
Durham E-Theses

The Impact of Petri Nets on System-of-Systems

Engineering

SINCLAIR, KIRSTEN,MHAIRI

How to cite:

SINCLAIR, KIRSTEN,MHAIRI (2009) The Impact of Petri Nets on System-of-Systems Engineering,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/212/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/212/
 http://etheses.dur.ac.uk/212/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The Impact of Petri Nets on System-of-Systems
Engineering

Kirsten Sinclair

Abstract

The successful engineering of a large-scale system-of-systems project towards
deterministic behaviour depends on integrating autonomous components using
international communications standards in accordance with dynamic requirements.
To-date, their engineering has been unsuccessful: no combination of top-down and
bottom-up engineering perspectives is adopted, and information exchange protocol
and interfaces between components are not being precisely specified. Various
approaches such as modelling, and architecture frameworks make positive
contributions to system-of-systems specification but their successful implementation
is still a problem.

One of the most popular modelling notations available for specifying systems, UML,
is intuitive and graphical but also ambiguous and imprecise. Supplying a range of
diagrams to represent a system under development, UML lacks simulation and
exhaustive verification capability. This shortfall in UML has received little attention
in the context of system-of-systems and there are two major research issues:

1. Where the dynamic, behavioural diagrams of UML can and cannot be used to
model and analyse system-of-systems
2. Determining how Petri nets can be used to improve the specification and analysis of
the dynamic model of a system-of-systems specified using UML

This thesis presents the strengths and weaknesses of Petri nets in relation to the
specification of system-of-systems and shows how Petri net models can be used
instead of conventional UML Activity Diagrams. The model of the system-of-systems
can then be analysed and verified using Petri net theory. The Petri net formalism of
behaviour is demonstrated using two case studies from the military domain. The first
case study uses Petri nets to specify and analyse a close air support mission. This case
study concludes by indicating the strengths, weaknesses, and shortfalls of the
proposed formalism in system-of-systems specification. The second case study
considers specification of a military exchange network parameters problem and the
results are compared with the strengths and weaknesses identified in the first case
study.

Finally, the results of the research are formulated in the form of a Petri net
enhancement to UML (mapping existing activity diagram elements to Petri net
elements) to meet the needs of system-of-systems specification, verification and
validation.

The Impact of Petri Nets on System-of-Systems
Engineering

Kirsten Sinclair

Ph.D. Thesis

Electronics Group

School of Engineering

University of Durham

2009

 i

Contents

Chapter 1 Introduction.. 1

1.1 Context... 1
1.2 Area of Interest... 1

1.2.1 Approach for Developing Systems.. 3
1.2.2 Characteristics of a Traditional System ... 4

1.3 The System-of-Systems Concept .. 4
1.3.1 Characteristics of Complex Systems ... 5
1.3.2 Characteristics of a System-of-Systems... 6
1.3.3 Thesis Definition of System-of-Systems ... 11
1.3.4 Summary .. 11

1.4 Discussion of Problem.. 13
1.4.1 Overall Problem Statement ... 23
1.4.2 Research Issues... 23
1.4.3 Problem Boundaries.. 23

1.5 Research Aims and Criteria for Success.. 23
1.6 Evaluation Criteria ... 24
1.7 Contribution ... 24
1.8 Thesis Structure.. 24

Chapter 2 Petri Net Specification Framework ... 26
2.1 Introduction.. 26
2.2 Petri Nets.. 26

2.2.1 Petri Net Example... 28
2.2.2 High-level (Coloured) Petri Nets... 29
2.2.3 Timed Petri Nets... 30
2.2.4 Hierarchical Petri Nets.. 30
2.2.5 Analysis.. 30

2.3 Petri Nets and the System-of-Systems Problem Areas............................... 31
Chapter 3 Research Method.. 39

3.1 Introduction.. 39
3.2 Characteristics of Case Study Methods... 39
3.3 Thesis Case Study Approach .. 41

Chapter 4 Petri Net Strengths and Weaknesses in relation to System-of-Systems.. 48
4.1 Introduction.. 48
4.2 UML Behavioural Diagrams (Dynamic Model) .. 49

4.2.1 Sequence .. 49
4.2.2 State Machine ... 50
4.2.3 Activity .. 50

4.3 UML Behavioural Diagrams and System-of-Systems Specification.......... 53
4.3.1 UML Behavioural Diagrams Strengths and Weaknesses in terms of
 System-of-Systems ... 53

4.4 Petri Nets Strengths and Weaknesses in terms of System-of-Systems 55
4.4.1 Conclusions from Specification of the Telephone System using Petri
 Nets .. 57

4.5 How Petri Nets can be used instead of UML Activity Diagrams 61
Chapter 5 Case Study (Close Air Support) .. 65

5.1 Introduction.. 65
5.2 Specification of Close Air Support using Coloured Petri Nets................... 66

5.2.1 Description of Close Air Support .. 66

 ii

5.2.2 Petri Net Construction Method.. 67
5.3 Analyses with Petri Nets and further Specification 73

5.3.1 Dynamic Analysis (Simulation) .. 73
5.3.2 Static Analysis (Reachability Graph Analysis) 75

5.4 Addition of Timing to Petri Net Model ... 80
5.5 Design and Architectural Levels of Abstraction for Close Air Support 83

5.5.1 The Design Level.. 83
5.5.2 The Architecture Level ... 84
5.5.3 Verification of the Design and Architecture Levels and further
 Specification... 86

5.6 Evaluation of Close Air Support Study ... 88
5.6.1 Quantitative Results.. 88
5.6.2 Qualitative Results.. 89
5.6.3 Evaluation Conclusions .. 97

Chapter 6 Case Study (Exchange Network Parameters) 100
6.1 Introduction.. 100
6.2 Specification of Exchange Network Parameters using Coloured Petri Nets...
 ... 101

6.2.1 Description of Exchange Network Parameters 101
6.2.2 Petri Net Construction Method.. 103

6.3 Analyses with Petri Nets and further Specification 108
6.3.1 Dynamic Analysis (Simulation) .. 109
6.3.2 Static Analysis (Reachability Graph Analysis) 110
6.3.3 Specification and Verification of Re-entrant Error Recovery and
 Multiplicity... 112

6.4 Addition of Timing to Petri Net Model ... 116
6.5 Design and Architectural Levels of Abstraction for Exchange Network
 Parameters.. 120

6.5.1 The Design Level.. 121
6.5.2 The Architecture Level ... 122
6.5.3 Verification of the Design and Architecture Levels and further
 Specification... 124

6.6 Evaluation of Exchange Network Parameters Study 125
6.6.1 Quantitative Results.. 125
6.6.2 Qualitative Results.. 126
6.6.3 Evaluation Conclusions .. 132

Chapter 7 Conclusions.. 136
7.1 Introduction.. 136
7.2 Review of Research.. 136

7.2.1 System-of-Systems Level Design Specification and Analysis Problem .
 ... 136
7.2.2 Potential of Petri Nets ... 136
7.2.3 Research Approach, Weaknesses of UML, and Petri Net Formalism.....
 ... 137
7.2.4 Case Study.. 137
7.2.5 Research Results... 138

7.3 Evaluation of Research... 138
7.4 Discussion.. 141
7.5 Further Work.. 145

7.5.1 Evaluation for a Different Domain.. 145

 iii

7.5.2 Specification Evolution... 145
7.5.3 Model Transformation .. 145
7.5.4 Toolset Development.. 145
7.5.5 Dynamic Composition of Functions (Services) 146
7.5.6 Semantics ... 146

7.6 Final Summary... 146
Appendices .. 148

Appendix A ... 149
A.1 Specification of the Telephone Process using a Classic Petri Net.
 .. 149
A.2 Initial Verification of the Telephone Process using a Classic
 Petri Net.. 150
A.3 Specification of the Telephone Process using a Coloured Petri
 Net .. 152

A.3.1 The Operational Process (Conceptual) Level 152
A.3.2 Use of Hierarchy .. 153

A.4 Conclusions so far following Specification using Classic and
 Coloured Petri Nets (with Hierarchy) 156

Appendix B ... 157
B.1 Verification of the Telephone Process using a Coloured Petri Net
 .. 157

B.1.1 Dynamic Analysis (Simulation) 157
B.1.2 Static Analysis .. 157
B.1.3 Static Analysis and State Space Explosion 162
B.1.4 Largeness Avoidance by Abstraction 165
B.1.5 Largeness Avoidance by Composition 167
B.1.6 Summary of Largeness Avoidance Techniques 171

B.2 Conclusions so far following Verification using Coloured Petri
 Nets... 174

Appendix C ... 176
C.1 Validation of the Telephone Process using a Timed Coloured
 Petri net... 176

C.1.1 Static Analysis of Timed Coloured Petri Nets 183
C.1.2 Largeness Avoidance by Abstraction and Timed Coloured
 Petri Nets.. 187
C.1.3 Largeness Avoidance by Composition and Timed Coloured
 Petri Nets.. 188

C.2 Conclusions so far following Validation using Timed Coloured
 Petri Nets... 194

Appendix D ... 196
D.1 Specification, Verification and Validation of the Telephone
 Process at Design and Architecture Levels using Coloured Petri
 Nets... 196

D.1.1 The Design Level ... 196
D.1.2 The Architecture Level ... 197
D.1.3 Verification of the Design and Architecture Levels......... 201
D.1.4 Largeness Avoidance by Abstraction.............................. 204
D.1.5 Largeness Avoidance by Composition 206
D.1.6 Integration of the Composition and Abstraction Approaches.
 ... 212

 iv

D.1.7 Validation of the Design and Architecture Levels 214
D.2 Conclusions from Design and Architecture Levels 214

Appendix E Enhancement to UML based on Petri Nets.................................... 216
E.1 Introduction ... 216
E.2 Definition of the System-of-Systems Specification End
 Language... 216
E.3 Summary ... 227

Appendix F Petri Net Toolset Selection Exercise ... 228
F.1 Introduction ... 228
F.2 Selection Process ... 228

F.2.1 Selection of Toolsets for Further Evaluation.................... 228
F.2.2 Comparison of Toolsets... 231
F.2.3 Final Ranking of Toolsets ... 234
F.2.4 Conclusions .. 236

F.3 Summary ... 236
References ... 237

 v

Figures

Fig. 1.1 'OSI Seven Layer Model and Interoperability' ... 17
Fig. 2.1(a) 'Classic Petri net of chemical reaction with an enabled transition' adapted
from [57], p543.. 28
Fig. 3.1 'Embedded case study' adapted from [108], p139 .. 42
Fig. 3.2 'UML activity diagram of case study modelling process' 43
Fig. 4.1 'Example activity diagram' .. 51
Fig. 4.2 'The intuition of the semantic mapping for control and data flow of Activities'
[118], p8 .. 62
Fig. 5.1 'Immediate close air support request process' from [105], pIII-29 (Figure III-
8) ... 67
Fig. 5.2 'Request close air support UML activity diagram'.. 68
Fig. 5.3 'Request close air support assignment parent net'... 71
Fig. 5.4 'Revised parent net' ... 72
Fig. 5.5 'Revised Requester subnet showing the combined request and response
functions' ... 72
Fig. 5.6 'Infinite net problem detected by executing net' ... 73
Fig. 5.7 'Net and colour (type) definitions specifying the potential failure points within
the activities undertaken by the Requester role' .. 74
Fig. 5.8 'CAS_Request_Service net showing two information exchange transactions
(transitions in red) undertaken by the Requester role' ... 74
Fig. 5.9 'Net detailing state of the close air support request-response information
exchange transaction (REQR_CAS_Req_Xchg) undertaken by the Requester role'. 75
Fig. 5.10 'Amended net to control input nominations'... 77
Fig. 5.11 'One of the five dead markings showing communications failure within the
assigner' ... 78
Fig. 5.12 'Liveness properties for the information exchange transactions net' 78
Fig. 5.13 'Non-standard logic query confirming correct behaviour of information
exchange protocol' ... 79
Fig. 5.14 'Requester subnet in performance analysis net of assign close air support
request process' .. 81
Fig. 5.15 'Activity subnet detailing physical asset and role to perform
receive_CAS_resp activity' .. 82
Fig. 5.16 'CPN Tools data collection log file capturing cost information based on
resources allocated to perform communication activities' ... 82
Fig. 5.17 'Parent net of design level' ... 83
Fig. 5.18 'Services of Make_CAS_Request Component'.. 84
Fig. 5.19 'Service architecture' ... 84
Fig. 5.20 'Transmit common component subnet'... 85
Fig. 5.21 'Abstraction largeness avoidance technique applied to one component in
sub-functions (apart from Make Request and Assign CAS Services)' 87
Fig. 6.1 'Exchange network parameters/dynamic host configuration protocol join
request UML activity diagram'... 104
Fig. 6.2 'Exchange network parameters (new client node arrival) parent net' 107
Fig. 6.3 'Net detailing state of the join request-response information exchange
transaction (ASGR_Join_Req_Xchg) undertaken by the Assigner role' 108
Fig. 6.4 'Sample of errors detected by interactive simulation' 109
Fig. 6.5 'Specification of reject response'.. 110
Fig. 6.6 'Specification of error recovery'... 110

 vi

Fig. 6.7 'Error recovery specification in Assigner subnet' 113
Fig. 6.8 'Amended Assigner net'... 113
Fig. 6.9 'Requester and assigner performance analysis subnets and transmission
duration'... 117
Fig. 6.10 'Capture of model time for client_configured transition' 118
Fig. 6.11 'Exchange network parameters performance analysis parent net'.............. 119
Fig. 6.12 'Automatic simulation replication used to calculate average duration for a
successful join request'... 119
Fig. 6.13 'Design level parent net' .. 121
Fig. 6.14 'Services of Assign_NW_Data_Component'... 122
Fig. 6.15 'Join architecture'... 122
Fig. 6.16 'Receive common component subnet' .. 123
Fig. 7.1 'Petri net replacement for UML CallBehaviourAction activity diagram
element' ... 138
Fig. 7.2 'Infinite net problem detected by interactively executing net' 141

Fig. A.1 'Classic Petri net of a telephone call process' .. 149
Fig. A.2 'Amended process following dynamic analysis' .. 151
Fig. A.3 'Coloured Petri net model of telephone call process shown in Fig. A.2'..... 152
Fig. A.4 'Telephone call process parent net'.. 154
Fig. A.5 'Decomposed subnet for Caller Make_Call transition showing ports' 155
Fig. B.1 'Reachability (state space) and strongly connected component analyses' ... 158
Fig. B.2 'Boundedness properties' .. 158
Fig. B.3 'Home, liveness and fairness properties'.. 159
Fig. B.4 'M9 dead marking from state space graph' ... 160
Fig. B.5 'Pre-defined toolset query to output dead markings in state space graph to
screen'.. 160
Fig. B.6 'SearchNodes query used to inspect state space graph and output list of dead
markings to screen' .. 161
Fig. B.7 'Count and list of dead markings output to a file'....................................... 161
Fig. B.8 'Static Analysis for the hierarchical net' .. 163
Fig. B.9 'Abstracted caller role used for re-calculation of state space graph' 165
Fig. B.10 'Static analysis for the abstracted caller role within the hierarchical net' .. 166
Fig. B.11 'Abstracted receiver role used for re-calculation of state space graph'...... 166
Fig. B.12 'Static analysis for the abstracted receiver role within the hierarchical net'
.. 167
Fig. B.13 'Parent net showing control sequence and operation ownership' 168
Fig. B.14 'Static analysis for the Caller component initiate call process in the
compositional approach'... 168
Fig. B.15 'Static analysis for the Receiver component respond to call process in the
compositional approach'... 169
Fig. B.16 'Static analysis for the Caller component call response process in the
compositional approach'... 170
Fig. C.1 'Caller subnet within performance analysis net of telephone process' 179
Fig. C.2 'Telephone net standard performance report for configured data collection'
.. 180
Fig. C.3 'Telephone net text file report for Response transition data collection' 180
Fig. C.4 'Telephone net log file report for Response transition data collection' 180

 vii

Fig. C.5 'Activity subnet detailing physical asset and role to perform Dial_Number
activity' .. 182
Fig. C.6 'Physical asset net scheduling and processing jobs based on required role' 182
Fig. C.7 'Timed net of telephone process showing initial marking and delays' 184
Fig. C.8 'Amended net logic to reset the receiver line' .. 193
Fig. D.1 'Parent net of design level' .. 196
Fig. D.2 'Services of Make_Call Component' ... 197
Fig. D.3 'Services of Connect_Call Component' ... 197
Fig. D.4 'Call_Setup service architecture' ... 198
Fig. D.5 'Process_Call service architecture' .. 198
Fig. D.6 'Early model abstraction levels presented within one binder'..................... 199
Fig. D.7 'Handset Controller common component subnet' 201
Fig. D.8 'Model abstraction levels presented within three binders'.......................... 201
Fig. D.9 'Product compound type definitions to indicate usage of functions'........... 202
Fig. D.10 'Transmit common component subnet'.. 202
Fig. D.11 'Receive common component subnet' ... 203
Fig. D.12 'Static analysis for the design and architecture level model including
random initial marking generation'... 204
Fig. D.13 'Static analysis for the discretised design and architecture level model'... 204
Fig. D.14 ' Abstracted Make_Call Component used for re-calculation of state space
graph'... 205
Fig. D.15 ' Abstracted Connect_Call Component used for re-calculation of state space
graph'... 205
Fig. D.16 'Call Setup Architecture component'... 207
Fig. D.17 'Process Call Architecture component'.. 208
Fig. D.18 'Call Response Architecture component'... 209
Fig. D.19 'Customised query to export TxOUT markings to file' 210
Fig. D.20 'Final version of Call Response Architecture net employing marking
automation' .. 212

 viii

Tables

Table 1.1 ‘Why Isn’t This Just a Scaling Issue?’ adapted from Smith [23] pp.15-17 12
Table 2.1 'Indication of Petri net suitability for system-of-systems specification'..... 38
Table 3.1 'Checklist for case study design' adapted from [108], p144 44
Table 3.2 'Case study protocol for thesis' adapted from [108], p142 44
Table 3.3 'Checklist for data collection' adapted from [108], pp.149-150.................. 45
Table 4.1 'Strengths and weaknesses of UML behavioural diagrams for system-of-
systems' ... 54
Table 4.2 'Criteria for success for the specification of the telephone system using Petri
nets' ... 56
Table 4.3 'Results from the specification of the telephone system using Petri nets' ... 59
Table 4.4 'Petri net strengths and their relationship to system-of-systems development'
.. 60
Table 4.5 'Petri net weaknesses and their relationship to system-of-systems
development'.. 61
Table 4.6 'Characteristics of the close air support study' ... 64
Table 5.1 'Criteria for success for the specification of close air support using Petri
nets' ... 66
Table 5.2 'State space standard report' .. 76
Table 5.3 'State space standard report summary'... 77
Table 5.4 'Toolset data collection functionality capturing request fulfilment duration'
.. 81
Table 5.5 'State space graph calculation at design and architecture level'.................. 87
Table 5.6 'State space standard report for full and abstracted net' 87
Table 5.7 'Quantitative results from close air support study' 89
Table 5.8 'Qualitative results from close air support study' 90
Table 5.9 'Summary of study results from the specification of close air support using
Petri nets' ... 97
Table 6.1 'Criteria for success for the specification of exchange network parameters
using Petri nets'.. 101
Table 6.2 'Standard state space analysis report for Fig. 6.2' 111
Table 6.3 'Standard state space analysis report following addition of retry limits' ... 112
Table 6.4 'Quantitative results from exchange network parameters study'............... 125
Table 6.5 'Qualitative results from exchange network parameters study'................. 126
Table 6.6 'Summary of overall case study results'... 132

Table C.1 'Possible timestamp ranges following execution of the three transitions'. 185
Table C.2 'Comparison between untimed and timed state space graph calculation' . 186
Table C.3 'Comparison between untimed and timed state space graph calculation' . 186
Table C.4 'Comparison between untimed and timed state space graph calculation' . 186
Table C.5 'Comparison between untimed and timed state space graph calculation' . 186
Table C.6 'Abstracted Make_Call process in timed state space graph calculation'... 188
Table C.7 'Compositional approach using fixed delay range of one time unit'......... 189
Table C.8 'Compositional approach using fixed delay range of one time unit'......... 190
Table C.9 'Compositional approach using fixed delay range of one time unit in
process two' ... 191

 ix

Table C.10 'Compositional approach using variable delay range of one to two time
units' .. 191
Table C.11 'Validation purposes in relation to dynamic and static analyses' 194
Table D.1'Abstraction used in state space graph calculation at design and architecture
level' .. 206
Table D.2 'Abstraction used in state space graph calculation at design and architecture
level' .. 206
Table D.3 'Abstraction and Composition approaches used in state space graph
calculation'... 213
Table F.1 'The four selected toolsets and their features' .. 231
Table F.2 'Evaluation of graphical editor key aspects for each toolset'.................... 232
Table F.3 'Evaluation of simulation key aspects for each toolset'............................ 233
Table F.4 'Evaluation of analysis key aspects for each toolset'................................ 233
Table F.5 'Evaluation of support/future development key aspects for each toolset' . 234
Table F.6 'Evaluation of openness aspects for each toolset' 234
Table F.7 'Profile for system-of-systems development'... 235
Table F.8 'Toolset ranking according to aspect scoring' .. 235

 x

Declaration

The material presented in this thesis is the sole work of the author and has not been
previously submitted for a degree at this or any other university.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be
published without the prior written consent and information derived from it should be
acknowledged.

 xi

Acknowledgements

My sincerest thanks to Professor Keith Bennett, Mr Peter Baxendale, Dr John Hartas,
and Mrs Elaine Dolan for all their support over the previous three years. Colleagues at
SyntheSys Systems Engineers Ltd discussed much of the case study work with me
and I am very grateful for their help and advice.

I would also like to thank my family and friends for proof reading and providing
much encouragement throughout.

This work was part of a Knowledge Transfer Partnership programme funded by the
Technology Strategy Board and SyntheSys Systems Engineers Ltd.

 1

Chapter 1 Introduction

1.1 Context
The engineering of modern, dynamic, large-scale distributed systems so that their
overall behaviour reflects stated requirements is an achievement much sought after in
both private and public sectors. These complex systems, or systems-of-systems, are
uniquely composed of multiple (mainly legacy) component parts integrated
dynamically using standardised communications to deliver a particular application.
Presently, this integration is difficult and unsuccessful [1, 3, 124], with verification
and validation of the resulting system-of-systems only undertaken post-
implementation (when it is often too late). Failure to meet the required outcomes
impacts negatively on cost, safety, reliability, and worse case, human life.

Consequently, it is desirable for the problem and solution design specification of these
large-scale systems-of-systems to offer a high degree of reassurance that the physical
implementation achieved using the design will preserve the functional and non-
functional requirements of the co-ordinator(s). This requires a suitable means of
capturing, verifying and validating the design of the system-of-systems prior to its
actual solution manifestation.

The design specification of a system can be produced using various methods
including textual documentation, or modelling languages such as the de-facto Unified
Modelling Language (UML) [11]. Complete, consistent, and correct design
specification requires consideration of the use of UML in the context of large-scale
system-of-systems problem and solution specification and where the Petri net formal
notation can be used to enhance UML.

1.2 Area of Interest
The term ‘system-of-systems’ has been in use for at least a decade but as yet there is
still no universal agreement on a definition. Definitions in the literature have often
been flawed, failing to differentiate between a system-of-systems and a collection of
large-scale systems, or treating a system-of-systems as similar to any other system.
System-of-systems is defined for the thesis to show the concept is different to that of a
traditional system.

In order to provide a definition of a system-of-systems, it is necessary to start by
considering definitions for a system.

The concept of a system arose from the 1940’s when several disciplines and
technologies were integrated to achieve goals which otherwise would not have been
achievable. For example, integration of high and low altitude radars, ground and air
communications links and human decision makers for the Battle of Britain can be
viewed as an early complex system. In a complex system, the behaviour of its
elements and how they act together to form the behaviour of the whole must be
understood. Elements of a complex system can be composed of simple or complex
systems. Bar-Yam [26] suggests that:

 2

‘the complexity of a system is the amount of information needed in order to describe
it. The complexity depends on the level of detail required in the description’.

ISO/IEC Standard 15288 [5] defines a system as a:

‘combination of interacting elements organised to achieve one or more stated
purposes’

This definition is recursive and implies that a system defined in this way can apply to
both the smallest subcomponent and the largest aggregation of systems. Another
definition of a system provided by the International Council on Systems Engineering
(INCOSE) [6] reinforces this:

‘a system is a construct or collection of different elements that together produce
results not obtainable by the elements alone. The elements, or parts, can include
people, hardware, software, facilities, policies, and documents; that is, all things
required to produce systems-level results. The results include system level qualities,
properties, characteristics, functions, behaviour and performance. The value added by
the system as a whole, beyond that contributed independently by the parts, is
primarily created by the relationship among the parts; that is, how they are
interconnected’.

[6] emphasises that a system produces results unachievable by the components alone
and is further illustrated by Rechtin [33] in this example:

‘imagine that your automobile was completely disassembled and laid out on your
driveway. All the elements individually would be just as before, all in working order.
But you would have no transportation. Transportation, the unique system function,
only exists when all the elements are connected together and function as a whole’.

A system can be seen as an entity that is capable of interacting with its environment
(i.e. everything other than the system) and can react differently over the progression
of time to the same input activity. For example, in a timer-controlled heating system
the sensed temperature depends on the current time. Together with the thermostat, the
sensed temperature dictates whether or not the heating system is switched on. As a
result, the system can react in a different way at different times to the same sensed
temperature. Therefore, a system can be viewed as a collection of parts whose
behaviour is dictated by the interfaces that define its boundary. System state can also
influence its potential behaviour. It is this behaviour that the user of a system is
concerned with, i.e. the activity at system interfaces.

An interface is defined as a point of interaction between a system and its environment.
An interface can be an output (information is produced for the system environment),
an input (information is taken from the environment) or a bi-directional interface.
Communication among systems is carried out using messages, i.e. data structures
formed for the purpose of communication among systems. A system’s behaviour is
the sequence of send and receive operations and is normally characterised by send
operations. Links between the interfaces of two or more interacting systems are
known as connections and these are governed by a set of rules which are defined as

 3

protocols. Each interface has a set of attributes associated with it which control the
possible types of interaction. For example, information encoding, structure, meaning
and timing of information exchanges control interaction at the interface. Interfaces
must be compatible (directly or following adaptation) in order to integrate them.

Recursive decomposition can be performed on a system to obtain its interacting parts.
These may also be systems that can be further decomposed. This process can be
stopped when the details of a component system are of no relevance to the particular
project. Another term, ‘system of interest’, also helps to specify the level of detail the
discussion of a system is taking place at. ISO/IEC Standard 15288 [5] defines ‘system
of interest’ as the system whose lifecycle is under consideration. Usually systems
contain subsystems which are made up of components which in turn contain units. A
unit is the smallest managed part. For example, a sensor system may comprise an
information processing subsystem (controller) and a mechanical subsystem (sensor
element). The controller records the sensed information and passes the information to
the sensor interface in a message.

Over time, systems have grown to include many systems of increased complexity and
descriptions like ‘subsystem’, ‘component’, and ‘unit’ become recursive. ISO/IEC
Standard 15288 [5] uses the term ‘system element’ to make the concept of a system
more flexible and describe the parts from which a system of interest is composed.
Therefore, depending on the system of interest, system elements can be systems in
their own right, subsystems, components or units.

The following definition from IEEE Standard 1220 [7] reinforces that a system also
has a lifecycle and implied supporting infrastructure:

‘a set or arrangement of elements [people, products (hardware and software) and
processes (facilities, equipment, material and procedures)] that are related and whose
behaviour satisfies operational needs and provides for the lifecycle sustainment of the
Products’.

1.2.1 Approach for Developing Systems
The effort to understand the lifecycle of systems has been through systems
engineering. Systems engineering as a discipline was born during the Second World
War in order to cope with the increase in complexity of systems. It uses a process
model to support a system’s lifecycle. INCOSE [6] define systems engineering as:

‘an engineering discipline whose responsibility is creating and executing an
interdisciplinary process to ensure that the customer and stakeholder's needs are
satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner
throughout a system's entire life cycle’.

It is an interdisciplinary approach concerned with the design, architecting and
integration of elements to form a system. Systems engineering aims to address the
business and technical needs of all system owners by delivering a product which
meets their needs. The process involved uses a management process to organise the
technical effort and is usually comprised of seven tasks: state the problem; investigate
alternatives; model the system; integrate; launch the system; assess performance; and

 4

re-evaluate. The various technical stages are linked via models such as the ‘Waterfall
Model’ or ‘Vee Model’.

In systems engineering efforts there are usually several systems involved. These are:
the system that the user operates (‘end product’); the system that supports the end
product (‘enabling system’); the system that is used to develop the end product
(‘process system’); and systems for test, deployment, training and management. Each
of these are designed and built using methods, toolsets and quality assessments.
Systems engineering is a process that is comprised of activities that define the
requirements for a system, transform these requirements into a system using
development and deploy the system operationally. The systems engineer adopts a
process oriented view of these activities and takes into account the needs of the
customer, system implementation team and systems to be integrated.

1.2.2 Characteristics of a Traditional System
In summary, traditional deterministic systems exhibit the following characteristics:

1. Formal requirements engineering with traceability from requirements to design

(formal is taken here to mean an established process, whereas the term 'formal
method' relates to mathematically-based techniques for system specification).

2. Architecture and design well understood.
3. Application of standard processes to building them by a central authority.
4. Availability of staff trained in systems engineering.
5. Support toolsets (such as Integrated Development Environments) for their

construction.
6. Evolution done by well understood process.
7. Application of models to link technical stages e.g. Vee Model.
8. Verification, validation and testing process, technologies and toolsets well

understood and practised with available statistical results.
9. Metrics and optimisation of process well understood e.g. Capability Maturity

Model Integration (CMMI) has several process models which can be used to
refine an organisation’s systems engineering processes.

10. Well understood problem areas.
11. Autonomy is exhibited by the system as a whole rather than its parts.
12. Parts are engineered purposely for the system of interest and may not be useful

in any other system.
13. Connectivity is engineered into the system and normally kept to a minimum

between subsystems.
14. Desirable behaviour is designed for and undesirable behaviour reduced via

testing. This includes provision of fault tolerance, essential for many real-time
systems.

1.3 The System-of-Systems Concept
Historical applications of the system-of-systems term (mainly within defence sector
applications) have existed for decades. Projects including communications satellites,
space flight and nuclear-powered submarines are classified as systems-of-systems or
complex systems with increased technological risk, design constraints and auditing.

 5

1.3.1 Characteristics of Complex Systems
Expanding on the definition of complex systems provided earlier in section 1.2,
Sheard [27] defines a complex system as:

'…systems that do not have a centralising authority and are not designed from a
known specification, but instead involve disparate stakeholders creating systems that
are functional for other purposes and are only brought together in the complex system
because the individual "agents" of the system see such co-operation as being
beneficial for them' .

Sheard [27] goes on to summarise a number of characteristics for complex systems:

1. Their structure and behaviour is not deducible or inferable from the structure and
behaviour of the component parts.
2. Their elements adapt to the environment as they evolve.
3. They have a large number of autonomous, heterogeneous elements.
4. They display emergent macro-level behaviour from the actions and interactions of
the individual agents.
5. They exhibit non-deterministic behaviour.
6. They include not only component systems but also the designers and users of the
component systems.
7. They are not green field projects where the development begins at the same time.

Autonomous is taken here and in the remainder of this document to mean elements
capable of independent action or decision-making. From the definitions and
characteristics above for complex systems it would seem non-deterministic system-of-
systems are complex systems. This is further reinforced by Keating et al [9]. They
summarise the definitions for system-of-systems suggested by several researchers and
state their view of a system-of-systems as being:

‘comprised of multiple autonomous embedded complex systems that can be diverse in
technology, context, operation, geography and conceptual frame’.

However, it is not clear from this definition how a system-of-systems differs from a
system. The Defence Industrial Strategy [21] uses this definition for a system-of-
systems:

‘these contain systems which have purpose and are viable independent of the System-
of-Systems, but which can when acting together perform functions unachievable by
the individual systems acting alone. For instance, the future aircraft carrier, combining
its aircraft carrier group with its own sensors, communications and command systems
and weaponry and interacting with wider networks, represents a System-of-Systems’.

Caffal et al [8] define system-of-systems as:

‘an amalgamation of legacy systems and developing systems that provide an enhanced
military capability greater than any of the individual systems within the system of
systems’.

Gaudel et al [10] suggest this definition:

 6

‘A system constructed from autonomous component systems, where autonomous
means independence with respect to existence, operation and/or evolution’.

The key points from these definitions would appear to be the ability of the component
systems to function independently of one particular system-of-systems and that
system-of-systems are an integration of legacy and new technology systems.

Certain attributes of systems are particularly relevant to their integration into a
system-of-systems and relate to autonomy, controllability and encapsulation.
Autonomy is concerned with independence of a component system in relation to its
existence, operation and evolution. It is important to discover whether the component
system was purposely built for one particular system-of-systems (custom-off-the-
shelf) or re-used (legacy component). Also, component systems involved in a system-
of-systems can operate and evolve under independent management (controlled by
service level agreements), under no contract or under the same control as the system-
of-systems. Unless the component system has been specifically built for the system-
of-systems, information on the following may not be readily available: construction
and verification methods used by designers; assurance relating to dependability,
security and safety; formal semantics of the services offered by each component
system; and adaptability of the component systems. In combining the systems
together, systems engineering practice recommends hiding complex connectivity
detail between elements through encapsulation. In a system-of-systems, connectivity
needs to be established between legacy and new systems. This implies that it may be
necessary to expose internal element details to facilitate connectivity.

It is likely that each autonomous legacy system was developed according to its own
rules and conventions concerning data structure, information exchange protocols and
error handling. It is also likely that any legacy systems to be integrated will be
incompatible at the connection level. In this case, the connection has to try and
reconcile these conventions to enable communication (an additional requirement of
the system-of-systems may be to tolerate such failures of component systems).

1.3.2 Characteristics of a System-of-Systems
A system-of-systems can be seen as having similar characteristics as those of a
complex system. DeLaurentis et al [2] confirm that a system-of-systems is not merely
‘a simplistic box-inside-a-box approach’ (e.g. a power supply unit within an aircraft)
but that there are distinguishing traits associated with them. The traits associated with
a system-of-systems are described by Maier [4], Boardman et al [22] and DeLaurentis
et al [2] as:

1. Heterogeneity: each component system is distinct with different important

characteristics and can operate to different timescales.
2. Emergence: a system-of-systems exhibits capability that its component systems

cannot achieve independently or as a subset. Dyson [12] suggests 'Emergent
behaviour is that which cannot be predicted through analysis at any level
simpler than that of the system as a whole. Emergent behaviour, by definition, is
what's left after everything else has been explained'. Fisher [13] describes
emergent behaviour as '..actions that cannot be localised to any single

 7

component of the system..' and '..the unavoidable result of interactions among
autonomous entities and thus will occur in systems of systems whether by
accident or intention'. Fisher [13] labels the emergent products or services of
these interactions between autonomous constituents as 'cumulative effects'
where constituents are any automated or human participant.

3. Operational and Managerial Independence: component systems within a system-
of-systems exhibit ‘autonomy’ in that they are able to function usefully alone
and their behaviour may differ from that fulfilled by the system-of-systems.
Component systems are usually acquired individually.

4. Evolutionary Behaviour: component systems can be added, amended or
withdrawn over time.

5. Geographical Distribution: component systems are often geographically
dispersed and are likely to exchange information (not physical mass or energy)
via communication networks.

6. Inter-disciplinary: system-of-systems typically integrate a variety of engineered
systems using many disciplines (engineering, game theory, uncertainty,
mathematics, economics and management).

7. System of Networks: rules of interaction govern the connectivity between
component systems and the topology can change over time.

8. Belonging: component systems opt to join based on a cost-benefit basis, belief
in the overall system-of-systems goal, and to try and enhance their own goals.

9. Diversity in system-of-systems function: achieved through component system
autonomy, belonging and open connectivity.

In addition, there are two other traits:

10. Funding: planning, incentive and budgeting systems are often not synchronised
with the development of the system-of-systems [31].
11. Verification and validation: there is no method for verifying and validating the
system-of-systems prior to implementation. Verification and validation normally takes
place post-implementation when it is too late.

These traits are now examined in more detail below.

For operational and managerial independence, a system-of-systems is composed of
components capable of independent action or decision-making (i.e. autonomous
elements). If a system-of-systems is decomposed, each component could perform
independently of the others and be useful in its own right (i.e. has ‘a life of its own’).
In contrast to the earlier Rechtin [33] example of a car in section 1.2, in a system-of-
systems the individual components would not remain laid out on the driveway for
assembly. Able to operate when disassembled from the whole, the elements have their
own purposes independent of each other and are acquired, integrated and managed
separately. Examples fulfilling this characteristic are the internet and military joint
operations where different agencies own different systems in each system-of-systems.

As well as autonomous elements, another important enabling concept in system-of-
systems is communication between these elements. In traditional systems engineering,
integration is a centrally controlled process used to combine elements into a system.
With a system-of-systems, autonomous elements can only contribute to system-wide
goals via co-operative interactions with other elements. The process used to combine

 8

autonomous elements to form the system-of-systems is interoperation. Interoperation
methods should take into account that system-of-systems do not have clearly defined
boundaries; all outcome information is often unavailable; requirements are dynamic
and imprecise; centralised control is unlikely; system-of-systems are expected to be
resilient to unreliability in other elements and unexpected events external to the
system; and the continuous adaptive, evolving and emergent behaviour of a system-
of-systems is directly influenced by human elements.

Continuous evolutionary development in system-of-systems is also enabled by
operational and managerial independence. A system-of-systems is not fully formed or
complete and purposes are added or modified with accumulated experience.
Autonomy of elements means each can be designed, implemented and evolved
independently of the systems in which it will be integrated. These independently
operated elements with evolving purpose and structure interact with other elements
they have no control over. In traditional systems, evolution was rarely considered as
an integral part of their development. Two forms of evolution must be considered
within a system-of-systems: evolution of the elements and evolution of the system-of-
systems as a whole.

In system-of-systems, evolution of independent elements greatly increases the
complexity of their interactions with other elements as they are developed or
upgraded on uncoordinated timescales. This evolution also includes elements
associated with information exchange, i.e. the protocols and interfaces. Since there is
no comprehensive capture of the interface and protocol requirements for a system-of-
systems, there is no means of ensuring that its elements achieve adequate interactions
or interoperability with other elements.

The internet demonstrates evolutionary behaviour. Computers and networks offering
new services are frequently introduced or modified. The World Wide Web
Consortium (W3C), and a collection of owners (developers, and users) collaborate via
bottom-up discussion to produce the standards (Request for Comments or RFCs) by
which the world wide web operates.

Evolution, and operational and managerial independence are also encouraged by
geographic distribution of elements (but can also occur without it). Here, individual
elements can be distributed over large geographic areas exchanging information and
producing emergent behaviour as seen in the case of the internet.

The earlier descriptions of emergent behaviour in section 1.3.2 are unclear as to
whether it can be predicted or analysed. Global properties can be service-based (e.g.
performance, or safety) or product-based (e.g. electricity generation from a national
power grid). An example of emergent behaviour is road congestion during rush hour
where slow progress emerges as a global, service-based property of the road system.
Here, the congestion can be reasonably predicted based on the number of vehicles
involved but it may be extremely difficult to analyse and explain exactly how this
global property was achieved. Other examples of emergence include: trees and their
forest; a mobius strip where one-sidedness is the emergent property obtained by
twisting and attaching the ends of a rectangular strip of paper; an orchestra using its
components to produce a symphony; military network-centric operations, e.g. the

 9

networking of sensors, decision-makers and platforms for shared situational
awareness and improved decision-making.

Recent public sector approaches to procurement aim to move the focus away from
specific individual systems meeting particular performance requirements to solutions
emerging to meet broad sets of needs or capability (e.g. vision for Air Traffic
Management or the US Army Future Force/UK Future Integrated Soldier
Technology). Capability requires the co-operation of multiple constituent systems
within a system-of-systems. It is anticipated that this approach will enable
organisations like the military to prepare for the unknown as it is unlikely all required
information and collaborations will be known in advance.

In the defence sector, systems to support military strategic vision are realised through
defence acquisition initiatives such as the UK Ministry of Defence's (MoD) 'Smart
Acquisition' initiative offering tools and processes within the associated Acquisition
Operating Framework [14]. The goal of smart acquisition is to:

'…acquire defence capability faster, cheaper, better and more effectively integrated'.

Here, defence capability is defined by the MoD Acquisition Operating Framework
[14] as:

'the ability to generate an operational outcome or effect in the context of defence
planning, Capability is the enduring ability to generate a desired effect'.

This means military equipment should no longer be replaced on a like-for-like basis.
Instead, the acquisition operating framework tries to ensure delivery of fully
integrated defence solutions. When a gap in capability is identified between predicted
capability requirements and those covered by ongoing projects and existing systems,
the acquisition lifecycle process is invoked to explore, procure and manage capability
solutions. Within the acquisition operating framework, systems are specified and
procured through independent projects to meet their own set of user requirements
within established time and budgets. Ideally, military strategic vision will then be
realised by combining the effects of these independently acquired systems into the
desired defence capability.

Given the independence of component systems and the aims of smart acquisition,
there are still funding issues for systems-of-systems. Unlike traditional systems
engineering projects, systems-of-systems (particularly in the defence sector) are
differentiated by the huge number of legacy systems from which they will be
composed. Defence system-of-systems' requirements tend to have a much shorter
lifecycle than that of the entities developed to realise them [68, 14]. These legacy
entities are the result of lengthy, expensive procurement processes. When it comes to
integrating these legacy and new technology entities, funding has tended to be
piecemeal [15] with a lack of co-ordination between the agencies involved and
appreciation of the additional resources needed to integrate and realise the overall
system-of-systems from these component systems. Consequently, projects such as
Future Integrated Soldier Technology have been delayed and procurement budgets
eroded even further [16].

 10

The lack of co-ordination mentioned above is not helped by the fact procurement of
component systems and subsequent trade-off analysis according to capability
demands clear understanding of the particular defence problem being addressed.
Smart acquisition uses systems engineering processes to help system through-life
management and is characterised by the MoD Concept, Assessment, Development,
Manufacture, In-Service and Disposal (CADMID) initiative. The objective of systems
engineering is to steer practitioners towards demonstrating that the implemented
system meets the requirements expressed by the customer. The 'Vee' Model [18] is
often used within CADMID to decompose the system lifecycle from customer
requirements to detailed system level requirements and then compose the elements
back into an operational system. The 'Vee' Model refers to verification (has the system
been built in the right way?) and validation (has the right system been built?) between
the decomposition of the system levels on the left hand side of the model and the
composed system on the right hand side of the model. In the workshop summarised by
[31], one of the key issues related to requirements management for a system-of-
systems was that:

'there is no method for validating and adjudicating interoperability requirements in the
documentation process; interoperability requirements are not defined early or
identified as a common development goal'.

Another key issue reported them as being:

'not clearly documented or configuration controlled/managed; they cannot be further
allocated, derived, or met'.

A separate issue is the fact that where requirements are captured, it is usually in static,
textual format which can be ambiguous, inaccurate, lengthy, incomplete, and difficult
to comprehend. Consequently, within defence, it is normally tangible, operational
analysis that is relied upon during the lifecycle of a system to decide between
alternative solutions. Modelling and simulation for validation of intangible design
seem to be in their infancy in terms of their potential to system-of-systems
engineering [19].

From the definitions and discussion of a system it can be generalised that a system-of-
systems is a system in the sense that both are made up of parts, relationships and an
end result which is greater than the sum of its parts. However, using the
characteristics in this section associated with a system-of-systems, it can be seen that
it is possible to differentiate between a traditional system and a system-of-systems.
Composition of a traditional deterministic system involves a greater degree of pre-
meditation and control within the established systems engineering framework.
Composing systems-of-systems from predominantly legacy components (and new
technology systems) to fulfil a desired need is much more challenging.

In a system-of-systems, a large number of integrated autonomous components exhibit
behaviour not necessarily present in any one of them and each is likely to be managed
separately from the system-of-systems. Here, an element of uncertainty prevails as a
set of component systems co-operate to form a system-of-systems with ability
perceived to be far superior to that of a mere component system. These diverse
component systems co-operate by forming their own (dynamic) connections between

 11

interfaces within a communication infrastructure but there is no assurance in place
that the required behaviour from the co-operation is actually achieved. There is also
ambiguity in terms of the funding of such co-operations and resulting incentive for
achieving successful co-operation amongst component systems.

1.3.3 Thesis Definition of System-of-Systems
The previous discussion leads to a suggested definition of a system-of-systems for the
purposes of this thesis as:

‘a large-scale system engineered for desirable behaviour from autonomous component
systems that have existence, and purpose beyond that of one particular system. By
forming connections using well-defined interfaces and protocols, these diverse,
independently owned component systems create a series of stable states of
deterministic system-of-systems behaviour. Typically, the component systems can be
part of multiple systems-of-systems’.

1.3.4 Summary
The concept of system-of-systems now appears to be firmly recognised as a particular
kind of modern, large-scale system and a consequence of advances in computing and
communications technology. Using several characteristics unique to systems-of-
systems (although it is not a requirement for a system of interest to have them all),
many modern systems are classifiable as systems-of-systems rather than traditional
systems.

It is highly unlikely that a system-of-systems will be designed and built completely
anew. Typically, it will be assembled from shared, reusable component systems
developed for multiple purposes.

The following conclusions can be drawn between a traditional system and a system-
of-systems:

Feature Traditional System System-of-Systems
Elements All known and visible. Dynamic and often unknown at

requirements, design, or build
time.

Purpose Known by system owner and
elements.

Behaviour spectrum ranging
from fully-engineered to fully
emergent (and continuously
evolving). Purpose can be
determined co-operatively, and
may be unknown by elements.

Control Hierarchical structure and
centrally-controlled by a system
owner.

Element owners are unlikely to
have control over usage of their
element within the system-of-
systems.

Requirements Managed by system owner and
tend to be detailed system
specifications.

Inadequate requirements
specification and ownership at
system-of-systems problem and
solution design level.

 12

Feature Traditional System System-of-Systems
Ownership All elements are managed by

system owner.
Elements are managed
independently and co-ordinated
for the system-of-systems.

Boundaries Clearly bounded. Unbounded and may be part of
larger system-of-systems.

Visibility All structure can be seen and
managed.

Structure likely to be beyond
control and visibility.

Unification Centrally controlled integration
process.

Interoperation between
elements.

Standards Standard processes for
development, and systems
implement relatively stable
standards.

No standard development
process. System-of-systems
implement relatively stable
standards across a wider set of
component systems. Standards
are key to interoperability.

Interfaces and Protocols Connectivity tends to be
minimised and uses well-
defined, relatively stable
interfaces and protocols.

Key enabler of interaction
between component systems. A
large number of (mainly legacy)
component systems implement
relatively stable interfaces and
protocols. Inadequate capture of
interface and protocol
requirements for system-of-
systems.

Verification and Validation Well understood processes for
testing supported by
technologies and toolsets to help
ensure undesirable behaviour
reduced.

Testing normally carried out
post-implementation in ad-hoc,
trial-based manner (at the
systems-level). Inadequate
verification and validation at the
system-of-systems problem and
design level.

Funding Single source of funding. Multiple sources of funding
make it difficult to co-ordinate
resources for development of
system-of-systems.

Table 1.1 ‘Why Isn’t This Just a Scaling Issue?’ adapted from Smith [23] pp.15-17

In discussing systems that are composed of systems, different terms such as ‘system-
of-systems and its component systems’ or ‘system and its subsystems’ could be used.
Here, ‘system-of-systems and its component systems’ is used to describe systems in
which the components are systems and ‘system’ is used to refer to systems in general.

Although systems-of-systems have been around for at least fifty years, it is clear from
Table 1.1 that the main problems in their engineering surround requirements
specification, interfaces and protocols specification, and verification and validation of
the design specification. These are summarised as follows:

1. There is no adequate capture of their problem and solution design specification
(particularly information exchange specification) at the system-of-systems level.
2. Assurance that the design will lead to desirable implemented behaviour (through
verification and validation) is also lacking.

 13

1.4 Discussion of Problem
To help meet the need to successfully engineer systems-of-systems towards
deterministic behaviour, this thesis addresses the problem of their behaviour
specification, together with verification and validation of this design specification in
order to provide assurance that the physical implementation of the design will behave
as expected.

Organisations must respond to continuous change, especially in information
technology, if they are to compete, and thrive. Consequently their mission strategies
seek to take advantage of new technology as quickly as possible. Ultimately, it is the
flexibility offered by the integration of (existing and new technology) individual
systems that will enable collection, processing and delivery of information needed to
support organisational decision processes in a timely manner. Core to this industry
vision is the successful engineering of large-scale systems-of-systems which behave
as desired. Unfortunately, deficiency in interoperability between component systems
is the persistent problem that has plagued such integration.

The engineering and implementation of systems-of-systems provide organisations
with a means of responding quickly to changes in their operational environment. For
example, in the defence sector, systems-of-systems such as the US Army Future
Combat Systems program (part of the US Army Future Force capability initiative)
[20] aims to exploit advances in communications technologies to integrate soldiers
with ground and air platforms by 2014. Component systems include the
communications network, soldier, and fourteen independent manned and unmanned
combat systems. Benefits of the integration are expected to include: improvements
regarding speed and accuracy of operations; the ability of individual component
systems to be configured in support of strategic and tactical level activities; the ability
to reach globally diverse, distributed sites; the potential to combine situational
awareness, command and control, weapons, protection, recovery, and logistics
systems; and the ability to connect joint services, support agencies, and coalition
partners.

As well as new technologies, there will be further diverse, unpredictable changes in
political environments. Consequently, continuous revision of strategies, doctrine, and
operational procedures will be vital. Again, the emphasis will be on adapting solutions
to meet emerging operational challenges. Producing the required capability relies on
successful integration of suitable constituent systems. Systems-of-systems will need
to be configured and reconfigured to varying timescales depending on the operational
context and will rely on components which continue to evolve without consultation.

The successful composition of component systems continues to be elusive given past
and present examples. The recent (May 2008) British Airways Heathrow Terminal 5
baggage-handling failure was reported to have resulted in financial losses for British
Airways of £16m. The overall purpose of this system-of-systems was accurate
baggage-tracking (and improvement of British Airways' lost baggage record) and it
integrates security, network, barcode baggage-tracking, baggage-reconciliation,
manual baggage handling, self-service check-in, flight data, flight bookings, and
third-party baggage-reconciliation (existing and new) component systems. [3]
summarises evidence submitted to the Transport Select Committee regarding the
causes for the failure. Lack of testing of the implemented system-of-systems; errors in

 14

the transmission of data between the baggage-handling and baggage-reconciliation
systems; and errors in the transmission of flight data between BAA and a third-party
contractor were reported to have played a significant part in the cancellation of five
hundred flights and manual processing of approximately twenty-three thousand bags
over five days.

The Theatre Battle Management Core System studied in [1] is an air command and
control system-of-systems integrated to perform secure, automated air battle planning
and management for the US Air Forces and land, and maritime allies. Component
systems were mainly legacy, including the Joint Maritime Command Information
System, and Contingency Theatre Automated Planning System, Wing Command and
Control System, Integrated Imagery and Intelligence System, Airborne Warning and
Control System, and Joint Surveillance Target Attack Radar System. Interfaces were
listed to over twenty systems.

[1] reported the system-of-systems actual delivery was to be eighteen months
following award of contract. Instead, it was delivered three years late with cost
estimates at tens of millions of dollars. Key reasons for this delay were: governmental
instruction for the contractor to prioritise improvement of the legacy Contingency
Theatre Automated Planning System component system; immaturity of modern third-
party software applications and their failure to operate over the legacy
communications components; requirements creep (a requirements baseline was not
established for Theatre Battle Management Core System by the government. Initially,
the government expected the contractor to control the requirements baseline); and
pressure from the user community for the Theatre Battle Management Core System
meant the test planning process was short-circuited leading to test failure on two
occasions (the contractor was originally given the role of orchestrating testing).

Wentz’s testimony of Bosnia [32] provides further insight into the difficulties
achieving an integrated communications and information system-of-systems (CIS) in
the military domain:

‘the challenge facing NATO and the nations was to build a long haul and regional CIS
network out of a mixture of military and commercial equipment that would vary
widely in age, standards, and technology and would be built very quickly once given
the order to deploy. Putting the pieces of the puzzle together would most likely not
result in a true system of systems. Furthermore, there would be a need to interface
systems that had not been planned or designed for interfacing. The independent
national systems would be tied together, not engineered as a single system. Given the
uncertainty of the situation it would most likely be a case of integrating what you get,
not necessarily what you need, and then making the best of it’.

One of the conclusions in Table 1.1 (section 1.3.4) was that systems-of-systems rely
on this communication (usually realised by information technology) between
constituent systems. The present means of integrating the systems involved in a
military mission are tactical data links. These support message transfer within the
system-of-systems. As discussed, these constituent systems are non-trivial systems in
their own right i.e. they are not controllable, 'simple' systems built from basic parts
using fixed interfaces. Their integration in a system-of-systems is achieved by a
communication service between interfaces of the component systems. At an interface,

 15

a component system’s specification can be reduced to the functional and timing
description of services required for the integration along with its quality of service. As
indicated by [3, 32, 133, 134], as well as ensuring selection of constituent systems
whose behaviour is likely to contribute to the overall purpose of the system-of-
systems, their integration involves enabling the required level of communication
between them.

This required level of communication is the foundation of the integration process and
is termed 'interoperability'. Interoperability is now defined for the purposes of this
thesis.

Environmental object data captured by sensors requires frequent interoperable
exchanges of complex information between systems. Simpler web browser
communication between a customer and a home banking system also demands
interoperability. Due to different contextual interpretations of interoperability, many
definitions exist for it, including these four from the IEEE [36]:

'the ability of two or more systems or elements to exchange information and to use the
information that has been exchanged'.

'the capability for units of equipment to work together to do useful functions'.

'the capability, promoted but not guaranteed by joint conformance with a given set of
standards, that enables heterogeneous equipment, generally built by various vendors,
to work together in a network environment'.

'the ability of two or more systems or components to exchange information in a
heterogeneous network and use that information'.

These IEEE definitions are incorporated into definitions of interoperability used by
the US Department of Defence (DoD):

'the ability of systems, units, or forces to provide services to and accept services
from other systems, units, or forces, and to use the services so exchanged to
enable them to operate effectively together' [17].

'The condition achieved among communications-electronics systems or items of
communications-electronics systems equipment when information or services can
be exchanged directly and satisfactorily between them and/or their users. The
degree of interoperability should be defined when referring to specific cases. For
the purposes of this instruction, the degree of interoperability will be determined
by the accomplishment of the proposed Information Exchange Requirement
(IER) fields' [34].

These definitions do not qualify what services are referred to in each case but the
fourth definition below from the MoD's Integration Authority [38] refers to
communication and information services and it is assumed that the same
communication and information services are referred to by [17, 34].

'(1) Ability of information systems to communicate with each other and exchange

 16

information. (2) Conditions, achieved in varying levels, when information systems
and/or their components can exchange information directly and satisfactorily among
them. (3) The ability to operate software and exchange information in a heterogeneous
network (i.e., one large network made up of several different local area networks). (4)
Systems or programs capable of exchanging information and operating together
effectively' [35].

This definition of Communication/Information Systems/Services (CIS)
interoperability was put forward by the MoD's Integration Authority:

'The ability of systems, units or forces to provide (communication / information)
services to and accept (such) services from other systems, units or forces and to use
the services so exchanged to enable them to operate effectively together [25]' [38].

Interoperability is defined for the purposes of this project as:

'the ability of a set of communicating entities to exchange specified data by electronic
means and operate effectively using that data according to specified operational
processes'.

Achieving interoperability between systems that originally did not interact or within
new systems has posed a difficult challenge for the public and private sectors.
Reasons for this include: at the start of a system-of-systems development project often
little is known about interoperability requirements. Systems that will interoperate may
not yet be conceived or constraints imposed by existing systems compromise
approaches to achieving interoperability; maintaining compatibility with older
systems sometimes conflicts with achieving interoperability between newer systems;
lack of maintenance funding to cover upgrades or fixes for older systems;
interoperability between systems is specified in transitive form. This implies that
because system A is interoperable with system B and system B is interoperable with
system C, then system A will be interoperable with system C; standards and models
for architecture have been developed to ensure interoperability but contain
ambiguities and inconsistencies. Used in isolation these standards are insufficient for
achieving interoperability; the complexity of the systems being built mean a high
number of contractors are required. Processes have not been established between
contractors to ensure required levels of interoperability; ambiguity of terms used inter
and intra-organisationally can be conflicting; and operational context addresses how a
system is used and is described in military doctrine. For interoperability between
multiple systems, doctrine also must be interoperable.

In order to pinpoint the aspect of interoperability this thesis addresses, it is useful to
identify interoperability in terms of the Open Systems Interconnection (OSI) Seven
Layer Model shown in Fig. 1.1:

 17

Fig. 1.1 'OSI Seven Layer Model and Interoperability'

In the OSI Model (Fig.1.1), physical exchange of data takes place at the physical
layer, e.g. via telephone or radio links. Encryption, error correction and link
management are example functions of the data link and network layers. Procedural
interoperability takes place over the next upper four layers with the transport layer
looking after correct message exchange and the session layer addressing message
sequencing. The presentation layer deals with message formatting. At the application
layer, messages are presented to the host and interpreted by application layer
protocols such as Simple Mail Transport Protocol (SMTP), or File Transfer Protocol
(FTP), or an application programming interface such as Winsock or Berkeley sockets.
In each case, a well-defined, standard interface is provided detailing the information
messages that can be sent and received to each application. The OSI model could also
be extended with additional layers above the application layer such as a 'host operator
application' layer representing the programs the host operator can interact with
through a human-computer interface (and the information messages associated with
the host operator application), or a 'human-to-human' layer, representing
interoperability at the host operator level (i.e. operator interpretation of the host
operator application they are interacting with).

This thesis is concerned with messages constructed and exchanged to satisfy
associated system-of-systems information exchange requirements at a 'host operator
application' level.

 18

Fratricide of friendly soldiers during operations such as Desert Storm to liberate
Kuwait (1991) highlighted the ultimate penalty of the military's inability to assure
interoperability. In response, the military moved towards a standards-based approach
(with mandatory compliance) to development of systems-of-systems. However,
building military systems-of-systems has to take into account a huge number of
legacy systems from which systems-of-systems will be composed. The majority of
these existing systems do not comply with the current version of standards. This is
due to the rate of technology change or fact their development preceded the
introduction of a common set of standards. Each legacy system has been developed
independently according to different versions of military rules and standards covering
data representation and protocols. To make matters worse, these text-based standards
are often ambiguous, open to interpretation by system designers, and can be deviated
from. Unsurprisingly, legacy systems to be integrated often fail upon connection or
compromise the stability of existing services offered by other component systems.

These legacy systems cannot simply be discarded as many have taken as long as
fifteen years to acquire at significant cost. Vast amounts of data on reliability exist in
the software that re-writing would eradicate. In addition, defence budget cuts and the
lengthy timescale required for procurement ensure the longevity of these existing
systems (typically up to thirty years). Legacy systems continue to present an
integration challenge to both the commercial and defence sectors. However, it is the
attributes of high quantity, long lifecycle, and long acquisition cycle belonging to
military legacy systems that make their integration a particularly unique problem for
defence.

To tackle this problem, there needs to be a comprehensive system-of-systems
description available to all designers by which interfaces can be determined. Without
such a description and framework to achieve, designs will fail to achieve
interoperability. As part of their common standards approach, both defence and
commercial sectors evolved architecture frameworks such as the Zachman Framework
[28], Department of Defence Architectural Framework (DoDAF) [29], and Ministry
of Defence Architecture Framework (MoDAF) [30] to adequately describe systems-
of-systems.

An architectural framework such as that standardised by ISO/IEC 42010 [37] aims to
provide a basic framework or checklist for describing the content of an architecture,
taking into account the environment of the system of interest. IEEE 1471 upon which
[37] is based, defines an architecture as:

'the fundamental organisation of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its
design and evolution'.

Architectural descriptions are structured to meet the needs of the system owners (e.g.
users, developers, component vendors, maintainers) using multiple views of the
system, with each view covering an identified set of system concerns (e.g. reliability,
functionality, security, data integrity, usability). In order to comply with ISO/IEC
42010 [37], an architectural description has to identify the owners of the system and
their concerns; define viewpoints to address those concerns; define views of the
architecture satisfying those viewpoints; and document rationale for decisions made in

 19

the architectural description. ISO/IEC 42010 [37] defines a framework for an
architectural description but does not recommend a process on how to produce one.
Usually an organisation undertaking architecture description does so within the
context of a well-defined engineering process. The intended consequence of using
architecture frameworks is more understandable architectural descriptions, leading to
improved architectures and system products.

Design and construction of a new building is a useful parallel to architecture
frameworks drawn from the civil engineering discipline. In designing a multi-storey
building, an architect will elicit customer requirements and translate them into various
views (blueprints) of the proposed structure. A civil engineer will then develop
structural drawings and plans to build the new structure. The civil engineer builds the
structure using the framework from the architect, i.e. the set of blueprints for the
proposed building which has different views covering the physical construction of the
building; detailed construction of each floor; heating and air-conditioning systems;
and plumbing, electrical wiring, and communications. These blueprints provide the
concept of the proposed building to help all owners understand the design being
proposed.

Building such a complex structure without a visual framework would result in
disaster. Here, the set of blueprints present many views of the new building, each of
which is important to its overall construction. Compare this with a criminal trial in
which the prosecutor combines physical evidence, motive, timing of events, and
defendant accessibility to the scene of the crime in order to present a visual picture to
the jury. Failure of the prosecutor to provide this integration of views on the crime
means the jury may not be able to visualise a realistic picture of it. Relaying the
concepts of a problem to be solved using multiple viewpoints are key to design of
complex systems. Here, presenting the problem concept is essential to shared
understanding of the problem. Multiple views enrich the conceptual view of the
problem and the potential solutions to it.

Architecture frameworks provide a means to visually describe architecture products.
They do not prescribe how to do this with a process. Even the boundaries of the
traditional systems engineering process are stretched by systems-of-systems
integration problems [9, 24]. The reality is that most large-scale engineering projects
which follow traditional systems engineering practices are less successful [24]. It is
widely assumed that for system-of-systems applications, new technology will be used;
the new technology is based on a clear understanding of the principles that govern the
system-of-systems; project objectives and specifications are clearly understood; and a
design will be implemented based upon these specifications so that the application
will be achieved.

In reality, it is highly unlikely that only new technology will be used for systems-of-
systems. In addition, there may not be a clear understanding of the governing factors
of the system-of-systems due to their complex characteristics. Of equal importance
are the human, organisational, policy and political environments that influence
feasible solutions [9]. While the overall purpose of the system-of-systems mission
might be clear in high-level, abstract form, the specific objectives are most likely
poorly defined and ambiguous [9, 24]. There can be no conception or a priori
planning of how a system, and systems-of-systems will evolve in the future.

 20

Traditional systems engineering fails to take into account the ambiguity and
requirements shift present in dynamic systems-of-systems environments [9]. It tends
to place human, organisational, policy, and political environments in the background
during system problem analysis and resolution. Systems-of-systems integration means
addressing these environments as key constraints during these phases [9]. Traditional
systems engineering succeeds in realising complete system solutions through iterative
development processes where as design of systems-of-systems often means
deployment of a partial solution followed by iterative development again. This goes
against traditional systems engineering which usually aims to complete design with
implementation of the system [9].

System-of-system designers either lack such an architecture framework showing how
system components should interface, interact, and fulfil overall system requirements
or a suitable process based on systems engineering principles for building one. The
architecture framework should help define the system-of-systems in terms of
component systems and the interactions between these components. Also, the
resulting architectural description can serve to document the rationale for design
decisions, helping to audit requirements and their realisation. Although an
architectural description will not guarantee that a system meets its requirements, a
poorly designed architecture makes it nearly impossible for designers to develop a
system that meets its requirements.

This is further supported by [31] where issues hindering system-of-systems
interoperability were summarised as: unclear requirements documentation and poor
configuration management; no method for validating and governing interoperability
requirements; interoperability requirements are not defined early or identified as a
common development goal; no path leading to a view (architecture) that can be used
for a statement of specification for a material developer or test criteria by the
developer; no direct link from requirements to end product; no tools to adequately
model interoperability; the need to wait until post-integration to check whether
interoperability has been achieved (on a trial and error basis); lack of application of
systems engineering principles to capability development and gap analysis (multiple
uncoordinated organisations work on solutions to solve similar problems); system-of-
systems 'lessons learned' are not managed so the benefits of experience and impact of
'requirements creep' are not considered; and finally, inter-agency system-of-systems
requirements are not clear, interoperability is not guaranteed and testing results are
questionable.

New layers of functionality are often added to implementations initiated from poorly
designed system architecture views with no clear insight into the overall organisation
of the system-of-systems. Where there are detailed system specifications, these tend to
address the 'leaf' level of the system-of-systems requirements decomposition tree, i.e.
at the component system level and not the system-of-systems context level. Using
these system-centric or 'stove-piped' specifications in isolation means that systems
engineers struggle to deliver interoperable, effective capability for defence or
industry.

As well as their lack of a standard process in terms of system-of-systems
specification, another drawback in the way architecture frameworks have been used to

 21

date is that they are a static, textual documentation model of a system open to
interpretation by system owners, designers, and developers.

[39] describes a model as:

'..the essential nature of a process or thing. They are not the thing itself. Models are
validated only when they have been verified by observation and measurement under
controlled conditions'.

[39] argues that modelling can help deploy better quality systems in less time and for
less money by:

1. Executing the model of the system specification in order to observe system
behaviour.
2. Transforming model languages into different modelling languages (automatically)
in support of the multiple disciplines involved in the lifecycle of a system.
3. Enhancing systems engineering with unambiguous, executable modelling.

Use of modelling aims to improve the design of a system in terms of its length;
completeness, correctness, and consistency of specification; preservation of the design
(i.e. a form of documentation) for subsequent system lifecycle stages; and
unambiguous specification.

The adequacy of a systems engineering modelling language depends on its ability to
enable a complete description of the contextual real-world domain using unambiguous
language constructs. Generally, a good modelling technique should be:

1. Precise in describing both static and dynamic system properties.
2. Standardised and open to promote acceptance and popularity.
3. Precise in identification of requirements allowing owners and designers to reach
agreement about what should be accomplished. A graphical concrete syntax can help
promote this shared understanding.
4. Applicable to different styles of modelling (state-based, event-based, data-based).
5. Based on formal techniques and suitable for automation (execution or simulation).
6. Intuitive to use with: graphical interface supporting execution of design models;
conformance to known standards and techniques; and compatible with other toolsets
implementing the same technique.

A model can be:

1. Informal: providing only descriptions of functionalities (e.g. UML).
2. Formal: all elements can be described mathematically and support simulation,
verification (syntax, semantics, and model structure and logic may be tested
automatically), and transformations (mapping of a model to a lower abstraction level
for design, development or verification purposes).

From a system-of-systems perspective, a modelling technique should offer:

 22

1. Abstraction: support different views of the system-of-systems architecture
capturing characteristics appropriate to the abstraction level without imposing any
particular solution upon designers and developers.
2. Modularisation: define and organise parts of the system-of-systems.
3. Data typing: model concepts of the domain as closely as possible.
4. Adequate toolset support.
5. Timing: achieve performance predictions before the system-of-systems is
physically implemented in conjunction with simulation. Each system-of-systems
application provides different capabilities and varying degrees of criticality that need
to be analysed using timed simulation.
6. Verification and validation: check model correctness in terms of syntax, semantics,
structure (absence of deadlocks, livelocks, and correct termination), and logic through
simulation and calculation of state space graph. In critical applications, correctness of
specifications is vital to achieve before their physical implementation.
7. Precision in specification of requirements: a graphical concrete modelling language
syntax can help promote shared understanding between technical and non-technical
audiences.
8. Scalability, concurrency, state, information, and event-based specification.

While modelling languages can be used in their own right to specify systems [135],
text-based products of architectural frameworks have been translated into different
modelling languages for simulation purposes [40-42]. There have also been attempts
to use UML as the primary means of describing architecture framework products [44,
76] so that a proprietary UML modelling toolset such as IBM Telelogic Rhapsody can
be used to simulate the model, or the UML can be translated to a formal modelling
language (Petri nets) for subsequent execution [66]. These attempts focused on
providing process guidance and improving architecture frameworks for system-of-
systems engineering. They do not consider the actual specification capability UML
offers from a system-of-systems modelling perspective and where the language can be
complemented and improved in terms of the system-of-systems engineering problems
related to specification and analysis.

UML is intuitive, multi-purpose, has a graphical concrete syntax, and does not
prescribe a process. It is also ambiguous and imprecise, and viewed as a system of
modelling languages, each with its own particular focus to represent a system under
development. Each diagram, represented by its own language, can be used in a
number of situations, e.g. class diagrams can be used at analysis, design, and
architecture stages of the lifecycle.

Structured using a meta-model, due to its semi-formal nature, UML lacks simulation
and exhaustive verification capability. This shortfall in UML has received little
attention in the context of system-of-systems. Petri nets were selected as a potential
means of addressing the industrial need of assuring that system-of-systems
implementations meet original co-ordinator requirements through adequate capture,
verification and validation of these requirements in the system-of-systems design.
Although Petri nets have been used in [40] to offer simulation and analysis of
architecture framework products, the work did not determine how Petri nets can be
used to improve specification and analysis of a dynamic model of a system-of-
systems specified using UML.

 23

1.4.1 Overall Problem Statement
This thesis addresses the system-of-systems level design specification and analysis
problem. Specifically:

1. There is no complete, correct, and consistent capture of the problem and solution
design specification (particularly information exchange) at the system-of-systems
level.
2. There is inadequate verification and validation of the design specification providing
low levels of assurance that the design will lead to desirable implemented behaviour.

1.4.2 Research Issues
Two major research issues can be identified within the overall system-of-systems
level design specification and analysis problem:

1. Clarifying where the dynamic, behavioural diagrams of UML can and cannot be
used to model and analyse system-of-systems.
2. Determining how Petri nets can be used to improve the specification and analysis of
the dynamic model of a system-of-systems specified using UML.

This thesis presents the strengths and weaknesses of Petri nets in relation to the
specification of system-of-systems and shows how Petri net models can be used
instead of conventional UML activity diagrams. The design specification model of the
system-of-systems can then be analysed and verified using Petri net theory.

1.4.3 Problem Boundaries
This thesis focuses on the specification and analysis of system-of-systems engineered
towards a common purpose.

1.5 Research Aims and Criteria for Success
The aims of this research and criteria for success cover the problem and solution
space. Petri nets and conventional UML behavioural diagrams are examined in
relation to the specification of system-of-systems to show how Petri nets can help the
system-of-systems specification and analysis problem. Case studies are then
conducted to demonstrate the viability of the use of Petri nets in the specification and
analysis of system-of-systems. The criteria for success are:

1. To address the first main research issue, indicate the strengths and weaknesses of
the behavioural diagrams of UML regarding the specification, and verification and
validation of systems-of-systems.
2. To address the second main research issue, determine the strengths and weaknesses
of Petri nets regarding the greater formalism of dynamic behaviour in systems-of-
systems, i.e. their specification, and verification and validation. This should cover
Petri nets' ease of use; comprehensibility; scalability; state, data, and event-based
modelling capability; concurrency modelling capability; and verification and
validation capability. The role of Petri nets as a means of engaging stakeholders
should also be examined.

 24

3. Show how Petri nets can be used instead of UML activity diagrams to address the
overall problem of system-of-systems specification and analysis.
4. Demonstrate and evaluate the feasibility of the Petri net solution to the overall
problem of system-of-systems specification and analysis using a case study approach.

Chapter 7 presents a discussion on the success of this research in relation to the above
criteria.

1.6 Evaluation Criteria
The main objective of this work is to define how Petri nets can improve the
specification and analysis of systems-of-systems using a case study approach.
Chapters 5 and 6 present evaluations of the Petri net technique based on the following
criteria:

1. Design Quality (scalability and representational ability).
2. Functional Correctness.
3. Toolset Issues.

1.7 Contribution
The main contribution of this work is greater formalism of dynamic system-of-
systems behaviour specification using Petri nets. Two research issues within the main
problem of system-of-systems specification, verification and validation are addressed:

1. Clarifying where the dynamic, behavioural diagrams of UML can and cannot be
used to model and analyse system-of-systems.
2. Determining how Petri nets can be used to improve the specification and analysis of
the dynamic model of a system-of-systems specified using UML.

1.8 Thesis Structure
This thesis consists of seven chapters.

Chapter 1 introduces the context for the research, discusses the main problem to be
solved, and sets out the aims of the research and criteria for success.

Chapter 2 introduces the Petri net technique, including why they should be useful in
the specification and analysis of systems-of-systems.

Chapter 3 discusses the case study research method used to demonstrate and evaluate
the strengths and weaknesses of Petri nets in chapters 5 and 6.

Chapter 4 describes the strengths and weaknesses of Petri nets in relation to the
specification of systems-of-systems and indicates how Petri net models can be used
instead of conventional UML behavioural diagrams to analyse and verify the system-
of-systems using Petri net theory.

 25

Chapter 5 executes the case study design described in chapter 3 for the first study in
the case study research approach used by this thesis.

Chapter 6 executes the case study design for a second time in order to investigate the
results that needed further clarification from the first study and replicate the results
obtained from the first study in the second, demonstrating experimental reliability and
triangulation.

Chapter 7 concludes the thesis by summarising the main problems associated with the
engineering of systems-of-systems and the solution achieved by the thesis. The
success of the Petri net formalism of system-of-systems behaviour specification is
discussed in terms of the criteria presented in section 1.5 and further research
opportunities are suggested.

The Appendices contain an initial investigation into Petri nets, a description of the
Petri net enhancement to UML proposed by this thesis, and the Petri net toolset
selection exercise. They are followed by a list of references.

 26

Chapter 2 Petri Net Specification Framework

2.1 Introduction
Chapter 2 provides an introduction to the Petri net formalism. An indication of why it
should be useful in the specification and analysis of system-of-systems is also
discussed. This introduction serves as the context for the demonstration and
evaluation of their strengths and weaknesses in relation to system-of-systems
specification in the case studies of chapters 5 and 6.

2.2 Petri Nets
Seen as a generalisation of state machines, Petri nets have been around for almost fifty
years (developed by Carl Adam Petri in his doctoral thesis [58]). They can be used
graphically and mathematically to communicate between technical and non-technical
audiences and construct behavioural models of process-oriented systems. In [45], Van
der Aalst suggests the following as main reasons for using Petri nets as a process
modelling technique:

1. Their graphical nature has underlying formal semantics.
2. They are state-based and event-based.
3. A range of analysis techniques is available to examine properties of the modelled
system expressed as a Petri net.

The analysis techniques referred to here are static (reachability tree and matrix
equation representation are the two methods used to verify a number of useful Petri
net properties such as reachability, liveness, boundedness, and home state) and
dynamic (execution or simulation of the Petri net is used to verify its behaviour and
validate it in terms of performance if timing is introduced into the net).

To improve the usefulness of classic Petri nets, Petri nets have been extended over
time to incorporate hierarchy (for structuring models), colour (for modelling
attributes) [63] and time (for performance analysis). In classic form, their basic
concept is that of an underlying directed, bipartite graph with a starting state called the
'initial marking'. The underlying graph is directed and weighted and consists of two
node types, 'places' and 'transitions'. These nodes are connected by directed, weighted
arcs known as 'input arcs' and 'output arcs'. An input arc goes from a place to a
transition and the set of places with input arcs going to a particular transition are
called the transition's input places. An output arc goes from a transition to a place and
the set of places with output arcs from a given transition are called the transition's
output places. Arcs can only go from a place to a transition or vice versa. Places and
transitions are graphically represented by circles and rectangles respectively. Usage of
Petri nets normally interprets transitions as events or activities and places as triggers
or results of these events [48, 65]. Murata suggests some typical application of
transitions and their input and output places in [57].

A 'marking' assigns a non-negative integer 'x' to each place. This means the place is
mapped to x tokens (shown as identical black dots). Tokens are dynamic objects

 27

whose movement between places is controlled by the Petri net's transitions. Places can
have a finite capacity restricting the maximum number of tokens they can hold.
Transitions have a certain number of input and output places that represent pre and
post conditions for the enabling or 'firing' of a transition. The state of a Petri net is
determined by the distribution of tokens over the places. This distribution can be used
to define situations such as satisfied conditions and resource availability. Reachable
state refers to a state reachable from the current state by firing a sequence of enabled
transitions. Dead state is a state where no transition is enabled. By setting an initial
marking of a state and adhering to the following firing rules it is possible to model
and execute (or simulate) processes modelled using nets:

1. Transitions are enabled if each of their input places is marked with the same
number of tokens as indicated by the weight of the arc leading to the transition.
2. Enabled transitions may or may not fire.
3. Firing of an enabled transition is atomic and consumes a number of tokens (dictated
by its corresponding input arc weight) from each input place and adds a number of
tokens to each output place (dictated by its corresponding output arc weight).

The order in which Petri net transitions fire is known as a firing sequence. Depending
on the marking, a Petri net can have a number of different firing sequences that occurs
if more than one transition is enabled during the firing sequence. A Petri net can also
have a number of defined properties, some of which are outlined below. Other
properties can be found in [57].

1. Conflict (or confusion): if more than one transition is enabled simultaneously and
the firing of one of these transitions will disable the remaining enabled transitions
then a conflict is said to exist between transitions for a certain marking. In such
situations, the transition that fires is dictated by firing rules. This property can be used
to show the effect of resource-sharing on system performance. A number of strategies
can be applied to resolve conflict [67]. These include using timed transitions (the
timed transition with the shortest time fires) and transition weights (the immediate
transition to fire is determined probabilistically using the weights).
2. Deadlock: when no transitions can fire and the execution of the Petri net is halted,
deadlock is said to occur. A Petri net is known as 'live' for a particular initial marking
if it is deadlock-free.
3. Reachability: given a marking Mi+1, this marking is said to be immediately
reachable from a marking Mi if a transition enabled by Mi fires to give Mi+1. A
marking Mi+n is said to be reachable from Mi if a transition firing sequence exists such
that after firing all of these transitions the resultant marking is Mi+n. A reachability
tree or graph describes the possible markings of a Petri net starting from the initial
marking (its root). Below this marking each possible immediately reachable marking
is listed together with directed arcs labelled with the corresponding transition required
to reach the marking. This process is repeated for these markings. If a generated
marking is the same as one which appears earlier in the tree it is connected to this via
an arc labelled with the corresponding transition. For certain Petri nets this process
can continue indefinitely and necessitates formation of a coverability tree. Here, any
set of markings which differ only by the number of tokens found in unbounded places
are represented by one marking. A symbol is placed in the unbounded places flagging
up that the number of tokens in that place is unbounded. Reachability or coverability
trees can be used to determine safeness, boundedness and reachability of a Petri net.

 28

4. Boundedness: if the number of tokens in a place never exceeds x then the place is
said to be x-bounded. When all places in a Petri net are bounded it is called a bounded
Petri net. This maximum number of tokens allowed on a place can be used to specify
the maximum length of a queue. Unbounded places can cause bottlenecks. Petri nets
where all places are one-bounded are known as safe and can be used to model
computer systems as the state of each place can be represented by a one or a zero.

2.2.1 Petri Net Example
The following Petri net serves as an introduction and represents the process of a
chemical reaction involving two units of hydrogen and one of oxygen. Net places
serve as storage for tokens and capture the state of the reaction. The transition
represents an event or activity taking place, in this case the reaction. Each input place
in Fig. 2.1(a) has three and two tokens respectively. As the input arc associated with
place hydrogen has a weighting of two (specifying that two units of hydrogen are
required for the reaction) and the input arc associated with place oxygen has a
weighting of one (specifying one unit of oxygen is needed), the transition is enabled.
After firing, the marking changes to the one in Fig. 2.1(b) and the transition is no
longer enabled:

Fig. 2.1(a) 'Classic Petri net of chemical reaction with an enabled transition' adapted
from [57], p543

 29

Fig. 2.1(b) 'Classic Petri net following transition firing' adapted from [57], p543

Fig. 2.1 clearly shows the state change and corresponding executed activity via the
removal and addition of tokens and firing of transition modelling elements. The
current process state is given by the placement of the tokens and the arcs indicate that
there is a relation (function) between a place and a transition.

2.2.2 High-level (Coloured) Petri Nets
Coloured Petri nets enhance classic Petri nets [43] with data typing abstraction and
manipulation capability similar to that of a high-level programming language. Here,
tokens have colour (values) to combat complexity found in classic, uncoloured Petri
nets attempting to model real-life systems. Uncoloured nets can be compared to
assembly language in that tokens are essentially markers in the net, relying upon the
labelling of places to express the state of a system and requiring multiple net elements
to do so. Coloured tokens enable real-life objects and their attributes to be represented
in the model through the introduction of data typing abstraction.

Similar to classic nets, coloured Petri nets have a fully formal, mathematical
underpinning that provides a basis for analysis of model properties. Well-known high-
level nets using colour are Predicate/Transition nets [46] and Coloured Petri nets [63,
80]. Visual representations of coloured Petri net models can be developed and
analysed using graphical tools such as CPN Tools [47].

Aspects of a system are modelled using a small set of elements in coloured nets, the
rules of which are described informally as: occurrences of activities or transitions
depend on the data type and token colour (value) associated with the input place(s) of
the transition and the enabling condition(s) specified by the input arc expression(s) of
the transition. Equally, if the transition is enabled and occurs, tokens are added to the
output places of the transition with values determined by the output arc expression(s)
of the transition and data type associated with the output place(s). The formal
mathematical definition of this informal description is defined in [63, 80].

 30

2.2.3 Timed Petri Nets
To enable enhanced specification (scheduling) and performance evaluation of nets,
time delays have been associated with transitions [49] and/or place net elements [50].
There are many extensions to Petri nets related to time, for example [80, 83].

Petri nets are deterministic timed nets if the delay is known, or stochastic timed nets if
the delays are random, or deterministic and stochastic timed nets if a combination of
fixed and random delays are present. In stochastic nets, firing time is associated with
each transition indicating the delay from when the transition is enabled until it fires.
Usually, the transition with the minimum remaining firing time affects the next
marking of the net. Following this marking update, each newly enabled timed
transition obtains a delay from the delay distribution and each timed transition
enabled in the previous marking (and still enabled in the current marking), keeps its
remaining delay. Transitions disabled in the current marking lose their remaining
delay. Common stochastic Petri net models are by [51] and [49].

Deterministic and stochastic nets contain immediate transitions (when enabled, fire
without delay), stochastic transitions (when enabled, fire after some delay sampled
from a distribution), and deterministic transitions (when enabled, fire after a constant
delay). Enabled immediate transitions have firing priority over enabled timed
transitions. Multiple enabled immediate transitions should be specified with firing
probabilities to resolve firing conflict.

Coloured Petri nets can be created with or without timing. Jensen [80] extended
coloured Petri nets with timed coloured Petri nets. With these nets a global clock is
introduced for the net model. The state of a timed coloured Petri net consists of a
marking and the global clock time. Timed coloured Petri nets can contain both timed
and un-timed coloured tokens. Timestamps are controlled by initial marking,
transition or output arc expressions where discrete and probability distributions can be
used to define the time taken for a transition to fire. Timestamps allocated to the
tokens must be less than or equal to the current model time in order to be removed. In
this way, timed transitions represent the time taken by the system to perform a given
task. Un-timed enabled transitions fire in zero time.

2.2.4 Hierarchical Petri Nets
Hierarchical nets were developed to allow models of large-scale systems to be created
using both top-down and bottom-up approaches. Detail at a certain level of abstraction
can be hidden or exposed as needed in a similar way to subroutines in programming.
This abstraction mechanism makes model development and modification easier.
Jensen [63] defines hierarchy implementation for coloured nets.

2.2.5 Analysis
Existing analysis methods for timed, coloured Petri nets are simulation; reachability
analysis; and Markovian analysis.

Simulation helps to predict the behaviour of the modelled system but it is not possible
to exhaustively check a system has a desired set of properties by this method. As well

 31

as conducting extended simulation runs to test assumptions and performance,
simulation can be visualised (animated), helping communicate behaviour to technical
and non-technical audiences.

Reachability analysis builds a reachability graph (reachability tree or occurrence
graph) with nodes representing the possible system states and arcs representing each
possible state change. This method is an exhaustive way of checking properties of the
modelled system. A disadvantage of this method of analysis is the fact the reachability
graph can become infinitely large and various largeness avoidance and reduction
measures have been considered [52, 91-93]. For stochastic timed coloured nets
sampling from an exponential probability distribution, the net can be translated into a
continuous time Markov chain for the purposes of performance statistics generation.
Normally simulation-only analysis is reserved for timed coloured nets.

2.3 Petri Nets and the System-of-Systems Problem Areas
As discussed in chapter 1, the main problems for system-of-systems engineering
surround requirements specification, interfaces and protocols specification, and
verification and validation of the design specification. These are summarised as
follows:

1. There is no adequate capture of problem and solution design specification
(particularly information exchange specification) at the system-of-systems level.
2. Assurance that the design will lead to desirable implemented behaviour (through
verification and validation) is also lacking.

Currently, in terms of specification, chapter 1 highlighted that modelling using
architecture frameworks (e.g. Zachman, DoDAF, and MoDAF) and graphical
modelling languages (UML, IDEF, Petri nets) had been implemented to help improve
large-scale, system-of-systems specification. Adoption and maturity of these
initiatives in system-of-systems specification are still relatively low, lacking guidance
and used for specification at the systems (rather than the system-of-systems) level.
Chapter 1 also indicated that although Petri nets had been used in conjunction with
architecture framework products to provide simulation and analysis capability, no
work has directly investigated their strengths and weaknesses in terms of system-of-
systems specification and analysis. In addition, based on these strengths and
weaknesses, no work has considered how they can improve a system-of-systems
specification captured in a UML dynamic model.

A number of desirable features for a modelling language used in the specification of
systems-of-systems were suggested in chapter 1. Each of these is now discussed in
relation to the Petri net formalism and reference is made to a simple example (a
telephone system) in Appendices A-D to further illustrate the potential applicability of
Petri nets with respect to that feature.

1. Abstraction
The ability to support a range of views of the system-of-systems architecture at
different levels of detail without imposing any particular solution upon designers and
developers.

 32

Based on the initial familiarisation work with Petri nets (Appendix A), it was clear
that use of classic Petri nets resulted in flat, large, complex nets even with a narrowly
scoped system such as the telephone system. The nets produced represented the
telephone system at a high-level of abstraction, i.e. that of an operational process.
Classic nets provided no formal means of linking activities represented by transition
net elements in greater detail in the same model. To achieve this, a separate net model
would need to be constructed but there would be no formal connection.

Instead, classic nets were abandoned in favour of high-level, hierarchical Petri nets,
specifically coloured Petri nets with hierarchy [63]. Two language constructs can be
used to enable hierarchy within one net model, substitution transitions and fusion
places.

Hierarchy can structure complex Petri nets in a similar way to hierarchy within data
flow diagrams and subroutines in programming. The challenge using hierarchy is
deciding upon an appropriate abstraction level and viewpoint for the model. With
substitution transitions (Appendix A, section A.3.2), a net at a certain level of
abstraction (parent net) can have some or all of its transitions described in a greater
level of detail by subnets (top-down decomposition). These subnets can be composed
of places, transitions and other subnets. Also, hierarchy can be facilitated by linking
existing lower-level subnets to transitions within parent nets (bottom-up
development). The parent net aims to provide a coherent overview of the modelled
process and indicate clearly that more detailed descriptions of its main activities are
available on subnets. The toolset selected for use in the thesis, CPN Tools, also allows
instantiation of a subnet in that once it has been defined, the same subnet can be re-
used by different transitions in the model (each with independent input and output
values, similar to parameterised procedure call in programming). The toolset
evaluation exercise is presented in Appendix F.

As mentioned, hierarchical nets can also be constructed in a bottom-up fashion. For
large-scale system-of-systems, the concept of subnets as components is extremely
useful both in terms of reuse of existing nets and as a means to explore variations in
the design of components. Existing, amended or brand new nets relating to individual
components of the system-of-systems could be substituted into and out of the
composition when considering different application scenarios or designs of
components. Substitution transitions make use of input and output socket places to
and from the decomposed transitions on the parent net. These sockets have
corresponding port places on the resultant subnet describing the decomposition. The
colours (types) of these socket and port places can be used to specify the types of the
information used and produced by the decomposed activity. In this way, sockets and
ports can be viewed as a means of explicitly specifying required and provided
interfaces to the decomposed transition.

Fusion places (Appendix B, section B.1.3) represent one conceptual place element so
that when a token is added (removed) at one of the places in the fusion set, an
identical token will be added (removed) at the other places. Fusion places can also be
used to represent abstraction but there is no explicitly associated net page at a higher-
level of abstraction (i.e. parent net). Each subnet on a page is independent and passes
information to another subnet page using a set of places (fusion places). To mimic the
abstraction depicted by the parent net of the substitution transition (port and socket)

 33

hierarchical approach, a net can use the fusion places to pass (receive) information to
(from) a subnet but the only way of associating the net at the higher abstraction level
with the subnet at the lower abstraction level is via the labelling of the fusion places.
Port and socket hierarchy makes the association with the lower abstraction level in a
more explicit way.

An advantage of fusion places in abstraction is the ability to share the same
information between multiple processes. With hierarchy and port and socket places, if
information needs to be passed from an interface to more than one component at a
point in time, sufficient copies of the token need be deposited on the interface place
for consumers to remove. Hierarchy's main advantage is explicit abstraction. Use of
either abstraction technique depends on the modelling context. Some examples of
work where abstraction has been used include [77, 87].

2. Modularisation
The ability to define and organise parts of the system-of-systems specification.

Again, similar to abstraction, two language constructs can be used to enable formal
modularisation within one net model, substitution transitions and fusion places. Also
discussed in Appendix B, sections B.1.3-B.1.4, is the work of Petrucci et al [91-93] on
modularity using fused transitions as a means to separate a flat net into modules but
this thesis focuses on constructing non-flat, modular nets. Modules or component
systems within systems-of-systems are likely to exhibit the characteristic of strong
cohesion and loose coupling. Here, component systems are modular in the sense that
they use communication interfaces (and protocols) to integrate and share information.
As demonstrated in Appendices A-D, substitution transitions were the primary
method of capturing component systems of the telephone process and their interfaces.

3. Data typing
The ability to model concepts of the domain as closely as possible.

Based on the initial familiarisation work with Petri nets (Appendix A), it was clear
that use of classic Petri nets resulted in flat, large, complex nets even with a narrowly
scoped system such as the telephone system. The tokens of classic nets are
indistinguishable from one another in the sense that the places they are associated
with have no data typing. Tokens are simply markers. This means the only way of
capturing information represented by tokens in a classic net is through the labelling of
their associated places, resulting in significantly increased numbers of net place
elements and large, complex nets.

Coloured Petri net tokens are associated with place elements that do have a data type
(colourset in CPN Tools) meaning the token can take on values (colours) specified by
the data type defined for its associated place. In CPN Tools, a variety of data types are
implemented within the toolset including simple (e.g. boolean, enumerated, string,
integer), compound (e.g. product, record, list), and timed. Consequently, it is possible
to use coloursets to help reduce net size and capture the domain being modelled. This
is demonstrated by use of coloured Petri nets the telephone example in Appendices A-
D.

 34

Use of data typing is also essential for the specification of information to be
exchanged at the interfaces of component systems in system-of-systems.

4. Adequate toolset support
Availability of a Petri net editing, simulation, and analysis environment adequate for
the system-of-systems modelling requirements of the organisation.

Obtaining a comprehensive Petri net toolset can be achieved in three ways:
developing the Petri net toolset in-house (this ensures all personal requirements are
met but a disadvantage includes the time and effort involved. This effort can be short-
circuited if there are suitable extensible frameworks available on which to build);
compiling a toolset from existing Petri net graphical editing and analysis tools (again,
a disadvantage is the time and effort involved in integrating the tools); or identifying a
suitable existing integrated Petri net toolset and adapting it accordingly (this relies on
the toolset being open and well supported in terms of documentation). Appendix F
details the toolset evaluation and selection exercise conducted for the purposes of this
thesis. For the purposes of modelling system-of-systems, key features of a toolset are
its navigability of large nets; ability to execute nets; ability to analyse nets (state space
graph calculation and temporal logic queries); re-use of existing nets (instantiation,
configuration management); support for high-level, timed, hierarchical nets; and error
reporting.

5. Timing
The ability to achieve both enhanced specification and performance predictions from
the design before the system-of-systems is physically implemented. Each system-of-
systems application will provide different behaviour and varying degrees of criticality
that need to be analysed using timing (often in conjunction with simulation of the
model).

To capture the efficiency or performance of a system and facilitate validation of its
design, time-dependent actions such as timeouts, processing delays or deadlines are
essential. As well as efficiency specification, time-dependent actions also enhance a
system behaviour specification in terms of correctness. Activity ordering alone is
insufficient to capture overall system behaviour precisely. Tokens representing
information in large-scale systems will be processed according to the time they
entered the system, time involved in their consumption and generation, and
involvement in delays and transfer failures. Timing will be needed to specify the
ordering multiple tokens receive (scheduling) over and above any activity sequence
they experience. Timing information may need to be approximate, exact or both
depending on the stage of development of the system. Classic Petri nets only include a
basic concept of time in that actions (transitions) follow a particular execution order
from an initial marking.

As indicated previously in section 2.2.3, Petri nets have been extended to incorporate
the concept of time via their places, transitions, tokens, arcs or a combination of these.
This thesis uses timed coloured Petri nets. CPN Tools implements timed coloured
Petri nets and supports deterministic and stochastic model behaviour via discrete and
continuous function provision associated with token type. As this thesis is concerned
with large-scale, discrete event system-of-systems where their behaviour is (ideally)
deterministic and terminating, use of CPN Tools was maintained. Continuous

 35

specification will be required in physical monitoring at a lower level of (component
system) detail.

Several research initiatives have been undertaken using timed Petri nets. These
include: Christensen et al in [82] make use of timed coloured Petri nets to optimise the
performance and capacity of a web server; Van der Aalst et al in [83] use interval
timed coloured Petri nets to study rail time-tabling; Bulitko et al in [84] use time
interval Petri nets to analyse real-time damage limitation on ships; Van der Vorst et al
and Makajic-Nikolic et al use timed coloured Petri nets to examine supply chains [86,
87]; Dahl et al consider interval timed coloured Petri nets in penetration testing [85];
Kwantes uses timed coloured Petri nets to analyse a banking clearing process [88];
and Schomig et al use stochastic Petri nets to model business processes in [89].

All the approaches [82-89] are useful in providing guidance on development of
performance models and contributing to parts of the validation of system-of-systems.
Their approaches deal with continuous management, proactive and retrospective
analysis of physical products but do not take into account the unique characteristics of
system-of-systems. For development of system-of-system performance models, the
owners in the process need to be considered, as well as the concurrent and co-
operative nature of the provided and consumed functions realised by the processes
and their components. In system-of-systems, intangible behaviour is realised using
tangible resources in different environmental locations. The perceived quality of
service of these intangible functions arises from the efficiency of the processes.
Insight into the assessment of different ways of realising these intangible functions is
needed at an early development stage as well as throughout the system-of-systems
development stages. For example, an assessment model should help to answer
whether an optimal combination of activities that leads to a reduced service response
time exists.

At analysis, design and architecture stages of development, no physical components
have been decided upon to realise the activities and processes specified. Of additional
interest in system-of-systems design specification is using knowledge of (legacy or
planned) physical assets to help optimise engineering of an operational process via
analysis-of-alternative scenarios. As well as incorporating timing statistics, Salimifard
et al [94] report on using nets to allocate physical resources and costs to activity
execution.

Appendix C, section C.1, adapts the work in [94] to the telephone system and
demonstrates the use of timed coloured Petri nets in its specification and performance
analysis.

6. Verification and validation.
The ability to check model correctness and completeness in terms of syntax,
semantics, structure (absence of deadlocks, livelocks, and correct termination), and
logic through simulation (dynamic analysis) and calculation of state space graph
(static analysis). In critical system-of-systems applications, correctness and
completeness of specifications is vital to achieve before their physical
implementation.

 36

Due to their formal syntax and semantics, models produced using the Petri net
language can be executed (simulated). Here, an execution algorithm is used to
validate the behaviour of a system. Simulation can be used to detect undesirable
behaviour, and incorrect or omitted logic but it is not an exhaustive means of checking
correctness of the model. The toolset CPN Tools provides different simulation modes
ranging from completely manual (interactive) to fully automatic. Interactive
simulation is comparable to single step debugging a program and useful in initial
investigations into model behaviour.

Simulation can also be configured to run repeatedly without graphical feedback and to
bind variable values automatically, generating configurable analysis reports based on
each automatic run. Runs can be initialised with a different selection of parameters
per run. For example, simulation runs could be set up for the modelled system where
input is initiated until a certain number is reached; different random distributions can
be selected from per run; the number of resources available to a consumer in the net
can be amended; further data collection points can be implemented to examine values
across the net.

Normally used in conjunction with timing in the net, simulation can conduct
performance analysis of the specified system [82]. With CPN Tools, timing delays
can be introduced at various points in a model using exponential distributions or
deterministic ranges to represent arrival times and delays between each activity. The
net toolset permits extraction of data from certain places or transitions during
simulation of the operational process. In system-of-systems specification, this
information could be used to calculate timing delays for processes associated with
particular components, individual or groups of activities, and the process as a whole.

Based on the statistics calculated from the model, ways can be considered as to how
to improve efficiency. For example, additional resources could be added to the model
and the model re-simulated to check its effect.

Appendix C, section C.1, illustrates the use of simulation in performance analysis of
the telephone system and all Appendices (A-D) include its use in the initial validation
of the constructed nets.

As dynamic analysis via simulation cannot guarantee that all possible execution paths
of the process have been covered, static analysis of Petri nets is used to provide a
more exhaustive, deeper level of verification over and above simulation alone. Static
analysis using reachability tree or state space analysis was conducted to check for
standard structural Petri net properties such as reachability, boundedness, home,
liveness and fairness. It is also possible to use temporal logic to inspect the markings
across the generated state space graph for further checking of expected model
behaviour (CPN Tools implements ASK_CTL and it is possible for the modeller to
construct non-standard property queries using this branching temporal logic). Using
temporal logic, it is possible to combine pre-defined queries or construct new
modeller-defined queries and undertake further checks related to model properties
such as reachability and liveness. For example, the modeller may want to verify
whether the designated dead markings are valid, i.e. the values of tokens on places
involved in dead markings are as expected; or after reaching a certain place state
another place state of interest can be reached; or after reaching a certain place another

 37

place state of interest cannot be reached. Static analysis for the telephone system is
discussed in Appendices B-D.

A known weakness of Petri nets is the complexity problem [57]. Even small sized
process representations can have infinite reachable states (the state explosion
problem). To alleviate this problem, methods are used to try and reduce the state
space graph by focusing on its form (largeness avoidance) or a subset (largeness
reduction). Largeness avoidance techniques are investigated for the telephone system
in Appendices B-D.

Of further note is static analysis of an un-timed net amended for enhanced
specification and performance analysis through the addition of timing. Based on the
work in Appendix C with timed coloured Petri nets using the net toolset, CPN Tools,
and recommendations from Jensen [90], static analysis of timed nets requires careful
management. According to Jensen [90, 100], non-determinism in nets means that a
marking cannot be uniquely determined following an enabled transition's execution.
For non-deterministic nets, the same state space cannot be generated twice due to this
unpredictable behaviour. [90] suggests evaluation of a non-deterministic net to check
whether it can be made into a deterministic one. Although these measures can apply to
untimed as well as timed nets, timed nets are at much greater risk of experiencing the
state space explosion problem than their equivalent untimed net during static analysis
as state space graph calculation considers all potential times that can be associated
with tokens as well as their colour (types).

Both analyses possible with the Petri net formalism are investigated in detail in
Appendices A-D using the telephone system specification.

7. Precision in specification of requirements.
A graphical concrete modelling language syntax can help promote shared
understanding between technical and non-technical audiences. A formal notation has
well-defined concrete and abstract syntax as well as static and dynamic semantics
contributing to unambiguous, consistent and correct system specification and the
ability to execute and analyse the model described by the notation.

As well as having a graphical concrete syntax, the abstract syntax, and static and
dynamic semantics of timed high-level nets with hierarchy can be described
mathematically. In terms of their graphical notation, nets offer a small range of
elements from which to construct models of systems. Unlike UML, there is no system
of modelling languages. High-level Petri nets such as coloured Petri nets combine
classic Petri nets with the strengths of a high-level programming language, providing
data typing and manipulation capability. This helps to facilitate more compact
specifications as the concepts of real-life systems can be described using data typing
rather than additional net elements. Specification of real-life large-scale applications
becomes feasible using these high-level nets. With CPN Tools, syntax is enforced by
the syntax checker in its editor and Petri net semantics are enforced by its simulator
and state space analysis tool.

Ambiguity is introduced via domain concept labelling of net elements.

 38

The specification of the telephone system using Petri net concrete syntax is
demonstrated in Appendices A-D.

8. Scalability, concurrency, state, information, and event-based specification.

It is anticipated that the engineering of large-scale systems-of-systems will produce
stable, desirable behaviour states. These states will be the culmination of co-operative,
concurrent interaction between component systems, triggered by particular executions
of event sequences consuming and producing certain types of information. A
modelling language should be able to offer a means of representing this behaviour. In
addition, given the number of component systems likely to be involved in a system-
of-systems, the modelling language has to facilitate scalability.

As discussed previously in section 2.2, Petri nets have been used to model concurrent,
state and event-based systems. High-level nets offer a means of specifying the
information exchanged within the system-of-systems. In terms of scalability, from the
work in Appendices A-D with the telephone system, it was not clear what the
enlargement limits are for Petri nets before their use becomes impractical. This aspect
is explored further in the case studies of Chapters 5 and 6. The work in Appendices B-
D did show that nets do not have to be large to encounter the state space explosion
problem during static analysis and discussed ways to alleviate this problem.

Table 2.1 provides an indication of the potential usefulness of Petri nets in terms of
the specification and analysis of system-of-systems:

Systems-of-Systems Modelling
Language Feature

Petri Net Formalism

Abstraction Yes, hierarchical nets.
Modularisation Yes, hierarchical nets.
Data Typing Yes, coloured nets.
Toolset Support Toolset evaluated and

implemented as per requirements
of organisation.

Timing Yes, timed nets.
Verification & Validation Yes, simulation and state space

analyses.
Precision Yes, formal basis.
Scalability To be determined.
State and event-based Yes, coloured nets allow

enhanced specification of
transition-enabling rules.

Information-based Yes, coloured nets.

Table 2.1 'Indication of Petri net suitability for system-of-systems specification'

 39

Chapter 3 Research Method

3.1 Introduction
Chapter 3 discusses the case study research method used to demonstrate and evaluate
the strengths and weaknesses of Petri nets in chapters 5 and 6. Rationale for the use of
case studies and justification of the results obtained from their use is presented.

3.2 Characteristics of Case Study Methods
For a large variety of challenging, real-life context problems, the deliberate control
exercised in experimental research investigations is often not a feasible option to help
understand them. Instead, a part of the real-life context where the phenomena occurs
needs to be considered.

Adoption of in-depth case study research in systems engineering has gradually
increased over the last decade from its dominant use in the social science domain.
Although there is still relatively sparse guidance for researchers undertaking case
studies and concerns as to their suitability as a research method, case studies do offer
the opportunity to study contemporary objects in real-life situations and enable greater
understanding of them. Case study approaches in systems engineering have been
discussed by [53, 55, 64, 96, 101, 108] and their use in systems engineering to-date
tends to be either in large, project-based studies [102] or in a small set of well-known
examples.

Flyvbjerg [54] highlights that some definitions of the term 'case study' reinforce
scepticism of its suitability as a research method:

'The detailed examination of a single example of a class of phenomena, a case study
cannot provide reliable information about the broader class, but it may be useful in the
preliminary stages of an investigation since it provides hypotheses, which may be
tested systematically with a larger number of cases' [103].

Flyvbjerg [54] goes on to argue against the main perceived criticisms of the case
study approach, namely:

1. Inability to generalise from a single case.
2. Most useful for generating hypotheses rather than their testing and subsequent
theory building.
3. Theoretical knowledge is more valuable than practical knowledge.
4. Case studies can be biased in verification.
5. Case studies can be difficult to summarise.

[54] believes knowledge gained through practical means (rather than purely
statistical) has much potential merit and development of guidelines can alleviate the
criticism previously levelled at case studies.

Yin [104] defines a case study as empirical enquiry that:

 40

'Investigates a contemporary phenomenon within its real-life context, especially when
boundaries between phenomenon and context are not clearly evident, and in which
multiple sources of evidence are generally used'.

The second point of this definition relating to boundaries is highly relevant to system-
of-systems implying the potential usefulness of case studies to their engineering. Yin
[104] accompanies the definition with the following characteristics of a case study:

'copes with the technically distinctive situation in which there will be many more
variables than data points, and as one result relies on multiple sources of evidence,
with data needing to converge in a triangulating fashion, and as another result benefits
from the prior development of theoretical propositions to guide data collection and
analysis'.

Triangulation is taken here to mean different views of the evidence and Yin [104]
infers from the characteristics above that the results of a case study will rely on
different pieces of evidence. The characteristics also imply that a case study is
appropriate when the subject being studied cannot easily be isolated from the real-life
context (as is the case in controlled experiments) and there is interest in the
relationships across a number of factors. Here, scientific methods are usually
inappropriate for dealing with unstructured problems and this is where research design
can be used for adapting research methods to do so.

Sjoberg et al [55] supply four purposes for research of which three can be applied to
the case study method used to demonstrate the strengths and weaknesses of Petri nets
in system-of-systems engineering. The three purposes are: exploratory ('finding out
what is happening, seeking new insights and generating ideas and hypotheses for new
research'); descriptive ('portraying a situation or phenomenon'); and improving ('trying
to improve a certain aspect of the studied phenomenon').

[108] goes on to summarise the primary characteristics of the case study as a
methodology that adds to existing knowledge through previously established theory or
new theory; uses a chain of evidence, qualitative or quantitative, from multiple
sources in a planned manner; and is flexible in the sense it deals with dynamic
characteristics of domains such as systems engineering.

This thesis aims to evaluate the benefits of using Petri nets in systems-of-systems
specification through a case study performed in an office environment. The case study
approach's main strength is its realism: a researcher undertaking all net construction
with an integrated Petri net toolset, and verification and validation tasks using two
real-life, non-trivial system-of-systems from one application domain. Iterative
guidelines and processes suggested by [55, 64, 96, 101, 108] have been followed in
this thesis to plan and execute the case study in order to ensure a systematic approach
to the studies. These are discussed in section 3.3 below.

 41

3.3 Thesis Case Study Approach
Both Runeson et al and Kitchenham et al [64, 96, 101, 108] include the following
steps in designing a case study:

Step 1. Define case study objective, its related research questions and plan for case
study.

In the case of this thesis, the objective or quantifiable requirements specification [64,
96, 101] of the case studies in chapters 5 and 6 was to evaluate the strengths and
weaknesses of Petri nets in terms of the system-of-systems problems identified in
chapter 1. Specifically, the benefits of Petri nets regarding functional specification
correctness, and the quality of the design were to be considered. This objective was
viewed as exploratory, descriptive, and improving. In terms of a baseline with which
to compare Petri nets, currently textual, or graphical (static) specifications exist to
describe system-of-systems functionality. This baseline is used to determine if the
design specifications captured by Petri nets help to improve functional specification
correctness and design quality.

The thesis case study considers:
1. Do Petri nets improve the functional correctness of the system-of-systems design
specification?
2. Do Petri nets increase the quality of the design specification?
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be
improved?

The research questions relate to the criteria for success defined for both case studies in
chapters 5 and 6.

The experimental subjects are the Knowledge Transfer Partnership project team
members. The results were produced by one member of the project team who used a
simple example specification to gain experience using the selected Petri net integrated
development environment, CPN Tools. The evaluation exercise undertaken for
selecting CPN Tools is presented in Appendix F. All members of the project team
were involved in the verification of the results.

The case studies have one independent variable, the application of Petri nets to
system-of-systems specification and analysis. The Petri net technique is regarded as
the treatment, i.e. the technique being evaluated. The control treatment is the
technique currently used but as this thesis is concerned with evaluating Petri nets in
comparison to existing methods used in system-of-systems design, this does not have
to be specified [96]. It is anticipated that functional correctness and design quality are
the response (or dependent) variables [96, 101] expected to change from the
application of the treatment. Functional correctness is expressed in terms of number of
errors detected by simulation; and number of errors detected by static analysis. Design
quality is expressed in terms of comprehensibility (e.g. use of hierarchy, annotation,
timing), and scalability. Time spent editing models will depend on the Petri net toolset
used and experience of the practitioner. It is not included for these reasons. The
alternative hypotheses state that use of Petri nets will improve both response variables
and these will be checked at each iteration of model design.

 42

In terms of the cases or 'experimental objects' [96, 101] that the treatment is applied
to, defence sector close air support (CAS) and exchange network parameter (XNP)
problems are used. Both are systems-of-systems, i.e. they exhibit the systems-of-
systems characteristics listed in chapter 1, in particular: a dominance of legacy
component systems; multiple interfaces between component systems; and autonomy
of component systems.

Close air support deals with the neutralisation of a threat detected by military
personnel. An information message exchange takes place between the actors involved,
culminating in the threat being neutralised or another attempt at neutralisation being
initiated. Its component systems include air, ground, and sea-based military platforms,
soldiers, information communications (tactical data links), and operation support
centres.

Exchange network parameters aims to automate the change of network parameters
and address from one subnetwork to another. Again, an information message
exchange takes place between the actors involved, culminating in a network address
being allocated or rejected. Its component systems can include air, ground, and sea-
based military platforms, soldiers, and information communications (tactical data
links). In these cases, two system-of-systems from one application domain are
compared by applying the same treatments to both. Yin [104] defines this as an
embedded case study, i.e. there are two units of analysis where the context is system-
of-systems application domains in general:

Fig. 3.1 'Embedded case study' adapted from [108], p139

Each case is expected to be a 'typical' representation of a system-of-systems, selected
to predict similar results in relation to the response variables. The case study was
conducted in two phases with close air support as the first phase and exchange
network parameters as the second phase.

In close air support, military standards documents [105, 106] provided details of the
close air support mission process. Workshops were also undertaken with subject
matter experts from the Knowledge Transfer Partnership host company to verify the
operational processes, i.e. the activities, activity sequences, actors, performance
parameters, and information exchange identified from the standards documentation.
This operational process information was then used to construct models of the
specification using Petri nets at a system-of-systems level of engineering.

 43

Specifically, models were to be produced at system-of-systems analysis, and design
and architecture levels of abstraction for the entire close air support operational
process. The modelling process is detailed as follows and shown in Fig. 3.2:

1. Identify relevant textual, graphical documentation relevant to the process
describing the system-of-systems.
2. Extract actors, information, activities, activity sequence, performance parameters
from documentation.
3. Verify information with subject matter experts.
4. Use step 3 as input to Petri net model at system-of-systems analysis level of
abstraction
5. Verify with subject matter experts.
6. Use step 5 as input to Petri net model at system-of-systems design and architecture
levels of abstraction.
7. Verify with subject matter experts.

Fig. 3.2 'UML activity diagram of case study modelling process'

At each iteration of model design, response variables would be checked and results
noted, i.e. scalability, comprehensibility, and number of errors detected by executing
the net and calculating the reachability graph of the net.

In the second case study, exchange network parameters, a similar process to that used
for close air support was followed.

Runeson et al [108] suggest a checklist to ensure adequate case study design and this
was used for the two studies in the thesis:

Case Study Design Requirement Addressed
Definition of a case and units of analysis Yes.
Definition of objective, associated research
questions, and hypotheses

Yes.

Theoretical basis Yes, existing Petri net literature.
Clear cause-effect relationships Yes.
Evidence triangulation Yes, two cases.

 44

Case Study Design Requirement Addressed
Rationale for subjects, roles, viewpoints Yes.
Relevance of case(s) to address research questions Yes.
Integrity of involved individuals and organisations Yes.

Table 3.1 'Checklist for case study design' adapted from [108], p144

In terms of planning for data collection, the case study plan indicates which methods
of collection to use i.e. direct, indirect, or independent [107]. This thesis uses direct
and independent sources of evidence collection, details of which are provided in step
2.

Step 2. Define case study procedures for data collection.

Runeson et al [108] recommends maintaining a case study design document and
guidance for execution. The case study protocol for the thesis adapts the tabular
template provided in [108]:

Section Content
General Objective: evaluate the strengths and weaknesses

of Petri nets.
Why: address the system-of-systems problems
identified in chapter 1.
How: use of two comparative, typical, exploratory
cases. Consider their functional specification
correctness, and the quality of the design.

Procedures Contacts:
Organisations: Host company partner, University.
Equipment:
Petri Net Integrated Development Environment,
CPN Tools.
Subjects:
Knowledge Transfer Partnership project team.
Process:
Construct Petri net models at system-of-systems
analysis, and design and architecture levels of
abstraction noting effects on comprehensibility
and scalability and performing simulation and
reachability analysis at each iteration of model
design.

Research Instrument CPN Tools analysis reports, research notes and
screenshots.

Data analysis guidelines Detection of errors through reachability and
dynamic analyses at each iteration of model
design.
Examination of scalability, and comprehensibility
at each iteration of model design.

Table 3.2 'Case study protocol for thesis' adapted from [108], p142

Runeson et al [108] point out the importance of ethical considerations, particularly
confidential information. In the thesis, confidentiality was handled through the
signing of a Non-Disclosure Agreement between the Knowledge Transfer Partnership
partners.

 45

Step 3. Collect evidence.

For each case, the research instruments were identified prior to starting in order to
clarify how the evidence would be collected from the study. The data sources used
were:

1. Simulation screenshots illustrating problems detected using the ability to execute
the net.
2. Copy of net source code at each iteration of design.
3. Copy of standard net analysis report produced by CPN Tools at each iteration of
design.
4. Net screenshots illustrating comprehensibility or scalability.
5. Project team notes taken based on usage of nets at each iteration of design.

For the thesis, triangulation was used to draw conclusions from the two cases in order
to avoid interpretation from one source of data only. For these case studies, data
collection was first degree [107], i.e. the project team had direct control over when,
what, and how data was collected and it could be collected in real-time.

[108] suggests two checklists to ensure adequate preparation and conduct of data
collection and these were used for the two case studies in the thesis:

Data Collection Requirement Addressed
Definition of a case study protocol Yes.
Multiple data sources (triangulation) Yes, two cases.
Definition of measurement instruments Yes.
Can objective of case study be met Yes.
Adequate confidentiality and case study sign-off Yes.
Evidence Collection Requirement
Case study protocol used to collect evidence Yes.
Adequate implementation of treatment Yes.
Adequate recording of evidence for further
analysis

Yes.

Adequate processing of confidential evidence Yes.
Traceability of evidence collection procedures Yes.
Adequate evidence to meet research questions Yes.

Table 3.3 'Checklist for data collection' adapted from [108], pp.149-150

Step 4. Analyse collected data.

The analysis step of a case study deals with the processing of the quantitative and
qualitative data collected from the case study. Qualitative data analysis can be used in
two forms of analysis, hypothesis generating (exploratory case studies) and hypothesis
confirmation (explanatory case studies). The cases in this thesis use hypothesis
confirmation analysis techniques to confirm that a hypothesis is true. Both cases used
quantitative and qualitative data to test the hypotheses. The qualitative data may also
be able to indicate the reason for the errors detected quantitatively. Qualitative
analysis uses a chain of evidence to form conclusions based on the data, i.e. sufficient
information from each part of a case and each decision made by the project team must
be presented.

 46

Notes were recorded by the project team immediately upon completion of design
iterations for each model. These commented on toolset problems faced, for example,
in net creation, and editing as well as results of simulation and reachability analysis
and reasons for these results. Triangulation can be undertaken per case helping to
confirm the hypotheses using tabulation to present an overview of the results of each
case study.

 47

Step 5. Report.

The case study report should present the conclusions of the study and give an
indication of the quality of the study without compromising confidentiality where this
is of concern. It is also important to relate a history of the study or chain of evidence,
linking items of evidence to conclusions drawn. This thesis adopts the linear-analytic
[104] report structure. Results and conclusions based on the case study design
discussed in this chapter are presented in chapters 5 and 6.

According to Kitchenham et al [64] the five steps above aid in forming conclusions
from the case study and relate to the four research design quality criteria defined by
Yin that enforce the concepts of reliability and validity:

1. Construct validity: establishment of correct operational measures for the studied
concept.
2. Internal validity: awareness of the range of causal relationships between
independent and dependent variables during examination. To be internally valid an
experiment must be designed so that conditions other than the independent variable
are ruled out as potential causes of the behaviour change.
3. External validity: establishment of whether findings of a study can be generalised
beyond the current study.
4. Experimental reliability: demonstration that the operations of a study can be
subsequently repeated with similar results.

Case study validity depends upon the systematic process underlying its design and
execution to reach trusted, unbiased results. In the studies of chapters 5 and 6, the
main advantage of the case study approach was its external validity where
specification of real-life systems-of-systems was undertaken over an extended period
of time using an industrial Petri net toolset. A minimal degree of control was
exercised as a means of maintaining external and internal validity. Petri net strengths
and weaknesses in the specification and analysis of systems-of-systems require
consideration of the correctness of functional specifications and improved design
quality. To have construct validity the study has to examine these dependent
variables. Experimental reliability is demonstrated by the repetition of operations used
in the first phase of the case study in the second phase.

Many systems engineering case studies rely on large industrial studies where there is
much less control. Instead, this thesis conducts a case study with a greater degree of
control in an office environment, maintaining a real-life context to examine the
strengths and weaknesses of Petri nets on specification of systems-of-systems.

 48

Chapter 4 Petri Net Strengths and Weaknesses in
relation to System-of-Systems

4.1 Introduction
The success of a deterministic system-of-systems engineering project depends on
integrating autonomous components using international communications standards in
accordance with the owner's specification. Discussed in chapter 1, a main
characteristic of large-scale, system-of-systems is that they are distributed, relying
upon a communications infrastructure to achieve global behaviour. Large numbers of
distributed component systems contribute huge complexity in terms of concurrency
with one another, exchanged information, and dynamics. Based on the individual
behaviours of components, the goal of system-of-systems engineering is to design
desirable behaviour into a global system-of-systems and design undesirable behaviour
from it.

Current state-of-the-art approaches such as architecture frameworks and enterprise
architecture provide a means of capturing an organisation from different viewpoints at
different levels of abstraction. Modelling promotes understanding between the
communities involved in system-of-systems development (business analysts,
designers and original equipment manufacturers) and offers the opportunity to create
and reuse reference models.

All these approaches can make positive contributions to system-of-systems
engineering but at the moment, successful implementation of system-of-systems is
still a problem. Architectures require commitment at senior management level to drive
their adoption. This justification is difficult based on their current level of maturity
and lack of a standard system-of-systems implementation process.

Modelling also suffers from the same lack of process surrounding what should be
modelled in system-of-systems design. One of the most popular modelling notations
available for specifying systems, UML, is intuitive and graphical but also ambiguous
and imprecise. Supplying a range of diagrams to represent a system under
development, UML lacks simulation and exhaustive verification capability. This
shortfall in UML has received little attention in the context of system-of-systems and
there are two major research issues:

1. Where the dynamic diagrams of UML can and cannot be used to model and analyse
system-of-systems.
2. Determining how Petri nets can be used to improve the specification and analysis of
the dynamic model of a system-of-systems specified using UML.

Chapter 4 discusses the benefits and shortfalls of Petri nets in relation to the
specification of systems-of-systems and shows how Petri net models can be used
instead of conventional UML behavioural diagrams to analyse and verify the system-
of-systems using Petri net theory. The chapter concludes by introducing the first case
study used to demonstrate use of Petri nets in system-of-systems specification.

 49

The chapter begins by reviewing the behavioural diagrams of UML.

4.2 UML Behavioural Diagrams (Dynamic Model)
The development of a system-of-systems relies on specification of its dynamic
structure. The mutually connected component systems of the system-of-systems and
the relationships between them represent its overall behaviour. The state of the
system-of-systems is defined by the states of its component systems. The overall
behaviour is a result of concurrent services performed by each component system
causing them to change their state.

The UML 2.x modelling notation offers modelling concepts from static and dynamic
model viewpoints and includes use case, class, state machine, communication, and
activity diagrams for these purposes. The static model represents the structure of a
system through classes, objects, and their relationships. The dynamic model
represents behaviour of a system and uses state machine, activity, sequence, and
communication diagrams to do so. Given the dynamic nature of system-of-systems,
the primary concern is capturing these critical dynamic aspects. The main behavioural
diagrams of UML are now considered more closely in relation to the desirable
features for a modelling language used in the specification of systems-of-systems
suggested in chapter 1.

4.2.1 Sequence
A sequence diagram, based on the Message Sequence Chart formalism, describes the
communication and functions used by objects together with the order of message
flow. They are normally used to reach a better understanding of a scenario. Its
concrete syntax includes lifelines represented by a vertical line indicating the progress
of time and message exchanges to (from) the lifeline; with asynchronous or
synchronous messages represented by arrows between lifelines. The sequence
diagram is now considered in terms of the desirable system-of-systems specification
features.

1. Abstraction: InteractionUse references can be used to hide detail of interactions
contained in separate diagrams. Lifeline classifiers can also be decomposed in
separate diagrams showing detail of component classifiers and their message
exchange.
2. Modularisation: lifeline classifiers are a useful way to organise parts of the system-
of-systems. Component systems within a system-of-systems are modular in the sense
that they use communication interfaces (and protocols) to integrate and share
information. Messages (defined within class diagrams) and lifelines are the primary
method of capturing component systems and their interfaces in sequence diagrams.
3. Data typing: supported by messages defined within class diagrams.
4. Adequate toolset support: wide variety of UML CASE toolsets.
5. Timing: basic support for the specification of message ordering via
DurationObservation, DurationConstraint, TimeConstraint, TimeObservation, and
GeneralOrdering nodes. The UML Profile for Schedulability, Performance, and Time
can also be used to introduce timing and probabilistic information.
6. Verification and validation: no simulation or model-checking in native form.
7. Precision in specification of requirements: no mathematical foundation.

 50

8. Scalability: sequence diagrams tend to get very large quickly unless suitable
abstraction is used; they can be used to represent concurrent, asynchronous,
synchronous, event, and information-based message exchange (in conjunction with
the UML static model) between components; they are not intended to capture states
passed along lifelines, resource contention, non-deterministic behaviour, data
manipulation, or process-based flow; sequence diagrams are intended to capture and
explore single-cycle, scenario-based courses of action.

4.2.2 State Machine
A state machine diagram, based on Finite State Machines, describes the detailed
behaviour of a part of a system by showing component states (attribute
configurations) and the events responsible for state change. State machine models of
component behaviour and protocol behaviour can be developed. The state machine
diagram is now considered in terms of the desirable system-of-systems specification
features.

1. Abstraction: Composite state can be used to hide detail of a state in a separate
diagram. Submachine state can also be decomposed in separate diagrams showing
detail of a state and associated transitions.
2. Modularisation: Submachine state is a useful way to organise parts of the system-
of-systems. Component systems within a system-of-systems are modular in the sense
that they use communication interfaces (and protocols) to integrate and share
information. Transition triggers and actions (depicted graphically by signals with
parameters defined within class diagrams) and Submachine state are the primary
method of capturing component systems and their interfaces in state machine
diagrams.
3. Data typing: supported by parameters defined within class diagrams.
4. Adequate toolset support: wide variety of UML CASE toolsets.
5. Timing: basic support for the specification of message ordering via TimeEvent
nodes. The UML Profile for Schedulability, Performance, and Time can also be used
to introduce timing and probabilistic information.
6. Verification and validation: no simulation or model-checking in native form.
7. Precision in specification of requirements: no mathematical foundation.
8. Scalability: state machine diagrams tend to get very large quickly unless suitable
abstraction is used; they can be used to represent concurrent, state, event, and
information-based message exchange (in conjunction with the UML static model);
they are not intended to capture whole system behaviour, asynchronous or
synchronous message exchange, resource contention, or process-based flow between
components; state machine diagrams are intended to capture and explore the state-
dependent behaviour of a complex component.

4.2.3 Activity
Activity diagrams were originally derived from Petri nets and flow charts. They
model behaviour by organising it into units and describing the control and data flow
between these units and their distribution across a system. However, in UML 1.x, the
activity diagram was an adaptation of a state machine diagram (ActivityGraph was a
subclass of StateMachine in the metamodel) but its semantics were redefined in UML
2.0 to 'use a Petri-like semantics instead of state machines' [11]. It is used to capture
the ordering of activities. In terms of concrete syntax, ovals describe Action nodes
representing a single step in an activity, and rectangles describe ObjectNode nodes for

 51

object flow capture. The diagram starts in an initial state (black circle) and ends in an
end state (black inner circle). Decision points and forks are described by a diamond
and bar respectively as shown in Fig. 4.1.

Fig. 4.1 'Example activity diagram'

The activity diagram is now considered in terms of the desirable system-of-systems
specification features.

1. Abstraction: Activity containment elements can be used to hide detail of an activity
in separate diagrams.
2. Modularisation: ActivityPartition containment elements are a useful way to
organise parts of the system-of-systems. Component systems within a system-of-
systems are modular in the sense that they use communication interfaces (and
protocols) to integrate and share information. ObjectNodes and Pins (defined within
class diagrams) and Activity containment elements are the primary method of
capturing component systems and their interfaces in activity diagrams.
3. Data typing: supported by parameters defined within class diagrams.
4. Adequate toolset support: wide variety of UML CASE toolsets.

 52

5. Timing: basic support for the specification of message ordering via
AcceptTimeEventAction nodes. The UML Profile for Schedulability, Performance,
and Time can also be used to introduce timing and probabilistic information.
6. Verification and validation: no simulation or model-checking in native form.
7. Precision in specification of requirements: no mathematical foundation.
8. Scalability: activity diagrams have increased scalability over sequence and state
machine diagrams (particularly if suitable abstraction is used); they can be used to
represent concurrent, asynchronous or synchronous, state, event, process and
information-based message exchange (in conjunction with the UML static model)
between components; they are unable to capture resource contention; activity
diagrams are intended to capture and explore the control and conditions for co-
ordinating whole system behaviour and lower-level component behaviour.

Derived from previously existing modelling languages used in the domain of software
engineering, UML is not an executable specification language. Its usage tends to be
for static examination or code generation. Even though it has a concrete, extensible,
and intuitive graphical notation, the semi-formal nature of these diagrams prevents the
evaluation of completeness, consistency, and correctness in system specification. The
UML dynamic model provides weak support for simulation and verification. As there
is no full formal syntax and semantics, models produced using UML behavioural
diagrams cannot be executed (simulated). Here, an execution algorithm would be used
to validate the behaviour of a system. Simulation can be used to detect undesirable
behaviour, and incorrect or omitted logic. With no executable model, behaviour of
different system designs cannot be checked prior to their implementation. Although
commercial UML toolsets such as IBM Rational Tau and Rhapsody suites [109, 110]
offer execution of UML behavioural diagrams, their execution algorithms are
proprietary and based on semantic decisions taken by the toolset vendor.

Simulation alone cannot guarantee that all possible execution paths of a modelled
process have been covered, and reachability graph calculation is used to provide a
more exhaustive, deeper level of verification with formal languages. Standard
structural properties such as reachability, boundedness, home, liveness and fairness
can be automatically checked for. Again, due to their semi-formal nature, reachability
graphs cannot be calculated for UML behavioural diagrams unless semantic decisions
are taken by toolset vendors.

Attempts are being made to formalise UML but a formal notation requires well-
defined concrete and abstract syntax as well as static and dynamic semantics.
Approaches so far have tended to focus on the static semantics of UML but do not
address dynamic semantics. These dynamic semantics are needed in order to execute
the behavioural diagrams of UML. A pre-requisite of being able to formalise the
dynamic semantics is the static model. The diagrams of the static model describe the
objects of the system and their interfaces, the dynamic model describes how these
objects and their interfaces are used to exchange information. Although the dynamic
model of UML is focused on, the pre-definition of the classes the behavioural
diagrams use is assumed.

 53

4.3 UML Behavioural Diagrams and System-of-Systems
Specification

In the context of the system-of-systems problems:

1. Verification and validation of the specification at the analysis, design and
architecture phases. In critical system-of-systems applications, the ability to check
design functional correctness and completeness in terms of syntax, structure, and logic
is vital before their physical implementation.

2. Specification of the information exchange protocol and interfaces of the large
numbers of component systems involved.

In terms of the first system-of-systems problem, the UML dynamic model is static in
the sense that the behaviour it describes is not executable. Verification and validation
of model correctness and adequacy in terms of requirements can only be undertaken
via manual inspection or testing following implementation of a prototype or the actual
system. As indicated, some commercial UML toolsets have made it possible to
execute state machine and activity diagrams based on proprietary algorithms.
However, these toolsets offer simulation rather than exhaustive model-checking
functionality achievable using formal methods. Model-checking is where a finite state
model of a concurrent system described using some formalism is checked for certain
properties represented by a temporal logic formula. The model-checking method of
verification is automatic, performing an exhaustive search of the calculated state
space graph to check whether a property is true or not. Clarke et al provide an
overview of the benefits of model-checking in [111].

Regarding the second system-of-systems problem, all three behavioural diagrams
could be used to specify aspects of information exchange protocol. However, given
the large number of component systems involved in system-of-systems and their
concurrent nature, state machine and sequence diagrams have very limited
application. Structure diagrams would be needed to define and describe interfaces and
attributes.

In addition, specification of non-functional properties (such as timing information and
quality of service) requires UML extensibility mechanisms to be used such as the
Profile for Schedulability, Performance, and Time [112] (to be replaced by Profile for
Modelling and Analysis of Real-time and Embedded Systems [113]) and Profile for
Modelling Quality of Service and Fault Tolerance Characteristics and Mechanisms
[114]. Again, the UML dynamic model using any of these profiles is static in the
sense that the behaviour it describes is not executable. [115, 116] describe work
translating UML behavioural diagrams to Petri nets for performance analysis
purposes.

4.3.1 UML Behavioural Diagrams Strengths and Weaknesses in
terms of System-of-Systems

In general terms, UML is a standardised, intuitive graphical notation for specification
communication and documentation purposes, with widespread toolset support and
adoption. UML diagrams used for a system specification are not independent of one

 54

another, and creation of a dynamic model relies on the pre-existence of a static
structure model. In terms of system-of-systems, UML has no development process
and best practice is required in terms of which diagrams to develop and their order of
development. Table 4.1 summarises the strengths and weaknesses of the three
behavioural diagrams in the specification of systems-of-systems:

UML Behavioural
Diagram/

State Machine Sequence Activity

Specification Feature
Abstraction Yes. Yes. Yes.
Modularisation Yes. Yes. Yes.
Data typing Yes (via class

diagram).
Yes (via class diagram). Yes (via class

diagram).
Toolset support Yes. Yes. Yes.
Formal dynamic
semantics

No. No. No.

Verification and
validation

Static. Static. Static.

Process-based No. No. Yes.
Scalability Low. Low. Improved over state

machine and
sequence diagrams
for system-of-
systems
specification.

Timing Yes (via profile). Yes (via profile). Yes (via profile).

Table 4.1 'Strengths and weaknesses of UML behavioural diagrams for system-of-
systems'

From section 4.2, the only UML behavioural diagrams that are candidates for
specifying concurrent, state, event-based, individual behaviour of a component and
combined component behaviour are state machine and activity. From Table 4.1, of
these two, state machine diagrams do not exhibit scalability and are not intended to
capture process-based control and data flow behaviour. Sequence (and
communication) diagrams can only describe specific scenarios (single cycles) and not
the general behaviour of the system.

The main weakness of all the UML behavioural diagrams is their lack of formal
dynamic semantics. It is not possible to execute or perform exhaustive checking of
models built using the present syntax and semantics of these three types of UML
diagram, i.e. no simulation, or performance analysis, or reachability graph calculation.
These functions are essential in helping the production of correct specifications for
large-scale system-of-systems. The behavioural diagrams discussed above have all
been translated by existing work [74, 75, 116, 117] to the Petri net formalism to take
advantage of its formal semantics.

The behavioural diagrams have also been translated to other formal approaches such
as temporal logic, labelled transition systems, event calculus, and process algebras.
Although expressive in specifying concurrent system behaviour and requirements for
subsequent model-checking, these techniques involve text-based specification that can
quickly become difficult to comprehend. Intuitiveness is often sacrificed for
expressiveness of the notation. Formal properties can be very difficult to specify for
modellers without solid mathematical backgrounds. Petri nets on the other hand offer

 55

a graphical means of specification with a long history of research providing manual
and automated verification. Non-UML, formal state machine approaches can also
offer a graphical means of specification and verification but concurrency and
abstraction are not normally supported. Their precise low-level focus can lead to the
state-space explosion problem modelling large-scale systems.

Petri nets appeared to offer an established, intuitive, process-based approach to
system-of-systems specification although none of the translation work focused on the
benefits of Petri net use in their specification. For this thesis, UML 2.x activity
diagrams are concentrated on for two reasons: first, the standard's [11] claim that they
"use a Petri-like semantics" and secondly, based on the strengths and weaknesses
identified in this section, they appear to be most applicable for use in system-of-
systems specification. The thesis puts forward the idea of the Petri net formalism as a
complementary enhancement to UML activity diagrams and evaluates its strengths
and weaknesses using a case study approach.

4.4 Petri Nets Strengths and Weaknesses in terms of System-
of-Systems

Introduced in chapter 2, Petri nets are a graphical and mathematical technique for
describing concurrent, asynchronous, distributed, non-deterministic and stochastic
information processing systems [56]. To-date their applications include workflow
pattern development for the analysis of process-aware information systems [59],
military command and control systems [60, 61], task planning research [62], computer
circuits [43] and manufacturing. No work has looked at how Petri nets can help in the
context of large-scale system-of-systems and the problems described in chapter 2,
particularly verification and validation of the specification at the analysis, design and
architecture phases; and specification of the information exchange protocol and
interfaces of the large numbers of component systems involved. Most or all of these
component systems will already exist but an equivalent Petri net model for them will
not.

In order to find out exactly how Petri nets can be used to help address these system-
of-systems problems, a well understood problem (a telephone system) was considered
before exploring use of nets in creating system-of-systems models. An example
specification involving a telephone system enabled experience to be gained
developing nets and check their behaviour against a familiar result set. Based on
addressing the system-of-systems problems highlighted above, criteria for success
(Table 4.2) were defined at the start of the exercise.

 56

Goal 1: Gain knowledge and experience in development of Petri net models
(including chosen toolset).

Metrics: Use Petri nets to specify the telephone example using chosen toolset noting
details of the construction process (time involved, ease of mode creation); net
readability and understandability; and features of the toolset.

Goal 2: Precisely specify the telephone example. Use Petri nets to capture the
operational processes, components and information exchange involved in the
telephone system at analysis, design and architecture phases.

Metrics: Check if Petri net elements can describe operational processes, components
and protocols of the telephone system. Note syntactical, semantic, and feature support
provided by the chosen toolset.

Goal 3: Determine the scalability of Petri nets.

Metrics: Explore the use of abstraction in Petri nets to check if nets can be used to
create models of large-scale systems.

Goal 4: Determine how Petri nets can be used to verify and validate the telephone
example specifications.
Use Petri nets and the selected toolset to explore verification and validation of the
telephone specifications at the analysis, design and architecture phases.

Metrics: Employ static (state space) analysis of nets to check for well-known
properties in models. Employ dynamic analysis of nets to explore behaviour and
efficiency. Note when static and dynamic analyses should be used and potential for
errors to go undetected i.e. existence of verification and validation spectrum.

Table 4.2 'Criteria for success for the specification of the telephone system using Petri
nets'

Appendix A details the specification, initial verification, and use of hierarchy in the
telephone process using classic and coloured Petri nets. The analyses possible with
nets were explored and recorded in Appendix B, together with an introduction to
techniques for reducing the complexity problem normally associated with nets. In
Appendix C, the addition of timing to nets was considered in order to validate the
telephone process. Again, techniques for reducing the complexity problem in nets
were reviewed for timed coloured nets. In Appendix D, the techniques recorded in
Appendix A-C are applied at design and architectural levels of abstraction for the
telephone process.

Conclusions from the work in Appendices A-D using Petri nets to specify a telephone
process and the possible implications for specification of systems-of-systems are
presented in section 4.4.1.

 57

4.4.1 Conclusions from Specification of the Telephone System
using Petri Nets

Referring back to the criteria for success of the telephone exercise defined at the
beginning of section 4.4, each goal in Table 4.2 is considered in Table 4.3 below.

Goal 1: Gain knowledge and experience in
development of Petri net models (including chosen
toolset).

CPN Tools was the toolset used in
Appendices A-D to explore creation,
verification and validation of high-level net
models of the telephone process. For this
well-known problem, the toolset proved
comprehensive with many modelling aides
available in one software package.

From an industrial and large-scale system
modelling perspective, it would benefit from
enhancements such as: an improved model-
checking report; improved (visual) guide to
errors and problems detected in the model; a
customised query builder; a graphical front-
end to the simulator; net management
facilities such as version (audit) control and
comparison between nets, re-use of nets,
layout of declarations, synchronisation of
nets, layout and presentation of multiple
folders for editing and simulation, and a
facility to manage large hierarchies of nets.

Goal 2: Precisely specify the telephone example. Use
Petri nets to capture the operational processes,
components and information exchange involved in the
telephone system at analysis, design and architecture
phases.

Nets provide unambiguous specification via
their mathematically-based abstract and
concrete syntax and semantics. The use of
Coloured Petri nets allows colours (types) to
be associated with places, significantly
reducing the number of elements required to
represent information in a net. Timing in nets
allows the modeller to associate the concept
of time to activities in the net enabling
capture of activity duration, timeouts, and
ordering of tokens themselves (in addition to
basic control sequence order) and is essential
to the modelling precision of large-scale
system-of-systems. Labelling and annotation
within nets can be open to interpretation.

The telephone example illustrated
information exchange at conceptual, and
design and architecture levels specifying the
type of information, control order sequence,
transactions, message order sequence, timing
of exchange (via timeouts, parameters) and
potential failure states (e.g. deadlock through
underlying communications failure).

To help achieve the goal of precise
specification, identification of an adequate
net toolset supporting high-level nets,
organisation-wide net management and
construction method (including a suitable
hierarchy), practitioner training, and domain
user involvement are vital. Enhancements in

 58

terms of the existing limited Petri net
graphical notation are likely to be required to
support the domain being modelled and for
readability and comprehension purposes.

Goal 3: Determine the scalability of Petri nets.

Use of high-level nets and hierarchy (at
model level and within models themselves)
can help facilitate the construction of models
of large-scale systems through levels of
abstraction and use of colour (types) to
reduce the number of elements required to
represent information in a net. Based on the
simple concept of the telephone process, for
models of large-scale system-of-systems, it is
highly likely that nets will have to be divided
for development purposes. Hierarchies at
model level and within models will help to
facilitate this division in conjunction with a
net management method.

In addition, use of an adequate net toolset can
also govern the overall size of a model
through options provided for re-use of parts
of a net and how parts of large models are
presented to the modeller. At this stage, it has
not yet been determined exactly how well
nets can scale in the modelling of system-of-
systems.

Goal 4: Determine how Petri nets can be used to verify
and validate the telephone example specifications.
Use Petri nets and the selected toolset to explore
verification and validation of the telephone
specifications at the analysis, design and architecture
phases and potential for errors to go undetected i.e.
existence of verification and validation spectrum.

Dynamic and static analyses of high-level
nets were investigated for the telephone
example. Both provide highly beneficial
behavioural and structural checking for the
modeller. Dynamic model execution
(simulation) enables verification of
behaviour. Not only can the modeller use the
execution sequence to check the design of the
net elements, simulation can also be used to
elicit knowledge from subject matter experts
in order to verify the model. Validation in
terms of efficiency (performance) analysis of
the model can be undertaken if timing is
introduced into the net. Modelled components
can also be associated with information based
on real-life resources in analysis-of-
alternatives scenarios to further validate the
design of the model.

Static analysis or model-checking provides a
means of exhaustively verifying a model
based on familiar Petri net properties such as
deadlock. In addition, depending on the
toolset employed, branching temporal logic
standard and customised queries can be made
on the resulting state space graph. Static
analysis encourages the modeller to discover
why a model behaves in a certain manner or
why it does not. The main weakness of static
analysis is that it is susceptible to state space
explosion even with relatively compact nets

 59

defining a narrow problem scope. Largeness
avoidance techniques were employed
together with a suitable hierarchy to illustrate
how they can be used to combat state space
explosion and help improve understanding
and specification of nets. Again, hierarchy
and abstraction play a key role in facilitating
verification and validation.

Table 4.3 'Results from the specification of the telephone system using Petri nets'

It became clear from modelling the telephone system that as well as the requirement
to implement timed, coloured Petri nets with hierarchy, use of hierarchy and an
adequate modelling framework will be vital to the success of using nets to capture
large-scale systems.

The potential strengths and weaknesses of Petri nets in relation to modelling a system-
of-systems were also indicated. A summary of what was learned in this section is
presented in Tables 4.4 and 4.5 below. Each point is related to system-of-systems and
the problems defined in chapter 2. In section 4.5, this experience is used to highlight
where Petri nets are likely to be of benefit enhancing UML activity diagrams in the
more complex case studies to follow.

Petri Net Strengths Comments Relevance to System-

of-Systems
Mathematical Description Precision in both syntax and

semantics.
Specification can be
described mathematically
(as well as graphically).

Graphical Notation Places, directed arcs, transitions,
textual annotation and underlying
interpretation rules.

Point-of-reference model for
those involved with system-
of-systems lifecycle.

State and Event-based Able to capture rules-based
information state, conditions and
activities.

Characteristic of system-of-
systems function.

Application Flexibility Nets can be used to specify rules-
based applications from different
domains.

Anticipated that nets can
specify system-of-systems
applications.

Concurrency Able to capture activities
occurring in parallel.

Characteristic of system-of-
systems function.

Single View The set of net elements (and their
underlying interpretation rules) is
consistent regardless of the
abstraction level or viewpoint of
the model.

Specification information
provided by one set of net
elements.

History of State Markings can be analysed along
execution paths.

Verification of reachability
and correct deadlock states.

Specification of Behaviour at
Analysis, Design and
Architecture Stages

Capture of operational,
transactional, and physical
components and control
sequence, roles, states, activities
involved.

Operational processes,
transactions, and physical
components key to
realisation of overall
system-of-systems function.

Specification of Information
Exchange Protocol

Capture of roles, information
involved, timing, failure states
and sequencing.

Information exchange
protocol key to realisation
of overall system-of-
systems function.

 60

Petri Net Strengths Comments Relevance to System-
of-Systems

Specification of Interfaces Capture of operations provided by
and required by component
systems together with parameter
information.

Component system
interfaces key to realisation
of overall system-of-
systems function.

Hierarchy Ability to facilitate scalability by
representation of different levels
of abstraction within net (capture
of top-down and bottom-up
approaches).

Hierarchy key to scalability,
readability and analysis of
system-of-systems function
and efficiency specification
using nets.

Dynamic Analysis (verification
of specification)

Ability to execute net and verify
its logic and behaviour
interactively or automatically.

Verification of function and
information exchange
protocol of system-of-
systems.

Static Analysis
(verification of specification)

Ability to calculate state space
graph of net and perform standard
(and non-standard) analysis on
the state space.

Deeper verification of
function and information
exchange protocol of
system-of-systems.

Timing (enhancement and
validation of specification in
conjunction with dynamic
analysis)

Capture correctness, efficiency or
performance of system via
introduction of concept of time in
nets.

Validation of system-of-
systems function specified
by net in terms of
prioritisation and
performance.

Table 4.4 'Petri net strengths and their relationship to system-of-systems development'

Petri Net Weaknesses Comments Relevance to System-of-

Systems
State Space Explosion Depending on the logical

structure of untimed and timed
nets, state space graph
calculation may have infinite
reachable states.

In order to benefit system-of-
systems specification, static
analysis of the net is vital. Ways
to reduce the state space while
preserving system function need
to be considered.

Scalability Nets can quickly become large
and complex (need to manage
through use of hierarchy,
discretisation and coloured
nets).

System-of-systems are large-
scale, complex systems. In order
to benefit their specification,
there needs to be a way to
control scalability.

Readability and
Comprehensibility

To non-practitioners, nets can
be difficult to interpret, relate to
a domain, and comprehend
(need to manage through
scalability and best practice).

In order to be used as primary
point-of-reference to those
involved in system-of-systems
development, nets need to be
understood by skilled and
unskilled practitioners.

Specification of Behaviour at
Analysis, Design and
Architecture Stages

Implicit in nets' native form. Needs to be managed through
net enhancements.

Specification of Information
Exchange Protocol

Implicit in nets' native form. Needs to be managed through
net enhancements.

Specification of Interfaces Implicit in nets' native form. Needs to be managed through
net enhancements.

Lack of Method Nets are a notation and not a
method.

In order to benefit system-of-
systems specification, a suitable
method governing Petri net
construction and management
will be vital.

 61

Petri Net Weaknesses Comments Relevance to System-of-
Systems

Application Flexibility Small set of basic graphical net
elements makes static
architecture and structure
descriptions difficult. There is
often more than one way to
describe behaviour using nets.

In order to benefit system-of-
systems specification, finding
the abstraction levels and
enhancements useful at different
stages in their development will
be vital.

Perceived Learning Curve Training in Petri nets and the
adopted toolset is essential to
maximise benefit.

Skilled practitioners within an
organisation adopting Petri nets
for system-of-systems
development will be vital.

Adequacy of Toolsets An organisation needs to
acquire a suitable Petri net
development framework
according to its objectives for
Petri net usage.

In order to benefit system-of-
systems specification, an
organisation needs to identify an
appropriate Petri net
development framework.

Management of Nets An organisation needs to
manage and re-use developed
nets according to best practice.

In order to benefit system-of-
systems specification, a suitable
method governing Petri net
construction and management
will be vital.

Change Auditing of Nets

Lack of change auditing within
nets can make it difficult to
track changes in versions of nets
and compare one net to another.

When dealing with large nets
associated with system-of-
systems specification, change
tracking will be vital. Unless the
net toolset offers versioning and
auditing, this will have to be
governed by a management
method but could become
tedious.

Interoperability of
Constructed Nets

Attempts are being made to
address exchange of Petri nets
between toolsets (XML-based
Petri Net Markup Language,
PNML).

May or may not be an issue to
an organisation depending on
net toolset adopted.

Concept Semantics within Net Net element labelling
convention may affect precision
of model.

In order to benefit system-of-
systems specification, a suitable
method governing Petri net
construction and management
will be vital.

Table 4.5 'Petri net weaknesses and their relationship to system-of-systems
development'

4.5 How Petri Nets can be used instead of UML Activity
Diagrams

Petri nets are a formal notation with a concrete graphical syntax used to specify
concurrency, state, events, and execution order in a system. Petri nets main advantage
over UML activity diagrams is their fully formal syntax and semantics which can be
described mathematically. It is possible to execute (simulate) a Petri net model and
undertake deeper verification via calculation of its reachability graph prior to
implementation of the system. Timed coloured Petri nets can also be used to
undertake performance analysis of the specified system using the executable model.

 62

There is existing work dealing with conversion of UML sequence, state machines and
activity diagrams to Petri nets [74, 75, 116, 117]. In particular, [118, 119] considers
the UML 2.x specification for activity diagrams and compares it to the Petri net
formalism, determining that it is possible to map between activity diagrams and nets.
According to [118], activity nodes in activity diagrams are mapped as follows: action
nodes become net transitions, control nodes become net places or small net fragments,
and object nodes become net places. Activity edges (including object flows) in
activity diagrams become net arcs, possibly with extra places or transitions. Fig. 4.2
from [118] shows this mapping.

Fig. 4.2 'The intuition of the semantic mapping for control and data flow of Activities'
[118], p8

Storrle [118] was not concerned with the potential benefits use of the Petri net
formalism can bring to the specification and analysis of system-of-systems over and
above that possible with UML activity diagrams. To further investigate the
conclusions reached from the introductory work using Petri nets in section 4.4, a case
study research technique was adopted for its flexible approach to studying
contemporary objects in real-life situations, enabling greater understanding of them.
In the case of systems-of-systems, the subject being studied cannot be easily isolated
from its real-life context and there is a requirement to investigate the relationships
across a number of variables. A controlled experimental environment would be
inappropriate. Instead, using the case study designed in chapter 3, the first of two case
studies is introduced.

The first case study from the military domain uses the Petri net formalism to specify
and analyse a close air support mission. As discussed in chapter 3, the exact Petri net
contributions to be explored are:

1. Do Petri nets improve the functional correctness of the system-of-systems design
specification in terms of detection and reduction of the number of errors?
2. Do Petri nets increase the quality of the design specification in terms of
comprehensibility and scalability?

Section 4.4 used a familiar problem to gain experience using Petri nets. In order to
qualify these conclusions further, and unlike previous work to date [40, 52, 76, 99]
recommending use of nets in the development of large-scale systems, nets are applied

 63

to the modelling of a large-scale system-of-systems problem. As this is a Knowledge
Transfer Partnership funded project between the University of Durham and a
specialist systems engineering company partner within the defence domain
(SyntheSys Systems Engineers Ltd), the initial case study focuses on the system-of-
systems problem of a close air support mission.

Close air support seeks full co-operation between the actors involved (people,
physical assets, and communications networks) to exploit detection, and command
and control functions within the assembled ad-hoc network and support infrastructure
beyond. The assets involved are normally expected to perform several functions using
standard communications infrastructure(s) within a challenging, time, life, and
mission-critical operating environment. Due to the large quantity of component
systems involved, close air support exhibits dynamic concurrency and suffers from
information exchange interoperability problems. Components such as aircraft and
ships are likely to be legacy systems (with a typical in-service lifecycle of fifteen
years), composed in turn of a number of component systems (e.g. communications,
weapons, and sensor systems) each running bespoke software (typically monolithic,
millions of lines of code, written in languages such as ADA, and poorly documented).
These legacy issues are further compounded by environmental, political and
technological constraints as well as performance metrics and doctrine. All these
constraints are subject to considerable change over the lifecycles of the existing and
planned assets useful in close air support. These effects of such changes need to be
reflected in the close air support problem specification in order to identify shortfalls in
expected overall behaviour from the behaviour of components.

Presently there is no top-down engineering approach to identify and specify the
information that should be exchanged (including quality of service parameters such as
time to perform the exchange) between the actors involved and no integration with
specifications of legacy and planned actors (bottom-up engineering approach). This
includes the order of information exchanged inside a component system and the order
of information exchange between component systems. In a defence operational
environment, there are several underlying communications infrastructures that can be
used to enable communications between the actors. All these underlying
communications infrastructures have their own timing, protocols, and information sets
to enable the information exchange. A hierarchy of defence standards is used to
specify information exchange for these different communications infrastructures but
these are text-based, open to interpretation, erroneous, with a number of different
versions. In addition, design specifications for component systems can opt to
implement subsets of the standards, further complicating and hindering
interoperability.

Once these independent assets have been integrated, their combined close air support
system-of-systems behaviour is unlikely to be observable universally. There needs to
be some assurance that the system-of-systems design will behave and perform as
expected operationally. Discussed in chapter 1, traditional systems engineering
approaches inadequately address this design complexity. Textual documents and ad-
hoc diagrams are commonly employed at the specification phase, and the need to
employ a flexible design foundation for system-of-systems evolution is not realised.
By employing models as primary design reference points, the aim is to provide re-
usable, evolvable design foundations. By developing models based on a formal

 64

technique such as Petri nets, a further aim is to enable the enhanced verification of
system-of-systems properties such as deadlock and event occurrences and show the
technique can be used in both a top-down and bottom-up engineering manner.

Before moving to the study itself, it is fair to state that close air support exhibits a
number of characteristics which make it interesting outside of its military context and
applicable (typical) to other domains, and these are the reason it has been selected as a
study. These are summarised in Table 4.6.

Study Characteristic Close Air Support
Legacy components Yes: majority (fifteen year lifecycles).
Ten or more interfaces between components Yes.
Textual specification documentation (static) Yes: erroneous, ambiguous, versioned standards

for information exchange; inadequate capture of
system-of-systems requirements; inadequately
documented code implementations on
components.

Bespoke component software Yes: millions of lines of code; source code may
not even be present.

Dynamic constraints Yes: environmental, political, performance, and
technical.

Integrated engineering approach No: bottom-up engineering rather than combined
top-down/bottom-up approach.

Table 4.6 'Characteristics of the close air support study'

 65

Chapter 5 Case Study (Close Air Support)

5.1 Introduction
Chapter 5 executes the case study design described in chapter 3 for the first study in
the case study research approach used by this thesis. The military mission of close air
support is used to demonstrate the potential benefits and shortfalls use of Petri nets
can bring to the specification and analysis of large-scale systems-of-systems.

Similar to chapter 4, and using the case study objective and research questions
identified in chapter 3, the case study exercise begins by defining the criteria for
success by which the Petri net approach is measured. The objective of the case study
and research questions from chapter 3 are detailed below.

Case Study Objective: evaluate the strengths and weaknesses of Petri nets in terms of
the system-of-systems problems identified in chapter 1.

Research Questions:
1. Do Petri nets improve the functional correctness of the system-of-systems design
specification?
2. Do Petri nets increase the quality of the design specification?
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be
improved?

Table 5.1 lists the criteria for success derived from the research questions above.

Goal 1 (research questions 2 and 3): Precisely specify the close air support example.
Use Petri nets to capture the operational processes, components and information
exchange involved in the system-of-systems completely, concisely and correctly at
analysis, design, and architecture phases.

Metrics: Check if Petri net elements can describe operational processes, components,
information to be exchanged, information interfaces, and information exchange
protocols of the close air support system-of-systems. Note syntactical, semantic, and
feature support of selected toolset.

Goal 2 (research question 2): Determine the scalability of the close air support
system-of-systems model implemented using Petri nets.
 Metrics: Explore the use of hierarchy within Petri nets to check if they can be used to
create a scalable specification model of close air support.

Goal 3 (research question 1): Confirm if the same Petri net verification and validation
techniques used in the telephone exercise are effective in the close air support system-
of-systems specification models. Use Petri nets and the selected toolset to explore
verification and validation of the close air support specifications at the analysis,
design and architecture phases.

Metrics: Employ static (state space) analysis of nets to check for well-known and

 66

user-defined properties in models. Employ dynamic analysis (simulation) of nets to
explore correctness of behaviour and efficiency of specifications. Functional
correctness is expressed in terms of number of errors detected by simulation; and
number of errors detected by static analysis. Investigate the application of largeness
avoidance techniques.

Table 5.1 'Criteria for success for the specification of close air support using Petri
nets'

Referring back to chapter 3, the case study plan was executed for close air support.
The process outlined in that chapter relating to construction of the Petri net models
was followed in order to check the desired response variables relating to the criteria
for success. This process is described in the next section.

5.2 Specification of Close Air Support using Coloured Petri
Nets

5.2.1 Description of Close Air Support
From military doctrine [105], close air support (CAS) is defined as:

'..air action by fixed- and rotary-wing aircraft against hostile targets that are in close
proximity to friendly forces and that require detailed integration of each air mission
with the fire and movement of those forces'.

Unlike the familiar concept of the telephone example, the problem of close air support
required further investigation. From doctrine [105, 106], Fig. 5.1, and subject matter
experts, the case study began by trying to understand the concept of close air support.
The problem was summarised textually as follows:

A commander nominates a target for destruction once it has been detected by a
support unit. The support unit then assembles the necessary information including the
target details into a request for close air support which it sends through the command
and control network to an air support centre. The air support centre then checks for
and allocates available strike aircraft to the mission and confirms acceptance or
rejection of the close air support request.

The allocated aircraft check-in with the close air support co-ordinator (the forward air
controller), who provides a brief on the mission. Once all assigned aircraft are aware
of the mission, they proceed towards the target co-ordinates supplied by the forward
air controller until they reach a pre-determined distance from the target. When
instructed to do so, the aircraft leave this pre-determined point and release weapons.
Depending upon battle damage assessment, the mission completes or another attempt
is made on the target.

 67

Fig. 5.1 'Immediate close air support request process' from [105], pIII-29 (Figure III-
8)

5.2.2 Petri Net Construction Method
Similar to the approach adopted for the telephone example in Appendices A-D, the
modeller was keen to specify the close air support problem space in a way that
promoted the need for a flexible, adaptable solution without being prescriptive. A
multi-viewpoint modelling approach similar to the approach used in UML modelling
(with its functional, static and dynamic views) and [70, 71, 76] was adopted where the
specification of close air support was considered from analysis, design, and
architecture abstraction levels.

Close air support was functionally decomposed into a series of functions and sub-
functions (activities). These functions were then used with the concept summary
above to suggest operational processes. This function-based approach is similar to the
principle behind service-oriented architecture. The operational processes outline a
particular timed ordering of activities and information exchange to be performed by
roles so that the function (or service) may be realised. Optimised where possible in
terms of resources, the operational process level helps to specify the overall function
of the close air support system-of-systems to domain users and developers, and drive
its lower-level design and implementation. At the analysis stage, functions (together

 68

with the information and information exchange protocol used by these functions)
rather than the physical components able to meet these functions are specified.

Jensen's guidelines for construction of coloured Petri net models [63] were considered
in conjunction with approaches made by [72-76] to transform UML or object-oriented
system models to high level Petri nets. To begin with, the net was created at the
operational process (conceptual or analysis) model level of abstraction. Functions
(activities) from the processes were mapped to net transition elements and information
exchanged was assigned to net place elements following the control sequence
presented within [105, 106] and guidance from domain experts. Colours (types) were
defined in the toolset according to the information exchanged at each place.
Compound or structured type definitions were used to specify the information
exchanged. Roles (owners of the identified functions and sub-functions) were
indicated by text labels on the page allocated to the net within the toolset. Initially, a
net was created for the entire process (from the point-of-view of a close air support
mission planner). It was clear almost immediately that due to low range of net
elements, symbol expressiveness and amount of symbols needed, the net quickly
became complicated in terms of readability. This re-emphasised one of the
preliminary conclusions from chapter 4, i.e. that hierarchy would be essential in
achieving any kind of scalability for large-scale system-of-systems design with Petri
nets.

In response, one of the functions of the system-of-systems, i.e. the part of the close air
support system-of-systems problem italicised above was focused on. This describes
the problem of requesting close air support from an air support centre. The roles,
control sequences, processes and information exchanged are presented in Fig. 5.2.

Fig. 5.2 'Request close air support UML activity diagram'

From Fig. 5.2 it can be seen that two roles, 'Unit' and 'DASC' (Direct Air Support
Centre), have operational processes assigned to them. These operational processes are
presented as a sequential series of activities. The detail of groups of these activities
can be abstracted at a higher level of abstraction under parent activities such as 'Task
the Formation' or 'Plan CAS' (shown using notation in Fig. 5.2). Fig. 5.2 also
shows that two pieces of information are exchanged between the roles, 'CAS Request'
and 'CAS Response'.

A coloured Petri net model of the operational processes represented in Fig. 5.2 was
then attempted. Fig. 5.2's function (or service) level of granularity and naming was

 69

based on existing underlying communications infrastructure information sets (tactical
data link transactions and the associated function performed by assets). This
information was used to help manage the construction of the net by developing a
hierarchy of functions to promote readability and scalability of the net. The function
of 'request close air support assignment' was decomposed into three main sub-
functions: 'request close air support', 'assign close air support request' and 'receive
close air support response'. Each of these sub-functions are realised using the
processes identified from existing doctrine and domain experts. These processes were
examined in turn in order to establish:

1. Executed activities together with their pre and post information states (i.e. input and
output interfaces).
2. Control of activity execution.
3. Suggested roles (owners) associated with the control of activities.
4. Naming of activities, information and roles.
5. Net symbols that should be used on the net at the highest abstraction level (primary
parent net) and associated sub-pages to accurately represent the hierarchy within the
model.

The control flow of the three main sub-functions is shown in Fig. 5.2 as request
followed by assign followed by receive.

At the highest abstraction level in the hierarchy, the pre-condition of the request
function executing is incoming external trigger information in the form of a message
from a commander, containing target details. Using [105], suggested fields for this
target nomination information are: originator; target type; target longitude; target
latitude; target elevation; ordnance required; and required result.

When close air support assignment is deemed to be required, the post-condition of
request executing is outgoing information, containing close air support request details.
This information is sent to the role dealing with assignment of firepower to the
mission (DASC). Information content can be derived from [105] and existing tactical
data link message content [120]. Suggested fields for this close air support request
information are: request number; mission indicator; mission priority; target number;
target latitude; target longitude; target elevation; and target type.

Considering the request function's process in more detail, the target information is
used in the activity of planning of close air support. This planning activity can be
decomposed further into sub-activities relating to deciding whether or not to pursue a
close air support assignment. For the purposes of this case study, further activity
decomposition is omitted and the result of the planning activity is that close air
support assignment is requested by the activity of sending close air support request
information.

At the highest level of abstraction in the hierarchy, according to [105, 106] and Fig.
5.2, the pre-condition of the assign function executing is incoming trigger information
from Unit containing the close air support request information specified in this
section.

 70

The post-condition of assign executing is outgoing information containing close air
support response details. This information is sent to the role which requested close air
support (Unit). Its content can be derived from [105] and existing tactical data link
message content [120]. Suggested fields for denial response information are: mission
indicator; fire plan name; request number; target number; target latitude; target
longitude; and reason denied. For acceptance response information, suggested fields
are: mission indicator; mission number; request number; number of aircraft; aircraft
type; and aircraft sign. Currently, doctrine describes two separate tactical data link
response messages. Design optimisation of the assign function could consolidate the
response information.

Considering the assign function's process in more detail, the close air support request
information is used in the activities of planning the close air support assignment and
tasking the formation (if it has been possible to identify suitable firepower). Both the
planning and tasking activities could be decomposed further into sub-activities. For
the purposes of this case study, further activity decomposition is omitted and the close
air support request information is used directly by the tasking activity. The result of
the tasking activity is that close air support response information is sent.

At the highest level of abstraction, the pre-condition of the receive function executing
is incoming trigger information from DASC, containing the close air response
information specified above.

According to [105] and domain experts there are two possible mutually exclusive
post-conditions of receive executing. One is outgoing external information containing
notification that the close air support request was unsuccessful. The other is an end
state for this part of the overall close air support function indicating that the request
for close air support was successful.

Considering the receive function's process in more detail, the close air support
response information is used to notify the commander that the close air support
request was unsuccessful or to proceed to the next stage of close air support. For the
purposes of this case study, two activities are used to reflect this. The result of the
send close air support rejected activity is that close air support denied information is
sent. The result of the close air support assigned activity is that information to proceed
to next stage is conveyed.

This information was then manually mapped to Petri net constructs. As before, the net
was constructed from a close air support planner's point-of-view. Conditions were
allocated to places and colours (types) were defined to represent the fields of
messages suggested above. Naming convention followed Fig. 5.2's as closely as
possible. For the net relating to the 'request close air support assignment' function, the
three sub-functions (request, assign, and response) were represented as abstracted
transitions ('Unit_CAS_req_service', 'DASC_CAS_assign_service', and
'Unit_CAS_resp_service' respectively) with more detail for each presented on subnets.
Each abstracted transition has associated input and output sockets (interfaces) and
together form the highest level of abstraction in the hierarchy (parent net). The
operational processes that realise each of these sub-functions are expressed on
additional net pages (subnets) together with their associated input and output ports
(interfaces). A successful or unsuccessful close air support outcome from the assign

 71

function was selected at random within the toolset. The derived net's highest level of
abstraction is shown in Fig. 5.3.

Fig. 5.3 'Request close air support assignment parent net'

Since Petri nets are generic in the sense they can be used to capture relationships
between states and events of systems regardless of application domain, close air
support system-of-systems concepts such as function, process, information interfaces
between processes, and process execution owner are captured implicitly by the
notation. Use of suitable place typing, net hierarchy construction via pages, labelling
and colouring in the tool's editor helps to promote domain information and logic such
as decision points more clearly in the net.

Fig. 5.3 also illustrates that hierarchy implemented in the net using substitution
transitions and port and socket places allows tracking of state in a large-scale system-
of-systems model. Given that one function of the close air support system-of-systems
is captured, three subnets within the toolset editor were used to specify the 'request
close air support assignment' function's decomposed processes at a lower level of
abstraction. Without hierarchy, not only would it be difficult to have an accurate
appreciation of the processes' localised states, it would be difficult to determine the
overall state of the system-of-systems (and whether or not the system-of-systems net
representation terminated properly and process states were as expected).

As well as allowing top-down and bottom-up engineering approaches through its
hierarchy support, the toolset also permits re-use of subnets more than once, i.e. it
facilitates instantiation. These instances of a subnet are independent in the sense their
markings or state are independent (further illustrated in section 5.5 at design and
architecture levels).

Unfortunately, it can be inferred from the specification modelled in Fig. 5.3 that
request and receive are performed by the same role (Unit), and assign is performed by
a different role (DASC). This can be viewed as prescriptive: not only does it suggest

 72

that two distinct assets are needed to realise these three sub-functions, it suggests the
likely asset candidates via the naming used. Instead, design optimisation of the
'request close air support assignment' function should be promoted, e.g. one asset may
be able to perform all three sub-functions in less time. Attention to this fact may be
drawn through textual annotation of the constructed net. In addition, the role names
used could also be viewed as prescriptive (these were identified from existing
doctrine) and may benefit from re-naming. Alternatively, a higher level of abstraction
could be added to abstract the three sub-functions to one main 'request close air
support assignment' function.

Based on this prescriptive view, it could be argued that since the request and receive
sub-functions are highly likely to be undertaken by a 'Requester' role (avoiding the
more prescriptive 'Unit' role description), both could be represented by a more general
'Request_CAS_Service' transition with no negative impact to specification (given that
the interface information remains the same). These amendments are shown in Figs.
5.4-5.5.

Fig. 5.4 'Revised parent net'

Fig. 5.5 'Revised Requester subnet showing the combined request and response
functions'

 73

From this section and design iteration of the model, it can be seen that it is possible to
use coloured Petri nets and hierarchy to specify one sub-function of close air support
(request close air support assignment) at an analysis level of abstraction, i.e. the
operational process level. From Figs. 5.3-5.5, in terms of design quality and
readability, net places capture process state in terms of the information input and
output to net transitions (activities); net colours (types) define the information used by
activities; net arc inscriptions govern the information required and produced by
activities; and net arcs dictate the control flow of execution i.e. the order of activity
execution and information exchange.

5.3 Analyses with Petri Nets and further Specification

5.3.1 Dynamic Analysis (Simulation)
To investigate functional correctness, simulation of the derived net in Fig. 5.4 was
used to provide confidence in the correctness of the behaviour and logic specified by
it. Using the toolset it was possible to interactively step through enabled transitions in
the net from a given initial marking until there were no more enabled transitions. In
doing so, a problem was revealed within the 'task_the_formation' subnet (shown in
Fig. 5.6) detailing the activity undertaken by the close air support assigner actor.
Simulation revealed that when the subnet's 'negotiate tasking' activity executes, two
tokens are produced for output places 'rcr1' and 'ac_tasked' respectively, resulting in
an infinite net. The intended behaviour should be to test for a successful outcome
from the 'plan_CAS' activity. If this has not been achieved, the subnet should specify
that the planning process is repeated, otherwise the tasking process continues.

Fig. 5.6 'Infinite net problem detected by executing net'

Once this problem was corrected by defining an enumerated type and the relevant arc
inscriptions, basic interactive simulation indicated that the hierarchy of processes
appeared to produce the desired behaviour using one and three target nominations. For
the three target nomination tokens, simulation showed that their order within the
control sequence execution was non-deterministic and tokens could overtake one
other. This can be addressed by the introduction of queuing places (timing can also
impose order on tokens but will normally be used to reflect deterministic and

 74

stochastic activity durations and cannot guarantee tokens will not overtake one
another).

Potential deadlock situations within the close air support request assignment function
were also highlighted by stepping through activity executions. These deadlocks can
occur if either the assign or the response sub-functions fail to receive a close air
support request or response to the original close air support request. As it stands, the
model does not explicitly specify these situations as undesirable behaviour. Based on
the work in [77-79, 100], the nets in Figs. 5.7-5.9 were developed to specify the
possibility of communications failure (both on the external communications
infrastructure and infrastructure internal to a system component) and to specify
tracking of the state of the information exchange.

Fig. 5.7 'Net and colour (type) definitions specifying the potential failure points within
the activities undertaken by the Requester role'

Fig. 5.8 'CAS_Request_Service net showing two information exchange transactions
(transitions in red) undertaken by the Requester role'

 75

Fig. 5.9 'Net detailing state of the close air support request-response information
exchange transaction (REQR_CAS_Req_Xchg) undertaken by the Requester role'

The net in Fig. 5.7 uses compound type definitions to introduce potential points of
failure to activities dealing with the transmission or receipt of information between
actors. At the moment, failure is boolean but more accurate probability of failure can
be specified within the net.

'Requester' (CAS_Request_Service) and 'REQR_CAS_Req_Xchg' (Figs. 5.8-5.9)
taken together with corresponding 'Assigner' (CAS_Assign_Service) and
'ASGR_CAS_Req_Xchg' subnets further specify the state of the information
exchange protocol relating to the close air support request and close air support
request assignment services introduced in the operational process of Fig. 5.4. The net
specifies how each role could track its state in terms of what information is sent to and
what information is expected from its partner role(s) on the network so that if a
communications failure occurs, suitable recovery can be designed for. It should be
noted that with the addition of timing to the net, timeouts could be specified in the net
of Fig. 5.7. Again, this specification information is in addition to the operational
process and aims to be non-prescriptive in terms of how tracking is to be
implemented.

5.3.2 Static Analysis (Reachability Graph Analysis)
The nets in Figs. 5.4-5.9 are the results of being able to execute the operational
process net and identifying its shortcomings. Although simulation is very much part
of an iterative net development process, interactive simulation of large nets can be
extremely time-consuming and does not provide an exhaustive means of net
verification. Reachability graph or state space analysis (described in chapter 2) is used
to complement simulation and provide this deeper level of verification.

CPN Tools' standard analysis of the state space (calculated for each of the nets created
in Figs. 5.4-5.9 and described further in Appendix B) is shown in Table 5.2 below.

 76

Table 5.2 'State space standard report'

The state space standard report of Table 5.2 calculated for an initial marking of one
token for the net in Fig. 5.4 highlights there is a problem with the net for two reasons.
First of all, in the given state space calculation limit of six hundred seconds, the state
space explosion problem was encountered, resulting in the calculation of a partial
reachability graph. Secondly, on inspection of the standard state space report
produced by CPN Tools for the partial reachability graph, the 'Boundedness
Properties' section reveals the presence of multiple tokens on places (rather than the
expected one token) indicating a looping problem and helping pinpoint exactly where
in the net it is located, i.e. the 'task_the_formation' subnet. If this infinite net had not
been detected using simulation, static analysis would have alerted the modeller to its
presence.

Once the infinite loop was removed from the net, its full reachability graph was re-
calculated in less than one second with fourteen nodes, thirteen arcs and the expected
two dead markings (indicating a successful or unsuccessful request outcome). This
exercise was then repeated using an initial marking of two nomination tokens for Fig.
5.4 and a summary of the results are presented in Table 5.3.

 77

STATE
SPACE
GRAPH

Net of Fig. 5.4 Amended Net (added queuing
place and request input control)

Initial
marking

Nodes and
arcs

376 nodes, 676 arcs. 40 nodes, 39 arcs.

Generation
time

1 sec. 0 secs.

Terminal
markings

12 4

Token
Overtaking

Present. Controlled.

Table 5.3 'State space standard report summary'

Table 5.3 shows that the reachability graph calculated for the net of Fig. 5.4 has
considerably increased in size using an initial marking of two tokens. Inspection of its
upper multi-set bounds and twelve dead markings revealed that this increase was due
to the possibility for the two tokens to overtake one another. Overtaking was
controlled by adding a queuing place to the source place of the net of Fig. 5.4 and
releasing a new token for input to the net once a previous one was processed
(facilitated using an additional 'Next Req' place linked to the final two transitions in
the Requester subnet, shown in Fig. 5.10). The reachability graph was re-calculated
for the amended net and the results are also presented in Table 5.3.

Fig. 5.10 'Amended net to control input nominations'

It can be seen that the reachability graph has reduced by approximately one tenth in
terms of the numbers of nodes in the graph, and one third in terms of the dead

 78

markings. It was calculated in less than one second (CPN Tools standard report does
not report more granular timing information). Again, use of simulation alone may not
necessarily have alerted the modeller to the issue (particularly if only a part of the net
is being executed or the net is large) and impact of token overtaking when model
behaviour is being checked with multiple close air support requests. Token overtaking
leads to uncertainty in variable bindings unless ordering is imposed. It should be
noted that the steps taken to control overtaking in the net of Fig. 5.4 may not be the
most efficient for the request-response process (for example, it may be more efficient
for two nominations to be considered together or for a new request to be processed by
the assigner as soon as the previous one has been dealt with). The results show static
analysis has been able to alert the modeller to inefficiency in the overall net.

Fig. 5.11 'One of the five dead markings showing communications failure within the
assigner'

Calculating the reachability graph for the net specifying communications failure with
an initial marking of one nomination produces seven dead markings. Two of these
relate to the desirable behaviour outcomes of a successful and rejected request close
air support assignment and no communications failure. The other five markings relate
to the five potential communication failure points in the model: one within requester;
one between requester and assigner; one within assigner (shown in Fig. 5.11); and one
between assigner and requester (which can potentially fail for a successful and
rejected response). In this way, static analysis has verified that the model behaves as
expected, i.e. where a communications failure could take place and deadlock the
request close air support assignment process, static analysis confirms this is specified
correctly in the model.

Fig. 5.12 'Liveness properties for the information exchange transactions net'

 79

When the reachability graph was calculated for the net specifying information
exchange transactions, two dead markings were obtained along with two dead
transition instances, Assigner'Auth_Cancel and Requester'Auth_Cancel (Fig. 5.12).
The two dead markings correctly indicated possible terminal states resulting from the
'REQR_CAS_Req_Xchg' information exchange on places 'Assigner' (within the
assigner subnet) and 'Requester' (within the requester subnet) of 'CANCEL' and
'STOP'. The presence of the two dead transitions (Assigner'Auth_Cancel and
Requester'Auth_Cancel) indicated that the 'CANCEL' state on the 'Assigner' and
'Requester' places was not reached as a result of cancellation within the
'REQR_Auth_Xchg' information exchange. This meant that the logic within this
information exchange was either incorrect or missing. Upon inspection of this
information exchange, the logic had indeed been omitted within the
'REQR_Auth_Xchg' subnet. This is information that would not necessarily have been
detected immediately by executing the net due to its otherwise desirable behavioural
outcomes.

Fig. 5.13 'Non-standard logic query confirming correct behaviour of information
exchange protocol'

From this section, it was shown that it is possible to use two forms of analyses on
coloured Petri nets to verify functional correctness of the model they represent. These
were execution of the net (simulation) and analysis of the net's reachability graph
(static analysis or model-checking). As well as producing a standard analysis report
from the calculated reachability graph, standard and non-standard temporal logic
queries can also be applied to it. Fig. 5.13 shows a non-standard logic query
constructed to check when a request for close air support is sent, it is not possible to
receive a response without the information exchange protocol ending in a 'STOP'
state. Following these analyses, models can be amended and enhanced, improving
design quality. In the case of close air support, further specification included:
potential failure states (i.e. underlying communications failure); tracking of
information exchange (transaction) state; and a means of controlling ordering of

 80

multiple tokens in the model. As part of the iterative development process, simulation
and static analysis were used again to verify these specifications.

5.4 Addition of Timing to Petri Net Model
As demonstrated by the telephone example (Appendix C), time-dependent actions
such as timeouts, processing delays or deadlines are essential to capture the efficiency
or performance of a system and facilitate validation of its design. As well as
efficiency specification, time-dependent actions also enhance a system's behaviour
specification in terms of correctness. Activity ordering alone is insufficient to capture
overall system behaviour precisely. Tokens representing information in larger-scale
systems will be processed according to the time they entered the system, time
involved in their consumption and generation, and involvement in delays and transfer
failures. Timing will be needed to specify the ordering multiple tokens receive over
and above any activity sequence they experience.

Currently, close air support has been specified at an operational process (analysis)
model level of abstraction and used as the first stage in large-scale, system-of-systems
development. Typically, this viewpoint is useful for gaining a shared understanding of
the problem concept and the intended technical and non-technical audience would
include analysts, developers and domain users. The introduction of timing information
to close air support at this abstraction level would help enable domain users and
developers to decide whether the modelled concept was efficient and adequate for
input into the design stage. Assessing performance would involve checking if the
modelled processes reached desirable behaviour states (including recovery from
undesirable states) within realistic time and resource estimates. Improving the
efficiency of the process means looking for new or different ways to realise desirable
behaviour within defined time, cost and quality parameters.

To examine alternative options for the process, it was necessary to determine the time,
cost and quality performance indicators for the request close air support assignment
process and implement these in the model. Examples of these indicators include
request fulfilment time, communications resource usage (and related costs), and
request fulfilment time within a certain time limit. The natural inclination would be to
minimise the first two and maximise the last one but all three need to be taken in
context with the strategy of the actors involved. In the case of system-of-systems, it is
essential to understand the economic and operating environment for system-of-
systems services, and which (if any), of the performance indicators carries more
weight than the others.

In the close air support example, as the system-of-systems was specified originally
from the mission planner's point-of-view, it is assumed that they are concerned with
striking a trade-off between quality and cost parameters for the mission. This may
mean the assigner would be interested in maximising request and resource allocation
without necessarily maximising request allocations on first attempt for its customers
(requesters).

Dynamic analysis (simulation) is used in conjunction with timing in the net. Timing
delays were introduced at various intermediate places within requester and assigner
processes using both stochastic and deterministic distributions to represent random

 81

request placement and delays between each activity in the request close air support
assignment process. A record declaration was used for each request in order to store
the model time at which the 'send_CAS_req' activity executes (Fig. 5.14). This was
viewed as the start of the attempt by the underlying communications infrastructure to
connect the requester with the assigner. Again, a time delay was introduced here to
the record token to represent the delay of the underlying communications
infrastructure. The toolset data collection functionality was used to compare the
model time following execution of the requester's 'receive_CAS_resp' transition with
the start time of the transmission of the request. The result was viewed as the request
fulfilment duration (Table 5.4). A timed net facilitated the specification of a timeout
(Fig. 5.14) following execution of the 'send_CAS_req' transition. If for whatever
reason a desired response to the sent request is not received within a certain time
limit, the net terminates with a 'Timeout' problem result.

Fig. 5.14 'Requester subnet in performance analysis net of assign close air support
request process'

It should be noted that it is also possible to specify an un-timed timeout mechanism in
the net. This form of timeout may need to be specified at more than one location in
the model depending on the potential failure areas.

Table 5.4 'Toolset data collection functionality capturing request fulfilment duration'

Also mentioned in Appendix C, section C.1 for the telephone example was using
knowledge of (legacy or planned) physical assets to help optimise engineering of the
operational process level via analysis-of-alternative scenarios. Salimifard et al [94]
report on using nets to allocate physical resources and costs to activity execution. This
work is highly relevant to the development of large-scale system-of-systems,
facilitating analysis-of-alternatives in operational process engineering and improved
design quality. The adaptation for close air support is shown in Fig. 5.15.

 82

Fig. 5.15 'Activity subnet detailing physical asset and role to perform
receive_CAS_resp activity'

Timing and cost information can be extracted from the overall net per activity, per
component process, and for the process overall based on the physical assets used to
realise the component activities and processes. An example data collection report is
shown in Fig. 5.16 relating to the 'ACTIVITY_END' transition of Fig. 5.15 and its
associated bindings. This analysis-of-alternatives net can be used in conjunction with
the performance analysis net of Fig. 5.14 to adjust timing duration ranges.

Fig. 5.16 'CPN Tools data collection log file capturing cost information based on
resources allocated to perform communication activities'

It should be noted that although simulation was primarily used in this section to
validate the models, it is also possible to conduct static analysis (as per
recommendations from the telephone example, in Appendix C) to verify their
correctness.

From this section, it has been shown that it is possible to use timing in coloured Petri
nets to enhance correctness and conduct performance and analysis-of-alternative
analyses. Use of timed colours (types), and suitable inscriptions on output arcs (in
conjunction with stochastic or deterministic functions) help to specify duration of
activities (and execution control flow) such as information exchange, task processing,
arrival of requests, and timeout error recovery in the event of a communications
failure.

 83

5.5 Design and Architectural Levels of Abstraction for Close
Air Support

Sections 5.2-5.4 have focused on using Petri nets to specify the close air support
process at an analysis level of abstraction. Hierarchy and timing additions have been
looked at to further enhance a specification in terms of scalability, understandability,
readability, and correctness. As demonstrated in the telephone system example in
Appendices B-C, hierarchy can also enable investigation into whether the abstraction
design used in the net could be used to help alleviate the state space explosion
problem during model-checking. Both model-checking and simulation were employed
iteratively in verification and validation of the constructed analysis level net. Before it
can be decided whether the criteria for success in relation to the close air support case
study have been met and conclude chapter 5, Petri nets are checked to see if they can
address the problem of being able to specify close air support at design and
architecture levels of abstraction. This is the objective of this section.

5.5.1 The Design Level
The purpose of the design level of abstraction is the lead into the specification of a
solution to the problem described by the analysis level. Again, a functional
decomposition approach was used. This time it was used in conjunction with the
parent net developed for the analysis level to think about how this net's main activities
(e.g. 'Request Close Air Support' and 'Assign Close Air Support') would eventually be
realised by physical implementations. To keep the design flexible, two components,
'Make_CAS_Request Component' and 'Assign_CAS Component', were used to depict
the solutions that would realise each of the main activities. These are shown in Fig.
5.17.

Fig. 5.17 'Parent net of design level'

It can be seen that Fig. 5.17 closely resembles the parent net of the analysis level
except for the new place colours (types). The next level of design decomposition for
the two components aimed to capture the functional service(s) each would be
expected to realise. Again, the work developing the analysis level net helped suggest
functional services for the design level by thinking about the purpose of the processes
used to realise the main activities. 'Make_CAS_Request Component' would be
responsible for providing close air support request setup and response services.
'Assign_CAS Component' would be responsible for providing an incoming close air
support request processing service. These services are shown at the next lower
abstraction level providing greater detail in Fig. 5.18.

 84

Fig. 5.18 'Services of Make_CAS_Request Component'

Having introduced the components and functional services at the design level, the
next lower abstraction level providing greater detail, i.e. detailed design or
architecture was focused on. Rather than develop a separate model at this stage, as the
architecture level appeared to naturally manifest the next lower abstraction level of
the design level, the design level model was further decomposed to capture the
architecture level.

5.5.2 The Architecture Level
The purpose of the architecture level is detailed design of the services identified at the
design level and flexible capture of the components required to realise these
individual services. Constituent components were considered for each functional
service resulting in the identification of a common component pattern for the three
services associated with close air support request-response. The common components
consisted of a user interface, transmit and receive (network) interfaces, and a
controller interface to co-ordinate the sequencing of activities to and from the other
two common components. The common component architecture is shown for the
'Request_Response Service' in Fig. 5.19.

Fig. 5.19 'Service architecture'

From Fig. 5.19, it can be seen that net places are used to capture the input and output
information for the user interface, network and controller common components.

 85

Colour (type) definitions were lifted for re-use from the telephone example net
(Appendix D) and adapted accordingly (definition labels reflect the nature of the
interface, e.g. 'UIDispMsg' aims to reflect that the place is an input interface to the
user interface component and is intended to be processed by the display function
within this component). The intention with this labelling convention was improved
net clarity and comprehension. Place types were based on character strings rather than
enumerated types for flexibility reasons. The tuples in the type were populated with
the functions implemented by each common control component and the associated
parameters via logic on transition output arcs. Logic on transition output arcs within
each of the common components was amended as necessary. As an example, consider
the network transmit common component in Fig. 5.20.

Fig. 5.20 'Transmit common component subnet'

Fig. 5.20 shows the subnet of the transmit common component. Its transition is
labelled as 'SEND OPN' to reflect the function the component provides to the
controller component. On the transition output arc (within the controller component
subnet) to the input interface place ('TxIN') of the transmit component, there is logic
to output a token with 'OpName' (a tuple within 'NWMsg' compound type) populated
with required functions such as 'SEND REQUEST' or 'SEND ENGAGETGT'. In this
way, the net specifies use of the transmit component's 'SEND OPN' function by the
controller component more explicitly. The 'Params' tuple within 'NWMsg' is
populated with values relevant to the function of the message described by 'OpName'.
'ID' is populated to differentiate between initiated requests. The other two common
components, user interface and controller, are designed to reflect the same interface
principles as those discussed above for the network components.

Considering the original parent net of the design level in Fig. 5.17, the specification of
close air support at this level was extremely concise. When the architecture level of
Figs. 5.19-5.20 was reached and the next lower abstraction level providing greater
detail of the common component interfaces was completed, the modeller was
extremely conscious of the requirement to manage the levels of abstraction. The
toolset can present each level of abstraction as a separate page within a folder (or
binder). These pages can be selected between using their tabs. By the common
component interface level of abstraction for the request and assignment services,
seventeen pages and tabs were present and it was tedious work identifying and
selecting relevant pages. At this stage, the experience gained with the telephone
example (Appendices A-D) was used to rationalise the model where possible, making
use of the toolset's features and those of hierarchical coloured Petri nets. The main
source of rationalisation was the common component interface nets.

 86

5.5.3 Verification of the Design and Architecture Levels and
further Specification

At this stage, simulation was employed to check the structure and logic of the model
and was able to detect incorrect logic on transition output arcs. Errors included:
missing or incorrect predicates (highlighted by incorrect or missing display
notifications for the common user interface component or incorrect information
messages for the network component); missing initial values on input places required
by common component interfaces; and an unexpected disabled transition due to the
same variable being used to bind values on more than one of its input arcs.

The necessary corrections were made and static analysis based on one initiated
request was performed. No further errors were picked up by model-checking so the
modeller proceeded to adapt the model for a close air support mission in its entirety.

The same process as used in sections 5.5.1-5.5.2 was followed for the other sub-
functions composing a close air support mission, namely perform close air support
briefing; perform close air support depart from initial point; confirm close air support
target; and authorise close air support weapons delivery. Bearing in mind the
experience gained developing the model of the telephone system (Appendices A-D)
and one sub-function (request close air support assignment), the modeller continued to
look for the most generic means of adding new components realising the remaining
sub-functions of close air support to the system-of-systems model. Re-using the
common component interface nets across the eight new components realising the
additional four sub-functions resulted in an overall model of eighty-eight subnets. The
toolset became increasingly difficult to work with in terms of organising folders
according to sub-function and navigating subnets and associated colour (type)
definitions. Without instantiation functionality, the construction process would have
been even more tedious. Syntax checking is undertaken by the toolset on model
opening and following creation of each new element of a net for the whole model and
both duration and performance were adversely affected by the size of the close air
support model.

Simulation was conducted incrementally, i.e. following the addition of each pair of
components associated with each sub-function. Interactive simulation could only
realistically be conducted per sub-function. An initial marking was set up for each
pair of components and the model of the pair executed manually. Static analysis was
attempted cumulatively following the addition of each pair of components. It was
noted that with an imposed calculation time limit of eighty minutes, a full state space
graph could only be calculated for three sub-functions, i.e. six components, fifty-three
subnets, approximately one hundred and twenty places (Table 5.5).

STATE
SPACE
GRAPH

Net of three sub-functions Net of complete close air support
(five sub-functions)

Initial
marking

Nodes and
arcs

40128 nodes, 220064 arcs. Explosion problem.

 87

Generation
time

688 secs. 4800 secs (limit set).

Terminal
markings

2 N/A

Table 5.5 'State space graph calculation at design and architecture level'

In order to employ the benefits of static analysis on the full system-of-systems model
of the close air support mission, the largeness avoidance techniques discussed in
Appendices B-D were applied. In this case study, given that a full state space for three
sub-functions could be calculated, the model was maintained by capturing one sub-
function pair in detail and abstracting out the detail of one component in each of the
four remaining sub-functions (Fig. 5.21). This process was then reversed, i.e. for the
four sub-function pairs with one component originally abstracted, the detail was
abstracted from the partner component. The results are shown in Table 5.6.

Fig. 5.21 'Abstraction largeness avoidance technique applied to one component in
sub-functions (apart from Make Request and Assign CAS Services)'

STATE
SPACE
GRAPH

Net of complete close air support
(five sub-functions)

Net with one component in four out
of five sub-functions abstracted

Initial
marking

Nodes and
arcs

Explosion problem. 28544 nodes, 148800 arcs.

Generation
time

4800 secs (limit set). 232 secs.

Terminal
markings

N/A 3

Table 5.6 'State space standard report for full and abstracted net'

It should be noted the compositional largeness avoidance technique could also be
applied to close air support, i.e. each sub-function could be analysed independently of
the others (see Appendices B-D, sections B.1.5, C.1.3, and D.1.5 for details of this
technique used with the telephone example).

 88

From this section, it has been shown that it is possible to use coloured Petri nets and
hierarchy to specify all five sub-functions of close air support (request close air
support assignment) at design and architecture levels of abstraction, i.e. the solution
specification level. From Figs. 5.17-5.21 above, net places capture state in terms of
the information input and output to net transitions (activities); net colours (types)
define the structure of the information used by activities (operations and parameters);
net arc inscriptions govern the information required and produced by activities
(including operations needed between components); net arcs dictate the control flow
of execution, i.e. the order of activity execution and information exchange; toolset
hierarchy facilitates levels of abstraction within the model (at the design level
component and services, at the architecture level common components realising
design level services) and offers instantiation for re-use of existing subnets; toolset
colour palette and annotation improves readability of nets; and finally, dynamic and
static analyses permit verification and validation of the models.

In terms of scalability, a model of three close air support sub-functions with fifty-
three subnets and approximately one hundred and twenty places (and being kept as
generic as possible employing instantiation) permitted calculation of a full state space
graph. Beyond this, abstraction largeness avoidance techniques had to be applied.
Scalability of the models within the toolset itself was the main issue. Manageability
and navigability of the model within the toolset were considerably compromised.
Without use of instantiation, model creation would have been extremely hampered.
As it was, syntax and semantic checking and editing response times were degraded
and the creation process time intensive and difficult.

5.6 Evaluation of Close Air Support Study
The design objective of the close air support study was derived from chapter 1's
second criteria for success. This stated that the strengths and weaknesses of Petri nets
regarding the greater formalism of dynamic behaviour in systems-of-systems and the
role of Petri nets as a means of engaging stakeholders were to be determined.
Following the case study design from chapter 3, nets were used to specify, verify and
validate a close air support mission. As dictated by the study plan, data (evidence)
was collected at design iterations of each model using screenshots of the model and
simulations, standard reports from CPN Tools, model source code from CPN Tools,
and project team notes. This evidence was presented in the report of the study in this
chapter and discussed further in this section.

5.6.1 Quantitative Results
These related to the third criteria for success and the first research question, i.e. do
Petri nets improve the functional correctness of the system-of-systems design
specification? The functional correctness response variables were expressed in terms
of the number of errors detected by simulation, and number of errors detected by
static analysis. This data was captured from the CPN Tools integrated development
environment at each iteration of model design through simulation (and screenshots,
note-taking) or reachability graph calculation (and CPN Tools standard analysis
report, screenshots, note-taking). An overview of the results is shown in Table 5.7.

 89

Criteria for Success Goal 3 /
System-of-System Engineering
Level

Simulation
Number of Errors Detected

Static Analysis
Number of Errors Detected

Analysis 3 3
Design and Architectural 3 0

Table 5.7 'Quantitative results from close air support study'

From Table 5.7 it can be seen that use of simulation detected six functional errors in
the specification of close air support. With textual or UML-based specification, given
the nature of the errors detected through simulation of the Petri net model, it would
have been extremely difficult to detect the same errors using both these means of
static specification.

Use of static analysis detected three functional errors in the specification of close air
support. As well as the two errors detected using simulation, static analysis was able
to highlight missing logic within a model and localise the part of the net where the
omission was made. From examination of the errors detected by static analysis at the
system-of-systems engineering analysis level, it can be seen that if the same errors
were not detected using simulation, they would have been detected through
calculation of the reachability graph of the net. In this way, static analysis offers a
means of exhaustively checking a net on behalf of the modeller but the modeller
needs to know how to interpret the analysis report in order to isolate the detected
errors and this is a time-intensive process. The modeller also needs to be aware of the
state space explosion problem and means of largeness avoidance (previously
discussed in section 5.5.3 and Appendix B).

Given CPN Tools in its standard form, simulation (or the Petri net 'token game') is a
more intuitive means of stepping through the behaviour of a model (depending on its
size) to check its functional correctness. It was used as an initial means of model
verification prior to conducting static analysis so that detected errors could be
corrected, potentially helping to alleviate the state space explosion problem, and
simplify the analysis report.

5.6.2 Qualitative Results
These related to the first and second criteria for success and the second and third
research questions, i.e. do Petri nets increase the quality of the design specification,
and what are the shortcomings of the state-of-the-art Petri net tool and how can it be
improved? The design quality response variables were expressed in terms of
comprehensibility (e.g. use of hierarchy, annotation, timing), and scalability. This data
was captured from the CPN Tools integrated development environment at each
iteration of model design through screenshots, and note-taking. An overview of the
results is shown in Table 5.8.

 90

Criteria for Success Goal 1&2
/
System-of-System
Engineering Level

Comprehensibility
Hierarchy, annotation, timing

Scalability

Analysis Able to express problem
(operational process, including
timing specification) using CPN
Tools.

Yes.

Design and Architectural Able to express solution design
(including timing specification)
using CPN Tools.

Toolset scalability issues for net
of 53 subnets, approximately
one hundred and twenty places.

Table 5.8 'Qualitative results from close air support study'

These qualitative (and quantitative) results are now evaluated further in relation to the
modelling features identified as desirable for the specification of system-of-systems.

1. Abstraction
In terms of UML 2.0's activity diagram, activity decomposition can be specified using
class and activity diagrams. Class diagrams can show composition associations
between activities and instance cardinality. Activity diagrams detail the refinement of
an activity. They can also allocate activities (behaviour) to structure (classes) via
partitions (swim lanes). These partitions can also show multiple allocations.

In terms of the Petri net formalism, activity decomposition can be specified using
high-level Petri nets with hierarchy. Implementations of Petri nets with hierarchy
include substitution transitions, and place and transition fusion.

Results from the first study (close air support specified using CPN Tools) indicated
that hierarchy needs to be determined in advance of modelling. In the study, tactical
data link (specifically Variable Message Format) messages were used in a bottom-up
approach to derive hierarchy from the suggested message functions. Hierarchy was
defined for models at the system-of-systems engineering level (analysis, and design
and architectural) as well as within models (a hierarchy based on function was used).

CPN Tools implementation of coloured Petri nets with hierarchy uses substitution
transitions and fusion places. Substitution transitions were used primarily for
abstraction as the sockets and ports used by this method were viewed as a means of
explicitly specifying required and provided interfaces to the decomposed transition.

Fusion places can also be used to represent abstraction but there is no explicitly
associated net page at a higher-level of abstraction as there is with the substitution
transition method. An advantage of fusion places is the ability to share the same
information between multiple processes, e.g. if information needs to be passed from
an interface to more than one component system at a point in time.

Instantiation was used in conjunction with substitution transitions and found to be
essential in minimising model size. Generalisation, i.e. use of common components at
the design and architectural level of abstraction was also regarded as essential for the
same reason.

 91

The study highlighted that there was no explicit composition, cardinality, or allocation
concrete notation with nets. The present means of achieving these in CPN Tools
would be annotation and/or extra net elements. Extra net elements would be needed to
capture multiple allocations.

2. Modularisation
In terms of UML 2.0's activity diagram, modularisation can be specified using class
and activity diagrams. Class diagrams can specify the activities and the data items
associated with them (including cardinality).

Activity diagrams show activities and the associated control flow of input (output)
data item instances (parameter types are defined by class diagrams). Class and
collaboration diagrams can also be used to specify provided and required interfaces
between classes.

In terms of the Petri net formalism, modularisation can be specified using high-level
Petri nets with hierarchy. Implementations include substitution transitions, and place
and transition fusion.

Results from the first study (close air support specified using CPN Tools) indicated
modularisation was primarily achieved using substitution transitions (and port and
socket places) to represent component system interfaces. As discussed for the
abstraction feature, place fusion can also be used to partition a model but does not
explicitly associate the lower abstraction level net with the higher abstraction level
net.

Information exchange protocol was described between and within component systems
using colours (types) to define the exchanged information and net elements (places,
transitions, arcs, arc inscriptions, annotation) to specify the control of the exchange.

CPN Tools makes no provision for model re-use (e.g. searching for suitable existing
models to use in a bottom-up approach) and their management (e.g. versioning).

Capture of existing component systems including their performance parameters was
not undertaken.

Data items input and output by activities can be specified through colours (types) and
variable bindings. Cardinality would need to be specified through annotation.

3. Data typing
In terms of UML 2.0's activity diagram, classes defined previously in class diagrams
specify data typing.

In terms of the Petri net formalism, timed, high-level Petri nets specify data typing.

Results from the first study (close air support specified using CPN Tools) indicated
that use of CPN Tools implementation of timed, coloured Petri nets enabled capture
of the information needed for close air support using a combination of simple,
compound, and timed colours (types). There was no ability to refer to variable values
unless the same variable bindings were propagated through the entire net.

 92

There is no equivalent one diagram, static description in nets. Operations (and the
required parameters) provided by system components were made more explicit using
arc inscriptions and annotation, and their associated data types were provided by local
place colours (types).

4. Adequate toolset implementation
In terms of UML 2.0's activity diagram, many open source and commercial toolsets
offering various levels of integrated UML development exist.

In terms of the Petri net formalism, several implementations of high-level Petri nets
offering various levels of integrated net development exist.

Results from the first study (close air support specified using CPN Tools) indicated
that CPN Tools provided a useful integrated net environment for the specification of
systems-of-systems but shortfalls were identified in the areas of: improved analysis
reports, examples and best practice, and large model support (navigability, syntax-
checking, versioning, error-reporting, and animation).

5. Timing
In terms of UML 2.0's activity diagram, extension via the Profile for Schedulability,
Performance, and Time (to be replaced by Profile for Modelling and Analysis of Real-
time and Embedded Systems) is needed in order to specify (non-functional) timing
properties. The resulting activity diagram is static so performance analysis, or
investigation into analysis-of-alternatives is only achievable through model
conversion.

In terms of the Petri net formalism, timed, high-level Petri nets with hierarchy specify
timing information.

Results from the first study (close air support specified using CPN Tools) were based
on CPN Tools implementation of timed, coloured Petri nets with hierarchy. Stochastic
and deterministic functions within the toolset were used to introduce random
placement of requests, delays, and timeouts. Time, cost and quality performance
indicators need to be identified in advance of the analysis.

Simulation was used in conjunction with toolset monitors in the performance analysis
net to calculate close air support request fulfilment duration. An analysis-of-
alternatives net used physical asset known performance data in the simulation time
and was used to calculate cost information per activity, per component process, and
for the overall process. Analysis-of-alternative nets can be used to advise the timing
duration ranges of performance analysis nets.

Timing can impose order on tokens but cannot guarantee the prevention of token
overtaking (queuing places were defined for this purpose). Timing was primarily used
to reflect deterministic and stochastic activity durations for the purposes of
performance analysis.

6. Verification and validation

 93

In terms of UML 2.0's activity diagram, there is no full formal syntax and semantics
and diagrams cannot be executed.

Verification and validation is done using static inspection of the graphical notation
which may include extensibility profiles such as Profile for Schedulability,
Performance, and Time, and the Profile for Modelling QoS and Fault Tolerance
Characteristics and Mechanisms.

In terms of the Petri net formalism, there is formal syntax and semantics and nets can
be executed using a well-defined execution algorithm (simulation). Additionally,
exhaustive verification can be achieved by calculating the reachability graph of the
net and checking structural properties such as deadlock. Timed, coloured Petri nets
and simulation were used to conduct performance analysis and analysis-of-
alternatives.

Results from the first study (close air support specified using CPN Tools) were based
on CPN Tools simulation modes for initial investigations into analysis, and design
and architecture model behaviour (six errors were detected: infinite loop; token
overtaking; potential deadlocks; incorrect predicates; missing initial values; and
incorrect disabled transition), performance analysis (the calculation of close air
support request fulfilment time was demonstrated), and analysis-of-alternatives (the
calculation of the cost of the close air support process using Variable Message Format
as the communications physical resource was demonstrated). For large system-of-
systems models, interactive simulation was time-intensive. This was managed by
building nets incrementally and simulating the new net elements.

Verification and validation of close air support using simulation is constrained by the
size of the system-of-systems model. Simulation can be used to check the behaviour
of an entire model and analyse performance where timing is used but it cannot
exhaustively verify the correctness of the entire model.

CPN Tools was used to calculate a reachability graph for analysis, and design and
architecture nets (three errors were detected: infinite loop; token overtaking; and
missing logic), and temporal logic was used to confirm correct behaviour of one
information exchange protocol across the generated reachability graph. Temporal
logic queries are text-based and require experience to formulate correct queries.

Modeller experience helps significantly in interpretation of the analysis report
produced by CPN Tools and to highlight unexpected analysis results. It is unlikely
that all these errors would have been detected within the UML activity diagrams using
static inspection alone.

For large system-of-systems models, the state space explosion problem was alleviated
through largeness avoidance techniques. Reachability graphs were also calculated for
timed nets using CPN Tools. These require careful management in terms of removing
sources of non-determinism within the net.

Verification and validation of close air support using reachability graph calculation is
constrained by the number of states in the system-of-systems. Model-checking means
ignoring parts of the system-of-systems either through abstraction or considering a

 94

subset of the system-of-systems. However, model-checking is automatic and
exhaustively checks the model.

7. Precision in specification of requirements (scalability, concurrency, state-based
specification, information-based specification, event-based specification)
In terms of UML 2.0's activity diagram, it has intuitive, graphical concrete syntax but
does not have fully formal syntax and semantics. Activity diagrams can be used for
concurrent, scalable, state, event, and data-based specification (in conjunction with
class diagrams). They have the ability to specify continuous (streaming) and discrete,
non-streaming activities.

Activity definition (Activity in UML) defines an activity independently of how it is
used in a diagram, it does not specify where input (output) to it originates (goes to).

Activity usage (Action in UML) defines how an activity is used in the definitions of
higher-level activities.

Activity instance is the enabling of an activity operating on input (output) item
instances and associated timing.

Item type (Classifier in UML) specifies the type of input (output) item to (from) an
activity independently of where it is used.

Item usage by activity definition (Parameter in UML) defines how an item is used in
an activity definition independently of where the activity is used. Parameters are
named indicating the kind of item (parameter type).

Item usage by activity usage (Pin in UML) defines the connection point between a
flow line and a parameter at an activity.

Item instance refers to item used by an activity instance.

Parameters refer to items input to (output from) activities. Their types are defined in
class diagrams and they are named. Items used by activities are specified by pins
labelled with parameter name and type.

Presently, activity diagrams have no means of specifying: persistent data store across
activity executions; the number of concurrent executions allowed for single usage
activities; and resources generated (consumed) for activity execution (pre and post-
conditions on activities are supported but do not specify effect on execution).

In terms of the Petri net formalism, timed, high-level Petri nets are used for
concurrent, state, data, event-based specification. Petri nets ability to scale requires
management due to their limited concrete syntax.

Results from the first study (close air support specified using CPN Tools) indicated
that at the system-of-systems design level, systems-of-systems have non-streaming
activities, i.e. terminating, discrete-event (rather than continuous) where items are
accepted at the start of activity execution, processed, and output at the end of activity
execution. Specification of continuous or streaming activities (i.e. activities dealing

 95

with inputs and outputs continuously during their execution) would require stochastic
Petri nets.

In the study, nets were developed to specify analysis, and design and architecture
models of close air support. At analysis level, operational processes were described.
This led into solution specification at design and architecture levels. Again, these
levels described process-based information exchange with associated events, and
states. The specification was unambiguous in the structural sense.

Tokens are not accepted by transitions in process of execution and can be queued.
More than one token input can be specified to a transition but it is not possible to
specify acceptance of one token and then a late token. Multiple outputs can have
probability applied to them. There is no concept of persistent data store accessible
across transition executions.

It is possible to describe a function independently of how it is to be used by other
functions and how the function is to be used in the context of other functions but it
means using separate nets and annotation. Groups have to be created in CPN Tools in
order to clone and re-use parts of nets in multiple model locations. Nets were able to
specify resources generated (consumed) for transition execution.

In CPN Tools, colour (type) definitions exist independently of the activities they are
used in.

Due to their generic concrete syntax, nets rely on extra net elements and annotation
(in comparison to activity diagrams) to relate domain and system specification
concepts (e.g. iteration, decisions, cardinality, operations, parameters, constraints).
This means resulting nets are much larger than the equivalent activity diagram and
can lead to scalability issues. Scalability issues were encountered in close air support
at the design and architectural level of abstraction for fifty-three subnets and
approximately one hundred and twenty places. Toolset syntax and semantic-checking
duration and editing response times increased significantly. Manageability and
navigability of nets within the toolset were severely compromised.

The close air support study assumed no multiplicity of component systems or
processes realising functions. The concern with multiplicity is the correctness of the
execution path if functions are undertaken by more than one component or process.
Also, the study did not investigate re-entrancy, i.e. if a recovery protocol is specified
for a communications failure, when it completes, execution may return to earlier
transitions leading to incorrect behaviour.

These results are summarised in Table 5.9.

System-of-Systems Modelling
Need

UML Activity Diagram Petri Nets

1. Precision in requirements
specification

 Formal syntax & semantics No. Yes.
 Process-based Yes. Yes.
 Multiplicity Yes. To be determined.
 Re-entry Yes (requires management). To be determined.

 96

System-of-Systems Modelling
Need

UML Activity Diagram Petri Nets

 Discrete Yes. Yes.
 Data flow Yes. Yes.
 Resource usage No. Yes.
 Scalable Yes. No (requires management).
 State Yes. Yes (to a greater extent than

UML).
 Control flow Yes. Yes.
 Concurrency Yes. Yes.
 Independent activity
description

Yes. Yes (separate net).

 Independent data description Yes. Yes (colours).
 Persistent data No. No.
 Interfaces Yes (plus class diagram). Yes (annotation & hierarchy).
 Information exchange protocol Yes (plus schedulability

profile).
Yes (timed nets).

 Analysis size More compact than nets. Larger models than UML.
 Design & Architecture size More compact than nets. Larger models than UML.

2. Verification and validation
 Formal syntax & semantics No. Yes.
 Static inspection Yes. Yes.
 Dynamic inspection
(simulation)

No. Yes.

 Behaviour checking Yes.
 Performance analysis Yes (timed nets).
 Analysis-of-alternatives Yes (timed nets).
 Exhaustive analysis No.
 Complete specification Yes (constrained by net size).
 Reachability graph calculation No. Yes.
 Structural properties Yes (e.g. deadlock,

boundedness).
 Temporal logic queries Yes (e.g. correct protocol).
 Largeness avoidance Yes (abstraction, net division).
 Exhaustive analysis Yes.
 Complete specification No (dependent on scope).
 QoS Yes (plus QoS profile). Yes (annotation).

3. Abstraction
 Decomposition Yes (plus class diagram). Yes (substitution transitions &

fusion places).
 Activity composition Yes (plus class diagram). Yes (annotation, separate net).
 Cardinality Yes (plus class diagram). Yes (annotation, separate net).
 Allocation Yes (swim lane). Yes (annotation).

4. Modularisation
 Interfaces Yes (plus class, collaboration

diagrams).
Yes (substitution transitions,
fusion places, & colour).

 Information exchange protocol Yes (plus class, collaboration
diagrams and schedulability
profile).

Yes (timed nets).

 Top-down, bottom-up support Yes (top-down), Yes (bottom-
up).

Yes (hierarchy & cloning).

5. Timing
 Duration, timeout, arrivals Yes (plus schedulability

profile).
Yes (timed nets, deterministic &
stochastic functions).

 97

System-of-Systems Modelling
Need

UML Activity Diagram Petri Nets

 Static Yes. No (simulation).

6. Data typing
 Domain concepts Yes (plus class diagram). Yes (timed, coloured nets).

Table 5.9 'Summary of study results from the specification of close air support using
Petri nets'

5.6.3 Evaluation Conclusions
Referring to Tables 5.7-5.9, in terms of the first criteria for success, 'Precisely specify
the close air support example (research questions 2 and 3)', Petri nets were used in a
top-down engineering approach to unambiguously (in terms of model structure)
capture the operational processes, component systems and information exchange
involved in close air support at analysis, design and architecture levels of model
abstraction. A bottom-up approach was used to identify the functional hierarchy used
in the models from the existing close air support tactical data link message set. These
abstraction levels described process-based information exchange with: associated
events; component system interfaces; states; type of information exchanged;
information exchange protocol; execution control flow; initial request arrival timing,
event durations and timeouts; interfaces and operations used by component systems;
and potential failure states (e.g. underlying communications failure). In terms of the
desirable modelling needs of systems-of-systems, from the first study on close air
support, Petri nets meet an additional two attributes over activity diagrams (formal
syntax and semantics, and specification of resource usage). However, the study
strongly suggested that Petri nets did not scale well, attributable to their generic
concrete syntax. Nets rely on extra net elements and annotation (in comparison to
activity diagrams) to relate domain and system specification concepts.

In contrast, activity diagrams offer multiple specification concepts in their concrete
graphical syntax compared to the Petri net concrete graphical syntax. This means
specification with activity diagrams is usually more concise than the equivalent Petri
net specification but not necessarily more understandable. Activity diagram
practitioners and non-practitioners need to have some understanding of the multiple
underlying concepts and associated graphical notation. From the first study on close
air support, Petri nets appear to be able to meet the precision in specification of
system-of-systems requirements need and describe close air support at the system-of-
systems analysis level of abstraction completely and visually (for the benefit of
domain users), ready for correctness verification. Although the study was able to
specify close air support at the design and architecture level of abstraction completely,
navigation and management of the resulting model was severely degraded. It is not
clear exactly how concise the Petri net specification is in comparison to specification
with activity diagrams. The study also highlighted labelling and annotation within
nets can be open to interpretation to stakeholders but this trait also affects activity
diagrams.

For the second criteria for success, 'Determine the scalability of the close air support
system-of-systems model implemented using Petri nets (research question 2)', the
study indicated Petri nets may not scale according to the size of the system to be

 98

modelled. Scalability issues using the toolset were encountered at the design and
architectural level of abstraction for fifty-three subnets and approximately one
hundred and twenty places. Due to their generic concrete graphical syntax, nets tend
to use extra net elements and annotation to relate domain and system specification
concepts (e.g. iteration, decisions, cardinality, operations, parameters, constraints).
This means the resulting net is much larger than the equivalent activity diagram and
will require careful management to achieve scalability.

Based on analysis of the first and second criteria for success, Petri nets would be
recommended as a means of improving activity diagrams. In order to scale, system-
of-systems specification using Petri nets needs to be suitably abstracted. Although
close air support was specified at analysis, and design and architecture levels of
abstraction, hierarchy based on function was determined in advance of modelling and
detail minimised as far as possible. Use of toolset instantiation and common
components at the design and architecture levels of abstraction were essential in
achieving a complete specification that was also readable.

For the last criteria for success, 'Confirm if the same Petri net verification and
validation techniques used in the telephone exercise are effective in the close air
support system-of-systems specification models (research question 1)', CPN Tools
was used to explore verification and validation of the close air support specifications
at the analysis, design and architecture levels of abstraction. In terms of the desirable
modelling needs of systems-of-systems, from the study, Petri nets meet an additional
three attributes over activity diagrams (formal syntax and semantics, dynamic
inspection, and reachability graph calculation). Close air support highlighted the fact
that reachability graph calculation provides exhaustive verification but only across a
restricted (in terms of model size and detail) specification. In comparison, simulation
provides verification across the whole specification (constrained by model size,
toolset, and underlying hardware) but is not an exhaustive means of checking model
correctness.

Simulation detected infinite loop, token overtaking, potential deadlocks, incorrect
predicates, missing initial values, and incorrect disabled transitions specification
errors in the close air support system-of-systems. Simulation also enabled domain
users to be involved in the model correctness-checking process. These errors would
not necessarily be highlighted during static inspection of the equivalent UML activity
diagrams. When timing was introduced into the close air support nets, simulation
could be used to undertake performance analysis (the calculation of close air support
request fulfilment time was demonstrated), and analysis-of-alternatives (the
calculation of the cost of the close air support process using Variable Message Format
as the communications physical resource was demonstrated). Again, this is not
possible with activity diagrams.

As mentioned, simulation is not an exhaustive method of checking model behaviour is
correct. Reachability graphs for the close air support analysis, and design and
architecture models were calculated for this purpose. As indicated in Table 5.7,
reachability graph analysis detected three errors in the close air support system-of-
systems specifications (the infinite loop, token overtaking, and missing logic). If the
first two errors had not been detected by simulation, reachability graph analysis would
have alerted the modeller to their presence. Exhaustive verification is not possible on

 99

native activity diagrams. Temporal logic was also used to confirm correct behaviour
of one information exchange protocol across the generated reachability graph.

Based on analysis of the last criteria for success, again Petri nets would be
recommended as a means of improving activity diagrams.

The close air support study assumed no multiplicity of component systems or
processes realising functions. The concern with multiplicity is the correctness of the
execution path if functions are undertaken by more than one component or process.
Also, the study did not investigate re-entrancy, i.e. if a recovery protocol is specified
for a communications failure, when it completes, execution may return to earlier
transitions leading to incorrect behaviour.

From Table 5.9 and the close air support case study, the confirmed benefits of the
Petri net formalism are:

1. Analysis capability regarding the modelled design specification. The Petri net
formalism facilitates both simulation and reachability graph calculation based on its
full formal syntax and semantics. This capability is essential in helping to preserve
functional correctness of the system-of-systems specification.
2. Specification capability. The CPN Tools implementation of timed coloured Petri
nets with hierarchy offers the ability to graphically represent state, event, concurrent,
performance, and data-based behaviour of a system-of-systems at different levels of
detail. Nets can be logically divided to represent components facilitating top-down
and bottom-up engineering approaches in system-of-systems engineering.

From Table 5.9 and the close air support case study, the confirmed weaknesses of the
Petri net formalism are:

1. State space explosion. Logical structure-dependent, the calculated state space graph
can have infinite reachable states. Largeness avoidance techniques may be able to
help alleviate the problem.
2. Scalability.

In terms of shortfalls to the specification of system-of-systems requiring further
investigation in relation to Petri nets, the study highlighted:

1. Verification and validation. The close air support study indicated both simulation
and static analysis can be used to detect erroneous behaviour in the model. However,
further insight into how it can be used to check the completeness of a system-of-
systems specification would be useful, especially when used together with
specification of multiplicity.
2. Multiplicity of component systems or processes realising functions. The concern
with multiplicity is the correctness of the execution path if functions are undertaken
by more than one component or process.
3. Re-entrancy. If a recovery protocol is specified for a communications failure, when
it completes, execution may return to earlier transitions leading to incorrect behaviour.

 100

Chapter 6 Case Study
 (Exchange Network Parameters)

6.1 Introduction
This chapter implements the case study design for a second time for two reasons. The
first is to demonstrate the experiment is replicable and reliable, i.e. the process
outlined in chapter 3 relating to construction of the Petri net models was followed
again in order to check the desired response variables (at each iteration of model
design). In this way the evidence obtained from the second study could be verified
against the evidence obtained from the first study to demonstrate similar results using
the Petri net formalism treatment.

The second reason for executing a second study was to investigate the results that
needed further clarification from the first study, in particular the specification of
multiplicity and re-entrancy, and the role of verification and validation in helping to
ensure completeness and correctness of a system-of-systems design.

Similar to chapter 5, and using the case study objective and research questions
identified in chapter 3, the case study exercise begins by defining the criteria for
success by which the Petri net approach is measured. The objective of the case study
and research questions from chapter 3 stated:

Case Study Objective: evaluate the strengths and weaknesses of Petri nets in terms of
the system-of-systems problems identified in chapter 1.

Research Questions:
1. Do Petri nets improve the functional correctness of the system-of-systems design
specification?
2. Do Petri nets increase the quality of the design specification?
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be
improved?

Criteria for Success derived from the research questions above:

Goal 1 (research questions 2 and 3): Precisely specify the exchange network
parameters example. Use Petri nets to capture the operational processes, components
and information exchange involved in the system-of-systems completely, concisely
and correctly at analysis, design, and architecture phases.

Metrics: Check if Petri net elements can describe operational processes, components,
information to be exchanged, information interfaces, information exchange protocols,
multiplicity, and re-entrancy for the exchange network parameters system-of-systems.
Note syntactical, semantic, and feature support of selected toolset.

Goal 2 (research question 2): Determine the scalability of the exchange network
parameters system-of-systems model implemented using Petri nets.

 101

Metrics: Explore the use of hierarchy within Petri nets to check if they can be used to
create a scalable specification model of exchange network parameters.

Goal 3 (research question 1): Confirm if the same Petri net verification and validation
techniques used in the telephone and close air support exercises are effective in the
exchange network parameters system-of-systems specification models. Use Petri nets
and the selected toolset to explore verification and validation of the exchange network
parameters specifications at the analysis, design and architecture phases.

Metrics: Employ static (state space) analysis of nets to check for well-known and
user-defined properties in models. Employ dynamic analysis (simulation) of nets to
explore correctness and completeness of behaviour and efficiency of specifications.
Functional correctness is expressed in terms of number of errors detected by
simulation; and number of errors detected by static analysis. Investigate the
application of largeness avoidance techniques.

Table 6.1 'Criteria for success for the specification of exchange network parameters
using Petri nets'

This process is described in the next section.

6.2 Specification of Exchange Network Parameters using
Coloured Petri Nets

6.2.1 Description of Exchange Network Parameters
From military doctrine [121, Appendix E], exchange network parameters is a Combat
Net Radio network management process defined as:

'..covers the subnetwork operations for a MIL-STD-188-220 subnetwork. If a station
moves into or through different subnetworks, the Data Link addresses and operating
parameters may change in each subnetwork, and exchange network parameters will
automate the change of parameters and address from one subnetwork to another'.

Similar to the close air support study, this system-of-systems problem required further
investigation. Currently, the only source of military documentation for exchange
network parameters is [121, Appendix E] and this was consulted in conjunction with
subject matter experts. It became clear that the problem of exchange network
parameters was relatively new in the military tactical data link domain but the
concepts behind it are related to those presented by the Dynamic Host Configuration
Protocol internet standard [122].

[121, Appendix E] does not describe a generic process for dynamic network
configuration management in the same way [122] does. It specifies a solution targeted
towards a particular communications bearer for the Variable Message Format tactical
data link, combat net radio. Consequently, it was difficult to obtain a textual
description of the problem at a system-of-systems level from the standard [121,
Appendix E]. Instead, both the military standard and the internet dynamic host

 102

configuration protocol [122] were used as source documents to derive an exchange
network parameters system-of-systems specification. The dynamic host configuration
protocol offers an extra configuration process between the client and control nodes
compared to the exchange network parameters protocol. Where a process relates to
configuration over and above that of exchange network parameters, it is presented in
italics in sections 6.2-6.5. In addition, exchange network parameters subject matter
experts believed there to be omissions and implied requirements within [121,
Appendix E]. These were to be made explicit during the course of the study.

For the purposes of the study, the scope of the problem was summarised in terms of
functions to be provided, assumptions, messages involved, and information exchanges
as follows:

The functions associated with exchange network parameters are persistent storage of
network parameters and allocation of network addresses on a static (permanent) or
dynamic (leased) basis.

The problem assumes: the roles involved are 'client node' (makes the request to join
the network), 'control node' (responds to requests to join network), and 'relay node'
(passes requests and responses to and from clients and control nodes where direct
communication is not possible); fixed or wireless communications links susceptible to
problems are used in the message exchange; and the message exchange uses a
combination of broadcast, multicast, and unicast messages.

The messages involved are join request (issued from the new client node); initial join
response (initial offer of network parameters from control node to client node); offer
echo (confirmation of initial offer from client node to selected control node);
acknowledgement (confirmation from selected control node to client node regarding
offered parameters); negative acknowledgement (denial from selected control node to
client node regarding offered parameters); and decline (denial from client node
following detection of its proposed address being in-use).

In terms of information exchanges, the exchange network parameters process is
triggered by the presence of a new node and its broadcast of a join request (which
may be relayed to remote control nodes). Control node(s) respond to the client node
join request with initial accept or reject response(s) containing the proposed network
address, address lease period, and network parameters. Upon receipt of the initial
response(s), the client node echoes confirmation of the initial accept offer to the
selected control node using broadcast and relay if necessary.

The control node checks if the proposed address is already assigned, updating the
configuration database and sending the client node a positive acknowledgement if it is
able to satisfy its initial offer message. If the proposed address is already assigned,
the control node sends a negative acknowledgment to the client node. When it
receives a positive acknowledgment message from the control node, the client node
also checks to see if the network address it has been assigned is already in use. If it
detects a duplicate address, the client nodes sends a decline message and begins the
network join process again. Where no duplicate address exists, the client node is
configured and able to participate in the network. If it receives a negative
acknowledgement from the control node, the client node also begins the network join

 103

process again. If no initial offers are received by the client node, or if its initial offer
is rejected, it begins the network join process again.

6.2.2 Petri Net Construction Method
Similar to the approach adopted for the telephone example in Appendices A-D and the
close air support study in chapter 5, the modeller was keen to specify the exchange
network parameters problem space in a way that promoted the need for a flexible,
adaptable solution without being prescriptive and considered its specification from
analysis, design, and architecture abstraction levels. In doing so, simplification
through abstraction enables analysis of certain aspects of the exchange network
parameters protocol by avoiding implementation detail. In terms of problem scope,
the rules of interaction for exchange network parameters are considered rather than
how messages are encoded or stored. The exchange network parameters function of
processing a new network client node arrival is modelled (collection and update of the
configuration details for the network is also modelled but is captured in much less
detail and is included to show that this is a necessary function). Multiple entities are
considered and the formats of the messages listed above are abstracted. Lease
renewal, parameter updates, leaving the network, collection of network configuration
data, and relaying processes were not included in this study. Dynamic rather than
statically configured client nodes are focused upon.

The exchange network parameters problem was functionally decomposed into a series
of functions and sub-functions (activities). These functions were then used with the
concept summary above to suggest operational processes. The operational processes
outline a particular timed ordering of activities and information exchange to be
performed by roles so that the function (or service) may be realised. Optimised where
possible in terms of resources, the operational process level helps to specify the
overall function of the exchange network parameters system-of-systems to domain
users and developers, and drive its lower-level design and implementation. At the
analysis stage, functions (together with the information and information exchange
protocol used by these functions) rather than the physical components able to meet
these functions are specified.

To begin with, the net at the operational process (conceptual or analysis) model level
of abstraction was created. Functions (activities) from the processes were mapped to
net transition elements and information exchanged was assigned to net place elements
following the control sequence presented within [121, 122] and guidance from
domain experts. Colours (types) were defined in the toolset according to the
information exchanged at each place. Compound or structured type definitions were
used to specify the information exchanged. Roles (owners of the identified functions
and sub-functions) were indicated by text labels on the page allocated to the net
within the toolset.

As indicated previously in this section, one of the functions of the system-of-systems
(the processing of a new network client node arrival in the exchange network
parameters problem) was focused on. This describes the problem of a client node
making a join request to a control node. The roles, control sequences, processes and
information exchanged are presented in Fig. 6.1.

 104

Fig. 6.1 'Exchange network parameters/dynamic host configuration protocol join
request UML activity diagram'

From Fig. 6.1 it can be seen that two roles, 'client node' and 'control node', have
operational processes assigned to them. These operational processes are presented as a
sequential series of activities. The detail of groups of these activities can be abstracted
at a higher level of abstraction under parent activities such as 'Request to Join' or
'Distribute Network Data' (shown using notation in Fig. 6.1). Fig. 6.1 also shows
that five pieces of information are exchanged between the roles, 'Join Request', 'Join
Request Response', 'Node Offer Echo', 'Control Node Confirm' (Dynamic Host
Configuration Protocol), and 'Client Node Confirm'.

A coloured Petri net model of the operational processes represented in Fig. 6.1 was
attempted. Fig. 6.1's function (or service) level of granularity and naming was based
on the existing standards [121, 122] and underlying communications infrastructure
information sets (exchange network parameters transactions and the associated
function performed by assets). This information was used to help manage the
construction of the net by developing a hierarchy of functions to promote its
readability and scalability. The function of 'Exchange Network Parameters (new
network client node arrival)' was decomposed into two main sub-functions: 'Request
to Join' and 'Distribute Network Data' (a third sub-function of 'Collect Node Data' was
included to highlight persistent network configuration storage). Both of the main sub-
functions are realised using the processes identified from existing standards and
domain experts in Fig. 6.1. These processes were examined in turn in order to
establish:

1. Executed activities together with their pre and post information states (i.e. input and
output interfaces).
2. Control of activity execution.
3. Suggested roles (owners) associated with the control of activities.

 105

4. Naming of activities, information and roles.
5. Net symbols that should be used on the net at the highest abstraction level (primary
parent net) and associated sub-pages to accurately represent the hierarchy within the
model.

The control flow of the two main sub-functions shown in Fig. 6.1 follows the
exchange of information between Request and Distribute. The Collect sub-function is
intended to occur periodically within and between subnetworks.

At the highest abstraction level in the hierarchy, the pre-condition of the request to
join function executing is the arrival of a client node. Using [121, 122], suggested
fields for new client node information are: unique node identifier; node type; network
address; and optional node capabilities.

When a join request has been assembled, the post-condition of join request executing
is outgoing information, containing the join request details. This information is sent to
the role dealing with assignment of network parameters (control node). Its content can
be derived from [122] and existing exchange network parameters message content
[121]. Suggested fields for the join request information are: unique node identifier;
network address; and optional node capabilities.

Considering the join request function's process in more detail, the client node
information is used in the activity of assembling the join request. This assembly
activity could be decomposed further into sub-activities relating to the nature of the
assignment i.e. static or dynamic; inclusion of error recovery if an offer from a control
node is not received, or the initial request was rejected. For the purposes of this case
study, dynamic address allocation is considered and the result of the assembly activity
is that dynamic network address assignment is requested by sending a join request.

At the highest level of abstraction in the hierarchy, according to [121, 122] and Fig.
6.1, the pre-condition of the assign function executing is incoming join request
information from the client node, containing the join request information specified
above.

The post-condition of assign executing is outgoing information, containing initial
response details. This information is sent to the requesting role (client node). Its
content can be derived from [121] and exchange network parameter message content.
Suggested fields for denial response information are: unique node identifier; network
address; and optional reason for denial. For initial acceptance response information,
suggested fields are: unique node identifier; network address; and optional
configuration parameters.

Considering the assign function's process in more detail, the join request information
is used in the activity of making an initial offer (if there is a network address
available). The check availability of network address activity could be decomposed
further into sub-activities. For the purposes of this exchange network parameters case
study, further activity decomposition is omitted. The result of the process is an initial
accept or reject response.

 106

As part of the request function at the highest level of abstraction, the pre-condition of
the receive initial response function executing is incoming response information from
the control node, containing the information specified above.

According to [121, 122], if an acceptance response is received there is one post-
condition of receive initial response executing. This is outgoing offer echo
information containing notification that the initial offer response was accepted by the
client node. Suggested fields for offer echo information are: unique node identifier;
network address; and optional configuration parameters.

As part of the assign function at the highest level of abstraction, the pre-condition of
the receive offer echo function executing is the incoming offer echo information from
the client node, containing the information specified above.

According to [122] there are two post-conditions of receive offer echo executing. One
is that the control node has checked the proposed address is not in use and sends
outgoing positive acknowledgement information containing confirmation of the offer.
The other is negative acknowledgment information denying the offer. Suggested fields
for positive acknowledgment response information are: unique node identifier;
network address; and optional parameters. For negative acknowledgement response
information, suggested fields are: unique node identifier; network address; and
optional reason for negative acknowledgement.

As part of the request function at the highest level of abstraction, the pre-condition of
the client node receive positive/negative acknowledgment function executing is the
incoming positive/negative acknowledgment information from the control node,
containing the information specified above.

According to [122] there are two post-conditions of receive positive/negative
acknowledgment executing. One is that the client node has checked the proposed
address is not in use and the process ends with the client node in a configured state.
The other is the client node detects that the proposed address is in use and sends an
offer decline to the control node. Suggested fields for this decline response are:
unique node identifier; network address; and optional parameters.

As part of the assign function at the highest level of abstraction, the pre-condition of
the control node receive decline function executing is the incoming decline
information from the client node, containing the information specified above.

According to [121, 122] there is one post-condition of receive decline executing. The
control node updates the network configuration database and the process ends.

All the above information (including the extra dynamic host configuration protocol
configuration detail) was then manually mapped to Petri net constructs. As before, the
net was constructed from a planner point-of-view. Conditions were allocated to places
and colours (types) were defined to represent the fields of messages suggested above.
Naming convention followed Fig. 6.1's as closely as possible. For the net relating to
the 'exchange network parameters (new network client node arrival)' function, the two
main sub-functions (request and distribute) were represented as abstracted transitions
('Request_to_Join' and 'Distribute_NW_Data') with more detail for each presented on

 107

subnets ('Requester' and 'Assigner'). The collect sub-function is shown as
'Collect_Node_Data' (and detailed on subnet 'Collector'). Each abstracted transition
has associated input and output sockets (interfaces). Together these form the highest
level of abstraction in the hierarchy (parent net). The operational processes that realise
each of these sub-functions are expressed on additional net pages (subnets) together
with their associated input and output ports (interfaces). A successful or unsuccessful
client node network configuration outcome from the assign function was selected at
random within the model. The derived net's highest level of abstraction is shown in
Fig. 6.2.

Fig. 6.2 'Exchange network parameters (new client node arrival) parent net'

 108

Fig. 6.3 'Net detailing state of the join request-response information exchange
transaction (ASGR_Join_Req_Xchg) undertaken by the Assigner role'

Nets were also used to specify the state of the information exchange protocol relating
to the join request and join request assignment functions introduced in the operational
process of Fig. 6.2. 'Requester' (Join_Request_Service) and 'REQR_Join_Req_Xchg'
(Fig. 6.3) subnets taken together with corresponding 'Assigner' (Join_Assign_Service)
and 'ASGR_Join_Req_Xchg' specify how each role could track its state in terms of
what information is sent to and what information is expected from its partner role(s)
on the network. If a communications failure occurs, suitable recovery can be designed
for. It should be noted that with the addition of timing to the net, timeouts could be
specified in the net of Fig. 6.2. Again, this specification information is in addition to
the operational process and aims to be non-prescriptive in terms of how tracking is to
be implemented.

In this section, coloured Petri nets and hierarchy have been used to specify the join
request function of exchange network parameters at an analysis level of abstraction
i.e. the operational process level. From Figs. 6.2-6.3, in terms of design readability,
net places capture process state in terms of the information input and output to net
transitions (activities); net colours (types) define the information used by activities;
net arc inscriptions govern the information required and produced by activities; and
net arcs dictate the control flow of execution i.e. the order of activity execution and
information exchange. As long as the interpreter of the net has some experience of the
syntax and semantics of Petri nets, and use is made of toolset features such as textual
annotation and colouring, the specification represented by the net in terms of flow of
execution is unambiguous.

6.3 Analyses with Petri Nets and further Specification

 109

6.3.1 Dynamic Analysis (Simulation)
To investigate functional correctness, simulation of the derived net in Fig. 6.2 was
used to provide confidence in the correctness of the behaviour and logic specified by
it. Using the toolset it was possible to interactively step through enabled transitions in
the net from a given initial marking until there were no more enabled transitions. In
doing so, problems were revealed within the 'Assigner' and 'Requester' subnets
detailing the activities undertaken by the control and client nodes. With the
'Requester' subnet, simulation revealed missing logic to deal with receipt of an initial
reject response from the control node (Fig. 6.4, a), and missing logic to check for
receipt of positive acknowledgment (ACK) on input arc to 'ack' place (Fig. 6.4, b). In
the 'Assigner' subnet, simulation detected missing logic producing the accept or reject
initial response message (Fig. 6.4, c), and incorrect logic to send positive or negative
acknowledgement due to specification of incorrect parameter information in the arc
inscription.

a) Requester subnet: missing logic for reject response

b) Requester subnet: missing logic to check for acknowledgment

c) Assigner subnet: missing logic for producing initial offer response

Fig. 6.4 'Sample of errors detected by interactive simulation'

Once these problems were corrected by amending the relevant arc inscriptions, basic
interactive simulation indicated that the hierarchy of processes appeared to produce
the desired behaviour for one join request. In addition, places were added to the
'Assigner' and 'Requester' subnets to reflect process end states of no network address
availability, receipt of a join request rejection, and achievement of join request retry
limit (following receipt of negative acknowledgments).

Specifying the join request-response process using net elements, using simulation to
explore design iterations of the net, and correcting detected errors helped highlight
incompleteness in the exchange network parameters standard. Implicit or omitted
requirements are listed below (including Petri net specification of the first two
requirements).

 110

1. A reject response should be issued to the client node if there are no network
addresses available.

Fig. 6.5 'Specification of reject response'

2. Error recovery (timeouts and retry attempts) if no offer response is obtained from
the control node or no offer confirmation (or denial) is received from the client node.

Fig. 6.6 'Specification of error recovery'

3. How the accept broadcast forces a duplicate address check and rejection by client
node of accept offer response if a clash is detected.
4. Rejection of unauthorised control node/client node messages.
5. Specification of pre-requisite network configuration parameters, for example,
subnetwork operational frequency.

6.3.2 Static Analysis (Reachability Graph Analysis)
The nets in Figs. 6.2-6.3 are the results of being able to execute the process-based net,
identifying its shortcomings, and amending the constructs. Although simulation is
very much part of an iterative net development process, interactive simulation of large
nets can be extremely time-consuming and does not provide an exhaustive means of
net verification. State space analysis (described in chapter 2) is used to complement
simulation and provide this deeper level of verification.

CPN Tools' standard analysis of the state space (calculated for each of the nets created
in Figs. 6.2-6.3 and described further for Fig. 6.2) is shown in Table 6.2.

 111

Table 6.2 'Standard state space analysis report for Fig. 6.2'

The state space graph report of Table 6.2 calculated for an initial marking of one
token for the net in Fig. 6.2 highlights there is a problem with the net for two reasons.
First of all, in the given state space calculation limit of twelve hundred seconds, the
state space explosion problem was encountered, resulting in the calculation of a
partial reachability graph. Secondly, on inspection of the standard state space report
produced by CPN Tools for the partial reachability graph, the 'Fairness Properties'
section (providing information about how often individual transitions occur) reveals
the presence of infinite occurrence sequences which had not been detected using
simulation. The section shows two transitions, 'addr_avail' and 'send_join_resp' within
the 'Assigner' subnet, as having the 'impartial' fairness property (these occur infinitely
often in any infinite occurrence sequence) and the remaining transitions as fair (these
occur infinitely often in all infinite occurrence sequences where they are infinitely
often enabled). Initially, retry limits were introduced in the 'Requester' and 'Assigner'

 112

subnets to remove the infinite occurrence sequences. State space analysis was
conducted again on the revised net producing the standard report sample in Table 6.3.

Table 6.3 'Standard state space analysis report following addition of retry limits'

Again, in the given state space calculation limit of six hundred seconds, the state
space explosion problem was encountered, resulting in the calculation of a partial
reachability graph. This time the 'Fairness Properties' section confirmed infinite
occurrence sequences had been removed. On inspection of the 'Boundedness
Properties' section, the presence of multiple tokens on places (rather than the expected
one token) indicated there was still a token generation problem leading to the
accumulation of tokens on the 'req' place in the 'Assigner' subnet.

6.3.3 Specification and Verification of Re-entrant Error Recovery
and Multiplicity

Use of simulation enabled the problem to be traced back to the timeout specified in
the 'Requester' subnet. The specified timeout relied on a reset following successful
receipt of an initial response message from the 'Assigner'. The re-entrant error-

 113

recovery process specified in the 'Assigner' subnet did not provide a mechanism for
resetting the 'Requester' timeout based on the failed request (i.e. no network addresses
available). No timeout reset resulted in erroneous join requests being generated for the
'Assigner' subnet to process. The original error recovery process specified in the
'Assigner' subnet (Fig. 6.7) was designed to loop back to the 'join req' place when no
network address was available and attempt network address allocation again.
However, initiation of this loop back should have reset the timeout in the 'Requester'
subnet associated with the first failed join request attempt.

Fig. 6.7 'Error recovery specification in Assigner subnet'

Doing so was viewed as inconsistent with the modular structure of the exchange
network parameters system-of-systems specification so an alternative specification
method was considered. Instead, the loop was removed from the net and an arc
inscription used in the 'Assigner' net to produce a reject request response from the
client node (Fig. 6.8). Receipt of this reject response would reset the timeout in the
'Requester' subnet and give the option to the client node of attempting the join request
again. In this way, modular self-consistency of the functions in the exchange network
parameters system-of-systems was maintained.

Fig. 6.8 'Amended Assigner net'

Once this timeout loop was removed from the net, its full reachability graph was re-
calculated in less than one second with ninety-four nodes, one hundred and fourteen
arcs and thirteen dead markings.

Multiplicity was then considered in more detail in this exchange network parameters
study by specifying one requester process and one assigner process. Simulation was
used to execute this model with one join request token to check its logic and

 114

behaviour. This token represented one new request for network configuration (e.g.
one client node) leading to execution of one instance of requester and one instance of
assigner processes. Two tokens were then used to represent two requests for network
configuration across the same one instance of requester and one instance of assigner
processes. This model could represent one physical client node with two network
interfaces making sequential configuration requests for each interface or it could
represent one logical client node and two independent configuration requests (again
sequential). This model highlighted the need for join request messages to have a
unique node identifier and a transaction identifier. Token overtaking was not
considered an issue in the case of one instance representing a physical host but would
require management in the logical scenario when timing was implemented in the net
and priority of requests to the control node was an issue.

Two instances of the client node process and one instance of the control node process
were then modelled. Simulation was used to execute this model with one join request
token for each client node process. These tokens represented two new requests for
network configuration (e.g. two client nodes) leading to concurrent execution of both
instances of requester and one instance of assigner processes. This model could
represent two physical client nodes making concurrent configuration requests to one
physical control node or a logical scenario as described in the first paragraph on this
page. Execution of this multiplicity model highlighted the need for a unique node
identifier in both the message and assigned to the process instance (so that messages
could be routed back to the correct originator from the control node), and the
possibility of token overtaking and need to manage this.

Two instances of the control node process and one instance of the client node process
were modelled next (even though the exchange network parameters standard implies
and subject matter experts confirm there should only ever be one active control node
per subnetwork). Simulation was used to execute this model with one join request
token for the client node process. This model could represent two physical control
nodes processing concurrent configuration requests from one physical client node or a
logical scenario as described in the first paragraph on this page. To capture the
dynamic host configuration protocol specification of the request reaching both control
node process instances (rather than being directed to a specific control node), a copy
of the request is produced for the interface place of each control node (these need to
be separate places rather than one shared one in order to specify that each control
node should process a copy of the request rather than having a non-deterministic
situation where all requests could be consumed by the same control node). Responses
are passed back to the client node from both control nodes, the client node selects one
and directs its response back using the control node's unique node identifier. This
model highlighted the need for join request messages and control node process
instances to have an assigned unique node identifier and message transaction
identifier; a wait process in the client node to accumulate, select, and discard offers
per request transaction; group requests by transaction identifier in order to configure
the timeout mechanisms; and to keep multiple instances in models to a minimum for
complexity purposes.

Finally, two instances of the control node process and two instances of the client node
process were modelled next (even though the exchange network parameters standard
implies and subject matter experts confirm there should only ever be one active

 115

control node per subnetwork). Simulation was used to execute this model with one
join request token for the client node process. This model could represent two
physical control nodes processing concurrent configuration requests from two
physical client nodes or a logical scenario as described in the first paragraph on page
114. To capture the dynamic host configuration protocol specification of the request
reaching both control node process instances, a copy is produced for the interface
place of each control node (these need to be separate places rather than one shared one
in order to specify that each control node should process a copy of the request rather
than having a non-deterministic situation where all requests could be consumed by the
same control node). Responses are passed back to the relevant client node from both
control nodes, the client node selects one response and directs its confirmation back
using the control node's unique node identifier. This model highlighted the need for
join request messages and control and client node process instances to have an
assigned unique node identifier; a wait process in the client node to accumulate,
select, and discard offers per request transaction; group requests by transaction
identifier in order to configure the timeout mechanisms; and to keep multiple
instances in models to a minimum for complexity purposes.

In all multiplicity cases, re-entrancy was specified per function rather than between
(interfaced) functions. Use of multiplicity highlighted a further requirements
clarification to [121] in terms of exchange network parameters information exchange
(listed on page 110).

6. Transaction and unique node identifiers present in join request messages and the
assignment of a unique node identifier to each process instance.

During the analysis of multiplicity specification using nets, net scalability issues were
demonstrated in the second study on exchange network parameters by gradually
increasing the number of instances of the 'Requester' subnet. It was found that toolset
performance was severely degraded when a total of sixty-seven subnets (incorporating
approximately three hundred and forty places) was reached (representing sixteen
client nodes). Both net readability and navigation were extremely difficult and time-
consuming and net scalability compromised.

In this section, the second study on exchange network parameters has shown that two
forms of analyses for coloured Petri nets can verify functional correctness of the
model they represent. These were execution of the net (simulation) and analysis of the
net's reachability graph (static analysis or model-checking). Following these analyses,
models can be amended and enhanced, improving design quality. Simulation and
static analysis applied to the models also helped to identify incompleteness in the
[121] standard (identifying six requirements clarifications) and explicitly specify the
information exchange protocol within the exchange network parameters join request
and response problem using multiplicity. Scalability issues with nets were highlighted
during examination of multiplicity specification and re-entrancy was found to be an
issue when error recovery specification involved updating state dependencies between
interfaced modules.

 116

6.4 Addition of Timing to Petri Net Model
As demonstrated by the telephone (Appendix C) and close air support (section 5.4)
exercises, time-dependent actions such as timeouts, processing delays or deadlines are
essential to capture the efficiency or performance of a system and facilitate validation
of its design. As well as efficiency specification, time-dependent actions also enhance
a system's behaviour specification in terms of correctness and completeness. Activity
ordering alone is insufficient to capture overall system behaviour precisely. Tokens
representing information in larger-scale systems will be processed according to the
time they entered the system, time involved in their consumption and generation, and
involvement in delays and transfer failures. Timing will be needed to specify the
ordering multiple tokens receive over and above any activity sequence they
experience.

Currently, the exchange network parameters problem has been specified at an
operational process (analysis) model level of abstraction and used as the first stage in
large-scale, system-of-systems development. Typically, this viewpoint is useful for
gaining a shared understanding of the problem concept and the intended technical and
non-technical audience would include analysts, developers and domain users. The
introduction of timing information to the problem at this abstraction level would help
enable domain users and developers to decide whether the modelled concept was
efficient and adequate for input into the design stage. Assessing performance would
involve checking if the modelled processes reached desirable behaviour states
(including recovery from undesirable states) within realistic time and resource
estimates. Improving the efficiency of the process means looking for new or different
ways to realise desirable behaviour within defined time, cost and quality parameters.

To examine alternative options for the process, it was necessary to determine the time,
cost and quality performance indicators for the exchange network parameters (new
network client node arrival) process and implement these in the model. Examples of
these indicators include join request fulfilment time, communications resource usage
(and related costs), and successful join request fulfilment time within a certain time
limit. The natural inclination would be to minimise the first two and maximise the last
one but all three need to be taken in context with the strategy of the system-of-systems
involved. In the case of exchange network parameters dynamic network
configuration, it is essential to understand the economic and operating environment
for which it is used, and which (if any), of the performance indicators carries more
weight than the others.

In the exchange network parameters example, as the system-of-systems was specified
originally from a planner's point-of-view, it is assumed that they are concerned with
striking a trade-off between quality and cost parameters for dynamic network
configuration. Depending on the criticality of the mission to be supported by dynamic
network configuration, this may mean the planner would be interested in maximising
successful join request fulfilment and communications resource allocation without
necessarily maximising join request fulfilments on first attempt for new network
participants (requesters). If these are the desired parameter outcomes, a planner may
use the design models to identify platforms with existing communications equipment
able to satisfy these outcomes in the supported mission's operational environment.

 117

Dynamic analysis (simulation) is used in conjunction with timing in the net. Timing
delays were introduced at various intermediate places within requester and assigner
processes using both stochastic and deterministic distributions to represent random
request placement and delays between each activity in the overall exchange network
parameters (new network client node arrival) process. Transmission duration between
role processes was captured for the send and receipt of a join request. A record
declaration was used for each join request in order to store the model time at which
the 'send_join_request' activity executes. This was viewed as the start of the attempt
by the underlying communications infrastructure to connect the requester with the
assigner. Again, a time delay was introduced here to the record token to represent the
delay of the underlying communications infrastructure. The toolset data collection
functionality was used to compare the model time following execution of the
assigner's 'receive_join_req' transition (Fig. 6.9) with the start time of the transmission
of the request.

Fig. 6.9 'Requester and assigner performance analysis subnets and transmission
duration'

Average transmission duration information can be used to setup a realistic timeout
delay (and specify recovery, in the case of a join request resend, together with resend
attempt limit) in the model to be enabled once the join request is sent. The
transmission duration thresholds will vary depending on the underlying
communications infrastructure used to carry the network join request. On the internet,
end nodes normally use an ethernet-based backbone [123] as a fixed or wireless
communication mechanism, [121] focuses on combat net radio as the communications
mechanism between military platform nodes. Timing could be advised from their real-
world implementations. If a resend limit is reached following successive timeouts
between requester and assigner nodes, possible reasons for such a failure could be
specified (as requirements for a successful implementation of this system-of-systems).
For example, participant nodes' communications software implementations would
have to support the protocols necessary for dynamic configuration; relay and routing
mechanisms would be necessary to accommodate physical network communication
barriers such as line-of-sight or subnetworks; and a degree of redundancy in control
nodes distributing network configuration parameters would be expected.

 118

In order to capture the duration of a successful join request fulfilment, toolset data
collection functionality was used to observe the 'client_configured' transition in the
'Assigner' subnet (Fig. 6.10). When the transition fired with bindings of an accepted
request, the current model time was captured. This model time represents the duration
for successful client node configuration. Factors influencing this duration would be
message transmission times, process activity selection and ordering, and process
activity duration times (some of these would be influenced by the number of resources
undertaking an activity, availability of network addresses, accuracy of network
address allocation and supplied configuration data, and join request acceptance
criteria).

Fig. 6.10 'Capture of model time for client_configured transition'

Analysis-of-alternatives, as conducted for the first case study on close air support
(section 5.4), could be used to allocate known existing physical assets to activities;
obtain the associated costs per activity, per process, and overall; and apply this
knowledge to the process-based model. For example, allocating combat net radio as
the underlying enabling communications mechanism may be at a cost of x amount to
the military. Using the process modelled with Petri nets in Fig. 6.11 (now tailored for
exchange network parameters), obtaining the average message transmission time
associated with line-of-sight combat net radio, the average duration for each activity,
the probability of transmission failure in the join request process (currently specified
as 10%), and the probability of join requests made that are accepted (currently
specified as 90%), the average successful join request duration can be calculated and
linked to resource cost. Fig. 6.12 illustrates the use of automatic simulation
replications on the net of Fig. 6.11 to calculate an average successful join request time
based on the probabilities given above and the message transmission time results
using the discrete distribution. With multiplicity, simulation can be used to estimate
effect on average successful join request times with multiple physical client node
processes executing and interacting with one control node process.

 119

Fig. 6.11 'Exchange network parameters performance analysis parent net'

Discrete Distribution (Data Collection
Monitor: Req_Success_Monitor)

REP 1 (30 time units)

6 possible successes, 3 simulation replications:
4 successes, avg. 227.25 time units.

REP 2 (15 time units)

6 possible successes, 3 simulation replications:
3 successes, avg. 120.33 time units.

Fig. 6.12 'Automatic simulation replication used to calculate average duration for a
successful join request'

Considering the specification of exchange network parameters as supplied by [121],
the overall process is shorter than that specified by the dynamic host configuration
protocol. This is due to there being one control node providing a response to the initial
join request rather than multiple offers being provided by more than one control node
(and subsequent selection of a control node from which to accept an offer). Checking

 120

for in-use addresses prior to issue and acceptance of an address offer is undertaken by
control and client nodes in the dynamic host configuration protocol specification but
only by the client node in exchange network parameters (via an accept response). This
means the onus is with the control node to maintain as accurate a record of client
nodes and their associated network addresses as possible.

In exchange network parameters, when a client node obtains an accept response and
network parameters including a network address, the response is directed to all
subnetwork nodes. Based on simulation of the model, it was detected that it is
possible for a control node to offer an address to a client node and fail to receive
confirmation of its successful configuration in time. If the address is then marked as
available and offered to another incoming client node, duplicate addresses will exist
on the subnet. This situation can be avoided by explicitly stating in the standard that
the timeout value has to be of suitable duration to allow a client node to confirm its
successful configuration, or not to re-use offered addresses, and that a client node
should ensure that it ceases to use its allocated address upon receipt of a 'reject from
subnetwork' message from the control node. Use of timing highlighted a further
clarification to [121] in terms of exchange network parameters logic and behaviour
specification (listed on pages 110 and 115).

7. Adequacy of timeout to allow client node to confirm successful configuration,
and/or control node refraining from re-using offered network addresses; and client
node must stop using network address upon receipt of a subnetwork reject message
from control node.

It should be noted that although simulation was primarily used in this section to
validate the models, it is also possible to conduct static analysis (as per
recommendations from the telephone example in Appendix C) to verify their
correctness.

In this section, timing in coloured Petri nets has been used to enhance correctness,
specification completeness (identification of additional requirement clarification to
[121]) and conduct performance analysis. Use of timed colours (types), and suitable
inscriptions on output arcs (in conjunction with stochastic or deterministic functions)
help to specify duration of activities (and execution control flow) such as information
exchange, and timeout error recovery in the event of a communications failure.

6.5 Design and Architectural Levels of Abstraction for
Exchange Network Parameters

Sections 6.2-6.4 have focused on using Petri nets to specify the exchange network
parameters process at an analysis level of abstraction. Hierarchy and timing have been
added to further enhance a specification in terms of scalability, understandability,
readability, correctness and completeness. Both model-checking and simulation were
employed iteratively in verification and validation of the constructed analysis level
net. Before deciding if the criteria for success in relation to the exchange network
parameters study have been met and conclude chapter 6, Petri nets are checked to see
if they can address the problem of specifying exchange network parameters at design
and architecture levels of abstraction. This is the objective of this section.

 121

6.5.1 The Design Level
The purpose of the design level of abstraction is the lead into the specification of a
solution to the problem described by the analysis level. Again, a functional
decomposition approach was used. This time it was used in conjunction with the
parent net developed for the analysis level to think about how this net's main activities
(e.g. 'Request_to_Join' and 'Distribute_NW_Data' would eventually be realised by
physical implementations. To keep the design flexible, two components,
'Make_Join_Request Component' and 'Assign_NW_Data Component', were used to
depict the solutions that would realise each of the main activities. These are shown in
Fig. 6.13.

Fig. 6.13 'Design level parent net'

It can be seen that Fig. 6.13 closely resembles the parent net of the analysis level
except for the new place colours (types). The next level of design decomposition for
the two components aimed to capture the functional service(s) each would be
expected to realise. Again, work developing the analysis level net helped suggest
functional services for the design level by thinking about the purpose of the processes
used to realise the main activities. 'Make_Join_Request Component' would be
responsible for providing join request setup, initial join request response, client node
confirm offer setup, control node confirm response, and client node final confirm
setup services. 'Assign_NW_Data Component' would be responsible for providing
join request response, initial join request setup, client node confirm offer response,
control node confirm setup, and client node final confirm response services. These
services are shown at the next lower abstraction level providing greater detail in Fig.
6.14.

 122

Fig. 6.14 'Services of Assign_NW_Data_Component'

Having introduced the components and functional services at the design level, the
next lower abstraction level providing greater detail, i.e. detailed design or
architecture was focused on. Rather than develop a separate model at this stage, as the
architecture level appeared to naturally manifest the next lower abstraction level of
the design level, the design level model was further decomposed to capture the
architecture level.

6.5.2 The Architecture Level
The purpose of the architecture level is detailed design of the services identified at the
design level and flexible capture of the components required to realise these
individual services. Constituent components were considered for each functional
service resulting in the identification of a common component pattern for the six
services associated with client node join request-response. The common components
consisted of an asset communications interface, transmit and receive (network)
interfaces, and a communications controller interface to co-ordinate the sequencing of
activities to and from the other two common components. The common component
architecture is shown for the 'Process_Join Service' in Fig. 6.15.

Fig. 6.15 'Join architecture'

 123

From Fig. 6.15, it can be seen that net places are used capture the input and output
information for the user interface, network and controller common components.
Colour (type) definitions were lifted for re-use from the telephone (Appendix D) and
close air support (section 5.5) example nets and adapted accordingly (definition labels
reflect the nature of the interface, e.g. 'NWMsg' aims to reflect that places associated
with this type are both input and output interfaces to asset network communications
interface components). The intention with this labelling convention was improved net
clarity and comprehension. Place types were based on character strings rather than
enumerated types for flexibility reasons. The tuples in the type were populated with
the functions implemented by each common control component and the associated
parameters via logic on transition output arcs. Logic on transition output arcs within
each of the common components was amended as necessary. As an example, consider
the network transmit common component in Fig. 6.16.

Fig. 6.16 'Receive common component subnet'

Fig. 6.16 shows the subnet of the receive common component. Its transition is
labelled as 'RECEIVE OPN' to reflect the function the component provides to the
controller component. On the transition output arc (within the transmit component
subnet) to the output interface place ('TxOUT'), there is logic to output a token with
'NWopName' (a tuple within 'NWMsg' compound type) populated with required
functions such as 'RECEIVE REQUEST' or 'RECEIVE ACCEPT'. In this way, the net
specifies use of the receive component's 'RECEIVE OPN' function by the transmit
component more explicitly. The 'NWparams' tuple within 'NWMsg' is populated with
values relevant to the function of the message described by 'NWopName'. 'ID' is
populated to differentiate between initiated join requests. The other two common
components, communications interface and controller, are designed to reflect the
same interface principles as those discussed above for the network components.

Considering the original parent net of the design level in Fig. 6.13, the specification of
the exchange network parameters process at this level was across fewer model
subnets. When the architecture level of Fig. 6.15 was reached and the next lower
abstraction level providing greater detail of the common component interfaces was
completed, the modeller was extremely conscious of the requirement to manage the
levels of abstraction. The toolset can present each level of abstraction as a separate

 124

page within a folder (or binder). These pages can be selected between using their tabs.
By the common component interface level of abstraction for the request and
assignment services, thirty-three pages and tabs were present and it was tedious work
identifying and selecting relevant pages. At this stage, experience gained with the
telephone (Appendices A-D) and close air support (section 5.5) examples was used to
rationalise the model where possible, making use of the toolset's features and those of
hierarchical coloured Petri nets. The main source of rationalisation was the common
component interface nets.

6.5.3 Verification of the Design and Architecture Levels and
further Specification

At this stage, simulation was employed to check the structure and logic of the model
and was able to detect incorrect logic on transition output arcs. Errors included:
missing or incorrect predicates (highlighted by incorrect or missing display
notifications for the common communication interface component or incorrect
information messages for the network component); and missing initial values on input
places required by common component interfaces.

The necessary corrections were made and static analysis based on one initiated
request performed. One error was highlighted through model-checking and
production of a full state space calculation. The original standard report from the
toolset produced four dead markings, one of which indicated that a reject result was
sent from the 'Make_Join_Request Component' only when the component had
received a rejected request response from the 'Assign_NW_Data Component'. Upon
investigation it was discovered that logic was missing in the 'Comms Controller IF'
component to produce this message randomly based on receipt of an accepted request
response. This logic relates to the fourth omitted requirement (list on page 110) in
[121] where the client node should be able to reject a response from a control node if
there is reason to believe it is unauthorised.

In this section, coloured Petri nets and hierarchy were used to specify the new
network client node arrival sub-function of exchange network parameters at design
and architecture levels of abstraction, i.e. the solution specification level. From Figs.
6.13-6.16 above, net places capture state in terms of the information input and output
to net transitions (activities); net colours (types) define the structure of the
information used by activities (operations and parameters); net arc inscriptions govern
the information required and produced by activities (including operations needed
between components); net arcs dictate the control flow of execution i.e. the order of
activity execution and information exchange; toolset hierarchy facilitates levels of
abstraction within the model (at the design level component and services, at the
architecture level common components realising design level services) and offers
instantiation for re-use of existing subnets; toolset colour palette and annotation
improves readability of nets; and finally, dynamic and static analyses permit
verification and validation of the models.

In terms of scalability, a model of one exchange network parameters sub-function
with thirty-three subnets and approximately eighty places (and being kept as generic
as possible employing instantiation) permitted calculation of a full state space graph.

 125

6.6 Evaluation of Exchange Network Parameters Study
The design objective of the exchange network parameters study was derived from
chapter 1's second criteria for success. This stated that the strengths and weaknesses
of Petri nets regarding the greater formalism of dynamic behaviour in systems-of-
systems and the role of Petri nets as a means of engaging stakeholders were to be
determined. Following the case study design again from chapter 3, nets have been
used to specify, verify and validate the military exchange network parameters
problem. As specified by the study plan, data (evidence) was collected at design
iterations of each model using screenshots of the model and simulations, standard
reports from CPN Tools, model source code from CPN Tools, and project team notes.
This evidence was presented in the report of the study in this chapter and discussed
further in this section.

6.6.1 Quantitative Results
These related to the third criteria for success and the first research question, i.e. do
Petri nets improve the functional correctness of the system-of-systems design
specification? The functional correctness response variables were expressed in terms
of the number of errors detected by simulation, and number of errors detected by
static analysis. In addition, for this study, functional correctness was also conveyed by
the number of requirements clarifications highlighted for the standard [121]. This data
was captured from the CPN Tools integrated development environment at each
iteration of model design through simulation (and screenshots, note-taking) or
reachability graph calculation (and CPN Tools standard analysis report, screenshots,
note-taking). An overview of the results is shown in Table 6.4.

Criteria for Success
Goal 3 /
System-of-System
Engineering Level

Simulation
Number of Errors
Detected

Static Analysis
Number of Errors
Detected

Resulting number
of clarifications to
the standard

Analysis 5 2 7
Design and
Architectural

2 1 0

Table 6.4 'Quantitative results from exchange network parameters study'

From Table 6.4 it can be seen that use of simulation detected seven functional errors
during the specification of exchange network parameters. With textual or UML-based
specification, given the nature of the errors detected through simulation of the Petri
net model, it would have been extremely difficult to detect the same errors using both
these means of static specification.

Use of static analysis detected three functional errors in the specification of exchange
network parameters. As well as the seven errors detected using simulation, static
analysis was able to detect infinite looping and token generation within a model and
localise the part of the net where the problem was. From examination of the errors
detected by static analysis at the system-of-systems engineering analysis level, it can
be seen that if the same errors were not detected using simulation, they would have
been detected through calculation of the reachability graph for the net. In this way,
static analysis offers a means of exhaustively checking a net on behalf of the modeller
but the modeller needs to know how to interpret the analysis report in order to isolate

 126

the detected errors and this is a time-intensive process. The modeller also needs to be
aware of the state space explosion problem and means of largeness avoidance
(previously discussed in chapter 5 and Appendices B-D).

Given CPN Tools in its standard form, simulation (or the Petri net 'token game') is a
more intuitive means of stepping through the behaviour of a model (depending on its
size) to check its functional correctness. It was used as an initial means of model
verification prior to conducting static analysis so that detected errors could be
corrected, potentially helping to alleviate the state space explosion problem, and
simplify the analysis report.

Both forms of analyses also contributed to the identification of seven enhancements
(listed on pages 110, 115, and 120) to the existing exchange network parameters
standard [121].

6.6.2 Qualitative Results
These related to the first and second criteria for success and the second and third
research questions, i.e. do Petri nets increase the quality of the design specification,
and what are the shortcomings of the state-of-the-art Petri net tool and how can it be
improved? The design quality response variables were expressed in terms of
comprehensibility (e.g. use of hierarchy, annotation, timing), and scalability. This data
was captured from the CPN Tools integrated development environment at each
iteration of model design through screenshots, and note-taking. An overview of the
results is shown in Table 6.5.

Criteria for Success Goal 1&2
/
System-of-System
Engineering Level

Comprehensibility
Hierarchy, annotation, timing

Scalability

Analysis Able to express problem
(operational process, including
timing specification) using CPN
Tools. Visually, net difficult to
read for non-practitioner (need
for best practice in terms of
layout).

Yes
(multiplicity specification used
to demonstrate toolset
scalability issues for a net of
sixty-seven subnets,
approximately three hundred
and forty places i.e.
representation of sixteen client
nodes).

Design and Architectural Able to express solution design
(including timing specification)
using CPN Tools. Again, net
difficult to read for non-
practitioner.

Yes.

Table 6.5 'Qualitative results from exchange network parameters study'

These qualitative (and quantitative) results in relation to the criteria for success
defined at the beginning of this section are now evaluated further. The first and third
criteria with metrics relating to the gaps in Petri net specification knowledge
(identified from the first study) are focused on.

1. Abstraction

 127

In terms of UML 2.0's activity diagram, activity decomposition, cardinality, and
allocation can be specified.

In terms of the Petri net formalism, activity decomposition can be specified using
high-level Petri nets with hierarchy. Implementations of Petri nets with hierarchy
include substitution transitions, and place and transition fusion.

Results from the second study (exchange network parameters specified using CPN
Tools) indicate that hierarchy needs to be determined in advance of modelling. In the
study, exchange network parameter and dynamic host configuration protocol
messages were used in a bottom-up approach to derive hierarchy from the suggested
message functions. Hierarchy was defined for models at the system-of-systems
engineering level (analysis, and design and architectural) as well as within models (a
hierarchy based on function was used).

CPN Tools implementation of coloured Petri nets with hierarchy uses substitution
transitions and fusion places. Substitution transitions were used primarily for
abstraction as the sockets and ports used by this method were viewed as a means of
explicitly specifying required and provided interfaces to the decomposed transition.

The study confirmed there was no explicit composition, cardinality, or allocation
concrete notation with nets. The present means of achieving these in CPN Tools
would be annotation and/or extra net elements. Extra net elements are needed to
capture multiple allocations.

2. Modularisation
In terms of UML 2.0's activity diagram, modularisation can be specified using class
and activity diagrams. Class and collaboration diagrams can also be used to specify
provided and required interfaces between classes.

In terms of the Petri net formalism, modularisation can be specified using high-level
Petri nets with hierarchy. Implementations include substitution transitions, and place
and transition fusion.

Results from the second study (exchange network parameters specified using CPN
Tools) indicated modularisation was primarily achieved using substitution transitions
(and port and socket places) to represent component system interfaces.

Information exchange protocol was described between and within component systems
using colours (types) to define the exchanged information and net elements (places,
transitions, arcs, arc inscriptions, annotation) to specify the control of the exchange.

CPN Tools makes no provision for model re-use (e.g. searching for suitable existing
models to use in a bottom-up approach) and their management (e.g. versioning).

Data items input (output) by activities can be specified through colours (types) and
variable bindings. Cardinality needs to be specified through annotation.

3. Data typing

 128

In terms of UML 2.0's activity diagram, classes defined previously in class diagrams
specify data typing.

In terms of the Petri net formalism, timed, high-level Petri nets specify data typing.

Results from the second study (exchange network parameters specified using CPN
Tools) indicated that CPN Tools implementation of timed, coloured Petri nets enabled
capture of the information needed for the case study using a combination of simple,
compound, and timed colours (types). There was no ability to refer to variable values
unless the same variable bindings were propagated through the entire net.

There is no equivalent one diagram, static description in nets. Operations (and the
required parameters) provided by system components were made more explicit using
arc inscriptions and annotation, and their associated data types were provided by local
place colours (types).

4. Adequate toolset implementation
In terms of UML 2.0's activity diagram, many open source and commercial toolsets
offering various levels of integrated UML development exist.

In terms of the Petri net formalism, several implementations of high-level Petri nets
offering various levels of integrated net development exist.

Results from the second study (exchange network parameters specified using CPN
Tools) indicated that CPN Tools provided a useful integrated net environment for the
specification of systems-of-systems but shortfalls were identified in the areas of:
improved analysis reports, examples and best practice, and large model support
(navigability, syntax-checking, versioning, error-reporting, and animation).

5. Timing
In terms of UML 2.0's activity diagram, extension via the Profile for Schedulability,
Performance, and Time (to be replaced by Profile for Modelling and Analysis of Real-
time and Embedded Systems) is needed in order to specify (non-functional) timing
properties. The resulting activity diagram is static so performance analysis, or
investigation into analysis-of-alternatives is only achievable through model
conversion.

In terms of the Petri net formalism, timed, high-level Petri nets with hierarchy specify
timing information.

Results from the second study (exchange network parameters specified using CPN
Tools) were based on CPN Tools implementation of timed, coloured Petri nets with
hierarchy. Stochastic and deterministic functions within the toolset were used to
introduce random placement of requests, delays, and timeouts. Time, cost and quality
performance indicators need to be identified in advance of the analysis.

Simulation was used in conjunction with toolset monitors in the performance analysis
net to show that it is possible to derive average successful join request fulfilment
duration using automatic simulation. Timing was primarily used to reflect

 129

deterministic and stochastic activity durations for the purposes of performance
analysis.

6. Verification and validation
In terms of UML 2.0's activity diagram, there is no full formal syntax and semantics
and diagrams cannot be executed (static inspection verification and validation).

In terms of the Petri net formalism, there is formal syntax and semantics and nets can
be executed using a well-defined execution algorithm (simulation). Additionally,
exhaustive verification can be achieved by calculating the reachability graph of the
net and checking structural properties such as deadlock. Timed, coloured Petri nets
and simulation were used to conduct performance analysis.

Results from the second study (exchange network parameters specified using CPN
Tools) were based on CPN Tools simulation modes for initial investigations into
analysis, and design and architecture model erroneous behaviour (seven errors were
detected: missing reset logic; incorrect predicates; and missing initial values),
performance analysis (the calculation of average successful join request fulfilment
time was demonstrated using automatic simulation replications), and incomplete
specification (for the examined subset of exchange network parameters, seven omitted
or implied requirements from the standard were highlighted).

For large system-of-systems models, interactive simulation was time-intensive. This
was managed by building nets incrementally and simulating the new net elements.
Simulation can be used to check the behaviour of an entire model and analyse
performance where timing is used but it cannot exhaustively verify the correctness of
the entire model.

CPN Tools was used to calculate reachability graphs for analysis, and design and
architecture nets (three errors were detected: infinite looping; no retry limits; and
missing logic to reset timeouts). Modeller experience helps significantly in
interpretation of the analysis report produced by CPN Tools and to highlight
unexpected analysis results. It is unlikely that all these errors would have been
detected within the UML activity diagrams using static inspection alone.

Model-checking means ignoring parts of the system-of-systems either through
abstraction or considering a subset of the system-of-systems. However, model-
checking is automatic and exhaustively checks the model.

7. Precision in specification of requirements (scalability, concurrency, state-based
specification, information-based specification, event-based specification)
In terms of UML 2.0's activity diagram, it has intuitive, graphical concrete syntax but
does not have fully formal syntax and semantics. Activity diagrams can be used for
concurrent, scalable, state, event, and data-based specification (in conjunction with
class diagrams).

In terms of the Petri net formalism, timed, high-level Petri nets are used for
concurrent, state, data, event-based specification. Petri nets scalability requires careful
management due to their limited concrete syntax.

 130

Results from the second study (exchange network parameters specified using CPN
Tools) indicate that at the system-of-systems design level, systems-of-systems have
non-streaming activities, i.e. terminating, discrete-event (rather than continuous)
where items are accepted at the start of activity execution, processed, and output at the
end of activity execution. Specification of continuous or streaming activities (i.e.
activities dealing with inputs and outputs continuously during their execution) would
require stochastic Petri nets.

In the study, nets were developed to specify analysis, and design and architecture
models of exchange network parameters. At analysis level, operational processes were
described. This led into solution specification at design and architecture levels. Again,
these levels described process-based information exchange with associated events,
probabilities and states. The specification was unambiguous in the structural sense.

Tokens are not accepted by transitions in process of execution and can be queued.
More than one token input can be specified to a transition but it is not possible to
specify acceptance of one token and then a late token. Multiple outputs can have
probability applied to them. There is no concept of persistent data store accessible
across transition executions.

In CPN Tools, colour (type) definitions exist independently of the activities they are
used in.

Due to their generic concrete syntax, nets rely on extra net elements and annotation
(in comparison to activity diagrams) to relate domain and system specification
concepts (e.g. iteration, decisions, cardinality, operations, parameters, constraints).
This means resulting nets are much larger than the equivalent activity diagram and
can lead to scalability issues unless carefully managed. Scalability issues were forced
in exchange network parameters when multiplicity was examined at the analysis level
of abstraction for sixty-seven subnets and approximately three hundred and forty
places. Toolset syntax and semantic-checking duration and editing response times
increased significantly. Manageability and navigability of nets within the toolset were
severely compromised.

The exchange network parameters study examined multiplicity of processes realising
functions. Specification of multiplicity to reflect multiple, concurrent physical entities
was achieved using toolset instantiation of processes. It was necessary to ensure
tokens produced for equal consumption by multiple processes were output to input
places dedicated (rather than shared) to each process. Simulation of nets specifying
multiplicity aided completeness specification in terms of information exchange
content.

The study also investigated re-entrancy and it was found that due to the modular
nature of system-of-systems specification re-entrancy was easier to implement within
modules or to specify alternative courses of actions in separate models where this was
not possible.

Overall case study results are presented in Table 6.6.

 131

System-of-Systems Modelling
Need

UML Activity Diagram Petri Nets

1. Precision in requirements
specification

 Formal syntax & semantics No. Yes.
 Process-based Yes. Yes.
 Multiplicity Yes. Yes (toolset instantiation

feature).
 Re-entry Yes (requires management). Yes (requires management).
 Discrete Yes. Yes (timed coloured nets.

Continuous time activity
specification may be required at
system level & timed stochastic
nets would be needed for this).

 Data flow Yes. Yes.
 Resource usage No. Yes.
 Scalable Yes. No (requires management).
 State Yes. Yes (to a greater extent than

UML).
 Control flow Yes. Yes.
 Concurrency Yes. Yes.
 Independent activity
description

Yes. Yes (separate net).

 Independent data description Yes. Yes (colours).
 Persistent data No. No.
 Interfaces Yes (plus class diagram). Yes (annotation & hierarchy).
 Information exchange protocol Yes (plus schedulability

profile).
Yes (timed nets).

 Analysis size More compact than nets. Larger models than UML.
 Design & Architecture size More compact than nets. Larger models than UML.

2. Verification and validation
 Formal syntax & semantics No. Yes.
 Static inspection Yes. Yes.
 Dynamic inspection
(simulation)

No. Yes.

 Behaviour checking Yes (including detection of
behavioural gaps).

 Performance analysis Yes (timed nets).
 Analysis-of-alternatives Yes (timed nets).
 Exhaustive analysis No.
 Complete specification Yes (constrained by net size).
 Reachability graph calculation No. Yes.
 Structural properties Yes (e.g. deadlock,

boundedness).
 Temporal logic queries Yes (e.g. correct protocol).
 Largeness avoidance Yes (abstraction, net division).
 Exhaustive analysis Yes.
 Complete specification No (dependent on scope).
 QoS Yes (plus QoS profile). Yes (annotation).

3. Abstraction
 Decomposition Yes (plus class diagram). Yes (substitution transitions &

fusion places).
 Activity composition Yes (plus class diagram). Yes (annotation, separate net).
 Cardinality Yes (plus class diagram). Yes (annotation, separate net).

 132

System-of-Systems Modelling
Need

UML Activity Diagram Petri Nets

 Allocation Yes (swim lane). Yes (annotation).

4. Modularisation
 Interfaces Yes (plus class, collaboration

diagrams).
Yes (substitution transitions,
fusion places, & colour).

 Information exchange protocol Yes (plus class, collaboration
diagrams and schedulability
profile).

Yes (timed nets).

 Top-down, bottom-up support Yes (top-down), Yes (bottom-
up).

Yes (hierarchy & cloning).

5. Timing
 Duration, timeout, arrivals Yes (plus schedulability

profile).
Yes (timed nets, deterministic &
stochastic functions).

 Static Yes. No (simulation).

6. Data typing
 Domain concepts Yes (plus class diagram). Yes (timed, coloured nets).

Table 6.6 'Summary of overall case study results'

6.6.3 Evaluation Conclusions
From the results in Table 6.6, in terms of the first criteria for success, 'Precisely
specify the exchange network parameters example (research questions 2 and 3), Petri
nets were used again in a top-down engineering approach to unambiguously
(regarding model structure) capture the system-of-systems problem and solution
spaces and the operational processes, component systems and information exchange
involved. A bottom-up approach was used to help identify the functional hierarchy
used in the models from the existing exchange network parameters and dynamic host
configuration protocol message sets.

Different abstraction levels were used to describe process-based information exchange
with: associated events; component system interfaces; states; type of information
exchanged; information exchange protocol; execution control flow; initial request
arrival timing, event durations and timeouts; interfaces and operations used by
component systems; and potential failure or success states (e.g. underlying
communications failure, successful join request response) together with their
probability.

As well as reinforcing the results of the first study on close air support for the first
criteria for success (section 5.6.3), the second study on exchange network parameters
was used to explore the shortfalls the first study did not cover (section 6.3). The
metrics of the first criteria refer to the ability of nets to specify multiplicity and re-
entrancy.

Specification of multiplicity contributes to development of a model closer to a real-
life scenario and use of simulation in conjunction with multiplicity can help the
modeller detect omitted logic, information or behaviour. In the case of the second
study on exchange network parameters, specification of multiplicity was achieved
through the toolset instantiation feature and consideration of multiple request tokens.

 133

Multiplicity enabled detection of omissions in the exchange network parameters
standard. Use of multiplicity together with simulation for performance analysis
purposes can also enhance verification and validation of models. This is discussed
later in this section under the third criteria for success. It was noted that use of
multiplicity can quickly lead to increased model complexity and its specification
benefits from an incremental process such as the one followed for the second study
(i.e. using a minimum number of instances for each process in order to check
modelled behaviour).

From the examination of multiplicity, the second study also strongly suggested that
the scalability of Petri nets needs careful management, attributable to their generic
concrete syntax. Nets rely on extra net elements and annotation (in comparison to
activity diagrams) to relate domain and system specification concepts and can quickly
become complex and difficult to read in terms of the number of elements and
associated annotation.

The other shortfall referred to by the metrics of the first criteria for success relates to
the ability of nets to specify re-entrancy. It was noted that while it is possible to
capture alternative courses of action like error recovery, if the model is partitioned
into modules using hierarchy ports and sockets, it can be difficult to facilitate cross
partition adjustment of net elements that are not interfaced. Even if place fusion is
implemented, re-entrancy creates dependencies between modules in addition to their
information exchange interfaces. Re-entrancy is easier to capture if it can be self-
contained within a module. In the second study, capturing the error state within a
subnet and then specifying a means of recovery in a separate net was a more
satisfactory error recovery specification method.

For the second criteria for success, 'Determine the scalability of the exchange network
parameters system-of-systems model implemented using Petri nets (research question
2)', the first study indicated Petri nets do not scale well according to the size of the
system to be modelled. The second study also highlighted scalability needs careful
management. Performance issues related to toolset navigability were encountered at
the analysis level when considering multiplicity for sixty-seven subnets and
approximately three hundred and forty places. Due to their generic concrete graphical
syntax, nets tend to use extra net elements and annotation to relate domain and system
specification concepts (e.g. iteration, decisions, cardinality, operations, parameters,
constraints). This means the resulting net is much larger than the equivalent UML
activity diagram (that can also lead to decreased readability) leading to these
scalability issues.

For the last criteria for success, 'Confirm if the same Petri net verification and
validation techniques used in the telephone and close air support exercises are
effective in the exchange network parameters system-of-systems specification models
(research question 1)', CPN Tools was used to explore verification and validation of
the second study on exchange network parameters specifications at the analysis,
design and architecture levels of abstraction. Both studies on close air support and
exchange network parameters highlighted the fact that reachability graph calculation
provides exhaustive verification but only across a restricted (in terms of model size
and detail) specification. In comparison, simulation provides verification across the

 134

whole specification (constrained by model size, toolset, and underlying hardware) but
is not an exhaustive means of checking model correctness.

The use of simulation detected token overtaking, incorrect predicates, missing timeout
resets, missing retry limits, and missing initial values specification errors in the
exchange network parameters system-of-systems. In addition, use of interactive
simulation (together with detecting and correcting errors) helped to engage domain
users and highlight omissions and implied requirements in the referenced standard
[121]. These errors and omissions would not necessarily be highlighted during static
inspection of the equivalent UML activity diagrams. When timing and probability
were introduced into the exchange network parameters nets, simulation could be used
to undertake performance analysis (the calculation of the average successful join
request fulfilment time was demonstrated based on automatic simulation replications).
Multiple instances of a process can be introduced into nets to specify the interaction
of multiple physical entities realising functions. When simulated, model behaviour
can be checked again for omissions in referenced standards (e.g. in the second study
on exchange network parameters, specification of multiplicity highlighted the need for
transaction identifiers and unique node identifiers to be assigned to process instances
as well as messages) and efficiency. Performance analysis with multiplicity allows the
modeller to consider the effect of multiple instances on overall or individual process
duration. Again, this analysis is not possible with activity diagrams.

As mentioned, simulation is not an exhaustive method of checking model behaviour is
correct and complete. Reachability graphs for the exchange network parameters
analysis, and design and architecture models were calculated for this purpose. As
indicated in Table 6.4, reachability graph analysis detected three errors in the
exchange network parameters system-of-systems specifications (infinite looping, and
missing logic). If these errors had not been detected by simulation, reachability graph
analysis would have alerted the modeller to their presence. Exhaustive verification is
not possible on native activity diagrams.

Following execution of the second study on exchange network parameters, the
benefits of the Petri net formalism remain as indicated by the first study on close air
support, and are:

1. Analysis capability. Constructing models using Petri nets allows the modeller to
apply simulation and reachability analysis techniques to the models and check them
for correctness, and completeness.
2. System-of-systems specification capability. Petri nets enable unambiguous
specification in terms of model structure and have extensions permitting capture of
the attributes desirable for system-of-systems requirements specification.

The weaknesses of the Petri net formalism are:

1. State space explosion. Calculation of a Petri net model reachability graph is an
exhaustive means of correctness-checking but is subject to the logical structure of the
model. Successful calculation can be helped by largeness avoidance techniques
discussed in Appendices B-D and the case study on close air support in section 5.5.3.
2. Scalability and readability. The generic concrete syntax of Petri nets means
resulting models tend to be large and potentially more difficult to interpret. Successful

 135

specification using nets requires management of the system-of-systems problem and
solution scopes prior to model construction and implementation of a best practise
strategy governing their creation and management.

For organisations using Petri nets in the specification of systems-of-systems, the
choice appears to be exhaustively verifying a restricted system-of-systems
specification, or part-verifying a complete system-of-systems specification, or
managing and using a combination of the two forms of analyses. The important issue
for systems-of-systems is to specify the requirements correctly in the first instance at a
system-of-systems engineering level rather than at a system level. Petri nets offer a
means of unambiguously (in the model structure sense) specifying requirements so
that they can be automated to achieve consensus between technical and non-technical
audiences and examine behaviour correctness and completeness. The challenge will
be in managing the models and deriving best practice to maximise specification and
the two forms of verification and validation possible with Petri nets.

.

 136

Chapter 7 Conclusions

7.1 Introduction
This chapter reviews the work of this thesis, comparing it to the original criteria for
success outlined in chapter 1. The industrial perspective of the research is discussed in
relation to the Knowledge Transfer Partnership from which it was funded, and
directions for further work are suggested.

7.2 Review of Research

7.2.1 System-of-Systems Level Design Specification and Analysis
Problem

Chapter 1 discussed the concept of system-of-systems, defining the term for the
purposes of the thesis, and highlighting areas of difficulty in their engineering. The
overall problem to be addressed was defined as:

1. There is no complete, correct, and consistent capture of the problem and solution
design specification (particularly information exchange) at the system-of-systems
level.
2. There is inadequate verification and validation of the design specification providing
low levels of assurance that the design will lead to desirable implemented behaviour.

Within this overall problem, two research issues were identified:

1. Where the dynamic, behavioural diagrams of UML can and cannot be used to
model and analyse system-of-systems.
2. Determining how Petri nets can be used to improve the specification and analysis of
the dynamic model of a system-of-systems specified using UML.

7.2.2 Potential of Petri Nets
The Petri net formalism is introduced in chapter 2 together with justification for its
use as a potential solution to the system-of-systems design specification and analysis
problem. Desirable system-of-systems modelling language features (described in
chapter 1) such as: abstraction; modularisation; data typing; adequate toolset support;
timing; verification and validation; precision in specification of requirements; and
scalability, concurrency, state, information, and event-based specification were
discussed in relation to Petri nets. It was indicated that hierarchical, high-level, timed
nets could offer the modelling language features deemed necessary for system-of-
systems specification. Chapter 2 set the context for the evaluation of these
hierarchical, high-level, timed nets in relation to system-of-systems specification and
analysis in the case study of chapters 5 and 6.

 137

7.2.3 Research Approach, Weaknesses of UML, and Petri Net
Formalism

Due to the unstructured nature of system-of-systems problems, an alternative research
approach to a tightly controlled experimental investigation is desirable to help in their
understanding. The case study research approach offers an opportunity to gain this
understanding despite scepticism regarding its suitability as a research method.
Chapter 3 discusses the technique and a systematic approach to the design and
execution of the case study used in thesis chapters 5 and 6 is outlined.

The first study on close air support is introduced in chapter 4 following discussion of
where the UML dynamic model diagrams can and cannot be used to model and
analyse system-of-systems. The main weakness of all the UML behavioural diagrams
is their lack of well-defined concrete and abstract syntax and static and dynamic
semantics. This means the behavioural diagrams of UML cannot be executed or used
to derive a reachability graph for the purposes of exhaustive correctness checking.
Both functions are viewed as essential in helping produce correct specifications for
systems-of-systems. Chapter 4 also highlighted the UML activity diagram as the most
applicable candidate diagram for enhancement by Petri nets in system-of-systems
specification. This was due to it being the only behavioural diagram able to specify
overall system behaviour; hierarchy support; scalability; and support for timing via an
extension profile.

By specifying a well understood problem (a telephone system, Appendices A-D)
using the Petri net formalism, its potential strengths and weaknesses in relation to
system-of-systems specification were listed. Using this information, chapter 4
concludes by suggesting how Petri nets can be used instead of UML activity diagrams
and introduces the first study, close air support, indicating the characteristics of
interest it holds for system-of-systems engineering in general.

7.2.4 Case Study
Chapters 5 and 6 execute the case study design presented in chapter 3. The design
objective of the case study was derived from chapter 1's second criteria for success.
This stated that the strengths and weaknesses of Petri nets were to be determined
regarding the greater formalism of dynamic behaviour in systems-of-systems and their
role as a means of engaging stakeholders. The case study (from the defence domain),
is used to answer the research questions:

1. Do Petri nets improve the functional correctness of the system-of-systems design
specification?
2. Do Petri nets increase the quality of the design specification?
3. What are the shortcomings of the state-of-the-art Petri net tool and how can it be
improved?

Criteria for success were derived from these research questions in relation to the Petri
net specification of the close air support and exchange network parameters studies.
Specification of each study was carried out at different system-of-systems engineering
design levels using Petri nets. Study response variables were captured at each iteration
of model design in order to measure whether the criteria for success were met.

 138

The first study, close air support, confirmed the following strengths of Petri nets in
relation to system-of-systems specification: capability to analyse model behaviour;
and capability to specify range of model behaviour (state, event, concurrency, data,
timing and hierarchy). The following weaknesses were also confirmed: state space
explosion; and scalability. A number of shortfalls were highlighted in terms of:
multiplicity of component systems or processes realising functions; verification and
validation and its use in checking specification completeness; and re-entrancy and its
effect on correct behaviour.

The second study from the military domain, exchange network parameters, confirmed
the strengths and weaknesses identified by the first study on close air support. In
terms of the shortfalls, the second study was able to explore re-entrancy and
multiplicity, concluding both could be specified using Petri nets and recommending
best practice for their use in system-of-systems modelling.

7.2.5 Research Results
Based on the results of the case study of chapters 5 and 6, the strengths and
weaknesses of Petri nets in relation to the formalism of dynamic behaviour
specification in system-of-systems were identified. Based on these, a final
enhancement to UML was proposed (Appendix E).

Fig. 7.1 'Petri net replacement for UML CallBehaviourAction activity diagram
element'

This enhancement complements UML with timed, coloured Petri nets with hierarchy,
providing a mapping between activity diagram nodes and Petri net elements (see Fig.
7.1 for an example activity diagram element replacement). The enhancement uses
simulation for initial verification of specifications and performance analysis of timed
specifications, and reachability graph calculation for exhaustive verification of
specifications. Timed, coloured Petri nets with hierarchy address the specification part
of the overall system-of-systems problem, where as simulation and reachability graph
calculation address the assurance part of the overall system-of-systems problem.

7.3 Evaluation of Research
Using the research aims and criteria for success defined in chapter 1, an evaluation of
the work in this thesis is discussed.

1. Indicate the strengths and weaknesses of the behavioural diagrams of UML
regarding the specification, and verification and validation of systems-of-systems.

To address the first main research issue, chapter 4 discusses the UML dynamic model
and the behavioural diagrams it is composed of in relation to the overall system-of-
systems problem. The chapter summarises each diagram in relation to a system-of-

 139

systems specification feature and concludes that the main weakness of the UML
behavioural diagrams is their lack of formal dynamic semantics, i.e. it is not possible
to execute or perform exhaustive checking of models built using the syntax and
semantics of the three types of UML diagram. From the summary of the three UML
behavioural diagrams against system-of-systems specification features, UML activity
diagrams were deemed most applicable to the specification of systems-of-systems.
Activity diagrams offered the ability to support overall behaviour specification,
hierarchy, scalability, and timing via an extension profile.

2. Determine the strengths and weaknesses of Petri nets regarding the greater
formalism of dynamic behaviour in systems-of-systems, i.e. their specification, and
verification and validation. This should cover Petri nets' ease of use;
comprehensibility; scalability; state, data, and event-based modelling capability;
concurrency modelling capability; and verification and validation capability. The role
of Petri nets as a means of engaging stakeholders should also be examined.

To address the second main research issue, chapter 2 examines the desirable features a
modelling language should offer for the specification of systems-of-systems
(abstraction, modularisation, data typing, adequate toolset support, timing, verification
and validation, precision in specification of requirements, and scalability,
concurrency, state, information, and event-based specification) in relation to Petri
nets. The findings of the chapter indicated Petri nets can provide each of these
features (with scalability to be explored further) graphically via high-level, timed nets
with hierarchy.

Chapter 4 considers a well understood problem (a telephone system) in order to
further explore the potential usefulness of Petri nets in creating models of systems-of-
systems. This exercise confirmed the need for high-level nets as well as the definition
of a suitable hierarchy and adoption of an adequate Petri net toolset. The chapter
summarised perceived strengths and weaknesses of Petri nets in system-of-systems
development based on the experience of modelling the telephone system.

Chapters 5 and 6 use the findings from Petri net specification of the telephone system
in chapter 4 for a system-of-systems case study. Chapter 5 executes the systematic
case study design described in chapter 3 for the first system-of-systems study from the
military domain, close air support. Close air support was used to further demonstrate
the benefits, weaknesses, and shortfalls Petri nets bring to specification and analysis
of large-scale systems-of-systems. The study confirmed greater formalism of dynamic
systems-of-systems behaviour via Petri nets' analysis capability (simulation and
reachability graph calculation) and specification capability (state, event, concurrency,
data, timing, and abstraction). Both were considered Petri net strengths. Their
graphical concrete syntax and ability for execution also enabled stakeholders to be
involved in correct and complete behaviour specification. Petri net weaknesses
included state space explosion and scalability.

Chapter 6 considers the problem of exchange network parameters (from the military
domain) for the second study, confirming the strengths and weaknesses, and exploring
further the shortfalls identified by the close air support study. Both studies also
highlighted the need for best practice to be established within organisations tailored to
their system-of-systems specification requirements.

 140

3. Show how Petri nets can be used to replace UML activity diagrams and address the
overall problem of system-of-systems specification and analysis.

To address the third main research issue, chapter 2 sets the context for the evaluation
of Petri nets in the specification of systems-of-systems by considering the notation in
relation to desirable systems-of-systems specification features. Chapter 4 lists the
strengths and weaknesses of UML activity diagrams in relation to systems-of-systems
desirable specification features. Based on this list, activity diagrams appear to be the
most applicable UML behavioural diagram for use in systems-of-systems
specification. Their main weakness identified in chapter 4 is the lack of formal
dynamic semantics. It is not possible to execute or perform exhaustive checking of
models built using the present activity diagram syntax and semantics. Chapter 4
suggests how Petri nets could be used to enhance UML with a notation offering
formal semantics, and graphical concrete syntax. A well-known problem (telephone
system) is specified using Petri nets in order to identify the potential strengths and
weaknesses of the notation in the modelling and analysis of systems-of-systems.

4. Demonstrate and evaluate the feasibility of the Petri net solution to the overall
problem of system-of-systems specification and analysis using a case study approach.

To address the fourth main research issue, chapters 5 and 6 demonstrate the feasibility
of specifying two system-of-systems studies using Petri nets, summarising the
strengths, weaknesses, and shortfalls of the notation based on case study research
questions and criteria for success for each study. Chapter 5 conducted a study on
specification and analysis of a close air support system-of-systems, ending with an
evaluation of the study results. As part of this analysis and the work of chapters 2 and
4, the modelling needs of systems-of-systems were considered in relation to activity
diagram and Petri net modelling notations and the actual results from the study. Petri
nets were found to offer the following attributes over activity diagrams: formal syntax
and semantics; specification of resource usage; dynamic inspection; reachability graph
calculation; and non-static specification using timing. Appendix E details the
proposed Petri net enhancement of activity diagrams.

In terms of the overall system-of-systems specification and analysis problem, Petri
nets are able to provide analysis capability through simulation and reachability graph
based on their full formal syntax and semantics. Petri nets provide specification
capability enabling representation of state, event, concurrent, performance, and data-
based behaviour of a system-of-systems at different levels of abstraction detail.

The main weaknesses of Petri nets identified by the thesis are their ability to scale to
the size of the system to be modelled and the state space explosion problem associated
with model-checking. As shown in Appendices A-D and the thesis case study of
chapters 5 and 6, both weaknesses can be managed to an extent using abstraction at
the system-of-systems engineering level. Based on application of careful management
and the results from the second study on exchange network parameters of chapter 6,
Petri nets are proposed as an enhancement to the activity diagram to help address both
parts of the overall system-of-systems level design specification and analysis problem.

 141

The research aims and criteria for success defined in chapter 1 have been met based
on the work presented in this thesis. The remainder of this chapter elaborates on this
work, discussing its industrial context, and highlighting areas for further research.

7.4 Discussion
Overall, the proposed Petri net formalism of dynamic behaviour in the specification of
system-of-systems has been successful. The proposal significantly improves upon
existing specification techniques for systems-of-systems and meets the criteria for
success defined in chapter 1. In particular, Petri nets can be viewed as complementary
to de-facto UML activity diagrams. They can be used in conjunction with them or as a
system-of-systems specification notation in their own right (Appendix E details the
mapping between activity diagram nodes and Petri net elements necessary for
specification of system-of-systems behaviour). Due to their underlying mathematical
description, Petri nets enhance the specification and analysis capability currently
possible with UML activity diagrams. Model execution and analysis of a model's
reachability graph can be undertaken by the modeller in conjunction with system-of-
systems' stakeholders to achieve correct and complete system-of-systems behaviour
specification early in the system-of-systems' lifecycle.

As indicated, the two major advantages Petri nets have over UML are the analysis and
specification capabilities available to the modeller for precisely specifying and
assuring the system-of-systems design. Due to their formal syntax and semantics,
Petri nets permit unambiguous (from a model structure viewpoint), visual
specification of system problem and solution spaces using a small range of graphical
modelling elements. Slightly disappointing was the readability of nets, time-intensive
net construction process (particularly for new and non-practitioners), and toolset
support for system-of-systems models likely to involve large numbers of subnets and
continuous model evolution. Useful system-of-systems specification with Petri nets
requires definition of best practice over many years (regarding model construction and
management, annotation, and practitioner training) and selection (or development) of
an adequate net modelling framework. The work of the thesis has shown the
feasibility of using Petri nets to specify process-based systems-of-systems, capturing
the desirable system-of-systems features of state, event (including event probability),
concurrency, data, timing, and abstraction.

Fig. 7.2 'Infinite net problem detected by interactively executing net'

 142

The formal syntax and semantics of Petri nets also means that constructed models can
have well-defined algorithms for execution and reachability graph calculation (model-
checking) applied to them. These facilitate simulation and exhaustive model-checking
analyses on the models for the purposes of checking the correctness and completeness
of modelled behaviour. When timing is introduced to a Petri net model and the model
is simulated, performance analysis and analysis-of-alternatives can be conducted on
the model. These analyses can be used to further validate the modelled behaviour with
domain users prior to hand-off to subsequent system-of-systems' development stages.
In the thesis, simulation was used to demonstrate this form of model validation and to
initially verify model design iterations. The interactive form of simulation (Fig. 7.2) is
a useful means of stepping through model execution for the purposes of sharing the
specification with non-practitioners and gaining consensus in the correctness and
completeness of model behaviour. More automatic forms of simulation are useful for
the purposes of obtaining a range of pre-defined performance indicator values by
varying different model parameters in order to assess the efficiency, correctness, and
completeness of the model logic and behaviour. While simulation can be used to
check the behaviour of a Petri net model, it cannot normally be used to exhaustively
verify correctness of a complete system-of-systems model specification.

Reachability graph calculation on the model is an exhaustive form of correctness
verification but was shown to be subject to the state space explosion problem
discussed further below. Design errors not detected by static inspection or simulation
of the Petri net model were shown to be highlighted through reachability graph
calculation. The CPN Tools toolset produces a standard analysis report for
interpretation by the modeller (again, practitioner training in the toolset selected for an
organisation is recommended). In addition, the modeller can also construct non-
standard temporal logic queries to be run against the calculated reachability graph for
the purposes of confirming or denying certain model properties. Reachability graph
calculation is dependent on the scope of the system-of-systems specification. Again,
slightly disappointing for both forms of model analysis was toolset reporting support.
For the thesis case study of chapters 5 and 6, both forms of analyses were viewed as
extremely positive for system-of-systems design assurance. However, the positive
extent of their contribution is dependent on the ability of the modeller to interpret,
model, and verify the system-of-systems problem with domain experts and interpret
the feedback provided by the toolset regarding the analyses.

The thesis case study, particularly the second study on exchange network parameters,
highlighted the effectiveness of Petri nets in a real, industrial system-of-systems
specification situation. As part of the Knowledge Transfer Partnership responsible for
funding the project, the company and university partners were able to use the study to
demonstrate how the graphical, concrete syntax of nets can be used to specify a
process-based reference standard and then detect omissions and ambiguities within it
for defence domain customers. It is also anticipated that Petri nets will be used as part
of an overall system-of-systems engineering approach across multiple customer
domains to improve the specification, and verification and validation of systems-of-
systems. Further case studies in non-military domains would serve to further
investigate and validate the results obtained by the case study presented in this thesis.

The case study approach as a research method helped the company partner assess the
strengths, weaknesses, and shortfalls of a new method in a cost-effective manner

 143

within one particular environment. The usefulness of the outcome was the result of
following a systematic approach to undertaking the case study. It could be argued that
without such a planned approach, a means of comparing and analysing valid results
between the studies would not have been established. The functional correctness and
design quality measures were selected to reflect developer and end-user views of
correctness and quality. The two studies were selected to be representative of typical
system-of-systems problems and deemed comparable based on objective system-of-
systems characteristic measures listed in chapter 1. Both studies verified similar
strengths and weaknesses of Petri nets in system-of-systems specification, and did so
for two examples from the same application domain. Although this may suggest that
use of Petri nets would exhibit the same strengths and weaknesses across all domains,
this generalisation cannot be made for certain (at least not until further case studies
conducted in non-military domains provide further validation).

The two major disadvantages of the Petri net formalism of dynamic behaviour are
their ability to scale according to the size of the system to be modelled (and
subsequent model readability) and the state space explosion problem affecting model-
checking.

It should be noted that in terms of managing their ability to scale, the system-of-
systems specification needs to be suitably abstracted, i.e. scoped appropriately.
Although the case study systems-of-systems could be specified at analysis, and design
and architecture levels of abstraction, it demonstrated that detail in nets addressing a
wide specification scope should be generalised as far as possible with a suitable
hierarchy determined in advance of modelling. Advantage should also be taken of a
Petri net toolset features such as re-use of nets within a model (CPN Tools
instantiation feature), colouring, and annotation in order to achieve the desired
specification.

Functional decomposition was used to identify a hierarchy within models and was
influenced by a combined top-down and bottom-up engineering approach. This
flexible function-based approach is deemed similar to the one presented by service-
oriented architecture where re-usable functions or services are identified and then
composed from legacy and new component systems to build applications. The
functions or services provided by existing message sets in close air support and
exchange network parameters systems-of-systems were used to suggest a hierarchy
within models in conjunction with standards specification documents. In this way, a
service-based architecture helped to address scalability of the specification. The
architecture also promoted non-prescriptive solution specification in analysis, and
design and architecture level models by identifying and focusing on the services to be
realised by components.

In the case of design at the system-of-systems level, operational services are identified
using a combination of top-down and bottom-up engineering approaches. Eventually,
existing physical systems that implement these services as closely as possible are then
selected (or procured) based on the original system-of-systems design and derived
component system specifications. Currently, this system-of-systems composition is a
static, pre-planned, manual process. Given the highly dynamic and heterogeneous
nature of the military domain (and domains such as health, traffic management, and
policing), a future research challenge would be the dynamic composition of the

 144

services offered by available physical component systems in an operational
environment. Part of this research challenge would involve addressing service
advertising (including quality of service and component evolution); security; and
semantics of exchanged data (both in terms of service discovery and the information
exchanged between component systems). Another part of the challenge would involve
accurately modelling older legacy systems, particularly those where there is
inadequate documentation; and assessing where to begin the process when the system-
of-systems problem is of the scale highlighted in chapter 1.

In order to employ the benefits of model-checking on a system-of-systems model, the
largeness avoidance abstraction techniques discussed in Appendices B-D and the
study of chapter 5 on close air support should be applied. An incremental approach
was taken to construct models in the close air support study to judge which sub-
functions to abstract detail away from so that a reachability graph could be calculated.
In addition, a compositional largeness avoidance technique can also be applied to
component systems of the complete system-of-systems specification (see Appendices
B-D, sections B.1.5, C.1.3, and D.1.5 for details).

For organisations using Petri nets in the specification of systems-of-systems, the
choice appears to be exhaustively verifying a restricted system-of-systems
specification, or part-verifying a complete system-of-systems specification, or ideally
managing a combination of the two forms of analyses. The important issue for
systems-of-systems is to specify the requirements correctly and completely in the first
instance at a system-of-systems engineering level rather than at a system level. Petri
nets offer a means of unambiguously (in the model structure sense) specifying
requirements visually so that they can be automated to achieve consensus between
technical and non-technical audiences and examine behaviour correctness as part of
an iterative development process.

Without this greater formalism of dynamic behaviour, execution and reachability
graph analysis of the modelled behaviour could not be undertaken and exploited by
the modeller (this is the case with native UML activity diagrams). No interactive
simulation or discussion of reachability graph analysis results could be used by the
modeller to engage stakeholders in assuring specification completeness and
correctness. The challenge will be managing the models and deriving best model
construction practice over many years to take advantage of the two forms of
verification and validation possible with Petri nets and promote scalability and
readability within Petri net-based models.

In terms of lessons learned during the course of this thesis, the main one was the
realisation that system specification languages accepted as an industry standard are
not without flaws, and should be thoroughly reviewed prior to their implementation
within an organisation according to its specification objectives. In this way,
weaknesses of the language in relation to specification requirements can be assessed
and alternative, complementary approaches sought where applicable. The other lesson
learned related to terms used commonly within a domain and the importance of
identifying a common definition and shared understanding of them amongst
stakeholders of a project.

 145

In general, the proposed Petri net formalism can be viewed as complementary to the
existing UML activity diagram and is a successful solution to the system-of-systems
design specification and analysis problem in its own right.

7.5 Further Work
The research undertaken by this thesis could be extended in several ways and these
are highlighted in this section.

7.5.1 Evaluation for a Different Domain
The thesis military domain case study of chapters 5 and 6 demonstrated that Petri nets
meet many of the desirable requirements for specification of systems-of-systems. This
could be investigated further by undertaking a case study from a non-military domain
and lead to further research on the Petri net formalism in addition to providing
information about their effectiveness. Use of Petri nets in real specification situations
offer an alternative evaluation environment.

7.5.2 Specification Evolution
Although use of Petri nets is intended as a system-of-systems specification language,
it may be useful to investigate many versions of the same specification and examine
changes throughout its evolution. This insight into the way specifications change over
time may be able to advise best practice for evolution of models.

7.5.3 Model Transformation
Given the time and dependability demands associated with large-scale systems-of-
systems, the need for efficient and systematic development methods is essential.
System-of-systems requirements engineering can be viewed as a key design phase and
commonly UML use case and activity diagram-driven. A systematic, automated
transformation approach between use case, activity and Petri net models (considering
meta-models describing the transformation from UML use cases and activity
diagrams to Petri nets) would offer a formal validation framework, and ideally help
the production of more precise, complete, and correct system-of-systems
specifications.

7.5.4 Toolset Development
The case study of chapters 5 and 6 highlighted that the toolset selected for use in the
thesis could be improved in terms of its support for system-of-systems specification.
If developing a modelling framework for system-of-systems specification, key
functional areas include: the navigability of the model (particularly if there are large
numbers of activities specified at lower abstraction levels); versioning and re-use of
existing models (including locating suitable existing models and maintenance of
consistency between models); analysis report generation and format of produced
output; simulation involving network communication between models developed
remotely; and ability to select graphics to enhance the basic net elements. The ability
to perform model transformation (section 7.5.3) could also be incorporated into such a
supporting toolset for system-of-systems specification. In addition, work exploring

 146

largeness avoidance and reduction techniques in Appendix B indicated these areas
should also be considered in toolsets supporting system-of-systems design analysis.

7.5.5 Dynamic Composition of Functions (Services)
The functional decomposition approach adopted by the specification examples used in
this thesis is a similar one presented by service-oriented architecture. In the thesis,
operational functions (services) were identified to establish a hierarchy within the
Petri net analysis, design, and architecture models. In terms of implementation, legacy
and new physical assets would be selected and integrated on the basis of their
perceived ability to realise one or a number of particular services. Currently, this is a
pre-planned, manual task. A future research challenge is the dynamic composition of
services offered by available physical component systems in an operational
environment. Part of this research challenge would involve addressing service
advertising (taking into account quality of service and component evolution); security;
and semantics of exchanged data (both in terms of service discovery and the
information to be exchanged between component systems).

7.5.6 Semantics
Highlighted during the Petri net specification examples in the thesis, a key long term
systems-of-systems research problem concerns data semantics and use of ontology.
Underpinned by semantic interoperability, additional long term research areas are
evolution of component systems, and security. Semantic interoperability affects the
data (and meta-data) to be exchanged intra- and inter-organisationally within a
system-of-systems. Continuous component evolution demands management of
amendments to components in terms of the services they realise, their associated data
and data format but to be useful, meaning of terms must be consistent. Security in
domains such as defence and health is critical and complex, involving the
management of appropriate static and dynamic access to confidential services and
exchanged data between autonomous components within the systems-of-systems.
Extension of Petri nets to include ontology-related annotation in the specification of
systems-of-systems (and consequent reduction of the level of human interpretation
required to understand the information exchange protocol involved) should be further
investigated.

7.6 Final Summary
The research achieved by this thesis was discussed in this chapter and its positive
contribution considered in relation to the criteria for success defined in chapter 1. In
addition, a number of future research areas were outlined.

In the previous six chapters (and Appendix E), the context, and motivation of the
research were presented, leading to an investigation of UML behavioural diagrams in
relation to system-of-systems design specification and analysis, the proposal and
description of Petri nets as a formalism for dynamic behaviour capture, and execution
of a case study approach to identify the strengths and weaknesses of Petri nets in
addressing system-of-systems design specification and analysis. The formalism has
been discussed in an industrial context, and potential for it to be used across different

 147

industrial domains was highlighted as a future research area. Additional further
research areas were also indicated.

The Petri net proposal is a novel and positive step towards a solution to the system-of-
systems design level specification and verification and validation problem. By
providing greater formalism of system-of-systems' dynamic behaviour, the modeller
can take advantage of model execution and reachability graph analysis. Undertaken in
conjunction with stakeholders, these analyses can help assure completeness and
correctness of the behaviour specification early in the system-of-systems' engineering
lifecycle.

 148

Appendices

 149

Appendix A

The telephone system is specified textually as follows:

The telephone receiver is lifted by a caller and the receiver's number dialled. The
caller waits for connection and hears either a ring tone or an engaged tone. If an
engaged tone is received, the caller hangs up (this also applies if more than one call
has been placed to the receiver, all result in a hang up). If a ring tone is received, the
call is either answered by the receiver (in which case a voice call proceeds until the
caller or receiver hang up) or it is not (and the caller hangs up).

Fig. A.1 'Classic Petri net of a telephone call process'

A.1 Specification of the Telephone Process using a Classic
Petri Net

Fig. A.1 was an early attempt at the telephone call model using a classic Petri net to
specify the system. Initially, a classic Place/Transition net [57, 63] was used to gain
practical experience of using the technique.

Due to the non-complexity and high-level of abstraction of the problem to be
modelled together with familiarity with its concept and overall behaviour, the classic
Petri net model's constituent elements and viewpoint were rapidly established from
the textual specification. The call sequence was modelled from the viewpoint of the
receiver of the call. Net places were used to store tokens relating to the state of the
call progress, transitions were used to represent activities resulting in a change of state
and the control sequence of activity execution was noted. Labelling of places and
transitions used terminology from the textual specification. To begin with, one of the
scenarios (that of an answered call) was modelled and expanded further with the two
unanswered call scenarios in order to build the net shown in Fig. A.1.

 150

The 'wait_on_no_answer', 'wait_on_busy_tone' and 'wait_on_hangup' places were
originally used to represent that a call had been made and a result relating to that
effort would be relayed back to the caller, i.e. the caller's attempt to place a call would
either be answered successfully and end with a hang up, or it would be met with an
engaged tone and end with a hang up, or it would trigger ringing but for whatever
reason would not be answered and end with a hang up. Fig. A.1's initial marking
consists of one token on the place 'lift_receiver' (indicating the state that one
telephone call has been initiated), one token on the place 'line_free' (indicating the
receiver's line is currently free), and one token on the place 'call_answered' (indicating
the receiver of the placed call will respond to their telephone ringing).

Apart from providing the user with a graphical overview of the system specification,
the classic Petri net was used to provide some insight into the modelled system's
behaviour.

A.2 Initial Verification of the Telephone Process using a
Classic Petri Net

Dynamic analysis (interactive simulation) was used to verify that the specification
represented by the net in Fig. A.1 behaved as expected. For the initial marking
described above and for subsequent initial markings used to reflect an engaged
receiver line and an unanswered call, the functionality of the net appeared to be
correct. This meant that when a call attempt was input into the system and the initial
marking of the net was set up to specify one of the three scenarios, the desired output
state of hang up was reached in each of the three cases. Simulation was also able to
highlight the poor choice of labelling for the 'hangup' terminal state. This label
insufficiently specified how the call had reached this hang up state.

When the net was amended to reflect the fact that more than one call was being placed
to the receiver, i.e. more than one token on the 'lift_receiver' place, interactive
simulation revealed problems with the logic modelled within the net. These included
improper line reset behaviour and redundancy of the three wait places described in
section A.1. The net was amended following the results from iterative simulation and
is shown in Fig. A.2.

 151

Fig. A.2 'Amended process following dynamic analysis'

Following completion of Fig. A.2's net of the simple telephone example, it was clear
that classic Petri nets can quickly become large and complex (however, when finite
state machines are used, the model would be even more complex). Constructed
reasonably quickly due to the narrow problem scope, high level of abstraction and
common concept involved, even with the few improvements made following iterative
simulation analysis, the specification appeared cluttered and was difficult and time
consuming to interpret. Given this information and the third criteria for success goal
of determining scalability of nets (and desire to specify large-scale, complex system-
of-systems), it was decided to abandon classic nets and implement a high-level Petri
net of the telephone model, specifically a Coloured Petri net. In order to do so, a
suitable Petri net tool was selected based on an evaluation of existing Petri net tools
meeting thesis requirements (Appendix F).

Tool Survey Conclusion
From the evaluation of the four tools (CPN Tools [47], WoPeD [126], Renew [127],
and PIPE [128]) carried out in Appendix F, each was highly useable in its own right.
For the intended thesis case study, use of CPN Tools was recommended. CPN Tools
had been briefly used earlier in the project to demonstrate Petri nets as a potential
modelling tool for system-of-systems development. The toolset offers high levels of
support in terms of papers, tutorials, online and offline help, and an internet mailing
list forum. It is a comprehensive toolset 'out-of-the-box' allowing immediate model
construction, execution and analysis. Further 'plug-in' support comes in the form of
branching temporal logic implementation (ASK_CTL), graphing (Graphviz), and
animation (BRITNeY) and there are plans to develop improved toolset support for
state space exploration and analysis of coloured Petri net models [69].

CPN Tools can be used in a standalone environment to open multiple net models
simultaneously and has 'clone' functionality to copy elements of nets between models.
Related to integration of models is their export. Currently CPN Tools supports its own
XML export (with published Document Type Definition, DTD). Finally, in terms of
cost, CPN Tools is free to both academic and commercial organisations.

 152

A.3 Specification of the Telephone Process using a Coloured
Petri Net

To try and alleviate the weaknesses identified using classic Petri nets, a high-level
Petri net was developed based on the classic net of Fig. A.2. High-level nets have the
potential to introduce colour, time and hierarchy to models. Tokens have values
(based on a colour or type) referring to features of the object modelled by the token.
Use of colour reduces the number of places needed to reflect a state. Defined by Kurt
Jensen [63], coloured Petri nets require the colour of the tokens on the input places to
be considered as well as existing firing rules. This means that these high-level nets are
able to facilitate more compact, natural process description.

A.3.1 The Operational Process (Conceptual) Level
A coloured Petri net representation of the example telephone operational process is
shown in Fig. A.3.

Fig. A.3 'Coloured Petri net model of telephone call process shown in Fig. A.2'

Instead of having three sink places (as in Fig. A.2) capturing the results of the initiated
calls, Fig. A.3's net defines an enumerated type or colour named 'Call' with values
reflecting potential results (in this case, 'Call_Answered', or 'Line_Busy', or
'Not_Answered'). All places in Fig. A.3's net have the same colour (type), and when
viewed together with the labelling of each place, transition and directed arc provide
seven observations:

1. A rule-based, graphical model of the call process at a high-level of abstraction.
2. Implicit cardinality of role interaction (via the initial markings of 'Lift_Receiver'
and 'Receiver_Line' places) which is m:1 (many callers following the specified
activity sequence can try to call one receiver).
3. Call's history (via identification of states) and 'reversibility'.
4. Implicit specification of an operational process using a sequence of activities, firing
conditions and information states relating to a telephone call.
5. Implicit specification of an information exchange protocol between a caller and a
receiver. The exchange between the two roles uses the caller's 'Dial_Number'

 153

transition and the receiver's 'Connecting' transition and then the receiver's 'Connecting'
transition and the caller's 'Response' transition to undertake the information transfer.
6. Implicit specification of provided and required interfaces. The 'Dial_Number',
'Connecting' and 'Response' transitions are similar to operations used in an object-
oriented environment. The information produced and used within these operations is
specified by the 'Call' colour (type) and can be enforced by guards and arc
inscriptions.
7. Implicit viewpoint of the model (i.e. that of the receiver of the calls).

Building on these seven observations of this simple example, it can be seen that the
net does not reflect individuality of callers or receivers, i.e. ability to be autonomous
and behave in a different way to the sequence specified. For example, the caller could
hang up before the receiver can respond to their telephone ringing or before a
connection is made to receiver's line, or the receiver could facilitate a conference call
between more than one caller. These activities would require tailoring of parts of the
interaction for the role variations. This could be achieved using the same net (with a
new partition for each role variation. The variation could be visually distinguished
using the modelling tool's colour palette for this extension to the net) or a separate net
(for each role variation). Unfortunately, depending on the number of role variations,
this could lead to a complex net unless a suitable facilitation process is followed.
Subject to a suitable facilitation process, incorporation of this variation into the net
suggests nets are amenable to amendments. The ability to re-use and evolve nets will
be a key requirement in the specification of large-scale system-of-systems.

Prior to any kind of net analysis, termination of the interaction described by the net in
Fig. A.3 is not visually obvious and the interaction needs time and effort to follow. It
can be argued that in spite of its graphical nature and use of colour (types), Fig. A.3
lacks readability in general, particularly to those unfamiliar with the Petri net
modelling technique. For example, there are no graphical logical operators such as
'and', 'or' to aid readability; the viewpoint from which the call process is illustrated,
cardinality and activity execution by role are implicit; information exchange protocol
between the roles is implicit; provided and required interfaces are implicit; and the
initial start-point of the operational process and subsequent execution path are
implicit.

Again, the example highlights the potential problems of scale, complexity and
readability with a flat, non-hierarchical net employing no enhancements to the net's
foundation graphical nature. Larger processes involving multiple roles will quickly
generate large nets. Use of hierarchy (as well as a suitable facilitation process) is
essential for any chance of specification readability and scalability.

A.3.2 Use of Hierarchy
Hierarchy can structure complex Petri nets in a similar way to hierarchy within data
flow diagrams. With hierarchy, a net at a certain level of abstraction (parent net) can
have some or all of its transitions described in a greater level of detail by subnets (top-
down decomposition). These subnets can be composed of places, transitions and other
subnets. Also, hierarchy can be facilitated by linking existing lower-level subnets to
transitions within parent nets (bottom-up development).

 154

Fig. A.4 'Telephone call process parent net'

The challenge using hierarchy is deciding upon an appropriate abstraction level and
viewpoint for the model. This depends on the stage of development the system model
is at. So far in the telephone example, nets have been developed at a high level of
abstraction, i.e. a conceptual level depicting a telephone operational process from the
viewpoint of the receiver of the calls. This level is intended to describe the problem
and promote understanding between non-technical and technical audience members so
that a non-prescriptive solution can be designed.

This operational process specifies a sequence of activities and information exchanges
performed by roles in order to achieve desirable behaviour. This initial conceptual
specification then drives detailed design and implementation. Obtaining a hierarchical
breakdown of the telephone operational process involved consideration of the existing
flat process and the roles and activities used within it to describe an overall function.

Using the flat net, activities were then restructured using a combination of functional
decomposition, function (activity)-to-role assignment, and identification of interfaces
between roles. The parent net is the top level of the hierarchy, describing the
operational process at its most abstract. Within it, the first main activity 'Make Call' is
associated with the caller role and the second main activity 'Connect Call' is
associated with the receiver role. A trigger process input, a process output and the
information exchanged between the two activities (interfaces) are also included. The
parent net aims to provide a coherent overview of the telephone process and indicate
clearly that more detailed descriptions of the two main activities carried out by the
roles are available on subnets. This parent net is show in Fig. A.4.

As mentioned, hierarchical nets can also be constructed in a bottom-up fashion. For
large-scale system-of-systems, the concept of subnets as components is extremely
useful both in terms of reuse of existing nets and as a means to explore variations in
the design of components. Existing, amended or brand new nets relating to individual
components of the system-of-systems could be swapped in and out of the composition
when considering different application scenarios or designs of components. Viewing
system-of-systems components as subnets may also help alleviate the state space

 155

explosion problem in static analysis of nets. This alleviation is considered further in
Appendix B, section B.1.5.

From Fig. A.4 it can be seen that hierarchy (and use of toolset colour palette and
labelling) greatly improves readability of the model by allowing the modeller to
employ levels of abstraction to maximise model scalability and readability.
Depending on the domain being captured and a suitable net construction process for
large-scale system-of-systems specification, the modeller has the option of abstracting
detail when required and employing fairly compact nets. The net construction process
should also recommend use of a suitable net modelling tool that provides a colour
palette and ability to add annotation and graphics enhancement to nets. These will be
essential features for the modelling and analysis of large-scale system-of-systems.

Hierarchy also makes use of input and output socket places to and from the
decomposed transitions on the parent net. These sockets have corresponding port
places on the resultant subnet describing the decomposition. The colours (types) of
these socket and port places can be used to specify the types of the information used
and produced by the decomposed activity. In this way, sockets and ports can be
viewed as a means of explicitly specifying required and provided interfaces to the
decomposed transition. This is illustrated by the 'Caller' subnet shown in Fig. A.5.

Fig. A.5 'Decomposed subnet for Caller Make_Call transition showing ports'

In Fig. A.5, there are four port places, two input ('Lift_Receiver' and
'Response_From_Receiver') and two output ('Try_To_Connect' and 'Hangup') made
use of by the 'Caller' role. All port places have colour (type) 'Call'. At this high level
of abstraction, i.e. the operational process level, Fig. A.5 specifies that transition or
operation 'Wait_For_Tone' takes information specified by type 'Call' as input from the
parent net and produces information of type 'Call' as output to the parent net.

 156

Transition or operation 'Response' takes information of type 'Call' as input from the
parent net and after further activity execution, eventually outputs information of type
'Call' back to the parent net.

Currently, the interface information at this operational process level is fairly crude.
Provided and required interface information together with role function (service) and
information exchange can be specified in greater detail at the design and architecture
levels of abstraction. This is illustrated later in Appendix D.

A.4 Conclusions so far following Specification using Classic
and Coloured Petri Nets (with Hierarchy)

Petri nets offer a mathematical, graphical modelling foundation with reasonably
straightforward interpretation rules and a small range of modelling elements which
can be adapted for use in different application domains.

In order to exploit this flexibility, an organisation needs to determine its objectives for
using Petri nets as well as their intended audience in advance. Subsequently, best
practice guidelines are essential in helping to realise these objectives. For example, an
organisation may decide to use Petri nets in the analysis and design of large-scale
system-of-systems. These nets would need to be understood by both skilled and
unskilled Petri net practitioners. Based on the complexity issues encountered using
flat classic and coloured Petri nets, at a minimum the organisation would require high-
level Petri nets employing colour (type) and hierarchy.

Once these objectives had been established, systematic guidelines for net construction
would need to be implemented to address: adoption of a standard net toolset;
approaches to aid comprehension of nets (e.g. use of labelling convention for net
elements, abstraction, toolset's colour palette, textual annotation, training in Petri nets
and selected toolset); recommended approach to developing hierarchy; means of
storing produced nets for future re-use and modification; maintenance of consistency
with other modelling techniques used within the organisation (e.g. UML); and
identification of a suitable hierarchy (again, this process would need to consider the
objectives for use of Petri nets and involve domain experts in confirming the
granularity of the abstraction).

So far, coloured Petri nets have been used to specify the telephone system at an
analysis level of model abstraction (using an operational process to do so). A
hierarchy was suggested using a functional decomposition approach for use within the
model and facilitated by the toolset using port and socket places. Design and
architecture levels of model abstraction are explored further in Appendix D.

 157

Appendix B

B.1 Verification of the Telephone Process using a Coloured
Petri Net

Both the non-hierarchical net of Fig. A.3 and the hierarchical net of Fig. A.4 were
used in static and dynamic analyses for the purposes of comparison.

B.1.1 Dynamic Analysis (Simulation)
Again, simulation was used to verify the behaviour and logic of the specifications in
Figs. A.3-A.4. For both nets it was noted that while checking multiple calls made to
the receiver role, multiple tokens can accumulate on a place and are removed
randomly. Prioritised ordering of their addition and removal would require definition
of a queue place colour (type). A problem in the logic setting the line to the correct
state, i.e. free or busy was detected in Fig. A.3. While aiming to include the correct
logic for setting the line in Fig. A.4, an incorrect simulation halt was experienced due
to a variable with an inappropriate colour (type) definition being used in an output arc.
This meant that the variable could not be bound to a value needed to enable transition
'Amend_Line'. This error was corrected by associating the variable definition to the
correct enumerated type colour (type). Iterative simulation runs helped finely tune the
nets by the addition of guard conditions on transitions, e.g. 'New_CallMsg' on
'Dial_Number'. Simulation helped instill confidence that the interaction was
terminating properly.

It was also noted that the parent net (Fig. A.4) provided an overview of exactly where
in the model the simulation was executing. The subnet could then be selected for an
overview of execution within its associated process. This was not such a significant
issue in this small example but will be useful for tracking execution on nets of much
larger system-of-systems. The net toolset also allows the modeller to select variable
bindings during simulation or fully automate the simulation.

B.1.2 Static Analysis
As dynamic analysis via simulation cannot guarantee that all possible execution paths
of the process have been covered, static analysis of Petri nets is used to provide a
more exhaustive, deeper level of verification over and above simulation alone. Static
analysis using reachability tree or state space analysis was conducted to check for
standard behavioural Petri net properties such as reachability, boundedness, home,
liveness and fairness (depending on the Petri net tool used, it may also possible to
construct non-standard property queries).

Static Analysis of non-hierarchical net
Figs. B.1-B.3 show the static analysis results for two initiated calls within the non-
hierarchical net of Fig. A.3:

 158

Reachability/State Space
 Nodes: 9
 Arcs: 10
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 9
 Arcs: 10
 Secs: 0

Fig. B.1 'Reachability (state space) and strongly connected component analyses'

Best Integer Bounds

Place Upper Lower

Hangup 2 0
Lift_Receiver 2 0
Receiver_Line 1 0
Response_From_Receiver 1 0
Try_To_Connect 2 0
Wait_On_Response 2 0

Best Upper Multi-set Bounds

Hangup 1`Line_BusyMsg++1`Call_Answered
Lift_Receiver 2`New_CallMsg
Receiver_Line 1`Line_BusyMsg++1`Line_FreeMsg
Response_From_Receiver 1`Line_BusyMsg++1`Call_Answered
Try_To_Connect 2`New_CallMsg
Wait_On_Response 2`New_CallMsg

Best Lower Multi-set Bounds

Hangup empty
Lift_Receiver empty
Receiver_Line empty
Response_From_Receiver empty
Try_To_Connect empty
Wait_On_Response empty

Fig. B.2 'Boundedness properties'

 159

Home Markings [9]

Dead Markings [9]
Dead Transition Instances None
Live Transition Instances None

No infinite occurrence sequences.

Fig. B.3 'Home, liveness and fairness properties'

Fig. B.1 shows the results of performing reachability tree (state space) and strongly
connected component analyses. The strongly connected components graph calculates
the number of strongly connected components within the state space graph, i.e.
components where each node has a path to any other node in the component. When
there are less strongly connected components than state space nodes, infinite
occurrence sequences can exist. This suggests that the net may not terminate. In this
example, the full state space calculation has nine nodes and ten arcs and took less than
a second. The strongly connected component graph calculated based on this state
space has nine strongly connected components and ten arcs. This implies that the
telephone call terminates.

Fig. B.2 shows boundedness properties for the net in Fig. A.3. The first part of Fig.
B.2 shows the maximum and minimum number of tokens contained within each
place. Places 'Hangup', 'Lift_Receiver', 'Try_To_Connect', and 'Wait_On_Response'
always have between zero and two tokens and relate to the number of calls initiated
within the process. Places 'Receiver_Line', and 'Response_From_Receiver' always
have between zero and one token. This latter result indicates that incoming calls are
essentially stalled on place 'Try_To_Connect' (highlighted by the maximum one token
on the place, 'Response_From_Receiver') until 'Receiver_Line' obtains a
'Line_FreeMsg' token and enables transition 'Connecting'.

This was not the desired behaviour of the call process with initial marking of
'Line_BusyMsg' for the receiver. Instead, if more than one incoming call arrived for
the receiver and the receiver's line was initially marked as busy, the process does not
permit any of the incoming calls to connect (all terminate with 'Line_BusyMsg' on
place 'Hangup'). 'Response_From_Receiver' should have been capable of hosting a
maximum of two tokens. As it stands, the net in Fig. A.3 would need amendment to
reflect this. In this way, integer bounds help reassure the process is working as
intended.

The second part of Fig. B.2 provides details about the information held by the tokens
at each place and confirmed the incorrect behaviour highlighted by the integer
bounds. Considering upper multi-set bounds first of all, places 'Lift_Receiver',
'Try_To_Connect', and 'Wait_On_Response' can hold a maximum of two tokens with
content always 'New_CallMsg'. Places 'Receiver_Line' and
'Response_From_Receiver' can both hold a maximum of one token. 'Receiver_Line'
can only take one of the multi-set 'Line_BusyMsg' and 'Line_FreeMsg' as value.
'Response_From_Receiver' can only take one of the multi-set 'Line_BusyMsg' and
'Call_Answered' as value. Finally, place 'Hangup' can hold a maximum of two tokens
with content from the multi-set 'Line_BusyMsg' and 'Call_Answered'.

 160

From the lower multi-set bounds in Fig. B.2 it can be seen that all the places have a
lower multi-set bounds of the empty multi-set. This means the markings of all the
places do not remain the same. Again, given the initial marking used and the desired
process behaviour, identical upper and lower multi-set and integer bounds
(corresponding to a multi-set of 'Line_BusyMsg' and one respectively) would have
been expected on place 'Receiver_Line'. In this way, multi-set bounds can be used to
alert the user to incorrect operation of their process.

The remainder of the state space graph analysis can be seen in Fig. B.3 and relates to
home, liveness and fairness properties. The process has a single home marking, a
marking that can always be reached, M9. It also has a dead marking (Fig. B.4), a
marking with no enabled transitions, identical to the home marking of M9. This
marking corresponds to the state where results of the two placed calls have been
received and no tokens are left at places 'Lift_Receiver', 'Wait_On_Response',
'Try_To_Connect', and 'Response_From_Receiver', i.e. the process terminates.

Fig. B.4 'M9 dead marking from state space graph'

As M9 is a home marking it means the process can never reach a state from which it
cannot terminate with the desired result.

Liveness properties also reveal that each transition is enabled by at least one reachable
marking (no dead transition instances) and no transitions can become enabled again
(no live transition instances).

In terms of the frequency of transition firing or fairness properties, the telephone
process has no infinite occurrence sequence of transition firing. This means there is no
non-determinism in the net and the dead marking is reachable.

Depending on the Petri net modelling toolset used, non-standard queries can be used
to inspect the state space graph further. For example, there are several ways to find
and output information associated with dead markings in the state space.

Fig. B.5 'Pre-defined toolset query to output dead markings in state space graph to
screen'

 161

Fig. B.6 'SearchNodes query used to inspect state space graph and output list of dead
markings to screen'

Fig. B.7 'Count and list of dead markings output to a file'

In Figs. B.5-B.7 above, a branching temporal logic is implemented within the toolset
to permit analysis of state space graph marking or transition information. Using this
mechanism, it is possible to combine pre-defined queries or construct new modeller-
defined queries and undertake further checks related to model properties such as
reachability and liveness. For example, the modeller may want to verify whether the
designated dead markings are valid, i.e. the values of tokens on places involved in
dead markings are as expected, or after reaching a certain place state another place
state of interest can be reached, or that the receiver will not provide a response to the
caller if a connect attempt has not been received.

Analysis of the calculated state space graph has enabled fairly exhaustive verification
of the behaviour currently specified by the non-hierarchical net in Fig. A.3. The
results of the static analysis shown in Figs. B.1-B.3 also highlighted that standard
deadlock analysis only detects deadlock that is a result of logic and place state
currently engineered into the net or when connection elements have been erroneously
omitted (in this case, simulation may be able to alert a modeller to the deadlock).

By understanding the example's concept, it is known that a telephone call process
could deadlock due to failure of system component(s) normally modelled at a lower
abstraction level, e.g. communications hardware. This could mean that calls are not
connected, disconnected, or no response reaches the caller. This potential for failure
during the call process is not specified in the model at the current high-level of
abstraction and would not be detected using static analysis.

Normally, process modelling focuses on the roles, resources, information exchange,
control sequence and timing of a process, and does not specify the possibility of
potential failure states. Instead, process modelling often makes the assumption that the
underlying infrastructure is reliable. Petri net modelling of the telephone process and

 162

the ability to conduct static analysis for deadlock detection helped to underline this
fact. It also indicates that like the telephone process, processes involved in large-scale
system-of-systems involve capture of an operational process as well as an information
exchange protocol at different levels of abstraction.

Unless the potential for undesirable information exchange states is specified using a
combination of net elements (tokens and types, firing rules, directed arcs, and
activities), static analysis of Petri nets cannot identify the potential deadlock states in
system-of-systems early development stages. In system-of-systems development, it is
vital to specify the possibility of undesirable states as well as desirable states as early
in the development cycle as possible so that they can be properly mitigated in later
design stages. In this way, all associated terminal markings identified by static
analysis can be checked at the operational process level of abstraction for validity
using the non-standard queries discussed above.

Static analysis of the non-hierarchical net in Fig. A.3 has shown the telephone call
process does terminate. The existing specification would benefit from amendment to
coherently capture what the system should and should not do. Prior to incorporating
any further specification amendments derived from static analysis of the flat net, static
analysis of the hierarchical net was investigated.

B.1.3 Static Analysis and State Space Explosion
While a full state space graph was calculated for the basic telephone process of Fig.
A.3, a known weakness of Petri nets is the complexity problem [57]. Even small sized
process representations can have infinite reachable states (the state explosion
problem). To alleviate this problem, methods are used to try and reduce the state
space graph by focusing on its form (largeness avoidance) or a subset (largeness
reduction).

Examples of avoidance methods include step-wise refinement of processes, i.e. use of
abstraction and composition (calculating the state space graph based on subsets of the
model), limiting the number of tokens on places (using the premise that if the process
behaves as expected for a small number of tokens, it is likely to work with higher
numbers), and restricting the values associated with place types. Reduction methods
include condensing state space by exploiting symmetries present in processes and
consideration of limited capability between nodes.

Largeness avoidance methods have been adopted as best practice and used prior to
undertaking model-checking in the telephone example. The net in Fig. A.4 is used to
investigate the effects of largeness avoidance techniques on the state space graph. A
standard static analysis report is conducted on the hierarchical net of Fig. A.4.

 163

Reachability/State Space
 Nodes: 88
 Arcs: 168
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 88
 Arcs: 168
 Secs: 0

Dead Markings [88,87,86,85,84,78,77]

Fig. B.8 'Static Analysis for the hierarchical net'

Fig. B.8 shows the state space calculated for the hierarchical net of Fig. A.4. The state
space graph consists of eighty-eight reachable markings and one hundred and sixty-
eight transitions. As the much larger state space graph highlights, the hierarchical net
of Fig. A.4 was developed to illustrate the benefit of hierarchy on net
comprehensibility and scalability. Fig. A.4 also incorporates some corrections and
extensions to logic identified from dynamic and static analysis of Fig. A.3 (and no
inclusion of undesirable state specification as yet).

Again, a full state space graph was constructed. For a hierarchical net, the state space
is normally larger than that of the equivalent non-hierarchical net. This is because the
toolset 'flattens' the hierarchical net in order to calculate its state space graph.
Hierarchy substitution transitions, and port and socket places contribute to the
additional nodes in the state space graph. These overhead elements can be justified
based on the scalability and increased readability they bring to the model.

Abstraction and compositional techniques
Jensen [90] hints that employing hierarchy and subnetting will help combat state
space explosion. There is no existing work prescribing the benefits that hierarchy and
subnets actually bring to largeness avoidance, scalability and comprehension in Petri
net models of systems-of-systems. Where research has made use of hierarchy and
subnetting, the reported benefits tend to be related to readability, scalability, re-use of
coloured Petri net models, or performance analysis [77, 79, 82, 94, 95] in software
systems. However, research from three sources was particularly relevant to hierarchy
and subnetting and combating state space explosion.

First, in [52], Chukwuogo uses an object-oriented model transformation approach to
address scalability and largeness avoidance in large-scale software applications.
Initially, an application is modelled using UML diagrams and transformed into
hierarchical coloured Petri nets for the purposes of model-checking. To combat the
state explosion problem, Chukwuogo uses the information gained transforming the
UML models to Petri net models to abstract out the detail of certain components
during state space calculation.

Although Chukwuogo was able to observe reductions in duration and size of state
space graph calculation using two small case studies, the method was not applied to a
large-scale industrial software application and did not relate specifically to large-scale
system-of-systems' applications. No mention of the concept of timing or reliance upon

 164

network connectivity and communications was made in the work. By Chukwuogo's
own admission, the method used did not follow or present a systematic approach, nor
was there any inclusion of model-checking results at the individual module level, i.e.
a bottom-up approach. The work appeared to be focused on addressing software
systems using a top-down approach and untimed, hierarchical, coloured Petri nets.

Secondly, the results from Petrucci et al [91-93] considered the benefits modularity in
nets (specifically Modular Petri nets) brings to reduction of the state space graph.
Modular Petri nets are used to compose a model of a system by separating a flat net
into modules. Fused transition points in the net are treated as module interaction
points. Petrucci et al's work on compositional analysis was focused on exploring a
module's local behaviour without considering all possible interleavings with the local
behaviour of the other modules in the system model. In [91,93], local state space
graphs are calculated per module in parallel with a global synchronisation graph for
the system while in [92] the approach incrementally generates reachable states based
on LTL\X properties.

Given that the majority of industrial Petri net applications rely on classical or coloured
Petri nets and fused place points, an attempt was made by Petrucci et al in [93] to
adapt the method to use fusion places. The result was to transform such a net into a
fused transition net but no systematic approach for converting classic or coloured
Petri nets was given. The research did indicate that best results were obtained for
modules exhibiting strong cohesion and loose coupling, a main characteristic of
constituent systems within systems-of-systems.

In the CPN Tools toolset, modularity (or subnetting) of system models is facilitated
either through hierarchy and associated port and socket places or fused places (fused
transitions are not supported although [97] did propose such an extension). Hierarchy
permits an overview of a model's functional decomposition through a parent net and
port and socket places. The transitions present in the parent net are substituted by
more detailed nets shown on separate pages. In simulation, a modeller can track the
location of the next enabled transition using the parent net. Fusion places can also be
used to capture modularity but there is no explicitly associated parent net page. Each
subnet on a page is independent and passes information to another subnet page using a
set of places (fusion places). To mimic the abstraction depicted by the parent net of a
hierarchical approach, a net can use the fusion places to pass (receive) information to
(from) a subnet but the only way of associating the net at the higher abstraction level
with the subnet at the lower abstraction level is via the labelling of the fusion places.
Port and socket hierarchy makes the association with the lower abstraction level in a
more explicit way.

An advantage of fusion places in modularity is the ability to share the same
information between multiple processes. With hierarchy and port and socket places, if
information needs to be passed from an interface to more than one component at a
point in time, sufficient copies of the token need be deposited on the interface place
for consumers to remove. Hierarchy's main advantage is enabling scalability via
explicit abstraction. Detailed subnets can be copied and re-used (similar to a
programming procedure) with each copy able to receive separate inputs and return
separate outputs (compare with parameterised procedure calls). Use of either
abstraction technique depends on the modelling context.

 165

Petrucci et al's largeness reduction method was noted for future research in
conjunction with the largeness avoidance techniques employed within CPN Tools. In
Petrucci et al's work, there was no explicit treatment of modularity as a means of
largeness avoidance or aid to comprehension. This is explored later in section B.1.5.

The third work of interest comes from Bonnefoi et al [98, 99] and deals with design
and analysis of intelligent transport systems using UML and Petri nets. Approaches
[98] consider integration of continuous and discrete characteristics of an intelligent
transport system into a discretised Petri net model (coloured Petri nets are transformed
to Symmetric nets in order to take advantage of the symmetries in the system and
reduce the state space) and possibility of transforming UML models to symmetric nets
[99]. [99] discusses UML component diagrams as a means of modularising the system
by describing components and their interfaces to one another. Both the discretisation
and use of symmetric nets as a means of largeness avoidance and reduction are worth
bearing in mind for future system-of-systems research.

B.1.4 Largeness Avoidance by Abstraction
Based on the work of Chukwuogo [52], the effect of re-calculating the state space
graph based on abstracting out details of modules within a net designed to capture the
specification of a system at a certain level of abstraction (or viewpoint) is
investigated. It is anticipated that a module (or component) in this case can refer to
both an activity in a net employed at the conceptual (operational process) level or a
design component in a net employed at the design and architecture levels of
abstraction. In this section, detail is abstracted out of the main activities and their
associated processes in the telephone net currently described at the conceptual level of
abstraction.

Initially, detail associated with the caller role's 'Make_Call' transition is abstracted
out. No decomposition of the 'Make_Call' transition from the parent net to a separate
subnet was included. Instead, a minimal set of net elements were used to ensure that
the provided and required interfaces of the 'Make_Call' transition consumed and
produced the same information as before for the parent net. The process detail
associated with the Receiver role's 'Connect_Call' transition remained the same. The
revised parent net showing abstraction of the caller role is shown in Fig. B.9.

Fig. B.9 'Abstracted caller role used for re-calculation of state space graph'

 166

From Fig. B.9 it can be seen two transitions, 'Abstracted Make_Call' and 'Abstracted
Response' are needed to facilitate the provided and required interfaces for the
'Make_Call' transition decomposed in the original hierarchical net of Fig. A.4. The re-
calculated state space graph results for Fig. B.9 are shown in Fig. B.10.

Reachability/State Space
 Nodes: 44
 Arcs: 68
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 44
 Arcs: 68
 Secs: 0

Dead Markings [44,43,42,41,40,38,35]

Fig. B.10 'Static analysis for the abstracted caller role within the hierarchical net'

Fig. B.10 shows that for the original hierarchical net, by considering one of its two
components at an abstracted level and one at a detailed level, the state space graph has
halved in size (in terms of time, the original hierarchical net and the abstracted net
calculations took less than one second as reported by the toolset). The technique was
carried out again. This time the detail was abstracted out of the process associated
with the receiver role's 'Connect_Call' transition and the caller's 'Make_Call' transition
reverted back to the decomposition presented in the original hierarchical net. The
revised parent net showing abstraction of the receiver role is shown in Fig. B.11.

Fig. B.11 'Abstracted receiver role used for re-calculation of state space graph'

From Fig. B.11 it can be seen two transitions, 'Abstracted Connect_Call' and
'Amend_Line' are needed to facilitate the provided and required interfaces and
telephone line reset for the 'Connect_Call' transition decomposed in the original
hierarchical net of Fig. A.4. The re-calculated state space graph results for Fig. B.11
are shown in Fig. B.12.

 167

Reachability/State Space
 Nodes: 77
 Arcs: 146
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 77
 Arcs: 146
 Secs: 0

Dead Markings [77,76,75,74,73,68,62]

Fig. B.12 'Static analysis for the abstracted receiver role within the hierarchical net'

Again, Fig. B.12 shows that for the original hierarchical net, by considering one of its
two components at an abstracted level and one at a detailed level, the state space
graph has reduced in size (in terms of time, the original hierarchical net and the
abstracted net calculations took less than one second as reported by the toolset). This
time the abstraction benefit is not as great due to there being a greater number of core
net elements required in the abstracted net from the decomposed 'Connect_Call'
subnet (mainly from the telephone line reset logic). Before drawing any conclusions
the effect of a compositional approach to state space calculation is now considered.

B.1.5 Largeness Avoidance by Composition
The abstraction technique used above takes advantage of a top-down, functional
decomposition approach and aims to remove one subnet's elements from the state
space while maintaining the overall structure or composition of the net. Another
technique investigated also takes function into account but does so in a compositional
or bottom-up way. Unlike Petrucci et al's largeness reduction approach to the state
space problem using modularity, the aim of the modular approach is largeness
avoidance. Where Chukwuogo [52] used hierarchy within nets to identify components
to abstract the detail from, the work did not report on model-checking individual
components. The interface information within the telephone system is used to derive
its constituent modules (in this case, processes). These are model-checked
individually.

The parent or 'overall structure' net specifies the order of interface usage as well as the
activity execution sequence within the processes. In the telephone example, there are
two distinct interfaces specified ('Try_To_Connect' and 'Response_From_Receiver').
One is provided by the Receiver component, and one by the Caller component. Three
processes and their constituent activities use the interfaces. Two processes are
associated with the Caller component and one process with the Receiver. The parent
net specifies that one of the Caller's processes uses the Receiver's connecting
operation first. The Receiver's process accepts the incoming call and uses the Caller's
response operation. Finally, the second process associated with the Caller deals with
the Receiver's response. Each of these three processes uses the interfaces to send and
receive information. As long as these interfaces are adhered to, the component
processes can be changed or substituted without requiring changes to the interfaces or
other components.

 168

In the compositional approach to static analysis, the three processes are considered in
the order specified by the parent net. The Caller call initiation process is first in
sequence and the parent net of Fig. B.13 highlights the sequence.

Fig. B.13 'Parent net showing control sequence and operation ownership'

The trigger input of this process is lifting the telephone receiver. The output is
information required by the 'Try_To_Connect' interface place. The aim of the
approach is to maintain the required inputs and outputs of these three processes as if
they were still part of one whole net so that static analysis can be informed and
conducted on each. For the first process, the initial marking was an attempt to model
two calls so two tokens were used in the initial marking. Fig. B.14 shows the first
process subnet and state space graph results calculated for this subnet.

Reachability/State Space
 Nodes: 9
 Arcs: 12
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 9
 Arcs: 12
 Secs: 0

Dead Markings [9]

Fig. B.14 'Static analysis for the Caller component initiate call process in the
compositional approach'

 169

The output from the first process in the untimed net is simply the same tokens on
output interface place 'Try_To_Connect' as those used in the initial marking. These
were manually entered as the initial marking of the next process in the sequence, the
Receiver component's respond to call process (Fig. B.15).

Reachability/State Space
 Nodes: 19
 Arcs: 24
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 19
 Arcs: 24
 Secs: 0

Dead Markings [16,18,19]

Fig. B.15 'Static analysis for the Receiver component respond to call process in the
compositional approach'

The static analysis results for this subnet are shown at the bottom of Fig. B.15. Three
dead markings were obtained. For each of these dead markings, the tokens on output
interface place 'Response_From_Receiver' could have the following values:

1. 1`(Ringing_Msg,1)++1`(Ringing_Msg,2)
2. 1`(Ringing_Msg,1)++1`(Engaged_Msg,2)
3. 1`(Engaged_Msg,1)++1`(Ringing_Msg,2)

All three were manually input into the third and final process, the Caller component's
process that handles responses, as shown in Fig. B.16.

 170

Reachability/State Space
 Nodes: 480
 Arcs: 1592
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 480
 Arcs: 1592
 Secs: 0

Dead Markings [476,477,478,479,480]

Fig. B.16 'Static analysis for the Caller component call response process in the
compositional approach'

Following inspection of the five dead markings of Fig. B.16, using the three pairs of
tokens suggested by process two as the initial marking of process three in model-
checking is not the correct way to obtain the true range of possible behaviour from
two initiated calls in the telephone system. As it stands, the initial marking in Fig.
B.16 represents six initiated calls. Instead, each of the possible pairs output from
process two should be input into process three separately as an initial marking and
model-checked. Composition of the dead markings obtained from the three separate
model-checks will provide the complete range of behaviour for two initiated calls in
the telephone system. This is shown below:

1. 1`(Ringing_Msg,1)++1`(Ringing_Msg,2) used as first initial marking of process
three.

Model-checking found three dead markings. Each dead marking's 'Hangup' place had
the following markings:

 171

2`Call_AnsweredMsg
1`Not_AnsweredMsg++1`Call_AnsweredMsg
2`Not_AnsweredMsg

2. 1`(Ringing_Msg,1)++1`(Engaged_Msg,2) used as second initial marking of
process three.

Model-checking found two dead markings. Each dead marking's 'Hangup' place had
the following markings:

1`Engaged_Msg++1`Call_AnsweredMsg
1`Not_AnsweredMsg++1`Engaged_Msg

3. 1`(Engaged_Msg,1)++1`(Ringing_Msg,2) used as third initial marking of process
three.

Model-checking found two dead markings. Each dead marking's 'Hangup' place had
the following markings:

1`Engaged_Msg++1`Call_AnsweredMsg
1`Not_AnsweredMsg++1`Engaged_Msg

Combining the markings obtained from the three separate pairs of initial markings to
process three gives:

1. 2`Call_AnsweredMsg
2. 1`Not_AnsweredMsg++1`Call_AnsweredMsg
3. 2`Not_AnsweredMsg
4. 1`Engaged_Msg++1`Call_AnsweredMsg
5. 1`Not_AnsweredMsg++1`Engaged_Msg

These markings are the five possible outcomes from the telephone process when two
calls are initiated.

It should be noted that the same compositional approach was attempted for larger
numbers of initiated calls in the first process. Due to the very manual nature of the
compositional approach so far and high numbers of potential inputs obtained for
subsequent stages, a current weakness of this approach is the volume of values the
modeller has to process.

B.1.6 Summary of Largeness Avoidance Techniques
Using a top-down approach the main functions and their underlying processes were
identified. Static analysis was performed on the developed model and it was noted
that state space explosion tended to be alleviated when small numbers of initial tokens
were used. From this analysis insight was gained into the correct behaviour of the
model. Detail was then abstracted out of each main function in turn (the abstraction
approach) and static analysis performed. This lowered the state space graph size
substantially (the time for two initiated calls took less than one second).

 172

The top-down approach and information gained abstracting out the detail of each
main function helped to identify the individual components at the lowest abstraction
level to analyse in a compositional approach. Use of existing nets have not been
considered in this thesis or where the compositional approach could help a modeller
compare modules identified using the top-down method with those derived from
existing systems or previous modelling attempts. Substantial state space graph
calculation size benefits were noted using the compositional approach (as for the
abstraction approach, reported calculation time was less than one second).

With the compositional approach, the modeller needs to consider each process and its
inputs and outputs carefully. This is beneficial as it promotes further verification
within the modules of the overall model. For example, following static analysis of the
second process in the telephone system, the third possible marking,
1`(Engaged_Msg,1)++1`(Ringing_Msg,2), on place 'Response_From_Receiver' could
reflect undesirable behaviour in the model. As this is produced as a potential outcome
from process two, the second call has overtaken the first at a point in process two
resulting in the first call receiving an engaged tone. The modeller may then choose to
amend the model accordingly to eradicate this outcome.

In this way, the modeller can gain understanding of the behaviour of subnets and the
overall net in stages, with the ability to use subsets of outputs of each process as
inputs into the next, examining, understanding, correcting and amending the
behaviour of the model as necessary. From the telephone example, the hierarchy used
within the model was based on functional decomposition with functions implemented
by components. As with systems-of-systems, the telephone system components are
integrated with one another via communication at well-defined network interfaces.
The components or subnets at the lowest level of abstraction are likely to contain the
logic controlling the behaviour of the system. Ideally, these modules will form the
basis of an organisational repository for future re-use and evolution for other systems.
These modules could then be used in a bottom-up approach to development by
specifying a control sequence for their integration. A parent net can be developed with
abstract activities based on the function of the more detailed existing nets using the
subnet's interface places as the means to perform the linking between the different
abstraction levels.

Unlike static analysis of a full hierarchical model (or even a hierarchical model using
the abstraction largeness avoidance technique), a modeller has the ability to narrow
down the scope of analysis by examining a module in isolation. The modeller does not
have to inspect a state space graph of the entire model to trace how particular dead
markings that may or may not relate to the behaviour of the module have been
reached. Where the entire model is non-trivial, the state space graph is likely to
consist of a high number of nodes (even using the abstraction largeness avoidance
technique) and manual inspection will not be a straightforward task. A compositional
approach to analysis also allows a modeller unfamiliar with a model at the lowest
abstraction level to investigate and verify its behaviour at its input and output
interfaces prior to its integration with other modules. It may also be of benefit in
promoting understanding of models to unskilled practitioners.

A current weakness of the compositional largeness avoidance technique occurs when
greater numbers of initial markings are used or there are large numbers of modules to

 173

integrate (as would be likely in large-scale systems-of-systems). Currently the
approach involves much manual effort. Both automation and a model management
approach would be highly recommended. It may be possible to use functional
decomposition to analyse modules as part of functional groupings (and divide up the
groupings between modellers) prior to their integration into the overall system-of-
systems model.

Based on the investigation, use of the two approaches in conjunction with one another
and with full hierarchical analysis (where this is possible) is recommended. Both
largeness avoidance approaches (and use of nets to model large-scale systems) rely on
a suitable hierarchy being in place. With the telephone system, top-down functional
decomposition is used at conceptual, and design and architecture levels of model
abstraction to modularise and provide hierarchical structure within a model. Given
system-of-systems' reliance on communication between components at defined
network interfaces, these communication interfaces form the boundaries between the
hierarchies of components in the system-of-systems. In the model and the real-life
system-of-systems, hierarchy and interfaces are key enablers of scalability and
verifiability. For a net to capture a system-of-systems, the concepts of hierarchy and
interfaces must be realisable within the net. Equally, for a net to be verifiable, there
needs to be a way to analyse its hierarchy of modules and minimise the risk of state
space explosion. The two approaches discussed above may be able to contribute in
this area.

The abstraction approach can be used to remove the underlying detail from one or
more components of the parent net and analyse the overall control structure and
behaviour of the model. The compositional approach can be used to verify individual
components at the lowest abstraction level identified by the top-down functional
decomposition on an individual basis. The compositional approach can also be used
with existing models, i.e. a bottom-up approach. A potential future area of research
would be comparison of existing component nets and those identified using a top-
down approach. Best practice approaches related to management of verification of
large-scale systems models will be essential for dividing up the modelling workload.

Together with the abstraction and compositional techniques described above, other
largeness avoidance techniques that can be readily employed with the toolset involve
restricting potential values of types defined for places and token volumes. In the
analyses, colours (types) were defined with finite values in the telephone example.
For example, colour 'Call' was declared as an enumerated type with seven possible
values. Variables defined as this enumerated type were bound during dynamic and
static analyses to a value from a small finite set. The state space analysis was
calculated using an initial marking of two tokens of type 'Call'. Given there are no
loops in the nets, this essentially bounded the net to a maximum of two tokens per
place.

These largeness avoidance techniques will be applied in the larger-scale case studies.
They are also explored further in Appendix D during the analysis of nets at design and
architecture abstraction levels.

 174

B.2 Conclusions so far following Verification using Coloured
Petri Nets

Coloured Petri nets with hierarchy provide a modeller with a specification language
consisting of places, place types, directed arcs, transitions, abstraction and rules of
interpretation for the net elements. These rules and elements can be described
mathematically. Coloured Petri net models combine graphical notation and textual
annotation (the degree of textual annotation support is toolset dependent) to capture
what a system should do. It is anticipated that a modeller would then use this formal
language to output a model regarded as a primary point-of-reference by other people
involved with the system lifecycle. As the people involved will include skilled and
unskilled Petri net practitioners alike, it is vital that this model be precise, correct,
readable and understandable.

Unlike UML, system specification is not separated across different types of diagrams.
Both syntax and semantics of Petri nets are described mathematically. To a skilled
Petri net practitioner, the single net model in Fig. A.3 specifies information state,
activity, and control sequence related to a telephone call's operational process and
information exchange protocol. To an unskilled practitioner, the net in Fig. A.3 may
well be very difficult to read and comprehend due to unfamiliarity with the underlying
rules of interpretation, minimal textual annotation, default use of toolset colour
palette, failure to identify input parameters, failure to identify relations between inputs
and outputs, failure to map between net and domain, failure to see how new features
could be added to the net, and the low variety of symbol elements.

The fact that a telephone system concept is being specified by the net can only be
inferred through adequate use of labelling of places and transitions (some toolset's
permit enhancement to a net's graphical notation via pictorial inclusion and
animation). There may still be ambiguity regarding the meaning of the net as a result
of the labelling convention used unless an organisation-wide convention is adopted.

The modeller using nets needs to understand the problem domain being specified so
that there is accurate capture of operational process and information exchange
protocol. This could be facilitated through use of domain experts, access to tried and
tested models at higher and lower abstraction levels (e.g. Petri net or UML), and
operational guidelines or documentation. It was useful to begin by constructing a very
basic net in terms of functionality, and use dynamic and static analyses to increase
confidence in its correctness before adding further information.

Simulation was used as an initial means to check the logic of the net. Petri nets were
found to be useful knowledge elicitation tools in their own right for capturing the
information required. Not only can nets be interactively stepped through, unskilled
practitioners (e.g. domain experts), can participate with the modeller in their
verification. Simulation helped highlight incorrect logic on transition output arcs,
unsuitable variable bindings where the destination place type declaration did not
include a required value (and simulation execution effectively halted), and the need
for the modeller to exercise care in their use of unique variables in logic used on
transition output arcs.

Once errors or amendments detected using simulation have been corrected, static
analysis can be performed on the net to perform more exhaustive verification on the

 175

net and its behaviour. Correct and incorrect deadlock states, and correct process logic
can be examined. Desirable reachability states can be confirmed using branching logic
queries (a toolset-dependent feature). The process of formulating queries and
examining results from static analysis is a highly beneficial activity. In order to verify
the results from the model-checker, the modeller has to understand the concepts
behind the analysis so they can trace execution paths to terminal markings and reason
why the places in terminal markings have certain markings. This leads the modeller to
have increased insight into the logic used within their net, insight that is not
necessarily gained using UML models (static or executable). Once static verification
is undertaken, there can be greater confidence that the resultant net accurately and
correctly describes what the system should do, ready for evolution in subsequent
system lifecycle stages.

As indicated in sections A.3.2, B.1.4 and B.1.5, informed use of hierarchy may be
able to help alleviate the state space explosion problem in model-checking
(specifically, use of model viewpoints or abstraction levels, hierarchy within models,
and component abstraction and composition). This will be essential for the deeper
verification of large-scale system-of-systems. Hierarchy employed in this way can
also facilitate scalability and specification of a system-of-system's operational
processes and design and architecture components. In addition, careful employment of
graphical enhancement, further textual annotation and a toolset's colour palette should
mean nets can be used as primary points-of-reference in the system-of-systems
lifecycle by both skilled and unskilled net practitioners.

As demonstrated by the telephone example, static and dynamic analyses of a net
would be very much an iterative part of the system development process.

 176

Appendix C

C.1 Validation of the Telephone Process using a Timed
Coloured Petri net

Using the simple telephone example in Appendices A-B, it has been shown that
classic and high-level Petri nets can be used to specify the behaviour of a system
(albeit with varying degrees of success). To capture the efficiency or performance of a
system and facilitate validation of its design, time-dependent actions such as timeouts,
processing delays or deadlines are essential. As well as efficiency specification, time-
dependent actions also enhance a system's behaviour specification in terms of
correctness. Activity ordering alone is insufficient to capture overall system behaviour
precisely. Tokens representing information in larger-scale systems will be processed
according to the time they entered the system, time involved in their consumption and
generation, and involvement in delays and transfer failures. Timing will be needed to
specify the ordering multiple tokens receive over and above any activity sequence
they experience. Timing information may need to be approximate, exact or both
depending on the stage of development of the system. Classic Petri nets only include a
basic concept of time in that actions (transitions) follow a particular execution order
from an initial marking. Petri nets have been extended to incorporate the concept of
time via their places, transitions, tokens, arcs or a combination of these, for example
[80, 83].

Petri nets are deterministic timed nets if the delay is known, or stochastic timed nets if
the delays are random, or deterministic and stochastic timed nets if a combination of
fixed and random delays are present. In stochastic nets, firing time is associated with
each transition indicating the delay from when the transition is enabled until it fires.
Usually, the transition with the minimum remaining firing time affects the next
marking of the net. Following this marking update, each newly enabled timed
transition obtains a delay from the delay distribution and each timed transition
enabled in the previous marking (and still enabled in the current marking), keeps its
remaining delay. Transitions disabled in the current marking lose their remaining
delay. Common stochastic Petri net models are by [51] and [49].

Deterministic and stochastic nets contain immediate transitions (when enabled, fire
without delay), stochastic transitions (when enabled, fire after some delay sampled
from a distribution), and deterministic transitions (when enabled, fire after a constant
delay). Enabled immediate transitions have firing priority over enabled timed
transitions. Multiple enabled immediate transitions should be specified with firing
probabilities to resolve firing conflict.

This thesis uses high-level, timed coloured Petri nets. Jensen [80] extended coloured
Petri nets with timed coloured Petri nets. With these nets a global clock is introduced
for the net model. The state of a timed coloured Petri net consists of a marking and the
global clock time. Timed coloured Petri nets can contain both timed and untimed
coloured tokens. Timestamps are controlled by initial marking, transition or output arc
expressions where discrete and probability distributions can be used to define the time
taken for a transition to fire. Timestamps allocated to the tokens must be less than or

 177

equal to the current model time in order to be removed. In this way, timed transitions
represent the time taken by the system to perform a given task. Transitions known as
immediate transitions can also fire in zero time.

CPN Tools implements timed coloured Petri nets but supports deterministic and
stochastic model behaviour via discrete and continuous functions. However, in order
to calculate a state space graph, models have to be discretised, i.e. evaluated to see
whether they can be made deterministic and finite. Based on this, CPN Tools has a
bias for stochastic behavioural support via simulation rather than static analysis.
Unless infinite models are made finite, static analysis of them is intractable. For
support of deterministic and stochastic Petri nets, an alternative toolset would need to
be adopted. As this thesis is concerned with large-scale, discrete event system-of-
systems where their behaviour is (ideally) deterministic and terminating, use of CPN
Tools is maintained. Even at the system-of-systems architecture level of design,
events specified will be of a discrete rather than continuous nature. Continuous
specification will be required in physical monitoring at a lower level of (component
system) detail. However, prioritisation between events should be enabled at a system-
of-systems level.

Several research initiatives have been undertaken using timed Petri nets. These
include: Christensen et al in [82] make use of timed coloured Petri nets to optimise the
performance and capacity of a web server; Van der Aalst et al in [83] use interval
timed coloured Petri nets to study rail time-tabling; Bulitko et al in [84] use time
interval Petri nets to analyse real-time damage limitation on ships; Van der Vorst et al
and Makajic-Nikolic et al use timed coloured Petri nets to examine supply chains [86,
87]; Dahl et al consider interval timed coloured Petri nets in penetration testing [85];
Kwantes uses timed coloured Petri nets to analyse a banking clearing process [88];
and Schomig et al use stochastic Petri nets to model business processes in [89].

All the approaches [82-89] are useful in providing guidance on development of
performance models and contributing to parts of the validation of system-of-systems.
Their approaches deal with continuous management, proactive and retrospective
analysis of physical products but do not take into account the unique characteristics of
system-of-systems. For development of system-of-system performance models, the
budget-holder should be considered in the process, as well as the concurrent and peer-
to-peer (equal) nature of the provided and consumed functions (services) realised by
the processes and their components. In system-of-systems, intangible services are
realised using tangible resources in different environmental locations. The perceived
quality of service of these intangible functions arises from the efficiency of the
processes. Insight should be offered into assessment of different ways of realising
these intangible services at an early development stage and maintained throughout the
system-of-systems development stages. For example, an assessment model should
help to answer whether an optimal combination of activities that leads to a reduced
service response time exists.

Currently, the example telephone system has been specified at an operational process
(conceptual) model level of abstraction which is the first stage in large-scale, system-
of-systems development. Typically, this viewpoint is useful for gaining a shared
understanding of the problem concept and the intended technical and non-technical
audience would include analysts, developers and domain users. The introduction of

 178

timing information to the telephone example at this abstraction level would help
enable domain users and developers to decide whether the modelled concept was
efficient and adequate for input into the design stage. Assessing performance would
involve checking if the modelled processes reached desirable behaviour states
(including recovery from undesirable states) within realistic time and resource
estimates. Improving the efficiency of the process means looking for new or different
ways to realise desirable behaviour within defined time, cost and quality parameters.

To examine alternative options for the process, it was necessary to determine the time,
cost and quality performance indicators for the telephone service and implement these
in the model. Examples of these indicators include call fulfilment time,
communications resource usage (and related costs), and call fulfilment time within a
certain time limit. The natural inclination would be to minimise the first two and
maximise the last one but all three need to be taken in context with the strategy of the
organisation(s) involved. In the case of system-of-systems, it is essential to understand
the economic and operating environment for system-of-systems services, and which
(if any), of the performance indicators carries more weight than the others.

As highlighted in the telephone example, performance indicators could include
average call fulfilment time, reduction in fulfilment time for priority calls, and
average call duration. From the caller and receiver, i.e. as customers of a telephone
service provider point-of-view, reduced cost and higher quality may be the most
important performance parameters in relation to their service provider. From a
receiver's point-of-view, if they are a business service-provider themselves, they are
likely to be most concerned with time and quality parameters relating to customers
trying to connect. From a telephone service provider's point-of-view, they need to
appreciate who they are providing the service for so they can tailor their service
provision strategy accordingly and use it to influence the lifecycle of their call
systems.

In the example, as the system was specified originally from the receiver's point-of-
view, it is assumed that they are a business service provider concerned with higher
quality and lower time parameters for customers. This means the receiver would be
interested in minimising call fulfilment time and maximising connection on first
attempt, i.e. answered calls for its customers. As it stands, the operational process net
from Fig. A.4 is modelled from the viewpoint of the receiver. Although operational
process nets can be used in performance analysis, further adaptation is usually
required to support the viewpoint, performance indicators and strategy of the
viewpoint concerned.

Dynamic analysis (simulation) is used in conjunction with timing in the net. Timing
delays were introduced on the source and various intermediate places within caller
and receiver processes using an exponential distribution to represent random call
placement and delays between each activity in the call process. From initial
simulation runs, a record declaration was needed for each call in order to store the
model time at which the 'Dial_Number' activity executes. This was viewed as the start
of the attempt by the underlying communications infrastructure to connect the caller
with the receiver. Again, a time delay was introduced here to the record token to
represent the delay of the underlying communications infrastructure.

 179

Once the receiver's line is checked for readiness to receive the incoming call, another
delay is triggered to represent receipt of the relevant dial-tone from the underlying
communications infrastructure back to the caller. The time at which the 'Response'
activity executes is viewed as the end of the attempt by the underlying
communications infrastructure to connect the caller's call. This model time is also
stored in the call record (shown in Fig. C.1).

Fig. C.1 'Caller subnet within performance analysis net of telephone process'

The net toolset permits extraction of data from certain places or transitions during
simulation of the operational process. This information could be used to calculate
timing delays for processes associated with particular components, individual or
groups of activities, and the process as a whole. In the telephone example, data
collection was carried out on the 'Response' transition. Each time the transition fired,
the call record was examined and the recorded model start time for the call's
connection attempt was subtracted from the model time at which 'Response' fired. The
result was deemed to be the connection fulfilment time for a particular call, i.e. the
time between the caller completing dialling of the receiver's number and hearing an
engaged or ringing tone.

In this way, the net toolset could be used to simulate a number of calls being placed
from callers to the same receiver (in this case five call tokens were set up as the initial
marking of the 'Lift_Receiver' place) and to obtain statistics based on the timings
obtained for each call made.

 180

Fig. C.2 'Telephone net standard performance report for configured data collection'

Fig. C.3 'Telephone net text file report for Response transition data collection'

Fig. C.4 'Telephone net log file report for Response transition data collection'

Figs. C.2-C.4 show a sample of the net toolset's output in relation to performance
analysis of a net. Fig. C.2 is a standard performance report produced for any data
collection configured within a net. It can be seen that there are five types of statistics
shown and these statistics can be configured by the modeller. Figs. C.3-C.4 detail the
content of the call record following execution of the 'Response' activity. Fig. C.4
details the execution steps of the 'Response' transition during the simulation, the
corresponding model time and call fulfilment duration results for each 'Response'
execution (under the data column). Fig. C.2's model steps value is two higher than
Fig. C.4's last recorded step value of thirty-three. This is due to there being two final
transition executions following the final execution of transition 'Response'.

Using data collection, for this particular simulation it can be seen that the five calls
took a total of fifty time units for their call connections to be fulfilled at an average of
ten time units per call. From the receiver's efficiency concerns, they can then decide

 181

how to improve on this average. For example, they may choose to look at the effect of
additional resources on fulfilment times, e.g. a second physical line. This can be
implemented in the model by setting a new initial marking for 'Receiver_Line' of two
and re-running simulation. A priority queuing mechanism could also be implemented
in the model to reduce the number of connection attempts resulting in receipt of an
engaged tone or unanswered ring tone.

In addition, the net toolset can be used to set up automatic simulation runs with a
different selection of parameters per run. For example, simulation runs could be set up
for the telephone process where calls are initiated in the system until a certain number
of calls is reached, different random distributions can be used per run, the number of
available lines available to the receiver can be amended, further data collection points
can be implemented to examine duration of calls answered by receiver or the number
of unanswered or engaged results. The net can be further amended to reflect
probability of underlying network failure and capture statistics based on the number
of call attempts fulfilled at the first attempt. Statistics generated can be presented
textually or graphically.

It should be noted that all timings used in the telephone process are estimates. For
systems-of-systems, it would be anticipated that timings would be informed by
subject matter experts, archived, to-be architecture models describing the physical
component(s) realising the process or actual implemented components. Based on the
results from performance analysis, process logic may benefit from amendment. This
could involve consolidation of activities under a different role, activity removal,
additional resources, or activity re-ordering.

At this stage in development, no physical components have been decided upon to
realise the activities and processes specified. Of interest is using knowledge of (legacy
or planned) physical assets to help optimise engineering of the operational process
level via analysis-of-alternative scenarios. As well as the timing statistics incorporated
above, Salimifard et al [94] report on using nets to allocate physical resources and
costs to activity execution. This work is highly relevant to the development of large-
scale system-of-systems and can be adapted to it, facilitating analysis-of-alternatives
in operational process engineering. The adaptation for the telephone system is shown
in Figs. C.5-C.6.

 182

Fig. C.5 'Activity subnet detailing physical asset and role to perform Dial_Number
activity'

Fig. C.6 'Physical asset net scheduling and processing jobs based on required role'

Fig. C.5 is an instance of a subnet constructed to specify how its parent activity (in
this case 'Dial_Number') should be processed in terms of physical asset and role
within the asset. 'Dial_Number' is to be processed by the 'Comms' physical asset,
specifically the 'ATM' role. Fig. C.6 is a net specifying how the 'Comms' physical
asset takes in activities or jobs for processing. In the net, 'Dial_Number' activity
arrives and checks are made to see that it is meant to be processed by this asset and
the role identified. The job is then added to the asset's overall schedule (associating it
with the 'ATM' role) by the 'COMMS_Sched' transition. Jobs are then processed
according to their estimated processing time, rate of the role, and cost of the role. At
the end of the processing, the role is released and the processing information (time
and cost involved) are returned to the subnet of Fig. C.5. The subnet then returns
control back to its parent net and the next activity's processing information can be
obtained in a similar way. This information can be extracted from the overall net
using the toolset in order to gain timing and cost information per activity, per

 183

component process, and for the process overall based on the physical assets used to
realise the component activities and processes.

C.1.1 Static Analysis of Timed Coloured Petri Nets
Of further note is static analysis of an untimed net amended for performance analysis
through the addition of timing. Based on the thesis work with timed coloured Petri
nets using the net toolset, CPN Tools, and recommendations from Jensen [90], static
analysis of timed nets requires careful management. According to Jensen [90,100],
non-determinism in nets means that a marking cannot be uniquely determined
following an enabled transition's execution. For non-deterministic nets, the same state
space cannot be generated twice due to this unpredictable behaviour. [90] suggests
evaluation of a non-deterministic net to check whether it can be made into a
deterministic one. Measures include: restricting the numbers of tokens in the net
through initial markings or places that keep track of and enforce a limit the number of
tokens; analysing one case of probability at a time; and removing the use of functions
from the net (including random distribution functions) and substituting variables that
can be bound from a small range of values defined by their associated type. Although
these measures can apply to untimed as well as timed nets, timed nets are at much
greater risk of experiencing the state space explosion problem than their equivalent
untimed net during static analysis.

In static analysis of timed coloured Petri nets, state space graph calculation considers
all potential times that can be associated with tokens as well as their colour (types).
Sole description of activity ordering in a model can lead to an ambiguous or erroneous
behaviour specification when multiple tokens are involved in nets (due to lack of
priority and potential for overtaking). Timing can help reduce this ambiguity by
associating a timestamp with a token. It may still be possible for tokens to overtake
one another depending on introduced delays, timeouts and failures but static and
dynamic analyses should help the modeller ascertain why certain output has been
achieved. Timed nets will be essential in system-of-systems behaviour specification.
Management, including best practice approaches towards their analysis is also
essential. The telephone process is considered with this in mind.

For the telephone process example, an untimed operational process net was used in
static analysis until a stable behavioural model was achieved. This model was then
enhanced with timing information with a view to improving behaviour specification
and undertaking validation. From associated simulation of the timed net, further logic
amendments were made to the net. Before detailing some of these, static analysis was
carried out on the net in order to verify the effects of these enhancements on its
behaviour.

Even after following the recommended measures to ensure non-determinism in the
analysed net, static analysis using the timed net resulted in a dramatic increase in the
size of the state space graph and its terminal markings in comparison to the untimed
net used as the basis for implementing the timing information. Inconsistent dead
marking results were obtained across analysis runs prior to exercising the non-
deterministic measures. These measures included minimising the initial marking to
represent two initiated calls and using a small colour (type) to capture delay for three
transitions (activities). Recording of call fulfilment time was also removed from the

 184

net and the arrival times of the two calls were separated by one unit using hard coding
in the initial marking (Fig. C.7).

When static analysis of the timed net was run, a full state space was calculated in
three seconds resulting in four thousand two hundred and twenty-five nodes and nine
thousand one hundred and one arcs. Fifty terminal markings were obtained. For the
equivalent untimed net, i.e. essentially the net elements and inscriptions of the timed
net with timing in colours (types) definitions removed, a full state space was
calculated in one second with one hundred and sixty nodes and three hundred and
thirty-five arcs. Five terminal markings were obtained. On further inspection of the
state space graph and standard report obtained from the timed net, the difference in
size and number of terminal markings was attributed to the way timestamp
information is used in the state space graph calculation.

Fig. C.7 'Timed net of telephone process showing initial marking and delays'

From Fig. C.7, the initial marking and time delay introduced (given by the 'lgth'
variable binding) following execution of transitions 'Wait_For_Tone' and
'Dial_Number' can be seen. The binding of variable 'lgth' can be selected from a small
integer colour ranging between one and four. The two initial marking tokens have
timestamps of one and two units respectively and there are three output arc
inscriptions which are used to add three further time delays of between one and four
units. In static analysis, the net toolset evaluates the state space graph for every
possible binding of 'lgth'. In the timed telephone example, after execution of
'Phone_Tone', possible timestamps at place 'Response_From_Receiver' for the token
that started with timestamp one (following addition of the three time delays) range
from values four to thirteen. For the token timestamped with two, possible values at
'Response_From_Receiver' range from five to fourteen. Table C.1 shows how these
ranges were reached.

 185

 Transition Wait_For_Tone Dial_Number Phone_Tone
Initial Marking Model

Time
Delay @+lgth @+lgth @+lgth

 1 2,3,4,5 3,4,5,6,7,8,9 4,5,6,7,8,9,10,11,
12,13

 2 3,4,5,6 4,5,6,7,8,9,10 5,6,7,8,9,10,11,1
2,13,14

N.B. lgth=1,2,3 or 4

Table C.1 'Possible timestamp ranges following execution of the three transitions'

The earliest model time a call result on place 'Hangup' can be obtained is four units.
At four units, 'Receiver_Line' place would have a timestamp of four and the first call
token (initially timestamped one) would have produced a 'Call_AnsweredMsg' or
'Not_AnsweredMsg' (due to the initial marking of place 'Receiver_Line' of
'Line_FreeMsg' it is not possible for the result of the first call to be 'Engaged_Msg').
The lowest timestamp the second call (initially timestamped two) would have on
place 'Response_From_Receiver' following this result would be five. The second call
would also produce a call result on place 'Hangup' of either 'Engaged_Msg',
'Call_AnsweredMsg' or 'Not_AnsweredMsg'. As part of the second call process, it
will reset the receiver's line to free if it successfully connected through to the receiver.
The last transition in the net, 'Amend_Line' resets the line as required, updating the
'Receiver_Line' place's timestamp in the process. Following completion of both calls,
in this case where the lowest possible timestamp values have been used, the terminal
marking will show one of five possible results in place 'Hangup' and the second call
having a final timestamp of five (it is known that the first call has a minimum
timestamp of four).

Using the above analysis, Table C.1 and inspection of the terminal markings, the fifty
terminal markings in the timed standard analysis report can be accounted for. The
state space graph terminal markings centre around ten pairs of timestamps (i.e. four
and five, five and six, up to thirteen and fourteen) with five possible values in place
'Hangup'. The five markings from analysis of the untimed net have essentially been
repeated for each pair of timestamps. It can be seen that this timed analysis only used
two tokens representing calls in the initial marking and short delays of one to four
units. Subsequent analysis with three calls in the initial marking resulted in the state
space explosion problem (within the set processing limit of twenty minutes). Further
work was undertaken using static analysis of untimed nets, timed nets and abstraction
of process detail within hierarchical nets to see if there were ways to alleviate the state
space explosion problem in timed nets.

Calculation of a state space graph was attempted for a timed net and its untimed
structural equivalent, i.e. identical net elements and no timed colour (type) definitions
or delays. Both types of nets employed deterministic measures. Variations in
parameters and results are shown in Tables C.2-C.5:

 186

STATE SPACE
GRAPH

Untimed 1 Timed A Timed B

Initial marking

Nodes and arcs 160 nodes, 335 arcs. 4225 nodes, 9101 arcs. 655 nodes, 1289 arcs.
Generation time 1 sec. 4 secs. 1 sec.
Terminal
markings

5 50 20

Delay range N/A 1..4 1..2

Table C.2 'Comparison between untimed and timed state space graph calculation'

STATE SPACE
GRAPH

Untimed 2 Timed C Timed D

Initial marking

Nodes and arcs 2174 nodes, 6585 arcs. Explosion problem. 6390 nodes, 16453 arcs.
Generation time 2 sec. 1200 secs (limit set). 12 secs.
Terminal
markings

9 N/A 36

Delay range N/A 1..4 1..2

Table C.3 'Comparison between untimed and timed state space graph calculation'

STATE SPACE
GRAPH

Untimed 1 Timed E Timed F

Initial marking

Nodes and arcs 160 nodes, 335 arcs. 51 nodes, 77 arcs. 78 nodes, 163 arcs.
Generation time 1 sec. Less than 1 sec. Less than 1 sec.
Terminal
markings

5 5 2

Delay range N/A 1..1 1..1

Table C.4 'Comparison between untimed and timed state space graph calculation'

STATE SPACE
GRAPH

Untimed 3 Timed G

Initial marking

Nodes and arcs 26729 nodes, 105193
arcs.

163 nodes, 304 arcs.

Generation time 606 secs. Less than 1 sec.
Terminal markings 14 7
Delay range N/A 1..1

Table C.5 'Comparison between untimed and timed state space graph calculation'

Unless time delays and token numbers are kept to a minimum (careful judgement of
what constitutes this minimum is needed to avoid adversely affecting system
behaviour), timed nets show a marked difference in their calculated state space
graphs. This applies even after deterministic measures are applied to the timed net.
Table C.2 Untimed 1 and Timed A and Table C.3 Untimed 2 and Timed C results
illustrate this considerable size difference where the timed net uses three delays of

 187

between one and four time units. Timed B and Timed D (Tables C.2-C.3) show the
effect of reducing the range of the three timed delays to between one and two time
units. The associated state space graphs are significantly smaller. In the case of Timed
D, restricting the delay range further has made calculation of the state space graph
tractable within the given processing limit of twenty minutes. In cases Timed A,
Timed B and Timed D all final markings are correct within the given initial marking
and delay range parameters.

Table C.4's Timed E shows the effect of reducing the delay to one unit with two
tokens (also separated by one unit) in the initial marking. Comparing it directly with
its equivalent untimed net in Table C.4 (Untimed 1), it can be seen that five terminal
markings (all desirable) are obtained from a smaller state space graph. From this
result it can be concluded that the initial marking and delay range parameters of
Timed E produce a specification of the telephone process where not only is the
activity execution sequence detailed, the tokens are also prioritised within the net.
Due to this token prioritisation through timing, there is no need to calculate reachable
markings arising from alternative delay value choices (there is only one possible
value, that of one unit). This contributes to the decreased size of the state space graph.
The one unit delay does not constrict the desirable final markings of the telephone
process: all five desirable dead markings achieved from the untimed net were
obtained for this timed net.

This is not the case in Table C.5 Timed G. A delay of one unit with three tokens (also
separated by one unit) in the initial marking interferes with the desirable behaviour of
the process. It restricts the behaviour of the model as the timing introduced dictates
that the final, third call token will always encounter a free receiver line. The terminal
markings of one call answered, two calls engaged and one call unanswered, two calls
engaged will not be obtained in this model with these parameters. Timing dictates that
the call token responsible for the busy line will always reset its status to free for the
arrival of the third call token. Table C.3 Timed D specification for three tokens
incorporates sufficient timing flexibility to allow for the outcome of two engaged call
results following the first call.

C.1.2 Largeness Avoidance by Abstraction and Timed Coloured
Petri Nets

The perceived benefits regarding state space graph calculation using process
abstraction within hierarchical nets were highlighted in Appendix B, section B.1.4.
This top-down process abstraction technique was repeated for the timed parent net. It
was noted that in Chukwuogo's work [52], no analysis was undertaken on timed
coloured Petri nets using the abstraction approach.

The detail of the process associated with the caller role's 'Make_Call' transition was
abstracted out of the timed net, i.e. the subnet of Fig. C.7 was removed. No
decomposition of the 'Make_Call' transition from the parent net to a separate subnet
was included. Instead, a minimal set of net elements were used to ensure that the
provided and required interfaces of the 'Make_Call' transition consumed and produced
the same information as before for the parent net. The process detail associated with
the Receiver role's 'Connect_Call' transition remained the same. For the two delays
abstracted out of the 'Make_Call' process detail, a new equivalent delay variable with

 188

range between two and eight was substituted at the parent net level. The third delay
(part of the 'Connect_Call' process detail) remained the same, i.e. between one and
four. Following abstraction there were now two delay variables representing the
original range of values rather than one. As Table C.6 shows, these two variable
ranges were reduced in line with Tables C.2-C.5 to examine the effect on state space
calculation:

STATE
SPACE
GRAPH

Timed H (activity
'Make_Call' abstracted)

Timed I (activity
'Make_Call' abstracted)

Timed J (activity
'Make_Call' abstracted)

Initial
marking

Nodes and
arcs

2562 nodes, 5137 arcs. 42148 nodes, 107304 arcs. 3147 nodes, 7241 arcs.

Generation
time

2 secs. 481 secs. 4 secs.

Terminal
markings

50 90 36

Delay range 2..8 and 1..4 2..8 and 1..4 2..4 and 1..2

Table C.6 'Abstracted Make_Call process in timed state space graph calculation'

Abstraction of just one of the two parent net activities appears to significantly reduce
the state space graph size and calculation time. For example, Table C.6 Timed H is
behaviourally equivalent to Table C.2 Timed A but state space size and timing of
Timed H are approximately halved using abstraction. Timed I is behaviourally
equivalent to Table C.3 Timed C which suffered from the state space explosion
problem. This time a full state space graph could be calculated for Timed I. Finally,
Table C.6 Timed J is behaviourally equivalent to Table C.3 Timed D. Again, state
space size has been approximately halved and calculation time reduced by two-thirds
using abstraction.

C.1.3 Largeness Avoidance by Composition and Timed Coloured
Petri Nets

The perceived benefits regarding comprehension of nets and state space graph
calculation using process composition within hierarchical nets were highlighted in
Appendix B, section B.1.5. This bottom-up compositional technique was repeated for
the timed net using the interface information of the telephone process. As before, the
telephone process was separated into three processes using knowledge from
conducting the abstraction approach on a timed net and the earlier compositional
approach on an untimed net. Based on this knowledge, the analysis began with two
initiated calls and a delay value of one time unit in order to keep output manageable.

The first process owned by Caller was isolated by its input and output interface places
and marked with an initial marking of two tokens separated by one time unit. The
delay range within this process was also limited to one time unit. Simulation was used
to check that the changes had not negatively impacted the behaviour of the net and
then static analysis was conducted. From the one terminal marking information
needed for the interface of the next process in sequence could be obtained.

 189

1`(New_CallMsg,1)@+3++1`(New_CallMsg,2)@+4 was input into process two
(owned by Receiver). Again, the delay within the second process was set to one time
unit and the configuration was checked using simulation. Static analysis was then
conducted. Two terminal markings were obtained. The output from each terminal
marking place 'Response_From_Receiver' was extracted:

1. 1`(Ringing_Msg,1)@+4++1`(Ringing_Msg,2)@+5
2. 1`(Engaged_Msg,2)@+5++1`(Ringing_Msg,1)@+4

Both were input separately into the last process, owned by Caller.

The results on place 'Hangup' from three and two terminal markings respectively are
listed below:

2`Call_AnsweredMsg
2`Not_AnsweredMsg
1`Not_AnsweredMsg++1`Call_AnsweredMsg

1`Not_AnsweredMsg++1`Engaged_Msg
1`Call_AnsweredMsg++1`Engaged_Msg

Collating both gives a possible five results from two initiated calls separated by one
time unit and processed within a model with delays set to one time unit and receiver
status of line free. This matches the abstracted result for two initiated calls in Timed E
above.

The compositional approach outlined above was repeated to examine the effects of
increasing numbers of tokens with fixed and variable delay range (of one to two time
units).

STATE SPACE
GRAPH

Timed Process 1 Timed Process 2 Timed Process 3

Initial marking

 1.

2.

3.
Nodes and arcs 9 nodes, 10 arcs. 19 nodes, 20 arcs. 1. 15 nodes, 15 arcs.

2. 13 nodes, 13 arcs.
3. 16 nodes, 18 arcs.

Generation
time

0 secs. 0 secs. 1. 0 secs.
2. 0 secs.
3. 0 secs.

Terminal
markings

1 3 1. 3
2. 3
3. 4

Delay range 1..1 1..1 N/A

Table C.7 'Compositional approach using fixed delay range of one time unit'

 190

STATE SPACE
GRAPH

Timed Process 1 Timed Process 2 Timed Process 3

Initial marking

 1.

2.

3.

4.

5.
Nodes and arcs 12 nodes, 14 arcs. 34 nodes, 37 arcs. 1. 19 nodes, 19 arcs.

2. 24 nodes, 26 arcs.
3. 22 nodes, 24 arcs.
4. 20 nodes, 22 arcs.
5. 25 nodes, 30 arcs.

Generation time 0 secs. 0 secs. 1. 0 secs.
2. 0 secs.
3. 0 secs.
4. 0 secs.
5. 0 secs.

Terminal
markings

1 5 1. 3
2. 4
3. 4
4. 4
5. 5

Delay range 1..1 1..1 N/A

Table C.8 'Compositional approach using fixed delay range of one time unit'

Based on Tables C.7-C.8, there is a pattern of output from process one. Given a
certain number of tokens as input, the same number of tokens is output with their
timestamps incremented by two. It can also be seen that process two dictates the
volume of collation involved for process three. For example, in Table C.8, process
two outputs five terminal markings. Each of these markings is considered in turn and
each marking on place 'Response_From_Receiver', used as a separate input into
process three. Process two is now considered for five and ten initial markings in Table
C.9.

 191

STATE SPACE
GRAPH

Timed Process 2 Timed Process 2

Initial marking

Nodes and arcs 58 nodes, 64 arcs. 694 nodes, 781 arcs.
Generation time 0 secs. 0 secs.
Terminal
markings

8 89

Delay range 1..1 1..1

Table C.9 'Compositional approach using fixed delay range of one time unit in
process two'

Before drawing conclusions, the exercise is repeated using a variable delay range of
one to two time units.

STATE SPACE
GRAPH

Timed Process 1 Timed Process 1

Initial marking

Nodes and arcs 31 nodes, 42 arcs. 111 nodes, 180 arcs.
Generation time 0 secs. 0 secs.
Terminal
markings

12 36

Delay range 1..2 1..2

Table C.10 'Compositional approach using variable delay range of one to two time
units'

Table C.10 shows that introduction of a small delay range significantly increases the
number of nodes and terminal markings for two and three initiated calls. Considering
process one from Table C.10, for two initiated calls, there are now twelve markings to
examine in order to collate the input for process two. Investigating these manually
will be time-consuming and based on Table C.9, introducing the same small delay
range in process two will produce the same significant rise in terminal markings and
subsequent collation effort.

Compositional analysis of timed nets can be used to improve readability and
comprehension of the net as well as alleviate state space explosion. When starting the
analysis, it is advisable to keep initial markings and introduced delays to low numbers
and ranges without adversely affecting the behaviour of the net. Advice on achieving
this configuration information is expected to come from experience constructing the
untimed equivalent of the timed nets. It is anticipated that attempts at full and
largeness avoidance analyses would have been made on these previously. Seeding of
initial markings can then be gradually increased if appropriate to do so.

 192

Summary of largeness avoidance techniques in timed nets
In Appendix B and sections C.1.2-C.1.3, abstraction and compositional largeness
avoidance techniques were applied to untimed and timed nets. Analysis of timed nets
(full, abstraction, or composition approaches) requires more careful planning than
analysis of their untimed equivalents and benefits immensely from the experience
gained working with untimed nets. General best practice when configuring analysis
using full, abstraction, and compositional approaches is to initially restrict numbers of
tokens in the net and the range of values that can be assigned to time delays.
Simulation can then be used to check the net behaves as expected before conducting
static analysis. Results from static analysis in each approach (where it has been
possible to generate a full state space graph) can then be used to verify the results
obtained using the other approaches.

Using a top-down, functional decomposition approach to identify a suitable hierarchy
within the model of the telephone example meant that after attempting full model
analysis, the abstraction approach was the next natural technique to apply. The
hierarchy provided an overview of the abstraction levels within the model and the
interface boundaries of modules. A common level of detail could then be identified
upon which to select a module, remove its underlying detail and still maintain the
integration structure of the model based on module interface boundaries. As well as
combating the state space explosion problem, the abstraction approach also helps the
modeller to become familiar with the different levels of detail used in the model,
dependencies between modules, required interface information, and order of
execution.

After conducting the abstraction approach to largeness avoidance, the compositional
approach was employed. This is a bottom-up approach to largeness avoidance. At this
stage, the bottom-up approach considers modules at a low level of abstraction
identified by top-down, functional decomposition. Existing nets of modules available
from a repository were not considered in this thesis. This is a potential future area of
research. Identification of the nets capturing detailed descriptions of modules is aided
by the hierarchy within the model. Order of execution between modules is obtained
from nets at a higher abstraction level within the model. The detailed nets are then
isolated using their interfaces and analysed individually using outputs from one subnet
to seed the next in execution order. Due to this low level analysis, the modeller can
gain in-depth knowledge of the behaviour of parts of the whole. The compositional
approach may also highlight a greater number of issues for improvement or correction
than would otherwise be possible from analysis of the whole net.

Both approaches are complimentary in the sense that results from one can help verify
results from the other. It is also anticipated that results from the abstraction approach
may guide the direction of compositional analysis so that behaviour of a particular
module or grouping of modules is examined.

These two approaches to largeness avoidance are currently highly manual, relying
completely on a suitable hierarchy both at the model level and within each model.
Unless reasonably low numbers of terminal markings are obtained from either
approach, examination of results can be extremely time intensive and tedious.
Hierarchy is key to alleviating this issue and may be able to suggest suitable division
of the model for workload purposes. Automation may also be feasible (and is

 193

considered in Appendix D). Again, process and best practice regarding model
construction and management will be essential to the successful design and
specification of large-scale systems.

Amendments made to the model during validation
In terms of amendments made to the telephone process, experimentation using timed
nets and static and dynamic analyses revealed that the original untimed net
specification required improvement. The 'Set_Line' place was not always empty upon
simulation termination. While trying to understand the standard report generated from
static analysis on the timed net, it was noted that a non-empty 'Set_Line' place
contributed to an erroneous (redundant) terminal marking.

The error was due to one of the firing conditions for transition 'Amend_Line' being
dependent on a value of 'Line_BusyMsg' from place 'Receiver_Line'. 'Amend_Line'
should have been able to fire, remove the token from 'Set_Line' and update
'Receiver_Line' accordingly. Instead it was stalled unless the current value in
'Receiver_Line' was 'Line_BusyMsg'. The inscription on output arc 'Receiver_Line'
was changed to a variable. Depending on this variable's binding, the 'Amend_Line'
transition would either reset the receiver's line to free or maintain its status as
engaged. This meant the transition always fired and correctly removed the token on
'Set_Line'.

Further simulation analysis of line reset behaviour highlighted the need to
differentiate between the calls so that the line was reset correctly by the call that had
successfully connected. The new inscription logic and place colours (types)
incorporating message and caller identification are shown in Fig. C.8.

Fig. C.8 'Amended net logic to reset the receiver line'

It was also noted that within the model, the same timestamp can end up being
allocated to both calls resulting in transitions involving each to become enabled
simultaneously or random removal of the call tokens when the transition (enabled by
their presence on the input place and current model time matching their timestamp)
fires. To control this behaviour, a call queue may be introduced to prioritise calls

 194

based on their arrival time in the system (and perhaps contribute to a defined
performance indicator by increasing call connection rates where a call reaches the
receiver and is placed in a queue) or a function can be written to ensure different
timestamps are provided to the tokens. Use of the function solution may not be
amenable to static analysis.

C.2 Conclusions so far following Validation using Timed
Coloured Petri Nets

In order to explore validation of the Petri net specifications, Appendix C added timing
information into the telephone process net. Using the net toolset, untimed nets were
enhanced in this way for the purposes of achieving deeper correctness, performance
and efficiency (Table C.11). Performance analysis and analysis-of-alternatives were
achieved using a combination of timed places, delays, data collection points
throughout the net and simulation.

VALIDATION Timed Net Timed Net
PURPOSE Simulation Static Analysis
Enhanced Correctness X X
Performance Analysis X
Analysis-of-Alternatives
(Resource-based Costing)

X

Table C.11 'Validation purposes in relation to dynamic and static analyses'

Initially, performance indicators for the system based on time, cost and quality
parameters were identified in context with the viewpoint from which the system was
being developed. In this way, enhancements related directly to performance indicator
optimisation were made to the system model. During the course of introducing time to
the model, simulation and static analysis also highlighted further improvements to
logic and colours (types) for the telephone example.

With the toolset, automatic simulation executions via replication and parameterisation
enabled comparison to be made of results using different random distributions,
numbers of resources and delays. Textual reports can have their statistical output
customised by the modeller and graphical output can be plotted from standard reports.

Based on the work of Salimifard [94], section C.1 also made use of timed nets to
conduct more detailed analysis-of-alternative scenarios. Although the conceptual level
of abstraction featured in the telephone example describes the problem rather than a
solution, knowledge of legacy or planned physical assets which can realise activities
and processes modelled by the abstract net can be used to conduct an analysis-of-
alternatives. This differs from simply seeding a simulation execution with timing
delays because it allows the modeller to explicitly allocate a resource (with associated
timing and cost information) to an activity (or process) and extract timing and cost
information for the overall model based on different resource allocation. It may also
be able to facilitate business process re-engineering using the knowledge of existing
or planned resources to influence ordering of activities based on their known timing
and cost attributes.

 195

Finally, timed nets have a lower threshold for infinite state space graphs. Even with
the simple telephone example, the state space explosion problem was encountered
with as few as three initiated calls and three delays of between one and four units (and
a configured twenty minute maximum calculation time). It was recommended that
equivalent untimed nets (i.e. nets consisting of the same elements, colours and
inscriptions but no timed places) be used to produce a stable behavioural net for the
purposes of developing a net for use in validation. While dynamic analysis with timed
nets is recommended for the purposes listed in Table C.11, static analysis of timed
nets is essential for confirming behavioural properties of large-scale, system-of-
systems. Static analysis of timed nets needs to be carefully managed.

The use of hierarchy and the abstraction and composition of net components is vital in
increasing a timed net's largeness avoidance threshold. In addition, timed nets need to
be evaluated prior to static analysis to see whether they can be made into deterministic
nets. Experimentation regarding the number of tokens to use in initial markings and
range of values in colour (type) definitions for delays is recommended when static
analysis of timed nets needs to be conducted. Analysis results obtained using
structurally equivalent untimed nets will be useful in helping to inform the results
obtained from timed nets.

Based on the conclusions above using hierarchy, timing, and static and dynamic
analyses, coloured hierarchical nets were then used in the specification of the
telephone system at design and architecture levels of abstraction.

 196

Appendix D

D.1 Specification, Verification and Validation of the
Telephone Process at Design and Architecture Levels
using Coloured Petri Nets

Appendices A-C have focused on constructing a Petri net to specify a telephone
process at a conceptual level of abstraction. Hierarchy and timing were added to
further enhance a specification in terms of scalability, understandability, readability,
and correctness. Hierarchy also enabled investigation into whether the abstraction
design used in the net could be used to help alleviate the state space explosion
problem during model-checking. Both model-checking and simulation were employed
iteratively in verification and validation of the constructed conceptual level net. In this
Appendix, Petri nets are checked to see whether they can be used to specify a
telephone system at design and architecture levels of abstraction.

D.1.1 The Design Level
The purpose of the design level of abstraction is the lead into the specification of a
solution to the problem described by the conceptual level. Again, a functional
decomposition approach was used. This time it was used in conjunction with the
parent net developed for the conceptual level to think about how this net's main
activities of 'Make Call' and 'Connect Call' would eventually be realised by physical
implementations. To keep the design flexible, two components, 'Make_Call
Component' and 'Connect_Call Component', were used to depict the solutions that
would realise each of the main activities. These are shown in Fig. D.1:

Fig. D.1 'Parent net of design level'

It can be seen that Fig. D.1 closely resembles the parent net of the conceptual level
except for the additional place, 'Number' (used to represent the capture of an entered
telephone number) and new place colours or types. The next level of design
decomposition for the two components aimed to capture the functional service(s) each
would be expected to realise. Again, the work developing the conceptual level net
helped suggest functional services for the design level by thinking about the purpose
of the processes used to realise the main activities. 'Make_Call Component' would be
responsible for providing call setup and call response services. 'Connect_Call
Component' would be responsible for providing an incoming call processing service.

 197

These services are shown at the next lower abstraction level providing greater detail in
Figs. D.2-D.3:

Fig. D.2 'Services of Make_Call Component'

Fig. D.3 'Services of Connect_Call Component'

Having introduced the components and functional services at the design level, the
next lower abstraction level providing greater detail, i.e. detailed design or
architecture was focused on. Rather than develop a separate model at this stage, as the
architecture level appeared to naturally manifest the next lower abstraction level of
the design level, the design level model was further decomposed to capture the
architecture level.

D.1.2 The Architecture Level
The purpose of the architecture level is detailed design of the services identified at the
design level and flexible capture of the components required to realise these
individual services. Considering the functional services, constituent components were
considered for each service resulting in the identification of a common component
pattern for the three services. The common components consisted of a user interface,
transmit and receive (network) interfaces, and a controller interface to co-ordinate the
sequencing of activities to and from the other two common components. The common
component architecture is shown for the 'Call_Setup Service' and 'Process_Call
Service' in Figs. D.4-D.5.

 198

Fig. D.4 'Call_Setup service architecture'

Fig. D.5 'Process_Call service architecture'

From Figs. D.4-D.5, it can be seen that net places are used capture the input and
output information for the user interface, network and controller common
components. In this early attempt at design and architecture levels, enumerated type
definitions were lifted for re-use from the conceptual level net and labelling reflected
the same terminology where possible. Figs. D.4-D.5 show that colour (type) definition
labels reflect the nature of the interface. For example, 'UIDispICMsg' aims to reflect
that the place is an input interface to the user interface component and is intended to
be processed by the display function within this component. The intention with this
labelling convention was improved net clarity and comprehension.

Considering the original parent net of the design level in Fig. D.1, the specification of
the telephone system at this level was extremely concise. When the architecture level
of Figs. D.4-D.5 was reached and the next lower abstraction level providing greater
detail of the common component interfaces was completed, the levels of abstraction
were very difficult to manage. The toolset presents each level of abstraction as a

 199

separate page within a folder (or binder). These pages can be selected between using
their tabs. By the common component interface level of abstraction, sixteen pages and
tabs were present and it was tedious work identifying and selecting relevant pages
using barely legible tabs (Fig. D.6). At this stage, the model was rationalised where
possible, making use of the toolset's features and those of hierarchical coloured Petri
nets.

Fig. D.6 'Early model abstraction levels presented within one binder'

The next iteration of model development involved rationalisation of colours (types),
subnets describing common component interfaces, removal of redundant places, and
toolset presentation of pages. The main source of rationalisation was the common
component interface nets.

The toolset enables a net to be used within another net (normally to reflect
decomposition from an activity captured at a higher level of abstraction), similar to
the concept of a procedure call in a high-level programming language. A net at a
lower abstraction level providing greater detail can be used by one or more activities
at a higher abstraction level. In this way, the net at the higher-level of abstraction is
effectively re-using the subnet's structure, inputting and receiving information
according to the defined colours (types) of the input and output places (comparable to
a parameterised procedure call). The input and output information supplied to the
subnet relates to the parent net transition linked with the subnet. If two separate parent
net transitions are decomposed to the same subnet, instances of the subnet are
effectively created by the toolset. These instances then consume (provide) input
(output) values of the same colour (type) unique to their parent net transitions.

Each of the common component interfaces was examined in turn to check the internal
structure and logic of their nets and decide if it would be feasible to use one net
(instance) for each common component. Currently, the design and architecture model
had ten separate nets representing the common components realising the three
services. The user interface component's main functions are provision of notification
to the user and capture of a request from the user. The request to provide notification

 200

to the user comes from the controller component. The user inputs a request using the
keypad and this is captured and passed to the controller. The transmit network
interface essentially provides a send function when requested to do so by the
controller and its receipt counterpart provides a receive function, accepting
information from the network and passing it to the controller. Finally, the controller
component processes information from the user interface and network components,
deciding what information should be sent and notified. Unsurprisingly, the controller
component is the most complex in terms of logic and structure.

Thinking about the architecture level in terms of the three services identified at the
design level, the common components were assessed for each service. To use
instances of one subnet, the interface place colours (types) of the subnet need to be
common to each transition intending to be the abstraction of the subnet. This was
straightforward for the user interface and network components. Place colours (types)
were rationalised during this exercise. Information external to the telephone system,
i.e. provided or passed to the caller was typed by 'CallerState' or 'Msg'. Colour (type)
'NumberMsg' used in the initial model attempt and the input place it defined
('Number') were removed in favour of simplifying the number of external request
interfaces to the user interface component to one for the moment ('CallerState').
Interfaces between the common components were typed as 'UIMsg' (request from user
interface to controller), 'UIDispMsg' (display request from controller), and 'NWMsg'
(transmit request from controller or receive information request from network).

For the common controller component, inputs and outputs from and to the other
common components were used to rationalise the net's structure and logic from the
original three subnets developed to represent the controller component. Once this had
been undertaken, the parent nets specifying the architecture of each service, i.e. 'Call
Setup Architecture', 'Process Call Architecture' and 'Call Response Architecture'
(decomposed from their respective design level services 'Call_Setup Service',
'Process_Call Service' and 'Call_Response Service') needed to be amended to
associate each common component with its one re-usable decomposed subnet and
ensure that the subnet interfaces matched those of the linked transitions in the parent
net (even if no information was to be input or output by the interface places). The re-
usable common controller component is shown in Fig. D.7.

 201

Fig. D.7 'Handset Controller common component subnet'

The resulting model now used four subnets instead of ten subnets to capture the detail
of the four common components. Although the toolset still presents these subnets as
ten separate pages in the model, editing of the subnets is greatly simplified since a
change made to an instance of a re-usable subnet updates all its instances. Using the
toolset, for each service architecture parent net, a re-usable subnet was linked to its
abstract common component. In addition, two further folders (binders) were created to
partition the model logically into the three service architectures making navigation,
readability, comprehension and simulation much easier to achieve. This layout is
shown in Fig.D.8:

Fig. D.8 'Model abstraction levels presented within three binders'

D.1.3 Verification of the Design and Architecture Levels
At this stage, simulation was employed to check the structure and logic of the model
and was able to detect incorrect logic on transition output arcs. Errors included:
missing or incorrect predicates (highlighted by incorrect or missing display
notifications for the common user interface component or incorrect information
messages for the network component); missing initial values on input places required
by common component interfaces; an unexpected disabled transition due to the same
variable being used to bind values on more than one of its input arcs; and unexpected
simulation halts due to missing values in enumerated type definitions associated with
place types.

 202

The necessary corrections were made and static analysis was performed based on one
initiated call and the receiver of the call not responding to the call. No further errors
were picked up by model-checking so the model was adapted to deal with multiple
initiated calls to the receiver. Enhancements included addition of logic and net
structure to set the receiver's line status to free or busy during call request processing
by the common controller component, random initialisation of the response to the
connection request and a change of place type (based on character strings rather than
enumerated types). The latter introduction of place types composed of at least one
string type was made for flexibility reasons.

Currently, the specification of the common component interfaces were informative
regarding the information expected at their input and output places but lacked detail
regarding the functions realised internally that are made use of by the other common
components. To make this information more explicit in the model, colour (type)
definitions based initially on the toolset's 'product' type definition (Fig. D.9) were
implemented. Again, the main reason for doing so was flexibility. At this stage in the
modelling where the model is undergoing frequent amendments, this particular
compound definition was found to be quicker to adapt than using an equivalent fixed
record definition and its associated syntax. Changes could be made quickly to values
as necessary during iterative model updates and amendments rather than maintain
enumerated or record type definitions.

Fig. D.9 'Product compound type definitions to indicate usage of functions'

Once the place types were defined, the tuples in the type were populated with the
functions implemented by each common control component and the associated
parameters via logic on transition output arcs. Logic on transition output arcs within
each of the common components was amended as necessary. As an example, consider
the network common components in Figs. D.10-D.11.

Fig. D.10 'Transmit common component subnet'

 203

Fig. D.11 'Receive common component subnet'

Fig. D.10 shows the subnet of the updated transmit common component. Its transition
is labelled as 'SEND OPN' to reflect the function the component provides to the
controller component. On the transition output arc (within the controller component
subnet) to the input interface place ('TxIN') of the transmit component, there is logic
to output a token with 'OpName' (a tuple within 'NWMsg' compound type) populated
with 'SEND REQUEST' or 'SEND REPLY'. In this way, the net specifies use of the
transmit component's 'SEND OPN' function by the controller component more
explicitly. The 'Params' tuple within 'NWMsg' is populated with either the number to
call (in the case where a connection request is made) or the result of the connection
request (in the case where a reply is made back to the caller). 'ID' is populated to
differentiate between initiated calls.

Fig. D.11 shows the network counterpart to the transmit component, receive. This
component's function is used by the underlying communications network to hand-off
a message destined for this network node. As before with the transmit component, the
receive component's transition is labelled to reflect the function the component
implements, in this case 'RECEIVE OPN'.

The other two common components, user interface and controller, are designed to
reflect the same interface principles as those discussed above for the network
components.

Following these changes, simulation was used first of all to verify the model. Similar
issues were encountered to the early model attempt in terms of incorrect logic on
transition output arcs, an unexpected disabled transition due to the same variable
being used to bind values on more than one of its input arcs, and omission of initial
markings on new structures added to the model (line reset function and random
initialisation of receiver response to connection request). Once amendments were
made and iterative simulation increased confidence that the model's behaviour was
correct, static analysis based on two initiated calls was conducted (Fig. D.12).

 204

Reachability/State Space
 Nodes: 33322
 Arcs: 136719
 Secs: 665
 Status: Full

Scc Graph
 Nodes: 33322
 Arcs: 136719
 Secs: 8

10 Dead Markings

Fig. D.12 'Static analysis for the design and architecture level model including
random initial marking generation'

Upon inspection of the ten dead markings, it was noted that an expected result was
missing (1`"Not Answered"++1`"Engaged"). After investigation, it was discovered
that this was due to an omission in the transition output arc logic. Static analysis was
repeated following this logic update and the state space explosion problem was
encountered based on a toolset calculation limit of twenty minutes. The model was
discretised by removing the random initial marking generator for connection response
and instead set two manual initial markings of 'Ignore' and 'Pickup'. The results of
model-checking are shown in Fig. D.13.

Reachability/State Space
 Nodes: 19656
 Arcs: 79164
 Secs: 240
 Status: Full

Scc Graph
 Nodes: 19656
 Arcs: 79164
 Secs: 4

9 Dead Markings

Fig. D.13 'Static analysis for the discretised design and architecture level model'

The nine dead markings contained the expected results for the given initial markings.

D.1.4 Largeness Avoidance by Abstraction
Based on the benefits reported using abstraction in largeness avoidance in Appendices
B-C, the technique was investigated with the model developed for the design and
architecture level of abstraction. At this level, the aim was to abstract out the detail of
each of the main components and their associated services to check the effects on the
duration and size of the state space graph.

The intention was to remove the detail of 'Make_Call Component' from the parent net
of the design level (Fig. D.1). As before, a minimal set of net elements were used to

 205

capture the pared down function of the 'Make_Call Component', i.e. the expected
information reached its input and output interface places. The 'Make_Call Component'
function was realised by two underlying services and these transitions ('Call Setup
Service' and 'Call Response Service') were used to abstract out the detail of the
component. The logical folder grouping related to the 'Make_Call Component' was
analysed to decide upon the logic necessary to replicate the functions of the
underlying subnets and produce (consume) the correct information at the interfaces
with the 'Connect_Call Component'. The result is shown in Fig. D.14.

Fig. D.14 ' Abstracted Make_Call Component used for re-calculation of state space
graph'

As Fig. D.14 shows, the 'Connect_Call Component' remains the same, i.e. no removal
of its underlying decomposition has taken place. Model-checking was performed on
the net of Fig. D.14 and then the same process was followed for the 'Connect_Call
Component'. Its abstraction was slightly more complex than that for the 'Make_Call
Component', largely due to the underlying function implemented by its controller
component. The results of its abstraction are shown in Fig. D.15.

Fig. D.15 ' Abstracted Connect_Call Component used for re-calculation of state space
graph'

Again, model-checking was performed on the net of Fig. D.15. The results of the state
space calculations with the abstracted nets (along with the full hierarchical net based
on Fig. D.1 for comparison purposes) are presented in Table D.1:

 206

STATE
SPACE
GRAPH

Full Hierarchy (based on
Fig. D.1)

Abstracted Make_Call
Component (Fig. D.14)

Abstracted Connect_Call
Component (Fig. D.15)

Initial
marking
Nodes and
arcs

19656 nodes, 79164 arcs. 962 nodes, 2580 arcs. 2379 nodes, 6960 arcs.

Generation
time

240 secs. 1 sec. 4 secs.

Terminal
markings

9 9 9

Table D.1'Abstraction used in state space graph calculation at design and architecture
level'

The exercise was repeated increasing the number of initiated calls to three:

STATE
SPACE
GRAPH

Full Hierarchy (based on
Fig. D.1)

Abstracted Make_Call
Component (Fig. D.14)

Abstracted Connect_Call
Component (Fig. D.15)

Initial
marking

Nodes and
arcs

Explosion problem. 30664 nodes, 119161 arcs. Explosion problem.

Generation
time

1200 secs (limit set). 938 sec. 2400 secs (limit set).

Terminal
markings

N/A 20 N/A

Table D.2 'Abstraction used in state space graph calculation at design and architecture
level'

From Table D.1 it can be seen that the effect of abstracting away the detail from one
component and then the other is significant on duration and size of the state space
graph calculation. The terminal markings were inspected from each of the abstracted
component state space graph calculations in Table D.1 and found to match those
determined by the full hierarchy state space graph calculation. From Table D.2, only
abstraction of the 'Make_Call Component' has been successful in alleviating the state
space explosion problem.

Similar to Appendices B-C, largeness avoidance using the component abstraction
technique has helped alleviate the duration and size of the state space graph but it is
important to note that when using the technique at the design and architecture level of
abstraction, it was only successful for abstraction of each component in turn when two
initiated calls were placed.

D.1.5 Largeness Avoidance by Composition
Based on the benefits reported using composition in largeness avoidance in
Appendices B-C, the technique was investigated with the model developed for the
design and architecture level of abstraction.

 207

The hierarchy design for the design and architecture level of abstraction was reviewed
to identify the components to isolate and the information exchange control sequence.
The components at the lowest level of abstraction, i.e. those containing the logic detail
are the user interface, controller, and transmit and receive (network) common
components. Analysis of these would involve investigating them according to the
service they are realising ('Call_Setup Service', 'Connect_Call Service', and
'Call_Response Service' respectively). Currently the four common components are
described by four unique subnets which are re-used in ten instances across the three
services.

The architecture level of abstraction is modularised, i.e. the architecture of the three
services to investigate behaviour based on their use of the common components. In
control sequence order they are: 'Call Setup Architecture', 'Process Call Architecture',
and 'Call Response Architecture'.

Fig. D.16 'Call Setup Architecture component'

'Call Setup Architecture' component (Fig. D.16) was isolated and examined first of all
using two initiated calls. Subsequent analysis increasing the number of initiated calls
indicated the presence of one terminal marking in each case until an initial marking of
six calls was used. In the time limit set for state space graph calculation (twenty
minutes), a full state space graph could not be calculated for six initiated calls. Where
a full state space graph could be calculated, the output from this component was:

Initial marking 1`("Request Call","333",2)++ 1`("Request Call","999",1).

1. 1`("RECEIVE CALL","999",1)++1`("RECEIVE CALL","333",2) at interface place
'TxOUT'.
2. 2`"Connecting" at place 'Display_to_User.

The results from 'Call Setup Architecture' component's output interface place 'TxOUT'
(from 1. above) were then used as input into the interface provided by the 'Process
Call Architecture' component (Fig. D.17).

 208

Fig. D.17 'Process Call Architecture component'

Model-checking was then performed on the 'Process Call Architecture' component
and fourteen dead markings were reported. When these were examined, duplication of
markings were identified on output interface place 'TxOUT'. This was due to the line
reset logic in the controller common component. The transition to reset the line
becomes enabled but its firing is not mandatory. This means that once the tokens that
enable it are removed, it can no longer fire and the line can remain set in a busy state.
With two input calls, three states of the line are possible and reported following static
analysis. Even though the final marking on place 'TxOUT' is unchanged, the marking
of the line reset place ('Line_Status') can have up to three potential markings, hence
the duplication. The fourteen terminal markings were rationalised to a range of six
possible markings on output interface place 'TxOUT':

1`("Answered",1)++ 1`("Not Answered",2)
1`("Not Answered",1)++ 1`("Engaged Tone",2)
1`("Answered",1)++ 1`("Engaged Tone",2)
1`("Answered",2)++ 1`("Not Answered",1)
1`("Not Answered",2)++ 1`("Engaged Tone",1)
1`("Answered",2)++ 1`("Engaged Tone",1)

These were then input into the last component in the control order sequence, 'Call
Response Architecture' (Fig. D.18) on a pair by pair basis and static analysis
performed.

 209

Fig. D.18 'Call Response Architecture component'

In the six cases, one terminal marking was obtained. The markings of output interface
place 'Hangup' could be rationalised to three values:

1`"Answered"++1`"Not Answered"
1`"Not Answered"++1`"Engaged Tone"
1`"Answered"++1`"Engaged Tone"

These are the possible results of two calls placed to the same receiver with its line
initially ready to accept calls and its user prepared to answer one call and ignore the
other. Revisiting the results obtained using abstraction in largeness avoidance (Table
D.1) and considering the nine dead markings obtained for two initiated calls, these can
also be rationalised to the same three markings on place 'Hangup' due to the
duplication caused by the line reset logic in the controller component.

The same process was repeated for three initiated calls. As for two initiated calls, the
process of model-checking the first component and using its output as input into the
'Process Call Architecture' component's interface was straightforward. The result of
model-checking 'Process Call Architecture' with its three input tokens was fifty-one
dead markings. Rather than process these manually as done for two initiated calls, the
markings for place 'TxOUT' were extracted using a non-standard branching temporal
logic query into a file (Fig. D.19). Based on previous use of the compositional
process, it was incorrect to simply input these markings into the final component's
interface place as one multiset. Each marking on place 'TxOUT' for the fifty-one dead
markings has to be processed as an independent initial marking to the component's
input interface place. In Appendix B, each marking was input separately.

 210

Fig. D.19 'Customised query to export TxOUT markings to file'

Considering the net of the 'Call Response Architecture', two additional transitions and
two places were added to the beginning and end places of the net. Execution of the
first transition essentially provides input interface place 'RxIN' with a marking from a
place 'Init Marking List', typed as a list of lists. This place interprets the markings
exported to file from the 'Process Call Architecture' place, 'TxOUT' in batches. The
second transition recognises that the results output to the 'Call Response Architecture'
output interface place ('Hangup') relate to each batch of markings and captures them
as such on place 'Results' typed as a list of compound elements. Finally, once the
results are transferred to the list, the next batch of markings is requested via place
'Next Batch'.

The new places and transitions added to the net were verified using simulation. By
using list functions it was possible to remove duplicate entries from the results list on
place 'Results'. Based on a list of fifty-one batches consisting of three markings per
batch, a rationalised output list indicated that three initiated calls have a possible five
results:

"Answered"++"Not Answered"++"Answered"
"Answered"++"Engaged"++"Answered"
 "Not Answered"++"Engaged"++"Answered"
"Engaged"++"Not Answered"++"Engaged"
"Answered"++"Engaged"++"Engaged"

Revisiting the results obtained using abstraction in largeness avoidance (Table D.2)
and considering the twenty dead markings obtained for three initiated calls with
'Make_Call Component' abstracted, these can also be rationalised to the same five
markings on place 'Hangup' due to the duplication caused by the line reset logic in the
controller component.

Model-checking was then attempted for more thorough verification using one, two,
and then five batches of three markings from the original list of fifty-one batches. The
state space graph calculation reported three, nine, and two hundred and forty-three
dead markings respectively (twenty-nine thousand nine hundred and seventy-five
nodes, eighty-five thousand seven hundred and fifty-six arcs in two hundred and
eighty-six seconds for the latter result). For each batch of three, the reason for the
exponentially increasing terminal markings was that every possible ordering of the
tokens present in the net and the corresponding output result were being recorded. So,
for the batches of three tokens used above, there are 3^1, 3^2, and 3^5 possible

 211

orderings of the output tokens on the results list. In terms of the node and arc
numbers, the 'Reqd1' input interface place was initially marked to correspond to the
number of markings on place 'Init Marking List'. The net was set up to take a
maximum of one token from this place to enable the request operation within the
controller component. This meant there could be a range of marking possibilities on
two places using these tokens, driving up the number of nodes in the state space
graph. The design of the net was revisited to see if there was a way to prevent these
occurrences.

Interactive simulation was used to trace execution within the 'Call Response
Architecture' net. In doing so, variable bindings of the execution could be viewed and
selected. It was noted that ambiguity existed on several enabled transitions as to the
value mapping a variable could take. For the 'Call Response Architecture', common
components guard statements were added to the affected transitions in order to specify
the bindings of variables. In the case of the 'Reqd1' input interface place, a list of lists
type (similar to that used in 'Init Marking List' place) was defined so that the required
information could be passed in batches of three to the controller component, matching
the batches of markings. Where feasible to do so, the multiplicity of token removal
(addition) from (to) places was changed so that instead of one token at a time being
removed upon transition firing, a multiple (multiset) relating to the number of initiated
calls was removed atomically.

The attempt to automate the interpretation of markings generated by one component
for another appeared to behave as expected in simulation. When faced with
exponential rises in terminal markings using only a small subset of the fifty-one
batches of markings in static analysis, the design of the component's net was re-
considered. Following the above amendments to make the specification within the net
more precise (Fig. D.20), one terminal marking for all fifty-one batches of three
markings was obtained. Through the compositional approach and use of dynamic and
static analyses on component nets of the overall system, a net design that facilitated
analysis of the system for an original initial marking of three calls was reached.

 212

Fig. D.20 'Final version of Call Response Architecture net employing marking
automation'

It should also be noted that the component nets of the design and architecture level
consist of more net elements and logic than the component nets at the conceptual level
of abstraction. As well as alleviating largeness avoidance in static analysis, the
compositional approach can also contribute to comprehension and verification of the
behaviour of component parts of the whole system using both dynamic and static
analyses. Undertaking the process helped to improve the specification of one
component within the model. From the component's static analysis results, the net had
to be checked to see why it was producing exponential increases in terminal markings.
The subsequent changes made contributed to a significant improvement in duration
and size of the state space graph calculation as well as provide experience in best
practice for the other nets. In addition, simulation of system component nets (rather
than the net of the system as a whole) may make it more feasible for the modeller to
detect, understand, improve and correct a greater proportion of behaviour than would
be possible within a net of the whole system.

D.1.6 Integration of the Composition and Abstraction Approaches
Achievement of automation in the compositional approach enabled successful static
and dynamic analyses of the final component net when three initiated calls were used
as the initial marking. Going through the process of the compositional approach in
section D.1.5 indicated that amendments to the precision of the specification of the
final component would be relevant to the other two components (and in net
construction in general).

More importantly, the results based on automation suggested a potentially beneficial
integration of the compositional and abstraction approaches. If the results from the

 213

compositional approach could be used to populate the interfaces associated with the
abstracted component in the abstraction approach, the logic currently required by the
abstracted component could be removed. The abstraction approach example where
component 'Connect_Call Component' was abstracted (Fig. D.15) and the explosion
problem was encountered for three initiated calls (Table D.2) was revisited.

The 'Call Response Architecture' component net was investigated to see how it could
be integrated into the abstracted 'Connect_Call Component' net of Fig. D.15. 'Call
Response Architecture' is the final component in control order sequence. It uses the
information produced by the 'Process Call Achitecture' on its network interface place
to help realise the 'Call_Response Service'. The 'Connect_Call Component' provides
the 'Process_Call Service' realised by the 'Process Call Architecture'. The detail of this
component can be abstracted out as long as it provides the 'Call_Response Service'
and its underlying 'Call_Response Architecture' with the information identified above
at the interfaces of the 'Call Response Architecture' component. This information
needs to be supplied at the design level of abstraction by the 'Connect_Call
Component'.

Before adding the markings, required interface information, and results lists (defined
for the 'Call Response Architecture' net) to the design level of abstraction, some
precision specification changes were made. The 'Call Response Architecture' common
components were altered to match those used in the compositional approach. This
involved replacing the instances of the common components with the revised common
component nets of the 'Call Response Architecture'. No further changes were made to
enhance the specification precision of the 'Call Setup Component' at this stage. It
would be envisaged that the specification precision enhancements made to the 'Call
Response Architecture' could be applied across the nets and use made again of four
common component nets and their instances. Model-checking was performed again
on the abstracted 'Connect_Call Component' based on its updated specification. The
results are shown in Table D.3.

Input interface place 'Reqd1' of the 'Call Response Architecture' revised controller
component was added and used at the design level of abstraction in order to pass it
input interface information in line with release of batches of markings. Once these
additions were made to the net, simulation was used to verify its behaviour was as
expected before conducting static analysis. The model-checking results are shown in
Table D.3.

STATE
SPACE
GRAPH

Original Abstracted
Connect_Call Component
(Fig. D.15)

Abstracted Connect_Call
Component with
Specification Update

Fully Abstracted
Connect_Call Component

Initial
marking

Nodes and
arcs

Explosion problem. 5596 nodes, 19568 arcs. 1711 nodes, 5522 arcs.

Generation
time

2400 secs (limit set). 19 secs. 2 secs.

Terminal
markings

N/A 51 1

Table D.3 'Abstraction and Composition approaches used in state space graph
calculation'

 214

The results show that not only has a state space graph with fifty-one dead markings
been calculated in nineteen seconds for an initial marking of three calls using only the
specification updates, a fully abstracted 'Connect_Call Component' improves upon
this. With all logic removed from the abstracted 'Make_Call Component' and the
addition of the automation used in the compositional approach, a state space graph
with one dead marking was completed in two seconds. This graph contained
approximately one quarter of the nodes and arcs of the updated specification graph.

At this stage the compositional approach has provided three major benefits:

1. Identification of improvements to the specification. When applied to the original
'Connect_Call Component' abstraction net, the improvements enabled the state space
graph calculation to terminate within the toolset limit and investigate the dead
markings based on three initiated calls.
2. Integration with the abstraction approach to further reduce duration and size of the
state space graph calculation. Input and output interface results identified by the
compositional approach can be used in the abstraction approach to keep the
component as abstract as possible.
3. A means of further verifying the behaviour of the model where either a full state
space graph cannot be calculated for the overall system net or further assurance is
sought as to correctness of the modelled behaviour. The abstraction approach could be
applied and model-checked as demonstrated in Appendices B-C. The compositional
approach could then be used to indicate input and output interface results, increase
comprehensibility of component nets, and advise on improvements. These
improvements could then be applied to the abstracted nets along with the automated
results suggested by composition and model-checked.

D.1.7 Validation of the Design and Architecture Levels
In Appendix C, the concept of time was introduced into the untimed model at the
conceptual level of abstraction. Timing information could further enhance the
specification of the process (for example, controlling the ordering of calls, and
implementing communication timeouts) and be used to check if the design of the
process was efficient in terms of time and cost from particular viewpoints. The same
justifications for use of timing apply at the design and architecture levels of
abstraction. Timing can be used again to detail ordering of calls, communication
timeouts, component processing duration times, and analysis-of-alternatives.

D.2 Conclusions from Design and Architecture Levels
Using the compositional approach at the design and architecture levels of abstraction
has provided further insight into its potential usefulness in the development of Petri
net models of large-scale systems. By decomposing the system model into subnets,
not only is the approach trying to combat state space explosion, it promotes increased
comprehension of parts of the overall system and consideration of their integration at
well-defined interfaces. Used in conjunction with the abstraction approach, it could
help reduce state space graph duration and size further. To be successful, a suitable
hierarchy of models and a suitable hierarchy within models need to be adopted. In
Appendices A-D, a functional decomposition approach was used to determine

 215

abstraction levels within models. In addition, levels of abstraction were identified for
models themselves, i.e. conceptual level and design and architecture levels.

Modelling at the conceptual level helped to improve understanding of the domain and
the Petri net technique. Initially, regardless of model level of abstraction, it was
beneficial to aim for simple functionality within the nets, ensure these nets were
correct syntactically (using toolset's syntax checking), and then use simulation to
detect structure and logic errors. Based on experience so far, it is vital to keep nets as
compact as possible, rationalising and partitioning their elements properly. Static
analysis is used at this point to highlight issues that are not made explicit by
simulation. Once this level of net maturity is reached, a net was then evolved further,
for example adding line reset logic, or timing.

In large-scale system-of-systems, their design and architecture requires specification
of a combination of independent component systems. Components used at the design
level in the telephone system example could be considered to be component systems
in a system-of-systems. The system-of-systems architecture level details how the
component systems and their realising common components communicate
information across interfaces to realise services of the component system.

Model informational content at the design and architecture levels is different to that at
the conceptual level but is still represented using the same set of Petri net elements.
Function and the processes and sequence of activities that need to be followed to
realise the function are not the focus of the design and architecture levels. Although
there is still a control order sequence, this level details the physical component (not
necessarily the real-life asset) and how each component combines to realise the input
and output behaviour of the conceptual level. At the design and architecture level,
there appears to be additional scope for: identification of common components and
instantiation (although a process could be re-used by functions at the conceptual
level); the ability to describe the functions made use of by each component more
explicitly; and the ability to make the use of a communications network (and
gateways) more explicit.

Abstraction levels (hierarchy) and their facilitation using the toolset socket and port
places are the key to system-of-systems' specification, verification and validation
using nets. The port and socket places modularise the model and describe operations
or physical components in varying degrees of detail (with the greatest detail being at
the lowest abstraction level). Like ports and sockets provide the boundaries of
modules in nets, interfaces are the boundaries of component systems in a system-of-
systems. These interfaces can be used at and between different abstraction levels to
communicate information. The hierarchy can be used to divide a system-of-systems
model into more manageable models so that abstraction and composition approached
can be used to understand and verify them.

 216

Appendix E

Enhancement to UML based on Petri Nets

E.1 Introduction
This appendix describes the mapping made from UML to Petri nets for the thesis system-of-systems specification and analysis problem. It uses a
combination of natural language and syntax diagrams to describe a Petri net systems-of-systems specification language enhancement to UML.

E.2 Definition of the System-of-Systems Specification End Language
The following table presents the replacements and additions made within UML activity diagrams using Petri net constructs for the specification
of systems-of-systems. The concrete syntax and description of the semantics (in natural language) are given for the replaced UML activity
diagram element and the new Petri net enhancement element. For the UML activity diagram, concrete syntax and description are taken from
[125].

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

AcceptEventAction

An AcceptEventAction is an action that waits for the
occurrence of an event meeting specified conditions.

Coloured Petri net elements place, input arc, transition, transition guard, and
arc inscriptions are used to specify AcceptEventAction. Transition 'Action' is
enabled when one token with a certain value ('cond') is available to be
removed from place 'Event' (of type 'Colour') and bound to variable 'value'.

 217

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

Timed Coloured Petri net elements place, input and output arcs, transition,
and arc inscriptions are used to specify a repetitive time event
AcceptEventAction. Transition 'Action' is enabled when model time reaches
'100' and one token is available to be removed from place 'Timed Event' (of
type 'Colour') and bound to variable 'value'. The transition fires, producing a
new timed token for place 'Timed Event' equal to model time plus '10'. This
token timestamp determines the re-enabling of transition 'Action'.

ActivityFinalNode

An activity final node is a final node that stops all flows in
an activity.

Coloured Petri net elements place, output arc, transition, and arc inscription
are used to specify ActivityFinalNode. Place 'Final' (of type 'Colour')
receives the one token output by transition 'Last Action' on its output arc.
There are no additional net elements connected from place 'Final'.

Action

An action represents a single step within an activity, that is,
one that is not further decomposed within the activity. An
action may have sets of incoming and outgoing activity
edges that specify control flow and data flow from and to
other nodes. An action will not begin execution until all of
its input conditions are satisfied.

Coloured Petri net element, transition, is used to specify Action. A transition
will not execute unless all of its input conditions are satisfied i.e. the number
of tokens (and potentially their value) specified by the inscriptions on its
input arcs are present on the associated input places.

 218

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

DataStore

A data store keeps all tokens that enter it, copying them
when they are chosen to move downstream.

Coloured Petri net elements place and place type (list) are used to specify
DataStore. Additional elements input and output arcs, transition, and arc
inscriptions are used to specify an example of retrieval and update of
DataStore items.

DecisionNode

A decision node accepts tokens on an incoming edge and
presents them to multiple outgoing edges. Which of the
edges is actually traversed depends on the evaluation of the
guards on the outgoing edges.

Coloured Petri net elements place, input and output arcs, transition, and arc
inscriptions are used to specify DecisionNode. Execution of transition
'Decision' uses arc inscriptions to check the consumed token's content before
copying one new token to one of the three output places.

FlowFinal

A flow final destroys all tokens that arrive at it.

Coloured Petri net elements place, output arc, transition, and arc inscription
are used to specify FlowFinal. Place 'Final' (of type 'Colour') receives the one
token output by transition 'Last Action' on its output arc. There are no
additional net elements connected from place 'Final'.

 219

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

ForkNode

A fork node has one incoming edge and multiple outgoing
edges.

Coloured Petri net elements place, input and output arcs, transition, and arc
inscriptions are used to specify ForkNode. Execution of transition 'Fork' uses
arc inscriptions to copy one new token to all three output places.

InitialNode
An activity may have more than one initial node.

Coloured Petri net elements place, output arc, and arc inscription are used to
specify InitialNode. There are no additional net elements preceding place
'Initial'.

JoinNode

A join node has multiple incoming edges and one outgoing
edge.

Coloured Petri net elements place, input and output arcs, transition, and arc

 220

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

inscriptions are used to specify JoinNode. Execution of transition 'Join' uses
an arc inscription to consume three input tokens and copy one new token
along its output arc.

MergeNode

A merge node has multiple incoming edges and a single
outgoing edge. It is not used to synchronize concurrent
flows but to accept one among several alternate flows.

Coloured Petri net elements place, input and output arcs, transition guard,
transition, and arc inscriptions are used to specify MergeNode. Execution of
transition 'Merge' uses arc inscriptions to consume three input tokens when
its transition guard condition is met and copy one new token along its output
arc.

ObjectNode

An object node is an activity node that indicates an instance
of a particular classifier, possibly in a particular state, may
be available at a particular point in the activity.

Coloured Petri net elements place and place type ('Colour') are used to
specify ObjectNode. Additional elements input and output arcs, transition,
and arc inscriptions are used to specify an example of an ObjectNode.
Transition 'Action' is enabled when one token is available to be removed
from place 'Initial' (of type 'Colour') and bound to variable 'value'. One new
token is then copied to place 'Flow' (of type 'Colour').

UML Activity Diagram Paths

 221

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

ControlFlow

A control flow is an edge that starts an activity node after
the previous one is finished.

Coloured Petri net elements input and output arcs, and arc inscriptions are
used to specify ControlFlow. Additional elements place and transition are
used to specify an example of ControlFlow. Transition 'Action1' executes to
produce one token for place 'Flow' (of type 'Colour') bound to variable
'value'. Control then passes to transition 'Action2' which becomes enabled
when one token is available on place 'Flow' (of type 'Colour').

ObjectFlow

An object flow models the flow of values to or from object
nodes.

Coloured Petri net elements input and output arcs, and arc inscriptions are
used to specify ObjectFlow. Additional elements place and transition are
used to specify an example of ObjectFlow. Transition 'Action' executes to
consume one token from place 'Initial' (of type 'Colour') bound to variable
'value'. Flow then passes to output place 'Flow' (of type 'Colour') when one
token is copied to it following execution of transition 'Action'.

SendSignalAction

SendSignalAction is an action that creates a signal instance
from its inputs, and transmits it to the target object, where it
may cause the firing of a state machine transition or the
execution of an activity.

Coloured Petri net elements place, input and output arcs, transition, and arc
inscription are used to specify SendSignalAction. Transition 'Action'
executes and an arc inscription compares the consumed token's value ('cond')
to determine the new token to copy to place 'Target' (of type 'Colour').
Additional net elements can be used to specify the execution of an activity
dependent on the token copied to place 'Target'.

 222

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

UML Activity Diagram
Elements

Hierarchical Coloured Petri net elements
 transitions and substitution transitions are used to specify Activity,
ActivityParameterNode, and CallBehaviourAction. Additional elements
place, and input and output arcs are used to specify an example of Activity,
ActivityParameterNode, and CallBehaviourAction. Transition 'Action' is
further decomposed by subnet 'Call Behaviour'. 'Action' has two socket
interface places, 'Input' and 'Output' used by subnet 'Call Behaviour' to
consume and produce tokens on its associated port places (of type 'Colour').
Subnet 'Call Behaviour' uses net elements to further specify the 'Action'
activity.

Activity & ActivityParameterNode
&
CallBehaviourAction

An activity specifies the coordination of executions of
subordinate behaviours, using a control and data flow
model.

Activity parameter nodes are object nodes at the beginning
and end of flows that provide a means to accept inputs to
an activity and provide outputs from the activity, through
the activity parameters.

CallBehaviorAction is a call action that invokes a
behaviour directly rather than invoking a behavioural
feature that, in turn, results in the invocation of that
behaviour.

 223

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

ActivityPartition

Partitions divide the nodes and edges to constrain and show
a view of the contained nodes.

Toolset features of annotation and colouring are used to specify
ActivityPartition. Additional Coloured Petri net elements place, input and
output arcs, transition, and arc inscriptions are used to specify an example of
ActivityPartition. Transition 'Action1' is associated with 'Sub Partition 1' and
transition 'Action2' is associated with 'Sub Partition 2'.

InterruptibleActivityRegion

An interruptible region contains activity nodes. When a
token leaves an interruptible region via edges designated by
the region as interrupting edges, all tokens and behaviours
in the region are terminated.

Coloured Petri net elements place, input and output arcs, transition, and arc
inscriptions as well as toolset colouring are used to specify
InterruptibleActivityRegion. Presence of tokens on places 'Request Cancel'
and 'Flow' (of type 'Colour') enable execution of transition 'Interrupt' and
prevent execution of transition 'Action'.

 224

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

ExceptionHandler

An exception handler is an element that specifies a body to
execute in case the specified exception occurs during the
execution of the protected node.

Coloured Petri net elements place, input and output arcs, transition, and arc
inscriptions as well as toolset colouring are used to specify
ExceptionHandler. Execution of transition 'Exception?' checks for an
exception condition and copies one token to place 'Error'. Presence of one
token on place 'Error' enables transition 'Error Handler' and further
specification of exception handling if desired.

ExpansionRegion

An expansion region is a strictly nested region of an
activity with explicit input and outputs (modelled as
ExpansionNodes).

Coloured Petri net elements place and place type (list) are used to specify
ExpansionRegion. Additional elements input and output arcs, transition, and
arc inscriptions are used to specify an example of retrieval, update, and
processing of two collections (type list). The transition 'Action' is enabled
when one token of type 'Store' is present on places 'Input1' and 'Input2'.
Transition 'Action' executes, consuming one token containing the first item
in the list (type 'Store') from places 'Input1' and 'Input2'. One token is then
copied to place 'Item' (of type 'Store').

 225

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

Local pre- and postconditions

Local pre- and post-conditions are constraints that should
hold when the execution starts and completes, respectively.

Coloured Petri net elements place, input arc, transition, transition guard, and
arc inscriptions as well as toolset colouring are used to specify Local pre-
and post-conditions. Transition 'Action' is enabled when one token with a
certain value ('cond') is available (the pre-condition). One token is copied to
places 'Output1' and 'Output2' (the post-condition).

ParameterSet

A parameter set acts as a complete set of inputs and outputs
to a behaviour, exclusive of other parameter sets on the
behaviour (express 'or' invocation).

Hierarchical Coloured Petri net element substitution transitions as well as
toolset colouring and instantiation features are used to specify ParameterSet.
Additional elements place, and input and output arcs are used to specify an
example of ParameterSet. Transitions 'Action' and 'Action2' are further
decomposed by the same subnet 'Action'. 'Action' has two socket interface
places, 'Item' and 'Output' used by subnet 'Action' to consume and produce
tokens on its associated port places (of type 'Colour'). Subnet 'Action' uses
net elements to further specify the 'Action' activity. Either or both of
transitions 'Action' and 'Action2' can become enabled by the presence of a
token on places 'Item' and 'Item2'.

CONCEPTS

 226

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

Multiplicity Expansion nodes & decision nodes.

Hierarchical Coloured Petri net element substitution transitions as well as
toolset colouring and instantiation features are used to specify multiplicity.
Additional elements place, and input and output arcs are used to specify an
example of multiplicity. Transitions 'Action1', 'Action2', and 'Action3' are
further decomposed by the same subnet 'Action'. 'Action' has two socket
interface places, 'Item' and 'Output' used by subnet 'Action' to consume and
produce tokens on its associated port places (of type 'Colour'). Subnet
'Action' uses net elements to further specify the 'Action' activity. Transitions
'Action1', 'Action2', and 'Action3' can become enabled by the presence of a
token on places 'Item1', 'Item2', and 'Item3' and then follow the execution
sequence specified by the same subnet, 'Action'.

Coloured Petri net elements place, input and output arcs, transition, and arc
inscriptions as well as toolset colouring can also be used to specify
multiplicity. Following transition 'Action' execution, output arc inscriptions

 227

UML Activity Diagram
Nodes

Concrete Syntax & Description [125] Petri Net Element(s)

check the content of consumed token 'count' and depending on its value one
token is copied to place 'Finish' or 'Check' (the start of another iteration of
the execution sequence).

Timing SimpleTime subpackage of CommonBehaviors package
[125] and Modelling and Analysis of Real-time and
Embedded systems (MARTE) profile [113].

Timed Coloured Petri net elements place, input and output arcs, transition,
and arc inscriptions are used to specify an example of timing in models.
Transition 'Action' is enabled when model time reaches current model time
plus '10' and one token is available to be removed from place 'Timed Value'
(of type 'Colour') and bound to variable 'value'.

Model execution None. Toolset well-defined algorithm.

Model reachability graph None. Toolset well-defined algorithm.

E.3 Summary
This appendix has provided a definition of the mappings made to UML activity diagrams based on Petri nets for the specification of systems-of-
systems.

 228

Appendix F

Petri Net Toolset Selection Exercise

F.1 Introduction
This appendix describes the process of selecting a Petri net development framework
for the purposes of system-of-systems specification and analysis in this thesis.

F.2 Selection Process
Obtaining a comprehensive Petri net toolset can be achieved in three ways:
developing the Petri net toolset in-house (this ensures all personal requirements are
met but a disadvantage includes the time and effort involved. This effort can be short-
circuited if there are suitable extensible frameworks available on which to build);
compiling a toolset from existing Petri net analysis and graphical editing tools (again,
a disadvantage is the time and effort involved in integrating the tools); or identifying a
suitable existing integrated Petri net toolset and adapting it accordingly (this relies on
the toolset being open and well supported in terms of documentation).

Given the time and resources available to the thesis, the latter option was chosen as
the way forward. A list of criteria was identified as the basis for selecting potential
Petri net toolsets for further evaluation. The list included: ability to execute Petri nets;
close integration with UML; rapid, lightweight; extensible; free or low cost;
intellectual accessibility; representation of service-based architecture; robustness; and
networkability.

F.2.1 Selection of Toolsets for Further Evaluation
An internet Petri net toolset survey was conducted and toolsets were selected
according to their latest version/maintenance release. The features listed for these
toolsets did not indicate whether the toolset met all the requirements of the thesis.
Reflecting on the criteria list, four toolsets were selected for further evaluation using
the following features as a minimum of functionality: a graphical editor; an interactive
simulator (with performance analysis capability); currency in terms of maintenance
and support (including ease of installation and product stability); and a free or low
cost license. Four Petri net toolsets were identified [47, 126, 127, 128] and evaluated
during July/August 2008. The functionality specific to each is summarised in Table
F.1.

TOOL Features Comments
CPN Tools
Research group (free to
universities)

High-level Petri nets support.

Tried & tested?

Timed Petri nets,
Coloured Petri nets,
Hierarchical Petri nets.

Many published papers/test
cases (at least 100 papers, over
5000 licences).

 229

TOOL Features Comments
Abstraction support.

Logic support.

On-the-fly-execution.

Intuitive graphical interface.

Model editing.

Syntax-checking of model.

State-space analysis.

Performance analysis.

CTL model checker extension.

Animation framework
extension.

Graphing support extension.

Interchange file format.

Via sub-pages, supports both
top-down and bottom-up
development.

Via functional programming
language (CPN ML based on
Standard MetaLanguage, SML).

Supports manual triggering of
transitions, semi-automatic
triggering of a number of
transitions, and automatic
replication runs.

Workspace personalisation,
context menus.

Several time-saving
mechanisms.

Automatic correctness
verification.

Highlights dead transitions
(operations not used) and dead
markings (potential design
error), use of built-in or custom
queries to investigate state-space
using CPN ML code, partial
state-space verification in large
models.

Multiple simulation runs and
statistical data extraction via
monitors/text-based log files.

Via ASK_CTL [130] state space
analysis.

Via BRITNeY [129], supporting
2D/3D graphical representation,
Message Sequence Charts, High
Level Architecture (with
BRITNeY).

Via Graphviz [131].

XML (own Document Type
Definition, DTD).

WoPeD
Research group (free to
universities)
Open source

High-level Petri nets support.

Tried & tested?

Timed Petri nets (notation and
ability to insert time for
subprocesses),
Hierarchical Petri nets,
Predicate/Transition Petri nets,
Workflow nets.

Less than 10 papers.

 230

TOOL Features Comments
Abstraction support.

Logic support.

On-the-fly-execution.

Intuitive graphical interface.

Model editing.

State-space analysis.

Performance analysis.

Graph support extension.

Interchange file format.

Via subprocess transition pages,
supports top-down and bottom-
up development.

Percentage probability (notation
present but do not believe it is
fully implemented) and
XOR/AND joins/splits.

Supports manual triggering of
transitions, and automatic
replication runs.

Context menus.

Suggests place/transition.

Uses Woflan application
(Workflow Analysis tool that
checks if Petri Net conforms to
Workflow definition) to
determine whether process
definition is a workflow,
highlights whether all conditions
in the process are proper,
highlights whether all tasks in
the process are not dead
(operations not used), and
highlights whether all tasks in
the process are live, no use of
built-in or custom queries to
investigate state-space.

Multiple simulation runs and
statistical data extraction via pre-
formatted logfile (CSV export
possible).

Ability to use diagrams option
within simulation or via JGraph
enhancement.

XML, PNML.

Renew
Research group (free to
universities)
Open source

High-level Petri nets support.

Tried & tested?
Abstraction support.

Logic support.

On-the-fly-execution.

Intuitive graphical interface.

Object-oriented Petri nets,
Coloured Petri nets,
Timed Petri nets,
Reference nets.

At least 30 papers.
Reference nets (synchronous
channels).

Java inscriptions.

Supports manual triggering of
transitions, and automatic runs.

Uses one central command

 231

TOOL Features Comments

Model editing.

Syntax-checking of model.

State-space analysis.

Performance analysis.

Animation framework
extension.

Interchange file format.

window which works with one
active editing window.

Uses JHotDraw library.
Suggestion of places/transitions.

Automatic correctness
verification.

Requires third party tool to
perform analysis.

Interactive and dynamic
simulation only (would require
enhancement).

Basic animation support via
icons.

XML, PNML.

Platform Independent Petri
Net Editor 2
Research group (free to
universities)
Open source

High-level Petri nets support.

Tried and tested?

Logic support.

On-the-fly-execution.

Intuitive graphical interface.

Model editing.

State-space analysis.

Performance analysis.

Interchange file format.

Petri nets extended with time
(stochastic) and
Predicate/Transition Petri nets.

Less than 10 papers.

Via weightings only.

Supports manual triggering of
transitions, semi-automatic
triggering of a number of
transitions, and automatic
replication runs (via module).

Context menus.

Basic functionality.

Via provided module.

Basic as it stands (would require
enhancement via a module).

PNML.

Table F.1 'The four selected toolsets and their features'

F.2.2 Comparison of Toolsets
Following usage of these toolsets, more detailed requirements were identified and
translated into a list of criteria to aid further comparison of the four toolsets based on
a similar process to the one presented in [132]. Ratings of aspects of desirable features
for each toolset were given as 'excellent', 'good', 'fair', 'poor', and 'unsupported'. Each
of these ratings has an associated point score ranging from four for 'excellent' down to

 232

zero for 'unsupported'. In addition, the aspects were given an importance weighting of
one to four (ranging from 'useful' to 'mandatory' respectively).

In terms of toolset ease-of-use, all tools had an intuitive installation procedure and
were straightforward to install. All four toolsets offered a typical graphical user
interface and a stable product integrating editing, simulation and analysis functions.
As such, no further evaluation of these aspects was undertaken.

Regarded as one of the most critical parts of an integrated Petri net toolset, the
graphical editor produces the model used in verification and validation. There are
several key aspects of editors to evaluate: support for the documentation of models
(e.g. export formats, automatic report generation from models); support for model
layout (e.g. automatic layout via a drawing grid, alignment of model elements, ability
to add text, colour, style, sizing and charts to models); support for syntax construction
and checking during model editing (e.g. provision of context sensitive values and
menus, provision of explicit model checking command, provision of default
modelling values, not permitting place-to-place or transition-to-transition connection
using arcs, warning users when undefined types are associated to places); ability to
customise the graphical appearance of the tool and models and their navigation (e.g.
hiding of inscriptions); ability to print (e.g. formats, all or part of a model);
helpfulness of error notification; and the management of model versions. Results of
the evaluation are shown in Table F.2.

Support for Toolset
Documentation Layout Syntax

Building

Customisation
of appearance

Printing Syntax
Checking

Error
Notification

Version
Control

CPN Tools Good. Good. Good. Good. Fair. Good. Fair. Un-
Supported.

WoPeD Fair. Fair. Fair. Poor. Fair. Poor. Poor. Un-
supported.

Renew Fair. Fair. Good. Fair. Good. Good. Fair. Un-
supported.

PIPE Fair. Fair. Fair. Fair. Fair. Poor. Poor. Un-
supported.

Importance
Weighting

2 1 2 2 3 4 4 2

Table F.2 'Evaluation of graphical editor key aspects for each toolset'

Critical to the thesis was the ability of the toolset to execute a model. Features
essential for useful simulation are evaluated in Table F.3. These include: inclusion of
break and watch points (e.g. ability to stop simulation dependent on certain
conditions); support of various simulation modes (e.g. interactive ability to step
through simulation, batch runs); ability to generate stand-alone simulation code from
model; ability of toolset to generate animations based on model execution (e.g.
simple, 'token game' or more advanced animation via GUIs). The results are shown in
Table F.3.

 233

Simulation Modes Animation Toolset
Interaction Rating Batch

Watch
Points

Break
Points

Code
Generation Simple Advanced

CPN Tools Single step.
Continuous.

Excellent. Excellent. Good. Good. Un-
supported
(Beta
programming
Language).

Good. Good
(BRITNeY).

WoPeD Single step.

Fair. Un-
Supported.

Un-
Supported.

Un-
Supported.

Un-
supported.

Good. Un-
supported.

Renew Single step.
Continuous.

Fair. Un-
Supported.

Un-
Supported.

Un-
Supported.

Un-
supported.

Good. Poor.

PIPE Single step.
Continuous.

Good. Fair. Un-
Supported.

Un-
Supported.

Un-
supported.

Good. Un-
supported.

Importance
Weighting

 3 4 2 2 2 3 1

Table F.3 'Evaluation of simulation key aspects for each toolset'

Model analysis is another important tool in an integrated Petri net toolset. Aspects
considered in the evaluation are tool support for reachability, liveness, fairness,
temporal logic, support for results presentation (e.g. graphing, printing, export for
further analysis), and support for other forms of analysis. These are shown in Table
F.4.

Others Toolset Reachability

Liveness Fairness Temporal
Logic

Invariants Statistical
Analysis

Results
Present-
ation

Type Rating

CPN Tools Excellent. Excellent. Excellent. Excellent. Un-
supported.

Good. Good. Home state.
Boundedness.

Excellent

WoPeD Excellent. Excellent. Excellent. Un-
supported.

Un-
supported.

Un-
supported.

Fair.

Renew Un-
supported.

Un-
supported.

Un-
supported.

Un-
supported.

Un-
supported.

Un-
supported.

Un-
supported

PIPE Excellent. Excellent. Excellent. Un-
supported.

Excellent. Fair
(Dnamaca).

Fair. Home state.
Boundedness.
Comparison.
DNAmaca.

Good.

Importance
Weighting

4 4 3 3 3 4 3 2

Table F.4 'Evaluation of analysis key aspects for each toolset'

The level of support and potential future development of the toolsets are additional
important aspects to evaluate. Here, toolset support covers provision of
documentation (quality and quantity of user-oriented and technically-oriented
documentation) and technical support (via internet, training, email and telephone).
Assessment of future development is indicated along with a rating for the likelihood
of these enhancements to functionality/usability taking place. The likelihood rating
can be inferred from toolset usage (e.g. number of licenses, number of research
groups involved, existing quality of toolset). Again, evaluation results are represented
in Table F.5.

Toolset Support Future

Development
Likelihood
Rating

Tutorial/
Examples

Help Documentation

CPN Tools Excellent. Next
generation
tool support
for State
Space
Analysis

Good. Good. Good. Good.

 234

[69].
WoPeD Fair. No public

details.
Fair (last
release
April
2008).

Poor. Fair. Fair.

Renew Fair. No public
details.

Fair (last
release
July 2008).

Fair. Fair. Fair.

PIPE Good. Hierarchical
Nets.

Fair (last
release
December
2007).

Fair. Fair. Fair.

Importance
Weighting

3 2 3 2 3

Table F.5 'Evaluation of support/future development key aspects for each toolset'

One of the requirements outlined at the start of this document was for toolsets to
support extensibility. Important properties of extensibility include the ability to
import/export models and analysis results and the openness of a toolset, i.e. the ease
of making modifications to the toolset to meet requirements. Openness relates to
knowing the interface specifications at the architectural module level (through
technical documentation). Table F.6 summarises the openness of the four toolsets.

Formats Programming interface Toolset
Import Export Rating

Technical
Documentation Type Rating

CPN Tools XML. EPS,
XML.

Good. Good. CPN ML
based on
SML.

Good.

WoPeD XML,
PNML.

PNG,
JPG,
BMP,
TPN
(Woflan),
PNML.

Good. Poor. Java. Good.

Renew XML,
PNML.

PS, EPS,
XML,
PNML.

Good. Poor. Java. Good.

PIPE XML. PS, PNG,
XML.

Good. Poor. Java. Good.

Importance
Weighting

 3 3 3

Table F.6 'Evaluation of openness aspects for each toolset'

F.2.3 Final Ranking of Toolsets
Similar to the approach used in [132], ranking of the most important features of the
toolsets was made by applying a priority (importance weighting) to each aspect of the
feature and a point system to the given evaluation rating of the aspect (for example, as
indicated earlier, a 'good' rating would be worth three points). For each feature, a
maximum scoring can be calculated based on the priorities given to its aspects in
Tables F.2-F.6. This maximum scoring is shown in Table F.7 and can be viewed as a
toolset profile for application in system-of-systems development. A score is then
calculated for each feature by toolset. For example, for its 'Graphical Editor' feature,

 235

CPN Tools received five 'good' (with corresponding priorities of 2, 1, 2, 2, and 4) and
two 'fair' ratings (with corresponding priorities of 3 and 4) for the editor aspects,
equating to 47 points (2*3 + 1*3 + 2*3 + 2*3 + 4*3 + 3*2 + 4*2) out of a possible 80
maximum (2 + 1 + 2 + 2 + 3 + 4 + 4 + 2 = 20*4) for the Graphical Editor. In this way,
emphasis can be placed on aspects particularly desirable in system-of-systems
development and the toolsets can be ranked by highest points accumulation (Table
F.8).

Feature Aspect Priority Maximum
Graphical Editor Documentation

Layout
Syntax Building
Appearance
Customisation
Printing
Syntax Checking
Error Notification
Version Control

2
1
2
2
3
4
4
2

80

Simulation Interactive
Batch
Watchpoints
Breakpoints
Code Generation
Simple Animation
Advanced Animation

3
4
2
2
2
3
1

68

Analysis Reachability
Liveness
Fairness
Temporal Logic
Invariants
Statistical Analysis
Results Presentation
Other Analysis

4
4
3
3
3
4
3
2

104

Support/Future
Development

Support
Future Development
Examples
Help
Documentation

3
2
3
2
3

52

Openness Import/Export
Technical Documentation
Programming Interface

3
3
3

36

 Maximum Points 340

Table F.7 'Profile for system-of-systems development'

Toolset Graphical

Editor
Simulation Analysis Support/Future

Development
Openness Total Rank

CPN
Tools

47 52 85 42 27 253 1

WoPeD 26 15 50 23 21 135 3
Renew 45 16 0 26 21 108 4
PIPE 28 26 80 29 21 184 2

Table F.8 'Toolset ranking according to aspect scoring'

 236

Using this ranking, knowledge of each toolset and the intended usage domain, a
recommendation can be made regarding use of a particular toolset in case study
exercises. Given that the toolset is likely to be used in both military and commercial
sectors, emphasis must be placed on its stability and accessibility (ease-of-use and
support is important to both sectors, license cost will be more of an issue in the
military sector). The four toolsets were classified according to the tasks involved in
engineering systems-of-systems, i.e. modelling, verification/quantitative analysis and
validation/qualitative analysis and features relating to these tasks. All tasks involved
in engineering a system-of-systems application are perceived to have equally high
priority. Given this fact and the timescales for the thesis, it was important to select a
suitably rounded toolset scoring reasonably well for all these features. As well as the
collated scores, a toolset's history, number of users, and size and structure of
supported state space were also considered.

F.2.4 Conclusions
From this evaluation of the four selected toolsets, given that the ratings awarded to
each depended on the corresponding aspect in another toolset, each toolset was highly
useable in its own right. For the intended case study exercises and thesis time
available, the use of CPN Tools is recommended (the other toolsets are worthy of
further investigation when there is less restriction on time). CPN Tools offers high
levels of support in terms of papers, tutorials, online/offline help, and internet forums
and is a comprehensive toolset 'out-of-the-box' allowing fast model construction,
execution and analysis. Further 'plug-in' support comes in the form of ASK_CTL,
Graphviz and BRITNeY and there are plans to develop further toolset support for
state space exploration and analysis of CPN models. Although not fully investigated
as yet, running multiple CPN Tools simulators and controlling communication
between them appears to be possible using a combination of the CPN Tools simulator
and BRITNeY. In terms of system-of-systems design, this would enable verification
and validation of low fidelity models built by different agencies (perhaps retrieved
from a repository of such models) across a networked environment. Regardless of
this, CPN Tools can be used in a standalone environment to open multiple net models
simultaneously and has 'clone' functionality to copy elements of nets between models.
Related to integration of models is their export. Currently CPN Tools supports its own
XML export (with published Document Type Definition). Finally, in terms of cost,
CPN Tools is free to both academic and commercial organisations.

F.3 Summary
This appendix has described the process of selecting the CPN Tools Petri net toolset
for the purposes of system-of-systems specification and analysis in this thesis.

 237

References

1. ‘Theater Battle Management Core System Systems Engineering Case Study’, J.R.
Collens, B. Krause, The MITRE Corporation and Lockheed Martin Integrated
Systems and Solutions, 17 February 2005
2. ‘A System-of-Systems Perspective for Public Policy Decisions’, D.
DeLaurentis, R.K. Callaway, Review of Policy Research, Volume 21, Number 6,
November 2004, pp.829-837
3. ‘British Airways reveals what went wrong with Terminal 5’, taken from
http://www.computerweekly.com/Articles/2008/05/14/230680/british-airways-
reveals-what-went-wrong-with-terminal.htm on July 4th 2009
4. ‘Architecting Principles for Systems-of-Systems’, M.W. Maier, Systems
Engineering, Volume 1, Number 4, 1998, pp.267-284
5. ‘System Life Cycle Processes’, ISO/IEC Standard 15288:2002
6. ‘A Consensus of the INCOSE Engineering Fellows’ (Rechtin, 2000) taken from
http://www.incose.org/practice/fellowsconsensus.aspx on July 23rd 2007
7. ‘Application and Management of the Systems Engineering Process’, IEEE Standard
1220-1998, Definition 3.1.37 (2005 version of this standard)
8. ‘Architectural Framework for a System-of-Systems’, D.S. Caffal, J.B. Michael,
IEEE International Conference on Systems, Man and Cybernetics, 2005, pp.1876-
1881
9. ‘System of Systems Engineering’, C. Keating, R. Rogers, R. Unal, D. Dryer, A.
Sousa-Poza, R. Safford, W. Peterson and G. Rabadi, Engineering Management
Journal, Volume 15, Number 3, September 2003, pp.36-45
10. ‘Final Version of DSoS Conceptual Model (CSDA1)’, M. Gaudel, V. Issarny, C.
Jones, H. Kopetz, E. Marsden, N. Moffat, M. Paulitsch, D. Powell, B. Randell, A.
Romanovsky, R. Stroud, F. Taiani, Technical Report CS-TR-782, University of
Newcastle upon Tyne, 2003
11. ‘Unified Modeling Language (UML)’, Object Management Group, Version 2.2
(2009 version of this standard), http://www.omg.org/spec/UML/2.2
12. ‘Darwin Among the Machines: The Evolution of Global Intelligence’, G.B.
Dyson, Perseus Books Group, 1998
13. ‘An Emergent Perspective on Interoperation in Systems of Systems’, D.A. Fisher,
CMU/SEI-2006-TR-003, Software Engineering Institute, Carnegie Mellon University,
2006
14. ‘Acquisition Operating Framework’, UK Ministry of Defence, taken from
http://www.aof.mod.uk/index.htm on July 4th 2009
15. ‘Transforming the U.K.'s Defence Procurement System’, UK Ministry of Defence,
Final Report, McKinsey & Co, 20 February 1998
16. ‘Ministry of Defence: Major Projects Report 2007’, House of Commons
Committee of Public Accounts, Thirty-third Report of Session, HM Stationary Office,
HC 433, 2007-2008
17. ‘Department of Defence Dictionary of Military and Associated Terms’, Joint
Publication 1-02, 2001 (amended through 17 October 2007)
18. ‘System Engineering for Faster, Cheaper, Better’, K. Forsberg, H. Mooz, Centre
for Systems Management, 1998
19. ‘Research to Address the Challenges of Synthetic Environment Based
Acquisition’, S.H. Marshall and T. Anderson, UK Defence Evaluation and Research
Agency, HM Stationary Office, 2000

 238

20. ‘Future Combat Systems’, taken from http://www.boeing.com/defense-
space/ic/fcs/bia/moreinfo.html on July 4th 2009
21. ‘Defence White Paper’, Defence Industrial Strategy, CM6697
22. ‘System of Systems – the meaning of of’, J. Boardman, B. Sauser, IEEE/SMC
International Conference on System of Systems Engineering, US, 2006
23. ‘Programmatics of System of Systems Engineering & Integration’, J. Smith,
Presentation to the National Oceanic and Atmospheric Administration (NOAA)
Netcentric Seminar, May 2007
24. ‘Dynamics of Complex Systems’, Y. Bar-Yam, http://necsi.org/guide
25. ‘Glossary of Communications-electronics Terms’, Allied Communications
Publication, ACP-167(H), April 1998
26. ‘The Dynamics of Complex Systems’, Y. Bar-Yam,
http://necsi.org/guide/DCSchapter0.pdf, Overview, p.12
27. ‘Principles of Complex Systems for Systems Engineering’, S.A. Sheard, Third
Millenium Systems LLC, http://cs.calstatela.edu/wiki/images/8/84/Sheard.doc, 2006
28. ‘A framework for information systems architecture’, J.A. Zachman, IBM Systems
Journal, Volume 38, Issue 2-3, 1999, pp.454-470
29. ‘Department of Defence Architecture Framework (DoDAF) v2.0’, taken from
http://www.defenselink.mil/cio-nii/policy/eas.shtml on 4th July 2009
30. ‘Ministry of Defence Architecture Framework (MoDAF) v1.2’, taken from
http://www.modaf.org.uk on 4th July 2009
31. ‘Requirements Management in a System-of-Systems Context: A Workshop’, B.
Craig Meyers, J.D. Smith, P. Capell, P.R.H. Place, CMU/SEI-2006-TN-015, Software
Engineering Institute, Carnegie Mellon University, 2006
32. ‘Lessons from Bosnia: The IFOR Experience’, L. Wentz, XI C4ISR Systems and
Services, http://www.fas.org/irp/ops/smo/docs/ifor/index.html
33. ‘Systems Architecting: Creating and Building Complex Systems’, E. Rechtin,
Prentice Hall, 1991
34. ‘Department of Defence Chairman of the Joint Chiefs of Staff Instruction’, CJCSI
3170.01B, Part II – Definitions, 15 April 2001
35. ‘Global Information Grid Capstone Requirements Document’, Flag Level Review
Draft, Appendix A – Part II Definitions, 28 March 2001
36. ‘IEEE 100 The Authoritative Dictionary of IEEE Standards Terms’, Seventh
Edition, 2000
37. ‘Systems and software engineering – Recommended practice for architectural
description of software-intensive systems’, ISO/IEC Standard 42010:2007
38. ‘The CIS Interoperability web’, 30 March 2007,
http://www.ams.mod.uk/content/docs/cisintop/
39. ‘Engineering Complex Systems with Models and Objects’, D.W. Oliver, T.P.
Kelliher, J.G. Keegan, McGraw-Hill, 1997
40. ‘Modeling Time in DoDAF Compliant Executable Architectures’, A.
AbuSharekh, S. Kansal, A.K. Zaidi, A.H. Levis, Proceedings 2007 Conference on
Systems Engineering Research, Hoboken, NJ, March 2007
41. ‘Mission Centric Reliability Analysis of C4ISR Architectures using Petri Nets’,
A.E. Olmez, Proceedings IEEE SMC Conference, Washington, D.C., October 2003
42. ‘The Use of Integrated Architectures to Support Agent Based Simulation: An
Initial Investigation’, A.W. Zinn, Thesis, Air Force Institute of Technology, March
2004
43. ‘Lectures on Petri Nets I: Basic Models’, W. Reisig and G. Rosenberg (Eds.),
Advances in Petri Nets, Springer, 1998

 239

44. ‘System Architecture and Operational Concept Validation through Modeling and
Simulation’, R.K. Butler, L.C. Creech, A.J. Anderson, Military Communications
Conference, Washington, D.C., 23-25 October 2006, pp.1-6
45. ‘Three Good Reasons for Using a Petri-net-based Workflow Management
System’, W.M.P. van der Aalst, In T. Wakayama, S. Kannapan, C.M. Khoong, S.B.
Navathe, J. Yates (Eds.), The Kluwer International Series in Engineering and
Computer Science, Information and Process Integration in Enterprises: Rethinking
Documents, Volume 428, Chapter 10, 1998, pp.161-182
46. ‘System Modelling with High-Level Petri Nets’, H.J. Genrich, K. Lautenbach,
Theoretical Computer Science 13, 1981, pp.109-136
47. ‘Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent
Systems’, K. Jensen, L.M. Kristensen, L. Wells, International Journal on Software
Tools for Technology Transfer, Springer Verlag, 2007, pp.213-254
48. ‘YAWL: yet another workflow language’, W.M.P. van der Aalst and A.H.M. ter
Hofstede, Information Systems, Volume 30, Issue 4, June 2005, pp.245-275
49. ‘On Petri Nets with Stochastic Timing’, M. Ajmone Marsan, G. Balbo, A. Bobbio,
G. Chiola, G. Conte, A. Cumani, On Petri Nets with Stochastic Timing, Proceedings
of the International Workshop on Timed Petri Nets, Torino, IEEE Computer Society
Press, 1985, pp.80-87
50. ‘Timed Places Petri Nets with Stochastic Representation of Place Time’, C.Y.
Wong, T.S. Dillon, K.E. Forward, Proceedings of the International Workshop on
Timed Petri Nets, Torino, IEEE Computer Society Press, 1985, pp.96-103
51. ‘Evaluation Based upon Stochastic Petri Nets of the Maximum Throughput of a
Full Duplex Protocol’, G. Florin, S. Natkin, Selected Papers from the First and
Second European Workshop on Application and Theory of Petri Nets, 1980, pp.280-
288
52. ‘Scalability in Analysis of Software Architecture’, B.I. Chukwuogo, Thesis, Texas
Tech University, August 2007
53. ‘Case Studies of Systems Engineering and Management in Systems Acquisition’,
G. Friedman, A.P. Sage, Systems Engineering, Volume 1, 2004
54. ‘Five Misunderstandings About Case-Study Research’, B. Flyvbjerg, Qualitative
Inquiry, Volume 12, Number 2, April 2006, pp.219-245
55. ‘A survey of controlled experiments in software engineering’, D.I.K. Sjoberg, J.E.
Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.K. Liborg, A.C. Rekdal,
IEEE Transactions on Software Engineering, Volume 31, Issue 9, September 2005,
pp.733-753
56. ‘Diplans: A New Language for the Study and Implementation of Coordination’,
A. W. Holt, ACM Transactions on Office Information Systems, Volume 6, Number 2,
April 1988, pp.109-125
57. ‘Petri Nets: Properties, Analysis and Applications’, T. Murata, Proceedings of the
IEEE, Volume 77, Number 4, April 1989, pp.541-580
58. ‘Fundamentals of a theory of asynchronous information flow’, C.A. Petri,
Proceedings of the 1962 IFIP Congress, 1962, pp.386-390
59. ‘Workflow Patterns’, W.M.P. van der Aalst, A.H.M. ter Hofstede, B.
Kiepuszewski, A.P. Barros, Distributed and Parallel Databases, July 2003, pp.5-51
60. ‘Migration of Control in Decision Making Organisations’, A.H. Levis, S.L.
Skulsky, Laboratory for Information and Decision Systems, LIDS-P 1881, 1989
61. ‘A Coloured Petri Net Model of Distributed Tactical Decision Making’, Z. Lu,
A.H. Levis, Proceedings 1991 Symposium on Command and Control Research, 1991

 240

62. ‘Intelligent Task Planning Using Fuzzy Petri Nets’, T. Cao, A.C. Sanderson,
World Scientific, 1996
63. ‘Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use’, K.
Jensen, Volume 1, Second Edition, Springer-Verlag, 1997
64. ‘Case studies for method and tool evaluation’, B. Kitchenham, L. Pickard, S.L.
Pfleeger, IEEE Software, Volume 12, Issue 4, July 1995, pp.52-62
65. ‘A Survey of Some Theoretical Aspects of Multiprocessing’, J.L. Baer, ACM
Computing Surveys, Volume 5, March 1973
66. ‘Improving UML with Petri nets’, L. Baresi, M. Pezze, Electronic Notes in
Theoretical Computer Science, Volume 44, Number 4, July 2001
67. ‘Execution Strategies for Petri Net Simulations’, J.M. Grevet, L. Jandura, J.
Brode, A.H. Levis, Laboratory for Information and Decision Systems, LIDS-P 1739,
1988
68. ‘Conquering Complexity: Lessons for Defence Systems Acquisition’, A. Weiss,
K. Hambleton, The Stationery Office, 2005
69. ‘The ASCoVeCo State Space Analysis Platform: Next Generation Tool Support
for State Space Analysis’, L.M. Kristensen, M. Westergaard, Eighth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, 2007 (October 22-24)
70. ‘Littoral undersea warfare: a case study in process modelling for functionality and
interoperability of complex systems’, V.D. Bindi, J. Strunk, J. Baker, R. Bacon, M.G.
Boensel, F.E. Shoup, R. Vaidyanathan, International Journal System of Systems
Engineering, Volume 1, Numbers 1-2, 2008, pp.18-58
71. ‘Mission Control by Coordinating Shared Resources’, W. Meyer, C. Fiedler,
IEEE/SMC International Conference on System of Systems Engineering, 2006 (April
24-26)
72. ‘Modeling Interactive Systems with Hierarchical Colored Petri Nets’, M.
Elkoutbi, R.K. Keller, Advanced Simulation Technologies Conference, Boston, MA,
1998 (April 5-9)
73. ‘Using Interface Prototyping Based on UML Scenarios and High-Level Petri
Nets’, M. Elkoutbi, R.K. Keller, Proceedings of the 21st International Conference on
Application and Theory of Petri Nets, Aarhus, Denmark, Springer-Verlag, 2000 (June
26-30), pp.166-186
74. ‘Formalization of Object Behavior and Interactions from UML Models’, J.A.
Saldhana, S.M. Shatz, Z. Hu, International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), Volume 11, Number 6, December 2001, pp.643-
673
75. ‘UML Diagrams to Object Petri Net Models: An Approach for Modeling and
Analysis’, J.A. Saldhana, S.M. Shatz, Proceedings of the International Conference on
Software Engineering and Knowledge Engineering (SEKE), Chicago, IL, 2000 (July
6-8), pp.103-110
76. ‘Transformation of UML-based System Model to Design/CPN Model for
Validating System Behavior’, M.E. Shin, A.H. Levis, L.W. Wagenhals, Proceedings
of the Compositional Verification of UML Models Workshop, Sixth International
Conference on the UML, San Francisco, CA, October 2003
77. ‘An Improved Architectural Specification of the Internet Open Trading Protocol’,
C. Ouyang, L.M. Kristensen, J. Billington, Third Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, 2001 (August 29-
31)

 241

78. ‘A Coloured Petri Net Approach to Formalising and Analysing the Resource
Reservation Protocol’, M.E. Villapol, J. Billington, CLEI Electronic Journal, Volume
6, Number 1, December 2003
79. ‘Colored Petri Net based model checking and failure analysis for E-commerce
protocols’, P. Katsaros, V. Odontidis, M. Gousidou-Koutita, Sixth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, 2005 (October 24-26)
80. ‘Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use’, K.
Jensen, Volume 2, Second Edition, Springer-Verlag, 1997
81. ‘Petri Nets and Industrial Applications: A Tutorial’, R. Zurawski, M. Zhou, IEEE
Transactions on Industrial Electronics, Volume 41, Number 6, December 1994
82. ‘Capacity Planning of Web Servers using Timed Hierarchical Coloured Petri
Nets’, S. Christensen, L.M. Kristensen, K.H. Mortensen, J.S. Thomasen, Proceedings
of Hewlett- Packard OpenView University Association (HP-OVUA'99), 6th Plenary
Workshop, 1999
83. ‘Analysis of Railway Stations by Means of Interval Timed Coloured Petri Nets’,
W.M.P. van der Aalst, M.A. Odijk, Real-Time Systems, Volume 9, Issue 3,
November 1995, pp.241-263
84. ‘Real-time Decision Making For Shipboard Damage Control’, V. Bulitko, D.
Wilkins, Proceedings of the AAAI/KDD/UAI-2002 Joint Workshop on Real-Time
Decision Support and Diagnosis Systems, AAAI Press, 2002, pp.37-46
85. ‘Modeling and Execution of Complex Attack Scenarios using Interval Timed
Colored Petri Nets’, O.M. Dahl, S.D. Wolthusen, Proceedings of the Fourth IEEE
International Workshop on Information Assurance, 2006 (April 13-14), pp.157-168
86. ‘Modelling and simulating multi-echelon food systems’, J.G.A.J. van der Vorst,
A.J.M. Beulens, P. van Beek, European Journal of Operational Research, Volume
122, Issue 2, Elsevier, 2000 (April 16), pp.354-366
87. ‘Bullwhip Effect and Supply Chain Modelling and Analysis Using CPN Tools’,
D. Makajic-Nikolic, B. Panic, M. Vujosevic, Fifth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, 2004
(October 8-11)
88. ‘Design of Clearing and settlement operations: A case study in business process
modelling and evaluation with Petri nets’, P.M. Kwantes, Seventh Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, 2006 (October 24-26)
89. ‘A Petri Net Approach for the Performance Analysis of Business Processes’, A.K.
Schomig, H. Rau, Report No.116, University of Wurzburg, Institute of Computer
Science, Research Report Series, May 1995
90. ‘Application of Coloured Petri Nets in System Development’, L.M. Kristensen,
J.B. Jorgensen, K. Jensen, Lecture Notes in Computer Science, Volume 3098,
Springer-Verlag, 2004, pp.626-685
91. ‘Modular Analysis of Systems Composed of Semiautonomous Subsystems’, C.
Lakos, L. Petrucci, Proceedings of the 4th International Conference on Application of
Concurrency to System Design (ACSD 2004), Hamilton, Canada, IEEE Computer
Society Press, June 2004, pp.185-194
92. ‘An Incremental and Modular Technique for Checking LTL\X Properties of Petri
nets’, K. Klai, L. Petrucci, M. Reniers, Proceedings of the 27th International
Conference on Formal Methods for Networked and Distributed Systems (FORTE
2007), Tallinn, Estonia, Lecture Notes in Computer Science, Volume 4574, Springer,
June 2004

 242

93. ‘Modular State Spaces and Place Fusion’, C. Lakos, L. Petrucci, Proceedings of
the International Workshop on Petri Nets and Software Engineering (PNSE 2007),
Sieldlce, Poland, University of Podlasie, June 2007, pp.175-190
94. ‘Modelling and Performance Analysis of Workflow Management Systems Using
Timed Hierarchical Coloured Petri Nets’, K. Salimifard, M. Wright, Proceedings of
the ICEIS 2002, Ciudad Real, Spain, 2002 (3-6 April), pp.843-846
95. ‘Petri Nets for Component-Based Software Systems Development’, L.D. da Silva,
K. Gorgonio, A. Perkusich, Petri Nets, Theory and Applications, I-Tech Education
and Publishing, February 2008, p.534
96. ‘Evaluating software engineering methods and tools part 9: quantitative case study
methodology’, B. Kitchenham, L.M. Pickard, ACM SIGSOFT Software Engineering
Notes, Volume 23, Issue 1, January 1998, pp.24-26
97. ‘A Unidirectional Transition Fusion for Coloured Petri Nets and its
Implementation for the CPNTools’, J.P. Barros, L. Gomes, Proceedings of the Fifth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
Aarhus, Denmark, 2004 (October 8-11), pp.199-218
98. ‘A discretization method from coloured to symmetric nets: application to an
industrial example’, F. Bonnefoi, C. Choppy, F. Kordon, Ninth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, 2008 (October 20-22)
99. ‘Design, modeling and analysis of ITS using UML and Petri Nets’, F. Bonnefoi,
L.M. Hillah, F. Kordon, X. Renault, Intelligent Transportation Systems Conference,
ITSC 2007, 2007 (September 30-October 3), pp.314-319
100. ‘An Introduction to the Practical Use of Coloured Petri Nets’, K. Jensen, Lecture
Notes in Computer Science, Volume 1492, Springer-Verlag, 1996, pp.237-292
101. ‘Evaluating software engineering methods and tools part 10: designing and
running a quantitative case study’, B. Kitchenham, L.M. Pickard, ACM SIGSOFT
Software Engineering Notes, Volume 23, Issue 3, May 1998, pp.20-22
102. ‘Hubble Space Telescope Systems Engineering Case Study’, J.J. Mattice, Center
for Systems Engineering at the Air Force Institute of Technology, 10 March 2005
103. ‘Dictionary of Sociology’, N. Abercrombie, B.S. Turner, Penguin, 1984
104. ‘Case Study Research: Design and Methods’, R.K. Yin, 3rd edition, Sage, 2003
105. ‘Joint Tactics, Techniques, and Procedures for Close Air Support (CAS)’, Joint
Publication 3-09.3, 2 September 2005
106. ‘Variable Message Format (VMF) System Management and Operating
Procedures (SMOPS)’, Version 2.1, prepared by SyntheSys Systems Engineers Ltd on
behalf of the Ministry of Defence Integration Authority, March 2007
107. ‘Studying Software Engineers: Data Collection Techniques for Software Field
Studies’, T.C. Lethbridge, S.E. Sim, J. Singer, Empirical Software Engineering,
Volume 10, Issue 3, July 2005, pp.311-341
108. ‘Guidelines for conducting and reporting case study research in software
engineering’, P. Runeson, M. Host, Empirical Software Engineering, Volume 14,
Issue 2, April 2009, pp.131-164
109. ‘IBM Rational Rhapsody’, taken from http://www-
01.ibm.com/software/awdtools/rhapsody on 6th July 2009
110. ‘IBM Rational Tau’, taken from http://www-01.ibm.com/software/awdtools/tau
on 6th July 2009
111. ‘Model Checking’, E.M. Clarke, O. Grumberg, D. Peled, MIT Press, 1999

 243

112. ‘UML Profile For Schedulability, Performance, And Time’, Object Management
Group, Version 1.1 (2005 version of this standard),
http://www.omg.org/technology/documents/formal/schedulability.htm
113. ‘Modeling and Analysis of Real-time and Embedded systems’, Object
Management Group, Version Beta1 (2007 version of this specification),
http://www.omgmarte.org/Specification.htm
114. ‘UML For Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms’, Object Management Group, Version 1.1 (2008 version of this
standard), http://www.omg.org/spec/QFTP/1.1/
115. ‘Software Performance Modeling using UML and Petri nets’, J. Merseguer, J.
Campos, Lecture Notes in Computer Science Performance tools and applications to
networked systems, Volume 2965, 2004, pp.265-289
116. ‘Validation of Dynamic Behaviour in UML Using Coloured Petri Nets’, R.G.
Pettit, H. Gomaa, Lecture Notes in Computer Science Proceedings of UML 2000
Workshop, Volume 1939, 2000
117. ‘On the integration of UML and Petri nets in software development’, J. Campos,
J. Merseguer, In 27th International Conference on Applications and Theory of Petri
Nets and Other Models of Concurrency, 2006
118. ‘Semantics and Verification of Data Flow in UML 2.0 Activities’, H. Storrle,
Visual Languages and Formal Methods, 2004
119. ‘Semantics of UML 2.0 Activities’, H. Storrle, International Symposium/Human
Computer Centred Systems, Rome, 2004
120. ‘UK Defence Tactical Data Link Interface Requirement Specification (Part II)
Single Link - Variable Message Format’, Draft Version 2.1, prepared by SyntheSys
Systems Engineers Ltd on behalf of the Ministry of Defence Integration Authority,
April 2007
121. ‘MIL-STD-188-220D’, Department of Defence Interface Standard, Digital
Message Transfer Device Subsystems, 29 September 2005
122. ‘Dynamic Host Configuration Protocol’, RFC 2131, Internet Engineering Task
Force, March 1997, http://www.ietf.org/rfc/rfc2131.txt?number=2131
123. ‘LAN/MAN CSMA/CD Access Method’, IEEE 802.3-2008 Standard for
Information technology – Part 3: Carrier Sense Multiple Access with Collision
Detection (CMSA/CD) Access Method and Physical Layer Specifications
124. ‘Systems Integration: Lessons from Two Practical Experiences’, P. Layzell,
IEEE Conference on Software Maintenance and Re-engineering 2005, Keynote
address, March 2005
125. ‘OMG Unified Modeling Language (OMG UML), Superstructure’, Object
Management Group, Version 2.2, February 2009,
http://www.omg.org/docs/formal/09-02-02.pdf
126. ‘Workflow Petri Net Designer (WoPeD)’, Cooperative State University
Karlsruhe, Version 2.2.0, March 2009, http://www.woped.org
127. ‘The Reference Net Workshop (Renew)’, University of Hamburg, Version 2.1.1,
July 2008, http://www.renew.de
128. ‘Platform Independent Petri net Editor 2 (PIPE2)’, Imperial College, London,
Version 2.5, 2007, http://pipe2.sourceforge.net/
129. ‘Basic Real-time Interactive Tool for Net-based animation (BRITNeY)’,
University of Aarhus, http://wiki.daimi.au.dk/britney/britney.wiki
130. ‘Model Checking Coloured Petri Nets Exploiting Strongly Connected
Components’, A. Cheng, S. Christensen, K.H. Mortensen, Proceedings of the

 244

International Workshop on Discrete Event Systems, Edinburgh, UK, August 1996,
pp.169-177
131. ‘Graph Visualisation Software (Graphviz)’, AT&T Research Labs,
http://www.graphviz.org
132. ‘An Evaluation of High-End Tools for Petri-Nets’, H. Storrle, Technical Report,
University of Munich, June 1998
133. ‘Dynamic Data Integration: A Service-Based Broker Approach’, F. Zhu, M.
Turner, I. Kotsiopoulos, K. Bennett, M. Russell, D. Budgen, P. Brereton, J. Keane, P.
Layzell, M. Rigby, J. Xu, International Journal of business Process Integration and
Management, Volume 1, Issue 3, January 2006, pp.175-191
134. ‘A pattern language for designing e-business architecture’, L. Zhao, L.
Macaulay, J. Adams, P. Verschueren, Journal of Systems and Software, Volume 81,
Issue 8, August 2008, pp.1272-1287
135. ‘A Model Driven Architecture for Enterprise Application Integration’, A.
Mosawi, L. Zhao, L. Macaulay, Proceedings IEEE Hawaii International Conference
on System Sciences (HICSS-39), Volume 8, 2006 (January 4-7)

