems requirements decomposition tree, i.e. 
at the component system level and not the system-of-systems context level. Using 
these system-centric or 'stove-piped' specifications in isolation means that systems 
engineers struggle to deliver interoperable, effective capability for defence or 
industry.  
 
As well as their lack of a standard process in terms of system-of-systems 
specification, another drawback in the way architecture frameworks have been used to 
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date is that they are a static, textual documentation model of a system open to 
interpretation by system owners, designers, and developers.  
 
[39] describes a model as:  
 
'..the essential nature of a process or thing. They are not the thing itself. Models are 
validated only when they have been verified by observation and measurement under 
controlled conditions'. 
 
[39] argues that modelling can help deploy better quality systems in less time and for 
less money by: 
 
1. Executing the model of the system specification in order to observe system 
behaviour. 
2. Transforming model languages into different modelling languages (automatically) 
in support of the multiple disciplines involved in the lifecycle of a system. 
3. Enhancing systems engineering with unambiguous, executable modelling. 
 
Use of modelling aims to improve the design of a system in terms of its length; 
completeness, correctness, and consistency of specification; preservation of the design 
(i.e. a form of documentation) for subsequent system lifecycle stages; and 
unambiguous specification.  
  
The adequacy of a systems engineering modelling language depends on its ability to 
enable a complete description of the contextual real-world domain using unambiguous 
language constructs. Generally, a good modelling technique should be: 
 
1. Precise in describing both static and dynamic system properties. 
2. Standardised and open to promote acceptance and popularity. 
3. Precise in identification of requirements allowing owners and designers to reach 
agreement about what should be accomplished. A graphical concrete syntax can help 
promote this shared understanding. 
4. Applicable to different styles of modelling (state-based, event-based, data-based). 
5. Based on formal techniques and suitable for automation (execution or simulation). 
6. Intuitive to use with: graphical interface supporting execution of design models; 
conformance to known standards and techniques; and compatible with other toolsets 
implementing the same technique. 
 
A model can be: 
 
1. Informal: providing only descriptions of functionalities (e.g. UML). 
2. Formal: all elements can be described mathematically and support simulation, 
verification (syntax, semantics, and model structure and logic may be tested 
automatically), and transformations (mapping of a model to a lower abstraction level 
for design, development or verification purposes). 
 
From a system-of-systems perspective, a modelling technique should offer: 
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1. Abstraction: support different views of the system-of-systems architecture 
capturing characteristics appropriate to the abstraction level without imposing any 
particular solution upon designers and developers. 
2. Modularisation: define and organise parts of the system-of-systems. 
3. Data typing: model concepts of the domain as closely as possible. 
4. Adequate toolset support. 
5. Timing: achieve performance predictions before the system-of-systems is 
physically implemented in conjunction with simulation. Each system-of-systems 
application provides different capabilities and varying degrees of criticality that need 
to be analysed using timed simulation. 
6. Verification and validation: check model correctness in terms of syntax, semantics, 
structure (absence of deadlocks, livelocks, and correct termination), and logic through 
simulation and calculation of state space graph. In critical applications, correctness of 
specifications is vital to achieve before their physical implementation.  
7. Precision in specification of requirements: a graphical concrete modelling language 
syntax can help promote shared understanding between technical and non-technical 
audiences. 
8. Scalability, concurrency, state, information, and event-based specification. 
 
While modelling languages can be used in their own right to specify systems [135], 
text-based products of architectural frameworks have been translated into different 
modelling languages for simulation purposes [40-42]. There have also been attempts 
to use UML as the primary means of describing architecture framework products [44, 
76] so that a proprietary UML modelling toolset such as IBM Telelogic Rhapsody can 
be used to simulate the model, or the UML can be translated to a formal modelling 
language (Petri nets) for subsequent execution [66]. These attempts focused on 
providing process guidance and improving architecture frameworks for system-of-
systems engineering. They do not consider the actual specification capability UML 
offers from a system-of-systems modelling perspective and where the language can be 
complemented and improved in terms of the system-of-systems engineering problems 
related to specification and analysis.  
 
UML is intuitive, multi-purpose, has a graphical concrete syntax, and does not 
prescribe a process. It is also ambiguous and imprecise, and viewed as a system of 
modelling languages, each with its own particular focus to represent a system under 
development. Each diagram, represented by its own language, can be used in a 
number of situations, e.g. class diagrams can be used at analysis, design, and 
architecture stages of the lifecycle.  
 
Structured using a meta-model, due to its semi-formal nature, UML lacks simulation 
and exhaustive verification capability. This shortfall in UML has received little 
attention in the context of system-of-systems. Petri nets were selected as a potential 
means of addressing the industrial need of assuring that system-of-systems 
implementations meet original co-ordinator requirements through adequate capture, 
verification and validation of these requirements in the system-of-systems design. 
Although Petri nets have been used in [40] to offer simulation and analysis of 
architecture framework products, the work did not determine how Petri nets can be 
used to improve specification and analysis of a dynamic model of a system-of-
systems specified using UML.  
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1.4.1 Overall Problem Statement 
This thesis addresses the system-of-systems level design specification and analysis 
problem. Specifically: 
 
1. There is no complete, correct, and consistent capture of the problem and solution 
design specification (particularly information exchange) at the system-of-systems 
level.  
2. There is inadequate verification and validation of the design specification providing 
low levels of assurance that the design will lead to desirable implemented behaviour. 
 

1.4.2 Research Issues 
Two major research issues can be identified within the overall system-of-systems 
level design specification and analysis problem: 
 
1. Clarifying where the dynamic, behavioural diagrams of UML can and cannot be 
used to model and analyse system-of-systems. 
2. Determining how Petri nets can be used to improve the specification and analysis of 
the dynamic model of a system-of-systems specified using UML. 
 
This thesis presents the strengths and weaknesses of Petri nets in relation to the 
specification of system-of-systems and shows how Petri net models can be used 
instead of conventional UML activity diagrams. The design specification model of the 
system-of-systems can then be analysed and verified using Petri net theory.  
 

1.4.3 Problem Boundaries 
This thesis focuses on the specification and analysis of system-of-systems engineered 
towards a common purpose. 
 

1.5 Research Aims and Criteria for Success 
The aims of this research and criteria for success cover the problem and solution 
space. Petri nets and conventional UML behavioural diagrams are examined in 
relation to the specification of system-of-systems to show how Petri nets can help the 
system-of-systems specification and analysis problem. Case studies are then 
conducted to demonstrate the viability of the use of Petri nets in the specification and 
analysis of system-of-systems. The criteria for success are: 
 
1. To address the first main research issue, indicate the strengths and weaknesses of 
the behavioural diagrams of UML regarding the specification, and verification and 
validation of systems-of-systems. 
2. To address the second main research issue, determine the strengths and weaknesses 
of Petri nets regarding the greater formalism of dynamic behaviour in systems-of-
systems, i.e. their specification, and verification and validation. This should cover 
Petri nets' ease of use; comprehensibility; scalability; state, data, and event-based 
modelling capability; concurrency modelling capability; and verification and 
validation capability. The role of Petri nets as a means of engaging stakeholders 
should also be examined. 
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3. Show how Petri nets can be used instead of UML activity diagrams to address the 
overall problem of system-of-systems specification and analysis. 
4. Demonstrate and evaluate the feasibility of the Petri net solution to the overall 
problem of system-of-systems specification and analysis using a case study approach. 
 
Chapter 7 presents a discussion on the success of this research in relation to the above 
criteria. 
 

1.6 Evaluation Criteria 
The main objective of this work is to define how Petri nets can improve the 
specification and analysis of systems-of-systems using a case study approach. 
Chapters 5 and 6 present evaluations of the Petri net technique based on the following 
criteria: 
 
1. Design Quality (scalability and representational ability). 
2. Functional Correctness. 
3. Toolset Issues. 
 

1.7 Contribution 
The main contribution of this work is greater formalism of dynamic system-of-
systems behaviour specification using Petri nets. Two research issues within the main 
problem of system-of-systems specification, verification and validation are addressed: 
 
1. Clarifying where the dynamic, behavioural diagrams of UML can and cannot be 
used to model and analyse system-of-systems. 
2. Determining how Petri nets can be used to improve the specification and analysis of 
the dynamic model of a system-of-systems specified using UML. 
 

1.8 Thesis Structure 
This thesis consists of seven chapters. 
 
Chapter 1 introduces the context for the research, discusses the main problem to be 
solved, and sets out the aims of the research and criteria for success. 
 
Chapter 2 introduces the Petri net technique, including why they should be useful in 
the specification and analysis of systems-of-systems. 
 
Chapter 3 discusses the case study research method used to demonstrate and evaluate 
the strengths and weaknesses of Petri nets in chapters 5 and 6. 
 
Chapter 4 describes the strengths and weaknesses of Petri nets in relation to the 
specification of systems-of-systems and indicates how Petri net models can be used 
instead of conventional UML behavioural diagrams to analyse and verify the system-
of-systems using Petri net theory. 
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Chapter 5 executes the case study design described in chapter 3 for the first study in 
the case study research approach used by this thesis. 
 
Chapter 6 executes the case study design for a second time in order to investigate the 
results that needed further clarification from the first study and replicate the results 
obtained from the first study in the second, demonstrating experimental reliability and 
triangulation. 
 
Chapter 7 concludes the thesis by summarising the main problems associated with the 
engineering of systems-of-systems and the solution achieved by the thesis. The 
success of the Petri net formalism of system-of-systems behaviour specification is 
discussed in terms of the criteria presented in section 1.5 and further research 
opportunities are suggested. 
 
The Appendices contain an initial investigation into Petri nets, a description of the 
Petri net enhancement to UML proposed by this thesis, and the Petri net toolset 
selection exercise. They are followed by a list of references.  
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Chapter 2 Petri Net Specification Framework  
 

2.1 Introduction 
Chapter 2 provides an introduction to the Petri net formalism. An indication of why it 
should be useful in the specification and analysis of system-of-systems is also 
discussed. This introduction serves as the context for the demonstration and 
evaluation of their strengths and weaknesses in relation to system-of-systems 
specification in the case studies of chapters 5 and 6. 
 

2.2 Petri Nets 
Seen as a generalisation of state machines, Petri nets have been around for almost fifty 
years (developed by Carl Adam Petri in his doctoral thesis [58]). They can be used 
graphically and mathematically to communicate between technical and non-technical 
audiences and construct behavioural models of process-oriented systems. In [45], Van 
der Aalst suggests the following as main reasons for using Petri nets as a process 
modelling technique: 
 
1. Their graphical nature has underlying formal semantics. 
2. They are state-based and event-based. 
3. A range of analysis techniques is available to examine properties of the modelled 
system expressed as a Petri net.  
 
The analysis techniques referred to here are static (reachability tree and matrix 
equation representation are the two methods used to verify a number of useful Petri 
net properties such as reachability, liveness, boundedness, and home state) and 
dynamic (execution or simulation of the Petri net is used to verify its behaviour and 
validate it in terms of performance if timing is introduced into the net).   
 
To improve the usefulness of classic Petri nets, Petri nets have been extended over 
time to incorporate hierarchy (for structuring models), colour (for modelling 
attributes) [63] and time (for performance analysis). In classic form, their basic 
concept is that of an underlying directed, bipartite graph with a starting state called the 
'initial marking'. The underlying graph is directed and weighted and consists of two 
node types, 'places' and 'transitions'. These nodes are connected by directed, weighted 
arcs known as 'input arcs' and 'output arcs'. An input arc goes from a place to a 
transition and the set of places with input arcs going to a particular transition are 
called the transition's input places. An output arc goes from a transition to a place and 
the set of places with output arcs from a given transition are called the transition's 
output places. Arcs can only go from a place to a transition or vice versa. Places and 
transitions are graphically represented by circles and rectangles respectively. Usage of 
Petri nets normally interprets transitions as events or activities and places as triggers 
or results of these events [48, 65]. Murata suggests some typical application of 
transitions and their input and output places in [57].  
 
A 'marking' assigns a non-negative integer 'x' to each place. This means the place is 
mapped to x tokens (shown as identical black dots). Tokens are dynamic objects 



 27

whose movement between places is controlled by the Petri net's transitions. Places can 
have a finite capacity restricting the maximum number of tokens they can hold. 
Transitions have a certain number of input and output places that represent pre and 
post conditions for the enabling or 'firing' of a transition. The state of a Petri net is 
determined by the distribution of tokens over the places. This distribution can be used 
to define situations such as satisfied conditions and resource availability. Reachable 
state refers to a state reachable from the current state by firing a sequence of enabled 
transitions. Dead state is a state where no transition is enabled. By setting an initial 
marking of a state and adhering to the following firing rules it is possible to model 
and execute (or simulate) processes modelled using nets: 
 
1. Transitions are enabled if each of their input places is marked with the same 
number of tokens as indicated by the weight of the arc leading to the transition.  
2. Enabled transitions may or may not fire. 
3. Firing of an enabled transition is atomic and consumes a number of tokens (dictated 
by its corresponding input arc weight) from each input place and adds a number of 
tokens to each output place (dictated by its corresponding output arc weight). 
 
The order in which Petri net transitions fire is known as a firing sequence. Depending 
on the marking, a Petri net can have a number of different firing sequences that occurs 
if more than one transition is enabled during the firing sequence. A Petri net can also 
have a number of defined properties, some of which are outlined below. Other 
properties can be found in [57]. 
 
1. Conflict (or confusion): if more than one transition is enabled simultaneously and 
the firing of one of these transitions will disable the remaining enabled transitions 
then a conflict is said to exist between transitions for a certain marking. In such 
situations, the transition that fires is dictated by firing rules. This property can be used 
to show the effect of resource-sharing on system performance. A number of strategies 
can be applied to resolve conflict [67]. These include using timed transitions (the 
timed transition with the shortest time fires) and transition weights (the immediate 
transition to fire is determined probabilistically using the weights). 
2. Deadlock: when no transitions can fire and the execution of the Petri net is halted, 
deadlock is said to occur. A Petri net is known as 'live' for a particular initial marking 
if it is deadlock-free. 
3. Reachability: given a marking Mi+1, this marking is said to be immediately 
reachable from a marking Mi if a transition enabled by Mi fires to give Mi+1. A 
marking Mi+n is said to be reachable from Mi if a transition firing sequence exists such 
that after firing all of these transitions the resultant marking is Mi+n.  A reachability 
tree or graph describes the possible markings of a Petri net starting from the initial 
marking (its root). Below this marking each possible immediately reachable marking 
is listed together with directed arcs labelled with the corresponding transition required 
to reach the marking. This process is repeated for these markings. If a generated 
marking is the same as one which appears earlier in the tree it is connected to this via 
an arc labelled with the corresponding transition. For certain Petri nets this process 
can continue indefinitely and necessitates formation of a coverability tree. Here, any 
set of markings which differ only by the number of tokens found in unbounded places 
are represented by one marking. A symbol is placed in the unbounded places flagging 
up that the number of tokens in that place is unbounded. Reachability or coverability 
trees can be used to determine safeness, boundedness and reachability of a Petri net. 
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4. Boundedness: if the number of tokens in a place never exceeds x then the place is 
said to be x-bounded. When all places in a Petri net are bounded it is called a bounded 
Petri net. This maximum number of tokens allowed on a place can be used to specify 
the maximum length of a queue. Unbounded places can cause bottlenecks. Petri nets 
where all places are one-bounded are known as safe and can be used to model 
computer systems as the state of each place can be represented by a one or a zero. 
 

2.2.1 Petri Net Example 
The following Petri net serves as an introduction and represents the process of a 
chemical reaction involving two units of hydrogen and one of oxygen. Net places 
serve as storage for tokens and capture the state of the reaction. The transition 
represents an event or activity taking place, in this case the reaction. Each input place 
in Fig. 2.1(a) has three and two tokens respectively. As the input arc associated with 
place hydrogen has a weighting of two (specifying that two units of hydrogen are 
required for the reaction) and the input arc associated with place oxygen has a 
weighting of one (specifying one unit of oxygen is needed), the transition is enabled. 
After firing, the marking changes to the one in Fig. 2.1(b) and the transition is no 
longer enabled: 

 
Fig. 2.1(a) 'Classic Petri net of chemical reaction with an enabled transition' adapted 
from [57], p543 
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Fig. 2.1(b) 'Classic Petri net following transition firing' adapted from [57], p543 
 
Fig. 2.1 clearly shows the state change and corresponding executed activity via the 
removal and addition of tokens and firing of transition modelling elements. The 
current process state is given by the placement of the tokens and the arcs indicate that 
there is a relation (function) between a place and a transition.  
 

2.2.2 High-level (Coloured) Petri Nets 
Coloured Petri nets enhance classic Petri nets [43] with data typing abstraction and 
manipulation capability similar to that of a high-level programming language. Here, 
tokens have colour (values) to combat complexity found in classic, uncoloured Petri 
nets attempting to model real-life systems. Uncoloured nets can be compared to 
assembly language in that tokens are essentially markers in the net, relying upon the 
labelling of places to express the state of a system and requiring multiple net elements 
to do so. Coloured tokens enable real-life objects and their attributes to be represented 
in the model through the introduction of data typing abstraction.  
 
Similar to classic nets, coloured Petri nets have a fully formal, mathematical 
underpinning that provides a basis for analysis of model properties. Well-known high-
level nets using colour are Predicate/Transition nets [46] and Coloured Petri nets [63, 
80]. Visual representations of coloured Petri net models can be developed and 
analysed using graphical tools such as CPN Tools [47].  
 
Aspects of a system are modelled using a small set of elements in coloured nets, the 
rules of which are described informally as: occurrences of activities or transitions 
depend on the data type and token colour (value) associated with the input place(s) of 
the transition and the enabling condition(s) specified by the input arc expression(s) of 
the transition. Equally, if the transition is enabled and occurs, tokens are added to the 
output places of the transition with values determined by the output arc expression(s) 
of the transition and data type associated with the output place(s). The formal 
mathematical definition of this informal description is defined in [63, 80]. 
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2.2.3 Timed Petri Nets  
To enable enhanced specification (scheduling) and performance evaluation of nets, 
time delays have been associated with transitions [49] and/or place net elements [50]. 
There are many extensions to Petri nets related to time, for example [80, 83]. 
 
Petri nets are deterministic timed nets if the delay is known, or stochastic timed nets if 
the delays are random, or deterministic and stochastic timed nets if a combination of 
fixed and random delays are present. In stochastic nets, firing time is associated with 
each transition indicating the delay from when the transition is enabled until it fires. 
Usually, the transition with the minimum remaining firing time affects the next 
marking of the net. Following this marking update, each newly enabled timed 
transition obtains a delay from the delay distribution and each timed transition 
enabled in the previous marking (and still enabled in the current marking), keeps its 
remaining delay. Transitions disabled in the current marking lose their remaining 
delay. Common stochastic Petri net models are by [51] and [49]. 
 
Deterministic and stochastic nets contain immediate transitions (when enabled, fire 
without delay), stochastic transitions (when enabled, fire after some delay sampled 
from a distribution), and deterministic transitions (when enabled, fire after a constant 
delay). Enabled immediate transitions have firing priority over enabled timed 
transitions. Multiple enabled immediate transitions should be specified with firing 
probabilities to resolve firing conflict. 
 
Coloured Petri nets can be created with or without timing. Jensen [80] extended 
coloured Petri nets with timed coloured Petri nets. With these nets a global clock is 
introduced for the net model. The state of a timed coloured Petri net consists of a 
marking and the global clock time. Timed coloured Petri nets can contain both timed 
and un-timed coloured tokens. Timestamps are controlled by initial marking, 
transition or output arc expressions where discrete and probability distributions can be 
used to define the time taken for a transition to fire. Timestamps allocated to the 
tokens must be less than or equal to the current model time in order to be removed. In 
this way, timed transitions represent the time taken by the system to perform a given 
task. Un-timed enabled transitions fire in zero time. 
 

2.2.4 Hierarchical Petri Nets 
Hierarchical nets were developed to allow models of large-scale systems to be created 
using both top-down and bottom-up approaches. Detail at a certain level of abstraction 
can be hidden or exposed as needed in a similar way to subroutines in programming. 
This abstraction mechanism makes model development and modification easier. 
Jensen [63] defines hierarchy implementation for coloured nets. 
 

2.2.5 Analysis 
Existing analysis methods for timed, coloured Petri nets are simulation; reachability 
analysis; and Markovian analysis.  
 
Simulation helps to predict the behaviour of the modelled system but it is not possible 
to exhaustively check a system has a desired set of properties by this method. As well 
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as conducting extended simulation runs to test assumptions and performance, 
simulation can be visualised (animated), helping communicate behaviour to technical 
and non-technical audiences. 
 
Reachability analysis builds a reachability graph (reachability tree or occurrence 
graph) with nodes representing the possible system states and arcs representing each 
possible state change. This method is an exhaustive way of checking properties of the 
modelled system. A disadvantage of this method of analysis is the fact the reachability 
graph can become infinitely large and various largeness avoidance and reduction 
measures have been considered [52, 91-93]. For stochastic timed coloured nets 
sampling from an exponential probability distribution, the net can be translated into a 
continuous time Markov chain for the purposes of performance statistics generation. 
Normally simulation-only analysis is reserved for timed coloured nets. 
 

2.3 Petri Nets and the System-of-Systems Problem Areas 
As discussed in chapter 1, the main problems for system-of-systems engineering 
surround requirements specification, interfaces and protocols specification, and 
verification and validation of the design specification. These are summarised as 
follows: 
 
1. There is no adequate capture of problem and solution design specification 
(particularly information exchange specification) at the system-of-systems level.  
2. Assurance that the design will lead to desirable implemented behaviour (through 
verification and validation) is also lacking. 
 
Currently, in terms of specification, chapter 1 highlighted that modelling using 
architecture frameworks (e.g. Zachman, DoDAF, and MoDAF) and graphical 
modelling languages (UML, IDEF, Petri nets) had been implemented to help improve 
large-scale, system-of-systems specification. Adoption and maturity of these 
initiatives in system-of-systems specification are still relatively low, lacking guidance 
and used for specification at the systems (rather than the system-of-systems) level. 
Chapter 1 also indicated that although Petri nets had been used in conjunction with 
architecture framework products to provide simulation and analysis capability, no 
work has directly investigated their strengths and weaknesses in terms of system-of-
systems specification and analysis. In addition, based on these strengths and 
weaknesses, no work has considered how they can improve a system-of-systems 
specification captured in a UML dynamic model.  
 
A number of desirable features for a modelling language used in the specification of 
systems-of-systems were suggested in chapter 1. Each of these is now discussed in 
relation to the Petri net formalism and reference is made to a simple example (a 
telephone system) in Appendices A-D to further illustrate the potential applicability of 
Petri nets with respect to that feature. 
 
1. Abstraction 
The ability to support a range of views of the system-of-systems architecture at 
different levels of detail without imposing any particular solution upon designers and 
developers.  
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Based on the initial familiarisation work with Petri nets (Appendix A), it was clear 
that use of classic Petri nets resulted in flat, large, complex nets even with a narrowly 
scoped system such as the telephone system. The nets produced represented the 
telephone system at a high-level of abstraction, i.e. that of an operational process. 
Classic nets provided no formal means of linking activities represented by transition 
net elements in greater detail in the same model. To achieve this, a separate net model 
would need to be constructed but there would be no formal connection. 
 
Instead, classic nets were abandoned in favour of high-level, hierarchical Petri nets, 
specifically coloured Petri nets with hierarchy [63]. Two language constructs can be 
used to enable hierarchy within one net model, substitution transitions and fusion 
places.  
 
Hierarchy can structure complex Petri nets in a similar way to hierarchy within data 
flow diagrams and subroutines in programming. The challenge using hierarchy is 
deciding upon an appropriate abstraction level and viewpoint for the model. With 
substitution transitions (Appendix A, section A.3.2), a net at a certain level of 
abstraction (parent net) can have some or all of its transitions described in a greater 
level of detail by subnets (top-down decomposition). These subnets can be composed 
of places, transitions and other subnets. Also, hierarchy can be facilitated by linking 
existing lower-level subnets to transitions within parent nets (bottom-up 
development). The parent net aims to provide a coherent overview of the modelled 
process and indicate clearly that more detailed descriptions of its main activities are 
available on subnets. The toolset selected for use in the thesis, CPN Tools, also allows 
instantiation of a subnet in that once it has been defined, the same subnet can be re-
used by different transitions in the model (each with independent input and output 
values, similar to parameterised procedure call in programming). The toolset 
evaluation exercise is presented in Appendix F. 
 
As mentioned, hierarchical nets can also be constructed in a bottom-up fashion. For 
large-scale system-of-systems, the concept of subnets as components is extremely 
useful both in terms of reuse of existing nets and as a means to explore variations in 
the design of components. Existing, amended or brand new nets relating to individual 
components of the system-of-systems could be substituted into and out of the 
composition when considering different application scenarios or designs of 
components. Substitution transitions make use of input and output socket places to 
and from the decomposed transitions on the parent net. These sockets have 
corresponding port places on the resultant subnet describing the decomposition. The 
colours (types) of these socket and port places can be used to specify the types of the 
information used and produced by the decomposed activity. In this way, sockets and 
ports can be viewed as a means of explicitly specifying required and provided 
interfaces to the decomposed transition. 
 
Fusion places (Appendix B, section B.1.3) represent one conceptual place element so 
that when a token is added (removed) at one of the places in the fusion set, an 
identical token will be added (removed) at the other places. Fusion places can also be 
used to represent abstraction but there is no explicitly associated net page at a higher-
level of abstraction (i.e. parent net). Each subnet on a page is independent and passes 
information to another subnet page using a set of places (fusion places). To mimic the 
abstraction depicted by the parent net of the substitution transition (port and socket) 
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hierarchical approach, a net can use the fusion places to pass (receive) information to 
(from) a subnet but the only way of associating the net at the higher abstraction level 
with the subnet at the lower abstraction level is via the labelling of the fusion places. 
Port and socket hierarchy makes the association with the lower abstraction level in a 
more explicit way.  
 
An advantage of fusion places in abstraction is the ability to share the same 
information between multiple processes. With hierarchy and port and socket places, if 
information needs to be passed from an interface to more than one component at a 
point in time, sufficient copies of the token need be deposited on the interface place 
for consumers to remove. Hierarchy's main advantage is explicit abstraction. Use of 
either abstraction technique depends on the modelling context. Some examples of 
work where abstraction has been used include [77, 87]. 
 
2. Modularisation 
The ability to define and organise parts of the system-of-systems specification. 
 
Again, similar to abstraction, two language constructs can be used to enable formal 
modularisation within one net model, substitution transitions and fusion places. Also 
discussed in Appendix B, sections B.1.3-B.1.4, is the work of Petrucci et al [91-93] on 
modularity using fused transitions as a means to separate a flat net into modules but 
this thesis focuses on constructing non-flat, modular nets. Modules or component 
systems within systems-of-systems are likely to exhibit the characteristic of strong 
cohesion and loose coupling. Here, component systems are modular in the sense that 
they use communication interfaces (and protocols) to integrate and share information. 
As demonstrated in Appendices A-D, substitution transitions were the primary 
method of capturing component systems of the telephone process and their interfaces.  
 
3. Data typing 
The ability to model concepts of the domain as closely as possible. 
 
Based on the initial familiarisation work with Petri nets (Appendix A), it was clear 
that use of classic Petri nets resulted in flat, large, complex nets even with a narrowly 
scoped system such as the telephone system. The tokens of classic nets are 
indistinguishable from one another in the sense that the places they are associated 
with have no data typing. Tokens are simply markers. This means the only way of 
capturing information represented by tokens in a classic net is through the labelling of 
their associated places, resulting in significantly increased numbers of net place 
elements and large, complex nets.  
 
Coloured Petri net tokens are associated with place elements that do have a data type 
(colourset in CPN Tools) meaning the token can take on values (colours) specified by 
the data type defined for its associated place. In CPN Tools, a variety of data types are 
implemented within the toolset including simple (e.g. boolean, enumerated, string, 
integer), compound (e.g. product, record, list), and timed. Consequently, it is possible 
to use coloursets to help reduce net size and capture the domain being modelled. This 
is demonstrated by use of coloured Petri nets the telephone example in Appendices A-
D. 
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Use of data typing is also essential for the specification of information to be 
exchanged at the interfaces of component systems in system-of-systems. 
 
4. Adequate toolset support 
Availability of a Petri net editing, simulation, and analysis environment adequate for 
the system-of-systems modelling requirements of the organisation. 
 
Obtaining a comprehensive Petri net toolset can be achieved in three ways: 
developing the Petri net toolset in-house (this ensures all personal requirements are 
met but a disadvantage includes the time and effort involved. This effort can be short-
circuited if there are suitable extensible frameworks available on which to build); 
compiling a toolset from existing Petri net graphical editing and analysis tools (again, 
a disadvantage is the time and effort involved in integrating the tools); or identifying a 
suitable existing integrated Petri net toolset and adapting it accordingly (this relies on 
the toolset being open and well supported in terms of documentation). Appendix F 
details the toolset evaluation and selection exercise conducted for the purposes of this 
thesis. For the purposes of modelling system-of-systems, key features of a toolset are 
its navigability of large nets; ability to execute nets; ability to analyse nets (state space 
graph calculation and temporal logic queries); re-use of existing nets (instantiation, 
configuration management); support for high-level, timed, hierarchical nets; and error 
reporting. 
 
5. Timing 
The ability to achieve both enhanced specification and performance predictions from 
the design before the system-of-systems is physically implemented. Each system-of-
systems application will provide different behaviour and varying degrees of criticality 
that need to be analysed using timing (often in conjunction with simulation of the 
model). 
 
To capture the efficiency or performance of a system and facilitate validation of its 
design, time-dependent actions such as timeouts, processing delays or deadlines are 
essential. As well as efficiency specification, time-dependent actions also enhance a 
system behaviour specification in terms of correctness. Activity ordering alone is 
insufficient to capture overall system behaviour precisely. Tokens representing 
information in large-scale systems will be processed according to the time they 
entered the system, time involved in their consumption and generation, and 
involvement in delays and transfer failures. Timing will be needed to specify the 
ordering multiple tokens receive (scheduling) over and above any activity sequence 
they experience. Timing information may need to be approximate, exact or both 
depending on the stage of development of the system. Classic Petri nets only include a 
basic concept of time in that actions (transitions) follow a particular execution order 
from an initial marking.  
 
As indicated previously in section 2.2.3, Petri nets have been extended to incorporate 
the concept of time via their places, transitions, tokens, arcs or a combination of these. 
This thesis uses timed coloured Petri nets. CPN Tools implements timed coloured 
Petri nets and supports deterministic and stochastic model behaviour via discrete and 
continuous function provision associated with token type. As this thesis is concerned 
with large-scale, discrete event system-of-systems where their behaviour is (ideally) 
deterministic and terminating, use of CPN Tools was maintained. Continuous 
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specification will be required in physical monitoring at a lower level of (component 
system) detail.  
 
Several research initiatives have been undertaken using timed Petri nets. These 
include: Christensen et al in [82] make use of timed coloured Petri nets to optimise the 
performance and capacity of a web server; Van der Aalst et al in [83] use interval 
timed coloured Petri nets to study rail time-tabling; Bulitko et al in [84] use time 
interval Petri nets to analyse real-time damage limitation on ships; Van der Vorst et al 
and Makajic-Nikolic et al use timed coloured Petri nets to examine supply chains [86, 
87]; Dahl et al consider interval timed coloured Petri nets in penetration testing [85]; 
Kwantes uses timed coloured Petri nets to analyse a banking clearing process [88]; 
and Schomig et al use stochastic Petri nets to model business processes in [89].  
 
All the approaches [82-89] are useful in providing guidance on development of 
performance models and contributing to parts of the validation of system-of-systems. 
Their approaches deal with continuous management, proactive and retrospective 
analysis of physical products but do not take into account the unique characteristics of 
system-of-systems. For development of system-of-system performance models, the 
owners in the process need to be considered, as well as the concurrent and co-
operative nature of the provided and consumed functions realised by the processes 
and their components. In system-of-systems, intangible behaviour is realised using 
tangible resources in different environmental locations. The perceived quality of 
service of these intangible functions arises from the efficiency of the processes. 
Insight into the assessment of different ways of realising these intangible functions is 
needed at an early development stage as well as throughout the system-of-systems 
development stages. For example, an assessment model should help to answer 
whether an optimal combination of activities that leads to a reduced service response 
time exists. 
 
At analysis, design and architecture stages of development, no physical components 
have been decided upon to realise the activities and processes specified. Of additional 
interest in system-of-systems design specification is using knowledge of (legacy or 
planned) physical assets to help optimise engineering of an operational process via 
analysis-of-alternative scenarios. As well as incorporating timing statistics, Salimifard 
et al [94] report on using nets to allocate physical resources and costs to activity 
execution.  
 
Appendix C, section C.1, adapts the work in [94] to the telephone system and 
demonstrates the use of timed coloured Petri nets in its specification and performance 
analysis. 
 
6. Verification and validation. 
The ability to check model correctness and completeness in terms of syntax, 
semantics, structure (absence of deadlocks, livelocks, and correct termination), and 
logic through simulation (dynamic analysis) and calculation of state space graph 
(static analysis). In critical system-of-systems applications, correctness and 
completeness of specifications is vital to achieve before their physical 
implementation.  
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Due to their formal syntax and semantics, models produced using the Petri net 
language can be executed (simulated). Here, an execution algorithm is used to 
validate the behaviour of a system. Simulation can be used to detect undesirable 
behaviour, and incorrect or omitted logic but it is not an exhaustive means of checking 
correctness of the model. The toolset CPN Tools provides different simulation modes 
ranging from completely manual (interactive) to fully automatic. Interactive 
simulation is comparable to single step debugging a program and useful in initial 
investigations into model behaviour.  
 
Simulation can also be configured to run repeatedly without graphical feedback and to 
bind variable values automatically, generating configurable analysis reports based on 
each automatic run. Runs can be initialised with a different selection of parameters 
per run. For example, simulation runs could be set up for the modelled system where 
input is initiated until a certain number is reached; different random distributions can 
be selected from per run; the number of resources available to a consumer in the net 
can be amended; further data collection points can be implemented to examine values 
across the net.  
 
Normally used in conjunction with timing in the net, simulation can conduct 
performance analysis of the specified system [82]. With CPN Tools, timing delays 
can be introduced at various points in a model using exponential distributions or 
deterministic ranges to represent arrival times and delays between each activity. The 
net toolset permits extraction of data from certain places or transitions during 
simulation of the operational process. In system-of-systems specification, this 
information could be used to calculate timing delays for processes associated with 
particular components, individual or groups of activities, and the process as a whole.  
 
Based on the statistics calculated from the model, ways can be considered as to how 
to improve efficiency. For example, additional resources could be added to the model 
and the model re-simulated to check its effect.  
 
Appendix C, section C.1, illustrates the use of simulation in performance analysis of 
the telephone system and all Appendices (A-D) include its use in the initial validation 
of the constructed nets.  
 
As dynamic analysis via simulation cannot guarantee that all possible execution paths 
of the process have been covered, static analysis of Petri nets is used to provide a 
more exhaustive, deeper level of verification over and above simulation alone. Static 
analysis using reachability tree or state space analysis was conducted to check for 
standard structural Petri net properties such as reachability, boundedness, home, 
liveness and fairness. It is also possible to use temporal logic to inspect the markings 
across the generated state space graph for further checking of expected model 
behaviour (CPN Tools implements ASK_CTL and it is possible for the modeller to 
construct non-standard property queries using this branching temporal logic). Using 
temporal logic, it is possible to combine pre-defined queries or construct new 
modeller-defined queries and undertake further checks related to model properties 
such as reachability and liveness. For example, the modeller may want to verify 
whether the designated dead markings are valid, i.e. the values of tokens on places 
involved in dead markings are as expected; or after reaching a certain place state 
another place state of interest can be reached; or after reaching a certain place another 
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place state of interest cannot be reached. Static analysis for the telephone system is 
discussed in Appendices B-D. 
 
A known weakness of Petri nets is the complexity problem [57]. Even small sized 
process representations can have infinite reachable states (the state explosion 
problem). To alleviate this problem, methods are used to try and reduce the state 
space graph by focusing on its form (largeness avoidance) or a subset (largeness 
reduction). Largeness avoidance techniques are investigated for the telephone system 
in Appendices B-D. 
 
Of further note is static analysis of an un-timed net amended for enhanced 
specification and performance analysis through the addition of timing. Based on the 
work in Appendix C with timed coloured Petri nets using the net toolset, CPN Tools, 
and recommendations from Jensen [90], static analysis of timed nets requires careful 
management. According to Jensen [90, 100], non-determinism in nets means that a 
marking cannot be uniquely determined following an enabled transition's execution. 
For non-deterministic nets, the same state space cannot be generated twice due to this 
unpredictable behaviour. [90] suggests evaluation of a non-deterministic net to check 
whether it can be made into a deterministic one. Although these measures can apply to 
untimed as well as timed nets, timed nets are at much greater risk of experiencing the 
state space explosion problem than their equivalent untimed net during static analysis 
as state space graph calculation considers all potential times that can be associated 
with tokens as well as their colour (types). 
 
Both analyses possible with the Petri net formalism are investigated in detail in 
Appendices A-D using the telephone system specification.  
 
7. Precision in specification of requirements.  
A graphical concrete modelling language syntax can help promote shared 
understanding between technical and non-technical audiences. A formal notation has 
well-defined concrete and abstract syntax as well as static and dynamic semantics 
contributing to unambiguous, consistent and correct system specification and the 
ability to execute and analyse the model described by the notation. 
 
As well as having a graphical concrete syntax, the abstract syntax, and static and 
dynamic semantics of timed high-level nets with hierarchy can be described 
mathematically. In terms of their graphical notation, nets offer a small range of 
elements from which to construct models of systems. Unlike UML, there is no system 
of modelling languages. High-level Petri nets such as coloured Petri nets combine 
classic Petri nets with the strengths of a high-level programming language, providing 
data typing and manipulation capability. This helps to facilitate more compact 
specifications as the concepts of real-life systems can be described using data typing 
rather than additional net elements. Specification of real-life large-scale applications 
becomes feasible using these high-level nets. With CPN Tools, syntax is enforced by 
the syntax checker in its editor and Petri net semantics are enforced by its simulator 
and state space analysis tool.  
 
Ambiguity is introduced via domain concept labelling of net elements. 
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The specification of the telephone system using Petri net concrete syntax is 
demonstrated in Appendices A-D. 
 
8. Scalability, concurrency, state, information, and event-based specification. 
 
It is anticipated that the engineering of large-scale systems-of-systems will produce 
stable, desirable behaviour states. These states will be the culmination of co-operative, 
concurrent interaction between component systems, triggered by particular executions 
of event sequences consuming and producing certain types of information. A 
modelling language should be able to offer a means of representing this behaviour. In 
addition, given the number of component systems likely to be involved in a system-
of-systems, the modelling language has to facilitate scalability.  
 
As discussed previously in section 2.2, Petri nets have been used to model concurrent, 
state and event-based systems. High-level nets offer a means of specifying the 
information exchanged within the system-of-systems. In terms of scalability, from the 
work in Appendices A-D with the telephone system, it was not clear what the 
enlargement limits are for Petri nets before their use becomes impractical. This aspect 
is explored further in the case studies of Chapters 5 and 6. The work in Appendices B-
D did show that nets do not have to be large to encounter the state space explosion 
problem during static analysis and discussed ways to alleviate this problem.  
 
Table 2.1 provides an indication of the potential usefulness of Petri nets in terms of 
the specification and analysis of system-of-systems: 
 
Systems-of-Systems Modelling 
Language Feature 

Petri Net Formalism 

Abstraction Yes, hierarchical nets. 
Modularisation Yes, hierarchical nets. 
Data Typing Yes, coloured nets. 
Toolset Support Toolset evaluated and 

implemented as per requirements 
of organisation. 

Timing Yes, timed nets. 
Verification & Validation Yes, simulation and state space 

analyses. 
Precision Yes, formal basis. 
Scalability To be determined. 
State and event-based Yes, coloured nets allow 

enhanced specification of 
transition-enabling rules. 

Information-based Yes, coloured nets. 

Table 2.1  'Indication of Petri net suitability for system-of-systems specification' 
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Chapter 3 Research Method 
 

3.1 Introduction 
Chapter 3 discusses the case study research method used to demonstrate and evaluate 
the strengths and weaknesses of Petri nets in chapters 5 and 6. Rationale for the use of 
case studies and justification of the results obtained from their use is presented. 
 

3.2 Characteristics of Case Study Methods 
For a large variety of challenging, real-life context problems, the deliberate control 
exercised in experimental research investigations is often not a feasible option to help 
understand them. Instead, a part of the real-life context where the phenomena occurs 
needs to be considered. 
 
Adoption of in-depth case study research in systems engineering has gradually 
increased over the last decade from its dominant use in the social science domain. 
Although there is still relatively sparse guidance for researchers undertaking case 
studies and concerns as to their suitability as a research method, case studies do offer 
the opportunity to study contemporary objects in real-life situations and enable greater 
understanding of them. Case study approaches in systems engineering have been 
discussed by [53, 55, 64, 96, 101, 108] and their use in systems engineering to-date 
tends to be either in large, project-based studies [102] or in a small set of well-known 
examples.  
 
Flyvbjerg [54] highlights that some definitions of the term 'case study' reinforce 
scepticism of its suitability as a research method: 
 
'The detailed examination of a single example of a class of phenomena, a case study 
cannot provide reliable information about the broader class, but it may be useful in the 
preliminary stages of an investigation since it provides hypotheses, which may be 
tested systematically with a larger number of cases' [103]. 
 
Flyvbjerg [54] goes on to argue against the main perceived criticisms of the case 
study approach, namely: 
 
1. Inability to generalise from a single case. 
2. Most useful for generating hypotheses rather than their testing and subsequent 
theory building. 
3. Theoretical knowledge is more valuable than practical knowledge. 
4. Case studies can be biased in verification. 
5. Case studies can be difficult to summarise. 
 
[54] believes knowledge gained through practical means (rather than purely 
statistical) has much potential merit and development of guidelines can alleviate the 
criticism previously levelled at case studies.   
 
Yin [104] defines a case study as empirical enquiry that: 
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'Investigates a contemporary phenomenon within its real-life context, especially when 
boundaries between phenomenon and context are not clearly evident, and in which 
multiple sources of evidence are generally used'. 
 
The second point of this definition relating to boundaries is highly relevant to system-
of-systems implying the potential usefulness of case studies to their engineering. Yin 
[104] accompanies the definition with the following characteristics of a case study: 
 
'copes with the technically distinctive situation in which there will be many more 
variables than data points, and as one result relies on multiple sources of evidence, 
with data needing to converge in a triangulating fashion, and as another result benefits 
from the prior development of theoretical propositions to guide data collection and 
analysis'. 
 
Triangulation is taken here to mean different views of the evidence and Yin [104] 
infers from the characteristics above that the results of a case study will rely on 
different pieces of evidence. The characteristics also imply that a case study is 
appropriate when the subject being studied cannot easily be isolated from the real-life 
context (as is the case in controlled experiments) and there is interest in the 
relationships across a number of factors. Here, scientific methods are usually 
inappropriate for dealing with unstructured problems and this is where research design 
can be used for adapting research methods to do so. 
 
Sjoberg et al [55] supply four purposes for research of which three can be applied to 
the case study method used to demonstrate the strengths and weaknesses of Petri nets 
in system-of-systems engineering. The three purposes are: exploratory ('finding out 
what is happening, seeking new insights and generating ideas and hypotheses for new 
research'); descriptive ('portraying a situation or phenomenon'); and improving ('trying 
to improve a certain aspect of the studied phenomenon').  
 
[108] goes on to summarise the primary characteristics of the case study as a 
methodology that adds to existing knowledge through previously established theory or 
new theory; uses a chain of evidence, qualitative or quantitative, from multiple 
sources in a planned manner; and is flexible in the sense it deals with dynamic 
characteristics of domains such as systems engineering.   
 
This thesis aims to evaluate the benefits of using Petri nets in systems-of-systems 
specification through a case study performed in an office environment. The case study 
approach's main strength is its realism: a researcher undertaking all net construction 
with an integrated Petri net toolset, and verification and validation tasks using two 
real-life, non-trivial system-of-systems from one application domain. Iterative 
guidelines and processes suggested by [55, 64, 96, 101, 108] have been followed in 
this thesis to plan and execute the case study in order to ensure a systematic approach 
to the studies. These are discussed in section 3.3 below.  
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3.3 Thesis Case Study Approach 
Both Runeson et al and Kitchenham et al [64, 96, 101, 108] include the following 
steps in designing a case study: 
 
Step 1. Define case study objective, its related research questions and plan for case 
study. 
 
In the case of this thesis, the objective or quantifiable requirements specification [64, 
96, 101] of the case studies in chapters 5 and 6 was to evaluate the strengths and 
weaknesses of Petri nets in terms of the system-of-systems problems identified in 
chapter 1. Specifically, the benefits of Petri nets regarding functional specification 
correctness, and the quality of the design were to be considered. This objective was 
viewed as exploratory, descriptive, and improving. In terms of a baseline with which 
to compare Petri nets, currently textual, or graphical (static) specifications exist to 
describe system-of-systems functionality. This baseline is used to determine if the 
design specifications captured by Petri nets help to improve functional specification 
correctness and design quality.  
 
The thesis case study considers: 
1. Do Petri nets improve the functional correctness of the system-of-systems design 
specification? 
2. Do Petri nets increase the quality of the design specification? 
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be 
improved? 
 
The research questions relate to the criteria for success defined for both case studies in 
chapters 5 and 6.   
 
The experimental subjects are the Knowledge Transfer Partnership project team 
members. The results were produced by one member of the project team who used a 
simple example specification to gain experience using the selected Petri net integrated 
development environment, CPN Tools. The evaluation exercise undertaken for 
selecting CPN Tools is presented in Appendix F. All members of the project team 
were involved in the verification of the results. 
 
The case studies have one independent variable, the application of Petri nets to 
system-of-systems specification and analysis. The Petri net technique is regarded as 
the treatment, i.e. the technique being evaluated. The control treatment is the 
technique currently used but as this thesis is concerned with evaluating Petri nets in 
comparison to existing methods used in system-of-systems design, this does not have 
to be specified [96]. It is anticipated that functional correctness and design quality are 
the response (or dependent) variables [96, 101] expected to change from the 
application of the treatment. Functional correctness is expressed in terms of number of 
errors detected by simulation; and number of errors detected by static analysis. Design 
quality is expressed in terms of comprehensibility (e.g. use of hierarchy, annotation, 
timing), and scalability. Time spent editing models will depend on the Petri net toolset 
used and experience of the practitioner. It is not included for these reasons. The 
alternative hypotheses state that use of Petri nets will improve both response variables 
and these will be checked at each iteration of model design. 
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In terms of the cases or 'experimental objects' [96, 101] that the treatment is applied 
to, defence sector close air support (CAS) and exchange network parameter (XNP) 
problems are used. Both are systems-of-systems, i.e. they exhibit the systems-of-
systems characteristics listed in chapter 1, in particular: a dominance of legacy 
component systems; multiple interfaces between component systems; and autonomy 
of component systems.  
 
Close air support deals with the neutralisation of a threat detected by military 
personnel. An information message exchange takes place between the actors involved, 
culminating in the threat being neutralised or another attempt at neutralisation being 
initiated. Its component systems include air, ground, and sea-based military platforms, 
soldiers, information communications (tactical data links), and operation support 
centres.  
 
Exchange network parameters aims to automate the change of network parameters 
and address from one subnetwork to another. Again, an information message 
exchange takes place between the actors involved, culminating in a network address 
being allocated or rejected. Its component systems can include air, ground, and sea-
based military platforms, soldiers, and information communications (tactical data 
links). In these cases, two system-of-systems from one application domain are 
compared by applying the same treatments to both. Yin [104] defines this as an 
embedded case study, i.e. there are two units of analysis where the context is system-
of-systems application domains in general: 
 

 
Fig. 3.1 'Embedded case study' adapted from [108], p139 

 
Each case is expected to be a 'typical' representation of a system-of-systems, selected 
to predict similar results in relation to the response variables. The case study was 
conducted in two phases with close air support as the first phase and exchange 
network parameters as the second phase.  
 
In close air support, military standards documents [105, 106] provided details of the 
close air support mission process. Workshops were also undertaken with subject 
matter experts from the Knowledge Transfer Partnership host company to verify the 
operational processes, i.e. the activities, activity sequences, actors, performance 
parameters, and information exchange identified from the standards documentation. 
This operational process information was then used to construct models of the 
specification using Petri nets at a system-of-systems level of engineering. 
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Specifically, models were to be produced at system-of-systems analysis, and design 
and architecture levels of abstraction for the entire close air support operational 
process. The modelling process is detailed as follows and shown in Fig. 3.2: 
 
1. Identify relevant textual, graphical documentation relevant to the process 
describing the system-of-systems. 
2. Extract actors, information, activities, activity sequence, performance parameters 
from documentation. 
3. Verify information with subject matter experts. 
4. Use step 3 as input to Petri net model at system-of-systems analysis level of 
abstraction 
5. Verify with subject matter experts. 
6. Use step 5 as input to Petri net model at system-of-systems design and architecture 
levels of abstraction. 
7. Verify with subject matter experts. 
 

 
Fig. 3.2 'UML activity diagram of case study modelling process' 

 
At each iteration of model design, response variables would be checked and results 
noted, i.e. scalability, comprehensibility, and number of errors detected by executing 
the net and calculating the reachability graph of the net. 
 
In the second case study, exchange network parameters, a similar process to that used 
for close air support was followed. 
 
Runeson et al [108] suggest a checklist to ensure adequate case study design and this 
was used for the two studies in the thesis: 
 
Case Study Design Requirement Addressed 
Definition of a case and units of analysis  Yes. 
Definition of objective, associated research 
questions, and hypotheses 

Yes. 

Theoretical basis Yes, existing Petri net literature. 
Clear cause-effect relationships Yes. 
Evidence triangulation Yes, two cases. 
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Case Study Design Requirement Addressed 
Rationale for subjects, roles, viewpoints Yes. 
Relevance of case(s) to address research questions Yes. 
Integrity of involved individuals and organisations Yes. 

Table 3.1 'Checklist for case study design' adapted from [108], p144 

 
In terms of planning for data collection, the case study plan indicates which methods 
of collection to use i.e. direct, indirect, or independent [107]. This thesis uses direct 
and independent sources of evidence collection, details of which are provided in step 
2. 
 
Step 2. Define case study procedures for data collection. 
 
Runeson et al [108] recommends maintaining a case study design document and 
guidance for execution. The case study protocol for the thesis adapts the tabular 
template provided in [108]: 
 
Section Content 
General Objective: evaluate the strengths and weaknesses 

of Petri nets.  
Why: address the system-of-systems problems 
identified in chapter 1. 
How: use of two comparative, typical, exploratory 
cases. Consider their functional specification 
correctness, and the quality of the design. 

Procedures Contacts: 
Organisations: Host company partner, University. 
Equipment: 
Petri Net Integrated Development Environment, 
CPN Tools. 
Subjects: 
Knowledge Transfer Partnership project team. 
Process: 
Construct Petri net models at system-of-systems 
analysis, and design and architecture levels of 
abstraction noting effects on comprehensibility 
and scalability and performing simulation and 
reachability analysis at each iteration of model 
design. 

Research Instrument CPN Tools analysis reports, research notes and 
screenshots. 

Data analysis guidelines Detection of errors through reachability and 
dynamic analyses at each iteration of model 
design. 
Examination of scalability, and comprehensibility 
at each iteration of model design. 

Table 3.2 'Case study protocol for thesis' adapted from [108], p142 

 
Runeson et al [108] point out the importance of ethical considerations, particularly 
confidential information. In the thesis, confidentiality was handled through the 
signing of a Non-Disclosure Agreement between the Knowledge Transfer Partnership 
partners. 
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Step 3. Collect evidence. 
 
For each case, the research instruments were identified prior to starting in order to 
clarify how the evidence would be collected from the study. The data sources used 
were: 
 
1. Simulation screenshots illustrating problems detected using the ability to execute 
the net. 
2. Copy of net source code at each iteration of design. 
3. Copy of standard net analysis report produced by CPN Tools at each iteration of 
design.  
4. Net screenshots illustrating comprehensibility or scalability. 
5. Project team notes taken based on usage of nets at each iteration of design. 
 
For the thesis, triangulation was used to draw conclusions from the two cases in order 
to avoid interpretation from one source of data only. For these case studies, data 
collection was first degree [107], i.e. the project team had direct control over when, 
what, and how data was collected and it could be collected in real-time.  
 
[108] suggests two checklists to ensure adequate preparation and conduct of data 
collection and these were used for the two case studies in the thesis: 
 
Data Collection Requirement Addressed 
Definition of a case study protocol  Yes. 
Multiple data sources (triangulation) Yes, two cases. 
Definition of measurement instruments Yes. 
Can objective of case study be met Yes. 
Adequate confidentiality and case study sign-off Yes. 
Evidence Collection Requirement  
Case study protocol used to collect evidence Yes. 
Adequate implementation of treatment Yes. 
Adequate recording of evidence for further 
analysis 

Yes. 

Adequate processing of confidential evidence Yes. 
Traceability of evidence collection procedures Yes. 
Adequate evidence to meet research questions Yes. 

Table 3.3 'Checklist for data collection' adapted from [108], pp.149-150 

 
Step 4. Analyse collected data. 
 
The analysis step of a case study deals with the processing of the quantitative and 
qualitative data collected from the case study. Qualitative data analysis can be used in 
two forms of analysis, hypothesis generating (exploratory case studies) and hypothesis 
confirmation (explanatory case studies). The cases in this thesis use hypothesis 
confirmation analysis techniques to confirm that a hypothesis is true. Both cases used 
quantitative and qualitative data to test the hypotheses. The qualitative data may also 
be able to indicate the reason for the errors detected quantitatively. Qualitative 
analysis uses a chain of evidence to form conclusions based on the data, i.e. sufficient 
information from each part of a case and each decision made by the project team must 
be presented.  
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Notes were recorded by the project team immediately upon completion of design 
iterations for each model. These commented on toolset problems faced, for example, 
in net creation, and editing as well as results of simulation and reachability analysis 
and reasons for these results. Triangulation can be undertaken per case helping to 
confirm the hypotheses using tabulation to present an overview of the results of each 
case study. 
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Step 5. Report. 
 
The case study report should present the conclusions of the study and give an 
indication of the quality of the study without compromising confidentiality where this 
is of concern. It is also important to relate a history of the study or chain of evidence, 
linking items of evidence to conclusions drawn. This thesis adopts the linear-analytic 
[104] report structure. Results and conclusions based on the case study design 
discussed in this chapter are presented in chapters 5 and 6.  
 
According to Kitchenham et al [64] the five steps above aid in forming conclusions 
from the case study and relate to the four research design quality criteria defined by 
Yin that enforce the concepts of reliability and validity: 
 
1. Construct validity: establishment of correct operational measures for the studied 
concept.  
2. Internal validity: awareness of the range of causal relationships between 
independent and dependent variables during examination. To be internally valid an 
experiment must be designed so that conditions other than the independent variable 
are ruled out as potential causes of the behaviour change.  
3. External validity: establishment of whether findings of a study can be generalised 
beyond the current study.   
4. Experimental reliability: demonstration that the operations of a study can be 
subsequently repeated with similar results. 
 
Case study validity depends upon the systematic process underlying its design and 
execution to reach trusted, unbiased results. In the studies of chapters 5 and 6, the 
main advantage of the case study approach was its external validity where 
specification of real-life systems-of-systems was undertaken over an extended period 
of time using an industrial Petri net toolset. A minimal degree of control was 
exercised as a means of maintaining external and internal validity. Petri net strengths 
and weaknesses in the specification and analysis of systems-of-systems require 
consideration of the correctness of functional specifications and improved design 
quality. To have construct validity the study has to examine these dependent 
variables. Experimental reliability is demonstrated by the repetition of operations used 
in the first phase of the case study in the second phase. 
 
Many systems engineering case studies rely on large industrial studies where there is 
much less control. Instead, this thesis conducts a case study with a greater degree of 
control in an office environment, maintaining a real-life context to examine the 
strengths and weaknesses of Petri nets on specification of systems-of-systems. 
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Chapter 4 Petri Net Strengths and Weaknesses in 
relation to System-of-Systems 

 

4.1 Introduction 
The success of a deterministic system-of-systems engineering project depends on 
integrating autonomous components using international communications standards in 
accordance with the owner's specification. Discussed in chapter 1, a main 
characteristic of large-scale, system-of-systems is that they are distributed, relying 
upon a communications infrastructure to achieve global behaviour. Large numbers of 
distributed component systems contribute huge complexity in terms of concurrency 
with one another, exchanged information, and dynamics. Based on the individual 
behaviours of components, the goal of system-of-systems engineering is to design 
desirable behaviour into a global system-of-systems and design undesirable behaviour 
from it.   
 
Current state-of-the-art approaches such as architecture frameworks and enterprise 
architecture provide a means of capturing an organisation from different viewpoints at 
different levels of abstraction. Modelling promotes understanding between the 
communities involved in system-of-systems development (business analysts, 
designers and original equipment manufacturers) and offers the opportunity to create 
and reuse reference models.  
 
All these approaches can make positive contributions to system-of-systems 
engineering but at the moment, successful implementation of system-of-systems is 
still a problem. Architectures require commitment at senior management level to drive 
their adoption. This justification is difficult based on their current level of maturity 
and lack of a standard system-of-systems implementation process.  
 
Modelling also suffers from the same lack of process surrounding what should be 
modelled in system-of-systems design. One of the most popular modelling notations 
available for specifying systems, UML, is intuitive and graphical but also ambiguous 
and imprecise. Supplying a range of diagrams to represent a system under 
development, UML lacks simulation and exhaustive verification capability. This 
shortfall in UML has received little attention in the context of system-of-systems and 
there are two major research issues: 
 
1. Where the dynamic diagrams of UML can and cannot be used to model and analyse 
system-of-systems. 
2. Determining how Petri nets can be used to improve the specification and analysis of 
the dynamic model of a system-of-systems specified using UML. 
 
Chapter 4 discusses the benefits and shortfalls of Petri nets in relation to the 
specification of systems-of-systems and shows how Petri net models can be used 
instead of conventional UML behavioural diagrams to analyse and verify the system-
of-systems using Petri net theory. The chapter concludes by introducing the first case 
study used to demonstrate use of Petri nets in system-of-systems specification. 
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The chapter begins by reviewing the behavioural diagrams of UML. 
 

4.2 UML Behavioural Diagrams (Dynamic Model) 
The development of a system-of-systems relies on specification of its dynamic 
structure. The mutually connected component systems of the system-of-systems and 
the relationships between them represent its overall behaviour. The state of the 
system-of-systems is defined by the states of its component systems. The overall 
behaviour is a result of concurrent services performed by each component system 
causing them to change their state.  
 
The UML 2.x modelling notation offers modelling concepts from static and dynamic 
model viewpoints and includes use case, class, state machine, communication, and 
activity diagrams for these purposes. The static model represents the structure of a 
system through classes, objects, and their relationships. The dynamic model 
represents behaviour of a system and uses state machine, activity, sequence, and 
communication diagrams to do so. Given the dynamic nature of system-of-systems, 
the primary concern is capturing these critical dynamic aspects. The main behavioural 
diagrams of UML are now considered more closely in relation to the desirable 
features for a modelling language used in the specification of systems-of-systems 
suggested in chapter 1. 
 

4.2.1 Sequence  
A sequence diagram, based on the Message Sequence Chart formalism, describes the 
communication and functions used by objects together with the order of message 
flow. They are normally used to reach a better understanding of a scenario. Its 
concrete syntax includes lifelines represented by a vertical line indicating the progress 
of time and message exchanges to (from) the lifeline; with asynchronous or 
synchronous messages represented by arrows between lifelines. The sequence 
diagram is now considered in terms of the desirable system-of-systems specification 
features. 
 
1. Abstraction: InteractionUse references can be used to hide detail of interactions 
contained in separate diagrams. Lifeline classifiers can also be decomposed in 
separate diagrams showing detail of component classifiers and their message 
exchange.  
2. Modularisation: lifeline classifiers are a useful way to organise parts of the system-
of-systems. Component systems within a system-of-systems are modular in the sense 
that they use communication interfaces (and protocols) to integrate and share 
information. Messages (defined within class diagrams) and lifelines are the primary 
method of capturing component systems and their interfaces in sequence diagrams.  
3. Data typing: supported by messages defined within class diagrams. 
4. Adequate toolset support: wide variety of UML CASE toolsets. 
5. Timing: basic support for the specification of message ordering via 
DurationObservation, DurationConstraint, TimeConstraint, TimeObservation, and 
GeneralOrdering nodes. The UML Profile for Schedulability, Performance, and Time 
can also be used to introduce timing and probabilistic information. 
6. Verification and validation: no simulation or model-checking in native form. 
7. Precision in specification of requirements: no mathematical foundation. 
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8. Scalability: sequence diagrams tend to get very large quickly unless suitable 
abstraction is used; they can be used to represent concurrent, asynchronous, 
synchronous, event, and information-based message exchange (in conjunction with 
the UML static model) between components; they are not intended to capture states 
passed along lifelines, resource contention, non-deterministic behaviour, data 
manipulation, or process-based flow; sequence diagrams are intended to capture and 
explore single-cycle, scenario-based courses of action. 

4.2.2 State Machine 
A state machine diagram, based on Finite State Machines, describes the detailed 
behaviour of a part of a system by showing component states (attribute 
configurations) and the events responsible for state change. State machine models of 
component behaviour and protocol behaviour can be developed. The state machine 
diagram is now considered in terms of the desirable system-of-systems specification 
features. 
 
1. Abstraction: Composite state can be used to hide detail of a state in a separate 
diagram. Submachine state can also be decomposed in separate diagrams showing 
detail of a state and associated transitions.  
2. Modularisation: Submachine state is a useful way to organise parts of the system-
of-systems. Component systems within a system-of-systems are modular in the sense 
that they use communication interfaces (and protocols) to integrate and share 
information. Transition triggers and actions (depicted graphically by signals with 
parameters defined within class diagrams) and Submachine state are the primary 
method of capturing component systems and their interfaces in state machine 
diagrams. 
3. Data typing: supported by parameters defined within class diagrams. 
4. Adequate toolset support: wide variety of UML CASE toolsets. 
5. Timing: basic support for the specification of message ordering via TimeEvent 
nodes. The UML Profile for Schedulability, Performance, and Time can also be used 
to introduce timing and probabilistic information. 
6. Verification and validation: no simulation or model-checking in native form. 
7. Precision in specification of requirements: no mathematical foundation. 
8. Scalability: state machine diagrams tend to get very large quickly unless suitable 
abstraction is used; they can be used to represent concurrent, state, event, and 
information-based message exchange (in conjunction with the UML static model); 
they are not intended to capture whole system behaviour, asynchronous or 
synchronous message exchange, resource contention, or process-based flow between 
components; state machine diagrams are intended to capture and explore the state-
dependent behaviour of a complex component. 

4.2.3 Activity  
Activity diagrams were originally derived from Petri nets and flow charts. They 
model behaviour by organising it into units and describing the control and data flow 
between these units and their distribution across a system. However, in UML 1.x, the 
activity diagram was an adaptation of a state machine diagram (ActivityGraph was a 
subclass of StateMachine in the metamodel) but its semantics were redefined in UML 
2.0 to 'use a Petri-like semantics instead of state machines' [11]. It is used to capture 
the ordering of activities. In terms of concrete syntax, ovals describe Action nodes 
representing a single step in an activity, and rectangles describe ObjectNode nodes for 
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object flow capture. The diagram starts in an initial state (black circle) and ends in an 
end state (black inner circle). Decision points and forks are described by a diamond 
and bar respectively as shown in Fig. 4.1. 
 

 
Fig. 4.1 'Example activity diagram' 

The activity diagram is now considered in terms of the desirable system-of-systems 
specification features. 
 
1. Abstraction: Activity containment elements can be used to hide detail of an activity 
in separate diagrams.  
2. Modularisation: ActivityPartition containment elements are a useful way to 
organise parts of the system-of-systems. Component systems within a system-of-
systems are modular in the sense that they use communication interfaces (and 
protocols) to integrate and share information. ObjectNodes and Pins (defined within 
class diagrams) and Activity containment elements are the primary method of 
capturing component systems and their interfaces in activity diagrams. 
3. Data typing: supported by parameters defined within class diagrams. 
4. Adequate toolset support: wide variety of UML CASE toolsets. 
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5. Timing: basic support for the specification of message ordering via 
AcceptTimeEventAction nodes. The UML Profile for Schedulability, Performance, 
and Time can also be used to introduce timing and probabilistic information. 
6. Verification and validation: no simulation or model-checking in native form. 
7. Precision in specification of requirements: no mathematical foundation. 
8. Scalability: activity diagrams have increased scalability over sequence and state 
machine diagrams (particularly if suitable abstraction is used); they can be used to 
represent concurrent, asynchronous or synchronous, state, event, process and 
information-based message exchange (in conjunction with the UML static model) 
between components; they are unable to capture resource contention; activity 
diagrams are intended to capture and explore the control and conditions for co-
ordinating whole system behaviour and lower-level component behaviour. 
 
Derived from previously existing modelling languages used in the domain of software 
engineering, UML is not an executable specification language. Its usage tends to be 
for static examination or code generation. Even though it has a concrete, extensible, 
and intuitive graphical notation, the semi-formal nature of these diagrams prevents the 
evaluation of completeness, consistency, and correctness in system specification. The 
UML dynamic model provides weak support for simulation and verification. As there 
is no full formal syntax and semantics, models produced using UML behavioural 
diagrams cannot be executed (simulated). Here, an execution algorithm would be used 
to validate the behaviour of a system. Simulation can be used to detect undesirable 
behaviour, and incorrect or omitted logic. With no executable model, behaviour of 
different system designs cannot be checked prior to their implementation. Although 
commercial UML toolsets such as IBM Rational Tau and Rhapsody suites [109, 110] 
offer execution of UML behavioural diagrams, their execution algorithms are 
proprietary and based on semantic decisions taken by the toolset vendor.  
 
Simulation alone cannot guarantee that all possible execution paths of a modelled 
process have been covered, and reachability graph calculation is used to provide a 
more exhaustive, deeper level of verification with formal languages. Standard 
structural properties such as reachability, boundedness, home, liveness and fairness 
can be automatically checked for. Again, due to their semi-formal nature, reachability 
graphs cannot be calculated for UML behavioural diagrams unless semantic decisions 
are taken by toolset vendors. 
 
Attempts are being made to formalise UML but a formal notation requires well-
defined concrete and abstract syntax as well as static and dynamic semantics. 
Approaches so far have tended to focus on the static semantics of UML but do not 
address dynamic semantics. These dynamic semantics are needed in order to execute 
the behavioural diagrams of UML. A pre-requisite of being able to formalise the 
dynamic semantics is the static model. The diagrams of the static model describe the 
objects of the system and their interfaces, the dynamic model describes how these 
objects and their interfaces are used to exchange information. Although the dynamic 
model of UML is focused on, the pre-definition of the classes the behavioural 
diagrams use is assumed.  
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4.3 UML Behavioural Diagrams and System-of-Systems 
Specification 

In the context of the system-of-systems problems:  
 
1. Verification and validation of the specification at the analysis, design and 
architecture phases. In critical system-of-systems applications, the ability to check 
design functional correctness and completeness in terms of syntax, structure, and logic 
is vital before their physical implementation.  
 
2. Specification of the information exchange protocol and interfaces of the large 
numbers of component systems involved. 
 
In terms of the first system-of-systems problem, the UML dynamic model is static in 
the sense that the behaviour it describes is not executable. Verification and validation 
of model correctness and adequacy in terms of requirements can only be undertaken 
via manual inspection or testing following implementation of a prototype or the actual 
system.  As indicated, some commercial UML toolsets have made it possible to 
execute state machine and activity diagrams based on proprietary algorithms. 
However, these toolsets offer simulation rather than exhaustive model-checking 
functionality achievable using formal methods. Model-checking is where a finite state 
model of a concurrent system described using some formalism is checked for certain 
properties represented by a temporal logic formula. The model-checking method of 
verification is automatic, performing an exhaustive search of the calculated state 
space graph to check whether a property is true or not. Clarke et al provide an 
overview of the benefits of model-checking in [111]. 
 
Regarding the second system-of-systems problem, all three behavioural diagrams 
could be used to specify aspects of information exchange protocol. However, given 
the large number of component systems involved in system-of-systems and their 
concurrent nature, state machine and sequence diagrams have very limited 
application. Structure diagrams would be needed to define and describe interfaces and 
attributes.  
 
In addition, specification of non-functional properties (such as timing information and 
quality of service) requires UML extensibility mechanisms to be used such as the 
Profile for Schedulability, Performance, and Time [112] (to be replaced by Profile for 
Modelling and Analysis of Real-time and Embedded Systems [113]) and Profile for 
Modelling Quality of Service and Fault Tolerance Characteristics and Mechanisms 
[114]. Again, the UML dynamic model using any of these profiles is static in the 
sense that the behaviour it describes is not executable. [115, 116] describe work 
translating UML behavioural diagrams to Petri nets for performance analysis 
purposes. 
 

4.3.1 UML Behavioural Diagrams Strengths and Weaknesses in 
terms of System-of-Systems 

In general terms, UML is a standardised, intuitive graphical notation for specification 
communication and documentation purposes, with widespread toolset support and 
adoption. UML diagrams used for a system specification are not independent of one 
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another, and creation of a dynamic model relies on the pre-existence of a static 
structure model. In terms of system-of-systems, UML has no development process 
and best practice is required in terms of which diagrams to develop and their order of 
development. Table 4.1 summarises the strengths and weaknesses of the three 
behavioural diagrams in the specification of systems-of-systems: 
 
UML Behavioural 
Diagram/ 

State Machine Sequence Activity 

Specification Feature    
Abstraction Yes. Yes. Yes. 
Modularisation Yes. Yes. Yes. 
Data typing Yes (via class 

diagram). 
Yes (via class diagram). Yes (via class 

diagram). 
Toolset support Yes. Yes. Yes. 
Formal dynamic 
semantics 

No. No. No. 

Verification and 
validation 

Static. Static. Static. 

Process-based No. No. Yes. 
Scalability Low. Low. Improved over state 

machine and 
sequence diagrams 
for system-of-
systems 
specification. 

Timing Yes (via profile). Yes (via profile). Yes (via profile). 

Table 4.1 'Strengths and weaknesses of UML behavioural diagrams for system-of-
systems' 

From section 4.2, the only UML behavioural diagrams that are candidates for 
specifying concurrent, state, event-based, individual behaviour of a component and 
combined component behaviour are state machine and activity. From Table 4.1, of 
these two, state machine diagrams do not exhibit scalability and are not intended to 
capture process-based control and data flow behaviour. Sequence (and 
communication) diagrams can only describe specific scenarios (single cycles) and not 
the general behaviour of the system.  
 
The main weakness of all the UML behavioural diagrams is their lack of formal 
dynamic semantics. It is not possible to execute or perform exhaustive checking of 
models built using the present syntax and semantics of these three types of UML 
diagram, i.e. no simulation, or performance analysis, or reachability graph calculation. 
These functions are essential in helping the production of correct specifications for 
large-scale system-of-systems. The behavioural diagrams discussed above have all 
been translated by existing work [74, 75, 116, 117] to the Petri net formalism to take 
advantage of its formal semantics.  
 
The behavioural diagrams have also been translated to other formal approaches such 
as temporal logic, labelled transition systems, event calculus, and process algebras. 
Although expressive in specifying concurrent system behaviour and requirements for 
subsequent model-checking, these techniques involve text-based specification that can 
quickly become difficult to comprehend. Intuitiveness is often sacrificed for 
expressiveness of the notation. Formal properties can be very difficult to specify for 
modellers without solid mathematical backgrounds. Petri nets on the other hand offer 
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a graphical means of specification with a long history of research providing manual 
and automated verification. Non-UML, formal state machine approaches can also 
offer a graphical means of specification and verification but concurrency and 
abstraction are not normally supported. Their precise low-level focus can lead to the 
state-space explosion problem modelling large-scale systems.  
 
Petri nets appeared to offer an established, intuitive, process-based approach to 
system-of-systems specification although none of the translation work focused on the 
benefits of Petri net use in their specification. For this thesis, UML 2.x activity 
diagrams are concentrated on for two reasons: first, the standard's [11] claim that they 
"use a Petri-like semantics" and secondly, based on the strengths and weaknesses 
identified in this section, they appear to be most applicable for use in system-of-
systems specification. The thesis puts forward the idea of the Petri net formalism as a 
complementary enhancement to UML activity diagrams and evaluates its strengths 
and weaknesses using a case study approach.  
 

4.4 Petri Nets Strengths and Weaknesses in terms of System-
of-Systems 

Introduced in chapter 2, Petri nets are a graphical and mathematical technique for 
describing concurrent, asynchronous, distributed, non-deterministic and stochastic 
information processing systems [56]. To-date their applications include workflow 
pattern development for the analysis of process-aware information systems [59], 
military command and control systems [60, 61], task planning research [62], computer 
circuits [43] and manufacturing. No work has looked at how Petri nets can help in the 
context of large-scale system-of-systems and the problems described in chapter 2, 
particularly verification and validation of the specification at the analysis, design and 
architecture phases; and specification of the information exchange protocol and 
interfaces of the large numbers of component systems involved. Most or all of these 
component systems will already exist but an equivalent Petri net model for them will 
not.  
 
In order to find out exactly how Petri nets can be used to help address these system-
of-systems problems, a well understood problem (a telephone system) was considered 
before exploring use of nets in creating system-of-systems models. An example 
specification involving a telephone system enabled experience to be gained 
developing nets and check their behaviour against a familiar result set. Based on 
addressing the system-of-systems problems highlighted above, criteria for success 
(Table 4.2) were defined at the start of the exercise. 
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Goal 1: Gain knowledge and experience in development of Petri net models 
(including chosen toolset). 
 
Metrics: Use Petri nets to specify the telephone example using chosen toolset noting 
details of the construction process (time involved, ease of mode creation); net 
readability and understandability; and features of the toolset. 
 
Goal 2: Precisely specify the telephone example. Use Petri nets to capture the 
operational processes, components and information exchange involved in the 
telephone system at analysis, design and architecture phases. 
 
Metrics: Check if Petri net elements can describe operational processes, components 
and protocols of the telephone system. Note syntactical, semantic, and feature support 
provided by the chosen toolset.  
 
Goal 3: Determine the scalability of Petri nets. 
 
Metrics: Explore the use of abstraction in Petri nets to check if nets can be used to 
create models of large-scale systems. 
 
Goal 4: Determine how Petri nets can be used to verify and validate the telephone 
example specifications. 
Use Petri nets and the selected toolset to explore verification and validation of the 
telephone specifications at the analysis, design and architecture phases. 
 
Metrics: Employ static (state space) analysis of nets to check for well-known 
properties in models. Employ dynamic analysis of nets to explore behaviour and 
efficiency. Note when static and dynamic analyses should be used and potential for 
errors to go undetected i.e. existence of verification and validation spectrum. 
 

Table 4.2 'Criteria for success for the specification of the telephone system using Petri 
nets' 

 
Appendix A details the specification, initial verification, and use of hierarchy in the 
telephone process using classic and coloured Petri nets. The analyses possible with 
nets were explored and recorded in Appendix B, together with an introduction to 
techniques for reducing the complexity problem normally associated with nets. In 
Appendix C, the addition of timing to nets was considered in order to validate the 
telephone process. Again, techniques for reducing the complexity problem in nets 
were reviewed for timed coloured nets. In Appendix D, the techniques recorded in 
Appendix A-C are applied at design and architectural levels of abstraction for the 
telephone process. 
 
Conclusions from the work in Appendices A-D using Petri nets to specify a telephone 
process and the possible implications for specification of systems-of-systems are 
presented in section 4.4.1. 
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4.4.1 Conclusions from Specification of the Telephone System 
using Petri Nets   

Referring back to the criteria for success of the telephone exercise defined at the 
beginning of section 4.4, each goal in Table 4.2 is considered in Table 4.3 below. 
 
Goal 1: Gain knowledge and experience in 
development of Petri net models (including chosen 
toolset). 
 
 
 

CPN Tools was the toolset used in 
Appendices A-D to explore creation, 
verification and validation of high-level net 
models of the telephone process. For this 
well-known problem, the toolset proved 
comprehensive with many modelling aides 
available in one software package.  
 
From an industrial and large-scale system 
modelling perspective, it would benefit from 
enhancements such as: an improved model-
checking report; improved (visual) guide to 
errors and problems detected in the model; a 
customised query builder; a graphical front-
end to the simulator; net management 
facilities such as version (audit) control and 
comparison between nets, re-use of nets, 
layout of declarations, synchronisation of 
nets, layout and presentation of multiple 
folders for editing and simulation, and a 
facility to manage large hierarchies of nets.  
 

Goal 2: Precisely specify the telephone example. Use 
Petri nets to capture the operational processes, 
components and information exchange involved in the 
telephone system at analysis, design and architecture 
phases. 
 

Nets provide unambiguous specification via 
their mathematically-based abstract and 
concrete syntax and semantics. The use of 
Coloured Petri nets allows colours (types) to 
be associated with places, significantly 
reducing the number of elements required to 
represent information in a net. Timing in nets 
allows the modeller to associate the concept 
of time to activities in the net enabling 
capture of activity duration, timeouts, and 
ordering of tokens themselves (in addition to 
basic control sequence order) and is essential 
to the modelling precision of large-scale 
system-of-systems. Labelling and annotation 
within nets can be open to interpretation.  
 
The telephone example illustrated 
information exchange at conceptual, and 
design and architecture levels specifying the 
type of information, control order sequence, 
transactions, message order sequence, timing 
of exchange (via timeouts, parameters) and 
potential failure states (e.g. deadlock through 
underlying communications failure). 
 
To help achieve the goal of precise 
specification, identification of an adequate 
net toolset supporting high-level nets, 
organisation-wide net management and 
construction method (including a suitable 
hierarchy), practitioner training, and domain 
user involvement are vital. Enhancements in 
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terms of the existing limited Petri net 
graphical notation are likely to be required to 
support the domain being modelled and for 
readability and comprehension purposes. 
 

Goal 3: Determine the scalability of Petri nets. 
 

Use of high-level nets and hierarchy (at 
model level and within models themselves) 
can help facilitate the construction of models 
of large-scale systems through levels of 
abstraction and use of colour (types) to 
reduce the number of elements required to 
represent information in a net. Based on the 
simple concept of the telephone process, for 
models of large-scale system-of-systems, it is 
highly likely that nets will have to be divided 
for development purposes. Hierarchies at 
model level and within models will help to 
facilitate this division in conjunction with a 
net management method. 
 
In addition, use of an adequate net toolset can 
also govern the overall size of a model 
through options provided for re-use of parts 
of a net and how parts of large models are 
presented to the modeller. At this stage, it has 
not yet been determined exactly how well 
nets can scale in the modelling of system-of-
systems. 
 

Goal 4: Determine how Petri nets can be used to verify 
and validate the telephone example specifications. 
Use Petri nets and the selected toolset to explore 
verification and validation of the telephone 
specifications at the analysis, design and architecture 
phases and potential for errors to go undetected i.e. 
existence of verification and validation spectrum. 
 

Dynamic and static analyses of high-level 
nets were investigated for the telephone 
example. Both provide highly beneficial 
behavioural and structural checking for the 
modeller. Dynamic model execution 
(simulation) enables verification of 
behaviour. Not only can the modeller use the 
execution sequence to check the design of the 
net elements, simulation can also be used to 
elicit knowledge from subject matter experts 
in order to verify the model. Validation in 
terms of efficiency (performance) analysis of 
the model can be undertaken if timing is 
introduced into the net. Modelled components 
can also be associated with information based 
on real-life resources in analysis-of-
alternatives scenarios to further validate the 
design of the model.  
 
Static analysis or model-checking provides a 
means of exhaustively verifying a model 
based on familiar Petri net properties such as 
deadlock. In addition, depending on the 
toolset employed, branching temporal logic 
standard and customised queries can be made 
on the resulting state space graph. Static 
analysis encourages the modeller to discover 
why a model behaves in a certain manner or 
why it does not.  The main weakness of static 
analysis is that it is susceptible to state space 
explosion even with relatively compact nets 
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defining a narrow problem scope. Largeness 
avoidance techniques were employed 
together with a suitable hierarchy to illustrate 
how they can be used to combat state space 
explosion and help improve understanding 
and specification of nets. Again, hierarchy 
and abstraction play a key role in facilitating 
verification and validation. 
 

Table 4.3 'Results from the specification of the telephone system using Petri nets' 

 
It became clear from modelling the telephone system that as well as the requirement 
to implement timed, coloured Petri nets with hierarchy, use of hierarchy and an 
adequate modelling framework will be vital to the success of using nets to capture 
large-scale systems.  
 
The potential strengths and weaknesses of Petri nets in relation to modelling a system-
of-systems were also indicated. A summary of what was learned in this section is 
presented in Tables 4.4 and 4.5 below. Each point is related to system-of-systems and 
the problems defined in chapter 2. In section 4.5, this experience is used to highlight 
where Petri nets are likely to be of benefit enhancing UML activity diagrams in the 
more complex case studies to follow. 
 
Petri Net Strengths Comments Relevance to System-

of-Systems 
Mathematical Description Precision in both syntax and 

semantics. 
Specification can be 
described mathematically 
(as well as graphically). 

Graphical Notation Places, directed arcs, transitions, 
textual annotation and underlying 
interpretation rules. 

Point-of-reference model for 
those involved with system-
of-systems lifecycle. 

State and Event-based Able to capture rules-based 
information state, conditions and 
activities. 

Characteristic of system-of-
systems function. 

Application Flexibility Nets  can be used to specify rules-
based applications from different 
domains. 

Anticipated that nets can 
specify system-of-systems 
applications. 

Concurrency Able to capture activities 
occurring in parallel. 

Characteristic of system-of-
systems function. 

Single View The set of net elements (and their 
underlying interpretation rules) is 
consistent regardless of the 
abstraction level or viewpoint of 
the model. 

Specification information 
provided by one set of net 
elements. 

History of State Markings can be analysed along 
execution paths. 

Verification of reachability 
and correct deadlock states. 

Specification of Behaviour at 
Analysis, Design and 
Architecture Stages 

Capture of operational, 
transactional, and physical 
components and control 
sequence, roles, states, activities 
involved. 

Operational processes, 
transactions, and physical 
components key to 
realisation of overall 
system-of-systems function. 

Specification of Information 
Exchange Protocol 

Capture of roles, information 
involved, timing, failure states 
and sequencing. 

Information exchange 
protocol key to realisation 
of overall system-of-
systems function. 
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Petri Net Strengths Comments Relevance to System-
of-Systems 

Specification of Interfaces Capture of operations provided by 
and required by component 
systems together with parameter 
information. 

Component system 
interfaces key to realisation 
of overall system-of-
systems function. 

Hierarchy Ability to facilitate scalability by 
representation of different levels 
of abstraction within net (capture 
of top-down and bottom-up 
approaches). 

Hierarchy key to scalability, 
readability and analysis of 
system-of-systems function 
and efficiency specification 
using nets. 

Dynamic Analysis (verification 
of specification) 

Ability to execute net and verify 
its logic and behaviour 
interactively or automatically. 

Verification of function and 
information exchange 
protocol of system-of-
systems. 

Static Analysis 
(verification of specification) 

Ability to calculate state space 
graph of net and perform standard 
(and non-standard) analysis on 
the state space. 

Deeper verification of 
function and information 
exchange protocol of 
system-of-systems. 

Timing (enhancement and 
validation of specification in 
conjunction with dynamic 
analysis) 

Capture correctness, efficiency or 
performance of system via 
introduction of concept of time in 
nets. 

Validation of system-of-
systems function specified 
by net in terms of 
prioritisation and 
performance. 

Table 4.4 'Petri net strengths and their relationship to system-of-systems development' 

 
Petri Net Weaknesses Comments Relevance to System-of-

Systems 
State Space Explosion Depending on the logical 

structure of untimed and timed 
nets, state space graph 
calculation may have infinite 
reachable states. 

In order to benefit system-of-
systems specification, static 
analysis of the net is vital. Ways 
to reduce the state space while 
preserving system function need 
to be considered. 

Scalability Nets can quickly become large 
and complex (need to manage 
through use of hierarchy, 
discretisation and coloured 
nets). 

System-of-systems are large-
scale, complex systems. In order 
to benefit their specification, 
there needs to be a way to 
control scalability. 

Readability and 
Comprehensibility 

To non-practitioners, nets can 
be difficult to interpret, relate to 
a domain, and comprehend 
(need to manage through 
scalability and best practice). 

In order to be used as primary 
point-of-reference to those 
involved in system-of-systems 
development, nets need to be 
understood by skilled and 
unskilled practitioners. 

Specification of Behaviour at 
Analysis, Design and 
Architecture Stages 

Implicit in nets' native form. Needs to be managed through 
net enhancements. 

Specification of Information 
Exchange Protocol 

Implicit in nets' native form. Needs to be managed through 
net enhancements. 

Specification of Interfaces Implicit in nets' native form. Needs to be managed through 
net enhancements. 

Lack of Method  Nets are a notation and not a 
method. 

In order to benefit system-of-
systems specification, a suitable 
method governing Petri net 
construction and management 
will be vital. 
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Petri Net Weaknesses Comments Relevance to System-of-
Systems 

Application Flexibility Small set of basic graphical net 
elements makes static 
architecture and structure 
descriptions difficult. There is 
often more than one way to 
describe behaviour using nets. 

In order to benefit system-of-
systems specification, finding 
the abstraction levels and 
enhancements useful at different 
stages in their development will 
be vital. 

Perceived Learning Curve Training in Petri nets and the 
adopted toolset is essential to 
maximise benefit. 

Skilled practitioners within an 
organisation adopting Petri nets 
for system-of-systems 
development will be vital. 

Adequacy of Toolsets An organisation needs to 
acquire a suitable Petri net 
development framework 
according to its objectives for 
Petri net usage. 

In order to benefit system-of-
systems specification, an 
organisation needs to identify an 
appropriate Petri net 
development framework. 

Management of Nets An organisation needs to 
manage and re-use developed 
nets according to best practice. 

In order to benefit system-of-
systems specification, a suitable 
method governing Petri net 
construction and management 
will be vital. 

Change Auditing of Nets 
 

Lack of change auditing within 
nets can make it difficult to 
track changes in versions of nets 
and compare one net to another. 

When dealing with large nets 
associated with system-of-
systems specification, change 
tracking will be vital. Unless the 
net toolset offers versioning and 
auditing, this will have to be 
governed by a management 
method but could become 
tedious. 

Interoperability of 
Constructed Nets  

Attempts are being made to 
address exchange of Petri nets 
between toolsets (XML-based 
Petri Net Markup Language, 
PNML). 

May or may not be an issue to 
an organisation depending on 
net toolset adopted. 

Concept Semantics within Net Net element labelling 
convention may affect precision 
of model. 

In order to benefit system-of-
systems specification, a suitable 
method governing Petri net 
construction and management 
will be vital. 

Table 4.5 'Petri net weaknesses and their relationship to system-of-systems 
development' 

 

4.5 How Petri Nets can be used instead of UML Activity 
Diagrams 

Petri nets are a formal notation with a concrete graphical syntax used to specify 
concurrency, state, events, and execution order in a system. Petri nets main advantage 
over UML activity diagrams is their fully formal syntax and semantics which can be 
described mathematically. It is possible to execute (simulate) a Petri net model and 
undertake deeper verification via calculation of its reachability graph prior to 
implementation of the system. Timed coloured Petri nets can also be used to 
undertake performance analysis of the specified system using the executable model.  
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There is existing work dealing with conversion of UML sequence, state machines and 
activity diagrams to Petri nets [74, 75, 116, 117]. In particular, [118, 119] considers 
the UML 2.x specification for activity diagrams and compares it to the Petri net 
formalism, determining that it is possible to map between activity diagrams and nets. 
According to [118], activity nodes in activity diagrams are mapped as follows: action 
nodes become net transitions, control nodes become net places or small net fragments, 
and object nodes become net places. Activity edges (including object flows) in 
activity diagrams become net arcs, possibly with extra places or transitions. Fig. 4.2 
from [118] shows this mapping. 
 

 
Fig. 4.2 'The intuition of the semantic mapping for control and data flow of Activities' 
[118], p8 

 
Storrle [118] was not concerned with the potential benefits use of the Petri net 
formalism can bring to the specification and analysis of system-of-systems over and 
above that possible with UML activity diagrams. To further investigate the 
conclusions reached from the introductory work using Petri nets in section 4.4, a case 
study research technique was adopted for its flexible approach to studying 
contemporary objects in real-life situations, enabling greater understanding of them. 
In the case of systems-of-systems, the subject being studied cannot be easily isolated 
from its real-life context and there is a requirement to investigate the relationships 
across a number of variables. A controlled experimental environment would be 
inappropriate. Instead, using the case study designed in chapter 3, the first of two case 
studies is introduced. 
 
The first case study from the military domain uses the Petri net formalism to specify 
and analyse a close air support mission. As discussed in chapter 3, the exact Petri net 
contributions to be explored are: 
 
1. Do Petri nets improve the functional correctness of the system-of-systems design 
specification in terms of detection and reduction of the number of errors? 
2. Do Petri nets increase the quality of the design specification in terms of 
comprehensibility and scalability? 
 
Section 4.4 used a familiar problem to gain experience using Petri nets. In order to 
qualify these conclusions further, and unlike previous work to date [40, 52, 76, 99] 
recommending use of nets in the development of large-scale systems, nets are applied 
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to the modelling of a large-scale system-of-systems problem. As this is a Knowledge 
Transfer Partnership funded project between the University of Durham and a 
specialist systems engineering company partner within the defence domain 
(SyntheSys Systems Engineers Ltd), the initial case study focuses on the system-of-
systems problem of a close air support mission.  
 
Close air support seeks full co-operation between the actors involved (people, 
physical assets, and communications networks) to exploit detection, and command 
and control functions within the assembled ad-hoc network and support infrastructure 
beyond. The assets involved are normally expected to perform several functions using 
standard communications infrastructure(s) within a challenging, time, life, and 
mission-critical operating environment. Due to the large quantity of component 
systems involved, close air support exhibits dynamic concurrency and suffers from 
information exchange interoperability problems. Components such as aircraft and 
ships are likely to be legacy systems (with a typical in-service lifecycle of fifteen 
years), composed in turn of a number of component systems (e.g. communications, 
weapons, and sensor systems) each running bespoke software (typically monolithic, 
millions of lines of code, written in languages such as ADA, and poorly documented). 
These legacy issues are further compounded by environmental, political and 
technological constraints as well as performance metrics and doctrine. All these 
constraints are subject to considerable change over the lifecycles of the existing and 
planned assets useful in close air support. These effects of such changes need to be 
reflected in the close air support problem specification in order to identify shortfalls in 
expected overall behaviour from the behaviour of components.  
 
Presently there is no top-down engineering approach to identify and specify the 
information that should be exchanged (including quality of service parameters such as 
time to perform the exchange) between the actors involved and no integration with 
specifications of legacy and planned actors (bottom-up engineering approach). This 
includes the order of information exchanged inside a component system and the order 
of information exchange between component systems. In a defence operational 
environment, there are several underlying communications infrastructures that can be 
used to enable communications between the actors. All these underlying 
communications infrastructures have their own timing, protocols, and information sets 
to enable the information exchange. A hierarchy of defence standards is used to 
specify information exchange for these different communications infrastructures but 
these are text-based, open to interpretation, erroneous, with a number of different 
versions. In addition, design specifications for component systems can opt to 
implement subsets of the standards, further complicating and hindering 
interoperability.  
 
Once these independent assets have been integrated, their combined close air support 
system-of-systems behaviour is unlikely to be observable universally. There needs to 
be some assurance that the system-of-systems design will behave and perform as 
expected operationally. Discussed in chapter 1, traditional systems engineering 
approaches inadequately address this design complexity. Textual documents and ad-
hoc diagrams are commonly employed at the specification phase, and the need to 
employ a flexible design foundation for system-of-systems evolution is not realised. 
By employing models as primary design reference points, the aim is to provide re-
usable, evolvable design foundations. By developing models based on a formal 



 64

technique such as Petri nets, a further aim is to enable the enhanced verification of 
system-of-systems properties such as deadlock and event occurrences and show the 
technique can be used in both a top-down and bottom-up engineering manner.  
 
Before moving to the study itself, it is fair to state that close air support exhibits a 
number of characteristics which make it interesting outside of its military context and 
applicable (typical) to other domains, and these are the reason it has been selected as a 
study. These are summarised in Table 4.6. 
 
Study Characteristic Close Air Support 
Legacy components  Yes: majority (fifteen year lifecycles). 
Ten or more interfaces between components Yes. 
Textual specification documentation (static) Yes: erroneous, ambiguous, versioned standards 

for information exchange; inadequate capture of 
system-of-systems requirements; inadequately 
documented code implementations on 
components. 

Bespoke component software Yes: millions of lines of code; source code may 
not even be present. 

Dynamic constraints Yes: environmental, political, performance, and 
technical. 

Integrated engineering approach No: bottom-up engineering rather than combined 
top-down/bottom-up approach. 

Table 4.6 'Characteristics of the close air support study' 
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Chapter 5 Case Study (Close Air Support) 
 

5.1 Introduction 
Chapter 5 executes the case study design described in chapter 3 for the first study in 
the case study research approach used by this thesis. The military mission of close air 
support is used to demonstrate the potential benefits and shortfalls use of Petri nets 
can bring to the specification and analysis of large-scale systems-of-systems.  
 
Similar to chapter 4, and using the case study objective and research questions 
identified in chapter 3, the case study exercise begins by defining the criteria for 
success by which the Petri net approach is measured. The objective of the case study 
and research questions from chapter 3 are detailed below. 
 
Case Study Objective: evaluate the strengths and weaknesses of Petri nets in terms of 
the system-of-systems problems identified in chapter 1. 
 
Research Questions: 
1. Do Petri nets improve the functional correctness of the system-of-systems design 
specification? 
2. Do Petri nets increase the quality of the design specification? 
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be 
improved? 
 
Table 5.1 lists the criteria for success derived from the research questions above. 
 
Goal 1 (research questions 2 and 3): Precisely specify the close air support example. 
Use Petri nets to capture the operational processes, components and information 
exchange involved in the system-of-systems completely, concisely and correctly at 
analysis, design, and architecture phases. 
 
Metrics: Check if Petri net elements can describe operational processes, components, 
information to be exchanged, information interfaces, and information exchange 
protocols of the close air support system-of-systems. Note syntactical, semantic, and 
feature support of selected toolset. 
 
Goal 2 (research question 2): Determine the scalability of the close air support 
system-of-systems model implemented using Petri nets. 
 Metrics: Explore the use of hierarchy within Petri nets to check if they can be used to 
create a scalable specification model of close air support. 
 
Goal 3 (research question 1): Confirm if the same Petri net verification and validation 
techniques used in the telephone exercise are effective in the close air support system-
of-systems specification models. Use Petri nets and the selected toolset to explore 
verification and validation of the close air support specifications at the analysis, 
design and architecture phases. 
 
Metrics: Employ static (state space) analysis of nets to check for well-known and 
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user-defined properties in models. Employ dynamic analysis (simulation) of nets to 
explore correctness of behaviour and efficiency of specifications. Functional 
correctness is expressed in terms of number of errors detected by simulation; and 
number of errors detected by static analysis. Investigate the application of largeness 
avoidance techniques. 
 

Table 5.1 'Criteria for success for the specification of close air support using Petri 
nets' 

 
Referring back to chapter 3, the case study plan was executed for close air support. 
The process outlined in that chapter relating to construction of the Petri net models 
was followed in order to check the desired response variables relating to the criteria 
for success. This process is described in the next section. 
 

5.2 Specification of Close Air Support using Coloured Petri 
Nets 

 

5.2.1 Description of Close Air Support 
From military doctrine [105], close air support (CAS) is defined as: 
 
'..air action by fixed- and rotary-wing aircraft against hostile targets that are in close 
proximity to friendly forces and that require detailed integration of each air mission 
with the fire and movement of those forces'. 
 
Unlike the familiar concept of the telephone example, the problem of close air support 
required further investigation. From doctrine [105, 106], Fig. 5.1, and subject matter 
experts, the case study began by trying to understand the concept of close air support. 
The problem was summarised textually as follows: 
 
A commander nominates a target for destruction once it has been detected by a 
support unit. The support unit then assembles the necessary information including the 
target details into a request for close air support which it sends through the command 
and control network to an air support centre. The air support centre then checks for 
and allocates available strike aircraft to the mission and confirms acceptance or 
rejection of the close air support request.  
 
The allocated aircraft check-in with the close air support co-ordinator (the forward air 
controller), who provides a brief on the mission. Once all assigned aircraft are aware 
of the mission, they proceed towards the target co-ordinates supplied by the forward 
air controller until they reach a pre-determined distance from the target. When 
instructed to do so, the aircraft leave this pre-determined point and release weapons. 
Depending upon battle damage assessment, the mission completes or another attempt 
is made on the target. 
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Fig. 5.1 'Immediate close air support request process' from [105], pIII-29 (Figure III-
8) 

 

5.2.2 Petri Net Construction Method 
Similar to the approach adopted for the telephone example in Appendices A-D, the 
modeller was keen to specify the close air support problem space in a way that 
promoted the need for a flexible, adaptable solution without being prescriptive. A 
multi-viewpoint modelling approach similar to the approach used in UML modelling 
(with its functional, static and dynamic views) and [70, 71, 76] was adopted where the 
specification of close air support was considered from analysis, design, and 
architecture abstraction levels. 
 
Close air support was functionally decomposed into a series of functions and sub-
functions (activities). These functions were then used with the concept summary 
above to suggest operational processes. This function-based approach is similar to the 
principle behind service-oriented architecture. The operational processes outline a 
particular timed ordering of activities and information exchange to be performed by 
roles so that the function (or service) may be realised. Optimised where possible in 
terms of resources, the operational process level helps to specify the overall function 
of the close air support system-of-systems to domain users and developers, and drive 
its lower-level design and implementation. At the analysis stage, functions (together 
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with the information and information exchange protocol used by these functions) 
rather than the physical components able to meet these functions are specified.    
 
Jensen's guidelines for construction of coloured Petri net models [63] were considered 
in conjunction with approaches made by [72-76] to transform UML or object-oriented 
system models to high level Petri nets. To begin with, the net was created at the 
operational process (conceptual or analysis) model level of abstraction. Functions 
(activities) from the processes were mapped to net transition elements and information 
exchanged was assigned to net place elements following the control sequence 
presented within [105, 106] and guidance from domain experts. Colours (types) were 
defined in the toolset according to the information exchanged at each place. 
Compound or structured type definitions were used to specify the information 
exchanged. Roles (owners of the identified functions and sub-functions) were 
indicated by text labels on the page allocated to the net within the toolset. Initially, a 
net was created for the entire process (from the point-of-view of a close air support 
mission planner). It was clear almost immediately that due to low range of net 
elements, symbol expressiveness and amount of symbols needed, the net quickly 
became complicated in terms of readability. This re-emphasised one of the 
preliminary conclusions from chapter 4, i.e. that hierarchy would be essential in 
achieving any kind of scalability for large-scale system-of-systems design with Petri 
nets.  
 
In response, one of the functions of the system-of-systems, i.e. the part of the close air 
support system-of-systems problem italicised above was focused on. This describes 
the problem of requesting close air support from an air support centre. The roles, 
control sequences, processes and information exchanged are presented in Fig. 5.2. 
 

 
Fig. 5.2 'Request close air support UML activity diagram' 

 
From Fig. 5.2 it can be seen that two roles, 'Unit' and 'DASC' (Direct Air Support 
Centre), have operational processes assigned to them. These operational processes are 
presented as a sequential series of activities. The detail of groups of these activities 
can be abstracted at a higher level of abstraction under parent activities such as 'Task 
the Formation' or 'Plan CAS' (shown using  notation in Fig. 5.2). Fig. 5.2 also 
shows that two pieces of information are exchanged between the roles, 'CAS Request' 
and 'CAS Response'.  
 
A coloured Petri net model of the operational processes represented in Fig. 5.2 was 
then attempted. Fig. 5.2's function (or service) level of granularity and naming was 
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based on existing underlying communications infrastructure information sets (tactical 
data link transactions and the associated function performed by assets). This 
information was used to help manage the construction of the net by developing a 
hierarchy of functions to promote readability and scalability of the net. The function 
of 'request close air support assignment' was decomposed into three main sub-
functions: 'request close air support', 'assign close air support request' and 'receive 
close air support response'. Each of these sub-functions are realised using the 
processes identified from existing doctrine and domain experts. These processes were 
examined in turn in order to establish: 
 
1. Executed activities together with their pre and post information states (i.e. input and 
output interfaces). 
2. Control of activity execution. 
3. Suggested roles (owners) associated with the control of activities. 
4. Naming of activities, information and roles. 
5. Net symbols that should be used on the net at the highest abstraction level (primary 
parent net) and associated sub-pages to accurately represent the hierarchy within the 
model. 
 
The control flow of the three main sub-functions is shown in Fig. 5.2 as request 
followed by assign followed by receive.  
 
At the highest abstraction level in the hierarchy, the pre-condition of the request 
function executing is incoming external trigger information in the form of a message 
from a commander, containing target details. Using [105], suggested fields for this 
target nomination information are: originator; target type; target longitude; target 
latitude; target elevation; ordnance required; and required result.  
 
When close air support assignment is deemed to be required, the post-condition of 
request executing is outgoing information, containing close air support request details. 
This information is sent to the role dealing with assignment of firepower to the 
mission (DASC). Information content can be derived from [105] and existing tactical 
data link message content [120]. Suggested fields for this close air support request 
information are: request number; mission indicator; mission priority; target number; 
target latitude; target longitude; target elevation; and target type.  
 
Considering the request function's process in more detail, the target information is 
used in the activity of planning of close air support. This planning activity can be 
decomposed further into sub-activities relating to deciding whether or not to pursue a 
close air support assignment. For the purposes of this case study, further activity 
decomposition is omitted and the result of the planning activity is that close air 
support assignment is requested by the activity of sending close air support request 
information. 
 
At the highest level of abstraction in the hierarchy, according to [105, 106] and Fig. 
5.2, the pre-condition of the assign function executing is incoming trigger information 
from Unit containing the close air support request information specified in this 
section.  
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The post-condition of assign executing is outgoing information containing close air 
support response details. This information is sent to the role which requested close air 
support (Unit). Its content can be derived from [105] and existing tactical data link 
message content [120]. Suggested fields for denial response information are: mission 
indicator; fire plan name; request number; target number; target latitude; target 
longitude; and reason denied. For acceptance response information, suggested fields 
are: mission indicator; mission number; request number; number of aircraft; aircraft 
type; and aircraft sign. Currently, doctrine describes two separate tactical data link 
response messages. Design optimisation of the assign function could consolidate the 
response information. 
 
Considering the assign function's process in more detail, the close air support request 
information is used in the activities of planning the close air support assignment and 
tasking the formation (if it has been possible to identify suitable firepower). Both the 
planning and tasking activities could be decomposed further into sub-activities. For 
the purposes of this case study, further activity decomposition is omitted and the close 
air support request information is used directly by the tasking activity. The result of 
the tasking activity is that close air support response information is sent.  
 
At the highest level of abstraction, the pre-condition of the receive function executing 
is incoming trigger information from DASC, containing the close air response 
information specified above.  
 
According to [105] and domain experts there are two possible mutually exclusive 
post-conditions of receive executing. One is outgoing external information containing 
notification that the close air support request was unsuccessful. The other is an end 
state for this part of the overall close air support function indicating that the request 
for close air support was successful.  
 
Considering the receive function's process in more detail, the close air support 
response information is used to notify the commander that the close air support 
request was unsuccessful or to proceed to the next stage of close air support. For the 
purposes of this case study, two activities are used to reflect this. The result of the 
send close air support rejected activity is that close air support denied information is 
sent. The result of the close air support assigned activity is that information to proceed 
to next stage is conveyed.  
 
This information was then manually mapped to Petri net constructs. As before, the net 
was constructed from a close air support planner's point-of-view. Conditions were 
allocated to places and colours (types) were defined to represent the fields of 
messages suggested above. Naming convention followed Fig. 5.2's as closely as 
possible. For the net relating to the 'request close air support assignment' function, the 
three sub-functions (request, assign, and response) were represented as abstracted 
transitions ('Unit_CAS_req_service', 'DASC_CAS_assign_service', and 
'Unit_CAS_resp_service' respectively) with more detail for each presented on subnets. 
Each abstracted transition has associated input and output sockets (interfaces) and 
together form the highest level of abstraction in the hierarchy (parent net). The 
operational processes that realise each of these sub-functions are expressed on 
additional net pages (subnets) together with their associated input and output ports 
(interfaces). A successful or unsuccessful close air support outcome from the assign 
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function was selected at random within the toolset. The derived net's highest level of 
abstraction is shown in Fig. 5.3. 
 

 
Fig. 5.3 'Request close air support assignment parent net' 

 
Since Petri nets are generic in the sense they can be used to capture relationships 
between states and events of systems regardless of application domain, close air 
support system-of-systems concepts such as function, process, information interfaces 
between processes, and process execution owner are captured implicitly by the 
notation. Use of suitable place typing, net hierarchy construction via pages, labelling 
and colouring in the tool's editor helps to promote domain information and logic such 
as decision points more clearly in the net. 
 
Fig. 5.3 also illustrates that hierarchy implemented in the net using substitution 
transitions and port and socket places allows tracking of state in a large-scale system-
of-systems model. Given that one function of the close air support system-of-systems 
is captured, three subnets within the toolset editor were used to specify the 'request 
close air support assignment' function's decomposed processes at a lower level of 
abstraction. Without hierarchy, not only would it be difficult to have an accurate 
appreciation of the processes' localised states, it would be difficult to determine the 
overall state of the system-of-systems (and whether or not the system-of-systems net 
representation terminated properly and process states were as expected).  
 
As well as allowing top-down and bottom-up engineering approaches through its 
hierarchy support, the toolset also permits re-use of subnets more than once, i.e. it 
facilitates instantiation. These instances of a subnet are independent in the sense their 
markings or state are independent (further illustrated in section 5.5 at design and 
architecture levels). 
 
Unfortunately, it can be inferred from the specification modelled in Fig. 5.3 that 
request and receive are performed by the same role (Unit), and assign is performed by 
a different role (DASC). This can be viewed as prescriptive: not only does it suggest 
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that two distinct assets are needed to realise these three sub-functions, it suggests the 
likely asset candidates via the naming used. Instead, design optimisation of the 
'request close air support assignment' function should be promoted, e.g. one asset may 
be able to perform all three sub-functions in less time. Attention to this fact may be 
drawn through textual annotation of the constructed net. In addition, the role names 
used could also be viewed as prescriptive (these were identified from existing 
doctrine) and may benefit from re-naming. Alternatively, a higher level of abstraction 
could be added to abstract the three sub-functions to one main 'request close air 
support assignment' function.  
 
Based on this prescriptive view, it could be argued that since the request and receive 
sub-functions are highly likely to be undertaken by a 'Requester' role (avoiding the 
more prescriptive 'Unit' role description), both could be represented by a more general 
'Request_CAS_Service' transition with no negative impact to specification (given that 
the interface information remains the same). These amendments are shown in Figs. 
5.4-5.5. 
 

 
Fig. 5.4 'Revised parent net' 

 

 
Fig. 5.5 'Revised Requester subnet showing the combined request and response 
functions' 
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From this section and design iteration of the model, it can be seen that it is possible to 
use coloured Petri nets and hierarchy to specify one sub-function of close air support 
(request close air support assignment) at an analysis level of abstraction, i.e. the 
operational process level. From Figs. 5.3-5.5, in terms of design quality and 
readability, net places capture process state in terms of the information input and 
output to net transitions (activities); net colours (types) define the information used by 
activities; net arc inscriptions govern the information required and produced by 
activities; and net arcs dictate the control flow of execution i.e. the order of activity 
execution and information exchange.   
 

5.3 Analyses with Petri Nets and further Specification 
 

5.3.1 Dynamic Analysis (Simulation) 
To investigate functional correctness, simulation of the derived net in Fig. 5.4 was 
used to provide confidence in the correctness of the behaviour and logic specified by 
it. Using the toolset it was possible to interactively step through enabled transitions in 
the net from a given initial marking until there were no more enabled transitions. In 
doing so, a problem was revealed within the 'task_the_formation' subnet (shown in 
Fig. 5.6) detailing the activity undertaken by the close air support assigner actor. 
Simulation revealed that when the subnet's 'negotiate tasking' activity executes, two 
tokens are produced for output places 'rcr1' and 'ac_tasked' respectively, resulting in 
an infinite net. The intended behaviour should be to test for a successful outcome 
from the 'plan_CAS' activity. If this has not been achieved, the subnet should specify 
that the planning process is repeated, otherwise the tasking process continues.     
 

 
Fig. 5.6 'Infinite net problem detected by executing net' 

 
Once this problem was corrected by defining an enumerated type and the relevant arc 
inscriptions, basic interactive simulation indicated that the hierarchy of processes 
appeared to produce the desired behaviour using one and three target nominations. For 
the three target nomination tokens, simulation showed that their order within the 
control sequence execution was non-deterministic and tokens could overtake one 
other. This can be addressed by the introduction of queuing places (timing can also 
impose order on tokens but will normally be used to reflect deterministic and 
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stochastic activity durations and cannot guarantee tokens will not overtake one 
another). 
 
Potential deadlock situations within the close air support request assignment function 
were also highlighted by stepping through activity executions. These deadlocks can 
occur if either the assign or the response sub-functions fail to receive a close air 
support request or response to the original close air support request. As it stands, the 
model does not explicitly specify these situations as undesirable behaviour. Based on 
the work in [77-79, 100], the nets in Figs. 5.7-5.9 were developed to specify the 
possibility of communications failure (both on the external communications 
infrastructure and infrastructure internal to a system component) and to specify 
tracking of the state of the information exchange. 
 

 
 

 
Fig. 5.7 'Net and colour (type) definitions specifying the potential failure points within 
the activities undertaken by the Requester role' 

 

 
Fig. 5.8 'CAS_Request_Service net showing two information exchange transactions 
(transitions in red) undertaken by the Requester role' 
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Fig. 5.9 'Net detailing state of the close air support request-response information 
exchange transaction (REQR_CAS_Req_Xchg ) undertaken by the Requester role' 

 
The net in Fig. 5.7 uses compound type definitions to introduce potential points of 
failure to activities dealing with the transmission or receipt of information between 
actors. At the moment, failure is boolean but more accurate probability of failure can 
be specified within the net. 
 
'Requester' (CAS_Request_Service) and 'REQR_CAS_Req_Xchg' (Figs. 5.8-5.9) 
taken together with corresponding 'Assigner' (CAS_Assign_Service) and 
'ASGR_CAS_Req_Xchg' subnets further specify the state of the information 
exchange protocol relating to the close air support request and close air support 
request assignment services introduced in the operational process of Fig. 5.4. The net 
specifies how each role could track its state in terms of what information is sent to and 
what information is expected from its partner role(s) on the network so that if a 
communications failure occurs, suitable recovery can be designed for. It should be 
noted that with the addition of timing to the net, timeouts could be specified in the net 
of Fig. 5.7. Again, this specification information is in addition to the operational 
process and aims to be non-prescriptive in terms of how tracking is to be 
implemented.  
 

5.3.2 Static Analysis (Reachability Graph Analysis) 
The nets in Figs. 5.4-5.9 are the results of being able to execute the operational 
process net and identifying its shortcomings. Although simulation is very much part 
of an iterative net development process, interactive simulation of large nets can be 
extremely time-consuming and does not provide an exhaustive means of net 
verification. Reachability graph or state space analysis (described in chapter 2) is used 
to complement simulation and provide this deeper level of verification.  
 
CPN Tools' standard analysis of the state space (calculated for each of the nets created 
in Figs. 5.4-5.9 and described further in Appendix B) is shown in Table 5.2 below. 
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Table 5.2 'State space standard report' 

 
The state space standard report of Table 5.2 calculated for an initial marking of one 
token for the net in Fig. 5.4 highlights there is a problem with the net for two reasons. 
First of all, in the given state space calculation limit of six hundred seconds, the state 
space explosion problem was encountered, resulting in the calculation of a partial 
reachability graph. Secondly, on inspection of the standard state space report 
produced by CPN Tools for the partial reachability graph, the 'Boundedness 
Properties' section reveals the presence of multiple tokens on places (rather than the 
expected one token) indicating a looping problem and helping pinpoint exactly where 
in the net it is located, i.e. the 'task_the_formation' subnet. If this infinite net had not 
been detected using simulation, static analysis would have alerted the modeller to its 
presence. 
 
Once the infinite loop was removed from the net, its full reachability graph was re-
calculated in less than one second with fourteen nodes, thirteen arcs and the expected 
two dead markings (indicating a successful or unsuccessful request outcome). This 
exercise was then repeated using an initial marking of two nomination tokens for Fig. 
5.4 and a summary of the results are presented in Table 5.3. 
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STATE 
SPACE 
GRAPH 

Net of Fig. 5.4  Amended Net (added queuing 
place and request input control) 

Initial 
marking 

  

Nodes and 
arcs 

376 nodes, 676 arcs. 40 nodes, 39 arcs. 

Generation 
time 

1 sec. 0 secs. 

Terminal 
markings 

12 4 

Token 
Overtaking 

Present. Controlled. 

Table 5.3 'State space standard report summary' 

 
Table 5.3 shows that the reachability graph calculated for the net of Fig. 5.4 has 
considerably increased in size using an initial marking of two tokens. Inspection of its 
upper multi-set bounds and twelve dead markings revealed that this increase was due 
to the possibility for the two tokens to overtake one another. Overtaking was 
controlled by adding a queuing place to the source place of the net of Fig. 5.4 and 
releasing a new token for input to the net once a previous one was processed 
(facilitated using an additional 'Next Req' place linked to the final two transitions in 
the Requester subnet, shown in Fig. 5.10). The reachability graph was re-calculated 
for the amended net and the results are also presented in Table 5.3.  
 

 
Fig. 5.10 'Amended net to control input nominations' 

 
It can be seen that the reachability graph has reduced by approximately one tenth in 
terms of the numbers of nodes in the graph, and one third in terms of the dead 
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markings. It was calculated in less than one second (CPN Tools standard report does 
not report more granular timing information). Again, use of simulation alone may not 
necessarily have alerted the modeller to the issue (particularly if only a part of the net 
is being executed or the net is large) and impact of token overtaking when model 
behaviour is being checked with multiple close air support requests. Token overtaking 
leads to uncertainty in variable bindings unless ordering is imposed. It should be 
noted that the steps taken to control overtaking in the net of Fig. 5.4 may not be the 
most efficient for the request-response process (for example, it may be more efficient 
for two nominations to be considered together or for a new request to be processed by 
the assigner as soon as the previous one has been dealt with). The results show static 
analysis has been able to alert the modeller to inefficiency in the overall net.   
 

 
Fig. 5.11 'One of the five dead markings showing communications failure within the 
assigner' 

 
Calculating the reachability graph for the net specifying communications failure with 
an initial marking of one nomination produces seven dead markings. Two of these 
relate to the desirable behaviour outcomes of a successful and rejected request close 
air support assignment and no communications failure. The other five markings relate 
to the five potential communication failure points in the model: one within requester; 
one between requester and assigner; one within assigner (shown in Fig. 5.11); and one 
between assigner and requester (which can potentially fail for a successful and 
rejected response). In this way, static analysis has verified that the model behaves as 
expected, i.e. where a communications failure could take place and deadlock the 
request close air support assignment process, static analysis confirms this is specified 
correctly in the model. 
 

 
Fig. 5.12 'Liveness properties for the information exchange transactions net' 
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When the reachability graph was calculated for the net specifying information 
exchange transactions, two dead markings were obtained along with two dead 
transition instances, Assigner'Auth_Cancel and Requester'Auth_Cancel (Fig. 5.12). 
The two dead markings correctly indicated possible terminal states resulting from the 
'REQR_CAS_Req_Xchg' information exchange on places 'Assigner' (within the 
assigner subnet) and 'Requester' (within the requester subnet) of 'CANCEL' and 
'STOP'. The presence of the two dead transitions (Assigner'Auth_Cancel and 
Requester'Auth_Cancel) indicated that the 'CANCEL' state on the 'Assigner' and 
'Requester' places was not reached as a result of cancellation within the 
'REQR_Auth_Xchg' information exchange. This meant that the logic within this 
information exchange was either incorrect or missing. Upon inspection of this 
information exchange, the logic had indeed been omitted within the 
'REQR_Auth_Xchg' subnet. This is information that would not necessarily have been 
detected immediately by executing the net due to its otherwise desirable behavioural 
outcomes.  
 

 

 
Fig. 5.13 'Non-standard logic query confirming correct behaviour of information 
exchange protocol' 

 
From this section, it was shown that it is possible to use two forms of analyses on 
coloured Petri nets to verify functional correctness of the model they represent. These 
were execution of the net (simulation) and analysis of the net's reachability graph 
(static analysis or model-checking). As well as producing a standard analysis report 
from the calculated reachability graph, standard and non-standard temporal logic 
queries can also be applied to it. Fig. 5.13 shows a non-standard logic query 
constructed to check when a request for close air support is sent, it is not possible to 
receive a response without the information exchange protocol ending in a 'STOP' 
state. Following these analyses, models can be amended and enhanced, improving 
design quality. In the case of close air support, further specification included: 
potential failure states (i.e. underlying communications failure); tracking of 
information exchange (transaction) state; and a means of controlling ordering of 
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multiple tokens in the model. As part of the iterative development process, simulation 
and static analysis were used again to verify these specifications.  
 

5.4 Addition of Timing to Petri Net Model  
As demonstrated by the telephone example (Appendix C), time-dependent actions 
such as timeouts, processing delays or deadlines are essential to capture the efficiency 
or performance of a system and facilitate validation of its design. As well as 
efficiency specification, time-dependent actions also enhance a system's behaviour 
specification in terms of correctness. Activity ordering alone is insufficient to capture 
overall system behaviour precisely. Tokens representing information in larger-scale 
systems will be processed according to the time they entered the system, time 
involved in their consumption and generation, and involvement in delays and transfer 
failures. Timing will be needed to specify the ordering multiple tokens receive over 
and above any activity sequence they experience.   
 
Currently, close air support has been specified at an operational process (analysis) 
model level of abstraction and used as the first stage in large-scale, system-of-systems 
development. Typically, this viewpoint is useful for gaining a shared understanding of 
the problem concept and the intended technical and non-technical audience would 
include analysts, developers and domain users. The introduction of timing information 
to close air support at this abstraction level would help enable domain users and 
developers to decide whether the modelled concept was efficient and adequate for 
input into the design stage. Assessing performance would involve checking if the 
modelled processes reached desirable behaviour states (including recovery from 
undesirable states) within realistic time and resource estimates. Improving the 
efficiency of the process means looking for new or different ways to realise desirable 
behaviour within defined time, cost and quality parameters. 
 
To examine alternative options for the process, it was necessary to determine the time, 
cost and quality performance indicators for the request close air support assignment 
process and implement these in the model. Examples of these indicators include 
request fulfilment time, communications resource usage (and related costs), and 
request fulfilment time within a certain time limit. The natural inclination would be to 
minimise the first two and maximise the last one but all three need to be taken in 
context with the strategy of the actors involved. In the case of system-of-systems, it is 
essential to understand the economic and operating environment for system-of-
systems services, and which (if any), of the performance indicators carries more 
weight than the others.  
 
In the close air support example, as the system-of-systems was specified originally 
from the mission planner's point-of-view, it is assumed that they are concerned with 
striking a trade-off between quality and cost parameters for the mission. This may 
mean the assigner would be interested in maximising request and resource allocation 
without necessarily maximising request allocations on first attempt for its customers 
(requesters).   
 
Dynamic analysis (simulation) is used in conjunction with timing in the net. Timing 
delays were introduced at various intermediate places within requester and assigner 
processes using both stochastic and deterministic distributions to represent random 
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request placement and delays between each activity in the request close air support 
assignment process. A record declaration was used for each request in order to store 
the model time at which the 'send_CAS_req' activity executes (Fig. 5.14). This was 
viewed as the start of the attempt by the underlying communications infrastructure to 
connect the requester with the assigner. Again, a time delay was introduced here to 
the record token to represent the delay of the underlying communications 
infrastructure. The toolset data collection functionality was used to compare the 
model time following execution of the requester's 'receive_CAS_resp' transition with 
the start time of the transmission of the request. The result was viewed as the request 
fulfilment duration (Table 5.4). A timed net facilitated the specification of a timeout 
(Fig. 5.14) following execution of the 'send_CAS_req' transition. If for whatever 
reason a desired response to the sent request is not received within a certain time 
limit, the net terminates with a 'Timeout' problem result. 
 

 
Fig. 5.14 'Requester subnet in performance analysis net of assign close air support 
request process' 

 
It should be noted that it is also possible to specify an un-timed timeout mechanism in 
the net. This form of timeout may need to be specified at more than one location in 
the model depending on the potential failure areas. 
 

 
 

Table 5.4 'Toolset data collection functionality capturing request fulfilment duration' 

 
Also mentioned in Appendix C, section C.1 for the telephone example was using 
knowledge of (legacy or planned) physical assets to help optimise engineering of the 
operational process level via analysis-of-alternative scenarios. Salimifard et al [94] 
report on using nets to allocate physical resources and costs to activity execution. This 
work is highly relevant to the development of large-scale system-of-systems, 
facilitating analysis-of-alternatives in operational process engineering and improved 
design quality. The adaptation for close air support is shown in Fig. 5.15. 
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Fig. 5.15 'Activity subnet detailing physical asset and role to perform 
receive_CAS_resp activity' 

 
Timing and cost information can be extracted from the overall net per activity, per 
component process, and for the process overall based on the physical assets used to 
realise the component activities and processes. An example data collection report is 
shown in Fig. 5.16 relating to the 'ACTIVITY_END' transition of Fig. 5.15 and its 
associated bindings. This analysis-of-alternatives net can be used in conjunction with 
the performance analysis net of Fig. 5.14 to adjust timing duration ranges. 
 

 
Fig. 5.16 'CPN Tools data collection log file capturing cost information based on 
resources allocated to perform communication activities' 

 
It should be noted that although simulation was primarily used in this section to 
validate the models, it is also possible to conduct static analysis (as per 
recommendations from the telephone example, in Appendix C) to verify their 
correctness. 
 
From this section, it has been shown that it is possible to use timing in coloured Petri 
nets to enhance correctness and conduct performance and analysis-of-alternative 
analyses. Use of timed colours (types), and suitable inscriptions on output arcs (in 
conjunction with stochastic or deterministic functions) help to specify duration of 
activities (and execution control flow) such as information exchange, task processing, 
arrival of requests, and timeout error recovery in the event of a communications 
failure. 
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5.5 Design and Architectural Levels of Abstraction for Close 
Air Support 

Sections 5.2-5.4 have focused on using Petri nets to specify the close air support 
process at an analysis level of abstraction. Hierarchy and timing additions have been 
looked at to further enhance a specification in terms of scalability, understandability, 
readability, and correctness. As demonstrated in the telephone system example in 
Appendices B-C, hierarchy can also enable investigation into whether the abstraction 
design used in the net could be used to help alleviate the state space explosion 
problem during model-checking. Both model-checking and simulation were employed 
iteratively in verification and validation of the constructed analysis level net. Before it 
can be decided whether the criteria for success in relation to the close air support case 
study have been met and conclude chapter 5, Petri nets are checked to see if they can 
address the problem of being able to specify close air support at design and 
architecture levels of abstraction. This is the objective of this section.   
 

5.5.1 The Design Level 
The purpose of the design level of abstraction is the lead into the specification of a 
solution to the problem described by the analysis level. Again, a functional 
decomposition approach was used. This time it was used in conjunction with the 
parent net developed for the analysis level to think about how this net's main activities 
(e.g. 'Request Close Air Support' and 'Assign Close Air Support') would eventually be 
realised by physical implementations. To keep the design flexible, two components, 
'Make_CAS_Request Component' and 'Assign_CAS Component', were used to depict 
the solutions that would realise each of the main activities. These are shown in Fig. 
5.17. 
 

 
Fig. 5.17 'Parent net of design level' 

 
It can be seen that Fig. 5.17 closely resembles the parent net of the analysis level 
except for the new place colours (types). The next level of design decomposition for 
the two components aimed to capture the functional service(s) each would be 
expected to realise. Again, the work developing the analysis level net helped suggest 
functional services for the design level by thinking about the purpose of the processes 
used to realise the main activities. 'Make_CAS_Request Component' would be 
responsible for providing close air support request setup and response services. 
'Assign_CAS Component' would be responsible for providing an incoming close air 
support request processing service. These services are shown at the next lower 
abstraction level providing greater detail in Fig. 5.18.  
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Fig. 5.18 'Services of  Make_CAS_Request Component' 

 
Having introduced the components and functional services at the design level, the 
next lower abstraction level providing greater detail, i.e. detailed design or 
architecture was focused on. Rather than develop a separate model at this stage, as the 
architecture level appeared to naturally manifest the next lower abstraction level of 
the design level, the design level model was further decomposed to capture the 
architecture level.  
 

5.5.2 The Architecture Level 
The purpose of the architecture level is detailed design of the services identified at the 
design level and flexible capture of the components required to realise these 
individual services. Constituent components were considered for each functional 
service resulting in the identification of a common component pattern for the three 
services associated with close air support request-response. The common components 
consisted of a user interface, transmit and receive (network) interfaces, and a 
controller interface to co-ordinate the sequencing of activities to and from the other 
two common components. The common component architecture is shown for the 
'Request_Response Service' in Fig. 5.19. 
 

 
Fig. 5.19 'Service architecture' 

 
From Fig. 5.19, it can be seen that net places are used to capture the input and output 
information for the user interface, network and controller common components. 
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Colour (type) definitions were lifted for re-use from the telephone example net 
(Appendix D) and adapted accordingly (definition labels reflect the nature of the 
interface, e.g. 'UIDispMsg' aims to reflect that the place is an input interface to the 
user interface component and is intended to be processed by the display function 
within this component). The intention with this labelling convention was improved 
net clarity and comprehension. Place types were based on character strings rather than 
enumerated types for flexibility reasons. The tuples in the type were populated with 
the functions implemented by each common control component and the associated 
parameters via logic on transition output arcs. Logic on transition output arcs within 
each of the common components was amended as necessary. As an example, consider 
the network transmit common component in Fig. 5.20. 
 

 
Fig. 5.20 'Transmit common component subnet' 

 
Fig. 5.20 shows the subnet of the transmit common component. Its transition is 
labelled as 'SEND OPN' to reflect the function the component provides to the 
controller component. On the transition output arc (within the controller component 
subnet) to the input interface place ('TxIN') of the transmit component, there is logic 
to output a token with 'OpName' (a tuple within 'NWMsg' compound type) populated 
with required functions such as 'SEND REQUEST' or 'SEND ENGAGETGT'. In this 
way, the net specifies use of the transmit component's 'SEND OPN' function by the 
controller component more explicitly. The 'Params' tuple within 'NWMsg' is 
populated with values relevant to the function of the message described by 'OpName'. 
'ID' is populated to differentiate between initiated requests. The other two common 
components, user interface and controller, are designed to reflect the same interface 
principles as those discussed above for the network components. 
 
Considering the original parent net of the design level in Fig. 5.17, the specification of 
close air support at this level was extremely concise. When the architecture level of 
Figs. 5.19-5.20 was reached and the next lower abstraction level providing greater 
detail of the common component interfaces was completed, the modeller was 
extremely conscious of the requirement to manage the levels of abstraction. The 
toolset can present each level of abstraction as a separate page within a folder (or 
binder). These pages can be selected between using their tabs. By the common 
component interface level of abstraction for the request and assignment services, 
seventeen pages and tabs were present and it was tedious work identifying and 
selecting relevant pages. At this stage, the experience gained with the telephone 
example (Appendices A-D) was used to rationalise the model where possible, making 
use of the toolset's features and those of hierarchical coloured Petri nets. The main 
source of rationalisation was the common component interface nets.  
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5.5.3 Verification of the Design and Architecture Levels and 
further Specification 

At this stage, simulation was employed to check the structure and logic of the model 
and was able to detect incorrect logic on transition output arcs. Errors included: 
missing or incorrect predicates (highlighted by incorrect or missing display 
notifications for the common user interface component or incorrect information 
messages for the network component); missing initial values on input places required 
by common component interfaces; and an unexpected disabled transition due to the 
same variable being used to bind values on more than one of its input arcs.  
 
The necessary corrections were made and static analysis based on one initiated 
request was performed.  No further errors were picked up by model-checking so the 
modeller proceeded to adapt the model for a close air support mission in its entirety. 
 
The same process as used in sections 5.5.1-5.5.2 was followed for the other sub-
functions composing a close air support mission, namely perform close air support 
briefing; perform close air support depart from initial point; confirm close air support 
target; and authorise close air support weapons delivery. Bearing in mind the 
experience gained developing the model of the telephone system (Appendices A-D) 
and one sub-function (request close air support assignment), the modeller continued to 
look for the most generic means of adding new components realising the remaining 
sub-functions of close air support to the system-of-systems model. Re-using the 
common component interface nets across the eight new components realising the 
additional four sub-functions resulted in an overall model of eighty-eight subnets. The 
toolset became increasingly difficult to work with in terms of organising folders 
according to sub-function and navigating subnets and associated colour (type) 
definitions. Without instantiation functionality, the construction process would have 
been even more tedious. Syntax checking is undertaken by the toolset on model 
opening and following creation of each new element of a net for the whole model and 
both duration and performance were adversely affected by the size of the close air 
support model.  
 
Simulation was conducted incrementally, i.e. following the addition of each pair of 
components associated with each sub-function. Interactive simulation could only 
realistically be conducted per sub-function. An initial marking was set up for each 
pair of components and the model of the pair executed manually. Static analysis was 
attempted cumulatively following the addition of each pair of components. It was 
noted that with an imposed calculation time limit of eighty minutes, a full state space 
graph could only be calculated for three sub-functions, i.e. six components, fifty-three 
subnets, approximately one hundred and twenty places (Table 5.5). 
 
STATE 
SPACE 
GRAPH 

Net of three sub-functions Net of complete close air support 
(five sub-functions) 

Initial 
marking   

Nodes and 
arcs 

40128 nodes, 220064 arcs. Explosion problem. 
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Generation 
time 

688 secs. 4800 secs (limit set). 

Terminal 
markings 

2 N/A 

Table 5.5 'State space graph calculation at design and architecture level' 

 
In order to employ the benefits of static analysis on the full system-of-systems model 
of the close air support mission, the largeness avoidance techniques discussed in 
Appendices B-D were applied. In this case study, given that a full state space for three 
sub-functions could be calculated, the model was maintained by capturing one sub-
function pair in detail and abstracting out the detail of one component in each of the 
four remaining sub-functions (Fig. 5.21). This process was then reversed, i.e. for the 
four sub-function pairs with one component originally abstracted, the detail was 
abstracted from the partner component. The results are shown in Table 5.6. 
 

 
Fig. 5.21 'Abstraction largeness avoidance technique applied to one component in 
sub-functions (apart from Make Request and Assign CAS Services)' 

 
STATE 
SPACE 
GRAPH 

Net of complete close air support 
(five sub-functions) 

Net with one component in four out 
of five sub-functions abstracted 

Initial 
marking   

Nodes and 
arcs 

Explosion problem. 28544 nodes, 148800 arcs. 

Generation 
time 

4800 secs (limit set). 232 secs. 

Terminal 
markings 

N/A 3 

Table 5.6 'State space standard report for full and abstracted net' 

 
It should be noted the compositional largeness avoidance technique could also be 
applied to close air support, i.e. each sub-function could be analysed independently of 
the others (see Appendices B-D, sections B.1.5, C.1.3, and D.1.5 for details of this 
technique used with the telephone example). 
 



 88

From this section, it has been shown that it is possible to use coloured Petri nets and 
hierarchy to specify all five sub-functions of close air support (request close air 
support assignment) at design and architecture levels of abstraction, i.e. the solution 
specification level. From Figs. 5.17-5.21 above, net places capture state in terms of 
the information input and output to net transitions (activities); net colours (types) 
define the structure of the information used by activities (operations and parameters); 
net arc inscriptions govern the information required and produced by activities 
(including operations needed between components); net arcs dictate the control flow 
of execution, i.e. the order of activity execution and information exchange; toolset 
hierarchy facilitates levels of abstraction within the model (at the design level 
component and services, at the architecture level common components realising 
design level services) and offers instantiation for re-use of existing subnets; toolset 
colour palette and annotation improves readability of nets; and finally, dynamic and 
static analyses permit verification and validation of the models.  
 
In terms of scalability, a model of three close air support sub-functions with fifty-
three subnets and approximately one hundred and twenty places (and being kept as 
generic as possible employing instantiation) permitted calculation of a full state space 
graph. Beyond this, abstraction largeness avoidance techniques had to be applied. 
Scalability of the models within the toolset itself was the main issue. Manageability 
and navigability of the model within the toolset were considerably compromised. 
Without use of instantiation, model creation would have been extremely hampered. 
As it was, syntax and semantic checking and editing response times were degraded 
and the creation process time intensive and difficult.   
 

5.6 Evaluation of Close Air Support Study 
The design objective of the close air support study was derived from chapter 1's 
second criteria for success. This stated that the strengths and weaknesses of Petri nets 
regarding the greater formalism of dynamic behaviour in systems-of-systems and the 
role of Petri nets as a means of engaging stakeholders were to be determined. 
Following the case study design from chapter 3, nets were used to specify, verify and 
validate a close air support mission. As dictated by the study plan, data (evidence) 
was collected at design iterations of each model using screenshots of the model and 
simulations, standard reports from CPN Tools, model source code from CPN Tools, 
and project team notes. This evidence was presented in the report of the study in this 
chapter and discussed further in this section. 
 

5.6.1 Quantitative Results 
These related to the third criteria for success and the first research question, i.e. do 
Petri nets improve the functional correctness of the system-of-systems design 
specification? The functional correctness response variables were expressed in terms 
of the number of errors detected by simulation, and number of errors detected by 
static analysis. This data was captured from the CPN Tools integrated development 
environment at each iteration of model design through simulation (and screenshots, 
note-taking) or reachability graph calculation (and CPN Tools standard analysis 
report, screenshots, note-taking). An overview of the results is shown in Table 5.7. 
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Criteria for Success Goal 3 / 
System-of-System Engineering 
Level  

Simulation 
Number of Errors Detected 

Static Analysis 
Number of Errors Detected 

Analysis 3 3 
Design and Architectural 3 0 

Table 5.7 'Quantitative results from close air support study' 

 
From Table 5.7 it can be seen that use of simulation detected six functional errors in 
the specification of close air support. With textual or UML-based specification, given 
the nature of the errors detected through simulation of the Petri net model, it would 
have been extremely difficult to detect the same errors using both these means of 
static specification.  
 
Use of static analysis detected three functional errors in the specification of close air 
support. As well as the two errors detected using simulation, static analysis was able 
to highlight missing logic within a model and localise the part of the net where the 
omission was made. From examination of the errors detected by static analysis at the 
system-of-systems engineering analysis level, it can be seen that if the same errors 
were not detected using simulation, they would have been detected through 
calculation of the reachability graph of the net. In this way, static analysis offers a 
means of exhaustively checking a net on behalf of the modeller but the modeller 
needs to know how to interpret the analysis report in order to isolate the detected 
errors and this is a time-intensive process. The modeller also needs to be aware of the 
state space explosion problem and means of largeness avoidance (previously 
discussed in section 5.5.3 and Appendix B). 
 
Given CPN Tools in its standard form, simulation (or the Petri net 'token game') is a 
more intuitive means of stepping through the behaviour of a model (depending on its 
size) to check its functional correctness. It was used as an initial means of model 
verification prior to conducting static analysis so that detected errors could be 
corrected, potentially helping to alleviate the state space explosion problem, and 
simplify the analysis report.      
 

5.6.2 Qualitative Results 
These related to the first and second criteria for success and the second and third 
research questions, i.e. do Petri nets increase the quality of the design specification, 
and what are the shortcomings of the state-of-the-art Petri net tool and how can it be 
improved? The design quality response variables were expressed in terms of 
comprehensibility (e.g. use of hierarchy, annotation, timing), and scalability. This data 
was captured from the CPN Tools integrated development environment at each 
iteration of model design through screenshots, and note-taking. An overview of the 
results is shown in Table 5.8. 
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Criteria for Success Goal 1&2 
/ 
System-of-System 
Engineering Level  

Comprehensibility 
Hierarchy, annotation, timing 

Scalability 
 

Analysis Able to express problem 
(operational process, including 
timing specification) using CPN 
Tools. 

Yes. 

Design and Architectural Able to express solution design 
(including timing specification) 
using CPN Tools. 

Toolset scalability issues for net 
of 53 subnets, approximately 
one hundred and twenty places. 

Table 5.8 'Qualitative results from close air support study' 

 
These qualitative (and quantitative) results are now evaluated further in relation to the 
modelling features identified as desirable for the specification of system-of-systems.  
 
1. Abstraction 
In terms of UML 2.0's activity diagram, activity decomposition can be specified using 
class and activity diagrams. Class diagrams can show composition associations 
between activities and instance cardinality. Activity diagrams detail the refinement of 
an activity. They can also allocate activities (behaviour) to structure (classes) via 
partitions (swim lanes). These partitions can also show multiple allocations. 
 
In terms of the Petri net formalism, activity decomposition can be specified using 
high-level Petri nets with hierarchy. Implementations of Petri nets with hierarchy 
include substitution transitions, and place and transition fusion. 
 
Results from the first study (close air support specified using CPN Tools) indicated 
that hierarchy needs to be determined in advance of modelling. In the study, tactical 
data link (specifically Variable Message Format) messages were used in a bottom-up 
approach to derive hierarchy from the suggested message functions. Hierarchy was 
defined for models at the system-of-systems engineering level (analysis, and design 
and architectural) as well as within models (a hierarchy based on function was used). 
 
CPN Tools implementation of coloured Petri nets with hierarchy uses substitution 
transitions and fusion places. Substitution transitions were used primarily for 
abstraction as the sockets and ports used by this method were viewed as a means of 
explicitly specifying required and provided interfaces to the decomposed transition.  
 
Fusion places can also be used to represent abstraction but there is no explicitly 
associated net page at a higher-level of abstraction as there is with the substitution 
transition method. An advantage of fusion places is the ability to share the same 
information between multiple processes, e.g. if information needs to be passed from 
an interface to more than one component system at a point in time.  
 
Instantiation was used in conjunction with substitution transitions and found to be 
essential in minimising model size. Generalisation, i.e. use of common components at 
the design and architectural level of abstraction was also regarded as essential for the 
same reason. 
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The study highlighted that there was no explicit composition, cardinality, or allocation 
concrete notation with nets. The present means of achieving these in CPN Tools 
would be annotation and/or extra net elements. Extra net elements would be needed to 
capture multiple allocations. 
 
2. Modularisation 
In terms of UML 2.0's activity diagram, modularisation can be specified using class 
and activity diagrams. Class diagrams can specify the activities and the data items 
associated with them (including cardinality).  
 
Activity diagrams show activities and the associated control flow of input (output) 
data item instances (parameter types are defined by class diagrams). Class and 
collaboration diagrams can also be used to specify provided and required interfaces 
between classes. 
 
In terms of the Petri net formalism, modularisation can be specified using high-level 
Petri nets with hierarchy. Implementations include substitution transitions, and place 
and transition fusion. 
 
Results from the first study (close air support specified using CPN Tools) indicated 
modularisation was primarily achieved using substitution transitions (and port and 
socket places) to represent component system interfaces. As discussed for the 
abstraction feature, place fusion can also be used to partition a model but does not 
explicitly associate the lower abstraction level net with the higher abstraction level 
net.  
 
Information exchange protocol was described between and within component systems 
using colours (types) to define the exchanged information and net elements (places, 
transitions, arcs, arc inscriptions, annotation) to specify the control of the exchange. 
 
CPN Tools makes no provision for model re-use (e.g. searching for suitable existing 
models to use in a bottom-up approach) and their management (e.g. versioning). 
 
Capture of existing component systems including their performance parameters was 
not undertaken. 
 
Data items input and output by activities can be specified through colours (types) and 
variable bindings. Cardinality would need to be specified through annotation. 
 
3. Data typing 
In terms of UML 2.0's activity diagram, classes defined previously in class diagrams 
specify data typing. 
 
In terms of the Petri net formalism, timed, high-level Petri nets specify data typing. 
 
Results from the first study (close air support specified using CPN Tools) indicated 
that use of CPN Tools implementation of timed, coloured Petri nets enabled capture 
of the information needed for close air support using a combination of simple, 
compound, and timed colours (types). There was no ability to refer to variable values 
unless the same variable bindings were propagated through the entire net.  
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There is no equivalent one diagram, static description in nets. Operations (and the 
required parameters) provided by system components were made more explicit using 
arc inscriptions and annotation, and their associated data types were provided by local 
place colours (types). 
 
4. Adequate toolset implementation 
In terms of UML 2.0's activity diagram, many open source and commercial toolsets 
offering various levels of integrated UML development exist. 
 
In terms of the Petri net formalism, several implementations of high-level Petri nets 
offering various levels of integrated net development exist. 
 
Results from the first study (close air support specified using CPN Tools) indicated 
that CPN Tools provided a useful integrated net environment for the specification of 
systems-of-systems but shortfalls were identified in the areas of: improved analysis 
reports, examples and best practice, and large model support (navigability, syntax-
checking, versioning, error-reporting, and animation). 
 
5. Timing 
In terms of UML 2.0's activity diagram, extension via the Profile for Schedulability, 
Performance, and Time (to be replaced by Profile for Modelling and Analysis of Real-
time and Embedded Systems) is needed in order to specify (non-functional) timing 
properties. The resulting activity diagram is static so performance analysis, or 
investigation into analysis-of-alternatives is only achievable through model 
conversion. 
 
In terms of the Petri net formalism, timed, high-level Petri nets with hierarchy specify 
timing information. 
 
Results from the first study (close air support specified using CPN Tools) were based 
on CPN Tools implementation of timed, coloured Petri nets with hierarchy. Stochastic 
and deterministic functions within the toolset were used to introduce random 
placement of requests, delays, and timeouts. Time, cost and quality performance 
indicators need to be identified in advance of the analysis.  
 
Simulation was used in conjunction with toolset monitors in the performance analysis 
net to calculate close air support request fulfilment duration. An analysis-of-
alternatives net used physical asset known performance data in the simulation time 
and was used to calculate cost information per activity, per component process, and 
for the overall process. Analysis-of-alternative nets can be used to advise the timing 
duration ranges of performance analysis nets. 
 
Timing can impose order on tokens but cannot guarantee the prevention of token 
overtaking (queuing places were defined for this purpose). Timing was primarily used 
to reflect deterministic and stochastic activity durations for the purposes of 
performance analysis. 
 
6. Verification and validation 
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In terms of UML 2.0's activity diagram, there is no full formal syntax and semantics 
and diagrams cannot be executed. 
 
Verification and validation is done using static inspection of the graphical notation 
which may include extensibility profiles such as Profile for Schedulability, 
Performance, and Time, and the Profile for Modelling QoS and Fault Tolerance 
Characteristics and Mechanisms. 
 
In terms of the Petri net formalism, there is formal syntax and semantics and nets can 
be executed using a well-defined execution algorithm (simulation). Additionally, 
exhaustive verification can be achieved by calculating the reachability graph of the 
net and checking structural properties such as deadlock. Timed, coloured Petri nets 
and simulation were used to conduct performance analysis and analysis-of-
alternatives. 
 
Results from the first study (close air support specified using CPN Tools) were based 
on CPN Tools simulation modes for initial investigations into analysis, and design 
and architecture model behaviour (six errors were detected: infinite loop; token 
overtaking; potential deadlocks; incorrect predicates; missing initial values; and 
incorrect disabled transition), performance analysis (the calculation of close air 
support request fulfilment time was demonstrated), and analysis-of-alternatives (the 
calculation of the cost of the close air support process using Variable Message Format 
as the communications physical resource was demonstrated). For large system-of-
systems models, interactive simulation was time-intensive. This was managed by 
building nets incrementally and simulating the new net elements. 
 
Verification and validation of close air support using simulation is constrained by the 
size of the system-of-systems model. Simulation can be used to check the behaviour 
of an entire model and analyse performance where timing is used but it cannot 
exhaustively verify the correctness of the entire model.  
 
CPN Tools was used to calculate a reachability graph for analysis, and design and 
architecture nets (three errors were detected: infinite loop; token overtaking; and 
missing logic), and temporal logic was used to confirm correct behaviour of one 
information exchange protocol across the generated reachability graph. Temporal 
logic queries are text-based and require experience to formulate correct queries. 
 
Modeller experience helps significantly in interpretation of the analysis report 
produced by CPN Tools and to highlight unexpected analysis results. It is unlikely 
that all these errors would have been detected within the UML activity diagrams using 
static inspection alone. 
 
For large system-of-systems models, the state space explosion problem was alleviated 
through largeness avoidance techniques. Reachability graphs were also calculated for 
timed nets using CPN Tools. These require careful management in terms of removing 
sources of non-determinism within the net. 
 
Verification and validation of close air support using reachability graph calculation is 
constrained by the number of states in the system-of-systems. Model-checking means 
ignoring parts of the system-of-systems either through abstraction or considering a 
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subset of the system-of-systems. However, model-checking is automatic and 
exhaustively checks the model. 
 
7. Precision in specification of requirements (scalability, concurrency, state-based 
specification, information-based specification, event-based specification) 
In terms of UML 2.0's activity diagram, it has intuitive, graphical concrete syntax but 
does not have fully formal syntax and semantics. Activity diagrams can be used for 
concurrent, scalable, state, event, and data-based specification (in conjunction with 
class diagrams). They have the ability to specify continuous (streaming) and discrete, 
non-streaming activities. 
 
Activity definition (Activity in UML) defines an activity independently of how it is 
used in a diagram, it does not specify where input (output) to it originates (goes to). 
 
Activity usage (Action in UML) defines how an activity is used in the definitions of 
higher-level activities. 
 
Activity instance is the enabling of an activity operating on input (output) item 
instances and associated timing. 
 
Item type (Classifier in UML) specifies the type of input (output) item to (from) an 
activity independently of where it is used. 
 
Item usage by activity definition (Parameter in UML) defines how an item is used in 
an activity definition independently of where the activity is used. Parameters are 
named indicating the kind of item (parameter type). 
 
Item usage by activity usage (Pin in UML) defines the connection point between a 
flow line and a parameter at an activity. 
 
Item instance refers to item used by an activity instance. 
 
Parameters refer to items input to (output from) activities. Their types are defined in 
class diagrams and they are named. Items used by activities are specified by pins 
labelled with parameter name and type. 
 
Presently, activity diagrams have no means of specifying: persistent data store across 
activity executions; the number of concurrent executions allowed for single usage 
activities; and resources generated (consumed) for activity execution (pre and post-
conditions on activities are supported but do not specify effect on execution). 
 
In terms of the Petri net formalism, timed, high-level Petri nets are used for 
concurrent, state, data, event-based specification. Petri nets ability to scale requires 
management due to their limited concrete syntax. 
 
Results from the first study (close air support specified using CPN Tools) indicated 
that at the system-of-systems design level, systems-of-systems have non-streaming 
activities, i.e. terminating, discrete-event (rather than continuous) where items are 
accepted at the start of activity execution, processed, and output at the end of activity 
execution. Specification of continuous or streaming activities (i.e. activities dealing 
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with inputs and outputs continuously during their execution) would require stochastic 
Petri nets. 
 
In the study, nets were developed to specify analysis, and design and architecture 
models of close air support. At analysis level, operational processes were described. 
This led into solution specification at design and architecture levels. Again, these 
levels described process-based information exchange with associated events, and 
states. The specification was unambiguous in the structural sense.  
 
Tokens are not accepted by transitions in process of execution and can be queued. 
More than one token input can be specified to a transition but it is not possible to 
specify acceptance of one token and then a late token. Multiple outputs can have 
probability applied to them. There is no concept of persistent data store accessible 
across transition executions. 
 
It is possible to describe a function independently of how it is to be used by other 
functions and how the function is to be used in the context of other functions but it 
means using separate nets and annotation. Groups have to be created in CPN Tools in 
order to clone and re-use parts of nets in multiple model locations. Nets were able to 
specify resources generated (consumed) for transition execution. 
 
In CPN Tools, colour (type) definitions exist independently of the activities they are 
used in. 
 
Due to their generic concrete syntax, nets rely on extra net elements and annotation 
(in comparison to activity diagrams) to relate domain and system specification 
concepts (e.g. iteration, decisions, cardinality, operations, parameters, constraints). 
This means resulting nets are much larger than the equivalent activity diagram and 
can lead to scalability issues. Scalability issues were encountered in close air support 
at the design and architectural level of abstraction for fifty-three subnets and 
approximately one hundred and twenty places. Toolset syntax and semantic-checking 
duration and editing response times increased significantly. Manageability and 
navigability of nets within the toolset were severely compromised.  
 
The close air support study assumed no multiplicity of component systems or 
processes realising functions. The concern with multiplicity is the correctness of the 
execution path if functions are undertaken by more than one component or process. 
Also, the study did not investigate re-entrancy, i.e. if a recovery protocol is specified 
for a communications failure, when it completes, execution may return to earlier 
transitions leading to incorrect behaviour.  
 
These results are summarised in Table 5.9. 
 
System-of-Systems Modelling 
Need 

UML Activity Diagram Petri Nets 

1. Precision in requirements 
specification 

  

  Formal syntax & semantics No. Yes. 
  Process-based Yes. Yes. 
  Multiplicity Yes. To be determined. 
  Re-entry Yes (requires management). To be determined. 
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System-of-Systems Modelling 
Need 

UML Activity Diagram Petri Nets 

  Discrete Yes. Yes. 
  Data flow Yes. Yes. 
  Resource usage No. Yes. 
  Scalable Yes. No (requires management). 
  State Yes. Yes (to a greater extent than 

UML). 
  Control flow Yes. Yes. 
  Concurrency Yes. Yes. 
  Independent activity 
description 

Yes. Yes (separate net). 

  Independent data description Yes. Yes (colours). 
  Persistent data  No. No. 
  Interfaces  Yes (plus class diagram). Yes (annotation & hierarchy). 
  Information exchange protocol Yes (plus schedulability 

profile). 
Yes (timed nets). 

  Analysis size More compact than nets. Larger models than UML. 
  Design & Architecture size More compact than nets. Larger models than UML. 
   
2. Verification and validation   
  Formal syntax & semantics No. Yes. 
  Static inspection Yes. Yes. 
  Dynamic inspection 
(simulation) 

No. Yes. 

    Behaviour checking  Yes. 
    Performance analysis  Yes (timed nets). 
    Analysis-of-alternatives  Yes (timed nets). 
    Exhaustive analysis  No. 
    Complete specification  Yes (constrained by net size). 
  Reachability graph calculation No. Yes. 
    Structural properties  Yes (e.g. deadlock, 

boundedness). 
    Temporal logic queries  Yes (e.g. correct protocol). 
    Largeness avoidance     Yes (abstraction, net division). 
    Exhaustive analysis     Yes. 
    Complete specification  No (dependent on scope). 
  QoS  Yes (plus QoS profile). Yes (annotation). 
   
3. Abstraction   
  Decomposition Yes (plus class diagram). Yes (substitution transitions & 

fusion places). 
  Activity composition Yes (plus class diagram). Yes (annotation, separate net). 
  Cardinality Yes (plus class diagram). Yes (annotation, separate net). 
  Allocation Yes (swim lane). Yes (annotation). 
   
4. Modularisation   
  Interfaces Yes (plus class, collaboration 

diagrams). 
Yes (substitution transitions, 
fusion places, & colour). 

  Information exchange protocol Yes (plus class, collaboration 
diagrams and schedulability 
profile). 

Yes (timed nets). 

  Top-down, bottom-up support Yes (top-down), Yes (bottom-
up). 

Yes (hierarchy & cloning). 

   
5. Timing   
  Duration, timeout, arrivals Yes (plus schedulability 

profile). 
Yes (timed nets, deterministic & 
stochastic functions). 



 97

System-of-Systems Modelling 
Need 

UML Activity Diagram Petri Nets 

  Static Yes. No (simulation). 
   
6. Data typing   
  Domain concepts Yes (plus class diagram). Yes (timed, coloured nets). 

Table 5.9 'Summary of study results from the specification of close air support using 
Petri nets' 

 

5.6.3 Evaluation Conclusions 
Referring to Tables 5.7-5.9, in terms of the first criteria for success, 'Precisely specify 
the close air support example (research questions 2 and 3)', Petri nets were used in a 
top-down engineering approach to unambiguously (in terms of model structure) 
capture the operational processes, component systems and information exchange 
involved in close air support at analysis, design and architecture levels of model 
abstraction. A bottom-up approach was used to identify the functional hierarchy used 
in the models from the existing close air support tactical data link message set. These 
abstraction levels described process-based information exchange with: associated 
events; component system interfaces; states; type of information exchanged; 
information exchange protocol; execution control flow; initial request arrival timing, 
event durations and timeouts; interfaces and operations used by component systems; 
and potential failure states (e.g. underlying communications failure). In terms of the 
desirable modelling needs of systems-of-systems, from the first study on close air 
support, Petri nets meet an additional two attributes over activity diagrams (formal 
syntax and semantics, and specification of resource usage). However, the study 
strongly suggested that Petri nets did not scale well, attributable to their generic 
concrete syntax. Nets rely on extra net elements and annotation (in comparison to 
activity diagrams) to relate domain and system specification concepts.  
 
In contrast, activity diagrams offer multiple specification concepts in their concrete 
graphical syntax compared to the Petri net concrete graphical syntax. This means 
specification with activity diagrams is usually more concise than the equivalent Petri 
net specification but not necessarily more understandable. Activity diagram 
practitioners and non-practitioners need to have some understanding of the multiple 
underlying concepts and associated graphical notation. From the first study on close 
air support, Petri nets appear to be able to meet the precision in specification of 
system-of-systems requirements need and describe close air support at the system-of-
systems analysis level of abstraction completely and visually (for the benefit of 
domain users), ready for correctness verification. Although the study was able to 
specify close air support at the design and architecture level of abstraction completely, 
navigation and management of the resulting model was severely degraded. It is not 
clear exactly how concise the Petri net specification is in comparison to specification 
with activity diagrams. The study also highlighted labelling and annotation within 
nets can be open to interpretation to stakeholders but this trait also affects activity 
diagrams.  
 
For the second criteria for success, 'Determine the scalability of the close air support 
system-of-systems model implemented using Petri nets (research question 2)', the 
study indicated Petri nets may not scale according to the size of the system to be 
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modelled. Scalability issues using the toolset were encountered at the design and 
architectural level of abstraction for fifty-three subnets and approximately one 
hundred and twenty places. Due to their generic concrete graphical syntax, nets tend 
to use extra net elements and annotation to relate domain and system specification 
concepts (e.g. iteration, decisions, cardinality, operations, parameters, constraints). 
This means the resulting net is much larger than the equivalent activity diagram and 
will require careful management to achieve scalability. 
 
Based on analysis of the first and second criteria for success, Petri nets would be 
recommended as a means of improving activity diagrams. In order to scale, system-
of-systems specification using Petri nets needs to be suitably abstracted. Although 
close air support was specified at analysis, and design and architecture levels of 
abstraction, hierarchy based on function was determined in advance of modelling and 
detail minimised as far as possible. Use of toolset instantiation and common 
components at the design and architecture levels of abstraction were essential in 
achieving a complete specification that was also readable. 
 
For the last criteria for success, 'Confirm if the same Petri net verification and 
validation techniques used in the telephone exercise are effective in the close air 
support system-of-systems specification models (research question 1)', CPN Tools 
was used to explore verification and validation of the close air support specifications 
at the analysis, design and architecture levels of abstraction. In terms of the desirable 
modelling needs of systems-of-systems, from the study, Petri nets meet an additional 
three attributes over activity diagrams (formal syntax and semantics, dynamic 
inspection, and reachability graph calculation). Close air support highlighted the fact 
that reachability graph calculation provides exhaustive verification but only across a 
restricted (in terms of model size and detail) specification. In comparison, simulation 
provides verification across the whole specification (constrained by model size, 
toolset, and underlying hardware) but is not an exhaustive means of checking model 
correctness.  
 
Simulation detected infinite loop, token overtaking, potential deadlocks, incorrect 
predicates, missing initial values, and incorrect disabled transitions specification 
errors in the close air support system-of-systems. Simulation also enabled domain 
users to be involved in the model correctness-checking process. These errors would 
not necessarily be highlighted during static inspection of the equivalent UML activity 
diagrams. When timing was introduced into the close air support nets, simulation 
could be used to undertake performance analysis (the calculation of close air support 
request fulfilment time was demonstrated), and analysis-of-alternatives (the 
calculation of the cost of the close air support process using Variable Message Format 
as the communications physical resource was demonstrated). Again, this is not 
possible with activity diagrams. 
 
As mentioned, simulation is not an exhaustive method of checking model behaviour is 
correct. Reachability graphs for the close air support analysis, and design and 
architecture models were calculated for this purpose. As indicated in Table 5.7, 
reachability graph analysis detected three errors in the close air support system-of-
systems specifications (the infinite loop, token overtaking, and missing logic). If the 
first two errors had not been detected by simulation, reachability graph analysis would 
have alerted the modeller to their presence. Exhaustive verification is not possible on 
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native activity diagrams. Temporal logic was also used to confirm correct behaviour 
of one information exchange protocol across the generated reachability graph. 
 
Based on analysis of the last criteria for success, again Petri nets would be 
recommended as a means of improving activity diagrams.  
 
The close air support study assumed no multiplicity of component systems or 
processes realising functions. The concern with multiplicity is the correctness of the 
execution path if functions are undertaken by more than one component or process. 
Also, the study did not investigate re-entrancy, i.e. if a recovery protocol is specified 
for a communications failure, when it completes, execution may return to earlier 
transitions leading to incorrect behaviour.  
 
From Table 5.9 and the close air support case study, the confirmed benefits of the 
Petri net formalism are: 
 
1. Analysis capability regarding the modelled design specification. The Petri net 
formalism facilitates both simulation and reachability graph calculation based on its 
full formal syntax and semantics. This capability is essential in helping to preserve 
functional correctness of the system-of-systems specification. 
2. Specification capability. The CPN Tools implementation of timed coloured Petri 
nets with hierarchy offers the ability to graphically represent state, event, concurrent, 
performance, and data-based behaviour of a system-of-systems at different levels of 
detail. Nets can be logically divided to represent components facilitating top-down 
and bottom-up engineering approaches in system-of-systems engineering.  
  
From Table 5.9 and the close air support case study, the confirmed weaknesses of the 
Petri net formalism are: 
 
1. State space explosion. Logical structure-dependent, the calculated state space graph 
can have infinite reachable states. Largeness avoidance techniques may be able to 
help alleviate the problem. 
2. Scalability. 
 
In terms of shortfalls to the specification of system-of-systems requiring further 
investigation in relation to Petri nets, the study highlighted: 
 
1. Verification and validation. The close air support study indicated both simulation 
and static analysis can be used to detect erroneous behaviour in the model. However, 
further insight into how it can be used to check the completeness of a system-of-
systems specification would be useful, especially when used together with 
specification of multiplicity. 
2. Multiplicity of component systems or processes realising functions. The concern 
with multiplicity is the correctness of the execution path if functions are undertaken 
by more than one component or process.  
3. Re-entrancy. If a recovery protocol is specified for a communications failure, when 
it completes, execution may return to earlier transitions leading to incorrect behaviour.  
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Chapter 6 Case Study   
 (Exchange Network Parameters) 

 

6.1 Introduction 
This chapter implements the case study design for a second time for two reasons. The 
first is to demonstrate the experiment is replicable and reliable, i.e. the process 
outlined in chapter 3 relating to construction of the Petri net models was followed 
again in order to check the desired response variables (at each iteration of model 
design). In this way the evidence obtained from the second study could be verified 
against the evidence obtained from the first study to demonstrate similar results using 
the Petri net formalism treatment.   
 
The second reason for executing a second study was to investigate the results that 
needed further clarification from the first study, in particular the specification of 
multiplicity and re-entrancy, and the role of verification and validation in helping to 
ensure completeness and correctness of a system-of-systems design. 
 
Similar to chapter 5, and using the case study objective and research questions 
identified in chapter 3, the case study exercise begins by defining the criteria for 
success by which the Petri net approach is measured. The objective of the case study 
and research questions from chapter 3 stated: 
 
Case Study Objective: evaluate the strengths and weaknesses of Petri nets in terms of 
the system-of-systems problems identified in chapter 1. 
 
Research Questions: 
1. Do Petri nets improve the functional correctness of the system-of-systems design 
specification? 
2. Do Petri nets increase the quality of the design specification? 
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be 
improved? 
 
Criteria for Success derived from the research questions above: 
 
Goal 1 (research questions 2 and 3): Precisely specify the exchange network 
parameters example. Use Petri nets to capture the operational processes, components 
and information exchange involved in the system-of-systems completely, concisely 
and correctly at analysis, design, and architecture phases. 
 
Metrics: Check if Petri net elements can describe operational processes, components, 
information to be exchanged, information interfaces, information exchange protocols, 
multiplicity, and re-entrancy for the exchange network parameters system-of-systems. 
Note syntactical, semantic, and feature support of selected toolset.  
 
Goal 2 (research question 2): Determine the scalability of the exchange network 
parameters system-of-systems model implemented using Petri nets. 
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Metrics: Explore the use of hierarchy within Petri nets to check if they can be used to 
create a scalable specification model of exchange network parameters. 
 
Goal 3 (research question 1): Confirm if the same Petri net verification and validation 
techniques used in the telephone and close air support exercises are effective in the 
exchange network parameters system-of-systems specification models. Use Petri nets 
and the selected toolset to explore verification and validation of the exchange network 
parameters specifications at the analysis, design and architecture phases. 
 
Metrics: Employ static (state space) analysis of nets to check for well-known and 
user-defined properties in models. Employ dynamic analysis (simulation) of nets to 
explore correctness and completeness of behaviour and efficiency of specifications. 
Functional correctness is expressed in terms of number of errors detected by 
simulation; and number of errors detected by static analysis. Investigate the 
application of largeness avoidance techniques.  
 

Table 6.1 'Criteria for success for the specification of exchange network parameters 
using Petri nets' 

 
This process is described in the next section. 
 

6.2 Specification of Exchange Network Parameters using 
Coloured Petri Nets 

 

6.2.1 Description of Exchange Network Parameters 
From military doctrine [121, Appendix E], exchange network parameters is a Combat 
Net Radio network management process defined as: 
 
'..covers the subnetwork operations for a MIL-STD-188-220 subnetwork. If a station 
moves into or through different subnetworks, the Data Link addresses and operating 
parameters may change in each subnetwork, and exchange network parameters will 
automate the change of parameters and address from one subnetwork to another'. 
 
Similar to the close air support study, this system-of-systems problem required further 
investigation. Currently, the only source of military documentation for exchange 
network parameters is [121, Appendix E] and this was consulted in conjunction with 
subject matter experts. It became clear that the problem of exchange network 
parameters was relatively new in the military tactical data link domain but the 
concepts behind it are related to those presented by the Dynamic Host Configuration 
Protocol internet standard [122].  
 
[121, Appendix E] does not describe a generic process for dynamic network 
configuration management in the same way [122] does. It specifies a solution targeted 
towards a particular communications bearer for the Variable Message Format tactical 
data link, combat net radio. Consequently, it was difficult to obtain a textual 
description of the problem at a system-of-systems level from the standard [121, 
Appendix E]. Instead, both the military standard and the internet dynamic host 
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configuration protocol [122] were used as source documents to derive an exchange 
network parameters system-of-systems specification. The dynamic host configuration 
protocol offers an extra configuration process between the client and control nodes 
compared to the exchange network parameters protocol. Where a process relates to 
configuration over and above that of exchange network parameters, it is presented in 
italics in sections 6.2-6.5. In addition, exchange network parameters subject matter 
experts believed there to be omissions and implied requirements within [121, 
Appendix E]. These were to be made explicit during the course of the study.  
 
For the purposes of the study, the scope of the problem was summarised in terms of 
functions to be provided, assumptions, messages involved, and information exchanges 
as follows: 
 
The functions associated with exchange network parameters are persistent storage of 
network parameters and allocation of network addresses on a static (permanent) or 
dynamic (leased) basis. 
 
The problem assumes: the roles involved are 'client node' (makes the request to join 
the network), 'control node' (responds to requests to join network), and 'relay node' 
(passes requests and responses to and from clients and control nodes where direct 
communication is not possible); fixed or wireless communications links susceptible to 
problems are used in the message exchange; and the message exchange uses a 
combination of broadcast, multicast, and unicast messages. 
 
The messages involved are join request (issued from the new client node); initial join 
response (initial offer of network parameters from control node to client node); offer 
echo (confirmation of initial offer from client node to selected control node); 
acknowledgement (confirmation from selected control node to client node regarding 
offered parameters); negative acknowledgement (denial from selected control node to 
client node regarding offered parameters); and decline (denial from client node 
following detection of its proposed address being in-use).        
   
In terms of information exchanges, the exchange network parameters process is 
triggered by the presence of a new node and its broadcast of a join request (which 
may be relayed to remote control nodes). Control node(s) respond to the client node 
join request with initial accept or reject response(s) containing the proposed network 
address, address lease period, and network parameters. Upon receipt of the initial 
response(s), the client node echoes confirmation of the initial accept offer to the 
selected control node using broadcast and relay if necessary.  
 
The control node checks if the proposed address is already assigned, updating the 
configuration database and sending the client node a positive acknowledgement if it is 
able to satisfy its initial offer message. If the proposed address is already assigned, 
the control node sends a negative acknowledgment to the client node. When it 
receives a positive acknowledgment message from the control node, the client node 
also checks to see if the network address it has been assigned is already in use. If it 
detects a duplicate address, the client nodes sends a decline message and begins the 
network join process again. Where no duplicate address exists, the client node is 
configured and able to participate in the network. If it receives a negative 
acknowledgement from the control node, the client node also begins the network join 
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process again. If no initial offers are received by the client node, or if its initial offer 
is rejected, it begins the network join process again. 
 

6.2.2 Petri Net Construction Method 
Similar to the approach adopted for the telephone example in Appendices A-D and the 
close air support study in chapter 5, the modeller was keen to specify the exchange 
network parameters problem space in a way that promoted the need for a flexible, 
adaptable solution without being prescriptive and considered its specification from 
analysis, design, and architecture abstraction levels. In doing so, simplification 
through abstraction enables analysis of certain aspects of the exchange network 
parameters protocol by avoiding implementation detail. In terms of problem scope, 
the rules of interaction for exchange network parameters are considered rather than 
how messages are encoded or stored. The exchange network parameters function of 
processing a new network client node arrival is modelled (collection and update of the 
configuration details for the network is also modelled but is captured in much less 
detail and is included to show that this is a necessary function). Multiple entities are 
considered and the formats of the messages listed above are abstracted. Lease 
renewal, parameter updates, leaving the network, collection of network configuration 
data, and relaying processes were not included in this study. Dynamic rather than 
statically configured client nodes are focused upon. 
 
The exchange network parameters problem was functionally decomposed into a series 
of functions and sub-functions (activities). These functions were then used with the 
concept summary above to suggest operational processes. The operational processes 
outline a particular timed ordering of activities and information exchange to be 
performed by roles so that the function (or service) may be realised. Optimised where 
possible in terms of resources, the operational process level helps to specify the 
overall function of the exchange network parameters system-of-systems to domain 
users and developers, and drive its lower-level design and implementation. At the 
analysis stage, functions (together with the information and information exchange 
protocol used by these functions) rather than the physical components able to meet 
these functions are specified.    
 
To begin with, the net at the operational process (conceptual or analysis) model level 
of abstraction was created. Functions (activities) from the processes were mapped to 
net transition elements and information exchanged was assigned to net place elements 
following the control sequence presented within [121, 122] and guidance from 
domain experts. Colours (types) were defined in the toolset according to the 
information exchanged at each place. Compound or structured type definitions were 
used to specify the information exchanged. Roles (owners of the identified functions 
and sub-functions) were indicated by text labels on the page allocated to the net 
within the toolset. 
 
As indicated previously in this section, one of the functions of the system-of-systems 
(the processing of a new network client node arrival in the exchange network 
parameters problem) was focused on. This describes the problem of a client node 
making a join request to a control node. The roles, control sequences, processes and 
information exchanged are presented in Fig. 6.1. 
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Fig. 6.1 'Exchange network parameters/dynamic host configuration protocol join 
request UML activity diagram' 

 
From Fig. 6.1 it can be seen that two roles, 'client node' and 'control node', have 
operational processes assigned to them. These operational processes are presented as a 
sequential series of activities. The detail of groups of these activities can be abstracted 
at a higher level of abstraction under parent activities such as 'Request to Join' or 
'Distribute Network Data' (shown using  notation in Fig. 6.1). Fig. 6.1 also shows 
that five pieces of information are exchanged between the roles, 'Join Request', 'Join 
Request Response', 'Node Offer Echo', 'Control Node Confirm' (Dynamic Host 
Configuration Protocol), and 'Client Node Confirm'.  
 
A coloured Petri net model of the operational processes represented in Fig. 6.1 was 
attempted. Fig. 6.1's function (or service) level of granularity and naming was based 
on the existing standards [121, 122] and underlying communications infrastructure 
information sets (exchange network parameters transactions and the associated 
function performed by assets). This information was used to help manage the 
construction of the net by developing a hierarchy of functions to promote its 
readability and scalability. The function of 'Exchange Network Parameters (new 
network client node arrival)' was decomposed into two main sub-functions: 'Request 
to Join' and 'Distribute Network Data' (a third sub-function of 'Collect Node Data' was 
included to highlight persistent network configuration storage). Both of the main sub-
functions are realised using the processes identified from existing standards and 
domain experts in Fig. 6.1. These processes were examined in turn in order to 
establish: 
 
1. Executed activities together with their pre and post information states (i.e. input and 
output interfaces). 
2. Control of activity execution. 
3. Suggested roles (owners) associated with the control of activities. 
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4. Naming of activities, information and roles. 
5. Net symbols that should be used on the net at the highest abstraction level (primary 
parent net) and associated sub-pages to accurately represent the hierarchy within the 
model. 
 
The control flow of the two main sub-functions shown in Fig. 6.1 follows the 
exchange of information between Request and Distribute. The Collect sub-function is 
intended to occur periodically within and between subnetworks.  
 
At the highest abstraction level in the hierarchy, the pre-condition of the request to 
join function executing is the arrival of a client node. Using [121, 122], suggested 
fields for new client node information are: unique node identifier; node type; network 
address; and optional node capabilities.  
 
When a join request has been assembled, the post-condition of join request executing 
is outgoing information, containing the join request details. This information is sent to 
the role dealing with assignment of network parameters (control node). Its content can 
be derived from [122] and existing exchange network parameters message content 
[121]. Suggested fields for the join request information are: unique node identifier; 
network address; and optional node capabilities.  
 
Considering the join request function's process in more detail, the client node 
information is used in the activity of assembling the join request. This assembly 
activity could be decomposed further into sub-activities relating to the nature of the 
assignment i.e. static or dynamic; inclusion of error recovery if an offer from a control 
node is not received, or the initial request was rejected. For the purposes of this case 
study, dynamic address allocation is considered and the result of the assembly activity 
is that dynamic network address assignment is requested by sending a join request. 
 
At the highest level of abstraction in the hierarchy, according to [121, 122] and Fig. 
6.1, the pre-condition of the assign function executing is incoming join request 
information from the client node, containing the join request information specified 
above.  
 
The post-condition of assign executing is outgoing information, containing initial 
response details. This information is sent to the requesting role (client node). Its 
content can be derived from [121] and exchange network parameter message content. 
Suggested fields for denial response information are: unique node identifier; network 
address; and optional reason for denial. For initial acceptance response information, 
suggested fields are: unique node identifier; network address; and optional 
configuration parameters.  
 
Considering the assign function's process in more detail, the join request information 
is used in the activity of making an initial offer (if there is a network address 
available). The check availability of network address activity could be decomposed 
further into sub-activities. For the purposes of this exchange network parameters case 
study, further activity decomposition is omitted. The result of the process is an initial 
accept or reject response.  
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As part of the request function at the highest level of abstraction, the pre-condition of 
the receive initial response function executing is incoming response information from 
the control node, containing the information specified above.  
 
According to [121, 122], if an acceptance response is received there is one post-
condition of receive initial response executing. This is outgoing offer echo 
information containing notification that the initial offer response was accepted by the 
client node. Suggested fields for offer echo information are: unique node identifier; 
network address; and optional configuration parameters.  
 
As part of the assign function at the highest level of abstraction, the pre-condition of 
the receive offer echo function executing is the incoming offer echo information from 
the client node, containing the information specified above.  
 
According to [122] there are two post-conditions of receive offer echo executing. One 
is that the control node has checked the proposed address is not in use and sends 
outgoing positive acknowledgement information containing confirmation of the offer. 
The other is negative acknowledgment information denying the offer. Suggested fields 
for positive acknowledgment response information are: unique node identifier; 
network address; and optional parameters. For negative acknowledgement response 
information, suggested fields are: unique node identifier; network address; and 
optional reason for negative acknowledgement. 
 
As part of the request function at the highest level of abstraction, the pre-condition of 
the client node receive positive/negative acknowledgment function executing is the 
incoming positive/negative acknowledgment information from the control node, 
containing the information specified above.  
 
According to [122] there are two post-conditions of receive positive/negative 
acknowledgment executing. One is that the client node has checked the proposed 
address is not in use and the process ends with the client node in a configured state. 
The other is the client node detects that the proposed address is in use and sends an 
offer decline to the control node. Suggested fields for this decline response are: 
unique node identifier; network address; and optional parameters. 
 
As part of the assign function at the highest level of abstraction, the pre-condition of 
the control node receive decline function executing is the incoming decline 
information from the client node, containing the information specified above.  
 
According to [121, 122] there is one post-condition of receive decline executing. The 
control node updates the network configuration database and the process ends.  
 
All the above information (including the extra dynamic host configuration protocol 
configuration detail) was then manually mapped to Petri net constructs. As before, the 
net was constructed from a planner point-of-view. Conditions were allocated to places 
and colours (types) were defined to represent the fields of messages suggested above. 
Naming convention followed Fig. 6.1's as closely as possible. For the net relating to 
the 'exchange network parameters (new network client node arrival)' function, the two 
main sub-functions (request and distribute) were represented as abstracted transitions 
('Request_to_Join' and 'Distribute_NW_Data') with more detail for each presented on 
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subnets ('Requester' and 'Assigner'). The collect sub-function is shown as 
'Collect_Node_Data' (and detailed on subnet 'Collector'). Each abstracted transition 
has associated input and output sockets (interfaces). Together these form the highest 
level of abstraction in the hierarchy (parent net). The operational processes that realise 
each of these sub-functions are expressed on additional net pages (subnets) together 
with their associated input and output ports (interfaces). A successful or unsuccessful 
client node network configuration outcome from the assign function was selected at 
random within the model. The derived net's highest level of abstraction is shown in 
Fig. 6.2. 
 

 
Fig. 6.2 'Exchange network parameters (new client node arrival) parent net' 
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Fig. 6.3 'Net detailing state of the join request-response information exchange 
transaction (ASGR_Join_Req_Xchg ) undertaken by the Assigner role' 

 
Nets were also used to specify the state of the information exchange protocol relating 
to the join request and join request assignment functions introduced in the operational 
process of Fig. 6.2. 'Requester' (Join_Request_Service) and 'REQR_Join_Req_Xchg' 
(Fig. 6.3) subnets taken together with corresponding 'Assigner' (Join_Assign_Service) 
and 'ASGR_Join_Req_Xchg' specify how each role could track its state in terms of 
what information is sent to and what information is expected from its partner role(s) 
on the network. If a communications failure occurs, suitable recovery can be designed 
for. It should be noted that with the addition of timing to the net, timeouts could be 
specified in the net of Fig. 6.2. Again, this specification information is in addition to 
the operational process and aims to be non-prescriptive in terms of how tracking is to 
be implemented.  
 
In this section, coloured Petri nets and hierarchy have been used to specify the join 
request function of exchange network parameters at an analysis level of abstraction 
i.e. the operational process level. From Figs. 6.2-6.3, in terms of design readability, 
net places capture process state in terms of the information input and output to net 
transitions (activities); net colours (types) define the information used by activities; 
net arc inscriptions govern the information required and produced by activities; and 
net arcs dictate the control flow of execution i.e. the order of activity execution and 
information exchange. As long as the interpreter of the net has some experience of the 
syntax and semantics of Petri nets, and use is made of toolset features such as textual 
annotation and colouring, the specification represented by the net in terms of flow of 
execution is unambiguous.  
 

6.3 Analyses with Petri Nets and further Specification 
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6.3.1 Dynamic Analysis (Simulation) 
To investigate functional correctness, simulation of the derived net in Fig. 6.2 was 
used to provide confidence in the correctness of the behaviour and logic specified by 
it. Using the toolset it was possible to interactively step through enabled transitions in 
the net from a given initial marking until there were no more enabled transitions. In 
doing so, problems were revealed within the 'Assigner' and 'Requester' subnets 
detailing the activities undertaken by the control and client nodes. With the 
'Requester' subnet, simulation revealed missing logic to deal with receipt of an initial 
reject response from the control node (Fig. 6.4, a), and missing logic to check for 
receipt of positive acknowledgment (ACK) on input arc to 'ack' place (Fig. 6.4, b). In 
the 'Assigner' subnet, simulation detected missing logic producing the accept or reject 
initial response message (Fig. 6.4, c), and incorrect logic to send positive or negative 
acknowledgement due to specification of incorrect parameter information in the arc 
inscription. 
 

 
a) Requester subnet: missing logic for reject response  
 

 
b) Requester subnet: missing logic to check for acknowledgment 
 

 
c) Assigner subnet: missing logic for producing initial offer response 
 
Fig. 6.4 'Sample of errors detected by interactive simulation' 
 
Once these problems were corrected by amending the relevant arc inscriptions, basic 
interactive simulation indicated that the hierarchy of processes appeared to produce 
the desired behaviour for one join request. In addition, places were added to the 
'Assigner' and 'Requester' subnets to reflect process end states of no network address 
availability, receipt of a join request rejection, and achievement of join request retry 
limit (following receipt of negative acknowledgments).  
 
Specifying the join request-response process using net elements, using simulation to 
explore design iterations of the net, and correcting detected errors helped highlight 
incompleteness in the exchange network parameters standard. Implicit or omitted 
requirements are listed below (including Petri net specification of the first two 
requirements). 
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1. A reject response should be issued to the client node if there are no network 
addresses available. 
 

 
Fig. 6.5 'Specification of reject response' 

 
2. Error recovery (timeouts and retry attempts) if no offer response is obtained from 
the control node or no offer confirmation (or denial) is received from the client node.  

 
Fig. 6.6 'Specification of error recovery' 

 
3. How the accept broadcast forces a duplicate address check and rejection by client 
node of accept offer response if a clash is detected. 
4. Rejection of unauthorised control node/client node messages. 
5. Specification of pre-requisite network configuration parameters, for example, 
subnetwork operational frequency.  
 

6.3.2 Static Analysis (Reachability Graph Analysis) 
The nets in Figs. 6.2-6.3 are the results of being able to execute the process-based net, 
identifying its shortcomings, and amending the constructs. Although simulation is 
very much part of an iterative net development process, interactive simulation of large 
nets can be extremely time-consuming and does not provide an exhaustive means of 
net verification. State space analysis (described in chapter 2) is used to complement 
simulation and provide this deeper level of verification.  
 
CPN Tools' standard analysis of the state space (calculated for each of the nets created 
in Figs. 6.2-6.3 and described further for Fig. 6.2) is shown in Table 6.2. 
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Table 6.2 'Standard state space analysis report for Fig. 6.2' 

 
The state space graph report of Table 6.2 calculated for an initial marking of one 
token for the net in Fig. 6.2 highlights there is a problem with the net for two reasons. 
First of all, in the given state space calculation limit of twelve hundred seconds, the 
state space explosion problem was encountered, resulting in the calculation of a 
partial reachability graph. Secondly, on inspection of the standard state space report 
produced by CPN Tools for the partial reachability graph, the 'Fairness Properties' 
section (providing information about how often individual transitions occur) reveals 
the presence of infinite occurrence sequences which had not been detected using 
simulation. The section shows two transitions, 'addr_avail' and 'send_join_resp' within 
the 'Assigner' subnet, as having the 'impartial' fairness property (these occur infinitely 
often in any infinite occurrence sequence) and the remaining transitions as fair (these 
occur infinitely often in all infinite occurrence sequences where they are infinitely 
often enabled). Initially, retry limits were introduced in the 'Requester' and 'Assigner' 
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subnets to remove the infinite occurrence sequences. State space analysis was 
conducted again on the revised net producing the standard report sample in Table 6.3. 
 

 

 
Table 6.3 'Standard state space analysis report following addition of retry limits' 

 
Again, in the given state space calculation limit of six hundred seconds, the state 
space explosion problem was encountered, resulting in the calculation of a partial 
reachability graph. This time the 'Fairness Properties' section confirmed infinite 
occurrence sequences had been removed. On inspection of the 'Boundedness 
Properties' section, the presence of multiple tokens on places (rather than the expected 
one token) indicated there was still a token generation problem leading to the 
accumulation of tokens on the 'req' place in the 'Assigner' subnet.  
 

6.3.3 Specification and Verification of Re-entrant Error Recovery 
and Multiplicity  

Use of simulation enabled the problem to be traced back to the timeout specified in 
the 'Requester' subnet. The specified timeout relied on a reset following successful 
receipt of an initial response message from the 'Assigner'. The re-entrant error-
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recovery process specified in the 'Assigner' subnet did not provide a mechanism for 
resetting the 'Requester' timeout based on the failed request (i.e. no network addresses 
available). No timeout reset resulted in erroneous join requests being generated for the 
'Assigner' subnet to process. The original error recovery process specified in the 
'Assigner' subnet (Fig.  6.7) was designed to loop back to the 'join req' place when no 
network address was available and attempt network address allocation again. 
However, initiation of this loop back should have reset the timeout in the 'Requester' 
subnet associated with the first failed join request attempt.  
 

 
Fig. 6.7 'Error recovery specification in Assigner subnet' 

 
Doing so was viewed as inconsistent with the modular structure of the exchange 
network parameters system-of-systems specification so an alternative specification 
method was considered. Instead, the loop was removed from the net and an arc 
inscription used in the 'Assigner' net to produce a reject request response from the 
client node (Fig. 6.8). Receipt of this reject response would reset the timeout in the 
'Requester' subnet and give the option to the client node of attempting the join request 
again. In this way, modular self-consistency of the functions in the exchange network 
parameters system-of-systems was maintained. 
 

 
Fig. 6.8 'Amended Assigner net' 

 
Once this timeout loop was removed from the net, its full reachability graph was re-
calculated in less than one second with ninety-four nodes, one hundred and fourteen 
arcs and thirteen dead markings.  
 
Multiplicity was then considered in more detail in this exchange network parameters 
study by specifying one requester process and one assigner process. Simulation was 
used to execute this model with one join request token to check its logic and 
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behaviour. This token represented one new request for network configuration (e.g. 
one client node) leading to execution of one instance of requester and one instance of 
assigner processes. Two tokens were then used to represent two requests for network 
configuration across the same one instance of requester and one instance of assigner 
processes. This model could represent one physical client node with two network 
interfaces making sequential configuration requests for each interface or it could 
represent one logical client node and two independent configuration requests (again 
sequential). This model highlighted the need for join request messages to have a 
unique node identifier and a transaction identifier. Token overtaking was not 
considered an issue in the case of one instance representing a physical host but would 
require management in the logical scenario when timing was implemented in the net 
and priority of requests to the control node was an issue. 
 
Two instances of the client node process and one instance of the control node process 
were then modelled. Simulation was used to execute this model with one join request 
token for each client node process. These tokens represented two new requests for 
network configuration (e.g. two client nodes) leading to concurrent execution of both 
instances of requester and one instance of assigner processes. This model could 
represent two physical client nodes making concurrent configuration requests to one 
physical control node or a logical scenario as described in the first paragraph on this 
page. Execution of this multiplicity model highlighted the need for a unique node 
identifier in both the message and assigned to the process instance (so that messages 
could be routed back to the correct originator from the control node), and the 
possibility of token overtaking and need to manage this. 
  
Two instances of the control node process and one instance of the client node process 
were modelled next (even though the exchange network parameters standard implies 
and subject matter experts confirm there should only ever be one active control node 
per subnetwork). Simulation was used to execute this model with one join request 
token for the client node process. This model could represent two physical control 
nodes processing concurrent configuration requests from one physical client node or a 
logical scenario as described in the first paragraph on this page. To capture the 
dynamic host configuration protocol specification of the request reaching both control 
node process instances (rather than being directed to a specific control node), a copy 
of the request is produced for the interface place of each control node (these need to 
be separate places rather than one shared one in order to specify that each control 
node should process a copy of the request rather than having a non-deterministic 
situation where all requests could be consumed by the same control node). Responses 
are passed back to the client node from both control nodes, the client node selects one 
and directs its response back using the control node's unique node identifier. This 
model highlighted the need for join request messages and control node process 
instances to have an assigned unique node identifier and message transaction 
identifier; a wait process in the client node to accumulate, select, and discard offers 
per request transaction; group requests by transaction identifier in order to configure 
the timeout mechanisms; and to keep multiple instances in models to a minimum for 
complexity purposes. 
 
Finally, two instances of the control node process and two instances of the client node 
process were modelled next (even though the exchange network parameters standard 
implies and subject matter experts confirm there should only ever be one active 
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control node per subnetwork). Simulation was used to execute this model with one 
join request token for the client node process. This model could represent two 
physical control nodes processing concurrent configuration requests from two 
physical client nodes or a logical scenario as described in the first paragraph on page 
114. To capture the dynamic host configuration protocol specification of the request 
reaching both control node process instances, a copy is produced for the interface 
place of each control node (these need to be separate places rather than one shared one 
in order to specify that each control node should process a copy of the request rather 
than having a non-deterministic situation where all requests could be consumed by the 
same control node). Responses are passed back to the relevant client node from both 
control nodes, the client node selects one response and directs its confirmation back 
using the control node's unique node identifier. This model highlighted the need for 
join request messages and control and client node process instances to have an 
assigned unique node identifier; a wait process in the client node to accumulate, 
select, and discard offers per request transaction; group requests by transaction 
identifier in order to configure the timeout mechanisms; and to keep multiple 
instances in models to a minimum for complexity purposes. 
 
In all multiplicity cases, re-entrancy was specified per function rather than between 
(interfaced) functions. Use of multiplicity highlighted a further requirements 
clarification to [121] in terms of exchange network parameters information exchange 
(listed on page 110).  
 
6. Transaction and unique node identifiers present in join request messages and the 
assignment of a unique node identifier to each process instance. 
 
During the analysis of multiplicity specification using nets, net scalability issues were 
demonstrated in the second study on exchange network parameters by gradually 
increasing the number of instances of the 'Requester' subnet. It was found that toolset 
performance was severely degraded when a total of sixty-seven subnets (incorporating 
approximately three hundred and forty places) was reached (representing sixteen 
client nodes). Both net readability and navigation were extremely difficult and time-
consuming and net scalability compromised.  
 
In this section, the second study on exchange network parameters has shown that two 
forms of analyses for coloured Petri nets can verify functional correctness of the 
model they represent. These were execution of the net (simulation) and analysis of the 
net's reachability graph (static analysis or model-checking). Following these analyses, 
models can be amended and enhanced, improving design quality. Simulation and 
static analysis applied to the models also helped to identify incompleteness in the 
[121] standard (identifying six requirements clarifications) and explicitly specify the 
information exchange protocol within the exchange network parameters join request 
and response problem using multiplicity. Scalability issues with nets were highlighted 
during examination of multiplicity specification and re-entrancy was found to be an 
issue when error recovery specification involved updating state dependencies between 
interfaced modules. 
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6.4 Addition of Timing to Petri Net Model  
As demonstrated by the telephone (Appendix C) and close air support (section 5.4) 
exercises, time-dependent actions such as timeouts, processing delays or deadlines are 
essential to capture the efficiency or performance of a system and facilitate validation 
of its design. As well as efficiency specification, time-dependent actions also enhance 
a system's behaviour specification in terms of correctness and completeness. Activity 
ordering alone is insufficient to capture overall system behaviour precisely. Tokens 
representing information in larger-scale systems will be processed according to the 
time they entered the system, time involved in their consumption and generation, and 
involvement in delays and transfer failures. Timing will be needed to specify the 
ordering multiple tokens receive over and above any activity sequence they 
experience.   
 
Currently, the exchange network parameters problem has been specified at an 
operational process (analysis) model level of abstraction and used as the first stage in 
large-scale, system-of-systems development. Typically, this viewpoint is useful for 
gaining a shared understanding of the problem concept and the intended technical and 
non-technical audience would include analysts, developers and domain users. The 
introduction of timing information to the problem at this abstraction level would help 
enable domain users and developers to decide whether the modelled concept was 
efficient and adequate for input into the design stage. Assessing performance would 
involve checking if the modelled processes reached desirable behaviour states 
(including recovery from undesirable states) within realistic time and resource 
estimates. Improving the efficiency of the process means looking for new or different 
ways to realise desirable behaviour within defined time, cost and quality parameters. 
 
To examine alternative options for the process, it was necessary to determine the time, 
cost and quality performance indicators for the exchange network parameters (new 
network client node arrival) process and implement these in the model. Examples of 
these indicators include join request fulfilment time, communications resource usage 
(and related costs), and successful join request fulfilment time within a certain time 
limit. The natural inclination would be to minimise the first two and maximise the last 
one but all three need to be taken in context with the strategy of the system-of-systems 
involved. In the case of exchange network parameters dynamic network 
configuration, it is essential to understand the economic and operating environment 
for which it is used, and which (if any), of the performance indicators carries more 
weight than the others.  
 
In the exchange network parameters example, as the system-of-systems was specified 
originally from a planner's point-of-view, it is assumed that they are concerned with 
striking a trade-off between quality and cost parameters for dynamic network 
configuration. Depending on the criticality of the mission to be supported by dynamic 
network configuration, this may mean the planner would be interested in maximising 
successful join request fulfilment and communications resource allocation without 
necessarily maximising join request fulfilments on first attempt for new network 
participants (requesters). If these are the desired parameter outcomes, a planner may 
use the design models to identify platforms with existing communications equipment 
able to satisfy these outcomes in the supported mission's operational environment. 
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Dynamic analysis (simulation) is used in conjunction with timing in the net. Timing 
delays were introduced at various intermediate places within requester and assigner 
processes using both stochastic and deterministic distributions to represent random 
request placement and delays between each activity in the overall exchange network 
parameters (new network client node arrival) process. Transmission duration between 
role processes was captured for the send and receipt of a join request. A record 
declaration was used for each join request in order to store the model time at which 
the 'send_join_request' activity executes. This was viewed as the start of the attempt 
by the underlying communications infrastructure to connect the requester with the 
assigner. Again, a time delay was introduced here to the record token to represent the 
delay of the underlying communications infrastructure. The toolset data collection 
functionality was used to compare the model time following execution of the 
assigner's 'receive_join_req' transition (Fig. 6.9) with the start time of the transmission 
of the request.  
 

 
 

 
Fig. 6.9 'Requester and assigner performance analysis subnets and transmission 
duration' 

 
Average transmission duration information can be used to setup a realistic timeout 
delay (and specify recovery, in the case of a join request resend, together with resend 
attempt limit) in the model to be enabled once the join request is sent. The 
transmission duration thresholds will vary depending on the underlying 
communications infrastructure used to carry the network join request. On the internet, 
end nodes normally use an ethernet-based backbone [123] as a fixed or wireless 
communication mechanism, [121] focuses on combat net radio as the communications 
mechanism between military platform nodes. Timing could be advised from their real-
world implementations. If a resend limit is reached following successive timeouts 
between requester and assigner nodes, possible reasons for such a failure could be 
specified (as requirements for a successful implementation of this system-of-systems). 
For example, participant nodes' communications software implementations would 
have to support the protocols necessary for dynamic configuration; relay and routing 
mechanisms would be necessary to accommodate physical network communication 
barriers such as line-of-sight or subnetworks; and a degree of redundancy in control 
nodes distributing network configuration parameters would be expected. 
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In order to capture the duration of a successful join request fulfilment, toolset data 
collection functionality was used to observe the 'client_configured' transition in the 
'Assigner' subnet (Fig. 6.10). When the transition fired with bindings of an accepted 
request, the current model time was captured. This model time represents the duration 
for successful client node configuration. Factors influencing this duration would be 
message transmission times, process activity selection and ordering, and process 
activity duration times (some of these would be influenced by the number of resources 
undertaking an activity, availability of network addresses, accuracy of network 
address allocation and supplied configuration data, and join request acceptance 
criteria).  
 

 
Fig. 6.10 'Capture of model time for client_configured transition'    

 
Analysis-of-alternatives, as conducted for the first case study on close air support 
(section 5.4), could be used to allocate known existing physical assets to activities; 
obtain the associated costs per activity, per process, and overall; and apply this 
knowledge to the process-based model. For example, allocating combat net radio as 
the underlying enabling communications mechanism may be at a cost of x amount to 
the military. Using the process modelled with Petri nets in Fig. 6.11 (now tailored for 
exchange network parameters), obtaining the average message transmission time 
associated with line-of-sight combat net radio, the average duration for each activity, 
the probability of transmission failure in the join request process (currently specified 
as 10%), and the probability of join requests made that are accepted (currently 
specified as 90%), the average successful join request duration can be calculated and 
linked to resource cost. Fig. 6.12 illustrates the use of automatic simulation 
replications on the net of Fig. 6.11 to calculate an average successful join request time 
based on the probabilities given above and the message transmission time results 
using the discrete distribution. With multiplicity, simulation can be used to estimate 
effect on average successful join request times with multiple physical client node 
processes executing and interacting with one control node process.  
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Fig. 6.11 'Exchange network parameters performance analysis parent net' 

 

 

Discrete Distribution (Data Collection 
Monitor: Req_Success_Monitor) 
 
REP 1 (30 time units) 

 
 
 

6 possible successes, 3 simulation replications: 
4 successes, avg. 227.25 time units. 
 
REP 2 (15 time units) 

 

 

 
6 possible successes, 3 simulation replications: 
3 successes, avg. 120.33 time units. 
 

Fig. 6.12 'Automatic simulation replication used to calculate average duration for a 
successful join request' 

 
Considering the specification of exchange network parameters as supplied by [121], 
the overall process is shorter than that specified by the dynamic host configuration 
protocol. This is due to there being one control node providing a response to the initial 
join request rather than multiple offers being provided by more than one control node 
(and subsequent selection of a control node from which to accept an offer). Checking 
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for in-use addresses prior to issue and acceptance of an address offer is undertaken by 
control and client nodes in the dynamic host configuration protocol specification but 
only by the client node in exchange network parameters (via an accept response). This 
means the onus is with the control node to maintain as accurate a record of client 
nodes and their associated network addresses as possible. 
 
In exchange network parameters, when a client node obtains an accept response and 
network parameters including a network address, the response is directed to all 
subnetwork nodes. Based on simulation of the model, it was detected that it is 
possible for a control node to offer an address to a client node and fail to receive 
confirmation of its successful configuration in time. If the address is then marked as 
available and offered to another incoming client node, duplicate addresses will exist 
on the subnet. This situation can be avoided by explicitly stating in the standard that 
the timeout value has to be of suitable duration to allow a client node to confirm its 
successful configuration, or not to re-use offered addresses, and that a client node 
should ensure that it ceases to use its allocated address upon receipt of a 'reject from 
subnetwork' message from the control node. Use of timing highlighted a further 
clarification to [121] in terms of exchange network parameters logic and behaviour 
specification (listed on pages 110 and 115).  
 
7. Adequacy of timeout to allow client node to confirm successful configuration, 
and/or control node refraining from re-using offered network addresses; and client 
node must stop using network address upon receipt of a subnetwork reject message 
from control node.  
 
It should be noted that although simulation was primarily used in this section to 
validate the models, it is also possible to conduct static analysis (as per 
recommendations from the telephone example in Appendix C) to verify their 
correctness. 
 
In this section, timing in coloured Petri nets has been used to enhance correctness, 
specification completeness (identification of additional requirement clarification to 
[121]) and conduct performance analysis. Use of timed colours (types), and suitable 
inscriptions on output arcs (in conjunction with stochastic or deterministic functions) 
help to specify duration of activities (and execution control flow) such as information 
exchange, and timeout error recovery in the event of a communications failure. 
 

6.5 Design and Architectural Levels of Abstraction for 
Exchange Network Parameters 

Sections 6.2-6.4 have focused on using Petri nets to specify the exchange network 
parameters process at an analysis level of abstraction. Hierarchy and timing have been 
added to further enhance a specification in terms of scalability, understandability, 
readability, correctness and completeness. Both model-checking and simulation were 
employed iteratively in verification and validation of the constructed analysis level 
net. Before deciding if the criteria for success in relation to the exchange network 
parameters study have been met and conclude chapter 6, Petri nets are checked to see 
if they can address the problem of specifying exchange network parameters at design 
and architecture levels of abstraction. This is the objective of this section.   
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6.5.1 The Design Level 
The purpose of the design level of abstraction is the lead into the specification of a 
solution to the problem described by the analysis level. Again, a functional 
decomposition approach was used. This time it was used in conjunction with the 
parent net developed for the analysis level to think about how this net's main activities 
(e.g. 'Request_to_Join' and 'Distribute_NW_Data' would eventually be realised by 
physical implementations. To keep the design flexible, two components, 
'Make_Join_Request Component' and 'Assign_NW_Data Component', were used to 
depict the solutions that would realise each of the main activities. These are shown in 
Fig. 6.13. 
 

 
Fig. 6.13 'Design level parent net' 

 
It can be seen that Fig. 6.13 closely resembles the parent net of the analysis level 
except for the new place colours (types). The next level of design decomposition for 
the two components aimed to capture the functional service(s) each would be 
expected to realise. Again, work developing the analysis level net helped suggest 
functional services for the design level by thinking about the purpose of the processes 
used to realise the main activities. 'Make_Join_Request Component' would be 
responsible for providing join request setup, initial join request response, client node 
confirm offer setup, control node confirm response, and client node final confirm 
setup services. 'Assign_NW_Data Component' would be responsible for providing 
join request response, initial join request setup, client node confirm offer response, 
control node confirm setup, and client node final confirm response services. These 
services are shown at the next lower abstraction level providing greater detail in Fig. 
6.14.  
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Fig. 6.14 'Services of  Assign_NW_Data_Component' 

 
Having introduced the components and functional services at the design level, the 
next lower abstraction level providing greater detail, i.e. detailed design or 
architecture was focused on. Rather than develop a separate model at this stage, as the 
architecture level appeared to naturally manifest the next lower abstraction level of 
the design level, the design level model was further decomposed to capture the 
architecture level.  
 

6.5.2 The Architecture Level 
The purpose of the architecture level is detailed design of the services identified at the 
design level and flexible capture of the components required to realise these 
individual services. Constituent components were considered for each functional 
service resulting in the identification of a common component pattern for the six 
services associated with client node join request-response. The common components 
consisted of an asset communications interface, transmit and receive (network) 
interfaces, and a communications controller interface to co-ordinate the sequencing of 
activities to and from the other two common components. The common component 
architecture is shown for the 'Process_Join Service' in Fig. 6.15.  
 

 
Fig. 6.15 'Join architecture' 
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From Fig. 6.15, it can be seen that net places are used capture the input and output 
information for the user interface, network and controller common components. 
Colour (type) definitions were lifted for re-use from the telephone (Appendix D) and 
close air support (section 5.5) example nets and adapted accordingly (definition labels 
reflect the nature of the interface, e.g. 'NWMsg' aims to reflect that places associated 
with this type are both input and output interfaces to asset network communications 
interface components). The intention with this labelling convention was improved net 
clarity and comprehension. Place types were based on character strings rather than 
enumerated types for flexibility reasons. The tuples in the type were populated with 
the functions implemented by each common control component and the associated 
parameters via logic on transition output arcs. Logic on transition output arcs within 
each of the common components was amended as necessary. As an example, consider 
the network transmit common component in Fig. 6.16. 
 

 
Fig. 6.16 'Receive common component subnet' 

 
Fig. 6.16 shows the subnet of the receive common component. Its transition is 
labelled as 'RECEIVE OPN' to reflect the function the component provides to the 
controller component. On the transition output arc (within the transmit component 
subnet) to the output interface place ('TxOUT'), there is logic to output a token with 
'NWopName' (a tuple within 'NWMsg' compound type) populated with required 
functions such as 'RECEIVE REQUEST' or 'RECEIVE ACCEPT'. In this way, the net 
specifies use of the receive component's 'RECEIVE OPN' function by the transmit 
component more explicitly. The 'NWparams' tuple within 'NWMsg' is populated with 
values relevant to the function of the message described by 'NWopName'. 'ID' is 
populated to differentiate between initiated join requests. The other two common 
components, communications interface and controller, are designed to reflect the 
same interface principles as those discussed above for the network components. 
 
Considering the original parent net of the design level in Fig. 6.13, the specification of 
the exchange network parameters process at this level was across fewer model 
subnets. When the architecture level of Fig. 6.15 was reached and the next lower 
abstraction level providing greater detail of the common component interfaces was 
completed, the modeller was extremely conscious of the requirement to manage the 
levels of abstraction. The toolset can present each level of abstraction as a separate 
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page within a folder (or binder). These pages can be selected between using their tabs. 
By the common component interface level of abstraction for the request and 
assignment services, thirty-three pages and tabs were present and it was tedious work 
identifying and selecting relevant pages. At this stage, experience gained with the 
telephone (Appendices A-D) and close air support (section 5.5) examples was used to 
rationalise the model where possible, making use of the toolset's features and those of 
hierarchical coloured Petri nets. The main source of rationalisation was the common 
component interface nets.  
 

6.5.3 Verification of the Design and Architecture Levels and 
further Specification 

At this stage, simulation was employed to check the structure and logic of the model 
and was able to detect incorrect logic on transition output arcs. Errors included: 
missing or incorrect predicates (highlighted by incorrect or missing display 
notifications for the common communication interface component or incorrect 
information messages for the network component); and missing initial values on input 
places required by common component interfaces.  
 
The necessary corrections were made and static analysis based on one initiated 
request performed.  One error was highlighted through model-checking and 
production of a full state space calculation. The original standard report from the 
toolset produced four dead markings, one of which indicated that a reject result was 
sent from the 'Make_Join_Request Component' only when the component had 
received a rejected request response from the 'Assign_NW_Data Component'. Upon 
investigation it was discovered that logic was missing in the 'Comms Controller IF' 
component to produce this message randomly based on receipt of an accepted request 
response. This logic relates to the fourth omitted requirement (list on page 110) in 
[121] where the client node should be able to reject a response from a control node if 
there is reason to believe it is unauthorised. 
 
In this section, coloured Petri nets and hierarchy were used to specify the new 
network client node arrival sub-function of exchange network parameters at design 
and architecture levels of abstraction, i.e. the solution specification level. From Figs. 
6.13-6.16 above, net places capture state in terms of the information input and output 
to net transitions (activities); net colours (types) define the structure of the 
information used by activities (operations and parameters); net arc inscriptions govern 
the information required and produced by activities (including operations needed 
between components); net arcs dictate the control flow of execution i.e. the order of 
activity execution and information exchange; toolset hierarchy facilitates levels of 
abstraction within the model (at the design level component and services, at the 
architecture level common components realising design level services) and offers 
instantiation for re-use of existing subnets; toolset colour palette and annotation 
improves readability of nets; and finally, dynamic and static analyses permit 
verification and validation of the models.  
 
In terms of scalability, a model of one exchange network parameters sub-function 
with thirty-three subnets and approximately eighty places (and being kept as generic 
as possible employing instantiation) permitted calculation of a full state space graph.  
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6.6 Evaluation of Exchange Network Parameters Study 
The design objective of the exchange network parameters study was derived from 
chapter 1's second criteria for success. This stated that the strengths and weaknesses 
of Petri nets regarding the greater formalism of dynamic behaviour in systems-of-
systems and the role of Petri nets as a means of engaging stakeholders were to be 
determined. Following the case study design again from chapter 3, nets have been 
used to specify, verify and validate the military exchange network parameters 
problem. As specified by the study plan, data (evidence) was collected at design 
iterations of each model using screenshots of the model and simulations, standard 
reports from CPN Tools, model source code from CPN Tools, and project team notes. 
This evidence was presented in the report of the study in this chapter and discussed 
further in this section. 
 

6.6.1 Quantitative Results 
These related to the third criteria for success and the first research question, i.e. do 
Petri nets improve the functional correctness of the system-of-systems design 
specification? The functional correctness response variables were expressed in terms 
of the number of errors detected by simulation, and number of errors detected by 
static analysis. In addition, for this study, functional correctness was also conveyed by 
the number of requirements clarifications highlighted for the standard [121]. This data 
was captured from the CPN Tools integrated development environment at each 
iteration of model design through simulation (and screenshots, note-taking) or 
reachability graph calculation (and CPN Tools standard analysis report, screenshots, 
note-taking). An overview of the results is shown in Table 6.4. 
 
Criteria for Success 
Goal 3 / 
System-of-System 
Engineering Level  

Simulation 
Number of Errors 
Detected 

Static Analysis 
Number of Errors 
Detected 

Resulting number 
of clarifications to 
the standard 

Analysis 5 2 7 
Design and 
Architectural 

2 1 0 

Table 6.4 'Quantitative results from exchange network parameters study' 

 
From Table 6.4 it can be seen that use of simulation detected seven functional errors 
during the specification of exchange network parameters. With textual or UML-based 
specification, given the nature of the errors detected through simulation of the Petri 
net model, it would have been extremely difficult to detect the same errors using both 
these means of static specification.  
 
Use of static analysis detected three functional errors in the specification of exchange 
network parameters. As well as the seven errors detected using simulation, static 
analysis was able to detect infinite looping and token generation within a model and 
localise the part of the net where the problem was. From examination of the errors 
detected by static analysis at the system-of-systems engineering analysis level, it can 
be seen that if the same errors were not detected using simulation, they would have 
been detected through calculation of the reachability graph for the net. In this way, 
static analysis offers a means of exhaustively checking a net on behalf of the modeller 
but the modeller needs to know how to interpret the analysis report in order to isolate 
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the detected errors and this is a time-intensive process. The modeller also needs to be 
aware of the state space explosion problem and means of largeness avoidance 
(previously discussed in chapter 5 and Appendices B-D). 
 
Given CPN Tools in its standard form, simulation (or the Petri net 'token game') is a 
more intuitive means of stepping through the behaviour of a model (depending on its 
size) to check its functional correctness. It was used as an initial means of model 
verification prior to conducting static analysis so that detected errors could be 
corrected, potentially helping to alleviate the state space explosion problem, and 
simplify the analysis report.   
 
Both forms of analyses also contributed to the identification of seven enhancements 
(listed on pages 110, 115, and 120) to the existing exchange network parameters 
standard [121].  
  

6.6.2 Qualitative Results 
These related to the first and second criteria for success and the second and third 
research questions, i.e. do Petri nets increase the quality of the design specification, 
and what are the shortcomings of the state-of-the-art Petri net tool and how can it be 
improved? The design quality response variables were expressed in terms of 
comprehensibility (e.g. use of hierarchy, annotation, timing), and scalability. This data 
was captured from the CPN Tools integrated development environment at each 
iteration of model design through screenshots, and note-taking. An overview of the 
results is shown in Table 6.5. 
 
Criteria for Success Goal 1&2 
/ 
System-of-System 
Engineering Level  

Comprehensibility 
Hierarchy, annotation, timing 

Scalability 
 

Analysis Able to express problem 
(operational process, including 
timing specification) using CPN 
Tools. Visually, net difficult to 
read for non-practitioner (need 
for best practice in terms of 
layout). 

Yes 
(multiplicity specification used 
to demonstrate  toolset 
scalability issues for a net of 
sixty-seven  subnets, 
approximately three hundred 
and forty places i.e. 
representation of sixteen client 
nodes). 

Design and Architectural Able to express solution design 
(including timing specification) 
using CPN Tools. Again, net 
difficult to read for non-
practitioner. 

Yes. 

Table 6.5 'Qualitative results from exchange network parameters study' 

 
These qualitative (and quantitative) results in relation to the criteria for success 
defined at the beginning of this section are now evaluated further. The first and third 
criteria with metrics relating to the gaps in Petri net specification knowledge 
(identified from the first study) are focused on.  
 
1. Abstraction 
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In terms of UML 2.0's activity diagram, activity decomposition, cardinality, and 
allocation can be specified. 
 
In terms of the Petri net formalism, activity decomposition can be specified using 
high-level Petri nets with hierarchy. Implementations of Petri nets with hierarchy 
include substitution transitions, and place and transition fusion. 
 
Results from the second study (exchange network parameters specified using CPN 
Tools) indicate that hierarchy needs to be determined in advance of modelling. In the 
study, exchange network parameter and dynamic host configuration protocol 
messages were used in a bottom-up approach to derive hierarchy from the suggested 
message functions. Hierarchy was defined for models at the system-of-systems 
engineering level (analysis, and design and architectural) as well as within models (a 
hierarchy based on function was used).  
 
CPN Tools implementation of coloured Petri nets with hierarchy uses substitution 
transitions and fusion places. Substitution transitions were used primarily for 
abstraction as the sockets and ports used by this method were viewed as a means of 
explicitly specifying required and provided interfaces to the decomposed transition.  
 
The study confirmed there was no explicit composition, cardinality, or allocation 
concrete notation with nets. The present means of achieving these in CPN Tools 
would be annotation and/or extra net elements. Extra net elements are needed to 
capture multiple allocations. 
 
2. Modularisation 
In terms of UML 2.0's activity diagram, modularisation can be specified using class 
and activity diagrams. Class and collaboration diagrams can also be used to specify 
provided and required interfaces between classes. 
 
In terms of the Petri net formalism, modularisation can be specified using high-level 
Petri nets with hierarchy. Implementations include substitution transitions, and place 
and transition fusion. 
 
Results from the second study (exchange network parameters specified using CPN 
Tools) indicated modularisation was primarily achieved using substitution transitions 
(and port and socket places) to represent component system interfaces.  
 
Information exchange protocol was described between and within component systems 
using colours (types) to define the exchanged information and net elements (places, 
transitions, arcs, arc inscriptions, annotation) to specify the control of the exchange. 
 
CPN Tools makes no provision for model re-use (e.g. searching for suitable existing 
models to use in a bottom-up approach) and their management (e.g. versioning). 
 
Data items input (output) by activities can be specified through colours (types) and 
variable bindings. Cardinality needs to be specified through annotation. 
 
3. Data typing 
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In terms of UML 2.0's activity diagram, classes defined previously in class diagrams 
specify data typing. 
 
In terms of the Petri net formalism, timed, high-level Petri nets specify data typing. 
 
Results from the second study (exchange network parameters specified using CPN 
Tools) indicated that CPN Tools implementation of timed, coloured Petri nets enabled 
capture of the information needed for the case study using a combination of simple, 
compound, and timed colours (types). There was no ability to refer to variable values 
unless the same variable bindings were propagated through the entire net. 
 
There is no equivalent one diagram, static description in nets. Operations (and the 
required parameters) provided by system components were made more explicit using 
arc inscriptions and annotation, and their associated data types were provided by local 
place colours (types). 
 
4. Adequate toolset implementation 
In terms of UML 2.0's activity diagram, many open source and commercial toolsets 
offering various levels of integrated UML development exist. 
 
In terms of the Petri net formalism, several implementations of high-level Petri nets 
offering various levels of integrated net development exist. 
 
Results from the second study (exchange network parameters specified using CPN 
Tools) indicated that CPN Tools provided a useful integrated net environment for the 
specification of systems-of-systems but shortfalls were identified in the areas of: 
improved analysis reports, examples and best practice, and large model support 
(navigability, syntax-checking, versioning, error-reporting, and animation). 
 
5. Timing 
In terms of UML 2.0's activity diagram, extension via the Profile for Schedulability, 
Performance, and Time (to be replaced by Profile for Modelling and Analysis of Real-
time and Embedded Systems) is needed in order to specify (non-functional) timing 
properties. The resulting activity diagram is static so performance analysis, or 
investigation into analysis-of-alternatives is only achievable through model 
conversion. 
 
In terms of the Petri net formalism, timed, high-level Petri nets with hierarchy specify 
timing information. 
 
Results from the second study (exchange network parameters specified using CPN 
Tools) were based on CPN Tools implementation of timed, coloured Petri nets with 
hierarchy. Stochastic and deterministic functions within the toolset were used to 
introduce random placement of requests, delays, and timeouts. Time, cost and quality 
performance indicators need to be identified in advance of the analysis.  
 
Simulation was used in conjunction with toolset monitors in the performance analysis 
net to show that it is possible to derive average successful join request fulfilment 
duration using automatic simulation. Timing was primarily used to reflect 
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deterministic and stochastic activity durations for the purposes of performance 
analysis. 
 
6. Verification and validation 
In terms of UML 2.0's activity diagram, there is no full formal syntax and semantics 
and diagrams cannot be executed (static inspection verification and validation). 
 
In terms of the Petri net formalism, there is formal syntax and semantics and nets can 
be executed using a well-defined execution algorithm (simulation). Additionally, 
exhaustive verification can be achieved by calculating the reachability graph of the 
net and checking structural properties such as deadlock. Timed, coloured Petri nets 
and simulation were used to conduct performance analysis. 
 
Results from the second study (exchange network parameters specified using CPN 
Tools) were based on CPN Tools simulation modes for initial investigations into 
analysis, and design and architecture model erroneous behaviour (seven errors were 
detected: missing reset logic; incorrect predicates; and missing initial values), 
performance analysis (the calculation of average successful join request fulfilment 
time was demonstrated using automatic simulation replications), and incomplete 
specification (for the examined subset of exchange network parameters, seven omitted 
or implied requirements from the standard were highlighted). 
 
For large system-of-systems models, interactive simulation was time-intensive. This 
was managed by building nets incrementally and simulating the new net elements. 
Simulation can be used to check the behaviour of an entire model and analyse 
performance where timing is used but it cannot exhaustively verify the correctness of 
the entire model.  
 
CPN Tools was used to calculate reachability graphs for analysis, and design and 
architecture nets (three errors were detected: infinite looping; no retry limits; and 
missing logic to reset timeouts). Modeller experience helps significantly in 
interpretation of the analysis report produced by CPN Tools and to highlight 
unexpected analysis results. It is unlikely that all these errors would have been 
detected within the UML activity diagrams using static inspection alone. 
 
Model-checking means ignoring parts of the system-of-systems either through 
abstraction or considering a subset of the system-of-systems. However, model-
checking is automatic and exhaustively checks the model. 
 
7. Precision in specification of requirements (scalability, concurrency, state-based 
specification, information-based specification, event-based specification) 
In terms of UML 2.0's activity diagram, it has intuitive, graphical concrete syntax but 
does not have fully formal syntax and semantics. Activity diagrams can be used for 
concurrent, scalable, state, event, and data-based specification (in conjunction with 
class diagrams). 
 
In terms of the Petri net formalism, timed, high-level Petri nets are used for 
concurrent, state, data, event-based specification. Petri nets scalability requires careful 
management due to their limited concrete syntax. 
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Results from the second study (exchange network parameters specified using CPN 
Tools) indicate that at the system-of-systems design level, systems-of-systems have 
non-streaming activities, i.e. terminating, discrete-event (rather than continuous) 
where items are accepted at the start of activity execution, processed, and output at the 
end of activity execution. Specification of continuous or streaming activities (i.e. 
activities dealing with inputs and outputs continuously during their execution) would 
require stochastic Petri nets. 
 
In the study, nets were developed to specify analysis, and design and architecture 
models of exchange network parameters. At analysis level, operational processes were 
described. This led into solution specification at design and architecture levels. Again, 
these levels described process-based information exchange with associated events, 
probabilities and states. The specification was unambiguous in the structural sense.  
 
Tokens are not accepted by transitions in process of execution and can be queued. 
More than one token input can be specified to a transition but it is not possible to 
specify acceptance of one token and then a late token. Multiple outputs can have 
probability applied to them. There is no concept of persistent data store accessible 
across transition executions. 
 
In CPN Tools, colour (type) definitions exist independently of the activities they are 
used in. 
 
Due to their generic concrete syntax, nets rely on extra net elements and annotation 
(in comparison to activity diagrams) to relate domain and system specification 
concepts (e.g. iteration, decisions, cardinality, operations, parameters, constraints). 
This means resulting nets are much larger than the equivalent activity diagram and 
can lead to scalability issues unless carefully managed. Scalability issues were forced 
in exchange network parameters when multiplicity was examined at the analysis level 
of abstraction for sixty-seven subnets and approximately three hundred and forty 
places. Toolset syntax and semantic-checking duration and editing response times 
increased significantly. Manageability and navigability of nets within the toolset were 
severely compromised.  
 
The exchange network parameters study examined multiplicity of processes realising 
functions. Specification of multiplicity to reflect multiple, concurrent physical entities 
was achieved using toolset instantiation of processes. It was necessary to ensure 
tokens produced for equal consumption by multiple processes were output to input 
places dedicated (rather than shared) to each process. Simulation of nets specifying 
multiplicity aided completeness specification in terms of information exchange 
content.   
 
The study also investigated re-entrancy and it was found that due to the modular 
nature of system-of-systems specification re-entrancy was easier to implement within 
modules or to specify alternative courses of actions in separate models where this was 
not possible. 
 
Overall case study results are presented in Table 6.6. 
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System-of-Systems Modelling 
Need 

UML Activity Diagram Petri Nets 

1. Precision in requirements 
specification 

  

  Formal syntax & semantics No. Yes. 
  Process-based Yes. Yes. 
  Multiplicity Yes. Yes (toolset instantiation 

feature). 
  Re-entry Yes (requires management). Yes (requires management). 
  Discrete Yes. Yes (timed coloured nets. 

Continuous time activity 
specification may be required at 
system level & timed stochastic 
nets would be needed for this). 

  Data flow Yes. Yes. 
  Resource usage No. Yes. 
  Scalable Yes. No (requires management). 
  State Yes. Yes (to a greater extent than 

UML). 
  Control flow Yes. Yes. 
  Concurrency Yes. Yes. 
  Independent activity 
description 

Yes. Yes (separate net). 

  Independent data description Yes. Yes (colours). 
  Persistent data  No. No. 
  Interfaces  Yes (plus class diagram). Yes (annotation & hierarchy). 
  Information exchange protocol Yes (plus schedulability 

profile). 
Yes (timed nets). 

  Analysis size More compact than nets. Larger models than UML. 
  Design & Architecture size More compact than nets. Larger models than UML. 
   
2. Verification and validation   
  Formal syntax & semantics No. Yes. 
  Static inspection Yes. Yes. 
  Dynamic inspection 
(simulation) 

No. Yes. 

    Behaviour checking  Yes (including detection of 
behavioural gaps). 

    Performance analysis  Yes (timed nets). 
    Analysis-of-alternatives  Yes (timed nets). 
    Exhaustive analysis  No. 
    Complete specification  Yes (constrained by net size). 
  Reachability graph calculation No. Yes. 
    Structural properties  Yes (e.g. deadlock, 

boundedness). 
    Temporal logic queries  Yes (e.g. correct protocol). 
    Largeness avoidance     Yes (abstraction, net division). 
    Exhaustive analysis     Yes. 
    Complete specification  No (dependent on scope). 
  QoS  Yes (plus QoS profile). Yes (annotation). 
   
3. Abstraction   
  Decomposition Yes (plus class diagram). Yes (substitution transitions & 

fusion places). 
  Activity composition Yes (plus class diagram). Yes (annotation, separate net). 
  Cardinality Yes (plus class diagram). Yes (annotation, separate net). 
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System-of-Systems Modelling 
Need 

UML Activity Diagram Petri Nets 

  Allocation Yes (swim lane). Yes (annotation). 
   
4. Modularisation   
  Interfaces Yes (plus class, collaboration 

diagrams). 
Yes (substitution transitions, 
fusion places, & colour). 

  Information exchange protocol Yes (plus class, collaboration 
diagrams and schedulability 
profile). 

Yes (timed nets). 

  Top-down, bottom-up support Yes (top-down), Yes (bottom-
up). 

Yes (hierarchy & cloning). 

   
5. Timing   
  Duration, timeout, arrivals Yes (plus schedulability 

profile). 
Yes (timed nets, deterministic & 
stochastic functions). 

  Static Yes. No (simulation). 
   
6. Data typing   
  Domain concepts Yes (plus class diagram). Yes (timed, coloured nets). 

Table 6.6 'Summary of overall case study results' 

 

6.6.3 Evaluation Conclusions 
From the results in Table 6.6, in terms of the first criteria for success, 'Precisely 
specify the exchange network parameters example (research questions 2 and 3), Petri 
nets were used again in a top-down engineering approach to unambiguously 
(regarding model structure) capture the system-of-systems problem and solution 
spaces and the operational processes, component systems and information exchange 
involved. A bottom-up approach was used to help identify the functional hierarchy 
used in the models from the existing exchange network parameters and dynamic host 
configuration protocol message sets. 
 
Different abstraction levels were used to describe process-based information exchange 
with: associated events; component system interfaces; states; type of information 
exchanged; information exchange protocol; execution control flow; initial request 
arrival timing, event durations and timeouts; interfaces and operations used by 
component systems; and potential failure or success states (e.g. underlying 
communications failure, successful join request response) together with their 
probability.  
 
As well as reinforcing the results of the first study on close air support for the first 
criteria for success (section 5.6.3), the second study on exchange network parameters 
was used to explore the shortfalls the first study did not cover (section 6.3). The 
metrics of the first criteria refer to the ability of nets to specify multiplicity and re-
entrancy.  
 
Specification of multiplicity contributes to development of a model closer to a real-
life scenario and use of simulation in conjunction with multiplicity can help the 
modeller detect omitted logic, information or behaviour. In the case of the second 
study on exchange network parameters, specification of multiplicity was achieved 
through the toolset instantiation feature and consideration of multiple request tokens. 
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Multiplicity enabled detection of omissions in the exchange network parameters 
standard. Use of multiplicity together with simulation for performance analysis 
purposes can also enhance verification and validation of models. This is discussed 
later in this section under the third criteria for success. It was noted that use of 
multiplicity can quickly lead to increased model complexity and its specification 
benefits from an incremental process such as the one followed for the second study 
(i.e. using a minimum number of instances for each process in order to check 
modelled behaviour). 
 
From the examination of multiplicity, the second study also strongly suggested that 
the scalability of Petri nets needs careful management, attributable to their generic 
concrete syntax. Nets rely on extra net elements and annotation (in comparison to 
activity diagrams) to relate domain and system specification concepts and can quickly 
become complex and difficult to read in terms of the number of elements and 
associated annotation.  
 
The other shortfall referred to by the metrics of the first criteria for success relates to 
the ability of nets to specify re-entrancy. It was noted that while it is possible to 
capture alternative courses of action like error recovery, if the model is partitioned 
into modules using hierarchy ports and sockets, it can be difficult to facilitate cross 
partition adjustment of net elements that are not interfaced. Even if place fusion is 
implemented, re-entrancy creates dependencies between modules in addition to their 
information exchange interfaces. Re-entrancy is easier to capture if it can be self-
contained within a module. In the second study, capturing the error state within a 
subnet and then specifying a means of recovery in a separate net was a more 
satisfactory error recovery specification method. 
 
For the second criteria for success, 'Determine the scalability of the exchange network 
parameters system-of-systems model implemented using Petri nets (research question 
2)', the first study indicated Petri nets do not scale well according to the size of the 
system to be modelled. The second study also highlighted scalability needs careful 
management. Performance issues related to toolset navigability were encountered at 
the analysis level when considering multiplicity for sixty-seven subnets and 
approximately three hundred and forty places. Due to their generic concrete graphical 
syntax, nets tend to use extra net elements and annotation to relate domain and system 
specification concepts (e.g. iteration, decisions, cardinality, operations, parameters, 
constraints). This means the resulting net is much larger than the equivalent UML 
activity diagram (that can also lead to decreased readability) leading to these 
scalability issues. 
 
For the last criteria for success, 'Confirm if the same Petri net verification and 
validation techniques used in the telephone and close air support exercises are 
effective in the exchange network parameters system-of-systems specification models 
(research question 1)', CPN Tools was used to explore verification and validation of 
the second study on exchange network parameters specifications at the analysis, 
design and architecture levels of abstraction. Both studies on close air support and 
exchange network parameters highlighted the fact that reachability graph calculation 
provides exhaustive verification but only across a restricted (in terms of model size 
and detail) specification. In comparison, simulation provides verification across the 
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whole specification (constrained by model size, toolset, and underlying hardware) but 
is not an exhaustive means of checking model correctness.  
 
The use of simulation detected token overtaking, incorrect predicates, missing timeout 
resets, missing retry limits, and missing initial values specification errors in the 
exchange network parameters system-of-systems. In addition, use of interactive 
simulation (together with detecting and correcting errors) helped to engage domain 
users and highlight omissions and implied requirements in the referenced standard 
[121]. These errors and omissions would not necessarily be highlighted during static 
inspection of the equivalent UML activity diagrams. When timing and probability 
were introduced into the exchange network parameters nets, simulation could be used 
to undertake performance analysis (the calculation of the average successful join 
request fulfilment time was demonstrated based on automatic simulation replications). 
Multiple instances of a process can be introduced into nets to specify the interaction 
of multiple physical entities realising functions. When simulated, model behaviour 
can be checked again for omissions in referenced standards (e.g. in the second study 
on exchange network parameters, specification of multiplicity highlighted the need for 
transaction identifiers and unique node identifiers to be assigned to process instances 
as well as messages) and efficiency. Performance analysis with multiplicity allows the 
modeller to consider the effect of multiple instances on overall or individual process 
duration. Again, this analysis is not possible with activity diagrams. 
 
As mentioned, simulation is not an exhaustive method of checking model behaviour is 
correct and complete. Reachability graphs for the exchange network parameters 
analysis, and design and architecture models were calculated for this purpose. As 
indicated in Table 6.4, reachability graph analysis detected three errors in the 
exchange network parameters system-of-systems specifications (infinite looping, and 
missing logic). If these errors had not been detected by simulation, reachability graph 
analysis would have alerted the modeller to their presence. Exhaustive verification is 
not possible on native activity diagrams.  
 
Following execution of the second study on exchange network parameters, the 
benefits of the Petri net formalism remain as indicated by the first study on close air 
support, and are:  
 
1. Analysis capability. Constructing models using Petri nets allows the modeller to 
apply simulation and reachability analysis techniques to the models and check them 
for correctness, and completeness. 
2. System-of-systems specification capability. Petri nets enable unambiguous 
specification in terms of model structure and have extensions permitting capture of 
the attributes desirable for system-of-systems requirements specification. 
  
The weaknesses of the Petri net formalism are:  
 
1. State space explosion. Calculation of a Petri net model reachability graph is an 
exhaustive means of correctness-checking but is subject to the logical structure of the 
model. Successful calculation can be helped by largeness avoidance techniques 
discussed in Appendices B-D and the case study on close air support in section 5.5.3.   
2. Scalability and readability. The generic concrete syntax of Petri nets means 
resulting models tend to be large and potentially more difficult to interpret. Successful 
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specification using nets requires management of the system-of-systems problem and 
solution scopes prior to model construction and implementation of a best practise 
strategy governing their creation and management.  
 
For organisations using Petri nets in the specification of systems-of-systems, the 
choice appears to be exhaustively verifying a restricted system-of-systems 
specification, or part-verifying a complete system-of-systems specification, or 
managing and using a combination of the two forms of analyses. The important issue 
for systems-of-systems is to specify the requirements correctly in the first instance at a 
system-of-systems engineering level rather than at a system level. Petri nets offer a 
means of unambiguously (in the model structure sense) specifying requirements so 
that they can be automated to achieve consensus between technical and non-technical 
audiences and examine behaviour correctness and completeness. The challenge will 
be in managing the models and deriving best practice to maximise specification and 
the two forms of verification and validation possible with Petri nets. 
 
. 
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Chapter 7 Conclusions 
 

7.1 Introduction 
This chapter reviews the work of this thesis, comparing it to the original criteria for 
success outlined in chapter 1. The industrial perspective of the research is discussed in 
relation to the Knowledge Transfer Partnership from which it was funded, and 
directions for further work are suggested. 
 

7.2 Review of Research 

7.2.1 System-of-Systems Level Design Specification and Analysis 
Problem  

Chapter 1 discussed the concept of system-of-systems, defining the term for the 
purposes of the thesis, and highlighting areas of difficulty in their engineering. The 
overall problem to be addressed was defined as: 
 
1. There is no complete, correct, and consistent capture of the problem and solution 
design specification (particularly information exchange) at the system-of-systems 
level.  
2. There is inadequate verification and validation of the design specification providing 
low levels of assurance that the design will lead to desirable implemented behaviour. 
 
Within this overall problem, two research issues were identified: 
 
1. Where the dynamic, behavioural diagrams of UML can and cannot be used to 
model and analyse system-of-systems. 
2. Determining how Petri nets can be used to improve the specification and analysis of 
the dynamic model of a system-of-systems specified using UML. 
 

7.2.2 Potential of Petri Nets 
The Petri net formalism is introduced in chapter 2 together with justification for its 
use as a potential solution to the system-of-systems design specification and analysis 
problem. Desirable system-of-systems modelling language features (described in 
chapter 1) such as: abstraction; modularisation; data typing; adequate toolset support; 
timing; verification and validation; precision in specification of requirements; and 
scalability, concurrency, state, information, and event-based specification were 
discussed in relation to Petri nets. It was indicated that hierarchical, high-level, timed 
nets could offer the modelling language features deemed necessary for system-of-
systems specification. Chapter 2 set the context for the evaluation of these 
hierarchical, high-level, timed nets in relation to system-of-systems specification and 
analysis in the case study of chapters 5 and 6. 
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7.2.3 Research Approach, Weaknesses of UML, and Petri Net 
Formalism 

Due to the unstructured nature of system-of-systems problems, an alternative research 
approach to a tightly controlled experimental investigation is desirable to help in their 
understanding. The case study research approach offers an opportunity to gain this 
understanding despite scepticism regarding its suitability as a research method. 
Chapter 3 discusses the technique and a systematic approach to the design and 
execution of the case study used in thesis chapters 5 and 6 is outlined. 
 
The first study on close air support is introduced in chapter 4 following discussion of 
where the UML dynamic model diagrams can and cannot be used to model and 
analyse system-of-systems. The main weakness of all the UML behavioural diagrams 
is their lack of well-defined concrete and abstract syntax and static and dynamic 
semantics. This means the behavioural diagrams of UML cannot be executed or used 
to derive a reachability graph for the purposes of exhaustive correctness checking. 
Both functions are viewed as essential in helping produce correct specifications for 
systems-of-systems. Chapter 4 also highlighted the UML activity diagram as the most 
applicable candidate diagram for enhancement by Petri nets in system-of-systems 
specification. This was due to it being the only behavioural diagram able to specify 
overall system behaviour; hierarchy support; scalability; and support for timing via an 
extension profile.  
 
By specifying a well understood problem (a telephone system, Appendices A-D) 
using the Petri net formalism, its potential strengths and weaknesses in relation to 
system-of-systems specification were listed. Using this information, chapter 4 
concludes by suggesting how Petri nets can be used instead of UML activity diagrams 
and introduces the first study, close air support, indicating the characteristics of 
interest it holds for system-of-systems engineering in general.   
 

7.2.4 Case Study 
Chapters 5 and 6 execute the case study design presented in chapter 3. The design 
objective of the case study was derived from chapter 1's second criteria for success. 
This stated that the strengths and weaknesses of Petri nets were to be determined 
regarding the greater formalism of dynamic behaviour in systems-of-systems and their 
role as a means of engaging stakeholders. The case study (from the defence domain), 
is used to answer the research questions: 
 
1. Do Petri nets improve the functional correctness of the system-of-systems design 
specification? 
2. Do Petri nets increase the quality of the design specification? 
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be 
improved? 
 
Criteria for success were derived from these research questions in relation to the Petri 
net specification of the close air support and exchange network parameters studies. 
Specification of each study was carried out at different system-of-systems engineering 
design levels using Petri nets. Study response variables were captured at each iteration 
of model design in order to measure whether the criteria for success were met. 
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The first study, close air support, confirmed the following strengths of Petri nets in 
relation to system-of-systems specification: capability to analyse model behaviour; 
and capability to specify range of model behaviour (state, event, concurrency, data, 
timing and hierarchy). The following weaknesses were also confirmed: state space 
explosion; and scalability. A number of shortfalls were highlighted in terms of: 
multiplicity of component systems or processes realising functions; verification and 
validation and its use in checking specification completeness; and re-entrancy and its 
effect on correct behaviour.   
 
The second study from the military domain, exchange network parameters, confirmed 
the strengths and weaknesses identified by the first study on close air support. In 
terms of the shortfalls, the second study was able to explore re-entrancy and 
multiplicity, concluding both could be specified using Petri nets and recommending 
best practice for their use in system-of-systems modelling.  
 

7.2.5 Research Results  
Based on the results of the case study of chapters 5 and 6, the strengths and 
weaknesses of Petri nets in relation to the formalism of dynamic behaviour 
specification in system-of-systems were identified. Based on these, a final 
enhancement to UML was proposed (Appendix E). 
  

 
Fig. 7.1 'Petri net replacement for UML CallBehaviourAction activity diagram 
element' 

 
This enhancement complements UML with timed, coloured Petri nets with hierarchy, 
providing a mapping between activity diagram nodes and Petri net elements (see Fig. 
7.1 for an example activity diagram element replacement). The enhancement uses 
simulation for initial verification of specifications and performance analysis of timed 
specifications, and reachability graph calculation for exhaustive verification of 
specifications. Timed, coloured Petri nets with hierarchy address the specification part 
of the overall system-of-systems problem, where as simulation and reachability graph 
calculation address the assurance part of the overall system-of-systems problem.  
 

7.3 Evaluation of Research 
Using the research aims and criteria for success defined in chapter 1, an evaluation of 
the work in this thesis is discussed. 
 
1. Indicate the strengths and weaknesses of the behavioural diagrams of UML 
regarding the specification, and verification and validation of systems-of-systems. 
 
To address the first main research issue, chapter 4 discusses the UML dynamic model 
and the behavioural diagrams it is composed of in relation to the overall system-of-
systems problem. The chapter summarises each diagram in relation to a system-of-
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systems specification feature and concludes that the main weakness of the UML 
behavioural diagrams is their lack of formal dynamic semantics, i.e. it is not possible 
to execute or perform exhaustive checking of models built using the syntax and 
semantics of the three types of UML diagram. From the summary of the three UML 
behavioural diagrams against system-of-systems specification features, UML activity 
diagrams were deemed most applicable to the specification of systems-of-systems. 
Activity diagrams offered the ability to support overall behaviour specification, 
hierarchy, scalability, and timing via an extension profile.  
 
2. Determine the strengths and weaknesses of Petri nets regarding the greater 
formalism of dynamic behaviour in systems-of-systems, i.e. their specification, and 
verification and validation. This should cover Petri nets' ease of use; 
comprehensibility; scalability; state, data, and event-based modelling capability; 
concurrency modelling capability; and verification and validation capability. The role 
of Petri nets as a means of engaging stakeholders should also be examined. 
 
To address the second main research issue, chapter 2 examines the desirable features a 
modelling language should offer for the specification of systems-of-systems 
(abstraction, modularisation, data typing, adequate toolset support, timing, verification 
and validation, precision in specification of requirements, and scalability, 
concurrency, state, information, and event-based specification) in relation to Petri 
nets. The findings of the chapter indicated Petri nets can provide each of these 
features (with scalability to be explored further) graphically via high-level, timed nets 
with hierarchy. 
 
Chapter 4 considers a well understood problem (a telephone system) in order to 
further explore the potential usefulness of Petri nets in creating models of systems-of-
systems. This exercise confirmed the need for high-level nets as well as the definition 
of a suitable hierarchy and adoption of an adequate Petri net toolset. The chapter 
summarised perceived strengths and weaknesses of Petri nets in system-of-systems 
development based on the experience of modelling the telephone system.  
 
Chapters 5 and 6 use the findings from Petri net specification of the telephone system 
in chapter 4 for a system-of-systems case study. Chapter 5 executes the systematic 
case study design described in chapter 3 for the first system-of-systems study from the 
military domain, close air support. Close air support was used to further demonstrate 
the benefits, weaknesses, and shortfalls Petri nets bring to specification and analysis 
of large-scale systems-of-systems. The study confirmed greater formalism of dynamic 
systems-of-systems behaviour via Petri nets' analysis capability (simulation and 
reachability graph calculation) and specification capability (state, event, concurrency, 
data, timing, and abstraction). Both were considered Petri net strengths. Their 
graphical concrete syntax and ability for execution also enabled stakeholders to be 
involved in correct and complete behaviour specification. Petri net weaknesses 
included state space explosion and scalability.  
 
Chapter 6 considers the problem of exchange network parameters (from the military 
domain) for the second study, confirming the strengths and weaknesses, and exploring 
further the shortfalls identified by the close air support study. Both studies also 
highlighted the need for best practice to be established within organisations tailored to 
their system-of-systems specification requirements. 
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3. Show how Petri nets can be used to replace UML activity diagrams and address the 
overall problem of system-of-systems specification and analysis. 
 
To address the third main research issue, chapter 2 sets the context for the evaluation 
of Petri nets in the specification of systems-of-systems by considering the notation in 
relation to desirable systems-of-systems specification features. Chapter 4 lists the 
strengths and weaknesses of UML activity diagrams in relation to systems-of-systems 
desirable specification features. Based on this list, activity diagrams appear to be the 
most applicable UML behavioural diagram for use in systems-of-systems 
specification. Their main weakness identified in chapter 4 is the lack of formal 
dynamic semantics. It is not possible to execute or perform exhaustive checking of 
models built using the present activity diagram syntax and semantics. Chapter 4 
suggests how Petri nets could be used to enhance UML with a notation offering 
formal semantics, and graphical concrete syntax. A well-known problem (telephone 
system) is specified using Petri nets in order to identify the potential strengths and 
weaknesses of the notation in the modelling and analysis of systems-of-systems. 
 
4. Demonstrate and evaluate the feasibility of the Petri net solution to the overall 
problem of system-of-systems specification and analysis using a case study approach. 
 
To address the fourth main research issue, chapters 5 and 6 demonstrate the feasibility 
of specifying two system-of-systems studies using Petri nets, summarising the 
strengths, weaknesses, and shortfalls of the notation based on case study research 
questions and criteria for success for each study. Chapter 5 conducted a study on 
specification and analysis of a close air support system-of-systems, ending with an 
evaluation of the study results. As part of this analysis and the work of chapters 2 and 
4, the modelling needs of systems-of-systems were considered in relation to activity 
diagram and Petri net modelling notations and the actual results from the study. Petri 
nets were found to offer the following attributes over activity diagrams: formal syntax 
and semantics; specification of resource usage; dynamic inspection; reachability graph 
calculation; and non-static specification using timing. Appendix E details the 
proposed Petri net enhancement of activity diagrams. 
 
In terms of the overall system-of-systems specification and analysis problem, Petri 
nets are able to provide analysis capability through simulation and reachability graph 
based on their full formal syntax and semantics. Petri nets provide specification 
capability enabling representation of state, event, concurrent, performance, and data-
based behaviour of a system-of-systems at different levels of abstraction detail.  
 
The main weaknesses of Petri nets identified by the thesis are their ability to scale to 
the size of the system to be modelled and the state space explosion problem associated 
with model-checking. As shown in Appendices A-D and the thesis case study of 
chapters 5 and 6, both weaknesses can be managed to an extent using abstraction at 
the system-of-systems engineering level. Based on application of careful management 
and the results from the second study on exchange network parameters of chapter 6, 
Petri nets are proposed as an enhancement to the activity diagram to help address both 
parts of the overall system-of-systems level design specification and analysis problem. 
 



 141

The research aims and criteria for success defined in chapter 1 have been met based 
on the work presented in this thesis. The remainder of this chapter elaborates on this 
work, discussing its industrial context, and highlighting areas for further research. 
 

7.4 Discussion 
Overall, the proposed Petri net formalism of dynamic behaviour in the specification of 
system-of-systems has been successful. The proposal significantly improves upon 
existing specification techniques for systems-of-systems and meets the criteria for 
success defined in chapter 1. In particular, Petri nets can be viewed as complementary 
to de-facto UML activity diagrams. They can be used in conjunction with them or as a 
system-of-systems specification notation in their own right (Appendix E details the 
mapping between activity diagram nodes and Petri net elements necessary for 
specification of system-of-systems behaviour). Due to their underlying mathematical 
description, Petri nets enhance the specification and analysis capability currently 
possible with UML activity diagrams. Model execution and analysis of a model's 
reachability graph can be undertaken by the modeller in conjunction with system-of-
systems' stakeholders to achieve correct and complete system-of-systems behaviour 
specification early in the system-of-systems' lifecycle. 
 
As indicated, the two major advantages Petri nets have over UML are the analysis and 
specification capabilities available to the modeller for precisely specifying and 
assuring the system-of-systems design. Due to their formal syntax and semantics, 
Petri nets permit unambiguous (from a model structure viewpoint), visual 
specification of system problem and solution spaces using a small range of graphical 
modelling elements. Slightly disappointing was the readability of nets, time-intensive 
net construction process (particularly for new and non-practitioners), and toolset 
support for system-of-systems models likely to involve large numbers of subnets and 
continuous model evolution. Useful system-of-systems specification with Petri nets 
requires definition of best practice over many years (regarding model construction and 
management, annotation, and practitioner training) and selection (or development) of 
an adequate net modelling framework. The work of the thesis has shown the 
feasibility of using Petri nets to specify process-based systems-of-systems, capturing 
the desirable system-of-systems features of state, event (including event probability), 
concurrency, data, timing, and abstraction.  
 

 
Fig. 7.2 'Infinite net problem detected by interactively executing net' 
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The formal syntax and semantics of Petri nets also means that constructed models can 
have well-defined algorithms for execution and reachability graph calculation (model-
checking) applied to them. These facilitate simulation and exhaustive model-checking 
analyses on the models for the purposes of checking the correctness and completeness 
of modelled behaviour. When timing is introduced to a Petri net model and the model 
is simulated, performance analysis and analysis-of-alternatives can be conducted on 
the model. These analyses can be used to further validate the modelled behaviour with 
domain users prior to hand-off to subsequent system-of-systems' development stages. 
In the thesis, simulation was used to demonstrate this form of model validation and to 
initially verify model design iterations. The interactive form of simulation (Fig. 7.2) is 
a useful means of stepping through model execution for the purposes of sharing the 
specification with non-practitioners and gaining consensus in the correctness and 
completeness of model behaviour. More automatic forms of simulation are useful for 
the purposes of obtaining a range of pre-defined performance indicator values by 
varying different model parameters in order to assess the efficiency, correctness, and 
completeness of the model logic and behaviour. While simulation can be used to 
check the behaviour of a Petri net model, it cannot normally be used to exhaustively 
verify correctness of a complete system-of-systems model specification. 
 
Reachability graph calculation on the model is an exhaustive form of correctness 
verification but was shown to be subject to the state space explosion problem 
discussed further below. Design errors not detected by static inspection or simulation 
of the Petri net model were shown to be highlighted through reachability graph 
calculation. The CPN Tools toolset produces a standard analysis report for 
interpretation by the modeller (again, practitioner training in the toolset selected for an 
organisation is recommended). In addition, the modeller can also construct non-
standard temporal logic queries to be run against the calculated reachability graph for 
the purposes of confirming or denying certain model properties. Reachability graph 
calculation is dependent on the scope of the system-of-systems specification. Again, 
slightly disappointing for both forms of model analysis was toolset reporting support. 
For the thesis case study of chapters 5 and 6, both forms of analyses were viewed as 
extremely positive for system-of-systems design assurance. However, the positive 
extent of their contribution is dependent on the ability of the modeller to interpret, 
model, and verify the system-of-systems problem with domain experts and interpret 
the feedback provided by the toolset regarding the analyses.  
 
The thesis case study, particularly the second study on exchange network parameters, 
highlighted the effectiveness of Petri nets in a real, industrial system-of-systems 
specification situation. As part of the Knowledge Transfer Partnership responsible for 
funding the project, the company and university partners were able to use the study to 
demonstrate how the graphical, concrete syntax of nets can be used to specify a 
process-based reference standard and then detect omissions and ambiguities within it 
for defence domain customers. It is also anticipated that Petri nets will be used as part 
of an overall system-of-systems engineering approach across multiple customer 
domains to improve the specification, and verification and validation of systems-of-
systems. Further case studies in non-military domains would serve to further 
investigate and validate the results obtained by the case study presented in this thesis.  
 
The case study approach as a research method helped the company partner assess the 
strengths, weaknesses, and shortfalls of a new method in a cost-effective manner 
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within one particular environment. The usefulness of the outcome was the result of 
following a systematic approach to undertaking the case study. It could be argued that 
without such a planned approach, a means of comparing and analysing valid results 
between the studies would not have been established. The functional correctness and 
design quality measures were selected to reflect developer and end-user views of 
correctness and quality. The two studies were selected to be representative of typical 
system-of-systems problems and deemed comparable based on objective system-of-
systems characteristic measures listed in chapter 1. Both studies verified similar 
strengths and weaknesses of Petri nets in system-of-systems specification, and did so 
for two examples from the same application domain. Although this may suggest that 
use of Petri nets would exhibit the same strengths and weaknesses across all domains, 
this generalisation cannot be made for certain (at least not until further case studies 
conducted in non-military domains provide further validation). 
 
The two major disadvantages of the Petri net formalism of dynamic behaviour are 
their ability to scale according to the size of the system to be modelled (and 
subsequent model readability) and the state space explosion problem affecting model-
checking.  
 
It should be noted that in terms of managing their ability to scale, the system-of-
systems specification needs to be suitably abstracted, i.e. scoped appropriately. 
Although the case study systems-of-systems could be specified at analysis, and design 
and architecture levels of abstraction, it demonstrated that detail in nets addressing a 
wide specification scope should be generalised as far as possible with a suitable 
hierarchy determined in advance of modelling. Advantage should also be taken of a 
Petri net toolset features such as re-use of nets within a model (CPN Tools 
instantiation feature), colouring, and annotation in order to achieve the desired 
specification. 
 
Functional decomposition was used to identify a hierarchy within models and was 
influenced by a combined top-down and bottom-up engineering approach. This 
flexible function-based approach is deemed similar to the one presented by service-
oriented architecture where re-usable functions or services are identified and then 
composed from legacy and new component systems to build applications. The 
functions or services provided by existing message sets in close air support and 
exchange network parameters systems-of-systems were used to suggest a hierarchy 
within models in conjunction with standards specification documents. In this way, a 
service-based architecture helped to address scalability of the specification. The 
architecture also promoted non-prescriptive solution specification in analysis, and 
design and architecture level models by identifying and focusing on the services to be 
realised by components.  
 
In the case of design at the system-of-systems level, operational services are identified 
using a combination of top-down and bottom-up engineering approaches. Eventually, 
existing physical systems that implement these services as closely as possible are then 
selected (or procured) based on the original system-of-systems design and derived 
component system specifications. Currently, this system-of-systems composition is a 
static, pre-planned, manual process. Given the highly dynamic and heterogeneous 
nature of the military domain (and domains such as health, traffic management, and 
policing), a future research challenge would be the dynamic composition of the 
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services offered by available physical component systems in an operational 
environment. Part of this research challenge would involve addressing service 
advertising (including quality of service and component evolution); security; and 
semantics of exchanged data (both in terms of service discovery and the information 
exchanged between component systems). Another part of the challenge would involve 
accurately modelling older legacy systems, particularly those where there is 
inadequate documentation; and assessing where to begin the process when the system-
of-systems problem is of the scale highlighted in chapter 1. 
 
In order to employ the benefits of model-checking on a system-of-systems model, the 
largeness avoidance abstraction techniques discussed in Appendices B-D and the 
study of chapter 5 on close air support should be applied. An incremental approach 
was taken to construct models in the close air support study to judge which sub-
functions to abstract detail away from so that a reachability graph could be calculated. 
In addition, a compositional largeness avoidance technique can also be applied to 
component systems of the complete system-of-systems specification (see Appendices 
B-D, sections B.1.5, C.1.3, and D.1.5 for details). 
 
For organisations using Petri nets in the specification of systems-of-systems, the 
choice appears to be exhaustively verifying a restricted system-of-systems 
specification, or part-verifying a complete system-of-systems specification, or ideally 
managing a combination of the two forms of analyses. The important issue for 
systems-of-systems is to specify the requirements correctly and completely in the first 
instance at a system-of-systems engineering level rather than at a system level. Petri 
nets offer a means of unambiguously (in the model structure sense) specifying 
requirements visually so that they can be automated to achieve consensus between 
technical and non-technical audiences and examine behaviour correctness as part of 
an iterative development process.  
 
Without this greater formalism of dynamic behaviour, execution and reachability 
graph analysis of the modelled behaviour could not be undertaken and exploited by 
the modeller (this is the case with native UML activity diagrams). No interactive 
simulation or discussion of reachability graph analysis results could be used by the 
modeller to engage stakeholders in assuring specification completeness and 
correctness. The challenge will be managing the models and deriving best model 
construction practice over many years to take advantage of the two forms of 
verification and validation possible with Petri nets and promote scalability and 
readability within Petri net-based models. 
 
In terms of lessons learned during the course of this thesis, the main one was the 
realisation that system specification languages accepted as an industry standard are 
not without flaws, and should be thoroughly reviewed prior to their implementation 
within an organisation according to its specification objectives. In this way, 
weaknesses of the language in relation to specification requirements can be assessed 
and alternative, complementary approaches sought where applicable. The other lesson 
learned related to terms used commonly within a domain and the importance of 
identifying a common definition and shared understanding of them amongst 
stakeholders of a project. 
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In general, the proposed Petri net formalism can be viewed as complementary to the 
existing UML activity diagram and is a successful solution to the system-of-systems 
design specification and analysis problem in its own right. 

7.5 Further Work 
The research undertaken by this thesis could be extended in several ways and these 
are highlighted in this section. 
 

7.5.1 Evaluation for a Different Domain 
The thesis military domain case study of chapters 5 and 6 demonstrated that Petri nets 
meet many of the desirable requirements for specification of systems-of-systems. This 
could be investigated further by undertaking a case study from a non-military domain 
and lead to further research on the Petri net formalism in addition to providing 
information about their effectiveness. Use of Petri nets in real specification situations 
offer an alternative evaluation environment.  
 

7.5.2 Specification Evolution 
Although use of Petri nets is intended as a system-of-systems specification language, 
it may be useful to investigate many versions of the same specification and examine 
changes throughout its evolution. This insight into the way specifications change over 
time may be able to advise best practice for evolution of models. 
 

7.5.3 Model Transformation 
Given the time and dependability demands associated with large-scale systems-of-
systems, the need for efficient and systematic development methods is essential. 
System-of-systems requirements engineering can be viewed as a key design phase and 
commonly UML use case and activity diagram-driven. A systematic, automated 
transformation approach between use case, activity and Petri net models (considering 
meta-models describing the transformation from UML use cases and activity 
diagrams to Petri nets) would offer a formal validation framework, and ideally help 
the production of more precise, complete, and correct system-of-systems 
specifications. 
 

7.5.4 Toolset Development 
The case study of chapters 5 and 6 highlighted that the toolset selected for use in the 
thesis could be improved in terms of its support for system-of-systems specification. 
If developing a modelling framework for system-of-systems specification, key 
functional areas include: the navigability of the model (particularly if there are large 
numbers of activities specified at lower abstraction levels); versioning and re-use of 
existing models (including locating suitable existing models and maintenance of 
consistency between models); analysis report generation and format of produced 
output; simulation involving network communication between models developed 
remotely; and ability to select graphics to enhance the basic net elements. The ability 
to perform model transformation (section 7.5.3) could also be incorporated into such a 
supporting toolset for system-of-systems specification. In addition, work exploring 
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largeness avoidance and reduction techniques in Appendix B indicated these areas 
should also be considered in toolsets supporting system-of-systems design analysis.   
 

7.5.5 Dynamic Composition of Functions (Services) 
The functional decomposition approach adopted by the specification examples used in 
this thesis is a similar one presented by service-oriented architecture. In the thesis, 
operational functions (services) were identified to establish a hierarchy within the 
Petri net analysis, design, and architecture models. In terms of implementation, legacy 
and new physical assets would be selected and integrated on the basis of their 
perceived ability to realise one or a number of particular services. Currently, this is a 
pre-planned, manual task. A future research challenge is the dynamic composition of 
services offered by available physical component systems in an operational 
environment. Part of this research challenge would involve addressing service 
advertising (taking into account quality of service and component evolution); security; 
and semantics of exchanged data (both in terms of service discovery and the 
information to be exchanged between component systems).  
 

7.5.6 Semantics 
Highlighted during the Petri net specification examples in the thesis, a key long term 
systems-of-systems research problem concerns data semantics and use of ontology. 
Underpinned by semantic interoperability, additional long term research areas are 
evolution of component systems, and security. Semantic interoperability affects the 
data (and meta-data) to be exchanged intra- and inter-organisationally within a 
system-of-systems. Continuous component evolution demands management of 
amendments to components in terms of the services they realise, their associated data 
and data format but to be useful, meaning of terms must be consistent. Security in 
domains such as defence and health is critical and complex, involving the 
management of appropriate static and dynamic access to confidential services and 
exchanged data between autonomous components within the systems-of-systems. 
Extension of Petri nets to include ontology-related annotation in the specification of 
systems-of-systems (and consequent reduction of the level of human interpretation 
required to understand the information exchange protocol involved) should be further 
investigated. 
 

7.6 Final Summary 
The research achieved by this thesis was discussed in this chapter and its positive 
contribution considered in relation to the criteria for success defined in chapter 1. In 
addition, a number of future research areas were outlined. 
 
In the previous six chapters (and Appendix E), the context, and motivation of the 
research were presented, leading to an investigation of UML behavioural diagrams in 
relation to system-of-systems design specification and analysis, the proposal and 
description of Petri nets as a formalism for dynamic behaviour capture, and execution 
of a case study approach to identify the strengths and weaknesses of Petri nets in 
addressing system-of-systems design specification and analysis. The formalism has 
been discussed in an industrial context, and potential for it to be used across different 
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industrial domains was highlighted as a future research area. Additional further 
research areas were also indicated. 
 
The Petri net proposal is a novel and positive step towards a solution to the system-of-
systems design level specification and verification and validation problem. By 
providing greater formalism of system-of-systems' dynamic behaviour, the modeller 
can take advantage of model execution and reachability graph analysis. Undertaken in 
conjunction with stakeholders, these analyses can help assure completeness and 
correctness of the behaviour specification early in the system-of-systems' engineering 
lifecycle.  
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Appendix A  
 
The telephone system is specified textually as follows: 
 
The telephone receiver is lifted by a caller and the receiver's number dialled. The 
caller waits for connection and hears either a ring tone or an engaged tone. If an 
engaged tone is received, the caller hangs up (this also applies if more than one call 
has been placed to the receiver, all result in a hang up). If a ring tone is received, the 
call is either answered by the receiver (in which case a voice call proceeds until the 
caller or receiver hang up) or it is not (and the caller hangs up). 
 

 
Fig. A.1 'Classic Petri net of a telephone call process' 

 

A.1 Specification of the Telephone Process using a Classic 
Petri Net 

Fig. A.1 was an early attempt at the telephone call model using a classic Petri net to 
specify the system. Initially, a classic Place/Transition net [57, 63] was used to gain 
practical experience of using the technique. 
 
Due to the non-complexity and high-level of abstraction of the problem to be 
modelled together with familiarity with its concept and overall behaviour, the classic 
Petri net model's constituent elements and viewpoint were rapidly established from 
the textual specification. The call sequence was modelled from the viewpoint of the 
receiver of the call. Net places were used to store tokens relating to the state of the 
call progress, transitions were used to represent activities resulting in a change of state 
and the control sequence of activity execution was noted. Labelling of places and 
transitions used terminology from the textual specification. To begin with, one of the 
scenarios (that of an answered call) was modelled and expanded further with the two 
unanswered call scenarios in order to build the net shown in Fig. A.1.   
 



 150

The 'wait_on_no_answer', 'wait_on_busy_tone' and 'wait_on_hangup' places were 
originally used to represent that a call had been made and a result relating to that 
effort would be relayed back to the caller, i.e. the caller's attempt to place a call would 
either be answered successfully and end with a hang up, or it would be met with an 
engaged tone and end with a hang up, or it would trigger ringing but for whatever 
reason would not be answered and end with a hang up. Fig. A.1's initial marking 
consists of one token on the place 'lift_receiver' (indicating the state that one 
telephone call has been initiated), one token on the place 'line_free' (indicating the 
receiver's line is currently free), and one token on the place 'call_answered' (indicating 
the receiver of the placed call will respond to their telephone ringing). 
 
Apart from providing the user with a graphical overview of the system specification, 
the classic Petri net was used to provide some insight into the modelled system's 
behaviour.  
 

A.2 Initial Verification of the Telephone Process using a 
Classic Petri Net 

Dynamic analysis (interactive simulation) was used to verify that the specification 
represented by the net in Fig. A.1 behaved as expected. For the initial marking 
described above and for subsequent initial markings used to reflect an engaged 
receiver line and an unanswered call, the functionality of the net appeared to be 
correct. This meant that when a call attempt was input into the system and the initial 
marking of the net was set up to specify one of the three scenarios, the desired output 
state of hang up was reached in each of the three cases. Simulation was also able to 
highlight the poor choice of labelling for the 'hangup' terminal state. This label 
insufficiently specified how the call had reached this hang up state.  
 
When the net was amended to reflect the fact that more than one call was being placed 
to the receiver, i.e. more than one token on the 'lift_receiver' place, interactive 
simulation revealed problems with the logic modelled within the net. These included 
improper line reset behaviour and redundancy of the three wait places described in 
section A.1. The net was amended following the results from iterative simulation and 
is shown in Fig. A.2. 
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Fig. A.2 'Amended process following dynamic analysis' 

 
Following completion of Fig. A.2's net of the simple telephone example, it was clear 
that classic Petri nets can quickly become large and complex (however, when finite 
state machines are used, the model would be even more complex). Constructed 
reasonably quickly due to the narrow problem scope, high level of abstraction and 
common concept involved, even with the few improvements made following iterative 
simulation analysis, the specification appeared cluttered and was difficult and time 
consuming to interpret. Given this information and the third criteria for success goal 
of determining scalability of nets (and desire to specify large-scale, complex system-
of-systems), it was decided to abandon classic nets and implement a high-level Petri 
net of the telephone model, specifically a Coloured Petri net. In order to do so, a 
suitable Petri net tool was selected based on an evaluation of existing Petri net tools 
meeting thesis requirements (Appendix F). 
 
Tool Survey Conclusion 
From the evaluation of the four tools (CPN Tools [47], WoPeD [126], Renew [127], 
and PIPE [128]) carried out in Appendix F, each was highly useable in its own right. 
For the intended thesis case study, use of CPN Tools was recommended. CPN Tools 
had been briefly used earlier in the project to demonstrate Petri nets as a potential 
modelling tool for system-of-systems development. The toolset offers high levels of 
support in terms of papers, tutorials, online and offline help, and an internet mailing 
list forum. It is a comprehensive toolset 'out-of-the-box' allowing immediate model 
construction, execution and analysis. Further 'plug-in' support comes in the form of 
branching temporal logic implementation (ASK_CTL), graphing (Graphviz), and 
animation (BRITNeY) and there are plans to develop improved toolset support for 
state space exploration and analysis of coloured Petri net models [69].  
 
CPN Tools can be used in a standalone environment to open multiple net models 
simultaneously and has 'clone' functionality to copy elements of nets between models. 
Related to integration of models is their export. Currently CPN Tools supports its own 
XML export (with published Document Type Definition, DTD). Finally, in terms of 
cost, CPN Tools is free to both academic and commercial organisations. 
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A.3 Specification of the Telephone Process using a Coloured 
Petri Net 

To try and alleviate the weaknesses identified using classic Petri nets, a high-level 
Petri net was developed based on the classic net of Fig. A.2. High-level nets have the 
potential to introduce colour, time and hierarchy to models. Tokens have values 
(based on a colour or type) referring to features of the object modelled by the token. 
Use of colour reduces the number of places needed to reflect a state. Defined by Kurt 
Jensen [63], coloured Petri nets require the colour of the tokens on the input places to 
be considered as well as existing firing rules. This means that these high-level nets are 
able to facilitate more compact, natural process description.  
 

A.3.1 The Operational Process (Conceptual) Level 
A coloured Petri net representation of the example telephone operational process is 
shown in Fig. A.3. 
 

 
Fig. A.3 'Coloured Petri net model of telephone call process shown in Fig. A.2' 

 
Instead of having three sink places (as in Fig. A.2) capturing the results of the initiated 
calls, Fig. A.3's net defines an enumerated type or colour named 'Call' with values 
reflecting potential results (in this case, 'Call_Answered', or 'Line_Busy', or 
'Not_Answered'). All places in Fig. A.3's net have the same colour (type), and when 
viewed together with the labelling of each place, transition and directed arc provide 
seven observations: 
 
1. A rule-based, graphical model of the call process at a high-level of abstraction. 
2. Implicit cardinality of role interaction (via the initial markings of 'Lift_Receiver' 
and 'Receiver_Line' places) which is m:1 (many callers following the specified 
activity sequence can try to call one receiver). 
3. Call's history (via identification of states) and 'reversibility'. 
4. Implicit specification of an operational process using a sequence of activities, firing 
conditions and information states relating to a telephone call.  
5. Implicit specification of an information exchange protocol between a caller and a 
receiver. The exchange between the two roles uses the caller's 'Dial_Number' 
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transition and the receiver's 'Connecting' transition and then the receiver's 'Connecting' 
transition and the caller's 'Response' transition to undertake the information transfer.  
6. Implicit specification of provided and required interfaces. The 'Dial_Number', 
'Connecting' and 'Response' transitions are similar to operations used in an object-
oriented environment. The information produced and used within these operations is 
specified by the 'Call' colour (type) and can be enforced by guards and arc 
inscriptions. 
7. Implicit viewpoint of the model (i.e. that of the receiver of the calls). 
 
Building on these seven observations of this simple example, it can be seen that the 
net does not reflect individuality of callers or receivers, i.e. ability to be autonomous 
and behave in a different way to the sequence specified. For example, the caller could 
hang up before the receiver can respond to their telephone ringing or before a 
connection is made to receiver's line, or the receiver could facilitate a conference call 
between more than one caller. These activities would require tailoring of parts of the 
interaction for the role variations. This could be achieved using the same net (with a 
new partition for each role variation. The variation could be visually distinguished 
using the modelling tool's colour palette for this extension to the net) or a separate net 
(for each role variation). Unfortunately, depending on the number of role variations, 
this could lead to a complex net unless a suitable facilitation process is followed. 
Subject to a suitable facilitation process, incorporation of this variation into the net 
suggests nets are amenable to amendments. The ability to re-use and evolve nets will 
be a key requirement in the specification of large-scale system-of-systems. 
 
Prior to any kind of net analysis, termination of the interaction described by the net in 
Fig. A.3 is not visually obvious and the interaction needs time and effort to follow. It 
can be argued that in spite of its graphical nature and use of colour (types), Fig. A.3 
lacks readability in general, particularly to those unfamiliar with the Petri net 
modelling technique. For example, there are no graphical logical operators such as 
'and', 'or' to aid readability; the viewpoint from which the call process is illustrated, 
cardinality and activity execution by role are implicit; information exchange protocol 
between the roles is implicit; provided and required interfaces are implicit; and the 
initial start-point of the operational process and subsequent execution path are 
implicit.  
 
Again, the example highlights the potential problems of scale, complexity and 
readability with a flat, non-hierarchical net employing no enhancements to the net's 
foundation graphical nature. Larger processes involving multiple roles will quickly 
generate large nets. Use of hierarchy (as well as a suitable facilitation process) is 
essential for any chance of specification readability and scalability.  
 

A.3.2 Use of Hierarchy 
Hierarchy can structure complex Petri nets in a similar way to hierarchy within data 
flow diagrams. With hierarchy, a net at a certain level of abstraction (parent net) can 
have some or all of its transitions described in a greater level of detail by subnets (top-
down decomposition). These subnets can be composed of places, transitions and other 
subnets. Also, hierarchy can be facilitated by linking existing lower-level subnets to 
transitions within parent nets (bottom-up development).  
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Fig. A.4 'Telephone call process parent net' 

 
The challenge using hierarchy is deciding upon an appropriate abstraction level and 
viewpoint for the model. This depends on the stage of development the system model 
is at. So far in the telephone example, nets have been developed at a high level of 
abstraction, i.e. a conceptual level depicting a telephone operational process from the 
viewpoint of the receiver of the calls. This level is intended to describe the problem 
and promote understanding between non-technical and technical audience members so 
that a non-prescriptive solution can be designed.  
 
This operational process specifies a sequence of activities and information exchanges 
performed by roles in order to achieve desirable behaviour. This initial conceptual 
specification then drives detailed design and implementation. Obtaining a hierarchical 
breakdown of the telephone operational process involved consideration of the existing 
flat process and the roles and activities used within it to describe an overall function.  
 
Using the flat net, activities were then restructured using a combination of functional 
decomposition, function (activity)-to-role assignment, and identification of interfaces 
between roles. The parent net is the top level of the hierarchy, describing the 
operational process at its most abstract. Within it, the first main activity 'Make Call' is 
associated with the caller role and the second main activity 'Connect Call' is 
associated with the receiver role. A trigger process input, a process output and the 
information exchanged between the two activities (interfaces) are also included. The 
parent net aims to provide a coherent overview of the telephone process and indicate 
clearly that more detailed descriptions of the two main activities carried out by the 
roles are available on subnets. This parent net is show in Fig. A.4. 
 
As mentioned, hierarchical nets can also be constructed in a bottom-up fashion. For 
large-scale system-of-systems, the concept of subnets as components is extremely 
useful both in terms of reuse of existing nets and as a means to explore variations in 
the design of components. Existing, amended or brand new nets relating to individual 
components of the system-of-systems could be swapped in and out of the composition 
when considering different application scenarios or designs of components. Viewing 
system-of-systems components as subnets may also help alleviate the state space 
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explosion problem in static analysis of nets. This alleviation is considered further in 
Appendix B, section B.1.5. 
 
From Fig. A.4 it can be seen that hierarchy (and use of toolset colour palette and 
labelling) greatly improves readability of the model by allowing the modeller to 
employ levels of abstraction to maximise model scalability and readability. 
Depending on the domain being captured and a suitable net construction process for 
large-scale system-of-systems specification, the modeller has the option of abstracting 
detail when required and employing fairly compact nets. The net construction process 
should also recommend use of a suitable net modelling tool that provides a colour 
palette and ability to add annotation and graphics enhancement to nets. These will be 
essential features for the modelling and analysis of large-scale system-of-systems.  
 
Hierarchy also makes use of input and output socket places to and from the 
decomposed transitions on the parent net. These sockets have corresponding port 
places on the resultant subnet describing the decomposition. The colours (types) of 
these socket and port places can be used to specify the types of the information used 
and produced by the decomposed activity. In this way, sockets and ports can be 
viewed as a means of explicitly specifying required and provided interfaces to the 
decomposed transition. This is illustrated by the 'Caller' subnet shown in Fig. A.5.  
 

 
Fig. A.5 'Decomposed subnet for Caller Make_Call transition showing ports' 

 
In Fig. A.5, there are four port places, two input ('Lift_Receiver' and 
'Response_From_Receiver') and two output ('Try_To_Connect' and 'Hangup') made 
use of by the 'Caller' role. All port places have colour (type) 'Call'. At this high level 
of abstraction, i.e. the operational process level, Fig. A.5 specifies that transition or 
operation 'Wait_For_Tone' takes information specified by type 'Call' as input from the 
parent net and produces information of type 'Call' as output to the parent net. 
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Transition or operation 'Response' takes information of type 'Call' as input from the 
parent net and after further activity execution, eventually outputs information of type 
'Call' back to the parent net.  
 
Currently, the interface information at this operational process level is fairly crude.  
Provided and required interface information together with role function (service) and 
information exchange can be specified in greater detail at the design and architecture 
levels of abstraction. This is illustrated later in Appendix D. 
 

A.4 Conclusions so far following Specification using Classic 
and Coloured Petri Nets (with Hierarchy) 

Petri nets offer a mathematical, graphical modelling foundation with reasonably 
straightforward interpretation rules and a small range of modelling elements which 
can be adapted for use in different application domains.  
 
In order to exploit this flexibility, an organisation needs to determine its objectives for 
using Petri nets as well as their intended audience in advance. Subsequently, best 
practice guidelines are essential in helping to realise these objectives. For example, an 
organisation may decide to use Petri nets in the analysis and design of large-scale 
system-of-systems. These nets would need to be understood by both skilled and 
unskilled Petri net practitioners. Based on the complexity issues encountered using 
flat classic and coloured Petri nets, at a minimum the organisation would require high-
level Petri nets employing colour (type) and hierarchy.  
 
Once these objectives had been established, systematic guidelines for net construction 
would need to be implemented to address: adoption of a standard net toolset; 
approaches to aid comprehension of nets (e.g. use of labelling convention for net 
elements, abstraction, toolset's colour palette, textual annotation, training in Petri nets 
and selected toolset); recommended approach to developing hierarchy; means of 
storing produced nets for future re-use and modification; maintenance of consistency 
with other modelling techniques used within the organisation (e.g. UML); and 
identification of a suitable hierarchy (again, this process would need to consider the 
objectives for use of Petri nets and involve domain experts in confirming the 
granularity of the abstraction).   
 
So far, coloured Petri nets have been used to specify the telephone system at an 
analysis level of model abstraction (using an operational process to do so). A 
hierarchy was suggested using a functional decomposition approach for use within the 
model and facilitated by the toolset using port and socket places. Design and 
architecture levels of model abstraction are explored further in Appendix D. 
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Appendix B  
 

B.1 Verification of the Telephone Process using a Coloured 
Petri Net 

Both the non-hierarchical net of Fig. A.3 and the hierarchical net of Fig. A.4 were 
used in static and dynamic analyses for the purposes of comparison. 
 

B.1.1 Dynamic Analysis (Simulation) 
Again, simulation was used to verify the behaviour and logic of the specifications in 
Figs. A.3-A.4. For both nets it was noted that while checking multiple calls made to 
the receiver role, multiple tokens can accumulate on a place and are removed 
randomly. Prioritised ordering of their addition and removal would require definition 
of a queue place colour (type). A problem in the logic setting the line to the correct 
state, i.e. free or busy was detected in Fig. A.3. While aiming to include the correct 
logic for setting the line in Fig. A.4, an incorrect simulation halt was experienced due 
to a variable with an inappropriate colour (type) definition being used in an output arc. 
This meant that the variable could not be bound to a value needed to enable transition 
'Amend_Line'. This error was corrected by associating the variable definition to the 
correct enumerated type colour (type). Iterative simulation runs helped finely tune the 
nets by the addition of guard conditions on transitions, e.g. 'New_CallMsg' on 
'Dial_Number'. Simulation helped instill confidence that the interaction was 
terminating properly. 
 
It was also noted that the parent net (Fig. A.4) provided an overview of exactly where 
in the model the simulation was executing. The subnet could then be selected for an 
overview of execution within its associated process. This was not such a significant 
issue in this small example but will be useful for tracking execution on nets of much 
larger system-of-systems. The net toolset also allows the modeller to select variable 
bindings during simulation or fully automate the simulation. 
 

B.1.2 Static Analysis 
As dynamic analysis via simulation cannot guarantee that all possible execution paths 
of the process have been covered, static analysis of Petri nets is used to provide a 
more exhaustive, deeper level of verification over and above simulation alone. Static 
analysis using reachability tree or state space analysis was conducted to check for 
standard behavioural Petri net properties such as reachability, boundedness, home, 
liveness and fairness (depending on the Petri net tool used, it may also possible to 
construct non-standard property queries).  
 
Static Analysis of non-hierarchical net 
Figs. B.1-B.3 show the static analysis results for two initiated calls within the non-
hierarchical net of Fig. A.3: 
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Reachability/State Space 
     Nodes:  9 
     Arcs:   10 
     Secs:   0 
     Status: Full 
 

 
 
Scc Graph 
     Nodes:  9 
     Arcs:   10 
     Secs:   0 
 

Fig. B.1 'Reachability (state space) and strongly connected component analyses' 

 
 
Best Integer Bounds 
 
Place                       Upper      Lower 
 
Hangup     2          0 
Lift_Receiver    2          0 
Receiver_Line         1          0 
Response_From_Receiver    1          0 
Try_To_Connect            2          0 
Wait_On_Response           2          0 
 
 
Best Upper Multi-set Bounds 
 
Hangup             1`Line_BusyMsg++1`Call_Answered 
Lift_Receiver      2`New_CallMsg 
Receiver_Line      1`Line_BusyMsg++1`Line_FreeMsg 
Response_From_Receiver    1`Line_BusyMsg++1`Call_Answered 
Try_To_Connect     2`New_CallMsg 
Wait_On_Response              2`New_CallMsg 
 
 
Best Lower Multi-set Bounds 
 
Hangup            empty 
Lift_Receiver      empty 
Receiver_Line      empty 
Response_From_Receiver   empty 
Try_To_Connect     empty 
Wait_On_Response       empty 
 

Fig. B.2 'Boundedness properties' 
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Home Markings    [9] 
 
Dead Markings    [9] 
Dead Transition Instances  None 
Live Transition Instances  None 
 
No infinite occurrence sequences. 
 

Fig. B.3 'Home, liveness and fairness properties' 

 
Fig. B.1 shows the results of performing reachability tree (state space) and strongly 
connected component analyses. The strongly connected components graph calculates 
the number of strongly connected components within the state space graph, i.e. 
components where each node has a path to any other node in the component. When 
there are less strongly connected components than state space nodes, infinite 
occurrence sequences can exist. This suggests that the net may not terminate. In this 
example, the full state space calculation has nine nodes and ten arcs and took less than 
a second. The strongly connected component graph calculated based on this state 
space has nine strongly connected components and ten arcs. This implies that the 
telephone call terminates. 
 
Fig. B.2 shows boundedness properties for the net in Fig. A.3. The first part of Fig. 
B.2 shows the maximum and minimum number of tokens contained within each 
place. Places 'Hangup', 'Lift_Receiver', 'Try_To_Connect', and 'Wait_On_Response' 
always have between zero and two tokens and relate to the number of calls initiated 
within the process. Places 'Receiver_Line', and 'Response_From_Receiver' always 
have between zero and one token. This latter result indicates that incoming calls are 
essentially stalled on place 'Try_To_Connect' (highlighted by the maximum one token 
on the place, 'Response_From_Receiver') until 'Receiver_Line' obtains a 
'Line_FreeMsg' token and enables transition 'Connecting'.  
 
This was not the desired behaviour of the call process with initial marking of 
'Line_BusyMsg' for the receiver. Instead, if more than one incoming call arrived for 
the receiver and the receiver's line was initially marked as busy, the process does not 
permit any of the incoming calls to connect (all terminate with 'Line_BusyMsg' on 
place 'Hangup'). 'Response_From_Receiver' should have been capable of hosting a 
maximum of two tokens. As it stands, the net in Fig. A.3 would need amendment to 
reflect this. In this way, integer bounds help reassure the process is working as 
intended. 
 
The second part of Fig. B.2 provides details about the information held by the tokens 
at each place and confirmed the incorrect behaviour highlighted by the integer 
bounds. Considering upper multi-set bounds first of all, places 'Lift_Receiver', 
'Try_To_Connect', and 'Wait_On_Response' can hold a maximum of two tokens with 
content always 'New_CallMsg'. Places 'Receiver_Line' and 
'Response_From_Receiver' can both hold a maximum of one token. 'Receiver_Line' 
can only take one of the multi-set 'Line_BusyMsg' and 'Line_FreeMsg' as value. 
'Response_From_Receiver' can only take one of the multi-set 'Line_BusyMsg' and 
'Call_Answered' as value. Finally, place 'Hangup' can hold a maximum of two tokens 
with content from the multi-set 'Line_BusyMsg' and 'Call_Answered'. 
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From the lower multi-set bounds in Fig. B.2 it can be seen that all the places have a 
lower multi-set bounds of the empty multi-set. This means the markings of all the 
places do not remain the same. Again, given the initial marking used and the desired 
process behaviour, identical upper and lower multi-set and integer bounds 
(corresponding to a multi-set of 'Line_BusyMsg' and one respectively) would have 
been expected on place 'Receiver_Line'. In this way, multi-set bounds can be used to 
alert the user to incorrect operation of their process. 
 
The remainder of the state space graph analysis can be seen in Fig. B.3 and relates to 
home, liveness and fairness properties. The process has a single home marking, a 
marking that can always be reached, M9. It also has a dead marking (Fig. B.4), a 
marking with no enabled transitions, identical to the home marking of M9. This 
marking corresponds to the state where results of the two placed calls have been 
received and no tokens are left at places 'Lift_Receiver', 'Wait_On_Response', 
'Try_To_Connect', and 'Response_From_Receiver', i.e. the process terminates. 
 

 
Fig. B.4 'M9 dead marking from state space graph'  

 
As M9 is a home marking it means the process can never reach a state from which it 
cannot terminate with the desired result.  
 
Liveness properties also reveal that each transition is enabled by at least one reachable 
marking (no dead transition instances) and no transitions can become enabled again 
(no live transition instances).  
 
In terms of the frequency of transition firing or fairness properties, the telephone 
process has no infinite occurrence sequence of transition firing. This means there is no 
non-determinism in the net and the dead marking is reachable. 
 
Depending on the Petri net modelling toolset used, non-standard queries can be used 
to inspect the state space graph further. For example, there are several ways to find 
and output information associated with dead markings in the state space. 
 

 
Fig. B.5 'Pre-defined toolset query to output dead markings in state space graph to 
screen' 
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Fig. B.6 'SearchNodes query used to inspect state space graph and output list of dead 
markings to screen'  

 

 
Fig. B.7 'Count and list of dead markings output to a file' 

 
In Figs. B.5-B.7 above, a branching temporal logic is implemented within the toolset 
to permit analysis of state space graph marking or transition information. Using this 
mechanism, it is possible to combine pre-defined queries or construct new modeller-
defined queries and undertake further checks related to model properties such as 
reachability and liveness. For example, the modeller may want to verify whether the 
designated dead markings are valid, i.e. the values of tokens on places involved in 
dead markings are as expected, or after reaching a certain place state another place 
state of interest can be reached, or that the receiver will not provide a response to the 
caller if a connect attempt has not been received. 
 
Analysis of the calculated state space graph has enabled fairly exhaustive verification 
of the behaviour currently specified by the non-hierarchical net in Fig. A.3. The 
results of the static analysis shown in Figs. B.1-B.3 also highlighted that standard 
deadlock analysis only detects deadlock that is a result of logic and place state 
currently engineered into the net or when connection elements have been erroneously 
omitted (in this case, simulation may be able to alert a modeller to the deadlock).  
 
By understanding the example's concept, it is known that a telephone call process 
could deadlock due to failure of system component(s) normally modelled at a lower 
abstraction level, e.g. communications hardware. This could mean that calls are not 
connected, disconnected, or no response reaches the caller. This potential for failure 
during the call process is not specified in the model at the current high-level of 
abstraction and would not be detected using static analysis.  
 
Normally, process modelling focuses on the roles, resources, information exchange, 
control sequence and timing of a process, and does not specify the possibility of 
potential failure states. Instead, process modelling often makes the assumption that the 
underlying infrastructure is reliable. Petri net modelling of the telephone process and 
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the ability to conduct static analysis for deadlock detection helped to underline this 
fact. It also indicates that like the telephone process, processes involved in large-scale 
system-of-systems involve capture of an operational process as well as an information 
exchange protocol at different levels of abstraction.  
 
Unless the potential for undesirable information exchange states is specified using a 
combination of net elements (tokens and types, firing rules, directed arcs, and 
activities), static analysis of Petri nets cannot identify the potential deadlock states in 
system-of-systems early development stages. In system-of-systems development, it is 
vital to specify the possibility of undesirable states as well as desirable states as early 
in the development cycle as possible so that they can be properly mitigated in later 
design stages. In this way, all associated terminal markings identified by static 
analysis can be checked at the operational process level of abstraction for validity 
using the non-standard queries discussed above.  
 
Static analysis of the non-hierarchical net in Fig. A.3 has shown the telephone call 
process does terminate. The existing specification would benefit from amendment to 
coherently capture what the system should and should not do. Prior to incorporating 
any further specification amendments derived from static analysis of the flat net, static 
analysis of the hierarchical net was investigated.  
 

B.1.3 Static Analysis and State Space Explosion 
While a full state space graph was calculated for the basic telephone process of Fig. 
A.3, a known weakness of Petri nets is the complexity problem [57]. Even small sized 
process representations can have infinite reachable states (the state explosion 
problem). To alleviate this problem, methods are used to try and reduce the state 
space graph by focusing on its form (largeness avoidance) or a subset (largeness 
reduction).  
 
Examples of avoidance methods include step-wise refinement of processes, i.e. use of 
abstraction and composition (calculating the state space graph based on subsets of the 
model), limiting the number of tokens on places (using the premise that if the process 
behaves as expected for a small number of tokens, it is likely to work with higher 
numbers), and restricting the values associated with place types. Reduction methods 
include condensing state space by exploiting symmetries present in processes and 
consideration of limited capability between nodes.  
 
Largeness avoidance methods have been adopted as best practice and used prior to 
undertaking model-checking in the telephone example. The net in Fig. A.4 is used to 
investigate the effects of largeness avoidance techniques on the state space graph. A 
standard static analysis report is conducted on the hierarchical net of Fig. A.4. 
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Reachability/State Space 
     Nodes:  88 
     Arcs:   168 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  88 
     Arcs:   168 
     Secs:   0 
 
Dead Markings    [88,87,86,85,84,78,77] 
 

Fig. B.8 'Static Analysis for the hierarchical net' 
 
Fig. B.8 shows the state space calculated for the hierarchical net of Fig. A.4. The state 
space graph consists of eighty-eight reachable markings and one hundred and sixty-
eight transitions. As the much larger state space graph highlights, the hierarchical net 
of Fig. A.4 was developed to illustrate the benefit of hierarchy on net 
comprehensibility and scalability. Fig. A.4 also incorporates some corrections and 
extensions to logic identified from dynamic and static analysis of Fig. A.3 (and no 
inclusion of undesirable state specification as yet).  
 
Again, a full state space graph was constructed. For a hierarchical net, the state space 
is normally larger than that of the equivalent non-hierarchical net. This is because the 
toolset 'flattens' the hierarchical net in order to calculate its state space graph. 
Hierarchy substitution transitions, and port and socket places contribute to the 
additional nodes in the state space graph. These overhead elements can be justified 
based on the scalability and increased readability they bring to the model. 
 
Abstraction and compositional techniques 
Jensen [90] hints that employing hierarchy and subnetting will help combat state 
space explosion. There is no existing work prescribing the benefits that hierarchy and 
subnets actually bring to largeness avoidance, scalability and comprehension in Petri 
net models of systems-of-systems. Where research has made use of hierarchy and 
subnetting, the reported benefits tend to be related to readability, scalability, re-use of 
coloured Petri net models, or performance analysis [77, 79, 82, 94, 95] in software 
systems. However, research from three sources was particularly relevant to hierarchy 
and subnetting and combating state space explosion.  
 
First, in [52], Chukwuogo uses an object-oriented model transformation approach to 
address scalability and largeness avoidance in large-scale software applications. 
Initially, an application is modelled using UML diagrams and transformed into 
hierarchical coloured Petri nets for the purposes of model-checking. To combat the 
state explosion problem, Chukwuogo uses the information gained transforming the 
UML models to Petri net models to abstract out the detail of certain components 
during state space calculation.  
 
Although Chukwuogo was able to observe reductions in duration and size of state 
space graph calculation using two small case studies, the method was not applied to a 
large-scale industrial software application and did not relate specifically to large-scale 
system-of-systems' applications. No mention of the concept of timing or reliance upon 
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network connectivity and communications was made in the work. By Chukwuogo's 
own admission, the method used did not follow or present a systematic approach, nor 
was there any inclusion of model-checking results at the individual module level, i.e. 
a bottom-up approach. The work appeared to be focused on addressing software 
systems using a top-down approach and untimed, hierarchical, coloured Petri nets.   
 
Secondly, the results from Petrucci et al [91-93] considered the benefits modularity in 
nets (specifically Modular Petri nets) brings to reduction of the state space graph. 
Modular Petri nets are used to compose a model of a system by separating a flat net 
into modules. Fused transition points in the net are treated as module interaction 
points. Petrucci et al's work on compositional analysis was focused on exploring a 
module's local behaviour without considering all possible interleavings with the local 
behaviour of the other modules in the system model. In [91,93], local state space 
graphs are calculated per module in parallel with a global synchronisation graph for 
the system while in [92] the approach incrementally generates reachable states based 
on LTL\X properties. 
 
Given that the majority of industrial Petri net applications rely on classical or coloured 
Petri nets and fused place points, an attempt was made by Petrucci et al in [93] to 
adapt the method to use fusion places. The result was to transform such a net into a 
fused transition net but no systematic approach for converting classic or coloured 
Petri nets was given. The research did indicate that best results were obtained for 
modules exhibiting strong cohesion and loose coupling, a main characteristic of 
constituent systems within systems-of-systems.  
 
In the CPN Tools toolset, modularity (or subnetting) of system models is facilitated 
either through hierarchy and associated port and socket places or fused places (fused 
transitions are not supported although [97] did propose such an extension). Hierarchy 
permits an overview of a model's functional decomposition through a parent net and 
port and socket places. The transitions present in the parent net are substituted by 
more detailed nets shown on separate pages. In simulation, a modeller can track the 
location of the next enabled transition using the parent net. Fusion places can also be 
used to capture modularity but there is no explicitly associated parent net page. Each 
subnet on a page is independent and passes information to another subnet page using a 
set of places (fusion places). To mimic the abstraction depicted by the parent net of a 
hierarchical approach, a net can use the fusion places to pass (receive) information to 
(from) a subnet but the only way of associating the net at the higher abstraction level 
with the subnet at the lower abstraction level is via the labelling of the fusion places. 
Port and socket hierarchy makes the association with the lower abstraction level in a 
more explicit way.  
 
An advantage of fusion places in modularity is the ability to share the same 
information between multiple processes. With hierarchy and port and socket places, if 
information needs to be passed from an interface to more than one component at a 
point in time, sufficient copies of the token need be deposited on the interface place 
for consumers to remove. Hierarchy's main advantage is enabling scalability via 
explicit abstraction. Detailed subnets can be copied and re-used (similar to a 
programming procedure) with each copy able to receive separate inputs and return 
separate outputs (compare with parameterised procedure calls). Use of either 
abstraction technique depends on the modelling context. 
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Petrucci et al's largeness reduction method was noted for future research in 
conjunction with the largeness avoidance techniques employed within CPN Tools. In 
Petrucci et al's work, there was no explicit treatment of modularity as a means of 
largeness avoidance or aid to comprehension. This is explored later in section B.1.5. 
 
The third work of interest comes from Bonnefoi et al [98, 99] and deals with design 
and analysis of intelligent transport systems using UML and Petri nets. Approaches 
[98] consider integration of continuous and discrete characteristics of an intelligent 
transport system into a discretised Petri net model (coloured Petri nets are transformed 
to Symmetric nets in order to take advantage of the symmetries in the system and 
reduce the state space) and possibility of transforming UML models to symmetric nets 
[99]. [99] discusses UML component diagrams as a means of modularising the system 
by describing components and their interfaces to one another. Both the discretisation 
and use of symmetric nets as a means of largeness avoidance and reduction are worth 
bearing in mind for future system-of-systems research.   
 

B.1.4 Largeness Avoidance by Abstraction 
Based on the work of Chukwuogo [52], the effect of re-calculating the state space 
graph based on abstracting out details of modules within a net designed to capture the 
specification of a system at a certain level of abstraction (or viewpoint) is 
investigated. It is anticipated that a module (or component) in this case can refer to 
both an activity in a net employed at the conceptual (operational process) level or a 
design component in a net employed at the design and architecture levels of 
abstraction. In this section, detail is abstracted out of the main activities and their 
associated processes in the telephone net currently described at the conceptual level of 
abstraction.  
 
Initially, detail associated with the caller role's 'Make_Call' transition is abstracted 
out. No decomposition of the 'Make_Call' transition from the parent net to a separate 
subnet was included. Instead, a minimal set of net elements were used to ensure that 
the provided and required interfaces of the 'Make_Call' transition consumed and 
produced the same information as before for the parent net. The process detail 
associated with the Receiver role's 'Connect_Call' transition remained the same. The 
revised parent net showing abstraction of the caller role is shown in Fig. B.9. 
 

 
Fig. B.9 'Abstracted caller role used for re-calculation of state space graph' 



 166

From Fig. B.9 it can be seen two transitions, 'Abstracted Make_Call' and 'Abstracted 
Response' are needed to facilitate the provided and required interfaces for the 
'Make_Call' transition decomposed in the original hierarchical net of Fig. A.4. The re-
calculated state space graph results for Fig. B.9 are shown in Fig. B.10. 
 
Reachability/State Space 
     Nodes:  44 
     Arcs:   68 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  44 
     Arcs:   68 
     Secs:   0 
 
Dead Markings    [44,43,42,41,40,38,35] 
 

Fig. B.10 'Static analysis for the abstracted caller role within the hierarchical net' 

 
Fig. B.10 shows that for the original hierarchical net, by considering one of its two 
components at an abstracted level and one at a detailed level, the state space graph has 
halved in size (in terms of time, the original hierarchical net and the abstracted net 
calculations took less than one second as reported by the toolset). The technique was 
carried out again. This time the detail was abstracted out of the process associated 
with the receiver role's 'Connect_Call' transition and the caller's 'Make_Call' transition 
reverted back to the decomposition presented in the original hierarchical net. The 
revised parent net showing abstraction of the receiver role is shown in Fig. B.11. 
  

 
Fig. B.11 'Abstracted receiver role used for re-calculation of state space graph' 

 
From Fig. B.11 it can be seen two transitions, 'Abstracted Connect_Call' and 
'Amend_Line' are needed to facilitate the provided and required interfaces and 
telephone line reset for the 'Connect_Call' transition decomposed in the original 
hierarchical net of Fig. A.4. The re-calculated state space graph results for Fig. B.11 
are shown in Fig. B.12. 
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Reachability/State Space 
     Nodes:  77 
     Arcs:   146 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  77 
     Arcs:   146 
     Secs:   0 
 
Dead Markings    [77,76,75,74,73,68,62] 
 

Fig. B.12 'Static analysis for the abstracted receiver role within the hierarchical net' 

 
Again, Fig. B.12 shows that for the original hierarchical net, by considering one of its 
two components at an abstracted level and one at a detailed level, the state space 
graph has reduced in size (in terms of time, the original hierarchical net and the 
abstracted net calculations took less than one second as reported by the toolset). This 
time the abstraction benefit is not as great due to there being a greater number of core 
net elements required in the abstracted net from the decomposed 'Connect_Call' 
subnet (mainly from the telephone line reset logic). Before drawing any conclusions 
the effect of a compositional approach to state space calculation is now considered. 
 

B.1.5 Largeness Avoidance by Composition 
The abstraction technique used above takes advantage of a top-down, functional 
decomposition approach and aims to remove one subnet's elements from the state 
space while maintaining the overall structure or composition of the net. Another 
technique investigated also takes function into account but does so in a compositional 
or bottom-up way. Unlike Petrucci et al's largeness reduction approach to the state 
space problem using modularity, the aim of the modular approach is largeness 
avoidance. Where Chukwuogo [52] used hierarchy within nets to identify components 
to abstract the detail from, the work did not report on model-checking individual 
components. The interface information within the telephone system is used to derive 
its constituent modules (in this case, processes). These are model-checked 
individually.  
 
The parent or 'overall structure' net specifies the order of interface usage as well as the 
activity execution sequence within the processes. In the telephone example, there are 
two distinct interfaces specified ('Try_To_Connect' and 'Response_From_Receiver'). 
One is provided by the Receiver component, and one by the Caller component. Three 
processes and their constituent activities use the interfaces. Two processes are 
associated with the Caller component and one process with the Receiver. The parent 
net specifies that one of the Caller's processes uses the Receiver's connecting 
operation first. The Receiver's process accepts the incoming call and uses the Caller's 
response operation. Finally, the second process associated with the Caller deals with 
the Receiver's response. Each of these three processes uses the interfaces to send and 
receive information. As long as these interfaces are adhered to, the component 
processes can be changed or substituted without requiring changes to the interfaces or 
other components.  
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In the compositional approach to static analysis, the three processes are considered in 
the order specified by the parent net. The Caller call initiation process is first in 
sequence and the parent net of Fig. B.13 highlights the sequence. 
 

 
Fig. B.13 'Parent net showing control sequence and operation ownership' 

 
The trigger input of this process is lifting the telephone receiver. The output is 
information required by the 'Try_To_Connect' interface place. The aim of the 
approach is to maintain the required inputs and outputs of these three processes as if 
they were still part of one whole net so that static analysis can be informed and 
conducted on each. For the first process, the initial marking was an attempt to model 
two calls so two tokens were used in the initial marking. Fig. B.14 shows the first 
process subnet and state space graph results calculated for this subnet. 
 

 
 
Reachability/State Space 
     Nodes:  9 
     Arcs:   12 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  9 
     Arcs:   12 
     Secs:   0 
 
Dead Markings    [9] 
 

Fig. B.14 'Static analysis for the Caller component initiate call process in the 
compositional approach' 
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The output from the first process in the untimed net is simply the same tokens on 
output interface place 'Try_To_Connect' as those used in the initial marking. These 
were manually entered as the initial marking of the next process in the sequence, the 
Receiver component's respond to call process (Fig. B.15).  
 

 
 
Reachability/State Space 
     Nodes:  19 
     Arcs:   24 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  19 
     Arcs:   24 
     Secs:   0 
 
Dead Markings    [16,18,19] 
 

Fig. B.15 'Static analysis for the Receiver component respond to call process in the 
compositional approach' 

 
The static analysis results for this subnet are shown at the bottom of Fig. B.15. Three 
dead markings were obtained. For each of these dead markings, the tokens on output 
interface place 'Response_From_Receiver' could have the following values: 
 
1. 1`(Ringing_Msg,1)++1`(Ringing_Msg,2) 
2. 1`(Ringing_Msg,1)++1`(Engaged_Msg,2) 
3. 1`(Engaged_Msg,1)++1`(Ringing_Msg,2) 
 
All three were manually input into the third and final process, the Caller component's 
process that handles responses, as shown in Fig. B.16. 
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Reachability/State Space 
     Nodes:  480 
     Arcs:   1592 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  480 
     Arcs:   1592 
     Secs:   0 
 
Dead Markings    [476,477,478,479,480] 
 

Fig. B.16 'Static analysis for the Caller component call response process in the 
compositional approach' 

 
Following inspection of the five dead markings of Fig. B.16, using the three pairs of 
tokens suggested by process two as the initial marking of process three in model-
checking is not the correct way to obtain the true range of possible behaviour from 
two initiated calls in the telephone system. As it stands, the initial marking in Fig. 
B.16 represents six initiated calls. Instead, each of the possible pairs output from 
process two should be input into process three separately as an initial marking and 
model-checked. Composition of the dead markings obtained from the three separate 
model-checks will provide the complete range of behaviour for two initiated calls in 
the telephone system. This is shown below: 
 
1. 1`(Ringing_Msg,1)++1`(Ringing_Msg,2) used as first initial marking of process 
three. 
 
Model-checking found three dead markings. Each dead marking's 'Hangup' place had 
the following markings: 
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2`Call_AnsweredMsg 
1`Not_AnsweredMsg++1`Call_AnsweredMsg 
2`Not_AnsweredMsg 
 
2. 1`(Ringing_Msg,1)++1`(Engaged_Msg,2) used as second initial marking of 
process three. 
 
Model-checking found two dead markings. Each dead marking's 'Hangup' place had 
the following markings: 
 
1`Engaged_Msg++1`Call_AnsweredMsg 
1`Not_AnsweredMsg++1`Engaged_Msg 
 
3. 1`(Engaged_Msg,1)++1`(Ringing_Msg,2) used as third initial marking of process 
three. 
 
Model-checking found two dead markings. Each dead marking's 'Hangup' place had 
the following markings: 
 
1`Engaged_Msg++1`Call_AnsweredMsg 
1`Not_AnsweredMsg++1`Engaged_Msg 
 
Combining the markings obtained from the three separate pairs of initial markings to 
process three gives: 
 
1. 2`Call_AnsweredMsg 
2. 1`Not_AnsweredMsg++1`Call_AnsweredMsg 
3. 2`Not_AnsweredMsg 
4. 1`Engaged_Msg++1`Call_AnsweredMsg 
5. 1`Not_AnsweredMsg++1`Engaged_Msg 
 
These markings are the five possible outcomes from the telephone process when two 
calls are initiated. 
 
It should be noted that the same compositional approach was attempted for larger 
numbers of initiated calls in the first process. Due to the very manual nature of the 
compositional approach so far and high numbers of potential inputs obtained for 
subsequent stages, a current weakness of this approach is the volume of values the 
modeller has to process. 
 

B.1.6 Summary of Largeness Avoidance Techniques 
Using a top-down approach the main functions and their underlying processes were 
identified. Static analysis was performed on the developed model and it was noted 
that state space explosion tended to be alleviated when small numbers of initial tokens 
were used. From this analysis insight was gained into the correct behaviour of the 
model. Detail was then abstracted out of each main function in turn (the abstraction 
approach) and static analysis performed. This lowered the state space graph size 
substantially (the time for two initiated calls took less than one second). 
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The top-down approach and information gained abstracting out the detail of each 
main function helped to identify the individual components at the lowest abstraction 
level to analyse in a compositional approach. Use of existing nets have not been 
considered in this thesis or where the compositional approach could help a modeller 
compare modules identified using the top-down method with those derived from 
existing systems or previous modelling attempts. Substantial state space graph 
calculation size benefits were noted using the compositional approach (as for the 
abstraction approach, reported calculation time was less than one second).   
 
With the compositional approach, the modeller needs to consider each process and its 
inputs and outputs carefully. This is beneficial as it promotes further verification 
within the modules of the overall model. For example, following static analysis of the 
second process in the telephone system, the third possible marking, 
1`(Engaged_Msg,1)++1`(Ringing_Msg,2), on place 'Response_From_Receiver' could 
reflect undesirable behaviour in the model. As this is produced as a potential outcome 
from process two, the second call has overtaken the first at a point in process two 
resulting in the first call receiving an engaged tone. The modeller may then choose to 
amend the model accordingly to eradicate this outcome.  
 
In this way, the modeller can gain understanding of the behaviour of subnets and the 
overall net in stages, with the ability to use subsets of outputs of each process as 
inputs into the next, examining, understanding, correcting and amending the 
behaviour of the model as necessary. From the telephone example, the hierarchy used 
within the model was based on functional decomposition with functions implemented 
by components. As with systems-of-systems, the telephone system components are 
integrated with one another via communication at well-defined network interfaces. 
The components or subnets at the lowest level of abstraction are likely to contain the 
logic controlling the behaviour of the system. Ideally, these modules will form the 
basis of an organisational repository for future re-use and evolution for other systems. 
These modules could then be used in a bottom-up approach to development by 
specifying a control sequence for their integration. A parent net can be developed with 
abstract activities based on the function of the more detailed existing nets using the 
subnet's interface places as the means to perform the linking between the different 
abstraction levels.  
 
Unlike static analysis of a full hierarchical model (or even a hierarchical model using 
the abstraction largeness avoidance technique), a modeller has the ability to narrow 
down the scope of analysis by examining a module in isolation. The modeller does not 
have to inspect a state space graph of the entire model to trace how particular dead 
markings that may or may not relate to the behaviour of the module have been 
reached. Where the entire model is non-trivial, the state space graph is likely to 
consist of a high number of nodes (even using the abstraction largeness avoidance 
technique) and manual inspection will not be a straightforward task. A compositional 
approach to analysis also allows a modeller unfamiliar with a model at the lowest 
abstraction level to investigate and verify its behaviour at its input and output 
interfaces prior to its integration with other modules. It may also be of benefit in 
promoting understanding of models to unskilled practitioners. 
 
A current weakness of the compositional largeness avoidance technique occurs when 
greater numbers of initial markings are used or there are large numbers of modules to 
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integrate (as would be likely in large-scale systems-of-systems). Currently the 
approach involves much manual effort. Both automation and a model management 
approach would be highly recommended. It may be possible to use functional 
decomposition to analyse modules as part of functional groupings (and divide up the 
groupings between modellers) prior to their integration into the overall system-of-
systems model. 
 
Based on the investigation, use of the two approaches in conjunction with one another 
and with full hierarchical analysis (where this is possible) is recommended. Both 
largeness avoidance approaches (and use of nets to model large-scale systems) rely on 
a suitable hierarchy being in place. With the telephone system, top-down functional 
decomposition is used at conceptual, and design and architecture levels of model 
abstraction to modularise and provide hierarchical structure within a model. Given 
system-of-systems' reliance on communication between components at defined 
network interfaces, these communication interfaces form the boundaries between the 
hierarchies of components in the system-of-systems. In the model and the real-life 
system-of-systems, hierarchy and interfaces are key enablers of scalability and 
verifiability. For a net to capture a system-of-systems, the concepts of hierarchy and 
interfaces must be realisable within the net. Equally, for a net to be verifiable, there 
needs to be a way to analyse its hierarchy of modules and minimise the risk of state 
space explosion. The two approaches discussed above may be able to contribute in 
this area.   
 
The abstraction approach can be used to remove the underlying detail from one or 
more components of the parent net and analyse the overall control structure and 
behaviour of the model. The compositional approach can be used to verify individual 
components at the lowest abstraction level identified by the top-down functional 
decomposition on an individual basis. The compositional approach can also be used 
with existing models, i.e. a bottom-up approach. A potential future area of research 
would be comparison of existing component nets and those identified using a top-
down approach. Best practice approaches related to management of verification of 
large-scale systems models will be essential for dividing up the modelling workload.   
 
Together with the abstraction and compositional techniques described above, other 
largeness avoidance techniques that can be readily employed with the toolset involve 
restricting potential values of types defined for places and token volumes. In the 
analyses, colours (types) were defined with finite values in the telephone example. 
For example, colour 'Call' was declared as an enumerated type with seven possible 
values. Variables defined as this enumerated type were bound during dynamic and 
static analyses to a value from a small finite set. The state space analysis was 
calculated using an initial marking of two tokens of type 'Call'. Given there are no 
loops in the nets, this essentially bounded the net to a maximum of two tokens per 
place. 
 
These largeness avoidance techniques will be applied in the larger-scale case studies. 
They are also explored further in Appendix D during the analysis of nets at design and 
architecture abstraction levels.  
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B.2 Conclusions so far following Verification using Coloured 
Petri Nets  

Coloured Petri nets with hierarchy provide a modeller with a specification language 
consisting of places, place types, directed arcs, transitions, abstraction and rules of 
interpretation for the net elements. These rules and elements can be described 
mathematically. Coloured Petri net models combine graphical notation and textual 
annotation (the degree of textual annotation support is toolset dependent) to capture 
what a system should do. It is anticipated that a modeller would then use this formal 
language to output a model regarded as a primary point-of-reference by other people 
involved with the system lifecycle. As the people involved will include skilled and 
unskilled Petri net practitioners alike, it is vital that this model be precise, correct, 
readable and understandable. 
 
Unlike UML, system specification is not separated across different types of diagrams. 
Both syntax and semantics of Petri nets are described mathematically. To a skilled 
Petri net practitioner, the single net model in Fig. A.3 specifies information state, 
activity, and control sequence related to a telephone call's operational process and 
information exchange protocol. To an unskilled practitioner, the net in Fig. A.3 may 
well be very difficult to read and comprehend due to unfamiliarity with the underlying 
rules of interpretation, minimal textual annotation, default use of toolset colour 
palette, failure to identify input parameters, failure to identify relations between inputs 
and outputs, failure to map between net and domain, failure to see how new features 
could be added to the net, and the low variety of symbol elements.  
 
The fact that a telephone system concept is being specified by the net can only be 
inferred through adequate use of labelling of places and transitions (some toolset's 
permit enhancement to a net's graphical notation via pictorial inclusion and 
animation). There may still be ambiguity regarding the meaning of the net as a result 
of the labelling convention used unless an organisation-wide convention is adopted. 
 
The modeller using nets needs to understand the problem domain being specified so 
that there is accurate capture of operational process and information exchange 
protocol. This could be facilitated through use of domain experts, access to tried and 
tested models at higher and lower abstraction levels (e.g. Petri net or UML), and 
operational guidelines or documentation. It was useful to begin by constructing a very 
basic net in terms of functionality, and use dynamic and static analyses to increase 
confidence in its correctness before adding further information.  
 
Simulation was used as an initial means to check the logic of the net. Petri nets were 
found to be useful knowledge elicitation tools in their own right for capturing the 
information required. Not only can nets be interactively stepped through, unskilled 
practitioners (e.g. domain experts), can participate with the modeller in their 
verification. Simulation helped highlight incorrect logic on transition output arcs, 
unsuitable variable bindings where the destination place type declaration did not 
include a required value (and simulation execution effectively halted), and the need 
for the modeller to exercise care in their use of unique variables in logic used on 
transition output arcs.      
 
Once errors or amendments detected using simulation have been corrected, static 
analysis can be performed on the net to perform more exhaustive verification on the 
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net and its behaviour. Correct and incorrect deadlock states, and correct process logic 
can be examined. Desirable reachability states can be confirmed using branching logic 
queries (a toolset-dependent feature). The process of formulating queries and 
examining results from static analysis is a highly beneficial activity. In order to verify 
the results from the model-checker, the modeller has to understand the concepts 
behind the analysis so they can trace execution paths to terminal markings and reason 
why the places in terminal markings have certain markings. This leads the modeller to 
have increased insight into the logic used within their net, insight that is not 
necessarily gained using UML models (static or executable). Once static verification 
is undertaken, there can be greater confidence that the resultant net accurately and 
correctly describes what the system should do, ready for evolution in subsequent 
system lifecycle stages. 
 
As indicated in sections A.3.2, B.1.4 and B.1.5, informed use of hierarchy may be 
able to help alleviate the state space explosion problem in model-checking 
(specifically, use of model viewpoints or abstraction levels, hierarchy within models, 
and component abstraction and composition). This will be essential for the deeper 
verification of large-scale system-of-systems. Hierarchy employed in this way can 
also facilitate scalability and specification of a system-of-system's operational 
processes and design and architecture components. In addition, careful employment of 
graphical enhancement, further textual annotation and a toolset's colour palette should 
mean nets can be used as primary points-of-reference in the system-of-systems 
lifecycle by both skilled and unskilled net practitioners.  
 
As demonstrated by the telephone example, static and dynamic analyses of a net 
would be very much an iterative part of the system development process. 
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Appendix C  
 

C.1 Validation of the Telephone Process using a Timed 
Coloured Petri net 

Using the simple telephone example in Appendices A-B, it has been shown that 
classic and high-level Petri nets can be used to specify the behaviour of a system 
(albeit with varying degrees of success). To capture the efficiency or performance of a 
system and facilitate validation of its design, time-dependent actions such as timeouts, 
processing delays or deadlines are essential. As well as efficiency specification, time-
dependent actions also enhance a system's behaviour specification in terms of 
correctness. Activity ordering alone is insufficient to capture overall system behaviour 
precisely. Tokens representing information in larger-scale systems will be processed 
according to the time they entered the system, time involved in their consumption and 
generation, and involvement in delays and transfer failures. Timing will be needed to 
specify the ordering multiple tokens receive over and above any activity sequence 
they experience. Timing information may need to be approximate, exact or both 
depending on the stage of development of the system. Classic Petri nets only include a 
basic concept of time in that actions (transitions) follow a particular execution order 
from an initial marking. Petri nets have been extended to incorporate the concept of 
time via their places, transitions, tokens, arcs or a combination of these, for example 
[80, 83]. 
 
Petri nets are deterministic timed nets if the delay is known, or stochastic timed nets if 
the delays are random, or deterministic and stochastic timed nets if a combination of 
fixed and random delays are present. In stochastic nets, firing time is associated with 
each transition indicating the delay from when the transition is enabled until it fires. 
Usually, the transition with the minimum remaining firing time affects the next 
marking of the net. Following this marking update, each newly enabled timed 
transition obtains a delay from the delay distribution and each timed transition 
enabled in the previous marking (and still enabled in the current marking), keeps its 
remaining delay. Transitions disabled in the current marking lose their remaining 
delay. Common stochastic Petri net models are by [51] and [49]. 
 
Deterministic and stochastic nets contain immediate transitions (when enabled, fire 
without delay), stochastic transitions (when enabled, fire after some delay sampled 
from a distribution), and deterministic transitions (when enabled, fire after a constant 
delay). Enabled immediate transitions have firing priority over enabled timed 
transitions. Multiple enabled immediate transitions should be specified with firing 
probabilities to resolve firing conflict. 
 
This thesis uses high-level, timed coloured Petri nets. Jensen [80] extended coloured 
Petri nets with timed coloured Petri nets. With these nets a global clock is introduced 
for the net model. The state of a timed coloured Petri net consists of a marking and the 
global clock time. Timed coloured Petri nets can contain both timed and untimed 
coloured tokens. Timestamps are controlled by initial marking, transition or output arc 
expressions where discrete and probability distributions can be used to define the time 
taken for a transition to fire. Timestamps allocated to the tokens must be less than or 
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equal to the current model time in order to be removed. In this way, timed transitions 
represent the time taken by the system to perform a given task. Transitions known as 
immediate transitions can also fire in zero time.   
 
CPN Tools implements timed coloured Petri nets but supports deterministic and 
stochastic model behaviour via discrete and continuous functions. However, in order 
to calculate a state space graph, models have to be discretised, i.e. evaluated to see 
whether they can be made deterministic and finite. Based on this, CPN Tools has a 
bias for stochastic behavioural support via simulation rather than static analysis. 
Unless infinite models are made finite, static analysis of them is intractable. For 
support of deterministic and stochastic Petri nets, an alternative toolset would need to 
be adopted. As this thesis is concerned with large-scale, discrete event system-of-
systems where their behaviour is (ideally) deterministic and terminating, use of CPN 
Tools is maintained. Even at the system-of-systems architecture level of design, 
events specified will be of a discrete rather than continuous nature. Continuous 
specification will be required in physical monitoring at a lower level of (component 
system) detail. However, prioritisation between events should be enabled at a system-
of-systems level. 
 
Several research initiatives have been undertaken using timed Petri nets. These 
include: Christensen et al in [82] make use of timed coloured Petri nets to optimise the 
performance and capacity of a web server; Van der Aalst et al in [83] use interval 
timed coloured Petri nets to study rail time-tabling; Bulitko et al in [84] use time 
interval Petri nets to analyse real-time damage limitation on ships; Van der Vorst et al 
and Makajic-Nikolic et al use timed coloured Petri nets to examine supply chains [86, 
87]; Dahl et al consider interval timed coloured Petri nets in penetration testing [85]; 
Kwantes uses timed coloured Petri nets to analyse a banking clearing process [88]; 
and Schomig et al use stochastic Petri nets to model business processes in [89].  
 
All the approaches [82-89] are useful in providing guidance on development of 
performance models and contributing to parts of the validation of system-of-systems. 
Their approaches deal with continuous management, proactive and retrospective 
analysis of physical products but do not take into account the unique characteristics of 
system-of-systems. For development of system-of-system performance models, the 
budget-holder should be considered in the process, as well as the concurrent and peer-
to-peer (equal) nature of the provided and consumed functions (services) realised by 
the processes and their components. In system-of-systems, intangible services are 
realised using tangible resources in different environmental locations. The perceived 
quality of service of these intangible functions arises from the efficiency of the 
processes. Insight should be offered into assessment of different ways of realising 
these intangible services at an early development stage and maintained throughout the 
system-of-systems development stages. For example, an assessment model should 
help to answer whether an optimal combination of activities that leads to a reduced 
service response time exists. 
 
Currently, the example telephone system has been specified at an operational process 
(conceptual) model level of abstraction which is the first stage in large-scale, system-
of-systems development. Typically, this viewpoint is useful for gaining a shared 
understanding of the problem concept and the intended technical and non-technical 
audience would include analysts, developers and domain users. The introduction of 
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timing information to the telephone example at this abstraction level would help 
enable domain users and developers to decide whether the modelled concept was 
efficient and adequate for input into the design stage. Assessing performance would 
involve checking if the modelled processes reached desirable behaviour states 
(including recovery from undesirable states) within realistic time and resource 
estimates. Improving the efficiency of the process means looking for new or different 
ways to realise desirable behaviour within defined time, cost and quality parameters.  
 
To examine alternative options for the process, it was necessary to determine the time, 
cost and quality performance indicators for the telephone service and implement these 
in the model. Examples of these indicators include call fulfilment time, 
communications resource usage (and related costs), and call fulfilment time within a 
certain time limit. The natural inclination would be to minimise the first two and 
maximise the last one but all three need to be taken in context with the strategy of the 
organisation(s) involved. In the case of system-of-systems, it is essential to understand 
the economic and operating environment for system-of-systems services, and which 
(if any), of the performance indicators carries more weight than the others.  
 
As highlighted in the telephone example, performance indicators could include 
average call fulfilment time, reduction in fulfilment time for priority calls, and 
average call duration. From the caller and receiver, i.e. as customers of a telephone 
service provider point-of-view, reduced cost and higher quality may be the most 
important performance parameters in relation to their service provider. From a 
receiver's point-of-view, if they are a business service-provider themselves, they are 
likely to be most concerned with time and quality parameters relating to customers 
trying to connect. From a telephone service provider's point-of-view, they need to 
appreciate who they are providing the service for so they can tailor their service 
provision strategy accordingly and use it to influence the lifecycle of their call 
systems.  
 
In the example, as the system was specified originally from the receiver's point-of-
view, it is assumed that they are a business service provider concerned with higher 
quality and lower time parameters for customers. This means the receiver would be 
interested in minimising call fulfilment time and maximising connection on first 
attempt, i.e. answered calls for its customers. As it stands, the operational process net 
from Fig. A.4 is modelled from the viewpoint of the receiver. Although operational 
process nets can be used in performance analysis, further adaptation is usually 
required to support the viewpoint, performance indicators and strategy of the 
viewpoint concerned.  
 
Dynamic analysis (simulation) is used in conjunction with timing in the net. Timing 
delays were introduced on the source and various intermediate places within caller 
and receiver processes using an exponential distribution to represent random call 
placement and delays between each activity in the call process. From initial 
simulation runs, a record declaration was needed for each call in order to store the 
model time at which the 'Dial_Number' activity executes. This was viewed as the start 
of the attempt by the underlying communications infrastructure to connect the caller 
with the receiver. Again, a time delay was introduced here to the record token to 
represent the delay of the underlying communications infrastructure.  
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Once the receiver's line is checked for readiness to receive the incoming call, another 
delay is triggered to represent receipt of the relevant dial-tone from the underlying 
communications infrastructure back to the caller. The time at which the 'Response' 
activity executes is viewed as the end of the attempt by the underlying 
communications infrastructure to connect the caller's call. This model time is also 
stored in the call record (shown in Fig. C.1).  
 

 
Fig. C.1 'Caller subnet within performance analysis net of telephone process' 

 
The net toolset permits extraction of data from certain places or transitions during 
simulation of the operational process. This information could be used to calculate 
timing delays for processes associated with particular components, individual or 
groups of activities, and the process as a whole. In the telephone example, data 
collection was carried out on the 'Response' transition. Each time the transition fired, 
the call record was examined and the recorded model start time for the call's 
connection attempt was subtracted from the model time at which 'Response' fired. The 
result was deemed to be the connection fulfilment time for a particular call, i.e. the 
time between the caller completing dialling of the receiver's number and hearing an 
engaged or ringing tone.  
 
In this way, the net toolset could be used to simulate a number of calls being placed 
from callers to the same receiver (in this case five call tokens were set up as the initial 
marking of the 'Lift_Receiver' place) and to obtain statistics based on the timings 
obtained for each call made. 
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Fig. C.2 'Telephone net standard performance report for configured data collection' 

 
 

 
 

Fig. C.3 'Telephone net text file report for Response transition data collection' 

 
 

 
 

Fig. C.4 'Telephone net log file report for Response transition data collection' 

 
Figs. C.2-C.4 show a sample of the net toolset's output in relation to performance 
analysis of a net. Fig. C.2 is a standard performance report produced for any data 
collection configured within a net. It can be seen that there are five types of statistics 
shown and these statistics can be configured by the modeller. Figs. C.3-C.4 detail the 
content of the call record following execution of the 'Response' activity. Fig. C.4 
details the execution steps of the 'Response' transition during the simulation, the 
corresponding model time and call fulfilment duration results for each 'Response' 
execution (under the data column). Fig. C.2's model steps value is two higher than 
Fig. C.4's last recorded step value of thirty-three. This is due to there being two final 
transition executions following the final execution of transition 'Response'.  
 
Using data collection, for this particular simulation it can be seen that the five calls 
took a total of fifty time units for their call connections to be fulfilled at an average of 
ten time units per call. From the receiver's efficiency concerns, they can then decide 



 181

how to improve on this average. For example, they may choose to look at the effect of 
additional resources on fulfilment times, e.g. a second physical line. This can be 
implemented in the model by setting a new initial marking for 'Receiver_Line' of two 
and re-running simulation. A priority queuing mechanism could also be implemented 
in the model to reduce the number of connection attempts resulting in receipt of an 
engaged tone or unanswered ring tone.  
 
In addition, the net toolset can be used to set up automatic simulation runs with a 
different selection of parameters per run. For example, simulation runs could be set up 
for the telephone process where calls are initiated in the system until a certain number 
of calls is reached, different random distributions can be used per run, the number of 
available lines available to the receiver can be amended, further data collection points 
can be implemented to examine duration of calls answered by receiver or the number 
of unanswered or engaged results. The net can be further amended to reflect 
probability of underlying network failure and capture statistics based on the number 
of call attempts fulfilled at the first attempt. Statistics generated can be presented 
textually or graphically. 
 
It should be noted that all timings used in the telephone process are estimates. For 
systems-of-systems, it would be anticipated that timings would be informed by 
subject matter experts, archived, to-be architecture models describing the physical 
component(s) realising the process or actual implemented components. Based on the 
results from performance analysis, process logic may benefit from amendment. This 
could involve consolidation of activities under a different role, activity removal, 
additional resources, or activity re-ordering. 
 
At this stage in development, no physical components have been decided upon to 
realise the activities and processes specified. Of interest is using knowledge of (legacy 
or planned) physical assets to help optimise engineering of the operational process 
level via analysis-of-alternative scenarios. As well as the timing statistics incorporated 
above, Salimifard et al [94] report on using nets to allocate physical resources and 
costs to activity execution. This work is highly relevant to the development of large-
scale system-of-systems and can be adapted to it, facilitating analysis-of-alternatives 
in operational process engineering. The adaptation for the telephone system is shown 
in Figs. C.5-C.6. 
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Fig. C.5 'Activity subnet detailing physical asset and role to perform Dial_Number 
activity' 

 

 
Fig. C.6 'Physical asset net scheduling and processing jobs based on required role' 

 
Fig. C.5 is an instance of a subnet constructed to specify how its parent activity (in 
this case 'Dial_Number') should be processed in terms of physical asset and role 
within the asset. 'Dial_Number' is to be processed by the 'Comms' physical asset, 
specifically the 'ATM' role. Fig. C.6 is a net specifying how the 'Comms' physical 
asset takes in activities or jobs for processing. In the net, 'Dial_Number' activity 
arrives and checks are made to see that it is meant to be processed by this asset and 
the role identified. The job is then added to the asset's overall schedule (associating it 
with the 'ATM' role) by the 'COMMS_Sched' transition. Jobs are then processed 
according to their estimated processing time, rate of the role, and cost of the role. At 
the end of the processing, the role is released and the processing information (time 
and cost involved) are returned to the subnet of Fig. C.5. The subnet then returns 
control back to its parent net and the next activity's processing information can be 
obtained in a similar way. This information can be extracted from the overall net 
using the toolset in order to gain timing and cost information per activity, per 
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component process, and for the process overall based on the physical assets used to 
realise the component activities and processes.    
 

C.1.1 Static Analysis of Timed Coloured Petri Nets 
Of further note is static analysis of an untimed net amended for performance analysis 
through the addition of timing. Based on the thesis work with timed coloured Petri 
nets using the net toolset, CPN Tools, and recommendations from Jensen [90], static 
analysis of timed nets requires careful management. According to Jensen [90,100], 
non-determinism in nets means that a marking cannot be uniquely determined 
following an enabled transition's execution. For non-deterministic nets, the same state 
space cannot be generated twice due to this unpredictable behaviour. [90] suggests 
evaluation of a non-deterministic net to check whether it can be made into a 
deterministic one. Measures include: restricting the numbers of tokens in the net 
through initial markings or places that keep track of and enforce a limit the number of 
tokens; analysing one case of probability at a time; and removing the use of functions 
from the net (including random distribution functions) and substituting variables that 
can be bound from a small range of values defined by their associated type. Although 
these measures can apply to untimed as well as timed nets, timed nets are at much 
greater risk of experiencing the state space explosion problem than their equivalent 
untimed net during static analysis.  
 
In static analysis of timed coloured Petri nets, state space graph calculation considers 
all potential times that can be associated with tokens as well as their colour (types). 
Sole description of activity ordering in a model can lead to an ambiguous or erroneous 
behaviour specification when multiple tokens are involved in nets (due to lack of 
priority and potential for overtaking). Timing can help reduce this ambiguity by 
associating a timestamp with a token. It may still be possible for tokens to overtake 
one another depending on introduced delays, timeouts and failures but static and 
dynamic analyses should help the modeller ascertain why certain output has been 
achieved. Timed nets will be essential in system-of-systems behaviour specification. 
Management, including best practice approaches towards their analysis is also 
essential. The telephone process is considered with this in mind. 
 
For the telephone process example, an untimed operational process net was used in 
static analysis until a stable behavioural model was achieved. This model was then 
enhanced with timing information with a view to improving behaviour specification 
and undertaking validation. From associated simulation of the timed net, further logic 
amendments were made to the net. Before detailing some of these, static analysis was 
carried out on the net in order to verify the effects of these enhancements on its 
behaviour.  
 
Even after following the recommended measures to ensure non-determinism in the 
analysed net, static analysis using the timed net resulted in a dramatic increase in the 
size of the state space graph and its terminal markings in comparison to the untimed 
net used as the basis for implementing the timing information. Inconsistent dead 
marking results were obtained across analysis runs prior to exercising the non-
deterministic measures. These measures included minimising the initial marking to 
represent two initiated calls and using a small colour (type) to capture delay for three 
transitions (activities). Recording of call fulfilment time was also removed from the 
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net and the arrival times of the two calls were separated by one unit using hard coding 
in the initial marking (Fig. C.7).  
 
When static analysis of the timed net was run, a full state space was calculated in 
three seconds resulting in four thousand two hundred and twenty-five nodes and nine 
thousand one hundred and one arcs. Fifty terminal markings were obtained. For the 
equivalent untimed net, i.e. essentially the net elements and inscriptions of the timed 
net with timing in colours (types) definitions removed, a full state space was 
calculated in one second with one hundred and sixty nodes and three hundred and 
thirty-five arcs. Five terminal markings were obtained. On further inspection of the 
state space graph and standard report obtained from the timed net, the difference in 
size and number of terminal markings was attributed to the way timestamp 
information is used in the state space graph calculation. 
 

 
Fig. C.7 'Timed net of telephone process showing initial marking and delays' 

 
From Fig. C.7, the initial marking and time delay introduced (given by the 'lgth' 
variable binding) following execution of transitions 'Wait_For_Tone' and 
'Dial_Number' can be seen. The binding of variable 'lgth' can be selected from a small 
integer colour ranging between one and four. The two initial marking tokens have 
timestamps of one and two units respectively and there are three output arc 
inscriptions which are used to add three further time delays of between one and four 
units. In static analysis, the net toolset evaluates the state space graph for every 
possible binding of 'lgth'. In the timed telephone example, after execution of 
'Phone_Tone', possible timestamps at place 'Response_From_Receiver' for the token 
that started with timestamp one (following addition of the three time delays) range 
from values four to thirteen. For the token timestamped with two, possible values at 
'Response_From_Receiver' range from five to fourteen. Table C.1 shows how these 
ranges were reached. 
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  Transition  Wait_For_Tone Dial_Number Phone_Tone 
Initial Marking  Model 

Time 
Delay @+lgth @+lgth @+lgth 

 1  2,3,4,5 3,4,5,6,7,8,9 4,5,6,7,8,9,10,11,
12,13 

 2  3,4,5,6 4,5,6,7,8,9,10 5,6,7,8,9,10,11,1
2,13,14 

N.B. lgth=1,2,3 or 4 

Table C.1 'Possible timestamp ranges following execution of the three transitions' 

 
The earliest model time a call result on place 'Hangup' can be obtained is four units. 
At four units, 'Receiver_Line' place would have a timestamp of four and the first call 
token (initially timestamped one) would have produced a 'Call_AnsweredMsg' or 
'Not_AnsweredMsg' (due to the initial marking of place 'Receiver_Line' of 
'Line_FreeMsg' it is not possible for the result of the first call to be 'Engaged_Msg'). 
The lowest timestamp the second call (initially timestamped two) would have on 
place 'Response_From_Receiver' following this result would be five. The second call 
would also produce a call result on place 'Hangup' of either 'Engaged_Msg', 
'Call_AnsweredMsg' or 'Not_AnsweredMsg'. As part of the second call process, it 
will reset the receiver's line to free if it successfully connected through to the receiver. 
The last transition in the net, 'Amend_Line' resets the line as required, updating the 
'Receiver_Line' place's timestamp in the process. Following completion of both calls, 
in this case where the lowest possible timestamp values have been used, the terminal 
marking will show one of five possible results in place 'Hangup' and the second call 
having a final timestamp of five (it is known that the first call has a minimum 
timestamp of four).    
  
Using the above analysis, Table C.1 and inspection of the terminal markings, the fifty 
terminal markings in the timed standard analysis report can be accounted for. The 
state space graph terminal markings centre around ten pairs of timestamps (i.e. four 
and five, five and six, up to thirteen and fourteen) with five possible values in place 
'Hangup'. The five markings from analysis of the untimed net have essentially been 
repeated for each pair of timestamps. It can be seen that this timed analysis only used 
two tokens representing calls in the initial marking and short delays of one to four 
units. Subsequent analysis with three calls in the initial marking resulted in the state 
space explosion problem (within the set processing limit of twenty minutes). Further 
work was undertaken using static analysis of untimed nets, timed nets and abstraction 
of process detail within hierarchical nets to see if there were ways to alleviate the state 
space explosion problem in timed nets. 
 
Calculation of a state space graph was attempted for a timed net and its untimed 
structural equivalent, i.e. identical net elements and no timed colour (type) definitions 
or delays. Both types of nets employed deterministic measures. Variations in 
parameters and results are shown in Tables C.2-C.5: 
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STATE SPACE 
GRAPH 

Untimed 1 Timed A Timed B 

Initial marking 
   

Nodes and arcs 160 nodes, 335 arcs. 4225 nodes, 9101 arcs. 655 nodes, 1289 arcs. 
Generation time 1 sec. 4 secs. 1 sec. 
Terminal 
markings 

5 50 20 

Delay range N/A 1..4 1..2 

Table C.2 'Comparison between untimed and timed state space graph calculation' 

 
STATE SPACE 
GRAPH 

Untimed 2 Timed C Timed D 

Initial marking 

   
Nodes and arcs 2174 nodes, 6585 arcs. Explosion problem. 6390 nodes, 16453 arcs. 
Generation time 2 sec. 1200 secs (limit set).  12 secs. 
Terminal 
markings 

9 N/A 36 

Delay range N/A 1..4 1..2 

Table C.3 'Comparison between untimed and timed state space graph calculation' 

 
STATE SPACE 
GRAPH 

Untimed 1 Timed E Timed F 

Initial marking 
   

Nodes and arcs 160 nodes, 335 arcs. 51 nodes, 77 arcs. 78 nodes, 163 arcs. 
Generation time 1 sec. Less than 1 sec. Less than 1 sec. 
Terminal 
markings 

5 5 2 

Delay range N/A 1..1 1..1 

Table C.4 'Comparison between untimed and timed state space graph calculation' 

 
STATE SPACE 
GRAPH 

Untimed 3 Timed G 

Initial marking 

 
 

Nodes and arcs 26729 nodes, 105193 
arcs. 

163 nodes, 304 arcs. 

Generation time 606 secs. Less than 1 sec. 
Terminal markings 14 7 
Delay range N/A 1..1 

Table C.5 'Comparison between untimed and timed state space graph calculation' 

 
Unless time delays and token numbers are kept to a minimum (careful judgement of 
what constitutes this minimum is needed to avoid adversely affecting system 
behaviour), timed nets show a marked difference in their calculated state space 
graphs. This applies even after deterministic measures are applied to the timed net. 
Table C.2 Untimed 1 and Timed A and Table C.3 Untimed 2 and Timed C results 
illustrate this considerable size difference where the timed net uses three delays of 
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between one and four time units. Timed B and Timed D (Tables C.2-C.3) show the 
effect of reducing the range of the three timed delays to between one and two time 
units. The associated state space graphs are significantly smaller. In the case of Timed 
D, restricting the delay range further has made calculation of the state space graph 
tractable within the given processing limit of twenty minutes. In cases Timed A, 
Timed B and Timed D all final markings are correct within the given initial marking 
and delay range parameters. 
 
Table C.4's Timed E shows the effect of reducing the delay to one unit with two 
tokens (also separated by one unit) in the initial marking. Comparing it directly with 
its equivalent untimed net in Table C.4 (Untimed 1), it can be seen that five terminal 
markings (all desirable) are obtained from a smaller state space graph. From this 
result it can be concluded that the initial marking and delay range parameters of 
Timed E produce a specification of the telephone process where not only is the 
activity execution sequence detailed, the tokens are also prioritised within the net. 
Due to this token prioritisation through timing, there is no need to calculate reachable 
markings arising from alternative delay value choices (there is only one possible 
value, that of one unit). This contributes to the decreased size of the state space graph. 
The one unit delay does not constrict the desirable final markings of the telephone 
process: all five desirable dead markings achieved from the untimed net were 
obtained for this timed net. 
 
This is not the case in Table C.5 Timed G. A delay of one unit with three tokens (also 
separated by one unit) in the initial marking interferes with the desirable behaviour of 
the process. It restricts the behaviour of the model as the timing introduced dictates 
that the final, third call token will always encounter a free receiver line. The terminal 
markings of one call answered, two calls engaged and one call unanswered, two calls 
engaged will not be obtained in this model with these parameters. Timing dictates that 
the call token responsible for the busy line will always reset its status to free for the 
arrival of the third call token. Table C.3 Timed D specification for three tokens 
incorporates sufficient timing flexibility to allow for the outcome of two engaged call 
results following the first call.     
 

C.1.2 Largeness Avoidance by Abstraction and Timed Coloured 
Petri Nets 

The perceived benefits regarding state space graph calculation using process 
abstraction within hierarchical nets were highlighted in Appendix B, section B.1.4. 
This top-down process abstraction technique was repeated for the timed parent net. It 
was noted that in Chukwuogo's work [52], no analysis was undertaken on timed 
coloured Petri nets using the abstraction approach.  
 
The detail of the process associated with the caller role's 'Make_Call' transition was 
abstracted out of the timed net, i.e. the subnet of Fig. C.7 was removed. No 
decomposition of the 'Make_Call' transition from the parent net to a separate subnet 
was included. Instead, a minimal set of net elements were used to ensure that the 
provided and required interfaces of the 'Make_Call' transition consumed and produced 
the same information as before for the parent net. The process detail associated with 
the Receiver role's 'Connect_Call' transition remained the same. For the two delays 
abstracted out of the 'Make_Call' process detail, a new equivalent delay variable with 
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range between two and eight was substituted at the parent net level. The third delay 
(part of the 'Connect_Call' process detail) remained the same, i.e. between one and 
four. Following abstraction there were now two delay variables representing the 
original range of values rather than one. As Table C.6 shows, these two variable 
ranges were reduced in line with Tables C.2-C.5 to examine the effect on state space 
calculation:   
 
STATE 
SPACE 
GRAPH 

Timed H (activity 
'Make_Call' abstracted)  

Timed I (activity 
'Make_Call' abstracted) 

Timed J (activity 
'Make_Call' abstracted) 

Initial 
marking  

  
Nodes and 
arcs 

2562 nodes, 5137 arcs. 42148 nodes, 107304 arcs. 3147 nodes, 7241 arcs. 

Generation 
time 

2 secs. 481 secs. 4 secs. 

Terminal 
markings 

50 90 36 

Delay range 2..8 and 1..4 2..8 and 1..4 2..4 and 1..2 

Table C.6 'Abstracted Make_Call process in timed state space graph calculation' 

 
Abstraction of just one of the two parent net activities appears to significantly reduce 
the state space graph size and calculation time. For example, Table C.6 Timed H is 
behaviourally equivalent to Table C.2 Timed A but state space size and timing of 
Timed H are approximately halved using abstraction. Timed I is behaviourally 
equivalent to Table C.3 Timed C which suffered from the state space explosion 
problem. This time a full state space graph could be calculated for Timed I. Finally, 
Table C.6 Timed J is behaviourally equivalent to Table C.3 Timed D. Again, state 
space size has been approximately halved and calculation time reduced by two-thirds 
using abstraction. 
 

C.1.3 Largeness Avoidance by Composition and Timed Coloured 
Petri Nets 

The perceived benefits regarding comprehension of nets and state space graph 
calculation using process composition within hierarchical nets were highlighted in 
Appendix B, section B.1.5. This bottom-up compositional technique was repeated for 
the timed net using the interface information of the telephone process. As before, the 
telephone process was separated into three processes using knowledge from 
conducting the abstraction approach on a timed net and the earlier compositional 
approach on an untimed net. Based on this knowledge, the analysis began with two 
initiated calls and a delay value of one time unit in order to keep output manageable.  
 
The first process owned by Caller was isolated by its input and output interface places 
and marked with an initial marking of two tokens separated by one time unit. The 
delay range within this process was also limited to one time unit. Simulation was used 
to check that the changes had not negatively impacted the behaviour of the net and 
then static analysis was conducted. From the one terminal marking information 
needed for the interface of the next process in sequence could be obtained. 
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1`(New_CallMsg,1)@+3++1`(New_CallMsg,2)@+4 was input into process two 
(owned by Receiver). Again, the delay within the second process was set to one time 
unit and the configuration was checked using simulation. Static analysis was then 
conducted. Two terminal markings were obtained. The output from each terminal 
marking place 'Response_From_Receiver' was extracted:  
 
1. 1`(Ringing_Msg,1)@+4++1`(Ringing_Msg,2)@+5  
2. 1`(Engaged_Msg,2)@+5++1`(Ringing_Msg,1)@+4 
 
Both were input separately into the last process, owned by Caller.  
 
The results on place 'Hangup' from three and two terminal markings respectively are 
listed below:  
 
2`Call_AnsweredMsg 
2`Not_AnsweredMsg 
1`Not_AnsweredMsg++1`Call_AnsweredMsg  
 
1`Not_AnsweredMsg++1`Engaged_Msg 
1`Call_AnsweredMsg++1`Engaged_Msg 
 
Collating both gives a possible five results from two initiated calls separated by one 
time unit and processed within a model with delays set to one time unit and receiver 
status of line free. This matches the abstracted result for two initiated calls in Timed E 
above. 
 
The compositional approach outlined above was repeated to examine the effects of 
increasing numbers of tokens with fixed and variable delay range (of one to two time 
units). 
 
STATE SPACE 
GRAPH 

Timed Process 1  Timed Process 2 Timed Process 3 

Initial marking 

  1.  

2.  

3.  
Nodes and arcs 9 nodes, 10 arcs. 19 nodes, 20 arcs. 1. 15 nodes, 15 arcs. 

2. 13 nodes, 13 arcs. 
3. 16 nodes, 18 arcs. 

Generation 
time 

0 secs. 0 secs. 1. 0 secs. 
2. 0 secs. 
3. 0 secs. 

Terminal 
markings 

1 3 1. 3 
2. 3 
3. 4 

Delay range 1..1 1..1 N/A 

Table C.7 'Compositional approach using fixed delay range of one time unit' 
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STATE SPACE 
GRAPH 

Timed Process 1  Timed Process 2 Timed Process 3 

Initial marking 

  1.  

2.  

3.  

4.  

5.  
Nodes and arcs 12 nodes, 14 arcs. 34 nodes, 37 arcs. 1. 19 nodes, 19 arcs. 

2. 24 nodes, 26 arcs. 
3. 22 nodes, 24 arcs. 
4. 20 nodes, 22 arcs. 
5. 25 nodes, 30 arcs. 

Generation time 0 secs. 0 secs. 1. 0 secs. 
2. 0 secs. 
3. 0 secs. 
4. 0 secs. 
5. 0 secs. 

Terminal 
markings 

1 5 1. 3 
2. 4 
3. 4 
4. 4 
5. 5 

Delay range 1..1 1..1 N/A 

Table C.8 'Compositional approach using fixed delay range of one time unit' 

 
Based on Tables C.7-C.8, there is a pattern of output from process one. Given a 
certain number of tokens as input, the same number of tokens is output with their 
timestamps incremented by two. It can also be seen that process two dictates the 
volume of collation involved for process three. For example, in Table C.8, process 
two outputs five terminal markings. Each of these markings is considered in turn and 
each marking on place 'Response_From_Receiver', used as a separate input into 
process three. Process two is now considered for five and ten initial markings in Table 
C.9. 
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STATE SPACE 
GRAPH 

Timed Process 2  Timed Process 2 

Initial marking 

 

 
Nodes and arcs 58 nodes, 64 arcs. 694 nodes, 781 arcs. 
Generation time 0 secs. 0 secs. 
Terminal 
markings 

8 89 

Delay range 1..1 1..1 

Table C.9 'Compositional approach using fixed delay range of one time unit in 
process two' 

 
Before drawing conclusions, the exercise is repeated using a variable delay range of 
one to two time units. 
 
STATE SPACE 
GRAPH 

Timed Process 1  Timed Process 1 

Initial marking 
 

 

Nodes and arcs 31 nodes, 42 arcs. 111 nodes, 180 arcs. 
Generation time 0 secs. 0 secs. 
Terminal 
markings 

12 36 

Delay range 1..2 1..2 

Table C.10 'Compositional approach using variable delay range of one to two time 
units' 

 
Table C.10 shows that introduction of a small delay range significantly increases the 
number of nodes and terminal markings for two and three initiated calls. Considering 
process one from Table C.10, for two initiated calls, there are now twelve markings to 
examine in order to collate the input for process two. Investigating these manually 
will be time-consuming and based on Table C.9, introducing the same small delay 
range in process two will produce the same significant rise in terminal markings and 
subsequent collation effort. 
 
Compositional analysis of timed nets can be used to improve readability and 
comprehension of the net as well as alleviate state space explosion. When starting the 
analysis, it is advisable to keep initial markings and introduced delays to low numbers 
and ranges without adversely affecting the behaviour of the net. Advice on achieving 
this configuration information is expected to come from experience constructing the 
untimed equivalent of the timed nets. It is anticipated that attempts at full and 
largeness avoidance analyses would have been made on these previously. Seeding of 
initial markings can then be gradually increased if appropriate to do so.  
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Summary of largeness avoidance techniques in timed nets 
In Appendix B and sections C.1.2-C.1.3, abstraction and compositional largeness 
avoidance techniques were applied to untimed and timed nets. Analysis of timed nets 
(full, abstraction, or composition approaches) requires more careful planning than 
analysis of their untimed equivalents and benefits immensely from the experience 
gained working with untimed nets. General best practice when configuring analysis 
using full, abstraction, and compositional approaches is to initially restrict numbers of 
tokens in the net and the range of values that can be assigned to time delays. 
Simulation can then be used to check the net behaves as expected before conducting 
static analysis. Results from static analysis in each approach (where it has been 
possible to generate a full state space graph) can then be used to verify the results 
obtained using the other approaches. 
 
Using a top-down, functional decomposition approach to identify a suitable hierarchy 
within the model of the telephone example meant that after attempting full model 
analysis, the abstraction approach was the next natural technique to apply. The 
hierarchy provided an overview of the abstraction levels within the model and the 
interface boundaries of modules. A common level of detail could then be identified 
upon which to select a module, remove its underlying detail and still maintain the 
integration structure of the model based on module interface boundaries. As well as 
combating the state space explosion problem, the abstraction approach also helps the 
modeller to become familiar with the different levels of detail used in the model, 
dependencies between modules, required interface information, and order of 
execution. 
 
After conducting the abstraction approach to largeness avoidance, the compositional 
approach was employed. This is a bottom-up approach to largeness avoidance. At this 
stage, the bottom-up approach considers modules at a low level of abstraction 
identified by top-down, functional decomposition. Existing nets of modules available 
from a repository were not considered in this thesis. This is a potential future area of 
research. Identification of the nets capturing detailed descriptions of modules is aided 
by the hierarchy within the model. Order of execution between modules is obtained 
from nets at a higher abstraction level within the model. The detailed nets are then 
isolated using their interfaces and analysed individually using outputs from one subnet 
to seed the next in execution order. Due to this low level analysis, the modeller can 
gain in-depth knowledge of the behaviour of parts of the whole. The compositional 
approach may also highlight a greater number of issues for improvement or correction 
than would otherwise be possible from analysis of the whole net. 
 
Both approaches are complimentary in the sense that results from one can help verify 
results from the other. It is also anticipated that results from the abstraction approach 
may guide the direction of compositional analysis so that behaviour of a particular 
module or grouping of modules is examined. 
 
These two approaches to largeness avoidance are currently highly manual, relying 
completely on a suitable hierarchy both at the model level and within each model. 
Unless reasonably low numbers of terminal markings are obtained from either 
approach, examination of results can be extremely time intensive and tedious. 
Hierarchy is key to alleviating this issue and may be able to suggest suitable division 
of the model for workload purposes. Automation may also be feasible (and is 
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considered in Appendix D). Again, process and best practice regarding model 
construction and management will be essential to the successful design and 
specification of large-scale systems.  
 
Amendments made to the model during validation 
In terms of amendments made to the telephone process, experimentation using timed 
nets and static and dynamic analyses revealed that the original untimed net 
specification required improvement. The 'Set_Line' place was not always empty upon 
simulation termination. While trying to understand the standard report generated from 
static analysis on the timed net, it was noted that a non-empty 'Set_Line' place 
contributed to an erroneous (redundant) terminal marking.  
 
The error was due to one of the firing conditions for transition 'Amend_Line' being 
dependent on a value of 'Line_BusyMsg' from place 'Receiver_Line'. 'Amend_Line' 
should have been able to fire, remove the token from 'Set_Line' and update 
'Receiver_Line' accordingly. Instead it was stalled unless the current value in 
'Receiver_Line' was 'Line_BusyMsg'. The inscription on output arc 'Receiver_Line' 
was changed to a variable. Depending on this variable's binding, the 'Amend_Line' 
transition would either reset the receiver's line to free or maintain its status as 
engaged. This meant the transition always fired and correctly removed the token on 
'Set_Line'.  
 
Further simulation analysis of line reset behaviour highlighted the need to 
differentiate between the calls so that the line was reset correctly by the call that had 
successfully connected. The new inscription logic and place colours (types) 
incorporating message and caller identification are shown in Fig. C.8. 
 

 
Fig. C.8 'Amended net logic to reset the receiver line' 

 
It was also noted that within the model, the same timestamp can end up being 
allocated to both calls resulting in transitions involving each to become enabled 
simultaneously or random removal of the call tokens when the transition (enabled by 
their presence on the input place and current model time matching their timestamp) 
fires. To control this behaviour, a call queue may be introduced to prioritise calls 
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based on their arrival time in the system (and perhaps contribute to a defined 
performance indicator by increasing call connection rates where a call reaches the 
receiver and is placed in a queue) or a function can be written to ensure different 
timestamps are provided to the tokens. Use of the function solution may not be 
amenable to static analysis.  
 

C.2 Conclusions so far following Validation using Timed 
Coloured Petri Nets 

In order to explore validation of the Petri net specifications, Appendix C added timing 
information into the telephone process net.  Using the net toolset, untimed nets were 
enhanced in this way for the purposes of achieving deeper correctness, performance 
and efficiency (Table C.11). Performance analysis and analysis-of-alternatives were 
achieved using a combination of timed places, delays, data collection points 
throughout the net and simulation. 
 
VALIDATION Timed Net Timed Net 
PURPOSE Simulation Static Analysis 
Enhanced Correctness X X 
Performance Analysis X  
Analysis-of-Alternatives 
(Resource-based Costing) 

X  

Table C.11 'Validation purposes in relation to dynamic and static analyses' 

 
Initially, performance indicators for the system based on time, cost and quality 
parameters were identified in context with the viewpoint from which the system was 
being developed. In this way, enhancements related directly to performance indicator 
optimisation were made to the system model. During the course of introducing time to 
the model, simulation and static analysis also highlighted further improvements to 
logic and colours (types) for the telephone example.  
 
With the toolset, automatic simulation executions via replication and parameterisation 
enabled comparison to be made of results using different random distributions, 
numbers of resources and delays. Textual reports can have their statistical output 
customised by the modeller and graphical output can be plotted from standard reports.  
 
Based on the work of Salimifard [94], section C.1 also made use of timed nets to 
conduct more detailed analysis-of-alternative scenarios. Although the conceptual level 
of abstraction featured in the telephone example describes the problem rather than a 
solution, knowledge of legacy or planned physical assets which can realise activities 
and processes modelled by the abstract net can be used to conduct an analysis-of-
alternatives. This differs from simply seeding a simulation execution with timing 
delays because it allows the modeller to explicitly allocate a resource (with associated 
timing and cost information) to an activity (or process) and extract timing and cost 
information for the overall model based on different resource allocation. It may also 
be able to facilitate business process re-engineering using the knowledge of existing 
or planned resources to influence ordering of activities based on their known timing 
and cost attributes. 
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Finally, timed nets have a lower threshold for infinite state space graphs. Even with 
the simple telephone example, the state space explosion problem was encountered 
with as few as three initiated calls and three delays of between one and four units (and 
a configured twenty minute maximum calculation time). It was recommended that 
equivalent untimed nets (i.e. nets consisting of the same elements, colours and 
inscriptions but no timed places) be used to produce a stable behavioural net for the 
purposes of developing a net for use in validation. While dynamic analysis with timed 
nets is recommended for the purposes listed in Table C.11, static analysis of timed 
nets is essential for confirming behavioural properties of large-scale, system-of-
systems. Static analysis of timed nets needs to be carefully managed. 
 
The use of hierarchy and the abstraction and composition of net components is vital in 
increasing a timed net's largeness avoidance threshold. In addition, timed nets need to 
be evaluated prior to static analysis to see whether they can be made into deterministic 
nets. Experimentation regarding the number of tokens to use in initial markings and 
range of values in colour (type) definitions for delays is recommended when static 
analysis of timed nets needs to be conducted. Analysis results obtained using 
structurally equivalent untimed nets will be useful in helping to inform the results 
obtained from timed nets. 
 
Based on the conclusions above using hierarchy, timing, and static and dynamic 
analyses, coloured hierarchical nets were then used in the specification of the 
telephone system at design and architecture levels of abstraction. 
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Appendix D  
 

D.1 Specification, Verification and Validation of the 
Telephone Process at Design and Architecture Levels 
using Coloured Petri Nets 

Appendices A-C have focused on constructing a Petri net to specify a telephone 
process at a conceptual level of abstraction. Hierarchy and timing were added to 
further enhance a specification in terms of scalability, understandability, readability, 
and correctness. Hierarchy also enabled investigation into whether the abstraction 
design used in the net could be used to help alleviate the state space explosion 
problem during model-checking. Both model-checking and simulation were employed 
iteratively in verification and validation of the constructed conceptual level net. In this 
Appendix, Petri nets are checked to see whether they can be used to specify a 
telephone system at design and architecture levels of abstraction.  
 

D.1.1 The Design Level 
The purpose of the design level of abstraction is the lead into the specification of a 
solution to the problem described by the conceptual level. Again, a functional 
decomposition approach was used. This time it was used in conjunction with the 
parent net developed for the conceptual level to think about how this net's main 
activities of 'Make Call' and 'Connect Call' would eventually be realised by physical 
implementations. To keep the design flexible, two components, 'Make_Call 
Component' and 'Connect_Call Component', were used to depict the solutions that 
would realise each of the main activities. These are shown in Fig. D.1:  
 

 
Fig. D.1 'Parent net of design level'  

 
It can be seen that Fig. D.1 closely resembles the parent net of the conceptual level 
except for the additional place, 'Number' (used to represent the capture of an entered 
telephone number) and new place colours or types. The next level of design 
decomposition for the two components aimed to capture the functional service(s) each 
would be expected to realise. Again, the work developing the conceptual level net 
helped suggest functional services for the design level by thinking about the purpose 
of the processes used to realise the main activities. 'Make_Call Component' would be 
responsible for providing call setup and call response services. 'Connect_Call 
Component' would be responsible for providing an incoming call processing service. 
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These services are shown at the next lower abstraction level providing greater detail in 
Figs. D.2-D.3:  
 

 
Fig. D.2 'Services of Make_Call Component' 

 

 
Fig. D.3 'Services of Connect_Call Component' 

 
Having introduced the components and functional services at the design level, the 
next lower abstraction level providing greater detail, i.e. detailed design or 
architecture was focused on. Rather than develop a separate model at this stage, as the 
architecture level appeared to naturally manifest the next lower abstraction level of 
the design level, the design level model was further decomposed to capture the 
architecture level.  
 

D.1.2 The Architecture Level 
The purpose of the architecture level is detailed design of the services identified at the 
design level and flexible capture of the components required to realise these 
individual services. Considering the functional services, constituent components were 
considered for each service resulting in the identification of a common component 
pattern for the three services. The common components consisted of a user interface, 
transmit and receive (network) interfaces, and a controller interface to co-ordinate the 
sequencing of activities to and from the other two common components. The common 
component architecture is shown for the 'Call_Setup Service' and 'Process_Call 
Service' in Figs. D.4-D.5. 
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Fig. D.4 'Call_Setup service architecture' 

 

 
Fig. D.5 'Process_Call service architecture' 

 
From Figs. D.4-D.5, it can be seen that net places are used capture the input and 
output information for the user interface, network and controller common 
components. In this early attempt at design and architecture levels, enumerated type 
definitions were lifted for re-use from the conceptual level net and labelling reflected 
the same terminology where possible. Figs. D.4-D.5 show that colour (type) definition 
labels reflect the nature of the interface. For example, 'UIDispICMsg' aims to reflect 
that the place is an input interface to the user interface component and is intended to 
be processed by the display function within this component. The intention with this 
labelling convention was improved net clarity and comprehension. 
 
Considering the original parent net of the design level in Fig. D.1, the specification of 
the telephone system at this level was extremely concise. When the architecture level 
of Figs. D.4-D.5 was reached and the next lower abstraction level providing greater 
detail of the common component interfaces was completed, the levels of abstraction 
were very difficult to manage. The toolset presents each level of abstraction as a 
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separate page within a folder (or binder). These pages can be selected between using 
their tabs. By the common component interface level of abstraction, sixteen pages and 
tabs were present and it was tedious work identifying and selecting relevant pages 
using barely legible tabs (Fig. D.6). At this stage, the model was rationalised where 
possible, making use of the toolset's features and those of hierarchical coloured Petri 
nets.  
 

 
 

 
Fig. D.6 'Early model abstraction levels presented within one binder'  

 
The next iteration of model development involved rationalisation of colours (types), 
subnets describing common component interfaces, removal of redundant places, and 
toolset presentation of pages. The main source of rationalisation was the common 
component interface nets.  
 
The toolset enables a net to be used within another net (normally to reflect 
decomposition from an activity captured at a higher level of abstraction), similar to 
the concept of a procedure call in a high-level programming language. A net at a 
lower abstraction level providing greater detail can be used by one or more activities 
at a higher abstraction level. In this way, the net at the higher-level of abstraction is 
effectively re-using the subnet's structure, inputting and receiving information 
according to the defined colours (types) of the input and output places (comparable to 
a parameterised procedure call). The input and output information supplied to the 
subnet relates to the parent net transition linked with the subnet. If two separate parent 
net transitions are decomposed to the same subnet, instances of the subnet are 
effectively created by the toolset. These instances then consume (provide) input 
(output) values of the same colour (type) unique to their parent net transitions.   
 
Each of the common component interfaces was examined in turn to check the internal 
structure and logic of their nets and decide if it would be feasible to use one net 
(instance) for each common component. Currently, the design and architecture model 
had ten separate nets representing the common components realising the three 
services. The user interface component's main functions are provision of notification 
to the user and capture of a request from the user. The request to provide notification 
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to the user comes from the controller component. The user inputs a request using the 
keypad and this is captured and passed to the controller. The transmit network 
interface essentially provides a send function when requested to do so by the 
controller and its receipt counterpart provides a receive function, accepting 
information from the network and passing it to the controller. Finally, the controller 
component processes information from the user interface and network components, 
deciding what information should be sent and notified. Unsurprisingly, the controller 
component is the most complex in terms of logic and structure. 
 
Thinking about the architecture level in terms of the three services identified at the 
design level, the common components were assessed for each service. To use 
instances of one subnet, the interface place colours (types) of the subnet need to be 
common to each transition intending to be the abstraction of the subnet. This was 
straightforward for the user interface and network components. Place colours (types) 
were rationalised during this exercise. Information external to the telephone system, 
i.e. provided or passed to the caller was typed by 'CallerState' or 'Msg'. Colour (type) 
'NumberMsg' used in the initial model attempt and the input place it defined 
('Number') were removed in favour of simplifying the number of external request 
interfaces to the user interface component to one for the moment ('CallerState'). 
Interfaces between the common components were typed as 'UIMsg' (request from user 
interface to controller), 'UIDispMsg' (display request from controller), and 'NWMsg' 
(transmit request from controller or receive information request from network). 
 
For the common controller component, inputs and outputs from and to the other 
common components were used to rationalise the net's structure and logic from the 
original three subnets developed to represent the controller component. Once this had 
been undertaken, the parent nets specifying the architecture of each service, i.e. 'Call 
Setup Architecture', 'Process Call Architecture' and 'Call Response Architecture' 
(decomposed from their respective design level services 'Call_Setup Service', 
'Process_Call Service' and 'Call_Response Service') needed to be amended to 
associate each common component with its one re-usable decomposed subnet and 
ensure that the subnet interfaces matched those of the linked transitions in the parent 
net (even if no information was to be input or output by the interface places). The re-
usable common controller component is shown in Fig. D.7. 
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Fig. D.7 'Handset Controller common component subnet' 

 
The resulting model now used four subnets instead of ten subnets to capture the detail 
of the four common components. Although the toolset still presents these subnets as 
ten separate pages in the model, editing of the subnets is greatly simplified since a 
change made to an instance of a re-usable subnet updates all its instances. Using the 
toolset, for each service architecture parent net, a re-usable subnet was linked to its 
abstract common component. In addition, two further folders (binders) were created to 
partition the model logically into the three service architectures making navigation, 
readability, comprehension and simulation much easier to achieve. This layout is 
shown in Fig.D.8: 
 

 
Fig. D.8 'Model abstraction levels presented within three binders' 

 

D.1.3 Verification of the Design and Architecture Levels 
At this stage, simulation was employed to check the structure and logic of the model 
and was able to detect incorrect logic on transition output arcs. Errors included: 
missing or incorrect predicates (highlighted by incorrect or missing display 
notifications for the common user interface component or incorrect information 
messages for the network component); missing initial values on input places required 
by common component interfaces; an unexpected disabled transition due to the same 
variable being used to bind values on more than one of its input arcs; and unexpected 
simulation halts due to missing values in enumerated type definitions associated with 
place types.  
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The necessary corrections were made and static analysis was performed based on one 
initiated call and the receiver of the call not responding to the call.  No further errors 
were picked up by model-checking so the model was adapted to deal with multiple 
initiated calls to the receiver. Enhancements included addition of logic and net 
structure to set the receiver's line status to free or busy during call request processing 
by the common controller component, random initialisation of the response to the 
connection request and a change of place type (based on character strings rather than 
enumerated types). The latter introduction of place types composed of at least one 
string type was made for flexibility reasons.  
 
Currently, the specification of the common component interfaces were informative 
regarding the information expected at their input and output places but lacked detail 
regarding the functions realised internally that are made use of by the other common 
components. To make this information more explicit in the model, colour (type) 
definitions based initially on the toolset's 'product' type definition (Fig. D.9) were 
implemented. Again, the main reason for doing so was flexibility. At this stage in the 
modelling where the model is undergoing frequent amendments, this particular 
compound definition was found to be quicker to adapt than using an equivalent fixed 
record definition and its associated syntax. Changes could be made quickly to values 
as necessary during iterative model updates and amendments rather than maintain 
enumerated or record type definitions.  
 

 
Fig. D.9 'Product compound type definitions to indicate usage of functions' 

 
Once the place types were defined, the tuples in the type were populated with the 
functions implemented by each common control component and the associated 
parameters via logic on transition output arcs. Logic on transition output arcs within 
each of the common components was amended as necessary. As an example, consider 
the network common components in Figs. D.10-D.11. 
 

 
Fig. D.10 'Transmit common component subnet' 
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Fig. D.11 'Receive common component subnet' 

 
Fig. D.10 shows the subnet of the updated transmit common component. Its transition 
is labelled as 'SEND OPN' to reflect the function the component provides to the 
controller component. On the transition output arc (within the controller component 
subnet) to the input interface place ('TxIN') of the transmit component, there is logic 
to output a token with 'OpName' (a tuple within 'NWMsg' compound type) populated 
with 'SEND REQUEST' or 'SEND REPLY'. In this way, the net specifies use of the 
transmit component's 'SEND OPN' function by the controller component more 
explicitly. The 'Params' tuple within 'NWMsg' is populated with either the number to 
call (in the case where a connection request is made) or the result of the connection 
request (in the case where a reply is made back to the caller). 'ID' is populated to 
differentiate between initiated calls. 
 
Fig. D.11 shows the network counterpart to the transmit component, receive. This 
component's function is used by the underlying communications network to hand-off 
a message destined for this network node. As before with the transmit component, the 
receive component's transition is labelled to reflect the function the component 
implements, in this case 'RECEIVE OPN'. 
 
The other two common components, user interface and controller, are designed to 
reflect the same interface principles as those discussed above for the network 
components. 
   
Following these changes, simulation was used first of all to verify the model. Similar 
issues were encountered to the early model attempt in terms of incorrect logic on 
transition output arcs, an unexpected disabled transition due to the same variable 
being used to bind values on more than one of its input arcs, and omission of initial 
markings on new structures added to the model (line reset function and random 
initialisation of receiver response to connection request). Once amendments were 
made and iterative simulation increased confidence that the model's behaviour was 
correct, static analysis based on two initiated calls was conducted (Fig. D.12).  
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Reachability/State Space 
     Nodes:  33322 
     Arcs:   136719 
     Secs:   665 
     Status: Full 
 
Scc Graph 
     Nodes:  33322 
     Arcs:   136719 
     Secs:   8 
 
10 Dead Markings     
 

Fig. D.12 'Static analysis for the design and architecture level model including 
random initial marking generation' 

 
Upon inspection of the ten dead markings, it was noted that an expected result was 
missing (1`"Not Answered"++1`"Engaged"). After investigation, it was discovered 
that this was due to an omission in the transition output arc logic. Static analysis was 
repeated following this logic update and the state space explosion problem was 
encountered based on a toolset calculation limit of twenty minutes. The model was 
discretised by removing the random initial marking generator for connection response 
and instead set two manual initial markings of 'Ignore' and 'Pickup'. The results of 
model-checking are shown in Fig. D.13.   
 
Reachability/State Space 
     Nodes:  19656 
     Arcs:   79164 
     Secs:   240 
     Status: Full 
 
Scc Graph 
     Nodes:  19656 
     Arcs:   79164 
     Secs:   4 
 
9 Dead Markings 
  

Fig. D.13 'Static analysis for the discretised design and architecture level model' 

 
The nine dead markings contained the expected results for the given initial markings.  
 

D.1.4 Largeness Avoidance by Abstraction 
Based on the benefits reported using abstraction in largeness avoidance in Appendices 
B-C, the technique was investigated with the model developed for the design and 
architecture level of abstraction. At this level, the aim was to abstract out the detail of 
each of the main components and their associated services to check the effects on the 
duration and size of the state space graph. 
 
The intention was to remove the detail of  'Make_Call Component' from the parent net 
of the design level (Fig. D.1). As before, a minimal set of net elements were used to 
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capture the pared down function of the 'Make_Call Component', i.e. the expected 
information reached its input and output interface places. The 'Make_Call Component' 
function was realised by two underlying services and these transitions ('Call Setup 
Service' and 'Call Response Service') were used to abstract out the detail of the 
component. The logical folder grouping related to the 'Make_Call Component' was 
analysed to decide upon the logic necessary to replicate the functions of the 
underlying subnets and produce (consume) the correct information at the interfaces 
with the 'Connect_Call Component'. The result is shown in Fig. D.14. 
 

 
Fig. D.14 ' Abstracted Make_Call Component used for re-calculation of state space 
graph' 

 
As Fig. D.14 shows, the 'Connect_Call Component' remains the same, i.e. no removal 
of its underlying decomposition has taken place. Model-checking was performed on 
the net of Fig. D.14 and then the same process was followed for the 'Connect_Call 
Component'. Its abstraction was slightly more complex than that for the 'Make_Call 
Component', largely due to the underlying function implemented by its controller 
component. The results of its abstraction are shown in Fig. D.15. 
 

 
Fig. D.15 ' Abstracted Connect_Call Component used for re-calculation of state space 
graph' 

 
Again, model-checking was performed on the net of Fig. D.15. The results of the state 
space calculations with the abstracted nets (along with the full hierarchical net based 
on Fig. D.1 for comparison purposes) are presented in Table D.1: 
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STATE 
SPACE 
GRAPH 

Full Hierarchy (based on 
Fig. D.1) 

Abstracted Make_Call 
Component (Fig. D.14)  

Abstracted Connect_Call 
Component (Fig. D.15) 

Initial 
marking    
Nodes and 
arcs 

19656 nodes, 79164 arcs. 962 nodes, 2580 arcs. 2379 nodes, 6960 arcs. 

Generation 
time 

240 secs. 1 sec. 4 secs. 

Terminal 
markings 

9 9 9 

Table D.1'Abstraction used in state space graph calculation at design and architecture 
level' 

 
The exercise was repeated increasing the number of initiated calls to three: 
 
STATE 
SPACE 
GRAPH 

Full Hierarchy (based on 
Fig. D.1) 

Abstracted Make_Call 
Component (Fig. D.14)  

Abstracted Connect_Call 
Component (Fig. D.15) 

Initial 
marking 

   
Nodes and 
arcs 

Explosion problem. 30664 nodes, 119161 arcs. Explosion problem. 

Generation 
time 

1200 secs (limit set). 938 sec. 2400 secs (limit set). 

Terminal 
markings 

N/A 20 N/A 

Table D.2 'Abstraction used in state space graph calculation at design and architecture 
level' 

 
From Table D.1 it can be seen that the effect of abstracting away the detail from one 
component and then the other is significant on duration and size of the state space 
graph calculation. The terminal markings were inspected from each of the abstracted 
component state space graph calculations in Table D.1 and found to match those 
determined by the full hierarchy state space graph calculation. From Table D.2, only 
abstraction of the 'Make_Call Component' has been successful in alleviating the state 
space explosion problem. 
 
Similar to Appendices B-C, largeness avoidance using the component abstraction 
technique has helped alleviate the duration and size of the state space graph but it is 
important to note that when using the technique at the design and architecture level of 
abstraction, it was only successful for abstraction of each component in turn when two 
initiated calls were placed. 
 

D.1.5 Largeness Avoidance by Composition 
Based on the benefits reported using composition in largeness avoidance in 
Appendices B-C, the technique was investigated with the model developed for the 
design and architecture level of abstraction. 
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The hierarchy design for the design and architecture level of abstraction was reviewed 
to identify the components to isolate and the information exchange control sequence. 
The components at the lowest level of abstraction, i.e. those containing the logic detail 
are the user interface, controller, and transmit and receive (network) common 
components. Analysis of these would involve investigating them according to the 
service they are realising ('Call_Setup Service', 'Connect_Call Service', and 
'Call_Response Service' respectively). Currently the four common components are 
described by four unique subnets which are re-used in ten instances across the three 
services.  
 
The architecture level of abstraction is modularised, i.e. the architecture of the three 
services to investigate behaviour based on their use of the common components. In 
control sequence order they are: 'Call Setup Architecture', 'Process Call Architecture', 
and 'Call Response Architecture'.  
 

 
Fig. D.16 'Call Setup Architecture component' 

 
'Call Setup Architecture' component (Fig. D.16) was isolated and examined first of all 
using two initiated calls. Subsequent analysis increasing the number of initiated calls 
indicated the presence of one terminal marking in each case until an initial marking of 
six calls was used. In the time limit set for state space graph calculation (twenty 
minutes), a full state space graph could not be calculated for six initiated calls. Where 
a full state space graph could be calculated, the output from this component was:  
 
Initial marking 1`("Request Call","333",2)++ 1`("Request Call","999",1). 
 
1. 1`("RECEIVE CALL","999",1)++1`("RECEIVE CALL","333",2) at interface place 
'TxOUT'. 
2. 2`"Connecting" at place 'Display_to_User. 
 
The results from 'Call Setup Architecture' component's output interface place 'TxOUT' 
(from 1. above) were then used as input into the interface provided by the 'Process 
Call Architecture' component (Fig. D.17).  
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Fig. D.17 'Process Call Architecture component' 

 
Model-checking was then performed on the 'Process Call Architecture' component 
and fourteen dead markings were reported. When these were examined, duplication of 
markings were identified on output interface place 'TxOUT'. This was due to the line 
reset logic in the controller common component. The transition to reset the line 
becomes enabled but its firing is not mandatory. This means that once the tokens that 
enable it are removed, it can no longer fire and the line can remain set in a busy state. 
With two input calls, three states of the line are possible and reported following static 
analysis. Even though the final marking on place 'TxOUT' is unchanged, the marking 
of the line reset place ('Line_Status') can have up to three potential markings, hence 
the duplication. The fourteen terminal markings were rationalised to a range of six 
possible markings on output interface place 'TxOUT':   
 
1`("Answered",1)++ 1`("Not Answered",2) 
1`("Not Answered",1)++ 1`("Engaged Tone",2) 
1`("Answered",1)++ 1`("Engaged Tone",2) 
1`("Answered",2)++ 1`("Not Answered",1) 
1`("Not Answered",2)++ 1`("Engaged Tone",1) 
1`("Answered",2)++ 1`("Engaged Tone",1) 
 
These were then input into the last component in the control order sequence, 'Call 
Response Architecture' (Fig. D.18) on a pair by pair basis and static analysis 
performed.  
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Fig. D.18 'Call Response Architecture component' 

 
In the six cases, one terminal marking was obtained. The markings of output interface 
place 'Hangup' could be rationalised to three values: 
 
1`"Answered"++1`"Not Answered"  
1`"Not Answered"++1`"Engaged Tone"  
1`"Answered"++1`"Engaged Tone"  
 
These are the possible results of two calls placed to the same receiver with its line 
initially ready to accept calls and its user prepared to answer one call and ignore the 
other. Revisiting the results obtained using abstraction in largeness avoidance (Table 
D.1) and considering the nine dead markings obtained for two initiated calls, these can 
also be rationalised to the same three markings on place 'Hangup' due to the 
duplication caused by the line reset logic in the controller component. 
 
The same process was repeated for three initiated calls. As for two initiated calls, the 
process of model-checking the first component and using its output as input into the 
'Process Call Architecture' component's interface was straightforward. The result of 
model-checking 'Process Call Architecture' with its three input tokens was fifty-one 
dead markings. Rather than process these manually as done for two initiated calls, the 
markings for place 'TxOUT' were extracted using a non-standard branching temporal 
logic query into a file (Fig. D.19). Based on previous use of the compositional 
process, it was incorrect to simply input these markings into the final component's 
interface place as one multiset. Each marking on place 'TxOUT' for the fifty-one dead 
markings has to be processed as an independent initial marking to the component's 
input interface place. In Appendix B, each marking was input separately.  
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Fig. D.19 'Customised query to export TxOUT markings to file' 

 
Considering the net of the 'Call Response Architecture', two additional transitions and 
two places were added to the beginning and end places of the net. Execution of the 
first transition essentially provides input interface place 'RxIN' with a marking from a 
place 'Init Marking List', typed as a list of lists. This place interprets the markings 
exported to file from the 'Process Call Architecture' place, 'TxOUT' in batches. The 
second transition recognises that the results output to the 'Call Response Architecture' 
output interface place ('Hangup') relate to each batch of markings and captures them 
as such on place 'Results' typed as a list of compound elements. Finally, once the 
results are transferred to the list, the next batch of markings is requested via place 
'Next Batch'.  
 
The new places and transitions added to the net were verified using simulation. By 
using list functions it was possible to remove duplicate entries from the results list on 
place 'Results'. Based on a list of fifty-one batches consisting of three markings per 
batch, a rationalised output list indicated that three initiated calls have a possible five 
results: 
 
"Answered"++"Not Answered"++"Answered" 
"Answered"++"Engaged"++"Answered" 
 "Not Answered"++"Engaged"++"Answered" 
"Engaged"++"Not Answered"++"Engaged" 
"Answered"++"Engaged"++"Engaged" 
 
Revisiting the results obtained using abstraction in largeness avoidance (Table D.2) 
and considering the twenty dead markings obtained for three initiated calls with 
'Make_Call Component' abstracted, these can also be rationalised to the same five 
markings on place 'Hangup' due to the duplication caused by the line reset logic in the 
controller component. 
 
Model-checking was then attempted for more thorough verification using one, two, 
and then five batches of three markings from the original list of fifty-one batches. The 
state space graph calculation reported three, nine, and two hundred and forty-three 
dead markings respectively (twenty-nine thousand nine hundred and seventy-five 
nodes, eighty-five thousand seven hundred and fifty-six arcs in two hundred and 
eighty-six seconds for the latter result). For each batch of three, the reason for the 
exponentially increasing terminal markings was that every possible ordering of the 
tokens present in the net and the corresponding output result were being recorded. So, 
for the batches of three tokens used above, there are 3^1, 3^2, and 3^5 possible 
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orderings of the output tokens on the results list. In terms of the node and arc 
numbers, the 'Reqd1' input interface place was initially marked to correspond to the 
number of markings on place 'Init Marking List'. The net was set up to take a 
maximum of one token from this place to enable the request operation within the 
controller component. This meant there could be a range of marking possibilities on 
two places using these tokens, driving up the number of nodes in the state space 
graph. The design of the net was revisited to see if there was a way to prevent these 
occurrences.  
 
Interactive simulation was used to trace execution within the 'Call Response 
Architecture' net. In doing so, variable bindings of the execution could be viewed and 
selected. It was noted that ambiguity existed on several enabled transitions as to the 
value mapping a variable could take. For the 'Call Response Architecture', common 
components guard statements were added to the affected transitions in order to specify 
the bindings of variables. In the case of the 'Reqd1' input interface place, a list of lists 
type (similar to that used in 'Init Marking List' place) was defined so that the required 
information could be passed in batches of three to the controller component, matching 
the batches of markings. Where feasible to do so, the multiplicity of token removal 
(addition) from (to) places was changed so that instead of one token at a time being 
removed upon transition firing, a multiple (multiset) relating to the number of initiated 
calls was removed atomically.  
 
The attempt to automate the interpretation of markings generated by one component 
for another appeared to behave as expected in simulation. When faced with 
exponential rises in terminal markings using only a small subset of the fifty-one 
batches of markings in static analysis, the design of the component's net was re-
considered. Following the above amendments to make the specification within the net 
more precise (Fig. D.20), one terminal marking for all fifty-one batches of three 
markings was obtained. Through the compositional approach and use of dynamic and 
static analyses on component nets of the overall system, a net design that facilitated 
analysis of the system for an original initial marking of three calls was reached.  



 212

 

 
Fig. D.20 'Final version of Call Response Architecture net employing marking 
automation' 

 
It should also be noted that the component nets of the design and architecture level 
consist of more net elements and logic than the component nets at the conceptual level 
of abstraction. As well as alleviating largeness avoidance in static analysis, the 
compositional approach can also contribute to comprehension and verification of the 
behaviour of component parts of the whole system using both dynamic and static 
analyses. Undertaking the process helped to improve the specification of one 
component within the model. From the component's static analysis results, the net had 
to be checked to see why it was producing exponential increases in terminal markings. 
The subsequent changes made contributed to a significant improvement in duration 
and size of the state space graph calculation as well as provide experience in best 
practice for the other nets. In addition, simulation of system component nets (rather 
than the net of the system as a whole) may make it more feasible for the modeller to 
detect, understand, improve and correct a greater proportion of behaviour than would 
be possible within a net of the whole system.   
 

D.1.6 Integration of the Composition and Abstraction Approaches 
Achievement of automation in the compositional approach enabled successful static 
and dynamic analyses of the final component net when three initiated calls were used 
as the initial marking. Going through the process of the compositional approach in 
section D.1.5 indicated that amendments to the precision of the specification of the 
final component would be relevant to the other two components (and in net 
construction in general).  
 
More importantly, the results based on automation suggested a potentially beneficial 
integration of the compositional and abstraction approaches. If the results from the 
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compositional approach could be used to populate the interfaces associated with the 
abstracted component in the abstraction approach, the logic currently required by the 
abstracted component could be removed. The abstraction approach example where 
component 'Connect_Call Component' was abstracted (Fig. D.15) and the explosion 
problem was encountered for three initiated calls (Table D.2) was revisited. 
 
The 'Call Response Architecture' component net was investigated to see how it could 
be integrated into the abstracted 'Connect_Call Component' net of Fig. D.15. 'Call 
Response Architecture' is the final component in control order sequence. It uses the 
information produced by the 'Process Call Achitecture' on its network interface place 
to help realise the 'Call_Response Service'. The 'Connect_Call Component' provides 
the 'Process_Call Service' realised by the 'Process Call Architecture'. The detail of this 
component can be abstracted out as long as it provides the 'Call_Response Service' 
and its underlying 'Call_Response Architecture' with the information identified above 
at the interfaces of the 'Call Response Architecture' component. This information 
needs to be supplied at the design level of abstraction by the 'Connect_Call 
Component'.  
 
Before adding the markings, required interface information, and results lists (defined 
for the 'Call Response Architecture' net) to the design level of abstraction, some 
precision specification changes were made. The 'Call Response Architecture' common 
components were altered to match those used in the compositional approach. This 
involved replacing the instances of the common components with the revised common 
component nets of the 'Call Response Architecture'. No further changes were made to 
enhance the specification precision of the 'Call Setup Component' at this stage. It 
would be envisaged that the specification precision enhancements made to the 'Call 
Response Architecture' could be applied across the nets and use made again of four 
common component nets and their instances. Model-checking was performed again 
on the abstracted 'Connect_Call Component' based on its updated specification. The 
results are shown in Table D.3. 
 
Input interface place 'Reqd1' of the 'Call Response Architecture' revised controller 
component was added and used at the design level of abstraction in order to pass it 
input interface information in line with release of batches of markings. Once these 
additions were made to the net, simulation was used to verify its behaviour was as 
expected before conducting static analysis. The model-checking results are shown in 
Table D.3. 
 
STATE 
SPACE 
GRAPH 

Original Abstracted 
Connect_Call Component 
(Fig. D.15) 

Abstracted Connect_Call 
Component with 
Specification Update   

Fully Abstracted 
Connect_Call Component  

Initial 
marking 

   
Nodes and 
arcs 

Explosion problem. 5596 nodes, 19568 arcs. 1711 nodes, 5522 arcs. 

Generation 
time 

2400 secs (limit set). 19 secs. 2 secs. 

Terminal 
markings 

N/A 51 1 

Table D.3 'Abstraction and Composition approaches used in state space graph 
calculation' 
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The results show that not only has a state space graph with fifty-one dead markings 
been calculated in nineteen seconds for an initial marking of three calls using only the 
specification updates, a fully abstracted 'Connect_Call Component' improves upon 
this. With all logic removed from the abstracted 'Make_Call Component' and the 
addition of the automation used in the compositional approach, a state space graph 
with one dead marking was completed in two seconds. This graph contained 
approximately one quarter of the nodes and arcs of the updated specification graph.  
 
At this stage the compositional approach has provided three major benefits:  
 
1. Identification of improvements to the specification. When applied to the original 
'Connect_Call Component' abstraction net, the improvements enabled the state space 
graph calculation to terminate within the toolset limit and investigate the dead 
markings based on three initiated calls.  
2. Integration with the abstraction approach to further reduce duration and size of the 
state space graph calculation. Input and output interface results identified by the 
compositional approach can be used in the abstraction approach to keep the 
component as abstract as possible. 
3. A means of further verifying the behaviour of the model where either a full state 
space graph cannot be calculated for the overall system net or further assurance is 
sought as to correctness of the modelled behaviour. The abstraction approach could be 
applied and model-checked as demonstrated in Appendices B-C. The compositional 
approach could then be used to indicate input and output interface results, increase 
comprehensibility of component nets, and advise on improvements. These 
improvements could then be applied to the abstracted nets along with the automated 
results suggested by composition and model-checked.       
 

D.1.7 Validation of the Design and Architecture Levels 
In Appendix C, the concept of time was introduced into the untimed model at the 
conceptual level of abstraction. Timing information could further enhance the 
specification of the process (for example, controlling the ordering of calls, and 
implementing communication timeouts) and be used to check if the design of the 
process was efficient in terms of time and cost from particular viewpoints. The same 
justifications for use of timing apply at the design and architecture levels of 
abstraction. Timing can be used again to detail ordering of calls, communication 
timeouts, component processing duration times, and analysis-of-alternatives.  
 

D.2 Conclusions from Design and Architecture Levels 
Using the compositional approach at the design and architecture levels of abstraction 
has provided further insight into its potential usefulness in the development of Petri 
net models of large-scale systems. By decomposing the system model into subnets, 
not only is the approach trying to combat state space explosion, it promotes increased 
comprehension of parts of the overall system and consideration of their integration at 
well-defined interfaces. Used in conjunction with the abstraction approach, it could 
help reduce state space graph duration and size further. To be successful, a suitable 
hierarchy of models and a suitable hierarchy within models need to be adopted. In 
Appendices A-D, a functional decomposition approach was used to determine 
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abstraction levels within models. In addition, levels of abstraction were identified for 
models themselves, i.e. conceptual level and design and architecture levels.  
 
Modelling at the conceptual level helped to improve understanding of the domain and 
the Petri net technique. Initially, regardless of model level of abstraction, it was 
beneficial to aim for simple functionality within the nets, ensure these nets were 
correct syntactically (using toolset's syntax checking), and then use simulation to 
detect structure and logic errors. Based on experience so far, it is vital to keep nets as 
compact as possible, rationalising and partitioning their elements properly. Static 
analysis is used at this point to highlight issues that are not made explicit by 
simulation. Once this level of net maturity is reached, a net was then evolved further, 
for example adding line reset logic, or timing.  
 
In large-scale system-of-systems, their design and architecture requires specification 
of a combination of independent component systems. Components used at the design 
level in the telephone system example could be considered to be component systems 
in a system-of-systems. The system-of-systems architecture level details how the 
component systems and their realising common components communicate 
information across interfaces to realise services of the component system. 
 
Model informational content at the design and architecture levels is different to that at 
the conceptual level but is still represented using the same set of Petri net elements. 
Function and the processes and sequence of activities that need to be followed to 
realise the function are not the focus of the design and architecture levels. Although 
there is still a control order sequence, this level details the physical component (not 
necessarily the real-life asset) and how each component combines to realise the input 
and output behaviour of the conceptual level. At the design and architecture level, 
there appears to be additional scope for: identification of common components and 
instantiation (although a process could be re-used by functions at the conceptual 
level); the ability to describe the functions made use of by each component more 
explicitly; and the ability to make the use of a communications network (and 
gateways) more explicit. 
 
Abstraction levels (hierarchy) and their facilitation using the toolset socket and port 
places are the key to system-of-systems' specification, verification and validation 
using nets. The port and socket places modularise the model and describe operations 
or physical components in varying degrees of detail (with the greatest detail being at 
the lowest abstraction level). Like ports and sockets provide the boundaries of 
modules in nets, interfaces are the boundaries of component systems in a system-of-
systems. These interfaces can be used at and between different abstraction levels to 
communicate information. The hierarchy can be used to divide a system-of-systems 
model into more manageable models so that abstraction and composition approached 
can be used to understand and verify them.  
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Appendix E  

Enhancement to UML based on Petri Nets 
 

E.1 Introduction 
This appendix describes the mapping made from UML to Petri nets for the thesis system-of-systems specification and analysis problem. It uses a 
combination of natural language and syntax diagrams to describe a Petri net systems-of-systems specification language enhancement to UML. 
 

E.2 Definition of the System-of-Systems Specification End Language 
The following table presents the replacements and additions made within UML activity diagrams using Petri net constructs for the specification 
of systems-of-systems. The concrete syntax and description of the semantics (in natural language) are given for the replaced UML activity 
diagram element and the new Petri net enhancement element. For the UML activity diagram, concrete syntax and description are taken from 
[125]. 
 
UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

AcceptEventAction 

 
An AcceptEventAction is an action that waits for the 
occurrence of an event meeting specified conditions. 

 
Coloured Petri net elements place, input arc, transition, transition guard, and 
arc inscriptions are used to specify AcceptEventAction. Transition 'Action' is 
enabled when one token with a certain value ('cond') is available to be 
removed from place 'Event' (of type 'Colour') and bound to variable 'value'.    
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

 
Timed Coloured Petri net elements place, input and output arcs, transition, 
and arc inscriptions are used to specify a repetitive time event 
AcceptEventAction. Transition 'Action' is enabled when model time reaches 
'100' and one token is available to be removed from place 'Timed Event' (of 
type 'Colour') and bound to variable 'value'. The transition fires, producing a 
new timed token for place 'Timed Event' equal to model time plus '10'. This 
token timestamp determines the re-enabling of transition 'Action'. 
 

ActivityFinalNode 
 

An activity final node is a final node that stops all flows in 
an activity.  

Coloured Petri net elements place, output arc, transition, and arc inscription 
are used to specify ActivityFinalNode. Place 'Final' (of type 'Colour') 
receives the one token output by transition 'Last Action' on its output arc. 
There are no additional net elements connected from place 'Final'. 
 

Action 
 
  

An action represents a single step within an activity, that is, 
one that is not further decomposed within the activity. An 
action may have sets of incoming and outgoing activity 
edges that specify control flow and data flow from and to 
other nodes. An action will not begin execution until all of 
its input conditions are satisfied.  
 

 
Coloured Petri net element, transition, is used to specify Action. A transition 
will not execute unless all of its input conditions are satisfied i.e. the number 
of tokens (and potentially their value) specified by the inscriptions on its 
input arcs are present on the associated input places. 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

DataStore 
 

A data store keeps all tokens that enter it, copying them 
when they are chosen to move downstream.  

Coloured Petri net elements place and place type (list) are used to specify 
DataStore. Additional elements input and output arcs, transition, and arc 
inscriptions are used to specify an example of retrieval and update of 
DataStore items. 
 

DecisionNode 

 
A decision node accepts tokens on an incoming edge and 
presents them to multiple outgoing edges. Which of the 
edges is actually traversed depends on the evaluation of the 
guards on the outgoing edges. 

 
Coloured Petri net elements place, input and output arcs, transition, and arc 
inscriptions are used to specify DecisionNode. Execution of transition 
'Decision' uses arc inscriptions to check the consumed token's content before 
copying one new token to one of the three output places. 
 

FlowFinal 
 

A flow final destroys all tokens that arrive at it. 
 

Coloured Petri net elements place, output arc, transition, and arc inscription 
are used to specify FlowFinal. Place 'Final' (of type 'Colour') receives the one 
token output by transition 'Last Action' on its output arc. There are no 
additional net elements connected from place 'Final'. 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

ForkNode 
 

A fork node has one incoming edge and multiple outgoing 
edges. 

 
Coloured Petri net elements place, input and output arcs, transition, and arc 
inscriptions are used to specify ForkNode. Execution of transition 'Fork' uses 
arc inscriptions to copy one new token to all three output places. 
 

InitialNode  
An activity may have more than one initial node. 

 
Coloured Petri net elements place, output arc, and arc inscription are used to 
specify InitialNode. There are no additional net elements preceding place 
'Initial'.  
 

JoinNode 
 

A join node has multiple incoming edges and one outgoing 
edge. 

 
Coloured Petri net elements place, input and output arcs, transition, and arc 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

inscriptions are used to specify JoinNode. Execution of transition 'Join' uses 
an arc inscription to consume three input tokens and copy one new token 
along its output arc. 
 

MergeNode 

 
A merge node has multiple incoming edges and a single 
outgoing edge. It is not used to synchronize concurrent 
flows but to accept one among several alternate flows. 

 
Coloured Petri net elements place, input and output arcs, transition guard, 
transition, and arc inscriptions are used to specify MergeNode. Execution of 
transition 'Merge' uses arc inscriptions to consume three input tokens when 
its transition guard condition is met and copy one new token along its output 
arc. 
 

ObjectNode 

 
An object node is an activity node that indicates an instance 
of a particular classifier, possibly in a particular state, may 
be available at a particular point in the activity. 

 
Coloured Petri net elements place and place type ('Colour') are used to 
specify ObjectNode. Additional elements input and output arcs, transition, 
and arc inscriptions are used to specify an example of an ObjectNode. 
Transition 'Action' is enabled when one token is available to be removed 
from place 'Initial' (of type 'Colour') and bound to variable 'value'. One new 
token is then copied to place 'Flow' (of type 'Colour').  
    

UML Activity Diagram Paths   
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

ControlFlow 
 

A control flow is an edge that starts an activity node after 
the previous one is finished.  

Coloured Petri net elements input and output arcs, and arc inscriptions are 
used to specify ControlFlow. Additional elements place and transition are 
used to specify an example of ControlFlow. Transition 'Action1' executes to 
produce one token for place 'Flow' (of type 'Colour') bound to variable 
'value'. Control then passes to transition 'Action2' which becomes enabled 
when one token is available on place 'Flow' (of type 'Colour').     
 

ObjectFlow 

 
An object flow models the flow of values to or from object 
nodes. 

 
Coloured Petri net elements input and output arcs, and arc inscriptions are 
used to specify ObjectFlow. Additional elements place and transition are 
used to specify an example of ObjectFlow. Transition 'Action' executes to 
consume one token from place 'Initial' (of type 'Colour') bound to variable 
'value'. Flow then passes to output place 'Flow' (of type 'Colour') when one 
token is copied to it following execution of transition 'Action'.     
 

SendSignalAction 

 
SendSignalAction is an action that creates a signal instance 
from its inputs, and transmits it to the target object, where it 
may cause the firing of a state machine transition or the 
execution of an activity. 

 
Coloured Petri net elements place, input and output arcs, transition, and arc 
inscription are used to specify SendSignalAction. Transition 'Action' 
executes and an arc inscription compares the consumed token's value ('cond') 
to determine the new token to copy to place 'Target' (of type 'Colour'). 
Additional net elements can be used to specify the execution of an activity 
dependent on the token copied to place 'Target'.     
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

UML Activity Diagram 
Elements 

  

 

 
Hierarchical Coloured Petri net elements 
 transitions and substitution transitions are used to specify Activity, 
ActivityParameterNode, and CallBehaviourAction. Additional elements 
place, and input and output arcs are used to specify an example of Activity, 
ActivityParameterNode, and CallBehaviourAction. Transition 'Action' is 
further decomposed by subnet 'Call Behaviour'. 'Action' has two socket 
interface places, 'Input' and 'Output'  used by subnet 'Call Behaviour' to 
consume and produce tokens on its associated port places (of type 'Colour'). 
Subnet 'Call Behaviour' uses net elements to further specify the 'Action' 
activity.   
 

 

 

Activity & ActivityParameterNode 
& 
CallBehaviourAction 
 
 
 
 
 
 
 
 
 

An activity specifies the coordination of executions of 
subordinate behaviours, using a control and data flow 
model. 
 
Activity parameter nodes are object nodes at the beginning 
and end of flows that provide a means to accept inputs to 
an activity and provide outputs from the activity, through 
the activity parameters. 
 
CallBehaviorAction is a call action that invokes a 
behaviour directly rather than invoking a behavioural 
feature that, in turn, results in the invocation of that 
behaviour. 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

 

ActivityPartition 

 
Partitions divide the nodes and edges to constrain and show 
a view of the contained nodes. 

 
Toolset features of annotation and colouring are used to specify 
ActivityPartition. Additional Coloured Petri net elements place, input and 
output arcs, transition, and arc inscriptions are used to specify an example of 
ActivityPartition. Transition 'Action1' is associated with 'Sub Partition 1' and 
transition 'Action2' is associated with 'Sub Partition 2'. 
 

InterruptibleActivityRegion 

 
An interruptible region contains activity nodes. When a 
token leaves an interruptible region via edges designated by 
the region as interrupting edges, all tokens and behaviours 
in the region are terminated.  

Coloured Petri net elements place, input and output arcs, transition, and arc 
inscriptions as well as toolset colouring are used to specify 
InterruptibleActivityRegion. Presence of tokens on places 'Request Cancel' 
and 'Flow' (of type 'Colour') enable execution of transition 'Interrupt' and 
prevent execution of transition 'Action'. 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

ExceptionHandler 

 
An exception handler is an element that specifies a body to 
execute in case the specified exception occurs during the 
execution of the protected node. 

 
Coloured Petri net elements place, input and output arcs, transition, and arc 
inscriptions as well as toolset colouring are used to specify 
ExceptionHandler. Execution of transition 'Exception?' checks for an 
exception condition and copies one token to place 'Error'. Presence of one 
token on place 'Error' enables transition 'Error Handler' and further 
specification of exception handling if desired. 

ExpansionRegion 

 
An expansion region is a strictly nested region of an 
activity with explicit input and outputs (modelled as 
ExpansionNodes). 

 
Coloured Petri net elements place and place type (list) are used to specify 
ExpansionRegion. Additional elements input and output arcs, transition, and 
arc inscriptions are used to specify an example of retrieval, update, and 
processing of two collections (type list). The transition 'Action' is enabled 
when one token of type 'Store' is present on places 'Input1' and 'Input2'. 
Transition 'Action' executes, consuming one token containing the first item 
in the list (type 'Store') from places 'Input1' and 'Input2'. One token is then 
copied to place 'Item' (of type 'Store'). 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

 
Local pre- and postconditions 

 
Local pre- and post-conditions are constraints that should 
hold when the execution starts and completes, respectively. 

 
Coloured Petri net elements place, input arc, transition, transition guard, and 
arc inscriptions as well as toolset colouring are used to specify Local pre- 
and post-conditions. Transition 'Action' is enabled when one token with a 
certain value ('cond') is available (the pre-condition). One token is copied to 
places 'Output1' and 'Output2' (the post-condition). 
 

ParameterSet 

 
A parameter set acts as a complete set of inputs and outputs 
to a behaviour, exclusive of other parameter sets on the 
behaviour (express 'or' invocation).  

Hierarchical Coloured Petri net element substitution transitions as well as 
toolset colouring and instantiation features are used to specify ParameterSet. 
Additional elements place, and input and output arcs are used to specify an 
example of ParameterSet. Transitions 'Action' and 'Action2' are further 
decomposed by the same subnet 'Action'. 'Action' has two socket interface 
places, 'Item' and 'Output' used by subnet 'Action' to consume and produce 
tokens on its associated port places (of type 'Colour'). Subnet 'Action' uses 
net elements to further specify the 'Action' activity. Either or both of 
transitions 'Action' and 'Action2' can become enabled by the presence of a 
token on places 'Item' and 'Item2'. 
 

CONCEPTS   
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

Multiplicity Expansion nodes & decision nodes. 

 
Hierarchical Coloured Petri net element substitution transitions as well as 
toolset colouring and instantiation features are used to specify multiplicity. 
Additional elements place, and input and output arcs are used to specify an 
example of multiplicity. Transitions 'Action1', 'Action2', and 'Action3' are 
further decomposed by the same subnet 'Action'. 'Action' has two socket 
interface places, 'Item' and 'Output' used by subnet 'Action' to consume and 
produce tokens on its associated port places (of type 'Colour'). Subnet 
'Action' uses net elements to further specify the 'Action' activity. Transitions 
'Action1', 'Action2', and 'Action3' can become enabled by the presence of a 
token on  places 'Item1', 'Item2', and 'Item3' and then follow the execution 
sequence specified by the same subnet, 'Action'. 
 

 
Coloured Petri net elements place, input and output arcs, transition, and arc 
inscriptions as well as toolset colouring can also be used to specify 
multiplicity. Following transition 'Action' execution, output arc inscriptions 
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UML Activity Diagram 
Nodes  

Concrete Syntax & Description [125] Petri Net Element(s) 

check the content of consumed token 'count' and depending on its value one 
token is copied to place 'Finish' or 'Check' (the start of another iteration of 
the execution sequence). 
 

Timing SimpleTime subpackage of CommonBehaviors package 
[125] and Modelling and Analysis of Real-time and 
Embedded systems (MARTE) profile [113]. 

 
Timed Coloured Petri net elements place, input and output arcs, transition, 
and arc inscriptions are used to specify an example of timing in models. 
Transition 'Action' is enabled when model time reaches current model time 
plus '10' and one token is available to be removed from place 'Timed Value' 
(of type 'Colour') and bound to variable 'value'. 
 

Model execution None. Toolset well-defined algorithm. 
 

Model reachability graph None. Toolset well-defined algorithm. 
 

 

E.3 Summary 
This appendix has provided a definition of the mappings made to UML activity diagrams based on Petri nets for the specification of systems-of-
systems.  
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Appendix F  

Petri Net Toolset Selection Exercise 
 

F.1 Introduction 
This appendix describes the process of selecting a Petri net development framework 
for the purposes of system-of-systems specification and analysis in this thesis. 
 

F.2 Selection Process 
Obtaining a comprehensive Petri net toolset can be achieved in three ways: 
developing the Petri net toolset in-house (this ensures all personal requirements are 
met but a disadvantage includes the time and effort involved. This effort can be short-
circuited if there are suitable extensible frameworks available on which to build); 
compiling a toolset from existing Petri net analysis and graphical editing tools (again, 
a disadvantage is the time and effort involved in integrating the tools); or identifying a 
suitable existing integrated Petri net toolset and adapting it accordingly (this relies on 
the toolset being open and well supported in terms of documentation). 
 
Given the time and resources available to the thesis, the latter option was chosen as 
the way forward. A list of criteria was identified as the basis for selecting potential 
Petri net toolsets for further evaluation. The list included: ability to execute Petri nets; 
close integration with UML; rapid, lightweight; extensible; free or low cost; 
intellectual accessibility; representation of service-based architecture; robustness; and 
networkability.  
 

F.2.1 Selection of Toolsets for Further Evaluation 
An internet Petri net toolset survey was conducted and toolsets were selected 
according to their latest version/maintenance release. The features listed for these 
toolsets did not indicate whether the toolset met all the requirements of the thesis. 
Reflecting on the criteria list, four toolsets were selected for further evaluation using 
the following features as a minimum of functionality: a graphical editor; an interactive 
simulator (with performance analysis capability); currency in terms of maintenance 
and support (including ease of installation and product stability); and a free or low 
cost license. Four Petri net toolsets were identified [47, 126, 127, 128] and evaluated 
during July/August 2008. The functionality specific to each is summarised in Table 
F.1.  
 
TOOL Features Comments 
CPN Tools 
Research group (free to 
universities) 
 

High-level Petri nets support. 
 
 
 
Tried & tested? 
 
 
 

Timed Petri nets, 
Coloured Petri nets, 
Hierarchical Petri nets. 
 
Many published papers/test 
cases (at least 100 papers, over 
5000 licences). 
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TOOL Features Comments 
Abstraction support. 
 
 
 
Logic support.  
 
 
 
On-the-fly-execution. 
 
 
 
 
 
Intuitive graphical interface. 
 
 
Model editing. 
 
 
Syntax-checking of model. 
 
 
State-space analysis. 
 
 
 
 
 
 
 
 
Performance analysis. 
 
 
 
CTL model checker extension. 
 
 
Animation framework 
extension. 
 
 
 
 
Graphing support extension. 
 
Interchange file format. 
 

Via sub-pages, supports both 
top-down and bottom-up 
development. 
 
Via functional programming 
language (CPN ML based on 
Standard MetaLanguage, SML). 
 
Supports manual triggering of 
transitions, semi-automatic 
triggering of a number of 
transitions, and automatic 
replication runs. 
 
Workspace personalisation, 
context menus. 
 
Several time-saving 
mechanisms. 
 
Automatic correctness 
verification. 
 
Highlights dead transitions 
(operations not used) and dead 
markings (potential design 
error), use of built-in or custom 
queries to investigate state-space 
using CPN ML code, partial 
state-space verification in large 
models. 
 
Multiple simulation runs and 
statistical data extraction via 
monitors/text-based log files. 
 
Via ASK_CTL [130] state space 
analysis. 
 
Via BRITNeY [129], supporting 
2D/3D graphical representation, 
Message Sequence Charts, High 
Level Architecture (with 
BRITNeY). 
 
Via Graphviz [131]. 
 
XML (own Document Type 
Definition, DTD). 
 

WoPeD 
Research group (free to 
universities) 
Open source 

High-level Petri nets support. 
 
 
 
 
 
 
Tried & tested? 
 

Timed Petri nets (notation and 
ability to insert time for 
subprocesses), 
Hierarchical Petri nets, 
Predicate/Transition Petri nets,  
Workflow nets. 
 
Less than 10 papers. 
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TOOL Features Comments 
Abstraction support. 
 
 
 
Logic support.  
 
 
 
 
On-the-fly-execution. 
 
 
 
Intuitive graphical interface. 
 
Model editing. 
 
State-space analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance analysis. 
 
 
 
 
Graph support extension. 
 
 
 
Interchange file format. 
 

Via subprocess transition pages, 
supports top-down and bottom-
up development.  
 
Percentage probability (notation 
present but do not believe it is 
fully implemented) and 
XOR/AND joins/splits. 
 
Supports manual triggering of 
transitions, and automatic 
replication runs. 
 
Context menus. 
 
Suggests place/transition. 
 
Uses Woflan application 
(Workflow Analysis tool that 
checks if Petri Net conforms to 
Workflow definition) to 
determine whether process 
definition is a workflow, 
highlights whether all conditions 
in the process are proper, 
highlights whether all tasks in 
the process are not dead 
(operations not used), and 
highlights whether all tasks in 
the process are live, no use of 
built-in or custom queries to 
investigate state-space.  
 
Multiple simulation runs and 
statistical data extraction via pre-
formatted logfile (CSV export 
possible). 
 
Ability to use diagrams option 
within simulation or via JGraph 
enhancement. 
 
XML, PNML. 
 

Renew 
Research group (free to 
universities)  
Open source 

High-level Petri nets support. 
 
 
 
 
Tried & tested? 
Abstraction support. 
 
 
Logic support.  
 
On-the-fly-execution. 
 
 
Intuitive graphical interface. 

Object-oriented Petri nets, 
Coloured Petri nets, 
Timed Petri nets, 
Reference nets. 
 
At least 30 papers. 
Reference nets (synchronous 
channels). 
 
Java inscriptions. 
 
Supports manual triggering of 
transitions, and automatic runs. 
 
Uses one central command 
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TOOL Features Comments 
 
 
 
Model editing. 
 
 
Syntax-checking of model. 
 
 
State-space analysis. 
 
 
Performance analysis. 
 
 
 
Animation framework 
extension. 
 
Interchange file format. 
 

window which works with one 
active editing window. 
 
Uses JHotDraw library. 
Suggestion of places/transitions. 
 
Automatic correctness 
verification. 
 
Requires third party tool to 
perform analysis. 
 
Interactive and dynamic 
simulation only (would require 
enhancement). 
 
Basic animation support via 
icons. 
 
XML, PNML. 

Platform Independent Petri 
Net Editor 2 
Research group (free to 
universities) 
Open source 

High-level Petri nets support. 
 
 
 
Tried and tested? 
 
Logic support. 
 
On-the-fly-execution. 
 
 
 
 
 
Intuitive graphical interface. 
 
Model editing. 
 
State-space analysis. 
 
Performance analysis.  
 
 
Interchange file format. 

Petri nets extended with time 
(stochastic) and 
Predicate/Transition Petri nets. 
 
Less than 10 papers. 
 
Via weightings only. 
 
Supports manual triggering of 
transitions, semi-automatic 
triggering of a number of 
transitions, and automatic 
replication runs (via module). 
 
Context menus. 
 
Basic functionality. 
 
Via provided module. 
 
Basic as it stands (would require 
enhancement via a module). 
 
PNML. 

Table F.1 'The four selected toolsets and their features' 

 

F.2.2 Comparison of Toolsets 
Following usage of these toolsets, more detailed requirements were identified and 
translated into a list of criteria to aid further comparison of the four toolsets based on 
a similar process to the one presented in [132]. Ratings of aspects of desirable features 
for each toolset were given as 'excellent', 'good', 'fair', 'poor', and 'unsupported'. Each 
of these ratings has an associated point score ranging from four for 'excellent' down to 
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zero for 'unsupported'. In addition, the aspects were given an importance weighting of 
one to four (ranging from 'useful' to 'mandatory' respectively). 
 
In terms of toolset ease-of-use, all tools had an intuitive installation procedure and 
were straightforward to install. All four toolsets offered a typical graphical user 
interface and a stable product integrating editing, simulation and analysis functions. 
As such, no further evaluation of these aspects was undertaken. 
 
Regarded as one of the most critical parts of an integrated Petri net toolset, the 
graphical editor produces the model used in verification and validation. There are 
several key aspects of editors to evaluate: support for the documentation of models 
(e.g. export formats, automatic report generation from models); support for model 
layout (e.g. automatic layout via a drawing grid, alignment of model elements, ability 
to add text, colour, style, sizing and charts to models); support for syntax construction 
and checking during model editing (e.g. provision of context sensitive values and 
menus, provision of explicit model checking command, provision of default 
modelling values, not permitting place-to-place or transition-to-transition connection 
using arcs, warning users when undefined types are associated to places); ability to 
customise the graphical appearance of the tool and models and their navigation (e.g. 
hiding of inscriptions); ability to print (e.g. formats, all or part of a model); 
helpfulness of error notification; and the management of model versions. Results of 
the evaluation are shown in Table F.2. 
 

Support for  Toolset 
Documentation Layout Syntax 

Building 

Customisation 
of appearance 

Printing Syntax 
Checking 

Error 
Notification 

Version 
Control 

CPN Tools Good. Good. Good. Good. Fair. Good. Fair. Un- 
Supported. 

WoPeD Fair. Fair. Fair. Poor. Fair. Poor. Poor. Un-
supported. 

Renew Fair. Fair. Good. Fair. Good. Good. Fair. Un-
supported. 

PIPE Fair. Fair. Fair. Fair. Fair. Poor. Poor. Un-
supported. 

Importance 
Weighting 

2 1 2 2 3 4 4 2 

Table F.2 'Evaluation of graphical editor key aspects for each toolset' 

 
Critical to the thesis was the ability of the toolset to execute a model. Features 
essential for useful simulation are evaluated in Table F.3. These include: inclusion of 
break and watch points (e.g. ability to stop simulation dependent on certain 
conditions); support of various simulation modes (e.g. interactive ability to step 
through simulation, batch runs); ability to generate stand-alone simulation code from 
model; ability of toolset to generate animations based on model execution (e.g. 
simple, 'token game' or more advanced animation via GUIs). The results are shown in 
Table F.3. 
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Simulation  Modes Animation  Toolset 
Interaction Rating Batch 

Watch 
Points 

Break 
Points 

Code 
Generation Simple Advanced 

CPN Tools Single step. 
Continuous. 

Excellent. Excellent. Good. Good. Un-
supported 
(Beta 
programming 
Language). 

Good. Good 
(BRITNeY). 

WoPeD Single step. 
 

Fair. Un- 
Supported. 

Un- 
Supported. 

Un- 
Supported. 

Un-
supported. 

Good. Un-
supported. 

Renew Single step. 
Continuous. 

Fair. Un- 
Supported. 

Un- 
Supported. 

Un- 
Supported. 

Un-
supported. 

Good. Poor. 

PIPE Single step. 
Continuous. 

Good. Fair. Un- 
Supported. 

Un- 
Supported. 

Un-
supported. 

Good. Un-
supported. 

Importance 
Weighting 

 3 4 2 2 2 3 1 

Table F.3 'Evaluation of simulation key aspects for each toolset' 

 
Model analysis is another important tool in an integrated Petri net toolset. Aspects 
considered in the evaluation are tool support for reachability, liveness, fairness, 
temporal logic, support for results presentation (e.g. graphing, printing, export for 
further analysis), and support for other forms of analysis. These are shown in Table 
F.4. 
 

Others  Toolset Reachability 
 

Liveness Fairness Temporal 
Logic 

Invariants Statistical 
Analysis 

Results 
Present-
ation 

Type Rating 

CPN Tools Excellent. Excellent. Excellent. Excellent. Un-
supported. 

Good. Good. Home state. 
Boundedness. 

Excellent 

WoPeD Excellent. Excellent. Excellent. Un-
supported. 

Un-
supported. 

Un-
supported. 

Fair.   

Renew Un-
supported. 

Un-
supported. 

Un-
supported. 

Un-
supported. 

Un-
supported. 

Un-
supported. 

Un-
supported 

  

PIPE Excellent. Excellent. Excellent. Un-
supported. 

Excellent. Fair 
(Dnamaca). 

Fair. Home state. 
Boundedness. 
Comparison. 
DNAmaca. 

Good. 

Importance 
Weighting 

4 4 3 3 3 4 3  2 

Table F.4 'Evaluation of analysis key aspects for each toolset' 

 
The level of support and potential future development of the toolsets are additional 
important aspects to evaluate. Here, toolset support covers provision of 
documentation (quality and quantity of user-oriented and technically-oriented 
documentation) and technical support (via internet, training, email and telephone). 
Assessment of future development is indicated along with a rating for the likelihood 
of these enhancements to functionality/usability taking place. The likelihood rating 
can be inferred from toolset usage (e.g. number of licenses, number of research 
groups involved, existing quality of toolset). Again, evaluation results are represented 
in Table F.5. 
 
Toolset Support Future  

Development 
Likelihood
Rating 

Tutorial/ 
Examples 

Help  Documentation 

CPN Tools Excellent. Next 
generation 
tool support 
for State 
Space 
Analysis 

Good. Good. Good. Good. 
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[69]. 
WoPeD Fair. No public 

details. 
Fair (last 
release 
April 
2008). 

Poor. Fair. Fair. 

Renew Fair. No public 
details. 

Fair (last 
release 
July 2008). 

Fair. Fair. Fair. 

PIPE Good. Hierarchical 
Nets. 

Fair (last 
release 
December 
2007). 

Fair. Fair. Fair. 

Importance 
Weighting 

3  2 3 2 3 

Table F.5 'Evaluation of support/future development key aspects for each toolset' 

 
One of the requirements outlined at the start of this document was for toolsets to 
support extensibility. Important properties of extensibility include the ability to 
import/export models and analysis results and the openness of a toolset, i.e. the ease 
of making modifications to the toolset to meet requirements. Openness relates to 
knowing the interface specifications at the architectural module level (through 
technical documentation). Table F.6 summarises the openness of the four toolsets. 
 

Formats   Programming interface Toolset 
Import Export Rating 

Technical 
Documentation Type Rating 

CPN Tools XML. EPS, 
XML. 

Good. Good. CPN ML 
based on 
SML. 

Good. 

WoPeD XML, 
PNML. 

PNG, 
JPG, 
BMP, 
TPN 
(Woflan), 
PNML. 

Good. Poor. Java. Good. 

Renew XML, 
PNML. 

PS, EPS, 
XML, 
PNML. 

Good. Poor. Java. Good. 

PIPE XML. PS, PNG, 
XML. 

Good. Poor. Java. Good. 

Importance 
Weighting 

 3 3  3 

Table F.6 'Evaluation of openness aspects for each toolset' 

 

F.2.3 Final Ranking of Toolsets 
Similar to the approach used in [132], ranking of the most important features of the 
toolsets was made by applying a priority (importance weighting) to each aspect of the 
feature and a point system to the given evaluation rating of the aspect (for example, as 
indicated earlier, a 'good' rating would be worth three points). For each feature, a 
maximum scoring can be calculated based on the priorities given to its aspects in 
Tables F.2-F.6. This maximum scoring is shown in Table F.7 and can be viewed as a 
toolset profile for application in system-of-systems development. A score is then 
calculated for each feature by toolset. For example, for its 'Graphical Editor' feature, 
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CPN Tools received five 'good' (with corresponding priorities of 2, 1, 2, 2, and 4) and 
two 'fair' ratings (with corresponding priorities of 3 and 4) for the editor aspects, 
equating to 47 points (2*3 + 1*3 + 2*3 + 2*3 + 4*3 + 3*2 + 4*2) out of a possible 80 
maximum (2 + 1 + 2 + 2 + 3 + 4 + 4 + 2 = 20*4) for the Graphical Editor. In this way, 
emphasis can be placed on aspects particularly desirable in system-of-systems 
development and the toolsets can be ranked by highest points accumulation (Table 
F.8).  
 
Feature Aspect Priority Maximum 
Graphical Editor Documentation 

Layout  
Syntax Building 
Appearance 
Customisation 
Printing 
Syntax Checking 
Error Notification  
Version Control 

2 
1 
2 
2 
3 
4 
4 
2 

 
 
 
 
 
 
 
80 

Simulation Interactive 
Batch 
Watchpoints 
Breakpoints 
Code Generation 
Simple Animation 
Advanced Animation 

3 
4 
2 
2 
2 
3 
1 

 
 
 
 
 
 
68 

Analysis Reachability 
Liveness 
Fairness 
Temporal Logic 
Invariants 
Statistical Analysis 
Results Presentation 
Other Analysis 

4 
4 
3 
3 
3 
4 
3 
2 

 
 
 
 
 
 
 
104 

Support/Future 
Development 

Support 
Future Development 
Examples 
Help 
Documentation 

3 
2 
3 
2 
3 

 
 
 
 
52 

Openness Import/Export 
Technical Documentation 
Programming Interface 

3 
3 
3 

 
 
36 

  Maximum Points 340 

Table F.7 'Profile for system-of-systems development' 

 
Toolset Graphical 

Editor 
Simulation Analysis Support/Future

Development 
Openness Total Rank 

CPN 
Tools 

47 52 85 42 27 253 1 

WoPeD 26 15 50 23 21 135 3 
Renew 45 16 0 26 21 108 4 
PIPE 28 26 80 29 21 184 2 
        

Table F.8 'Toolset ranking according to aspect scoring' 
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Using this ranking, knowledge of each toolset and the intended usage domain, a 
recommendation can be made regarding use of a particular toolset in case study 
exercises. Given that the toolset is likely to be used in both military and commercial 
sectors, emphasis must be placed on its stability and accessibility (ease-of-use and 
support is important to both sectors, license cost will be more of an issue in the 
military sector). The four toolsets were classified according to the tasks involved in 
engineering systems-of-systems, i.e. modelling, verification/quantitative analysis and 
validation/qualitative analysis and features relating to these tasks. All tasks involved 
in engineering a system-of-systems application are perceived to have equally high 
priority. Given this fact and the timescales for the thesis, it was important to select a 
suitably rounded toolset scoring reasonably well for all these features. As well as the 
collated scores, a toolset's history, number of users, and size and structure of 
supported state space were also considered. 
 

F.2.4 Conclusions 
From this evaluation of the four selected toolsets, given that the ratings awarded to 
each depended on the corresponding aspect in another toolset, each toolset was highly 
useable in its own right. For the intended case study exercises and thesis time 
available, the use of CPN Tools is recommended (the other toolsets are worthy of 
further investigation when there is less restriction on time). CPN Tools offers high 
levels of support in terms of papers, tutorials, online/offline help, and internet forums 
and is a comprehensive toolset 'out-of-the-box' allowing fast model construction, 
execution and analysis. Further 'plug-in' support comes in the form of ASK_CTL, 
Graphviz and BRITNeY and there are plans to develop further toolset support for 
state space exploration and analysis of CPN models. Although not fully investigated 
as yet, running multiple CPN Tools simulators and controlling communication 
between them appears to be possible using a combination of the CPN Tools simulator 
and BRITNeY. In terms of system-of-systems design, this would enable verification 
and validation of low fidelity models built by different agencies (perhaps retrieved 
from a repository of such models) across a networked environment. Regardless of 
this, CPN Tools can be used in a standalone environment to open multiple net models 
simultaneously and has 'clone' functionality to copy elements of nets between models. 
Related to integration of models is their export. Currently CPN Tools supports its own 
XML export (with published Document Type Definition). Finally, in terms of cost, 
CPN Tools is free to both academic and commercial organisations.      
 

F.3 Summary 
This appendix has described the process of selecting the CPN Tools Petri net toolset 
for the purposes of system-of-systems specification and analysis in this thesis. 
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