
Quantitative Physical Modeling of

Physics Cognition

Steven Hamed Hassani

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Physics

Advisers: Andrea diSessa and William Bialek

June 2012



c© Copyright by Steven Hamed Hassani, 2012.

All Rights Reserved



Abstract

Current theories of physics cognition require specification of complex mechanisms for

explaining knowledge acquisition. I demonstrate that a quantitative model of physics

perception can be constructed by assuming that physics problem perception provides

an optimal summary of a set of physics problems. In so doing, I offer the first model

of physics cognition determined from a single optimization principle.

I use the model to produce categorizations of physics problems according to surface

features. These categorizations suggest, contrary to previous claims, that surface

feature perception may in fact be a productive resource for novices: it may provide

access to “deep” knowledge originally considered by influential studies as accessible

only to experts. The model suggests a potential explanation for why novices often

focus on surface features: novices may simply be responding to a set of physics

problems in which the surface features of those problems provide relevant information

for problem solving.

The model predicts that the initial perception of a physics problem is character-

ized by the identification of the “surface feature context” of which the problem is

a particular example. I use the model to predict potential contexts that individuals

may perceive when confronted with a physics problem. Experiments that focus on the

initial perception of a physics problem have not been considered previously; I use the

model to encourage the construction of such experiments. I speculate that the large

differences in novice and expert physics problem classification originally highlighted

in influential experiments could reduce substantially when experimental observation

is restricted to the initial, perceptual stage of physics problem classification.
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Chapter 1

Prospects for Quantitative Physical

Models of Physics Cognition

The nature and operation of cognition is one of the crucial frontiers in science. Phys-

ical methods have been successfully applied to understanding cognition in many im-

portant respects, from the use of neuroimaging in psychology to the development of

models for understanding the nature of vision. It is perhaps surprising then, given

the amount of time many physicists spend teaching physics, that physical methods

have been largely absent in the development of models for understanding physics cog-

nition. In this chapter, I discuss the prospects for quantitative physical modeling in

physics cognition. First, I claim that the constructivist orientation to knowledge pro-

vides a potentially fruitful starting point for developing quantitative physical models

of physics cognition. Second, I claim that quantitative physical methods provide a

particular methodological approach to educational research that is both consistent

with predominant educational theory and simultaneously allows researchers to probe

research questions of relevance to education. Third, I claim that the attempt to

find useful overlap between existing theories of physics cognition with quantitative

physical methods moves us closer to a general theory of physics practice.
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1.1 Physics Education: Significance and

Challenges

Teaching physics to students in a manner that is both efficient and effective is of

paramount importance to physicists. At the university level, a major responsibility

of university physics departments is to teach introductory physics to undergraduates.

Introductory physics courses are a staple of university science and engineering pro-

grams. At the high school level, physics is a ubiquitous course offering. In fact, 92

percent of all seniors attend a school where physics courses are regularly available

(White, 2011). Physics instruction is directly important for students who are inter-

ested in STEM careers, and indirectly important for a much broader range of students

who can benefit from the rigorous analytical skills physics is in a unique position to

teach (Redish, 2000).

Even with the apparent widespread availability of physics instruction at the high

school and college level, there are reasons to believe that current physics instructional

strategies face some serious challenges. First, it has been alleged that introductory

physics courses at the undergraduate level do not introduce a solid understanding

of the material (Mazur, 1997). Second, only 37 percent of high school students will

take a physics course (White, 2011) despite the apparent availability of such courses

in high schools nationwide. Third, the Physics First initiative — started by the

American Association of Physics Teachers — aims to improve student exposure to

physics classes by teaching physics to students in ninth grade, as opposed to eleventh

and twelfth grades (AAPT, 2007). This move creates significant potential challenges:

in light of the limited math background of ninth grade students, traditional math-

intensive strategies and techniques for physics instruction may require rethinking.

All these reasons — insufficient understandings of physics held by most under-

graduates, low rates of physics enrollment in high school, and curricular changes that
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would involve teaching physics to students with limited math backgrounds — war-

rants more careful consideration of physics education. It begs a number of questions.

To whom is physics accessible? In light of inadequate understandings of physics

among undergraduate students, to what extent is physics inherently difficult and to

what extent is its difficulty simply a consequence of poor teaching strategies?

How best to teach physics is not a concern that should only be relegated to

high school teachers. The academic project of physics is not only to produce basic

science — though indeed this is a fundamental and universally recognized objective.

It is also to produce science education. Understanding how best to deliver science

education to as broad an audience as possible, as effectively and efficiently as possible,

should be an important aim for physicists. However, few, if any research studies,

to my knowledge, use theoretical, quantitative methods originating from physics to

understanding relevant problems in physics education. It is the primary aim of this

dissertation to warrant the possibility that physical methods, though not necessarily

easily applied in this context, may actually be of service to relevant problems in

physics education.

1.2 Physics Cognition as a Participatory Physical

Theory

Physicists have often been interested in the role of the observer and of his or her ex-

perimental apparatus in determining the character of physical law. The Copenhagen

interpretation of quantum mechanics is one important example taught in standard

undergraduate physics courses; it states how the act of measurement affects exper-

imental results. Also highlighting the potential role of the observer in constraining

physical law are the various forms of the anthropic principle, which state that many

aspects of physical law such as the values for various constants of nature take the form
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or values they do because those values are consistent with intelligent life (Carter, 1973;

Barrow and Tipler, 1988). “It from Bit” is a particular anthropic proposal that makes

explicit the notion that the character of physical law ultimately derives from our par-

ticipation in its creation, by stating that our view of the universe ultimately derives

from answers to yes or no questions that we ask. This implies that physical law is

ultimately information theoretic in origin (Wheeler, 1990). Many critiques have been

leveled at anthropic principles, a common one being that it can be invoked easily as

explanatory, such that it discourages the search for explanatory theories which do not

require invoking the properties of the observer (Penrose, 1989).

While the debate continues among physicists over whether the observer should

be invoked when constructing physical law, physics education researchers emphasize

that understanding of the natural world does in fact depend on the observer. Physics

education researchers have documented many instances in which individuals, even

after taking courses in introductory physics, do not have the same understandings

of the natural world as experts do (Confrey, 1990). Furthermore, physics education

researchers are by and large uniform in their view that even individuals who have

not had formal physics do interpret the natural world, though not in the same way

as experts in physics. Individuals who have not had physics still must participate in

the natural world, which means that they must have some knowledge concerning how

the natural world operates (diSessa, 1993, 2006). Participation in the natural world

breeds intuitive knowledge necessary to operate within it.

Learning physics in the classroom is also a participatory phenomena, which pro-

ceeds through interactions among students, the classroom, other peers, and learning

materials. Therefore, even the cognitive instantiation of normative knowledge, as

taught through learning environments, is constructed in part through a participa-

tory interaction between one’s cognition and the environment. Normative physical

law may or may not explicitly require the presence of an observer, but its cognitive
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instantiation is always participatory.

Developing theories of physics cognition for how human beings understand the

natural world may differ tremendously from the development of other, more tradi-

tional theories of nature: the role of the observer must be explicitly embraced. Since

human beings are the ones that practice physics and discover its laws, developing a

theory for how humans cognitively understand the natural world may speculatively, in

the long run, provide another way to constrain physical law. Of course, this becomes

another anthropic argument for constraining physical law; however, physical law, in

this case, is constrained by the fundamental processes underlying our own cognition.

Developing theories for physics cognition could also help illuminate nuance in the

character of physics knowledge, which is not necessarily codified in physics textbooks.

Physicists, as researchers, are charged with the task of finding concise and powerful

principles that govern natural phenomena. But physicists also function as educators,

charged with teaching the practice of physics to students. Physicists generally recog-

nize that simply stating the laws of physics to students is not sufficient to teach stu-

dents how to productively practice physics. Physics practice requires that knowledge

of these physical laws be supplemented by other skills or knowledge. Unfortunately,

physics practice is not well understood by physicists, partially because physicists lack

concise principles governing the relevant cognitive processes. Do concise principles of

physics cognition exist, which when added to the standard laws of physics transform

physics from a theory of the external natural world to a theory of physics practice?

1.3 Macroscopic Physical Theories

Human cognition is a tremendously complex phenomenon, taking place in a system

involving ∼ 1011 neurons and ∼ 1014 synapses (Williams and Herrup, 1988). From

a reductionist orientation to physics, this is not problematic in principle since most
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physicists believe (or at least hope) that all processes in the natural world are ulti-

mately governed by the fundamental laws of particle physics and general relativity

(Weinberg, 1995). In practice however, directly applying reductionist approaches to

understanding macroscopic processes in the brain has generally been untenable, not

least of which is because the calculations become too difficult to manage — even

computationally.

But large systems often display simple regularities in macroscopic behavior that do

not require, in order to make macroscopic predictions, an appeal to the fundamental

laws of physics. The laws of thermodynamics, which historically appeared before

an understanding of atomic structure (Gibbs, 1876), are one important example.

Contemporary axiomatic formulations exist for thermodynamics without the need to

appeal to quantum mechanics (Callen, 1985).

Physicists have also recognized that simple regularities in macroscopic behavior

often appear to be qualitatively different from the evolution of any particular micro-

scopic constituent. This is because particles in a system display collective, emergent

behavior, which can only be seen by studying the evolution of the entire system as a

group. The system as a collectivity may be governed by different equations than its

constituent parts.

For example, consider the time asymmetry in the evolution of macroscopic systems

implied by the second law of thermodynamics. The second law states that even though

the constituent parts of a system may be governed by fundamental equations that

obey time reversal symmetry, macroscopic systems tend to evolve in a particular

direction only — that is towards the direction of higher entropy. The second law can

be understood from the statistical, reductionist perspective, as emergent from the

fact that probabilistic considerations become a dominant governing concern of many

large systems (Ben-Naim, 2008).

The second law of thermodynamics is one example of a principle of physics that
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was known and used productively without a reductionist understanding in place

(Gibbs, 1876; Clausius, 1879). Chaos and symmetry breaking in condensed matter

physics are two other important examples. Physicists have argued that these exam-

ples of emergent principles need not be unique: as one moves towards understanding

other systems, like cognitive processes, principles for understanding these phenomena

may exist which do not bear any direct resemblance to their lower level constituent

principles but are nevertheless predictive of macroscopic phenomena (Anderson, 1972;

Bialek, 2002).

1.4 Constructivism and the Importance of Expe-

riential Data

Physical theories of physics cognition must be participatory and therefore anthropic

in character. Unfortunately, a quantitative understanding of these processes has been

elusive. Yet, a qualitative blueprint does exist for how to think about these processes,

which is grounded in research in physics education and is firmly entrenched in the

epistemology called constructivism.

It is widely believed by physics education researchers that novices are not blank

slates; instead, novices bring existing knowledge and skills to bear upon their under-

standings of the physical world. The observation that novices bring prior knowledge

is a perspective that has its roots in constructivism, which is generally attributed to

Jean Piaget. Briefly put, constructivism states that learning proceeds through an

interaction between experiential data and existing skills and knowledge (Steffe and

Gale, 1995; Smith et al., 1993 - 1994).

Because different individuals have different experiences, whether through varying

types of instruction in different classrooms, or varying exposure to the natural world,

a conclusion to draw from constructivism is that these different experiences should
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imply differences in knowledge. This means that it is crucial for any legitimate quan-

titative theory of physics cognition which wishes to explain the origin of knowledge

to be able to parameterize the experiences that an individual has.

Surprisingly few, if any, existing quantitative theories of physics cognition ex-

plicitly include the role of experience in the development of quantitative modeling.

For example, consider the computational programs of problem solving developed by

Larkin et al. (1980a,b) — which are possibly the most famous of all quantitative mod-

els in physics education. These programs model an individual’s knowledge of physics

and algebra using a set of “productions”. A production tests whether a particular

condition exists in either working memory or on paper, and if so, executes an action

that adds to that working information. Productions continue to act iteratively on

this set of working information until a solution to the problem is reached. The entire

problem solving evolution is modeled as a finite sequence of productions.

The goal of writing these programs was to simulate the problem solving processes

of novices and experts. The methodology followed by these researchers to construct

their models followed from a tradition of specifying cognitive processes using computer

algorithms (Newell and Simon, 1976). Unfortunately, a dearth of quantitative models

relevant to physics education followed after this early study. It is my claim, which

I try to illustrate throughout this chapter, that a paradigm grounded in a marriage

of the physical method and the perspective offered by constructivism may renew the

search for relevant quantitative models.

From a physicists’ perspective, the models of Larkin et al. (1980a,b) may not

provide the most sensible starting point for constructing physical models of physics

cognition. Even if production rules constitute physics cognition after learning, they

are most certainly not fundamental, objective constituents. Constructivism teaches

us that knowledge is constructed and subjective, in part, as a result of exposure to

experiential data. Much of the normative knowledge of physics included in these
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models is most definitely learned through instruction; however, the models of Larkin

et al. (1980a,b) do not account for experiential data. Quantitative physical model-

ing in education, if it is to have direct relevance to physics education research that

addresses the origin and transformation of knowledge (Vosniadou, 2008), should be

able to provide insight into the reason why knowledge has the particular content and

structure that it does.

If we accept that the most relevant models in physics education will require a com-

plex knowledge system in order to predict relevant behavior, this does not necessarily

imply that models must include this knowledge a-priori. Complexity in knowledge is

constructed in part through interaction with a complex world. If the physicist is able

to parameterize experiential data adequately, it may be possible that one or more

simple cognitive principles, acting on that data, may be able to produce a rich set of

cognitive abstractions (i.e. knowledge) that predicts relevant educational phenomena.

Since experiential data, like words in textbooks or a teacher’s speech, are objective

signals, including experiential data as objective model input may provide a direct

means of predicting objective behavior from an objective origin. A complex physics

knowledge system, rather than having to be stated by fiat in the model, may possibly

be derivable quantitatively through the complexity of objective experiential input.

1.5 Functions of Physics Cognition

Even though physics knowledge derives in part from experiential data, constructivism

holds that it is also forged in the context of preexisting skills and knowledge. Part

of the difficulty in constructing a quantitative physical theory of physics cognition

is identifying, and then defining quantitatively, those basic cognitive skills and/or

knowledge that are used to organize experiential data. But what form should these

basic principles of physics cognition take?
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Bialek (2002) offers one potential heuristic for constructing basic macroscopic

principles of cognition. Rather than focusing on the complex underlying mechanisms

governing cognition, he instead asks theorists to try to identify the most basic func-

tions of the brain. In particular, he notes that living beings may be confronted with a

wide array of basic tasks; one important function of our brain is to provide solutions

for these basic tasks. Bialek (2002) asks theorists to consider whether a simple notion

of optimal performance for these basic tasks can be defined. By constructing optimal

solutions to these basic tasks a-priori, they become predictive models against which

experimental results can be compared.

Physics cognition serves many complex functions. For example, the task of solving

an introductory physics problem is probably a complex task of the brain, in the

sense that it probably involves the execution of a number of simple tasks together.

The models of Larkin et al. (1980a,b) illustrate this intuition: a large number of

production rules were written to simulate the problem solving process. The goal of

the research paradigm outlined here is to identify the most basic, fundamental tasks

physics cognition confronts, whose simple solutions together may provide solutions to

the more complex tasks of physics practice — like physics problem solving.

The complex models of Larkin et al. (1980a,b) meet a relative definition of optimal

performance: their expert problem solving model both takes fewer steps and makes

fewer errors than the novice model. This overall point of view that novices are seen

as suboptimal, relative to experts, is similar to the frame of reference provided by the

“misconceptions” movement in science education (Confrey, 1990). In the misconcep-

tions movement, educational difficulties among novices are seen as primarily a result

of knowledge that is ill-suited, or suboptimal, for the formation of normative physics

knowledge. Relative optimality is also the generally agreed upon defining feature of

expertise: expert performance is characterized by more optimal performance, where

optimality is defined according to the task, relative to novice performance on the
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same task (Ericsson and Smith, 1991). Other definitions of relative optimality could

be defined, like the ability to solve a wider range of problems in this case. Hypo-

thetically, if the expert model modeled the expert problem solving process through

a simulation that took more steps and/or made more errors than the novice model,

then the standard view of expert performance would require that the expert model

be justified by invoking another definition of relative optimality.

While it is certainly true that there are important aspects of novice physics knowl-

edge that do not match the well-tuned nature of expert cognition, this does not imply

that novices may not have access to optimal solutions to some of the most basic tasks

confronted in the course of physics practice (diSessa, 2006). It is unresolved exactly

what constitute the basic tasks of normative physics practice, which of these tasks

students can ultimately solve, and whether any of these practices can actually be

characterized as quantitatively optimal solutions.

One way to start the search for basic principles of physics practice is to identify

both a relevant but simple task physics cognition confronts, along with the experien-

tial data which could be used to solve that task. The potential benefit to education

research is twofold. First, this framework could produce simple principles of physics

practice that actually approximate the solutions to the most basic tasks taken by

physics cognition. Second, even if individuals were not to use the proposed solution

to the identified task, it may be possible that the solution is not being used because it

is not being emphasized in instruction. In this case, the proposed principle of physics

practice could instead be viewed as a potentially untapped skill, which if marshaled

by instruction, could be used for productive purposes. This may provide another pos-

sible vehicle for finding productive skills or knowledge upon which to build normative

practices in physics.
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1.6 Construction and Adaptation

Physics education researchers, following upon the constructivist idea that knowledge

is constructed from previous knowledge and experience, have tended to focus on the

process by which new knowledge is constructed. Many physics education researchers

contend that students have difficulty learning physics because existing skills or knowl-

edge either interferes or is not marshaled productively in order to learn formal physics.

As a result, research has tended to focus on the necessary process involved in replacing

or refining prior conceptions to form more normative conceptions — a process called

“conceptual change” (Vosniadou, 2008; diSessa, 1993; Vosniadou, 2002; Vosniadou

and Brewer, 1994; Wiser and Carey, 1983; Chi, 2005; diSessa and Sherin, 1998). The

quantitative models of problem solving produced by Larkin et al. (1980a,b) were also

primarily generated to model the process by which problem solving occurs.

Yet, modeling process quantitatively using a physical method presents potential

issues. Perhaps most importantly, a correct description of a process must recognize

that the process takes place continuously in time. One of the most fundamental cri-

tiques of quantitative approaches to cognition that model cognition algorithmically,

such as in Larkin et al. (1980a,b), is that the notion of continuous time does not

naturally appear in algorithmic descriptions of those processes. Instead, algorithmic

analogies to cognitive processes take place in discrete steps. An algorithmic descrip-

tion that takes place discretely must not be a fundamental description of the cognitive

process. This observation has prompted other researchers to look for descriptions of

cognitive processes which explicitly include the role of time in those processes — gen-

erally using the tools offered by dynamical systems theory (see Port and van Gelder

(1998) for a review).

The models constructed here do not primarily aim to model process. Instead

of developing complex models which provide temporal predictions by constructing

knowledge through a mechanism of continuous interaction between prior knowledge
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and experience, one might be able to ask whether a notion of an optimal solution

to a simple task confronted by cognition exists independent of the mechanism of

learning that produced that solution. In this case, one could assume that the entire

history of experiences an individual has had up to that time is available as input into

the model. By proposing that these solutions to simple tasks confronted by physics

cognition may eventually be able to be accessed through learning, a predictive model

may be able to be constructed that does not require the specification of complex

learning mechanisms.

Predictive models constructed as optimality conditions are commonplace in stan-

dard physical theory. For example, the second law for isolated systems is an optimality

principle which states that the entropy of isolated systems eventually reaches a maxi-

mum value at equilibrium. This principle allows for the prediction of the macroscopic

end-state of many thermodynamic processes, without the need for an understand-

ing of the non-equilibrium thermodynamics governing the temporal evolution which

ultimately produced that end-state.

A related hypothesis takes another view towards constructed knowledge, which

could be very important in a physics learning context like an introductory course in

physics. Constructivism asserts that knowledge is both constructed from the history

of past experience, but that in addition, it is constructed in order to serve a future

function. As such, through the complex learning process, knowledge may also be-

come adapted to the potential experiences an individual may have in that context

(von Glasersfeld, 1995). For example, do students have knowledge that will help

them solve problems on a final exam that they have never before confronted? In this

case, physicists could assume that optimal solutions to the basic tasks which consti-

tute problem solving are provided over the entire set of potential experiences. The

origin of knowledge would then be explained by not showing how knowledge reflects

past experience, but instead by stating that knowledge is optimally adapted to an
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environment of potential experiences an individual may confront.

1.7 Quantitative Physical Methods Allow

Comparative Study

The physical method outlined here provides a vehicle for understanding the role of

potential or actual experiences in the origin of knowledge. Though constructivism

emphasizes the centrality of the environment of experiences in the origin of knowledge,

existing quantitative methods have not generally been able to assess the role that the

entire environment plays in the construction of knowledge. For example, the models

of Larkin et al. (1980a,b) do not use an environment of experience, past or potential,

in stating why problem solving knowledge takes the form it does. The models only

use the most immediate experience, which is the physics problem being solved at the

moment, as the only “experience” used to predict the realized process an individual

takes when solving a problem.

A physical model constructed in the fashion outlined here will be explicitly context

dependent. This means that predictions concerning differences in knowledge among

two individuals will track differences in past or potential experiences vis-à-vis their

respective learning contexts. For instance, differences in the syllabi of two different

courses of physics implies differences in learning context between students. If those

contexts can be properly parameterized, one may be able to predict differences in

physical knowledge that mirrors contextual differences.

Comparative studies are consistently carried out in educational research. For ex-

ample, the thread in physics education research comparing expert and novice knowl-

edge highlights the cases in which novice knowledge is non-normative relative to

expert knowledge (Confrey, 1990; Anzai, 1991). Even though an important goal in

physics education research is to understand how educators might teach novices to
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become more like experts, studies highlighting novice misconceptions generally have

not emphasized how educators might overcome these difficulties (diSessa, 2006). Yet,

quantitative physical models may be able explain certain deficiencies in novice knowl-

edge as simply due to an adaptation of novices to a deficient environment. Adjusting

important features of the novice environment such that it looks closer to the expert

environment may provide a step towards mitigating novice difficulties.

1.8 Quantitative Physical Methods May Offer In-

sight into the Structure of Knowledge

Physics educators generally adhere to the view that theorizing about knowledge is

required to make relevant statements about learning processes. It is important to

remember that knowledge contained within the brain is not directly observable with

present experimental techniques. It is only observable indirectly; for example, through

performance on exams or responses to interview questions.

Including theoretical constructs of knowledge that are not directly observable is

not problematic from a physicists perspective. Electric fields, virtual particles, and

the quantum mechanical wave function are all examples of theoretical constructs in

physics which are only observable through their effects on other observables. The

theories containing these constructs have been very successful.

In physics education research, a debate exists over the appropriate orientation

to the structure of physics knowledge. The debate can be characterized loosely into

two competing camps. Those working in the “knowledge-as-theory” perspective have

taken the view that the most appropriate abstraction of knowledge is one that is

sufficiently coherent and integrated as to be considered “theory-like” (Vosniadou,

2002; McCloskey, 1983). As an example of a particular “knowledge-as-theory” the-

ory, Vosniadou and Brewer (1994) claim that novices in astronomy develop, before
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formal instruction, mental models of the earth that share the structure and coher-

ence of more normative models but that have incorrect content. Those working in the

competing “knowledge-in-pieces” orientation have taken the perspective that novice

physics knowledge should instead be viewed as much more fragmented. In this orien-

tation, physics knowledge is viewed as consisting of many elements, with potentially

a weak degree of coherence between them. As an example of a “knowledge-in-pieces”

theory, diSessa (1993) describes particular physical intuitions that novices have, be-

fore they learn formal physics, that they have gained through living and interacting

with the world.

Given that many theories of knowledge have been developed to explain data

in particular contexts, we cannot legitimately expect that the debate between the

“knowledge-as-theory” camp and the “knowledge-in-pieces” camp will be finalized

anytime soon. Some researchers have attempted to unify these divergent perspectives

by stating the possibility that a knowledge-in-pieces approach may be more applica-

ble in “rich domains” like mechanics, while a knowledge-as-theory approach may be

more applicable in contexts in which novices do not necessarily have much personal

experience (Özdemir and Clark, 2007; diSessa et al., 2004).

Quantitative physical models may also be able to make strong suggestions concern-

ing the appropriate structure of knowledge. For example, does an optimal solution to

a task physics cognition confronts require many knowledge elements, or only a few? It

may be the case that the answer to this and other questions concerning the structure

of knowledge ultimately depend on both the environment and the task itself, which

is consistent with the view that the appropriate theoretical knowledge structure may

ultimately be context-dependent.
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1.9 Conclusion

In this chapter, I have introduced some of the pieces of a framework for construct-

ing quantitative physical models of physics cognition. In particular, I have argued

that physical models of physics cognition are necessarily anthropic. I have suggested

grounding these anthropic models in the epistemology of constructivism. I specu-

late that physicists may be able to find principles governing physics cognition by

quantifying the solutions to simple tasks encountered in physics practice.

I have not provided the precise form for the models advocated in this chapter.

Even though constructivism may provide the first steps for thinking about physics

cognition quantitatively, it does not completely constrain the form of these models.

I have suggested that solutions to simple cognitive tasks might be able to be found

by considering whether cognition solves these tasks optimally. Yet, the appropriate

quantitative notion of optimality, from which a quantitative principle could emerge,

has not been motivated in this chapter. The purpose of this research program, broadly

speaking, is to attempt to identify generic principles of optimality in cognition at the

macroscopic level.

As Bialek (2002) demonstrates, one approach for identifying generic principles

is through selecting problems in cognition that may be productively attacked using

the physical method. A uniform quantitative framework may emerge for how to

think about cognitive problems at the macroscopic level if physicists successfully

predict phenomena over a wide enough array of such problems. There are hints

that information theoretic notions may indeed be the generic unifying piece (Bialek,

2002; Wheeler, 1990). Later chapters of this dissertation reinforce this suggestion by

applying information theory to a particular simple task that physics cognition may

confront.

Physics cognition is a particularly rich phenomenon. Though normative physics

is learned in classrooms and textbooks, verified in laboratories, and extended in the-
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orists’ offices, an understanding of the natural world is not reserved simply for those

who practice normative physics. As diSessa (1993) has suggested, individuals who

do not practice normative physics also have an understanding of the natural world,

simply by experiencing it and having to adapt to it. Physics practice involves more

than simply rote memorization of the laws of physics; a large set of other knowledge is

required to take what is stated in textbooks and research papers and actually practice

physics productively. A large literature in physics education research documents the

diversity of physics practice; such literature may provide a starting point for physicists

looking for aspects of physics practice that may be quantifiable.
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Chapter 2

The Productive Potential of

Surface Features

In this chapter, I will identify a potentially quantifiable task confronted by physics

cognition. This task, the categorization of physics problems according to “similarity

of solution”, has generally been thought to be completed differently by novices and

experts. I argue that the way novices complete this task may be an indicator of a gen-

eral productive principle of physics practice, used by both novices and experts. This

behavior, the categorization of problems using “surface features,” may be indicative

of an essential resource for inferring important “deep structure” necessary for solving

a problem. Using the outline for physical modeling provided in the previous chapter, I

develop a conjecture for how surface features may be used in physics problem solving.

2.1 The Study by Chi et al.

In this chapter, I will critically review a set of experimental tasks examined in the

influential study of Chi et al. (1981). In the first two experiments conducted by Chi

et al. (1981), both novices and experts in physics were asked to categorize a series of

24 introductory mechanics problems according to “similarity of solution.” Novices,
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who had already taken a course in physics, categorized these problems according

to “surface features” — that is, the literal features (like incline plane) used in the

problems. Experts in physics categorized the problems according to “deep structure,”

which are the underlying physical principles (like conservation of energy) that govern

the phenomena asked in the problem.

Yet, the reason why novices and experts produced these categorizations was not

adequately addressed empirically in this study. Chi et al. (1981) suggests one possible

reason for the difference between novice and expert categorizations:

Only a physicist can detect the similarity underlying the expert’s catego-

rization.

Essentially, Chi et al. (1981) argue that only experts are capable of identifying the

principles (like conservation of energy) in physics problems. Later, Chi (1993) stated:

The basic expert-novice result, that experts’ knowledge is represented at

a “deep” level (however one characterizes “deep”), while novices’ knowl-

edge is represented at a more concrete level, has been replicated in many

domains, ranging from knowledge possessed by scientists to taxi drivers.

This result can also be used to interpret findings in many related cognitive

science topics, e.g., analogical reasoning, and concepts and categories.

Chi (2006) restates this argument by stating that one characteristic of expertise is

that experts can “perceive the ‘deep structure’ of a problem or situation.” Many

others have cited the notion that a canonical feature of expertise is the ability to see

the “deep structure” in a situation, and that expert knowledge is organized around

schemas of “deep structure” (VanLehn et al., 2005; Anzai, 1991; Hmelo-Silver, 2004;

Kalyuga et al., 2003; Aleven and Koedinger, 2002). The paper by Chi et al. (1981)

has been identified by the editorial board of the journal Cognitive Science as one of
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the ten classics articles ever to appear in that journal. According to Google Scholar,

it is the second most highly cited paper in the history of that journal.

In spite of these accolades, the view that only experts are able to see underlying

abstract features has been challenged by others. For example, Smith et al. (1993

- 1994) contends that intuitive physics knowledge of mechanics that all individuals

hold, before learning formal physics, contains both “deep structure” as well as “surface

structure.” Yet, to my knowledge, there does not exist a detailed reassessment of the

fundamental claim by Chi et al. (1981) that novices, after having taken a course in

physics, are relatively unable to access the “deep structure” of normative physics.

One of the goals of this chapter is to explicitly revisit this claim.

2.2 Contextuality in Physics Problem Solving

Chi et al. (1981) was interested in the knowledge novices and experts had available

to them for physics problem solving. They interpreted the results of their two cate-

gorization experiments using a form of the “perceptual chunking” hypothesis (Chase

and Simon, 1973; Gobet and Simon, 2000; Gobet et al., 2001). The perceptual chunk-

ing hypothesis contends that the knowledge necessary to perform over the large set

of contexts encountered in many domains, such as playing chess or solving physics

problems, is managed primarily with “chunks” of knowledge. In the physics problem

solving context, rather than the brain storing the solution for all problems an indi-

vidual may confront, a single chunk of knowledge may be stored that could be useful

for a number of problems simultaneously. Chi et al. (1981) hypothesize that many

of these perceptual chunks are indexed according to the “types” of problems that an

individual perceives: they hypothesize that the particular chunk that is initially cued

in the course of problem solving depends on the initial inference of the problem’s

type. For example, novices may be responsible for many different possible incline
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plane problems, but rather than memorizing the precise solution path for all of these

different problems individually, the brain instead may store relevant knowledge for

how to infer an incline plane problem’s forces in a perceptual chunk of knowledge

indexed by the “incline plane” problem type. This knowledge is then cued if the

incline plane type is perceived when confronting a problem, and that knowledge then

becomes available in order to infer a solution.

Since knowledge itself is not directly observable, Chi et al. (1981) argue that the

categorizations produced by novices and experts in their first two categorization ex-

periments were adequate proxies for the types that those individuals recognize in

the course of problem solving. Novices, based on the surface feature categorizations

they produced, were assumed to perceive different problems, in the context of prob-

lem solving, as belonging to different “surface feature” types (like inclined planes or

springs). Experts, because of their “deep structure” categorizations, were assumed

to perceive the same problems as belonging to different “deep structure” types (like

conservation of energy or Newton’s 2nd law).

Many of the deep structure categories produced by the experts spanned multiple

surface feature contexts. For example, experts placed a problem involving a spring

and a problem involving an incline plane into the same category, because both used

the conservation of energy. Chi et al. (1981) took the findings of their experimental

categorization task and interpreted them as implying that expert knowledge for prob-

lem solving is indexed in a context-independent way, using the normative principles

of physics. On the other hand, novice knowledge available for problem solving was

interpreted as being indexed, in a context-dependent way, using surface feature types.

In the same study (Chi et al., 1981), a third experiment was conducted that

complicates the interpretation of the first two categorization experiments. In this

experiment, they asked two novices and two experts to discuss everything they knew

about problems of the incline plane type, without providing a particular physics
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problem to ground the discussion. The experts discussed the applicability of different

physics principles for the incline plane type. The applicability of one deep structure

principle for an incline plane problem, versus another, was described by the experts as

depending upon the particular surface features used in the incline plane problem. For

example, Chi et al. (1981) characterizes one expert elaboration of the incline plane

type, which they translated into a “production rule” form (Larkin et al., 1980a,b):

1. If problem involves an inclined plane then

(a) expect something rolling or sliding up or down;

(b) use F=MA;

(c) use Newton’s 3rd law.

2. If plane is smooth then use Conservation of Mechanical Energy.

3. If plane is not smooth then use work done by friction.

4. If problem involves objects connected by string and one object being pulled by

the other then consider string tension.

5. If string is not taut then consider objects as independent.

The third experiment of Chi et al. (1981) complicates the interpretation of the first

two experiments by giving credence to the possibility that for experts, the surface

features define which particular deep structure principle(s) should be invoked.

Chi et al. (1981) did not notice this important contextuality in the knowledge of

the experts who participated in their third experiment. Instead, Chi et al. (1981)

highlighted the fact that experts were able to provide a rich, nuanced knowledge

system for the incline plane problem type. Indeed, the experts’ knowledge of incline

planes was well elaborated enough to be able to be translated by the researchers into

a formal, production rule form. On the other hand, the researchers were unable to
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provide such a translation of the novice articulation of the incline plane problem type.

They used this as evidence that the novice knowledge system was less elaborated and

nuanced then the expert knowledge system.

There is little doubt, given that experts perform better than novices in physics

problem solving, that experts have both a larger and more nuanced knowledge sys-

tem than novices. Yet, Chi et al. (1981) went further with their interpretation of

this experiment: they claimed that the difference in the knowledge system between

novices and experts was due in large part to the assumed differences in the types

that novices or experts recognize in physics problems. Remember that Chi et al.

(1981) assumed that the types that novices and experts perceive in problem solving

track the categorizations they produced in their experiments. Given this assumption,

Chi et al. (1981) was motivated in the third experiment to demonstrate differences

between novice and expert knowledge, and then claim that this difference was due to

differences in the type that novices and experts recognize — even though they never

empirically demonstrated that such a large difference in perceived types even exists.

It is interesting that Chi et al. (1981) did not conduct an experiment in which

novices and experts elaborated the knowledge they have about a generic deep struc-

ture type (like conservation of energy). They only demonstrated novice and expert

elaborations of the incline plane surface feature type. As such, they missed the op-

portunity to test their claim that an elaborated, generic deep structure type contains

productive problem solving knowledge. In fact, their third experiment demonstrates

that expert knowledge of deep structure is context-specific, raising serious doubts that

deep structure perception is independent of surface feature perception.
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2.3 Inference from Surface Feature Types

Consistent with the perceptual chunking hypothesis, Chi et al. (1981) assume that an

initial perceptual step in problem solving is to recognize a problem’s type. They as-

sert that these types are used to pick out chunks of knowledge that may be productive

for solving the problem. Chi et al. (1981) step much further, however, by assuming a

fundamental difference in recognized types between novices and experts: they assert

that novices type problems using surface features while experts type problems using

deep structure. Furthermore, they assert that much of the difference in knowledge

between novices and experts is due to this assumed difference between novice and

expert types. They conclude that because novices do not categorize physics prob-

lems according to the principles of physics, novices lack appropriate labels to index

productive physics knowledge:

The knowledge useful for a particular problem is indexed when a given

physics problem is categorized as a specific type. Thus, expert-novice

differences may be related to poorly formed, qualitatively different, or

nonexistent categories in the novice representation.

Essentially, Chi et al. (1981) assume that surface feature typing of physics prob-

lems provides an inadequate label to index productive physics knowledge. Given the

context-specificity of the deep structure knowledge that experts invoked in the third

experiment, this is a peculiar view. One could imagine instead that surface feature

types are the appropriate index used for labeling context-specific problem solving

knowledge, like the context-specific applications of the principles of physics that the

experts in Chi et al. (1981) invoked for the incline plane context. As such, both

novices and experts may start their problem solving by using surface feature types to

recall relevant chunks of knowledge.
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One obvious reason why novices and experts might both use surface features to

index deep structure is because the surface features of a physics problem generally

constitute one of the few input signals available to make the inferences necessary to

solve the problem. All necessary knowledge for solving a physics problem must be

able to be inferred from the surface features, including the deep structure of that

problem. Chi et al. (1981) recognize this possibility. In their fourth experiment, they

presented novices and experts with some physics problems. For each problem, the

researchers asked the novices and experts to list the “basic approach” they would

use to solve the problem. They were also asked to expound upon the features of

the problem statement that led them to infer the basic approach. According to Chi

et al. (1981), experts justified their choice of the basic approach in many cases using

“second-order” features — that is, using features not explicitly stated in the problem

statement. They recognized that these second-order features must originate from

surface features:

[S]ince second-order features must necessarily be derived from more literal

surface features that are in the problem statements, it is of interest to see

whether the surface features in the problem statement that elicit these

second-order features can be identified.

Since experts did not generally articulate the surface features they used in both

this experiment and the two categorization experiments, Chi et al. (1981) could not

demonstrate how deep structure was inferred from surface features. But this does not

mean that experts did not use surface features to make inferences. Surface features

are generally the sole input signal used to make inferences in problem solving, for

both novices and experts.

Chi et al. (1981) demonstrate that expert knowledge does not simply contain

abstract representations of deep structure principles. Experts have available to them

context-specific knowledge of the principles of physics, which they can efficiently apply
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to familiar contexts. For the routine introductory mechanics problems presented

by Chi et al. (1981), an expert’s ability to apply these principles efficiently hinges

partially on the fact that the expert has encountered those problems of that particular

surface feature type before, and as such, has stored relevant context-specific knowledge

that allows the expert to solve these problems quickly.

Therefore, I claim that the perception of surface feature types, for both novices

and experts, provides important information for inferring relevant deep structure.1

By perceiving a surface feature type for an arbitrary problem, physics cognition may

be able to recall potentially relevant knowledge indexed by that surface feature type.

Rather than viewing expert physics knowledge as characterized by chunks labeled with

abstract deep structure, this view of the structure of physics knowledge hypothesizes

that both novices and experts have important physics problem solving knowledge

that can be accessed using surface feature types.

2.4 Adaptive Summarization

Since experts may be using surface feature types to make productive inferences, the

skill of surface feature categorization by novices demonstrated by Chi et al. (1981) may

in fact be a productive skill of normative physics practice. One of this dissertation’s

primary objectives is to provide a simple quantitative principle that governs this skill.

I motivate the qualitative version of this principle in the current section.

While surface feature types index productive knowledge, they also fulfill another

function: surface feature types summarize an environment of physics problems. As-

1Note that while I hypothesize that routine introductory physics problem solving may start with
perception of a surface feature type, it is likely that experts also have more abstract knowledge
of physics that allows them to reason productively about less familiar contexts — albeit not as
efficiently as when they operate in routine contexts. Efficient problem solving also certainly requires
domain independent knowledge that can be used in many contexts (Perkins and Salomon, 1989),
such as the ability to manipulate mathematical symbols. Though physics itself may be codified by
principles that are context independent, its efficient application should involve knowledge, indexed
by perception, which is context dependent.
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sume that the initial perceptual step in solving an arbitrary introductory physics

problem x is to assign a type x̄ to x. I will provide a model that predicts the type x̄

for an arbitrary problem x taken from an environment of introductory physics prob-

lems X. Taken over an environment X, the set of predicted assignments x 7→ x̄ can

be viewed as providing a summary of the environment X into a smaller set of types

X̄. Note that any arbitrary map X → X̄ provides a summary of the surface features

used in that environment, if we let each x̄ be denoted with a single label that de-

scribes the surface features for all the problems belonging to x̄. Therefore, the skill of

“typing” can be defined as the ability to assign a particular type x̄ to each problem

x in an environment of physics problems. The set of predicted responses functions to

summarize this environment.

Which particular summary X → X̄ does physics cognition choose? The novices

in Chi et al. (1981) who categorized problems according to surface features produced

particular surface feature categories. Chi et al. (1981) neglected to provide a dis-

cussion for why particular surface feature categories were produced, and not others.

They focused their discussion on expert-novice differences.

In this dissertation, I conjecture that knowledge required for typing is adapted

to its environment such that it provides an optimal summary of the surface features

used in that environment. Requiring that the surface feature types provide an optimal

summary will constrain the particular surface features types provided by this model.

This approach requires that I motivate an appropriate definition of optimal summary,

which I discuss in the next chapter.

Note that I am formulating this conjecture using the adaptive view of knowledge

that is motivated from constructivism, rather than using the alternative perspective

that knowledge is constructed, at least partially, from a history of past experiences.

The types that are ultimately produced by physics cognition are partly constructed

from actual experiences in the classroom and through practice on particular homework
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problems; however, it is not necessary to understand how knowledge of surface feature

types is constructed to develop a model of surface feature type perception — assuming

that an appropriate definition of optimal summary can be motivated.

One benefit of this approach is that a semantics of physics problems, which are the

surface feature types produced by the model, can be derived quantitatively in a simple,

principled fashion from only the surface features present in the environment. I have

in effect conjectured that a semantics derived from the environment can approximate

the actual surface feature types produced by individuals.

I will therefore conjecture the following simple principle of physics practice:

An important part of cognitive perception in physics functions to cate-

gorize an environment of physics problems into problem types, where the

categorizations produced optimally summarize the surface features used

in the environment of physics problems for which an individual is (or has

been) responsible.

This is the qualitative version of the quantitative physical principle of physics cogni-

tion that I will develop in the next chapter.

2.5 The Difference between Experimental Catego-

rizations and Perceived Types

I have argued that surface feature types provide labels that index productive prob-

lem solving knowledge in routine contexts, for both novices and experts. Yet, these

types do not match the deep structure categorizations that experts produced in the

categorization experiments of Chi et al. (1981). What might explain this difference?

Chi et al. (1981) instructed the individuals to group problems according to their

“similarities of solution” — a more or less ambiguous prompt. Instead, imagine that
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individuals were asked to categorize the problems according to the “law of physics used

to solve the problem.” In such a modified experiment, the novices, all of whom took

and presumably passed an introductory course in physics, may have categorized the

problems based on the relevant normative principles like the conservation of energy.

The fact that the individuals categorized problems according to an ambiguous prompt

may have also contributed to the timing results presented by Chi et al. (1981). In their

first categorization experiment, novices took less time to complete the categorization

task than experts. Experts may have taken the extra time to select, from the set

of context-specific deep structure knowledge elements indexed by the surface feature

type, the precise physics principle most applicable to the given problem. Experts

may have taken this extra step because they had a different interpretation of the

categorization task than novices.

In addition, both experts and novices were not allowed to use pencil and paper

to carry out the steps necessary to compare problems based on similarity of solution.

It may certainly be the case that experts are able to consider the entire solution of a

physics problem more easily than novices without the aid of pencil and paper. Since

the solution to a physics problem requires the application of much more knowledge

than simply the laws of physics pertaining to a given prompt (VanLehn et al., 2005),

the novice might have a difficult time comparing the entire solution of two physics

problems without working the two problems out on paper. Yet, if instructed to

categorize based on the “law of physics used to solve the problem,” the novices may

have been completely capable of comparing only the relevant principle of physics of

two problems without using pencil and paper. Furthermore, if experts do have the

ability to compare the entire solution of two problems without pencil and paper, this

does not necessarily mean that experts think in abstract, context-independent ways.

If the hypothesis that novices and experts both use surface feature classification

to initially perceive a routine introductory physics problem is correct, it should be
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measurable in appropriately designed experiments. In the original categorization task

(Chi et al., 1981), individuals were given unlimited time to categorize the problems.

Suppose instead that both experts and novices were restricted by the researchers

to categorize problems within a short time limit. It may be possible that in cases of

restricted time that experts would also be observed to categorize with surface features.

2.6 Conclusion

In this chapter, I have argued that surface feature classification may be a general

function performed by physics cognition that is potentially useful for inferring relevant

knowledge in problem solving. To motivate this hypothesis, I critiqued an article

published by Chi et al. (1981) that presented an experimental context in which novices

categorized physics problems based on surface features. Rather than viewing surface

feature categorization as indicative of a lack of novice knowledge vis-à-vis expert

knowledge, I have argued that this skill may in fact be productive.

I have also argued that the difference in categorizations of physics problems ex-

hibited empirically in the paper written by Chi et al. (1981) may not constitute a

substantive difference between experts and novices. First, even though novices pro-

duce surface feature categorizations, this does not mean they are incapable of inferring

deep structure. Surface feature types may be used to infer relevant information about

deep structure. Second, the abstract deep structure categorizations that experts pro-

duce may not be adequate proxies for the actual types experts initially perceive in

physics problem solving contexts. Chi et al. (1981) did not demonstrate that ex-

perts invoke deep structure in abstract ways when solving problems. Rather, they

demonstrated a rich example of how expert knowledge of a familiar context includes

knowledge of how deep structure may be used in that context.

I have implicitly used a heuristic for identifying simple functions of physics cog-
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nition: consider how any observed behavior might be productive, including behavior

that might look at first glance to be non-normative. This heuristic derives from an

optimistic orientation toward learning: if we believe that the average novice, with

adequate support, can eventually attain expert status, this means that some aspects

of novice cognition will be productive. I take the further step of assuming that cer-

tain aspects of novice skill persist as core skills that constitute expert performance,

which means that studying novice physics cognition may provide a potential vehicle

for identifying general principles of physics practice.

In this chapter, I have used the outline for quantitative physical modeling intro-

duced in the previous chapter to motivate a conjecture concerning physics cognition.

As I will show later, the process of translating the qualitative version of this conjec-

ture into a quantitative one is direct, assuming an appropriate notion of an optimal

summary can be provided. A single equation will codify the quantitative version of

the conjecture.
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Chapter 3

Quantitative Physical Model of

Surface Feature Perception

In this chapter, I develop a quantitative version of the conjecture for surface feature

perception posed in the previous chapter. In so doing, I closely follow the perspec-

tive provided by Bialek (2002) for the extraction of semantics. Using information

theory, I motivate two competing quantitative notions of an optimal summary, and

conjecture that physics cognition produces summaries that reconcile this tension. The

model presented here requires that physics cognition be adapted to some particular

environment of physics problems, and as such, may be consistent with constructivism.

3.1 Introduction

I assume that one of the first steps that an individual takes when confronting a physics

problem is to assign a type to that problem. I assume that he or she does so in order

to access relevant problem solving knowledge (see Chapter 2 for further discussion).

Suppose further that when an arbitrary problem x is given to individuals who share

particular expertise in physics (i.e. novices), different individuals within that class

assign different types to this problem. Relative to some particular class of expertise,
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let p(x̄|x) be the probability that an arbitrarily chosen individual from that class

assigns type x̄ from a set of types X̄ to problem x taken from some environment of

physics problems X. The goal of this model is to be able to predict this probabilistic

assignment.1

In this chapter, I use the information bottleneck method (Tishby et al., 1999;

Bialek, 2002) to construct a model that predicts the probabilistic assignment of types

by assuming that physics cognition is optimally adapted to a particular hypothetical

random process. Let the random process be defined by elevating a particular envi-

ronment X of physics problems to a random variable, with p(x) being the probability

that a particular random problem x is drawn from X.2 Suppose that for each problem

x that is drawn, a type x̄ is assigned according to the same rules p(x̄|x) that physics

cognition would use if it were to assign a type to the problem x in actuality.

It is important to note that the researcher need not actually create and conduct

this random process. The probability measure p(x) need only be a theoretical device

used to construct the predictive model. It is helpful however to imagine a realization

of this process, in which the researcher creates the rule p(x), knows the rule p(x̄|x),

and uses them both in tandem to construct and observe this random process. Visu-

alizing this hypothetical experiment enables one to more easily follow the logic of the

argument contained in this chapter and to develop intuition for the character of the

model.

In this chapter, I place a probability distribution on an environment of physics

problems because it enables the construction of fundamental quantitative measures

1I consider the individuals as simply “black boxes” which, when given problems, produce types.
I do not attend to aspects of psychology or neuroscience that may provide the mechanism for why
particular types are chosen. If this model ends up accurately predicting the probability rules for
assigning types, one can later look for internal mechanisms to explain why the model is true (see
Chapter 1 for discussion).

2The precise form for the probability measure p(x) for the random variable X is left open in
this discussion, though it needs to be chosen a-priori in order to make predictions with this model.
Two obvious choices to consider, for instance, are whether physics cognition is adapted to a random
variable X where p(x) is uniform or to a different random variable X where p(x) is proportional to
the number of surface features present in the problem.
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for the information that the types carry. The information-theoretic quantities that

emerge provide a principled approach for deciding whether any particular probabilistic

rule set {p(x̄|x)} is more or less optimal.

3.2 Detail Provided by the Summary

Information theory provides a principled way for defining parameters which quantify

the degree to which the probabilistic assignment p(x̄|x) provided by physics cognition

is optimally adapted to the random variable X. I will define these fundamental

parameters by examining the amount of information that an arbitrary type x̄, from

the researcher’s frame of reference, carries concerning the random problem drawn

from X.

In information theory, the acquisition of information is seen to resolve uncertainty.

The entropy S(X) for a random process X provides a quantitative measure of the

uncertainty associated with a single draw from the random process (Bialek, 2011):

S(X) ≡ −
∑
x∈X

p(x) log p(x) (3.1)

According to information theory (Shannon, 1948), if a draw from the random

variable X occurs such that a particular problem x is instantiated, the identity of

the problem x can be understood as providing information I(x), since the problem’s

identity eliminates the uncertainty that originally existed concerning the problem’s

identity. This information I(x) carried by the instantiated problem x is defined to be

equal to the amount of uncertainty that existed regarding the identity of problem x

before x was drawn:

I(x) ≡ S(X) (3.2)

One can view the assigned type x̄, from the researcher’s frame of reference, as
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also providing information about the identity of the problem instantiated from the

random variable X. This supposes that the identity of the problem x remains hid-

den from the researcher’s frame of reference, but only the type x̄ of that problem is

available. The type x̄ of the unknown problem will generally reduce the researcher’s

uncertainty concerning the identity of the problem, but some degree of uncertainty

S(X|x̄) regarding the identity of the unknown problem will still remain. The entropy

formula provided by Eq. (3.1) is used to quantify this uncertainty. The entropy for-

mula in this case uses the conditional probability distribution p(x|x̄), which provides

the probability that a particular problem x was instantiated from the random variable

X, given that the type x̄ is known to the researcher:

S(X|x̄) = −
∑
x∈X

p(x|x̄) log p(x|x̄) (3.3)

Note that the conditional probability p(x|x̄) can be determined from p(x̄|x) using

Bayes’ rule:

p(x|x̄) =
p(x̄|x)p(x)

p(x̄)
(3.4)

where

p(x̄) =
∑
x

p(x̄|x)p(x) (3.5)

If x̄ is informative, it should decrease the entropy concerning the identity of the

unknown, but instantiated, problem. The amount of information I(X|x̄) carried by

the type x̄ about the identity of the unknown problem, from the frame of reference

of the researcher, is equal to this decrease in entropy:

I(X|x̄) ≡ S(X)− S(X|x̄) (3.6)

The average information I(X; X̄)3 provided by an arbitrary type in X̄ concerning

3The semicolon notation is used for the average information I(X; X̄) because it turns out that for
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a random draw from X is:

I(X; X̄) =
∑
x̄

p(x̄) [S(X)− S(X|x̄)]

= S(X)−
∑
x̄

p(x̄)S(X|x̄)

≡ S(X)− S(X|X̄) (3.7)

where the notation S(X|X̄) denotes a conditional entropy, which is the average en-

tropy concerning the identity of the randomly drawn problem from X after condi-

tioning on a type in X̄. Bialek (2002) labels the information I(X; X̄) as the detail

provided by the summary.

Note that the detail in the summary X̄ is in general less than the complete in-

formation provided by the problem itself. Types therefore summarize the random

variable X of physics problems through lossy compression. The detail carried by the

average type is not sufficient to identify the problem to which the type was assigned.

So far, I have not provided a quantitative conjecture for which particular sum-

maries may be supplied by physics cognition. In the previous chapter I suggested that

the types produced by physics cognition may optimally summarize the environment

of physics problems, but I did not elaborate on how one might define an optimal

summary. In this chapter, I conjecture, following Bialek (2002), that the summaries

produced by physics cognition result from a reconciled tension between two different

principles of optimality. For the first principle:

Summaries X̄ are more optimal to the extent that they compress the

outcome of the random process defined as a draw of a problem from the

any two arbitrary random variables A and B, the average information I(A;B) that an instantiation of
the random variable A provides about the random variable B is equal to the average information that
an instantiation of the random variable B provides about the random variable A. I will demonstrate
this symmetry later in this chapter, and I emphasize this symmetry here by using the semicolon
notation.
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random variable X. Stated quantitatively, summaries are more optimal

to the extent that the detail I(X; X̄) is low.

This principle formalizes the function of physics cognition that I discussed in the

last chapter: the types X̄ act to provide summaries of an environment of physics

problems. As summaries, the types should not provide identifying information; the

less information they provide about problem identities, the more they summarize.

Yet, I have not discussed which of the many possible summaries X̄ that compress

X may ultimately be produced by physics cognition. One natural hypothesis is that

the instantiated summaries simultaneously function to summarize physics problems,

while at the same time, function to provide relevant information for problem solving.

Yet, as I will demonstrate later in this chapter, the detail I(X; X̄) provided by the

summaries places an upper bound on the amount of relevant information that X̄ may

provide about X. This means that acting to compress X with a summary X̄, while

more optimal with respect to the above principle, may be counterproductive with

regard to providing relevant information. In the next section, I introduce a form of

information provided by any summary X̄ that physics cognition may act to maintain

in any instantiated summary.

3.3 Chi et al. (1981) Revisited

In the previous chapter, I introduced the idea that the surface features of physics

problems may be used to infer types that cue relevant context-specific problem solving

knowledge. To build a quantitative model for the recognition of types using surface

features, I first need to define the meaning of the term “surface features.” Chi et al.

(1981) provide a description for surface features:

To reiterate, the novices’ use of surface features may involve either key-

words given in the problem statement or abstracted visual configurations,
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that is, the presence of identical keywords (such as friction) is one crite-

rion by which novices group problems as similar. Yet, novices were also

capable of going beyond the word level to classify by types of physical ob-

jects. For example, “merry-go-round” and “rotating disk” are classified

as the same object....

Chi et al. (1981) therefore state that novices both categorize problems based on the

literal words present in problems, but also on the basis of abstractions of the objects

present in the problems. By noting that novices list a merry-go-round and a rotating

disk as belonging to the same category, Chi et al. (1981) implied that novices perceive

the “rotating” aspect of either of these two objects as the relevant feature to maintain

in the abstraction.

Yet, it is not clear from the paper written by Chi et al. (1981), when novices

are presented with problems that do not involve rotating objects, what particular

abstraction of those objects novices may or may not construct. To give another

example, consider two problems4 taken from the “Motion in One Dimension” chapter

in Serway and Jewett (2004):

Problem 44: Emily challenges her friend David to catch a dollar bill as

follows. She holds the bill vertically, as in Figure P2.44, with the center

of the bill between David’s index finger and thumb. David must catch

the bill after Emily releases it without moving his hand downward. If his

reaction time is 0.2 s, will he succeed? Explain your reasoning.

Problem 45: In Mostar, Bosnia, the ultimate test of a young man’s courage

once was to jump off a 400-year-old bridge (now destroyed) into the River

Neretva, 23.0m below the bridge. (a) How long did the jump last? (b)

How fast was the diver traveling upon impact with the water?

4I removed part (c) from problem 45, which involves the speed of sound, to focus on the common
context of objects moving in a uniform gravitational field.
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Note that a relevant shared “abstracted visual configuration” that individuals may be

able to identify in the two problems is that they both can be treated as a point mass

falling. To focus attention on this particular abstraction presumably requires the use

of prior knowledge, whether acquired in the classroom or through experience in the

world. This knowledge is needed in order to neglect other features of the problems;

for example, that the age of the bridge is irrelevant, or that the location where the

context (like Bosnia) occurs is irrelevant, or even that the constitution of the object

(like the fact that the object is a dollar bill) under consideration is also irrelevant for

the purposes of solving this problem.

It may be difficult for a quantitative model that groups problems based on the

literal words present in the problems alone to identify an appropriate abstract context

directly from those problems. This is because potentially anomalous surface feature

types may be produced from irrelevant correlations in the statistics of the words

present in that finite sample. Yet, if the problems are written in an abstract fashion

to begin with, this potential issue may be less important. Consider the following

problem from the textbook of introductory physics problems written by Snyder and

Palmer (1900):

Energy Chapter, Problem 19: A body weighing 20 g. has a kinetic energy

of 1000 ergs. How far would it ascend vertically?

This problem is written in a more terse and abstract fashion than the two problems

I provided from Serway and Jewett (2004). In general, the problems provided by

Snyder and Palmer (1900) are written more tersely and abstractly than many of the

problems written in modern textbooks of introductory physics.5

There are at least two other important differences between this problem and the

two other problems given above. First, this problem explicitly refers to the “deep

5I hope that future work may be able to provide objective criteria, rather than appealing to
admittedly vague notions of terseness and abstractness, for identifying whether an arbitrary set of
problems is a potentially appropriate environment for modeling physics problem perception.
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structure” of energy, while the two other problems do not. Second, the object pre-

sented in this problem is ascending rather than descending. Nevertheless, even with

these two differences, all three of these problems share a relevant abstracted context.

They can all be viewed productively as a point mass in a uniform gravitational field.

The recognition of this relevant abstract context is essential relevant information for

solving any one of these three problems. For example, in the problem from Snyder

and Palmer (1900), even though the use of energy considerations is suggested, the

precise context-specific potential energy form of U = mgh cannot be determined

without perception of this relevant abstracted context.

In this dissertation, I will consider the case in which physics cognition is asked

to confront the problems of Snyder and Palmer (1900), and whether summarization

of the words present in this environment provides relevant information for use in

problem solving. For simplicity and objectivity, I will consider every word in every

problem as a surface feature in this analysis, but I will ignore all numeric characters.6

3.4 Relevant Information Provided by the Sum-

mary

Consider the aforementioned process in which a problem is drawn randomly from

X. Suppose that an additional form of randomness is added to this hypothetical

process after an arbitrary problem x is drawn: suppose a surface feature w is drawn

at random from the problem. If each surface feature w in x has frequency Nx(w), let

p(w|x) ≡ Nx(w)/
∑
w

Nx(w) (3.8)

6I do not weight particular words as more important than others in order to not introduce
subjectivity into the model. More details on precisely how I treat the text of Snyder and Palmer
(1900) is included in Chapter 4 and the Appendix.
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provide the conditional probability of drawing the particular surface feature w from

the problem x.

Before the problem is drawn, the probability that a particular surface feature w

will be instantiated after a single draw of both a problem and a word is

p(w) =
∑
x

p(w|x)p(x) (3.9)

and the uncertainty over which surface feature will be selected from the environment

of surface features W present in X is

S(W ) = −
∑
w

p(w) log p(w) (3.10)

Assuming only the problem x is drawn and its identity known to the researcher,

but where the random surface feature of the problem is yet to be drawn, the uncer-

tainty concerning which surface feature will be instantiated is generally smaller than

the original entropy S(W ). It is provided by:

S(W |x) = −
∑
w

p(w|x) log p(w|x) (3.11)

I label the difference between these two entropies, following Bialek (2002), as

the relevant information carried by x. I label this information as relevant because it

concerns the surface features: surface features, as discussed extensively in the previous

chapter, may index relevant knowledge for problem solving. The relevant information

is given by:

I(W |x) = S(W )− S(W |x)

= −
∑
w

p(w) log p(w)−

(
−
∑
w

p(w|x) log p(w|x)

)
(3.12)
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The average relevant information I(W ;X) that an arbitrary problem in X provides

is given by:

I(W ;X) =
∑
x

p(x) [S(W )− S(W |x)]

= S(W )−
∑
x

p(x)S(W |x)

≡ S(W )− S(W |X) (3.13)

To quantify the relevant information carried by x̄, consider again the scenario

in which only the type x̄ for a randomly drawn problem is made available to the

researcher, but not the identity of the problem. The type x̄, in addition to carrying

information concerning the identity of the unknown problem, also carries relevant

information concerning which surface feature will be drawn from that problem. The

uncertainty concerning the surface feature that will be drawn from the unknown

problem with known type x̄ is:

S(W |x̄) = −
∑
w

p(w|x̄) log p(w|x̄) (3.14)

where the conditional probability p(w|x̄) is calculated by summing over all the prob-

lems in X:

p(w|x̄) =
∑
x

p(w|x)p(x|x̄) =
1

p(x̄)

∑
x

p(w|x)p(x̄|x)p(x) (3.15)

The relevant information carried by x̄ concerning which surface features may be

drawn from the unknown problem is the decrease in entropy that occurs due to

conditioning on x̄:

I(W |x̄) = S(W )− S(W |x̄) (3.16)
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The average relevant information that an arbitrary type in X̄ provides is therefore:

I(W ; X̄) = S(W )−
∑
x̄

p(x̄)S(W |x̄) ≡ S(W )− S(W |X̄) (3.17)

Note that both the relevant information provided by Eq. (3.17) and the detail pro-

vided by Eq. (3.7) take the same form.

3.5 Relevant Information/Detail Inequality

In this section, I demonstrate that the detail I(X; X̄) that the summary X̄ provides

places an upper bound on the amount of relevant information I(W ; X̄) supplied by

that summary. To start, I will first show that the average information I(A;B) that

any arbitrary random variable B provides about the random variable A is symmetric

in the two random variables. Following Bialek (2011):

I(A;B) =
∑
b

P (b) [S(A)− S(A|b)] (3.18)

= S(A)−
∑
b

P (b)S(A|b)

= −
∑
a

P (a) logP (a)−
∑
b

P (b)S(a|b)

= −
∑
ab

P (a|b)P (b) logP (a)−
∑
b

P (b)

[∑
a

−P (a|b) logP (a|b)

]

= −
∑
ab

P (a|b)P (b) logP (a) +
∑
ab

P (b)P (a|b) logP (a|b)

=
∑
ab

P (a|b)P (b) log
P (a|b)
P (a)

(3.19)

=
∑
ab

P (a, b) log
P (a, b)

P (a)P (b)
(3.20)

Eq. (3.20) makes apparent that the “mutual information” I(A;B) is symmetric in the

random variables A and B. Furthermore, Eq. (3.20) demonstrates that the mutual

44



information is simply the expectation of the random variable log
(

p(A,B)
p(A)p(B)

)
. Note

that both the detail I(X; X̄) in Eq. (3.7) and the relevant information I(W ; X̄) in

Eq. (3.17) take the mutual information form.

Next, I provide an alternate form for the conditional entropy S(A|B):

S(A|B) ≡ −
∑
b

p(b)
∑
a

p(a|b) log p(a|b)

= −
∑
ab

p(a, b) log p(a|b) (3.21)

Eq. (3.21) demonstrates that the conditional entropy S(A|B) is the expectation of

the distribution log 1
p(a|b) . Similarly, the conditional entropy S(A|BC) formed by

conditioning on a third random variable C is given by:

S(A|BC) ≡ −
∑
bc

p(b, c)
∑
a

p(a|b, c) log p(a|b, c)

= −
∑
abc

p(a, b, c) log p(a|b, c) (3.22)

Taking the difference of Eq. (3.21) and Eq. (3.22):

S(A|B)− S(A|BC) = −

(∑
ab

p(a, b) log p(a|b)−
∑
abc

p(a, b, c) log p(a|b, c)

)

= −

(∑
abc

p(a, b, c) log p(a|b)−
∑
abc

p(a, b, c) log p(a|b, c)

)

=
∑
abc

p(a, b, c) log
p(a|bc)
p(a|b)

=
∑
abc

p(a, b, c) log
p(a, b, c)

p(a|b)p(b, c)
(3.23)

Note here that S(A|B)− S(A|BC) is the expectation of the random variable

log
(

p(A,B,C)
p(A|B)p(B,C)

)
I will now show that this difference is always non-negative, which

will provide a demonstration that conditioning entropy on an additional variable never
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increases the entropy. To prove this, I will use Jensen’s Inequality:

For a strictly convex function f and random variable X, the expecta-

tion of the random variable f(X) is greater than or equal to the func-

tion f acting on the expectation of the random variable X — that is,

E(f(X)) ≥ f(E(X)), where equality only applies when X is a constant

random variable.

A physical reason that explains why this inequality is true is provided by MacKay

(2003):

If a collection of masses pi are placed on a convex curve f(x) at loca-

tions (xi, f(xi)), then the centre of gravity of those masses, which is at

(E [x], E [f(x)]), lies above the curve.

Since the logarithm is a concave function, I can apply Jensen’s inequality in reverse

to Eq. (3.23) (Cover and Thomas, 2006):

S(A|BC)− S(A|B) =
∑
abc

p(a, b, c) log
p(a|b)p(b, c)
p(a, b, c)

= E
(

log
p(a|b)p(b, c)
p(a, b, c)

)
≤ log E

(
p(a|b)p(b, c)
p(a, b, c)

)
= log

∑
abc

p(a, b, c)
p(a|b)p(b, c)
p(a, b, c)

= log
∑
abc

p(a|b)p(b, c)

= log
∑
abc

p(a|b)p(b)p(c|b)

= log
∑
ab

p(a, b)
∑
c

p(c|b)

= log 1 = 0 (3.24)
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which demonstrates that S(A|BC) ≤ S(A|B).

These results enable placement of an upper bound on the relevant information

I(W ; X̄) (Roudi and Latham, 2009):

I(W ; X̄) = S(X̄)− S(X̄|W ) Definition of Mutual Information

≤ S(X̄)− S(X̄|W,X) From Eq. (3.24)

= S(X̄)− S(X̄|X) Since p(x̄|w, x) = p(x̄|x)

= I(X; X̄) Definition of Mutual Information (3.25)

Note that p(x̄|x) = p(x̄|w, x) holds because the assignment rules are not assumed

to depend upon the particular realization of the surface feature in the hypothetical

random process. This result holds if W is replaced with any random variable Y

derived only from X, assuming the assignment of x̄ depends only on the identity of x.

Note further that an argument similar to that used in (3.24) applies for the mutual

information in Eq. (3.20), resulting in the following inequality:

I(A;B) ≥ 0 (3.26)

The equality applies if and only if A and B are independent random variables — that

is, when p(a, b) = p(a)p(b) for all a and b. Inequalities (3.26) and (3.25) together

provide upper and lower bounds on the relevant information:

0 ≤ I(W ; X̄) ≤ I(X; X̄) (3.27)

Inequality (3.27) formalizes the intuition that X̄ cannot provide any more information

about W than X̄ provides about X. This means that X̄ should provide at least some

information about X, since this is the only way that X̄ can provide information about

the relevant variable W .
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3.6 The Information Bottleneck Principle

I argued in the previous chapter that physics cognition may produce types using

surface features. In this chapter, I have demonstrated that when physics cognition

interacts with its environment through a hypothetical random process, it can provide

information concerning surface features used in that environment. I have also argued

that physics cognition may tend toward instantiated summaries X̄ in which the detail

I(X; X̄) that the types provide about the random draw from the environment X is

low. Yet, from (3.27), the detail bounds from above the amount of relevant informa-

tion I(W ; X̄) the summaries provide. Therefore, I will assert the following competing

effect of physics cognition on the random process:

Perception of types in physics cognition is characterized by summaries X̄

which tend toward optimality by providing as much information about

the outcome of the random draw of a surface feature from a problem as

possible. That is, summaries are more optimal to the extent that the

relevant information I(W ; X̄) is high.

Therefore, the effect of the summaries provided by physics cognition on this hy-

pothetical random process is characterized by two competing factors: first, to provide

as little information about the identity of the problem drawn as possible; while sec-

ond, to provide as much information about the draw of a random surface feature

from the problem as possible. Since decreasing the information provided about the

identity of the problem will also decrease the information about the surface features

of that problem, due to (3.27), these two notions of optimality compete. To reconcile

these competing notions, consider the relevant information I(W ; X̄) as a “benefit”

of the summary, treat the I(X; X̄) as a “cost” of the summary, and maximize an

appropriate weighted difference. This enables a final iteration of this conjecture of

physics practice, as a special form of the “information bottleneck” principle described
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by Bialek (2002):

Physics cognition produces summaries that are optimal in the sense that

they maximize −F = I(W ; X̄)− TI(X; X̄), or equivalently minimize the

free energy F , where the “temperature” T measures how much weight to

associate to the “cost” I(X; X̄) relative to the “benefit” I(W ; X̄).

Different choices for the parameter T imply differences in the particular summaries

physics cognition may produce. The choice for the parameter T can be interpreted

as a choice of “temperature,” given the form of F as a free energy, and because the

necessary conditions that will be demonstrated in Eq. (3.38) for the probabilistic

mappings p(x̄|x) take the form of a Boltzmann distribution.

3.7 Necessary Conditions for Solutions to the In-

formation Bottleneck Principle

In this section, I derive a set of necessary conditions for the probabilistic assignment

p(x̄|x), following Tishby et al. (1999).

First, remember that the probability functions p(x̄|x) need to be coherent:

∀x :
∑
x̄

p(x̄|x) = 1 (3.28)

I introduce |X| additional Lagrange multipliers λ(x) for each of the |X| conditions

given in Eq. (3.28), so that the information bottleneck principle becomes equivalent

to maximizing the following function:

L ≡ I(W ; X̄)− TI(X; X̄)−
∑
x

λ(x)
∑
x̄

p(x̄|x) (3.29)

The two mutual information quantities I(W ; X̄) and I(X; X̄) can be written in terms
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of p(x̄|x) as well as

p(x̄) =
∑
x

p(x̄|x)p(x) (3.30)

p(x̄|w) =
∑
x

p(x̄|x)p(x|w) (3.31)

which depend only on p(x̄|x) and the nonvarying distributions p(x) and p(x|w). Now

expand Eq. (3.29):

L =
∑
wx̄

P (x̄|w)P (w) log
P (x̄|w)

P (x̄)
−T

∑
xx̄

P (x̄|x)P (x) log
P (x̄|x)

P (x̄)
−
∑
x

λ(x)
∑
x̄

p(x̄|x)

(3.32)

By differentiating with respect to p(x̄|x), using Eq. (3.30) and Eq. (3.31), the first

term becomes:

dL1

dp(x̄|x)
=
∑
w

dp(x̄|w)

dp(x̄|x)
P (w) logP (x̄|w) +

∑
w

P (w)
dp(x̄|w)

dp(x̄|x)

−
∑
w

dp(x̄|w)

dp(x̄|x)
P (w) logP (x̄)−

∑
w

P (x̄|w)P (w)

P (x̄)

dp(x̄)

dp(x̄|x)

=
∑
w

p(x|w)P (w) logP (x̄|w) +
∑
w

P (w)p(x|w)

−
∑
w

P (x|w)P (w) logP (x̄)−
∑
w

P (x̄|w)P (w)

P (x̄)
P (x)

=
∑
w

p(x|w)p(w) log
p(x̄|w)

p(x̄)

=
∑
w

p(x,w) log
p(x̄, w)

p(x̄)p(w)
(3.33)

The second term is evaluated in similar fashion. The derivative of L then becomes:

dL
dp(x̄|x)

=
∑
w

p(x,w) log
p(x̄, w)

p(x̄)p(w)
− Tp(x) log

p(x̄|x)

p(x̄)
− λ(x)

= p(x)

(∑
w

p(w|x) log
p(w|x̄)

p(w)
− T log

p(x̄|x)

p(x̄)
− λ(x)

p(x)

)
(3.34)
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In order to write this in a slightly more suggestive form, rewrite the first term:

dL
dp(x̄|x)

= p(x)

(∑
w

p(w|x) log
p(w|x̄)p(w|x)

p(w)p(w|x)
− T log

p(x̄|x)

p(x̄)
− λ(x)

p(x)

)

= p(x)

(∑
w

p(w|x) log
p(w|x̄)

p(w|x)
− T log

p(x̄|x)

p(x̄)

+
∑
w

p(w|x) log
p(w|x)

p(w)
− λ(x)

p(x)

)
(3.35)

Setting this to 0, and rearranging, we obtain:

∑
w

p(w|x) log
p(w|x̄)

p(w|x)
+
∑
w

p(w|x) log
p(w|x)

p(w)
− λ(x)

p(x)
= T log

p(x̄|x)

p(x̄)
(3.36)

which implies:

p(x̄|x) = p(x̄) exp

(
− 1

T

∑
w

p(w|x) log
p(w|x)

p(w|x̄)

)
exp

(
1

T

[
log

p(w|x)

p(w)
− λ(x)

p(x)

])
(3.37)

Note that the second exponential factor depends only on x, so the entire term can

simply be treated as a normalization factor Z(x, T ). Therefore,

p(x̄|x) =
p(x̄)

Z(x, T )
exp

(
− 1

T

∑
w

p(w|x) log
p(w|x)

p(w|x̄)

)
(3.38)

where

Z(x, T ) =
∑
x̄

p(x̄) exp

(
− 1

T

∑
w

p(w|x) log
p(w|x)

p(w|x̄)

)
(3.39)

The formal solutions provided by Eq. (3.38) to the information bottleneck prin-

ciple are not closed form solutions for the mappings p(x̄|x), since p(w|x̄) depends

on p(x̄|x) through Eq. (3.15). Instead, they constitute a set of necessary condi-

tions for the mappings p(x̄|x). Furthermore, note that Eq. (3.38) takes the form of

a Boltzmann distribution, with the “energy” taking the form of a Kullback-Leibler
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divergence DKL(p||q) (MacKay, 2003):

DKL(p||q) ≡
∑
i

p(i) log
p(i)

q(i)
(3.40)

so that the “energy” is:

E(x̄, x) = DKL(p(w|x)||p(w|x̄)) (3.41)

The Kullback-Leibler divergence provides a measure of “distance” between the de-

scription p(w|x) of the surface features used in x and the summary p(w|x̄) of the

surface features provided by x̄.

Note some important properties of the solutions provided by Eq. (3.38), as argued

in a similar context by Bialek (2011). First, if two problems have similar distributions

p(w|x), Eq. (3.38) states that the model for physics cognition presented here will tend

to map these two problems into the same x̄. This is the approach physics cognition

takes toward summary, if physics cognition acts to minimize the free energy F : while

compressing its environment, physics cognition may try to retain relevant informa-

tion contained in the environment by grouping problems that have similar surface

feature descriptions p(w|x). Second, if physics cognition ultimately produces sum-

maries parameterized by a low temperature T , for those problems x that are mapped

significantly onto some particular x̄, the “distance” between the summary p(w|x̄) and

the description p(w|x) must be small. This means that if the temperature T is low,

the summaries provided by the types X̄ do not highly summarize the surface features

in X. The relevant information I(W ; X̄) and the detail I(X; X̄) of the instantiated

summary will both tend to be high in this case. If the temperature is high however,

the reverse is true: x̄ can provide summaries p(w|x̄) which deviate significantly from

the descriptions p(w|x) provided by the problems which map significantly onto x̄.

Bialek (2002) also notes that Eq. (3.38) can also be viewed as providing a set

52



of necessary conditions for the constrained optimization problem to maximize the

relevant information I(W ; X̄), under the constraint of fixed detail I(X; X̄): by the

method of Lagrange multipliers, the stationary points of the free energy F provide the

set of possible points for which the relevant information I(W ; X̄) may be maximized,

at some fixed detail I(X; X̄). From this perspective, T is a Lagrange multiplier which

implements the constraint on the detail. If the constraint is relaxed slightly, then the

standard interpretation of a Lagrange multiplier implies that the small increase in

relevant information δI(W ; X̄) one gains if one allows a small increase in the detail

δI(X; X̄) provided by the summary is given by:

δI(W ; X̄)

δI(X; X̄)
= T (3.42)

3.8 Conclusion

In the previous chapters, I considered the possibility that physics cognition may

be optimally adapted to an environment of potential experiences; however, I did

not provide a particular quantitative orientation for constructing such a model. In

this chapter, I have motivated a model of type perception of physics problems by

considering how physics cognition affects a hypothetical random process, where an

environment of potential experiences, in the form of physics problems, provides the

bag of objects for the random process.

Following Bialek (2002), I demonstrated that a particular, fundamental effect

that physics cognition may have on this hypothetical random process is to provide

two forms of information about this process: the “relevant information” and the “de-

tail.” I argued that physics cognition weighs maximizing relevant information against

minimizing the detail and, as such, chooses summaries that minimize a “free energy.”

The stationary points of the free energy can also be interpreted as providing possible

53



optimal mappings defined as where the relevant information I(W ; X̄) is maximized

along a particular level set where the detail I(X; X̄) is fixed at some value.

It is important to note the limitations of this model. First, the model in this

chapter does not predict the language that individuals will use when assigning types

to physics problems. It simply predicts the probability of assignment of problems to

unlabeled types. It is up to the experimenter to design an appropriate coding scheme

for the types that individuals assign. I believe that if the experiment is designed such

that the time allotted for typing any given problem is kept short, the experiment may

reveal that both novices and experts assign surface feature types (see Chapter 2 for

further discussion). Second, an environment of physics problems needs to be chosen

a-priori in order for predictions to be made: the model does not provide a rationale

for why knowledge would be adapted to any particular environment. Principled

choices for the environment exist. For example, to provide predictions for the types

individuals assign to problems in introductory mechanics, all of the problems from

the mechanics chapters of an introductory textbook may constitute an appropriate

environment.

In this chapter, I have emphasized the potential productive capacity of novices by

using the surface feature typing behavior attributed to novice cognition in order to

propose a general principle of physics practice that may characterize physics cognition

at all levels of expertise. In the next chapter, I will demonstrate that the words in

a particular textbook of introductory physics problems provides relevant information

for problem solving, and I will argue that both novices and experts may have access

to this information.
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Chapter 4

Surface Feature Types of

Introductory Physics

In this chapter, I create deterministic surface feature types of introductory physics

using a textbook of introductory physics problems. Following Slonim and Tishby

(2000), these types will be constructed using an algorithm motivated from the infor-

mation bottleneck principle. I examine these types and use them to argue that surface

feature perception may provide relevant information for problem solving. Finally, I

discuss why the information bottleneck principle, applied to this textbook, describes

a fundamental feature of physics as practice.

4.1 The Agglomerative Information Bottleneck

Algorithm

The information bottleneck conjecture asserts that the types that physics cognition

provides for particular environments X of physics problems can be predicted by min-

imizing a “free energy” associated with a particular random process constructed from

that environment. The temperature T of the free energy parameterizes different ways
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physics cognition may provide types for a particular environment. Unfortunately,

closed form solutions to the information bottleneck principle are not currently known

— except for the limit T → 0, where minimizing the free energy becomes simply

equivalent to maximizing the relevant information I(W ; X̄). The relevant informa-

tion I(W ; X̄) is trivially maximized when |X̄| = |X|, where each x ∈ X is mapped

uniquely and deterministically to a unique x̄ ∈ X̄.

To construct non-trivial surface feature types, I utilize an algorithm described by

Slonim and Tishby (2000) that is motivated from the T → 0 limit to the information

bottleneck principle. Starting from the the trivial |X̄| = |X| solution, choose a pair of

problems to merge that minimize the decrease in relevant information. This results in

a categorization with |X̄| = |X|− 1 members. This process iterates, where after each

additional merge a new categorization is produced that has one less element than

the categorization that preceded it. The result is a hierarchy of deterministic cate-

gorizations, one for each cardinality |X̄| such that 1 ≤ |X̄| ≤ |X|. This algorithm is

referred to by Slonim and Tishby (2000) as the agglomerative information bottleneck

method.

Note that a summary X̄ is defined as deterministic if:

p(x̄|x) = 1 x ∈ x̄

p(x̄|x) = 0 x /∈ x̄ (4.1)

Even though the typing of the environment X provided by the agglomerative infor-

mation bottleneck method is deterministic, it provides these types, just as in the

standard information bottleneck method, using a random process parameterized by

p(x). The probability that a randomly drawn problem belongs to category x̄, using

Eq. (4.1), reduces from Eq. (3.5) to simply summing over the probabilities of drawing
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each problem that belongs to x̄:

p(x̄) =
∑
x

p(x̄|x)p(x) =
∑
x∈x̄

p(x) (4.2)

The conditional distributions p(w|x̄) in Eq. (3.15) that provide summaries of the

words present in x̄ reduces to:

p(w|x̄) =
1

p(x̄)

∑
x

p(w|x)p(x̄|x)p(x)

=
∑
x∈x̄

p(x)

p(x̄)
p(w|x) (4.3)

That is, the summary p(w|x̄) of the surface features used by the problems in x̄ is

calculated by computing a weighted average of the surface feature descriptions p(w|x)

over all the problems which belong to x̄.

Slonim and Tishby (2000) recognized that the pair in a given categorization that

merges to produce a categorization with one less member is the pair whose summaries

p(w|x̄) are “closest” together, where the “distance” between the summaries emerges

directly from the principle to locally minimize the loss in relevant information. To

see why, consider merging two categories x̄i and x̄j to form a new category x̄k. The

summary of the surface features p(w|x̄k) provided by x̄k is from Eq. (4.3):

p(w|x̄k) =
∑
x∈x̄k

p(x)

p(x̄k)
p(w|x)

=
1

p(x̄k)

∑
x∈x̄i

p(x)p(w|x) +
∑
x∈x̄j

p(x)p(w|x)


=
p(x̄i)

p(x̄k)
p(w|x̄i) +

p(x̄j)

p(x̄k)
p(w|x̄j) (4.4)
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where from Eq. (4.2):

p(x̄k) =
∑
x∈x̄k

p(x) =
∑
x∈x̄i

p(x) +
∑
x∈x̄j

p(x) = p(x̄i) + p(x̄j) (4.5)

Let δI(x̄i, x̄j) = I(W ; X̄b)−I(W ; X̄a) denote the reduction in relevant information

I(W ; X̄) that results from the merging of two categories x̄i and x̄j, where X̄b gives

the categorization before the merge, and X̄a gives the categorization after the merge.

Following Slonim and Tishby (2000), the loss in relevant information that occurs due

to a merge of two categories can be calculated:

δI(x̄i, x̄j) = I(W ; X̄b)− I(W ; X̄a)

=
∑
w

p(w|x̄i)p(x̄i)
p(w|x̄i)
p(w)

+
∑
w

p(w|x̄j)p(x̄j)
p(w|x̄j)
p(w)

−
∑
w

p(w|x̄k)p(x̄k)
p(w|x̄k)

p(w)

=
∑
w

p(w|x̄i)p(x̄i)
p(w|x̄i)
p(w)

+
∑
w

p(w|x̄j)p(x̄j)
p(w|x̄j)
p(w)

−
∑
w

p(w|x̄i)p(x̄i)
p(w|x̄k)

p(w)
−
∑
w

p(w|x̄j)p(x̄j)
p(w|x̄k)

p(w)

= p(x̄i)
∑
w

p(w|x̄i)
p(w|x̄i)
p(w|x̄k)

+ p(x̄j)
∑
w

p(w|x̄j)
p(w|x̄j)
p(w|x̄k)

= p(x̄i)DKL [p(w|x̄i)||p(w|x̄k)] + p(x̄j)DKL [p(w|x̄j)||p(w|x̄k)]

≡ p(x̄k)DJS [p(w|x̄i)||p(w|x̄j)]

= [p(x̄i) + p(x̄j)]DJS [p(w|x̄i)||p(w|x̄j)] (4.6)

where the Jensen-Shannon divergence is defined in terms of the Kullback-Leibler
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divergence in Eq. (3.40) as:

DJS (p(w|x̄i)||p(w|x̄j)) ≡
p(x̄i)

p(x̄k)
DKL (p(w|x̄i)||p(w|x̄k))

+
p(x̄j)

p(x̄k)
DKL (p(w|x̄j)||p(w|x̄k)) (4.7)

The Jensen-Shannon divergence is another measure for the “distance” between two

distributions, defined as a weighted sum of Kullback-Leibler divergences. The loss in

information due to the combining of the two categories is, from Eq. (4.6), simply equal

to a scaled “distance” between the summaries of the surface features provided by the

two categories, where the scale is the probability p(x̄k) = p(x̄i) + p(x̄j). Therefore,

at every stage of the merging process, the algorithm provided by Slonim and Tishby

(2000) requires merging the two categories which have the smallest scaled distance

between their summaries. The result is a hierarchy of categorizations, one at each

cardinality |X̄| such that 1 ≤ |X̄| ≤ |X|, where the two categories that are combined

at each level of the hierarchy have surface feature summaries (parameterized by the

conditional distributions p(w|x̄)) that are the closest, where the distance between two

summaries is provided by Eq. (4.6). The weight p(x̄k) provides a measure for the size

of the category; smaller categories tend to be combined first.

4.2 Materials and Methods

In the next two sections, I will provide an example of a deterministic surface feature

typing of a particular textbook of physics problems using the agglomerative informa-

tion bottleneck algorithm described by Slonim and Tishby (2000). I used a textbook

of physics problems with expired copyright that was used by secondary school students

to prepare for the former Harvard College general entrance examinations (Snyder and

Palmer, 1900). I used all the problems from the mechanics chapters in the textbook.
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Chapter Headings in Snyder and Palmer (1900)
1. Pressure in Liquids
2. Density and Specific Gravity
3. Tenacity and Elasticity
4. Composition and Resolution of Forces
5. Force and Acceleration
6. Energy
7. Work
8. Coefficient of Friction
9. Gravitation
10. Pendulums
11. Levers, Inclined Plane, Center of Gravity
12. Machines

Table 4.1: This table lists the chapter headings assigned by Snyder and Palmer (1900) in
One Thousand Problems in Physics for the problems typed in the analysis below.

As discussed in detail in Chapter 3, the problems in this textbook are written in

a terse and abstract fashion. The chapter headings assigned by the author for the

chapters in the textbook are given in Table 4.1. The most probable words present in

the problems in each chapter are given in Table 4.2.

This textbook is available for download from the website archive.org; instruc-

tions for how to obtain it are included in the appendix. On this website, multiple

formats for the textbook exist, including the textbook in plain text format, presum-

ably created using optical character recognition software from the original scanned

textbook. Using the structure of this plain text file, I wrote a Unix shell script

otpp_filter.sh to transform the text file into a particular format expected by the

utilities used to create the typings. This filter was applied to the text, and is available

in the appendix.

I then applied a utility, aib, to implement the algorithm of Slonim and Tishby

(2000) on this filtered plain text file. I programmed this utility in C, using a C

library implementation of the algorithm by Vedaldi and Fulkerson (2008), along with

supporting mathematical routines provided by Galassi et al. (2011). The output

of this utility provides another plain text file from which the entire hierarchical set

of clusterings for the problems can be extracted. Using the filter otpp_filter.sh,
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Pressure in Liquids the of a is on cm pressure box and in with water what filled
tube be top side sides i at bottom mercury cubical square
long its one if ft

Density and Specific Gravity of a the in is sp gr g what and water to it cm liquid weighs
will its volume how be air on weight when submerged much
with block which

Tenacity and Elasticity a of the wire ibs in mm and diameter is long no as be what
by force m will pull how to if much i brass that stretch with
stretched

Comp. and Res. of Forces the of a is to and force ibs at what ft acting an angle in two
be on from with other end beam how each it one by forces
horizontal

Force and Acceleration the a of ft in second how body is will from it velocity to per
what at seconds far with and be force ball its tower ground
long horizontal strike

Energy a the of energy ft is what second with weighing it its how in
body per velocity and to at kinetic ibs will i be seconds mass
vertically much from

Work the a of ft in is how to much work ibs done and weighing be
position must plane from gravity its he if by long end body
at level an

Coefficient of Friction the a of ft is plane to coefficient friction body how it will
velocity along horizontal in if what with rest weight per
second mass ibs inclined moving must an

Gravitation the of earth a what mass and is surface their miles attraction
for how to at would as moon if that are its weigh will i it
distance be from

Pendulums the a of pendulum is what in seconds times at length if to
earth vibrations surface long are how vibrates vibration as
time lengths minute be relative second that two

Levers, Center of Gravity the of a ft ibs is and in end from on at to bar weight what
center long one lever gravity i other find load point be
weights force square

Machines the of a in is to and what ibs diameter be force ft wheel if
must on axle weight by at pulley from which attached
applied are pulleys two with

Table 4.2: This table provides a representation of the words used in all of the problems
contained in the 12 chapters of One Thousand Problems in Physics typed in the next
section. This table lists the 30 most probable words in each chapter, sorted with the
highest probability words listed first.

I removed all characters that were not alphabetic or not a space, and treated all

remaining sequences of alphabetic letters as independent words for use in the analysis.

In the appendix, I present the source code for aib as well as other supporting utilities

I wrote and used in the analysis. There, I demonstrate how to use these utilities may

be used to produce a surface feature typing from any set of physics problems.
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4.3 Analysis
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Figure 4.1: This is a plot of the cardinality |X̄| versus the normalized relevant informa-
tion I(W ; X̄)/I(W ;X) for each categorization produced by the agglomerative information
bottleneck algorithm.

In this section, I generate deterministic surface feature types for the mechanics

problems in the textbook by Snyder and Palmer (1900) using the algorithm of Slonim

and Tishby (2000). In Fig. 4.1, I plot the cardinality |X̄| versus the normalized

relevant information I(W ; X̄)/I(W ;X) for each typing X̄ produced by the algorithm.

Fig. 4.1 demonstrates that as the cardinality of the typing |X̄| is increased, the

amount of relevant information I(W ; X̄) concerning the surface features provided by

the typing also increases. This result is expected: if the cardinality of the typing

X̄ is increased, the average number of problems per type decreases, and therefore

the average uncertainty S(W |X̄) in the surface features of an arbitrary but unknown

problem, assuming knowledge of the problem’s type, should decrease.

Though Fig. 4.1 provides a representation of the amount of relevant information

concerning the surface features, it does not provide a demonstration of the potential
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Figure 4.2: This is a plot of the cardinality |X̄| for each categorization produced by the
agglomerative information bottleneck algorithm versus the average entropy S(C|X̄) that
remains in the chapter heading C for an arbitrary problem — after inferring the problem’s
type from the set X̄. The entropy S(C) in the chapter heading of an arbitrary problem,
before inference of its type, is S(C) = 3.286244. This plot demonstrates that inference of the
type for an arbitrary problem, for most of the categorizations produced by the agglomerative
information bottleneck algorithm, reduces the uncertainty in the chapter heading for that
problem considerably, on average. Furthermore, this plot demonstrates that a typing X̄
with only modest cardinality |X̄| is sufficient to imply an average remaining uncertainty
S(C|X̄) of less than 1.5 bits.

relevance of these typings for problem solving. Consider Fig. 4.2, where I plot the

cardinality |X̄| versus the average amount of remaining entropy S(C|X̄) concerning

the chapter heading for an arbitrary problem — after inferring the problem’s type

from the set X̄. For a particular example, the inference of a surface feature type from

the categorization X̄ with cardinality |X̄| = 35 decreases the average uncertainty

concerning the chapter heading of an arbitrary problem from S(C) = 3.286244 to

about one bit: S(C|X̄) = 0.981795.

Note that the author used many of the chapter headings to label “deep structure”

for the problems present in that chapter. For example, the “Gravitation” chapter label

is a deep structure label provided by the author to denote problems requiring the use
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Figure 4.3: This is a plot of the types produced at the 12 cardinality level using the
agglomerative information bottleneck method for the 12 chapters of problems included in
Table 4.1. Each barplot represents one of the types. The y-axis provides the percentage
of problems belonging to that type that originate from the corresponding chapter on the
x-axis. The titles for each of the plots provide my ex-post labeling of the types, based on
which chapter has the largest percentage of problems belonging to that type.
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of Newton’s law of gravity. Furthermore, from Fig. 4.2, inference of a type from a

surface feature typing X̄ with modest cardinality |X̄| reduces the average uncertainty

in the chapter heading of an arbitrary problem considerably. This suggests that most

of the categorizations X̄ produced by the algorithm may provide significant relevant

information concerning the deep structure underlying the problems.

Fig. 4.3 provides a plot of the surface feature types generated by the algorithm

at the |X̄| = 12 cardinality level. Each barplot represents one of the types. On

each barplot, the x-axis denotes the chapter, while the y-axis denotes the fraction

of problems in that type that belong to that chapter. The titles for each of the

graphs indicate my ex-post labeling of the categories, based on which chapter has

the largest percentage of problems in that category, since the names for the types

are not generated automatically by the principle. The name of the chapters used

for the labelings has been taken from Table 4.1. For any category in Fig 4.3, the

majority of problems belong to either one or two chapters, implying that this surface

feature typing provides, on average, significant information concerning the chapter

from which an arbitrary problem originates.

A representation of the content of the categorization at the |X̄| = 12 cardinality

level is provided by Table 4.3, where I list the most probable words in each category.

Note the qualitative similarity between Table 4.2 and Table 4.3, especially for chap-

ters 1-4 and 9-12, which provides another indication that the surface feature typing

captures much of the chapter structure assigned by the author to the textbook.

To delve more deeply into the contents of these types, consider two problems taken

from the surface feature type in row 3, column 3 on Fig 4.3, that I labeled using the

“Gravitation” chapter heading:

Gravitation Chapter, Problem 7: If moon’s diameter is 1/4, and mass 1/80

that of earth, what is the weight of a lb. mass on the moon’s surface?

Gravitation Chapter, Problem 13: If the volume of the sun should decrease
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(1,1) the of a is on in cm and what pressure water box with be side filled tube its will
sp top cubical gr sides at mercury block i long if

(1,2) of a the sp gr in is cm and will liquid what how be it to water submerged its
much rod volume on g with must which long wood floats

(1,3) of the a g in is what sp gr weighs water and it air to volume weight its liquid
when b piece body weigh flask metal certain mark mercury which

(2,1) of a the wire ibs and mm is what diameter in long be no m are force relative as
pull if will their by how to two brass with same

(2,2) the a of is to and ibs ft what at end angle beam an horizontal with weight long
rope on force attached from rod wall it by how weighing be

(2,3) of the a and force ibs to is in two other acting what be each one g end on are
which forces at must by cm attached can from cord

(3,1) a the of ft second is it body in what velocity how with per to will energy its be
seconds weighing from plane and far at horizontal ibs must rest

(3,2) the a of ft to in is how much ibs plane work if and be body an on incline friction
inclined done weighing force will from what must coefficient it

(3,3) the of a is at earth miles mass per to what how and rate ft will surface it i second
if hour from moon its far would ball energy that

(4,1) the a of is in what to at pendulum force weight length and seconds if ibs be
ft surface it that edge times distance will on from between i table

(4,2) the of a ft is in and ibs end from at long bar as center on by that weight one
other square lever gravity i how find much weights load

(4,3) the of in is a to diameter and wheel what ft be ibs if must axle on force from
minute by this up at an per pulley attached shaft has

Table 4.3: This table provides a representation of the contents of the typing produced at
the 12 cardinality level by listing the most probable words in each category of Fig. 4.3,
sorted with the highest probability words in each category listed first. The first column
provides the row number and the column number of the category plotted in Fig. 4.3. Note
the qualitative similarity between this table and Table 4.2, which provides an indication
that the surface feature typing at the 12 cardinality level captures much of the chapter
structure present in the textbook.
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1/2, its mass remaining the same, what effect would this have upon its

attraction for masses upon its surface?

Note that these two problems do not mention gravitation in their prompts, and in

fact, only share the words if, mass, of, surface, the, and what. In spite of the lack of

shared words, the surface features present in the entire environment provide sufficient

statistics necessary to categorize these two problems into the same type. In the entire

row 3, column 3 category, 22 out of 30 of the problems, or 73.3 percent of the problems

from the gravitation chapter are present in that category. Also, 43.8 percent of the

problems in that category are taken from the gravitation chapter. The most probable

words in the row 3, column 3 category are provided in Table 4.3.

If a new categorization is generated by the algorithm, this time with 18 types

rather than at the 12 cardinality level depicted in Fig 4.3, then a surface feature type

is produced which contains 20 of the 22 gravitation problems present in the row 3,

column 3 type at the 12 cardinality level. Only 5 problems present in this type at

the 18 cardinality level do not originate from the gravitation chapter. Therefore, at

the 18 cardinality level, 66.7 percent of the problems from the gravitation chapter

are typed the same way, and 80 percent of the problems belonging to that type are

from the gravitation chapter. The 12 cardinality level is more coarse than the 18

cardinality level; in the case of the row 3, column 3 type, the algorithm places other

problems involving force and energy into the category.

Both the information bottleneck principle and the agglomerative algorithm used

here should be viewed fundamentally as methods for summarizing the surface features

used in the problems in the environment into a set of common surface feature contexts

present in the environment, where every type collects a set of problems that the

algorithm has identified as belonging to the same context. For example, in the row

3, column 3 type in Fig 4.3, all 20 gravitation problems present in the surface feature

type at the 18 category level use the words: earth, sun, and/or moon. One could,
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loosely speaking, refer to these problems using the label “earth, sun, or moon,” rather

than using the gravitation chapter label I appropriated, as a way of tersely describing

the surface feature context that the algorithm identified that these problems share.

Yet, short labels providing a list of prominent surface features used in the environment

should not be treated too literally, since the statistics of the surface features used in

the entire environment are used to generate these types. Furthermore, the algorithm

does not itself generate a label for these identified surface feature contexts.

The agglomerative information bottleneck algorithm identifies the row 3, column

3 type as a common surface feature context used in this textbook. This identified

context commonly requires the use of Newton’s law of gravity. If individuals can iden-

tify that a problem in this textbook belongs to this particular surface feature context,

this identification immediately provides a strong suggestion of the deep structure (i.e.

Newton’s law of gravity) that may be present in that problem. As I discussed in

Chapter 2, Chi et al. (1981) suggest that surface feature types are in general distinct

from deep structure types, and that novices may be unable to see the deep structure

in a problem because they type based on surface features. Yet, in introductory me-

chanics, Newton’s law of gravity is used commonly when the objects interacting are

celestial objects, like the “earth, sun, or moon” that I identified as present in all 20

of the gravitation problems discussed above. At least for gravitation in introductory

mechanics, the claim that surface feature perception precludes recognition of impor-

tant information concerning the deep structure of that context is suggested by the

results here to be false.

In Fig 4.3, some of the surface feature types have a significant number of problems

from two chapters. Consider the surface feature type in row 3, column 1. This surface

feature type has a significant number of problems from both the chapter labeled “Force

and Acceleration” and the chapter labeled “Energy” by the author. Recognizing that

a problem belongs to this particular surface feature context, though it does provide
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an indication that the problems in the category either are “Force and Acceleration”

problems or “Energy” problems, cannot alone provide an indication of which of the

two considerations is most appropriately used to solve the problem. Table 4.3 provides

the most probable words used in this category.

This particular surface feature type at the 12 cardinality level was created as a

result of a merge of two surface feature types present at the 18 cardinality level,

one with 51 members, the other with 73 members. Consider two problems from the

category with 51 members:

Force Chapter, Problem 14: A body is thrown downward from a tower

500 ft. high with a velocity of 50 ft. per second. How long will it take to

reach the ground?

Energy Chapter, Problem 19: A body weighing 20 g. has a kinetic energy

of 1000 ergs. How far would it ascend vertically?

Even though the first problem is solved most easily using the kinematics equation

y = v0t+ 1
2
gt2, and the second is solved most easily using the conservation of energy

equation KEi = mgh, the two problems were clustered together with this algorithm.

Note however that both of these equations belong to a common context that could

be labeled as the “point mass in a uniform gravitational field” context. For this

particular surface feature type, 45 out of the 51 problems involve a point mass in a

uniform gravitational field.

Identifying that either of these problems belong to this surface feature context

provides relevant information useful for choosing a context-specific deep structure

principle for solving either of these problems. In order to solve the second problem

for instance, one cannot simply use the “deep structure” energy considerations hinted

in the problem without knowing the context in which energy considerations should

be applied. Conservation of energy is an important general principle that exists in
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physics. In order to solve a problem using the principle of conservation of energy,

one must be able to invoke the precise, context-specific version of the principle that is

appropriate for the context. In this case, if an individual can identify that this problem

belongs to the “point mass in a uniform gravitational field” context, the individual

has relevant information necessary to choose the proper form for the potential energy

necessary to solve the problem. In the case of the first example, perceiving that

the problem involves a point mass moving in a uniform gravitational field provides

relevant information in the sense that it allows the individual to restrict the set of

physics equations to consider to only those pertinent to the context of a point mass

moving in a uniform gravitational field.

Note that both problems above share only the words: a, body, how, it, and of. Of

course, the fact that there is a body in the physics problem does not alone imply that

it should belong to this common context. The algorithm also recognizes this fact.

For example, consider the following problem categorized into a different type at both

the 12 and 18 category level:

Density and Specific Gravity Chapter: Problem 23: A body weighs 540

g. in air and 240 g. in a liquid twice as dense as water. What is (a) the

volume of the body? (b) the density?

This problem utilizes the use of the buoyancy force. The algorithm recognized that

this problem belongs to a different surface feature context than the two previous

problems by using the statistics of the surface features used in the entire environment.

Of course, the algorithm presented here is not perfect in generating surface feature

contexts that are relevant for every problem. For example, not all of the problems in

the Newton’s law of gravity chapter were categorized into the row 3, column 3 type in

Fig 4.3, and not all of the kinematic problems taking place in a uniform gravitational

field from Chapter 5 were placed into the same category as the problems described

above.
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Yet, if we examine the surface feature contexts more broadly by turning our atten-

tion back to Fig 4.3, each type at the 12 cardinality level provides, for the majority of

problems, relevant information for accessing context-specific problem solving knowl-

edge. If each chapter heading is viewed as providing a label for a restricted set of

principles necessary for solving problems in that chapter, then an arbitrary surface

feature type provides, for the majority of problems, relevant information for select-

ing a restricted set of potentially useful principles from the set of all possibly useful

principles in introductory mechanics.

Further examination of the surface feature contexts generated by the agglomera-

tive information bottleneck method for the textbook by Snyder and Palmer (1900)

can be carried out by using the utilities provided in the appendix. The appendix

describes how to use these utilities to generate surface feature types directly from the

raw plain text file of the book hosted on the archive.org website. These utilities

can also be used to run the agglomerative information bottleneck algorithm on any

other set of problems.

4.4 Conclusion

This chapter generated a set of surface feature types in a principled fashion from a

set of introductory mechanics problems in Snyder and Palmer (1900). The generated

surface feature types provide a set of common surface feature contexts for the set of

introductory mechanics problems used in the textbook.

I have argued that these common surface feature contexts provide relevant infor-

mation for identifying potentially relevant context-specific principles. Even though

the fundamental objective of physics as a field of scientific inquiry is to identify

generic principles that govern the natural world, physics practice is context-specific.

For example, in ordinary problem solving, to apply the generic law of conservation of
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energy to a particular problem, one must be able to perceive an appropriate context

for the problem in order to determine which particular context-specific conservation

of energy principle may be useful. In research, identification of the generic principles

that govern the natural world often proceeds through the observation of particular

contexts in which the principle is operating.

The results presented in this chapter suggest that an appropriately developed

principle that asserts the importance of surface features for context recognition may

be needed to move physical law toward a theory of physics practice: one that pro-

vides the explicit context that individuals recognize and need in order to invoke the

context-specific deep structure principle used to solve physics problems. These results

demonstrate that summarization of the surface features over a particular set of intro-

ductory physics problems written in a terse and abstract fashion is one way of iden-

tifying relevant contexts of physics present in that set. The information bottleneck

principle, operating again on an appropriately terse and abstract set of introductory

physics problems,1 may be a viable candidate for extending physical law to include

physics practice.

As discussed in Chapter 3, algorithms like the one used here, operating on a

modern textbook of introductory mechanics, may not do as well as the agglomerative

information bottleneck algorithm did with the textbook by Snyder and Palmer (1900)

due to potential spurious correlations in the statistics that could be identified as

relevant. This of course does not mean necessarily that students presented with

an arbitrary problem from these modern textbooks would be unable in general to

recognize a relevant context of which the problem is a particular example. It may

simply mean that algorithms like the one presented here, operating on a modern

set of introductory physics problems, may be inadequate to predict the types that

1As mentioned earlier, I hope that objective criteria can be developed for identifying why any
given set of physics problems provides a more or less appropriate environment for modeling physics
problem perception. Criteria might be able to be productively developed after conducting experi-
ments of the types individuals actually perceive in the initial stage of physics problem classification.
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novices perceive for that set of problems. Though Chi et al. (1981) does suggest that

individuals are able to perceive “abstracted visual configurations,” it is unclear from

the data they present whether novices, after having taken a course in physics, would

or would not be able to identify relevant physical contexts for the problems similar to

the ones demonstrated in the previous section. Further experimentation is needed to

assess the ability of novices to identify relevant contexts, either for problems written

similarly to those of Snyder and Palmer (1900), or for problems written similarly to

those presented in modern textbooks. Given a large set of physics problems written

in a way similar to those of Snyder and Palmer (1900), the algorithm presented in this

chapter may be able to provide useful insight into what individuals might actually

perceive when they first confront a physics problem from that set.

Note that the conjectured principle of physics practice provided in this disser-

tation does not supply a principle governing how individuals select the particular

context-specific equation of physics to apply to a problem, given the set of restricted

principles implied by the perceived context. I am also not claiming that this partic-

ular deterministic algorithm provides an accurate approximation for the exact types

that individuals may perceive; after all, we should not expect that everyone would

assign the exact same type to a given problem. Rather, the information bottleneck

principle described in Chapter 3 may be a viable candidate for accurately and quanti-

tatively predicting the types individuals perceive, since it allows for the probabilistic

assignment of types.

An appropriate experiment to access the types individuals perceive may be easily

identified. Suppose that novices and experts were only given 10 seconds from the

moment they were shown a problem to describe it, either verbally or on paper. Recall

that the subjects in the experiments of Chi et al. (1981) were given unlimited time

to categorize the problems, and that experts took longer on average to categorize the

problems than did novices. These results of Chi et al. (1981) suggest that the extra
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time experts used to categorize problems may have contributed to the difference in

categorizations between novices and experts. If the time provided to individuals to

perceive problems is restricted however, the experimental findings might be markedly

different from the original results reported by Chi et al. (1981). Could both experts

and those novices who have already taken a course in physics perceive the problems

in similar ways if given restricted time to perceive the problems? Could the results,

in the aggregate, be described as a summarization of the surface features used in

the environment of problems presented to the subjects? These are open and testable

questions.

Others have recognized the context-specificity of physics practice. diSessa and

Sherin (1998) formulated a theoretical notion of a concept called a coordination class

that can be used to qualitatively model normative physics concepts like force. Accord-

ing to coordination class theory, physics concepts like force are not able to be applied

by individuals equally well in all contexts. Rather, diSessa and Sherin (1998) claim

that knowledge of the concept of force may actually exist as a set of conceptual pro-

jections. Together, these conceptual projections make up the concept’s coordination

class.

A particular conceptual projection for a particular individual defines the degree

to which that individual can see and apply the given concept in a particular context.

According to coordination class theory, knowledge of a concept like force is not prop-

erly defined as the ability to apply an abstract, context-independent concept, but

instead should be defined more precisely as a set of conceptual projections, each of

which describes the ability of the individual to apply a concept to a particular context.

Yet, coordination class theory does not provide a method to determine, a-priori, what

the relevant contexts of introductory mechanics actually are. In the case of routine

quantitative physics problems written in a way similar to the problems provided in

Snyder and Palmer (1900), the proposed principle of physics practice provided in this
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dissertation may partially fill that gap.

As coordination class theory posits, and I support here with this conjectured

principle of physics practice, expertise in physics is characterized by the ability to

operate in diverse contexts. According to these two theories, the relevant grain size

for discussing the application of physics knowledge is at the level of the context, rather

than at the level of the abstract principle. The model presented in this dissertation

provides a principled way for deriving potential contexts for physics problems in which

physics cognition may operate.

As I conclude this dissertation, I can offer another perspective concerning the

difference between expert and novice categorization discussed by Chi et al. (1981).

Recall that both experts and novices were asked to categorize based on a more or

less ambiguous prompt of “similarities of solution.” As I mentioned earlier, this

difference in categorization between experts and novices may have simply been due

to a difference in interpretation of this ambiguous prompt.

I speculate that the categorizations the novices produced in the experiment of

Chi et al. (1981) may just be reflective of the fundamental reality that the practice

of physics is context-dependent. It may be only after enough experience does the

student begin to internalize the important idea in physics that physical law can often

be described in highly context-independent terms. The expert may simply be viewing

physics problems through this lens of physics as abstract law, while the novice may

be viewing physics through the lens of physics as practice. Indeed, both the novice

and the expert may be right.
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Appendix A

Utilities for Computing Surface

Feature Types

In this appendix, I discuss the utilities used for the Chapter 4 analysis. The source

code for these utilities is included below, and may be used to produce (on Unix

systems) the surface feature typings discussed in Chapter 4 directly from the plain

text source for Snyder and Palmer (1900) stored on the archive.org website. These

utilities can also be used to run the agglomerative information bottleneck algorithm

on any other set of problems.

The utility aib runs the agglomerative information bottleneck algorithm described

by Slonim and Tishby (2000), using the vlfeat implementation of the algorithm by

Vedaldi and Fulkerson (2008) along with supporting matrix routines provided by

Galassi et al. (2011). The aib utility takes as input a set of problems. A label for

each problem is placed on odd lines, while problem texts are placed on even lines.

The problem text identified by the label follows the label, with a newline separating

the two. If the text file contains N problems, the text file should contain 2N lines.

For example:
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1.1

what is the acceleration due to gravity at the surface of the earth

1.2

suppose the earth can be approximated as having uniform density what

would the acceleration be at half the radius of the earth let the

acceleration at the surface be g

...

Note that the problem identifier need not take the form x.y. Each problem identifier

should however uniquely label a single problem. In spite of the visual presence of

newlines within the text of problem 1.2 in the example given above, the problem text

should not have newlines within it; the newline delimits the end of either a problem

identifier or a problem text. The aib utility is case sensitive, which is why in this

example, as well as for the input into aib used in the analysis, I have converted the

characters in the input file to lowercase.

Words in the aib utility are defined as being separated by space or tab characters.

Furthermore, punctuation is not removed by the aib utility. Punctuation should be

removed prior to processing the set of problems with the aib utility if punctuation is

to be ignored in the analysis.

The output of the aib utility is a representation of the entire hierarchical clustering

produced by the agglomerative algorithm. For the purposes of this appendix, it

suffices to discuss only the third to last row and second to last row in the output.

The third to last row is a space separated list of the N problem identifiers. The

second to last row is a space separated list of 2N − 1 integers, for each of the 2N − 1

nodes of a binary tree that represents the entire hierarchical clustering. If the second

to last row is considered as a vector vi, this vector has 2N − 1 components, with the

value vi providing the index of the “parent” category that was created as a result of

a merge of category i and some other category. The first N elements in the vector
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correspond to the N problems in the input, which are the leaves in the tree. The other

elements in the array correspond to the created categories. The indices 0 to N − 1

label the N problems in the input, and the indices from N to 2N − 2 are assigned to

the categories generated by the algorithm in the order in which the categories were

created by the agglomerative process.

aib calculates the required joint probability table p(w, x) in the procedure

probcompute by assuming that p(x) is proportional to the number of words in the

problem. Equivalently, if each word w ∈ W in x has frequency N(w, x), then

p(w, x) ≡ N(w, x)/
∑

wxN(w, x). The source code for aib is included below. It

is intended to be machine readable, but it does require both the open source vlfeat

library from http://www.vlfeat.org, along with the open source gnu scientific li-

brary matrix routines, available at http://www.gnu.org/software/gsl/ in order to

compile.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

#include <gsl/gsl_vector.h>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

#include <vl/aib.h>

/* Fixed size of character array that holds a word */

#define MAXWORD 100

#define uint unsigned int

/* A linked list associated with each unique word encountered.

questno indexes a question in which word encountered.
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count provides the number of times the word appeared in the

question indexed by questno. questno provides a unique

internal index for each question */

struct cnode {

uint questno;

double count; /* questno provides unique internal */

struct cnode *next;

};

/* Binary Tree stores words, sorted, as they are encountered

in the input file. */

typedef struct tnode *Treeptr;

typedef struct tnode{

char *word;

Treeptr left;

Treeptr right;

struct cnode *first;

struct cnode *last;

} Treenode;

/* Represents the joint probability p(x,w). Also stores the

labels for the rows of the table (the questions), along

with the labels for the columns (the words) */

typedef struct {
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char **questionarray;

char **wordarray;

gsl_matrix *matrix;

} Probtable;

Probtable *readprob(FILE *fp);

Treenode *addtree(Treenode *p, char *w, uint totalquestions,

uint *diffwords);

void *aibanalysis(FILE *fp, Probtable *fulltable,

uint **parents);

void printaibanalysis(FILE *fp, Probtable *fulltable,

uint *parents);

void assigntoarray(Probtable *fulltable, Treenode *p,

uint totalquestions, uint diffwords);

void assigntoarray_internal(Probtable *fulltable,

Treenode *p);

int getword(FILE *fp, char *word, int lim);

void probcompute(gsl_matrix *matrix);

int main(int argc, char *argv[]) {

FILE *inputfile;

Probtable *fulltable;

uint *parents;

if(argc == 1)

inputfile = stdin;
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else if((inputfile = fopen(argv[1], "r")) == NULL) {

printf("Bad filename %s\n", argv[1]);

return -1;

}

fulltable = readprob(inputfile);

aibanalysis(stdout, fulltable, &parents);

printaibanalysis(stdout, fulltable, parents);

return 0;

}

/* Implements the aib algorithm using the vlfeat library.

The algorithm produces a hierarchical clustering of problems.

Each node in the binary tree that represents the clustering is

labeled uniquely.vl_aib_get_parents returns the results of the

hierarchical clustering, as an array. There are 2*N-1 elements

in the array, one element for each node in the binary tree

which represents the clustering. The first N elements in the

array correspond to the N problems in the input, these are the

leaves in the tree. The other elements in the array

correspond to the other nodes in the tree. The value of the

parents array for a given node in the tree provides the

"parent" of that node in the tree. */

void *aibanalysis(FILE *fp, Probtable *fulltable,uint **parents) {

VlAIB *aib;

uint i;
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aib = vl_aib_new((double *) fulltable->matrix->data,

fulltable->matrix->size1,

fulltable->matrix->size2);

vl_aib_process(aib);

*parents = vl_aib_get_parents(aib);

}

/* Prints a list of the question labels, and

a list of the parents array representing the

results of the clustering */

void printaibanalysis(FILE *fp, Probtable *fulltable,

uint *parents) {

int i;

for(i = 0; i < fulltable->matrix->size1; i++)

fprintf(fp, "%s%s", fulltable->questionarray[i],

i < fulltable->matrix->size1 -1 ? " ": "\n");

for(i = 0; i < 2 * fulltable->matrix->size1 - 1; i++)

fprintf(fp, "%d%s", parents[i],

i < 2 * fulltable->matrix->size1 - 2 ? " " : "\n");

}

/* Reads the input, and converts the input to the joint

probability table p(w,x) */
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Probtable *readprob(FILE *fp) {

Probtable *fulltable = (Probtable *) malloc(sizeof(Probtable));

Treenode *root = NULL;

char question[MAXWORD], word[MAXWORD], *tempword;

int c;

uint totalquestions = 0, diffwords = 0, inquest = 0;

fulltable->questionarray = NULL;

while((c = getword(fp, question, MAXWORD)) != EOF) {

getc(fp); /*Throw away return after the question label*/

while((c = getword(fp, word, MAXWORD)) != EOF) {

if(isalpha(word[0])) {

/* Signal for new question*/

if(!inquest) {

totalquestions++;

inquest = 1;

if(fulltable->questionarray == NULL)

fulltable->questionarray = (char **)

malloc(sizeof(char *));

else

fulltable->questionarray = (char **)

realloc(fulltable->questionarray,

sizeof(char *) * totalquestions);

fulltable->questionarray[totalquestions - 1] =

strdup(question);
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}

root = addtree(root, word, totalquestions, &diffwords);

}

else if(c == ’\n’) {

inquest = 0;

break;

}

}

}

assigntoarray(fulltable, root, totalquestions, diffwords);

return fulltable;

}

/* Adds words to sorted binary tree of words

as they are encountered in the input */

Treenode *addtree(Treenode *p, char *w, uint totalquestions,

uint *diffwords) {

int cond;

if (p == NULL) {

(*diffwords)++;

p = (Treenode *) malloc(sizeof(Treenode));

p->word = strdup(w);

p->last = p->first = (struct cnode *)

malloc(sizeof(struct cnode));
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p->last->questno = totalquestions;

p->last->count = 1;

p->last->next = NULL;

p->left = p->right = NULL;

}

else if((cond = strcmp(w, p->word)) == 0) {

if(p->last->questno == totalquestions) {

p->last->count++;

}

else {

p->last->next =

(struct cnode *) malloc(sizeof(struct cnode));

p->last = p->last->next;

p->last->questno = totalquestions;

p->last->count = 1;

p->last->next = NULL;

}

}

else if(cond < 0)

p->left = addtree(p->left, w, totalquestions, diffwords);

else

p->right = addtree(p->right, w, totalquestions, diffwords);

return p;

}

/* Takes binary tree of words and converts this tree to

probability table */
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void assigntoarray(Probtable *fulltable, Treenode *p,

uint totalquestions, uint diffwords) {

fulltable->matrix = gsl_matrix_alloc(totalquestions, diffwords);

fulltable->wordarray =

(char **) malloc(sizeof(char *) * diffwords);

assigntoarray_internal(fulltable, p);

probcompute(fulltable->matrix);

}

static uint wordno = 0;

void assigntoarray_internal(Probtable *fulltable, Treenode *p) {

struct cnode *cp;

uint questno;

if( p!= NULL) {

assigntoarray_internal(fulltable, p->left);

fulltable->wordarray[wordno] = p->word;

for(questno = 0, cp = p->first; cp != NULL;

questno++, cp = cp->next) {

for(; questno < cp->questno - 1 ; questno++)

gsl_matrix_set(fulltable->matrix, questno, wordno, 0);

gsl_matrix_set(fulltable->matrix, questno,

wordno, cp->count);

}

/* Add trailing zeros if reached end of linked list */

86



for(; questno < fulltable->matrix->size1; questno++)

gsl_matrix_set(fulltable->matrix, questno, wordno, 0);

wordno++;

assigntoarray_internal(fulltable, p->right);

}

}

/* Routine for storing a word from input */

int getword(FILE *fp, char *word, int lim) {

int c;

char *w = word;

while((c = getc(fp)) == ’ ’ || c == ’\t’)

;

if(c != EOF)

*w++ = c;

if(isspace(c) || c == EOF) {

*w = ’\0’;

return c;

}

for(; --lim > 0; w++)

if(isspace(*w = getc(fp))) {

ungetc(*w, fp);

break;

}

*w = ’\0’;
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return word[0];

}

/* Computes the probability table from the frequency of words

present in each problem.

This particular version of probcompute implements the

assumption that physics cognition is adapted to a random process

parameterized by p(x) where p(x) scales with the number of words

present in x */

void probcompute(gsl_matrix *probtable) {

int total = 0;

int i, j;

for(i = 0; i< probtable->size1; i++)

for(j = 0; j < probtable->size2; j++)

total += gsl_matrix_get(probtable,i,j);

gsl_matrix_scale(probtable, 1.0/total);

}

The utility catcontents takes as input the 3rd to last and 2nd to last rows of the

aib utility, and produces a set of common contexts at a desired cardinality. It is run

using the following syntax:

catcontents -c [numcategories]

where [numcategories] provides the number of types to generate. A list of types is

output, one per line, with each line containing a list of the problem identifiers that

belong to that category. The source code catcontents.c is included below:
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/* catcontents.c Generates categorization.

Syntax: catcontents -c [numcategories]

The command line option provides the number of categories

to be generated.

Takes as input two lines. The first line is a space-separated

list of N unique problem identifiers. The second line is a

space-separated list of 2N-1 integers, one element for each

node in the binary tree which represents the clustering. These

input lines are both generated by the aib utility.

Outputs a list of categories, one per line. Each line contains

a space-separated list of the problem identifiers that belong

to that category. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAXWORD 100

/* Structure for a category. Includes a unique identifier

for the category, the number of questions in the category

and an array of questions that belong to the category */

typedef struct {

int identifier;

int numquest;
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char **questionarray;

} Category;

/* Structure that holds the entire input data. questionarray

holds the list of N problem identifiers. parents represents

the 2N-1 nodes, where parents[i] provides the parent for the

ith node in the tree. totalquestions stores the value for N

*/

typedef struct {

int totalquestions;

char **questionarray;

int *parents;

} Inputdata;

int getword(FILE *fp, char *word, int lim);

Inputdata *readinput(FILE *fp);

Category *categoryprocess(Inputdata *input, int numcategories);

void printcategories(Category *cattable, int numcategories);

int getparents(FILE *fp);

int main(int argc, char *argv[]) {

int c, numcategories = 0;

FILE *fp;

Inputdata *input;

Category *cattable;
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while(--argc > 0 && (*++argv)[0] == ’-’) {

c = *++argv[0];

switch(c) {

case ’c’:

if(--argc > 0)

numcategories = atoi(*++argv);

break;

default:

printf("Illegal option %c\n", c);

return -1;

}

}

if(numcategories < 2) {

printf("Need to request at least two categories.\n",

numcategories);

return -1;

}

if(argc == 0)

fp = stdin;

else if(argc == 1 && (fp = fopen(*argv, "r")) == NULL) {

printf("Bad filename %s\n", *argv);

return -1;

}

input = readinput(fp);

cattable = categoryprocess(input, numcategories);
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printcategories(cattable, numcategories);

}

/* Reads the two rows of input data */

Inputdata *readinput(FILE *fp) {

int c, i;

char question[MAXWORD];

Inputdata *input = (Inputdata *) malloc(sizeof(Inputdata));

input->totalquestions = 0;

while((c = getword(fp, question, MAXWORD)) != ’\n’) {

input->totalquestions++;

if(input->questionarray == NULL)

input->questionarray = (char **) malloc(sizeof(char *));

else

input->questionarray = (char **)

realloc(input->questionarray,

sizeof(char *) * input->totalquestions);

input->questionarray[input->totalquestions - 1] =

strdup(question);

}

input->parents =

(int *) malloc(sizeof(int) * (2 * input->totalquestions - 1));

for(i = 0; i < 2*input->totalquestions - 1; i++)
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input->parents[i] = getparents(fp);

return input;

}

/* Routine for storing a word from the first line of input */

int getword(FILE *fp, char *word, int lim) {

int c;

char *w = word;

while((c = getc(fp)) == ’ ’ || c == ’\t’)

;

if(c != EOF)

*w++ = c;

if(isspace(c) || c == EOF) {

*w = ’\0’;

return c;

}

for(; --lim > 0; w++)

if(isspace(*w = getc(fp))) {

ungetc(*w, fp);

break;

}

*w = ’\0’;

return word[0];

}
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/* Routine for reading an integer from second line of input */

int getparents(FILE *fp) {

int c, total = 0;

while((total = getc(fp)) == ’ ’ || total == ’\t’)

;

if(total == EOF || total == ’\n’)

return total;

total = total - ’0’;

while((c = getc(fp)) != ’ ’ && c != ’\n’)

total = 10 * total + (c - ’0’);

return total;

}

/* Creates an array of categories */

Category *categoryprocess(Inputdata *input, int numcategories) {

Category *cattable =

(Category *) malloc(sizeof(Category) * numcategories);

int i, j, k;

for(i=0; i < numcategories; i++) {

cattable[i].identifier = -1;

cattable[i].numquest = 0;
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cattable[i].questionarray = NULL;

}

for(i = 0; i < input->totalquestions; i++) {

for(j = i; (2 * input->totalquestions - 1) - input->parents[j] >=

numcategories; j = input->parents[j])

;

for(k = 0; cattable[k].identifier != j &&

cattable[k].identifier != -1; k++)

;

if(cattable[k].identifier == j)

cattable[k].questionarray = (char **)

realloc(cattable[k].questionarray,

sizeof(char *) * cattable[k].numquest + 1);

else {

cattable[k].identifier = j;

cattable[k].questionarray = (char **) malloc(sizeof(char *));

}

cattable[k].questionarray[cattable[k].numquest] =

input->questionarray[i];

cattable[k].numquest++;

}

return cattable;

}

/* Outputs the categories */

void printcategories(Category *cattable, int numcategories) {
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int i,j;

for(i = 0; i < numcategories; i++) {

for(j = 0; j < cattable[i].numquest; j++)

printf("%s%s", cattable[i].questionarray[j],

j != cattable[i].numquest - 1 ? " " : "\n");

}

}

Using the utilities aib and catcontents, along with a list of problems structured

in the format expected by aib, a surface feature categorization for those problems can

be produced. For example, if a list of problems is stored in the file problems, then

the following Unix pipeline can be used to generate a deterministic categorization X̄

with |X̄| = 12:

cat problems | aib | aibcleanup.sh | catcontents -c 12

The small shell script aibcleanup.sh simply extracts the third to last and sec-

ond to last rows of output from aib, before feeding that output into the input for

catcontents:

#!/bin/sh

#aibcleanup.sh Cleans up aib output

#Deletes first line, last line, and all lines that start with "aib"

#Only two lines remain, first line is a list of every problem id

#Second line is a row which provides a ‘breadth-first’ representation

#of the knowledge hierarchy

sed ’

1d

96



/^aib/d

$d’

Since the plain text version of the public domain textbook One Thousand Problems

in Physics by Snyder and Palmer (1900) that can be downloaded from archive.org

is not in the format aib expects, I wrote a shell script, otpp_filter.sh1 that utilizes

the structure of the plain text source to transform the text file into the proper format:

#!/bin/sh

#otpp_filter.sh Filter for One-Thousand Problems in Physics.

#Input is the raw text source.

#Output is only the mechanics problems

#in an appropriate format for the aib program.

#Raw source for this filter obtained from:

#http://archive.org/details/onethousandprobl00snyduoft

#From here, click All files:HTTP, then download:

#onethousandprobl00snyduoft_djvu.txt

#Raw text file last obtained on April 3, 2012

#at 11:46 am PDT

sed ’

#Delete header

1,181d

#Delete line containing only "i"

#since not part of any problem

217d

1Instructions for how to obtain the plain text source from archive.org are included in this file.
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#Delete table of rectangular

#cross-sections in middle of document.

1381,1790d

#Delete lines indicating the value of

#the g, and the values for force

2198,2202d

2511d

#Delete notes stating that the centrifugal

#force should be ignored

3151d

3288,3289d

#Delete note stating that friction and

#slipping of belts should be ignored

3579d

#Only keep mechanics problems

3881,$d

#Delete Chapter Names

#(Uniquely defined by lines with four adjacent

#capital letters)

/[A-Z][A-Z][A-Z][A-Z]/d

#Delete Empty Lines

/^$/d

#Since problems in the awk filter

#that follow assume that questions

#start with the problem number, a few

#anomalies due to the optical character
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#recognition need to be corrected

#to allow the awk process that follows to

#run smoothly

#Delete anomalous leading period on line 282

282s/^\. //

#Delete anomalous leading comma on line 402

402s/^,//

#Substitute "2^" for "21" on line 2288

2288s/^2\^/21/

#Delete anomalous leading period on line 3692

3692s/^\. //

#Delete leading "5. " on line 3056

#Numbers are eventually ignored anyway.

#(Numbers at the beginning of lines

#are used in the awk script to

#indicate new problems.

3056s/^5\. //’ |

awk ’

#Iterate the chapter counter when we hit

#first problem of chapter

/^1\. / {chap++}

#Include newline and chapter number

#before problem number

/^[1-9][0-9]*\. / {printf("\n%d.",chap)}

#Print rest of problem
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{printf("%s",$0)}

’ |

sed ’

#Delete empty first line

#introduced in previous awk script

1d

#Place the problem id on separate line

s/^\([1-9][0-9]*\.[1-9][0-9]*\)\. /\1\

/’ |

#Join syllables of words that were

#originally hyphenated across lines

sed ’s/\([A-Za-z][a-z]\)- \([a-z][a-z]\)/\1\2/g’ |

#Only include the mechanics problems

sed ’

1311,$d’ |

#Delete all characters that are not a space or letters

awk ’

NR % 2 == 0 {

gsub(/[^A-Za-z ]/,"")

}

{ print }’ |

#Make all letters lowercase
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tr A-Z a-z

With this filter, a deterministic typing of Snyder and Palmer (1900) can be generated

directly from the plain text source found at archive.org using the following Unix

pipeline:

cat onethousandprobl00snyduoft_djvu.txt |

otpp_filter.sh | aib | aibcleanup.sh |

catcontents -c [number of categories]

If vlfeat and the gnu scientific library are properly installed on a Unix system,

aib.c and catcontents.c are compiled as aib and catcontents, then the following

pipeline can be used to generate deterministic typings from the aib algorithm with

an arbitrary plain text source:

cat [text source] | [source filter] | aib |

aibcleanup.sh | catcontents -c [number of categories]

This Unix pipeline is packaged below in the shell script sftyping.sh:

#!/bin/sh

#sftyping.sh [number of categories] [problem source] [filter]

#Produces a typing of [problem source]. Requires the number

#of categories to be specified. The filter is used to place

#the source in the appropriate format for the aib utility.

#The filter is

#Assumes that aib, aibcleanup.sh, and catcontents are

#either located in the current directory, or somewhere

#in the path.

PATH=$PATH:.
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#Used if no filter is passed as an argument

if [ $# -eq 2 ]

then

cat $2 | aib | aibcleanup.sh |

catcontents -c $1

fi

#Used if a filter is passed as an argument

if [ $# -eq 3 ]

then

cat $2 | $3 | aib | aibcleanup.sh |

catcontents -c $1

fi

Using sftyping.sh, I generated Fig 4.3 directly from the plain text version of the

public domain textbook One Thousand Problems in Physics by Snyder and Palmer

(1900) with the following bargraph.sh script:

#!/bin/sh

#bargraph.sh Produces tex barplot directly

#from raw text source of

#One Thousand Problems in Physics by

#William Snyder (1900) found at

#http://archive.org/details/onethousandprobl00snyduoft

#Adjust this path appropriately

PATH=$PATH:.
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#Pipeline from Original Source to Create

#Fig 4.3 Data

sftyping.sh 12 onethousandprobl00snyduoft_djvu.txt otpp_filter.sh |

cat2bargraph.sh > bargraphdata

#R Code for Generating Plot from "bargraphdata"

R --vanilla --slave << RCODE

require(tikzDevice);

tikz("otpp_barplot.tex", width=5.5, height=5.5);

title = c("Pressure; Density, Sp. Gr.", "Machines",

"Density and Specific Gravity",

"Comp. and Res. of Forces","Density and Specific Gravity",

"Force, Acceleration; Energy","Gravitation","Work","Pendulums",

"Comp. and Res. of Forces","Levers, Center of Gravity",

"Tenacity and Elasticity");

par(mfcol=c(4,3), mar=c(3,2,1.6,1), ps=9);

h <- read.csv("./bargraphdata", header=FALSE);

order <- c(1,12,6,9,3,4,8,11,5,10,7,2);

for(i in order)

barplot(as.numeric(h[i,]), main=title[i],names.arg=1:12,

ylim = c(0,1));

dev.off();

103



RCODE

This script calls the statistical software R to create the tex source otpp_barplot.tex

for Fig 4.3. This script also generates the file bargraphdata which is a list of data

used to generate the plot, with each row a comma separated list for the height of each

bar within that type. This plot relies on the shell script cat2bargraph.sh, which

takes as input the category contents output by catcontents and outputs the barplot

data used in Fig 4.3:

#!/bin/sh

#cat2bargraph.sh Produces bargraph data in Fig 4.3.

#Takes as input a particular categorization.

#Each line contains one category in the categorization.

#On each line, a space separated list of questions

#belonging to that category is expected.

#Each question should take the format x.y, with x

#indicating the chapter number, and y the question

#number.

awk ’

{

for(i=0; i<=NF; i++) {

#Initialize the variables minchapter and

#maxchapter

if(NR == 1 && i == 1) {

minchapter = int($i);

maxchapter = int($i);
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}

#chapcount(i,j) stores number of problems

#from chapter j in category i

chapcount[NR, int($i)]++;

#numquest(i) stores number of problems

#in category i

numquest[NR]++;

if(int($i) < minchapter)

minchapter = int($i);

if(int($i) > maxchapter)

maxchapter = int($i);

}

}

END {

for(i=1; i <= NR; i++) {

for(j=minchapter; j<=maxchapter; j++)

printf("%.3f%s", chapcount[i, j]/numquest[i],

j < maxchapter ? ", " : "");

printf("\n");

}

}’

With sftyping.sh, one can produce a deterministic surface feature categorization

for an arbitrary plain text source using the following syntax, just as was done above

in the bargraph.sh script:
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sftyping.sh [number of categories] [problem source] [filter]

The last argument to sftyping.sh allows a filter to be provided to convert the

problem source into the format described at the beginning of the appendix, just as

was done above for the plain text source of Snyder and Palmer (1900). If the problem

source is already in that format, this argument is optional.
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