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Abstract

This study aimed to resolve disparities between the human behaviour predicted

by game theoretic models and the behaviours observed in the real world. The

existing model of graphical games was analysed and expanded to create a new model

in which agents can move themselves around the graph over time. By adopting

di�erent con�gurations of variables, this model can simulate a very wide range of

di�erent scenarios. The concept of meta-games was applied to expand this range

yet further and introduce more real-world applications. The interactions between

di�erent elements of the con�guration were investigated to develop an understanding

of the model's emergent properties. The study found that this new model is more

accurate and more widely applicable than all other pre-existing candidate models.

This suggests that human irrationality can generally be accounted for with a better

understanding of the environment within which interaction is occurring.
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Chapter 1

Introduction

1.1 Context

For over 50 years, classical game-theoretic tools have been used to attempt to iden-

tify the `best' approach to playing games and, consequently, how players in a game

should act. However, the �eld as a whole is notoriously poor at predicting the be-

haviour of human players in all but the most arti�cial and sterile environments.

For example, a standard analysis of the Iterated Prisoners' Dilemma, eliminating

strictly dominated strategies and applying backwards induction, would lead a `ratio-

nal' player to defect or play aggressively at each step, regardless of previous actions,

or any communication or even agreements between the players involved, as this is

the only stable solution (or `Nash equilibrium') for this game.

In practice, however, many human players cooperate regardless, and pursue a wide

variety of other e�ective strategies. In short, the existing tools and techniques in this

�eld are demonstrably insu�cient to analyse the ways in which humans approach

and play games in real-world situations [1].

Because of this, many bemoan human play as `irrational', something which cannot

be predicted or accounted for on an individual level. However, experimental results

1
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have shown that humans can outperform `rational' agents by considering the impact

of their actions beyond the immediate scope of the game. For example, in the

Prisoners' Dilemma, players who ignore the `rationality' advocated in the previous

example and instead cooperate can earn larger payo�s than those who defect [2].

This e�ect, and others similar to it, can help human players gain utility and re-

sources over repeated games which strictly `rational' (or arti�cial) players disregard

as unattainable. There are, at present, no wholly satisfying or widely accepted ex-

planations to this central problem of why humans don't play `rationally', and how

they outperform carefully designed autonomous agents while doing so.

Furthermore, many people believe in some sort of overpowering external source

of justice or fairness, whether societal or supernatural, which (irrespective of the

accuracy of such beliefs) further skew the strategies and payo�s available in the

minds of those agents. For instance, experiments conducted with the `Ultimatum

Game', in which players can make and accept fair or unfair o�ers, consistently show

that humans tend to perceive their choices in the game as being judged in relation

to their social standing.

Because of this, such players generally act more cooperatively than classic game

theoretic indicators (such as the Nash equilibrium) would predict, and expect in-

direct reciprocity through external mechanisms such as reputation� even in situa-

tions where such mechanisms have been speci�cally excluded from the experimental

setup [3]. Because of this, e�orts to isolate the external in�uences which cause hu-

mans to deviate from the classical models seem misguided. I argue that, instead

of speci�cally dismissing them, we must formulate a new model which takes these

factors into account.

In addition to this systemic failure to forecast the outcome of games, the question of

when to play games relative to a natural setting so as to achieve meaningful results

has not yet been well addressed. Games are frequently considered to be played `in
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vitro', without reference to or situation in any sort of environment. Many studies,

from rigorous game theoretic competitions of strategy and tactics (such as those run

by Axelrod [4] and, more recently, those marking the 20th anniversary of his original

experiments [5]) through to broader psychological evaluations of human behaviour,

use highly unrealistic structural assumptions about the manner in which players

interact.

For instance, it is typically speci�ed that each player will interact with each other

player a �xed number of times, consecutively, and will never again interact with that

player� presumably, not even outside of the experimental setup, even though the

experimenters cannot guarantee this. Worse still, it is often assumed that the players

learn nothing from the experience, neither while it is ongoing nor on re�ection before

the start of the next interaction.

However, in the real world, humans are almost always learning and incorporating

information into their world-view in an e�ort to make good decisions. In short,

connections between players in experimental conditions are universally arbitrary or

random, whereas real-world networks are almost always formed with an element of

purposefulness and active e�ort on behalf of those involved [6].

However, the dynamics of any pre-existing group of preferential agents (such as

human beings) can be arbitrarily more complex than any experimental setup. It

should be obvious to any human being that we are not equally in�uenced by a large

number of others, but rather are strongly in�uenced by a relatively small number of

people (such as friends, colleagues, superiors, celebrities, technical experts, and so

on), each on a relatively narrow range of topics. From psychology, according to the

results of Milgram's `small world' experiments, relationships in human society can

typically be modelled as a large number of connections to those close to you, and

less-common links to those further away� not as an amorphous clique [7].

There is also an inherent element of randomness regarding which players have rela-
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tionships with which others, due to the vagaries of human contact, interaction, and

socialisation� none of which are generally well represented in behavioural experi-

ments or simulations. This further compounds the problem of accurately represent-

ing the e�ects and interactions between players.

1.2 Motivation

Clearly, it would be in our interests to overcome these persistent limitations to game

theory, and try to develop a robust, generic framework which can approximate the

essential components of real-world interaction without becoming overly complex.

Such a system would likely enable human behaviour to be more �nely approximated

than existing experimental setups (though probably not predicted �awlessly). This

enhanced �delity could be used to evaluate many potential games and strategies for

such games, perhaps producing the next baseline model for assessing the strengths

of competing player types and strategies� much like the Prisoners' Dilemma and

then the Iterated Prisoners' Dilemma were previously and are at present [4] [5].

Though my main motivation is academic, other possible applications include:

• Type selection in a variety of scenarios (for example, what opening sequence

to utilise in a chess tournament, or which of several tournaments to attend

given a preference for a speci�c opening sequence)

• Assisting mechanism design in the creation of any system in which participa-

tion is desired, but not globally mandatory (for example, limiting collusion in

an auction)

• Contributing to ongoing attempts to e�ectively predict the various strategies

of agents in diverse and dynamic populations (for example, in complex com-

petitive multi-agent systems, and human communities)
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Additionally, if we do not clearly understand the environment, larger circumstances,

and �ner details of any interactive system (game or otherwise) in which strategies

are deployed, we cannot understand which qualities in the environment are related

or unrelated to the performance of those strategies. The development of a more

clearly structured framework in this area may therefore lead to new ideas as to which

strategies are considered `strongest' for a given game played in a given situation.

1.3 Statement of the Problem

Given the above context, it should be clear that current game-theoretic methods,

models, and techniques are poorly suited to ongoing attempts to develop a deeper

understanding of the nuanced interactions and emergent properties of these com-

plex systems; whether between arti�cially-designed agents in �elds such as arti�cial

intelligence and multi-agent systems, or with real-world agents in �elds such as psy-

chology and economics. Somewhat ironically, even arti�cial agents are deployed into

a world far more complex and intricate than the experimental setups used to eval-

uate their approach. Conversely, the challenge of any simulation is to recreate the

same or at least similar results from a much coarser input and rules of interaction�

otherwise, the task of `simulating' the problem becomes akin to outright solving the

problem itself.

More speci�cally, although much game-theoretic research is focused on �nding the

`best' strategy or approach for a given situation, there is disagreement over what the

`best' strategy is, even for games as well-studied as the Prisoners' Dilemma. Though

some strategies, such as Tit-For-Tat, or the related Tit-For-Two-Tats, are typically

touted as being optimal or near-optimal [4], the situation is not so clear cut.

For example, `Grim' (also known as `Grudge') is extremely strong in experimental

setups where players can somehow prove they are using this strategy� in such situ-
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ations, the opponent can do no better than by also playing Grim [8]. `Master and

slave' strategies, consisting of pre-determined coalitions of players in di�erent roles,

can trump all of these when the environment has certain properties and the setup

permits them [5].

Finally, in any experimental situation in which the general disposition of the popu-

lation can be determined or estimated in advance, a novel strategy can be designed

to exploit this information. This occurs with some complex real-world games, and is

known as the `meta-game', indicating that type-selection can, in itself, be considered

a strategic choice within the context of a larger `game' [9].

The limitations of these di�erent tools and approaches often produce confusion and

disagreement, particularly between di�erent scholarly �elds as they approach these

common problems in from di�erent directions. In short, because of a lack of recog-

nition regarding the fundamental circumstances in which games are played, the

contrasting and comparison of more speci�c concepts within the �eld presents a

surprisingly di�cult obstacle which has, thus far, not been adequately addressed.

1.4 Aims, Objectives, and Focus

Taking the above into consideration, I aimed to develop a model which can:

• Tie together the strengths of di�erent game-theoretic approaches to di�erent

scenarios into a single generic system.

• Provide explanations for why certain strategies do or do not work e�ectively

in di�erent scenarios.

• Holistically and accurately represent the nature of interactions between entities

in di�erent environments.

• Eliminate some of the systemic inaccuracies of game theory as a �eld and by



1.4. Aims, Objectives, and Focus 7

doing so provide an increase in �delity over existing models.

• Advance our understanding of how people approach and play games outside

of a laboratory setting.

• Be applied to an extremely large range of situations.

• Be more intuitively comprehensible than any previous system, allowing results

to be conveyed more clearly.

This is my proposed `Graphical Gaming with Mobility' model which I will explain in

detail over the course of this thesis. The central question I seek to answer through

my research is �When players interact across a naturally mobile population with

di�erent possible parameters and con�gurations, how does this a�ect the strategies

used for interaction and the dynamic distribution of the population?�. Addressing

this question will enable me to understand the intricacies of my proposed model,

and identify its capabilities and any areas for possible improvement and/or future

research. As such, I will refer to it, and the goals for my model above, throughout

my results in Chapter 6.

Although this research is rather broad in order to best tackle the diverse elements

of the underlying challenges, there are nevertheless limitations in its scope. I have

not attempted to `solve' the Prisoners' Dilemma or indeed any existent game, nor

design some new strategy for it which outplays others in speci�c situations, as this

has been researched thoroughly [10] and even incremental progress on this topic is

extremely di�cult outside of rather narrow research. I have not aimed to provide

a de�nitive guide or approach for any given type of agent as to how best approach

a given problem to ensure the greatest payo�, or to map out the ideal movement

strategy within my model for a given player type, for similar reasons. Finally, I have

avoided detailed statistical analysis of the outcomes of individual parameterisations

in favour of broader analysis of more general patterns and trends. I believe this

approach will be applicable over a wider variety of games, graph structures, timing
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modes, and so on, and more e�ectively demonstrate the ability of the model I've

designed to simulate a very wide range of possible scenarios.

In addition to these objectives, there are several additional hypotheses regarding

the functionality of my system which I formed after studying the existing literature.

These are introduced throughout Chapter 3 as appropriate.

1.5 Contribution

The idea of adding an underlying structure to multiple interacting games in an

attempt to rectify some of these problems has been previously explored, and is

known as `graphical games'. In a graphical game, players interact only with a

subset of all players in accordance with the layout of a graph. As such, graphical

games are excellent for simulating situations where each player's overall outcome

is dependent on a few strong in�uences, rather than being equally subject to the

whims of every other player in the environment� which would seem to be a more

accurate description of human interaction than being a�ected equally by all humans

in any given group [11]. Though such in�uences can be modelled by more basic,

pre-existing systems, the di�culties involved make doing so impractical for anything

beyond simple demonstrations.

However, this de�nition of graphical games is still incomplete when compared to

actual scenarios. I realised that, in the real world, any person who feels they are

not deriving su�cient utility from their interactions with other people can reason-

ably expend some e�ort to �nd new, more compatible people to interact with in

future. This idea neatly extends into spheres which commonly feature real-world

applications of game theory, such as economics and business� a worker unhappy

with their colleagues may tolerate the discomfort up to a point, or a business which

faces material delays may incur considerable costs to arrange a replacement supplier.
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Additionally, any person who feels let-down by their friends may go to great lengths

to meet new people with a view to forming new relationships. In each case, the

existence of this capability is self-evident.

I think that these situations, and the deeper facet of humans having the capability

to choose who they interact with subject to certain restrictions, must be understood

and modelled if we hope to improve our knowledge in this �eld. If we attempt to

model the above situations without doing so, the result we derive will be observ-

ably inaccurate and sub-optimal� typically that the agents will continue to interact

non-cooperatively. More fundamentally, even in the most basic and constrained

experimental conditions, the humans taking part have all decided to participate

for some reason, and this `response bias' must be considered and accounted for in

experimental design [12].

As such, for my main contribution, I have expanded the graphical gaming model

to cover situations in which agents in the population have some capacity to take

action to situate themselves in a neighbourhood of their choosing� in essence, they

can move around the graph. I've studied various ways this functionality can be

implemented, so that it can be used to simulate and assist with understanding given

instances of these redesigned `Graphical Games with Mobility'.

I have evaluated the performance of di�erent strategies under various parameterisa-

tions of this model, with a view to comprehensively understanding this environment

and how each of its elements impacts all the others. This has primarily been achieved

through the use of simulations, with some human experimentation to con�rm and

double-check �ndings from the simulations as well as test the applicability of my

model to real-world behaviour. Of the work done previously with graphical games,

most of it has focused on complexity results and computational bounds [13], leaving

questions of the broader applications of this model unaddressed until now.

I have also investigated how various strategies for movement, based on which types
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are perceived to be favourable or unfavourable opponents for a given agent, can

positively or negatively impact the utility gained. I believe that this model displays

many properties of interest, and is a strong candidate for a model of generic in-

teraction, mechanism and type evaluation, having many bene�ts and no signi�cant

drawbacks over those previously available.



Chapter 2

Background

In this chapter, we will �rst introduce and then proceed to explain in detail some of

the core game theoretic concepts used throughout this research. After this, we will

extend those basic concepts using my central contribution of mobility.

2.1 Fundamental Game Theory

The fundamentals of game theory are widely known, but included here for com-

pleteness. A `game' consists of a set of players (or `agents'). Each player has a set

of `strategies'- options they can choose which correspond to the actions they will

take in the game. Each combination of strategies has an associated `payo�' for each

player. Without loss of generality, this can be reduced to two players simultaneously

selecting from two strategies. Players aim to maximise their individual utility, which

is typically (but not always) equivalent to the magnitude of the payo� received.

Games can be `iterated' (or `repeated'), which means the same agents play the same

game more than once and can use their memory of previous games to help choose

their action in the current game. Common concepts include `social utility', which

is the combined utility of all players. Although some outcomes favour particular

11
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players, others may produce a higher total amount of utility� these outcomes are

`socially optimal' and often of particular interest to mechanism designers aiming

to induce or incentivise particular behaviours. There is also the concept of `Nash

equilibria', which are combinations of strategies from which no players have an

incentive to unilaterally deviate (as doing so would decrease their payo�, assuming

no other agents simultaneously deviate).

There are several traditional methods of representing the information contained

within games. A `tree'� a directed graph without any cycles- is used in the `extensive

form'. In this form, at each level of the tree, each branch splits in accordance

with one player's possible actions at that point. If two or more players would act

simultaneously, they are simply given consecutive levels in the tree (with the ordering

of these levels being irrelevant). Each leaf is labelled with the payo�s received by

each player at that point, and it is trivial to prove that all possible outcomes are

covered (as each possible action from each possible point of play is covered).

There is also the `normal form', a matrix with each dimension corresponding to one

of the players, and one row in that dimension corresponding to each action available

to that player. Normal form games can be nested, but tend to be used to represent

simple, classical games, or one step of a much larger game. A demonstration that

all possible outcomes are covered is again trivial, as every possible intersection of

actions is covered. While the extensive form is useful for larger and/or more complex

scenarios, the normal form allows the results of each players' actions to be looked

up more easily.

A game is said to be one of `perfect' or `complete' information if (aside from the

types and/or decision making processes of the players) all the elements of the game

and its state are known to all players at all times. If this is not the case, the game

is said to contain `imperfect', `hidden', or `incomplete information'. For example,

chess is a game with complete information (each player can see where every piece
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is at all times), whereas poker is a game with incomplete information (namely, the

face-down cards only viewable to their holder).

Most classic academic games, including all the games used in this research, use

perfect information. Typically players choose their actions simultaneously, such

that neither can simply use the knowledge of the action their opponent is playing

to respond optimally [8].

More formally:

De�nition 1 A game consists of n players, each with a �nite set of pure strategies

or actions available to them, along with a speci�cation of the payo�s to each player.

We use ai to denote the action chosen by player i. For simplicity we will assume a

binary action space, so ai ∈ {0, 1}. The payo�s to player i are given by a table or

matrix Mi, indexed by the joint action −→a ∈ {0, 1}n. The value Mi(
−→a ), which we

assume without loss of generality to lie in the interval [0, 1], is the payo� to player

i resulting from the joint action −→a . Multiplayer games described in this way are

referred to as `normal form' games. [11]

A `strategy' is simply any method for determining which action to take in a given

situation. Note that these ideas can be expanded to include games with more than

two actions without loss of generality. Though fundamental, the concept of `strategy'

used here only operates on an academic level, especially the idea of mixed strategies

in which one determines one's chosen action purely probabilistically. In practice, the

`strategies' developed in my research take into account higher-level considerations

(for instance, Tit-For-Tat chooses the same action its opponent chose previously),

and human players will likely have even more detailed strategies.

De�nition 2 The actions `0' and `1' are the `pure strategies' of each player, while a

`mixed strategy' for player i is given by the probability pi ∈ [0, 1] that the player will

play 0. For any joint mixed strategy, given by a product distribution −→p , we de�ne
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the expected payo� to player i as Mi(
−→p ) = E−→a ˜−→p [Mi(

−→a )], where −→a ˜−→p indicates

that each aj is 0 with probability pj and 1 with probability 1-pj independently. [11]

Games with dominant pure strategies� that is, those which can be `won' by always

playing the same action� are of little academic interest. However, I make occasional

use of agents playing pure strategies as one of several types in my populations, in

order to study the reaction of more advanced types to them. It's worth noting that,

in the Prisoners' Dilemma, the cooperative strategy is strictly dominated, meaning

one will always gain greater utility from defecting than cooperating, regardless of

the action selected by the opponent. However, the situation becomes practically

rather more complex (though not any more mathematically complex) once the game

becomes iterated, as the possibility of building a reputation with the opponent

becomes a factor which should be considered� even though the actual matrix itself

remains unchanged.

De�nition 3 We use −→p [i : p′i] to denote the vector (product distribution) which is

the same as −→p except in the ith component, where the value has been changed to

p′i. A Nash equilibrium (NE) for the game is a mixed strategy −→p such that for any

player i, and for any value p′i ∈ [0, 1], Mi(
−→p ) ≥ Mi(

−→p [i : p′i]). (We say that pi

is a best response to the rest of −→p .) In other words, no player can improve their

expected payo� by deviating unilaterally from an NE. The classic theorem of Nash

(1951) states that for any game, there exists an NE in the space of joint mixed

strategies. [11]

Although issues pertaining to Nash equilibria and their related concepts are not a

focus of my research, it is helpful to be aware of how they are derived for a general

discussion of game theory.
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2.1.1 The Prisoners' Dilemma

The Prisoners' Dilemma is probably the most researched game in academia [4] [5]

[10] [14] [15] and arguably the most interesting non-iterated, simultaneous, binary

2-player game. Despite its apparent simplicity, it is applicable to a large number of

real-world situations in �elds such as economics, biology, psychology, and politics

[16] [17] [18] [19]. It occasionally goes by other names such as `Hawks and Doves'.

In the game, each of two players is given a simple choice- cooperate, or defect. If

both choose to cooperate, they both receive a good payo�. However, if one attempts

to cooperate while the other defects, the defector gets an even higher payo�, while

the cooperator receives next to nothing. Finally, if they both try to defect, they

both receive a poor payo�.

More formally:

De�nition 4 Let `A' be the payo� received by a player who cooperates when their

opponent defects, `B' be the payo� received by a player who defects when their op-

ponent defects, `C' be the payo� received by a player who cooperates when their

opponent cooperates, and `D' be the payo� received by a player who defects when

their opponent cooperates. A < B < C < D. In the iterated case, we also require

that 2C > A + D so that a higher payo� is received from two agents cooperating

rather than alternating between betraying each other (though this would require even

greater coordination than mere cooperation).

The game is of particular interest as its Nash equilibrium is to defect� meaning

that you always earn a greater payo� by defecting, regardless of what action your

opponent takes. However, the `socially optimal' outcome� the one which generates

the highest total utility amongst all players� is mutual cooperation. This inherent

tension between doing what is best for you versus what is best for a larger group,

or, in the iterated case, of short-term versus long-term advantage, makes the game
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extremely interesting.

The `Prisoners' Dilemma' was chosen as the main game to use throughout this thesis,

as it has been thoroughly researched and documented in the literature, allowing areas

where my results di�ered from the norm to be identi�ed with ease while minimising

the chance that some novel mechanism or unexplored quirk of the game could cloud

my data. This means that, for each individual 2-player game within the much

larger graphical game, the form of the Prisoners' Dilemma illustrated below was

used. Other simple, established academic games, such as the `Ultimatum Game' [20]

and simple variants of `Rock, Paper, Scissors' were used occasionally with human

subjects later on, as covered in more detail in Chapters 5 and 6.

X Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

Figure 2.1: Payo� matrix for the Prisoners' Dilemma.

X Rock Paper Scissors

Rock 0,0 0,1 1,0

Paper 1,0 0,0 0,1

Scissors 0,1 1,0 0,0

Figure 2.2: Payo� matrix for Rock, Paper, Scissors.

X Fair Unfair Very Unfair

Accept 5,5 7,3 9,1

Reject 0,0 0,0 0,0

Figure 2.3: Payo� matrix for the Ultimatum Game.

I devised this simpli�ed, discrete formation of the Ultimatum Game such that it

could work with the discrete behaviours pre-existing in my agents. I disregarded the
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possibility of splits in favour of the receiving agent, and of the �rst agent attempting

to take the entire pot, as unrealistic.

2.2 Fundamental Graph Theory

A graph consists of a set of `vertices' and `edges'. Each vertex, or `node', can

be connected to any number of other vertices by edges. Although multiple edges

between the same two nodes, or an edge connecting a node to itself, are technically

possible, these possibilities are usually discounted, as they have been in the graphs

I used in this research. Edges can be `directed', signifying a one-way, rather than

the typical `undirected' two-way, relationship between the nodes. In this case, the

connection is also one way� for instance, A may be connected (by a directed edge)

to B, but B would not then be connected to A. If a graph contains at least one

directed edge the graph is also `directed', otherwise it too is `undirected'. Finally,

edges can be `weighted', meaning there is some value assigned to them. The usage of

this value varies with the usage of the graph, but is typically used to imbue certain

connections with additional importance and/or cost relative to others.

2.3 Graphical Games

Having introduced the fundamentals of game theory, we can now progress to de�ni-

tions from the graphical games model originally proposed by Kearns [11].

To formulate a graphical game, we begin with an undirected graph. Any particular

graph with some desired structure or properties can be used. There are also players

equal to the number of vertices in the graph. Each player is then associated with

a single vertex� if we consider each vertex to be a position, each player is `at' their

associated vertex. Next, each vertex (and/or player, depending on your point of
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view) is associated with a game, as de�ned above. These players play the games

of the players they're connected to with that player, and all others in that player's

neighbourhood.

Each player's total payo�s are summated from all the games they play, and, as

such, entirely determined by their interactions with the connected agents, especially

those in their neighbourhood who they are certain to play against multiple times

(at minimum twice, from their game and the agent's own). Graphical games are a

kind of `sparse game', in which most of the payo�s for interactions between agents

are zero and can thus be ignored (in this case, those between disconnected agents).

Kearns de�nes these more formally:

De�nition 5 A graph G consists in its most basic form of a vertex set V (G) and

an edge set E(G) which maps connections between the vertices. Edges may be `direc-

tional', in which case they are considered to link one vertex to another, but not vice

versa. Edges may be `weighted', which assigns a value to them (typically an integer)

which is then used for further computation. [11]

Although graphical games on directed graphs are possible and model one-way in�u-

ences, Kearns seemingly ignores this possibility. It is, however, possible to produce

a similar e�ect by modifying the payo�s of the individual games themselves, as I

discuss when describing the properties of the model in Chapter 4.

De�nition 6 In a `graphical game', each player i is represented by a vertex in an

undirected graph G. We use N(i) ⊆ 1, . . . , n to denote the neighbourhood of player i

in G� that is, those vertices j such that the edge (i, j) ∈ E(G). By convention N(i)

includes i itself... [11]

A `joint action' is the combined result of each action chosen by each player. Any

situation where an agent would play a game against itself is of little interest, and can

practically be ignored without loss of generality. Alternatively, it can be assumed
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that all agents are smart enough to coordinate with themselves and always resolve

such situations optimally, which permits the results of these games to be subtracted

and discounted from results for clarity.

De�nition 7 A graphical game is a pair (G,M), where G is an undirected graph

over the vertices 1, . . . , n ∈ N , and M is a set of n local payo� matrices. For any

joint action −→a , the local game matrixMi ∈M speci�es the payo�Mi(
−→a i) for player

i, which depends only on the actions taken by the players in N(i). [11]

In my research, I will be looking at situations where all local matrices in M are

identical in order to avoid obscuring the results with extra variables.

2.4 Proposed Graphical Games with Mobility Model

As graphical games with mobility form an extension of the basic graphical game

model, which is itself an extension of basic game theory, many of the de�nitions and

basic elements are unchanged from those frequently used elsewhere� for example, the

description of a game in matrix form, and how each player's actions are compared to

determine an outcome and the associated payo� for each player. If weighted edges

are used, they represent the potential value of the interaction occurring across that

edge (so the payo�s from a game weighted as `2' will be twice as great as those from

a typical game weighted at `1').

As the starting point for my research, I have developed an alternative formulation

of the original graphical games model. My new system is somewhat di�erent to

the original phrasing, even before the new elements unique to graphical games with

mobility are added. By expanding the detail in some areas and restricting it in

others, and thinking about these basic concepts in a novel way, we arrive at a

di�erent way of looking at the di�erent levels of interaction occurring within the

graphical game.
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For example, Kearns stresses that, for any given agent i, a matrix is used such that

only the agents in its neighbourhood N(i) a�ect i's payo�. However, this system

has a property which is particularly undesirable for my model, in that meaningful

information can be transferred between non-adjacent vertices (and thus players) at

distance 2 through the medium of a game with a shared neighbour. For example, if

one player can observe the action chosen by another player, even though it was in a

game with a third player that did not directly impact it.

This can be inferred from the de�nitions above, and occurs even if the payo�s

between these agents are deliberately �xed at 0, and even if the potential for further

`action at a distance' (perhaps due to the same disconnected players playing further

games with each other or more agents even further away) is ignored. Agents are still

able to view each other's approach to the shared game and use this information to

inform their strategy in later games. For example, a Tit-For-Tat player could copy

the defection they've already seen in the previous example, rather than beginning

each new game with cooperation. This has even greater e�ects in a system with

mobility, as it could also potentially inform each agent's movement, as I'll discuss

later in Chapters 4 and 5.

Although each matrix is an n-player game played `at a vertex', by performing the

above step and formally restricting potential non-zero payo�s to adjacent agents, the

matrix can be redesigned in such a way that it becomes equivalent to n simultaneous

2-player games between the player at the vertex and each adjacent player without

any undesired functional changes. This is achieved simply by making a new M

for each agent in N(i), which has a strategy for each combination of choices and

calculating the payo�s deterministically based on the interactions in the underlying

scenario. This can then be repeated for each player (ignoring duplications). Finally,

the rules of the system can be changed such that agents cannot observe the results

of games they do not directly take part in. The �nal result is that games can be

thought of as occurring `at an edge' in those situations where it makes a more natural
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example, which is typically how I will discuss them throughout this thesis.

These changes, particularly the restriction to 2-player games, cause a vast reduc-

tion in the number of interlinked subcomponents, and a corresponding reduction

in complexity, which could otherwise have caused my results to be obfuscated by

a myriad of small factors. Additionally, I believe that this interpretation is more

naturally intuitive to humans, both when analysing graphical games as a researcher,

and when interacting within graphical games as a player, as it is more similar to

both the general understanding of games as played by humans in the real world,

and similarly, common methods of interaction between individuals.

De�nition 8 A graphical game can also be considered as a pair (G,M). G is an

undirected, unweighted graph over the vertices 1, . . . , n. m is a symmetric game

matrix. For simplicity and without loss of generality, we assume all Mij ∈ M are

identical to m. For each agent j in N(i) (which does not include i), and any joint

action −→a between i and j, the payo� for player i is mij(
−→a ij).

Though each individual edge of the graph can have its own game with any number

of strategies and any coherently-formed payo� matrix, for this research I am using

a single game with a single payo� matrix uniformly across the whole graph for

clarity and simplicity. Likewise, although it seems quite trivial to expand the basic

de�nition to include directed graphs, and by doing so open up the possibility of using

asymmetric games like the Ultimatum Game, I will restrict myself to undirected

graphs for this research.

Finally, we can go on to de�ne mobility:

De�nition 9 Each player has exactly one associated vertex. We say player i is

`at' vi if i is associated with a given vertex vi. i is `adjacent' to j i� there is an

edge between vi and vj. t is an integer which increments with each iteration of G

until tmax is reached. In each iteration, each i ∈ n plays each game Mik with k, for



2.5. Classic Strategies 22

each player in N(i). After each player has determined their ai, the joint action −→a

is revealed and payo�s are allocated to all players according to mik(−→a ik) for each

m. Next, each player speci�es an ordered list Li of players in N(i) plus i. (This

is equivalent to the list Lvi of vertices associated with players in N(i) plus vi. The

complete set of lists L is used as input to a restricted variant of the Stable Marriage

Problem [21], and a maximal assignment R is sought. Then R is applied to G, t is

incremented, and the next iteration begins.

The choice of Li can be considered as either a decision occurring after all games

have been played in a round, which is more naturally intuitive, or as strategic choice

occurring within the bounds of a single game, which helps clarify that its speci�-

cation is an expression of a player's type. The mobility algorithm will be detailed

extensively in Chapter 5.

2.5 Classic Strategies

I selected a wide range of simple, pre-existing strategies to populate my simulations

and provide a starting point for the development of more interesting types. Though

much of the history and usage of these strategies is within the Prisoners' Dilemma,

these strategies can be adapted in relatively obvious ways for other games� for

instance, `EverDove' in the Ultimatum game would always make fair o�ers and

accept any o�er. The strategies are as follows:

• EverDove - Always plays cooperatively. Also known as `AllC'.

• EverHawk - Always plays non-cooperatively. Also known as `AllD'.

• Grim - Always plays cooperatively until the opponent defects, and defects

each step thereafter. Also known as `Grudge'.

• Tit-For-Tat - Initially plays against each new opponent cooperatively. There-
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after, repeats the last action they played against it back to them in each round,

using memory of older games for the �rst play of each new game. Also known

as `TFT'.

• Tit-For-Two-Tats - Plays the same way as `Tit-For-Tat', except that it only

switches to defecting after two consecutive defections from its opponent. Also

known as `TFTT'.

• Pavlov - Initially plays against each new opponent cooperatively. Thereafter,

repeats the action it played previously, unless the outcome of the previously

chosen action was undesirable (that is, mutual non-cooperation, or the oppo-

nent betraying it while it tried to cooperate), in which case it instead selects

the other action. Also known as `Win-Stay-Lose-Shift'.

• Tester - Plays the same way as `Tit-For-Tat', except that it sometimes defects

with small probability rather than responding to whatever its opponent did

last round. If it does defect, it will continue to do so until its opponent also

defects.

• Random - Randomly chooses between cooperating and defecting each round

for each game.

As part of integrating the ideas represented by these strategies into my model, I de-

vised an appropriate movement schema for each of them, in addition to combining

and developing them into new types more suited to the environment I was develop-

ing. This will be discussed in Chapter 4 when we look at the player types used in

more detail.



Chapter 3

Literature Review

The literature I have analysed prior to and over the course of this research is drawn

from a broad base of game theory, psychology, distributed computing, graph and net-

work theory, evolutionary biology, anthropology, as well as more generalised math-

ematics and statistical modelling. In this section I review a cross-section of this

work in detail, which provides background and motivation to many of the decisions

made within this thesis. I have grouped related papers into rough categories for

ease of reading, though much of the work here is di�cult to place in a single dis-

cipline. For instance, Maynard Smith has noted that "`paradoxically, it has turned

out that game theory is more readily applied to biology than to the �eld of economic

behaviour for which it was originally designed"' [22].

3.1 Game Theory

Game theory can also be described as `interactive decision theory', or `behavioural

theory'. It broadly looks at interactions between agents, and the decision-making

processes they invoke to determine how best to interact with one another.

24
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Graphical Games (Kearns 2007) [11]

This is the main paper outlining the pre-existing graphical games model (without

mobility). Graphical games are a subset of all possible games, and all games can

be viewed graphically, in the worst case, as a complete graph. This is important,

as it proves that any and all results applicable to games in general will also be

applicable to graphical games� and, by extension, mobile graphical games, due to

the possibilities for conversion between the two I outlined earlier.

The advantages of graphical games are described as threefold:

• The relatively compact and sparse structure of graphical games is derived from

several restrictions on an otherwise large and unwieldy game. By exploiting

the nature of these restrictions, more e�cient computation of certain problems

can be achieved.

• They are a potentially fruitful area for further research, due in part to similari-

ties to models of probabilistic inference such as Bayesian and Markov networks.

• They �provide a powerful framework in which to examine the relationships

between the network structure and strategic outcomes�. This is particularly

noteworthy, as it describes almost exactly the tool I need to address my central

research question.

Potential applications of `correlated equilibria' are discussed, in which a trusted

party picks an outcome in a game and tells each player what action to perform to

ensure it occurs. However, this is only e�ective, and indeed desirable, if no player

has an incentive to deviate from the action suggested for them assuming that no

other players will deviate from their own suggested actions� in other words, if the

chosen outcome is a Nash equilibrium.

For example in the game of Chicken [23], both players would prefer not to swerve,

but face a relatively catastrophic utility hit if neither does. By adding a single
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random bit observable to both players, we can de�ne a very basic protocol which

suggests that one player swerves while the other continues straight on depending

on the value of the bit. If each player assumes the other will follow the course of

action suggested for them, they can perform no better than by performing their own

recommended action. A similar, every-day example of such a scenario is a tra�c

light (the trusted party) telling one car (the �rst player) at a crossroads to go and

another car (the second player) to wait (and in doing so, recommending an action

for each of them to take).

I considered using a form of this to give agents some limited, more easily-digestible

information about the state of the population beyond their locality. However, this

would disadvantage the more aggressive, predatory strategies which most other play-

ers aim to avoid, as well as complicating the investigation into the fundamental

dynamics of mutable populations.

This paper also contains detailed description and analysis of several known algo-

rithms which e�ciently compute the Nash equilibria of graphical games, particularly

on highly restricted graphs such as trees. However, as there has been no work done

into examining how the addition of mobile agents alters the nature of a graphical

game, all of these assume that the players' positions on the graph and strategic

types remain �xed, and so are of limited use to my own research.

Games on Grids (Nowak & Sigmund 2000) [24]

This work is something of a survey, covering many di�erent types of spatial games�

those in which the locality of one or more players is in some way a consideration�

and attempts to draw comparisons between them. Some of the elements I seek

to integrate into my model have been analysed in relation to known systems� for

instance, the e�ects of noise on some di�erent player types, and how the complexity

and e�ectiveness of other types changes with varying amounts of memory.
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Although there are a few known results for some speci�c scenarios, the aggregation

of these has been hampered by their distribution across several �elds. For instance,

much discourse has been previously produced regarding whether `player types' are

most akin to `species', `individuals', or `genetic lines', as well as what exactly the

propagation of a type to a new node represents� but I believe that all of these are

di�erent ways of phrasing the fundamental question of `what is the best way to

determine the type of the player at a given node in a given scenario?'. I believe to

have sidestepped this dispute quite elegantly� my model should be able to success-

fully run simulations from all such areas, regardless of the nature of or driving force

behind the mobility.

It is important to note that, due to the complex interplay between di�erent pa-

rameters, there cannot really be considered to be a single `de�nitive' version of any

matrix-form game such as the Prisoners' Dilemma. Altering the precise values of

the payo�s even slightly can produce a very di�erent equilibrium, while keeping

the fundamental nature of the game unchanged. Graphs are provided showing how

qualitative and entirely unintuitive state-changes can emerge in the behaviour of the

overall system, arising from very minor quantitative di�erences in initial con�gura-

tion. As the e�ect of varying these payo�s has already been explored, I will keep

them �xed in order to focus on the other parameters I've identi�ed in my research.

Beyond Nash Equilibrium: Solution Concepts for the 21st

Century (Halpern 2008) [25]

Halpern identi�es three major faults with the concept and general application of the

Nash equilibrium:

• It cannot account for `faulty' players (those choosing, for whatever reason,

strategies which would classically be termed `irrational') or coalitions of col-

luding players.
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• It does not take into account implicit costs of computation.

• It assumes all agents have perfect knowledge of the game.

However, it seems self-evident that most real world situations (which I aim to model)

include one or more of these aspects. Though all mathematical models must include

some amount of simpli�cation by necessity, these are quite signi�cant structural

issues, which I believe are, at the very least, improved upon in my model:

• Real people tend to have complex utility functions, including factors such as

disproportionate altruism towards their `friends' and possibly spite towards

their `enemies'. They're also likely to collude with these other players for

mutual bene�t where possible, even in situations where the penalties for doing

so are relatively high.

• Real people simply do not weigh up every possible action, reaction and inter-

action which could have an impact on the outcome of a scenario. The `cost

of computation' for humans is akin to the amount of `e�ort' that the person

expends trying to decide which action is best.

• Real scenarios are almost never fully explained to or understood by all par-

ticipants in them. No one can ever really have `perfect' knowledge of any-

thing but the most simple real-world situation to the same extent that this

term is employed in academia. Furthermore, even these simple situations can

be misinterpreted or misunderstood, even if such information is theoretically

available.

Halpern also suggests that the dissonance between predicted and observed results

in game theory is due to these three factors. For example, in �xed-length iterated

Prisoners' Dilemma, calculating the Nash equilibrium requires performing back-

wards induction, a task which could be reasonably expected to be challenging for

inexperienced human players. Because of this, players may `incorrectly' play other
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strategies such as Tit-For-Tat, or cooperating in all but the �nal turn.

This is interesting because it provides a testable hypothesis for the classically ob-

served `irrational' behaviour of players in such games. If this is the case, then by

providing the players with more processing power in the form of more time and less

pressure to consider their actions, there should be a notable decrease in deviation

from the predicted strategies for these games. I have tested this hypothesis in the

course of my research, and will discuss these �ndings alongside my results in Chapter

6.

Coordinating Team Players Within a Noisy Iterated Prisoner's

Dilemma Tournament (Rogers et al. 2007) [5]

To commemorate the 20th anniversary of Axelrod's original competitions using the

iterated Prisoners' Dilemma, several new competitions were organised. As the only

change from Axelrod's original ruleset, each researcher was invited to submit mul-

tiple entries, rather than being limited to one as was the previous norm. Rogers at

al. proved their intuition that a team of colluding agents could outperform others

not just by unconditionally cooperating, but by adopting `master' and `slave' roles

to ensure some of the players on the team achieved extremely high scores at the

expense of the others.

As there was no explicit communication permitted between agents� a restriction

which I feel is absurd in experiments which are, at their core, about cooperation

and communication- the team had to use a pre-de�ned sequence of plays to identify

themselves to each other.

Finally, they show that this system of collusion is robust in a large number of

theoretical experimental structures, so long as multiple entries from each group are

permitted, as the `slave' players can actually outperform a fair number of other
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strategies overall by blindly cooperating with each other.

There is a question of how interesting this result is, as it is both well-known and

makes strong intuitive sense that colluding agents can outperform others in a wide

variety of situations [26] [27]. One could, however, make the argument that in the

real-world, agents often can and do make a strategic decision to collude, even in

circumstances where it risks severe penalties (such as criminal prosecution), due

to a considered and calculated attempt to achieve the large potential gains which

collusion can make available. As such, it would seem that any attempt to compre-

hensively understand real-world behaviour should also be able to understand and

account for the possibility of external collusion.

Though the arguments presented in this paper are persuasive, the form of collusion

studied here presupposes the existence of absolute trust between two or more players.

Though this is not completely beyond the realms of possibility in the real-world, it is

clearly so in the phrasing of most of the real-world scenarios we'd like to model, such

as business, economics, and competitive gaming. Even outside of these scenarios,

the question of absolute trust is problematic. As such, I decided to discount this

possibility in my research.

Allowing agents to naturally express their preferences through their type, strategy

selection, and free communication should provide the best system for modelling ex-

istent behaviour, as this provides the closest representation of how people actually

interact in such situations. In reference to the idea of meta-games (which I explain

further in Chapter 5), collusion is simply cooperation which occurs at one `level

higher' than usual, which, like any form of interaction between agents, can be suc-

cinctly represented by graphical games with mobility system I have designed� for

instance, by designing and running an additional simulation to model the discussion

and negotiation occurring between agents before the beginning of the scenario in the

previous model.
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3.2 Graph Theory

The structural core of the system I've designed is a classic `nodes-and-edges' graph.

These graphs have been studied for many years, and there are a large number of

known facts and techniques. Here I will expand on some which are directly relevant

to my contribution.

Bargaining Solutions in a Social Network (Chakraborty &

Kearns) [28]

This paper uses a variant of the Ultimatum game to study the impact of negotiation

across a graphical game. Players act `myopically'- based only on information avail-

able from the neighbourhood of the players they're immediately connected to. Edges

have weights corresponding to the amount of resource available for those players to

divide, but the special case where all edges have unit weight is frequently considered.

Although they assume that all players partake of the same global utility function, the

e�ect of di�erent global utility functions and models of rationality on negotiations

is discussed. I have used a simple linear global utility function, in which the utility

of each player directly corresponds to the magnitude of their summated payo� in

the �nal round (that is, players are una�ected by traits such as altruism or spite)

for my simulated agents. This means that each player is only concerned with their

own payo�� they do not `feel' better or worse depending on other factors such as

the payo�s of other players.

A general solution to the `network bargaining problem' of �nding a stable distri-

bution of a certain resource across the graph is sought. A distribution is con-

sidered 'stable' if each edge satis�es the given model of rationality. Additionally,

Chakraborty & Kearns are interested in how the topology of the network shapes the

�nal distribution.
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It seems reasonable that a player's strategy may change depending on whether they

have a dearth or over-abundance of opponents to engage with. A player with only

one link may choose to foster a cooperative arrangement with their opponent as they

have only a single potential supplier. Conversely, a player with many such options

could play more aggressively and attempt to extort a disproportionate amount of

resources from its neighbours, threatening to `go elsewhere' if its demands aren't

met. Indeed, this paper �nds that the relative `bargaining power' of a node can

be described by a function relating the size of its neighbourhood to those of its

neighbours' neighbourhoods.

The paper goes on to show that at least one stable equilibrium exists for all such

problems in both the `Nash bargaining solution' and `proportional bargaining solu-

tion' models. Unfortunately, the problem rapidly becomes intractable if every player

tries to integrate signals from beyond their locality into their strategy. Because of

this and other considerations, I opted to use myopic players in my simulations, who

can only observe events in their neighbourhoods and as such do not have access to

current information outside of that limited area. However, my results were still in

broad agreement that high bargaining power is correlated with utility gain, as I will

discuss in Chapter 6.

Power Exchange in Networks: A Power-Dependence Formula-

tion (Cook & Yamagishi 2002) [29]

This paper further explores the relationship between the number and magnitude of

potential payo�s and `structural power'� the bargaining strength of a player. It starts

by drawing parallels to classic network connectivity questions� the removal of one

node may adversely impact the �ow through the graph to a greater or lesser extent

dependent on a number of factors. Cook & Yamagishi demonstrate a correlation

between the nodes whose removal causes a relatively high impact on the maximal
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�ow, and the nodes with high structural power.

They describe situations in which each player may only form one deal, referring

to them as `negatively connected'. Structural power for a given agent in a given

deal is determined by the increase in utility over the `alternative' (typically zero)

for the opponent, and the best o�er the agent could get by negotiating elsewhere.

The Nash bargaining solution is approximated as each agent, over time, tends to

negotiate its most pro�table deal to the point where both agents receive amounts

directly proportional to their structural power.

This is referred to as the `equi-dependency principle', and it is concluded that the

equilibrium eventually reached will be in accordance with (and can indeed be cal-

culated by) this principle. It's worth noting that the links not used in negotia-

tion are nonetheless critical in determining structural power, and thus the eventual

equilibrium� these are referred to as `latent relations'. This means the entire struc-

ture of the graph must be considered at each step� no simpli�cation is possible.

The case where multiple deals can be struck in each time step� a `positively con-

nected' scenario- is also considered. Surprisingly, the determination of structural

power in this instance is not much more complex, simply comparing the weakest

deal in the set of potential deals to the deal in consideration, as opposed to the

strongest remaining deal in the neighbourhood. This occurs as it is the least prof-

itable deal which will inevitably be dropped in favour of the formation of a stronger

one if a �xed number of deals must be made.

This approach appears to provide a simple solution for playing games across a pop-

ulation in a positively connected manner. It yields satisfying holistic results while

accounting for network topology and relative bargaining power, and does so itera-

tively and with reference to other players. It should also be noted that `structural

power' is very similar to the notion of `bargaining power' presented in `Bargaining

Solutions in a Social Network' [28].
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Finally, Cook & Yamagishi note that �While the original motivation of de�ning

graphical games was computational, we believe that an important property of the

model is that it enables an investigation of many natural structural properties of

games.� This idea provided my motivation for many of the changes I made to

Kearns' original formulation of graphical games, in order to emphasise and maximise

those natural structural properties of the graphical gaming model which enable this

investigation.

The Local and Global Price of Anarchy in Graphical Games

(Ben-Zwi & Ronen) [30]

The `price of anarchy' (or `PoA') is the ratio between the `worst' possible Nash

equilibrium (that is, the one which provides the lowest total payo�s across all agents)

and the optimum social welfare (that is, the course of action which provides the

highest total payo�s across all agents) for any given game. Conversely, the `price

of stability' is the measure between the best possible Nash equilibrium and the

optimum social welfare.

This research presents these as natural measurements of games and, indirectly, as

natural measurements of the strategies with which these games are played (via Nash

equilibria), arising whenever myopic agents act sel�shly. In a standard graphical

game (without mobility), the `local price of anarchy' is a measure of the e�ect in

a speci�c locality of a graphical game. By comparing this to the global price of

anarchy, inferences can be made about both the game and its topology:

De�nition 10 Let G be a graphical game. The local price of anarchy of a set of

players Si is at least α, if for every set of actions of its neighbours, the PoA of the

induced sub-game is at least α. Let S = S1, S2, ..., Sl be a cover of V [G]. We say

that the local PoA of G with respect to S (LPoAS(G)) is at least α, if the local price
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of anarchy of every subset Si ∈ S is at least α.

The naming used is somewhat unintuitive� a game with a high price of anarchy

(approaching the maximum of `1') naturally produces utility near the optimal level,

and so does not lose as much when players act myopically and sel�shly. Similarities

can clearly be drawn between this and correlated equilibria� the total utility which

can be gained from a game can increase dramatically if players are able to coordinate

even on a rudimentary level.

Although this metric was mainly designed to help in evaluating certain computa-

tional properties of graphs, they are unfortunately not the ones my research focuses

on. However, a strength of this metric is that it can be assessed at any scale across a

graphical game� this is the `local' price of anarchy. I hypothesise a correlation should

exist between a low local price of anarchy and the proportion of agents attempting

to move in that locality, once mobility becomes a consideration.

Generally speaking, an agent in such a situation could expect their situation to

improve elsewhere in the graph, whether due to a di�erent structure, and/or a

di�erent distribution of player types. In the worst-case scenario when everyone is

acting sel�shly� which seems to be the fundamental assumption for most of the

situations I will be attempting to model (and a reasonable starting assumption for

cautious agents, such as humans, to make) they would still stand to gain. I have

tested this hypothesis and outline these �ndings along with my other results in

Chapter 6 later.

3.3 Psychology

As contributing towards attempts to model human behaviour in real-world situations

is one of my main goals, a brief review of human behaviour as it relates to the features

of the model I am designing should be helpful.
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Altruism, Spite, and Competition in Bargaining Games (Mon-

tero 2005) [31]

There are two opposing attributes which players can display; `altruism', in which

their utility increases with the increasing utility of other players, and `spite', in

which their utility increases with the decreasing utility of those players. The e�ect

of di�ering levels of altruism and spite on players in a range of di�erent scenarios

forms the focus of this paper.

Montero shows that spiteful or aggressive players fare better in bilateral negotiations

in which a deal must be reached, so long as their opponents are able to anticipate

their nature. In these situations the opponent, who is hoping for a deal with greater

utility than the `status quo', is willing to make concessions to the spiteful player in

order to ensure that any deal is successfully reached. Conversely, altruistic players

�nd it easier to make deals more quickly, as they're more comfortable accepting less.

However, the analysis of which type fares better is much more complicated in multi-

player games, in which players have some control over which opponents they form

deals with. The main dilemma is that, while altruistic players may be able to �nd

many more players willing to bargain with them, spiteful players are able to extort

much better payo�s from the fewer games they do play.

This paper focuses on such situations. In the �rst game studied, from three initial

players, any two must form a coalition which then splits an amount of money, while

the excluded third player receives nothing. Interestingly, both spite and altruism

cause a decrease in the average money gained by an otherwise sel�sh or neutral

player in this situation. The most spiteful player, who would demand the best

deal from negotiation, is excluded by the other two. Then the less altruistic of the

remaining players gets a larger share of the money from the coalition.

In the next game analysed, each of three players has an equal random chance of
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being the `proposer' in each discrete time round. The proposer makes an o�er of a

de�nitive split of some money to another player. If the second player accepts, the

two share the money and the third player receives nothing. If the o�er is rejected,

no one receives anything and a new round begins. The conclusion reached is that, if

all players are perfectly patient, altruism and spite have no bearing on the outcome

of such games.

However, in more realistic environments where players must reach an agreement

expediently or face decreased payo�s (modelling the common real-world occurrences

of time pressure and/or resource depletion), the altruistic players, who are happier to

accept any given deal so that some players will receive utility, fare somewhat better

by (counter-intuitively) acting `impatiently' and accepting early deals that others

would reject. They once again �nd themselves preferentially invited to coalitions at

the expense of the spiteful players, who would be happy to wait much longer for a

deal to be made. But if a player is too altruistic, the deals o�ered to them, and

gladly accepted by them, will be so unbalanced in favour of the proposer that it is

once again the more sel�sh players who fare best.

Some other results are brie�y mentioned, highlighting the fact that altruistic agents

may, in the right circumstances, increase the e�ciency of a population and even out-

perform spiteful players when both are paired with other altruistic agents. Although

other players can moderate their demands to �nd partners in multilateral negotia-

tions, altruistic agents will always be more popular opponents. In other words, a

known spiteful player can reduce their levels of spite, but will still be a less popular

opponent than a known altruist.

This research is also of interest as I will have a large number of agents who have a lim-

ited capacity to control their opponents by moving around a graph. My players will

generally display cooperative or aggressive types, which roughly correspond to the

idea of altruistic and spiteful agents respectfully� more so if the given situation can
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be modelled on di�erent levels. This closely mirrors the cooperative-vs-competitive

core of situations like the Prisoners' Dilemma, though operating one lever higher in

the pros and cons of selecting various types- I will expand upon these 'meta-games'

in more detail in Chapter 5.

In my preliminary experiments, I was concerned that the initial distribution of player

types across the population was causing dramatic variance in the �nal reckoning of

which strategies performed best. However, I am now con�dent that this is due to

the properties of the game played across the population. With something like the

Ultimatum Game, aggressive strategies could be less e�ective at repeatedly exploit-

ing the more altruistic ones, resulting in a more balanced dynamic distribution.

Ultimately, di�erent games can be used as di�erent models of interaction, causing

the system as a whole to display very di�erent behaviours and properties.

Behavioural Experiments on a Network Formation Game (Kearns,

Judd & Vorobeychik 2012) [6]

Three multi-stage experiments with 36 participants each were designed and carried

out to assess the performance of humans in collaboratively building a network to

solve a simple coordination problem. The players were tasked with ensuring they all

picked identically from one of two colours, but could only see the colours of those

in their neighbourhood, and could not communicate beyond publicly changing their

colour preference. Each player could incur some cost to create a new link to another

speci�ed player, which would only be subtracted from their �nal payo� if it was

positive. Some players had preferences, receiving a greater payo� if one colour or

the other was uniformly chosen� but all players received no payo� if the task was

not completed successfully.

The critical result presented is that the networks created by the human players

involved were poorly suited to the task at hand, and, in some cases, actively unsuited
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to it. This is despite numerous attempts to guide them into creating better solutions,

such as seeding the population with a pre-existing `good' network structure or the

structure from a previous experiment. The participants seemed generally unable to

use their greater capacity for foresight and planning to outperform comparatively

simple heuristic agents, and were in fact hindered by a variety of factors (including

the sel�shness of players who attempted to earn a greater payo� by defying the will

of the group as a whole, and those who attempted to conserve their resources and

maximise their potential payo� by purchasing as few edges as possible).

The results from these experiments strengthen my certainty that the outcomes of

my simulations using relatively simple, myopic agents (who cannot meaningfully

interpret events beyond their locality) should be generally representative of humans

operating in the same sorts of situations, as human players seem broadly unable

to leverage their more advanced cognitive faculties to assist with this category of

problems.

3.4 Alternative Models

Before settling on using the graphical gaming model as the basis for my research, I

investigated a number of other candidate systems. However, using graphical games

as the basis for my model had a number of advantages over other candidate systems.

Critically, the restricted nature of interaction in a graphical game enabled the natural

and intuitive addition of mobility while retaining straightforward comparison to both

the original model and deeper game theory. Additionally, graphical games have more

versatility than the other models, and are able to model a wider variety of existent

scenarios, without having to resort to some of the stranger examples used with other

models to justify their particular adaptations and idiosyncrasies.
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An Introduction to Population Protocols (Aspnes & Ruppert

2007) [32]

A `population protocol' is a model designed to simulate extremely basic agents with

a �xed number of states interacting unpredictably to compute some predicate on an

input initially distributed across the population. When two agents interact, they

both read each others states and update their own state in accordance with a global

transition function, aiming for all agents to eventually converge and stabilise on

the correct output. Such protocols are `uniform' in that they operate identically

regardless of the number of agents in the population, and `homogeneous' in that all

agents execute the same program and do not possess unique identi�ers.

De�nition 11 • Q, a �nite set of possible states for an agent,

• Σ, a �nite input alphabet,

• ι, an input map from Σ to Q,

• ι(σ), the initial state of the agent whose input is ι,

• ω, an output map from Q to the output range Y , where ω(q) represents the

output value of an agent in state q, and

• δ ⊆ Q4, a transition relation that describes how pairs of agents can interact.

To refer to the example presented in the paper, imagine a �ock of birds, with each

creature having a tiny, cheap sensor with a wireless transmitter attached to it. Each

sensor can assess the bird's health, and communicate with other sensors within

a meter, but has only linear memory. We wish to determine whether a certain

number of birds, or some percentage of the population, are ill. It is shown that this,

along with any other predicate expressible in Presburger arithmetic (`semilinear'

predicates) comprise everything stably computable by a general population protocol.
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`Fairness' is important in this model� interaction scheduling is typically considered

to be adversarial, and without some restrictions a subset of agents could be made to

interact in�nitely to the exclusion of all others. Clearly, this is not a good model and

could not be expected to produce reasonable results. Various conditions for enforcing

fairness, and their e�ect on the speed of computation, are assessed. Generally, it is

assumed that each possible transition occurs arbitrarily often.

Aspnes & Ruppert also de�ne an `interaction graph', which connects agents at the

vertices to other agents with whom interaction is possible (but not ensured). Re-

stricted interaction graphs are known to increase the computational power of the

model, in some cases even enabling it to simulate a Turing machine and compute

any predicate or function in LINSPACE� much like a graphical game. It is noted

that agents can be considered to be moving around the graph by exchanging their

states in this model, and examples of this being used to solve problems such as graph

colouring are provided.

It is easy to see how this could have formed a base for my research� my arti�cial

agents will be extremely simplistic, and although they will move around a graph

limiting their interactions, they cannot completely control with whom they interact

at each step. However, there are also a large number of �aws which render population

protocols unsuitable for further investigation. My agents are not homogeneous, as

each has a discrete type which is e�ectively initialised before play begins. They

are also unable to determine the disposition of their opponents clearly even after

interaction is completed.

Even Small Birds are Unique: Population Protocols with Iden-

ti�ers (Guerraoui & Ruppert 2007) [33]

This paper considers `community protocols', which are an extension of the popu-

lation protocol model. There is some criticism of the initial population protocol
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model, arguing that in even the most basic possible scenarios scenarios, agents are

able to recognise each other unless speci�cally prevented from doing so. Such a ca-

pability provides a number of demonstrable bene�ts to each agent's computational

power, and therefore the power of the whole system.

This would also appear to be both intuitively correct, and backed up by my own re-

sults showing that agents who recognise and respond to their opponents outperform

those which do not. As such, the main alteration is that each agent has a unique

identi�er in addition to the prior model. Guerraoui & Ruppert go to great lengths

to design a scenario such that the ability of agents to recognise others does not, in

and of itself, grant additional computational power� for instance, identi�ers cannot

be altered or operated on except to test for equality.

Despite the simplicity of this change, community protocols are notably more power-

ful than population protocols, able to compute any symmetric function in NSPACE(nlog(n)).

As a generalisation of population protocols, the formal de�nition is very similar:

De�nition 12 Let U be an in�nite set that contains a special symbol ⊥ and all

possible identi�ers. An algorithm where agents get inputs from a �nite set Σ and

produce outputs from a �nite set Y is speci�ed by:

• a �nite set, B, of possible basic states,

• a non-negative integer d representing the number of identi�ers that can be re-

membered by an agent,

• an input map ι : Σ→ B,

• an output map ω : B → Y , and
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• a transition relation δ ⊆ Q4, where Q = B × Ud.

As in the previous paper, there is much discussion of the various types of failures

which can be encountered by distributed systems and the robustness of these dif-

ferent models to them. This interesting problem lies outside the scope of my more

theoretical research.

It seems self-evident that, in any vaguely `realistic' example, players should be able

to recognise their opponents, even if only on the most basic level of whether or not

they've met a given player before and what the interactions with them were. This

enables more complex interactions to develop- for example, an intelligent, typically

cooperative player in a game with a player who is known to have played aggressively

in every prior game would do well to recognise that they should change their ap-

proach. In fact, I would argue that identity and recognition are essential aspects of

any iterated system, as agents will �nd it extremely di�cult to gauge how to react

to each opponent if they're unable to recall the relevant memories.

Population Protocols that Correspond to Symmetric Games

(Bournex, Chalopin, Cohen & Koegler 2009) [34]

Population protocols appears very similar to the structure of a simple game. In a

population protocol, agents interact in pairs according to some rules, and update

their states automatically according to the state each was in previously. In a game,

two players choose a strategy and receive payo�s based on the strategies chosen.

These similarities are investigated in this paper, which is an update of `Playing with

Population Protocols' from 2008 by the same authors [35].

`Pavlov' is a strategy for the iterated Prisoners' Dilemma in which the player begins

by cooperating and henceforth makes the same play as in the previous game, unless

they received a `bad' payo� (from mutual defection or from cooperating while their
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opponent defected), in which case the other strategy is used. Because of this fun-

damental behaviour, Pavlovian strategies are also known as `Win-Stay, Lose-Shift'

strategies. Pavlov is known to quickly stabilise into a wholly cooperative population

in any restricted graphical game, regardless of topology. Importantly, Pavlovian

behaviours are `Markovian', meaning their actions at each stage depends wholly on

the chain of previous actions from themselves and their adversary, which can be

implemented using the simple identi�cation and memory systems available to my

agents.

A simple construction is given to show that symmetric games can be associated to

Pavlovian population protocols without loss of generality. Pavlovian solutions to

classic problems such as logical AND/OR, leader election, and majority detection

are described. Finally, a proof by construction is used to show that any semilinear

predicate can be computed by a symmetric population protocol� in other words, the

requirement of symmetry between the players is not a restriction.

The simplistic, deterministic nature of Pavlovian protocols is attractive, as is the

ease of which they can converge and stabilise. I had initially planned to have roughly

equal numbers of di�erent types of agents in my populations to form a `default', `bal-

anced' population� however, my experimentation indicated that such a population

can cause unexpected and unhelpful results. For instance, a very simple player

which always defects and never attempts to move can attain perfect performance if

irrevocably paired with an equally simple agent which always cooperates and also

never attempts to move. As such, I decided to generally seed my populations with a

higher percentage of Pavlovian agents. When paired with various movement prefer-

ences, should help smooth out some of the extremes and produce more meaningful

results.
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Stochastic Games (Shapley 1953) [36]

A `stochastic game' is a two player simultaneous sequential game with a set of payo�

matrices. Each outcome of each matrix is probabilistically mapped to a subset of the

other matrices, including a non-zero chance of ending the game at each step (which

can alternatively be thought of as an additional mapping to a special matrix). When

an outcome is reached, the game transitions to another matrix in accordance with

the associated probability. There is a de�ned initial matrix, and whenever a matrix

is transitioned to, that matrix is used to de�ne the payo�s in the next step of the

sequential game. Payo�s accumulate throughout the course of a stochastic game.

De�nition 13 Assume a �nite number, N , of positions, and �nite numbers mk and

nk of choices at each position; nevertheless, the game may not be bounded in length.

If, when at position k, the players choose their ith and jth alternatives, respectively,

then with probability sij
k > 0 the game stops, while with probability pij

kl the game

moves to position l. De�ne s = min(k, i, j)ski j

By specifying a starting position we obtain a particular game Γk. The term `stochas-

tic game' will refer to the collection Γk = Γk|k = 1, 2, ....N .

Since s is positive, the game ends with probability 1 after a �nite number of steps,

because, for any number t, the probability that it has not stopped after t steps is not

more than (1 − s)t. Payments accumulate throughout the course of play: the �rst

player takes aij
k from the second whenever the pair i, j is chosen at position k.

This general framework contains several special cases which have been e�ectively

analysed elsewhere, such as games with temporally discounted payo�s and simple

matrix games with durations dependent on the strategies used. Conversely, the idea

can be expanded without loss of generality to an n-player game with a randomised

initial state. As such, a graphical game with a mutable structure is fundamentally

equivalent to a (very large) stochastic game, with each possible con�guration of the
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graph corresponding to a di�erent state and a di�erent matrix.

This would, however, require some rede�nition of the transition probabilities so as

to ensure, for example, that the simulation would run for a minimum length. As

graphical games provide a far more succinct representation with far fewer random

elements outside of the control of any agent, I decided to instead use them as the

basis for my research.

Urn Automata (Angluin, Aspnes, Diamadi & Fischer 2003)

[37]

Urn Automata are a precursor to population protocols, which retain many of the

properties of more classic systems but are clearly motivated by the search for solu-

tions to the same problems inherent in models of cheap, distributed computation.

The model consists of an `urn' containing tokens drawn from a �nite selection of

colours, a �nite-state controller, and an input tape. Tokens drawn from the urn are

done so at random, re�ecting the structureless, amorphous storage of a group of

anonymous distributed agents. As such, the model is inherently probabilistic.

De�nition 14 An urn automaton is a tuple (Q, q0,Σ, T,∆), where:

1. Q is the �nite set of states for the controller;

2. q0 ∈ Q is the initial state;

3. Σ ⊇ $L, $R is the �nite input alphabet;

4. T is the �nite token alphabet, that is, the set of available token colours;

5. ∆ is the �nite transition relation, which is a subset of Q × Σ × T ∗ ×Q × T ∗

×(L,−, R,ACCEPT,REJECT ).

A state of an urn automaton is a 3-tuple (q, x, i), where q is the state of the �nite-

state controller, x is a multiset of tokens from the token set T , and i is the position

of the input tape head, with the leftmost position assigned index 0. In an initial
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state, q = q0 and i = 1; and the initial contents of the urn are taken to be part of

the input.

A transition (q, x, i)→ (q′, x′, i′) can occur if there exists a transition (q, σ, t, q′, t′, OP )

such that: 1. The symbol in cell i of the input tape is σ;

2. The tokens in t are a submultiset of x;

3. The new urn state x′ equals x−t+t′, where addition and subtraction of sequences

of tokens from and to multisets of tokens are interpreted in the obvious way; and

4. Depending on the type of OP:

(a) If op is L, then i′ = i− 1;

(b) If op is R, then i′ = i+ 1;

(c) If op is -, ACCEPT, or REJECT, then i′ = i.

The model considered in the paper uses deterministic transitioning and uniform

sampling. It is also `conservative', in that exactly one token is added to the urn

for each one removed, and has `constant width', in that it always reads k tokens

sequentially before transitioning. Depending on the structure of the input, an urn

automata with n tokens can be at least as powerful as a probabilistic Turing machine

with log(n) tape cells. Some of the classic problems of population protocols such as

`leader election', in which a unique agent must be selected by the algorithm during

execution, appear here in a similar context� namely, ensuring there exists exactly

one token with a given colour.

The approach described in this paper is markedly di�erent from most others. The

idea of using a single, centralised memory to emulate an arbitrary number of dis-

tributed agents initially seems counter-intuitive, but could conceivably form the

basis of a model which addresses my goals. I considered the idea of using an urn to

model the general `atmosphere' of a population, particularly how frequently coop-

eration or competition was occurring, and using that to inform the future choices of

my agents.
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For example, some players could add `green' tokens to an urn when they successfully

cooperate, and `red' tokens when they are betrayed. Tokens could then be sampled

to determine whether or not an agent could reasonably expect to be betrayed in

a given round, and moves determined accordingly. This would be more akin to a

system of background chatter and overall perception of the environment informing

the agent's actions rather than any speci�c pieces of information.

However, this model assumes there is no structure whatsoever in the underlying

distribution, and doesn't have a way to associate known information or samples

to any particular entity. This is a level of anonymity even stronger than that of

population protocols, which has itself been challenged as unrealistically restrictive

[33]. Because of this, it seems unlikely that this model can be adapted to overcome

these limitations without a fundamental overhaul.

3.5 Cellular Automata

Cellular automata have many important qualities in common with graphical games.

The grids they take place on are similar or even equivalent to the model of restricted

connections used across a graphical game, and the simple propagation or replacement

of types across nodes is super�cially similar to agents negotiating to swap positions as

in my system. Most interestingly, cellular automata systems often display fascinating

and strongly emergent behaviour, and are renowned for creating extremely complex,

strongly stochastic behaviour based on the initial state of just a few simple variables

[38]. Again, this description could also be applied to the con�guration and resultant

behaviour of graphical games with mobility.
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Spatial Games and the Maintenance of Cooperation (Bonho-

e�er, May & Nowak 1994) [39]

A `spatial game' takes place across an n-regular graph. At each step, each agent

plays a game against every other agent in their neighbourhood. After this, each agent

assumes the type of whichever agent in its neighbourhood, itself included, performed

the best in the previous round. Alternatively, a less deterministic method can be

used, in which each agent assumes each type with probability correlated to how well

that type performed in its neighbourhood.

The issue of `discrete vs continuous' time (or, more commonly and correctly `syn-

chronous vs asynchronous' time) is discussed, and a similar conclusion to that of the

population protocols model is reached. I will explain these systems in more detail in

Chapter 4. Both having all agents play against all others agents in each time step,

and the introduction of truly continuous time, add complexity to di�erent parts of

the model. Having all agents interact fully with their neighbourhoods in each step

is, in addition, unrealistic for modelling most biological and social situations.

However, if one agent, chosen at random, interacts with its neighbours and updates

accordingly, a slight element of randomness is introduced, though simplifying the

overall model. Both systems appear to produce broadly similar behaviour (at least

in this scenario), but as there are some variations, I will include both in my model

and compare their e�ects on di�erent simulations in my results.

In the simplest case studied, with two agent types interacting deterministically on

a 4-regular grid with boundaries, the environment is very similar to classic cellular

automata such as `Conway's Game of Life'. The paper progresses to applying these

ideas to a more natural graphical game. On a 200 by 200 grid, 5% of the cells were

initially seeded with agents, and then an `interaction radius' r was used to limit the

neighbourhood of each agent to those within distance r.
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However, the patterns which emerged here were far more static, and tended towards

non-cooperative behaviour as r increased and the diameter of the graph consequently

decreased. This would correlate with known results from the n-player Prisoners'

Dilemma (also known as `The Tragedy of the Commons' to contrast it with the

standard 2-player version), which has an extremely strong attraction towards non-

cooperative behaviour as n increases [40].

The overall conclusion presented is that, for a surprisingly wide range of environ-

ments, cooperative and non-cooperative behaviours can rationally co-exist without

one or the other eventually gaining the upper hand and forcing the other to become

extinct, as might be expected. This is an excellent example of emergence, as it

uses �xed-type agents playing a very simple game, yet produces extremely chaotic

results, but ultimately stable- a description which can also be applied to my own

model.

Evolutionary Dynamics on Graphs (Liberman, Hauert & Nowak

2004) [41]

Evolutionary dynamics is a concept from biology which bears some resemblance

to concepts of strategies and dominance from game theory. It is concerned with

questions about the relationship between the quality of naturally arising mutations,

and the probability of that mutation propagating through and eventually conquering

a population, known as `invading' that population. This is described as the mutant

strategy `�xing' itself within that population. Similarly, an `evolutionarily stable

strategy' (or `ESS') is one which, for a given environment, cannot be invaded.

Initially the vertices of a graph are each given some colour. In each time step, a

vertex is selected with probability correlated to the `�tness' of its current colour to

copy its colour over another selected vertex. Fitness is a scalar value which can be

considered to be analogous to the strength of its type in a given environment� for
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example, we might describe Tit-For-Tat in the classic iterated Prisoners' Dilemma

as having high �tness. This second vertex is chosen with probability correlated to

the weight of the edge connecting it to the �rst vertex. The `Moran process' is a

special case which uses a complete graph with unit-weight edges.

`Drift' is the systemic characteristic of di�erent mutations moving haphazardly

throughout a population, while `selection' is the competing characteristic of mu-

tations persisting or vanishing based on their relative �tness. Interestingly, the

paper �nds that di�erent graph structures can have an arbitrarily large e�ect on

the relative power of drift and selection. For instance, a simple directed path graph

confers virtually no bene�t to advantageous mutations, ensuring they can never �x

themselves completely, while a star or super-star graph all but ensures bene�cial

mutations, no matter how slight, �x themselves in the population.

It is noted that, instead of using an arbitrary `�tness' criterion, the agents can play

a matrix-form game to determine if the reproducer successfully overwrites another

vertex. This alteration enables vertex colour to behave somewhat more like a player

type, implying a preference and strategy selection schema. However, as each vertex

with a given colour plays identically and the �nal result is binary (propagation or

lack thereof) this seems to be little more than an abstracted �tness criterion, using

the payo� matrix from game theory as a sort of `look-up table' of results.

However, these results demonstrate that carefully tuned network topology can have a

pronounced in�uence on which strategies will prove successful in a given population.

Unfortunately, this model fails to consider the situation of di�erent players being

relatively strong or weak against each other in di�erent situations, to say nothing

of the payo�s, preferences or positioning of individual agents as instantiations of a

type. However, their conclusion that `The vast array of cases [of game, graph, and

orientation] constitutes a rich �eld for future study' reinforces the notion that my

model is exploring an academically interesting avenue.



Chapter 4

Features of the Proposed Model

The model I've designed consists of a number of novel additions and alterations to

the basic graphical games model in order to create a new system, which is better

suited to simulating real-world scenarios. In this chapter I will outline the alterations

I've made, the form they take, why they should be considered as improvements to

the pre-existing graphical game model, and their potential e�ects.

4.1 Constant Features

After extensive experimentation and prototyping, a number of potential parameters,

features, and characteristics were chosen to remain �xed throughout the thesis as

follows:

1. Identity. If agents cannot be identi�ed then the relative potency of hawk

strategies increases, as they are likely to have a window of time with which

to exploit their new opponents whenever they change position before they are

identi�ed as non-cooperative, even by players who've already interacted with

them. As such, each agent is recognisable only by a unique identi�er, which

contains no information in and of itself. This enables agents to recognise others

52
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they'd played games with previously, and those they're playing against for the

�rst time.

2. Memory. If agents can be identi�ed, the possibility of agents having the abil-

ity to store their past encounters and choosing their strategies dependent on

previous interactions becomes open. Indeed, the use of memory would seem

to be a requirement for a complex iterated system to display interesting be-

haviour. The question then is how much should agents be able to remember?

Once again, there is a huge amount of information in the model which could

be considered tactically relevant� a player's total payo� to date, the number

of times a player has moved, even a complete history of all players strategies

in each game they've played.

This problem rapidly approaches intractability if even a small amount of this

information is evaluated by every player for every decision in every game. As

a compromise, in the basic model, each player will be able to �awlessly recall

their own play history with each other player. The agents can then use this

information to help decide their strategies and to make type inferences about

their opponents� if they've played aggressively for their past 100 interactions

with you, it would seem unlikely they're going to cooperate this time round.

Though human players have access to additional information, it appears they

do not make signi�cant use of it, as I show in my results later.

3. Perception. My agents are `myopic', in that they can see how many neighbours

they have and who they are, but not beyond their neighbourhood. They do

not observe the games others play or the results of those games. If each agent

were able to observe the payo�s and movements of all other agents in the

graph, and attempt to factor even some of these into their own strategies,

attempts to determine the causes of e�ects in the model would quickly bloom

into intractability. However, within each game, both players can perfectly
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perceive which actions were played (unless noise is applied, as described in the

next section) and the overall outcome.

As I discuss alongside my human experimental setup later, the data I gathered

showed that even humans tend not to consider occurrences beyond distance 2

(that is, further away than the other players their opponents are interacting

with), and even then only infrequently and when their capacity to control their

position is strong. This gives me con�dence that I can approximate human

behaviour and provide a robust framework, even with myopic agents.

4. Undirectedness. There doesn't appear to be any particular advantage to the

power of the model to include directed links and one-way relationships as a

separate feature. If desired, this functionality can be recreated by modifying

individual payo� matrices (such that, in a given situation, only one player

in�uences the actual payo�s from that situation).

5. Intelligence. My arti�cial agents are simple implementations of player `types'�

that is, strategies and approaches decided in advance. Agents do not attempt

to `map out' the graph or predict what sorts of players are likely to be occu-

pying nodes beyond their vision.

6. Topological Immutability. The possibility for the graph to somehow change its

structure during play was also considered. Although the number of vertices

could never be lower than the number of players, additional vertices could also

be added, leaving some vertices without players at each step. Extra edges could

be added or removed at various points. These mutations could be properties

of the graphical game itself, occurring randomly or when certain conditions

(such as time passing, or players achieving a certain score) were met, but

they could also be the result of strategies chosen by the players themselves.

Once again, the limited intelligence possessed by my simulated agents meant

that this addition did not meaningfully a�ect the results in my preliminary
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experimentation, and even human players appear unable to make consistent

use of this additional tool to improve their own situation in any signi�cant

manner [6].

7. Utility Functions. Speci�c players and/or types could have customised utility

functions, in which their �nal utility is no longer equivalent to the total payo�s

received. Common traits which can modify this include spite and altruism (as

detailed in Chapter 3), though more complex modi�cations are possible, such

as those based on distribution of types across the graph in a graphical game

with mobility. However, non-standard utility functions can be modelled e�ec-

tively through the use of player types. For instance, consider two similar types

which, when both confronted with the same unclear situation, decide to coop-

erate and defect respectively. From the point of view of an external observer,

who cannot see the internal workings to each agent's decision, this behaviour

is identical to two players of the same player type, but with somewhat di�ering

utility functions.

8. Fairness. In asymmetric games� those in which the players ful�l di�erent roles

and have di�erent actions available to them� the roles are assigned randomly.

To decide which pair of connected agents would be selected to play the next

game when asynchronous time was used, a random selection was made, with

a small additional weighting taking in favour of agents who have been waiting

longer since their last game. In any other instance where a player needed to

be determined for something (most notably movement negotiations), this was

determined randomly, unless otherwise speci�ed.

9. Fundamental Graph Structure. I have ruled out the use of loops (which connect

a vertex to itself) and multiple edges (which connect a vertex to another vertex

more than once), and addressed the consequent situation in which a player

would interact with themselves, back in Chapter 2. Multiple edges can be
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emulated satisfactorily using weighting.

10. Number of Players Per Game. Though many multi-player games are both

academically interesting and relatively unexplored, I decided to restrict my

examples to two player games, again to retain as much of the restriction on

interaction created by the graph structure as possible and the resultant clarity.

Fundamentally, however, it is already possible to model situations of this type

using the model I have created, by giving part of a larger, multi-player payo�

matrix to each 2-player game (as mentioned in Chapter 2). In addition, as

I will discuss with the notion of `meta-games' in Chapter 5, it is possible to

model more complex forms of interaction� such as multi-player games� by

instead considering the real-world situation leading to this interaction, and

modelling it at a di�erent stage or level.

11. Mobility. As the main addition to the graphical games model, agents will have

some ability to control their position in the graph. Generally speaking, as time

progresses, each agent's position in the graph will change, bringing them into

contact with new opponents and new strategies. As one of the main additions

of this research, many forms of mobility were investigated in the preliminary

stage (explained in more detail in Chapter 6), listed here from lowest to highest

levels of control by the agents:

• Agents move entirely at random at every step. There is no possible

di�erentiation in movement strategies between agents.

• Agents can indicate that they wish to move� if they do, they then move at

random as above. Otherwise, they remain stationary. Movement strate-

gies are reduced to a binary decision at each step.

• Agents can arrange to swap position with another agent. If they don't,

they remain stationary.
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• Agents can move to any adjacent vertex, displacing any other agent there.

In the event of multiple agents wishing to move to the same location, a

tie-breaking algorithm would have been used to get each agent as close as

possible to their desired location. Ideas from physical space could have

been incorporated, with displaced agents being `pushed away' from the

node the displacing agent previously occupied.

• Agents can directly specify any vertex to move to (including non-adjacent

ones), displacing any other agent there. Con�icts would have been re-

solved as above.

Ultimately, after lengthy preliminary experimentation, I decided to use `agents

arranging to swap positions with adjacent agents' in my model. There are

many reasons which make this the only satisfactory candidate form of mobility

for my model:

• It is su�ciently complex to model the two quintessential aspects of ques-

tions about voluntary change� �rstly, `should I act to change my present

situation?', and secondly `if I do so, then what manner of change should

I a�ect?'. These questions are simply not adequately captured in less-

controlled forms of movement.

• It does not require especially sophisticated and/or novel player types

to make use of it, compared to the stronger forms of mobility which

requires all players to understand and analyse not just their own situation,

but their probable situation in other potential scenarios in order to be

e�ective. Additionally, types would likely require at least some awareness

of the graph's structure to make informed decisions.

• It enables the structure of players' positions in the graph to be mean-

ingfully developed gradually over time despite the movement of agents

inside it. If agents can relocate to any position on a round-by-round ba-
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sis, there becomes little relationship between the distributions of players

from one round to the next, and it becomes much more di�cult to see

how to model or represent di�erent scenarios which we are interested in.

• It can always be computed locally. Each agent can ensure they move

according to the rules of the game, without central oversight, and in

a way which prevents exploitation. Agents can also easily enforce this

restriction on each other regardless of their myopia.

• It reduces what could otherwise be a very nuanced decision-making pro-

cess, depending heavily on the con�guration of the rest of the system,

down to a binary decision (in the �rst instance) plus selecting one of a

limited number of players or positions (in the second instance). This

retains the essence of the decision-making process and allows a huge vari-

ety of types to be expressed, while ensuring the problems which must be

solved within the model remain tractable. This is an extremely attractive

quality, as I aim for my system to successfully model a very large number

of possible scenarios without ever becoming overwhelmingly complex.

• By using a relatively simple and intuitive mobility mechanism, I lower the

chance of introducing idiosyncrasies into my system which will need to be

speci�cally accounted for in future work. As entities inhabiting physical

space, it seems both natural and fundamental that, in order to relocate

to somewhere further away, we must �rst pass through the intervening

space. This contrasts sharply with some of the �xed parameters found

in other models (such as agents being unable to be uniquely identi�ed in

population protocols.

• As both agents must consent to any swap, it allows for an additional

layer of decision-making which can be used to represent more complex

negotiation. This means that, in larger or more complex scenarios, any
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and all available methods of bargaining (such as o�ering resources or

making (potentially enforceable) promises about future actions) could

come into play very naturally as modi�ers for in�uencing this simple

decision-making.

In order for the swapping to occur, each agent produces an ordered list of its

preferred locations, including its current location. The problem of using these

lists to actually move the agents in this manner is e�ectively a restricted stable

roommates problem [42], which is discussed in more depth in the next chapter.

4.2 Con�gurable Features

Conversely, as a generic model which can be used to simulate a large range of situ-

ations, there are a correspondingly large number of parameters and settings which

can be con�gured to change the way in which the simulations will be initialised, exe-

cuted, and iterated. These features enable a wide variety of scenarios to be modelled

accurately:

1. Graph Structure The shape of the graph on which individual games are played

can have a dramatic impact on the simulation and its eventual outcome. A

variety of di�erent graphs were tested� most notably paths, cycles, stars, reg-

ular grids, loosely connected cliques, and complete graphs. Generally, the

important properties are the average degree of each vertex� that is, whether

or not the graph is `well-connected'� and the diameter of the graph. Higher

connectivity makes it more di�cult for cooperative types to form tight-knit

groups which exclude non-cooperative types. Higher diameter increases the

length of time before most players have played against each other at least a

few times, and so increases the window which aggressive strategies have to

exploit cooperative ones. Any size and structure of graph can be used.
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2. Timing System. Time can either be `synchronous' or `asynchronous'. With

synchronous time, every game is played across each edge in the graph simulta-

neously. Players cannot use information gained from one of their games in each

timestep in any others, or try to move until all the games from that timestep

are complete. Conversely, in asynchronous time, in each timestep an edge of

the graph is randomly selected and its corresponding game played. After this,

the agents involved update their memories and have the opportunity to try

and move. Note that some papers abuse the notation somewhat, referring to

asynchronous time as `continuous' when both timing systems are actually dis-

crete. Synchronous time is also referred to elsewhere as `discrete' or `parallel'

time, while asynchronous time is also referred to as `continuous' or `sequential'

time.

Asynchronous systems may behave somewhat more `realistically' in certain

scenarios� such as those concerned with more organic and/or �uid situations.

However, this comes with the (usually undesirable) possibility of some agents

playing many games in the same `time' it takes another agent to play just

one [39]. The addition of fairness conditions� such as those used for population

protocols� can successfully mitigate this.

More importantly for my model, synchronous time decreases the e�ective con-

trol of agents over their position for any given mode of movement by increas-

ing the chance that their information an neighbourhood they're travelling to�

which they used to inform their original decision� will be out of date and

more-or-less irrelevant by the time they actually arrive. As all agents move

simultaneously in synchronous time, the vertex they select to attempt to reach

(by whatever method) may have had its neighbourhood dramatically changed

by the time they get there. As such, I hypothesise that the use of synchronous

time in a simulation will behave analogously to increasing the di�usion (as out-

lined below), or a�ecting other changes which reduce agents' e�ective control
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over their movements.

3. Games and Payo�s. The games played across the graph can be any theoretical

or existent game. Though each edge of the graph could represent a di�erent

game, my model will use the same game across the whole graph to produce

more consistent results. Although the Prisoners' Dilemma was used for the

majority of experimentation as the basic results for it are well understood,

any single-stage, two-player game, including novel games, can be modelled as-

is using this system. A single-stage game is one where the entire game occurs

(or, alternatively, can be modelled as occurring) in a single moment.

For example, the `Ultimatum Game' and some simple variants of `Rock, Paper,

Scissors' were used during research, as shown in Chapter 2. In addition to

dramatically changing the nature of the game, more subtle adjustments can be

made to the payo�s for speci�c outcomes (for example, to make the `sucker's

payo�' for betrayal more or less painful) to investigate their e�ects on the

overall system. Even extremely complicated games with multiple stages can

be approximated for the purposes of modelling by considering which types are

naturally strong against which others, as explained more in Chapter 5 under

`meta-games'.

4. Player Types. A `player type' (or `type' for brevity) designates the probability

that a given strategy will be chosen in each set of circumstances. It is more

general than a strategy on a payo� matrix, as a player's type also incorporates

decisions related to the game outside of the game itself. Notably in my model,

this includes when and how to move on the graph itself. The basic model will

assume non-mutable types; that is, players which do not change their overall

strategic approach midway through the simulation.

This is analogous to human players selecting a `meta-strategy' to follow for

the entirety of the graphical game before it begins, or designing a �nite-state
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or Turing machine to play the game on their behalf, and should help keep the

e�ect of the graph structure's restriction on interaction clearly visible. Such a

machine or algorithm has access to all the same information (as input) as that

player would have at each decision-making stage. Each game has an arbitrarily

large number of e�ective player types� any possible construct of these forms

can be used. One of the central aims of this model is to determine the e�ec-

tiveness of di�erent types for their respective games in di�erent populations

of players, graph structures, and simulation environments.

5. Noise. This is a probability that an agent's action will be incorrectly reported

to their opponent (both directly and in their memory of that game), although

payo�s are still silently allocated based on their actual actions. Again, this

stands to advantage hawk strategies, as some of their exploitation will be

reported as cooperation and potentially engender a more open response from

their opponent. Conversely, a dove whose cooperation is reported as defection

may face undeserved retribution from their opponent. Typically a low level

of noise (around 5%) will be used, as this opens up more varied behaviour by

emphasising the strengths and weaknesses of several of my core types.

6. Initial Distribution. This is the initial position of individual players, and thus

the distribution of types across the graph. I used three general distribution

types: `clustered', in which agents were preferentially placed adjacent to other

agents which shared a type, `spaced', in which agents were preferentially placed

adjacent to other agents with a di�erent type, and a wholly random distribu-

tion. In simulations involving a large number of di�erent types, I placed each

type into a broad category� cooperative, aggressive, or neutral- and preferred

agents be placed next to others of the same category as a secondary criterion.

7. Population. Di�erent numbers and proportions of each player type were used

in di�erent simulations, which led to di�erent densities of strategy within the
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graph and population. Any number of players, each with any type, can be

used, ranging from a population composed entirely of a single type through to

each agent having their own unique type.

8. Duration. The model can be iterated for any number of rounds. It's worth

noting that one round of synchronous time will consist of every game being

played, whereas only a single game is played during a round of asynchronous

time. To correct for this, I'll treat one round of synchronous play as being

equivalent to a number of rounds of asynchronous play equal to the number

of edges in the graph when comparing the two directly.

The use of �xed-duration simulations can cause some issues, such as invit-

ing classical backwards-induction to conceptually reduce the game to a non-

iterated format, or, more practically, increasing the probability that agents

will temporally discount their payo�s, and so change behaviour and become

more aggressive as the end of the simulation approaches. Though this was oc-

casionally observed with my human experiments, my simulated agents simply

weren't complex enough to attempt this behaviour, and a simple correction is

to not inform the players how many rounds the simulation will run for.

Note that, unless I was speci�cally investigating a property related to long

duration, I did not run each simulation for an arbitrarily high number of rounds

until it converged into a more-or-less stable distribution. Fundamentally, not

all simulations converge, such as those with high di�usion or a large proportion

of especially mobile types (as a trivial example, consider any simulation with

100% di�usion or composed entirely of `Random' agents).

Each simulation goes through a variety of qualitatively di�erent behaviours as

time passes, and agents learn more about their opponents and expend e�ort

to situate themselves relative to `good' opponents. It is the progression of the

di�erent agents in these di�erent situations which is of most interest to me,
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as this informs the understanding of both the model and the scenarios it is

modelling, rather than the form of the eventual stable distribution, which is

more related to computational questions.

9. Di�usion & Anti-Di�usion. Similar to noise, di�usion is a probability for

an agent to involuntarily move at random, instead of according to its pref-

erences, representing general chaos and uncertainty in a scenario. Di�usion

could also be modelled as a temporally increasing payo� o�ered to agents who

move away from their current position, incentivising movement in otherwise

disadvantageous situations. As I'll discuss in Chapter 6, di�usion typically

disproportionately advantages hawk strategies, as doves tend to fare better

when they can stay adjacent to other doves for long periods of time.

As the converse of di�usion, the mobility of agents may be impaired. This can

be modelled by having some percentage of movement attempts fail, much like

di�usion causes some percentage of attempts to stay stationary to fail. After

my experiments with humans, I added a few more speci�c implementations of

this feature to model risk-aversiveness in the population, namely the ability to

begin with a high level of anti-di�usion in the population which decreases over

time, and another which makes speci�c agents less willing to move depending

on their rough expectation about the amount of unknowns in their would-be

new environment, determined by the number of edges at the new vertex which

aren't shared with the agent's current vertex.

Both forms of di�usion can be considered as a form of `meta-noise', creating

uncertainty in opponent preference just as noise creates uncertainty in strate-

gic preference. In practice, I kept both di�usion and anti-di�usion coupled by

using a third parameter which completely randomised a given agent's move-

ment preferences with some probability. This could result in an agent which

wished to stay still moving, or one which wished to move staying still.
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4.3 General Impact of Mobility

Before I can begin to outline how I added my idea of `mobility' to the graphical

gaming model, we should �rst prove that it could have any impact on graphical

games to which it is added. In order for this to be true, there must be enough

variety in the types of players in the whole game that a player could realistically

alter their prospects by moving `well' or `poorly', and by doing so come into contact

with di�erent types. More generally, viable mixed strategies should exist for the

games to be played which are, in some way, strong against some other strategies,

and weak against others.

The simplest demonstration of this would be three strategies existing in a cycle,

such that `A' is strong against `B', `B' is strong against `C', and `C' is strong against

`A'. A demonstration that such a scenario can and does exist in the real-world is

trivial in the game `Rock, Paper, Scissors'. At least three such strategies exist for

the iterated Prisoners' Dilemma, which forms the basis for almost all my research.

First, we must de�ne what we mean when we say one strategy can successfully

`invade' another. This means that the second strategy is outperformed by the �rst

strategy, when a smaller number of players using the �rst strategy is introduced into

a homogeneous population using the second strategy, for a given comprehensive

method of determining individual competition. This criterion of invasion is the

default which I will use for determining whether one strategy is strong against

another, given the huge number of possible con�gurations and sub-scenarios which

can arise from using this model, unless otherwise speci�ed.

A population of EverHawks can be successfully invaded by a group of Tit-For-Tat

players, as they can successfully cooperate with each other, but remain hostile to

the hawks [4]. Then, a population of Tit-For-Tat can be invaded by Pavlov, so long

as there exists a small amount of noise in communication. Tit-For-Tat is unable

to recover from miscommunication, resulting in runs of alternating backstabbing
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against itself, whereas Pavlov rapidly recovers from such mistakes, and all agents

otherwise freely cooperate [43] [44]. Finally, Pavlov can be invaded by EverHawks,

as its alternating cooperations and defections in a hopeful attempt to �nd a better

equilibrium are repeatedly exploited by the simpler strategy [45].

So, The Prisoners' Dilemma� a game used the world over for its simplicity, in which

there are only two discrete options available to each player at each step� contains

this cycle of three strategies. This demonstrates that any existent (and much more

complex) game is almost certain to contain this same situation, or something com-

parable to it. If a game contains any scenario which reduces to or even resembles

the iterated Prisoners' Dilemma at any point, this example will also apply to that

game. As such, we can conclude that any addition which gives players an option to

`move towards' and increase their chance of interacting with players they are strong

against, while `moving away from' and avoiding those they are vulnerable to, will

have a noteworthy impact on the execution of the game.

A great many systems display emergent behaviour which would appear to be much

more complex than their simple rules could generate alone, particularly when in-

teraction graphs are involved. Cellular automata are excellent examples of this, as

they can generate a bewildering array of complex shapes and high-level interactions

from just a few very simple rules of binary interaction on a regular grid. The classic

example of such a simulation is `Conway's Game of Life' [46], which despite being

discovered over 40 years ago is still not fully understood [38].

Another illustration is the phenomenon of real-world tra�c congestion, which is

fundamentally a network �ow optimisation problem, but has so many interacting

component-problems that it has a vast array of relatively complex mathematics at

its core [47]. These emergent phenomena provide additional evidence that even

the simple scenarios will contain some pattern which reduces to this basic cycle of

strategies, such that the addition of mobility is certain to have a signi�cant impact
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on the resolution of an otherwise standard graphical game.

Of course, mobility will have a reduced impact in any scenario where each agent can

alter its own type or other inherent preferences- for example, an intelligent agent

which could determine its opponent is resolutely non-cooperative could change its

overall approach to incorporate this new information. However, such an agent would

still, in all likelihood, expend e�ort to �nd a more cooperative opponent if possible,

as doing so would likely improve its overall situation.

Although many agents, particularly humans, do alter their types during play in this

manner, they also tend to have a general type preference in how they approach the

game and conduct themselves within it, while remaining within the framework of

maximising utility. One need only glance at any complex, real-world game to see

that its experts, while each playing to win, each have their own unique strengths

and weaknesses which lead to preferred strategies and types of opposition.

4.4 Types of Mobility

Various types of mobility were designed and tested by simulation in the preliminary

investigation stage before the �nal implementation of mobility in my model was

settled upon.

The �rst type of mobility considered was the most freeform, allowing any agent to

attempt to move to any position on the entire graph. In the likely event of con�ict

for a position, agents would have been moved to vertices with minimal distance

from their desired position, or brokered swaps like the current model. However, the

situations this system created were very abstract and not particularly useful from a

game theoretic or behavioural modelling point of view, as each agent was essentially

asked to calculate the optimal position for its type in the current graph (regardless

of its unique experiences or immediate environment). To prevent all agents coming
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to the same conclusion, knowledge of the system needed to be somehow restricted to

each individual, yet, simultaneously, they needed to understand and act on all the

information available in the remainder of the simulation in order to make `intelligent'

decisions. This form of mobility ultimately proved unworkable and was discarded.

Another possibility was to disassociate the paths along which games are played from

those along which movement occurs. An early prototype involved agents negotiating

to form pairs which only played with each other. This could be considered as a

special case of the current model, e�ectively a `forest' or group of `disconnected

pairs'. In practice, each node would be connected to every other by value 0 links,

(ensuring that games are played with all other players, but do not a�ect each agent's

payo�s) except for the partner, which would be connected as normal.

De�nition 15 Let there be a pair (G,M). G is an undirected, weighted graph over

the vertices 1, . . . , n, where n/2 = 0. m is a symmetric game matrix. For simplicity

and without loss of generality, we assume all Mij ∈M are identical to m. For each

agent j in N(i) (which does not include i), and any joint action −→a between i and

j, the payo� for player i is mij(
−→a ij). Each vertex is connected to each other vertex

by a 0-weight edge, except for i where i/2 = 0, which is connected to i + 1 by a

unit-weight edge.

Again, similar problems arose� as time went on, each agent gained awareness of

the optimal partner for their type, abstracting the question at the heart of the

simulation far above how a particular agent will act in a particular situation. The

lack of structural detail in both these systems also made it di�cult to model speci�c

real-world scenarios with �delity.

Finally, a prototype was created in which agents could negotiate a movement to

any adjacent node, so long as its current occupier guaranteed it would be vacated

during the movement step, and that they had not made the same o�er to another

agent. This enabled long cycles of movements to occur, even if some of the agents
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involved in the movement were not adjacent to each other. For instance, in a ring

graph, each player could move to the adjacent `clockwise' or `anti-clockwise' position

simultaneously, if all players agreed to do so.

However, this system had a number of downsides. Global oversight and moderation

would be needed to extend the algorithm used to real-world situations� and such

oversight is often non-existent and/or prohibitively costly to achieve. Additionally,

due to the limitations of the intelligence of the agents, the results observed from

this method were almost identical to those observed using the �nal method of di-

rect, adjacent swaps only. By combining these investigations with the higher-level

considerations discussed earlier, I settled on the system of mobility I ultimately

implemented for the remainder of this research, which I describe fully in Chapter 5.

4.5 Player Types

Based on the well-known existing strategies and approaches commonly used in the

Prisoners' Dilemma which I discussed earlier in Section 2.5, I devised the following

player types which were used in the bulk of my experimentation:

• EverDove - Always plays cooperatively. Prefers to stay where it is, orders

remaining nodes randomly.

• EverHawk - Always plays non-cooperatively. Prefers to stay where it is, orders

remaining nodes randomly.

• DoveShift - Always plays cooperatively. Prefers to move to any other node at

random, placing itself last.

• HawkShift - Always plays non-cooperatively. Prefers to move to any other

node at random, placing itself last.

• DoveTilHawk - Always plays cooperatively. Orders other nodes randomly, then
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inserts its current node into the rankings depending on how many opponents

defected against it last round. For example, if 1 out of 3 opponents defected,

it would rank its current position approximately one third of the way up from

the bottom of the ranking. It will always prefer to move if all opponents defect.

• HawkTilHawk - As with DoveTilHawk, but always plays non-cooperatively.

• Tit-For-Tat - Initially plays against each new opponent cooperatively. There-

after, repeats the last action they made against it back to them in each round,

using memory of older games for the �rst play of each new game. Prefers to

swap with players it recently cooperated with. This allows it to respond to its

opponents and encourage cooperation by competing and gaining retribution

against players who compete against it.

• Tit-For-Two-Tats - Like Tit-For-Tat, except that it doesn't begin to play non-

cooperatively against its opponents until they defect twice in a row.

• Pavlov - Initially plays against each new opponent cooperatively. Thereafter,

repeats the action it played previously, unless the outcome of the previously

chosen action was undesirable (that is, mutual non-cooperation, or the op-

ponent betraying it while it tried to cooperate), in which case it instead se-

lects the other action. More formally, it switches actions if it failed to get at

least 50% of the theoretically available utility from that action on the previ-

ous round. Pavlov has the interesting property that any population consisting

solely of Pavlov players, regardless of size, distribution, connectivity, and start-

ing moves, stabilises with permanent universal cooperation within two rounds

in the absence of noise. Moves using the same approach as DoveTilHawk.

• Random - Randomly chooses between cooperating and defecting each round

for each game. Moves randomly.

• Hunter - Always defects. Keeps a list of agents who it has historically scored
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well against. If it is adjacent to such an agent, it does not move� otherwise

it moves, ideally towards the last known position of an agent it scored well

against.

Additional, more basic player types were used in early experiments, such as `Grim',

which never moves and plays cooperatively, until an opponent betrays it, at which

point it will never again cooperate with that player. Many of these were incorporated

into more advanced player types� for example, DoveTilHawk, which cooperates and

generally stays close to a given player until they start to defect, can be seen as an

amalgamation of Grim and Tit-For-Tat.

It is possible to use this concept to model behaviours observed in human players

which have traditionally been considered to be `irrational', such as cooperation in the

non-iterated Prisoners' Dilemma. This is achieved by by altering the relationship

between the payo�s awarded in games and the utility ultimately received by the

agent. For example, an altruistic type might receive a fraction of the utility awarded

to its opponents, whereas a spiteful type could receive a �at bonus when an opponent

is successfully exploited. For mobility, a particularly mobile type might receive

utility whenever it completes a swap, while a notably static type could be rewarded

for remaining motionless.

Though I investigated this possibility in my preliminary experimentation, it is not

clear that this feature in-and-of-itself grants any additional power or reach to the

model as a whole. More importantly, through my research I have aimed to under-

stood the behaviour of human players and show how, in the correct environment,

their bene�cial quirks can be explained as bene�cial, rather than simply hamstring

arti�cial players with an uninformed interpretation of these quirks themselves.
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4.6 Example Con�gurations

For illustrative purposes, I've included a few representative con�gurations and set-

tings of the model's features below. The reasons behind these con�gurations illus-

trating these particular properties are detailed throughout this thesis. Any reader

interested in investigating this model themselves could perhaps begin with one such

con�guration and, much like I did, alter the settings one-by-one until a more com-

prehensive intuition of the behaviours of this complex model is achieved:

Figure 4.1: Sample Con�gurations

4.7 Reduction

The fundamental mathematics underpinning a graphical game with mobility can

be modelled using a number of existing methods. Most fundamentally, they could

comprise an n-dimensional nested payo� matrix(where `n' is the number of players),
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in which each combination of strategies not only allocates payo�s, but also leads to

a new payo� matrix with updated values to re�ect the repositioning undertaken by

the agents. However this repositioning does, in and of itself, introduce an additional

multiplier to the branching factor of the game, even before the players' chosen

strategies are considered.

Because of this huge branching factor, such a formation rapidly approaches such a

high level of computational complexity as to be intractable. Speaking practically,

this system is so overwhelmingly unwieldy as to be near-impossible to work with.

The depth of the nested payo� matrix is equal to the number of rounds in the game,

as after each game we need to transition to a new matrix representing the current

position of each player, their score, and their interaction history with each other

player. The branching factor for this has a trivial lower bound at the number of

games being played multiplied by the number of unique outcomes for each game

(which is itself obtained by multiplying together the number of actions available to

each player).

For simpler agents which cannot meaningfully interpret their entire interaction

history to choose a course of action, a better comparison may be a �nite-state-

automaton, with each state encoding information about the position of each agent

and the `disposition' of each agent towards each other agent� such as whether or not

they're cooperating, competing, trying to swap with or away from, or any number of

other behaviours. However, this would still contain a number of states equal to the

factorial of the number of players, multiplied by the number of dispositions for each

agent, multiplied by each other agent they could posses each disposition towards.

The transition function also becomes rather inelegant when compared to the more

natural concept of agents moving between nodes.

Alternatively, the graphical games could be represented by, say, a rather complex

state transition diagram, with arrangements of the players on the vertices of the
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graph corresponding to states, the transitions to states dependent on the strategies

chosen by players, and the outputs relating to payo�s [48]. However, this would

once again be so large and clumsy as to be near-impossible to work with e�ectively.

There are many other existing systems which can theoretically model graphical

games with the addition of mobility, but, as outlined in Chapter 3, none can do

so succinctly in a way which aids comprehension. So, although the additions and

alterations I have devised do not, in and of themselves, increase the computational

power of the model, it does allow many more such situations to be understood

intuitively and the e�ects of elements within them on the overall outcome quanti�ed

in such a way as to be of practical relevance. Additionally, this reducibility to

graphical games without mobility means that results for more general games will

also apply to graphical games with mobility.



Chapter 5

Methodology

In this chapter I describe the methods by which results were obtained, both for

arti�cial and real-world agents. I will also explain precisely the system by which

these agents can utilise their new-found mobility and move around the graphical

structure in a fair and consistent manner.

5.1 Terminology

As some terms are used in di�erent ways in di�erent areas of the literature, and

could otherwise have potentially ambiguous meanings when used to refer to various

aspects of the system I've designed, it will be helpful to give some de�nitions speci�c

to this thesis before we proceed further:

A `player type' or just `type' is a meta-strategy for deciding which option to play

in each game, and how to rank nodes in the movement phase. This strategy may

refer to the agent's memory and past experience, but cannot be changed once the

game is underway� though more complex strategies which switch between discrete

modes, giving the appearance of a shift in strategy, would be possible. Though this

idea appears very occasionally in the literature [9], I have developed and re�ned it

75
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here as an important component of my model.

A `player' or `agent' is a speci�c instantiation of a type, situated within a graphical

game. The two terms will be used interchangeably here.

`Nature' is a term occasionally used to refer to events occurring outside of the agency

or control of the players. For instance, which card is drawn from a shu�ed deck, or

the initial position of a player when they is determined randomly.

A `round' is the period beginning with game/s being played, and ending after agents

have updated their position on the graph. Note that while only a single game will

be played each round in asynchronous setups, a game will be played along each edge

of the graph when synchronous time is used. As such, when comparing the two

directly, I will treat one round of synchronous play as being equivalent to a number

of rounds of asynchronous play equal to the number of edges in the graph, unless

explicitly stated otherwise.

`Playing dove', `cooperating', and `working together' are all synonyms for playing the

cooperative `C' option in the Prisoners' Dilemma, or, more generally, for choosing

an action which attempts to cooperate with your opponent/s. Similarly, `playing

hawk', `betraying', `backstabbing', `defecting', and `exploiting' are all synonyms for

playing the non-cooperative `D' option in the Prisoners' Dilemma or, more generally,

for choosing an action which attempts to take advantage of your opponent/s for your

own gain.

`Payo�s', `rewards', `penalties' and `utilities' are all treated as equivalent unless

otherwise speci�ed.

To avoid confusion between the applications of pre-existing strategy and the new

addition of mobility, I will mostly avoid using `move' to refer to the selection of a

speci�c `action' or `play' at a given point in a game, in favour of these latter terms.

Likewise, `strategy' refers to the algorithm used by each agent or type to select an
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action and move in given circumstances, not the action itself.

Even setting aside the question of how types are selected, there are still two levels of

games taking place in the system I have designed� the entire graphical game taken

as a whole including the application of mobility, and the selection of an option in

each individual interaction. Generally I will use `graphical game' to refer to the

former and `individual game' or simply `game' to refer to the latter.

5.2 The Meta-Game

The `meta-game' is a broad term used to refer to the notion of selecting a type before

an individual game begins, given some expectation of the type one's opponent/s

will adopt. As the name indicates, it is extremely similar to the classic notion of

choosing an action in a game based on the expectation of the action/s chosen by one's

opponent/s, but operating `one level above' it, hence the `meta' pre�x. Though an

important and well-understood concept among players of some real-world games [49],

the concept has not been well-explored academically.

As it is relevant to both my research and understanding game theory as a whole, I

will attempt to codify it here as part of my contribution. As the notion of meta-

games should be applicable to all multi-player games with type selection which have

multiple steps of interaction (thus creating an iterated component), it should also

be applicable to a wide variety of real-world games. As such, when codifying this

notion, it makes sense to speak as generally and generically as possible about what

constitutes a `game'.

All real-world games (that is, those more complex than the abstractions typically

studied in academic game theory) from ancient boardgames to the most complex

modern video games consist of multiple interacting elements, for example:

• Pieces, cards, units, and so on, which hold and represent di�erent pieces of



5.2. The Meta-Game 78

information.

• A board, map, or playing area to indicate the position and relation of those

elements.

• Hidden information, only viewable by a subset of players (possibly none).

• Rules, which exist to set limitations on what choices can be made by each

player as a combination of these elements (that is, players cannot freely change

the game state).

• The individual skills and styles of the players, such as being able to choose

a `good' action quickly, or thoroughly iterate through many possibilities to

determine a near-optimal action.

Not all games will have all of these, but even at this point, without making any

reference to any speci�c game, we can come up with some generic advice to players

in games.

Where possible, players should acquire hidden information, so that they are not

surprised and can select actions and strategies in accordance with this information.

Players should attempt to reduce limitations on their choices (such as by obtaining

resources, conserving existing resources, or moving pieces to positions from which

they have more possible moves) so that they have a wider range of possible choices

in future. Finally, each player should select a play-style (and, as my research has

shown, even a game) which matches their natural strengths� a quick player should

play di�erently (and play di�erent games from a methodical player), even if both

wish to accomplish the same goals.

Conversely, preventing your opponent/s from accessing hidden information (or con-

fusing their analysis by blu�ng), limiting their options, and trying to force them

into a position where they are unable to deploy their strengths, should all generally

disadvantage them (and thus advantage you). Already, we can see that a great
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number of features of games can be abstracted away, while still leaving the core of

competitive interaction intact.

Using chess as a more speci�c example, it is almost always good to have:

• More pieces than your opponent (a resource advantage)

• More powerful pieces than your opponent (which can attack many squares at

once, giving you more options in future turns)

• Your pieces in more advantageous positions on the board (such as in the centre

or towards your opponent's side, giving you more options and limiting those

of your opponent)

• Your pieces supporting each other (such that they are di�cult for your oppo-

nent to attack, ensuring your resources are maintained)

Most crucially, di�erent players have di�erent styles which can emphasise one

or more of these elements over another in ways which may initially seem

counter-intuitive, but which play to the innate strengths of their user. The

number of possible ways to play any game can be enormously large, and some

strategies may well be `stronger' (by a given metric) than others. However,

which strategy is the strongest and gains the most utility for a given player

employing it is dependent upon that player's innate skills and preferences� in

other words, their type.

For example, in Chess, the `fried liver attack' is a potent opening sequence

in which a player attacks so aggressively that they lose a large number of

powerful pieces, all in an e�ort to simply move the opponent's relevant pieces

out of position for a rapid checkmate [50]. In other words, for a player with

a particularly aggressive and/or exploratory type who chooses to play this

particular strategy, one or two elements (in this instance, positioning and

turn advantage, or `tempo', over the opponent) are emphasised over all other
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considerations (such as defending one's pieces and controlling key areas of the

board). However, a di�erent player may reverse these preferences entirely,

opting for a much slower, more defensively-orientated game.

Even the very �rst decision of the game� whether the opening move on a

board, which resource to develop, or the selection of which units or resources

are available to use, is akin to type selection. This is because the decision

immediately starts that player down a certain strategic path. From that point

on it will, generally speaking, be easier to continue to expend e�ort to progress

in that direction rather than radically changing approach. Doing so will likely,

at best, involve starting from scratch on the new approach and giving up much

of the progress already made with the old approach, but may require spending

time to undo, or even outright sacri�ce, this earlier progress.

In some games you choose which resources you have the ability or potential

to access for the whole game before it begins. In such games, signi�cantly

changing strategy may not be possible at all. Such real-world games display

strong type selection, and as such tend to have nuanced and varied meta-games

based on intuitions about your opponent's type.

Other examples of meta-game choices would be choosing certain players for

one's team based on the known strong players on the opposing team in a

game such as football, or selecting a character or team which an opponent has

previously shown themselves to be weak against in a video game. Generally, I

avoid considering explicit questions of which type should be selected in speci�c

situations, as they can be modelled by choices made within the system I have

designed by using mobility.

In summary, the following types of decision can all be modelled using the

framework I have designed:

� The individual actions and reactions taken by players (and nature) in any
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game. (This is the classic understanding of a `game').

� The `style' and `preference' of each player. This can be expressed simply

using a type, or viewed as a modi�cation to players' utility functions

such that they gain more utility (or, perhaps more accurately, expend

less e�ort) from selecting and executing a preferred action correctly than

a non-preferred action correctly.

� The decision of which opponent/s to play against (which, as with any

of the previous choices, may be restricted given the greater context of

events). This can be expressed simply by utilising the available movement

options within a standard graphical game with mobility.

� Which `game' to play. The payo� matrices used could be nested or

multiplied-through, with an initial or primary selection determining which

matrix is transitioned to. These subsequent matrices can themselves be

designed to simulate any game as normal.

� Whether or not to play a `game' at all. As above, but with the addition

of a null matrix indicating zero interaction occurring.

It can be di�cult to see where the line between type selection and game

selection falls, given that a player's natural type will inform which games

they want to play! This aspect could be considered a `meta-meta-game', or

more simply, a recognition of the many levels on which decisions are made

and potential for competitive interaction exists. Critically, the ability of my

system to model these considerations at any level is a key strength, which is

outside the capabilities of any previous model.
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5.3 Technical Detail

To perform the bulk of the simulations, a program was written in Java. De-

spite some preliminary concern that Java would be too slow for the extensive

computation required for this research, experimentation showed that a com-

prehensive simulation would complete in a timely manner for even the largest,

longest, and/or most unwieldy setups. For instance, a 200 round game on

a randomly constructed dense graph with 100 players (which is much larger

and more complex than the average simulation to be performed) completed in

under 30 seconds using synchronous time and 15 seconds using asynchronous

time� this latter increase in speed being due to movement negotiations com-

pleting much faster, as far fewer players are involved at each step, even though

the number of actual rounds is much higher.

Randomisation was required for practical implementation details such as some

initial distributions of players over the graph, the actions taken by certain

types in certain situations, selecting a pair of linked agents in each round of

asynchronous time, and to allow the mobility algorithm to perform fairly in

situations with multiple allocations which are both feasible and correct. This

was ensured by the use of Java's native `Random' class.

Object-orientation allows the program's structure to mimic the natural struc-

ture of the problem, making use of Graph, Game, Player, and Node objects.

This made the integrity of the program easy to verify. The program receives

initial input on its various parameters from formatted text �les, simulates ev-

ery element of the graphical game internally (such as each game, each player,

and their choices), and then outputs the results to another text �le.

Though features such as running time and computational complexity, are not

the focus of my research, it is straightforward to determine a loose upper-bound

of O(n2) for a single round, where n is the number of players. This occurs in
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the event that each agent will have to play against each other agent in each

time step (when the complete graph is used), which proved low enough to be

satisfactory for my research. Though I strongly recommended a computerised

solution for anything beyond the most basic simulation, this model could be

executed by hand if desired.

5.4 Experimental Setup

One of the central di�culties of this project was viewing the sheer volume of

inter-linked data in a way which made human comprehension possible. Even

a relatively simple graphical game with few players and few rounds contains a

huge amount of information� the position of each agent, the actions they decide

to play in each game against each adjacent agent, their movement preferences

(and whether or not they were randomised), and where they actually move to,

all multiplied by the number of players and again by the number of rounds.

Derived values, such as the average score across various player types or for

players occupying certain positions on the graph, are crucial for more detailed

analysis and must also be calculated and included.

As such, I investigated and ultimately discarded a range of approaches, par-

ticularly those which display the information in real-time as the game occurs,

as being ine�ective and/or too distracting from the focus of the research to

implement. I eventually settled on a carefully structured and detailed plain

text output for individual games (as shown below), and created a spreadsheet

to compile results from multiple games into a table, from which general pat-

terns could be discerned both for individual simulations and this structure as

a whole.

After studying this spreadsheet, I could `zoom in' (see below) and examine the
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comprehensive log of whichever simulations were of particular interest in full

to gain a more complete view of what exactly was causing any given behaviour,

as well as using this information to create graphs and tables from calculated

or derived data.

Unfortunately, the completeness of the data included in the �nal output had to

be reduced to maintain readability� information such as the outcome of every

game played at every timestep is simply too large and dense to be meaningfully

comprehended, let alone for patterns within it to be discerned. However, this

information can be obtained during the execution of the program, or output

from the program by use of a certain mode, to con�rm its functional complete-

ness. The information listed in my text output includes, but is not limited to,

the main details of the initial parameterisation (at the top), the position of

each agent at each round (in the middle), and the overall performance of each

agent and its associated type (at the bottom). An examples of this is included

below:
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Figure 5.1: Example output from my simulation program, placed into two columns

for brevity.

The number of rounds, timing system used (either `S'ynchronous or `A'synchronous)

and probability of a given preference list being randomised are clearly shown

at the top. This is followed by an adjacency matrix, which shows the structure
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of the graph. A `1' indicates a link is present between two nodes, while a `0'

indicates no link. As all links are bi-directional, the table produced is always

symmetrical along the lines of `X's in the main diagonal, which show that

nodes cannot be directly connected to themselves. Next, the identity of each

player at each node after each round is shown, with the number in brackets at

the end of the line showing the number of successful swaps which occurred in

that round.

In this depiction, a player's number is the same as that of the node they oc-

cupied at the beginning of the simulation, but serves no additional purpose

beyond readability and, importantly, cannot be used to verify an opponent's

type. Finally, the scores at the end of the simulation are displayed, both in-

dividually and grouped by player type, and absolute (those payo�s actually

obtained during the game) and relative scores (for ease of reading and com-

parison). Recall that, in the Prisoners' Dilemma, all payo�s are negative, and

a less-negative score is desirable.

A series of simulations with no mobility at all were run to act as a control

against which the e�ects of di�erent forms of mobility could be measured (and

to con�rm that, as graphical games without mobility can be considered a spe-

cial case of mobile graphical games, there were no surprising behaviours to

report). The full range of graph structures, player types and initial distribu-

tions detailed earlier were used.

Even before these simulations began, it became clear that, with the types

I'm using (which don't use the memory or experience of playing against one

opponent to inform their play against each other) and mobility removed, there

is no method by which information can propagate through the graph. As such,

a series of isolated iterated games are created, each with length equal to the

length of the simulation� much like a more traditional experimental setup.
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In these simulations, the di�erent player types performed as classically expected�

individual EverHawk players achieved the highest scores, but strategies such

as Tit-For-Tat and Pavlov performed better on average. Without mobility, the

only variance in the performance of both individual players and overall types

arose from:

� Their initial distribution (which determined the subset of all the possible

iterated games which was actually played� for instance, an EverHawk ad-

jacent only to EverDoves will never receive anything other than a perfect

iterated game.)

� The relative sizes of each population (a�ecting both the types of players

involved in games, and the relation between individual and average scores

for a type� if there is just a single EverHawk player, the `average' score

of this strategy can be very high!)

� The shape and structure of the graph itself. For instance, in a star or

super-star graph, the type of the player at the central node has a large

impact on which games are played, though this is an extreme case. In

other graphs where the degree of each node is closer to the average (ie

k-regular graphs), this e�ect is less pronounced.

As the system of graphical games with mobility is so complex, it took many

months of preliminary experimentation to gain a comprehensive understanding

of the many interacting elements, and thus a working model of what changes

were likely to produce what patterns of e�ects. These preliminary experi-

ments were performed for an almost exhaustive variety of parameterisations

interacting in almost every combination, in an attempt to isolate which of

the possible variables were having meaningful e�ects on the execution and

outcome of each simulation, and which were having minimal or overwhelming

e�ects. This process informed the decision-making which led to the mutability
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(or immutability) of the possible variables as listed earlier.

A second wave of more formal simulations was designed to quantitatively mea-

sure the interactions between each possible pair of variables at a variety of

levels and in more detail. The di�erent combinations of parameters, and the

subsequent result on the dominant various strategies, are demonstrated later

as the focus on my results.

5.5 Mobility Algorithm

At �rst glance, the problem of pairing up entities in the desired manner based

on their preferences appears to have already been solved. The `Stable Room-

mates Problem' is a slightly di�erent form of the more widely-known `Stable

Marriage Problem', and involves a scenario in which an amorphous group of

people must be paired o� such that no pairing is `unstable', meaning that,

for each pair, each person prefers their partner to the other viable options

available [42].

There are, however, a few important di�erences to the problem as it appears

in my model, compared to the stable roommates problem:

� A complete matching does not need to be found. This is actually impos-

sible to �nd in certain graphs, with a trivial example being those with an

odd number of players (as each pairing requires 2 players).

� Not all pairing options are valid among the set of all agents. The absence

and presence of edges restricts possible pairings such that a complete

matching, or even a majority matching, is typically impossible even before

preferences are considered (such as in a star graph). Agents can swap

positions only with another connected agent.



5.5. Mobility Algorithm 89

� Even if a speci�c pairing is possible and desired by both players, if one of

them would rather remain in their current position than form the pairing,

the pairing will not be formed. Some types may prefer to be unmatched

in certain situations, even if a `good' matching (one which is preferable

to certain other options) is possible for them.

� The matching used does not need to be stable if no stable matching is

possible. In such a case, a random matching which contains a minimal

number of blocking pairs (hypothetical pairings which would be preferred

over actual pairing/s) will be sought. This enables cycles of preferences

(in which A prefers B, B prefers C, and C prefers A) to be broken fairly.

A solution to these di�culties must be found in order to devise a fair system

for agents to express their preferences for moving around the graph as such

changing the overall distribution of player types. This is, in and of itself,

a non-trivial problem. To overcome it, I created a modi�cation of Irving's

algorithm [51], as described in the following section.

My algorithm has the important advantage that computation by this method

is achieved locally by the agents, without central direction or oversight beyond

simple timekeeping and the generation of randomness� which, in the real world,

would both occur naturally. For example, randomness was used to decide

which agents send their preferences �rst, whereas in the real world some agents

would naturally send such information earlier or later than others. This feature

allows my algorithm to be deployed in a much wider range of distributed

environments than algorithms which require higher levels of control over, or

guarantees of, behaviours from potentially uncooperative agents.

Each agent begins by ranking the position of their neighbours and their current

position in an ordered list, indicating their preference for graph position by the

end of the movement phase. Agents may prefer to keep their current position
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for whatever reason, and cannot be forced out of position by other players

unless a�ected by di�usion. Recall that di�usion is a chance, de�ned at the

beginning of the simulation, that each given list will be randomly shu�ed,

causing agents to move haphazardly� this is calculated and applied to the

selected agents' lists at this point.

Then, one at a time in a random order, each agent sends a message to the

agent occupying its preferred position. If an agent receives such a message

from the agent occupying the position it most wants to move to, the process

is complete for these agents, as they have reached an agreement whereby they

can swap positions and end up exactly where they want to be. In the more

likely event that an agent receives an o�er from one or more lower ranked

choices, they will provisionally accept the best such o�er they receive. Both

agents will note that their best option thus far is to swap positions with each

other. If all the proposals are ranked lower than the agent's own position, or no

proposals are received, the agent notes that it's best o� staying in its current

position. Each agent which made a proposal and has it rejected will default

to their `best o�er' of staying where they are. In each subsequent round the

process repeats.

There is a simple, but convincing argument that my algorithm functions as

required, similar to one often used for the Stable Marriage Problem, making

use of contradiction. Assume that A and B are agents who would prefer to

swap places to whatever current o�er they hold, but, somehow, have not agreed

to swap. A must have proposed to B at some point, because each agent will

keep proposing until it reaches its own position in the rankings� so if it has

not done so, A ranks its own position higher than that of B. A cannot be

paired with a position lower than its own in its rankings, as it would instead

have defaulted to its own position. So, B received a proposal from A, and in

that case would have accepted it in lieu of the currently held proposal.
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5.5.1 Pseudocode

In simpli�ed pseudocode, this algorithm can be written as follows:

for each agent A do

make a new list `prefs' ;

for each agent A', at distance 1 or less from A do

add A' to prefs, ranked according to how much A wants to swap with A' ;

end

end

if random < threshold then

shu�e(prefs);

end

return prefs ;

Figure 5.2: Pseudocode algorithm for the creation of ranked preference lists



5.5. Mobility Algorithm 92

integer attempt = 0;

agent asknext = prefs.attempt;

while partner = null do

response = trypair(asknext);

if response = `hardyes' then

partner = asknext;

sorted = true;

end

if response = `no' then

donothing ;

end

if response = `softyes' then

if prefs.attempt < getPos(o�erfrom, prefs) then

o�erfrom = prefs.listpos;

end

end

attempt++;

if attempt >= prefs.size then

partner = o�erfrom;

end

end

Figure 5.3: Pseudocode algorithm for the querying of other players for pair formation

for mobility
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agent besto�er;

integer bestrank;

while nextQuery() != null do

agent o�erfrom = nextQuery();

integer fromrank = getPos(o�erfrom, prefs);

if fromrank = 0 then

sendReponse(o�erfrom, `hardyes');

partner = o�erfrom;

sorted = true;

end

if sorted = false AND fromrank < bestrank then

sendReponse(besto�er, `no');

sendReponse(o�erfrom, `softyes');

besto�er = o�erfrom;

bestrank = fromrank;

end

else

sendReponse(o�erfrom, "no"');

end

end

Figure 5.4: Pseudocode algorithm for responding to queries for pair formation for

mobility

5.5.2 Example Execution

The method by which we arrive at these ranked lists doesn't matter� perhaps

some of them were produced by relatively advanced player types, while others

were simply ordered randomly, or shu�ed by the parameters of the graphical
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game. As this shu�ing can cause an agent to incorrectly express its preferences

and so, in common parlance, make a decision it would not be `happy' with,

I will use the term `expressed preferences' to sidestep this issue. Remember

that each agent's list only includes adjacent agents and themselves, not the

whole set of agents in the graphical game. (For completeness, unconnected

agents can be considered to be ranked below the ranking agent in the �nal list

if desired, as this does not functionally change anything.)

Recall that we are not seeking an `optimal' matching in which every agent's

expressed preferences are met as closely as possible, or a `stable' matching in

which no pairings would prefer to be paired di�erently. Neither such matching

may exist (as in the classic case where A prefers B, B prefers C, and C prefers

A).

Even if an optimal and stable matching does exist for a given con�guration,

as each agent is sel�shly pursuing their own goals, and acting only on locally

available information and their own incomplete memory, it is often impossible

to practically coordinate such a matching. As such, we instead aim for a

`good' matching, in which no agent decides to pair with another, or stay in

their current position, if they could instead have reasonably expected to pair

with a third agent who ranks higher on their expressed preferences (or would

prefer to stay in their current position).

In each step, each agent sends a query to the next agent on its list, which

is its most preferred partner out of the remaining unqueried options. This

can be itself, which is a special case� the response is always 'hard accept'. In

other cases, the queried agent responds depending on the responses it itself

has received from the agents it has queried. If the agent sending the query

is the highest ranked agent in the preference list, excluding those who have

`reject'ed previous queries, a `hard accept' response is sent.
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On sending or receiving a `hard accept', the agents con�rm each other as

partners who will swap positions at the end of the phase. They stop querying

other agents, and respond `reject' to any and all queries sent to them.

Otherwise, a `soft accept' response is sent. This indicates the o�er is currently

the best one that the agent has received, but it may receive a better o�er

later on as it continues to query other agents. The sending agent also sends a

`reject' to any other soft accepts it was previously holding.

Similarly, if an agent receives a 'soft accept', it �rst notes it. Then, if it has

more than one soft accept stored, it sends 'reject' to all but the most-preferred

o�er� this prevents the possibility of an agent having a soft accept from another

agent who has hard accepted another o�er. By this method the `A > B > C >

A' case can be overcome, as one pairing will be formed `randomly', mimicking

the real-world situation in which one person will eventually settle for second-

best rather than unrealistically waiting inde�nitely for their preferred option

and risking being excluded entirely.

If a `reject' is received, the agent eliminates the sender from its internal pref-

erence list, as there is now no possible circumstance under which the queried

agent will pair up with this one.

At the end of the phase, all remaining soft accepts are converted into hard

accepts before movement occurs. This will always result in paired agents and

never in cycles, due to the way signals are sent, processed, and then accepted

or rejected. An agent who has accepted its own query will not move, whereas

all other agents will swap position simultaneously with their chosen partners.

By this point, all agents have a hard accept, as they themselves must appear

at some point in their own preference rankings, and this entry will inevitably

be queried and accepted if no better option exists.
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This algorithm works for both synchronous and asynchronous time, with asyn-

chronous time simply being a special case in which only two agents send queries

and each ultimately swap with an adjacent agent (including perhaps each

other).

We can show this makes `good' matchings as previously de�ned by consider-

ing the following. Assume an agent gets �nally paired with another, when

they could instead have paired with a third agent who ranked higher on their

expressed preferences. They must have queried that agent at some point (as

agents will continue to send queries until matched with the best possible part-

ner, or all agents have been queried). If that agent had responded `hard ac-

cept', they would now be paired together. If it had responded `reject', there is

no possibility of them pairing with that agent. Finally, if they had responded

`soft accept', either the pairing would have eventually solidi�ed, meaning no

better o�er was found by either party, or it was rejected, meaning that one or

more agents found a better o�er, and is thus unwilling to keep the originally

proposed pairing.

Figure 5.5: Example Graph
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A D C B A

B C A B

C A E C B

D D A

E C E

Figure 5.6: Example Preference Rankings

1. Each agent queries their ideal partner, and responds to any queries they

receive. D queries themselves, and �nds they are receiving a query from

their �rst preference (namely, themselves). D hard accepts D. D then

subsequently rejects A, as it has already committed to not moving. A soft

accepts C's query, as they'd prefer that pairing to staying in their current

position. C soft accepts E, and rejects B in line with their preferences.

2. D sends no queries, as it has already �rmly decided not to swap. A queries

C, who is now their number 1 preference. C hard con�rms, as A is also

their number 1 preference. E is then rejected by C, but immediately

hard accepts its own o�er. B queries A, and is again rejected.

3. Only B is left without a hard accepted o�er. B queries itself, its third

preference, and hard accepts.

All agents have hard accepted an o�er, so the algorithm is complete. A swaps

with C, and B, D, and E stay where they are. Note that this occurs despite

B and E strongly desiring to move, due to the structure of the graph and the

decisions made by the other players.

In both the coded implementation and the real world, some of these o�ers may

arrive in a slightly less convenient order. This can mean that an agent soft

accepts an o�er, then rejects it as they hard con�rm another in the same step

(for example, if C queries E before receiving A's query in step 2). However,
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this doesn't alter the �nal result.

5.6 Human Experimentation

One of the central aims of this research was to devise a new model to more

accurately model existent human behaviour using game theoretic concepts. As

such, I also designed some small-scale human experiments, mainly to verify

that the general in�uences and traits I was observing in my simulations were

also applicable to interactions between humans in the same circumstances.

Rather than attempt to arti�cially limit human players to the level of my

agents (who are myopic, and only communicate simplistically using `costly'

signals within the scope of the graphical game itself), I instead designed an

experimental setup much like my simulations in which the e�ect of these ad-

ditional traits could be observed and quanti�ed for human subjects.

16 experiments were conducted over the course of 6 sessions, as detailed below:

The participants were physically seated in a simple arrangement correspond-

ing to the shape of the graph to be used. I restricted these experiments to

simple graph structures in order to present this information clearly and avoid

creating confusion for the participants. The initial position for each player was

determined randomly for each experiment. Each round consisted of each game

being played simultaneously (unless asynchronous time was used, in which case

only a single, random game was played in each round), negotiating and then

completing movements.

The default round duration was 2 minutes long, as preliminary investigation

showed that about 80% of players are able to comfortably make all decisions

within this time. The length of each round was always declared in advance.
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Players Rounds Time Di�usion Graph Game Timing Other
(mins) (%) Used Used

4 5 2 0 Cycle PD S
5 2 0 Cycle Ult S
5 2 0 Path PD S
5 2 20 Cycle PD S
5 2 0 Cycle PD A

8 6 5 5 Cycle PD S
6 1 0 Cycle PD S
6 1/2 (a) 0 Cycle PD S

12 30 2 10 Cycle PD S (c)
10 2 0 Star PD S

10 30 1 0 Cycle Ult A
5 15 2 5 Cycle PD S (c)

15 2 0 Cycle SSP S
4 4 15 (b) 5 Cycle PD S

5 2 0 Clique PD S
(a): 50% of players were given 2 minutes, the rest were given 1 minute.
(b): All players were ready to progress after 10 minutes at most.
(c): Players were told when the simulation would end.

Each graphical game was simulated this way for between 5 and 30 rounds.

The number of rounds in each simulation was not conveyed to the participants

in advance unless noted (in order to mitigate backward-inductive strategies),

aside from a range of possible experimental durations for practicality. Though

the majority of experiments used the Prisoners' Dilemma, the other games

and corresponding payo� matrices from chapter 2 were also investigated.

I wanted to minimise the e�ects of altruism, spite, and other `irrationality'

speci�cally outside the scope of my investigations for my human experiments.

As such, I endeavoured to recruit subjects who were sociable, competitive,

and used to playing games in general. 29 of my 43 subjects were found from

advertising through gaming-related societies within Durham University, and

others were recruited from the larger student body. No participants were

reused between experimental groups, and no subjects left any session before

it reached its natural conclusion.
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The experimental setup was carefully detailed to all participants. The steps

of the game, being the same as those in the simulation, were �rst explained

to all subjects; each player selects an action for each player they're linked to,

outcomes are produced deterministically based on the actions of each player,

potential movement is discussed, pairs are determined, movement between

pairs occurs, and then the process begins anew. Reminders of this sequence

were made available to the players. Outcomes were selected using simple

marked cards, and revealed simultaneously.

Unlike my simulated scenarios, players could see the actions made by each

opponent in each game at each stage. This change by itself did not appear to

cause signi�cant divergence from the expected results, as detailed further in

Chapter 6. I kept track of the position of each player at each point, including

swaps when they occurred, and oversaw proceedings to ensure the rules were

followed at all times. Before the experiment began, players were given the

opportunity to ask questions about the setup and rules, to the point where

they each expressed con�dence in understanding the situation. I gave no advice

or suggestions on what strategies to use and, though the players could freely

communicate, they were generally (and unsurprisingly) unwilling to share their

own thoughts and analysis with the group.

Players used pen and paper to record their actions against each opponent and

corresponding outcomes, their attempts to move as well as successful moves

and the players they swapped with, and �nally their more general thoughts

on movement and strategy. Due to the complexity of even these tightly con-

trolled tests, I asked players to write down and record their thought processes

throughout the experiment however came most naturally to them (so long as

they could be interpreted later), rather than using a standardised form.

In particular, I asked each player to summarise what they thought their general
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strategy would be before the game, any insights which arose during play, espe-

cially if those insights caused them to re-evaluate the game and their approach

to it, and what strategy they actually ended up using by the game's conclu-

sion. Each player produced, on average, about 350 words of meaningful notes

for each experiment. The output produced per round was much higher for ex-

periments with fewer rounds. Delays were added between rounds in order for

players to accurately record their thoughts, but no actions or communications

were permitted during this time.

Payo�s were allocated using the matrices presented in chapter 2. One unit of

utility was represented by one small sweet of the player's choice from a mixed

selection. Before this round of experimentation, I performed some preliminary

testing to establish the validity of my setup, in which I trialled three methods of

rewarding or penalising players based on the outcomes of their games. Firstly,

all results were negative or neutral, with bad outcomes subtracting from a pool

of sweets they began with containing sweets equal to the maximum number

they could theoretically lose. Next, all results were neutral or positive, with

players gaining sweets.

Finally, I tried a mostly positive system, but where players forfeited sweets

to their opponent if they cooperated while their opponent defected. Out of

all of these, the second format seemed to produce the most balanced results,

as players feared losing a sweet disproportionately greater than they valued

gaining one, even if the ultimate utility was obviously the same. This seems

consistent with earlier work done on risk aversion [52].

There is not a broad consensus at present on the general e�ects of communi-

cation on the outcome of games, especially `cheap talk' or `small talk'� free

communication between players which carries no particular weight or mechan-

ical meaning� outside of coordination games [53]. However, some of the more
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focused research in this area provides compelling evidence that there is, at the

very least, some sort of e�ect on human players [15]. I decided to allow all play-

ers to communicate at all times, as I felt this was the method most generally

representative of naturally occurring scenarios� at the very least, you could

argue that (outside of a laboratory setting), some form of communication is a

requirement for any sort of interaction.

However, I did ensure that it is not possible for communication to progress

beyond small talk, as there is no explicit method of costly signalling (sending

messages which incur some inconvenience or negative utility to the sender,

thus adding some weight to their content) [54] or central pact enforcement

(which could ensure players abide by contracts or agreements they make to,

say, cooperate with each other or move in a certain manner) beyond the vague

and indirect e�ects of social reputation. In particular, players were not allowed

to o�er or trade their sweets to other players (which were, in practice, given

out at the end of each complete game rather than in-between rounds).



Chapter 6

Results

In this chapter I will describe and illustrate my main �ndings regarding the

operation and functionality of the model I have developed. Most of my �ndings

are in the form of behaviours observed over a range or grouping of the many

con�gurations possible in this model, and display small variations in contin-

uous values such as frequency, timing, probability and so forth across that

range. Additionally, due to the emergent nature of many of the model's prop-

erties, slight variations in parameterisation can dramatically alter the nature

of the overall simulation, making precision and extrapolation problematic [24].

As such, many of the observations presented here are in the form of quali-

tative descriptions, which allow for this natural variance in the con�guration

and settings of the simulated environment in which each given e�ect was ob-

served, while still describing the e�ect comprehensively, or as graphs which

can illustrate a more detailed variation within a narrower area. Additionally,

a selection of the data analysed has been included in the form of an appendix

(Chapter 9). Though this is not intended to be read by the naked eye, I will

refer to experiments performed within these data occasionally to enhance my

descriptions.

103
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6.1 Preliminary Investigations

As I've explained previously in Chapter 3, graph-based systems with many

di�erent settings and continuous variables often display highly chaotic emer-

gent behaviours, which can completely alter the running of the entire simula-

tion as threshold values are approached and crossed, even by relatively small

amounts [38]. As such, in order to even begin to understand the complex inter-

actions between di�erent aspects of my model, I �rst had to develop a rough

working knowledge of the system which would then enable me to determine

the sorts of simulations and experiments from which I could then develop a

deeper, more rigorous understanding.

This was accomplished through many months of preliminary investigations,

consisting of repeatedly running simulations with a variety of settings, carefully

sifting through the data produced for interesting or novel behaviour, modifying

the settings slightly, and noting the change/s (if any) on the behaviour. The

behaviours I was searching for at this stage were mainly extreme clumps of

data or outliers which seemed to be outside of the expected range of their data.

For instance, when investigating star graphs this way, I noticed that the entire

result set was extremely variable, which, on later, more detailed investigation,

led to the results detailed under `Variation in Results' later in this chapter.

My early understanding was also guided by intuitions regarding which settings

were most likely to quickly lead to meaningful insights and comprehension. It

seemed apparent from the very beginning of this model that it would likely

display extremely complex, emergent behaviour, with the overall behaviour

of the graphical game changing dramatically depending on the initial set-

tings, due to its similarity to other models which display such behaviour [46].

The prediction that some of the underlying behaviours well-known from pre-

existing, simpler systems (such as basic strategy for the Prisoners' Dilemma)
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would generally carry over into my model was ultimately proven accurate, as

shown throughout my results. This allowed areas of interest to be identi�ed

and check more rapidly than mere blind experimentation or brute force would

have permitted if an unstudied game had been used instead.

To con�rm the intuition that my system with the mobility wholly removed

is identical to the pre-existing and relatively well-studied model of graphical

games, I ran simulations without any mobility whatsoever. This process was

detailed more fully in my experimental setup. I was eager to �nalise the form

of mobility which would be used (recall I listed the candidates in Chapter 4,

and discussed some further implications in Chapter 5) as soon as possible, as

I quickly realised that this was the most critical variable in the entire system,

and would have a substantial impact on practically all other results gathered

from my model. This form of `pre-preliminary' experimentation led me to

use `adjacent agents agreeing to swap positions' as the basic implementation

of mobility in my research, as explained in detail throughout these earlier

chapters.

As an additional part of these investigations, I conducted smaller experiments

with human volunteers to help inform the con�guration of the simulations, and

identify pertinent features to include or exclude from the new model� such as

memory and myopia, as detailed previously within the features of the model.

Such observations also guided me towards con�gurations and qualities which

would assist arti�cial simulations in producing human-like behaviour� such as

the relatively high proportion of intelligent cooperative strategies. Obviously,

it is extremely di�cult (and some would say impossible) for any game theo-

retic simulation to accurately consider the myriad possible quirks of human

interaction. However, it seems reasonable that, if we can understand these

behaviours qualitatively in terms of their interaction with this model, we can

interpret the results from our arti�cial simulations more intelligently, account
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for some of the human behaviours, and thus increase its predictive power.

This process, though both lengthy and empirical, was relatively casual com-

pared to the extensive cataloguing and cross-comparison which took place in

the main bulk of my experimentation as described below. Any �ndings which

this process uncovered were investigated more thoroughly in the main stage of

my experimentation. Although this process was vital to the progression of my

research� enabling me to obtain the information I needed to devise a funda-

mentally sound model before I began more rigorous testing and analysis on it�

I will henceforth disregard it in favour of discussion of the more detailed, later

experiments which it informed, as detailed in the bulk of my results below.

6.2 Data Collection

The data from which I drew my results were obtained by three main methods.

Firstly, individual simulations were run and analysed in detail, yielding insights

into the small-scale movements and patterns that can lead to certain outcomes

from di�erent con�gurations.

Secondly, those same simulations were repeated for between 10 and 1000 iter-

ations with the same settings, in order to eliminate this small-scale variance

and allowed broader conclusions on the less-apparent behaviour of these sys-

tems to be drawn. These two methods are strongly linked, not only as they

were used on the same data sets, but also as they allow connections to be dis-

cerned between the behaviours of individual graphical games and more general

properties of the model when used in concert.

Although the con�gurations used in these investigations ranged across the

entire available spectrum, all of the following observations are drawn from

`average', `stable' parameters� relatively balanced populations, consisting of
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roughly equal numbers of cooperative and competitive strategies, with very

low noise and di�usion� unless otherwise speci�ed. The vast majority of the

quantitative results discussed below are derived from these two methods.

Finally, experiments were run with human subjects to con�rm the applicability

of these results to real-world situations, and provide additional insight into

the sorts of thought processes and approaches more intelligent agents could

take towards this category of games. These experiments do not, and were

not intended to, provide robust, quantitative data independent of the results

from the automated simulations. However, they do provide some compelling

evidence that human behaviour is broadly similar to the behaviour of even

my simple autonomous agents, so long as the simulation is con�gured to allow

this behaviour, as mentioned previously in Chapter 4 and further on in these

results.

6.3 Observations from Simulations

To obtain these results, each setting was investigated as fully as was reason-

ably possible, informed by earlier indications from my preliminary investiga-

tions. For instance, probability-based features such as di�usion and noise were

tested at 5% intervals from 0% to 100% for each combination of other settings,

with additional testing between 1% and 10% as the preliminary investigations

showed the e�ect within this range to be particularly variable. Durations be-

tween 1 and 1000000 rounds were used in the preliminary investigations, which

enabled me to say with con�dence that no signi�cant chances to the behaviour

of the system occur after 500 rounds for any reasonably sized graph structure

(<30 players), and so exclude this from consideration in my more rigorous

analysis.
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Volatility & Variation in Results

Figure 6.1: A non-exhaustive table of some quali�ed observations from slight vari-

ations to just two parameters, namely graph structure and population. `Dove-Til-

Hawk' was used as the dove strategy and `Hawk-Til-Hawk' as the hawk strategy.

12 players and synchronous time were used unless speci�ed. The Milgram ring used

here consisting of one additional connection between opposite sides of a ring graph.

Scores indicated are the average of all scores from players of that type.

The �gure above demonstrates how stochastic and volatile my results can

be, with multiple emergent behaviours appearing and disappearing based on
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relatively minor changes in con�guration. This supports my decision when

designing the model to actively reduce the number of complex variables, as

detailed in Chapters 2 and 4.

Pavlov performed very well across the board, infrequently outperforming the

other, newer player types, across a wide range of con�gurations, but especially

when a graph structure with low connectivity was used. Although a Pavlovian

population is able to successfully cooperate internally more times than not

(even with relatively high levels of noise in the environment), victories (in

which this type scored higher than each other in a given simulation) and good

scores (those which earned at least 50% of the available payo�s) were also

observed when the amount of Pavlov players in the population was relatively

low (in some instances as low as 10%). For example, experiments 232 and 233

in Chapter 9 display this property.

The Pavlov strategy I used took a similar approach to its moves as to its ac-

tions, changing position if it was generally scoring poorly (due to competition

from the majority of its opponents), but remaining stationary if it was do-

ing well (due to cooperation). This was one of the more advanced movement

strategies used (based as it was on analysing the actions chosen by opposing

players), and, combined with a relatively intelligent and adaptive action strat-

egy, resulted in a strong type overall which performed above the average score

set by other types in just over 50% of simulations tested.

In environments with little movement (due to lack of di�usion and/or relatively

static player types), this movement schema acted as a sort of `ratchet', locking

Pavlov players into favourable neighbourhoods while shu�ing them out of

unfavourable ones. Though a lack of focus and specialisation for any particular

environment meant it wasn't often the best-performing strategy, its generic

strengths combined with the ability to stabilise quickly and recover from noise
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(which can cripple Tit-For-Tat based agents) enabled it to occasionally edge

out the other types.

The overall variation in results for multiple instances of simulations with the

same con�guration was reduced when non-responsive types, such as EverDove,

EverHawk, and Random, were swapped out for those which immediately take

the actions of their opponents into account, such as Tit-For-Tat and especially

Pavlov (with its innate capacity to self-stabilise). The presence of these types

creates the risk of two immobile agents becoming irrevocably paired, creat-

ing extreme �uctuations in the overall results of a simulation dependent on

whether or not, and how many, of these pairs are created. The case where

a permanently cooperative agent is permanently paired with a permanently

competitive agent is particularly extreme, resulting in the competitive agent

scoring perfectly from that one interaction and thus extremely highly overall,

whereas the converse is true for the would-be cooperator.

Taking 0% di�usion as the baseline, adding a low level of di�usion (<5%)

reduced the variation in results caused by agents which did not move volun-

tarily, as it prevented these clumps from persisting inde�nitely. This can be

seen in experiments However, high levels of di�usion (>50%) resulted in varia-

tion only slightly lower than 0% di�usion, regardless of agent types, especially

when combined with short durations (<20 rounds). This is because di�usion

acts to randomise movement, impeding the decision-making processes of the

agents and instead causing them to approximate a wholly random movement

strategy, with all the variation between otherwise identical simulations which

that entails. Additionally shorter duration prevent the agents from spreading

out and spending roughly equal time interacting with each opponent

In a related manner, variation in results from running the same simulation

multiple times increased sharply when exploitative types, such as Tester and
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Hunter, were able to interact with types which could not e�ectively combat

them, especially EverDove. A population of 50% EverDove and 50% Tester

displayed variation on average scores for each player type between simulations

of just under 400%. Depending on the time taken for each exploitative agent to

identify and position themselves next to a non-responsive agent or agents, these

two types can act as `super-aggressors', actively seeking-out and exploiting the

helpless EverDoves even more e�ectively than a lucky EverHawk, given a small

amount of di�usion.

Shorter durations also increased variation across a wide variety of con�gura-

tions, especially those which would ultimately stabilise, as the environment

had less time to converge towards whatever pattern it would take if given an

arbitrary length of time. However, with all that said, the overall variation

between average type scores in multiple instantiations of identical simulations

was generally low.

Impact of Graph Structure

The �rst result I noticed is that hawkish types, and traditionally strong strate-

gies such as Tit-For-Tat, fare better as the connectivity of the graph increases,

and thoroughly dominate in all instances where the complete graph is used.

This serves to con�rm an expected result for the model� in these instances,

the simulation e�ectively defaults to the speci�c case which has been studied

for decades, in which each player plays every other (as discussed in Chapters

2 and 4).

With a complete graph, all players play each other simultaneously and mobility

has no e�ect� as, no matter where you move to, you'll always be playing the

complete set of other agents, and the possibility of adapting your strategy

through experience is the same as in prior experiments. Additionally, many
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of the other variables, such as initial distribution, population, and even the

system of movement itself are e�ectively ignored or at least relegated, further

reducing the impact of the novel features of my model.

Conversely, dove strategies fared relatively well in those situations where the

graph was only loosely connected and the average degree of each vertex was

relatively low. That is, instances where the graph had low average cut� the

number of edges which need to be removed to cleanly partition the graph,

relative to the number of vertices in the graph� such as a ring graph. This

enabled clusters of cooperative players to form without being in�ltrated or

broken up by hawks.

Depending on the distribution, and the outcomes of random chance determin-

ing things such as agent movement, one or two extremely competitive players

could manage to situate themselves in amongst a cluster of extremely coopera-

tive players, and by doing so attain extremely high scores (though the average

score of all cooperative players was still typically much higher than those of

the non-cooperative players). More intelligent cooperative types which could

identify and respond to such threats, such as Tit-For-Tat, were not as severely

a�ected by the presence of a small number of non-cooperative players inside

of their group. This is illustrated in �gures 6.5 and 6.6 later in the chapter.

The overall outcome of star graphs is extremely dependent on which type

occupies the central position for longest� with little or no di�usion, the results

from these graphs are some of the most extreme. Exactly half of the games

played in a star graph involve the centrally positioned agent. The general

disposition of the central agent had a signi�cant impact on the social utility

produced by the simulation, with a central dove resulting in as much as a

300% increase over a central hawk. Such structures also have extremely low

mobility, as an agent in the central position who chooses not to move also
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prevents all other movement in the graph.

I observed a relatively high number of outcomes in which Pavlov had the high-

est type score in low duration simulations� roughly 30% across the range of

all tested con�gurations. Though my agents are not advanced enough to un-

derstand and apply the concept of bargaining power [28], Pavlov is perhaps

best-suited to the general concept of altering your stance based on your inter-

actions with others to produce the best result, and so performs especially well

in this situation.

Loosely-connected cliques (groups in which each vertex is connected to each

other vertex in the group) are an excellent demonstration of the multi-layered

properties of this model. Within each clique, their behaviour is almost iden-

tical to a smaller graphical game simulating just that group on a complete

graph. However, if the clique has just 1 or 2 connections to other cliques, its

functionality in the graph can be approximated by a single node. Depend-

ing on the properties of the clique itself, this then can be further re�ned and

abstracted� for example, a highly mobile clique which is 50% cooperative and

50% competitive can be loosely modelled as a single agent with a new type

which randomly chooses between these two strategies.

Impact of Initial Distribution

Some of the most successful parameters for cooperative strategies were short

durations with clustered initial type distributions, in which similar types were

closer to each other. This reduced the time needed for cooperative types to

�nd cooperative opponents, as they already began close to each other in the

graph, whereas the competitive players spent much time competing amongst

themselves, and the simulation ended before the clusters could be broken up

by player action and/or di�usion.
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As the distribution became more even, the e�ectiveness of aggressive strate-

gies sharply increased for a similar reason� they began the graphical game

interspersed between more passive players they could exploit. In this case, a

short running time favoured the hawks, allowing them to exploit all of their

opponents for almost all rounds of the game before it ended, and leaving the

doves unable to cluster together for mutual gain within this narrow window.

In addition, these shorter durations consistently produce more extreme scores,

as there are fewer data points to average out.

Similarly, anything which reduced the e�ective control of the agents over their

positions, such as increased di�usion, tended to even out the distribution of

types (much like `di�usion' of chemicals in the real world) and so favoured

hawk strategies. However, over time, the impact of the initial distribution

decreases the longer the simulation runs for, as the starting position of each

player and/or type becomes less important the longer each player has to move

around. These results are illustrated in the graphs below:
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Figure 6.2: Relative performance of various types in short-length games with a

variety of con�gurations. In each instance the simulation was repeated 10 times and

the scores averaged.
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Figure 6.3: Relative performance of various types in medium-length games with a

variety of con�gurations. In each instance the simulation was repeated 10 times and

the scores averaged.

Type Performance

As expected, strategies which were unable to respond to their changing envi-

ronment fared extraordinarily badly. Strategies like Tester and Hunter success-

fully exploited Everdove, and to a lesser degree Random, across a very wide

range of con�gurations, failing only in the presence of extremely high levels of

noise and di�usion (>40%). On the other hand, strategies which were able to

respond to changes in their opposition (caused by the motion of others) and

take action to face more favourable opponents in future (utilising their own

motion e�ectively) universally outperformed those which did not� even if the

responsive strategy was otherwise generally immobile.
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Critically, Tit-For-Tat fared relatively poorly, despite being one of the strongest

strategies historically (arguably the strongest strategy) in the Prisoners' Dilemma

[4]. Although it was able to outperform basic strategies with historical roots

outside of the graphical game with mobility model, they were outperformed by

one or more of my newer strategies across a wide variety of parameterisations.

More than a simple de�ciency in utilising movement optimally, this appears

to be due to the nature of mobility negating the traditional advantages of

this strategy. The idea behind traditional Tit-For-Tat is to repeat the last

action played by the opponent in each step, cooperating with cooperative

players while punishing aggressive ones. However, most of the hawkish player

types in my simulation repeatedly defected against all other players in each

round, while trying to move away from other hawks using the same or similar

approaches.

This is in some ways a similar concept to Tit-For-Tat� namely, of cooperating

with cooperative players and not with uncooperative players. However, by

making use of their newfound mobility, these new strategies could work to

completely avoid unfavourable opponents, allowing them to ruthlessly exploit

naïve types while minimising contact with aggressive ones� making it superior

to traditional Tit-For-Tat in all respects within my model.

The relative inferiority of Tit-For-Tat to Hawk-Til-Hawk is shown below. For

these simulations, the population was composed of one-third each of Hawk-Til-

Hawk, Tit-For-Tat, and Random, across a variety of con�gurations as shown.

A `Milgram ring' is simply a ring graph with a small number of additional

connections between non-adjacent agents [7].
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Figure 6.4: Performance of Hawk-Til-Hawk and Tit-For-Tat

Impact of Timing Systems

Although previous work found little e�ective di�erence between synchronous

and asynchronous timing, I predicted back in Chapter 4 that this would have

a greater impact in my model. My results have demonstrated that this is the

case. The use of asynchronous time notably improved the performance of the

more intelligent, and more cooperative strategies, especially at low connec-

tivity and in more diverse populations. Conversely, in synchronous time, all

agents negotiate and move simultaneously, often degrading and occasionally

wholly invalidating the original reasoning for movement in a manner analogous

to increased di�usion in the environment.

For example, consider a 4-cycle containing players A, B, C, and D. A is

aggressive, while the other players are cooperative. B is not doing well against
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A, and so arranges to swap with C, reasonably expecting to move out of

range of A and come into contact with D. However, simultaneously, A and

D also agree to swap. After the movement is complete, B is no better o�,

despite having correctly selected and negotiated a good move, because of the

simultaneous choices of other agents outside their control. However, with

asynchronous time, this scenario is much less likely to occur, as only two

connected players out of the set of all players interact and attempt movement

in each round.

This is a positive result for my model, as this asynchronicity more closely

resembles the somewhat haphazard nature of real-world interaction. Unfortu-

nately, ensuring that all players play a roughly equal number of games with

a roughly equal delay in the system I have devised is non-trivial, due to the

mobile nature of the players and linked nature of the games. This is some-

thing of a concern, as in a real-world situation using truly continuous time, all

players would have roughly the same amount of useful time at their disposal

in most situations, and so complete a roughly similar number of interactions

regardless of additional factors. The addition of a basic fairness criterion to

the asynchronous timing system, which increases the probability of agents who

have played fewer games being selected, helped prevent extreme results and

appears to produce clearer and more accurate results across all con�gurations

because of this.

Even in the worst case scenario using asynchronous time, where an agent

must wait an extremely long time between playing games, their situation is

not much worse than it would be with synchronous time, as their knowledge

of their potential opponents will, in both situations, be curtailed by other

movements which may have occurred in the meantime. However, in the event

of a given player playing two games in close succession, their knowledge of

their immediate environment, their opponents, and consequently historical
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moves or actions informing their present decision, is much improved, allowing

their movements to be much more directed and thus more useful. On average,

though, an agent would expect the same number of third-party movements to

occur between its games in asynchronous time as occur simultaneously during

synchronous time.

As a result, in asynchronous time the knowledge agents have of their neigh-

bourhoods remains e�ectively accurate for longer, making decisions on when

and where to move more informed. For example, assume a player plays a game

during asynchronous time, cooperates e�ectively, and decides not to attempt

to swap. They are more likely to stay in their current position, with their

neighbourhood intact, until their next game is played.

Conversely, in synchronous time, even if they cooperate with each of their

neighbours e�ectively, as each has the possibility of moving in the movement

step before any further games are played, the quality of the neighbourhood is

more likely to deteriorate before the agent gets a chance to respond. Similarly,

suppose an agent was about to move into a position surrounded by cooperative

players. In asynchronous time, the move would be completed and another

game would be played. But with synchronous time, there's a reasonable chance

that every single one of those desirable agents will have similarly relocated in

the same movement step.

As with other features of the model, it should be possible to design player

types which identify the con�guration of the simulation they are placed in,

by observing the alterations in themselves and their neighbours over time if

required. Such types would be able to anticipate and respond to at least some

of the many possible situations which could arise, and so outperform agents

who did not. This would essentially be a capacity for `meta-meta-awareness'

of their environment, analogously to how agents with sound movement types



6.3. Observations from Simulations 121

are `meta-aware' and agents with sound action types are `aware'. I will discuss

this possibility further in Chapter 8.

Risks of Mobility

As agents are myopic and cannot perceive events or graph structure beyond

their local neighbourhood, moving to a new position will always be some-

thing of a risk. In certain situations, particularly those within environments

which generate large amounts of movement (for instance by using synchronous

time, highly connected graphs, a high proportion of mobile types, and/or large

amounts of di�usion), it may be less risky to remain stationary due to the ex-

pectation that some of your neighbours will change after movement. However,

in all other scenarios, agents performed better when they made moves deter-

mined with any reasonable heuristic (i.e. not randomly), than they did when

they remained stationary.

For example, if you swap positions with another player, you are guaranteed

to still be adjacent to them at the end of the movement phase (as each agent

can move, at most, once per round). As such, movement strategies which

preferentially swapped with cooperative players tended to outperform those

which, when they did decide to swap, did so randomly, and also those strategies

which preferred to remain stationary. This behaviour was frequently observed

with human players, who almost never swapped with players they hadn't �rst

cooperated with.

As I predicted in Chapter 3, agents generally performed better when moving

from a locality with a low price of anarchy to one with a high price of anarchy

[30]. Although not a perfect comparison, as in my model the same payo�

matrix is used uniformly across the whole graphical game, the same idea can

be applied to individual games between agents based on their types. For
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instance, if one of the two agents will always choose to play a particular action,

a reduced payo� matrix with a new price of anarchy can be formed containing

only those outcomes which could be relevant, allowing a new price of anarchy

to be calculated.

Stationary dove strategies which ignore the mobility available in the graph

are, as seen in classical studies of this scenario, repeatedly exploited by hawks.

On occasion, they �nd themselves in the worst possible situation of being

completely surrounded by player who refuse to move and constantly betrayed

by those same players. Stationary hawks fare better than stationary doves,

as their strategy is inherently stronger� a `mindless' dove player will still �nd

themselves exploited by neutral strategies such as Tester and Hawk-Til-Hawk,

whereas a `mindless' hawk has no such vulnerability� but still score much lower

than other types which make good use of mobility such as Hawk-Til-Hawk.

This is seen, for example, in Experiments 177 and 178.

Impact of Duration

Increasing the number of rounds in the simulation can have a number of dif-

ferent e�ects, highly dependent on the other parameters. If there is a high

proportion of more intelligent agents and/or low di�usion and/or a more re-

stricted graph, the relative score of cooperative players increases sub-linearly

with the duration of the simulation. This is because locating other cooperative

agents and demonstrating cooperative intent takes time, but yields bene�ts in

the long run. In cases with very high di�usion and/or simplistic types unable

to take advantage of the increased knowledge they gain of their opponents over

time, extending the length of the simulation simply gives aggressive strategies

more opportunities to exploit their opponents� the cooperative players are un-

able to coordinate e�ectively, regardless of how many chances they are given
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to do so.

Longer simulations with high di�usion and more restricted graphs roughly

approximate shorter simulations with less restricted graphs. This occurs as, in

both cases, each player will face each opponent a roughly equal, small number

of times. Asymmetric timing also ampli�es this similarity. In every simulation,

increasing the number of rounds reduces the impact of the initial distribution

on the �nal outcome, as it becomes just one of many situations from which

the distribution of players will develop.
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Figure 6.5: Variations in the number of completed swaps over time in a ring graph

with 0% noise and 0% di�usion, using synchronous time, consisting of 12 `Dove-Til-

Hawk' and 12 `Hawk-Til-Hawk' players placed in alternating initial position
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In the preceding �gure, note that the average, but also the maximum and

minimum number of swaps goes down over time. This is caused by the co-

operative players gradually building a larger and larger cluster, which the

aggressive agents could not re-enter once they found themselves wholly out-

side of it. Eventually, all the cooperative players are �xed in position, leaving

the aggressors endlessly swapping as they fruitlessly attempt to search out a

more favourable neighbourhood. This type of convergence� into a subset of

possible con�gurations which repeat or even loop inde�nitely� is typical of

graphical games with mobility. Total stability with no movement occurring is

only achieved in simulations with an extremely high proportion of cooperative

or speci�cally immobile agents� typically at most one non-cooperative agent.

Impact of Initial Distribution

The e�ect of the initial distribution on the �nal results is most noticeable on

heavily restricted graphs, simulations running for a relatively low number of

rounds, and/or simulations with little to no di�usion, as each of these factors

reduces the time available for each agent to explore the graph and reach a

favourable position. As time goes on and the agents move around, the impact

of the initial distribution diminishes and approaches insigni�cance as each

agent's own decision making enables it to approach the position/s on the

graph where it wants to be. Experiments indicate that for k-regular graphs

with k>2, with 20 or fewer players, this parameter has no observable e�ect

beyond 200 rounds.

After this time, most agents have found a position they're happy with, or are at

least unable to �nd a better one (perhaps being trapped amidst other, content

players), and mobility dips as the distribution of the population stabilises. The

arrangement they form is, at worst, a shallow local maximum of the overall,
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combined preferences of the agents.

Due to the inherently competitive nature of the fundamental interactions be-

tween agents in this system, there is no distribution which is truly or com-

pletely stable for an arbitrary length of time, other than those only involving

simple deterministic agents. Rarely, however, a distribution will be reached

which is optimal for a given type, or, more rarely, socially optimal (given each

agent's type), in which each agent of a given type scores perfectly for the

duration of a simulation against all other agents.

Often, even in such a `stable' situation, movement does still continue to occur

at the local level, with two agents swapping back and forth endlessly as they

each try to improve their outcomes. Frequently, the randomised querying of

agents from the mobility algorithm or di�usion can knock the total system out

of this state, even after some time has passed, and results in more agents be-

coming mobile and once again searching for a better position as circumstances

change. However, the arrangement caused when the graph has stabilised once

again often closely resembles, or is even isomorphic to, the previous arrange-

ment. These behaviours are illustrated in the following �gures:
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Figure 6.6: Mobility arising from a clustered distribution in a ring graph over time.

Red indicates Hawk-Til-Hawk players, purple indicates Pavlov players, and blue

indicates Dove-Til-Hawk players. Note how, with the absence of noise and di�usion,

the initial clump of cooperative players cannot be penetrated by hawks or Pavlov

players attempting to escape them� though both can mitigate their utility loss by

positioning themselves at the edge of the group.

Figure 6.7: Mobility arising from a spaced distribution in a ring graph over time.

Note how, with the absence of noise and di�usion, cooperative strategies are even-

tually able to form a solid block which the hawks cannot penetrate.

Impact of Di�usion

Di�usion generally has a lesser impact on the outcome of the graphical game

than predicted in Chapter 4. This seems to be because the control any single

agent has over its position is relatively low, even with zero di�usion in the

con�guration. First, our agent forms an ordered list of preferences based on

its own myopic perception, which is unlikely to contain all the information
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required to make an optimal decision. Then, the agent negotiates swaps based

on this.

However, as all players are seeking more-or-less the same thing in this simulation�

to be surrounded by cooperative players, whether to reciprocate that coopera-

tion or to exploit it� not many are likely to get their �rst pick and must make

do with various less-optimal arrangements. With all this taken into considera-

tion, the total payo� is not signi�cantly impacted if a given agent occasionally

has its preferences randomised.

The largest impact from di�usion comes on heavily-restricted graphs contain-

ing a diverse population of competitive and cooperative types. In such a situa-

tion, even a low level of di�usion can make it impossible for cooperative types

to eternally form blocks which the competitive players cannot in�ltrate, and

so correspondingly can cause the scores of cooperative types to be signi�cantly

lower (as in experiments 53 and 64).

Impact of Type Balance

Hawks performed better in dove-heavy populations than in balanced ones.

While somewhat counter-intuitive, it makes sense that the score of a single

hawk invading a population of doves will be higher than the average dove

score, as a single hawk in a population of doves will never be betrayed, and

even has a small initial advantage in a population of smarter types such as

Tit-For-Tat or Pavlov, as it will always successfully exploit each player of these

types once. In a large and mobile population, which ensures the invader will

get a chance to interact with and betray each other player, and a relatively

short number of rounds, which emphasises the e�ects of these earlier games,

it is even possible for the invading hawk to outperform these other strategies.
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Doves, naturally, also fare well in dove-heavy populations, as this enables

them to cooperate successfully. More advanced types which cooperate �rst

and keep cooperating for as long as the opponent does (such as Tit-For-Tat

and Pavlov) are equally equitable to these doves. As two interacting doves

prefer the socially optimal outcome of mutual cooperation, it should be no

surprise that most types generally scored higher in dove-rich environments, as

more of the possible utility is gained overall by players in such an instance.

This can be seen in the contrast between experiments 865 and 875 (once the

lone EverDove is accounted for).

6.4 Observations from Humans

The main purposes of my detailed human experimentation process was to ob-

serve how humans interacted within the model I created, compare and contrast

their behaviours with those of my simulated players, and attempt to under-

stand these behaviours within the context of previously known results. There

were also opportunities to test some conjectures made by myself (such as `play-

ers will not make signi�cant use of information regarding events beyond their

locality', which I hypothesised in Chapter 3) and others (such as `human ir-

rationality is partially caused by lack of computational ability' [25]), which I

will discuss alongside the relevant results.

Communication

Interestingly, the vast majority of players responded truthfully when other

players asked them about the actions of third parties and the general game

state. I believe the reasons for this are two-fold. Firstly, the amount to be

gained from deception was relatively low. For one round, that player is likely
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to receive the best possible outcome, but any future rounds are jeopardised

by the betrayal. Conversely, information (and so the potential for deception)

is greatest earlier in the game before players have a chance to collect their

own information. Secondly, even this would require high levels of mobility to

manoeuvre into a position where the deception could be useful. Thirdly, with

no restrictions on communication, it was relatively easy for another player to

contradict any liars, and, as doing so gained them standing in the eyes of the

other players, all were eager to do so.

Conversation and negotiations with other players regarding possible movement

during the experiments were generally �uid, with players waiting for others

they wished to talk to complete their current negotiation, or joining them

in conversation with a third party if time was limited. Players who were at

more connected nodes often had several other players vying for their attention

at once. However, few players meaningfully or repeatedly interrogated other

players beyond their neighbourhood, as I'll discuss more later in this section.

Mobility

Many players are initially reluctant to make use of their mobility, even in ex-

treme cases such as when the most recent round of games produced the lowest

possible total payo� for them. The reasons players gave for this behaviour

were diverse, but there was generally an impression that they could improve

their performance by responding to the known opponent, even in cases where

they seemed to be at a disadvantage. This made them unwilling to take the

risk of moving to a new neighbourhood and having to `expose' themselves to

an unknown opponent until more information could be gathered.

The overall lack of awareness displayed by players throughout the experimen-

tation process of the symmetry of these situations� namely, that the known
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opponent would also be responding to the information they gained from the

previous round, and that a new opponent would, just like them, be making a

decision without any information about their type or preferences� was strik-

ing. This could be a genuine blind spot in the logical faculties of almost all

human subjects, or simply an expression of the innate risk-aversiveness often

found in such situations.

As expected from my preliminary experimentation, the utility of the players

who remained stationary in these scenarios was markedly less than those who

utilised the movement options available to them. Unlike the often decried

`irrational' human behaviour which causes streaks of high-scoring cooperation

rather than the `optimal' competition, I believe this is symptomatic of a more

fundamental kind of `irrationality' which does actually impede e�ective play�

namely, risk aversion. Despite steps being taken to normalise the nature of the

payo�s in order to create as neutral an experimental setup as possible, this

behaviour was still frequently observed across all experiments with human

subjects [52].

However, as time continued, more rounds were played, and humans gained

familiarity with both the games and the experimental setup, the prevalence of

this phenomenon decreased. This could also be partially due to players gaining

external or `meta' knowledge about the types and actions typically employed

by particular opponents between games, and as such becoming more con�dent

in their movements towards players with whom they cooperated well with in

previous games and away from those they didn't work well with. Though such

explicit reasoning was conspicuously absent from all but a few of my players'

notes and responses when asked, it may have had an impact on a less-concious

level.

This phenomenon also decreased as the di�usion across the graph increased,
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which forced the players to move out of their comfort zone� though about 35%

of players then attempted to move back to their previous locations after being

moved unwillingly.

Attentiveness and Memory

Almost all players quickly took to recording the actions played by their op-

ponents in case they encountered them again in future� players who did not

were betrayed often, earned the ire of even the most cooperative players (who

expected reciprocal cooperation), and generally performed very poorly. Con-

versely, a small number of players (<5%) went far beyond this, extensively

cataloguing every play made by each player in each round. However, these

players did not outperform the more typical players by a statistically mean-

ingful amount, and in some experiments actually fared worse. I observed other

players generally treating such players with distrust; paying `too much' atten-

tion to events outside your neighbourhood implies that you are not interested

in building alliances with your current neighbours, increasing the chance they

will decide to `pre-emptively' betray you instead of playing cooperatively. It

would appear that this e�ect neatly counteracts the value of the information

gained.

Similarly, players generally paid far more attention to scores and movement

within their neighbourhood than they did outside of it, with only the most

diligent looking beyond that, and only then in scenarios where they had some

con�dence they could move e�ectively towards better locales if they found any.

On investigation, a majority of players perceived events outside their locality in

the graph as being less-relevant then those happening close-by, which con�rms

my hypothesis.



6.4. Observations from Humans 132

Backwards Induction

In instances where players did cooperate for long periods, a signi�cant minor-

ity were observed switching to backstabbing or even mutual defection when

informed that the next round would be the �nal round (at which point the

nature of the game arguably changes from repeated to non-repeated). On

closer inspection of the notes made by each player, the majority commented

to the e�ect that they thought this was the best action at this point as their

opponent would not have a chance to retaliate. Even those who would rather

have cooperated often defected to `guard' against this possibility of defection

from their opponent/s.

One or two even commented that they believed this was the right action to

make according to `game theory'� perhaps an ironic example of human players

playing sub-optimally (in the case of mutual defection where each receives a

lower payo� than if they had continued their successful cooperation) because

of, rather than in spite of, classical beliefs about rationality.

Additionally, not a single player in a single game played EverHawk (defecting

at each opportunity for the duration of a simulation), and very few engaged in

long sequences of repeated defections, especially against all opponents simulta-

neously. This would seem to provide evidence both that backwards induction

is not a reliable method for determining human behaviour, and that humans

can and do perform some basic game theoretic analysis of their situation (or,

at the very least, that these players were su�ciently knowledgable about game

theory).
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Time Pressure

There was not a statistically signi�cant di�erence (<10% in average scores

achieved) observed in the performance of players who were given the stan-

dard (2 minutes), generous (5 minutes), and extremely generous (15 minutes)

amounts of time to determine their actions and potential movements. This

was observed to be the case at all stages of the experiments, including those

lasting 30 rounds, and was una�ected by other variables such as graph struc-

ture and the payo� matrix used. This evidence would seem to disprove the

hypothesis presented by Halpern that humans often miss out on `rational' play

because they are computationally limited and unable to calculate the correct

course of action [25], as giving them more time to decide their actions would,

at least, mitigate this.

Players given 15 minutes to determine each action were extremely con�dent in

both the plays and agreements they made, often re-examining them in full and

making little to no changes to their plans, and expressing a desire to progress to

the next stage of the experiment. Conversely, a large minority of players were

quite vocal about getting as much time as they could to negotiate and discuss

with other players where such an opportunity was o�ered, even though the

e�ects of additional time on their performance was negligible. These players

expressed the belief that their play would indeed be improved by making full

use of the time available to determine their actions.

That said, the performance of players given a limited amount of time to select

their actions and movements (one minute or less) su�ered noticeably when they

faced o� against players with more generous time constraints. This was imple-

mented by having the players with less time available con�rm their decisions

and cease discussion prematurely, while the unrestricted players continued.

Even when they only needed to select one action from a possible set of two,
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and a move from a possible set of three (two adjacent opponents, or remaining

stationary), the overall score of these time-constrained players was up to 50%

lower than the average attained by less-pressured players.

There are explanations for this other than a direct impact on `computational

power' though. Players without time-constraints expressed a level of uncer-

tainty interacting with rushed players, and thought they were more likely to

defect than others. The time pressure also made it di�cult for them to build a

rapport with other players and so engender cooperation. Simulations in which

all players were time-constrained were notably less cooperative than average�

in other simulations around 70% of all actions chosen were cooperative, but

this dropped to 40% in time-constrained experiments.

Bargaining Power

The concept of high bargaining power (as explained in Chapter 3), whether

relative or absolute, and a correlated e�ect on utility and payo�s was also in-

vestigated. No statistically signi�cant relationship between the two was found

for my arti�cial agents. This is likely because they were unable to perceive

their bargaining power in any meaningful way, as they were both myopic and

unable to map the structure of the graph as they moved around, and therefore

also unable to adapt their strategies to exploit such advantages when they

occurred.

However, a very strong correlation between the two metrics was observed with

human players. Almost all human players quickly saw the advantages of being

in a position with high bargaining power, and leveraged their position to co-

erce cooperation from opponents with limited other options, refusing to move

from such a position under any circumstances. This resulted in them scoring

extremely highly across all con�gurations except those with non-trivial di�u-
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sion, which made holding a position with high bargaining power inde�nitely

untenable.

Action Selection Strategies

Unlike the �xed types used by my arti�cial agents, human players were not

limited to expressing a single type, and could use their natural intelligence to

determine which action to play and move to make at each step. As expected,

the human players were generally very �exible, with many of them shifting

strategy over the course of the game. Many of them approached the games

with a strategy in mind at the beginning, but almost all of them ended up

modifying their plans as they learned more about their relative position in the

graph and the types of the opponents they were facing.

However for each game played other than the very �rst they were much more

stable in their overall approach. This phenomenon is likely attributed to the

players taking some time to learn the intricacies of the game and �nd good

strategies.

Rather than each human player being wholly unique, they can be broadly

simulated by a reasonably-sized group of advanced, but �xed types, such as

(but not limited to) Dove-Til-Hawk and Hunter. Generally, successful (those

which performed above average in their experiment, and/or earned at least half

of the total utility available to them) players cooperated early and often, built

alliances, and manoeuvred themselves into a good position to take advantage

of those alliances.
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Advanced Cooperation and Negotiation

Some players attempted to garner a reputation as being cooperative, both

by playing cooperatively and asking their opponents to validate their claims

of being a cooperative player in discussion. This strategy was not especially

strong, as the strategies they declared in advance were easily exploited by less

scrupulous players, especially in shorter simulations where the cooperative

players as a whole had less time to set up.

Similarly, the results of overt attempts to get a group of cooperative players

to form a clique varied wildly in their success. On some occasions, such a

group was formed without incident and scored extremely highly. In others, it

was in�ltrated by non-cooperative players or prevented from forming by other

players for various reasons (including a subset spitefully attempting to prevent

others from scoring higher than them).

Even when such a group did form, its circumstances highlighted that main-

taining a high level of trust was often di�cult, especially in the face of external

pressures. In one instance, three players had worked to position themselves at

three adjacent nodes in a ring graph, on the understanding that they would

constantly exchange the favourable central position. On attaining this posi-

tion, one player refused to swap with the next player in their plan, leaving

the others with little recourse that would not also degrade their own pay-

o�s (there was no di�usion in this experiment) and ultimately allowing the

betraying player to outperform all others in that particular experiment.

Although there was no `resource system' enabling players to perform advanced

bargaining, some players were observed o�ering to allow themselves to be

exploited (that is, they would cooperate knowing their opponent would defect)

in return for a favourable positional swap. Though uncommon in and of itself,

most of these deals, when accepted, were upheld after the swap occurred, and
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almost always reverted to strong mutual cooperation after the terms of the

deal had been met by both sides.

I theorise that each player's commitment to deals such as these (accepting a

potentially less favourable position, and outright allowing another player to

exploit you) functions as a costly signal, demonstrating the commitment of

each player to their partnership [55]. This struck me as an excellent demon-

stration that the capacity of human players to go above and beyond any given

experimental setup in an e�ort to communicate and �nd others with whom

they can interact favourably should not be underestimated!



Chapter 7

Conclusion

7.1 Analysis of Objectives

In order to more accurately assess whether my research has met its stated

goals, I will expand upon each objective I identi�ed in the �rst chapter and

discuss to whether, and to what extent, it can be said to have been ful�lled.

Tie together the strengths of di�erent game-theoretic approaches to

di�erent scenarios into a single generic system.

As covered in chapter 3, there are many di�erent existent approaches to em-

ulating and studying scenarios in which agents interact, which, on closer in-

spection, can be incorporated under the umbrella of game theory. For ex-

ample, approaches from biology tend to be excellent at representing structure,

but downplay the importance of individual interaction, while computationally-

orientated models such as population protocols focus entirely on transmitting

information through interaction, but have no real structure to speak of. My

system has both structure and an emphasis on individual interaction, alongside

many other desirable properties found in other systems, as detailed in chapter

138
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4. As such, it clearly combines the strengths of multiple existing systems. In

addition, my model is �eld-agnostic, and capable of simulating computational,

biological, and other scenarios with equivalent ease.

Provide explanations for why certain strategies do or do not work

e�ectively in di�erent scenarios.

Many speci�c examples of strategies performing signi�cantly above or below

expectations have been discussed throughout chapter 6, along with justi�ed

reasoning which attempts to explain why this may have been observed. A

particularly clear example of this was those players who gathered a lot of

information from beyond their locality in my human experiments. Although,

on paper, having as much information as possible on hand would trivially seem

to be a dominant strategy, by viewing it through the lens of reciprocal social

interaction, we can understand and explain the observation that it had no

signi�cant impact.

Holistically and accurately represent the nature of interactions be-

tween entities in di�erent environments.

This has been discussed previously in chapter 4. The relatively simple swap-

ping system succinctly summarises the vast spectrum of possible negotiations

into a single variable, as (outside of randomised di�usion) it requires both in-

volved agents to communicate and consent. As any interaction between any

number of entities can be reduced to this relatively simple outcome, it follows

that my system can accommodate even the most complex negotiations, using

multiple stages and resources. I will discuss this further in chapter 8.
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Eliminate some of the systemic inaccuracies of game theory as a �eld

and by doing so provide an increase in �delity over existing models.

This was easily my most ambitious goal� even a small increase in the success

rate of predictive models including humans could have long-reaching impli-

cations. Nonetheless, I believe this has been achieved, albeit for a relatively

narrow range of scenarios. At the absolute minimum, I have studied and dis-

cussed a small range of quirky human behaviours which were not visible prior

to the development of my model� and this new knowledge of a hitherto un-

studied phenomenon should allow it to be taken into account going forward,

and directly reduce the impact of the unknown on the accuracy and �delity of

our models.

Advance our understanding of how people approach and play games

outside of a laboratory setting.

Although my human experimentation was limited, my less formal methods of

data collection and observation allowed the perceptions and reasoning behind

the behaviours demonstrated by participants in my experiments to be more

clearly understood. Though it could be argued that a more formal methodol-

ogy would have gathered more de�ned and quanti�able results, I believe that

this misses one of the fundamental points of my thesis. As I have argued con-

sistently, human beings simply do not think about their interactions in such

rigid terms� to improve our understanding further we must accept this and

�nd new ways to accommodate these phenomena, rather than trying to force

human beings to adjust to our existing models and systems.
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Be applied to an extremely large range of situations.

This is closely related to the �rst point� in order for my model to be applicable

to an `extremely large range' of situations and scenarios, it should incorporate

the features and strengths of multiple existing models which allows each of

them to model a narrower range of such scenarios independently. I believe I

have e�ectively demonstrated these qualities.

Be more intuitively comprehensible than any previous system, al-

lowing results to be conveyed more clearly.

Although the bulk of the data included in the appendices is extremely un-

clear, this includes the minutae of the system which can largely be ignored

when analysing behaviour at a higher level. The higher level information and

derived arguments as presented in chapter 6 should be considered to be more

illustrative. Fundamentally, I believe that, in comparison to every other sys-

tem analysed in chapter 3, it was clear that the system that I have designed is

immediately more accessible on several levels and, indeed, more intuitive and

comprehensible.

7.2 Final Summary

The addition of mobility has a signi�cant impact on the established model of

graphical games, creating new tools for the investigation of these scenarios as

well as opening up many potential avenues of further investigation. In addition,

the incorporation of mobility is guaranteed to have a signi�cant impact on

basically every restricted-interaction multi-player game (as demonstrated in

Chapters 2, 4 and 5).



7.2. Final Summary 142

By using a widely researched and well-understood baseline model of interaction

(i.e. the Prisoners' Dilemma) to underpin my research, the results gathered

from both arti�cial and human players can be compared to those available

from other sources. These have shown that the model I have designed is a

natural extension of pre-existing models (most clearly, the `graphical game'

model), adding features which genuinely and signi�cantly improve both the

range and the �delity of scenarios it simulates.

My investigations of my new model have revealed many complex inter-relationships

between the di�erent qualities which all such scenarios inherently possess, re-

gardless of their apparent complexity. Though there have been no wholly

counter-intuitive behaviours observed, many parameters a�ect each other in

complex ways, causing otherwise identical simulations to behave extremely

di�erently with only very small changes (as discussed throughout Chapter 6).

Although challenging, a holistic understanding of these strongly emergent ef-

fects has been formed and presented throughout this thesis to assist others

in their use of this model and its further re�nement. Various hypotheses and

conjectures from both myself and others were raised (Chapters 3, 4, and 5),

tested (Chapters 5 and 6), and discussed (Chapters 6 and 8).

All of the methods and results obtained in the course of this research are re-

producible from the information contained within this thesis. The features of

the model can be combined with known graph and game theory to create the

basic graphical games model. The mobility algorithm which I've detailed and

provided psuedocode for can then be added to this to create a full implemen-

tation of my graphical games model with mobility, recreating the same system

I used throughout this research. After this, one of the basic con�gurations I've

provided in Chapter 4 can be used as a starting point for verifying my results

and conducting experiments of one's own using this system.
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All in all, the evidence suggests that my model of graphical games with mo-

bility, as I've presented in this research, is at least as good as existing game

theoretic models of interaction, type evaluation, and mechanism design, ac-

cording to the metrics below. In addition, this new model has a number of

powerful features and improvements over other systems:

� It can simulate any scenario which can be simulated by pre-existing mod-

els, in addition to a wider range of scenarios pertaining to the movement

of individual agents among a restricted population.

� It can also be reduced to an established and e�ective pre-existing model

without loss of generality, meaning almost all previously discovered re-

sults for graphical games (for example, computational complexity limits)

can be applied to it in a straightforward manner. A reduction to a nested

payo� matrix or �nite state automata has been provided previously.

� It enables most scenarios to be modelled in a more natural and intu-

itive manner than with pre-existing models, without concern for minu-

tiae such as the exact method of propagation of types through the graph,

and avoids under-valuing larger aspects such as the relevance of these

amorphous types in the �rst instance.

� It provides enhanced �delity at all levels of interaction by making use

of the concept of meta-games. Di�erent aspects of graphical games with

mobility� such as the act of moving itself� can be modelled with addi-

tional simulations using di�erent payo� matrices to study these alternate

forms of interaction between agents in more detail.

� It successfully produces, and provides explanations for, behaviours gener-

ally resembling those observed in the real-world to a greater extent than

pre-existing models.
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Once con�gured correctly for the speci�c scenario to be studied, the behaviour

of human players using this system appears generally analogous to the be-

haviour of arti�cial agents, even those using strategically and/or computation-

ally simple types. This observation has been reinforced across a wide range of

simulations, each iterated hundreds of times, and from cross-comparison with

results from human testing. However, without a much larger study applying

this model to multiple complex, real world scenarios, using games far more

complex than the Prisoners' Dilemma, it would be incautious to claim this

with certainty.

That said, most compellingly, my results would appear to support a testable

hypothesis for future research� namely, that human `irrationality' is pre-dominantly

caused by a systemic failure in experiment and mechanism design to take into

account human nature as social animals with a variety of di�erent experiences

which exist in the real-world. By taking steps to broadly replicate such fea-

tures and properties, and taking advantage of the many emergent properties

that are created because of this, my research shows we can dramatically curtail

the divergence between predicted and observed behaviour in human subjects.



Chapter 8

Further Research

A number of interesting avenues have been opened up for subsequent research

due to this work. As I outlined earlier, there are a large number of natural

continuations of this model which will be of interest to anyone attempting

to research the graphical gaming model in more detail. For starters, due to

the inherently complex nature of the systems being modelled and the emer-

gent behaviour they display, any of the parameters not explicitly investigated

could have unexpected interactions with any other parameters (explicitly in-

vestigated or otherwise)� though some were discarded as preliminary testing

indicated this was unlikely.

The clearest area of expansion would be to design more intelligent player types

(perhaps using heuristics, and/or any learning system such as reinforcement

learning or neural nets), and to simultaneously remove some of the restrictions

on the model which would prevent these players from bringing their new qual-

ities fully to bear. The myopia, which prevents agents from viewing events

beyond their neighbourhood, is probably the most limiting restriction� even

if the players only use any newfound perception to occasionally observe other

games nearby, this would still give them potentially critical information about

145
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some opponents they would otherwise be facing as complete unknowns for the

�rst time.

The limit between what information human and arti�cial players have access

to� even if it is almost always discarded without use by the more percep-

tive humans� strikes me as the largest remaining limitation to more closely

synchronising the behaviours of synthetic and organic agents within these en-

vironments.

Related to the idea of enhancing the computational ability and information

available to the agents, it would be interesting to see how a particular type, or

several closely related types, could make use of the Urn Automata model [37]

(or a similar system) in comparison to other types within my model� although

the Urn Automata model itself does not seem to be particularly useful or of

further academic interest. My intuition is that, with the correct con�guration,

a variant of the `Tester' strategy, which defects with some probability based on

the amount of defections occurring across the graphical game, could be quite

an e�ective type, as mentioned in Chapter 3.

However, this would raise larger questions of communication, privacy, and

type-recognition within the system. Assuming more human-like agents who

can communicate freely regardless of distance, what mechanism would these

`Urn-Testers' use to inform the others of their �ndings and so update the

shared memory? If such a mechanism to verify one's type to other agents of

the same type can be created, it would certainly be of interest to other agents.

For example, hawks could immediately move away upon contact, neutral

strategies could freely cooperate, and doves could preferentially swap with

each other to exclude non-doves. Much like the question of balancing for pre-

de�ned collusion, I doubt these behaviours are of rigorous academic interest�

but if addressed correctly, the addition more structured and/or speci�c types
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by this method could be an asset to the overall model.

Similarly, with several of the more advanced player types I designed, the ques-

tion of coalitions, particularly with regard to their formation and e�cacy,

arose. Though explicitly pre-de�ned coalitions through the use of player types

is probably not of deep academic interest, the question of emergently formed

coalitions between players in competition is certainly intriguing. My intuition

is that this situation could be well-modelled at present using a meta-game, in

which cooperation between two agents indicates a deeper trust and coalition

in the lower game.

As a corollary, more advanced player types could speci�cally be designed to

take more strategic advantage of the mobile graphical games model, and their

ability to perform under a variety of situations assessed. For instance, the

distribution of types over time could be tracked, and this information extrap-

olated for use by agents within a given graphical game. Learning agents could

themselves gain an understanding of how the di�erent settings a�ect the exe-

cution of the simulation, and learn to read those settings, either directly (from

the graphical game itself) or indirectly (for instance, by keeping track of how

often its preferences have been ignored to calculate the chance of di�usion),

and modify their behaviour accordingly to gain strategic advantage.

Experiments could be conducted using a combination of human and arti�cial

agents. Con�guring the parameters of such a simulation would be challenging,

due to the di�ering innate abilities and a�nities of these di�erent types of

players. For instance, either myopia would have to be removed for the arti�cial

agents, necessitating the creation of more complex types, or added for the

human agents, necessitating a more complex experimental setup. However,

this may help bridge the behavioural gap between these player types, and

consequently lead to new insights into both the model and general behaviours
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of these entities.

There are many possible applications to wider models of graphical computa-

tion, or even just multi-agent computation. For instance, if the agents had

some limited knowledge of the graphical structure, such as the ability to de-

termine the shortest route to a speci�ed node, they could move towards or

away from it depending on the results of their games. This could provide

a novel system for examining or understanding classical, or perhaps novel,

computational problems.

Topological mutability, as discussed previously in `Constant Features of the

Model', would certainly be an interesting addition to this model. I do not

think that it would increase the clarity of the model or enable it to model

novel scenarios, as it's much harder to see what exactly such an addition

would represent (especially compared to other potential features). However,

there may be applications in other areas such as network theory and general

computational complexity.

My intuition is that there exists a subclass of problems to which it could

provide an elegant solution, but outside of this such an addition would do

little more than create confusion and work to reduce the graph to a highly-

connected, amorphous cluster as discussed in Chapter 6. This could be mit-

igated by the addition of more intelligent agents which were able to deploy

speci�c alterations in a focused and meaningful manner.

There are many natural games and situations which contain more than two

players. Though these can be modelled with the system I've designed, there

may be ways to further clarify such systems so that they are as easy to under-

stand and use as possible. For example, hyperedges could be added to connect

multiple players through the same element (which would still be representing

a game or single mode of interaction). Likewise, rulesets which further dis-
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tinguish or interweave connections between the edges along which games are

played and movement options may be of interest, as they could allow more

complex structures to be simulated (for example, incurring a penalty to payo�

when one wishes to move).

The ideas of varying connection and structural power from Cook and Yam-

agishi [29] could be expanded and re-applied to graphical games with mobil-

ity. More simply, agents could be allocated some resource/s which they must

choose to distribute between all the games they play in each (synchronous)

round, such as `money' in an Ultimatum Game, or a limited number of uses

of each strategy. This would bring the model back towards the `n players at

nodes' form originally envisaged by Kearns [11], but could probably be struc-

tured in such a way as to retain most of the advantages of more clearly de�ned

binary links between agents.

In my human experiments, cooperative players frequently expressed a desire

to `push away' non-cooperative players, while those players often wanted to

`jump' into the middle of a dense pack of cooperative players. A model with

more advanced movement rules, including but not limited to players moving

each other, players moving along a structure not identical to the graph along

which games are played, players having some mechanism to move to a speci�c

position, or players having some capacity to alter the structure of the graph,

could be of deep tactical interest if time was spent developing arti�cial players

which could take full advantage of it, or with further experiments conducted

with human players.

As with other aspects of the decision making which is made by the players,

this could either be incorporated into the payo� matrix of an existing game,

by multiplying it through by the number of new options available, or consid-

ered as a separate choice occurring simultaneously or immediately afterwards.
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Again, more complex strategies would be needed to take advantage of this new

capability in an intelligent (that is, non-random) manner.

Though the reluctance of some humans to make use of mobility for various

reasons can be generally understood as aversion to risk, further investigation

may produce more detailed hypotheses more closely related to this model. A

simple study focused on this behaviour should be able to draw out and identify

more accurately why it was occurring, and under what circumstances it can

be suppressed or exacerbated.

Mobility is clearly the most interesting feature in the model (as without it,

few of the other features would have a meaningful impact), and now that the

basic form has been researched and documented, it should open the way for

di�erent types of mobility to be studied, such that the type used can be chosen

to help model a given scenario. For instance, the concepts I have developed

could be joined with those from spatial games [39], resulting in a continuous

2-dimensional space with agents interacting within a �xed radius. Weighting

could be used to increase the value of games played with opponents closer

to a given agent, additional costs could be invoked for operating in a `dense'

environment, and so forth.

In �nal summary, the full power of this model should be realised when applied

to a situation with a highly complex graphical structure, highly complex game,

and highly complex player types� such as those found in many real-world,

modern games. If these situations could be accurately translated into this

model, this model should be able to identify useful real-world information,

which could, in turn, be used to identify successful strategies within those

situations.



Chapter 9

Appendix

This chapter contains a selection of data extracted from my program and used

to support the results and conclusions I have drawn.

9.1 Populations Used

Pop

Label Type 1

# of

Type

1 Type 2

# of

Type

2 Type 3

# of

Type

3 Type 4

# of

Type

4 Type 5

# of

Type

5

A

HAWK-

TIL-

HAWK 4

DOVE-

TIL-

HAWK 2

RAN-

DOM 1

TIT-

FOR-

TAT 2

PAV-

LOV 1

B

HAWK-

TIL-

HAWK 3

DOVE-

TIL-

HAWK 3

RAN-

DOM 1

TIT-

FOR-

TAT 2

PAV-

LOV 1

C

HAWK-

TIL-

HAWK 2

DOVE-

TIL-

HAWK 4

RAN-

DOM 1

TIT-

FOR-

TAT 2

PAV-

LOV 1

D

EVER-

HAWK 2

EVER-

DOVE 2

RAN-

DOM 3

TIT-

FOR-

TAT 1

PAV-

LOV 2

E

EVER-

HAWK 2

EVER-

DOVE 2

DOVE-

N-

SWITCH 2

HAWK-

TIL-

HAWK 2

DOVE-

TIL-

HAWK 2

F

EVER-

DOVE 2

HAWK-

N-

SWITCH 1

DOVE-

N-

SWITCH 1

TIT-

FOR-

TAT 2

PAV-

LOV 4

Table 9.1: The expanded population information used in the experiments detailed

below.
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9.2 Con�gurations

Exp. ID Graph Timing Duration (Rounds) Di�usion (%) Pop. Set Distribution
1 Ring Synchronous 10 0.0 A Clustered
2 Ring Synchronous 10 0.0 A Distributed
3 Ring Synchronous 10 0.0 B Clustered
4 Ring Synchronous 10 0.0 B Distributed
5 Ring Synchronous 10 0.0 C Clustered
6 Ring Synchronous 10 0.0 C Distributed
7 Ring Synchronous 10 0.0 D Clustered
8 Ring Synchronous 10 0.0 D Distributed
9 Ring Synchronous 10 0.0 E Clustered
10 Ring Synchronous 10 0.0 E Distributed
11 Ring Synchronous 10 0.0 F Clustered
12 Ring Synchronous 10 0.0 F Distributed
13 Ring Synchronous 10 5.0 A Clustered
14 Ring Synchronous 10 5.0 A Distributed
15 Ring Synchronous 10 5.0 B Clustered
16 Ring Synchronous 10 5.0 B Distributed
17 Ring Synchronous 10 5.0 C Clustered
18 Ring Synchronous 10 5.0 C Distributed
19 Ring Synchronous 10 5.0 D Clustered
20 Ring Synchronous 10 5.0 D Distributed
21 Ring Synchronous 10 5.0 E Clustered
22 Ring Synchronous 10 5.0 E Distributed
23 Ring Synchronous 10 5.0 F Clustered
24 Ring Synchronous 10 5.0 F Distributed
25 Ring Synchronous 10 20.0 A Clustered
26 Ring Synchronous 10 20.0 A Distributed
27 Ring Synchronous 10 20.0 B Clustered
28 Ring Synchronous 10 20.0 B Distributed
29 Ring Synchronous 10 20.0 C Clustered
30 Ring Synchronous 10 20.0 C Distributed
31 Ring Synchronous 10 20.0 D Clustered
32 Ring Synchronous 10 20.0 D Distributed
33 Ring Synchronous 10 20.0 E Clustered
34 Ring Synchronous 10 20.0 E Distributed
35 Ring Synchronous 10 20.0 F Clustered
36 Ring Synchronous 10 20.0 F Distributed
37 Ring Synchronous 10 50.0 A Clustered
38 Ring Synchronous 10 50.0 A Distributed
39 Ring Synchronous 10 50.0 B Clustered
40 Ring Synchronous 10 50.0 B Distributed
41 Ring Synchronous 10 50.0 C Clustered
42 Ring Synchronous 10 50.0 C Distributed
43 Ring Synchronous 10 50.0 D Clustered
44 Ring Synchronous 10 50.0 D Distributed
45 Ring Synchronous 10 50.0 E Clustered
46 Ring Synchronous 10 50.0 E Distributed
47 Ring Synchronous 10 50.0 F Clustered
48 Ring Synchronous 10 50.0 F Distributed
49 Ring Synchronous 25 0.0 A Clustered
50 Ring Synchronous 25 0.0 A Distributed
51 Ring Synchronous 25 0.0 B Clustered
52 Ring Synchronous 25 0.0 B Distributed
53 Ring Synchronous 25 0.0 C Clustered
54 Ring Synchronous 25 0.0 C Distributed
55 Ring Synchronous 25 0.0 D Clustered
56 Ring Synchronous 25 0.0 D Distributed
57 Ring Synchronous 25 0.0 E Clustered
58 Ring Synchronous 25 0.0 E Distributed
59 Ring Synchronous 25 0.0 F Clustered
60 Ring Synchronous 25 0.0 F Distributed
61 Ring Synchronous 25 5.0 A Clustered
62 Ring Synchronous 25 5.0 A Distributed
63 Ring Synchronous 25 5.0 B Clustered
64 Ring Synchronous 25 5.0 B Distributed
65 Ring Synchronous 25 5.0 C Clustered
66 Ring Synchronous 25 5.0 C Distributed
67 Ring Synchronous 25 5.0 D Clustered
68 Ring Synchronous 25 5.0 D Distributed
69 Ring Synchronous 25 5.0 E Clustered
70 Ring Synchronous 25 5.0 E Distributed
71 Ring Synchronous 25 5.0 F Clustered
72 Ring Synchronous 25 5.0 F Distributed
73 Ring Synchronous 25 20.0 A Clustered
74 Ring Synchronous 25 20.0 A Distributed
75 Ring Synchronous 25 20.0 B Clustered
76 Ring Synchronous 25 20.0 B Distributed
77 Ring Synchronous 25 20.0 C Clustered
78 Ring Synchronous 25 20.0 C Distributed
79 Ring Synchronous 25 20.0 D Clustered
80 Ring Synchronous 25 20.0 D Distributed
81 Ring Synchronous 25 20.0 E Clustered
82 Ring Synchronous 25 20.0 E Distributed
83 Ring Synchronous 25 20.0 F Clustered
84 Ring Synchronous 25 20.0 F Distributed
85 Ring Synchronous 25 50.0 A Clustered
86 Ring Synchronous 25 50.0 A Distributed
87 Ring Synchronous 25 50.0 B Clustered
88 Ring Synchronous 25 50.0 B Distributed
89 Ring Synchronous 25 50.0 C Clustered
90 Ring Synchronous 25 50.0 C Distributed
91 Ring Synchronous 25 50.0 D Clustered
92 Ring Synchronous 25 50.0 D Distributed
93 Ring Synchronous 25 50.0 E Clustered
94 Ring Synchronous 25 50.0 E Distributed
95 Ring Synchronous 25 50.0 F Clustered
96 Ring Synchronous 25 50.0 F Distributed
97 Ring Synchronous 50 0.0 A Clustered
98 Ring Synchronous 50 0.0 A Distributed
99 Ring Synchronous 50 0.0 B Clustered
100 Ring Synchronous 50 0.0 B Distributed
101 Ring Synchronous 50 0.0 C Clustered
102 Ring Synchronous 50 0.0 C Distributed
103 Ring Synchronous 50 0.0 D Clustered
104 Ring Synchronous 50 0.0 D Distributed
105 Ring Synchronous 50 0.0 E Clustered
106 Ring Synchronous 50 0.0 E Distributed
107 Ring Synchronous 50 0.0 F Clustered



9.2. Con�gurations 153

108 Ring Synchronous 50 0.0 F Distributed
109 Ring Synchronous 50 5.0 A Clustered
110 Ring Synchronous 50 5.0 A Distributed
111 Ring Synchronous 50 5.0 B Clustered
112 Ring Synchronous 50 5.0 B Distributed
113 Ring Synchronous 50 5.0 C Clustered
114 Ring Synchronous 50 5.0 C Distributed
115 Ring Synchronous 50 5.0 D Clustered
116 Ring Synchronous 50 5.0 D Distributed
117 Ring Synchronous 50 5.0 E Clustered
118 Ring Synchronous 50 5.0 E Distributed
119 Ring Synchronous 50 5.0 F Clustered
120 Ring Synchronous 50 5.0 F Distributed
121 Ring Synchronous 50 20.0 A Clustered
122 Ring Synchronous 50 20.0 A Distributed
123 Ring Synchronous 50 20.0 B Clustered
124 Ring Synchronous 50 20.0 B Distributed
125 Ring Synchronous 50 20.0 C Clustered
126 Ring Synchronous 50 20.0 C Distributed
127 Ring Synchronous 50 20.0 D Clustered
128 Ring Synchronous 50 20.0 D Distributed
129 Ring Synchronous 50 20.0 E Clustered
130 Ring Synchronous 50 20.0 E Distributed
131 Ring Synchronous 50 20.0 F Clustered
132 Ring Synchronous 50 20.0 F Distributed
133 Ring Synchronous 50 50.0 A Clustered
134 Ring Synchronous 50 50.0 A Distributed
135 Ring Synchronous 50 50.0 B Clustered
136 Ring Synchronous 50 50.0 B Distributed
137 Ring Synchronous 50 50.0 C Clustered
138 Ring Synchronous 50 50.0 C Distributed
139 Ring Synchronous 50 50.0 D Clustered
140 Ring Synchronous 50 50.0 D Distributed
141 Ring Synchronous 50 50.0 E Clustered
142 Ring Synchronous 50 50.0 E Distributed
143 Ring Synchronous 50 50.0 F Clustered
144 Ring Synchronous 50 50.0 F Distributed
145 Ring Synchronous 100 0.0 A Clustered
146 Ring Synchronous 100 0.0 A Distributed
147 Ring Synchronous 100 0.0 B Clustered
148 Ring Synchronous 100 0.0 B Distributed
149 Ring Synchronous 100 0.0 C Clustered
150 Ring Synchronous 100 0.0 C Distributed
151 Ring Synchronous 100 0.0 D Clustered
152 Ring Synchronous 100 0.0 D Distributed
153 Ring Synchronous 100 0.0 E Clustered
154 Ring Synchronous 100 0.0 E Distributed
155 Ring Synchronous 100 0.0 F Clustered
156 Ring Synchronous 100 0.0 F Distributed
157 Ring Synchronous 100 5.0 A Clustered
158 Ring Synchronous 100 5.0 A Distributed
159 Ring Synchronous 100 5.0 B Clustered
160 Ring Synchronous 100 5.0 B Distributed
161 Ring Synchronous 100 5.0 C Clustered
162 Ring Synchronous 100 5.0 C Distributed
163 Ring Synchronous 100 5.0 D Clustered
164 Ring Synchronous 100 5.0 D Distributed
165 Ring Synchronous 100 5.0 E Clustered
166 Ring Synchronous 100 5.0 E Distributed
167 Ring Synchronous 100 5.0 F Clustered
168 Ring Synchronous 100 5.0 F Distributed
169 Ring Synchronous 100 20.0 A Clustered
170 Ring Synchronous 100 20.0 A Distributed
171 Ring Synchronous 100 20.0 B Clustered
172 Ring Synchronous 100 20.0 B Distributed
173 Ring Synchronous 100 20.0 C Clustered
174 Ring Synchronous 100 20.0 C Distributed
175 Ring Synchronous 100 20.0 D Clustered
176 Ring Synchronous 100 20.0 D Distributed
177 Ring Synchronous 100 20.0 E Clustered
178 Ring Synchronous 100 20.0 E Distributed
179 Ring Synchronous 100 20.0 F Clustered
180 Ring Synchronous 100 20.0 F Distributed
181 Ring Synchronous 100 50.0 A Clustered
182 Ring Synchronous 100 50.0 A Distributed
183 Ring Synchronous 100 50.0 B Clustered
184 Ring Synchronous 100 50.0 B Distributed
185 Ring Synchronous 100 50.0 C Clustered
186 Ring Synchronous 100 50.0 C Distributed
187 Ring Synchronous 100 50.0 D Clustered
188 Ring Synchronous 100 50.0 D Distributed
189 Ring Synchronous 100 50.0 E Clustered
190 Ring Synchronous 100 50.0 E Distributed
191 Ring Synchronous 100 50.0 F Clustered
192 Ring Synchronous 100 50.0 F Distributed
193 Ring Asynchronous 10 0.0 A Clustered
194 Ring Asynchronous 10 0.0 A Distributed
195 Ring Asynchronous 10 0.0 B Clustered
196 Ring Asynchronous 10 0.0 B Distributed
197 Ring Asynchronous 10 0.0 C Clustered
198 Ring Asynchronous 10 0.0 C Distributed
199 Ring Asynchronous 10 0.0 D Clustered
200 Ring Asynchronous 10 0.0 D Distributed
201 Ring Asynchronous 10 0.0 E Clustered
202 Ring Asynchronous 10 0.0 E Distributed
203 Ring Asynchronous 10 0.0 F Clustered
204 Ring Asynchronous 10 0.0 F Distributed
205 Ring Asynchronous 10 5.0 A Clustered
206 Ring Asynchronous 10 5.0 A Distributed
207 Ring Asynchronous 10 5.0 B Clustered
208 Ring Asynchronous 10 5.0 B Distributed
209 Ring Asynchronous 10 5.0 C Clustered
210 Ring Asynchronous 10 5.0 C Distributed
211 Ring Asynchronous 10 5.0 D Clustered
212 Ring Asynchronous 10 5.0 D Distributed
213 Ring Asynchronous 10 5.0 E Clustered
214 Ring Asynchronous 10 5.0 E Distributed
215 Ring Asynchronous 10 5.0 F Clustered
216 Ring Asynchronous 10 5.0 F Distributed
217 Ring Asynchronous 10 20.0 A Clustered
218 Ring Asynchronous 10 20.0 A Distributed
219 Ring Asynchronous 10 20.0 B Clustered
220 Ring Asynchronous 10 20.0 B Distributed
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221 Ring Asynchronous 10 20.0 C Clustered
222 Ring Asynchronous 10 20.0 C Distributed
223 Ring Asynchronous 10 20.0 D Clustered
224 Ring Asynchronous 10 20.0 D Distributed
225 Ring Asynchronous 10 20.0 E Clustered
226 Ring Asynchronous 10 20.0 E Distributed
227 Ring Asynchronous 10 20.0 F Clustered
228 Ring Asynchronous 10 20.0 F Distributed
229 Ring Asynchronous 10 50.0 A Clustered
230 Ring Asynchronous 10 50.0 A Distributed
231 Ring Asynchronous 10 50.0 B Clustered
232 Ring Asynchronous 10 50.0 B Distributed
233 Ring Asynchronous 10 50.0 C Clustered
234 Ring Asynchronous 10 50.0 C Distributed
235 Ring Asynchronous 10 50.0 D Clustered
236 Ring Asynchronous 10 50.0 D Distributed
237 Ring Asynchronous 10 50.0 E Clustered
238 Ring Asynchronous 10 50.0 E Distributed
239 Ring Asynchronous 10 50.0 F Clustered
240 Ring Asynchronous 10 50.0 F Distributed
241 Ring Asynchronous 25 0.0 A Clustered
242 Ring Asynchronous 25 0.0 A Distributed
243 Ring Asynchronous 25 0.0 B Clustered
244 Ring Asynchronous 25 0.0 B Distributed
245 Ring Asynchronous 25 0.0 C Clustered
246 Ring Asynchronous 25 0.0 C Distributed
247 Ring Asynchronous 25 0.0 D Clustered
248 Ring Asynchronous 25 0.0 D Distributed
249 Ring Asynchronous 25 0.0 E Clustered
250 Ring Asynchronous 25 0.0 E Distributed
251 Ring Asynchronous 25 0.0 F Clustered
252 Ring Asynchronous 25 0.0 F Distributed
253 Ring Asynchronous 25 5.0 A Clustered
254 Ring Asynchronous 25 5.0 A Distributed
255 Ring Asynchronous 25 5.0 B Clustered
256 Ring Asynchronous 25 5.0 B Distributed
257 Ring Asynchronous 25 5.0 C Clustered
258 Ring Asynchronous 25 5.0 C Distributed
259 Ring Asynchronous 25 5.0 D Clustered
260 Ring Asynchronous 25 5.0 D Distributed
261 Ring Asynchronous 25 5.0 E Clustered
262 Ring Asynchronous 25 5.0 E Distributed
263 Ring Asynchronous 25 5.0 F Clustered
264 Ring Asynchronous 25 5.0 F Distributed
265 Ring Asynchronous 25 20.0 A Clustered
266 Ring Asynchronous 25 20.0 A Distributed
267 Ring Asynchronous 25 20.0 B Clustered
268 Ring Asynchronous 25 20.0 B Distributed
269 Ring Asynchronous 25 20.0 C Clustered
270 Ring Asynchronous 25 20.0 C Distributed
271 Ring Asynchronous 25 20.0 D Clustered
272 Ring Asynchronous 25 20.0 D Distributed
273 Ring Asynchronous 25 20.0 E Clustered
274 Ring Asynchronous 25 20.0 E Distributed
275 Ring Asynchronous 25 20.0 F Clustered
276 Ring Asynchronous 25 20.0 F Distributed
277 Ring Asynchronous 25 50.0 A Clustered
278 Ring Asynchronous 25 50.0 A Distributed
279 Ring Asynchronous 25 50.0 B Clustered
280 Ring Asynchronous 25 50.0 B Distributed
281 Ring Asynchronous 25 50.0 C Clustered
282 Ring Asynchronous 25 50.0 C Distributed
283 Ring Asynchronous 25 50.0 D Clustered
284 Ring Asynchronous 25 50.0 D Distributed
285 Ring Asynchronous 25 50.0 E Clustered
286 Ring Asynchronous 25 50.0 E Distributed
287 Ring Asynchronous 25 50.0 F Clustered
288 Ring Asynchronous 25 50.0 F Distributed
289 Ring Asynchronous 50 0.0 A Clustered
290 Ring Asynchronous 50 0.0 A Distributed
291 Ring Asynchronous 50 0.0 B Clustered
292 Ring Asynchronous 50 0.0 B Distributed
293 Ring Asynchronous 50 0.0 C Clustered
294 Ring Asynchronous 50 0.0 C Distributed
295 Ring Asynchronous 50 0.0 D Clustered
296 Ring Asynchronous 50 0.0 D Distributed
297 Ring Asynchronous 50 0.0 E Clustered
298 Ring Asynchronous 50 0.0 E Distributed
299 Ring Asynchronous 50 0.0 F Clustered
300 Ring Asynchronous 50 0.0 F Distributed
301 Ring Asynchronous 50 5.0 A Clustered
302 Ring Asynchronous 50 5.0 A Distributed
303 Ring Asynchronous 50 5.0 B Clustered
304 Ring Asynchronous 50 5.0 B Distributed
305 Ring Asynchronous 50 5.0 C Clustered
306 Ring Asynchronous 50 5.0 C Distributed
307 Ring Asynchronous 50 5.0 D Clustered
308 Ring Asynchronous 50 5.0 D Distributed
309 Ring Asynchronous 50 5.0 E Clustered
310 Ring Asynchronous 50 5.0 E Distributed
311 Ring Asynchronous 50 5.0 F Clustered
312 Ring Asynchronous 50 5.0 F Distributed
313 Ring Asynchronous 50 20.0 A Clustered
314 Ring Asynchronous 50 20.0 A Distributed
315 Ring Asynchronous 50 20.0 B Clustered
316 Ring Asynchronous 50 20.0 B Distributed
317 Ring Asynchronous 50 20.0 C Clustered
318 Ring Asynchronous 50 20.0 C Distributed
319 Ring Asynchronous 50 20.0 D Clustered
320 Ring Asynchronous 50 20.0 D Distributed
321 Ring Asynchronous 50 20.0 E Clustered
322 Ring Asynchronous 50 20.0 E Distributed
323 Ring Asynchronous 50 20.0 F Clustered
324 Ring Asynchronous 50 20.0 F Distributed
325 Ring Asynchronous 50 50.0 A Clustered
326 Ring Asynchronous 50 50.0 A Distributed
327 Ring Asynchronous 50 50.0 B Clustered
328 Ring Asynchronous 50 50.0 B Distributed
329 Ring Asynchronous 50 50.0 C Clustered
330 Ring Asynchronous 50 50.0 C Distributed
331 Ring Asynchronous 50 50.0 D Clustered
332 Ring Asynchronous 50 50.0 D Distributed
333 Ring Asynchronous 50 50.0 E Clustered
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334 Ring Asynchronous 50 50.0 E Distributed
335 Ring Asynchronous 50 50.0 F Clustered
336 Ring Asynchronous 50 50.0 F Distributed
337 Ring Asynchronous 100 0.0 A Clustered
338 Ring Asynchronous 100 0.0 A Distributed
339 Ring Asynchronous 100 0.0 B Clustered
340 Ring Asynchronous 100 0.0 B Distributed
341 Ring Asynchronous 100 0.0 C Clustered
342 Ring Asynchronous 100 0.0 C Distributed
343 Ring Asynchronous 100 0.0 D Clustered
344 Ring Asynchronous 100 0.0 D Distributed
345 Ring Asynchronous 100 0.0 E Clustered
346 Ring Asynchronous 100 0.0 E Distributed
347 Ring Asynchronous 100 0.0 F Clustered
348 Ring Asynchronous 100 0.0 F Distributed
349 Ring Asynchronous 100 5.0 A Clustered
350 Ring Asynchronous 100 5.0 A Distributed
351 Ring Asynchronous 100 5.0 B Clustered
352 Ring Asynchronous 100 5.0 B Distributed
353 Ring Asynchronous 100 5.0 C Clustered
354 Ring Asynchronous 100 5.0 C Distributed
355 Ring Asynchronous 100 5.0 D Clustered
356 Ring Asynchronous 100 5.0 D Distributed
357 Ring Asynchronous 100 5.0 E Clustered
358 Ring Asynchronous 100 5.0 E Distributed
359 Ring Asynchronous 100 5.0 F Clustered
360 Ring Asynchronous 100 5.0 F Distributed
361 Ring Asynchronous 100 20.0 A Clustered
362 Ring Asynchronous 100 20.0 A Distributed
363 Ring Asynchronous 100 20.0 B Clustered
364 Ring Asynchronous 100 20.0 B Distributed
365 Ring Asynchronous 100 20.0 C Clustered
366 Ring Asynchronous 100 20.0 C Distributed
367 Ring Asynchronous 100 20.0 D Clustered
368 Ring Asynchronous 100 20.0 D Distributed
369 Ring Asynchronous 100 20.0 E Clustered
370 Ring Asynchronous 100 20.0 E Distributed
371 Ring Asynchronous 100 20.0 F Clustered
372 Ring Asynchronous 100 20.0 F Distributed
373 Ring Asynchronous 100 50.0 A Clustered
374 Ring Asynchronous 100 50.0 A Distributed
375 Ring Asynchronous 100 50.0 B Clustered
376 Ring Asynchronous 100 50.0 B Distributed
377 Ring Asynchronous 100 50.0 C Clustered
378 Ring Asynchronous 100 50.0 C Distributed
379 Ring Asynchronous 100 50.0 D Clustered
380 Ring Asynchronous 100 50.0 D Distributed
381 Ring Asynchronous 100 50.0 E Clustered
382 Ring Asynchronous 100 50.0 E Distributed
383 Ring Asynchronous 100 50.0 F Clustered
384 Ring Asynchronous 100 50.0 F Distributed
385 Star Synchronous 10 0.0 A Clustered
386 Star Synchronous 10 0.0 A Distributed
387 Star Synchronous 10 0.0 B Clustered
388 Star Synchronous 10 0.0 B Distributed
389 Star Synchronous 10 0.0 C Clustered
390 Star Synchronous 10 0.0 C Distributed
391 Star Synchronous 10 0.0 D Clustered
392 Star Synchronous 10 0.0 D Distributed
393 Star Synchronous 10 0.0 E Clustered
394 Star Synchronous 10 0.0 E Distributed
395 Star Synchronous 10 0.0 F Clustered
396 Star Synchronous 10 0.0 F Distributed
397 Star Synchronous 10 5.0 A Clustered
398 Star Synchronous 10 5.0 A Distributed
399 Star Synchronous 10 5.0 B Clustered
400 Star Synchronous 10 5.0 B Distributed
401 Star Synchronous 10 5.0 C Clustered
402 Star Synchronous 10 5.0 C Distributed
403 Star Synchronous 10 5.0 D Clustered
404 Star Synchronous 10 5.0 D Distributed
405 Star Synchronous 10 5.0 E Clustered
406 Star Synchronous 10 5.0 E Distributed
407 Star Synchronous 10 5.0 F Clustered
408 Star Synchronous 10 5.0 F Distributed
409 Star Synchronous 10 20.0 A Clustered
410 Star Synchronous 10 20.0 A Distributed
411 Star Synchronous 10 20.0 B Clustered
412 Star Synchronous 10 20.0 B Distributed
413 Star Synchronous 10 20.0 C Clustered
414 Star Synchronous 10 20.0 C Distributed
415 Star Synchronous 10 20.0 D Clustered
416 Star Synchronous 10 20.0 D Distributed
417 Star Synchronous 10 20.0 E Clustered
418 Star Synchronous 10 20.0 E Distributed
419 Star Synchronous 10 20.0 F Clustered
420 Star Synchronous 10 20.0 F Distributed
421 Star Synchronous 10 50.0 A Clustered
422 Star Synchronous 10 50.0 A Distributed
423 Star Synchronous 10 50.0 B Clustered
424 Star Synchronous 10 50.0 B Distributed
425 Star Synchronous 10 50.0 C Clustered
426 Star Synchronous 10 50.0 C Distributed
427 Star Synchronous 10 50.0 D Clustered
428 Star Synchronous 10 50.0 D Distributed
429 Star Synchronous 10 50.0 E Clustered
430 Star Synchronous 10 50.0 E Distributed
431 Star Synchronous 10 50.0 F Clustered
432 Star Synchronous 10 50.0 F Distributed
433 Star Synchronous 25 0.0 A Clustered
434 Star Synchronous 25 0.0 A Distributed
435 Star Synchronous 25 0.0 B Clustered
436 Star Synchronous 25 0.0 B Distributed
437 Star Synchronous 25 0.0 C Clustered
438 Star Synchronous 25 0.0 C Distributed
439 Star Synchronous 25 0.0 D Clustered
440 Star Synchronous 25 0.0 D Distributed
441 Star Synchronous 25 0.0 E Clustered
442 Star Synchronous 25 0.0 E Distributed
443 Star Synchronous 25 0.0 F Clustered
444 Star Synchronous 25 0.0 F Distributed
445 Star Synchronous 25 5.0 A Clustered
446 Star Synchronous 25 5.0 A Distributed
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447 Star Synchronous 25 5.0 B Clustered
448 Star Synchronous 25 5.0 B Distributed
449 Star Synchronous 25 5.0 C Clustered
450 Star Synchronous 25 5.0 C Distributed
451 Star Synchronous 25 5.0 D Clustered
452 Star Synchronous 25 5.0 D Distributed
453 Star Synchronous 25 5.0 E Clustered
454 Star Synchronous 25 5.0 E Distributed
455 Star Synchronous 25 5.0 F Clustered
456 Star Synchronous 25 5.0 F Distributed
457 Star Synchronous 25 20.0 A Clustered
458 Star Synchronous 25 20.0 A Distributed
459 Star Synchronous 25 20.0 B Clustered
460 Star Synchronous 25 20.0 B Distributed
461 Star Synchronous 25 20.0 C Clustered
462 Star Synchronous 25 20.0 C Distributed
463 Star Synchronous 25 20.0 D Clustered
464 Star Synchronous 25 20.0 D Distributed
465 Star Synchronous 25 20.0 E Clustered
466 Star Synchronous 25 20.0 E Distributed
467 Star Synchronous 25 20.0 F Clustered
468 Star Synchronous 25 20.0 F Distributed
469 Star Synchronous 25 50.0 A Clustered
470 Star Synchronous 25 50.0 A Distributed
471 Star Synchronous 25 50.0 B Clustered
472 Star Synchronous 25 50.0 B Distributed
473 Star Synchronous 25 50.0 C Clustered
474 Star Synchronous 25 50.0 C Distributed
475 Star Synchronous 25 50.0 D Clustered
476 Star Synchronous 25 50.0 D Distributed
477 Star Synchronous 25 50.0 E Clustered
478 Star Synchronous 25 50.0 E Distributed
479 Star Synchronous 25 50.0 F Clustered
480 Star Synchronous 25 50.0 F Distributed
481 Star Synchronous 50 0.0 A Clustered
482 Star Synchronous 50 0.0 A Distributed
483 Star Synchronous 50 0.0 B Clustered
484 Star Synchronous 50 0.0 B Distributed
485 Star Synchronous 50 0.0 C Clustered
486 Star Synchronous 50 0.0 C Distributed
487 Star Synchronous 50 0.0 D Clustered
488 Star Synchronous 50 0.0 D Distributed
489 Star Synchronous 50 0.0 E Clustered
490 Star Synchronous 50 0.0 E Distributed
491 Star Synchronous 50 0.0 F Clustered
492 Star Synchronous 50 0.0 F Distributed
493 Star Synchronous 50 5.0 A Clustered
494 Star Synchronous 50 5.0 A Distributed
495 Star Synchronous 50 5.0 B Clustered
496 Star Synchronous 50 5.0 B Distributed
497 Star Synchronous 50 5.0 C Clustered
498 Star Synchronous 50 5.0 C Distributed
499 Star Synchronous 50 5.0 D Clustered
500 Star Synchronous 50 5.0 D Distributed
501 Star Synchronous 50 5.0 E Clustered
502 Star Synchronous 50 5.0 E Distributed
503 Star Synchronous 50 5.0 F Clustered
504 Star Synchronous 50 5.0 F Distributed
505 Star Synchronous 50 20.0 A Clustered
506 Star Synchronous 50 20.0 A Distributed
507 Star Synchronous 50 20.0 B Clustered
508 Star Synchronous 50 20.0 B Distributed
509 Star Synchronous 50 20.0 C Clustered
510 Star Synchronous 50 20.0 C Distributed
511 Star Synchronous 50 20.0 D Clustered
512 Star Synchronous 50 20.0 D Distributed
513 Star Synchronous 50 20.0 E Clustered
514 Star Synchronous 50 20.0 E Distributed
515 Star Synchronous 50 20.0 F Clustered
516 Star Synchronous 50 20.0 F Distributed
517 Star Synchronous 50 50.0 A Clustered
518 Star Synchronous 50 50.0 A Distributed
519 Star Synchronous 50 50.0 B Clustered
520 Star Synchronous 50 50.0 B Distributed
521 Star Synchronous 50 50.0 C Clustered
522 Star Synchronous 50 50.0 C Distributed
523 Star Synchronous 50 50.0 D Clustered
524 Star Synchronous 50 50.0 D Distributed
525 Star Synchronous 50 50.0 E Clustered
526 Star Synchronous 50 50.0 E Distributed
527 Star Synchronous 50 50.0 F Clustered
528 Star Synchronous 50 50.0 F Distributed
529 Star Synchronous 100 0.0 A Clustered
530 Star Synchronous 100 0.0 A Distributed
531 Star Synchronous 100 0.0 B Clustered
532 Star Synchronous 100 0.0 B Distributed
533 Star Synchronous 100 0.0 C Clustered
534 Star Synchronous 100 0.0 C Distributed
535 Star Synchronous 100 0.0 D Clustered
536 Star Synchronous 100 0.0 D Distributed
537 Star Synchronous 100 0.0 E Clustered
538 Star Synchronous 100 0.0 E Distributed
539 Star Synchronous 100 0.0 F Clustered
540 Star Synchronous 100 0.0 F Distributed
541 Star Synchronous 100 5.0 A Clustered
542 Star Synchronous 100 5.0 A Distributed
543 Star Synchronous 100 5.0 B Clustered
544 Star Synchronous 100 5.0 B Distributed
545 Star Synchronous 100 5.0 C Clustered
546 Star Synchronous 100 5.0 C Distributed
547 Star Synchronous 100 5.0 D Clustered
548 Star Synchronous 100 5.0 D Distributed
549 Star Synchronous 100 5.0 E Clustered
550 Star Synchronous 100 5.0 E Distributed
551 Star Synchronous 100 5.0 F Clustered
552 Star Synchronous 100 5.0 F Distributed
553 Star Synchronous 100 20.0 A Clustered
554 Star Synchronous 100 20.0 A Distributed
555 Star Synchronous 100 20.0 B Clustered
556 Star Synchronous 100 20.0 B Distributed
557 Star Synchronous 100 20.0 C Clustered
558 Star Synchronous 100 20.0 C Distributed
559 Star Synchronous 100 20.0 D Clustered
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560 Star Synchronous 100 20.0 D Distributed
561 Star Synchronous 100 20.0 E Clustered
562 Star Synchronous 100 20.0 E Distributed
563 Star Synchronous 100 20.0 F Clustered
564 Star Synchronous 100 20.0 F Distributed
565 Star Synchronous 100 50.0 A Clustered
566 Star Synchronous 100 50.0 A Distributed
567 Star Synchronous 100 50.0 B Clustered
568 Star Synchronous 100 50.0 B Distributed
569 Star Synchronous 100 50.0 C Clustered
570 Star Synchronous 100 50.0 C Distributed
571 Star Synchronous 100 50.0 D Clustered
572 Star Synchronous 100 50.0 D Distributed
573 Star Synchronous 100 50.0 E Clustered
574 Star Synchronous 100 50.0 E Distributed
575 Star Synchronous 100 50.0 F Clustered
576 Star Synchronous 100 50.0 F Distributed
577 Star Asynchronous 10 0.0 A Clustered
578 Star Asynchronous 10 0.0 A Distributed
579 Star Asynchronous 10 0.0 B Clustered
580 Star Asynchronous 10 0.0 B Distributed
581 Star Asynchronous 10 0.0 C Clustered
582 Star Asynchronous 10 0.0 C Distributed
583 Star Asynchronous 10 0.0 D Clustered
584 Star Asynchronous 10 0.0 D Distributed
585 Star Asynchronous 10 0.0 E Clustered
586 Star Asynchronous 10 0.0 E Distributed
587 Star Asynchronous 10 0.0 F Clustered
588 Star Asynchronous 10 0.0 F Distributed
589 Star Asynchronous 10 5.0 A Clustered
590 Star Asynchronous 10 5.0 A Distributed
591 Star Asynchronous 10 5.0 B Clustered
592 Star Asynchronous 10 5.0 B Distributed
593 Star Asynchronous 10 5.0 C Clustered
594 Star Asynchronous 10 5.0 C Distributed
595 Star Asynchronous 10 5.0 D Clustered
596 Star Asynchronous 10 5.0 D Distributed
597 Star Asynchronous 10 5.0 E Clustered
598 Star Asynchronous 10 5.0 E Distributed
599 Star Asynchronous 10 5.0 F Clustered
600 Star Asynchronous 10 5.0 F Distributed
601 Star Asynchronous 10 20.0 A Clustered
602 Star Asynchronous 10 20.0 A Distributed
603 Star Asynchronous 10 20.0 B Clustered
604 Star Asynchronous 10 20.0 B Distributed
605 Star Asynchronous 10 20.0 C Clustered
606 Star Asynchronous 10 20.0 C Distributed
607 Star Asynchronous 10 20.0 D Clustered
608 Star Asynchronous 10 20.0 D Distributed
609 Star Asynchronous 10 20.0 E Clustered
610 Star Asynchronous 10 20.0 E Distributed
611 Star Asynchronous 10 20.0 F Clustered
612 Star Asynchronous 10 20.0 F Distributed
613 Star Asynchronous 10 50.0 A Clustered
614 Star Asynchronous 10 50.0 A Distributed
615 Star Asynchronous 10 50.0 B Clustered
616 Star Asynchronous 10 50.0 B Distributed
617 Star Asynchronous 10 50.0 C Clustered
618 Star Asynchronous 10 50.0 C Distributed
619 Star Asynchronous 10 50.0 D Clustered
620 Star Asynchronous 10 50.0 D Distributed
621 Star Asynchronous 10 50.0 E Clustered
622 Star Asynchronous 10 50.0 E Distributed
623 Star Asynchronous 10 50.0 F Clustered
624 Star Asynchronous 10 50.0 F Distributed
625 Star Asynchronous 25 0.0 A Clustered
626 Star Asynchronous 25 0.0 A Distributed
627 Star Asynchronous 25 0.0 B Clustered
628 Star Asynchronous 25 0.0 B Distributed
629 Star Asynchronous 25 0.0 C Clustered
630 Star Asynchronous 25 0.0 C Distributed
631 Star Asynchronous 25 0.0 D Clustered
632 Star Asynchronous 25 0.0 D Distributed
633 Star Asynchronous 25 0.0 E Clustered
634 Star Asynchronous 25 0.0 E Distributed
635 Star Asynchronous 25 0.0 F Clustered
636 Star Asynchronous 25 0.0 F Distributed
637 Star Asynchronous 25 5.0 A Clustered
638 Star Asynchronous 25 5.0 A Distributed
639 Star Asynchronous 25 5.0 B Clustered
640 Star Asynchronous 25 5.0 B Distributed
641 Star Asynchronous 25 5.0 C Clustered
642 Star Asynchronous 25 5.0 C Distributed
643 Star Asynchronous 25 5.0 D Clustered
644 Star Asynchronous 25 5.0 D Distributed
645 Star Asynchronous 25 5.0 E Clustered
646 Star Asynchronous 25 5.0 E Distributed
647 Star Asynchronous 25 5.0 F Clustered
648 Star Asynchronous 25 5.0 F Distributed
649 Star Asynchronous 25 20.0 A Clustered
650 Star Asynchronous 25 20.0 A Distributed
651 Star Asynchronous 25 20.0 B Clustered
652 Star Asynchronous 25 20.0 B Distributed
653 Star Asynchronous 25 20.0 C Clustered
654 Star Asynchronous 25 20.0 C Distributed
655 Star Asynchronous 25 20.0 D Clustered
656 Star Asynchronous 25 20.0 D Distributed
657 Star Asynchronous 25 20.0 E Clustered
658 Star Asynchronous 25 20.0 E Distributed
659 Star Asynchronous 25 20.0 F Clustered
660 Star Asynchronous 25 20.0 F Distributed
661 Star Asynchronous 25 50.0 A Clustered
662 Star Asynchronous 25 50.0 A Distributed
663 Star Asynchronous 25 50.0 B Clustered
664 Star Asynchronous 25 50.0 B Distributed
665 Star Asynchronous 25 50.0 C Clustered
666 Star Asynchronous 25 50.0 C Distributed
667 Star Asynchronous 25 50.0 D Clustered
668 Star Asynchronous 25 50.0 D Distributed
669 Star Asynchronous 25 50.0 E Clustered
670 Star Asynchronous 25 50.0 E Distributed
671 Star Asynchronous 25 50.0 F Clustered
672 Star Asynchronous 25 50.0 F Distributed
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673 Star Asynchronous 50 0.0 A Clustered
674 Star Asynchronous 50 0.0 A Distributed
675 Star Asynchronous 50 0.0 B Clustered
676 Star Asynchronous 50 0.0 B Distributed
677 Star Asynchronous 50 0.0 C Clustered
678 Star Asynchronous 50 0.0 C Distributed
679 Star Asynchronous 50 0.0 D Clustered
680 Star Asynchronous 50 0.0 D Distributed
681 Star Asynchronous 50 0.0 E Clustered
682 Star Asynchronous 50 0.0 E Distributed
683 Star Asynchronous 50 0.0 F Clustered
684 Star Asynchronous 50 0.0 F Distributed
685 Star Asynchronous 50 5.0 A Clustered
686 Star Asynchronous 50 5.0 A Distributed
687 Star Asynchronous 50 5.0 B Clustered
688 Star Asynchronous 50 5.0 B Distributed
689 Star Asynchronous 50 5.0 C Clustered
690 Star Asynchronous 50 5.0 C Distributed
691 Star Asynchronous 50 5.0 D Clustered
692 Star Asynchronous 50 5.0 D Distributed
693 Star Asynchronous 50 5.0 E Clustered
694 Star Asynchronous 50 5.0 E Distributed
695 Star Asynchronous 50 5.0 F Clustered
696 Star Asynchronous 50 5.0 F Distributed
697 Star Asynchronous 50 20.0 A Clustered
698 Star Asynchronous 50 20.0 A Distributed
699 Star Asynchronous 50 20.0 B Clustered
700 Star Asynchronous 50 20.0 B Distributed
701 Star Asynchronous 50 20.0 C Clustered
702 Star Asynchronous 50 20.0 C Distributed
703 Star Asynchronous 50 20.0 D Clustered
704 Star Asynchronous 50 20.0 D Distributed
705 Star Asynchronous 50 20.0 E Clustered
706 Star Asynchronous 50 20.0 E Distributed
707 Star Asynchronous 50 20.0 F Clustered
708 Star Asynchronous 50 20.0 F Distributed
709 Star Asynchronous 50 50.0 A Clustered
710 Star Asynchronous 50 50.0 A Distributed
711 Star Asynchronous 50 50.0 B Clustered
712 Star Asynchronous 50 50.0 B Distributed
713 Star Asynchronous 50 50.0 C Clustered
714 Star Asynchronous 50 50.0 C Distributed
715 Star Asynchronous 50 50.0 D Clustered
716 Star Asynchronous 50 50.0 D Distributed
717 Star Asynchronous 50 50.0 E Clustered
718 Star Asynchronous 50 50.0 E Distributed
719 Star Asynchronous 50 50.0 F Clustered
720 Star Asynchronous 50 50.0 F Distributed
721 Star Asynchronous 100 0.0 A Clustered
722 Star Asynchronous 100 0.0 A Distributed
723 Star Asynchronous 100 0.0 B Clustered
724 Star Asynchronous 100 0.0 B Distributed
725 Star Asynchronous 100 0.0 C Clustered
726 Star Asynchronous 100 0.0 C Distributed
727 Star Asynchronous 100 0.0 D Clustered
728 Star Asynchronous 100 0.0 D Distributed
729 Star Asynchronous 100 0.0 E Clustered
730 Star Asynchronous 100 0.0 E Distributed
731 Star Asynchronous 100 0.0 F Clustered
732 Star Asynchronous 100 0.0 F Distributed
733 Star Asynchronous 100 5.0 A Clustered
734 Star Asynchronous 100 5.0 A Distributed
735 Star Asynchronous 100 5.0 B Clustered
736 Star Asynchronous 100 5.0 B Distributed
737 Star Asynchronous 100 5.0 C Clustered
738 Star Asynchronous 100 5.0 C Distributed
739 Star Asynchronous 100 5.0 D Clustered
740 Star Asynchronous 100 5.0 D Distributed
741 Star Asynchronous 100 5.0 E Clustered
742 Star Asynchronous 100 5.0 E Distributed
743 Star Asynchronous 100 5.0 F Clustered
744 Star Asynchronous 100 5.0 F Distributed
745 Star Asynchronous 100 20.0 A Clustered
746 Star Asynchronous 100 20.0 A Distributed
747 Star Asynchronous 100 20.0 B Clustered
748 Star Asynchronous 100 20.0 B Distributed
749 Star Asynchronous 100 20.0 C Clustered
750 Star Asynchronous 100 20.0 C Distributed
751 Star Asynchronous 100 20.0 D Clustered
752 Star Asynchronous 100 20.0 D Distributed
753 Star Asynchronous 100 20.0 E Clustered
754 Star Asynchronous 100 20.0 E Distributed
755 Star Asynchronous 100 20.0 F Clustered
756 Star Asynchronous 100 20.0 F Distributed
757 Star Asynchronous 100 50.0 A Clustered
758 Star Asynchronous 100 50.0 A Distributed
759 Star Asynchronous 100 50.0 B Clustered
760 Star Asynchronous 100 50.0 B Distributed
761 Star Asynchronous 100 50.0 C Clustered
762 Star Asynchronous 100 50.0 C Distributed
763 Star Asynchronous 100 50.0 D Clustered
764 Star Asynchronous 100 50.0 D Distributed
765 Star Asynchronous 100 50.0 E Clustered
766 Star Asynchronous 100 50.0 E Distributed
767 Star Asynchronous 100 50.0 F Clustered
768 Star Asynchronous 100 50.0 F Distributed
769 Complete Synchronous 10 0.0 A Clustered
770 Complete Synchronous 10 0.0 A Distributed
771 Complete Synchronous 10 0.0 B Clustered
772 Complete Synchronous 10 0.0 B Distributed
773 Complete Synchronous 10 0.0 C Clustered
774 Complete Synchronous 10 0.0 C Distributed
775 Complete Synchronous 10 0.0 D Clustered
776 Complete Synchronous 10 0.0 D Distributed
777 Complete Synchronous 10 0.0 E Clustered
778 Complete Synchronous 10 0.0 E Distributed
779 Complete Synchronous 10 0.0 F Clustered
780 Complete Synchronous 10 0.0 F Distributed
781 Complete Synchronous 10 5.0 A Clustered
782 Complete Synchronous 10 5.0 A Distributed
783 Complete Synchronous 10 5.0 B Clustered
784 Complete Synchronous 10 5.0 B Distributed
785 Complete Synchronous 10 5.0 C Clustered
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786 Complete Synchronous 10 5.0 C Distributed
787 Complete Synchronous 10 5.0 D Clustered
788 Complete Synchronous 10 5.0 D Distributed
789 Complete Synchronous 10 5.0 E Clustered
790 Complete Synchronous 10 5.0 E Distributed
791 Complete Synchronous 10 5.0 F Clustered
792 Complete Synchronous 10 5.0 F Distributed
793 Complete Synchronous 10 20.0 A Clustered
794 Complete Synchronous 10 20.0 A Distributed
795 Complete Synchronous 10 20.0 B Clustered
796 Complete Synchronous 10 20.0 B Distributed
797 Complete Synchronous 10 20.0 C Clustered
798 Complete Synchronous 10 20.0 C Distributed
799 Complete Synchronous 10 20.0 D Clustered
800 Complete Synchronous 10 20.0 D Distributed
801 Complete Synchronous 10 20.0 E Clustered
802 Complete Synchronous 10 20.0 E Distributed
803 Complete Synchronous 10 20.0 F Clustered
804 Complete Synchronous 10 20.0 F Distributed
805 Complete Synchronous 10 50.0 A Clustered
806 Complete Synchronous 10 50.0 A Distributed
807 Complete Synchronous 10 50.0 B Clustered
808 Complete Synchronous 10 50.0 B Distributed
809 Complete Synchronous 10 50.0 C Clustered
810 Complete Synchronous 10 50.0 C Distributed
811 Complete Synchronous 10 50.0 D Clustered
812 Complete Synchronous 10 50.0 D Distributed
813 Complete Synchronous 10 50.0 E Clustered
814 Complete Synchronous 10 50.0 E Distributed
815 Complete Synchronous 10 50.0 F Clustered
816 Complete Synchronous 10 50.0 F Distributed
817 Complete Synchronous 25 0.0 A Clustered
818 Complete Synchronous 25 0.0 A Distributed
819 Complete Synchronous 25 0.0 B Clustered
820 Complete Synchronous 25 0.0 B Distributed
821 Complete Synchronous 25 0.0 C Clustered
822 Complete Synchronous 25 0.0 C Distributed
823 Complete Synchronous 25 0.0 D Clustered
824 Complete Synchronous 25 0.0 D Distributed
825 Complete Synchronous 25 0.0 E Clustered
826 Complete Synchronous 25 0.0 E Distributed
827 Complete Synchronous 25 0.0 F Clustered
828 Complete Synchronous 25 0.0 F Distributed
829 Complete Synchronous 25 5.0 A Clustered
830 Complete Synchronous 25 5.0 A Distributed
831 Complete Synchronous 25 5.0 B Clustered
832 Complete Synchronous 25 5.0 B Distributed
833 Complete Synchronous 25 5.0 C Clustered
834 Complete Synchronous 25 5.0 C Distributed
835 Complete Synchronous 25 5.0 D Clustered
836 Complete Synchronous 25 5.0 D Distributed
837 Complete Synchronous 25 5.0 E Clustered
838 Complete Synchronous 25 5.0 E Distributed
839 Complete Synchronous 25 5.0 F Clustered
840 Complete Synchronous 25 5.0 F Distributed
841 Complete Synchronous 25 20.0 A Clustered
842 Complete Synchronous 25 20.0 A Distributed
843 Complete Synchronous 25 20.0 B Clustered
844 Complete Synchronous 25 20.0 B Distributed
845 Complete Synchronous 25 20.0 C Clustered
846 Complete Synchronous 25 20.0 C Distributed
847 Complete Synchronous 25 20.0 D Clustered
848 Complete Synchronous 25 20.0 D Distributed
849 Complete Synchronous 25 20.0 E Clustered
850 Complete Synchronous 25 20.0 E Distributed
851 Complete Synchronous 25 20.0 F Clustered
852 Complete Synchronous 25 20.0 F Distributed
853 Complete Synchronous 25 50.0 A Clustered
854 Complete Synchronous 25 50.0 A Distributed
855 Complete Synchronous 25 50.0 B Clustered
856 Complete Synchronous 25 50.0 B Distributed
857 Complete Synchronous 25 50.0 C Clustered
858 Complete Synchronous 25 50.0 C Distributed
859 Complete Synchronous 25 50.0 D Clustered
860 Complete Synchronous 25 50.0 D Distributed
861 Complete Synchronous 25 50.0 E Clustered
862 Complete Synchronous 25 50.0 E Distributed
863 Complete Synchronous 25 50.0 F Clustered
864 Complete Synchronous 25 50.0 F Distributed
865 Complete Synchronous 50 0.0 A Clustered
866 Complete Synchronous 50 0.0 A Distributed
867 Complete Synchronous 50 0.0 B Clustered
868 Complete Synchronous 50 0.0 B Distributed
869 Complete Synchronous 50 0.0 C Clustered
870 Complete Synchronous 50 0.0 C Distributed
871 Complete Synchronous 50 0.0 D Clustered
872 Complete Synchronous 50 0.0 D Distributed
873 Complete Synchronous 50 0.0 E Clustered
874 Complete Synchronous 50 0.0 E Distributed
875 Complete Synchronous 50 0.0 F Clustered
876 Complete Synchronous 50 0.0 F Distributed
877 Complete Synchronous 50 5.0 A Clustered
878 Complete Synchronous 50 5.0 A Distributed
879 Complete Synchronous 50 5.0 B Clustered
880 Complete Synchronous 50 5.0 B Distributed
881 Complete Synchronous 50 5.0 C Clustered
882 Complete Synchronous 50 5.0 C Distributed
883 Complete Synchronous 50 5.0 D Clustered
884 Complete Synchronous 50 5.0 D Distributed
885 Complete Synchronous 50 5.0 E Clustered
886 Complete Synchronous 50 5.0 E Distributed
887 Complete Synchronous 50 5.0 F Clustered
888 Complete Synchronous 50 5.0 F Distributed
889 Complete Synchronous 50 20.0 A Clustered
890 Complete Synchronous 50 20.0 A Distributed
891 Complete Synchronous 50 20.0 B Clustered
892 Complete Synchronous 50 20.0 B Distributed
893 Complete Synchronous 50 20.0 C Clustered
894 Complete Synchronous 50 20.0 C Distributed
895 Complete Synchronous 50 20.0 D Clustered
896 Complete Synchronous 50 20.0 D Distributed
897 Complete Synchronous 50 20.0 E Clustered
898 Complete Synchronous 50 20.0 E Distributed
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899 Complete Synchronous 50 20.0 F Clustered
900 Complete Synchronous 50 20.0 F Distributed
901 Complete Synchronous 50 50.0 A Clustered
902 Complete Synchronous 50 50.0 A Distributed
903 Complete Synchronous 50 50.0 B Clustered
904 Complete Synchronous 50 50.0 B Distributed
905 Complete Synchronous 50 50.0 C Clustered
906 Complete Synchronous 50 50.0 C Distributed
907 Complete Synchronous 50 50.0 D Clustered
908 Complete Synchronous 50 50.0 D Distributed
909 Complete Synchronous 50 50.0 E Clustered
910 Complete Synchronous 50 50.0 E Distributed
911 Complete Synchronous 50 50.0 F Clustered
912 Complete Synchronous 50 50.0 F Distributed
913 Complete Synchronous 100 0.0 A Clustered
914 Complete Synchronous 100 0.0 A Distributed
915 Complete Synchronous 100 0.0 B Clustered
916 Complete Synchronous 100 0.0 B Distributed
917 Complete Synchronous 100 0.0 C Clustered
918 Complete Synchronous 100 0.0 C Distributed
919 Complete Synchronous 100 0.0 D Clustered
920 Complete Synchronous 100 0.0 D Distributed
921 Complete Synchronous 100 0.0 E Clustered
922 Complete Synchronous 100 0.0 E Distributed
923 Complete Synchronous 100 0.0 F Clustered
924 Complete Synchronous 100 0.0 F Distributed
925 Complete Synchronous 100 5.0 A Clustered
926 Complete Synchronous 100 5.0 A Distributed
927 Complete Synchronous 100 5.0 B Clustered
928 Complete Synchronous 100 5.0 B Distributed
929 Complete Synchronous 100 5.0 C Clustered
930 Complete Synchronous 100 5.0 C Distributed
931 Complete Synchronous 100 5.0 D Clustered
932 Complete Synchronous 100 5.0 D Distributed
933 Complete Synchronous 100 5.0 E Clustered
934 Complete Synchronous 100 5.0 E Distributed
935 Complete Synchronous 100 5.0 F Clustered
936 Complete Synchronous 100 5.0 F Distributed
937 Complete Synchronous 100 20.0 A Clustered
938 Complete Synchronous 100 20.0 A Distributed
939 Complete Synchronous 100 20.0 B Clustered
940 Complete Synchronous 100 20.0 B Distributed
941 Complete Synchronous 100 20.0 C Clustered
942 Complete Synchronous 100 20.0 C Distributed
943 Complete Synchronous 100 20.0 D Clustered
944 Complete Synchronous 100 20.0 D Distributed
945 Complete Synchronous 100 20.0 E Clustered
946 Complete Synchronous 100 20.0 E Distributed
947 Complete Synchronous 100 20.0 F Clustered
948 Complete Synchronous 100 20.0 F Distributed
949 Complete Synchronous 100 50.0 A Clustered
950 Complete Synchronous 100 50.0 A Distributed
951 Complete Synchronous 100 50.0 B Clustered
952 Complete Synchronous 100 50.0 B Distributed
953 Complete Synchronous 100 50.0 C Clustered
954 Complete Synchronous 100 50.0 C Distributed
955 Complete Synchronous 100 50.0 D Clustered
956 Complete Synchronous 100 50.0 D Distributed
957 Complete Synchronous 100 50.0 E Clustered
958 Complete Synchronous 100 50.0 E Distributed
959 Complete Synchronous 100 50.0 F Clustered
960 Complete Synchronous 100 50.0 F Distributed
961 Complete Asynchronous 10 0.0 A Clustered
962 Complete Asynchronous 10 0.0 A Distributed
963 Complete Asynchronous 10 0.0 B Clustered
964 Complete Asynchronous 10 0.0 B Distributed
965 Complete Asynchronous 10 0.0 C Clustered
966 Complete Asynchronous 10 0.0 C Distributed
967 Complete Asynchronous 10 0.0 D Clustered
968 Complete Asynchronous 10 0.0 D Distributed
969 Complete Asynchronous 10 0.0 E Clustered
970 Complete Asynchronous 10 0.0 E Distributed
971 Complete Asynchronous 10 0.0 F Clustered
972 Complete Asynchronous 10 0.0 F Distributed
973 Complete Asynchronous 10 5.0 A Clustered
974 Complete Asynchronous 10 5.0 A Distributed
975 Complete Asynchronous 10 5.0 B Clustered
976 Complete Asynchronous 10 5.0 B Distributed
977 Complete Asynchronous 10 5.0 C Clustered
978 Complete Asynchronous 10 5.0 C Distributed
979 Complete Asynchronous 10 5.0 D Clustered
980 Complete Asynchronous 10 5.0 D Distributed
981 Complete Asynchronous 10 5.0 E Clustered
982 Complete Asynchronous 10 5.0 E Distributed
983 Complete Asynchronous 10 5.0 F Clustered
984 Complete Asynchronous 10 5.0 F Distributed
985 Complete Asynchronous 10 20.0 A Clustered
986 Complete Asynchronous 10 20.0 A Distributed
987 Complete Asynchronous 10 20.0 B Clustered
988 Complete Asynchronous 10 20.0 B Distributed
989 Complete Asynchronous 10 20.0 C Clustered
990 Complete Asynchronous 10 20.0 C Distributed
991 Complete Asynchronous 10 20.0 D Clustered
992 Complete Asynchronous 10 20.0 D Distributed
993 Complete Asynchronous 10 20.0 E Clustered
994 Complete Asynchronous 10 20.0 E Distributed
995 Complete Asynchronous 10 20.0 F Clustered
996 Complete Asynchronous 10 20.0 F Distributed
997 Complete Asynchronous 10 50.0 A Clustered
998 Complete Asynchronous 10 50.0 A Distributed
999 Complete Asynchronous 10 50.0 B Clustered
1000 Complete Asynchronous 10 50.0 B Distributed
1001 Complete Asynchronous 10 50.0 C Clustered
1002 Complete Asynchronous 10 50.0 C Distributed
1003 Complete Asynchronous 10 50.0 D Clustered
1004 Complete Asynchronous 10 50.0 D Distributed
1005 Complete Asynchronous 10 50.0 E Clustered
1006 Complete Asynchronous 10 50.0 E Distributed
1007 Complete Asynchronous 10 50.0 F Clustered
1008 Complete Asynchronous 10 50.0 F Distributed
1009 Complete Asynchronous 25 0.0 A Clustered
1010 Complete Asynchronous 25 0.0 A Distributed
1011 Complete Asynchronous 25 0.0 B Clustered
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1012 Complete Asynchronous 25 0.0 B Distributed
1013 Complete Asynchronous 25 0.0 C Clustered
1014 Complete Asynchronous 25 0.0 C Distributed
1015 Complete Asynchronous 25 0.0 D Clustered
1016 Complete Asynchronous 25 0.0 D Distributed
1017 Complete Asynchronous 25 0.0 E Clustered
1018 Complete Asynchronous 25 0.0 E Distributed
1019 Complete Asynchronous 25 0.0 F Clustered
1020 Complete Asynchronous 25 0.0 F Distributed
1021 Complete Asynchronous 25 5.0 A Clustered
1022 Complete Asynchronous 25 5.0 A Distributed
1023 Complete Asynchronous 25 5.0 B Clustered
1024 Complete Asynchronous 25 5.0 B Distributed
1025 Complete Asynchronous 25 5.0 C Clustered
1026 Complete Asynchronous 25 5.0 C Distributed
1027 Complete Asynchronous 25 5.0 D Clustered
1028 Complete Asynchronous 25 5.0 D Distributed
1029 Complete Asynchronous 25 5.0 E Clustered
1030 Complete Asynchronous 25 5.0 E Distributed
1031 Complete Asynchronous 25 5.0 F Clustered
1032 Complete Asynchronous 25 5.0 F Distributed
1033 Complete Asynchronous 25 20.0 A Clustered
1034 Complete Asynchronous 25 20.0 A Distributed
1035 Complete Asynchronous 25 20.0 B Clustered
1036 Complete Asynchronous 25 20.0 B Distributed
1037 Complete Asynchronous 25 20.0 C Clustered
1038 Complete Asynchronous 25 20.0 C Distributed
1039 Complete Asynchronous 25 20.0 D Clustered
1040 Complete Asynchronous 25 20.0 D Distributed
1041 Complete Asynchronous 25 20.0 E Clustered
1042 Complete Asynchronous 25 20.0 E Distributed
1043 Complete Asynchronous 25 20.0 F Clustered
1044 Complete Asynchronous 25 20.0 F Distributed
1045 Complete Asynchronous 25 50.0 A Clustered
1046 Complete Asynchronous 25 50.0 A Distributed
1047 Complete Asynchronous 25 50.0 B Clustered
1048 Complete Asynchronous 25 50.0 B Distributed
1049 Complete Asynchronous 25 50.0 C Clustered
1050 Complete Asynchronous 25 50.0 C Distributed
1051 Complete Asynchronous 25 50.0 D Clustered
1052 Complete Asynchronous 25 50.0 D Distributed
1053 Complete Asynchronous 25 50.0 E Clustered
1054 Complete Asynchronous 25 50.0 E Distributed
1055 Complete Asynchronous 25 50.0 F Clustered
1056 Complete Asynchronous 25 50.0 F Distributed
1057 Complete Asynchronous 50 0.0 A Clustered
1058 Complete Asynchronous 50 0.0 A Distributed
1059 Complete Asynchronous 50 0.0 B Clustered
1060 Complete Asynchronous 50 0.0 B Distributed
1061 Complete Asynchronous 50 0.0 C Clustered
1062 Complete Asynchronous 50 0.0 C Distributed
1063 Complete Asynchronous 50 0.0 D Clustered
1064 Complete Asynchronous 50 0.0 D Distributed
1065 Complete Asynchronous 50 0.0 E Clustered
1066 Complete Asynchronous 50 0.0 E Distributed
1067 Complete Asynchronous 50 0.0 F Clustered
1068 Complete Asynchronous 50 0.0 F Distributed
1069 Complete Asynchronous 50 5.0 A Clustered
1070 Complete Asynchronous 50 5.0 A Distributed
1071 Complete Asynchronous 50 5.0 B Clustered
1072 Complete Asynchronous 50 5.0 B Distributed
1073 Complete Asynchronous 50 5.0 C Clustered
1074 Complete Asynchronous 50 5.0 C Distributed
1075 Complete Asynchronous 50 5.0 D Clustered
1076 Complete Asynchronous 50 5.0 D Distributed
1077 Complete Asynchronous 50 5.0 E Clustered
1078 Complete Asynchronous 50 5.0 E Distributed
1079 Complete Asynchronous 50 5.0 F Clustered
1080 Complete Asynchronous 50 5.0 F Distributed
1081 Complete Asynchronous 50 20.0 A Clustered
1082 Complete Asynchronous 50 20.0 A Distributed
1083 Complete Asynchronous 50 20.0 B Clustered
1084 Complete Asynchronous 50 20.0 B Distributed
1085 Complete Asynchronous 50 20.0 C Clustered
1086 Complete Asynchronous 50 20.0 C Distributed
1087 Complete Asynchronous 50 20.0 D Clustered
1088 Complete Asynchronous 50 20.0 D Distributed
1089 Complete Asynchronous 50 20.0 E Clustered
1090 Complete Asynchronous 50 20.0 E Distributed
1091 Complete Asynchronous 50 20.0 F Clustered
1092 Complete Asynchronous 50 20.0 F Distributed
1093 Complete Asynchronous 50 50.0 A Clustered
1094 Complete Asynchronous 50 50.0 A Distributed
1095 Complete Asynchronous 50 50.0 B Clustered
1096 Complete Asynchronous 50 50.0 B Distributed
1097 Complete Asynchronous 50 50.0 C Clustered
1098 Complete Asynchronous 50 50.0 C Distributed
1099 Complete Asynchronous 50 50.0 D Clustered
1100 Complete Asynchronous 50 50.0 D Distributed
1101 Complete Asynchronous 50 50.0 E Clustered
1102 Complete Asynchronous 50 50.0 E Distributed
1103 Complete Asynchronous 50 50.0 F Clustered
1104 Complete Asynchronous 50 50.0 F Distributed
1105 Complete Asynchronous 100 0.0 A Clustered
1106 Complete Asynchronous 100 0.0 A Distributed
1107 Complete Asynchronous 100 0.0 B Clustered
1108 Complete Asynchronous 100 0.0 B Distributed
1109 Complete Asynchronous 100 0.0 C Clustered
1110 Complete Asynchronous 100 0.0 C Distributed
1111 Complete Asynchronous 100 0.0 D Clustered
1112 Complete Asynchronous 100 0.0 D Distributed
1113 Complete Asynchronous 100 0.0 E Clustered
1114 Complete Asynchronous 100 0.0 E Distributed
1115 Complete Asynchronous 100 0.0 F Clustered
1116 Complete Asynchronous 100 0.0 F Distributed
1117 Complete Asynchronous 100 5.0 A Clustered
1118 Complete Asynchronous 100 5.0 A Distributed
1119 Complete Asynchronous 100 5.0 B Clustered
1120 Complete Asynchronous 100 5.0 B Distributed
1121 Complete Asynchronous 100 5.0 C Clustered
1122 Complete Asynchronous 100 5.0 C Distributed
1123 Complete Asynchronous 100 5.0 D Clustered
1124 Complete Asynchronous 100 5.0 D Distributed
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1125 Complete Asynchronous 100 5.0 E Clustered
1126 Complete Asynchronous 100 5.0 E Distributed
1127 Complete Asynchronous 100 5.0 F Clustered
1128 Complete Asynchronous 100 5.0 F Distributed
1129 Complete Asynchronous 100 20.0 A Clustered
1130 Complete Asynchronous 100 20.0 A Distributed
1131 Complete Asynchronous 100 20.0 B Clustered
1132 Complete Asynchronous 100 20.0 B Distributed
1133 Complete Asynchronous 100 20.0 C Clustered
1134 Complete Asynchronous 100 20.0 C Distributed
1135 Complete Asynchronous 100 20.0 D Clustered
1136 Complete Asynchronous 100 20.0 D Distributed
1137 Complete Asynchronous 100 20.0 E Clustered
1138 Complete Asynchronous 100 20.0 E Distributed
1139 Complete Asynchronous 100 20.0 F Clustered
1140 Complete Asynchronous 100 20.0 F Distributed
1141 Complete Asynchronous 100 50.0 A Clustered
1142 Complete Asynchronous 100 50.0 A Distributed
1143 Complete Asynchronous 100 50.0 B Clustered
1144 Complete Asynchronous 100 50.0 B Distributed
1145 Complete Asynchronous 100 50.0 C Clustered
1146 Complete Asynchronous 100 50.0 C Distributed
1147 Complete Asynchronous 100 50.0 D Clustered
1148 Complete Asynchronous 100 50.0 D Distributed
1149 Complete Asynchronous 100 50.0 E Clustered
1150 Complete Asynchronous 100 50.0 E Distributed
1151 Complete Asynchronous 100 50.0 F Clustered
1152 Complete Asynchronous 100 50.0 F Distributed
1153 Milgram Ring Synchronous 10 0.0 A Clustered
1154 Milgram Ring Synchronous 10 0.0 A Distributed
1155 Milgram Ring Synchronous 10 0.0 B Clustered
1156 Milgram Ring Synchronous 10 0.0 B Distributed
1157 Milgram Ring Synchronous 10 0.0 C Clustered
1158 Milgram Ring Synchronous 10 0.0 C Distributed
1159 Milgram Ring Synchronous 10 0.0 D Clustered
1160 Milgram Ring Synchronous 10 0.0 D Distributed
1161 Milgram Ring Synchronous 10 0.0 E Clustered
1162 Milgram Ring Synchronous 10 0.0 E Distributed
1163 Milgram Ring Synchronous 10 0.0 F Clustered
1164 Milgram Ring Synchronous 10 0.0 F Distributed
1165 Milgram Ring Synchronous 10 5.0 A Clustered
1166 Milgram Ring Synchronous 10 5.0 A Distributed
1167 Milgram Ring Synchronous 10 5.0 B Clustered
1168 Milgram Ring Synchronous 10 5.0 B Distributed
1169 Milgram Ring Synchronous 10 5.0 C Clustered
1170 Milgram Ring Synchronous 10 5.0 C Distributed
1171 Milgram Ring Synchronous 10 5.0 D Clustered
1172 Milgram Ring Synchronous 10 5.0 D Distributed
1173 Milgram Ring Synchronous 10 5.0 E Clustered
1174 Milgram Ring Synchronous 10 5.0 E Distributed
1175 Milgram Ring Synchronous 10 5.0 F Clustered
1176 Milgram Ring Synchronous 10 5.0 F Distributed
1177 Milgram Ring Synchronous 10 20.0 A Clustered
1178 Milgram Ring Synchronous 10 20.0 A Distributed
1179 Milgram Ring Synchronous 10 20.0 B Clustered
1180 Milgram Ring Synchronous 10 20.0 B Distributed
1181 Milgram Ring Synchronous 10 20.0 C Clustered
1182 Milgram Ring Synchronous 10 20.0 C Distributed
1183 Milgram Ring Synchronous 10 20.0 D Clustered
1184 Milgram Ring Synchronous 10 20.0 D Distributed
1185 Milgram Ring Synchronous 10 20.0 E Clustered
1186 Milgram Ring Synchronous 10 20.0 E Distributed
1187 Milgram Ring Synchronous 10 20.0 F Clustered
1188 Milgram Ring Synchronous 10 20.0 F Distributed
1189 Milgram Ring Synchronous 10 50.0 A Clustered
1190 Milgram Ring Synchronous 10 50.0 A Distributed
1191 Milgram Ring Synchronous 10 50.0 B Clustered
1192 Milgram Ring Synchronous 10 50.0 B Distributed
1193 Milgram Ring Synchronous 10 50.0 C Clustered
1194 Milgram Ring Synchronous 10 50.0 C Distributed
1195 Milgram Ring Synchronous 10 50.0 D Clustered
1196 Milgram Ring Synchronous 10 50.0 D Distributed
1197 Milgram Ring Synchronous 10 50.0 E Clustered
1198 Milgram Ring Synchronous 10 50.0 E Distributed
1199 Milgram Ring Synchronous 10 50.0 F Clustered
1200 Milgram Ring Synchronous 10 50.0 F Distributed
1201 Milgram Ring Synchronous 25 0.0 A Clustered
1202 Milgram Ring Synchronous 25 0.0 A Distributed
1203 Milgram Ring Synchronous 25 0.0 B Clustered
1204 Milgram Ring Synchronous 25 0.0 B Distributed
1205 Milgram Ring Synchronous 25 0.0 C Clustered
1206 Milgram Ring Synchronous 25 0.0 C Distributed
1207 Milgram Ring Synchronous 25 0.0 D Clustered
1208 Milgram Ring Synchronous 25 0.0 D Distributed
1209 Milgram Ring Synchronous 25 0.0 E Clustered
1210 Milgram Ring Synchronous 25 0.0 E Distributed
1211 Milgram Ring Synchronous 25 0.0 F Clustered
1212 Milgram Ring Synchronous 25 0.0 F Distributed
1213 Milgram Ring Synchronous 25 5.0 A Clustered
1214 Milgram Ring Synchronous 25 5.0 A Distributed
1215 Milgram Ring Synchronous 25 5.0 B Clustered
1216 Milgram Ring Synchronous 25 5.0 B Distributed
1217 Milgram Ring Synchronous 25 5.0 C Clustered
1218 Milgram Ring Synchronous 25 5.0 C Distributed
1219 Milgram Ring Synchronous 25 5.0 D Clustered
1220 Milgram Ring Synchronous 25 5.0 D Distributed
1221 Milgram Ring Synchronous 25 5.0 E Clustered
1222 Milgram Ring Synchronous 25 5.0 E Distributed
1223 Milgram Ring Synchronous 25 5.0 F Clustered
1224 Milgram Ring Synchronous 25 5.0 F Distributed
1225 Milgram Ring Synchronous 25 20.0 A Clustered
1226 Milgram Ring Synchronous 25 20.0 A Distributed
1227 Milgram Ring Synchronous 25 20.0 B Clustered
1228 Milgram Ring Synchronous 25 20.0 B Distributed
1229 Milgram Ring Synchronous 25 20.0 C Clustered
1230 Milgram Ring Synchronous 25 20.0 C Distributed
1231 Milgram Ring Synchronous 25 20.0 D Clustered
1232 Milgram Ring Synchronous 25 20.0 D Distributed
1233 Milgram Ring Synchronous 25 20.0 E Clustered
1234 Milgram Ring Synchronous 25 20.0 E Distributed
1235 Milgram Ring Synchronous 25 20.0 F Clustered
1236 Milgram Ring Synchronous 25 20.0 F Distributed
1237 Milgram Ring Synchronous 25 50.0 A Clustered
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1238 Milgram Ring Synchronous 25 50.0 A Distributed
1239 Milgram Ring Synchronous 25 50.0 B Clustered
1240 Milgram Ring Synchronous 25 50.0 B Distributed
1241 Milgram Ring Synchronous 25 50.0 C Clustered
1242 Milgram Ring Synchronous 25 50.0 C Distributed
1243 Milgram Ring Synchronous 25 50.0 D Clustered
1244 Milgram Ring Synchronous 25 50.0 D Distributed
1245 Milgram Ring Synchronous 25 50.0 E Clustered
1246 Milgram Ring Synchronous 25 50.0 E Distributed
1247 Milgram Ring Synchronous 25 50.0 F Clustered
1248 Milgram Ring Synchronous 25 50.0 F Distributed
1249 Milgram Ring Synchronous 50 0.0 A Clustered
1250 Milgram Ring Synchronous 50 0.0 A Distributed
1251 Milgram Ring Synchronous 50 0.0 B Clustered
1252 Milgram Ring Synchronous 50 0.0 B Distributed
1253 Milgram Ring Synchronous 50 0.0 C Clustered
1254 Milgram Ring Synchronous 50 0.0 C Distributed
1255 Milgram Ring Synchronous 50 0.0 D Clustered
1256 Milgram Ring Synchronous 50 0.0 D Distributed
1257 Milgram Ring Synchronous 50 0.0 E Clustered
1258 Milgram Ring Synchronous 50 0.0 E Distributed
1259 Milgram Ring Synchronous 50 0.0 F Clustered
1260 Milgram Ring Synchronous 50 0.0 F Distributed
1261 Milgram Ring Synchronous 50 5.0 A Clustered
1262 Milgram Ring Synchronous 50 5.0 A Distributed
1263 Milgram Ring Synchronous 50 5.0 B Clustered
1264 Milgram Ring Synchronous 50 5.0 B Distributed
1265 Milgram Ring Synchronous 50 5.0 C Clustered
1266 Milgram Ring Synchronous 50 5.0 C Distributed
1267 Milgram Ring Synchronous 50 5.0 D Clustered
1268 Milgram Ring Synchronous 50 5.0 D Distributed
1269 Milgram Ring Synchronous 50 5.0 E Clustered
1270 Milgram Ring Synchronous 50 5.0 E Distributed
1271 Milgram Ring Synchronous 50 5.0 F Clustered
1272 Milgram Ring Synchronous 50 5.0 F Distributed
1273 Milgram Ring Synchronous 50 20.0 A Clustered
1274 Milgram Ring Synchronous 50 20.0 A Distributed
1275 Milgram Ring Synchronous 50 20.0 B Clustered
1276 Milgram Ring Synchronous 50 20.0 B Distributed
1277 Milgram Ring Synchronous 50 20.0 C Clustered
1278 Milgram Ring Synchronous 50 20.0 C Distributed
1279 Milgram Ring Synchronous 50 20.0 D Clustered
1280 Milgram Ring Synchronous 50 20.0 D Distributed
1281 Milgram Ring Synchronous 50 20.0 E Clustered
1282 Milgram Ring Synchronous 50 20.0 E Distributed
1283 Milgram Ring Synchronous 50 20.0 F Clustered
1284 Milgram Ring Synchronous 50 20.0 F Distributed
1285 Milgram Ring Synchronous 50 50.0 A Clustered
1286 Milgram Ring Synchronous 50 50.0 A Distributed
1287 Milgram Ring Synchronous 50 50.0 B Clustered
1288 Milgram Ring Synchronous 50 50.0 B Distributed
1289 Milgram Ring Synchronous 50 50.0 C Clustered
1290 Milgram Ring Synchronous 50 50.0 C Distributed
1291 Milgram Ring Synchronous 50 50.0 D Clustered
1292 Milgram Ring Synchronous 50 50.0 D Distributed
1293 Milgram Ring Synchronous 50 50.0 E Clustered
1294 Milgram Ring Synchronous 50 50.0 E Distributed
1295 Milgram Ring Synchronous 50 50.0 F Clustered
1296 Milgram Ring Synchronous 50 50.0 F Distributed
1297 Milgram Ring Synchronous 100 0.0 A Clustered
1298 Milgram Ring Synchronous 100 0.0 A Distributed
1299 Milgram Ring Synchronous 100 0.0 B Clustered
1300 Milgram Ring Synchronous 100 0.0 B Distributed
1301 Milgram Ring Synchronous 100 0.0 C Clustered
1302 Milgram Ring Synchronous 100 0.0 C Distributed
1303 Milgram Ring Synchronous 100 0.0 D Clustered
1304 Milgram Ring Synchronous 100 0.0 D Distributed
1305 Milgram Ring Synchronous 100 0.0 E Clustered
1306 Milgram Ring Synchronous 100 0.0 E Distributed
1307 Milgram Ring Synchronous 100 0.0 F Clustered
1308 Milgram Ring Synchronous 100 0.0 F Distributed
1309 Milgram Ring Synchronous 100 5.0 A Clustered
1310 Milgram Ring Synchronous 100 5.0 A Distributed
1311 Milgram Ring Synchronous 100 5.0 B Clustered
1312 Milgram Ring Synchronous 100 5.0 B Distributed
1313 Milgram Ring Synchronous 100 5.0 C Clustered
1314 Milgram Ring Synchronous 100 5.0 C Distributed
1315 Milgram Ring Synchronous 100 5.0 D Clustered
1316 Milgram Ring Synchronous 100 5.0 D Distributed
1317 Milgram Ring Synchronous 100 5.0 E Clustered
1318 Milgram Ring Synchronous 100 5.0 E Distributed
1319 Milgram Ring Synchronous 100 5.0 F Clustered
1320 Milgram Ring Synchronous 100 5.0 F Distributed
1321 Milgram Ring Synchronous 100 20.0 A Clustered
1322 Milgram Ring Synchronous 100 20.0 A Distributed
1323 Milgram Ring Synchronous 100 20.0 B Clustered
1324 Milgram Ring Synchronous 100 20.0 B Distributed
1325 Milgram Ring Synchronous 100 20.0 C Clustered
1326 Milgram Ring Synchronous 100 20.0 C Distributed
1327 Milgram Ring Synchronous 100 20.0 D Clustered
1328 Milgram Ring Synchronous 100 20.0 D Distributed
1329 Milgram Ring Synchronous 100 20.0 E Clustered
1330 Milgram Ring Synchronous 100 20.0 E Distributed
1331 Milgram Ring Synchronous 100 20.0 F Clustered
1332 Milgram Ring Synchronous 100 20.0 F Distributed
1333 Milgram Ring Synchronous 100 50.0 A Clustered
1334 Milgram Ring Synchronous 100 50.0 A Distributed
1335 Milgram Ring Synchronous 100 50.0 B Clustered
1336 Milgram Ring Synchronous 100 50.0 B Distributed
1337 Milgram Ring Synchronous 100 50.0 C Clustered
1338 Milgram Ring Synchronous 100 50.0 C Distributed
1339 Milgram Ring Synchronous 100 50.0 D Clustered
1340 Milgram Ring Synchronous 100 50.0 D Distributed
1341 Milgram Ring Synchronous 100 50.0 E Clustered
1342 Milgram Ring Synchronous 100 50.0 E Distributed
1343 Milgram Ring Synchronous 100 50.0 F Clustered
1344 Milgram Ring Synchronous 100 50.0 F Distributed
1345 Milgram Ring Asynchronous 10 0.0 A Clustered
1346 Milgram Ring Asynchronous 10 0.0 A Distributed
1347 Milgram Ring Asynchronous 10 0.0 B Clustered
1348 Milgram Ring Asynchronous 10 0.0 B Distributed
1349 Milgram Ring Asynchronous 10 0.0 C Clustered
1350 Milgram Ring Asynchronous 10 0.0 C Distributed



9.2. Con�gurations 164

1351 Milgram Ring Asynchronous 10 0.0 D Clustered
1352 Milgram Ring Asynchronous 10 0.0 D Distributed
1353 Milgram Ring Asynchronous 10 0.0 E Clustered
1354 Milgram Ring Asynchronous 10 0.0 E Distributed
1355 Milgram Ring Asynchronous 10 0.0 F Clustered
1356 Milgram Ring Asynchronous 10 0.0 F Distributed
1357 Milgram Ring Asynchronous 10 5.0 A Clustered
1358 Milgram Ring Asynchronous 10 5.0 A Distributed
1359 Milgram Ring Asynchronous 10 5.0 B Clustered
1360 Milgram Ring Asynchronous 10 5.0 B Distributed
1361 Milgram Ring Asynchronous 10 5.0 C Clustered
1362 Milgram Ring Asynchronous 10 5.0 C Distributed
1363 Milgram Ring Asynchronous 10 5.0 D Clustered
1364 Milgram Ring Asynchronous 10 5.0 D Distributed
1365 Milgram Ring Asynchronous 10 5.0 E Clustered
1366 Milgram Ring Asynchronous 10 5.0 E Distributed
1367 Milgram Ring Asynchronous 10 5.0 F Clustered
1368 Milgram Ring Asynchronous 10 5.0 F Distributed
1369 Milgram Ring Asynchronous 10 20.0 A Clustered
1370 Milgram Ring Asynchronous 10 20.0 A Distributed
1371 Milgram Ring Asynchronous 10 20.0 B Clustered
1372 Milgram Ring Asynchronous 10 20.0 B Distributed
1373 Milgram Ring Asynchronous 10 20.0 C Clustered
1374 Milgram Ring Asynchronous 10 20.0 C Distributed
1375 Milgram Ring Asynchronous 10 20.0 D Clustered
1376 Milgram Ring Asynchronous 10 20.0 D Distributed
1377 Milgram Ring Asynchronous 10 20.0 E Clustered
1378 Milgram Ring Asynchronous 10 20.0 E Distributed
1379 Milgram Ring Asynchronous 10 20.0 F Clustered
1380 Milgram Ring Asynchronous 10 20.0 F Distributed
1381 Milgram Ring Asynchronous 10 50.0 A Clustered
1382 Milgram Ring Asynchronous 10 50.0 A Distributed
1383 Milgram Ring Asynchronous 10 50.0 B Clustered
1384 Milgram Ring Asynchronous 10 50.0 B Distributed
1385 Milgram Ring Asynchronous 10 50.0 C Clustered
1386 Milgram Ring Asynchronous 10 50.0 C Distributed
1387 Milgram Ring Asynchronous 10 50.0 D Clustered
1388 Milgram Ring Asynchronous 10 50.0 D Distributed
1389 Milgram Ring Asynchronous 10 50.0 E Clustered
1390 Milgram Ring Asynchronous 10 50.0 E Distributed
1391 Milgram Ring Asynchronous 10 50.0 F Clustered
1392 Milgram Ring Asynchronous 10 50.0 F Distributed
1393 Milgram Ring Asynchronous 25 0.0 A Clustered
1394 Milgram Ring Asynchronous 25 0.0 A Distributed
1395 Milgram Ring Asynchronous 25 0.0 B Clustered
1396 Milgram Ring Asynchronous 25 0.0 B Distributed
1397 Milgram Ring Asynchronous 25 0.0 C Clustered
1398 Milgram Ring Asynchronous 25 0.0 C Distributed
1399 Milgram Ring Asynchronous 25 0.0 D Clustered
1400 Milgram Ring Asynchronous 25 0.0 D Distributed
1401 Milgram Ring Asynchronous 25 0.0 E Clustered
1402 Milgram Ring Asynchronous 25 0.0 E Distributed
1403 Milgram Ring Asynchronous 25 0.0 F Clustered
1404 Milgram Ring Asynchronous 25 0.0 F Distributed
1405 Milgram Ring Asynchronous 25 5.0 A Clustered
1406 Milgram Ring Asynchronous 25 5.0 A Distributed
1407 Milgram Ring Asynchronous 25 5.0 B Clustered
1408 Milgram Ring Asynchronous 25 5.0 B Distributed
1409 Milgram Ring Asynchronous 25 5.0 C Clustered
1410 Milgram Ring Asynchronous 25 5.0 C Distributed
1411 Milgram Ring Asynchronous 25 5.0 D Clustered
1412 Milgram Ring Asynchronous 25 5.0 D Distributed
1413 Milgram Ring Asynchronous 25 5.0 E Clustered
1414 Milgram Ring Asynchronous 25 5.0 E Distributed
1415 Milgram Ring Asynchronous 25 5.0 F Clustered
1416 Milgram Ring Asynchronous 25 5.0 F Distributed
1417 Milgram Ring Asynchronous 25 20.0 A Clustered
1418 Milgram Ring Asynchronous 25 20.0 A Distributed
1419 Milgram Ring Asynchronous 25 20.0 B Clustered
1420 Milgram Ring Asynchronous 25 20.0 B Distributed
1421 Milgram Ring Asynchronous 25 20.0 C Clustered
1422 Milgram Ring Asynchronous 25 20.0 C Distributed
1423 Milgram Ring Asynchronous 25 20.0 D Clustered
1424 Milgram Ring Asynchronous 25 20.0 D Distributed
1425 Milgram Ring Asynchronous 25 20.0 E Clustered
1426 Milgram Ring Asynchronous 25 20.0 E Distributed
1427 Milgram Ring Asynchronous 25 20.0 F Clustered
1428 Milgram Ring Asynchronous 25 20.0 F Distributed
1429 Milgram Ring Asynchronous 25 50.0 A Clustered
1430 Milgram Ring Asynchronous 25 50.0 A Distributed
1431 Milgram Ring Asynchronous 25 50.0 B Clustered
1432 Milgram Ring Asynchronous 25 50.0 B Distributed
1433 Milgram Ring Asynchronous 25 50.0 C Clustered
1434 Milgram Ring Asynchronous 25 50.0 C Distributed
1435 Milgram Ring Asynchronous 25 50.0 D Clustered
1436 Milgram Ring Asynchronous 25 50.0 D Distributed
1437 Milgram Ring Asynchronous 25 50.0 E Clustered
1438 Milgram Ring Asynchronous 25 50.0 E Distributed
1439 Milgram Ring Asynchronous 25 50.0 F Clustered
1440 Milgram Ring Asynchronous 25 50.0 F Distributed
1441 Milgram Ring Asynchronous 50 0.0 A Clustered
1442 Milgram Ring Asynchronous 50 0.0 A Distributed
1443 Milgram Ring Asynchronous 50 0.0 B Clustered
1444 Milgram Ring Asynchronous 50 0.0 B Distributed
1445 Milgram Ring Asynchronous 50 0.0 C Clustered
1446 Milgram Ring Asynchronous 50 0.0 C Distributed
1447 Milgram Ring Asynchronous 50 0.0 D Clustered
1448 Milgram Ring Asynchronous 50 0.0 D Distributed
1449 Milgram Ring Asynchronous 50 0.0 E Clustered
1450 Milgram Ring Asynchronous 50 0.0 E Distributed
1451 Milgram Ring Asynchronous 50 0.0 F Clustered
1452 Milgram Ring Asynchronous 50 0.0 F Distributed
1453 Milgram Ring Asynchronous 50 5.0 A Clustered
1454 Milgram Ring Asynchronous 50 5.0 A Distributed
1455 Milgram Ring Asynchronous 50 5.0 B Clustered
1456 Milgram Ring Asynchronous 50 5.0 B Distributed
1457 Milgram Ring Asynchronous 50 5.0 C Clustered
1458 Milgram Ring Asynchronous 50 5.0 C Distributed
1459 Milgram Ring Asynchronous 50 5.0 D Clustered
1460 Milgram Ring Asynchronous 50 5.0 D Distributed
1461 Milgram Ring Asynchronous 50 5.0 E Clustered
1462 Milgram Ring Asynchronous 50 5.0 E Distributed
1463 Milgram Ring Asynchronous 50 5.0 F Clustered
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1464 Milgram Ring Asynchronous 50 5.0 F Distributed
1465 Milgram Ring Asynchronous 50 20.0 A Clustered
1466 Milgram Ring Asynchronous 50 20.0 A Distributed
1467 Milgram Ring Asynchronous 50 20.0 B Clustered
1468 Milgram Ring Asynchronous 50 20.0 B Distributed
1469 Milgram Ring Asynchronous 50 20.0 C Clustered
1470 Milgram Ring Asynchronous 50 20.0 C Distributed
1471 Milgram Ring Asynchronous 50 20.0 D Clustered
1472 Milgram Ring Asynchronous 50 20.0 D Distributed
1473 Milgram Ring Asynchronous 50 20.0 E Clustered
1474 Milgram Ring Asynchronous 50 20.0 E Distributed
1475 Milgram Ring Asynchronous 50 20.0 F Clustered
1476 Milgram Ring Asynchronous 50 20.0 F Distributed
1477 Milgram Ring Asynchronous 50 50.0 A Clustered
1478 Milgram Ring Asynchronous 50 50.0 A Distributed
1479 Milgram Ring Asynchronous 50 50.0 B Clustered
1480 Milgram Ring Asynchronous 50 50.0 B Distributed
1481 Milgram Ring Asynchronous 50 50.0 C Clustered
1482 Milgram Ring Asynchronous 50 50.0 C Distributed
1483 Milgram Ring Asynchronous 50 50.0 D Clustered
1484 Milgram Ring Asynchronous 50 50.0 D Distributed
1485 Milgram Ring Asynchronous 50 50.0 E Clustered
1486 Milgram Ring Asynchronous 50 50.0 E Distributed
1487 Milgram Ring Asynchronous 50 50.0 F Clustered
1488 Milgram Ring Asynchronous 50 50.0 F Distributed
1489 Milgram Ring Asynchronous 100 0.0 A Clustered
1490 Milgram Ring Asynchronous 100 0.0 A Distributed
1491 Milgram Ring Asynchronous 100 0.0 B Clustered
1492 Milgram Ring Asynchronous 100 0.0 B Distributed
1493 Milgram Ring Asynchronous 100 0.0 C Clustered
1494 Milgram Ring Asynchronous 100 0.0 C Distributed
1495 Milgram Ring Asynchronous 100 0.0 D Clustered
1496 Milgram Ring Asynchronous 100 0.0 D Distributed
1497 Milgram Ring Asynchronous 100 0.0 E Clustered
1498 Milgram Ring Asynchronous 100 0.0 E Distributed
1499 Milgram Ring Asynchronous 100 0.0 F Clustered
1500 Milgram Ring Asynchronous 100 0.0 F Distributed
1501 Milgram Ring Asynchronous 100 5.0 A Clustered
1502 Milgram Ring Asynchronous 100 5.0 A Distributed
1503 Milgram Ring Asynchronous 100 5.0 B Clustered
1504 Milgram Ring Asynchronous 100 5.0 B Distributed
1505 Milgram Ring Asynchronous 100 5.0 C Clustered
1506 Milgram Ring Asynchronous 100 5.0 C Distributed
1507 Milgram Ring Asynchronous 100 5.0 D Clustered
1508 Milgram Ring Asynchronous 100 5.0 D Distributed
1509 Milgram Ring Asynchronous 100 5.0 E Clustered
1510 Milgram Ring Asynchronous 100 5.0 E Distributed
1511 Milgram Ring Asynchronous 100 5.0 F Clustered
1512 Milgram Ring Asynchronous 100 5.0 F Distributed
1513 Milgram Ring Asynchronous 100 20.0 A Clustered
1514 Milgram Ring Asynchronous 100 20.0 A Distributed
1515 Milgram Ring Asynchronous 100 20.0 B Clustered
1516 Milgram Ring Asynchronous 100 20.0 B Distributed
1517 Milgram Ring Asynchronous 100 20.0 C Clustered
1518 Milgram Ring Asynchronous 100 20.0 C Distributed
1519 Milgram Ring Asynchronous 100 20.0 D Clustered
1520 Milgram Ring Asynchronous 100 20.0 D Distributed
1521 Milgram Ring Asynchronous 100 20.0 E Clustered
1522 Milgram Ring Asynchronous 100 20.0 E Distributed
1523 Milgram Ring Asynchronous 100 20.0 F Clustered
1524 Milgram Ring Asynchronous 100 20.0 F Distributed
1525 Milgram Ring Asynchronous 100 50.0 A Clustered
1526 Milgram Ring Asynchronous 100 50.0 A Distributed
1527 Milgram Ring Asynchronous 100 50.0 B Clustered
1528 Milgram Ring Asynchronous 100 50.0 B Distributed
1529 Milgram Ring Asynchronous 100 50.0 C Clustered
1530 Milgram Ring Asynchronous 100 50.0 C Distributed
1531 Milgram Ring Asynchronous 100 50.0 D Clustered
1532 Milgram Ring Asynchronous 100 50.0 D Distributed
1533 Milgram Ring Asynchronous 100 50.0 E Clustered
1534 Milgram Ring Asynchronous 100 50.0 E Distributed
1535 Milgram Ring Asynchronous 100 50.0 F Clustered
1536 Milgram Ring Asynchronous 100 50.0 F Distributed

Table 9.2: The initial con�guration of each experiment. `Experiment IDs' are used consis-

tently throughout these data. The Prisoners' Dilemma payo� matrix from Chapter 2 was

used in each instance.

9.3 Scores & Deviations

Exp. ID Type A Type B Type C Type D Type E
Mean SD Mean SD Mean SD Mean SD Mean SD

1 -3.82 0.38 -5.84 0.92 -5.36 1.13 -5.36 0.45 -3.25 1.15
2 -3.13 0.21 -7.03 0.67 -4.99 1.10 -5.72 0.55 -4.28 0.81
3 -3.01 0.37 -4.72 0.71 -5.50 1.13 -5.00 0.68 -3.09 0.50
4 -2.24 0.34 -6.02 0.50 -3.89 0.42 -4.97 0.37 -3.38 0.92
5 -2.08 0.43 -4.19 0.62 -4.73 0.93 -4.26 0.53 -2.24 0.86
6 -1.75 0.52 -4.46 0.52 -3.53 0.81 -3.88 0.49 -3.08 1.00
7 -3.80 0.10 -3.97 0.31 -4.24 0.35 -3.91 0.44 -4.23 0.52
8 -1.44 0.22 -7.52 0.84 -4.76 0.30 -4.60 0.88 -3.74 0.29
9 -3.28 0.80 -3.45 0.70 -4.58 1.46 -2.50 0.74 -4.28 1.14
10 -0.78 0.32 -6.92 0.67 -4.85 0.80 -1.65 0.51 -5.59 0.39
11 -4.42 0.78 -2.01 0.83 -3.52 1.09 -3.77 0.90 -2.55 0.84
12 -6.96 0.93 -2.58 0.27 -7.66 2.02 -4.60 0.67 -2.44 0.46
13 -3.83 0.20 -5.88 0.91 -6.31 0.88 -4.69 0.74 -3.13 1.16
14 -3.13 0.28 -7.16 0.89 -4.29 0.98 -6.00 0.41 -4.45 0.37
15 -2.97 0.51 -5.03 0.93 -4.35 1.52 -4.75 0.74 -3.01 1.23
16 -2.28 0.51 -6.01 0.57 -3.57 1.00 -4.59 0.39 -3.78 0.65
17 -2.11 0.36 -4.00 0.34 -4.13 0.70 -4.54 0.62 -2.99 0.42
18 -1.41 0.41 -4.72 0.62 -3.61 1.39 -3.78 0.37 -2.76 1.19
19 -3.76 0.42 -4.01 1.16 -3.94 0.34 -3.68 0.80 -4.29 0.64
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20 -1.98 0.61 -7.73 0.57 -4.47 0.44 -5.02 0.68 -3.65 0.77
21 -3.56 0.63 -3.63 0.87 -3.21 0.66 -2.72 0.55 -4.76 1.36
22 -1.06 0.25 -6.58 1.04 -4.80 0.44 -1.99 0.55 -5.03 0.56
23 -4.44 1.16 -2.55 0.67 -3.38 1.44 -3.28 0.82 -3.04 0.51
24 -7.30 0.99 -2.19 0.45 -7.07 0.73 -4.81 0.41 -2.54 0.25
25 -3.86 0.35 -6.29 0.72 -5.18 1.31 -5.05 0.63 -3.03 0.74
26 -3.05 0.28 -7.10 0.80 -5.62 1.10 -5.54 0.48 -4.27 0.89
27 -2.78 0.48 -5.26 0.59 -4.50 0.75 -4.52 0.51 -3.29 0.77
28 -2.45 0.28 -5.81 0.61 -3.84 0.71 -4.45 0.69 -3.69 0.91
29 -2.37 0.65 -3.93 0.62 -4.18 1.02 -4.54 0.49 -2.36 0.62
30 -1.83 0.54 -4.44 0.91 -3.71 1.09 -3.84 0.62 -3.22 0.95
31 -3.48 0.37 -4.76 0.85 -3.67 0.37 -4.15 1.39 -4.21 0.41
32 -1.78 0.43 -8.09 0.51 -4.63 0.57 -5.25 0.90 -3.34 0.82
33 -3.22 0.55 -3.68 0.94 -3.52 1.09 -3.04 0.63 -4.40 1.17
34 -1.14 0.32 -6.24 0.94 -4.73 1.02 -1.98 0.42 -5.34 0.62
35 -4.35 0.76 -2.10 0.73 -3.43 1.48 -3.41 0.72 -3.01 0.39
36 -7.17 0.79 -2.43 0.53 -6.62 1.01 -4.60 0.51 -2.58 0.42
37 -3.61 0.47 -6.51 0.90 -5.39 1.54 -5.08 0.64 -3.31 0.66
38 -2.98 0.25 -7.41 1.01 -5.12 0.88 -5.62 0.73 -4.18 0.90
39 -3.01 0.51 -5.26 0.79 -4.74 0.91 -4.77 0.61 -2.50 0.68
40 -2.24 0.32 -5.86 0.54 -3.72 1.09 -4.69 0.47 -4.01 1.06
41 -2.50 0.47 -3.82 0.80 -4.27 1.25 -4.12 0.69 -2.52 1.37
42 -1.42 0.50 -4.99 0.38 -3.02 0.94 -3.90 0.47 -2.42 1.18
43 -2.70 0.63 -5.91 0.90 -4.19 0.58 -4.44 0.91 -4.01 0.58
44 -2.25 0.74 -6.51 1.35 -4.72 0.40 -5.07 0.83 -3.58 0.59
45 -2.70 0.96 -5.25 1.04 -3.59 0.95 -2.28 0.70 -4.69 0.91
46 -1.39 0.39 -6.24 0.89 -4.78 0.87 -1.81 0.79 -5.16 0.89
47 -4.89 0.91 -2.04 0.61 -4.92 1.05 -4.01 0.61 -3.04 0.32
48 -6.76 0.40 -2.22 0.66 -7.39 0.87 -4.94 0.60 -2.34 0.28
49 -3.59 0.24 -6.13 0.30 -5.69 0.65 -5.59 0.45 -3.63 0.64
50 -3.32 0.32 -6.32 0.76 -5.38 0.67 -5.81 0.45 -4.29 0.43
51 -2.90 0.28 -4.96 0.38 -4.84 0.65 -5.15 0.33 -3.32 0.65
52 -2.48 0.25 -5.48 0.40 -4.25 0.79 -4.74 0.36 -3.75 0.92
53 -2.21 0.33 -3.93 0.37 -3.89 0.92 -4.19 0.57 -3.32 0.31
54 -1.78 0.37 -4.28 0.54 -3.97 0.95 -4.01 0.40 -3.10 0.98
55 -3.70 0.32 -4.59 0.49 -4.08 0.48 -4.07 0.97 -4.02 0.40
56 -1.94 0.41 -7.60 0.60 -4.44 0.25 -5.10 0.60 -3.62 0.40
57 -3.07 0.33 -4.85 0.92 -5.31 0.45 -1.46 0.48 -4.05 0.71
58 -1.15 0.37 -6.48 0.77 -5.11 0.53 -1.85 0.24 -4.91 0.77
59 -4.71 0.60 -2.16 0.45 -5.91 0.88 -4.29 0.63 -2.59 0.32
60 -6.96 0.63 -2.39 0.34 -7.01 1.04 -4.37 0.30 -2.32 0.21
61 -3.71 0.28 -5.91 0.66 -5.62 0.57 -5.38 0.67 -3.61 0.72
62 -3.36 0.28 -6.44 0.61 -5.14 1.06 -5.76 0.43 -4.26 0.84
63 -2.95 0.34 -5.13 0.68 -4.79 0.44 -4.52 0.56 -3.33 0.33
64 -2.48 0.23 -5.57 0.29 -4.11 0.57 -4.90 0.33 -3.85 0.71
65 -2.16 0.40 -4.18 0.41 -3.66 0.28 -4.24 0.54 -2.75 0.61
66 -1.82 0.36 -4.52 0.39 -3.38 0.53 -4.04 0.38 -2.68 0.85
67 -3.58 0.36 -4.98 0.89 -4.14 0.53 -4.75 0.96 -3.72 0.56
68 -2.07 0.51 -7.28 0.93 -4.58 0.33 -4.71 0.62 -3.46 0.68
69 -2.85 0.68 -4.69 1.33 -5.02 0.70 -1.69 0.77 -4.48 0.85
70 -1.51 0.52 -6.63 0.87 -5.16 0.72 -1.75 0.39 -4.32 1.12
71 -4.85 1.25 -2.22 0.60 -5.03 1.88 -3.97 0.76 -2.61 0.47
72 -6.87 0.66 -2.46 0.52 -6.65 0.88 -4.39 0.47 -2.39 0.29
73 -3.57 0.18 -6.13 0.64 -5.17 0.47 -5.23 0.68 -4.32 0.51
74 -3.28 0.27 -6.90 0.68 -5.11 0.66 -5.66 0.46 -4.16 0.63
75 -2.84 0.32 -5.37 0.58 -4.42 0.58 -4.37 0.39 -3.51 0.51
76 -2.69 0.24 -5.28 0.63 -4.23 0.88 -4.43 0.55 -4.13 0.64
77 -2.29 0.29 -4.09 0.37 -3.88 0.55 -4.03 0.40 -2.83 0.77
78 -1.71 0.32 -4.37 0.41 -3.73 0.57 -3.88 0.46 -3.28 0.54
79 -3.21 0.37 -5.52 0.87 -4.15 0.29 -4.75 0.78 -4.02 0.37
80 -2.60 0.53 -6.87 1.17 -4.61 0.24 -4.83 0.60 -3.30 0.52
81 -2.36 0.64 -5.08 0.75 -5.01 0.59 -1.89 0.41 -4.54 0.85
82 -1.52 0.58 -5.99 0.77 -5.53 0.66 -1.67 0.61 -4.70 0.83
83 -5.01 1.06 -2.23 0.84 -5.25 1.43 -3.79 0.73 -2.67 0.41
84 -6.83 0.86 -2.50 0.40 -6.29 0.81 -4.77 0.40 -2.42 0.29
85 -3.52 0.28 -6.58 0.50 -5.17 0.98 -5.13 0.41 -3.92 0.62
86 -3.19 0.18 -6.75 0.54 -5.34 0.48 -5.54 0.40 -4.55 0.41
87 -3.00 0.46 -5.15 0.49 -4.47 0.75 -4.52 0.52 -3.27 0.62
88 -2.73 0.38 -5.45 0.53 -3.97 0.68 -4.54 0.38 -3.74 0.61
89 -2.26 0.43 -4.08 0.36 -3.79 0.81 -4.05 0.39 -2.88 0.55
90 -1.92 0.43 -4.55 0.24 -3.15 0.79 -3.81 0.47 -3.02 0.33
91 -3.03 0.39 -6.01 0.79 -4.40 0.39 -4.76 0.61 -3.85 0.38
92 -2.62 0.41 -6.60 0.81 -4.61 0.30 -5.17 0.81 -3.47 0.52
93 -2.11 0.31 -5.08 0.41 -4.88 0.74 -2.08 0.53 -4.76 0.60
94 -2.21 0.59 -5.58 0.49 -4.62 0.85 -1.76 0.57 -4.84 0.57
95 -5.41 1.00 -2.29 0.37 -4.94 1.09 -4.28 0.44 -2.80 0.30
96 -6.01 0.76 -2.39 0.50 -6.67 0.66 -4.10 0.73 -2.66 0.24
97 -3.40 0.14 -6.16 0.42 -5.41 0.54 -5.38 0.24 -4.55 0.38
98 -3.30 0.13 -6.48 0.49 -5.47 0.24 -5.50 0.39 -4.42 0.34
99 -2.73 0.20 -5.20 0.28 -4.69 0.42 -4.67 0.32 -3.73 0.42
100 -2.61 0.20 -5.33 0.29 -4.83 0.55 -4.52 0.33 -3.85 0.64
101 -1.82 0.29 -4.34 0.33 -3.88 0.47 -4.21 0.30 -3.04 0.39
102 -1.78 0.31 -4.42 0.43 -3.68 0.61 -3.98 0.29 -3.29 0.65
103 -3.74 0.31 -4.82 0.29 -4.08 0.38 -4.84 0.60 -3.82 0.34
104 -1.95 0.29 -7.53 0.56 -4.51 0.30 -4.67 0.37 -3.42 0.48
105 -2.83 0.53 -5.49 0.67 -5.48 0.61 -1.19 0.26 -4.00 0.68
106 -0.76 0.28 -7.33 0.82 -5.39 0.33 -1.34 0.29 -5.13 0.56
107 -4.64 0.58 -2.39 0.60 -5.10 1.48 -4.17 0.71 -2.65 0.19
108 -7.18 0.37 -2.55 0.41 -6.12 0.61 -4.37 0.24 -2.24 0.21
109 -3.37 0.14 -6.23 0.33 -5.32 0.40 -5.56 0.26 -4.59 0.33
110 -3.28 0.16 -6.50 0.37 -5.07 0.48 -5.50 0.22 -4.65 0.37
111 -2.85 0.25 -5.09 0.51 -4.72 0.47 -4.66 0.41 -3.86 0.30
112 -2.57 0.21 -5.40 0.26 -4.53 0.52 -4.55 0.29 -3.75 0.43
113 -2.29 0.30 -4.16 0.34 -3.74 0.61 -4.15 0.27 -2.72 0.66
114 -1.88 0.32 -4.24 0.21 -3.69 0.42 -3.92 0.34 -3.39 0.31
115 -3.24 0.49 -5.58 0.81 -4.21 0.26 -4.34 0.70 -3.78 0.52
116 -2.39 0.34 -6.79 0.79 -4.45 0.32 -5.07 0.64 -3.81 0.45
117 -2.44 0.54 -5.34 0.92 -5.40 0.57 -1.40 0.31 -4.50 0.41
118 -1.23 0.22 -6.93 0.64 -5.49 0.48 -1.40 0.43 -4.63 0.57
119 -4.52 0.65 -2.69 0.29 -5.54 1.09 -4.26 0.35 -2.56 0.19
120 -6.60 0.67 -2.64 0.34 -6.66 0.31 -4.37 0.41 -2.43 0.18
121 -3.49 0.27 -6.17 0.54 -5.09 0.33 -5.40 0.43 -4.39 0.40
122 -3.33 0.22 -6.53 0.46 -4.99 0.43 -5.43 0.25 -4.58 0.40
123 -2.76 0.14 -5.15 0.36 -4.66 0.59 -4.71 0.20 -3.69 0.30
124 -2.56 0.19 -5.46 0.22 -4.24 0.38 -4.62 0.29 -3.97 0.34
125 -1.99 0.23 -4.24 0.25 -3.94 0.66 -4.05 0.37 -2.87 0.62
126 -1.98 0.43 -4.37 0.40 -3.58 0.50 -3.90 0.24 -3.08 0.46
127 -3.01 0.46 -6.33 0.79 -4.26 0.39 -4.74 0.78 -3.56 0.58
128 -2.62 0.39 -6.34 0.89 -4.67 0.35 -5.01 0.56 -3.82 0.29
129 -2.44 0.37 -5.41 0.75 -5.08 0.53 -1.68 0.26 -4.32 0.46
130 -1.78 0.43 -6.03 0.70 -5.37 0.51 -1.43 0.30 -4.80 0.39
131 -5.68 0.59 -2.44 0.39 -5.56 0.98 -4.51 0.48 -2.56 0.37
132 -6.29 0.64 -2.40 0.31 -6.35 0.42 -4.18 0.29 -2.37 0.23
133 -3.44 0.15 -6.55 0.45 -5.29 0.57 -4.97 0.39 -4.24 0.40
134 -3.29 0.13 -6.77 0.40 -4.91 0.53 -5.60 0.24 -4.38 0.30
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135 -2.75 0.26 -5.28 0.44 -4.46 0.45 -4.72 0.18 -3.58 0.47
136 -2.59 0.24 -5.52 0.45 -4.36 0.47 -4.38 0.28 -3.85 0.62
137 -2.20 0.28 -4.23 0.29 -3.80 0.42 -3.75 0.30 -2.90 0.33
138 -2.06 0.28 -4.45 0.21 -3.53 0.35 -3.71 0.34 -2.83 0.38
139 -3.06 0.30 -6.20 0.60 -4.49 0.33 -4.96 0.48 -3.67 0.29
140 -2.74 0.24 -6.70 0.61 -4.34 0.26 -5.10 0.44 -3.67 0.38
141 -2.42 0.37 -4.89 0.48 -4.98 0.54 -1.92 0.40 -4.62 0.43
142 -1.79 0.44 -5.78 0.55 -4.99 0.61 -1.74 0.35 -4.95 0.20
143 -5.50 0.86 -2.51 0.34 -5.61 0.73 -4.32 0.29 -2.75 0.21
144 -6.26 0.79 -2.32 0.37 -6.03 0.85 -4.41 0.34 -2.58 0.30
145 -3.40 0.09 -6.08 0.32 -5.29 0.33 -5.54 0.31 -4.53 0.21
146 -3.34 0.10 -6.09 0.37 -5.39 0.49 -5.46 0.32 -4.76 0.21
147 -2.56 0.14 -5.30 0.30 -4.97 0.28 -4.79 0.21 -3.71 0.44
148 -2.58 0.17 -5.39 0.20 -4.44 0.47 -4.65 0.25 -3.93 0.44
149 -1.87 0.19 -4.30 0.18 -3.86 0.36 -3.98 0.20 -3.13 0.48
150 -1.97 0.22 -4.28 0.19 -3.71 0.48 -3.84 0.29 -3.22 0.42
151 -3.56 0.16 -4.97 0.40 -4.48 0.34 -4.93 0.61 -3.66 0.49
152 -2.06 0.22 -7.47 0.38 -4.39 0.08 -4.73 0.38 -3.36 0.29
153 -2.51 0.37 -6.26 0.62 -5.40 0.32 -0.73 0.34 -4.47 0.52
154 -1.09 0.15 -7.08 0.79 -5.58 0.34 -1.44 0.33 -4.53 0.40
155 -4.79 0.24 -2.25 0.26 -5.35 1.02 -4.15 0.71 -2.61 0.14
156 -6.89 0.28 -2.59 0.17 -6.09 0.48 -4.32 0.18 -2.36 0.19
157 -3.38 0.10 -6.26 0.40 -5.30 0.36 -5.58 0.18 -4.49 0.24
158 -3.33 0.11 -6.10 0.27 -5.49 0.43 -5.54 0.19 -4.61 0.35
159 -2.70 0.17 -5.15 0.29 -4.76 0.34 -4.67 0.34 -3.81 0.51
160 -2.62 0.19 -5.27 0.20 -4.51 0.41 -4.74 0.18 -3.87 0.37
161 -2.00 0.29 -4.19 0.23 -4.16 0.31 -4.03 0.19 -2.91 0.33
162 -1.87 0.17 -4.43 0.23 -3.50 0.25 -4.00 0.20 -3.05 0.30
163 -3.15 0.35 -6.35 0.82 -4.36 0.35 -4.82 0.43 -3.30 0.39
164 -2.71 0.38 -6.80 0.66 -4.56 0.30 -5.00 0.40 -3.45 0.24
165 -2.11 0.50 -6.16 0.48 -5.51 0.29 -1.16 0.40 -4.42 0.33
166 -1.92 0.46 -6.48 0.64 -5.40 0.29 -1.09 0.25 -4.61 0.45
167 -5.64 0.92 -2.50 0.28 -5.86 0.63 -4.23 0.31 -2.40 0.22
168 -6.41 0.66 -2.44 0.24 -6.29 0.60 -4.37 0.23 -2.53 0.27
169 -3.37 0.14 -6.18 0.46 -5.35 0.25 -5.47 0.09 -4.65 0.25
170 -3.32 0.13 -6.34 0.36 -5.26 0.28 -5.47 0.10 -4.71 0.27
171 -2.66 0.16 -5.19 0.33 -4.62 0.40 -4.81 0.14 -3.85 0.36
172 -2.63 0.15 -5.33 0.23 -4.62 0.45 -4.66 0.22 -3.87 0.40
173 -2.16 0.21 -4.25 0.22 -3.42 0.40 -3.94 0.25 -3.06 0.43
174 -2.02 0.20 -4.23 0.26 -3.58 0.34 -3.84 0.25 -3.32 0.60
175 -3.00 0.25 -6.43 0.55 -4.40 0.23 -4.86 0.40 -3.49 0.26
176 -2.82 0.23 -6.63 0.52 -4.47 0.19 -5.20 0.26 -3.56 0.27
177 -2.00 0.41 -5.69 0.41 -5.64 0.32 -1.61 0.34 -4.25 0.62
178 -1.62 0.31 -5.96 0.50 -5.64 0.36 -1.40 0.28 -4.88 0.18
179 -5.90 0.83 -2.39 0.34 -6.06 0.50 -4.23 0.29 -2.50 0.20
180 -5.87 0.62 -2.51 0.29 -5.75 0.71 -4.34 0.32 -2.62 0.20
181 -3.47 0.12 -6.22 0.38 -5.17 0.41 -5.25 0.16 -4.60 0.36
182 -3.31 0.14 -6.65 0.42 -5.21 0.28 -5.26 0.13 -4.52 0.45
183 -2.71 0.11 -5.35 0.19 -4.31 0.22 -4.56 0.16 -3.72 0.32
184 -2.72 0.18 -5.49 0.26 -3.98 0.40 -4.48 0.23 -3.86 0.40
185 -2.09 0.25 -4.40 0.33 -3.56 0.37 -3.92 0.15 -2.75 0.42
186 -2.02 0.20 -4.34 0.32 -3.54 0.40 -3.74 0.25 -3.12 0.36
187 -3.02 0.15 -6.38 0.46 -4.37 0.35 -5.10 0.27 -3.69 0.24
188 -2.68 0.24 -6.36 0.62 -4.41 0.19 -5.01 0.45 -3.77 0.29
189 -1.87 0.19 -5.31 0.27 -5.45 0.31 -1.62 0.12 -4.99 0.37
190 -2.10 0.25 -5.53 0.38 -5.22 0.29 -1.64 0.29 -4.63 0.34
191 -5.96 0.42 -2.41 0.30 -5.39 0.63 -4.44 0.26 -2.74 0.15
192 -5.94 0.52 -2.48 0.26 -5.94 0.50 -4.46 0.22 -2.61 0.17
193 -3.52 0.40 -5.97 1.41 -5.37 1.35 -5.95 0.52 -3.14 1.19
194 -2.77 0.41 -7.25 0.80 -4.92 1.23 -6.54 0.70 -3.30 1.05
195 -2.87 0.69 -5.43 1.01 -4.18 0.74 -4.97 1.01 -2.67 0.44
196 -2.29 0.56 -5.49 0.58 -3.93 0.57 -5.10 0.63 -3.00 0.82
197 -2.35 0.79 -4.26 0.79 -2.91 0.82 -4.41 0.58 -2.10 1.15
198 -1.47 0.41 -5.01 0.50 -3.03 0.77 -4.42 0.57 -1.96 0.92
199 -3.60 0.37 -4.64 0.61 -4.34 0.51 -5.53 1.22 -3.69 0.58
200 -1.75 0.54 -7.84 0.57 -4.96 0.68 -6.60 1.19 -3.02 0.61
201 -3.19 0.52 -4.55 1.43 -4.86 0.91 -2.34 0.95 -3.70 1.13
202 -1.14 0.48 -6.03 0.88 -5.00 0.79 -2.18 0.46 -5.43 1.14
203 -4.11 0.80 -2.57 0.63 -6.20 1.11 -5.70 0.85 -3.04 0.38
204 -7.20 0.65 -2.39 0.47 -6.06 0.97 -5.95 0.68 -2.12 0.30
205 -3.26 0.49 -6.42 0.65 -5.16 0.86 -6.09 0.67 -2.77 0.89
206 -3.05 0.47 -6.82 0.77 -4.37 1.11 -6.34 0.83 -3.88 0.77
207 -2.98 0.61 -5.42 1.11 -4.20 0.82 -5.34 0.96 -2.81 1.12
208 -2.44 0.67 -5.15 1.01 -4.03 0.99 -5.39 0.70 -3.18 0.91
209 -2.12 0.49 -4.02 0.74 -3.67 0.94 -4.81 0.92 -1.82 0.94
210 -1.71 0.34 -4.47 0.32 -3.08 0.94 -3.86 0.57 -2.72 1.19
211 -3.07 0.38 -5.50 0.87 -4.68 0.47 -5.96 1.22 -3.82 0.63
212 -2.50 0.51 -6.40 0.95 -4.61 0.52 -5.80 0.84 -3.02 0.58
213 -1.93 0.46 -4.38 1.37 -4.43 0.30 -1.82 0.37 -5.14 1.16
214 -1.97 0.92 -5.56 1.13 -4.80 0.72 -1.93 0.82 -5.19 0.86
215 -5.00 1.26 -2.63 0.47 -5.55 1.59 -5.46 0.85 -2.90 0.41
216 -6.27 0.93 -2.06 0.53 -6.25 0.94 -5.93 0.63 -2.09 0.18
217 -3.23 0.46 -6.14 1.28 -4.91 1.18 -6.18 0.73 -2.83 1.04
218 -3.18 0.39 -6.21 1.23 -5.06 0.94 -6.27 0.51 -3.68 0.73
219 -2.43 0.49 -5.59 0.57 -4.27 1.30 -5.28 0.81 -2.26 0.89
220 -2.25 0.30 -5.83 0.98 -4.09 0.95 -5.40 0.64 -2.76 1.01
221 -2.20 0.62 -4.27 0.78 -3.15 1.12 -4.69 0.79 -1.83 0.98
222 -1.77 0.66 -4.56 0.81 -3.52 0.83 -4.33 0.70 -2.09 1.01
223 -3.06 0.68 -6.39 0.88 -4.35 0.62 -6.01 1.16 -3.40 0.69
224 -2.83 0.76 -5.94 0.91 -4.60 0.48 -6.11 1.08 -3.15 0.63
225 -2.25 0.73 -4.56 1.64 -5.04 0.96 -2.41 0.68 -4.56 0.94
226 -1.95 0.62 -5.65 0.73 -4.88 0.79 -2.25 0.69 -5.49 1.05
227 -5.99 0.73 -2.72 0.73 -5.62 1.37 -5.24 0.87 -2.67 0.45
228 -5.93 0.68 -2.74 0.61 -6.72 0.82 -5.51 0.56 -2.47 0.36
229 -3.14 0.38 -6.25 1.02 -4.46 0.90 -6.06 0.82 -2.77 0.92
230 -3.09 0.27 -6.66 0.81 -4.10 1.07 -6.10 0.59 -3.43 0.58
231 -2.51 0.25 -5.46 0.63 -4.35 0.76 -5.48 0.91 -2.74 0.50
232 -2.49 0.33 -5.15 0.50 -4.46 0.88 -5.27 0.75 -2.89 0.62
233 -2.18 0.57 -4.31 0.52 -2.94 0.67 -4.57 0.54 -2.04 0.79
234 -1.75 0.58 -4.77 0.91 -3.30 0.63 -4.48 0.54 -1.86 0.75
235 -2.68 0.65 -6.57 0.63 -4.49 0.42 -6.54 1.11 -3.06 0.58
236 -2.85 0.47 -6.83 0.96 -4.50 0.46 -5.87 0.95 -3.22 0.52
237 -2.31 0.43 -5.09 1.03 -4.72 0.90 -2.36 0.49 -4.49 0.82
238 -2.26 0.27 -5.38 0.82 -4.56 0.51 -2.33 0.51 -5.33 0.65
239 -5.55 0.68 -2.41 0.72 -5.49 1.09 -5.51 0.46 -2.85 0.26
240 -5.60 0.88 -2.69 0.57 -6.14 0.90 -5.65 0.51 -2.64 0.49
241 -3.06 0.30 -6.22 0.38 -5.00 0.79 -5.97 0.28 -3.21 0.74
242 -3.19 0.41 -6.50 0.67 -4.72 0.88 -6.12 0.42 -3.69 0.51
243 -2.65 0.47 -5.10 0.76 -3.82 0.66 -5.33 0.55 -2.80 0.63
244 -2.37 0.33 -5.47 0.52 -3.89 0.81 -5.16 0.27 -3.25 0.86
245 -2.15 0.45 -4.11 0.35 -3.20 0.45 -4.42 0.34 -2.41 0.56
246 -1.80 0.46 -4.37 0.57 -3.43 0.60 -4.21 0.50 -2.50 0.69
247 -3.38 0.34 -4.98 0.35 -4.55 0.22 -5.66 0.89 -3.70 0.47
248 -1.92 0.23 -7.63 0.44 -4.61 0.35 -6.13 0.63 -3.36 0.41
249 -2.76 0.57 -4.82 1.01 -5.02 0.36 -2.17 0.71 -3.72 0.97
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250 -1.29 0.22 -6.52 0.56 -4.88 0.54 -2.03 0.45 -4.81 0.61
251 -4.21 0.52 -2.37 0.47 -5.64 0.77 -5.69 0.48 -2.86 0.15
252 -7.13 0.47 -2.39 0.41 -6.16 0.62 -5.79 0.55 -2.16 0.16
253 -3.07 0.31 -6.34 0.52 -4.83 0.54 -6.15 0.47 -3.60 0.49
254 -3.28 0.23 -6.35 0.96 -5.04 0.62 -5.98 0.67 -3.44 0.58
255 -2.75 0.39 -5.27 0.55 -4.05 0.64 -5.54 0.37 -2.90 0.83
256 -2.55 0.35 -5.58 0.42 -4.02 0.54 -5.11 0.51 -2.51 0.62
257 -1.91 0.42 -4.31 0.42 -2.96 0.46 -4.12 0.37 -2.08 0.66
258 -1.85 0.38 -4.53 0.53 -3.17 0.35 -4.43 0.64 -2.20 0.58
259 -2.76 0.42 -6.53 0.67 -4.59 0.17 -6.06 0.87 -3.32 0.42
260 -2.62 0.74 -7.02 0.88 -4.51 0.31 -6.25 0.58 -3.30 0.43
261 -2.27 0.49 -5.05 0.72 -5.09 0.48 -1.75 0.45 -4.65 0.57
262 -2.10 0.55 -5.34 0.75 -5.15 0.44 -1.84 0.60 -5.13 0.57
263 -6.04 0.55 -2.70 0.57 -6.12 0.66 -5.84 0.56 -2.48 0.21
264 -6.56 0.78 -2.51 0.41 -6.00 0.83 -5.65 0.50 -2.19 0.34
265 -3.16 0.24 -6.43 0.62 -4.79 0.63 -5.98 0.41 -3.67 0.79
266 -3.15 0.38 -6.35 0.79 -4.45 0.57 -5.93 0.43 -3.78 0.67
267 -2.55 0.29 -5.41 0.32 -3.87 0.73 -5.36 0.68 -2.62 0.63
268 -2.57 0.37 -5.50 0.55 -3.57 0.57 -5.20 0.54 -3.00 0.45
269 -1.70 0.48 -4.22 0.36 -3.14 0.57 -4.48 0.39 -2.02 0.44
270 -1.64 0.35 -4.69 0.29 -3.17 0.66 -4.30 0.38 -1.96 0.38
271 -3.03 0.29 -6.29 0.82 -4.55 0.39 -6.11 0.59 -3.38 0.35
272 -2.81 0.38 -6.40 0.78 -4.85 0.28 -6.15 0.72 -3.24 0.29
273 -1.95 0.28 -5.61 0.69 -5.16 0.53 -2.06 0.32 -5.07 0.61
274 -2.07 0.53 -5.05 0.62 -4.86 0.43 -1.83 0.45 -4.92 0.57
275 -5.76 0.73 -2.69 0.28 -5.71 0.61 -5.63 0.33 -2.79 0.33
276 -6.07 0.47 -2.75 0.38 -5.93 0.74 -5.60 0.45 -2.68 0.26
277 -3.08 0.24 -6.38 0.67 -4.47 0.41 -6.03 0.50 -3.37 0.85
278 -3.15 0.28 -6.68 0.31 -4.78 0.57 -6.45 0.59 -3.37 0.62
279 -2.57 0.30 -5.51 0.53 -4.08 0.74 -5.07 0.60 -2.55 0.32
280 -2.42 0.34 -5.65 0.38 -3.44 0.58 -5.63 0.65 -2.94 0.39
281 -1.98 0.31 -4.51 0.38 -3.04 0.76 -4.48 0.47 -1.85 0.35
282 -1.65 0.37 -4.55 0.31 -3.46 0.62 -4.37 0.31 -1.99 0.69
283 -2.94 0.38 -6.56 0.56 -4.41 0.39 -6.11 0.62 -3.13 0.27
284 -2.92 0.28 -6.49 0.39 -4.53 0.32 -6.34 0.83 -3.10 0.43
285 -2.15 0.22 -4.88 0.57 -4.88 0.57 -2.01 0.31 -5.22 0.41
286 -2.27 0.22 -4.87 0.37 -5.09 0.41 -2.04 0.43 -5.11 0.52
287 -6.31 0.57 -2.49 0.51 -5.87 0.68 -5.64 0.55 -2.47 0.28
288 -5.92 0.54 -2.64 0.39 -6.08 0.58 -5.47 0.32 -2.72 0.19
289 -3.09 0.13 -6.61 0.54 -4.59 0.32 -5.96 0.31 -3.72 0.49
290 -3.15 0.17 -6.42 0.48 -4.77 0.48 -6.17 0.17 -3.74 0.35
291 -2.60 0.21 -5.40 0.41 -4.21 0.37 -5.22 0.46 -2.62 0.41
292 -2.41 0.30 -5.41 0.41 -4.08 0.50 -5.38 0.24 -2.86 0.35
293 -1.99 0.35 -4.47 0.29 -3.09 0.46 -4.41 0.40 -2.19 0.52
294 -1.81 0.23 -4.41 0.31 -3.02 0.64 -4.39 0.21 -2.28 0.64
295 -3.47 0.28 -4.80 0.34 -4.50 0.27 -6.10 0.59 -3.47 0.24
296 -1.87 0.17 -7.64 0.37 -4.60 0.26 -5.85 0.36 -3.40 0.26
297 -2.57 0.30 -5.35 0.68 -4.89 0.23 -1.64 0.60 -4.42 0.64
298 -1.30 0.32 -6.41 0.59 -5.02 0.43 -2.00 0.35 -4.88 0.48
299 -4.35 0.39 -2.46 0.32 -5.94 0.53 -5.48 0.48 -2.78 0.22
300 -6.96 0.28 -2.62 0.24 -5.96 0.48 -5.43 0.26 -2.26 0.15
301 -3.30 0.20 -6.16 0.35 -4.94 0.60 -6.01 0.34 -3.59 0.50
302 -3.22 0.28 -6.34 0.60 -4.77 0.44 -6.19 0.28 -3.14 0.41
303 -2.41 0.30 -5.30 0.56 -4.07 0.47 -4.98 0.63 -2.91 0.63
304 -2.37 0.23 -5.44 0.54 -3.79 0.57 -5.28 0.31 -3.08 0.42
305 -1.79 0.30 -4.37 0.25 -3.08 0.32 -4.21 0.39 -2.03 0.45
306 -1.98 0.31 -4.11 0.28 -2.97 0.45 -4.18 0.32 -2.36 0.40
307 -2.93 0.21 -6.20 0.49 -4.33 0.25 -6.10 0.33 -3.40 0.38
308 -2.88 0.18 -6.21 0.51 -4.49 0.22 -5.98 0.41 -3.46 0.50
309 -2.10 0.23 -5.53 0.66 -4.92 0.24 -2.04 0.34 -4.53 0.57
310 -1.83 0.32 -5.65 0.58 -4.95 0.36 -1.86 0.25 -4.70 0.45
311 -5.84 0.68 -2.68 0.19 -6.12 0.39 -5.68 0.23 -2.65 0.25
312 -5.86 0.67 -2.56 0.30 -5.92 0.74 -5.36 0.38 -2.58 0.18
313 -3.18 0.20 -6.30 0.62 -4.55 0.54 -5.98 0.37 -3.62 0.34
314 -3.08 0.14 -6.51 0.48 -4.61 0.32 -6.20 0.30 -3.50 0.12
315 -2.55 0.30 -5.50 0.27 -3.71 0.35 -5.14 0.34 -2.53 0.27
316 -2.53 0.18 -5.38 0.38 -3.94 0.50 -5.05 0.38 -2.79 0.53
317 -1.89 0.31 -4.44 0.18 -3.27 0.33 -4.48 0.35 -2.27 0.26
318 -1.74 0.32 -4.58 0.31 -3.21 0.24 -4.24 0.43 -2.15 0.37
319 -2.99 0.29 -6.28 0.47 -4.47 0.22 -6.00 0.57 -3.32 0.24
320 -2.77 0.31 -6.47 0.30 -4.62 0.22 -6.16 0.26 -3.16 0.31
321 -1.95 0.35 -5.10 0.26 -4.78 0.45 -1.96 0.28 -5.05 0.49
322 -1.92 0.29 -5.17 0.33 -4.94 0.41 -2.03 0.37 -5.07 0.24
323 -6.14 0.41 -2.52 0.17 -5.92 0.22 -5.67 0.31 -2.60 0.19
324 -6.22 0.36 -2.40 0.27 -6.15 0.50 -5.79 0.29 -2.53 0.12
325 -3.17 0.21 -6.43 0.39 -4.94 0.32 -6.16 0.24 -3.20 0.36
326 -3.04 0.24 -6.48 0.49 -4.85 0.40 -6.24 0.41 -3.32 0.30
327 -2.31 0.23 -5.46 0.36 -4.13 0.44 -5.20 0.45 -2.75 0.37
328 -2.51 0.16 -5.52 0.25 -4.05 0.39 -5.33 0.42 -2.71 0.47
329 -1.91 0.25 -4.33 0.27 -3.13 0.43 -4.17 0.42 -2.03 0.38
330 -1.88 0.27 -4.52 0.32 -3.32 0.47 -4.30 0.31 -1.95 0.40
331 -2.93 0.22 -6.28 0.34 -4.54 0.29 -6.02 0.39 -3.24 0.16
332 -2.98 0.19 -6.51 0.55 -4.60 0.24 -6.20 0.69 -3.18 0.20
333 -2.01 0.13 -4.93 0.31 -4.84 0.33 -2.06 0.32 -5.00 0.31
334 -1.98 0.25 -5.05 0.32 -5.05 0.36 -2.06 0.20 -4.85 0.23
335 -5.95 0.41 -2.47 0.26 -6.11 0.45 -5.75 0.40 -2.69 0.14
336 -5.93 0.42 -2.64 0.29 -5.57 0.32 -5.54 0.36 -2.73 0.21
337 -3.22 0.21 -6.45 0.46 -4.60 0.20 -6.05 0.23 -3.60 0.48
338 -3.20 0.19 -6.22 0.59 -4.72 0.28 -6.07 0.34 -3.78 0.30
339 -2.61 0.15 -5.16 0.28 -3.98 0.48 -5.32 0.31 -2.91 0.40
340 -2.56 0.21 -5.33 0.36 -3.73 0.26 -5.15 0.24 -3.04 0.29
341 -1.97 0.28 -4.29 0.23 -3.13 0.22 -4.46 0.25 -2.29 0.27
342 -1.94 0.27 -4.32 0.13 -3.25 0.28 -4.31 0.26 -2.18 0.24
343 -3.53 0.14 -4.97 0.22 -4.54 0.22 -5.99 0.32 -3.55 0.14
344 -1.87 0.21 -7.55 0.13 -4.58 0.17 -5.91 0.34 -3.38 0.17
345 -2.39 0.32 -5.82 0.49 -5.07 0.38 -1.46 0.27 -4.34 0.62
346 -1.17 0.16 -6.38 0.29 -5.17 0.26 -1.95 0.15 -4.96 0.39
347 -4.28 0.30 -2.50 0.14 -5.87 0.27 -5.53 0.22 -2.92 0.16
348 -6.99 0.38 -2.61 0.26 -5.99 0.34 -5.40 0.21 -2.21 0.15
349 -3.27 0.11 -6.22 0.48 -4.82 0.29 -5.92 0.30 -3.55 0.24
350 -3.11 0.15 -6.51 0.32 -4.83 0.26 -6.10 0.27 -3.48 0.26
351 -2.45 0.16 -5.41 0.31 -3.88 0.20 -5.13 0.20 -3.00 0.28
352 -2.51 0.20 -5.36 0.40 -4.04 0.35 -5.01 0.38 -2.83 0.31
353 -1.84 0.24 -4.38 0.24 -3.25 0.40 -4.36 0.14 -2.09 0.30
354 -1.81 0.20 -4.44 0.23 -3.23 0.25 -4.31 0.23 -2.08 0.23
355 -2.91 0.23 -6.53 0.31 -4.59 0.13 -6.00 0.49 -3.21 0.27
356 -2.77 0.24 -6.53 0.29 -4.51 0.26 -6.19 0.34 -3.18 0.16
357 -2.08 0.28 -5.24 0.47 -4.96 0.19 -1.91 0.28 -4.71 0.27
358 -2.04 0.25 -5.21 0.45 -4.93 0.19 -1.83 0.32 -4.87 0.37
359 -5.86 0.38 -2.42 0.24 -6.03 0.41 -5.86 0.18 -2.51 0.16
360 -6.10 0.41 -2.55 0.30 -6.06 0.31 -5.65 0.23 -2.50 0.13
361 -3.18 0.09 -6.40 0.27 -4.69 0.36 -6.12 0.29 -3.55 0.28
362 -3.17 0.13 -6.42 0.24 -4.62 0.17 -5.99 0.24 -3.59 0.17
363 -2.43 0.16 -5.39 0.28 -4.11 0.25 -5.22 0.12 -2.77 0.33
364 -2.54 0.12 -5.52 0.32 -3.90 0.30 -5.15 0.30 -2.83 0.32
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365 -1.79 0.28 -4.48 0.20 -3.09 0.17 -4.35 0.11 -2.02 0.20
366 -1.82 0.23 -4.53 0.21 -3.03 0.27 -4.26 0.13 -2.06 0.33
367 -2.85 0.24 -6.37 0.17 -4.57 0.20 -6.11 0.30 -3.27 0.17
368 -2.86 0.10 -6.53 0.25 -4.56 0.13 -6.18 0.33 -3.21 0.18
369 -2.00 0.16 -5.19 0.27 -5.01 0.28 -1.88 0.21 -4.95 0.23
370 -2.03 0.22 -5.13 0.48 -4.97 0.37 -2.05 0.20 -4.77 0.33
371 -6.06 0.39 -2.57 0.15 -5.93 0.48 -5.71 0.30 -2.58 0.17
372 -5.99 0.29 -2.64 0.29 -6.13 0.41 -5.62 0.12 -2.63 0.10
373 -3.08 0.13 -6.51 0.23 -4.76 0.31 -6.18 0.29 -3.36 0.28
374 -3.11 0.12 -6.38 0.29 -4.80 0.26 -6.20 0.27 -3.54 0.25
375 -2.40 0.14 -5.59 0.22 -3.67 0.24 -5.22 0.10 -2.62 0.20
376 -2.48 0.20 -5.47 0.23 -3.87 0.27 -5.36 0.26 -2.81 0.19
377 -1.81 0.14 -4.40 0.17 -2.95 0.36 -4.24 0.19 -1.94 0.23
378 -1.78 0.17 -4.50 0.18 -3.21 0.26 -4.30 0.25 -2.07 0.27
379 -2.90 0.16 -6.40 0.24 -4.55 0.20 -6.20 0.32 -3.21 0.10
380 -2.85 0.15 -6.42 0.18 -4.60 0.15 -6.26 0.38 -3.19 0.23
381 -2.10 0.17 -5.05 0.20 -4.95 0.23 -1.98 0.13 -4.94 0.31
382 -1.97 0.18 -4.86 0.29 -4.95 0.21 -2.02 0.18 -4.99 0.32
383 -6.03 0.27 -2.50 0.19 -5.87 0.35 -5.64 0.18 -2.64 0.11
384 -6.02 0.25 -2.47 0.19 -6.07 0.45 -5.70 0.26 -2.56 0.12
385 -1.87 0.54 -4.79 0.71 -4.21 0.52 -5.56 0.30 -1.67 0.58
386 -2.27 0.51 -5.33 0.75 -4.22 0.56 -5.63 0.44 -2.20 0.70
387 -1.39 0.69 -3.81 0.81 -2.98 0.57 -4.59 0.39 -1.32 0.80
388 -1.73 0.52 -4.23 0.56 -3.26 0.84 -4.58 0.24 -1.51 0.56
389 -1.34 0.51 -3.52 0.42 -2.68 0.49 -3.59 0.61 -1.32 0.45
390 -1.05 0.28 -3.19 0.54 -2.40 0.87 -3.46 0.37 -1.14 0.50
391 -2.89 0.48 -5.89 1.04 -4.78 0.77 -6.11 0.46 -3.29 0.81
392 -2.96 0.59 -6.50 1.57 -4.71 0.51 -6.05 0.72 -3.25 0.68
393 -1.48 0.35 -3.70 0.79 -4.69 0.25 -1.48 0.41 -3.92 0.52
394 -1.55 0.42 -3.62 0.91 -4.82 0.17 -1.46 0.39 -3.88 0.93
395 -5.19 1.12 -2.61 0.32 -5.91 0.67 -5.41 0.55 -2.55 0.52
396 -5.28 1.01 -2.42 0.29 -6.15 0.33 -5.30 0.53 -2.53 0.28
397 -1.87 0.67 -5.26 0.51 -3.72 1.06 -5.17 0.44 -1.73 0.82
398 -2.39 0.65 -5.91 0.49 -4.19 0.47 -5.52 0.73 -2.34 1.21
399 -1.39 0.50 -4.06 0.56 -2.82 0.61 -4.34 0.41 -1.33 0.59
400 -1.50 0.78 -4.33 0.48 -3.24 0.42 -4.45 0.32 -1.50 0.72
401 -1.08 0.54 -3.36 0.72 -2.79 0.36 -3.96 0.42 -1.11 0.64
402 -1.48 0.53 -3.45 0.71 -2.60 0.34 -3.77 0.37 -1.25 0.67
403 -3.03 0.53 -6.34 1.33 -4.63 0.47 -6.20 0.81 -3.76 1.11
404 -2.95 0.59 -6.24 1.37 -4.38 0.58 -5.86 0.63 -3.61 0.69
405 -1.51 0.25 -3.65 0.63 -4.77 0.21 -1.55 0.31 -3.98 0.44
406 -1.25 0.41 -3.17 0.96 -4.67 0.21 -1.16 0.54 -3.52 0.76
407 -5.43 1.05 -2.48 0.33 -6.16 0.45 -5.54 0.45 -2.70 0.66
408 -6.15 1.82 -2.35 0.72 -6.50 1.02 -6.01 0.93 -2.91 0.95
409 -2.16 0.63 -5.40 0.54 -3.54 0.94 -4.81 0.61 -2.06 0.75
410 -2.63 0.40 -5.65 0.67 -4.59 0.71 -5.87 0.36 -2.82 0.52
411 -1.55 0.72 -4.26 0.78 -3.44 0.92 -4.66 0.27 -1.66 0.83
412 -1.85 0.56 -4.61 0.49 -3.09 0.46 -4.53 0.69 -1.67 0.50
413 -1.16 0.58 -3.53 0.70 -2.55 0.36 -3.78 0.33 -1.32 0.94
414 -1.21 0.39 -3.54 0.60 -2.58 0.56 -3.82 0.62 -1.50 0.38
415 -2.63 0.52 -6.27 1.06 -4.50 0.67 -5.94 0.99 -2.96 0.66
416 -2.99 0.37 -5.75 1.02 -4.19 0.74 -6.27 0.71 -3.07 0.68
417 -1.90 0.53 -4.64 0.96 -4.94 0.56 -1.95 0.56 -4.77 0.86
418 -1.76 0.48 -4.28 0.80 -4.86 0.42 -1.75 0.53 -4.44 0.77
419 -5.95 1.23 -2.43 0.25 -6.07 1.25 -5.71 0.74 -2.87 0.71
420 -5.19 0.46 -2.24 0.22 -6.01 0.36 -5.26 0.49 -2.56 0.34
421 -2.62 0.35 -5.93 0.66 -4.00 0.64 -5.53 0.64 -2.82 0.44
422 -2.85 0.38 -6.11 0.54 -4.31 0.82 -5.80 0.83 -3.11 0.83
423 -1.95 0.44 -4.80 0.49 -3.02 0.87 -4.65 0.52 -1.83 0.68
424 -1.85 0.41 -4.95 0.37 -3.06 0.49 -4.64 0.53 -2.36 0.54
425 -1.52 0.50 -4.11 0.65 -2.91 0.43 -3.84 0.57 -1.46 0.56
426 -1.07 0.61 -3.51 0.62 -2.21 0.68 -3.61 0.51 -1.09 0.64
427 -2.86 0.50 -6.95 0.77 -4.85 0.55 -6.50 1.04 -3.31 0.49
428 -2.95 0.51 -6.72 0.22 -4.77 0.29 -5.95 1.01 -3.36 0.41
429 -1.80 0.38 -4.54 0.72 -4.79 0.44 -1.79 0.41 -4.61 0.58
430 -2.07 0.44 -5.02 0.76 -5.21 0.51 -2.02 0.38 -4.88 0.87
431 -6.58 0.98 -2.54 0.32 -6.54 1.04 -5.96 0.59 -3.21 0.66
432 -6.53 0.65 -2.68 0.25 -6.33 0.73 -6.20 0.59 -3.12 0.40
433 -2.19 0.33 -5.27 0.27 -4.17 0.56 -5.46 0.28 -2.22 0.53
434 -2.32 0.33 -5.46 0.32 -4.23 0.40 -5.62 0.15 -2.43 0.65
435 -1.72 0.42 -4.40 0.23 -3.33 0.37 -4.56 0.24 -1.60 0.33
436 -1.92 0.24 -4.52 0.37 -3.36 0.35 -4.70 0.22 -2.03 0.50
437 -1.60 0.36 -3.80 0.30 -2.58 0.37 -3.81 0.22 -1.62 0.49
438 -1.60 0.29 -3.78 0.37 -2.92 0.25 -3.98 0.22 -1.80 0.43
439 -2.77 0.42 -6.20 0.62 -4.57 0.28 -5.85 0.49 -3.27 0.53
440 -2.75 0.38 -5.87 0.60 -4.58 0.22 -5.76 0.50 -2.99 0.57
441 -1.21 0.25 -3.17 0.43 -4.67 0.17 -1.19 0.24 -3.67 0.27
442 -1.20 0.24 -3.43 0.36 -4.67 0.08 -1.21 0.23 -3.47 0.52
443 -5.00 0.57 -2.59 0.14 -5.93 0.23 -5.35 0.14 -2.39 0.29
444 -5.28 0.38 -2.56 0.23 -6.15 0.07 -5.53 0.13 -2.65 0.24
445 -2.17 0.32 -5.42 0.23 -4.01 0.29 -5.32 0.17 -2.11 0.38
446 -2.43 0.35 -5.70 0.38 -4.02 0.51 -5.56 0.19 -2.60 0.61
447 -1.78 0.36 -4.47 0.21 -3.13 0.51 -4.60 0.26 -1.69 0.46
448 -1.79 0.45 -4.35 0.50 -3.35 0.39 -4.69 0.20 -1.90 0.68
449 -1.55 0.33 -3.62 0.32 -2.80 0.28 -3.83 0.10 -1.68 0.59
450 -1.46 0.27 -3.71 0.21 -2.62 0.19 -3.83 0.25 -1.70 0.24
451 -2.77 0.40 -6.35 0.74 -4.52 0.33 -6.00 0.45 -3.35 0.39
452 -2.77 0.38 -5.45 0.48 -4.59 0.21 -6.02 0.50 -2.96 0.39
453 -1.24 0.44 -3.63 0.78 -4.67 0.34 -1.25 0.44 -3.72 0.82
454 -1.27 0.31 -3.71 0.40 -4.60 0.23 -1.26 0.35 -3.67 0.41
455 -5.22 0.62 -2.59 0.23 -6.00 0.36 -5.41 0.22 -2.53 0.32
456 -5.26 0.64 -2.49 0.19 -5.99 0.26 -5.21 0.21 -2.45 0.40
457 -2.34 0.31 -5.67 0.36 -4.07 0.61 -5.59 0.33 -2.53 0.58
458 -2.55 0.29 -5.75 0.26 -4.20 0.25 -5.54 0.28 -2.75 0.60
459 -1.82 0.37 -4.57 0.27 -3.40 0.39 -4.77 0.38 -2.03 0.41
460 -1.96 0.34 -4.68 0.39 -3.13 0.69 -4.73 0.39 -2.07 0.54
461 -1.56 0.33 -3.93 0.35 -2.57 0.45 -3.86 0.22 -1.86 0.60
462 -1.56 0.32 -3.85 0.38 -2.62 0.36 -3.91 0.31 -1.62 0.38
463 -2.78 0.26 -6.09 0.67 -4.45 0.37 -5.76 0.28 -3.30 0.38
464 -2.83 0.31 -5.79 0.46 -4.45 0.31 -5.85 0.39 -3.25 0.52
465 -1.47 0.40 -3.94 0.67 -4.65 0.23 -1.46 0.45 -4.19 0.32
466 -1.33 0.40 -3.61 0.78 -4.66 0.26 -1.31 0.44 -4.00 0.48
467 -5.33 0.68 -2.49 0.22 -5.94 0.32 -5.36 0.34 -2.39 0.41
468 -5.51 0.48 -2.45 0.22 -6.00 0.25 -5.51 0.15 -2.73 0.29
469 -2.73 0.30 -6.07 0.33 -4.29 0.39 -5.63 0.43 -2.93 0.41
470 -2.76 0.37 -6.15 0.49 -4.46 0.49 -5.93 0.36 -3.13 0.61
471 -1.95 0.36 -4.85 0.31 -3.37 0.39 -4.73 0.34 -2.05 0.45
472 -2.05 0.49 -5.06 0.47 -3.63 0.36 -4.85 0.24 -2.38 0.45
473 -1.57 0.33 -4.11 0.32 -2.65 0.34 -3.99 0.32 -1.59 0.35
474 -1.49 0.30 -4.01 0.37 -2.73 0.68 -4.05 0.31 -1.73 0.38
475 -2.84 0.34 -6.51 0.48 -4.55 0.30 -6.02 0.27 -3.25 0.40
476 -3.07 0.25 -6.57 0.46 -4.69 0.38 -6.41 0.35 -3.13 0.28
477 -1.60 0.37 -4.34 0.45 -4.70 0.27 -1.58 0.44 -4.34 0.45
478 -1.75 0.31 -4.32 0.50 -4.81 0.32 -1.73 0.30 -4.63 0.36
479 -6.28 0.72 -2.56 0.30 -6.40 0.48 -5.76 0.64 -2.81 0.48
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480 -5.86 0.42 -2.55 0.20 -6.17 0.26 -5.64 0.30 -2.79 0.21
481 -2.23 0.18 -5.35 0.22 -4.05 0.20 -5.42 0.18 -2.37 0.39
482 -2.29 0.20 -5.45 0.22 -4.07 0.23 -5.52 0.22 -2.29 0.37
483 -1.86 0.24 -4.53 0.22 -3.49 0.19 -4.68 0.15 -2.13 0.34
484 -2.03 0.20 -4.50 0.28 -3.43 0.27 -4.67 0.12 -2.15 0.36
485 -1.49 0.18 -3.65 0.26 -2.72 0.23 -3.88 0.09 -1.49 0.36
486 -1.61 0.32 -3.83 0.19 -2.80 0.22 -3.94 0.19 -1.69 0.44
487 -2.75 0.25 -5.81 0.37 -4.48 0.19 -5.97 0.28 -3.14 0.26
488 -2.75 0.26 -5.92 0.58 -4.48 0.23 -5.77 0.32 -3.20 0.28
489 -1.20 0.18 -3.49 0.39 -4.63 0.08 -1.19 0.18 -3.49 0.29
490 -1.31 0.29 -3.55 0.41 -4.73 0.16 -1.31 0.30 -3.65 0.48
491 -5.13 0.26 -2.49 0.15 -5.98 0.13 -5.25 0.20 -2.47 0.18
492 -5.43 0.39 -2.48 0.08 -6.09 0.15 -5.45 0.19 -2.60 0.19
493 -2.14 0.24 -5.53 0.20 -4.09 0.21 -5.44 0.15 -2.34 0.31
494 -2.40 0.14 -5.54 0.27 -4.19 0.23 -5.46 0.08 -2.47 0.31
495 -1.94 0.21 -4.53 0.21 -3.31 0.21 -4.74 0.12 -2.04 0.47
496 -1.97 0.25 -4.53 0.25 -3.46 0.20 -4.65 0.17 -2.22 0.21
497 -1.59 0.21 -3.84 0.25 -2.77 0.14 -3.88 0.13 -1.69 0.40
498 -1.40 0.14 -3.62 0.17 -2.61 0.21 -3.81 0.14 -1.61 0.27
499 -2.64 0.23 -5.65 0.41 -4.33 0.17 -6.02 0.34 -3.09 0.47
500 -2.81 0.35 -6.13 0.56 -4.39 0.21 -6.13 0.26 -3.09 0.45
501 -1.23 0.20 -3.56 0.25 -4.64 0.12 -1.23 0.21 -3.60 0.32
502 -1.22 0.27 -3.61 0.32 -4.60 0.15 -1.20 0.28 -3.67 0.37
503 -5.25 0.39 -2.54 0.10 -6.00 0.20 -5.43 0.22 -2.59 0.28
504 -5.08 0.53 -2.53 0.13 -5.96 0.20 -5.30 0.16 -2.38 0.27
505 -2.48 0.15 -5.61 0.12 -3.96 0.28 -5.56 0.11 -2.47 0.22
506 -2.55 0.16 -5.79 0.29 -4.23 0.20 -5.61 0.18 -2.75 0.32
507 -2.07 0.23 -4.64 0.26 -3.29 0.26 -4.65 0.20 -2.18 0.29
508 -1.95 0.26 -4.66 0.23 -3.43 0.25 -4.73 0.17 -2.07 0.41
509 -1.46 0.20 -3.76 0.17 -2.71 0.20 -3.84 0.08 -1.67 0.26
510 -1.53 0.26 -3.97 0.17 -2.82 0.13 -3.99 0.20 -1.77 0.28
511 -2.74 0.21 -5.98 0.48 -4.52 0.32 -5.98 0.31 -3.07 0.41
512 -2.92 0.22 -6.34 0.30 -4.49 0.21 -5.71 0.27 -3.33 0.20
513 -1.36 0.23 -3.85 0.23 -4.59 0.16 -1.37 0.22 -4.03 0.38
514 -1.32 0.19 -3.79 0.31 -4.59 0.09 -1.34 0.16 -3.95 0.27
515 -5.43 0.32 -2.41 0.18 -6.01 0.19 -5.38 0.16 -2.49 0.20
516 -5.20 0.32 -2.38 0.18 -5.82 0.20 -5.21 0.16 -2.31 0.23
517 -2.61 0.36 -5.91 0.31 -4.25 0.31 -5.66 0.29 -2.85 0.46
518 -2.66 0.26 -5.86 0.22 -4.26 0.20 -5.65 0.18 -2.73 0.34
519 -2.16 0.13 -4.99 0.22 -3.61 0.19 -4.88 0.17 -2.51 0.14
520 -2.18 0.15 -5.00 0.20 -3.59 0.30 -4.94 0.19 -2.22 0.31
521 -1.56 0.15 -4.06 0.19 -2.71 0.33 -3.96 0.16 -1.71 0.29
522 -1.55 0.17 -4.04 0.12 -2.74 0.25 -3.92 0.15 -1.66 0.30
523 -2.84 0.26 -6.35 0.38 -4.50 0.25 -6.15 0.41 -3.18 0.26
524 -2.93 0.19 -6.41 0.24 -4.55 0.20 -6.05 0.40 -3.33 0.19
525 -1.81 0.30 -4.53 0.44 -4.86 0.29 -1.77 0.26 -4.63 0.42
526 -1.65 0.23 -4.32 0.40 -4.70 0.21 -1.65 0.24 -4.50 0.29
527 -5.56 0.23 -2.41 0.17 -5.78 0.22 -5.36 0.18 -2.61 0.19
528 -5.77 0.25 -2.46 0.13 -6.03 0.19 -5.56 0.22 -2.67 0.15
529 -2.26 0.12 -5.45 0.16 -3.95 0.30 -5.40 0.12 -2.22 0.34
530 -2.31 0.14 -5.50 0.20 -4.17 0.13 -5.42 0.13 -2.28 0.42
531 -1.83 0.13 -4.39 0.14 -3.40 0.11 -4.71 0.10 -1.79 0.18
532 -1.93 0.11 -4.48 0.16 -3.45 0.13 -4.70 0.10 -1.94 0.18
533 -1.54 0.25 -3.75 0.19 -2.88 0.12 -3.91 0.14 -1.72 0.30
534 -1.56 0.18 -3.70 0.13 -2.73 0.16 -3.86 0.14 -1.72 0.11
535 -2.81 0.16 -5.87 0.29 -4.44 0.12 -5.80 0.13 -3.22 0.22
536 -2.84 0.16 -5.85 0.35 -4.51 0.10 -5.96 0.27 -3.22 0.26
537 -1.19 0.11 -3.34 0.25 -4.65 0.05 -1.18 0.11 -3.53 0.26
538 -1.15 0.15 -3.40 0.28 -4.62 0.08 -1.16 0.16 -3.50 0.22
539 -4.92 0.29 -2.50 0.09 -5.92 0.08 -5.26 0.11 -2.38 0.23
540 -5.09 0.26 -2.52 0.10 -5.98 0.13 -5.33 0.11 -2.46 0.17
541 -2.26 0.13 -5.57 0.18 -4.14 0.22 -5.47 0.10 -2.28 0.26
542 -2.42 0.12 -5.52 0.20 -4.21 0.18 -5.56 0.08 -2.43 0.22
543 -1.87 0.15 -4.52 0.14 -3.47 0.17 -4.72 0.06 -2.03 0.35
544 -1.98 0.20 -4.53 0.16 -3.43 0.16 -4.70 0.15 -2.01 0.26
545 -1.54 0.12 -3.77 0.18 -2.75 0.12 -3.91 0.10 -1.57 0.26
546 -1.54 0.14 -3.84 0.15 -2.83 0.16 -3.90 0.11 -1.69 0.23
547 -2.83 0.13 -5.75 0.36 -4.50 0.11 -5.90 0.14 -3.12 0.26
548 -2.77 0.14 -5.97 0.19 -4.54 0.12 -5.77 0.11 -3.25 0.11
549 -1.09 0.27 -3.41 0.37 -4.58 0.11 -1.11 0.26 -3.63 0.36
550 -1.15 0.15 -3.61 0.20 -4.56 0.06 -1.15 0.13 -3.58 0.28
551 -5.23 0.38 -2.55 0.11 -6.03 0.15 -5.37 0.10 -2.50 0.17
552 -5.10 0.40 -2.58 0.06 -5.93 0.18 -5.32 0.16 -2.47 0.19
553 -2.44 0.26 -5.67 0.24 -4.09 0.16 -5.57 0.19 -2.71 0.28
554 -2.59 0.15 -5.78 0.13 -4.22 0.08 -5.67 0.10 -2.75 0.29
555 -2.05 0.16 -4.74 0.11 -3.49 0.13 -4.75 0.12 -2.23 0.27
556 -1.94 0.17 -4.65 0.25 -3.50 0.16 -4.73 0.14 -1.99 0.28
557 -1.50 0.15 -3.90 0.13 -2.83 0.13 -3.96 0.08 -1.70 0.21
558 -1.64 0.17 -3.93 0.15 -2.85 0.14 -3.90 0.13 -1.74 0.28
559 -2.83 0.18 -6.09 0.30 -4.56 0.17 -5.96 0.24 -3.29 0.24
560 -2.78 0.22 -5.98 0.27 -4.46 0.19 -5.88 0.28 -3.13 0.32
561 -1.47 0.25 -4.08 0.25 -4.71 0.15 -1.50 0.22 -4.08 0.28
562 -1.44 0.11 -4.00 0.22 -4.66 0.06 -1.44 0.11 -4.03 0.16
563 -5.40 0.28 -2.48 0.06 -5.98 0.16 -5.37 0.15 -2.57 0.19
564 -5.40 0.25 -2.49 0.11 -6.01 0.11 -5.37 0.14 -2.53 0.18
565 -2.67 0.14 -5.93 0.16 -4.19 0.19 -5.68 0.18 -2.80 0.32
566 -2.73 0.15 -5.91 0.25 -4.35 0.19 -5.78 0.12 -2.94 0.28
567 -2.12 0.15 -4.99 0.26 -3.50 0.26 -4.86 0.16 -2.19 0.27
568 -2.02 0.15 -4.95 0.15 -3.52 0.18 -4.75 0.18 -2.15 0.23
569 -1.50 0.15 -3.99 0.15 -2.70 0.10 -3.94 0.13 -1.69 0.16
570 -1.53 0.14 -4.11 0.14 -2.81 0.20 -4.02 0.11 -1.76 0.16
571 -2.94 0.13 -6.37 0.24 -4.66 0.09 -6.16 0.24 -3.26 0.17
572 -2.83 0.10 -6.39 0.23 -4.62 0.11 -6.12 0.27 -3.35 0.16
573 -1.59 0.17 -4.24 0.26 -4.68 0.14 -1.58 0.16 -4.38 0.22
574 -1.66 0.17 -4.35 0.29 -4.71 0.15 -1.66 0.18 -4.49 0.26
575 -5.64 0.22 -2.40 0.08 -5.97 0.14 -5.43 0.10 -2.54 0.09
576 -5.84 0.22 -2.42 0.08 -6.09 0.12 -5.57 0.15 -2.73 0.17
577 -2.42 0.54 -5.17 0.55 -4.41 0.88 -6.23 0.44 -2.76 1.10
578 -2.58 0.44 -5.02 0.85 -4.11 0.64 -5.98 0.58 -2.98 0.83
579 -1.72 0.39 -4.10 0.49 -3.69 0.45 -5.02 0.58 -2.28 1.00
580 -1.79 0.33 -4.03 0.71 -3.09 0.77 -5.46 0.55 -1.92 0.85
581 -1.48 0.52 -3.61 0.47 -3.10 1.05 -4.33 0.82 -1.88 1.02
582 -1.60 0.71 -3.87 0.76 -2.76 0.44 -4.00 0.46 -1.53 0.76
583 -2.47 0.47 -5.93 0.66 -4.22 0.37 -6.57 0.79 -2.67 0.61
584 -2.82 0.57 -5.48 0.88 -4.11 0.41 -6.33 0.66 -2.66 0.63
585 -1.24 0.77 -3.19 0.59 -4.82 0.38 -1.16 0.42 -4.15 1.01
586 -1.36 0.58 -3.80 0.75 -4.97 0.50 -1.21 0.33 -3.37 1.21
587 -4.57 0.86 -2.35 0.63 -5.51 0.81 -5.19 0.62 -2.43 0.60
588 -4.78 0.65 -2.50 0.44 -6.03 0.73 -5.85 0.57 -2.31 0.12
589 -2.36 0.36 -5.73 0.65 -4.34 0.67 -6.17 0.69 -2.46 0.68
590 -2.78 0.42 -5.18 0.78 -4.13 0.40 -6.01 0.72 -3.04 1.31
591 -1.82 0.45 -4.89 0.58 -3.78 0.67 -5.24 0.63 -1.89 0.74
592 -1.65 0.53 -4.55 0.93 -3.45 0.45 -4.91 0.59 -1.70 0.77
593 -1.52 0.48 -3.47 0.66 -2.78 0.53 -4.03 0.56 -1.51 0.64
594 -1.53 0.40 -3.91 0.69 -2.59 0.81 -4.13 0.54 -1.62 0.68
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595 -2.64 0.48 -6.01 0.79 -4.44 0.39 -6.57 0.72 -2.80 0.68
596 -2.78 0.68 -5.28 0.83 -4.32 0.47 -6.03 0.62 -2.83 0.59
597 -1.27 0.47 -3.77 0.54 -4.44 0.57 -1.08 0.32 -3.92 0.97
598 -1.59 0.84 -3.60 0.81 -4.65 0.50 -1.32 0.68 -3.28 0.90
599 -5.29 1.14 -2.31 0.49 -6.11 0.59 -5.49 0.84 -2.41 0.49
600 -5.07 0.80 -2.30 0.46 -6.17 0.34 -5.40 0.49 -2.36 0.48
601 -2.70 0.40 -5.34 1.07 -4.36 0.87 -6.17 0.50 -2.49 0.92
602 -2.69 0.50 -5.30 0.85 -4.29 0.66 -5.85 0.50 -3.64 0.82
603 -2.15 0.34 -4.47 0.46 -3.16 1.05 -5.20 0.51 -1.90 0.84
604 -2.07 0.60 -4.82 0.53 -3.72 0.67 -5.26 0.57 -1.77 0.51
605 -1.56 0.28 -4.16 0.56 -2.76 0.93 -4.56 0.59 -1.76 0.84
606 -1.59 0.50 -4.21 0.87 -2.98 0.83 -4.23 0.69 -1.87 0.82
607 -2.85 0.47 -6.44 0.87 -4.59 0.31 -6.56 0.76 -2.84 0.58
608 -2.84 0.56 -6.01 0.84 -4.39 0.33 -6.71 0.93 -2.76 0.72
609 -1.25 0.57 -4.00 0.93 -4.83 0.61 -1.07 0.56 -3.68 0.59
610 -1.72 0.28 -4.37 0.60 -4.95 0.58 -1.45 0.31 -4.45 0.79
611 -5.14 0.83 -2.27 0.40 -6.36 0.64 -5.63 0.61 -2.45 0.53
612 -5.14 0.82 -2.48 0.44 -5.92 0.46 -5.75 0.88 -2.56 0.58
613 -2.96 0.36 -6.26 0.43 -4.78 1.07 -6.34 0.75 -2.67 0.79
614 -2.98 0.34 -6.20 0.53 -4.50 0.71 -6.53 0.56 -3.02 0.62
615 -1.92 0.45 -5.34 0.79 -3.70 0.58 -5.37 0.75 -2.90 0.80
616 -2.33 0.22 -5.39 0.90 -3.34 0.56 -5.46 0.50 -2.24 0.69
617 -1.53 0.41 -4.68 0.66 -2.37 0.91 -4.54 0.85 -1.63 0.91
618 -1.76 0.67 -4.22 0.41 -2.89 0.71 -4.58 0.71 -1.78 0.96
619 -3.03 0.61 -6.04 0.82 -4.50 0.28 -5.83 1.04 -3.17 0.54
620 -2.93 0.48 -6.69 0.70 -4.80 0.56 -5.99 0.81 -3.09 0.67
621 -2.02 0.71 -4.51 0.81 -4.89 0.80 -2.15 0.36 -4.51 0.74
622 -2.00 0.45 -4.57 0.57 -4.69 0.70 -2.22 0.57 -5.07 0.55
623 -5.94 0.97 -2.59 0.64 -6.77 0.92 -5.62 0.62 -2.63 0.44
624 -5.46 1.05 -2.66 0.95 -5.40 1.37 -5.23 0.63 -2.71 0.47
625 -2.41 0.20 -5.68 0.50 -4.37 0.39 -5.98 0.35 -2.59 0.78
626 -2.43 0.24 -5.32 0.68 -4.10 0.31 -6.07 0.46 -2.49 0.28
627 -1.97 0.32 -4.42 0.47 -3.48 0.58 -5.08 0.47 -1.90 0.48
628 -2.02 0.44 -4.28 0.24 -3.56 0.49 -5.27 0.48 -1.92 0.44
629 -1.57 0.29 -3.69 0.35 -2.92 0.48 -4.32 0.28 -1.56 0.55
630 -1.40 0.46 -3.68 0.31 -2.84 0.32 -4.44 0.36 -1.37 0.50
631 -2.65 0.47 -5.65 0.77 -4.40 0.24 -6.43 0.69 -2.88 0.28
632 -2.93 0.33 -5.85 0.62 -4.44 0.21 -5.93 0.36 -2.93 0.31
633 -1.20 0.27 -3.28 0.52 -4.56 0.36 -1.14 0.37 -3.23 0.47
634 -1.35 0.30 -3.32 0.49 -4.87 0.51 -1.36 0.53 -3.24 0.67
635 -5.05 0.51 -2.29 0.23 -6.15 0.45 -5.56 0.40 -2.29 0.20
636 -5.05 0.57 -2.23 0.31 -5.67 0.39 -5.75 0.34 -2.30 0.41
637 -2.64 0.27 -5.25 0.81 -4.31 0.41 -5.90 0.43 -2.50 0.35
638 -2.39 0.39 -5.36 0.48 -4.20 0.43 -6.10 0.53 -3.01 0.42
639 -1.85 0.24 -4.44 0.43 -3.74 0.39 -5.16 0.36 -2.16 0.50
640 -1.97 0.24 -4.68 0.42 -3.69 0.41 -5.25 0.30 -2.21 0.41
641 -1.46 0.23 -3.77 0.20 -3.01 0.58 -4.24 0.32 -1.45 0.59
642 -1.43 0.16 -3.98 0.35 -2.82 0.35 -4.25 0.48 -1.56 0.42
643 -2.82 0.34 -5.78 0.65 -4.38 0.19 -6.15 0.45 -2.84 0.31
644 -2.76 0.17 -5.88 0.65 -4.40 0.21 -6.43 0.50 -2.89 0.30
645 -1.36 0.42 -3.76 0.49 -4.57 0.29 -1.37 0.34 -3.52 0.58
646 -1.27 0.19 -3.37 0.57 -4.69 0.33 -1.18 0.33 -3.59 0.51
647 -4.87 0.51 -2.41 0.33 -5.75 0.56 -5.29 0.60 -2.27 0.33
648 -4.97 0.63 -2.23 0.27 -5.84 0.33 -5.73 0.30 -2.34 0.30
649 -2.58 0.18 -6.00 0.42 -4.27 0.41 -6.41 0.28 -2.73 0.53
650 -2.77 0.26 -5.80 0.63 -4.19 0.63 -6.38 0.39 -2.69 0.55
651 -2.02 0.27 -5.08 0.61 -3.59 0.49 -5.26 0.73 -2.25 0.37
652 -2.12 0.30 -4.86 0.39 -4.01 0.51 -4.94 0.30 -2.15 0.49
653 -1.58 0.28 -4.01 0.18 -2.86 0.33 -4.16 0.39 -1.57 0.50
654 -1.63 0.36 -4.09 0.31 -2.50 0.55 -4.26 0.36 -1.59 0.39
655 -2.83 0.33 -5.90 0.58 -4.44 0.18 -6.66 0.43 -2.84 0.28
656 -2.82 0.43 -5.98 0.34 -4.55 0.36 -6.64 0.47 -3.05 0.37
657 -1.64 0.17 -4.16 0.30 -4.71 0.41 -1.51 0.25 -4.17 0.58
658 -1.81 0.31 -3.81 0.41 -4.62 0.31 -1.58 0.28 -4.24 0.53
659 -5.23 0.49 -2.43 0.26 -6.17 0.47 -5.78 0.35 -2.57 0.24
660 -5.54 0.57 -2.47 0.39 -5.96 0.54 -5.77 0.50 -2.34 0.25
661 -2.88 0.21 -6.31 0.59 -4.29 0.54 -6.14 0.45 -3.28 0.54
662 -2.93 0.32 -6.28 0.45 -4.43 0.62 -6.78 0.54 -2.99 0.47
663 -2.47 0.33 -5.32 0.37 -3.68 0.54 -5.28 0.32 -2.14 0.40
664 -2.23 0.33 -5.21 0.36 -3.47 0.51 -5.43 0.78 -2.48 0.42
665 -1.54 0.35 -4.32 0.17 -3.00 0.47 -4.39 0.46 -1.71 0.60
666 -1.71 0.26 -4.44 0.43 -2.88 0.48 -4.54 0.59 -1.86 0.53
667 -2.92 0.32 -6.00 0.52 -4.57 0.26 -6.61 0.51 -3.20 0.18
668 -3.08 0.29 -6.12 0.48 -4.53 0.32 -6.47 0.63 -3.09 0.41
669 -1.79 0.25 -4.77 0.49 -4.95 0.28 -1.77 0.30 -4.50 0.48
670 -1.87 0.25 -4.56 0.58 -4.78 0.28 -1.84 0.34 -4.50 0.44
671 -5.51 0.61 -2.61 0.38 -5.98 0.55 -5.69 0.55 -2.69 0.26
672 -5.72 0.52 -2.52 0.38 -6.09 0.41 -5.62 0.41 -2.70 0.43
673 -2.35 0.19 -5.03 0.46 -4.24 0.30 -5.96 0.37 -2.51 0.24
674 -2.46 0.19 -5.27 0.30 -4.20 0.34 -6.05 0.14 -2.56 0.27
675 -1.86 0.22 -4.38 0.28 -3.57 0.28 -5.05 0.35 -1.99 0.50
676 -1.83 0.18 -4.63 0.19 -3.44 0.25 -5.13 0.33 -1.86 0.43
677 -1.42 0.28 -3.81 0.21 -2.89 0.35 -4.10 0.31 -1.40 0.30
678 -1.39 0.20 -3.72 0.18 -2.66 0.43 -4.26 0.17 -1.51 0.36
679 -2.65 0.20 -5.45 0.37 -4.45 0.19 -6.28 0.37 -2.77 0.24
680 -2.58 0.20 -5.76 0.44 -4.39 0.14 -6.30 0.48 -2.65 0.29
681 -1.25 0.19 -3.18 0.34 -4.69 0.20 -1.28 0.20 -3.38 0.43
682 -1.12 0.21 -3.45 0.39 -4.54 0.31 -1.14 0.25 -3.35 0.29
683 -5.00 0.58 -2.31 0.28 -5.98 0.47 -5.58 0.26 -2.36 0.19
684 -4.78 0.36 -2.37 0.16 -5.91 0.39 -5.57 0.27 -2.41 0.15
685 -2.44 0.22 -5.20 0.33 -4.30 0.44 -6.07 0.21 -2.35 0.31
686 -2.49 0.17 -5.42 0.43 -4.14 0.40 -6.09 0.26 -2.60 0.34
687 -1.91 0.21 -4.61 0.20 -3.72 0.25 -5.18 0.29 -1.91 0.21
688 -1.92 0.21 -4.49 0.27 -3.50 0.39 -5.27 0.28 -2.08 0.31
689 -1.65 0.20 -3.92 0.22 -2.76 0.18 -4.30 0.24 -1.64 0.25
690 -1.49 0.18 -3.88 0.15 -2.90 0.26 -4.26 0.20 -1.53 0.35
691 -2.76 0.21 -5.87 0.33 -4.32 0.22 -6.22 0.46 -2.84 0.25
692 -2.81 0.28 -5.77 0.47 -4.39 0.20 -6.23 0.33 -2.77 0.22
693 -1.36 0.24 -3.44 0.29 -4.67 0.27 -1.37 0.29 -3.49 0.47
694 -1.17 0.13 -3.63 0.36 -4.70 0.20 -1.23 0.23 -3.63 0.29
695 -5.14 0.29 -2.30 0.27 -5.95 0.31 -5.77 0.33 -2.32 0.16
696 -5.19 0.45 -2.24 0.25 -5.89 0.40 -5.51 0.23 -2.38 0.17
697 -2.65 0.15 -5.54 0.39 -4.04 0.42 -6.12 0.23 -2.76 0.28
698 -2.57 0.24 -5.59 0.55 -4.31 0.43 -6.05 0.29 -3.01 0.27
699 -2.17 0.20 -5.00 0.25 -3.63 0.43 -5.15 0.23 -2.28 0.43
700 -2.15 0.17 -4.93 0.37 -3.53 0.30 -5.29 0.33 -2.19 0.21
701 -1.48 0.23 -4.23 0.20 -2.99 0.35 -4.38 0.38 -1.52 0.21
702 -1.68 0.14 -4.07 0.22 -3.02 0.28 -4.34 0.33 -1.74 0.27
703 -2.92 0.15 -6.13 0.29 -4.49 0.13 -6.40 0.28 -2.88 0.38
704 -2.88 0.29 -5.99 0.42 -4.60 0.20 -6.28 0.29 -2.81 0.27
705 -1.46 0.24 -4.05 0.32 -4.86 0.34 -1.56 0.18 -4.12 0.48
706 -1.60 0.18 -4.03 0.36 -5.03 0.23 -1.56 0.20 -4.17 0.45
707 -5.26 0.45 -2.35 0.16 -5.95 0.19 -5.84 0.30 -2.45 0.24
708 -5.47 0.32 -2.23 0.26 -6.04 0.28 -5.76 0.27 -2.54 0.17
709 -2.94 0.18 -6.26 0.36 -4.29 0.51 -6.35 0.45 -3.20 0.48
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710 -2.94 0.16 -6.29 0.48 -4.74 0.35 -6.29 0.36 -2.87 0.18
711 -2.35 0.18 -5.19 0.30 -3.60 0.34 -5.38 0.32 -2.38 0.25
712 -2.29 0.16 -5.29 0.36 -3.71 0.35 -5.32 0.27 -2.36 0.23
713 -1.69 0.13 -4.41 0.20 -2.99 0.61 -4.37 0.32 -1.81 0.31
714 -1.62 0.14 -4.55 0.30 -2.92 0.32 -4.36 0.22 -1.45 0.33
715 -2.96 0.19 -6.31 0.37 -4.54 0.15 -6.31 0.38 -3.04 0.19
716 -2.93 0.29 -6.03 0.27 -4.52 0.20 -6.40 0.31 -2.90 0.33
717 -1.90 0.31 -4.65 0.25 -4.73 0.34 -1.71 0.18 -4.49 0.37
718 -1.68 0.19 -4.52 0.34 -5.03 0.46 -1.66 0.26 -4.57 0.29
719 -5.66 0.36 -2.31 0.11 -6.21 0.31 -5.80 0.20 -2.53 0.23
720 -5.75 0.45 -2.47 0.38 -5.83 0.44 -5.68 0.26 -2.60 0.18
721 -2.39 0.14 -5.26 0.30 -4.02 0.22 -6.01 0.17 -2.32 0.16
722 -2.40 0.14 -5.26 0.26 -4.21 0.25 -5.97 0.18 -2.51 0.22
723 -1.93 0.12 -4.44 0.16 -3.52 0.14 -5.10 0.22 -1.98 0.27
724 -1.94 0.17 -4.33 0.16 -3.36 0.12 -5.10 0.13 -1.96 0.22
725 -1.46 0.16 -3.76 0.15 -2.80 0.20 -4.23 0.15 -1.55 0.26
726 -1.50 0.17 -3.64 0.12 -2.68 0.15 -4.13 0.14 -1.43 0.24
727 -2.71 0.18 -5.61 0.28 -4.39 0.14 -6.22 0.25 -2.72 0.15
728 -2.68 0.16 -5.92 0.25 -4.39 0.13 -6.22 0.22 -2.78 0.12
729 -1.11 0.11 -3.30 0.20 -4.65 0.18 -1.12 0.13 -3.48 0.11
730 -1.09 0.08 -3.38 0.22 -4.78 0.18 -1.10 0.13 -3.29 0.24
731 -4.84 0.31 -2.35 0.14 -5.93 0.33 -5.68 0.29 -2.34 0.16
732 -5.00 0.24 -2.35 0.15 -6.08 0.25 -5.70 0.29 -2.36 0.16
733 -2.48 0.17 -5.51 0.29 -4.23 0.15 -6.03 0.26 -2.48 0.29
734 -2.48 0.21 -5.38 0.25 -4.37 0.26 -6.06 0.16 -2.55 0.18
735 -1.89 0.21 -4.68 0.17 -3.49 0.23 -5.16 0.18 -2.07 0.23
736 -2.00 0.15 -4.57 0.15 -3.55 0.25 -5.21 0.23 -2.15 0.19
737 -1.51 0.13 -3.95 0.14 -2.84 0.17 -4.19 0.12 -1.55 0.28
738 -1.48 0.16 -4.01 0.24 -2.73 0.22 -4.26 0.22 -1.61 0.14
739 -2.71 0.14 -5.69 0.24 -4.47 0.10 -6.33 0.22 -2.93 0.13
740 -2.70 0.18 -5.70 0.30 -4.44 0.14 -6.23 0.22 -2.78 0.12
741 -1.27 0.14 -3.59 0.18 -4.74 0.16 -1.24 0.13 -3.64 0.16
742 -1.28 0.15 -3.66 0.31 -4.66 0.09 -1.24 0.18 -3.47 0.30
743 -5.05 0.22 -2.34 0.21 -5.99 0.34 -5.70 0.22 -2.41 0.11
744 -5.14 0.25 -2.28 0.14 -6.04 0.16 -5.53 0.21 -2.31 0.12
745 -2.70 0.16 -5.69 0.24 -4.47 0.13 -6.11 0.17 -2.81 0.26
746 -2.72 0.11 -5.75 0.29 -4.51 0.31 -6.08 0.20 -2.75 0.24
747 -2.10 0.14 -4.86 0.21 -3.72 0.12 -5.27 0.15 -2.18 0.20
748 -2.14 0.03 -4.86 0.21 -3.63 0.21 -5.18 0.17 -2.14 0.13
749 -1.57 0.17 -4.08 0.13 -3.01 0.21 -4.42 0.18 -1.58 0.15
750 -1.63 0.16 -4.21 0.13 -2.80 0.23 -4.24 0.26 -1.68 0.29
751 -2.78 0.16 -5.96 0.29 -4.50 0.13 -6.20 0.17 -2.85 0.15
752 -2.72 0.11 -6.11 0.25 -4.51 0.13 -6.20 0.30 -2.84 0.09
753 -1.51 0.16 -3.92 0.22 -4.68 0.17 -1.54 0.13 -3.96 0.15
754 -1.56 0.23 -4.02 0.27 -4.78 0.15 -1.44 0.23 -4.11 0.27
755 -5.43 0.19 -2.33 0.14 -5.91 0.16 -5.66 0.15 -2.51 0.07
756 -5.26 0.29 -2.33 0.09 -5.81 0.20 -5.55 0.24 -2.46 0.17
757 -2.95 0.13 -6.26 0.22 -4.50 0.28 -6.38 0.24 -3.02 0.17
758 -2.84 0.05 -6.25 0.40 -4.61 0.35 -6.29 0.37 -2.96 0.09
759 -2.32 0.13 -5.37 0.19 -3.68 0.20 -5.40 0.19 -2.51 0.15
760 -2.21 0.11 -5.30 0.22 -3.69 0.22 -5.38 0.17 -2.33 0.33
761 -1.69 0.09 -4.39 0.28 -2.87 0.22 -4.54 0.12 -1.77 0.19
762 -1.66 0.18 -4.44 0.19 -2.88 0.18 -4.54 0.20 -1.65 0.21
763 -2.91 0.15 -6.26 0.23 -4.46 0.10 -6.24 0.16 -2.94 0.17
764 -2.86 0.12 -6.37 0.20 -4.58 0.13 -6.38 0.27 -3.02 0.22
765 -1.82 0.17 -4.62 0.25 -4.86 0.20 -1.83 0.11 -4.51 0.16
766 -1.75 0.12 -4.62 0.12 -4.73 0.26 -1.72 0.13 -4.58 0.20
767 -5.64 0.39 -2.34 0.16 -6.09 0.31 -6.01 0.17 -2.57 0.13
768 -5.78 0.24 -2.57 0.15 -6.02 0.44 -5.84 0.22 -2.57 0.16
769 -3.88 0.03 -6.56 0.07 -4.99 0.28 -4.33 0.07 -5.06 0.13
770 -3.87 0.04 -6.44 0.09 -5.05 0.29 -4.32 0.07 -5.00 0.11
771 -3.15 0.04 -5.46 0.09 -4.28 0.29 -3.68 0.11 -4.16 0.09
772 -3.20 0.07 -5.50 0.11 -4.14 0.10 -3.65 0.06 -4.18 0.14
773 -2.57 0.08 -4.50 0.04 -3.21 0.26 -3.09 0.06 -3.31 0.10
774 -2.50 0.05 -4.48 0.07 -3.38 0.20 -3.12 0.03 -3.31 0.09
775 -2.93 0.09 -6.55 0.19 -4.35 0.12 -4.40 0.13 -3.83 0.14
776 -2.91 0.12 -6.50 0.17 -4.33 0.13 -4.32 0.15 -3.78 0.13
777 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
778 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
779 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
780 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
781 -3.89 0.04 -6.50 0.07 -5.10 0.34 -4.30 0.05 -4.99 0.17
782 -3.87 0.04 -6.47 0.07 -5.04 0.25 -4.30 0.08 -5.07 0.15
783 -3.21 0.07 -5.50 0.08 -4.26 0.23 -3.70 0.07 -4.20 0.14
784 -3.19 0.06 -5.51 0.15 -4.28 0.21 -3.70 0.05 -4.13 0.08
785 -2.52 0.05 -4.52 0.05 -3.44 0.27 -3.10 0.06 -3.35 0.19
786 -2.55 0.06 -4.45 0.05 -3.45 0.23 -3.12 0.06 -3.28 0.13
787 -2.96 0.14 -6.47 0.23 -4.20 0.15 -4.39 0.14 -3.93 0.13
788 -2.90 0.10 -6.58 0.16 -4.39 0.14 -4.42 0.10 -3.79 0.15
789 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
790 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
791 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
792 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
793 -3.84 0.07 -6.48 0.11 -5.16 0.20 -4.35 0.05 -5.00 0.13
794 -3.90 0.05 -6.51 0.08 -4.93 0.31 -4.29 0.05 -5.08 0.15
795 -3.19 0.05 -5.53 0.06 -4.24 0.34 -3.70 0.04 -4.13 0.17
796 -3.18 0.08 -5.52 0.08 -4.23 0.18 -3.70 0.08 -4.18 0.11
797 -2.53 0.08 -4.48 0.08 -3.37 0.21 -3.09 0.05 -3.33 0.10
798 -2.55 0.07 -4.51 0.10 -3.28 0.20 -3.11 0.05 -3.35 0.15
799 -2.95 0.14 -6.60 0.15 -4.32 0.15 -4.43 0.13 -3.86 0.14
800 -2.92 0.11 -6.44 0.15 -4.29 0.14 -4.37 0.12 -3.90 0.07
801 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
802 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
803 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
804 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
805 -3.87 0.05 -6.49 0.11 -4.99 0.12 -4.32 0.06 -5.15 0.10
806 -3.87 0.04 -6.52 0.04 -4.88 0.25 -4.28 0.07 -5.11 0.08
807 -3.23 0.05 -5.51 0.13 -4.11 0.39 -3.72 0.06 -4.25 0.16
808 -3.18 0.06 -5.46 0.08 -4.24 0.24 -3.71 0.05 -4.20 0.12
809 -2.55 0.07 -4.50 0.09 -3.31 0.24 -3.08 0.08 -3.29 0.13
810 -2.56 0.07 -4.54 0.07 -3.25 0.30 -3.07 0.07 -3.33 0.14
811 -2.98 0.13 -6.51 0.17 -4.31 0.16 -4.42 0.07 -3.90 0.17
812 -2.99 0.14 -6.55 0.10 -4.33 0.18 -4.38 0.28 -3.79 0.11
813 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
814 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
815 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
816 -6.00 0.00 -2.53 0.00 -6.00 0.00 -3.73 0.00 -2.46 0.00
817 -3.96 0.04 -6.53 0.09 -5.07 0.14 -4.17 0.05 -5.10 0.07
818 -3.97 0.03 -6.47 0.09 -5.04 0.16 -4.19 0.03 -5.16 0.07
819 -3.29 0.03 -5.48 0.03 -4.28 0.14 -3.59 0.03 -4.19 0.08
820 -3.30 0.03 -5.53 0.06 -4.17 0.14 -3.58 0.04 -4.28 0.05
821 -2.64 0.04 -4.50 0.04 -3.42 0.12 -3.02 0.03 -3.32 0.07
822 -2.64 0.05 -4.51 0.04 -3.36 0.13 -3.00 0.05 -3.38 0.08
823 -2.96 0.09 -6.51 0.14 -4.36 0.07 -4.24 0.10 -3.76 0.07
824 -3.01 0.06 -6.49 0.11 -4.26 0.14 -4.26 0.11 -3.91 0.09
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825 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
826 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
827 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
828 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
829 -3.95 0.01 -6.45 0.03 -5.08 0.19 -4.13 0.05 -5.13 0.06
830 -3.95 0.04 -6.53 0.04 -5.03 0.21 -4.14 0.06 -5.14 0.12
831 -3.30 0.03 -5.46 0.06 -4.24 0.15 -3.60 0.04 -4.22 0.08
832 -3.30 0.04 -5.50 0.07 -4.19 0.12 -3.58 0.02 -4.25 0.06
833 -2.61 0.04 -4.51 0.05 -3.46 0.10 -3.00 0.04 -3.35 0.10
834 -2.62 0.03 -4.50 0.04 -3.37 0.19 -3.01 0.04 -3.38 0.09
835 -3.00 0.06 -6.45 0.12 -4.33 0.09 -4.27 0.10 -3.87 0.10
836 -2.96 0.08 -6.50 0.12 -4.31 0.09 -4.31 0.10 -3.81 0.08
837 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
838 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
839 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
840 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
841 -3.96 0.03 -6.45 0.05 -5.07 0.21 -4.17 0.05 -5.11 0.09
842 -3.94 0.03 -6.47 0.07 -5.22 0.09 -4.16 0.03 -5.10 0.10
843 -3.30 0.04 -5.52 0.06 -4.28 0.14 -3.61 0.06 -4.24 0.05
844 -3.31 0.04 -5.47 0.04 -4.15 0.14 -3.57 0.03 -4.28 0.06
845 -2.62 0.03 -4.49 0.05 -3.36 0.16 -3.00 0.02 -3.38 0.08
846 -2.62 0.04 -4.51 0.05 -3.37 0.14 -3.01 0.05 -3.40 0.07
847 -3.02 0.08 -6.50 0.10 -4.26 0.14 -4.26 0.08 -3.83 0.12
848 -2.99 0.05 -6.42 0.11 -4.29 0.10 -4.24 0.10 -3.84 0.08
849 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
850 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
851 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
852 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
853 -3.95 0.03 -6.51 0.09 -5.08 0.12 -4.17 0.04 -5.13 0.06
854 -3.97 0.04 -6.49 0.06 -5.05 0.23 -4.15 0.03 -5.12 0.09
855 -3.28 0.04 -5.50 0.05 -4.24 0.14 -3.59 0.04 -4.25 0.08
856 -3.31 0.04 -5.49 0.04 -4.19 0.16 -3.59 0.02 -4.25 0.12
857 -2.64 0.05 -4.49 0.04 -3.41 0.12 -3.03 0.04 -3.39 0.08
858 -2.63 0.05 -4.49 0.04 -3.42 0.11 -3.04 0.03 -3.37 0.06
859 -3.01 0.07 -6.44 0.14 -4.25 0.09 -4.20 0.11 -3.88 0.07
860 -3.04 0.09 -6.50 0.12 -4.27 0.08 -4.24 0.07 -3.87 0.07
861 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
862 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
863 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
864 -6.00 0.00 -2.67 0.00 -6.00 0.00 -3.58 0.00 -2.42 0.00
865 -3.97 0.03 -6.48 0.03 -5.05 0.13 -4.10 0.03 -5.17 0.03
866 -3.98 0.03 -6.50 0.05 -5.08 0.14 -4.11 0.03 -5.16 0.05
867 -3.30 0.04 -5.51 0.04 -4.25 0.07 -3.55 0.03 -4.33 0.05
868 -3.31 0.03 -5.51 0.05 -4.22 0.16 -3.54 0.03 -4.29 0.09
869 -2.66 0.04 -4.49 0.04 -3.38 0.10 -2.98 0.03 -3.42 0.07
870 -2.63 0.04 -4.49 0.04 -3.47 0.07 -2.99 0.02 -3.40 0.05
871 -2.98 0.06 -6.55 0.07 -4.28 0.10 -4.23 0.07 -3.89 0.07
872 -2.97 0.04 -6.49 0.08 -4.28 0.08 -4.21 0.10 -3.88 0.06
873 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
874 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
875 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
876 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
877 -3.99 0.03 -6.52 0.04 -5.00 0.17 -4.11 0.02 -5.15 0.05
878 -3.97 0.01 -6.51 0.04 -5.10 0.08 -4.12 0.03 -5.19 0.06
879 -3.30 0.02 -5.50 0.04 -4.29 0.08 -3.55 0.03 -4.30 0.07
880 -3.32 0.03 -5.50 0.03 -4.27 0.08 -3.57 0.04 -4.29 0.06
881 -2.63 0.02 -4.49 0.03 -3.43 0.10 -2.99 0.02 -3.41 0.06
882 -2.63 0.04 -4.47 0.04 -3.51 0.12 -2.99 0.03 -3.37 0.07
883 -2.98 0.06 -6.46 0.07 -4.25 0.05 -4.20 0.06 -3.91 0.07
884 -2.97 0.10 -6.52 0.05 -4.24 0.08 -4.20 0.11 -3.89 0.06
885 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
886 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
887 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
888 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
889 -3.98 0.02 -6.51 0.06 -5.05 0.13 -4.11 0.02 -5.18 0.06
890 -3.97 0.03 -6.49 0.05 -5.12 0.14 -4.13 0.03 -5.20 0.05
891 -3.30 0.04 -5.49 0.04 -4.23 0.13 -3.56 0.04 -4.31 0.08
892 -3.31 0.03 -5.51 0.05 -4.26 0.11 -3.55 0.03 -4.29 0.06
893 -2.65 0.03 -4.49 0.03 -3.44 0.13 -3.00 0.04 -3.42 0.06
894 -2.64 0.03 -4.52 0.02 -3.36 0.08 -2.97 0.02 -3.41 0.07
895 -2.98 0.05 -6.50 0.10 -4.25 0.09 -4.22 0.07 -3.85 0.05
896 -2.98 0.04 -6.51 0.08 -4.26 0.07 -4.20 0.04 -3.91 0.08
897 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
898 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
899 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
900 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
901 -3.98 0.03 -6.50 0.06 -5.04 0.14 -4.11 0.02 -5.17 0.05
902 -3.97 0.02 -6.48 0.05 -5.08 0.10 -4.11 0.03 -5.21 0.06
903 -3.31 0.04 -5.50 0.05 -4.26 0.17 -3.55 0.04 -4.30 0.06
904 -3.31 0.02 -5.48 0.04 -4.27 0.08 -3.55 0.04 -4.29 0.04
905 -2.63 0.04 -4.50 0.02 -3.44 0.09 -2.99 0.02 -3.44 0.05
906 -2.65 0.04 -4.50 0.03 -3.38 0.11 -2.98 0.03 -3.41 0.04
907 -3.00 0.08 -6.48 0.09 -4.31 0.08 -4.22 0.09 -3.89 0.09
908 -3.01 0.04 -6.50 0.07 -4.29 0.06 -4.21 0.10 -3.86 0.05
909 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
910 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
911 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
912 -6.00 0.00 -2.64 0.00 -6.00 0.00 -3.54 0.00 -2.42 0.00
913 -3.97 0.01 -6.51 0.02 -5.11 0.05 -4.09 0.02 -5.19 0.04
914 -3.99 0.01 -6.49 0.04 -5.09 0.06 -4.09 0.01 -5.18 0.04
915 -3.31 0.02 -5.50 0.03 -4.25 0.08 -3.53 0.02 -4.30 0.04
916 -3.32 0.02 -5.50 0.03 -4.25 0.04 -3.53 0.02 -4.32 0.03
917 -2.65 0.03 -4.50 0.02 -3.40 0.09 -2.97 0.01 -3.43 0.03
918 -2.67 0.02 -4.50 0.02 -3.42 0.04 -2.98 0.01 -3.42 0.03
919 -3.02 0.03 -6.50 0.07 -4.27 0.04 -4.18 0.04 -3.88 0.06
920 -3.02 0.05 -6.50 0.03 -4.25 0.07 -4.20 0.03 -3.90 0.05
921 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
922 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
923 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
924 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
925 -3.99 0.02 -6.50 0.02 -5.08 0.07 -4.08 0.02 -5.20 0.04
926 -3.99 0.02 -6.51 0.04 -5.05 0.07 -4.08 0.02 -5.19 0.04
927 -3.32 0.02 -5.50 0.03 -4.27 0.07 -3.54 0.01 -4.29 0.07
928 -3.32 0.02 -5.50 0.04 -4.23 0.10 -3.53 0.02 -4.32 0.03
929 -2.64 0.02 -4.49 0.02 -3.44 0.04 -2.97 0.02 -3.45 0.04
930 -2.66 0.02 -4.51 0.02 -3.43 0.03 -2.97 0.01 -3.44 0.02
931 -3.00 0.03 -6.48 0.05 -4.24 0.06 -4.18 0.05 -3.91 0.03
932 -3.00 0.04 -6.49 0.05 -4.23 0.07 -4.15 0.06 -3.91 0.04
933 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
934 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
935 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
936 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
937 -3.99 0.01 -6.51 0.03 -5.07 0.06 -4.09 0.01 -5.18 0.02
938 -3.99 0.01 -6.50 0.04 -5.11 0.09 -4.10 0.03 -5.18 0.04
939 -3.33 0.01 -5.51 0.03 -4.21 0.05 -3.52 0.02 -4.33 0.04
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940 -3.32 0.02 -5.49 0.02 -4.26 0.07 -3.54 0.02 -4.30 0.03
941 -2.65 0.02 -4.49 0.02 -3.40 0.05 -2.96 0.01 -3.42 0.03
942 -2.64 0.02 -4.50 0.02 -3.42 0.06 -2.97 0.02 -3.44 0.04
943 -2.99 0.05 -6.54 0.05 -4.24 0.05 -4.18 0.06 -3.92 0.04
944 -2.99 0.04 -6.47 0.07 -4.25 0.04 -4.20 0.04 -3.92 0.03
945 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
946 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
947 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
948 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
949 -3.99 0.02 -6.50 0.03 -5.04 0.09 -4.08 0.02 -5.21 0.04
950 -3.99 0.02 -6.51 0.04 -5.08 0.07 -4.09 0.02 -5.21 0.04
951 -3.31 0.01 -5.51 0.03 -4.24 0.08 -3.53 0.02 -4.33 0.06
952 -3.33 0.01 -5.49 0.02 -4.23 0.07 -3.53 0.02 -4.32 0.04
953 -2.65 0.02 -4.50 0.02 -3.39 0.05 -2.96 0.03 -3.41 0.03
954 -2.65 0.02 -4.51 0.03 -3.36 0.07 -2.96 0.02 -3.43 0.04
955 -3.02 0.03 -6.49 0.06 -4.23 0.05 -4.17 0.04 -3.92 0.05
956 -3.00 0.04 -6.53 0.05 -4.23 0.04 -4.16 0.03 -3.91 0.05
957 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
958 -2.00 0.00 -5.00 0.00 -5.00 0.00 -2.00 0.00 -5.00 0.00
959 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
960 -6.00 0.00 -2.65 0.00 -6.00 0.00 -3.51 0.00 -2.41 0.00
961 -3.87 0.15 -6.68 0.29 -5.12 0.35 -4.30 0.20 -4.95 0.25
962 -3.90 0.14 -6.65 0.37 -5.02 0.37 -4.27 0.19 -5.20 0.45
963 -3.20 0.27 -5.52 0.21 -4.18 0.19 -3.72 0.17 -4.13 0.31
964 -3.23 0.27 -5.57 0.34 -4.17 0.38 -3.74 0.20 -4.09 0.35
965 -2.48 0.18 -4.51 0.24 -3.42 0.29 -3.10 0.14 -3.34 0.50
966 -2.68 0.22 -4.33 0.22 -3.31 0.41 -3.09 0.07 -3.22 0.38
967 -2.92 0.23 -6.61 0.27 -4.36 0.25 -4.53 0.22 -3.91 0.37
968 -2.90 0.27 -6.42 0.27 -4.30 0.17 -4.28 0.26 -3.89 0.26
969 -2.01 0.38 -4.82 0.19 -5.03 0.32 -2.06 0.27 -5.00 0.37
970 -2.01 0.24 -5.12 0.32 -4.99 0.38 -2.00 0.26 -5.00 0.26
971 -5.85 0.46 -2.63 0.20 -5.96 0.50 -3.68 0.21 -2.51 0.18
972 -5.89 0.43 -2.49 0.23 -6.15 0.51 -3.62 0.19 -2.46 0.12
973 -3.79 0.14 -6.63 0.20 -4.94 0.33 -4.25 0.12 -5.05 0.39
974 -3.93 0.16 -6.68 0.29 -5.08 0.38 -4.35 0.26 -4.96 0.44
975 -3.18 0.19 -5.65 0.25 -4.11 0.29 -3.74 0.14 -4.25 0.33
976 -3.19 0.21 -5.61 0.22 -4.16 0.37 -3.78 0.13 -4.13 0.18
977 -2.60 0.29 -4.44 0.21 -3.24 0.36 -3.02 0.18 -3.29 0.30
978 -2.54 0.22 -4.45 0.16 -3.30 0.29 -3.14 0.21 -3.53 0.30
979 -3.05 0.17 -6.40 0.32 -4.32 0.18 -4.37 0.28 -3.81 0.27
980 -3.00 0.21 -6.50 0.37 -4.32 0.22 -4.37 0.27 -3.81 0.23
981 -1.96 0.21 -4.92 0.31 -4.84 0.37 -1.91 0.25 -4.93 0.39
982 -1.95 0.20 -5.01 0.22 -5.23 0.36 -1.90 0.22 -5.11 0.37
983 -6.00 0.33 -2.43 0.20 -5.91 0.43 -3.66 0.20 -2.56 0.21
984 -6.18 0.26 -2.40 0.17 -6.14 0.51 -3.68 0.18 -2.42 0.15
985 -3.96 0.11 -6.38 0.38 -4.99 0.51 -4.28 0.27 -5.13 0.24
986 -3.89 0.23 -6.47 0.32 -5.05 0.56 -4.31 0.17 -5.14 0.30
987 -3.18 0.14 -5.45 0.18 -4.21 0.24 -3.64 0.12 -4.26 0.28
988 -3.27 0.15 -5.44 0.28 -4.16 0.39 -3.66 0.24 -4.40 0.34
989 -2.50 0.19 -4.64 0.18 -3.40 0.46 -3.09 0.26 -3.36 0.38
990 -2.56 0.23 -4.51 0.22 -3.46 0.24 -3.15 0.19 -3.21 0.16
991 -2.90 0.25 -6.48 0.34 -4.27 0.22 -4.38 0.17 -3.92 0.23
992 -3.01 0.17 -6.57 0.32 -4.33 0.23 -4.47 0.24 -3.91 0.23
993 -1.95 0.17 -5.02 0.31 -5.25 0.24 -1.99 0.29 -5.09 0.16
994 -2.10 0.24 -5.00 0.39 -5.02 0.36 -2.02 0.23 -4.92 0.28
995 -5.87 0.28 -2.67 0.15 -6.12 0.36 -3.63 0.17 -2.41 0.13
996 -5.64 0.47 -2.65 0.22 -6.00 0.46 -3.69 0.13 -2.54 0.17
997 -3.88 0.16 -6.61 0.36 -4.88 0.33 -4.40 0.10 -5.13 0.41
998 -3.90 0.18 -6.36 0.47 -4.98 0.44 -4.24 0.21 -5.04 0.42
999 -3.22 0.16 -5.53 0.37 -4.21 0.41 -3.72 0.20 -4.13 0.42
1000 -3.26 0.17 -5.43 0.28 -4.08 0.20 -3.69 0.25 -4.23 0.39
1001 -2.62 0.13 -4.52 0.24 -3.21 0.22 -3.11 0.16 -3.34 0.31
1002 -2.51 0.24 -4.45 0.31 -3.47 0.30 -3.10 0.23 -3.42 0.40
1003 -3.05 0.21 -6.40 0.38 -4.40 0.19 -4.47 0.20 -3.75 0.28
1004 -2.83 0.12 -6.46 0.21 -4.31 0.21 -4.33 0.29 -3.86 0.17
1005 -2.02 0.24 -4.90 0.34 -4.84 0.20 -1.95 0.15 -4.91 0.28
1006 -1.97 0.31 -5.10 0.36 -5.06 0.42 -2.01 0.24 -4.89 0.52
1007 -6.03 0.28 -2.77 0.17 -5.94 0.40 -3.73 0.12 -2.52 0.13
1008 -6.17 0.29 -2.58 0.26 -5.93 0.44 -3.72 0.20 -2.50 0.17
1009 -3.98 0.07 -6.59 0.20 -4.95 0.21 -4.21 0.15 -5.16 0.16
1010 -3.90 0.09 -6.44 0.30 -5.07 0.16 -4.09 0.11 -5.17 0.23
1011 -3.31 0.08 -5.55 0.17 -4.15 0.21 -3.60 0.13 -4.24 0.25
1012 -3.32 0.08 -5.39 0.14 -4.31 0.34 -3.63 0.12 -4.31 0.24
1013 -2.68 0.12 -4.53 0.17 -3.36 0.28 -3.01 0.07 -3.26 0.28
1014 -2.58 0.13 -4.46 0.10 -3.39 0.12 -2.99 0.06 -3.50 0.25
1015 -2.97 0.14 -6.65 0.34 -4.26 0.08 -4.19 0.16 -3.83 0.10
1016 -2.99 0.19 -6.44 0.28 -4.27 0.09 -4.27 0.17 -3.98 0.13
1017 -2.04 0.10 -5.08 0.18 -4.95 0.22 -1.96 0.14 -4.86 0.16
1018 -1.99 0.14 -4.88 0.23 -5.09 0.17 -1.96 0.13 -5.06 0.16
1019 -5.97 0.22 -2.66 0.14 -5.89 0.18 -3.57 0.10 -2.47 0.15
1020 -5.94 0.28 -2.63 0.14 -6.15 0.33 -3.51 0.11 -2.47 0.07
1021 -3.99 0.14 -6.54 0.16 -5.07 0.34 -4.14 0.15 -5.13 0.23
1022 -3.91 0.08 -6.49 0.17 -5.14 0.27 -4.17 0.15 -5.07 0.16
1023 -3.25 0.10 -5.49 0.18 -4.11 0.30 -3.54 0.12 -4.27 0.22
1024 -3.26 0.11 -5.41 0.17 -4.24 0.22 -3.57 0.10 -4.21 0.18
1025 -2.68 0.10 -4.44 0.21 -3.35 0.29 -3.00 0.11 -3.26 0.15
1026 -2.58 0.09 -4.49 0.18 -3.39 0.17 -3.02 0.13 -3.38 0.34
1027 -2.97 0.19 -6.56 0.21 -4.27 0.11 -4.27 0.10 -3.83 0.24
1028 -3.01 0.11 -6.47 0.25 -4.34 0.11 -4.30 0.11 -3.87 0.09
1029 -1.99 0.14 -4.99 0.24 -5.02 0.24 -2.04 0.18 -4.99 0.15
1030 -2.05 0.14 -5.04 0.23 -5.04 0.22 -2.06 0.12 -4.96 0.21
1031 -5.86 0.26 -2.56 0.07 -6.02 0.20 -3.55 0.11 -2.49 0.06
1032 -5.98 0.22 -2.63 0.07 -6.03 0.15 -3.53 0.14 -2.41 0.08
1033 -3.94 0.08 -6.59 0.23 -4.89 0.21 -4.20 0.13 -4.98 0.22
1034 -4.01 0.10 -6.39 0.23 -5.06 0.15 -4.10 0.13 -5.20 0.29
1035 -3.26 0.13 -5.58 0.27 -4.32 0.28 -3.57 0.18 -4.21 0.25
1036 -3.32 0.15 -5.47 0.23 -4.29 0.19 -3.59 0.15 -4.31 0.23
1037 -2.66 0.11 -4.51 0.16 -3.45 0.20 -3.03 0.07 -3.26 0.21
1038 -2.62 0.15 -4.50 0.08 -3.35 0.14 -3.00 0.13 -3.44 0.14
1039 -2.93 0.10 -6.50 0.32 -4.27 0.17 -4.26 0.18 -4.01 0.15
1040 -2.93 0.11 -6.54 0.29 -4.29 0.12 -4.22 0.16 -3.92 0.14
1041 -1.99 0.09 -5.03 0.28 -5.00 0.18 -2.01 0.08 -4.91 0.14
1042 -2.03 0.18 -4.89 0.23 -4.89 0.21 -1.96 0.11 -5.11 0.23
1043 -5.94 0.30 -2.66 0.17 -5.98 0.39 -3.56 0.13 -2.50 0.12
1044 -5.98 0.17 -2.62 0.05 -5.98 0.26 -3.61 0.07 -2.46 0.09
1045 -3.93 0.10 -6.67 0.20 -5.16 0.24 -4.17 0.17 -5.21 0.20
1046 -3.93 0.13 -6.52 0.20 -5.09 0.22 -4.12 0.11 -5.17 0.33
1047 -3.31 0.09 -5.45 0.24 -4.29 0.34 -3.55 0.12 -4.31 0.23
1048 -3.27 0.12 -5.45 0.16 -4.17 0.24 -3.61 0.13 -4.28 0.19
1049 -2.66 0.22 -4.52 0.19 -3.46 0.15 -3.00 0.07 -3.38 0.16
1050 -2.67 0.06 -4.52 0.10 -3.43 0.24 -3.02 0.10 -3.27 0.25
1051 -2.98 0.12 -6.58 0.20 -4.19 0.10 -4.17 0.12 -3.80 0.16
1052 -2.97 0.13 -6.49 0.21 -4.28 0.13 -4.27 0.19 -3.86 0.20
1053 -2.04 0.11 -5.05 0.19 -5.04 0.15 -2.07 0.14 -5.07 0.10
1054 -2.09 0.10 -4.98 0.20 -4.88 0.12 -2.09 0.12 -5.02 0.13
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1055 -6.00 0.24 -2.66 0.15 -5.91 0.31 -3.59 0.12 -2.49 0.08
1056 -5.93 0.19 -2.59 0.18 -5.92 0.29 -3.53 0.07 -2.43 0.05
1057 -3.96 0.03 -6.58 0.16 -5.14 0.28 -4.12 0.06 -5.15 0.12
1058 -3.94 0.06 -6.53 0.09 -5.07 0.20 -4.09 0.06 -5.20 0.18
1059 -3.28 0.07 -5.54 0.16 -4.22 0.14 -3.59 0.04 -4.38 0.15
1060 -3.33 0.07 -5.51 0.08 -4.35 0.25 -3.57 0.08 -4.23 0.21
1061 -2.69 0.11 -4.47 0.11 -3.35 0.19 -3.00 0.06 -3.47 0.18
1062 -2.61 0.08 -4.51 0.12 -3.38 0.15 -2.93 0.06 -3.39 0.25
1063 -2.99 0.06 -6.55 0.12 -4.27 0.11 -4.23 0.05 -3.88 0.16
1064 -3.01 0.07 -6.48 0.15 -4.21 0.10 -4.14 0.11 -3.99 0.10
1065 -1.93 0.11 -5.08 0.08 -5.04 0.10 -1.97 0.12 -4.99 0.17
1066 -2.00 0.12 -4.97 0.13 -4.96 0.13 -1.96 0.09 -4.91 0.09
1067 -6.02 0.13 -2.65 0.08 -5.98 0.17 -3.53 0.10 -2.41 0.07
1068 -6.01 0.13 -2.64 0.11 -5.99 0.17 -3.53 0.08 -2.45 0.08
1069 -3.96 0.05 -6.46 0.11 -5.07 0.12 -4.10 0.09 -5.23 0.16
1070 -3.99 0.06 -6.56 0.19 -5.11 0.22 -4.17 0.07 -5.20 0.18
1071 -3.33 0.10 -5.44 0.14 -4.18 0.23 -3.55 0.10 -4.32 0.24
1072 -3.32 0.06 -5.51 0.13 -4.37 0.14 -3.60 0.11 -4.29 0.21
1073 -2.64 0.11 -4.51 0.12 -3.36 0.10 -3.01 0.08 -3.36 0.15
1074 -2.64 0.08 -4.43 0.10 -3.41 0.10 -2.97 0.05 -3.47 0.13
1075 -3.03 0.06 -6.48 0.17 -4.28 0.11 -4.19 0.04 -3.86 0.19
1076 -3.00 0.09 -6.55 0.19 -4.22 0.13 -4.24 0.09 -3.83 0.13
1077 -1.99 0.10 -5.01 0.14 -5.00 0.10 -1.97 0.10 -4.95 0.08
1078 -1.97 0.12 -5.02 0.16 -5.04 0.15 -1.97 0.11 -4.98 0.15
1079 -5.96 0.11 -2.67 0.10 -5.89 0.24 -3.49 0.07 -2.41 0.05
1080 -5.99 0.11 -2.68 0.06 -6.08 0.19 -3.53 0.07 -2.42 0.09
1081 -3.98 0.06 -6.48 0.21 -5.03 0.24 -4.08 0.07 -5.17 0.15
1082 -3.97 0.06 -6.53 0.12 -5.06 0.17 -4.14 0.09 -5.18 0.24
1083 -3.34 0.06 -5.55 0.10 -4.24 0.17 -3.59 0.10 -4.40 0.16
1084 -3.29 0.06 -5.52 0.09 -4.20 0.17 -3.52 0.10 -4.28 0.17
1085 -2.61 0.11 -4.53 0.10 -3.38 0.17 -2.99 0.09 -3.41 0.17
1086 -2.63 0.06 -4.51 0.10 -3.32 0.14 -2.96 0.09 -3.38 0.17
1087 -2.96 0.09 -6.51 0.15 -4.22 0.09 -4.19 0.07 -3.92 0.13
1088 -3.01 0.10 -6.53 0.18 -4.22 0.08 -4.23 0.09 -3.89 0.12
1089 -1.94 0.08 -5.05 0.17 -5.00 0.21 -1.99 0.12 -5.11 0.23
1090 -1.99 0.10 -5.10 0.24 -5.01 0.13 -1.98 0.11 -4.94 0.20
1091 -6.01 0.16 -2.67 0.10 -5.89 0.18 -3.47 0.08 -2.41 0.05
1092 -6.03 0.17 -2.69 0.09 -5.94 0.23 -3.53 0.08 -2.44 0.06
1093 -3.96 0.07 -6.48 0.16 -5.12 0.13 -4.11 0.06 -5.19 0.13
1094 -3.96 0.05 -6.47 0.15 -5.00 0.16 -4.09 0.08 -5.24 0.10
1095 -3.33 0.05 -5.47 0.17 -4.22 0.22 -3.54 0.09 -4.26 0.13
1096 -3.33 0.06 -5.39 0.09 -4.19 0.13 -3.54 0.09 -4.28 0.14
1097 -2.64 0.11 -4.49 0.07 -3.26 0.17 -2.97 0.07 -3.48 0.10
1098 -2.56 0.12 -4.57 0.10 -3.39 0.09 -2.98 0.07 -3.38 0.18
1099 -2.95 0.10 -6.52 0.20 -4.24 0.13 -4.19 0.13 -3.88 0.12
1100 -2.98 0.06 -6.48 0.11 -4.24 0.07 -4.21 0.11 -3.90 0.11
1101 -2.03 0.13 -4.89 0.14 -4.98 0.14 -1.97 0.09 -4.94 0.17
1102 -1.99 0.10 -5.07 0.18 -5.04 0.18 -1.98 0.10 -4.97 0.08
1103 -6.01 0.12 -2.62 0.12 -6.04 0.14 -3.50 0.05 -2.38 0.06
1104 -5.90 0.14 -2.70 0.11 -6.04 0.18 -3.52 0.08 -2.44 0.08
1105 -3.98 0.03 -6.43 0.11 -5.15 0.13 -4.07 0.03 -5.25 0.10
1106 -3.99 0.04 -6.50 0.10 -5.07 0.11 -4.06 0.07 -5.20 0.12
1107 -3.35 0.05 -5.50 0.06 -4.21 0.11 -3.48 0.08 -4.33 0.09
1108 -3.33 0.06 -5.47 0.09 -4.29 0.08 -3.54 0.06 -4.34 0.13
1109 -2.69 0.08 -4.46 0.11 -3.34 0.06 -2.96 0.04 -3.42 0.10
1110 -2.67 0.09 -4.48 0.06 -3.38 0.09 -2.98 0.06 -3.38 0.12
1111 -3.02 0.06 -6.50 0.14 -4.21 0.07 -4.17 0.06 -3.86 0.07
1112 -2.98 0.05 -6.47 0.09 -4.29 0.08 -4.17 0.09 -3.89 0.10
1113 -1.96 0.05 -5.04 0.07 -5.00 0.13 -1.94 0.06 -5.04 0.11
1114 -1.99 0.07 -5.02 0.08 -5.00 0.14 -1.98 0.05 -4.94 0.16
1115 -6.01 0.06 -2.67 0.09 -5.98 0.12 -3.50 0.05 -2.41 0.02
1116 -5.99 0.09 -2.65 0.06 -6.00 0.13 -3.51 0.05 -2.43 0.04
1117 -3.99 0.02 -6.50 0.11 -5.01 0.12 -4.05 0.08 -5.19 0.10
1118 -3.97 0.05 -6.52 0.12 -4.99 0.10 -4.09 0.06 -5.20 0.10
1119 -3.28 0.08 -5.55 0.08 -4.27 0.13 -3.54 0.05 -4.24 0.07
1120 -3.29 0.05 -5.50 0.07 -4.20 0.12 -3.52 0.04 -4.38 0.08
1121 -2.68 0.03 -4.48 0.05 -3.49 0.13 -2.98 0.03 -3.43 0.07
1122 -2.62 0.05 -4.57 0.07 -3.41 0.13 -2.97 0.04 -3.42 0.11
1123 -2.99 0.07 -6.46 0.16 -4.25 0.05 -4.19 0.07 -3.93 0.06
1124 -2.99 0.06 -6.49 0.10 -4.27 0.09 -4.16 0.09 -3.95 0.07
1125 -2.03 0.06 -5.00 0.11 -4.99 0.10 -2.02 0.09 -5.05 0.10
1126 -2.04 0.06 -4.97 0.13 -5.02 0.09 -1.99 0.06 -4.99 0.13
1127 -5.98 0.09 -2.67 0.06 -5.96 0.17 -3.51 0.04 -2.43 0.03
1128 -6.00 0.11 -2.66 0.05 -6.00 0.16 -3.49 0.06 -2.42 0.05
1129 -4.00 0.03 -6.54 0.08 -5.14 0.12 -4.09 0.05 -5.21 0.11
1130 -3.98 0.03 -6.54 0.10 -5.11 0.16 -4.10 0.05 -5.22 0.10
1131 -3.33 0.05 -5.48 0.10 -4.32 0.08 -3.52 0.04 -4.38 0.17
1132 -3.34 0.06 -5.46 0.07 -4.27 0.11 -3.54 0.05 -4.35 0.10
1133 -2.68 0.10 -4.48 0.05 -3.44 0.12 -2.97 0.04 -3.42 0.07
1134 -2.68 0.06 -4.47 0.09 -3.37 0.09 -2.95 0.08 -3.43 0.08
1135 -2.98 0.06 -6.46 0.06 -4.27 0.06 -4.21 0.07 -3.91 0.05
1136 -3.04 0.05 -6.51 0.10 -4.26 0.07 -4.20 0.07 -3.91 0.11
1137 -1.97 0.07 -4.96 0.14 -5.05 0.10 -1.99 0.09 -4.99 0.11
1138 -1.99 0.05 -4.97 0.08 -4.99 0.14 -1.99 0.05 -4.99 0.07
1139 -5.97 0.17 -2.65 0.07 -6.06 0.12 -3.51 0.06 -2.44 0.02
1140 -6.01 0.10 -2.67 0.08 -5.96 0.11 -3.52 0.06 -2.43 0.04
1141 -3.99 0.03 -6.49 0.06 -5.02 0.12 -4.05 0.04 -5.23 0.10
1142 -3.99 0.04 -6.48 0.10 -5.09 0.12 -4.10 0.05 -5.22 0.11
1143 -3.36 0.04 -5.48 0.07 -4.18 0.08 -3.51 0.03 -4.30 0.13
1144 -3.30 0.03 -5.52 0.05 -4.28 0.09 -3.51 0.06 -4.30 0.14
1145 -2.62 0.07 -4.53 0.08 -3.40 0.09 -2.95 0.07 -3.44 0.15
1146 -2.64 0.04 -4.51 0.08 -3.45 0.15 -2.96 0.05 -3.37 0.14
1147 -2.99 0.07 -6.54 0.11 -4.27 0.08 -4.24 0.09 -3.92 0.10
1148 -3.00 0.08 -6.52 0.11 -4.24 0.09 -4.17 0.05 -3.89 0.10
1149 -1.97 0.05 -5.02 0.11 -4.99 0.08 -1.98 0.06 -5.07 0.13
1150 -1.98 0.07 -5.00 0.14 -4.98 0.15 -2.01 0.09 -5.04 0.11
1151 -5.99 0.06 -2.70 0.06 -6.06 0.21 -3.55 0.04 -2.45 0.05
1152 -5.94 0.08 -2.65 0.03 -5.93 0.15 -3.51 0.04 -2.43 0.06
1153 -3.28 0.31 -5.85 0.31 -5.25 0.70 -5.41 0.56 -3.70 0.74
1154 -3.07 0.31 -6.86 0.61 -4.68 0.72 -5.85 0.54 -4.16 0.60
1155 -2.78 0.57 -4.56 0.58 -5.11 1.08 -5.03 0.55 -2.62 1.01
1156 -2.32 0.25 -5.64 0.64 -3.68 0.53 -4.40 0.30 -3.17 0.84
1157 -2.18 0.42 -3.58 0.69 -4.63 1.18 -4.17 0.41 -2.41 0.85
1158 -1.41 0.38 -4.57 0.43 -3.48 0.84 -3.31 0.47 -2.62 0.67
1159 -3.13 0.47 -5.90 0.66 -3.83 0.50 -4.09 1.04 -3.25 0.49
1160 -2.07 0.76 -7.75 0.40 -4.52 0.63 -5.05 0.70 -3.49 0.41
1161 -2.23 0.62 -5.65 0.73 -4.35 0.75 -1.99 0.59 -3.84 1.05
1162 -0.85 0.35 -6.95 1.00 -4.97 0.39 -1.33 0.48 -5.05 0.31
1163 -4.63 1.01 -1.93 0.69 -5.24 0.82 -4.61 0.39 -2.46 0.36
1164 -6.18 0.66 -2.43 0.24 -6.31 0.90 -4.48 0.47 -2.66 0.34
1165 -3.30 0.25 -6.05 0.65 -5.33 1.04 -5.72 0.36 -3.82 0.73
1166 -3.04 0.26 -6.86 0.48 -4.83 0.70 -5.65 0.53 -4.46 0.62
1167 -2.63 0.42 -4.73 0.56 -5.15 0.71 -4.97 0.32 -2.85 0.98
1168 -2.37 0.34 -5.64 0.59 -3.94 0.78 -4.70 0.36 -2.93 0.61
1169 -2.32 0.54 -3.30 0.51 -4.83 0.93 -4.12 0.63 -2.52 0.85
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1170 -1.38 0.37 -4.58 0.39 -3.19 1.19 -3.47 0.44 -2.22 0.76
1171 -2.99 0.34 -5.85 0.52 -3.81 0.35 -4.46 0.80 -4.04 0.57
1172 -2.06 0.55 -7.58 0.99 -4.48 0.57 -4.86 0.82 -3.31 0.78
1173 -2.23 0.72 -5.79 0.97 -4.33 1.02 -2.42 0.51 -3.79 1.21
1174 -1.02 0.38 -6.03 0.57 -5.16 0.60 -1.59 0.41 -5.02 0.64
1175 -5.15 1.21 -2.29 0.58 -5.55 0.93 -4.33 0.58 -2.61 0.33
1176 -6.62 1.18 -2.16 0.63 -6.95 1.32 -4.60 0.55 -2.66 0.27
1177 -3.34 0.28 -6.30 0.63 -5.80 0.83 -5.40 0.21 -3.39 0.87
1178 -3.19 0.20 -7.06 0.69 -4.32 0.69 -5.85 0.40 -3.82 0.80
1179 -2.61 0.48 -5.01 0.38 -4.60 1.03 -5.25 0.74 -2.66 0.40
1180 -2.51 0.27 -5.64 0.49 -4.19 0.74 -4.49 0.66 -3.10 0.60
1181 -2.25 0.52 -3.61 0.68 -4.35 0.79 -4.18 0.56 -2.44 0.72
1182 -1.55 0.31 -4.44 0.53 -3.39 0.93 -3.71 0.64 -2.58 0.65
1183 -2.88 0.53 -6.12 0.85 -4.20 0.42 -4.25 0.51 -3.62 0.47
1184 -2.39 0.54 -7.08 0.94 -4.39 0.43 -5.74 0.74 -3.32 0.57
1185 -2.46 0.38 -5.70 0.62 -3.91 1.10 -2.35 0.45 -4.13 0.85
1186 -1.45 0.49 -6.62 0.99 -4.88 0.44 -1.33 0.37 -5.08 0.62
1187 -4.64 0.88 -2.11 0.76 -5.52 1.08 -4.40 0.66 -2.83 0.32
1188 -6.91 0.80 -2.30 0.65 -7.30 1.24 -4.79 0.64 -2.54 0.37
1189 -3.33 0.23 -6.63 0.68 -5.00 0.96 -5.31 0.39 -3.63 0.65
1190 -3.03 0.11 -7.02 0.61 -4.82 0.64 -6.01 0.48 -4.10 0.82
1191 -2.68 0.49 -5.15 0.91 -4.68 0.83 -4.91 0.47 -2.78 0.55
1192 -2.45 0.56 -5.62 0.43 -4.19 0.46 -4.66 0.83 -3.32 0.72
1193 -2.44 0.43 -3.56 0.50 -4.35 1.09 -4.14 0.58 -2.32 1.01
1194 -1.57 0.29 -4.64 0.56 -2.83 0.55 -3.75 0.57 -2.64 0.58
1195 -2.78 0.39 -6.65 0.51 -4.21 0.59 -4.74 0.63 -3.45 0.35
1196 -2.27 0.36 -7.03 0.60 -4.40 0.47 -4.45 0.54 -3.62 0.62
1197 -2.31 0.62 -5.34 0.92 -3.85 0.91 -2.04 0.17 -4.80 0.65
1198 -2.17 0.53 -5.38 0.69 -4.56 0.77 -1.71 0.40 -4.88 0.84
1199 -5.39 0.89 -1.96 0.53 -6.12 0.85 -4.20 0.41 -2.79 0.27
1200 -6.21 0.80 -2.17 0.42 -6.78 1.28 -4.61 0.47 -2.66 0.20
1201 -3.26 0.21 -5.94 0.39 -5.47 0.52 -5.29 0.23 -4.02 0.39
1202 -3.22 0.15 -6.27 0.49 -5.04 0.51 -5.33 0.41 -4.33 0.43
1203 -2.82 0.29 -4.58 0.45 -4.42 0.63 -4.76 0.29 -3.54 0.53
1204 -2.50 0.22 -5.35 0.26 -4.27 0.64 -4.50 0.37 -3.27 0.65
1205 -2.18 0.27 -3.77 0.35 -3.50 0.51 -4.15 0.28 -2.84 0.76
1206 -1.64 0.41 -4.36 0.25 -3.06 0.69 -3.74 0.27 -2.52 0.64
1207 -3.12 0.38 -5.90 0.52 -3.83 0.35 -4.83 0.55 -3.34 0.46
1208 -2.13 0.53 -7.41 0.71 -4.55 0.31 -5.29 0.71 -3.55 0.38
1209 -1.72 0.54 -5.99 0.28 -4.79 0.36 -1.51 0.16 -4.52 0.55
1210 -1.21 0.45 -6.56 0.90 -5.40 0.36 -1.21 0.51 -4.66 0.43
1211 -5.01 1.00 -2.37 0.52 -5.09 0.72 -4.49 0.56 -2.45 0.32
1212 -6.14 0.68 -2.76 0.43 -6.12 0.51 -4.37 0.40 -2.43 0.43
1213 -3.40 0.22 -6.16 0.64 -5.15 0.48 -5.45 0.23 -4.20 0.35
1214 -3.26 0.20 -6.08 0.41 -5.02 0.71 -5.43 0.35 -4.56 0.49
1215 -2.85 0.27 -4.71 0.56 -4.74 0.81 -5.00 0.39 -3.57 0.59
1216 -2.42 0.23 -5.24 0.38 -4.08 0.38 -4.58 0.37 -3.63 0.64
1217 -2.21 0.36 -3.79 0.44 -3.94 0.57 -4.01 0.36 -2.68 0.64
1218 -1.55 0.21 -4.38 0.28 -3.31 0.46 -3.64 0.48 -2.79 0.41
1219 -2.89 0.36 -6.75 0.59 -4.08 0.39 -4.81 0.39 -3.35 0.36
1220 -2.57 0.53 -6.84 1.02 -4.55 0.40 -4.83 0.77 -3.66 0.44
1221 -2.05 0.44 -5.86 0.75 -5.01 0.43 -1.46 0.28 -4.32 0.68
1222 -1.49 0.63 -6.62 0.64 -5.04 0.36 -1.45 0.61 -4.49 0.50
1223 -4.83 1.23 -2.54 0.35 -5.87 0.54 -4.49 0.40 -2.60 0.33
1224 -6.61 0.65 -2.49 0.23 -6.70 0.43 -4.76 0.46 -2.56 0.28
1225 -3.23 0.18 -6.13 0.21 -5.08 0.40 -5.56 0.20 -3.94 0.51
1226 -3.31 0.28 -6.49 0.51 -5.08 0.85 -5.41 0.43 -4.23 0.42
1227 -2.78 0.13 -4.90 0.50 -4.49 0.68 -4.63 0.46 -3.50 0.39
1228 -2.56 0.15 -5.38 0.26 -3.97 0.51 -4.61 0.31 -3.38 0.65
1229 -2.33 0.27 -3.83 0.41 -3.81 0.67 -3.81 0.21 -2.99 0.48
1230 -1.84 0.37 -4.27 0.32 -3.21 0.87 -3.88 0.40 -2.55 0.58
1231 -2.69 0.29 -6.51 0.56 -4.19 0.37 -4.73 0.38 -3.59 0.44
1232 -2.57 0.39 -6.98 0.60 -4.28 0.29 -4.92 0.36 -3.58 0.49
1233 -2.15 0.33 -5.46 0.67 -4.66 0.59 -2.06 0.31 -4.47 0.63
1234 -1.78 0.51 -5.98 0.61 -5.25 0.27 -1.36 0.37 -4.75 0.52
1235 -5.90 0.89 -2.09 0.37 -6.06 0.76 -4.43 0.73 -2.57 0.27
1236 -6.32 0.53 -2.64 0.24 -6.26 0.50 -4.54 0.40 -2.41 0.31
1237 -3.33 0.27 -6.11 0.55 -5.50 0.73 -5.31 0.32 -4.05 0.54
1238 -3.25 0.22 -6.54 0.57 -5.01 0.57 -5.46 0.35 -4.12 0.54
1239 -2.90 0.25 -5.31 0.24 -4.68 0.82 -4.73 0.31 -3.06 0.51
1240 -2.42 0.35 -5.68 0.25 -4.05 0.49 -4.57 0.31 -3.36 0.54
1241 -2.05 0.39 -4.13 0.30 -3.98 1.02 -3.63 0.32 -2.64 0.44
1242 -2.06 0.23 -4.52 0.45 -2.80 0.83 -3.95 0.29 -2.69 0.36
1243 -2.77 0.26 -6.52 0.31 -4.39 0.30 -5.09 0.55 -3.42 0.44
1244 -2.68 0.25 -6.49 0.50 -4.62 0.38 -5.55 0.40 -3.46 0.44
1245 -2.24 0.58 -5.39 0.38 -4.33 0.70 -2.15 0.28 -4.10 0.61
1246 -1.86 0.52 -5.37 0.40 -5.13 0.60 -1.72 0.34 -4.82 0.60
1247 -5.44 0.50 -2.48 0.67 -5.96 0.74 -4.51 0.31 -2.74 0.15
1248 -6.06 0.60 -2.22 0.24 -6.13 0.62 -4.60 0.40 -2.55 0.22
1249 -3.30 0.13 -6.07 0.50 -5.05 0.27 -5.41 0.21 -4.38 0.37
1250 -3.25 0.19 -6.26 0.27 -5.20 0.34 -5.55 0.19 -4.16 0.50
1251 -2.47 0.19 -5.07 0.15 -4.60 0.50 -4.57 0.30 -3.66 0.26
1252 -2.50 0.19 -5.20 0.35 -4.23 0.66 -4.60 0.20 -3.44 0.41
1253 -2.14 0.31 -3.84 0.25 -3.68 0.42 -3.93 0.12 -2.67 0.46
1254 -1.84 0.33 -4.26 0.14 -3.36 0.36 -3.76 0.33 -2.72 0.55
1255 -3.05 0.50 -6.32 0.85 -4.14 0.21 -4.95 0.34 -3.75 0.45
1256 -2.56 0.32 -7.17 0.64 -4.47 0.21 -5.13 0.40 -3.51 0.31
1257 -2.02 0.54 -5.52 0.64 -5.20 0.38 -1.48 0.41 -4.14 0.63
1258 -1.17 0.32 -6.37 0.68 -5.20 0.56 -1.25 0.37 -4.69 0.47
1259 -5.55 0.90 -2.34 0.26 -6.22 0.65 -4.56 0.38 -2.49 0.28
1260 -6.57 0.42 -2.50 0.24 -6.13 0.62 -4.67 0.27 -2.41 0.20
1261 -3.29 0.10 -6.06 0.25 -4.99 0.38 -5.47 0.17 -4.24 0.43
1262 -3.31 0.19 -6.13 0.55 -5.13 0.51 -5.63 0.32 -4.32 0.41
1263 -2.73 0.16 -4.98 0.22 -4.55 0.38 -4.54 0.23 -3.64 0.39
1264 -2.62 0.13 -5.12 0.22 -4.35 0.43 -4.71 0.23 -3.65 0.64
1265 -2.23 0.22 -3.94 0.22 -3.64 0.20 -4.04 0.28 -2.73 0.55
1266 -1.92 0.24 -4.28 0.28 -3.52 0.32 -3.91 0.20 -2.46 0.25
1267 -2.96 0.46 -6.14 0.99 -4.23 0.27 -4.83 0.46 -3.56 0.37
1268 -2.47 0.29 -7.20 0.42 -4.51 0.21 -5.12 0.33 -3.34 0.36
1269 -1.84 0.62 -5.86 0.62 -5.17 0.28 -1.54 0.38 -4.37 0.46
1270 -1.50 0.52 -6.28 0.81 -5.29 0.56 -1.13 0.42 -4.81 0.41
1271 -5.36 0.75 -2.61 0.37 -5.93 0.62 -4.69 0.20 -2.53 0.15
1272 -5.97 0.78 -2.55 0.18 -5.96 0.69 -4.51 0.29 -2.37 0.23
1273 -3.26 0.16 -6.44 0.28 -5.08 0.35 -5.50 0.17 -4.06 0.31
1274 -3.26 0.12 -6.39 0.31 -4.87 0.30 -5.46 0.19 -4.39 0.25
1275 -2.64 0.25 -5.12 0.23 -4.17 0.28 -4.72 0.15 -3.63 0.46
1276 -2.51 0.26 -5.35 0.30 -4.40 0.35 -4.52 0.20 -3.40 0.41
1277 -2.07 0.26 -4.16 0.27 -3.44 0.48 -3.84 0.20 -2.88 0.46
1278 -1.91 0.28 -4.40 0.27 -3.46 0.36 -3.82 0.35 -2.51 0.42
1279 -2.93 0.22 -6.30 0.32 -4.33 0.30 -5.12 0.37 -3.63 0.26
1280 -2.85 0.17 -6.67 0.62 -4.46 0.23 -5.34 0.56 -3.42 0.39
1281 -2.09 0.47 -5.59 0.39 -5.07 0.46 -1.59 0.19 -4.32 0.49
1282 -1.83 0.54 -5.73 0.33 -5.01 0.33 -1.36 0.25 -4.82 0.37
1283 -5.81 0.42 -2.42 0.23 -6.08 0.44 -4.46 0.17 -2.58 0.16
1284 -5.80 0.54 -2.44 0.26 -6.37 0.59 -4.65 0.33 -2.51 0.22



9.3. Scores & Deviations 177

1285 -3.43 0.17 -6.44 0.35 -4.80 0.36 -5.43 0.31 -4.20 0.40
1286 -3.29 0.13 -6.23 0.23 -4.96 0.38 -5.53 0.21 -4.33 0.27
1287 -2.59 0.15 -5.30 0.33 -4.51 0.41 -4.51 0.29 -3.44 0.48
1288 -2.72 0.22 -5.40 0.19 -4.08 0.57 -4.46 0.21 -3.24 0.54
1289 -2.12 0.15 -4.16 0.14 -3.53 0.48 -3.78 0.27 -2.54 0.34
1290 -2.20 0.21 -4.26 0.26 -3.06 0.68 -3.90 0.15 -2.80 0.45
1291 -2.99 0.24 -6.53 0.29 -4.30 0.33 -5.24 0.30 -3.50 0.36
1292 -2.92 0.26 -6.50 0.31 -4.46 0.29 -5.22 0.41 -3.51 0.23
1293 -2.00 0.33 -5.35 0.39 -4.94 0.23 -1.90 0.19 -4.58 0.35
1294 -1.96 0.49 -5.26 0.36 -5.35 0.64 -1.76 0.30 -4.67 0.35
1295 -5.71 0.46 -2.29 0.33 -5.92 0.40 -4.57 0.17 -2.65 0.19
1296 -6.03 0.35 -2.32 0.18 -6.07 0.49 -4.59 0.26 -2.61 0.24
1297 -3.34 0.13 -6.08 0.36 -5.05 0.30 -5.47 0.27 -4.49 0.34
1298 -3.26 0.10 -6.29 0.28 -5.01 0.20 -5.56 0.20 -4.34 0.33
1299 -2.70 0.21 -5.05 0.35 -4.36 0.23 -4.70 0.11 -3.58 0.36
1300 -2.70 0.21 -5.22 0.17 -4.29 0.40 -4.61 0.20 -3.41 0.37
1301 -2.07 0.20 -3.98 0.18 -3.75 0.44 -3.91 0.20 -2.71 0.39
1302 -1.94 0.23 -4.16 0.24 -3.51 0.40 -3.87 0.22 -2.81 0.38
1303 -2.98 0.25 -6.31 0.50 -4.36 0.16 -5.29 0.36 -3.52 0.35
1304 -2.61 0.39 -6.77 0.80 -4.46 0.15 -5.13 0.21 -3.37 0.43
1305 -1.71 0.48 -6.03 0.26 -5.04 0.25 -1.25 0.26 -4.44 0.40
1306 -1.43 0.61 -6.48 0.30 -5.12 0.21 -0.89 0.25 -4.67 0.41
1307 -5.53 0.69 -2.42 0.19 -5.81 0.34 -4.49 0.10 -2.51 0.15
1308 -6.60 0.79 -2.69 0.22 -6.19 0.52 -4.63 0.20 -2.37 0.18
1309 -3.33 0.14 -6.19 0.25 -5.04 0.37 -5.33 0.19 -4.46 0.18
1310 -3.34 0.12 -6.21 0.16 -5.06 0.33 -5.47 0.19 -4.47 0.22
1311 -2.64 0.19 -5.19 0.27 -4.27 0.32 -4.72 0.15 -3.68 0.30
1312 -2.57 0.11 -5.27 0.23 -4.31 0.31 -4.61 0.18 -3.67 0.38
1313 -1.98 0.22 -4.15 0.17 -3.42 0.26 -3.88 0.15 -2.67 0.47
1314 -2.02 0.17 -4.11 0.18 -3.50 0.47 -3.77 0.15 -3.03 0.44
1315 -2.83 0.25 -6.60 0.40 -4.29 0.24 -4.94 0.35 -3.34 0.41
1316 -2.80 0.41 -6.71 0.60 -4.38 0.17 -5.26 0.20 -3.41 0.19
1317 -1.49 0.24 -5.84 0.49 -5.17 0.37 -1.44 0.26 -4.62 0.27
1318 -1.49 0.44 -6.10 0.48 -5.24 0.26 -1.36 0.37 -4.69 0.33
1319 -5.62 0.71 -2.49 0.17 -6.00 0.49 -4.54 0.27 -2.56 0.20
1320 -6.11 0.66 -2.48 0.17 -6.03 0.41 -4.53 0.25 -2.43 0.15
1321 -3.28 0.10 -6.16 0.25 -5.16 0.28 -5.49 0.16 -4.43 0.21
1322 -3.27 0.09 -6.28 0.19 -5.02 0.21 -5.41 0.10 -4.46 0.19
1323 -2.56 0.19 -5.27 0.17 -4.31 0.29 -4.61 0.18 -3.47 0.26
1324 -2.57 0.15 -5.27 0.21 -4.26 0.32 -4.49 0.21 -3.83 0.23
1325 -2.06 0.29 -4.11 0.26 -3.42 0.45 -3.93 0.11 -3.00 0.31
1326 -1.92 0.15 -4.30 0.21 -3.34 0.33 -3.85 0.18 -2.88 0.32
1327 -2.84 0.27 -6.47 0.44 -4.46 0.21 -5.13 0.22 -3.33 0.27
1328 -2.95 0.17 -6.47 0.38 -4.47 0.12 -5.19 0.16 -3.46 0.29
1329 -1.75 0.34 -5.40 0.12 -5.18 0.29 -1.57 0.28 -4.61 0.33
1330 -1.70 0.23 -5.64 0.37 -5.36 0.27 -1.40 0.25 -4.50 0.23
1331 -5.96 0.45 -2.44 0.17 -6.03 0.51 -4.53 0.23 -2.40 0.13
1332 -6.10 0.54 -2.52 0.13 -6.02 0.48 -4.49 0.15 -2.43 0.11
1333 -3.33 0.13 -6.48 0.20 -4.97 0.21 -5.39 0.17 -4.24 0.27
1334 -3.29 0.12 -6.33 0.21 -4.94 0.30 -5.38 0.25 -4.47 0.28
1335 -2.61 0.17 -5.32 0.17 -4.23 0.24 -4.57 0.21 -3.62 0.24
1336 -2.60 0.19 -5.42 0.17 -4.10 0.31 -4.56 0.12 -3.46 0.26
1337 -2.15 0.23 -4.22 0.22 -3.41 0.30 -3.84 0.19 -2.73 0.25
1338 -1.99 0.20 -4.40 0.18 -3.38 0.33 -3.66 0.16 -2.60 0.26
1339 -2.86 0.21 -6.42 0.42 -4.38 0.17 -5.29 0.33 -3.57 0.23
1340 -2.97 0.11 -6.56 0.18 -4.49 0.14 -5.36 0.26 -3.44 0.25
1341 -2.09 0.45 -5.26 0.28 -5.17 0.30 -1.72 0.13 -4.52 0.19
1342 -1.98 0.18 -5.34 0.29 -5.16 0.23 -1.68 0.14 -4.80 0.27
1343 -5.88 0.23 -2.47 0.11 -6.01 0.32 -4.60 0.17 -2.65 0.19
1344 -6.26 0.32 -2.51 0.21 -6.29 0.46 -4.67 0.18 -2.58 0.17
1345 -3.27 0.53 -6.14 0.74 -4.56 0.66 -5.95 0.52 -2.97 0.84
1346 -2.97 0.52 -6.39 0.82 -4.65 0.49 -6.13 0.70 -3.19 0.94
1347 -3.14 0.47 -4.56 0.75 -3.61 0.97 -5.12 0.65 -2.61 0.76
1348 -2.23 0.39 -5.47 0.75 -3.89 0.93 -5.35 0.47 -2.76 0.76
1349 -2.00 0.47 -4.33 0.45 -2.95 0.84 -4.70 0.58 -1.19 0.53
1350 -1.83 0.66 -4.13 0.66 -3.13 0.70 -4.37 0.50 -2.33 0.94
1351 -2.86 0.33 -6.16 1.08 -4.48 0.40 -5.82 0.90 -3.29 0.64
1352 -2.53 0.42 -6.68 1.04 -4.95 0.53 -6.85 1.14 -3.11 0.44
1353 -2.34 0.74 -5.07 0.93 -5.18 0.43 -2.04 0.69 -4.75 1.45
1354 -1.64 0.60 -5.77 0.73 -5.16 0.69 -1.79 0.43 -4.88 0.80
1355 -5.78 0.86 -2.23 0.79 -5.62 0.88 -5.77 0.90 -2.61 0.46
1356 -6.06 0.60 -2.76 0.45 -5.49 0.80 -5.53 0.68 -2.55 0.24
1357 -3.08 0.23 -6.21 0.55 -5.02 0.62 -6.25 0.83 -2.89 0.60
1358 -2.91 0.41 -6.98 0.74 -4.49 0.93 -6.34 0.53 -3.34 0.98
1359 -2.55 0.41 -5.19 0.89 -3.93 0.55 -5.10 0.71 -2.72 0.73
1360 -2.20 0.52 -5.68 0.64 -4.26 0.81 -5.51 0.64 -2.78 0.62
1361 -2.15 0.42 -4.39 0.42 -2.91 0.65 -4.19 0.85 -2.01 1.15
1362 -1.74 0.37 -4.56 0.52 -3.29 0.71 -4.14 0.38 -2.12 1.08
1363 -2.78 0.48 -6.31 0.85 -4.85 0.36 -5.85 0.92 -3.29 0.51
1364 -2.58 0.41 -7.15 0.57 -4.46 0.37 -6.75 0.60 -3.18 0.45
1365 -1.78 0.47 -5.17 0.96 -4.89 0.33 -1.90 0.30 -4.64 0.93
1366 -2.10 0.44 -5.81 0.56 -4.90 0.75 -1.87 0.70 -4.78 0.80
1367 -5.49 1.17 -2.63 0.54 -5.84 1.15 -5.66 0.58 -2.69 0.17
1368 -6.79 0.62 -2.42 0.37 -6.42 0.82 -5.73 0.70 -2.31 0.34
1369 -2.99 0.42 -6.32 1.07 -4.59 0.76 -6.24 0.70 -3.18 0.70
1370 -3.21 0.27 -6.47 0.96 -4.55 0.62 -6.44 0.53 -3.50 0.74
1371 -2.69 0.57 -5.07 0.87 -3.90 1.05 -5.05 0.70 -2.79 0.92
1372 -2.48 0.52 -5.31 0.72 -3.81 1.07 -4.82 0.71 -2.75 0.95
1373 -2.07 0.59 -4.46 0.70 -3.18 0.73 -4.24 0.33 -1.99 0.75
1374 -1.71 0.36 -4.55 0.75 -3.61 1.00 -4.24 0.62 -1.48 0.70
1375 -2.99 0.47 -6.48 0.78 -4.47 0.71 -5.58 0.80 -3.44 0.53
1376 -2.62 0.59 -6.85 0.63 -4.56 0.56 -5.89 1.25 -2.76 0.54
1377 -2.09 0.45 -4.83 0.50 -5.31 0.64 -1.95 0.55 -4.43 0.36
1378 -2.11 0.61 -4.92 0.76 -4.74 0.64 -1.67 0.60 -5.16 0.58
1379 -5.73 0.84 -2.54 0.49 -6.04 0.77 -5.74 0.81 -2.67 0.19
1380 -6.28 0.78 -2.78 0.38 -5.41 0.92 -5.78 0.53 -2.57 0.32
1381 -2.85 0.36 -6.71 0.69 -4.64 0.73 -6.21 0.66 -2.78 0.76
1382 -2.94 0.37 -6.73 0.32 -4.99 0.45 -6.18 0.54 -3.23 0.52
1383 -2.42 0.60 -5.35 0.41 -3.73 0.69 -5.11 0.50 -2.14 0.29
1384 -1.97 0.35 -5.93 0.40 -4.35 0.81 -6.01 0.54 -2.63 0.45
1385 -1.57 0.47 -4.36 0.49 -3.11 0.60 -4.10 0.61 -1.82 0.46
1386 -1.81 0.64 -4.45 0.46 -2.75 0.86 -4.44 0.63 -2.15 0.68
1387 -2.79 0.44 -6.23 0.83 -4.50 0.48 -6.12 0.65 -3.39 0.57
1388 -2.77 0.27 -6.65 0.56 -4.59 0.41 -6.76 0.75 -3.17 0.39
1389 -2.02 0.39 -4.81 0.85 -4.53 0.45 -2.36 0.39 -4.53 0.78
1390 -1.90 0.42 -4.89 0.56 -4.75 0.68 -2.07 0.53 -5.45 0.85
1391 -6.27 0.52 -2.29 0.62 -6.19 0.77 -5.65 0.36 -2.64 0.26
1392 -5.83 0.53 -2.53 0.48 -5.88 0.82 -5.96 0.56 -2.64 0.22
1393 -3.15 0.33 -6.41 0.48 -4.65 0.68 -6.14 0.35 -3.20 0.71
1394 -3.10 0.29 -6.41 0.56 -4.29 0.35 -6.12 0.42 -3.46 0.65
1395 -2.50 0.21 -5.07 0.54 -3.98 0.56 -5.43 0.38 -2.90 0.51
1396 -2.38 0.35 -5.41 0.74 -3.70 0.48 -5.08 0.35 -2.92 0.60
1397 -1.82 0.21 -4.33 0.29 -3.26 0.49 -4.21 0.51 -1.85 0.69
1398 -1.83 0.31 -4.34 0.30 -2.54 0.52 -4.13 0.43 -2.09 0.45
1399 -2.98 0.30 -6.39 0.52 -4.42 0.24 -6.34 0.49 -3.19 0.41
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1400 -2.76 0.37 -6.37 0.41 -4.50 0.31 -6.33 0.38 -3.25 0.49
1401 -1.93 0.42 -5.18 0.62 -5.14 0.65 -1.75 0.38 -4.44 0.41
1402 -1.84 0.23 -5.64 0.71 -5.10 0.31 -1.61 0.22 -4.61 0.81
1403 -6.26 0.57 -2.51 0.28 -5.99 0.57 -5.82 0.50 -2.60 0.17
1404 -6.22 0.37 -2.71 0.46 -6.21 0.84 -5.50 0.61 -2.42 0.23
1405 -3.02 0.25 -6.28 0.24 -4.66 0.59 -6.21 0.48 -3.46 0.54
1406 -2.97 0.24 -6.38 0.48 -4.59 0.73 -6.02 0.50 -3.52 0.43
1407 -2.42 0.28 -5.06 0.36 -3.82 0.66 -5.17 0.50 -2.87 0.54
1408 -2.39 0.30 -5.20 0.50 -4.11 0.55 -5.16 0.36 -2.98 0.44
1409 -1.91 0.45 -4.29 0.41 -2.88 0.50 -4.01 0.48 -2.01 0.59
1410 -1.66 0.22 -4.54 0.34 -2.99 0.67 -4.43 0.33 -2.00 0.48
1411 -3.07 0.33 -6.32 0.76 -4.60 0.30 -6.17 0.61 -3.43 0.54
1412 -2.64 0.26 -6.58 0.48 -4.63 0.40 -6.18 0.65 -2.90 0.41
1413 -2.04 0.26 -5.13 0.50 -4.79 0.49 -1.97 0.26 -4.82 0.40
1414 -1.86 0.27 -5.10 0.52 -5.13 0.41 -1.85 0.31 -4.67 0.39
1415 -5.96 0.44 -2.59 0.25 -5.70 0.40 -5.54 0.44 -2.53 0.17
1416 -6.16 0.60 -2.79 0.33 -5.99 0.57 -5.91 0.26 -2.58 0.18
1417 -3.19 0.20 -6.06 0.74 -4.67 0.40 -5.92 0.62 -3.31 0.46
1418 -3.01 0.22 -6.70 0.44 -4.79 0.66 -6.30 0.20 -3.18 0.51
1419 -2.57 0.21 -5.50 0.51 -3.75 0.44 -5.34 0.46 -2.62 0.25
1420 -2.30 0.19 -5.16 0.47 -3.77 0.51 -5.25 0.51 -2.82 0.43
1421 -1.83 0.25 -4.43 0.39 -3.08 0.46 -4.40 0.41 -1.96 0.45
1422 -1.68 0.13 -4.59 0.32 -3.00 0.21 -4.38 0.50 -2.03 0.53
1423 -2.89 0.33 -6.38 0.41 -4.65 0.32 -5.99 0.72 -3.15 0.26
1424 -2.80 0.17 -6.58 0.76 -4.56 0.19 -6.26 0.61 -3.09 0.22
1425 -1.99 0.41 -4.69 0.55 -4.97 0.32 -2.12 0.33 -4.82 0.63
1426 -2.08 0.21 -4.83 0.48 -5.17 0.54 -1.95 0.34 -4.97 0.77
1427 -6.00 0.26 -2.27 0.23 -5.79 0.45 -5.54 0.32 -2.58 0.16
1428 -6.18 0.65 -2.51 0.28 -6.24 0.52 -5.49 0.72 -2.50 0.21
1429 -3.12 0.25 -6.56 0.51 -4.87 0.46 -6.16 0.37 -3.27 0.67
1430 -3.02 0.19 -6.42 0.53 -4.68 0.47 -6.36 0.42 -3.30 0.37
1431 -2.38 0.25 -5.34 0.44 -3.79 0.63 -5.10 0.26 -2.29 0.26
1432 -2.31 0.20 -5.38 0.43 -3.81 0.27 -5.17 0.47 -2.23 0.43
1433 -1.81 0.12 -4.60 0.35 -2.65 0.45 -4.35 0.47 -2.09 0.46
1434 -1.66 0.34 -4.49 0.25 -2.91 0.41 -4.41 0.27 -1.83 0.30
1435 -3.06 0.27 -6.76 0.51 -4.73 0.34 -6.09 0.37 -2.96 0.28
1436 -2.76 0.23 -6.40 0.43 -4.66 0.22 -6.14 0.46 -3.18 0.25
1437 -1.86 0.25 -5.01 0.29 -4.76 0.29 -1.97 0.32 -4.95 0.50
1438 -2.16 0.27 -5.22 0.31 -5.05 0.47 -1.94 0.21 -4.87 0.38
1439 -6.25 0.43 -2.50 0.25 -5.93 0.53 -5.91 0.28 -2.74 0.12
1440 -6.08 0.54 -2.80 0.34 -5.59 0.72 -5.89 0.31 -2.62 0.24
1441 -3.06 0.17 -6.49 0.44 -4.75 0.32 -6.28 0.32 -3.38 0.58
1442 -3.02 0.18 -6.39 0.40 -4.74 0.32 -6.30 0.29 -3.38 0.29
1443 -2.59 0.23 -5.33 0.20 -3.79 0.51 -5.38 0.15 -2.82 0.25
1444 -2.47 0.22 -5.23 0.34 -3.82 0.33 -5.39 0.27 -2.58 0.26
1445 -1.86 0.26 -4.33 0.28 -3.36 0.32 -4.33 0.30 -1.75 0.20
1446 -1.65 0.13 -4.31 0.30 -3.35 0.36 -4.29 0.32 -2.02 0.44
1447 -2.68 0.22 -6.79 0.43 -4.64 0.25 -6.31 0.35 -3.17 0.29
1448 -2.65 0.30 -6.59 0.47 -4.62 0.29 -6.28 0.31 -3.09 0.21
1449 -1.96 0.37 -5.31 0.57 -4.85 0.17 -1.80 0.27 -4.50 0.37
1450 -1.71 0.23 -5.38 0.34 -4.94 0.27 -1.82 0.26 -4.80 0.44
1451 -6.00 0.38 -2.54 0.20 -5.96 0.35 -5.75 0.33 -2.49 0.12
1452 -6.11 0.57 -2.61 0.29 -5.76 0.48 -5.79 0.33 -2.49 0.22
1453 -3.06 0.13 -6.32 0.39 -4.56 0.54 -6.15 0.27 -3.49 0.32
1454 -2.92 0.16 -6.51 0.40 -4.54 0.47 -6.18 0.27 -3.34 0.31
1455 -2.45 0.18 -5.30 0.22 -3.99 0.38 -5.36 0.29 -2.76 0.36
1456 -2.47 0.20 -5.42 0.33 -3.96 0.40 -5.29 0.23 -2.41 0.38
1457 -1.89 0.17 -4.23 0.15 -3.02 0.23 -4.32 0.30 -1.98 0.31
1458 -1.86 0.19 -4.28 0.20 -3.21 0.30 -4.32 0.26 -2.07 0.20
1459 -2.86 0.27 -6.47 0.34 -4.54 0.22 -6.20 0.26 -3.18 0.27
1460 -3.01 0.22 -6.57 0.36 -4.60 0.24 -5.94 0.54 -3.17 0.21
1461 -1.98 0.29 -5.11 0.41 -5.02 0.28 -1.85 0.19 -4.90 0.38
1462 -2.07 0.20 -5.07 0.36 -4.90 0.38 -2.01 0.22 -4.85 0.19
1463 -5.86 0.44 -2.39 0.21 -5.91 0.34 -5.87 0.27 -2.51 0.16
1464 -6.05 0.44 -2.53 0.29 -6.20 0.40 -5.74 0.37 -2.59 0.17
1465 -3.12 0.20 -6.43 0.41 -4.49 0.34 -6.13 0.31 -3.40 0.25
1466 -3.12 0.16 -6.57 0.28 -4.60 0.33 -6.25 0.24 -3.32 0.26
1467 -2.54 0.14 -5.41 0.36 -3.65 0.38 -5.31 0.21 -2.62 0.11
1468 -2.34 0.20 -5.56 0.24 -3.83 0.36 -5.17 0.34 -2.48 0.20
1469 -1.85 0.19 -4.49 0.24 -2.89 0.29 -4.24 0.21 -2.07 0.40
1470 -1.79 0.19 -4.43 0.29 -3.11 0.44 -4.19 0.35 -1.99 0.34
1471 -2.95 0.17 -6.38 0.32 -4.60 0.14 -6.05 0.31 -3.13 0.16
1472 -2.83 0.19 -6.39 0.30 -4.53 0.21 -6.27 0.35 -3.11 0.25
1473 -1.90 0.24 -5.07 0.36 -5.11 0.35 -1.91 0.20 -4.80 0.32
1474 -1.92 0.19 -5.10 0.39 -4.90 0.40 -2.03 0.16 -4.85 0.28
1475 -6.04 0.29 -2.61 0.20 -6.01 0.26 -5.87 0.28 -2.62 0.17
1476 -5.81 0.53 -2.54 0.19 -5.88 0.36 -5.73 0.34 -2.60 0.10
1477 -2.97 0.12 -6.35 0.17 -4.68 0.32 -6.28 0.14 -3.27 0.32
1478 -3.06 0.12 -6.61 0.17 -4.80 0.36 -6.39 0.30 -3.17 0.39
1479 -2.37 0.17 -5.49 0.22 -3.73 0.30 -5.40 0.35 -2.56 0.24
1480 -2.44 0.22 -5.39 0.24 -4.05 0.47 -5.24 0.45 -2.42 0.31
1481 -1.61 0.25 -4.50 0.24 -3.36 0.45 -4.26 0.38 -1.87 0.21
1482 -1.66 0.16 -4.50 0.25 -3.11 0.30 -4.31 0.20 -1.70 0.36
1483 -2.86 0.20 -6.71 0.30 -4.63 0.19 -6.28 0.20 -3.06 0.25
1484 -3.01 0.22 -6.35 0.36 -4.58 0.23 -6.43 0.42 -3.01 0.16
1485 -2.08 0.31 -4.90 0.27 -4.94 0.22 -1.96 0.19 -4.97 0.32
1486 -1.97 0.20 -4.85 0.31 -5.01 0.29 -2.05 0.21 -4.95 0.35
1487 -5.97 0.39 -2.50 0.34 -5.91 0.27 -5.66 0.29 -2.67 0.16
1488 -6.00 0.39 -2.52 0.24 -6.06 0.35 -5.74 0.27 -2.65 0.11
1489 -3.09 0.09 -6.07 0.18 -4.70 0.23 -6.10 0.20 -3.43 0.23
1490 -3.02 0.17 -6.40 0.32 -4.69 0.23 -6.18 0.19 -3.39 0.22
1491 -2.54 0.14 -5.29 0.19 -3.88 0.27 -5.16 0.21 -2.60 0.30
1492 -2.39 0.16 -5.55 0.15 -3.84 0.34 -5.47 0.18 -2.76 0.22
1493 -1.80 0.22 -4.32 0.18 -2.94 0.23 -4.31 0.15 -1.96 0.28
1494 -1.85 0.14 -4.41 0.08 -3.17 0.17 -4.34 0.16 -2.05 0.30
1495 -2.81 0.13 -6.49 0.22 -4.48 0.15 -6.02 0.32 -3.22 0.16
1496 -2.76 0.15 -6.43 0.35 -4.57 0.14 -6.16 0.20 -3.03 0.23
1497 -2.08 0.22 -5.12 0.38 -4.80 0.22 -1.92 0.21 -4.60 0.39
1498 -1.91 0.22 -5.26 0.15 -5.00 0.15 -1.80 0.25 -4.66 0.38
1499 -6.01 0.36 -2.48 0.16 -5.99 0.32 -5.68 0.17 -2.46 0.10
1500 -5.96 0.23 -2.47 0.14 -5.95 0.21 -5.64 0.30 -2.51 0.09
1501 -3.01 0.09 -6.35 0.34 -4.73 0.30 -6.13 0.18 -3.47 0.26
1502 -3.05 0.16 -6.25 0.24 -4.61 0.17 -6.05 0.26 -3.42 0.34
1503 -2.42 0.09 -5.35 0.22 -3.81 0.18 -5.27 0.24 -2.68 0.27
1504 -2.38 0.19 -5.47 0.26 -3.95 0.24 -5.25 0.22 -2.68 0.30
1505 -1.77 0.17 -4.45 0.27 -2.93 0.26 -4.39 0.17 -2.06 0.18
1506 -1.79 0.16 -4.44 0.22 -2.93 0.25 -4.26 0.21 -1.91 0.29
1507 -2.94 0.15 -6.26 0.40 -4.53 0.15 -6.05 0.28 -3.29 0.12
1508 -2.86 0.20 -6.65 0.21 -4.58 0.16 -6.45 0.26 -3.09 0.13
1509 -1.99 0.13 -5.07 0.20 -5.06 0.27 -1.95 0.18 -4.80 0.30
1510 -2.01 0.15 -5.17 0.20 -4.94 0.17 -1.90 0.13 -4.77 0.17
1511 -6.05 0.26 -2.53 0.19 -5.80 0.32 -5.76 0.11 -2.50 0.10
1512 -5.95 0.35 -2.50 0.17 -5.86 0.18 -5.77 0.27 -2.61 0.10
1513 -2.98 0.12 -6.45 0.29 -4.72 0.27 -6.20 0.22 -3.35 0.27
1514 -3.09 0.09 -6.43 0.23 -4.54 0.27 -6.11 0.21 -3.42 0.26



9.3. Scores & Deviations 179

1515 -2.39 0.14 -5.48 0.14 -3.71 0.29 -5.25 0.22 -2.77 0.25
1516 -2.37 0.16 -5.40 0.26 -3.85 0.22 -5.33 0.27 -2.70 0.33
1517 -1.79 0.14 -4.51 0.09 -2.99 0.29 -4.32 0.27 -2.02 0.28
1518 -1.68 0.13 -4.49 0.17 -3.06 0.22 -4.45 0.20 -1.80 0.25
1519 -2.94 0.18 -6.42 0.25 -4.58 0.04 -6.28 0.26 -3.21 0.18
1520 -2.84 0.15 -6.38 0.20 -4.64 0.13 -6.21 0.31 -3.21 0.19
1521 -1.87 0.17 -5.11 0.17 -4.95 0.17 -1.97 0.16 -4.90 0.15
1522 -1.94 0.14 -5.13 0.24 -4.92 0.09 -1.89 0.20 -4.75 0.17
1523 -5.93 0.29 -2.54 0.20 -5.90 0.36 -5.70 0.24 -2.57 0.06
1524 -5.95 0.22 -2.44 0.16 -5.96 0.36 -5.77 0.21 -2.56 0.12
1525 -3.06 0.17 -6.51 0.18 -4.72 0.16 -6.15 0.28 -3.27 0.18
1526 -3.08 0.12 -6.47 0.20 -4.61 0.34 -6.21 0.15 -3.38 0.24
1527 -2.41 0.13 -5.49 0.16 -3.72 0.16 -5.26 0.26 -2.67 0.16
1528 -2.29 0.11 -5.59 0.21 -3.88 0.24 -5.29 0.16 -2.64 0.25
1529 -1.72 0.13 -4.51 0.19 -3.04 0.22 -4.34 0.23 -1.85 0.17
1530 -1.76 0.16 -4.43 0.14 -2.89 0.22 -4.24 0.17 -1.96 0.19
1531 -3.02 0.14 -6.46 0.18 -4.63 0.10 -6.28 0.28 -3.15 0.14
1532 -2.88 0.15 -6.41 0.19 -4.69 0.20 -6.39 0.20 -3.11 0.17
1533 -1.96 0.21 -5.03 0.22 -5.07 0.31 -1.94 0.20 -4.99 0.22
1534 -1.99 0.07 -5.02 0.23 -5.03 0.23 -2.03 0.12 -4.98 0.12
1535 -5.96 0.20 -2.57 0.16 -5.98 0.23 -5.76 0.20 -2.63 0.14
1536 -5.91 0.25 -2.52 0.16 -6.05 0.33 -5.78 0.30 -2.69 0.08

Table 9.3: Mean score and standard deviation for each player type in the con�gurations

given previously. Accurate to 2 decimal places. Each simulation was run 10 times and the

results averaged. Recall that less negative scores are better� a player scores 0 for defection

vs cooperation, -1 for cooperation vs cooperation, -6 for defection vs defection, and -10 for

cooperation vs defection.
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