
Durham E-Theses

Using Distributed Agents to Create University Course

Timetables Addressing Essential & Desirable

Constraints and Fair Allocation of Resources

WANGMAETEEKUL, PENNEE

How to cite:

WANGMAETEEKUL, PENNEE (2011) Using Distributed Agents to Create University Course Timetables

Addressing Essential & Desirable Constraints and Fair Allocation of Resources, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3602/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3602/
 http://etheses.dur.ac.uk/3602/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Using Distributed Agents to Create University Course
Timetables Addressing Essential & Desirable Constraints

and Fair Allocation of Resources

Pennee Wangmaeteekul

A Thesis presented for the degree of

Doctor of Philosophy

School of Engineering & Computing Sciences

Durham University

December 2011

II

Abstract

In this study, the University Course Timetabling Problem (UCTP) has been investigated.
This is a form of Constraint Satisfaction Problem (CSP) and belongs to the NP-complete
class. The nature of a such problem is highly descriptive, a solution therefore involves
combining many aspects of the problem. Although various timetabling algorithms have
been continuously developed for nearly half a century, a gap still exists between the
theoretical and practical aspects of university timetabling.
This research is aimed to narrow the gap. We created an agent-based model for solving
the university course timetabling problem, where this model not only considers a set of
essential constraints upon the teaching activities, but also a set of desirable constraints
that correspond to real-world needs. The model also seeks to provide fair allocation of
resources. The capabilities of agents are harnessed for the activities of decision mak-
ing, collaboration, coordination and negotiation by embedding them within the protocol
designs. The resulting set of university course timetables involve the participation of
every element in the system, with each agent taking responsibility for organising of its
own course timetable, cooperating together to resolve problems. There are two types
of agents in the model; these are Year-Programme Agent and Rooms Agent. In this
study, we have used four different principles for organising the interaction between the
agents: First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Interleaved (FI-
FOInt), Round-Robin & Sequential (RRSeq) and Round-Robin & Interleaved (RRInt).
The problem formulation and data instances of the third track of the Second Interna-
tional Timetabling Competition (ITC-2007) have been used as benchmarks for validating
these implemented timetables. The validated results not only compare the four princi-
ples with each other; but also compare them with other timetabling techniques used for
ITC-2007.
The four different principles were able to successfully schedule all lectures in different
periods, with no instances of two lectures occupying the same room at the same time.
The lectures belonging to the same curriculum or taught by the same teacher do not
conflict. Every lecture has been assigned a teacher before scheduling. The capacity of
every assigned room is greater than, or equal to, the number of students in that course.
The lectures of each course have been spread across the minimum number of working
days with more than 98 percent success, and for more than 75 percent of the lectures
under the same curriculum, it has been possible to avoid isolated deliveries. We conclude
that the RRInt principle gives the most consistent likelihood of ensuring that each YPA

III

in the system gets the best and fairest chance to obtain its resources.

IV

Declaration

No part of the material presented in this thesis has previously been submitted by the
author in support of an application for another degree or qualification of this or any other
university or other institute of learning. All the work presented here is the sole work of
the author and no one else.
This research has been documented, in part, within the following publications:

• Wangmaeteekul, P. and Budgen, D. 2011. Using Agents to Create a University
Timetable Addressing Essential & Desirable Constraints and Fair Allocation of Re-
sources. In Proceeding on IADIS International Conference Intelligent Systems and
Agents 2011.

V

To my beloved grandfather and father
Changjun Wang &Yuanqin Wang

who were brave and dedicated their whole life
for their family—”Wangmaeteekul ”

VI

Acknowledgements

This PhD thesis is unable to accomplish if lack of many parts participated in. So, I would
like to use this opportunity to thank everyone who has contributed him/herself towards
this research.

• My father who supported and gave me maths foundation. My mother who looks
after her family the best. My younger sister & two younger brothers who always
share both good and bad times together.

• My two great supervisors Prof. David Budgen and Dr. Rafael Bordini who always
stand beside me and support me to achieve the goal.

• My second supervisor Prof. Malcolm Munro who helped me finding out the weak-
nesses of my work and Dr. Andy Hatch who advised me to find some datasets in
order to prove my work.

• Prof. Nikolay Mehandjiev who gave me many valuable comments to improve the
menuscript.

• Dr. Nick Holliman and Dr. Shamus Smith who questioned many valuable points
which lead to review more literature.

• My colleague Dr. Patricia Shaw who gave an idea to apply negotiation in my work.

• My teachers who have dedicated their teaching and my friends who keep supporting
and cheer me up.

• The financial support from school of Engineering and Computing Sciences, Durham
University; which gave me a good chance to join

(1) The European Agent Systems Summer School 2008 in Lisbon, Portugal.

(2) IADIS International Conference Intelligent Systems and Agent 2011 in Rome,
Italy.

• The Royal Thai government which gives the financial support and Prince of Songkhla
University which allows me to leave for study in UK.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Agents and the Timetabling Problem . 3
1.3 Research Method . 5
1.4 Contributions . 8
1.5 Thesis Outline . 10

2 Background in MultiAgent System 12
2.1 Intelligent Agent . 12
2.2 The BDI Architecture . 13
2.3 MultiAgent Interaction . 16
2.4 MultiAgent Resource Allocation (MARA) 18

2.4.1 Preference Representation . 19
2.4.2 Social Welfare . 20

2.4.2.1 Collective Utility Function 21
2.4.3 Allocation Procedures . 22

2.4.3.1 Auction Protocols . 22
2.4.3.2 Negotiation Protocols . 23
2.4.3.3 Contract-Net Protocol (CNP) 24

2.4.4 Mechanism Design . 27
2.5 Summary . 28

3 The University Course Timetabling Problem 29
3.1 Educational Timetabling . 29
3.2 The Gap in University Timetabling Problems 31

VII

CONTENTS VIII

3.3 Employing Agents in Timetabling Problems 33
3.4 Literature Review: UCTP Solved by Use of Agents 34
3.5 Classical Timetabling Techniques . 46

3.5.1 Sequential methods . 46
3.5.2 Meta-heuristic methods . 47
3.5.3 Constraint-Based Programming Methods 49

3.5.3.1 Techniques in Constraint Programming 50
3.6 Summary of research in Educational Timetabling Problems 54
3.7 Summary . 59

4 Research Method 60
4.1 Introduction . 60
4.2 Intelligent Agents Architecture . 61
4.3 Allocation Protocols . 63

4.3.1 The initial allocation phase . 63
4.3.1.1 First-In-First-Out (FIFO) allocation 64
4.3.1.2 Round-Robin (RR) allocation 64

4.3.2 The negotiation phase . 66
4.4 Processes in Organization . 67

4.4.1 Sequential . 67
4.4.2 Interleaved . 67

4.5 University Structural Scenario . 70
4.6 Methodology . 71

4.6.1 Experiments . 71
4.6.2 Case study . 72

4.7 Summary . 73

5 Agent Design 74
5.1 Principles of Design . 74
5.2 Agent Design . 75

5.2.1 Year-Program Agent (YPA) . 75
5.2.2 Rooms Agent (RA) . 77

5.2.2.1 Controlled sequence in RA 79
5.3 Detailed Design for Initial Allocation between YPA & RA 81
5.4 Detailed Design for Negotiation between a YPA & other YPAs and the RA 84

CONTENTS IX

5.4.1 Broadcasting for help . 84
5.4.2 Resolving the mismatch . 85
5.4.3 Awarding switching task to the proposer 86

5.5 Date-Time slots Preference . 87
5.6 Calculating the Satisfied Value . 89
5.7 Summary . 89

6 Benchmark Data Sets 94
6.1 The International Timetabling Competition (ITC) 94
6.2 Problem Definition . 95

6.2.1 Constraints . 95
6.2.2 Violation and Penalty Values . 95

6.3 Instances and File Formats . 97
6.3.1 Input File Format . 97
6.3.2 Output File Format . 99

6.4 Benchmarking . 99
6.4.1 Instances . 99
6.4.2 Validators . 101
6.4.3 Reference Results . 101

6.5 Summary . 102

7 Experimental Results 104
7.1 Introduction . 104
7.2 The Hypotheses . 105
7.3 Testing the Hypotheses . 106
7.4 Summary . 141

8 Discussion 142
8.1 Analysis of the Experimental Results . 142
8.2 Addressing the Research Questions . 146
8.3 Summary . 148

9 Conclusion and Future Work 149
9.1 Summary . 149
9.2 Novel Contributions . 152

CONTENTS X

9.3 Future Work . 153

List of Figures

1.1 An overview of the agent-based architecture 7

2.1 A computational model of BDI from (Bordini et al., 2007) 14
2.2 The Contract Net protocol (CNP) from(Smith, 1980) 25

3.1 The negotiation protocol from (Strnad and Guid, 2007) 39
3.2 Initial mapping graph from (Lewis, 2007) 46
3.3 Assigned colours and mapped graph from (Lewis, 2007) 47
3.4 Tabu search algorithm from (Hertz et al., 1993) 48
3.5 Simulated annealing algorithm from(Hertz et al., 1993) 49
3.6 Genetic Algorithm from (Davis, 1991,Michalewicz, 1994) 49
3.7 Backtracking from (Matuszek, 2009) . 51
3.8 Arc Consistencies from (Berwick, 2008) 52
3.9 Branch and Bound example in R2, after 3 iterations. The partition of the

original rectangle is shown at left; the associated binary tree is shown at
right. From (Boyd and Mattingley, 2007) 53

4.1 The YPAs & RA architecture . 63
4.2 Order of allocation to YPAs in First-In-First-Out allocation 64
4.3 Order of allocation to YPAs in Round-Robin allocation 65
4.4 Sequential scheduling . 67
4.5 Interleaved scheduling . 68

5.1 The hierarchical structure diagram of a YPA 77
5.2 A lecture organizing process in the initial allocation phase 78
5.3 Initial knowledge in YPA . 79

XI

LIST OF FIGURES XII

5.4 The hierarchical structure diagram of the RA 80
5.5 Initiating knowledge in RA . 80
5.6 (a) First-In-First-Out controlled loop (b) Round-Robin controlled loop . . 81
5.7 Interaction between YPA & RA in the initial allocation phase 90
5.8 Prioritized resource matching . 91
5.9 Extended Contract Net Protocol . 91
5.10 Interaction between YPA & YPAs and RA in the negotiation phase 92
5.11 (a) Virtual table with avoided and booked slots (b) 1-25 prioritized slots

when the organizing lecture has not been booked (c) 1-25 prioritized slots
when the organizing lecture has been booked 93

6.1 Input file format (Gaspero et al., 2007) . 98
6.2 Output file format (Gaspero et al., 2007) 99
6.3 Validate solution website . 101

7.1 Penalty values for instance Comp04 . 115
7.2 Standard deviation values for instance Comp04 117
7.3 Sorted standard deviation values for instance Comp04 117
7.4 Penalty values for instance Comp11 . 118
7.5 Standard deviation values for instance Comp11 120
7.6 Sorted standard deviation values for instance Comp11 120
7.7 Penalty values for instance Comp13 . 121
7.8 Standard deviation values for instance Comp13 123
7.9 Sorted standard deviation values for instance Comp13 123
7.10 Penalty values for instance Comp15 . 124
7.11 Standard deviation values for instance Comp15 126
7.12 Sorted standard deviation values for instance Comp15 126
7.13 Penalty values for instance Comp18 . 127
7.14 Standard deviation values for instance Comp18 129
7.15 Sorted standard deviation values for instance Comp18 129
7.16 FIFOSeq ’s ordered penalty values when the number of YPAs in system is

increased . 133
7.17 RRSeq ’s ordered penalty values when the number of YPAs in system is

increased . 135

LIST OF FIGURES XIII

7.18 FIFOInt ’s ordered penalty values when the number of YPAs in system is
increased . 136

7.19 RRInt ’s ordered penalty values when the number of YPAs in system is
increased . 137

List of Tables

1.1 Principles of interaction . 8

3.1 Essential and desirable constraints from(Burke and Petrovic, 2002Caus-
maecker et al., 2006) . 31

3.2 Timetabling problems and solutions from (McCollum, 2007) 32
3.3 Summary of papers that use agent-based technology for solving UCTP . . 45
3.4 The converted timetable from (Lewis, 2007) 47
3.5 Summary of research in Educational Timetabling Problems 54
3.6 Summary of research in UCTPs that use agents for solving including our

research . 58

4.1 Models of interaction between agents . 68

5.1 The definition of satisfied values . 89

6.1 The defined essential & desirable constraints (Gaspero et al., 2007) 96
6.2 Main features of instances (Gaspero et al., 2007) 100
6.3 Reference results . 103

7.1 Numbers of successes or fails of H1 hypothesis test 108
7.2 Numbers of organized lectures before & after including the negotiation part110
7.3 Numbers of identical or different results of two different initial YPAs sets 112
7.4 Penalty values for instance Comp04 . 115
7.5 Standard deviation values for instance Comp04 116
7.6 Penalty values for instance Comp11 . 118
7.7 Standard deviation values for instance Comp11 119
7.8 Penalty values for instance Comp13 . 121

XIV

LIST OF TABLES XV

7.9 Standard deviation values for instance Comp13 122
7.10 Penalty values for instance Comp15 . 124
7.11 Standard deviation values for instance Comp15 125
7.12 Penalty values for instance Comp18 . 127
7.13 Standard deviation values for instance Comp18 128
7.14 The smallest penalty value of each instance 130
7.15 The largest penalty value of each instance 130
7.16 The smallest standard deviation value of each instance 131
7.17 The largest standard deviation value of each instance 132
7.18 FIFOSeq ’s ordered penalty values when the number of YPAs in system is

increased . 133
7.19 RRSeq ’s ordered penalty values when the number of YPAs in system is

increased . 134
7.20 FIFOInt ’s ordered penalty values when the number of YPAs in system is

increased . 136
7.21 RRInt ’s ordered penalty values when the number of YPAs in system is

increased . 137
7.22 Comparing the best of ours with the reference results 138
7.23 Classified penalty values into constraints 139
7.24 Percentage of achievements from the best results of our models 139
7.25 Frequency of achievement/fairness/achievement & fairness by models . . . 140

Chapter 1

Introduction

This chapter starts by describing the motivation for this research—namely investigating
the use of agents to address the highly-complex timetabling problem. Then it describes
why the significant autonomous properties of agents make them suitable for solving the
timetabling problem. The research method is described, the intelligent-agents architec-
ture is proposed, and the approach to validating the results is presented. The chapter
ends by identifying the contributions of this research, together with an overview of the
structure of the thesis.

1.1 Motivation

In the real world, we often encounter situations which need us to make a sequence of
decisions to solve a problem. An example of such a problem, which we are used to, and
that has been solved many times in our daily life is:

You buy something for 20 pounds; and assume that in your wallet you have
one twenty- pound note, two ten-pound notes and three five-pound notes.
There are many ways to pay. The set of possible answers is {(20), (10,10),
(10,5,5)}.

Although it seems we are able to solve such a problem easily, we actually need to perform
many steps to formulate different aspects of the problem until reaching a satisfactory
result. This type of problem can be formulated in terms of a set of requirements that
some specific properties are met. The answers that ‘satisfy’ this are the set which meet
all of the requirements; such that in each step of the decision-making a part of the answer

1

CHAPTER 1. INTRODUCTION 2

is met. On the other hand, the many possible answers which do not match the needs
need to be rejected; that means in each step of the decision-making if any element of the
answer is not met, then the answer is an unsatisfied one. The class of problems that we
can formulate in this manner is called Constraint Satisfaction Problems (CSPs). A CSP
is a highly descriptive problem for which a solution involves combining many aspects of
the problem together, and is one that can be viewed as a high-dimensional combinatorial
problem (Apt, 2003). Currently it is a highly-active research field which can be applied
to many problem domains such as those identified in (Apt, 2003) which are listed below:

• Interactive Graphic Systems: used for interpreting objects in 3D scenes—scene
analysis.

• Operating Research Problems: often used in scheduling problems and optimization
problems.

• Molecular Biology : applied to DNA sequencing, construction of 3D models of pro-
teins.

• Business Applications: implemented in product scheduling systems, and in stock
trading systems.

• Electrical Engineering : employed to locate faults in circuits, to plan the circuit
layouts, and to test and verify the circuit design.

• Numerical Computing : applied in applications that involve solving polynomial con-
straints with guaranteed precision.

• Natural Language Processing : taking a major role in implementing efficient parsers.

• Computer Algebra: deployed for solving and/or simplifying equations over algebraic
structures.

• Database System: used in ensuring and/or restoring data consistency in databases.

As a constraint satisfied problem is a non-trivial problem, very long time may be needed
to solve such a problem when using an exhaustive search (Yang and Paranjape, 2011).
This complexity of CSPs inspired us to conduct this research to investigate a way to
simplify such problems. In order to conduct the study, we needed to choose one problem
domain to be a representative of CSPs, and chose the university course timetabling

CHAPTER 1. INTRODUCTION 3

problem. This is because not only is this the domain we are used to, but also it contains
both great complexity and a variety of requirements. The evident interest in this topic is
demonstrated by the duration of this research field which has posed a challenge for various
scientific communities from different disciplines such as Operation Research, Artificial
Intelligence, and Multi Agents for almost half a century. Timetabling involves a wide set
of activities which contribute towards making a timetable. As defined Collins Concise
Dictionary (4th Edition), this means a table of events arranged according to the time
when they take place. Consequently, it is a timetable which specifies which people are to
meet, at which location and at what time.
Educational timetabling is one of the subclasses in timetabling and is in the class of real-
world NP-complete problems (Even et al., 1975). All events described in such a table
take place in educational institutes. It involves scheduling a set of resources over limited
lengths of time, and subject to certain conditions (which we term Essential & Desirable
constraints). The resources are students, staff, rooms, courses, time and equipment.
From the definition provided by Burke, Kindston and de Werra(2004), this is a problem
which can be defined in term of four parameters: a finite set of timeslots; a finite set of
resources; a finite set of meetings; and a finite set of constraints. The principal challenge
of this problem is how to assign times and resources to the meetings in order to satisfy
as many of the constraints as possible.
Although a range of potential algorithms have been proposed for nearly a half century
of research into timetabling, such as Graph Colouring Algorithms, Simulated Annealing,
Tabu Search, Genetic Algorithms and Constraint-Based Programming-one recent research
paper (McCollum, 2007) observes that a gap still remains between the theoretical and
practical aspects of university timetabling. In order to evaluate particular techniques
and approaches, automated timetabling usually ignores the human factors and deals with
only the data sets. However, for a workable timetable we need to satisfy the essential
constraints imposed by the teaching activities and also the desirable constraints that
correspond to the real-world needs of both lecturers and students.

1.2 Agents and the Timetabling Problem

A number of papers have argued that agent technology offers a suitable mechanism for ad-
dressing timetabling problems (Causmaecker et al., 2002,Causmaecker et al., 2003,Carter,
2000). As an intelligent agent is capable of autonomous action, it is able to work on behalf

CHAPTER 1. INTRODUCTION 4

of its representative to achieve its goals. As described in (Causmaecker et al., 2003), by
exploiting agents’ characteristics, a set of agents could be used to resolve the conflicting
expectations and constraints in the timetabling problem by negotiating and collaborating
with each other. Furthermore, Carter(2000) has suggested that a distributed software
architecture can adequately describe the timetabling problem. This is because agents
can provide a model of distributed timetabling, with the distributed aspect arising from
the presence of separated, autonomous components which do not communicate in every
detail, but do need to exchange more coarse grained information. The solutions come
from the collected information which is obtained from the expressions of interest and
degrees of agreement of individual agents. For real world operators, better decisions are
usually obtained through a negotiation process in which all partners actively search for
better solutions and find ways to alleviate another partner’s problems. Hence, given the
significant and powerful properties which are provided by agent technology, it is clear
that applying a multiagent model to the scheduling timetable problem domain has the
potential to cope with difficult situations and address real world needs.
Agent-based technology has been employed by researchers to address the university
timetabling problem over the last decade, for example:

• Kaplansky and Meisels (2004) proposed a model that assigned agents to the roles
of Scheduling Agents and Room Agent.

• Strnad and Guid (2007) defined a model which is comprised of three sorts of agents
working together—Course Agents, Scheduling Agents and Central Agent.

• Oprea (2007) designed four types of agents, working collaboratively according to
the university’s organization levels, that are Person Agents, Department Agents,
Faculty Agents and University Agent.

Each researcher has proposed a different model that satisfies a different range of con-
straints when generating timetables for any particular institute. However, some consider
only the essential constraints; while others take into account both essential constraints
and that subset of the desirable constraints which correspond to their perception of other
needs.
For this research we have investigated the use of an agent-based model for solving the
university course timetabling problem by generating resource allocation solutions to all
participants in a system, under the constraints and formulation which are defined by the

CHAPTER 1. INTRODUCTION 5

International Timetabling Competition 2007 (ITC-2007), and also seeking to provide fair
allocation among them. The distributed timetabling model has been adapted from the
model proposed by Kaplansky and Meisels (2004), by adding more flexibility and more
roles to each type of agents, which have been redefinded as Year-Program Agent (YPA)
and Rooms Agent (RA) respectively.
We aim to narrow down the existing gap by trying to implement a system imitating the
way that human planners work in the real world. Crucial characteristics of the agent
for negotiation and collaboration are taken into account through designed protocols for
solving conflicts and collaborating between agents just as people do in real life, since
having all of the participants actively searching for solutions might alleviate each other’s
problems. Each agent makes decisions based on the incomplete information available to
it, its own selfish manner, its own capability and the circumstances that it meets at any
given moment. For this study, we therefore aim to investigate the following two research
questions:

1) How to apply agent-based technology to allocate the university resources
so as to satisfy the essential constraints for serving the teaching activities and
to address those desirable constraints that correspond to real world needs?

2) How to ensure that each agent gets a fair chance to acquire the resources
that it needs?

1.3 Research Method

The key features of the process employed for developing multiagent systems involve the
use of both experiments and software prototyping to increase an agent’s ability and to
add more features to the system on an incremental basis.
This study uses a distributed model for solving university course timetabling problems
by defining two types of agents working together in the roles of Year-Programme Agent
and a Rooms Agent.

• A Year-Programme Agent (YPA) is assigned to the task of generating the timetable
for one level of a particular programme. It is responsible for organizing the sub-
jects/modules/courses which that programme’s students have to take in one par-
ticular term. The resulting timetable should satisfy all of the essential constraints

CHAPTER 1. INTRODUCTION 6

and as many as possible of the desirable constraints. A crucial role of the Year-
Programme Agent is therefore to collaborate with other YPAs to resolve any allo-
cation problems by reallocating rooms between YPAs.

• The Rooms Agent (RA) manages the rooms (resources) and will book the requested
room when that room is vacant. It also coordinates the Year-Programme Agents
to work together in order to avoid overlaps across the shared modules. Moreover,
the Rooms Agent takes responsibility for ordering access to the resources by the
Year-Programme Agents in such a way as to ensure fairness.

The total number of agents in this system is therefore the number of Year-Programme
Agents which are required for the different degree programmes and levels, plus one Rooms
Agent. This is a flexible architecture in that it makes no assumption about the length of
a degree programme (2, 3, 4 years).
The agents model aims to mimic a human scheduler’s behaviour in the real world by
performing two stages of allocation:

(1) Between YPAs and the Rooms Agent to provide an initial allocation of
resources (the initial allocation phase (S1)). Two different interactive alloca-
tion algorithms that have been investigated in order to optimize the chances
for each YPA to acquire the desired set of resources, where these are:

• First-In-First-Out (FIFO) algorithm

• Round-Robin (RR) algorithm

(2) Between YPAs to refine the allocation of rooms (the negotiation phase
(S2)).

CHAPTER 1. INTRODUCTION 7

Figure 1.1: An overview of the agent-based architecture

Figure 1.1 shows an example of the architecture used, comprising three YPAs and one
RA. Each YPA is composed of two segments of code that perform the actions required
for phases S1 and S2, while P1 and P2 represent the interaction protocols employed in
the initial allocation phase and the negotiation phase.
There are two distinct forms of implementation that have been investigated for producing
a set of timetables. These forms through which the Year-Programme Agents and the
Rooms Agent work together to create the set of timetables are:

CHAPTER 1. INTRODUCTION 8

• Sequential : start by running the initial allocation phase until this phase termi-
nates; and then subsequently run the negotiation phase if these are any constraint-
mismatched elements remaining after initial allocation.

• Interleaved : start by running the initial allocation phase, interleaving this with a
negotiation phase if any YPA is facing a constraint-mismatch problem. After the
problem has been resolved, the initial allocation phase will continue.

Allocation Form
Organizing Form FIFO RR

Sequential FIFOSeq RRSeq
Interleaved FIFOInt RRInt

Table 1.1: Principles of interaction

In this research we therefore have combined these to create four different principles that
have then been used to implement the set of distributed university course timetables.
These are: First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Interleaved
(FIFOInt), Round-Robin & Sequential (RRSeq) and Round-Robin & Interleaved (RRInt),
as shown in Table 1.1. The investigation has been concerned with exploring the different
qualities resulting from the use of these four principles, by comparing the timetabling
results in terms of how well the constraints were addressed and the degree of fairness
achieved when allocating rooms to YPAs. The problem formula and data instances of
the third track of the Second International Timetabling Competition (ITC-2007) were
used as benchmarks for this, in order to aid validation of these organized timetables.

1.4 Contributions

Over the past decade, agent technology has been playing an important role for solving
university course timetabling problem (see section 3.4). However, there are several key
contributions which make this research different from the others.

1. McCollum (2007) insists that a gap between the theoretical and practical aspects of
university timetabling still remains, as most research is directed at evaluating par-
ticular techniques and approaches. An automated timetabling ignores the human
factors and chooses to deal with only the data sets. Both McCollum and Carter
(2000) assert that the process for producing a workable timetable still remains with

CHAPTER 1. INTRODUCTION 9

a combination of lecturing and administrative staff rather than through the use of
an automated component. Much more work is needed to investigate the formula-
tion and modeling of the problem. Therefore, in this research we have employed a
model which imitates the timetabling processes that human planners use in the real
world; each participant makes its decisions according to its own needs under any
circumstance at that given moment. Negotiation and collaboration are embodied
within a set of protocols designed for solving conflicts, and for collaborating among
the participants in order to reach the best solution. The results help to narrow the
gap between theory and practice in university course timetabling research.

2. The datasets which are used in this research are taken from the real world. They
have been selected from a large set of interesting cases from a real-world insti-
tute—the University of Udine in Italy (Gaspero et al., 2007). The experimental
results show that the principles used in our agent model are able to achieve the
goal and also satisfy the defined essential & desirable constraints. That means the
model could be workable in a real-world situation.

3. In the real world, planners get better decisions through a negotiation process in
which all partners actively search for better solutions and find the ways to alleviate
other partner’s problems. This idea has been adapted and applied to the interac-
tion protocol in the negotiation phase. The testing results show that the number of
organized lectures has been increased after applying the negotiation phase follow-
ing the initial allocation phase. That means the constraint-mismatched problems
which are faced by some participants in the system have been resolved through
the participation of the other participants. In the literature review, we found that
other research that used agents for solving university courses timetabling problem
applied negotiation for the purpose of resource allocation, whereas this research has
applied it for the purpose of alleviation.

4. Apart from the distributed timetabling model which has been adapted from the
model proposed by Kaplansky and Meisels (2004), we also solve the overlap prob-
lem between shared subjects in different way. The original one sorted it by defining
a negotiation protocol for solving conflict among scheduling agents in order to reach
shared course slots, whereas our model assigns an agent that takes responsibility
for organising this shared course, while the other shared course agents take a role in
avoiding clashes with the shared slots when they are organizing their own timeta-

CHAPTER 1. INTRODUCTION 10

bles. From the testing results, we found that all lectures have been scheduled and
all conflicts have been avoided for hundred percent of cases. That means the way
we sorted the overlap problem was successful.

5. The model seeks to allocate resources fairly by applying a Round-Robin algorithm
over the RA controlled loop in the automated timetabling mechanism, in order to
ensure that each agent gets an equal chance to access the resources. It is different
from other researches under the same problem domain which do not address the
issue of fairness; neither those that using agent technology nor those that use classi-
cal timetabling techniques. Our research results provide a new model for managing
university course timetabling, by considering not only constraints, but also the issue
of fairness during timetable implemention.

6. The model has created a base for extending the way that constraints are handled
during timetable creation. In this research, four different principles have been
investigated for managing allocation of resources and for subsequent negotiation, in
order to find practical solutions. Moreover, the validated results not only compare
the four principles with each other; but also compare them with other timetabling
techniques as well.

1.5 Thesis Outline

This thesis is organized into nine chapters, as follows:

Chapter 2 reviews the background of agent technology. It starts with a de-
scription of intelligent agent and multi-agent systems, followed by an agent’s
architecture —Beliefs Desires and Intentions (BDI) and the interaction be-
tween agents. Then, the concept of game theory is reviewed; and this chapter
ends by summarizing multiagent resource allocation.

Chapter 3, the literature investigating in university timetabling is reviewed.
This covers the different types of educational timetables, the existing problems
in university course timetabling domain, the suitability of applying agents for
solving timetabling problems, the survey of published papers that have used
agents to address university course timetabling, and the classical methodolo-
gies which have been applied to timetabling problems. This chapter ends

CHAPTER 1. INTRODUCTION 11

with a summary table that compares our model with those used agents by
the other researchers.

Chapter 4 describes the reasons for addressing the problem of university
course timetabling through the use of an intelligent-agents model, and its
evaluation via the defined problem formula from ITC-2007. The following
sections present the details of intelligent agent architecture, the allocation al-
gorithms, the organizing forms and the university structural scenario defined
for ITC-2007.

In Chapter 5, the agents and necessary interaction protocols are described
in detail. It starts with a description of all modules in the Year Program
Agent (YPA) and the Rooms Agent (RA), and then follows by the interac-
tion protocol design between YPA and RA which it has been used in initial
resource allocation phase; ending with the interaction protocol design for the
negotiation phase between a YPA and the other YPAs.

Chapter 6 contains information about the benchmark data set. It describes
the background of the International Timetabling Competition (ITC) and in-
formation about Curriculum-Based Course Timetabling. The competition
problem formula, data instances and file format are described. In addition, it
describes the means to validate the timetabling results and includes a set of
reference results.

Chapter 7 has been dedicated to presenting the experimental research method.
It describes how the experiments are set up according to the defined hypothe-
ses; how the independent variables of each experiment are organised for each
of these four different principles; and finally how the dependent variables are
measured.

Chapter 8 discusses the experimental outcomes. It explains the relation be-
tween causes and effects of each hypothesis; then, analyses and interpretes
the experimental results. The research questions are also answered at the end
of this chapter.

Finally, Chapter 9 presents the conclusions drawn from this thesis. Some
suggestions are given regarding possible ways to apply the results in other
problem domains or to extent then by adding more constraints to the model.

Chapter 2

Background in MultiAgent System

This chapter is concerned with the fundamental theories involved in developing an in-
telligent agents system. It firstly defines what intelligent agent and multiagent system
are; then following with a discussion about agent architecture—BDI and Jason are in-
troduced. Then, we discuss interaction among agents and the concept of game theory
in the following section. At the end of the chapter, an overview of multiagent resource
allocation is provided.

2.1 Intelligent Agent

An “intelligent agent” is defined as a computer system which is capable of autonomous
action to interact with its environment in order to meet its goal (Wooldridge, 2002).
A “multiagent system (MAS)” is a reactive system which is composed of multiple in-
telligent agents that maintain an interaction with their environment. Each agent is an
individual module in a concurrent system that means each agent is a reactive subsystem,
interacting with its own environment which largely consists of other modules (Wooldridge,
2002,Pnueli, 1986).
Agents are capable of sensing their environment via sensors and have a group of possible
actions that they can perform via effectors or actuators in order to modify the environ-
ment. The processes connectivity the input and output are plans which an agent uses to
decide what to do in order to achieve its goals. According to the definition of a rational
agent, provided by Wooldridge and Jennings in (1995), a rational agent should have the
following properties:

12

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 13

• Autonomy : the agent chooses to believe or do what it wants. It works as a repre-
sentative of a user in order to achieve the goals, which will be bounded by given
plans which define the ways in which an agent can act to achieve goals and sub-
goals. Therefore, an autonomous agent makes independent decisions about how to
achieve its delegated goals. All decisions are under its own control.

• Proactiveness: an agent is able to exhibit goal-directed behavior proactively; in
contrast an object is passive until something invokes a method on it.

• Reactiveness: an agent is enabled to be reactive to change in the environment.
When its plans have gone wrong, the agent is able to choose an alternative course of
action. Some responses are reflexes, while some need more deliberation. To achieve
the balancing between goal-directed and reactive behavior is a design compromise.

• Social Ability : an agent has an ability to cooperate and coordinate its activities
with other agents in order to achieve its/their goals. That is, agents are able to
communicate their beliefs, goals, and plans between one another.

2.2 The BDI Architecture

Belief-Desire-Intention (BDI) is a type of intelligent agent architecture that has been
proposed by Rao and Georgeff (1991). Apart from belief-desire-intention, there are
logic-based architectures, reactive architectures and layered architectures, as presented in
(Weiss, 2000). However, this research focuses on agents that are developed based on the
BDI model. This is because the BDI model has been developed for describing human
behaviour and as an abstraction tool useful for formulating complex systems (Bordini
et al., 2007). It main elements are:

• Beliefs: the beliefs of an agent represent the agent’s knowledge. The content of the
knowledge can be anything; for instance knowledge about the agent’s environment
or about its history.

• Desires: the desires of an agent are a set of long-time goals. A goal is typically
a description of a desired state of the environment. The desires provide the agent
with the motivations to act.

• Intentions: the intentions are a subset of the desires, or the intentions may be
considered as a set of plans for achieving the goals in the desires. When initialized,

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 14

the intentions contain some of the goals from the desires. These goals should
not contradict each other. The intentions are viewed as something the agent has
dedicated itself to trying to fulfill. This gives stability to the system since it means
that the agent will not try to attain contradictory goals.

A computational model of BDI (Bordini et al., 2007) is shown in Figure 2.1

1. B ←B0 /* B0 are initial beliefs */
2. I ← I0 /* I0 are initial intentions*/
3. while true do
4. get next percept r via sensors;
5. B ← brf(B, r);
6. D ← options(B,I);
7. I ← filter(B,D,I);
8. P← plan(B,I,Ac); /* Ac is the set of actions */
9. while not (empty(P) or succeeded(I,B) or impossible(I,B)) do
10. a ← first element of P;
11. execute(a);
12. P ← tail of P;
13. observe environment to get next percept r;
14. B ← brf(B, r);
15. if reconsider(I,B) then
16. D ← optons(B,I);
17. I ← filter(B,D,I);
18. end-if
19. if not sound(P,I,B) then
20. P ← plan(B,I,Ac);
21. end-if
22. end-while
23. end-while

Figure 2.1: A computational model of BDI from (Bordini et al., 2007)

The overall control loop for a BDI agent is shown in Figure 2.1 and works as follows:
B0 and I0 are initial beliefs and intentions and have been assigned to variables B and

I respectively in Lines (1) and (2).
The while loop between Lines (3) and (23) iterates through the following actions:

Line (4) the agent observes its environment via sensors, and gets the next
percept (ρ).

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 15

Line (5) the agent updates its beliefs via the belief revision function by passing
its current belief and the new percept (ρ), which then returns new beliefs to
the agent.

Line (6) the agent determines its desires via the option function by passing
its beliefs and intensions.

Line (7) the agent updates its intentions via the filter function by passing its
beliefs, designs and intentions.

Line (8) the agent generates it’s a set of plans via the plan function by passing
beliefs, intentions and the set of actions.

The inner while loop between Lines (9) and (22) repeats the following actions:

The agent reconsiders its intensions by evaluating from the possi-
bility of success and then executes the set of plans to achieve the
goals. The agent picks off each action from its plans and executes
it until the plans are empty

Line (13) the agent re-observes its environment to get the next per-
cept (ρ).

Line (14) the agent updates its beliefs via its belief revision function
by passing current beliefs and the new percept (ρ), and then returns
new beliefs to agent.

The Lines (15) to (18) the agent makes the decision that it would
change its new intentions or not by deciding via its reconsider func-
tion.

Line (19) the agent checks the current set of plans whether or not
it is compatible with its intentions and its beliefs.

Line (20) if the set of plans are not compatible, then the agent
changes a new set of plans.

For this research we use Jason as a tool for implementing the proposed models. Jason
(Bordini et al., 2007) is an agent programming language which provides a Java-based
platform used for developing multiagent systems. It is an extension and an interpreter
of AgentSpeak which is based on the BDI architecture and has been implemented by
Rao (1996). The user uses it for programming the behavior of individual agents and to

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 16

customize most aspects of an agent or multiagent system. Jason provides annotation
of beliefs, annotation of plans, method of producing plan libraries and speech-act based
inter-agent communication. Moreover, it provides Java-based definitions for environment
giving agents within the system percept and interact with the environment. It also
provides the facility for running a multiagent system distributed over a network and
the extensibility for user to define “internal action”. Besides Jason, there are other
languages which are based on BDI architecture such as PRS (Georgeff and Lansky,
1987) , JAM (Huber, 2001), JACK (Busetta et al., 1999), dMARS (Kinny, 1993), 2APL
(Dastani, 2008), JADE (Bellifemine et al., 2007). The Jason has been chosen to be an
implementing tool as we have experienced in Java programming language and having
technical consultants in Jason.

2.3 MultiAgent Interaction

In (Jennings, 2000) the author illustrates how the agents in a multiagent system interact
with each other through communication and how each one is able to act in an environment
which has its own spheres of influence. These spheres of influence may coincide; in such
an event the agent needs some kinds of relationships to prioritize them.
Interaction between the agents causes different preferences in a multiagent system. Each
agent owns different values of utility which it is the result of the state of the preferences.

Consider a domain which has only two agents i and j respectively:
Each agent has two possible actions to perform that are C (cooperate) and N (non-

cooperate)
The set of outcomes or states is W = {w1, w2, . . . }
The environment is determined by function t : AcXAc→ W

Therefore, all of the possible outcome of this function are

t(N,N)=w1, t(N,C)=w2, t(C,N)=w3, t(C,C)=w4

and the utilities of each agent are

ui(w1) = R1, ui(w2) = R2, ui(w3) = R3, ui(w4) = R4

uj(w1) = R5, uj(w2) = R6, uj(w3) = R7, uj(w4) = R8

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 17

under the same environment each agent gets a different utility value and as it is assumed
to be self-interested, each would choose the action which would give it the highest value,
or both agents would choose the action that give both of them as much as possible
(reaching equilibrium).
Nash Equilibrium (Wooldridge, 2002) has been defined as follows:

Let s1 and s2 be two strategies, if these two conditions are satisfied:

(1) under the assumption that agent i plays s1, agent j can do no better than
play s2; and

(2) under the assumption that agent j plays s2, agent i can do no better than
play s1

Then, both agents reach “Nash Equilibrium”.

The study of interactions among self-interested agents is known as Game Theory (Bin-
more, 1991). It is a mathematical-based theory which is applied in multiagent systems.
It helps with telling about what the properties of an appropriate/optimal solution are,
rather than telling how a solution has been computed; as the problem of computing a
solution in the multiagent research field is computationally very hard, e.g. NP-complete
or worse. It seems more understandable when modeling human/artificial agent societies
in game theory.
Games are classified into four classes by Gibbons (1958): static games of complete infor-
mation, dynamic games of complete information, static games of incomplete information,
and dynamic games of incomplete information. In a game of incomplete information, a
player does not know another player’s payoff. The example of this situation is an auction
where a bidder does not know how much another bidder will offer as a bid for the goods
being sold. These four classes of games correspond to four notions of equilibrium in
games: Nash equilibrium, sub-game-perfect Nash equilibrium, Bayesian Nash equilibrium,
and perfect Bayesian equilibrium. More details are provided in (Fudenberg and Tirole,
1991). According to Nash equilibrium, it states that in equilibrium every agent will select
a maximum utility strategy, given the strategy of every other agent.

Let s = (s1, s2, ..., si) be the joint strategies of all agents, or strategy profile,

and s−i = (s1, ..., si−1, si+1, si)means the strategy of every agent except agent
i

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 18

and J−i = (J1, ...,Ji−1,Ji+1,Ji)denotes the preference of every agent except
i

Definition A strategy profile s = (s1, s2, ..., si) is in Nash equilibrium if
every agent maximizes its expected utility, for every i,

ui (si (Ji) , s−i (J−i) ,Ji) ≥ ui
(
s
′
i (Ji) , s−i (J−i) ,Ji

)
for all s′i 6= si

Strategy si (Ji) under preference Ji gives agent i the greatest utility value when com-
paring with the other strategies s′i (Ji) under the same circumstance.
This research applied the concept of interaction among agents by having each one choos-
ing the best response strategy and maintaining the best benefit of individual agents at
any given moment until the system eventually terminated. More information of this is
in section 4.3—allocation protocols.
Game theory has been applied as a model in negotiation processes for decades. Each
player plays according to the rules of the game. The players use strategies and the
payoffs to encounter among each other in order to choose his/her best option and gain
the maximize results. There are seven elements that are composed to form a game:
players, actions, information, strategies, payoffs, outcomes and equilibrium. A player
chooses a strategy to respond according to the rules of a game. The chosen strategy
results in a payoff. Game theory is addressed on the benefit of the individual player.
It can be used to design a negotiation mechanism, and particularly for the definition of
protocols that restricts the number of strategies used by the parties (Sierra et al., 1997) .

2.4 MultiAgent Resource Allocation (MARA)

Chevaleyre et al. have defined the meaning of Multiagent Resource Allocation (MARA)
as the process which distributes a number of items among a number of agents. The items
that are being distributed are resources, while agents are the entities receiving them
(Chevaleyre et al., 2006).
There are two possible types of resources, these are:

• Divisible resource: one that may be divided into fractions and be distributed to
different agents.

• Indivisible resource: one that may or may not be possible for different agents to
share the same resource.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 19

A particular distribution of resources among agents is called an allocation, and the set of
resources assigned to a particular agent is called the bundle allocated to that agent. An
agent may/may not have preferences about the bundles it received. When an agent has
preferences about the bundle received by an other agent, this is termed externalities. A
good mechanism design should provide an incentive for agents to reveal their preferences
truthfully.
There are two possible ways to do the allocation procedure, which these are:

• Centralized : so that an agent decides on the final allocation of resources among all
agents, such as auction protocols.

• Distributed : when the allocations are determined as a result of a sequence of local
negotiation steps. The computational burden of finding an allocation solution is
shared among several agents such as a contract net protocol.

Both procedures have the same objective to find either a feasible or optimal allocation.
A feasible allocation means that the allocation solution is satisfied, whereas an optimal
allocation means that allocation solution is the best available among several feasible
solutions (given a maximum utility value).
Research in the multiagent resource allocation field encompasses not only the theoretical
analysis of computational complexity but also the design of efficient algorithms. It is re-
lated to many disciplines such as Computer Science, Artificial Intelligence, Decision The-
ory, Microeconomics, and Social Choice Theory ; results of many subfields of researches
under MARA, for instance, Preferences, Social Welfare, Complexity, Negotiation, Al-
gorithm Design, Mechanism Design, Implementation, Simulation and Experimentation,
Interplay of Theory and Applications.

2.4.1 Preference Representation

InMARA, each agent needs to express its relative or absolute preferences when faced with
a choice between options. These options have different potential in resource allocations.
A preference structure represents an agent’s preferences over a set of alternatives X, and
there are several choices that can be made regarding the definition of a mathematical
model for preference structures. These are (Chevaleyre et al., 2006):

• A cardinal preference structure consists of an evaluation(utility) function u : X →
V al, where Val is either a set of numerical values (quantitative) or a scale of
qualitative values.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 20

• An ordinal preference structure consists of a binary relation between alternatives,
denoted by � , which is reflexive and transitive. Strict preference x ≺ y if and only
if x ≤ y but not y ≤ x; and x ' y if and only if both x ≤ y and y ≤ x.

• A binary preference structure is a function which maps a partition of X into a set
of good and a set of bad states. A binary preference structure can be seen as both
an ordinal preference structure and cardinal preference structure.

• A fuzzy preference structure is a fuzzy relation over X i.e. a function m : X ×X →
[0, 1]. m(x, y) is the degree to which x is preferred over y. Fuzzy preferences are
more general than both ordinal and cardinal preferences.

Quantitative preference can be used not only for comparing the satisfaction of a given
agent for different alternatives, but also for expressing preference intensity, which allows
for interpersonal comparison. As any cardinal preference induces an ordinal preference, a
utility function can be defined as the complete weak order≤u given by x ≤u y if and only
if u(x) ≤u u(y). In our proposed model, we also chose to apply a cardinal quantitative
preference for expressing the different choices of resources which each agent will choose
the best-fit and the most preferred resource to occupy.

2.4.2 Social Welfare

The main role of MARA is to allocate the resources among agents. The aggregation of
individual preferences can be modeled as a notation of social welfare. For each agent, if
it calculates its own preferences by using the utility function, that is the mapping from
bundles of resources to numerical values, then the total value of individual utilities, which
is called utilitarian social welfare, can be used to measure the quality of the allocations
in the system as a whole. A social welfare ordering is a mapping from the preferences of
the agents in a society to the preferences of the society as a whole.
Let A = {1, ..., n}be a set of agents. Each of these agents i is provided with either a
utility function ui or a preference relation ≤i. An allocation P is a mapping from agents
to bundles of resources; P(i) is the bundle held by agent i in allocation P. P ≤i Q means
agent i is more like allocation Q than allocation P, which it is an abbreviation of and
ui(P) is a short form of ui(P (i)).

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 21

2.4.2.1 Collective Utility Function

If individual agents use utility functions to represent their preferences, then every allo-
cation P gives a utility vector < u1(P),...,un(P) >. A collective utility function (CUF)
is a mapping from such vectors to numerical values; that means it is a function from
allocation P to numerical values. Every CUF induces a social welfare ordering: The
allocation Q is socially preferred over allocation P if and only if sw(P) ≤ sw(Q).

• Utilitarian Social Welfare is defined as the sum of individual utilities:

swu(P) =
∑

i∈A ui(P)

• Egalitarian Social Welfare is the utility value of the agent that is currently worst
off:

swe(P) = min {ui(P)|i ∈ A}

• Nash Product is the product of individual utilities:

swN (P) =
∏

i∈A ui(P)

• Elitist Social Welfare is the utility value of the agent that is currently best off:

swel(P) = max {ui(P)|i ∈ A}

• Rank Dictators is defined the kth smallest utility assigned to allocation P by any
of the agents in A. The k-rank dictator CUF swk is:

swk(P) = (V ↑p)k

In our research, we have applied utilitarian social welfare by employing a Round-Robin
(RR) algorithm in section 4.3.1.2 to reorder the sequence of Year-Program Agents (YPAs)
for each round of organizing the timetable.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 22

2.4.3 Allocation Procedures

The aim of the allocation procedure is to find a suitable allocation of resources which
might be either centralized or distributed. For MARA, allocation procedures involve the
following three issues.

• Protocols: there are two subjects that need to be part of protocol design, there are
the ontology and communication protocols.

• Strategies: the protocols for each agent should be designed in a way that provides
incentives for the agent to negotiate and to reveal the genuinely desirable profile
(mechanism design).

• Algorithms: the algorithms for solving the computational problems when the agent
is faced by problems and employed in negotiation.

2.4.3.1 Auction Protocols

An auction is a centralized mechanism which is designed for allocating goods, tasks and
resources among several agents. Under the auction protocol, one agent is known as the
auctioneer, while a collection of agents is known as the bidders. The goal of the auction
is for the auctioneer to allocate the goods to one of the bidders. The auctioneer desires
to maximize the price of the goods that are allocated, whereas bidders desire to minimize
the price. The auctioneer tries to achieve his/her goal through an appropriate auction
mechanism, at the same time as the bidders also try to reach their own goal, so each
agent uses its own strategy that will conform to the rules of encounter. Eventually this
mechanism will lead the system to reach an optimal result. There are many types of
auction including:

• English Auction: an open outcry auction, the bid in each round must be greater
than the previous bid, and the winning participant pays the highest announced
price.

• Dutch Auction: an open outcry auction, the bid in each round must be lower than
the previous bid. And the winning participant pays the lowest announced price.

• Sealed First-Price Auction: this is a concealed auction, the submitted bids are
compared and the person with the highest bid wins the award, and pays the amount
of his bid to the seller.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 23

• Sealed Second-Price Auction (Vickrey auctions): this is also a concealed auction,
the submitted bids are compared and the person with the highest bid wins the
award, and pays the second highest bid price.

In our research, we have not applied any auction mechanism for allocationg resources as
other research has done. This is because an agent has the potential to choose the resource
which meets its needs. More details about allocation of resources are given in section 4.3
and section 5.3.

2.4.3.2 Negotiation Protocols

Negotiation protocols are mechanisms which have been designed to work in a distributed
setting. Negotiation is a technique used to reach common agreement, as discussed in
(Rosenschein and Zlotkin, 1994). Generally, there are four components in any negotiation
set (Wooldridge, 2002):

• A negotiation set denotes a set which contains the space of possible proposals

• A protocol means a set of rules which govern the interaction.

• A collection of strategies for every agent there is a set of strategies which is used
for determining which proposals the agent will make.

• A rule identifies the information when a deal is unable to be reached; or what this
agreement deal is.

The process of negotiation usually proceeds via a series of rounds with each agent making
proposals according to its own strategy. The proposals must be chosen from the negoti-
ation set and must be legal as defined by the protocol. If agreement is reached, then the
negotiation process will be terminated.
The degree of complexity in negotiation can be analyzed in terms of these four factors:

• The number of attributes: a single-issue or multiple-issue negotiation

• The number of possible deals

• The number of unclear attributes under negotiation

• The number of involved agents in negotiation

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 24

There are three forms of interaction among the agents:

• One-to-one (bilateral) negotiation: when there are two parties negotiating with
each other.

• Many-to-one (auction) negotiation: when there is one auctioneer negotiating with
many bidders, such as the bidding processing in the classical contract net protocol.

• Many-to-many (distributed and multilateral) negotiation: when there is a set of
parties negotiating with another set of parties in order to reach agreements.

For any type of interaction among agents, there are usually two possible interdependent
negotiation situations (Lewicki et al., 2010):

• A distributive (win-lose/zero-sum) situation arises in the situation of having a large
number of demands while supplies are limited.

• An integrative (win-win/non-zero-sum) situation arises when the negotiators search
for situations which give benefits for both parties. In our research, we also have
employed the win-win interdependence in our negotiation protocol as well. More
details of negotiation protocol are in section 4.3.2 and section 5.4.

– The first winner is the agent who frees his current occupied resource and
switches to acquire the new resource which gives a utility value not less than
the one he had before.

– The second winner is the agent that takes the freed resource.

2.4.3.3 Contract-Net Protocol (CNP)

The Contract Net Protocol (CNP) (Smith, 1980) is a high level communication protocol
for cooperative task sharing in a Distributed Problem Solver. It imitates the way that
a company puts contracts out for tender. As presented in Figure 2.2, the process of
Contract Net involves, by the following steps:

• Task announcement processing : the manager announces a task in three possible
ways:

– A general broadcast : used in the case which the manager lacks knowledge of
the other nodes’ capabilities, he/she therefore broadcasts to every node.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 25

Figure 2.2: The Contract Net protocol (CNP) from(Smith, 1980)

– A limited broadcast : used in the case which the manager possesses some knowl-
edge about which nodes in the net are likely to have appropriate capabilities
and broadcasts only to the specific set of these nodes.

– A point-to-point announcement : used in the case which the manager knows
which node is appropriate for the specific task. However, the node also has
the option of refusing the task.

• Bid processing : the nodes in the net listen to the task announcements and eval-
uate themselves. If a node finds that the proposed task is appropriate for its
capabilities, it then submits a bid to the manager. When the deadline is reached,
the manager awards the task to a single bidder, which is called the contractor.

• Award processing : The successful bidder must complete the task, while the
agents who were unsuccessful in the bid delete the task information.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 26

• Request and inform processing : The manager receives the inform message
immediately after issuing the request, if the information is available. Otherwise,
the manager will be informed that the information is unknown. At the conclusion
of a task, the contractor will send the detail of the achieved task to the manager.

In our research, the idea of contract net protocol has been extended and applied in our
negotiation part of our model in order to switch the resource to the one who is most
able to use it. Additionally, we found many researchers have extended the contract net
protocol and employed in their work as well, including:

• The TRACONET system, developed by Sandgolm (1993), applies contract net
protocol to allow negotiation over the exchange of bundles of resources.

• Sousa et al. (2003) have adapted the contract net protocol for bidders propagating
constraints between them in order to guarantee the coherence of different operations
which are related to the same task.

• Golfarelli et al. (1997) have adapted the original contract net protocol for agents
to bid for resources which they are interested in for the propose of exchanging.

• Aknine et al.(2004) have designed a concurrent contract net which allows many
managers to negotiate simultaneously with many contractors. The extension con-
sists of a pre-bidding and pre-assignment phase which is added before the final
bidding and assignment phase.

For any type of negotiations, the rational agent will be defined as an agent that will agree
to deal, the result which gives a positive payoff for itself. That means the agents will agree
only on mutually beneficial deals. Many mutually beneficial deals have been backed up
by the concrete strategies. However, aggregate negotiation strategies may prevent agents
from identifying any mutually beneficial deal, but the agents will certainly agree on some
deal which meets rationality criteria (Sandholm, 1998). When such a deal exists, it is
called convergence properties of a negotiation framework. In (Sandholm, 1998), Sandholm
states that “under the context of negotiation over finitely many indivisible resources, any
sequence of deals that is mutually beneficial will consequently result in an allocation with
maximal utilitarian social welfare. If there is no infinite sequence of mutually beneficial
deals and the agents keep on making such deals, then the system will converge to an
allocation that maximizes the sum of individual utilities”. Moreover, in (Endriss et al.,

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 27

2003), their results state that “any sequence of mutually beneficial deals without side
payments will converge to a Pareto optimal allocation”.

2.4.4 Mechanism Design

A mechanism or protocol is the set of rules that given an encounter between agents in
a multiagent system and that are used in order to reach an agreement (Rosenschein
and Zlotkin, 1994). By following the rules while negotiating, an individual agent can
eventually reach his/her maximize value of the sum of the utility functions. Therefore,
mechanism design is the design principle used for governing multiagent interactions, so
that the system is free from deadlocks, live-locks and so on, similar to the design of
a conventional communication protocol, but also with the following properties added
(Sandholm, 1999):

• Guarantee success: a mechanism can guarantee success if it ensures that agreement
is definitely to be reached.

• Maximizing social welfare: a mechanism could maximize social welfare if it ensures
that any outcome maximizes the sum of the utilities of negotiation participants.

• Pareto efficiency : a negotiation leads to the Pareto efficiency if there is no other
outcome that will make at least one agent better off without making at least one
other agent worse off.

• Individual rationality : the designed protocol is in the best interests of negotiation
participants. This property is very important, since if there is no such property;
the agent has no incentive to participate in negotiation.

• Stability : the designed protocol is stable if it provides all agents with an incentive
to behave in a particular way—reaching Nash equilibrium.

• Simplicity : the designed protocol should be simple enough to make the appropriate
strategy for negotiation participant obvious. Each agent can then determine an
optimal strategy.

• Distribution: the protocol should not only have no single point of failure, but should
also minimize communication between agents.

CHAPTER 2. BACKGROUND IN MULTIAGENT SYSTEM 28

In our research, the rules for encounters between agents, that have been designed for
working in either the initial allocation phase or the negotiation phase have met some
of above properties. These are Guarantee success, Maximizing social welfare, Individual
rationality, Stability and Simplicity.

2.5 Summary

In this chapter, we provide some background about agent-based system of the form
employed in this research. It provides a description of intelligent agent and multiagent
systems. BDI architecture is addressed, as it is a model that has been developed for
describing human behaviour and for formulating complex systems which provides the
basis for our implementing tool Jason. The concepts of multiagent interaction and Game
Theory have been reviewed. In any given circumstance, each self-interested agent would
choose the action which would give it the highest returned value, or both selfish agents
would reach ”Nash Equilibrium”. At the end of this chapter, an overview of multiagent
resource allocation concept is summarized by covering the folowing topics: preference
representation, social welfare, allocation procedures and mechanism design.

Chapter 3

The University Course Timetabling
Problem

This chapter provides background about university course timetabling issues. It starts by
describing the types of timetables used in the education domain. It then presents a list of
university course timetabling issues which need to be addressed. Thirdly, it describes the
reasons which why agent technology is suitable for solving timetabling problems. For the
fourth section, some examples of university course timetabling research, which has used
agents, are reviewed. Then, in the fifth section, several classical timetabling techniques
are described; and the last section of this chapter then summarizes how other university
course timetabling models compare with the proposed model.

3.1 Educational Timetabling

Educational timetabling involves all activities which are relevant to creating a timetable in
educational institutes. It belongs to the class of NP-complete problems. That means it is
unlikely that there is a method which can solve it in a polynomial amount of time (Burke
et al., 1997). The educational timetabling context involves scheduling a set of courses to
specific blocks of time and to rooms, subject to certain conditions. The resources for this
context are students, staff, rooms, courses, time and equipment. A survey of automated
timetabling by Schaerf (1999) categorized educational timetabling into three different
types of scheduling where each differs in terms of the type of institute and the type of
constraints.

29

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 30

• School Timetabling : This provide the scheduling for all the classes of a school,
normally organized in weekly periods, and aiming to avoid such situations as a
teacher being assigned to any two classes at the same time and vice versa.

• Course Timetabling : This is also a weekly scheduling structure used for all the
lectures of a set of university courses, aiming to avoid any overlap of lectures for
courses which are taken by the students on a particular programme.

• Examination Timetabling : This is the scheduling of the exams for a set of university
courses, needing to avoid any overlap of exams for courses which are taken together
by the students, and aiming to spread the exams across the assessment period as
much as possible.

Each type of timetabling involves consideration of different aspects. Examination timetabling
needs to ensure that any two consecutive exams for the same student should be separated
by sufficient time, school timetabling places a high priority on teacher availability and re-
ducing idle time for students, whereas course timetabling aims to find the timetable with
the fewest conflicts or that is conflict free, enabling the students from different curricula
to take as many combinations of courses as they wish. The obvious distinction between
course scheduling and examination scheduling is that one room must be occupied for one
lecture at any time when that lecture is scheduled, while for exams one room is often
shared by students from many courses, or students in one course are spread across rooms.
Course timetabling must address the wider context of the use and availability of space
much more than examination timetabling.
This research focuses on solving university course timetabling problems. As with the
other timetabling problem domains, a solution requires a number of constraints to be
satisfied. The constraints which are involved in this problem can be divided into two
categories (Burke et al., 1997).

• Essential (Hard) constraints consist of set of constraints which must be met in full.
A timetable which meets essential constraints is a feasible solution; and we term it
—a valid timetable.

• Desirable (Soft) constraints consist of set of constraints which do not need to be
fully satisfied. A valid timetable which meets some desirable constraints is termed
—a good timetable. It is the satisfaction of soft constraints that can make one valid
timetable better than another (Woods and Trenaman, 1999).

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 31

Table 3.1 presents a set of essential and desirable constraints which have been considered
in university course timetabling problems (Burke and Petrovic, 2002,Causmaecker et al.,
2006)

Essential constraints Desirable constraints
Lecturers and students can only be
in one location at the same time.

Lecturers express preferences for
certain time slots.

There should be sufficient resources
for any time slots.

One course may need to be
scheduled before/after the other.

A room can hold at most one
lecture at a time.

Some student groups must have one
day off per week.

Class rooms have a limited
capacity.

Lectures should be scheduled in 2
or 3 consecutive time slots from a
student point of view. Scheduling a
single lecture on one of the teaching
days is to be avoided.

The number of class rooms is
limited.

Scheduling lectures in the last time
slot of the day is to be avoided.

Feasible time slots are the periods
that occur on weekdays.

The number of lecturing hours per
days should be spread evenly over
the week.

The timetable period is for one
term.

Gaps between lectures are to be
avoided.
Lectures may prefer to have all
their lectures in a number of days.
Lectures may prefer to teach in a
particular room.

Table 3.1: Essential and desirable constraints from(Burke and Petrovic, 2002Caus-
maecker et al., 2006)

3.2 The Gap in University Timetabling Problems

Barry McCollum has suggested that a gap between the theoretical and practical as-
pects of university timetabling still remains (McCollum, 2007). He argues that most
research is directed at evaluating particular techniques and approaches, and that auto-
mated timetabling ignores the human factors and chooses to deal with only the data sets.

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 32

Problems Current Solutions
Rising student numbers Significant human interaction
The series of events that exist in
one module

Fuzzy algorithms, split by
objectives, meta-heuristics

The goal of optimization High level heuristics +
Optimization techniques

The timetabling of associated
events together (pathways within a
particular school)

Left for further research

Table 3.2: Timetabling problems and solutions from (McCollum, 2007)

Furthermore, Carter and Laporte have observed that very few of the research methods
proposed for timetabling have been implemented and used in an institution, including the
ones which have been implemented, namely the search technique on benchmark datasets
(Carter and Laporte, 1998). This because there has been insufficient investigation of
real world issues and understanding of the methodologies used by human schedulers.
Moreover, each institution must satisfy a range of different constraints when generating
its timetables, which means that finding a generally applicable solution to the complex
problem is extremely difficult. A range of proposed research approaches are based on real
world problems but are still based upon simplifying assumptions when modeling a prob-
lem. Therefore, they chiefly form an initial research test bed through presenting powerful
search techniques. Both McCollum and Carter assert that the process for producing a
workable timetable still remains with a combination of lecturing and administrative staff
rather than through the use of an automated component. Much more work is needed
to investigate the formulation and modeling of the problem. (Carter, 2000,McCollum,
2007). Automated timetabling repeatedly struggles, not only to cope with rising student
numbers, but also with the series of events that needed to be included in one module e.g.
lectures, seminar, tutorials, practical classes and laboratory classes. Moreover, the goal
of optimization is sacrificed over and over for the purpose of getting a solution. Table 3.2
presents a list of timetabling problems and the current solutions being used for these.

McCollum (2007) has identified a number of significant challenges facing university course
timetabling researchers and needing further investigation i.e.

1. how to produce timetables within an institution that seem to be fair and equitable

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 33

to all interested parties.

2. the balancing between the size of each subclass of any course while still offering
students maximum choice.

3. how to construct and optimize the solutions by keeping a balance of all the stake-
holders’ satisfaction e.g. student choice, staff preference and room usage.

3.3 Employing Agents in Timetabling Problems

In recent years, many papers have been published that argue that multiagent technology
is suitable for solving timetabling problems, as in (Causmaecker et al., 2003). The authors
observe that within each timetabling problem, there always appeared concurrently the
differentiation between local level that relates only to its own needs, and global level that
relates to the needs of the whole system. Both levels need decision support capability. If
using the multiagent paradigm, agents could address the above problem by negotiating
and collaborating with each other. Another supporting reason has been noted by Carter
(2000), who observes that a distributed software architecture can adequately describe
timetabling problems. Decision support in distributed systems with autonomous, asyn-
chronous components can be modeled by a multiagent system. Where agents are used
to provide a model for distributed timetabling, the distribution arises from the presence
of separated, autonomous components which do not communicate in every detail, but
do exchange more coarse grained information. The decisions made by an agent must be
based on incomplete information, depending on individual capacity or its own knowledge.
The agents will typically use expressions of interest and degrees of agreement obtained
from individual agents. For real world operators, better decisions are obtained through
a negotiation process in which all partners actively search for better solutions and find
the ways to alleviate other partner’s problems. Autonomous agents negotiate on behalf
of the operators that they represent; hence agent technology has the potential to re-
solve timetabling problems, as it provides mechanisms to develop such a decision-making
system while running in a dynamic and distributed manner.

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 34

3.4 Literature Review: UCTP Solved by Use of Agents

Researchers still continue to solve timetabling problems from different domains by differ-
ent techniques; including using multiagent technology to propose various models to sort
out university timetabling problems.
The following section summaries research applying agent technology to address university
course timetabling problems over the last ten years.

(1) Kaplansky and Meisels (2004) have developed a model that assigns
agents to the roles of Scheduling Agents and a Room Agent.

• Scheduling Agent : takes responsibility for generating the timetables for
one particular department by employing Constraints Satisfaction Prob-
lem (CSP) techniques in the agent. Each department not only needs to
schedule a set of lectures for each course within a given number of time
periods and rooms, but also needs to solve different problems that corre-
spond with departmental needs; such as ownership of different resources,
different teaching requirements, different preferences and different strate-
gies for utilizing the teaching spaces.

• Room Agent : takes a responsibility for cooperating with the scheduling
agents to meet the inter-departmental constraints and is responsible for
assigning rooms to each scheduling agent.

In this research, negotiation protocol has been defined for Scheduling Agents
to negotiate among each other to reach the shared timeslot if all of them
share the same course. That means the course will be taken by more than
one department and will be scheduled on the same timeslot on timetables of
all the shared departments. The inter-agent negotiation process is divided
into nine steps and roughly grouped into three stages as follows:

• The first stage (steps 1–3) focuses on each department’s solution

– Step 1: Self assessment—each Scheduling Agent assesses the solu-
tions generated by expressing the Average Computation Cost (ACC)
for each solution found; the ACC value is the average number of
constraint checks per solution which the agent has found.

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 35

– Step 2: Direction of the inter agent constraints—the result of step
1 can be used to determine agent’s constraint; the agent which has
more complex of the same constraint direction is called Course Man-
age Agent, while the other agents on the same constraint direction
are called Course User Agents.

– Step 3: Calculate best local solution—the agent computes its best
local solution with the shared courses set at fixed time slots; the
best solution cost is called Agent Maximal Cost (AMaxC)

• The second stage (steps 4–8) eliminates the conflicts between the Schedul-
ing Agents

– Step 4: Initial suggestion— every Course Manager sends the time
slots of its Shared Courses to the agents that will use these courses;
and then the agents respond by calculating their own Agent Cost
Range (ARangeC = AMaxC −AMinC) and send this back to the
Course Manager.

– Step 5: Normalizing Agents costs— the Course Manager generates
a common scale by normalizing the complexity of all Course User
Agents from the values of ARangeC.

– Step 6: Requests for Change— each Course User Agent seeks to
improve its local timetable by changing the time slot of one of its
shared courses and solving its local problem. It sends a request
for change and a list of suggested timeslots to the Course Manager
Agent

– Step 7: Approve Change— when a Course Manager Agent receives
a request and a list of suggested timeslots. It searches for the best
solution by looking from the accompanied list. If the sum of all
Change Costs is lower than the Expected Gain; then the change
request is approved. Otherwise, all agents proceed to the bidding
step.

– Step 8: Bidding— the bidding takes place between the initial Course
User Agent and the Course Manager Agent. If the bid succeeds,
then the request will be approved.

• In the final stage (step 9) Scheduling Agents interact with Room Agent

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 36

asking for rooms

– Step 9: Negotiation with Room Agent— when a university timetable
is stable, each agent sends a request for each course to the Room
Agent. If at a specific timeslot the demand for rooms exceeds sup-
ply, then the Room Agent sends a ‘refuse’ message to all requesting
agents. After each agent gets the ‘refuse’ message, it tries to change
the timeslot and sends to Room Agent again. If the Room Agent
gets enough response messages agreeing to change, then the prob-
lem is solved. Otherwise, the Room Agent begins an auction for
rooms for this timeslot.

Drawbacks can be found in this negotiation model when considering conflicts
for either timeslots or rooms. According to the protocol, exhaustion in the
Scheduling Agent might cause infinite loops to occur. Moreover, although
the authors argue that this research is ongoing (from 2004) they have not
published any actual course timetabling results so far.

(2) Oprea (2007) defined a multiagent system that could be used to schedule
university course timetables. The architecture of the system is defined to have
the same pattern of university’s organization levels. The proposed model is
composed of four types of agents working together, which these are:

• Main Scheduler Agent (MSA): a timetabling scheduler at university level.

• Faculty Scheduler Agent (FSA): a timetabling scheduler at faculty level.

• Expert Assistant Agent (EAA): a timetabling scheduler at department
level.

• Personal Agent (PA): a scheduler that works on behalf of a professor to
manage his/her teaching activities.

The professors submit their preferences, which are a list of options for teaching
courses, to the department timetable specialists who organize the department
timetables. After that, the department timetables will be proposed to the
faculty scheduler.

The university course timetable scheduling is divided into two procedures:

• Faculty course timetable scheduling allocates days and times for courses.

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 37

• University course timetable scheduling allocates rooms for courses.

The system will terminate successfully, when all courses have been assigned
date-time slots and rooms. However, if any conflict occurs, a negotiation
activity will be started. The following scenarios show how the system sorts
out some forms of conflict:

• Date-time slots conflicts: between Expert Assistant Agent and Personal
Agents. These occur when several professors prefer the same date-time
slot. The Expert Assistant Agent sends a message to all professors who
are involved in the conflict problem, and waits for a solution by negoti-
ation among them. If the negotiation can reach an agreement, then the
Expert Assistant Agent will reschedule the timetable according to the
agreement reached. Otherwise, if the Expert Assistant Agent receives
no solution, it starts a persuasion process of negotiation to suggest a
possible solution.

• No room is available: the Main Schedule Agent sends a signal to start
the negotiation among Faculty Scheduler Agents. Each Faculty Sched-
uler Agent solve the conflict by passing the message to the corresponding
Expert Assistants, or in some situations the Expert Assistants will con-
tinue to pass the message to the Personal Agents involved to negotiate
directly. However, if no solution can be found, the Main Scheduler Agent
will start a persuasion process among the Faculty Scheduler Agents and
this will pass through to the lower level in turn.

The analysis and design phase of this research used Gaia (Cernuzzi et al.,
2004) as a methodology, while the evaluation method used interaction dia-
grams for presenting their solution.

Oprea designed the program to work through the levels of university orga-
nization (Person, Department, Faculty and University). However, although
Personal Agent concerns the preferences of the staff, the needs of the students
still have been omitted from this research. Other desirable constraints such
as the shared courses are not recognized in this model.

In the evaluation part, Oprea employs interaction diagrams as a regular way to
evaluate the multiagent system, to design the communication process between

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 38

agents, and to verify that the system executes the sequences of communication
correctly. Several examples of message flow fragmentation are given to present
how a communication process is analyzed. However, this paper does not
mention any experimental results; nor details of the negotiation protocol, the
persuasion protocol; and the way to resolve the worst case when no solution
is found.

(3) Strnad and Guid (2007) also proposed a multiagent system for generat-
ing university course timetables. Their context is one of assigning computer-
equipped classrooms to practical courses that are conducted by teaching assis-
tants. Each assistant is responsible for more than one course, and more than
one student class may attend each course. Student classes are divided into
several smaller groups to meet the classroom capacity. The model consists of
following types of agents:

• Course Agent : each agent represents an individual course which has to
allocate teaching assistant and technical resources through negotiation.

• Scheduling Agent : takes responsibility for negotiating directly about
combining specific courses.

• Central Agent : is responsible for communication among agents.

Each Course Agent has a list of initial assertions or requests which have
been prioritized for expressing preference. At any time periods, the designed
timetable can be evaluated by considering from the agent private evaluating
value and the system global evaluating value, as E(K) = E

(K)
G +

∑
E

(K)
i where

EG is global evaluation and Ei is course agent i private evaluation at any K
time. The negotiation protocol is defined in steps as shown in Figure 3.1.

This approach aims to solve any conflicts through the negotiation protocol.
Nevertheless, even though each agent in this model represents an individual
course and tries to allocate teaching assistant and technical resources through
negotiation, the paper does not give any details about what the preferences
are and how they are prioritized. In addition, the needs of students are still
neglected in this study.

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 39

(1) Generate the initial timetable T(0) = ∪iQi = ∪iPi when Q is all
requests of agent i and P is the available periods for the fulfillment of the
agent i actual allocation requirements.
(2) Distribute agents into conflict groups
(3) Perform a round of incipient withdrawals
(4) Repeat.

4.1 Rebuild the conflict groups.
4.2 Run a concession round, until producing timetable T(k+1)

4.3 If no concession was possible, run a renovation round.
4.4 Run a withdrawal round, until producing timetable T(k+2)

(5) Until a feasible timetable is produced or no concession, renovation and
withdrawal were executed in the last round.

Figure 3.1: The negotiation protocol from (Strnad and Guid, 2007)

For the experiments and evaluation, there are three data sets, which consist
of a set of courses, a set of classrooms, a set of requests and a set of con-
flicts. Three approaches are set up to organize timetables; namely manual
approach, multi agents approach, and genetic algorithm approach. Each orga-
nized timetable has been evaluated through function ofE(K) = E

(K)
G +

∑
E

(K)
i

at any K time. The evaluated results show that timetables which are products
of MAS give better evaluation values when comparing with the ones which
are products of manual approach and of genetic algorithmic approach.

(4) Gaspero et al. (2004) designed an automatic scheduling system based
on a multiagent architecture. In each department, there are three types of
agents working cooperatively on different roles as follows:

• Solver Agent takes a role to generate timetable for its department by us-
ing two common local search techniques—hill climbing and tabu search.
The hill climbing advantage is fast and provides some diversification,
whereas tabu search intensifies its search in the promising areas of the
search space. The timetable should meet hard constraints (H) and min-
imize violations of the soft constraints (S), using the following list:

– Lectures: every lecture of courses must be organized. (H)

– Room Occupancy : two distinct lectures cannot take place in the
same room at the same time. (H)

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 40

– Teacher Conflicts: lectures of courses with common teacher must
be scheduled at different times. (H)

– Availabilities: a course cannot be scheduled in a period when a
lecturer is unavailable. (H)

– Student Conflicts: lectures of courses with students in common
should be scheduled at different times. (S)

– Room Capacity : the number of students should be less than or equal
the number of seats of the room. (S)

• Negotiator Agent sells and buys bids with other departments’ negotiator
agents. The buying bids are inferred directly from the Solver’s results,
while the selling bids are decided by itself according to the chosen strate-
gies that involve selling everything that is not used, or selling only the
useless resources, or using an intermediate behaviour.

• Manager Agent maintains quotation prices for the needed resources. The
Negotiator Agent uses these quotations to make profitable bids when
selling resources, whereas the Solver Agent uses them to estimate the
cost when buying the missing resources. The maintained information
provides probability values for buying a specific room x that has capacity
c at timeslot t by presenting the price list p1, p2, . . . that correspond
with probability value v1, v2, . . . in turn. That means Quotation(t, c) =
{(p1, v1), (p2, v2), ...}.

The model employs three agents to work together on behalf of one department
under the roles of Solver, Negotiator and Manager. The mission of these three
agents is not only to organize optimal timetables for the department, but also
to buy any necessary resources and sell unnecessary resources on. However,
the considered constraints in this study are rather fundamental needs.

Two real instances from their university are used for experiments. Each in-
stance comprises five departments. Timetabling for one week divides into
twenty periods, including four two-hour slots per day.

• The first experiment aims to validate the Solver’s capability in deliber-
ating successful trades. Every department gets the same configuration.
The Negotiator works as a bold trader, while the Manager is fed with

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 41

the bidding frequencies coming from a set of test runs. The experiments
are run with values from no trading (a=0.0) to max trading (a=9.5).
The risk level (a) is a member of following set {0.0, 0.2, 0.4, 0.6, 0.8, 0.9,
0.95} and for each risk level the experiment is performed twenty times,
recording the outcomes of every department.

The first experiment result shows that the intermediate values of a lead to the
better results, and give more uniform distribution of the gain among all de-
partments. That means all departments in the market participate effectively.

• The second experiment is designed to investigate the behavior of a sys-
tem when the agents have different levels of risk. Four agents have been
set with their risk level at a=0.6, while one agent has been set to an
extreme risk at a=0.2 or a=0.95.

The second experiment result shows that a low risk agent tends to make fewer
buy bids at high price when comparing with a high risk agent, and so it gets
more successful purchases.

(5) Yan Yang and Paranjape (2011) have sought to harness the capability
of agents for implementing an intelligent decision-making system. Agent au-
tonomy and a flexible communication methodology are the base for a solution
to create the back-bone of the system. There are four types of agents that
have been defined in this proposed model, where these are:

• Course Agent : takes a role as a course representative to maintain in-
formation such as course title, class times, classroom, instructor’s name
and teaching time preferences. It is a mobile agent having capabilities
of negotiation and communication with other Course Agents through a
Signboard Agent in order to find a mutually acceptable timetable.

• Interface Agent : provides a GUI interface to input course information
or to input course information via data file when having many courses
to enter in at a time.

• Publisher Agent : collects the organized timetables from Signboard Agents,
sorts the course schedules and serves the result as a formatted text file.

• Signboard Agent : assigns available resources to Course Agents; it has the
responsibility for against the breaking of hard constraints from Course

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 42

Agents’ requests, and for giving an advice to Course Agents about con-
flicts. Moreover, it takes the role of coordinator to identify the conflicts
of Course Agents; not only to record when the timetable is organized,
but also to do updating when the Course Agents have changed any in-
formation on the organized timetable and to send the results out to the
Publish Agent for publishing.

Essential and desirable constraints which are defined for this research are:

• Essential Constraints

– No instructor teaches more than one course at the same time.

– No more than one instructor can be scheduled to teach in the same
classroom at the same timeslot

– No more than one course can be scheduled in the same classroom
at the same timeslot.

• Desirable Constraints

– The time preferences which relate to each course.

This agent-based model is designed to work on a platform which represents a
weekday, so there are five weekday platforms running simultaneously (under
the assumption of five working days per week). On each weekday, there are
Course Agents and Signboard Agent. Course Agent carries course information
and finds suitable resources through negotiation with other Course Agents
and cooperates with the Signboard Agent, while the Signboard Agent acts as
a repository of the current schedule to record course information. Moreover,
Signboard Agent provides a communication facility, allowing Course Agents
to identify other courses competing for the same resources. A Course Agent
is started on the platform corresponding to the weekday on which the course
has the first preference to be scheduled. If acceptable course resources are
not available on the current platform, the Course Agent will move to a new
weekday platform which is the second most preference and then repeat the
negotiation with other Course Agents. After the Course Agent has nego-
tiated completely, a course timetable will be generated and will be kept in
the Signboard Agent. An Interface Agent is responsible for inputting course

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 43

information, whereas a Publish Agent collects course schedules from individ-
ual Signboard Agent and creates the final output which is a complete weekly
course timetable in the mandatory format.

This research shows three main results:

• How preference times cause an effect on the number of messages and
timetabling duration (in sec), demonstrated by running an experiment
with a range of different numbers of courses and different percentages of
preference on each group of the courses.

The first experimental result shows that the hard and soft con-
straints in most scenarios are satisfied except for the last two sce-
narios which were run under impossible soft constraints; that are
the number of available resources was less than the number of
preference timeslots; resulting in the number of messages and the
scheduling time sharply increasing over these two scenarios.

• How preference times affect the number of messages and timetabling
duration (in sec) by running an experiment that uses a fixed number
of courses and fixed the percentage of preference at one hundred per-
cent by ranging different number of preference timeslots in morning and
afternoon instead.

The second experiment result shows that the plotted graph between
the duration of the experimental run times and the increasing num-
ber of inconsistent soft constraints is a parabola shape.

• How the number of instructors and number of per week workloads affect
the number of message and number of timetabling duration(in sec), when
the number of lectures is fixed, but the number of courses is varied, and
a range of different number of morning and afternoon preferences are
used.

The third experiment result shows that for all the scenarios the
hard constraints are satisfied and no violations occur. However,

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 44

the plotted graph obviously shows that the increased number of
lectures per course causes a direct affect on the chance of conflicts.

Although the idea of harnessing agent capacities for implementing
the decision part distinguishes this research from the other ones in
this review, the constraints which have been considered here are
fundamental needs. University course timetabling problems in real
world are much more complex.

The Table 3.3 summarizes information about research in UCTPs which have been solved
by agent-based technology.

C
H

A
P

T
E

R
3.

T
H

E
U

N
IV

E
R

SIT
Y

C
O

U
R

SE
T

IM
E

T
A

B
LIN

G
P

R
O

B
LE

M
45

Researchers
Constraints

Models Protocols Exp Res Eva
E D

Kaplansky and
Meisels, 2004

n/a n/a Scheduling Agents
Rooms Agent

Implement CSP techniques in SAs for organizing
and evaluating TBs; and well-defined negotiation
for solving conflict among SAs in order to reach
shared course slot.

n/a n/a n/a

Oprea, 2007 n/a 3 Personal Agents
Department Agents
Faculty Agents
University Agent

Defined operations in every type of agents;
including communication messages between any
consecutive levels; and negotiation activities are
set.

n/a n/a Interaction
Diagram

Strnad and Guid,
2007

n/a n/a Course Agents
Scheduling Agents
Central Agent

Operations of each type of agents are defined;
and negotiation protocol is set to reach
agreement to occupy the resources.

Y Y Y

Gaspero et al.,
2004

4 2 Solver Agent
Negotiator Agent
Manager Agent

Local search algorithms with different cost
functions are defined for resources trading which
follows by the negotiation mechanism

Y Y Y

Yan Yang and
Paranjape, 2011

3 1 Course Agent
Signboard Agent
Interface Agent
Publisher Agent

Define protocol by using agent’s abilities to do
heuristic decision making and apply agent’s
characters as autonomy, negotiation and
cooperation to sort out the problem

Y Y Y

Table 3.3: Summary of papers that use agent-based technology for solving UCTP

Exp = Experiment; Res = Results; Eva = Evaluation

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 46

3.5 Classical Timetabling Techniques

As demonstrated in a survey of automated timetabling literature (Schaerf, 1999,Burke
and Petrovic, 2002), there is a wide variety of methods for solving timetabling problems
which have been investigated. They can be divided roughly as follows:

3.5.1 Sequential methods

The concept here is to start by ordering events using domain heuristics and to assign the
events sequentially into valid time periods so that no events in the period are in conflict
with each other. A conflict-free timetable can be modeled as a graph colouring algorithm.
Given an undirected graph G = (V,E), the algorithm (Garey and Johnson, 1979) tries to
find a partition of V into a minimum number of colour classes—c1, c2, ..., ck— where no
two vertices can be in the same colour class if there is an edge between them. According
to the sequential methods, the priorities of the events that have the largest number of
conflicts (high colour degree) would be scheduled first.
The Figure 3.2 and Figure 3.3 provide an example of a simple timetable which can be
solved by graph coloring technique (Lewis, 2007). Each event is represented as a vertex.
Each edge between any pair of vertices corresponds to a pair of events that cannot be
assigned at the same timeslot. Each timeslot corresponds to a colour; therefore the
feasible solution requires no more than the number of timeslots which means the possible
colors should not exceed the number of timeslots.
Initial mapping is shown in Figure 3.2.

Figure 3.2: Initial mapping graph from (Lewis, 2007)

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 47

Figure 3.3: Assigned colours and mapped graph from (Lewis, 2007)

The result after the vertices and edges have been assigned colours and mapped between
different timeslots is shown in Figure 3.3.

The graph coloring solution can be converted to a valid timetable in Table 3.4, where
each colour represents a timeslot and no pair of adjacent vertices have been assigned to
the same timeslot.

1 2 3 4 5
Event 1 Event 4 Event 3 Event 7 Event 6
Event 10 Event 9 Event 5 Event 8

Event 2

Table 3.4: The converted timetable from (Lewis, 2007)

3.5.2 Meta-heuristic methods

There are various approaches using meta-heuristics that have been developed for solving
timetabling problems over the last two decades. These include:

• Tabu search: based on (Glover, 1989, Glover and Laguna, 1993), this technique
aims to reach an optimal solution for a problems. It is based on the notion of a
neighbour: given P is an optimization problem, let S be the search space of P,
and let f be the objective function to minimize. A function N, which depends on

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 48

the structure of the specific problem, assigns to each feasible solution s ∈ S its
neighbourhood N(s) ⊆ S. Each solution s′ ∈ N(s) is called a neighbour of s.

The algorithm starts from an initial solution sinit , which is generated at
random, then enters into a loop to navigate the search space so that it can
explore a subset of V of the neighborhood N(s) of the current solution s; The
member of V that gives the minimum value of the object function becomes
the new solution. The Tabu search algorithm is summarized in Figure 3.4.

1. Randomly set an initial solution i in S set i* = i and k =0
2. Set k = k+1 and generate a subset V of solution in N(i,k)
3. Find a best j in V* (i.e f(j) ≤ f(k) for any k in V) and set i = j
4. If f(i) < f(i*) then set i* = i
5. If a stopping condition is met then stop else go to step 2

Figure 3.4: Tabu search algorithm from (Hertz et al., 1993)

• Simulated annealing : this uses a probabilistic local search to find optimal solutions
as Tabu search by Kirkpatrick et al (1983), with an extended version described in
(Aarts and Korst, 1989).

The algorithm starts by generating an initial solution, then enters a loop that
generates a neighbor of the current solution randomly by iteration. Let D
be the difference in the objective function between the new solution and the
current one. If D<0 the new solution is accepted and becomes the current
solution, else the new solution is accepted as probability e−D/T, where T is a
parameter, called temperature. The temperature T is set to an appropriately
high initial value T0, and after a fixed number of iterations, the temperature
is decreased by the cooling rate a, and Tn = a× Tn−1 where 0 ≤ a ≤ 1. The
Simulated annealing algorithm is summarized in Figure 3.5.

• Genetic Algorithms: genetic algorithms are not a local search technique, but a tech-
nique for optimizing problems, which has been proposed in(Davis, 1991,Michalewicz,
1994)

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 49

1. Randomly set an initial solution i in S set i* = i and n = 0
2. Set n = n+1 and generate a subset V of solution in N(i,k)
3. Find a best j in V* (i.e f(j) ≤f(n) for any n in V) and set i = j
4. If f(i) < f(i*) then set i* = i else f(i) is accepted as probability e−D/T

when Tn = a× Tn−1 where 0 ≤ a ≤ 1
5. If a stopping condition is met then stop else go to step 2

Figure 3.5: Simulated annealing algorithm from(Hertz et al., 1993)

The algorithm initiates a set of solutions
{
s01, ..., s

0
n

}
by randomness, called

population at time 0.

At time t, the value of the objective function is computed for each solution
sti to give a set of solutions

{
st1, ..., s

t
n

}
. Based on a random weighting, n

elements of the population at time t are selected. Some solutions in higher
probability may be selected more than once if the results give a better value
of the objective function. Therefore, the best solutions get more copies, while
the worse solutions probably die off at time t+1 with a new set of solutions{
st+1
1 , ..., st+1

n

}
The method terminates either when it generates a fixed number of popu-
lations, or when the best solution reaches a certain value of the objective
function, or when the algorithm does not make any progress for a certain
number of iterations. Genetic Algorithms are summarized in Figure 3.6.

1. Generate an initial population of candidate solutions
{
s01, ..., s

0
n

}
and t

= 0
2. Apply fitness function to population members

{
st1, ..., s

t
n

}
when t = t

3. Choose the fitness member to form the new population
4. Apply genetic operators and generate new population

{
st+1
1 , ..., st+1

n

}
and

t = t +1 then go to step 2

Figure 3.6: Genetic Algorithm from (Davis, 1991,Michalewicz, 1994)

3.5.3 Constraint-Based Programming Methods

Constraint-Based Programming Methods search all possible solutions which must satisfy
all the constraints (conditions, properties) through the defined Constraint Satisfaction

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 50

Problem (CSP) model (Liu et al., 2002). The strategy is based upon:

1. a set of n variables X = {x1, x2, ...}

2. a finite set di is the possible values of each variable xi and set D = {d1, d, ...}

3. and a set of constraints over X is C = {c1, c2, ...}

A solution of CSP is an assignment of valid values (from each domain) for each variable
and satisfies every constraint at the same time. The results might be

1. one solution with no preference

2. all solutions

3. an optimal or at least a good solution (by defining objective function in term of
some or all of the variables)

The CSP is a combinatorial problem which can be solved by searching. Although the
model consists of a large number of variables and runs through a simple algorithm, the
searching of all possible combinations may still take a long time. The following section
presents several techniques from the constraint programming paradigm to solve CSP,
such as backtracking, a consistency technique, branch-and-bound, global constraints and
constraint hierarchies.

3.5.3.1 Techniques in Constraint Programming

• Backtracking uses a depth-first-search; at each level it selects a variable and extends
the partial assignment of the previous level by selecting a value for that variable. If
the new assignment violates some constraints, then it tries with another value for the
same variable. If all the values for a given variable have been tried without success,
then the algorithm backtracks to the previous assigned variable and selects another
value (Torres et al., 2006). Figure 3.7 presents an example of the backtracking
technique.

• Consistency technique is a technique to remove inconsistent values from the domains
of the variables. Normally, the consistency technique and backtracking are used
together in order to prune the search space (Torres et al., 2006).

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 51

Figure 3.7: Backtracking from (Matuszek, 2009)

Figure 3.8 is an example which applies consistency technique for finding the
consistent solutions.

(a) The graph has no solutions, as if v1 is Red/Green, then v2 must be
Green/Red; and v3 must not be Red and Green. However, there are only
two possible choices in v3— Red or Green. Therefore, there has no consistent
solution in the graph.

(b) The graph has two solutions (Blue, Red, Green) and (Blue, Green, Red),
assumed that if v1 is Blue, then v2 is Red and v3 is Green; or might be v2 is
Green and v3 is Red. Therefore, there are two possible consistent solutions.

(c) The graph has exactly one solution (Blue, Red, Green), assumed that if
v1 is Blue and v3 is not Red, then v2 must be Red. Therefore, there has only
one consistent solution.

• Branch and Bound (B&B) is an algorithm for finding an optimal solution. It
searches the complete space of solutions for a given problem for the best solution
by overcoming the exponentially increasing number of potential solutions (Clausen,
1999). A branch-and-bound procedure requires two tools.

– The first one is a splitting procedure for branching, since its recursive appli-
cation defines a tree structure (the search tree) whose nodes are the subsets
of S.

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 52

Figure 3.8: Arc Consistencies from (Berwick, 2008)

– Another tool is a procedure that computes upper and lower bounds, called
bounding.

The recursion stops when the current candidate set S is reduced to a single
element; or also when the upper bound for set S matches the lower bound.
Figure 3.9 shows an example of branch-and-bound.

• Global constraint is a constraint that captures a relation between a non-fixed num-
ber of variables. Global constraints aim to facilitate the work of the constraint
solver by providing them with a better view of the structure of the problem. The
drawback of propagation-search technique is the search component will enumerate
all possible assignments of values to the variables until it either finds a solution to

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 53

Figure 3.9: Branch and Bound example in R2, after 3 iterations. The partition of the
original rectangle is shown at left; the associated binary tree is shown at right. From
(Boyd and Mattingley, 2007)

the CSP or exhausts all possible assignments and concludes that a solution does
not exist. In the worse case, an exhaustive search has an exponential time com-
plexity. Where partial assignment cannot lead to a solution, the idea of filtering
useless variable domains before searching would increase efficiency. If a value is
useless with respect to one of the constraints, then it is also useless with respect to
the whole CSP, but not vice versa (van Hoeve and Katriel, 2006). The global con-
straint can be posted before all the constrained variables are known which brings
advantage of earlier domain pruning mainly for a system where not all information
is necessarily known (Al-Maqtari et al., 2006).

• Constraint Hierarchies is the way to identify which solution of a CSP does not exist
or where we cannot evaluation which variables satisfy all the constraints, by speci-
fying constraints with hierarchical strengths or preferences for describing such over
constraint system. The declaration specifies not only the constraints that require
holding, but also weaker constraints at an arbitrary but finite number of strengths.
The weaker strength of constraints helps to find a solution, while it does not per-
mit the weakest constraint to influence the result. Constraint hierarchies define
the comparators to select solutions (the best assignment of values to particular
variables) via minimizing errors of violated constraints (Al-Maqtari et al., 2006).

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 54

3.6 Summary of research in Educational Timetabling Prob-
lems

A list of information which gives details about solutions to educational timetabling prob-
lems and which technique has been deployed in each is presented in the Table 3.5:

Table 3.5: Summary of research in Educational Timetabling
Problems

Techniques Article Name

Graph Coloring

1.1An introduction to timetabling (Werra, 1985)
1.2 Split Vertices in Vertex Colouring and Their
Application in Developing a Solution to the Faculty
Timetable Problem (Selim, 1988)

Local Search

Tabu Search
2.1Finding a feasible course schedule using Tabu
search (Hertz, 1992)
2.2 Tabu Search Techniques for Examination
Timetabling (Gaspero and Schaerf, 2000)
2.3 A tabu search heuristic for a university
timetabling problem (Arntzen and Lokketangen,
2003)
Simulated annealing
2.4 A Comparison of Annealing Techniques for
Academic Course Scheduling (Elmohamed and Fox,
1997)
2.5 A robust simulated annealing based examination
timetabling system (Thompson and Dowsland, 1998)

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 55

Genetic
Algorithm

3.1 A Genetic Algorithm Based University
Timetabling System (Burke et al., 1994)
3.2 A smart genetic algorithm for university
timetabling (Rich, 1995)
3.3 Timetabling the Classes of an Entire University
with an Evolutionary Algorithm (Paechter et al.,
1998)
3.4 Timetabling using a Steady State Genetic
Algorithm (Ozcan and Alkan, 2002)

Constraint
Programming

4.1 Limited–resource scheduling by generalized
rule-based system (Meisels et al., 1991)
4.2 Constraint–based Timetabling with Student
Schedules (Rudova and Matyska, 2000)
4.3 University Course Timetabling Using Constraint
Handling Rules (Abdennadher and Marte, 2000)
4.4 Automated University Timetabling (Torres et al.,
2006)
4.5 Modeling and solution of a complex university
course timetabling problem (Murray and Rudova,
2007)
4.6 Investigating Constraint-Based Reasoning for
University Timetabling Problem.(Sheau et al., 2009)

Swarm Intelligent
5.1 A MAX-MIN Ant System for the University
Course Timetabling Problem (Socha et al., 2002)

Neural Network
6.1 Hopfield neural networks for timetabling:
formulations, methods, and comparative
results.(Smith et al., 2003)

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 56

Multi Agents

7.1 Negotiation among scheduling agents for
distributed timetabling (Kaplansky and Meisels,
2004)
7.2 A MultiAgent Architecture for Distributed
Course Timetabling (Gaspero et al., 2004)
7.3 An agent based general solution model for the
course timetabling problem (Yang et al., 2006)
7.4 MAS_UP–UCT: A multi–Agent System for
University Course Timetable Scheduling (Oprea,
2007)
7.5 A multi-agent system for university course
timetabling (Strnad and Guid, 2007)
7.6 Implementation of class timetabling using multi
agents (M.Nandhini and S.Kanmani, 2009)
7.7A multi-agent system for course timetabling (Yang
and Paranjape, 2011)

Mathematical
Modeling

8.1 Mathematical programming models and
algorithms for a class–faculty assignment problem
(Al-Yakoob and Sherali, 2005)

Apart from solving the university course timetabling problem, all of the above techniques
have also been applied in various domains such as the meeting scheduler (Sen, 1997, Ernst
et al., 2008), scheduling of commercial intervals in a radio or television broadcasting pro-
grams (Galitsky, 1999), scheduling of industrial operations (Murthy et al., 1997,Cowling
et al., 2003), transportation scheduling (Montana et al., 2000, Parkes and Ungar, 2001),
and appointment scheduler in hospitals (Vermeulen et al., 2008). Some papers also pro-
pose a general solution model for the course timetabling problem (Yang et al., 2006), a
universal method for solving timetabling problems from different domains (Norberciak,
2006) or a model for solving complex distributed constrained problems (Al-Maqtari et al.,
2009)
For the issue of fairness, some papers are found such as the research of Al-Yakoob and
Sherali (2005) is set for the aim to minimize the individual and collective dissatisfaction
of faculty members in a fair fashion; and the research of Oon and Lim (2002) designs a

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 57

multi-player game to solve university exam timetabling by imposing a fair and setting
rules for the game.
In order to distinguish one from another research which using agents to address the uni-
versity course timetabling problem , we summarize the above researches in some criteria
i.e. the number of considered constraints, aims, models and defined protocols. The
summary is shown in Table 3.6.

C
H

A
P

T
E

R
3.

T
H

E
U

N
IV

E
R

SIT
Y

C
O

U
R

SE
T

IM
E

T
A

B
LIN

G
P

R
O

B
LE

M
58

Researchers
Constraint Aims

Models Protocols
E D A F

Kaplansky and

Meisels, 2004

n/a n/a Y n/a Scheduling Agents, Rooms

Agent

Implement CSP techniques in SAs for organizing and evaluating

TBs; and well-defined negotiation for solving conflict among SAs

in order to reach shared course slot.

Gaspero et al.,

2004

4 2 Y n/a Solver Agent, Negotiator

Agent, Manager Agent

Local search algorithms with different cost functions are defined

for resources trading which follows by the negotiation mechanism

Oprea, 2007 n/a 3 Y n/a Personal Agents

Department Agents

Faculty Agents University

Agent

Defined operations in every type of agents; including

communication messages between any consecutive levels; and

negotiation activities are set.

Strnad and Guid,

2007

n/a n/a Y n/a Course Agents, Scheduling

Agents, Central Agent

Operations of each type of agents are defined; and negotiation

protocol is set to reach agreement to occupy the resources.

Yang and

Paranjape, 2011

3 1 Y n/a Course Agents, Signboard

Agents, Interface Agent,

Publisher Agent

Define protocol by using agent’s abilities to do heuristic decision

making and apply agent’s characters as autonomy, negotiation

and cooperation to sort out the problem.

Wangmaeteekul,

2011

4 3 Y Y Year-Program Agents

Rooms Agent

Round-Robin algorithm controls automated timetabling process

which uses for organizing and evaluating the timetabling results;

and negotiation mechanism is designed for reallocating resources

when any YPA facing constraint-mismatched problem.

Table 3.6: Summary of research in UCTPs that use agents for solving including our research

E = Essential; D = Desirable; A = Resource Allocation; F = Fairness

CHAPTER 3. THE UNIVERSITY COURSE TIMETABLING PROBLEM 59

3.7 Summary

The nature of the university courses timetabling problem has been reviewed in this chap-
ter. It discusses the types of timetables used in the education domain. The lists of
essential constraints and desirable constraints which are involved in such a problem are
described. A set of existing problems which forms a gap between theoretical and practical
aspects of university timetabling is addressed. The potential roles for using intelligent
agents for solving timetabling domain are identified. Some research that has applied
agents for solving university courses timetabling over the last decade has been summa-
rized. Then, a wide variety of classical methods which have been used in researches of
timetabling problems were reviewed. We summarized the concepts and algorithms by
ranging them by techniques. At the end of this chapter, two summary tables are pre-
sented. The first one presents a list of research in educational timetabling problems,
grouped by solving techniques; the other one presents a list of research in university
course timetabling problems that have applied agents, by considering each in terms of
the number of constraints, aims (achievement/fairness), types of agents in model and
protocol design.

Chapter 4

Research Method

This chapter starts with the reasons for addressing the problem of university course
timetabling by using an intelligent-agents model, and its evaluation via the defined prob-
lem formula from ITC-2007. Then, the following sections describe the details of intelligent
agent architecture, the allocation protocol, the forms of organization for allocation and
negotiation, and the university structural scenario that was defined for ITC-2007.

4.1 Introduction

Over the last decade, many published papers have demonstrated that both intelligent
agents and classical timetabling techniques are important tools for resolving university
course timetabling problems. From the literature, we also found that each research group
has proposed its own model, architecture, and mechanism to deal with this problem
for one specific context or set of data instances. Because university course timetabling
problem is one of the real–world complex problems. It contains both great complexity
and a variety of requirements. So, it is impossible to write a solution formula that suits
all requirements of all institutes; as each one also has its own rules, features, costs and
constraints. From the research point of view, it is therefore difficult to compare between
the results from different studies. This is a drawback of this research field, preventing
fair comparisons and impacting assessment the absolute quality of a solution method
proposed.
In order to solve the above weakness, a group of researchers has joined together and
organized the International Timetabling Competitions (ITC). So far, ITC-1 in 2002 and

60

CHAPTER 4. RESEARCH METHOD 61

ITC-2 in 2007 have aimed to bridge the gap between research and practice by introducing
a significant degree of complexity in the tracks, so that the employed formulations are
close to the real world needs (even not all aspects but a degree of generality is kept)
and data sets are also taken from the real world. The success of competitions has been
confirmed from the wide awareness about them in the community. Moreover, to provide
a baseline for others, the competition’s results have been posted, by reporting the least
penalty value, the name of solving technique and the name of competitor who is the
record holder for each instance. However, from the information available, we have not
identified any competitor who had solved the problem by employing intelligent agents;
despite several papers in the research literature insisting that agent technology has the
potential to perform university course timetabling tasks.
Therefore, in this study the aim has been to investigate the use of an agent-based model
for solving the university course timetabling problem by generating resource allocation
solutions for all participants in a system, under the constraints that have been defined
for the ITC-2007 competition, and also seeking to provide fair allocation among the par-
ticipants. The distributed timetabling model has been adapted from the model proposed
by Kaplansky and Meisels (2004), by adding more flexibility and more roles to each type
of agent, which have been redefined as Year-Program Agent (YPA) and Rooms Agent
(RA) respectively. The details of the proposed model will be presented in section 4.2,
this being designed to work under the university structural scenario that is described in
section 4.5.
In order to evaluate the proposed model, we have used data instances from the 2007
International Timetabling Competition (ITC-2007), allowing us to compare our solutions
with those obtained using other approaches. More details of the ITC-2007 competition
are presented in Chapter 6.

4.2 Intelligent Agents Architecture

In the real world, actual university course timetabling focuses on achieving a reason-
able distribution of courses over the timetable with minimal conflicts for students pro-
gressing normally through their educational programme, which has been categorized in
terms/years. In order to develop an effective and powerful agent solution to any problems,
the solution must map effectively into the innate and intrinsic characteristics and nature
of agents and agent systems (Yang and Paranjape, 2011).Therefore, for this research we

CHAPTER 4. RESEARCH METHOD 62

have observed the above principle by mapping agent autonomy into

• Year Programme autonomy : working autonomously to organize a set of courses/modules
that particular year students of that programme have to study.

• Rooms Administration autonomy : working autonomously to manage a set of room
resources which are provided for every teaching activity of every curriculum from
all parts of the university.

As presented in Chapter1, the architecture that we propose for solving distributed univer-
sity course timetabling problems is one that is comprised of two types of agents—Year-
Programme Agent and the Rooms Agent working together; by assigning various roles in
each type as follows:

• A Year-Programme Agent (YPA) is assigned to the task of generating the timetable
for one level of a particular programme. It is responsible for organizing the courses/modules
which the programme’s students have to take in one particular term. The timetable
should satisfy all of the essential constraints and satisfy the desirable constraints as
many as possible. Another crucial role of the Year-Programme Agent is therefore
to collaborate with other YPAs to sort out any allocation problems by reallocating
rooms between them.

• The Rooms Agent (RA) manages the rooms (resources) and will book the requested
room when that room is vacant. It also coordinates the YPAs to work together
in order to avoid overlaps across the shared modules. Moreover, the RA takes
responsibility for ordering access to the resources by the YPAs in such a way as to
ensure fairness.

The total number of agents in this system is therefore the number of YPAs, which required
for the different degree programmes and levels, plus one RA. It is a flexible architecture
in that it makes no assumption about the length of a degree programme (2, 3, 4 years).
The model aims to mimic a human scheduler’s behavior in the real world by performing
two stages of allocation:

(1) Between YPAs and the RA to provide an initial allocation of resources
(the initial allocation phase—S1).

(2) Between YPAs to refine the allocation of rooms (the negotiation phase—
S2).

CHAPTER 4. RESEARCH METHOD 63

Figure 4.1: The YPAs & RA architecture

Figure 4.1 shows an example of the chosen architecture, comprising of three YPAs and
one RA. Each YPA is composed of two segments of code that perform the actions required
for the initial allocation phase (S1) and the negotiation phase (S2), while P1 and P2
represent the interaction protocols involved in S1 and S2 respectively.

4.3 Allocation Protocols

As above mention, there are two stages of allocation from the defined architecture these
are:

4.3.1 The initial allocation phase

For the initial allocation phase, we have investigated the use of two algorithms for inter-
active allocation of resources between YPAs and the RA in order to identify how best
to optimise the chance for each YPA to acquire the desired set of resources. As agent
has the characteristic of being autonomous, it has the ability to prioritize and choose
the resources which it prefers over others. We would like to demonstrate that agent’s
’selfish’ approach can influence the fairness issue by comparing two forms for allocating
resources.
First-In-First-Out (FIFO) and Round-Robin (RR) are the two contrasting allocation
algorithms which have been chosen to show how using different rules for allocation could
cause different degrees of fairness. FIFO does not embody any mean of ’fairness’ as
sharing of resources, whereas RR seeks to achieve an equitable distribution through

CHAPTER 4. RESEARCH METHOD 64

’taking turns’ for resources.

4.3.1.1 First-In-First-Out (FIFO) allocation

Here, each YPA in turn makes a complete set of requests to the RA. Hence, those YPAs
which are near the head of the queue can be expected to get the best choice of rooms
and times. Each YPA has to inform the RA when its allocation is completed and the RA
then goes on to service the requests from the next YPA that is waiting in the queue to
make its requests. These steps are repeated continuously until the waiting list is empty,
as shown in Figure 4.2.Order of YPAs in First-In-First-Out allocation.

Figure 4.2: Order of allocation to YPAs in First-In-First-Out allocation

4.3.1.2 Round-Robin (RR) allocation

This version of the allocation algorithm is designed to work in rounds. During a round,
each YPA in turn presents one request to the RA, with the requests from the set of
YPAs being re-ordered dynamically for the next round by using the degree of satisfaction
achieved in the current round, using a model that is adapted from Utilitarian Social
Welfare in section 2.4.2.1. Each YPA evaluates this for the resource it got from the
former rounds. The RA takes part in the activities of queuing the YPAs; and launches

CHAPTER 4. RESEARCH METHOD 65

them to work as an ordered series. The rule that the RA uses to schedule requests from
YPAs is that of “the last getting first”. That means the YPA that got the lowest total of
satisfaction values (Sv) from the former rounds will be the first one to request resources
in the next round, as shown in Figure 4.3. The order of requests for first round sequence
is arranged randomly.

Figure 4.3: Order of allocation to YPAs in Round-Robin allocation

For both FIFO and RR allocations, the resource requesting strategy of each YPA tries
to choose the most suitable timeslot and the best-fitting room from the set of resources
which are available at any given moment. The YPA chooses the subject which has
the highest number of constraints to organize first. In the case that the number of
constraints is equal, the subject/lecture which has the large number of students will be
organized first. After that it prioritizes timeslots by ranking the preference values from
high to low and then chooses the most preferential timeslot(s), where the preference value
is determined by many factors such as global time preference information, avoiding the
organized subjects timeslots which belonging to the same curriculum or teacher, avoiding
clashes among shared course timeslots, avoiding same day assignment if that subject has
been organized, and adjacent to the booked timeslots etc. It then requests the RA to
retrieve a list of vacant rooms for the chosen timeslot(s) that are big enough to contain
the number of students taking that subject. When the set of rooms is returned from the

CHAPTER 4. RESEARCH METHOD 66

RA, the YPA then chooses the best-fit room by considering from the left space which
means the smaller space left the best-fit room is; and the YPA then requests the RA
to book that room. However, if the YPA is unable to find a resource which meets its
constraints under the specified timeslot(s), then the next most preferential timeslot(s)
from the prioritized list will be chosen for searching a new set of rooms. This process
continues repeatedly until the preference prioritized list is empty. If eventually the YPA
is unable to find a resource to meet its needs, then that subject/lecture will be moved to
be a member of the constraint-mismatched set. The detail of initial allocation is described
in section 5.3 and the interaction diagram is presented in Figure 5.7.

4.3.2 The negotiation phase

This phase takes place when either of the following two situations arises.

• There is a non-empty set of constraint-mismatched subjects

• It is necessary to reallocate rooms

The negotiation phase is initiated by the RA. For example assuming that YPA—Ag1 has
identified a constraint-mismatched subject, the RA then allows Ag1 to solve the problem
itself. Ag1 prioritizes a set of timeslots according to its preferred values from high to low
in the prioritized-timeslot list. From the most preferable timeslot, then, Ag1 broadcasts
to all other YPAs to find an agent that now occupies a room(s) which can contain the
number of students that Ag1 requires at the specificed timeslot, and that agent is able
to help it. Assuming that YPA Ag2 is now occupying a room—X which meets above
property. That means room X is big enough to contain the number of students that Ag1
requires; and Ag2 is able to find a new room —Y for its own subject and it is willing to
switch to new room Y. Then, Ag2 replies with the “Proposing Relief ” message to Ag1.
After receiving proposals from all other YPAs, Ag1 chooses the best-fitting room under
the specified timeslot. If we assume that the chosen room is X, which now it is owned
by Ag2, Ag1 then sends a message to request room X from Ag2. After receiving the
request from Ag1, Ag2 frees room X and switches to book room Y instead. However,
if Ag2 is unable to find a room Y as a replacement, then it has a right to refuse Ag1 ’s
request. In case that Ag1 receives rejections from all other YPAs; it will then choose
next timeslot in the list and re-broadcast. Such processes continue repeatedly until the
constraint-mismatched problem is solved or the prioritized-timeslot list is empty. The

CHAPTER 4. RESEARCH METHOD 67

detail of negotiation design is described in section 5.4 and the interaction diagram is
presented in Figure 5.10.

4.4 Processes in Organization

In terms of organizing, there are two distinct procedures that have been defined to or-
ganize how the Year-Programme Agents and the Rooms Agent work together for setting
up a set of timetables. These two forms are:

4.4.1 Sequential

This procedure starts by running the initial allocation phase (S1) until this phase ter-
minates, and then running the negotiation phase (S2) subsequently, if any constraint-
mismatched elements still remain, as shown in Figure 4.4.

Figure 4.4: Sequential scheduling

4.4.2 Interleaved

This procedure starts by running the initial allocation phase (S1) on a step-by-step
basis, interleaving this with the negotiation phase (S2) if any YPA faces a constraint-
mismatched element problem. After the problem has been resolved, the allocation phase
will continue, as shown in Figure 4.5.

From the above descriptions of allocating and scheduling rooms, we have two ways of
allocating rooms and another two different ways of implementing the negotiation pro-
cess. That means we have four possible principles for implementing the university course
timetables in this study, as shown in Table 4.1. These are:

CHAPTER 4. RESEARCH METHOD 68

Figure 4.5: Interleaved scheduling

Organizing Form Allocation Form
FIFO RR

Sequential FIFOSeq RRSeq
Interleaved FIFOInt RRInt

Table 4.1: Models of interaction between agents

• First-In-First-Out & Sequential (FIFOSeq)

• Round-Robin & Sequential (RRSeq)

• First-In-First-Out & Interleaved (FIFOInt)

• Round-Robin & Interleaved (RRInt)

To investigate these in more detail, a set of hypotheses have been chosen in order to
determine whether these four different principles give different results or not for constraint
achievement and fairness issues.

Some questions which are used for developing this set of hypotheses are:

• Can these four principles achieve the defined problem goals?

• Can use of a negotiation phase solve constraint-mismatched resource allocation
problem?

• Do different initial sequences lead to different results?

• Among the four principles, which one generally gives the smallest/largest penalty
value? Which one will produce the smallest/largest standard deviation of satisfied
values?

• Does increasing the number of agents in the system lead to larger penalty values?

CHAPTER 4. RESEARCH METHOD 69

• Is our proposed model better than other techniques in term of constraint achieve-
ment?

• Among the four principles, which one gives the best result in terms of constraint
achievement and meeting the aim of fairness?

The following hypotheses have been investigated:

• All four proposed multiagent principles are able to achieve the university course
timetabling formula and constraints which were defined for the International Timetabling
Competition 2007.

• The number of successfully organized lectures will be increased after applying the
negotiation phase following the initial allocation phase of both FIFO and RR algo-
rithms.

• Different initial sequences of YPAs will produce different results.

• Among the four principles, the First-In-First-Out & Sequential principle will always
give the smallest penalty value when compared with the other principles.

• Among the four principles, the First-In-First-Out & Interleaved principle will al-
ways give the largest penalty value when compared with the other principles.

• Among the four principles, the Round-Robin & Interleaved principle will always
give the smallest standard deviation of satisfied values when compared with the
other principles.

• Among the four principles, the First-In-First-Out & Sequential principle will always
give the largest standard deviation of satisfied values when compared with the other
principles.

• Increasing the number of agents will lead to larger penalty values.

• The proposed principles generally produce smaller penalty values when compared
with the ITC-2007 reference results.

• The Round Robin & Interleaved principle is most likely to produce better solutions
in terms of both smallest penalty value and best degree of fairness when comparing
to the other principles.

CHAPTER 4. RESEARCH METHOD 70

4.5 University Structural Scenario

This research aims to mimic the real world university timetabling process. Most univer-
sities define levels of organization as follows:

• University Level : a university is composed of many faculties.

• Faculty Level : any faculty is joined up from many departments.

• Department Level : any department has one or more curriculum(s)/programme(s)
for which it needs to provide teaching activities.

• Curriculum/Programme Level : any curriculum/programme is composed of many
modules/courses that are grouped by a number of years for which that curricu-
lum/programme’s students have to study. Here, a Set of Modules/Courses of the
Year Programme means a list of modules/courses for which that Year Programme
students have to study.

• A Module/Course composes of one or more lecture(s). It is taught by a lecturer
who is good at the module/course. Normally, the lecturer and the module/course
belong to the same department.

• A Shared Module/Course is a module/course that is taken by students from several
different curricula/programmes, who attend in the same room at the same time.

The resources involved in the university course timetabling problems are: students, lec-
turers, rooms, courses and times. Each type of resource must belong to one specific level
of a university’s organization.

• Students: any student must belong to one specific curriculum/programme under
the department and faculty to which that curriculum/programme belongs.

• Lecturers: any lecturer must be a member of one specific department under the
faculty to which that department belongs.

• Rooms: any room must be a possession of the university which is managed by the
administrative room resource section which belongs directly to the university level.
Any department that needs to use any room resources must book the required re-
source from this section. For this research, every room has the same characteristics

CHAPTER 4. RESEARCH METHOD 71

apart from room-name and room-capacity, which are different form one to another.
Each room has been expressed in terms of its name and its fixed number of available
seats.

• Courses/Modules: any course/module must belong to one programme/curriculum
which the department owning it must take responsibility for organizing the course/module
by providing a lecturer and scheduling that course/module timetable. For the
shared course/module, the one who takes a responsibility to organize this shared
course/module should be the department, which provides a lecturer to teach on,
to take a role to set up the timetable, while the other shared departments take a
role in avoiding clashes with the shared slots when they are organizing their own
timetables.

• Times: normally the number of teaching days per week is the same as the working
days. Each day is split into a fixed number of timeslots, which is the same for each
day of the week. A period is a pair composed of a day and a timeslot. The total
number of scheduling periods is the product of days multiplies by the day timeslots.
In this research, we assume that scheduling periods of each YPA in the system are
the same.

4.6 Methodology

In this study, there were two research methods that could be adapted from as a list.
These were: 1) Experiments research method 2) Case study research method

4.6.1 Experiments

An experiment is a research method to investigate the relationships between cause and
effect. It aims to verify or falsify or establish the validity of the hypothesis which is a
statement in the form of “Factor A causes B ”. The experiment is run in a controlled
environment and careful measurements of the outcomes are taken (Oates, 2006). Some
typical characteristics of research based on experiments are:

• Formulate hypothesis

• Carry on the experiment repeatedly

CHAPTER 4. RESEARCH METHOD 72

– Observation or measurement of a factor

– Manipulate circumstances

– Re-observation or re-measurement of the factor to identify any changes

• Prove or disprove the hypothesis

• Identify causal factors by discovering which factor is the cause (independent vari-
able) and which is the effect (dependent variable)

• Explain the casual link between cause and effect

In summary, experimental approach is characterized by having control over the research
environment. Some variables are then manipulated to observe their effect on other vari-
ables.

4.6.2 Case study

Case study is a research method that focuses on one instance and provides an intensive
investigation into as much as possible about the phenomenon of interest. The main
aim of this type of research is to obtain insight into details in a situation where the
instance normally involves complex relationships and processes. It is used when the
boundaries between phenomenon and context are not evidently clear (Yin, 2009). The
typical characteristics of research that is based on the use of one or more case studies
are:

• Focus on depth rather than breadth: obtain as much as possible detail for the one
instance of the phenomenon under investigation.

• Natural setting : examine the instance in its natural setting; not in a laboratory or
any other artificial situation.

• Holistic study : focus on the complex relationships and processes to see how they are
interconnected and inter-related; rather than trying to isolate individual factors.

• Multiple sources and methods: quantitative and qualitative data obtained from
multiple sources are used.

CHAPTER 4. RESEARCH METHOD 73

In summary, the case-study method is an in depth approach. It is generally used when
researchers need to find or explain ‘how ’ and ‘why ’ this outcome occurs in some particular
cases or situations.
In this research, we need to demonstrate that the proposed principles have the potential
to solve the university course timetabling formula and achieve the set of constraints
which are defined for the International Timetable Competition 2007. The datasets for
this, which are provided on the competition website, were used to test our four different
principles to determine how well each can solve the problem, when compared with the
reference results obtained from the website. In other words, we might say “the proposed
principle X causes ? result”. The validating value is the outcome which we need for this
study.
Our study is empirical in nature, coming up with conclusions which are capable of be-
ing verified by observation or experiment by using datasets from the single source. It
seems straightforward and is not a complicated process. Therefore, the most suitable re-
search method is to use controlled experiments rather than the case-study method, which
focuses on intensive investigation of one instance. An experiment starts from formulat-
ing hypotheses about the probable results, then conducts on experiment in order to get
enough facts (data) to prove or disprove the hypothesis. The experimental design must
manipulate cause factors so as to bring forth the effect by controlling over the variables
under the study. An Experimental approach is appropriate when proof is sought that
certain variables affect other variables in some way, which seems to match with the needs
of this research.

4.7 Summary

This chapter provides the reasons for addressing the university course timetabling through
a distributed intelligent agents system and how this will be evaluated via problem formula,
constraints and datasets which were defined for ITC-2007. It describes the proposed
intelligent agent architecture, resource allocation protocols and organizing forms. The
last two sections present the university structural scenario which is defined corresponding
with ITC-2007 problem formula; and two research methodologies are reviewed.

Chapter 5

Agent Design

The previous chapter presented an overview of the system, while this chapter describes
the detailed designs of the agents. It starts with the principles of design; and presents the
designs for both a Year-Program Agent and the Rooms Agent. We describe the protocol
for the initial allocation phase and the protocol for the negotiation phase. The last two
sections explain about how the date-time slots preferences are prioritized and how the
quality of allocated resources is assessed by defining a set of satisfied values.

5.1 Principles of Design

By aiming to imitate how the human planner works, the model has been designed around
the architecture and characteristics of intelligent agents, in which all properties are innate
inside the agent itself. An agent makes decisions based on the incomplete information
available to it, its own selfish manner, its own capability and the circumstances that it
meets at any given moment. We define each characteristic of the agents in an appropriate
part of the protocol design in order to ensure some outcomes such as:

• Exploiting an agent’s selfish characteristic through the allocation protocol, by which
each agent aims to choose the resources (timeslots and rooms) that will best match
its requirements at any given moment.

• Applying an agent’s collaboration property for the reallocation of room resources.
When some agents in the system need help to sort out their allocation problem, the
remaining agents collaborate to assist the agents which now are facing constraint-
mismatched resource allocation problems.

74

CHAPTER 5. AGENT DESIGN 75

• Applying an agent’s negotiation property to resolve conflicts when desired resources
are limited. The one who currently owns a resource requested by another will hold
it until it finds a new resource which meets its needs and that gives a satisfaction
value not less than the current one. It will then free the resource; making it possible
to achieve agreement in negotiation. Otherwise, the resource’s owner has the option
of refusing the request.

• Applying an agent’s coordination property in order to avoid clashes among shared
courses. We assign the RA to take a role to be a coordinator; a set of agents who
need to share the same course must then ask the RA to retrieve information about
the booked slots of the other agents within the same group and try to avoid using
those booked slots when scheduling their own subjects.

Every agent in the system works toward the same goal of achieving an organized set of
courses under its responsibility, which these meet all defined essential constraints and
satisfy as many desirable constraints as possible. Every decision about reasoning is made
by the agent itself, and is determined from the present state that the system is in at any
given time, by trying to choose the best-fit resource to occupy first. If any agent cannot
obtain resources that meet its needs, the other agents must participate in the task of
relieving the problem. This model is designed on the base of individual heuristic decision-
making by each agent and the timetabling mechanisms are based on First-In-First-Out,
Round Robin and extended Contract Net Protocol. Each agent operates to implement its
own timetable with a number of finite loops and the system will eventually be terminated.
The distributed university course timetables are then the result of participation from
every member in the system, with each one undertaking its own timetable organization,
and cooperating with others to relieve problems.

5.2 Agent Design

Here we examine the designs for the different types of agent.

5.2.1 Year-Program Agent (YPA)

The goal of each YPA is to find an appropriate timetable for the set of courses that form
its responsibility. The range of main functions which is embedded in each YPA are:

• Create table: create its own empty timetable

CHAPTER 5. AGENT DESIGN 76

• Select course: select a course by choosing the most complex course’s constraints
to organize first; in the case that there are many courses which have the same
number of constraints; the course which has the maximum number of students will
be organized first.

• Organizing a lecture: a set of lectures of each course will be organized a single
lecture at a time.

• Searching timeslots: search available timeslots by excluding ‘must avoid’ timeslots
such as the ‘booked’ timeslots, the timeslots from the ‘enforced constraints’, the
‘unavailable teacher’ timeslots, and the ‘shared course’ timeslots.

• Prioritizing timeslots: prioritize available timeslots according to the requirements
of the problem formula. The available timeslots which have properties to achieve
minimal working days and adjacent to the booked timeslots will be put on the top
of the other available timeslots.

• Searching rooms: search for available rooms according to the prioritized timeslots;
one timeslot at a time.

• Prioritizing rooms: prioritize the set of rooms according to their properties from
small to large sizes; the smallest room size still can contain the number of students
for that lecture by putting it on the top of the list.

• Matching : match lecture(L), timeslot(T) and room(R) together by choosing the
combination returning the maximum satisfy value. Whenever the satisfy value
does not meet the expectation value, the second next timeslot in the timeslot list
will be considered and search for available rooms of that second next timeslot.
Then, the matching of these three components will do repeatedly.

• Booking : book timeslot and room for that lecture will be done if the satisfy value
(Sv) is greater than the expectation value(ExpV).

• Updating in timetable: update the booked timeslot, room, and lecture in its own
timetable and report the totally satisfy value to RA.

The hierarchical structure diagram for a YPA is presented in Figure 5.1 and a flowchart
of processes of YPA while organizing a lecture in the initial allocation phase is presented
in Figure 5.2.

CHAPTER 5. AGENT DESIGN 77

Figure 5.1: The hierarchical structure diagram of a YPA
L = Lecture; T = Timeslot; R = Room

Initial knowledge for each YPA’s belief part has been determined from the information
that was provided in the input file of ITC-2007. An example set of information which is
necessary for timetabling is presented in Figure 5.3.

5.2.2 Rooms Agent (RA)

The goals of the RA are to allocate room to each YPA according to the requests of that
YPA, and to maintain information that is necessary for organizing the timetables of the
YPAs. The main functions which are embedded in the RA are:

• Assigning room: assign a vacant room in response to the request of YPA

• Searching information:

– search available room-size information for a YPA for the aim of sorting the
rooms order

– Search available rooms information so that a YPA can prioritize the resources
of rooms

CHAPTER 5. AGENT DESIGN 78

Figure 5.2: A lecture organizing process in the initial allocation phase
L = Lecture; T = Timeslot; R = Room; ExpV = Expectation Value; Sv = Satisfy Value

CHAPTER 5. AGENT DESIGN 79

thisCurCompOf(["C1","C2",. . . "Cn"]). //a list of courses in this curriculum
thisCosInCurs("C1",["Q1",. . . ,"Qn"]). //a list of curricula which course C1 is
shared
course(1,"C1","Teacher","#Lecture","MinWorkingDays","#Student").
. . . // number of lectures for course C1
course(n,"C1","Teacher","#Lecture","MinWorkingDays","#Student").
avoid("C1","D1","T1").
. . . //avoid course C1 from this specific date-time slot
avoid("C1","Dx","Ty").
avcnflcourse("C1",["C2",. . . ,"Cn"]).//a list of courses which course C1 must avoid

Figure 5.3: Initial knowledge in YPA

– Search unavailable timeslots for a teacher who teaches on the course that the
YPA is organizing, in order to avoid a conflict

– Search for information about booked timeslots of courses which the YPA needs
to avoid such as the booked timeslots of the shared courses, the timeslots which
are unavailable teacher. All this information is needed for the YPA to avoid
any conflicts

• Releasing YPAs: release the YPAs to organize timetables in sequence according to
the First-In-First-Out or Round-Robin algorithm

• Reordering sequence: reorder the sequence of YPAs under “the last getting first”
rule when applying the Round-Robin algorithm in the initial allocation phase.

The hierarchical structure diagram of the RA is presented in Figure 5.4

Initiating knowledge in the RA’s belief part has been defined. A set of information that
is necessary for timetabling is presented in Figure 5.5

5.2.2.1 Controlled sequence in RA

One of the RA’s main roles is to take responsibility for managing a set of YPAs to work
as an ordered sequence.
As there are two possible models employed for the initial allocating resources, the RA
controls the sequence of YPAs in two different ways. These are:

CHAPTER 5. AGENT DESIGN 80

Figure 5.4: The hierarchical structure diagram of the RA

tableSz(rows,columns). //The size of timetables which is used in whole system
room("RoomID", "Capacity","D1","T1","AVAILABLE").
. . . //All available rooms information
room("RoomID", "Capacity","Dx","Ty","AVAILABLE").

Figure 5.5: Initiating knowledge in RA

• FIFO controlled loop is shown as a diagram in Figure 5.6(a). The RA starts by
ordering YPAs into a list at random. Then, the RA releases the topmost YPA to
organize its courses. During the organizing process, the RA assists that YPA until
all courses of the YPA have been organized. After the YPA completed its tasks, the
RA releases the next YPA in the list to organize its courses. This process continues
until the list of YPAs is empty, and the RA then terminates the organizing loops.

• RR controlled loop is shown as a diagram in Figure 5.6(b). As this allocation
type is designed to work as a round robin, the RA starts by ordering YPAs into a
randomly ordered list for the first round. Then, the RA releases the top YPA to
organize one lecture. During the organizing process, the RA also assists that YPA
by providing the necessary information for organizing the single lecture. After the
YPA has completed this, the RA releases the second next YPA of the list to organize
one lecture. This process continues until the YPA list in the RA is empty which
means every YPA has had an equal chance to organize one lecture in that round.
Then, the RA reorders the sequence of YPAs according to “the last getting first”
rule, that means that the YPA that got the highest satisfied values of resources from
the former rounds will be the last one of the list to request resources in the next

CHAPTER 5. AGENT DESIGN 81

round, and then puts the YPAs back in the list if each one still has some courses
left for organizing. After that the next round will be performed if the reordered
list is not empty. Otherwise, the RA terminates the organizing loops. The detail
of how it calculates the satisfied value for each round is presented in section 5.6.

As we know, there are two main elements in each YPA—the initial allocation part (S1)
and the negotiation part (S2). The detailed designs are in section 5.3 and 5.4.

Figure 5.6: (a) First-In-First-Out controlled loop (b) Round-Robin controlled loop

5.3 Detailed Design for Initial Allocation between YPA &
RA

For this section, we present the design of the protocol for the initial allocation part when
a YPA is organizing the scheduling of a lecture. The sequence of processes is similar

CHAPTER 5. AGENT DESIGN 82

for either the First-In-First-Out model or the Round-Robin model. For organizing any
lecture, the sequence is composed of three nested loops; as shown in Figure 5.7.

Outermost Loop: Loop1

1. Search for the most complex courses to organize

2. Search all booked lectures which belong under the same curriculum (shared course
lectures)

3. Search booked lectures from its own timetable.

4. Search date-time slots which must be avoided for that course, according to the
constraint requirement.

5. Search date-time slots for which that course’s teacher is unavailable.

6. Search date-time slots of courses under other curricula which have at least one
course shared with this organizing course. The host of organizing course needs to
know the date-time slots information, so that the organizer is able to avoid the
conflicts.

7. Search the days of the week which have been booked for this course.

At this point, the YPA has information about date-time slots which have already been
booked and so needs to avoid when it is organizing the current course’s lectures. From
the above information, the YPA is able to identify which date-time slots are available
and suitable to assign for a lecture. Moreover, consideration of some information—
such as avoiding isolated date-time slots or trying to reach the minimal working days
requirement—leads the YPA to classify or prioritize timeslots according to definition of
the cardinal preference structure in Chapter 2. The defined utility function maps between
the set of available date-time slots and the number of constraints that each available date-
time slot can be achieved. The details of the mapping will be presented in more detail in
section 5.5. When there are prioritized date-time slots available, then YPA enters Loop2.

Outer Loop: Loop2

1. The available date-time slots are ordered by ranging from highest preference to
lowest preference.

CHAPTER 5. AGENT DESIGN 83

2. The YPA searches for available rooms which are large enough to contain the number
of students who are taking this course.

When there are available rooms of sufficient sizes, then the YPA enters Loop3. Otherwise,
the next date-time slot and available rooms will be searched. However, in the case in
which the last date-time slot in the list has been considered and the YPA is unable to
match that date-time slot with any room, then this lecture will be moved to be a member
of the constraint mismatch subjects set.

Innermost Loop: Loop3

1. The available rooms are ordered by ranging from smallest to largest size.

2. The YPA matches the chosen date-time slot and the smallest room size and then
asks the RA for searching whether that date-time slot of the smallest rooms is
available.

3. After retriving the returned result from the RA.

3.1 If the date-time slot of the smallest room is also available, then it sends the RA
a request to book that date-time slot; and updates the information in the YPA’s
timetable.

3.2 Otherwise, it matches that date-time slot against the second next smallest room
size of the list, then asks the RA for searching whether that date-time slot of that
second next smallest rooms is available (Loop3 step 3).

3.3 This process continues repeatedly until the date-time slot matches any available
room; or in the worst case, the YPA is unable to match any available room at
the needed date-time slot, then the next date-time slot (Loop 2 step 1) will be
considered. The sequences of matching the prioritized resources are presented in
Figure 5.8.

The utility value that returns from the YPA’s chosen resources should then be
maximum; as the set of resources has already been prioritized from high utility
values to low utility values. So, the set of matched resources will be the best at
that given moment.

The above protocol is designed based on the rules of good mechanism design that an
individual agent should reach his/her maximum value of the sum of the utility functions,
as described in (Rosenschein and Zlotkin, 1994,Sandholm, 1999) in section 2.4.4.

CHAPTER 5. AGENT DESIGN 84

5.4 Detailed Design for Negotiation between a YPA & other
YPAs and the RA

For this section, we present the details of the protocol for the negotiation part. It is
designed to refine the allocation of rooms. After the initial allocation part, if the con-
straints mismatch subject set is not empty, then the RA releases any YPA which is now
facing constraints mismatch problem to solve the problem by itself. The negotiation
protocol we have designed here is adapted from the Contract-Net Protocol (CNP) which
was proposed by Smith (1980). The YPA that is facing the constraint mismatch problem
takes the role of the ‘manager ’, and the ‘contractors’ in our protocol are the YPAs who
identify themselves as being able to help relieve the problem. The process is presented
in Figure 5.9 and follows these steps:

1. Broadcasting for help

2. Resolving the mismatch

3. Awarding to the proposer

5.4.1 Broadcasting for help

1. From Figure 5.10, assuming that YPA1 is unable to find a resource (room) which
matches its course’s constraints, it then moves that lecture to be a member of the
constraint-mismatched subject set.

2. When the RA finds that the constraint-mismatched subject set is not empty, it re-
leases the YPA1 that is now in trouble, beginning the negotiation phase by sending
it a message to start negotiation.

3. After the YPA1 has got the message to begin negotiation, it searches for available
date-time slots in order to organize the lecture that is in trouble. Some information
needs to be gathered for this stage, which is:

3.1 Search all booked lectures which belong under the same curriculum (shared
course lectures)

CHAPTER 5. AGENT DESIGN 85

3.2 Search booked lectures from its own timetable.

3.3 Search date-time slots which must be avoided according to the constraint re-
quirement.

3.4 Search date-time slots which that course’s teacher is unavailable.

3.5 Search date-time slots of courses under other curricula which have at least one
course that is shared with this course. If YPA1 is the host that is organizing the
course, then it needs to know the information about date-time slots for the others
that share the same course, so that it is able to avoid conflicts in date-time slots.

At this point, YPA1 has information about the date-time slots that have been booked
and have to be avoided. From the above information, YPA1 is able to infer which
date-time slots are available and suitable for being assigned for this lecture. Moreover,
some information such as avoiding isolated date-time slots or trying to reach the minimal
working days requirement may lead YPA1 to classify or prioritize timeslots according
to the cardinal preference structure. By defining a utility function, it maps between the
set of date-time slots and the number of constraints which each date-time slot can be
achieved. The details of the mapping will be presented in more detail in section 5.5.
Then, it chooses the most preferable date-time slot and information about the number
of students that take this course are provided in its broadcast for help; then YPA1 waits
for every participant replying with its answer before moving onwards to the next stage.

5.4.2 Resolving the mismatch

After the other participants receive YPA1 ’s request, which asks for room resources for
that specific date-time slot, every participant examines its own resources to see whether
it has any room occupied on that particular date-time slot, and if this is large enough
to contain the specified number of students or not. The two possible results here are:
“Found ”or “Not Found ”.

• If the result is “Not Found ”, the participant replies instantly with the message
“Refusing Help”

• If the answer is “Found ”, the participant will seek to find replacement resources for
its own lecture which currently occupies the date-time slot and room which match
the needs of YPA1. Some information is needed for this stage which the participant
needs to consider, including

CHAPTER 5. AGENT DESIGN 86

1. Search for information about the current booked lecture

2. Search for all booked lectures which belong under the same curriculum (shared
course lectures)

3. Search for booked lectures from its own timetable.

4. Search for date-time slots which must be avoided according to the constraint
requirement.

5. Search for date-time slots which that course’s teacher is unavailable.

6. Search for date-time slots of courses under other curricula which have at least
one course there that is shared with this course. If the participant is the host
that is organizing the course, then it needs to know the information about
date-time slots for the others that share the same course, so that it is able to
avoid conflicts in the date-time slots.

7. Search available rooms which are large enough to contain the number of stu-
dents who are taking this course.

8. Search for the days of the week which have been booked for this course.

9. The participant uses above information to determine and chooses the best-
fit resources to organize its own lecture. If such resources exist, it means
that the resources are able to meet all essential constraints and the number
of desirable constraints they reached is not less than the currently occupied
resources reached. Then, the participant will reply with the message “Propos-
ing Relief ”; otherwise, the participant YPA has a privilege to reply with the
message “Refusing Help”.

5.4.3 Awarding switching task to the proposer

1. After YPA1 has received replies from every participant in the system, it chooses one
participant from set of participants which replied with a“Proposing Relief ” answer.
The chosen participant would be the one who now occupied the resource which
gives the highest satisfied value to YPA1. It then sends a ‘revoke room request ’ to
that participant YPA to ask for the room that it needs.

2. After that participant receives the ‘revoke room request ’, it sends a request to the
RA to book the new room which has been identified, and organizes its lecture in

CHAPTER 5. AGENT DESIGN 87

the new date-time slot and the new room. Then, it replies to YPA1 with the ‘room
revoked ’ response.

3. When YPA1 receives the ‘room revoked ’ response, it sends a request to the RA to
book the revoked room which is now available for YPA1 to occupy. So here, the
conflict has been sorted out by the negotiation protocol. However, it may also be
the case that YPA1 receives “Refusing Help” replies from all of the participants in
system. The second next date-time slot will then be chosen for broadcasting next.
This process will continue repeatedly until either YPA1 has found any participant
that is willing to switch to the replace resources and frees the occupied resources
for YPA1 ; or in the worst case there is no one can help after YPA1 has tried until
the preferable date-time slot list is empty. Then, the unorganized lecture will be
left for a human planner to resolve.

5.5 Date-Time slots Preference

In this section, we provide more details about how to classify or prioritize timeslots
according to the cardinal preference structure which consists of an evaluation (utility)
function u : X → V al, when Val is either a set of numerical values (quantitative) or a scale
of qualitative values. After the YPA receives information about the date-time slots which
have been booked and those which need to avoid, the YPA creates a “virtual table”, which
has the same dimensions as timetable it is currently implementing; and marks both the
booked and the needed to avoid slots. Here, it is assumed that the marked virtual table
is presented as in Figure 5.11(a). The letter “B ” means the booked slot and the letter
“A” means the necessary avoiding slots. Prioritization of available slots also depends on
the constraints of the problem formula such as avoiding isolated date-time slots, or trying
to reach the requirement from minimal working days. If the current organizing course
has not been booked in the YPA timetable, then the prioritized available date-time slots
arrangement will be run from slot number 1 to slot number 25 as shown in Figure 5.11
(b). Otherwise, the prioritized available data-time slots arrangement will be run from slot
number 1 to slot number 25 as shown in Figure 5.11 (c), if the current organizing lecture
of this course has already been booked in the YPA timetable. The prioritized results
are calculated from an evaluation function—termed achievement(date,time)—that maps
between the set of date-time slots and the total number of constraints which that slot

CHAPTER 5. AGENT DESIGN 88

can be achieved.

achievement(date, time) =
∑n

i=1AchvedConi(date, time)

Given

AchvedConi(date, time) =
0whenConstraint i at date− time slot has not been acieved

1 whenConstraint i at date− time slot has been achieved

When

• Constraint1 = all booked lectures under the same curriculum (shared course lec-
tures) have been avoided.

• Constraint2 = all booked lectures from the organizer YPA’s timetable have been
avoided.

• Constraint3 = all (date-time slots)’ which defined from problem formula have been
avoided.

• Constraint4 = all (date-time slots)’ which that course’s teacher is unavailable have
been avoided.

• Constraint5 = all (date-time slots)’ under other curriculums which have at least
one course there shared with this organizing course have been avoided.

• Constraint6 = the date is different from the days of the week which have been
booked for this course.

• Constraint7 = this date-time slot is adjacent to the other booked slots

After calculating the quantitative achievements of each available date-time slot through
achievement function, a set of achievement(date,time) values will be returned and then
prioritized them ranging from the maximum value to the minimum value. In the case
that many date-time slots have the same achievement(date,time) value, the slots will be
prioritized from left to right and high to low. An example of prioritized date-time slots
ranging achievement(date,time) value from high to low is presented as an ordering of
values from 1 to 25 in Figure 5.11 (b) and 5.11 (c).

CHAPTER 5. AGENT DESIGN 89

Unused Seats
% 0-10 11-20 21-30 31-40 41-50

SatisfiedValue 10 9 8 7 6
% 51-60 61-70 71-80 81-90 91-100

SatisfiedValue 5 4 3 2 1

Table 5.1: The definition of satisfied values
10 = the highest level of satisfaction; 1 = the lowest level of satisfaction

5.6 Calculating the Satisfied Value

After the resources have been allocated, every YPA has to calculate a “satisfied value” for
the resources it has obtained. Here, the satisfied value is determined from the number of
unused seats in the allocated room. The unused seats is the underuse result of room capac-
ity and student numbers. The value of the satisfied function Satisfiedvalue(%ofUnusedSeats)
is the result of the percentage of the left seats which is defined in Table 5.1. The fewer
unused seats that there are, the higher the satisfed value will be.

5.7 Summary

This chapter has described the details of the inter-agent protocols which are necessary
for this research. It provides a description of the hierarchical structure of both a Year-
Program Agent and the Rooms Agent by describing all the functions they perform. Then,
the details of the interaction protocol design have been presented. The first is the inter-
action between a YPA and the RA used in the initial resource allocation phase, while the
second is the interaction between a YPA and the other YPAs required for the negotiation
phase.

CHAPTER 5. AGENT DESIGN 90

Figure 5.7: Interaction between YPA & RA in the initial allocation phase

CHAPTER 5. AGENT DESIGN 91

Figure 5.8: Prioritized resource matching

Figure 5.9: Extended Contract Net Protocol

CHAPTER 5. AGENT DESIGN 92

Figure 5.10: Interaction between YPA & YPAs and RA in the negotiation phase

CHAPTER 5. AGENT DESIGN 93

Figure 5.11: (a) Virtual table with avoided and booked slots (b) 1-25 prioritized slots
when the organizing lecture has not been booked (c) 1-25 prioritized slots when the
organizing lecture has been booked

”A” = the necessary avoiding slots; ”B” = the booked slot;
1 = the highest priority; 25 = the lowest priority

Chapter 6

Benchmark Data Sets

This chapter describes the datasets which have been defined for the International Timetabling
Competition; these have been adapted as a benchmark for this work. The means of vali-
dating the results and a set of reference results are also provided.

6.1 The International Timetabling Competition (ITC)

For this research we have employed as a benchmark the set of problem formula and
data instances which were used in the Curriculum-based Course Timetabling Competi-
tion (Gaspero et al., 2007). It is one of the three tracks in the Second International
Timetabling Competition (ITC-2007), for which the other two competitions are Exami-
nation Timetabling and Post Enrolment Timetabling. The aim of this competition was
to bridge the gap between research and practice by introducing a significant degree of
complexity in the tracks, so that the employed formulations are closer to the real world
needs (not in all aspects, but a degree of generality is kept) and the datasets are also
taken from the real world. Under the Curriculum-based Course Timetabling Competition,
all instances have been selected from a large set of interesting cases from a real-world
institute—the University of Udine in Italy. More competition information can be obtained
at http://www.cs.qub.ac.uk/itc2007 and http://tabu.diegm.uniud.it/ctt. The following
sections provide brief details of the Curriculum based Course Timetabling Competition.

94

CHAPTER 6. BENCHMARK DATA SETS 95

6.2 Problem Definition

The curriculum-based timetabling involves scheduling a set of lectures for several uni-
versity courses to a given number of rooms, time periods nomally on a weekday. The
conflicts among courses are provided by the curricula published by the University and
not the enrolment data. The problem is specified using the following entities:

• Days, Timeslots and Periods: Days means the number of teaching days in a week;
Timeslots means a number of timeslots available in each day; A Period means a
pair of a day and a timeslot. From the definition, the total number of scheduling
periods is the products of days times the day timeslots. Note that day and timeslot
numbers are defined to start from 0.

• Courses and Teachers: Each course consists of a fixed number of lectures, a number
of students who attain in that course, the name of teacher who is responsible to
teach in that course and the minimum number of days that the lectures should be
spread across in the week.

• Rooms: Each room is described in terms of name and capacity (the number of
available seats); all rooms have the same properties other than different capacities.

• Curricula: A curriculum consists of a set of courses. The conflicts between courses
among curricula are set.

As order to address this problem definition, we need to assign responsibilities to YPAs,
by defining each YPA to organize a set of courses under a specific curriculum.

6.2.1 Constraints

The essential and desirable constraints which are defined for this problem formulation
are presented in Table 6.1; and the costs of violation and penalty values are given in
following section:

6.2.2 Violation and Penalty Values

Violation and penalty values are necessary, since they are needed for weighted-sum single-
objective function. For this competition, multi-objective formulations and Pareto opti-
mality issues are out of scope. The cost component UD1(Udine1) is used for this research.

CHAPTER 6. BENCHMARK DATA SETS 96

Essential Constraints Desirable Constraints

• Lectures: All lectures must
be scheduled and assigned to
distinct periods.

• RoomOccupancy : Two
lectures cannot take place in
the same room at the same
time.

• Conflicts: Lectures
belonging to the same
curriculum or taught by the
same teacher must not
conflict.

• Availabilities: the teacher
must be available when
lecture is scheduled.

• RoomCapacity : the assigned
room must be able to contain the
number of students which attend
that course.

• MinimumWorkingDays: the
number of lectures of each course
must reach the minimum number of
days.

• CurriculumCompactness:whole
lectures belonging to the same
programme (called a curriculum)
should be adjacent.

Table 6.1: The defined essential & desirable constraints (Gaspero et al., 2007)

CHAPTER 6. BENCHMARK DATA SETS 97

• Lectures constraint : a violation will be recorded if a lecture is not scheduled.

• RoomOccupancy constraint : a violation will be recorded and be counted as one if
an extra lecture is scheduled in the same period and room.

• Conflicts constraint : a violation will be recorded if there are any two conflicting
lectures in the same period. If there are four conflicting lectures, then six violations
are counted.

• Availabilities constraint : a violation will be recorded if a lecture is scheduled in a
period for which the course teacher is unavailable.

• RoomCapacity constraint : one penalty point will be counted for each student above
the room capacity.

• MinimumWorkingDays constraint : five penalty points will be counted for each day
below the minimum working days requirement.

• CurriculumCompactness constraint : one penalty point will be counted if for a given
curriculum, there is one lecture that is not adjacent to any other lecture within the
same day.

6.3 Instances and File Formats

6.3.1 Input File Format

An instance contains in one text file which is able to divide into four sections: course in-
formation, room information, curricula information and constraint information, as details
which is presented in following Figure 6.1.

The data in each section is always provided in a precise order and can be interpreted as
following:

• In the courses section, each line contains information about that course in one line,
which is comprised of course name, teacher who teaches on that course, the number
of lectures per week, the minimum number working days for those lectures, and the
number of students who are taking that course.

CHAPTER 6. BENCHMARK DATA SETS 98

Name : Instance_name
Courses: Number of courses
Rooms: Number of rooms
Days: Number of days
Periods per day : Number of periods
Curricula : Number of curricula
Constraints: Number of constraints
COURSES:
<CourseID> <Teacher> <#Lectures> <MinWorkingDays>
<#Students>
<CourseID> <Teacher> <#Lectures> <MinWorkingDays>
<#Students>
<CourseID> <Teacher> <#Lectures> <MinWorkingDays>
<#Students>
. . .
ROOMS:
<RoomID> <Capacity>
<RoomID> <Capacity>
<RoomID> <Capacity>
. . .
CURRICULA:
<CurriculumID> <#Courses> <CourseID>. . . <CourseID>
<CurriculumID> <#Courses> <CourseID>. . . <CourseID>
<CurriculumID> <#Courses> <CourseID>. . . <CourseID>
. . .
UNAVAILABILITY_CONSTRAINTS:
<CourseID> <Day> <Time>
<CourseID> <Day> <Time>
<CourseID> <Day> <Time>
. . .

Figure 6.1: Input file format (Gaspero et al., 2007)

CHAPTER 6. BENCHMARK DATA SETS 99

<CourseID> <RoomID> <Day> <Time>
<CourseID> <RoomID> <Day> <Time>
<CourseID> <RoomID> <Day> <Time>
. . .

Figure 6.2: Output file format (Gaspero et al., 2007)

• In the rooms section, each line maintains information about that room in one line,
which is comprised of room name, and room capacity.

• In the curricula section, each line provides information about that curriculum in
one line, which is comprised of curriculum name, the number of courses in that
curriculum, and a list of names of course that belongs to the same curriculum.

• In the unavailability_constraints section, there is information about course names
and the day-time slots which these courses need to be avoided.

6.3.2 Output File Format

The result of the timetabling process must be provided in a single text file, for which
each line is composed of course id, room id, and day-time slot as presented in Figure 6.2.

6.4 Benchmarking

6.4.1 Instances

For this competition, there are 21 instances of timetable requirements that have been
specified, called Comp01...Comp21. All instances are downloadable from http://tabu.diegm.uniud.it/ctt.
All of them have been taken form real cases arising in the University of Udine. The main
features of these instances are summarized in Table 6.2.

Table 6.2 shows the following features for each instance, comprising the number of courses
(C), total lectures (L), rooms (R), periods per day (PpD), days (D), curricula (Cu), min
and max lectures per day per curriculum (MML), average number of conflicts (Co),
Average teacher availability (TA), average number of lectures per curriculum per day
(CL), average room occupation (RO).

CHAPTER 6. BENCHMARK DATA SETS 100

instance C L R PpD D Cu MML Co TA CL RO

comp01 30 160 6 6 5 14 2-5 13.2 93.1 3.24 88.9

comp02 82 283 16 5 5 70 2-4 7.97 76.9 2.62 70.8

comp03 72 251 16 5 5 68 2-4 8.17 78.4 2.36 62.8

comp04 79 286 18 5 5 57 2-4 5.42 81.9 2.05 63.6

comp05 54 152 9 6 6 139 2-4 21.7 59.6 1.8 46.9

comp06 108 361 18 5 5 70 2-4 5.24 78.3 2.42 80.2

comp07 131 434 20 5 5 77 2-4 4.48 80.8 2.51 86.8

comp08 86 324 18 5 5 61 2-4 4.52 81.7 2 72.0

comp09 76 279 18 5 5 75 2-4 6.64 81 2.11 62.0

comp10 115 370 18 5 5 67 2-4 5.3 77.4 2.54 82.2

comp11 30 162 5 9 5 13 2-6 13.8 94.2 3.94 72.0

comp12 88 218 11 6 6 150 2-4 13.9 57 1.74 55.1

comp13 82 308 19 5 5 66 2-3 5.16 79.6 2.01 64.8

comp14 85 275 17 5 5 60 2-4 6.87 75 2.34 64.7

comp15 72 251 16 5 5 68 2-4 8.17 78.4 2.36 62.8

comp16 108 366 20 5 5 71 2-4 5.12 81.5 2.39 73.2

comp17 99 339 17 5 5 70 2-4 5.49 79.2 2.33 79.8

comp18 47 138 9 6 6 52 2-3 13.3 64.6 1.53 42.6

comp19 74 277 16 5 5 66 2-4 7.45 76.4 2.42 69.2

comp20 121 390 19 5 5 78 2-4 5.06 78.7 2.5 82.1

comp21 94 327 18 5 5 78 2-4 6.09 82.4 2.25 72.7

Table 6.2: Main features of instances (Gaspero et al., 2007)

CHAPTER 6. BENCHMARK DATA SETS 101

The average number of conflicts (Co) is the result of dividing the total number of the pair
of lectures that cannot be scheduled at the same time by the total number of distinct
pairs of lectures. The values of TA, CL, and RO are calculated in the same way.

6.4.2 Validators

To help encourage others to use the problem formula and instance datasets, with the aim
of having these become a standard within the course timetabling research field, a web
based validator has been set up. It allows the user to upload a solution file, select an exist-
ing instance and then obtain a validation report. Figure 6.3 presents the validator and the
location of the validating link is “http://tabu.diegm.uniud.it/ctt/index.php?page=valid”.

Figure 6.3: Validate solution website

6.4.3 Reference Results

The reference solutions have been achieved by several competitors from different tech-
niques i.e. tabu search, mathematical programming and other technique; running with a
360–second timeout on PC and taking the best out of 40 repetitions. Table 6.3 presents
the reference results, which all are feasible solutions, and the best soft penalty values for
these instances.

CHAPTER 6. BENCHMARK DATA SETS 102

6.5 Summary

The main contents of this chapter provide information about the International Timetabling
Competition (ITC). We particularly focus on the third track information—Curriculum-
Based Course Timetabling. The details of problem definition, data instances and input-
output files format have been described. The last section of this chapter describes the
means of validating the timetabling results, and a set of reference results is also provided.

CHAPTER 6. BENCHMARK DATA SETS 103

instance Best Results Technique Author
Hard

Penalty
Soft

Penalty
comp01 0 4 Tabu Search Andrea Schaerf

comp02 0 12 Other S. Abdullah and
H. Turabieh

comp03 0 38 Tabu Search Lu and Hao
comp04 0 18 Tabu Search Andrea Schaerf
comp05 0 219 Tabu Search Lu and Hao

comp06 0 14 Other S. Abdullah and
H. Turabieh

comp07 0 3 Mathematical
Programming

Gerald Lach

comp08 0 20 Mathematical
Programming

Gerald Lach

comp09 0 54 Tabu Search Lu and Hao
comp10 0 2 Mathematical

Programming
Gerald Lach

comp11 0 0 Tabu Search Andrea Schaerf
comp12 0 239 Tabu Search Lu and Hao
comp13 0 32 Tabu Search Lu and Hao
comp14 0 27 Tabu Search Lu and Hao
comp15 0 38 Tabu Search Lu and Hao

comp16 0 11 Other S. Abdullah and
H. Turabieh

comp17 0 30 Other S. Abdullah and
H. Turabieh

comp18 0 34 Tabu Search Lu and Hao
comp19 0 32 Tabu Search Lu and Hao

comp20 0 2 Other S. Abdullah and
H. Turabieh

comp21 0 34 Other S. Abdullah and
H. Turabieh

Table 6.3: Reference results

Chapter 7

Experimental Results

This chapter presents the results from the experiments. It starts by reviewing the re-
search questions and then identifies how the different principles can be investigated. The
research method is organized as a set of experiments to address each defined hypothesis;
collecting the experimental results; and finally concluding the experiment by verifying,
falsifying or establishing the validity of that hypothesis.

7.1 Introduction

In this research we aim to investigate the following two research questions:

1. How to apply agent-based technology to allocate the university resources so as to
satisfy the essential constraints for serving the teaching activities and to address as
many as possible of the desirable constraints that correspond to real world needs?

2. How to ensure that each agent gets a fair chance to acquire the resources that it
needs?

To do so, we need to analyse the results which came from using the First-In-First-Out
& Sequential (FIFOSeq), First-In-First-Out & Interleaved (FIFOInt), Round-Robin &
Sequential (RRSeq) and Round-Robin & Interleaved (RRInt) prnciples. We do this by
comparing the timetabling results in terms of how well the constraints were addressed
and the degree of fairness achieved when allocating rooms to YPAs. In this research, we
address the above questions by restructuring them as a set of hypotheses, then using an
experimental design in order to test each causal relationship. All experiments under this

104

CHAPTER 7. EXPERIMENTAL RESULTS 105

study are run on laptop computer—Intel Core 2 Duo T7100 @ 1.8GHz 1.8GHz Ram 1
GB 32 bit Windows Vista.

7.2 The Hypotheses

In order to address the issues and questions identified in section 4.4, the follwing ten
hypotheses have been identified:

H1) All four proposed multiagent principles are able to achieve the univer-
sity course timetabling formula and constraints which were defined for the
International Timetabling Competition 2007.

H2) The number of successfully organized lectures has been increased after
applying the negotiation phase following the initial allocation phase of both
FIFO and RR algorithms.

H3) Different initial sequences of YPAs will produce different results.

H4) Among the four models, the First-In-First-Out & Sequential principle
will always give the smallest penalty value when compared with the other
principles.

H5) Among the four principles, the First-In-First-Out & Interleaved principle
will always give the largest penalty value when compared with the other
principles.

H6) Among the four principles, the Round-Robin & Interleaved principle will
always give the smallest standard deviation of satisfied values when compared
with the other principles.

H7) Among the four principles, the First-In-First-Out & Sequential princi-
ple will always give the largest standard deviation of satisfied values when
compared with the other principles.

H8) Increasing the number of agents (curricula) gives larger penalty values.
(An agent takes a responsibility to organize a set of courses in a curriculum.)

H9) The proposed principles generally produce smaller penalty values when
compared with the reference results.

CHAPTER 7. EXPERIMENTAL RESULTS 106

H10) The Round Robin & Interleaved principle is most likely to produce better
solutions in terms of both smallest penalty value and best degree of fairness
when comparing to the other principles.

7.3 Testing the Hypotheses

H1) All four proposed multiagent principles are able to achieve the university course
timetabling formula and constraints which were defined for the International Timetabling
Competition 2007.
In order to test hypothesis H1, the experimental design uses the following

• independent variables: instance datasets and the initial YPAs sequences of each
dataset.

• dependent variables: integer counts for the number of success(S) or fail(F) results
(range 0-15)

Five instances have been randomly selected to be samples of this experiment. Each
sample is run fifteen times through the four different models, as this amount is sufficient
to produce a conclusion. For each time of running, an initial YPAs sequence set is
randomly chosen and four sets of organized timetables are returned for success; or treat
as fail if models cannot produce the timetables. The experimental process is summarised
below.

CHAPTER 7. EXPERIMENTAL RESULTS 107

0. set instanceCount = 0.
1. randomly select an instance X; and set instanceCount = instanceCount
+1
2. randomly select a set of initial sequence YPAs Y; and set trial_num =
0.
3. four treatments have been established for the four different principles
and use the set of initial sequence YPAs Y as the input for each of these
four treatments; the number of experiment is counted: trial_num =
trial_num +1
4. four sets of organized timetables are returned for success; or treat as fail
if the treatments cannot produce the timetables
5. information about the instance, the initial sequence of YPAs Y and the
results of this experiment is recorded
6. randomly select a new set of initial YPAs Y and go to step 2, if
trial_num≤ 15; otherwise go to step 1, if instanceCount ≤ 5; else
experiment is terminatd

After the experiment is terminated, the number of successes(S) / fails(F) will be counted
for each treatment and presented in the form of a percentage of achievements

• If percentage of achievements is 100, then hypothesis H1 is supported.

• If percentage of achievements is 0, then hypothesis H1 is not supported.

• If the percentage of achievements is between 0 and 100, then hypothesis H1 will be
accepted at the validity value which is equal to the value of the percentage of that
achievement.

In this H1 hypothesis test, the chosen instances are Comp04, Comp11, Comp13, Comp15
and Comp18 in Appendix D . The information of initial YPAs sequences is in Appendix
A. The organized timetable results are in Appendix B. The information about the number
of successes(S) or fails(F) for this experiment is presented in Table 7.1

Information in Table 7.1 and the conditions which are designed for this experiment are
indicated that hypothesis H1 is supported. The four proposed multiagent principles are
able to achieve the university course timetabling formula and constraints which were
defined for the International Timetabling Competition 2007.

CHAPTER 7. EXPERIMENTAL RESULTS 108

instance FIFOSeq RRSeq FIFOInt RRInt
S F % S F % S F % S F %

Comp04 15 0 100 15 0 100 15 0 100 15 0 100
Comp11 15 0 100 15 0 100 15 0 100 15 0 100
Comp13 15 0 100 15 0 100 15 0 100 15 0 100
Comp15 15 0 100 15 0 100 15 0 100 15 0 100
Comp18 15 0 100 15 0 100 15 0 100 15 0 100

Table 7.1: Numbers of successes or fails of H1 hypothesis test

H2) The number of successfully organized lectures has been increased after applying the
negotiation phase following the initial allocation phase of both FIFO and RR algorithms.
In order to test hypothesis H2, the experimental design uses the following

• independent variables: instance datasets and the initial YPAs sequences of each
dataset.

• dependent variable: change occurring in the total number of organized lectures
after the initial allocation phase and the total number of organized lectures after
the negotiation phase.

Five instances have been randomly selected to be samples of this experiment. Each sample
is run fifteen times through the four different treatments, as this amount is sufficient to
produce a conclusion. For each time of running, an initial YPAs sequence set is randomly
chosen and four sets of organized timetables are returned. The experimental process is
summarised below.

CHAPTER 7. EXPERIMENTAL RESULTS 109

0. set instanceCount = 0
1. randomly select an instance X; and set instanceCount = instanceCount
+1
2. randomly select a set of initial sequence YPAs Y; and set trial_num =
0.
3. four treatments have been established for the first-in-first-out,
first-in-first-out & negotiation; and round robin, round robin & negotiation
by applying the set of initial sequence YPAs Y as the input for each of
these four treatments; the number of the experiment is counted: trial_num
= trial_num +1
4. four sets of organized timetables are returned
5. information about the instance, the initial sequence of YPAs Y and the
results of these four treatments are recorded
6. randomly select a new set of initial YPAs Y and go to step 2, if
trial_num ≤ 15; otherwise go to step 1, if instanceCount ≤ 5; else
experiment is terminatd

After the experiment is terminated, the total number of organized lectures of each in-
stance from the four treatments is counted and is compared between treatments which
adding up the negotiation part and the one which has not been added.
If the number of organized lectures of the treatment which added negotiation part is
greater than the one which has not been added, then we can conclude that negotiation
is able to increase the number of organized lectures; as some YPAs in system are glad
to switch rooms and hypothesis H2 is supported. Otherwise, If the number of organized
lectures of the treatment which added negotiation part is equal the one which has not been
added, then we can conclude that negotiation is able to increase the number of organized
lectures, but some YPAs in system can not help to switch rooms and hypothesis H2 is
also supported; otherwise, the hypothesis H2 will not be supported.
In this H2 hypothesis test, the chosen instances are Comp04, Comp11, Comp13, Comp15
and Comp18 in Appendix D. The information of initial YPAs sequences is in Appendix
A. The organized timetables from four treatments are in Appendix B. Information about
the number of organized lectures from First-In-First-Out, First-In-First-Out & Negotia-
tion, Round Robin, Round Robin & Negotiation is shown in Table 7.2. We expect that
negotiation phase is able to solve constraint-mismatched resource allocation problem.

CHAPTER 7. EXPERIMENTAL RESULTS 110

instance
Total
Lectures

First-In-First-Out
Organized Lectures

Round Robin
Organized Lectures

FIFO FIFO
&Nego

change RR RR
&Nego

change

Comp04 4290 4222 4239 17 4267 4270 3
Comp11 2430 2360 2430 70 2367 2430 63
Comp13 4620 4603 4607 4 4619 4619 0
Comp15 3765 3694 3703 9 3683 3697 14
Comp18 2070 2070 2070 0 2066 2070 4

Table 7.2: Numbers of organized lectures before & after including the negotiation part

The information in Table 7.2 shows that hypothesis H2 is supported. The number of or-
ganized lectures has been increased in the majority of cases, after applying the negotiation
phase following the initial allocation phase of both FIFO and RR algorithms.
H3) Different initial sequences of YPAs will produce different results.
In order to test hypothesis H3, the experimental design uses the following

• independent variables: instance datasets and the two different initial YPAs se-
quences of each dataset.

• dependent variables: integer counts for the number of boolean value indicating end
results is identical (I) or different(D) (range 0-15)

Five instances have been randomly selected to be samples of this experiment. Each sample
is run fifteen times using each of the four different principles, as this amount is sufficient
to produce a conclusion. For each time of running, two initial YPAs sequence sets are
randomly chosen and eight sets of organized timetables are returned. The experimental
process is summarised below.

CHAPTER 7. EXPERIMENTAL RESULTS 111

0. set instanceCount = 0
1. randomly select an instance X; and set instanceCount = instanceCount
+1
2. randomly select two different sets of initial sequence YPAs Y1 & Y2;
and set trial_num = 0.
3. four treatments have been established for the four different principles
and use the two sets of initial sequences YPAs Y1 & Y2 as the input for
each of these four treatments; the number of the experiment is counted:
trial_num = trial_num +1
4. eight sets of organized timetables are returned
5. any two organized timetables which are products of the same treatment
are compared and judged; the result will be identical (I)if those two
timetables are the same; otherwise the result will be different (D)
6. information about the instance X, the initial sequences of YPAs Y1&Y2
and the results of this experiment is recorded
7. randomly select new sets of initial sequences YPAs Y1 & Y2 and go to
step 2, if trial_num ≤ 15; otherwise go to step 1, if instanceCount ≤ 5;
else experiment is terminated .

After the experiment is terminated, the number of identical(I)/different (D) results will
be counted for each treatment and presented in the form of a percentage of different
results

• If percentage of different results is 100, then hypothesis H3 is supported;

• If percentage of different results is 0, then hypothesis H3 is not supported;

• If the percentage of different results is between 0 and 100, then hypothesis H3 will
be accepted at the validity value which is equal to the value of the percentage of
different results.

In this H3 hypothesis test, the chosen instances are Comp04, Comp11, Comp13, Comp15
and Comp18 in Appendix D. The information of initial YPAs Y1&Y2 sequences is in
Appendix A. The organized timetable results are in Appendix B. The information about
the number of identical (I) or different (D) results of this experiment is presented in Table
7.3

CHAPTER 7. EXPERIMENTAL RESULTS 112

instance FIFOSeq RRSeq FIFOInt RRInt
I D % I D % I D % I D %

Comp04 0 15 100 0 15 100 0 15 100 0 15 100
Comp11 0 15 100 0 15 100 0 15 100 0 15 100
Comp13 0 15 100 0 15 100 0 15 100 0 15 100
Comp15 0 15 100 0 15 100 0 15 100 0 15 100
Comp18 0 15 100 0 15 100 0 15 100 0 15 100

Table 7.3: Numbers of identical or different results of two different initial YPAs sets

Information in Table 7.3 and the conditions under which this experiment occur indicate
that hypothesis H3 is supported. Different initial sequences of YPAs produce different
results.
H4) Among the four principles, the First-In-First-Out & Sequential principle will always
give the smallest penalty value when compared with the other principles.
H5) Among the four principles, the First-In-First-Out & Interleaved principle will always
give the largest penalty value when compared with the other principles.
H6) Among the four principles, the Round-Robin & Interleaved principle will always
give the smallest standard deviation of satisfied values when compared with the other
principles.
H7) Among the four principles, the First-In-First-Out & Sequential principle will always
give the largest standard deviation of satisfied values when compared with the other
principles.
H8) Increasing the number of agents (curricula) gives larger penalty values.
H9) The proposed principles generally produce smaller penalty values when compared
with the ITC-2007 reference results.
H10) The Round Robin & Interleaved principle is most likely to produce better solutions
in terms of both lowest penalty value and best degree of fairness when comparing to the
other principles.
In order to test hypotheses H4-H10, the experimental design uses the following

• independent variables: instance datasets and the initial YPAs sequence of each
dataset.

• dependent variables: successfully organized timetables, timetable validation results,
sets of satisfied values, standard deviation of the satisfied values.

CHAPTER 7. EXPERIMENTAL RESULTS 113

Five instances have been randomly selected to be samples of this experiment. Each
sample is run fifteen times using the four different principles, as this amount is sufficient
to produce a conclusion. For each time of running, an initial YPAs sequence set is
randomly chosen and four sets of organized timetables are returned. The experimantal
process is summarised below.

0. set instanceCount = 0
1. randomly select an instance X; and set instanceCount = instanceCount
+1
2. randomly select a set of initial sequence YPAs Y; and set trial_num =
0.
3. four treatments have been established for the four different principles
and use the set of initial sequence YPAs Y as the input for each of these
four treatments; the number of the experiment is counted: trial_num =
trial_num +1
4. four sets of organized timetables are returned
5. information about the instance X, the initial sequence of YPAs Y,
organized timetables, timetable validating results, sets of satisfied values,
standard deviation of the satisfied values are calculated and recorded
6. judge the sequence of YPAs Y which gives the smallest/the largest
penalty value, the smallest/the largest of the standard deviation of the
satisfied values; then record the results.
7. randomly select a new set of initial YPAs Y and go to step 2, if
trial_num ≤ 15; otherwise go to step 1, if instanceCount ≤ 5; else
experiment is terminated.

After the experiment being terminated, the results of the smallest/ the largest penalty
values, the smallest/the largest standard deviation of the satisfied values of each instance
will be reported.

• For all instances, if the First-In-First-Out & Sequential principle gives the smallest
penalty value of organized timetable results when compared with the others, then
hypothesis H4 will be supported; otherwise, hypothesis H4 will not be supported.

• For all instances, if the First-In-First-Out & Interleaved principle gives the largest
penalty value of organized timetable results when compared with the others, then
hypothesis H5 will be supported; otherwise, hypothesis H5 will not be supported.

CHAPTER 7. EXPERIMENTAL RESULTS 114

• For all instance, if the Round-Robin & Interleaved principle gives the smallest stan-
dard deviation of the satisfied values when compared with the others, then hypoth-
esis H6 will be supported; otherwise, hypothesis H6 will not be supported.

• For all instance, if the First-In-First-Out & Sequential principle gives the largest
standard deviation of the satisfied values when compared with the others, then
hypothesis H7 will be supported; otherwise, hypothesis H7 will not be supported.

In these hypotheses H4-H7 test, the random instances are Comp04, Comp11, Comp13,
Comp15 and Comp18 in Appendix D. The information of randomly initial YPAs se-
quences is in Appendix A. The organized timetable results are in Appendix B. The
timetable validating results (penalty values) and the standard deviation of satisfied values
are in Appendix C.
A penalty function has been defined for the purpose of comparing the outcomes from the
different principles.
The first part counts the number of violations of the essential constrants, while the second
part (fractional) part counts the number of violations of the desirable constraints.

penalty(E,D) = E + 0.001*D

when E represents the number of violations of essential constraints.
D represents the number of violations of desirable constraints.

As we found that the number of returned penalty values of the desirable constraints from
all experiments are fewer than 1000; we therefore took 0.001 to use as the weighting for
the number of violations of the desirable constraints.

CHAPTER 7. EXPERIMENTAL RESULTS 115

Instance Comp04
The penalty values of instance Comp04 from this experiment are presented by ranging
from low to high values ordered by results of the FIFOSeq principle in Table 7.4 and the
graph is plotted as shown in Figure 7.1.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq02 1.160 0.144 1.141 0.140
Seq15 2.140 2.153 1.155 2.153
Seq08 2.148 1.138 2.121 1.138
Seq06 2.156 3.168 2.141 2.168
Seq05 2.173 0.145 2.145 0.152
Seq13 3.154 2.171 3.129 2.171
Seq11 3.178 2.153 2.142 2.153
Seq10 3.195 2.166 3.164 2.166
Seq03 4.138 0.160 4.110 0.160
Seq01 4.170 2.155 4.147 2.155
Seq12 4.181 1.154 4.147 1.157
Seq07 4.193 1.155 2.143 1.155
Seq09 5.148 1.147 5.131 1.147
Seq14 5.149 1.152 5.119 1.152
Seq04 7.178 2.167 5.135 2.167

Table 7.4: Penalty values for instance Comp04

Figure 7.1: Penalty values for instance Comp04

CHAPTER 7. EXPERIMENTAL RESULTS 116

For this instance, the best solution of this experiment is an outcome of the RRInt principle
which it is a result of the 2nd initial sequence.
The standard deviation of the satisfied values of instance Comp04 from this experiment
is presented in Table 7.5 and is plotted in graph as shown in Figure 7.2. The sorted
standard deviation values from low to high of each principle are plotted in graph as
shown in Figure 7.3.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq02 14.06694 16.08371 14.22331 16.35595
Seq15 15.59036 13.22198 16.29037 13.22198
Seq08 14.45919 11.86092 14.66142 11.86092
Seq06 13.69332 13.12047 13.69332 13.12047
Seq05 14.28662 14.17115 14.28662 13.64701
Seq13 15.52213 14.09711 15.52213 14.09711
Seq11 13.92347 12.6507 13.14233 12.6507
Seq10 13.75726 14.61066 13.75726 14.61066
Seq03 15.54935 13.28079 15.54935 13.28079
Seq01 15.29507 13.76547 15.28273 13.76547
Seq12 14.1297 11.53095 14.2973 12.15016
Seq07 15.37339 13.77067 15.40687 13.60648
Seq09 13.08457 14.48969 13.08457 14.48969
Seq14 14.79538 14.55757 14.79538 14.49087
Seq04 15.79531 13.17073 15.64867 13.17073

Table 7.5: Standard deviation values for instance Comp04

CHAPTER 7. EXPERIMENTAL RESULTS 117

Figure 7.2: Standard deviation values for instance Comp04

Figure 7.3: Sorted standard deviation values for instance Comp04

For this instance, the smallest standard deviation of satisfied values of resources of this
experiment is an outcome of the RRSeq principle which it is a result of the 12nd initial
sequence. The sequence which gives the smallest penalty value and the smallest stan-
dard deviation of satisfied value of resources is the 8th initial sequence. The results are
products of the RRSeq and RRInt principles.

CHAPTER 7. EXPERIMENTAL RESULTS 118

Instance Comp11
The penalty values of instance Comp11 from this experiment are presented by ranging
from low to high values ordered by results of the FIFOSeq principle in Table 7.6 and the
graph is plotted as shown in Figure 7.4.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq02 0.007 0.053 0.007 0.052
Seq14 0.007 0.047 0.007 0.047
Seq06 0.012 0.033 0.012 0.031
Seq07 0.013 0.052 0.013 0.051
Seq11 0.014 0.052 0.014 0.059
Seq12 0.016 0.040 0.014 0.042
Seq04 0.017 0.028 0.017 0.028
Seq08 0.017 0.033 0.017 0.033
Seq13 0.018 0.051 0.018 0.050
Seq03 0.020 0.023 0.020 0.022
Seq05 0.021 0.043 0.021 0.043
Seq09 0.028 0.045 0.028 0.057
Seq15 0.040 0.054 4.033 0.054
Seq01 0.041 0.041 3.045 0.043
Seq10 0.055 0.035 0.053 0.033

Table 7.6: Penalty values for instance Comp11

Figure 7.4: Penalty values for instance Comp11

CHAPTER 7. EXPERIMENTAL RESULTS 119

For this instance, the best solution of this experiment is an outcome of the FIFOSeq
and FIFOInt principles which it is a result of the 2nd and the 14th initial sequences.
The standard deviation of the satisfied values of instance Comp11 from this experiment
is presented in Table 7.7 and is plotted in graph as shown in Figure 7.5. The sorted
standard deviation values from low to high of each principle are plotted in graph as
shown in Figure 7.6.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq02 9.40911 13.4968 9.40911 13.3909
Seq14 15.4233 15.7263 15.4233 15.7263
Seq06 14.4968 13.9205 14.4557 13.9205
Seq07 13.2065 12.2871 13.2065 12.2871
Seq11 15.0629 13.4878 15.0629 13.5298
Seq12 17.3104 14.0879 17.3104 14.0879
Seq04 12.4348 14.6947 12.4348 14.6947
Seq08 13.5644 11.7611 13.5644 12.1546
Seq13 13.7477 15.1386 13.7477 15.1386
Seq03 11.8713 11.544 11.8713 11.4799
Seq05 13.3215 13.5529 13.3215 12.3034
Seq09 12.3106 11.9539 12.3106 13.8873
Seq15 12.9499 11.6611 12.9259 11.7612
Seq01 11.542 13.7333 10.5142 13.5487
Seq10 16.9415 14.3182 17.0095 14.3587

Table 7.7: Standard deviation values for instance Comp11

CHAPTER 7. EXPERIMENTAL RESULTS 120

Figure 7.5: Standard deviation values for instance Comp11

Figure 7.6: Sorted standard deviation values for instance Comp11

For this instance, the smallest standard deviation of satisfied values of resources of this
experiment is an outcome of the FIFOSeq and FIFOInt principles which it is a result of
the 2nd initial sequence.
The sequence which gives the smallest penalty value and the smallest standard deviation
of satisfied value of resources is the 2nd initial sequence. The results are products of the
FIFOSeq and FIFOInt principles.

CHAPTER 7. EXPERIMENTAL RESULTS 121

Instance Comp13
The penalty values of instance Comp13 from this experiment are presented by ranging
from low to high values ordered by results of the FIFOSeq principle in Table 7.8 and the
graph is plotted as shown in Figure 7.7.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq12 0.170 0.165 0.170 0.165
Seq09 0.178 0.167 0.178 0.167
Seq03 0.186 0.201 0.186 0.201
Seq08 0.186 0.190 0.186 0.190
Seq05 0.188 0.184 0.188 0.184
Seq11 0.192 0.185 0.192 0.185
Seq10 0.201 0.190 0.201 0.190
Seq01 0.210 0.198 0.210 0.198
Seq07 1.163 1.196 1.163 1.196
Seq14 1.170 0.187 1.170 0.187
Seq06 1.177 0.178 1.177 0.178
Seq04 1.206 0.163 1.206 0.163
Seq13 2.200 0.189 2.200 0.189
Seq15 3.189 0.193 3.189 0.193
Seq02 4.195 0.173 4.195 0.173

Table 7.8: Penalty values for instance Comp13

Figure 7.7: Penalty values for instance Comp13

CHAPTER 7. EXPERIMENTAL RESULTS 122

For this instance, the best solution of this experiment is an outcome of the RRSeq and
RRInt principles which it is a result of the 12nd initial sequence.
The standard deviation of the satisfied values of instance Comp13 from this experiment
is presented in Table 7.9 and is plotted in graph as shown in Figure 7.8. The sorted
standard deviation values from low to high of each principle are plotted in graph as
shown in Figure 7.9.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq12 13.78233 13.31006 13.78233 13.31006
Seq09 15.83617 14.85988 15.83617 14.85988
Seq03 14.67921 13.76559 14.67921 13.76559
Seq08 15.51432 13.42455 15.51432 13.42455
Seq05 14.52807 13.00819 14.52807 13.00819
Seq11 17.45976 14.03313 17.45976 14.03313
Seq10 14.31493 13.1725 14.31493 13.1725
Seq01 13.85319 13.61357 13.85319 13.61357
Seq07 15.61258 13.58496 15.61258 13.58496
Seq14 14.51541 13.60103 14.51541 13.60103
Seq06 14.34402 14.25821 14.34402 14.25821
Seq04 16.76861 13.07493 16.76861 13.07493
Seq13 15.42377 14.30181 15.42377 14.30181
Seq15 15.41013 12.79509 15.41013 12.79509
Seq02 14.34918 13.6524 14.34918 13.6524

Table 7.9: Standard deviation values for instance Comp13

CHAPTER 7. EXPERIMENTAL RESULTS 123

Figure 7.8: Standard deviation values for instance Comp13

Figure 7.9: Sorted standard deviation values for instance Comp13

For this instance, the smallest standard deviation of satisfied values of resources of this
experiment is an outcome of the RRSeq and RRInt principles which it is a result of the
15th initial sequence.
The sequences which give the smallest penalty value and the smallest standard deviation
of satisfied values of resources are the 12nd or the 5th initial sequences. The results are
products of the RRSeq and RRInt principles.

CHAPTER 7. EXPERIMENTAL RESULTS 124

Instance Comp15
The penalty values of instance Comp15 from this experiment are presented by ranging
from low to high values ordered by results of the FIFOSeq principle in Table 7.10 and
the graph is plotted as shown in Figure 7.10.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq10 1.206 4.261 1.206 4.252
Seq11 2.176 2.213 2.176 2.213
Seq05 2.187 4.201 2.187 4.203
Seq15 2.223 4.240 1.222 4.240
Seq14 3.230 3.245 3.230 3.241
Seq04 3.234 5.218 3.234 5.218
Seq06 3.246 7.223 3.242 7.223
Seq02 5.214 5.223 5.218 5.223
Seq13 5.226 4.232 5.226 4.242
Seq09 5.238 4.221 5.241 4.223
Seq01 6.200 3.243 6.205 3.243
Seq08 6.240 4.214 6.240 4.212
Seq03 6.244 8.241 6.247 8.241
Seq12 6.259 4.224 6.259 4.221
Seq07 7.201 7.235 7.197 7.235

Table 7.10: Penalty values for instance Comp15

Figure 7.10: Penalty values for instance Comp15

CHAPTER 7. EXPERIMENTAL RESULTS 125

For this instance, the best solution of this experiment is an outcome of the FIFOSeq and
FIFOInt principles which it is a result of the 10th initial sequence.
The standard deviation of the satisfied values of instance Comp15 from this experiment
is presented in Table 7.11 and is plotted in graph as shown in Figure 7.11. The sorted
standard deviation values from low to high of each principle are plotted in graph as shown
in Figure 7.12.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq10 14.63138 14.18005 14.63138 12.60612
Seq11 14.72634 14.48279 14.72634 14.48279
Seq05 13.17876 17.92704 13.17876 17.93245
Seq15 14.7887 14.98562 14.00974 14.98562
Seq14 15.53601 16.01299 15.53601 16.08626
Seq04 14.51639 15.21514 14.51639 15.21514
Seq06 15.37644 14.1883 15.37644 14.1883
Seq02 13.58475 16.6845 13.58475 16.6845
Seq13 15.74166 15.39225 15.74166 15.49215
Seq09 14.47914 13.21881 14.67802 13.17881
Seq01 15.60737 13.98737 15.51995 13.98737
Seq08 16.36932 15.12801 16.36932 15.13316
Seq03 14.60386 15.76612 14.49255 15.76612
Seq12 13.47947 16.46453 13.47947 16.46177
Seq07 15.32802 15.08888 15.32183 15.08888

Table 7.11: Standard deviation values for instance Comp15

CHAPTER 7. EXPERIMENTAL RESULTS 126

Figure 7.11: Standard deviation values for instance Comp15

Figure 7.12: Sorted standard deviation values for instance Comp15

For this instance, the smallest standard deviation of satisfied values of resources of this
experiment is an outcome of the RRInt principle which it is a result of the 10th initial
sequence.
The sequence which give the smallest penalty value and the smallest standard deviation
of satisfied values of resources is the 5th initial sequence. The results are products of the
FIFOSeq and FIFOInt principles.

CHAPTER 7. EXPERIMENTAL RESULTS 127

Instance Comp18
The penalty values of instance Comp18 from this experiment are presented by ranging
from low to high values ordered by results of the FIFOSeq principle in Table 7.12 and
the graph is plotted as shown in Figure 7.13.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq10 0.197 0.185 0.197 0.185
Seq14 0.200 0.199 0.200 0.199
Seq09 0.202 0.195 0.202 0.195
Seq04 0.208 0.212 0.208 0.212
Seq11 0.208 0.195 0.208 0.185
Seq13 0.208 0.208 0.208 0.208
Seq15 0.213 0.206 0.213 0.200
Seq08 0.215 0.199 0.205 0.199
Seq07 0.216 0.203 0.216 0.203
Seq05 0.220 0.189 0.220 0.189
Seq06 0.221 0.197 2.220 0.197
Seq03 0.222 0.187 0.222 0.187
Seq12 0.229 0.186 0.229 0.186
Seq01 0.230 0.231 0.230 0.231
Seq02 0.250 0.182 0.250 0.182

Table 7.12: Penalty values for instance Comp18

Figure 7.13: Penalty values for instance Comp18

CHAPTER 7. EXPERIMENTAL RESULTS 128

For this instance, the best solution of this experiment is an outcome of the RRSeq and
RRInt principles which it is a result of the 2nd initial sequence.
The standard deviation of the satisfied values of instance Comp18 from this experiment
is presented in Table 7.13 and is plotted in graph as shown in Figure 7.14. The sorted
standard deviation values from low to high of each principle are plotted in graph as shown
in Figure 7.15.

Initial FIFOSeq RRSeq FIFOInt RRInt
Seq10 15.47606 11.32257 15.47606 11.32257
Seq14 16.07973 16.86567 16.07973 16.86567
Seq09 14.92435 13.98611 14.92435 13.98611
Seq04 13.83098 13.75904 13.83098 13.75904
Seq11 15.57751 13.21952 15.57751 13.21952
Seq13 17.39632 15.02549 17.39632 15.02549
Seq15 13.13509 15.49012 13.13509 13.24001
Seq08 13.76339 12.58447 13.76339 12.58447
Seq07 15.90522 13.82034 15.90522 13.82034
Seq05 13.61634 16.75782 13.61634 16.75782
Seq06 13.81225 12.93513 15.46944 12.93513
Seq03 16.66444 13.25634 16.66444 13.25634
Seq12 16.82012 13.81071 16.82012 13.81071
Seq01 16.79025 13.76634 16.79025 13.76634
Seq02 17.73978 12.99924 17.73978 12.99924

Table 7.13: Standard deviation values for instance Comp18

CHAPTER 7. EXPERIMENTAL RESULTS 129

Figure 7.14: Standard deviation values for instance Comp18

Figure 7.15: Sorted standard deviation values for instance Comp18

For this instance, the smallest standard deviation of satisfied values of resources of this
experiment is an outcome of the RRSeq and RRInt prnciples which it is a result of the
10th initial sequence.
The sequence which gives the smallest penalty value and the smallest standard deviation
of satisfied values of resources is the 10th initial sequence. The results are products of
the RRSeq and RRInt principles.

CHAPTER 7. EXPERIMENTAL RESULTS 130

H4) The summarized results of the above experiment are shown in Table 7.14 by pre-
senting the principle which gives the smallest value of each instance.

instance The Smallest Penalty Value
FIFOSeq RRSeq FIFOInt RRInt

Comp04 √
Comp11 √ √
Comp13 √ √
Comp15 √ √
Comp18 √ √

Frequency 2 2 2 3

Table 7.14: The smallest penalty value of each instance

Information in Table 7.14 and the conditions which are designed for this experiment
are indicated that hypothesis H4 is not supported. The First-In-First-Out & Sequential
principle does not always give the smallest penalty value even though it expected that it
provides more chances for some YPAs, especially those located on the top of the list, to
pick good resources which meet their needs first. We found some principles such as Round
Robin & Sequential, Round Robin & Interleaved and First-In-First-Out & Interleaved also
give the smallest penalty value for some instances.

H5) The summarized results of the above experiment are shown in Table 7.15 by pre-
senting the principle which gives the largest penalty value of each instance.

instance The Largest Penalty Value
FIFOSeq RRSeq FIFOInt RRInt

Comp04 √
Comp11 √
Comp13 √ √
Comp15 √ √
Comp18 √

Frequency 2 1 3 1

Table 7.15: The largest penalty value of each instance

Information in Table 7.15 and the conditions which are designed for this experiment are
indicated that hypothesis H5 is not supported. The First-In-First-Out & Interleaved
principle does not always give the largest penalty value, even though we believe that
some YPAs, especially those located on the tail of the list, will face high penalty values

CHAPTER 7. EXPERIMENTAL RESULTS 131

as their desired resources have been occupied by the previous YPAs. However, it tends
to be so. Occasionally, some principles such as First-In-First-Out & Sequential, Round
Robin & Sequential and Round Robin & Interleaved also give the largest penalty value
for some instances.

H6) The summarized results of the above experiment are shown in Table 7.16 by pre-
senting the principle which gives the smallest standard deviation value of each instance.

instance The Smallest Standard Deviation Value
FIFOSeq RRSeq FIFOInt RRInt

Comp04 √
Comp11 √ √
Comp13 √ √
Comp15 √
Comp18 √ √

Frequency 1 3 1 3

Table 7.16: The smallest standard deviation value of each instance

Information in Table 7.16 and the conditions which are designed for this experiment are
indicated that hypothesis H6 is not supported.The Round-Robin & Interleaved principle
does not always give the smallest standard deviation of satisfied values, even though it
is expected to provide more chances to reach the desired resources equally among YPAs
in the system. However, Round-Robin & Sequential still gives the smallest standard
deviation for some instances. Both Round-Robin & Interleaved and Round-Robin &
Sequential tend to give more sucessful in fairness among YPAs than both First-In-First-
Out & Sequential and First-In-First-Out & Interleaved principles.

H7) The summarized results of the above experiment are shown in Table 7.17 by pre-
senting the principle which gives the largest standard deviation value of each instance.

CHAPTER 7. EXPERIMENTAL RESULTS 132

instance The Largest Standard Deviation Value
FIFOSeq RRSeq FIFOInt RRInt

Comp04 √
Comp11 √ √
Comp13 √ √
Comp15 √ √
Comp18 √ √

Frequency 3 1 3 2

Table 7.17: The largest standard deviation value of each instance

The information in Table 7.17 and the conditions used for this experiment indicate that
hypothesis H7 is not supported. The First-In-First-Out & Sequential principle does not
always give the largest standard deviation of satisfied values, even though we expected
that First-In-First-Out & Sequential would give a big difference between satisfied values
among YPAs in the system. However, both First-In-First-Out & Sequential and First-In-
First-Out & Interleaved principles seem to give unfair allocations among YPAs, whereas
some instances of Round Robin & Sequential and Round Robin & Interleaved principles
also give the largest standard deviation value .
A link between standard deviation value and fairness can be explained, as follows:

A set of satisfied values which has been returned after a set of timetables has been
organized indicates how much each YPA in the system is satisfied by the set of resources it
occupies. The standard deviation value of the set of satisfied values indicates the difference
of the average for the satisfied values amongs YPAs in the system. That means that the
smaller the standard deviation value is, the closer the satisfied values tend to be to the
average. When each YPA in system gets nearly the same satisfied value, it can be assumed
that each YPA got a fair chance to reach its desired resources.

H8) Increasing the number of agents(curricula) gives larger penalty values.(An agent
takes a responsibility to organize a set of courses in a curriculum.)
In order to test hypothesis H8, we need to compare the results which produce from
different numbers of agents by the type of principles. For each of the random samples,
there are different numbers of curricula, which mean there are different numbers of YPAs
in each instance; as we defined in section 6.2 that one YPA takes the responsibility for
organizing a set of courses as defined in a curriculum. We then take information which
was recorded from above experiment to rearrange by ranging the validated penalty values
from low to high by running the number of YPAs in system from low to high by principle

CHAPTER 7. EXPERIMENTAL RESULTS 133

types.

• FIFOSeq : the ordered results of the FIFOSeq principle are presented in table and
graph forms, as shown in Table 7.18 and plotted in Figure 7.16

Comp11
13YPAs

Comp18
52YPAs

Comp04
57YPAs

Comp13
66YPAs

Comp15
68YPAs

0.007 0.197 1.160 0.170 1.206
0.007 0.200 2.140 0.178 2.176
0.012 0.202 2.148 0.186 2.187
0.013 0.208 2.156 0.186 2.223
0.014 0.208 2.173 0.188 3.230
0.016 0.208 3.154 0.192 3.234
0.017 0.213 3.178 0.201 3.246
0.017 0.215 3.195 0.210 5.214
0.018 0.216 4.138 1.163 5.226
0.020 0.220 4.170 1.170 5.238
0.021 0.221 4.181 1.177 6.200
0.028 0.222 4.193 1.206 6.240
0.040 0.229 5.148 2.200 6.244
0.041 0.230 5.149 3.189 6.259
0.055 0.250 7.178 4.195 7.201

Table 7.18: FIFOSeq ’s ordered penalty values when the number of YPAs in system is
increased

Figure 7.16: FIFOSeq ’s ordered penalty values when the number of YPAs in system is
increased

CHAPTER 7. EXPERIMENTAL RESULTS 134

The information in Table 7.18 and the graph in Figure 7.16 show that increasing the
number of agents does not always give larger penalty values.

• RRSeq : the ordered results of the RRSeq principle are presented in table and
graph forms, as shown in Table 7.19 and plotted in Figure 7.17

Comp11
13YPAs

Comp18
52YPAs

Comp04
57YPAs

Comp13
66YPAs

Comp15
68YPAs

0.023 0.182 0.144 0.163 2.213
0.028 0.185 0.145 0.165 3.243
0.033 0.186 0.160 0.167 3.245
0.033 0.187 1.138 0.173 4.201
0.035 0.189 1.147 0.178 4.214
0.040 0.195 1.152 0.184 4.221
0.041 0.195 1.154 0.185 4.224
0.043 0.197 1.155 0.187 4.232
0.045 0.199 2.153 0.189 4.240
0.047 0.199 2.153 0.190 4.261
0.051 0.203 2.155 0.190 5.218
0.052 0.206 2.166 0.193 5.223
0.052 0.208 2.167 0.198 7.223
0.053 0.212 2.171 0.201 7.235
0.054 0.231 3.168 1.196 8.241

Table 7.19: RRSeq ’s ordered penalty values when the number of YPAs in system is
increased

CHAPTER 7. EXPERIMENTAL RESULTS 135

Figure 7.17: RRSeq ’s ordered penalty values when the number of YPAs in system is
increased

The information in Table 7.19 and the graph in Figure 7.17 show that increasing the
number of agents does not always give larger penalty values.

• FIFOInt : the ordered results of the FIFOInt principle are presented in table and
graph forms, as shown in Table 7.20 and plotted in Figure 7.18

CHAPTER 7. EXPERIMENTAL RESULTS 136

Comp11
13YPAs

Comp18
52YPAs

Comp04
57YPAs

Comp13
66YPAs

Comp15
68YPAs

0.007 0.197 1.141 0.170 1.206
0.007 0.200 1.155 0.178 1.222
0.012 0.202 2.121 0.186 2.176
0.013 0.205 2.141 0.186 2.187
0.014 0.208 2.142 0.188 3.230
0.014 0.208 2.143 0.192 3.234
0.017 0.208 2.145 0.201 3.242
0.017 0.213 3.129 0.210 5.218
0.018 0.216 3.164 1.163 5.226
0.020 0.220 4.110 1.170 5.241
0.021 0.222 4.147 1.177 6.205
0.028 0.229 4.147 1.206 6.240
0.053 0.230 5.119 2.200 6.247
3.045 0.250 5.131 3.189 6.259
4.033 2.220 5.135 4.195 7.197

Table 7.20: FIFOInt ’s ordered penalty values when the number of YPAs in system is
increased

Figure 7.18: FIFOInt ’s ordered penalty values when the number of YPAs in system is
increased

The information in Table 7.20 and the graph in Figure 7.18 show that increasing the
number of agents does not always give larger penalty values.

• RRInt : the ordered results of the RRInt principle are presented in table and graph

CHAPTER 7. EXPERIMENTAL RESULTS 137

forms, as shown in Table 7.21 and plotted in Figure 7.19

Comp11
13YPAs

Comp18
52YPAs

Comp04
57YPAs

Comp13
66YPAs

Comp15
68YPAs

0.022 0.182 0.140 0.163 2.213
0.028 0.185 0.152 0.165 3.241
0.031 0.185 0.160 0.167 3.243
0.033 0.186 1.138 0.173 4.203
0.033 0.187 1.147 0.178 4.212
0.042 0.189 1.152 0.184 4.221
0.043 0.195 1.155 0.185 4.223
0.043 0.197 1.157 0.187 4.240
0.047 0.199 2.153 0.189 4.242
0.050 0.199 2.153 0.190 4.252
0.051 0.200 2.155 0.190 5.218
0.052 0.203 2.166 0.193 5.223
0.054 0.208 2.167 0.198 7.223
0.057 0.212 2.168 0.201 7.235
0.059 0.231 2.171 1.196 8.241

Table 7.21: RRInt ’s ordered penalty values when the number of YPAs in system is
increased

Figure 7.19: RRInt ’s ordered penalty values when the number of YPAs in system is
increased

The information in Table 7.21 and the graph in Figure 7.19 show that increasing the

CHAPTER 7. EXPERIMENTAL RESULTS 138

number of agents does not always give larger penalty values.

instance The best results from
Our Model

The best results from the
Reference

Number of
Essential

Constraints
Violated

Number of
Desirable

Constraints
Violated

Number of
Essential

Cnstraints
Violated

Number of
Desirable

Constraints
Violated

Comp04 0 140 0 18
Comp11 0 7 0 0
Comp13 0 163 0 32
Comp15 1 206 0 38
Comp18 0 182 0 34

Table 7.22: Comparing the best of ours with the reference results

H9) The proposed principles generally produce smaller penalty values when compared
with the ITC-2007 reference results.
In order to test hypothesis H9, we compare the smallest penalty results of each instance
that we have got from the above experiment with the reference results which were pro-
vided by ITC-2007 in Table 6.3. The corresponding results are compared and presented
in Table 7.22.
The information in Table 7.22 indicates that hypothesis H9 is not supported. The pro-
posed principles give larger penalty values for all chosen instances when compared with
the reference results. However, if we drill down into the penalty values and classify them
according to the considered constraints, then we find that the vast majority of penalty
values are caused by isolated-lecture violations as shown in Table 7.23. If considered in
terms of achievements, the percentage of achievements for each constraint is presented in
Table 7.24. For clarification,

1) In order to identify how well our model is able to achieve each constraint, this
information is useful for improving the weaker parts of the model.

2) As the random samples have different numbers of curricula, courses, lectures, stu-
dents, rooms and so on, we need to compare the success of constraints between samples;
so the percentage of achievements are needed to calculate for the purpose of comparing.

CHAPTER 7. EXPERIMENTAL RESULTS 139

instance principle Essential
Constraints

Desirable
Constraints

Lectures Conflicts Availability Room

Occupancy

Room

Capacity

MinWork

Days

Isolated

Lectures

Comp04 RRInt 0 0 0 0 0 10 130
Comp11 FIFO

Seq/Int
0 0 0 0 0 0 7

Comp13 RR
Seq/Int

0 0 0 0 0 5 158

Comp15 FIFO
Seq/Int

1 0 0 0 0 20 186

Comp18 RR
Seq/Int

0 0 0 0 0 0 177

Table 7.23: Classified penalty values into constraints

instance principle Essential
Constraints

Desirable
Constraints

Lectures Conflicts Availability Room

Occupancy

Room

Capacity

MinWork

Days

Isolated

Lectures

Comp04 RRInt 100 100 100 100 100 99.07 76.16
Comp11 FIFO

Seq/Int
100 100 100 100 100 100 97.27

Comp13 RR
Seq/Int

100 100 100 100 100 99.57 76.13

Comp15 FIFO
Seq/Int

99.88 100 100 100 100 98.15 76.87

Comp18 RR
Seq/Int

100 100 100 100 100 100 62.89

Table 7.24: Percentage of achievements from the best results of our models

H10) The Round Robin & Interleaved principle is most likely to produce better solutions
in terms of both smallest penalty value and best degree of fairness when compared to the
other principles.
In order to test hypothesis H10, we define better solutions in the meaning of that solution
giving the smallest penalty value/the smallest standard deviation of satisfied values/the
smallest in both penalty value and standard deviation of satisfied values. From the results

CHAPTER 7. EXPERIMENTAL RESULTS 140

of above experiment, for each instance we determine type of principles which is able to
produce timetables with either smallest penalty value or smallest standard deviation
or both; and then count the number of success. The results of this investigation are
presented in Table 7.25.

Instance smallest FIFOSeq RRSeq FIFOInt RRInt

Comp04
Penalty √
STDEV √
Penalty &
STDEV

√ √

Comp11
Penalty √ √
STDEV √ √
Penalty &
STDEV

√ √

Comp13
Penalty √ √
STDEV √ √
Penalty &
STDEV

√ √

Comp15
Penalty √ √
STDEV √
Penalty &
STDEV

√ √

Comp18
Penalty √ √
STDEV √ √
Penalty &
STDEV

√ √

Frequency 5 8 5 9

Table 7.25: Frequency of achievement/fairness/achievement & fairness by models

Information in Table 7.25 indicates that hypothesis H10 is supported, as the Round Robin
& Interleaved principle is most likely to produce preferable solutions when compared to
the others. However, from the counted information, it indicates that the Round Robin &
Sequential principle also tends to give more preferable solutions than First-In-First-Out
& Sequential and First-In-First-Out & Interleaved principles.

CHAPTER 7. EXPERIMENTAL RESULTS 141

7.4 Summary

This chapter has presented the experimental research method. It reviews the research
questions and describes how a set of hypotheses has been identified. There are ten
hypotheses used for this study. Each hypothesis has been described, and the experimental
process used to address each one defined. The experimental results for each are recorded
and the conclusion of each is summarized.

Chapter 8

Discussion

The previous chapter presents a number of sets of experimental results. This chapter will
interpret and discuss the results in terms of the original research questions. It starts by
summarizing and interpreting the results of testing the hypotheses; then addresses the
research questions, clarifying the quality of results from each principle and identifying
the threats which influence the quality of results.

8.1 Analysis of the Experimental Results

The experimental results from previous chapter have demonstrated that agent-based
technology has the potential to address distributed university course timetabling problems
that not only include a set of essential constraints but also a set of desirable constraints
that correspond to real world needs. All test cases used have been taken from real world
situations.
H1) All four proposed multiagent principles are able to achieve the university course
timetabling formula and constraints which were defined for the International Timetabling
Competition 2007.

The results of testing hypothesisH1 indicate that the four different proposed principles—
FIFO&Seq, RR&Seq, FIFO&Int and RR&Int — have potential to achieve successful
results for the university course formula and constraints that were defined for the Inter-
national Timetabling Competition 2007. The agent-based system was able to schedule all
lectures in different periods with no instances of two lectures occupying the same room
at the same time. The lectures belonging to the same curriculum or taught by the same

142

CHAPTER 8. DISCUSSION 143

teacher do not conflict. Every lecture has been assigned a teacher. Every assigned room
has a capacity that is greater than or equal to the number of students in that course. The
lectures of each course have been spread across the minimum number of working days,
and the lectures under the same curriculum have been tried to avoid isolated as many as
possible.
H2) The number of successfully organized lectures have been increased after applying the
negotiation phase following the initial allocation phase of both FIFO and RR algorithms.

The results of testing hypothesis H2 demonstrate that the number of organized lec-
tures have been increased after applying the negotiation phase following the initial alloca-
tion phase of both FIFO and RR algorithms. That means that the constraint mismatched
problem could be solved by negotiation, as we expected. However, there are many fac-
tors that influence the success of negotiation, such as the resources which are held by
other YPAs, the rooms that are free at that moment, the constraints that accompany
the courses from both sides. These might cause the number of organized lectures has not
been increased after applying the negotiation phase in some instances.
H3) Different initial sequences of YPAs will produce different results.

The results of testing hypothesis H3 evidently show that any two initial sequences of
YPAs produce different results when running them on the same principle. That means
the initial ordering of access to the RA by the YPAs can have a significant effect upon
the outcomes. Some orderings of YPAs can lead to an outcome that achieves all the
essential constraints and most of the defined desirable constraints, while some orderings
are unable to meet even all the essential constraints. As all possible initial YPAs orderings
are n! when n represents numbers of YPAs in system, the set of sequences which have
been chosen randomly for the experiments are very few when compared with the total
numbers. Therefore, the initial ordering of YPAs is an external threat which can have
influence on the achievements of the system.
H4) Among the four models, the First-In-First-Out & Sequential principle will always
give the smallest penalty value when compared with the other principles.

The results of testing hypothesis H4 show that the First-In-First-Out & Sequential
model does not always give the smallest penalty value, even though it was expected that
it would provide more chances for YPAs on the top of the list to pick good resources
which meet their needs. We found some principles such as Round Robin & Sequential,
Round Robin & Interleaved and First-In-First-Out & Interleaved also give the smallest
penalty value for some instances. Moreover, the experiment results do not conclusively

CHAPTER 8. DISCUSSION 144

show that the Round-Robin & Interleaved principle is better than the other principles in
achieving the best results and will always return the smallest penalty values even if it
tends to be so. In a timetabling survey paper, Lewis (2007) observed that a comparison
between one new algorithm and the others which has been proposed for the same problem
may reveal that the new approach is not always able to perform well in some instances.
And even for the reference set, we also have not found any algorithm or technique which
always returns the smallest penalty values for all instances, as is shown in Table 6.3.
Therefore, we can conclude that we have not found any one strategy to be generally most
successful.
H5) Among the four principles, the First-In-First-Out & Interleaved principle will always
give the largest penalty value when compared with the other principles.

The results of testing hypothesis H5 show that the First-In-First-Out & Interleaved
principle does not always give the largest penalty value, even though we believe that
some YPAs, especially those located on the tail of the list, will face high penalty values
as their desired resources have been occupied by previous YPAs. However, it tends to be
so. On occasion, some principles such as First-In-First-Out & Sequential, Round Robin
& Sequential and Round Robin & Interleaved also give the largest penalty value for some
instances.
H6) Among the four principles, the Round-Robin & Interleaved principle will always
give the smallest standard deviation of satisfied values when compared with the other
principles.

The results of testing hypothesis H6 indicate that the Round-Robin & Interleaved
principle does not always give the smallest standard deviation of satisfied values, even
though it was expected that it would provide more chances to reach the desired resources
equally. However, Round Robin & Sequential also seems to give the smallest standard
deviation of satisfied values for some instances. They both tend to be more fair than the
First-In-First-Out & Sequential and First-In-First-Out & Interleaved principles. The
standard deviation graphs from Figures 7.3, 7.9 and 7.15 obviously show that Round-
Robin & Interleaved and Round-Robin & Sequential principles generally lead to more
fair resource allocation among YPAs in the system than First-In-First-Out & Sequential
and First-In-First-Out & Interleaved, whereas the standard deviation values of instances
Comp11 and Comp15 show that all four principles give nearly the same fair resource
allocation among YPAs, as shown in Figures 7.6 and 7.12.
H7) Among the four principles, the First-In-First-Out & Sequential principle will always

CHAPTER 8. DISCUSSION 145

give the largest standard deviation of satisfied values when compared with the other
principles.

The results of testing hypothesis H7 indicated that the First-In-First-Out & Sequen-
tial principle does not always give the largest standard deviation of satisfied values, even
though we expected that First-In-First-Out & Sequential would give a big difference
between satisfied values among YPAs in system. However, both First-In-First-Out &
Sequential and First-In-First-Out & Interleaved seem to give unfair allocations among
YPAs, whereas Round Robin & Sequential and Round Robin & Interleaved principles also
give the largest standard deviation value in a few instances.

Each YPA determines its satisfied value using information about the number of stu-
dents in each class and the capacities of rooms which had been defined in each scenario;
therefore, such values can form an internal threat as they directly influence the quality
of the results, especially when these are few students on courses, and mostly big rooms
are provided in the scenario.
H8) Increasing the number of agents (curricula) gives larger penalty values. (An agent
takes a responsibility to organize a set of courses in a curriculum.)

The results of testing hypothesis H8 show that increasing the number of agents does
not always give larger penalty values, even it tends to be so. From the plotted graphs in
Figures 7.16, 7.17, 7.18 and 7.19, we found that Round-Robin & Sequential and Round-
Robin & Interleaved seem to be able to achieve the constraints better than the First-
In-First-Out & Sequential principle is able to achieve under the same number of YPAs,
while First-In-First-Out & Interleaved principle tends to give high penalty values even
when the number of YPAs in the system is not many.
H9) The proposed principles generally produce smaller penalty values when compared
with the reference results.

The results of testing hypothesis H9 indicate that our proposed principles do not gen-
erally produce smaller penalty values when compared with the reference results. However,
our algorithm is able to solve the university course timetabling problem as well as other
techniques have done. Currently, the proposed algorithm can achieve all of the essential
constraints and most of the needs of the desirable constraints except for the isolated-
lecture constraint, for which our principles still return quite high penalty values when
compared with the other constraints, as shown in Table 7.23. If considered in terms of
the percentage of success, the isolated lectures have been avoided for more than 75% on
average, while the minimum working days requirement also has been achieved for more

CHAPTER 8. DISCUSSION 146

than 98% and the other constraints have already been one hundred percent achieved.
H10) The Round Robin & Interleaved principle is most likely to produce better solutions
in terms of both smallest penalty value and best degree of fairness when comparing to
the other principles.

The results of testing hypothesis H10 confirm that the Round-Robin & Interleaved
and Round-Robin & Sequential principles tend to produce better solutions when com-
pared with the other principles, in terms of both the lowest penalty value and also best
degree of fairness under the set of instances that we have randomly chosen for this exper-
iment. Nevertheless, some instances such as Comp11 and Comp15 have demonstrated
that successful results can also be produced by the First-In-First-Out Sequential and
First-In-First-Out Interleaved principles. So, we need to do more intensive analysis into
the set of instances in order to find out what are the factors or characteristics of the
instances which produce different results when applying different principles.

8.2 Addressing the Research Questions

In summary, the results of testing the hypotheses in Chapter 7 show that

• Agent-based technology has the ability to allocate university resources so as to
satisfy the essential constraints for serving the teaching activities and to address
those desirable constraints that correspond to real world needs, according to the
formula which is defined from the International Timetabling Competition 2007.

• Each agent gets a fair chance to acquire the resources that it needs when a Round-
Robin algorithm has been applied over the controlled loop of the RA. These results
are derived by considering the standard deviation of the satisfied values. The
standard deviation values which are produced from using Round-Robin are less than
the standard deviation values which are produced from First-In-First-Out. That
means the variation in the average of satisfied values among YPAs in systems that
applied Round-Robin is less than the difference of averages of satisfied values among
YPAs which applied First-In-First-Out. Therefore, after applying the Round-Robin
algorithm over the RA controlled loop gives each agent more chance to satisfy its
own resource needs.

• The different qualities of results that are products of First-In-First-Out & Sequential
(FIFOSeq), First-In-First-Out & Interleaved (FIFOInt), Round-Robin & Sequential

CHAPTER 8. DISCUSSION 147

(RRSeq) and Round-Robin & Interleaved (RRInt) principles have been explored by
comparing the timetabling results in terms of

– Constraint achievements: so far we found that every principle has the po-
tential to sort out this university course timetabling problem and meets the
needs of the constraints. From the hypotheses tested, we found that preferable
solutions (least penalty & least standard deviation) for some instances are pro-
duced by the Round-Robin & Sequential (RRSeq) and Round-Robin & Inter-
leaved (RRInt) principles, while some are produced by the First-In-First-Out
& Sequential (FIFOSeq), First-In-First-Out & Interleaved (FIFOInt) princi-
ples. However, in terms of frequency the Round-Robin & Interleaved (RRInt)
and Round-Robin & Sequential (RRSeq) principles tend to be more successful
than First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Inter-
leaved (FIFOInt), as shown from the tests. Moreover, when the numbers of
YPAs in system is increased, the constraint achievements from every princi-
ple tend to decrease (penalty values increase). Nevertheless, the Round-Robin
& Sequential and Round-Robin & Interleaved principles seem to be able to
achieve the constraints better than the First-In-First-Out & Sequential prin-
ciple for the same number of YPAs, while First-In-First-Out & Interleaved
principle tends to give high penalty values even when the number of YPAs
in system is small. So far, we have not found any strategy which is generally
the most successful strategy, giving both the smallest penalty value and the
smallest standard deviation value for all instances. Moreover, more analysis
of the set of instances is needed in order to figure out what are the factors or
characteristics of the instances which lead to different results when applying
different principles.

– Fairness issue: the sorted standard deviation values of each sample in Figures
7.3, 7.6, 7.9, 7.12 and 7.15 show that the standard deviation values produced
by Round-Robin & Interleaved and Round-Robin & Sequential principles are
smaller than the standard deviation values of First-In-First-Out & Sequential
and First-In-First-Out & Interleaved principles. That means the differences
in the average of satisfied values among YPAs in systems which applied the
Round-Robin algorithm are less than the differences in the average of satisfied
values among YPAs which applied First-In-First-Out algorithm. By applying

CHAPTER 8. DISCUSSION 148

the Round-Robin algorithm therefore, each agent gets more chances to satify
its own resource needs.

8.3 Summary

In this chapter, we have discussed the experimental outcomes which are produced from
the work of the previous chapter. The relation between causes and effects for each
hypothesis has been stated, analysed and interpreted respectively. And then the research
question has been answered from these outcomes.

Chapter 9

Conclusion and Future Work

This final chapter presents the conclusion of the thesis, summarizes the research results,
iterates the research contributions and identifies some work and some questions which
need to be undertaken in order to improve the model and investigate its behaviour further.

9.1 Summary

This research has investigated the use of an agent-based model for solving the university
course timetabling problem by generating resource allocation solutions for all participants
in a system, considering not only a set of essential constraints for serving the teaching
activities, but also a set of desirable constraints which correspond to the real world needs,
and seeking to provide fair allocation among them. In this model, two types of agents
have been defined to work together in the roles of Year-Programme Agent and a Rooms
Agent.

• A Year-Programme Agent (YPA) has responsibility for generating the timetable for
one level of a particular programme. It organizes a set of courses which that pro-
gramme’s students have to take in one particular term. The organized results must
meet the essential constraints and reach as many as possible of the requirements of
the desirable constraints. Another crucial role of the Year-Programme Agent is to
collaborate with other YPAs to refine room allocation.

• The Rooms Agent (RA) manages the resources of rooms and books a requested
room when that room is vacant. It coordinates the YPAs to work together in order

149

CHAPTER 9. CONCLUSION AND FUTURE WORK 150

to avoid overlaps across the shared modules and takes responsibility for ordering
the access sequence of YPAs to allocate the resources as fairly as possible.

The total number of agents in the system is equal the number of YPAs, which are required
for the different degree programmes and levels, plus one RA.
The capabilities of the agents are harnessed to aid decision making, collaboration, coop-
eration and negotiation. The interactions defined for each principle imitate timetabling
activities from the real world. The design is set to mimic a human scheduler’s behaviour,
by performing the following two phases:

• Initial allocation phase: to provide an initial allocation of resources between YPAs
and the RA. As the need is to differentiate the chances to acquire the desired set
of resources in YPAs, with two types of initial allocation being defined as:

– First-In-First-Out : each YPA in turn makes a complete set of requests to the
RA.

– Round-Robin: in each round, each YPA presents one request to the RA in
turn, with the requests from the set of YPAs being re-ordered dynamically for
the next round by using the degree of satisfaction achieved in the last round.

• Negotiation phase: used to refine the allocation of rooms between YPAs

The overall steps of organizing timetables involve two distinct forms; these are:
• Sequential : start by running the initial allocation phase until this phase terminates,

and then running the negotiation phase subsequently if any subjects still remain in the
constraint-mismatch subject set.

• Interleaved : start by running the initial allocation phase and interleave this with the
negotiation phase if any YPA faces a constraint-mismatched problem when organizing
that subject.After the problem is resolved, the allocation phase will continue.
This research has investigated four different principles to implement the distributed uni-
versity course timetables. These are: First-In-First-Out & Sequential (FIFOSeq), Fist-In-
First-Out & Interleaved (FIFOInt), Round-Robin & Sequential (RRSeq) and Round-Robin
& Interleaved (RRInt). The two research questions were:

1. how to apply agent-based technology to allocate the university resources so as to
satisfy the essential constraints and address the desirable constraints?

CHAPTER 9. CONCLUSION AND FUTURE WORK 151

2. how to ensure that each agent gets a fair chance to acquire the resources that it
needs?

this study has also investigated the different qualities resulting from above four principles,
by comparing the timetabling results in terms of how well the constraints were addressed
and the degree of fairness achieved when allocating rooms to YPAs. The problem formula
and data instances of the third track of the Second International Timetabling Competition
(ITC-2007) were used as benchmarks for validating these principles.
The results indicate that agent-based technology has the potential to address university
course timetabling problems by including both the set of essential constraints and the
set of desirable constraints which correspond to real world needs. The proposed model is
able to schedule all lectures in different periods and we have not found any instances of
two lectures occupying the same room at the same time. The lectures belonging to the
same curriculum or taught by the same teacher do not conflict. Every lecture has been
assigned a teacher before scheduling. Every assigned room is greater than or equals the
number of students in that course. The lectures of each course have been spread into the
minimum number of working days, and the isolated lectures under the same curriculum
have been avoided as few as possible.
The negotiation phase is able to refine the room resources’ allocation. However, how
many times the YPAs have to try negotiation; or how well the negotiation succeed also
depends on many factors, such as the resources which held by other YPAs, the available
room resources which are free at that moment, the constraints which accompany with
the courses from both sides.
Five instances from the ITC2007 ’s instances have been randomized to be the samples for
the experiment. Each instance was run for fifteen times with different initial sequences of
YPAs through each type of proposed principles. The best results from each instance that
we have found do not obviously conclude that Round-Robin & Interleaved principle is
better than the other principles in term of achieving the best results and always returns
the least penalty values, even it tends to be so. Some best results are produced by
First-In-First-Out & Sequential, First-In-First-Out & Interleaved and Round-Robin &
Sequential principles for some instances. For the fairness issue, the sorted standard
deviation values of each instance show that the standard deviation values of Round-
Robin & Interleaved and Round-Robin & Sequential principles are less than the standard
deviation values of First-In-First-Out & Sequential and First-In-First-Out & Interleaved.
That means the different of average of satisfied values among YPAs in system which

CHAPTER 9. CONCLUSION AND FUTURE WORK 152

applied the Round-Robin algorithm over the controlled loop of RA is less than the different
of average of satisfied values among YPAs which applied First-In-First-Out algorithm.
Therefore, by appling the Round-Robin algorithm, each agent gets more chances to satisfy
its needs. Moreover, the increasing numbers of YPAs in system lead to a decrease in the
effectiveness of constraint achievement in every principle. Round-Robin & Sequential and
Round-Robin & Interleaved seem to be able to achieve the constraints better than the
First-In-First-Out & Sequential principle for the same number of YPAs, while the First-
In-First-Out & Interleaved principle tends to be less effective in solving the problem,
even if the number of YPAs in the system is few.
Although the penalty values of the best results from our proposed principles are higher
than the most successful reference results, our model is able to solve the university course
timetabling problem. The proposed model can achieve all essential constraints and most
of the needs of desirable constraints except for the isolated-lecture constraint, for which
our model still produced quite high penalty values when comparing with the other con-
straints. If we consider this in term of the percentage of successes, the isolated lectures
have been avoided for more than 75% of total lectures on average, while the minimum
working days requirement also has been achieved for more than 98% and the other con-
straints have been one hundred percent achieved.
Importantly, there are two threats that could affect the quality of the result which is
produced by the proposed model:

• External threats are results from randomly initial ordered YPAs.

• Internal threats are results from the defined information in the representative sce-
nario.

9.2 Novel Contributions

While software agents have been previously proposed as a means of solving constraint-
satisfaction problems such as timetabling, the major contribution of this research has been
to investigate how an agent model can be most effectively organized for this task, and
also to compare its effectiveness with both each other principles and other approaches.
We have investigated four principles that provide different ways of organizing the timetabling
processes in the real world, with each participant making its decision influenced by its
own needs as evident from the circumstances it meets at a given moment. Negotiation

CHAPTER 9. CONCLUSION AND FUTURE WORK 153

and collaboration are also taken into account in protocols designed for solving conflicts
and collaborating among the participants in order to reach the best solution. The re-
sults should help narrow the gap between theory and practice. When the timetable is
being organized, the agent strategy is based on the principle of matching a course with
the most preferred timeslots and allocation to the best-fit rooms whenever the agent
gets the opportunity to organize its subjects. This design structure therefore supports a
set of complicated constraints. The overlap problem over shared subjects has also been
considered while each subject is being organized; therefore, a procedure of inter-agent
negotiation to solve related conflicts should be unnecessary.
A novel feature of the model is that it seeks to allocate rooms fairly by applying a Round-
Robin algorithm in the automated timetabling mechanism in order to ensure that each
agent gets an equal chance to access the resources. Hence it has explored a new model
for managing university course timetabling, by considering not only constraints but also
the issue of fairness of allocation when the timetable is implemented.

9.3 Future Work

Further work is needed on these principles, and some questions need to be explored in
order to improve the use of agents for university course timetabling research field. We
suggest investigations of the following issues are needed.

1. The experimental results show that as the penalty value of the isolated-lecture
constraint used in our principles is evidently high, that means the algorithms for
avoiding isolated date-time slots needs to be improved.

2. There is a need to do more intensive analysis into the differences in output across the
set of instances, in order to find out which factors or characteristics of the instances
cause these differences. This should aid with matching principles to particular
timetable characteristics.

3. To add more real world constraints to the model. One idea is to organize desirable
constraints by applying an ordinal scale (must, should, could, would like) seems
to increase more flexibility and avoid the clash over the shared courses that means
the students are able to take more classes. The preferable date-time slots from the
need of lecturers and the shortest pathways (distance between any two consecutive
lectures) within the university could also be extended and implemented in the

CHAPTER 9. CONCLUSION AND FUTURE WORK 154

model. The more constraints the model can achieve, the much closer it comes to
providing a response to the needs from the real world.

4. Universities in the real world always face problems when there are increasing/decreasing
numbers of students in courses, or with situations where some courses need to be
cancelled after the timetable for those courses have been organized. Using an agents
model, such adjustments might be achieved by focusing on the appropriate YPAs
when re-running the model.

Bibliography

Aarts E H L and Korst J 1989 Simulated Annealing and Boltzmann Machines John Wiley
& Sons.

Abdennadher S and Marte M 2000 University Course Timetabling Using Constraint Han-
dling Rules, Applied Artificial Intelligence 14, 311–326.

Aknine S, Pinson S and Shakun M F 2004 An Extended Multi-Agent Negotiation Protocol,
Autonomous Agents and Multi-Agent Systems 8, 5–45.

Al-Maqtari S, Abdulrab H and Babkin E 2009 in ‘A new model for solution of complex
distributed constrained problems’ IEEE/ACS International Conference on Computer
Systems and Applications Rabat, Morocco.

Al-Maqtari S, Abdulrab H and Nosary A 2006 Emergent Properties in Natural and
Artificial Dynamical Systems, Understanding Complex Systems Springer Berlin / Hei-
delberg chapter Constraint Programming and Multi-Agent System Mixing Approach
for Agricultural Decision Support System.

Al-Yakoob S M and Sherali H D 2005 Mathematical programming models and algorithms
for a class–faculty assignment problem, European Journal of Operational Research
173, 488–507.

Apt K R 2003 Principles of Constraint Programming Cambridge University Press.

Arntzen H and Lokketangen A 2003 in ‘A tabu search heuristic for a university
timetabling problem’ the 5th Metaheuristics International Conference Kyoto Japan.

Bellifemine F L, Caire G and Greenwood D 2007 Developing Multi-agent Systems with
JADE John Wilely & Sons.

155

BIBLIOGRAPHY 156

Berwick B 2008 ‘Solving CSPs’. Date accessed:April 13,2010.
URL: http://web.mit.edu/6.034/wwwbob/constraint.pdf

Binmore K 1991 Fun and Games: A Text on Game Theory D.C. Heath.

Bordini R H, Hubner J F and Wooldridge M 2007 Programming multi-agent systems in
AgentSpeak using Jason John Wiley and Sons Ltd.

Boyd S and Mattingley J 2007 Branch and Bound Methods Technical report Stanford
University.

Burke E, de Werra D, de Lausanne and Kingston J 2004 Applications to timetabling
Chapman Hall/CRC Press.

Burke E, Elliman D and Weare R 1994 in ‘A Genetic Algorithm Based University
Timetabling System’ the 2nd East-West International Conference on Computer Tech-
nologies in Education Crimea Ukraine.

Burke E, Jackson K, Kingston J and Weare R 1997 Automated University Timetabling:
The State of the Art, The Computer Journal 40, 565–571.

Burke E K and Petrovic S 2002 Recent Research Directions in Automated Timetabling,
European Journal of Operational Research 140, 266–280.

Busetta P, Ronnquist R, Hodgson A and Lucas A 1999 ‘Jack Intelligent Agents -
Components for Intelligent Agents in Java’. Date Accessed:Oct 2011.
URL: http://www.agentlink.org/newsletter/2/newsletter2.pdf

Carter M 2000 in E Burke and W Erben, eds, ‘A Comprehensive Course Timetabling
and Student Scheduling System at the University of Waterloo’ The 3rd International
Conference of Practice and Theory of Automated Timetabling Springer.

Carter M W and Laporte G 1998 Vol. 1408 of Practice and Theory of Automated
Timetabling VI, Lecture Notes in Computer Science Springer chapter Recent Develop-
ments in Practical Course Timetabling, pp. 9–19.

Causmaecker P D, Demeester P and Berghe G V 2006 in ‘Evaluation of the University
Course Timetabling Problem with the Linear Numberings Method’ The 25th Workshop
of the UK PLANNING AND SCHEDULING Nottingham, UK.

BIBLIOGRAPHY 157

Causmaecker P D, Demeester P, Lu Y and Berghe G V 2002 in ‘Agent Technology for
Timetabling’ the 4th International Conference on Practice and Theory of Automated
Timetabling.

Causmaecker P D, Ouelhadj D and Berghe G V 2003 in ‘Agents in Timetabling Problems’
The 1st Multidisciplinary International Conference on Scheduling pp. 67–71.

Cernuzzi L, Juan T, Sterling L and Zambonelli F 2004 Methodologies and Software
Engineering for Agent Systems chapter The Gaia Methodology Basic Concepts and
Extensions, pp. 69–88.

Chevaleyre Y, Dunne P E, Lang U E J, Lemaitre M, Maudet N, Padget J, Phelps S,
Aguilar J A R and Sousa P 2006 Multiagent Resource Allocation, Informatica 30, 3–
31.

Clausen J 1999 Branch and Bound Algorithms - by Principles and Examples Technical
report Department of Computer Science, University of Copenhagen Universitetsparken
1, DK2100 Copenhagen, Denmark.

Cowling P I, Ouelhadj D and Petrovic S 2003 A multi-agent architecture for dynamic
scheduling of steel hot rolling, Journal of Intelligent Manufacturing 14, 457–470.

Dastani M 2008 2APL A Practical Agent Programming Language, International Journal
of Autonomous Agents and Multi-Agent Systems 16(3), 214–248.

Davis L 1991 Handbook of genetic algorithms Van Nostrand Reinhold.

Elmohamed M S and Fox G 1997 in ‘A Comparison of Annealing Techniques for Aca-
demic Course Scheduling’ the Practice and Theory of Automated Timetabling Toronto
Canada.

Endriss U, Maudet N, Sadri F and Toni F 2003 in ‘On Optimal Outcomes of Negotiations
over Resources’ Autonomous Agents and Multiagent Systems ACM Press.

Ernst A, Singh G and Weiskircher R 2008 in ‘Scheduling Meetings at Trade Events with
Complex Preferences’ the 18th International Conference on Automated Planning and
Scheduling Sydney Australia.

BIBLIOGRAPHY 158

Even S, Itai A and Shamir A 1975 in ‘On the complexity of timetable and multi-
commodity flow problems’ the 16th Annual Symposium on Foundations of Computer
Science IEEE Computer Society.

Fudenberg D and Tirole J 1991 Game Theory MIT Press.

Galitsky B 1999 in ‘Agents with adjustable autonomy for scheduling in the competitive
environment’ Agents with Adjustable Autonomy AAAI Spring Symposium Technical
Report pp. 41–49.

Garey M R and Johnson D S 1979 Computers and Intractability- A guide to NP-
completeness. W.H. Freeman and Company.

Gaspero L D, McCollum B and Schaerf A 2007 The Second International Timetabling
Competition (ITC-2007):Curriculum-Based Course Timetabling (Track 3) Technical
report.

Gaspero L D, Mizzaro S and Schaerf A 2004 in ‘A MultiAgent Architecture for Distributed
Course Timetabling’ The 5th International Conference on the Practice and Theory of
Automated Timetabling Pittsburg, Pennsylvania USA pp. 471–474.

Gaspero L D and Schaerf A 2000 in L. D Gaspero and A Schaerf, eds, ‘Tabu Search Tech-
niques for Examination Timetabling’ the Third International Conference on Practice
and Theory of Automated Timetabling III Germany.

Georgeff M P and Lansky A L 1987 in ‘Reactive Reasoning and Planning’ the Sixth
National Conference on Artificial Intelligence MIT Press.

Gibbons R 1958 A primer in game theory Prentice Hall.

Golfarelli M, Maio D and Rizzi S 1997 A Task–Swap Negotiation Protocol Based on the
Contract Net Paradigm Technical report University of Bologna.

Hertz A 1992 Finding a feasible course schedule using Tabu search, Discrete Applied
Mathematics and Combinatorial Operations Research and Computer Science 35, 255–
270.

Hertz A, Taillard E and de Werra D 1993 ‘A Tutorial On Tabu Search’. 661–673.

BIBLIOGRAPHY 159

Huber M J 2001 ‘JAM Agents in a Nutshell’. Date Accessed: Oct 2011.
URL: www.marcush.net/IRS/Jam/Jam-man-01Nov01.doc

Jennings N 2000 On agent-base software engineering, Artificial Intelligence 117, 277–296.

Kaplansky E and Meisels A 2004 in ‘Negotiation among scheduling agents for distributed
timetabling’ the 5th International Conference on the Practice and Theory of Auto-
mated Timetabling.

Kinny D 1993 The distributed multi-agent reasoning system architecture and language
specification Technical report Australian Artificial Intelligence Institute Melbourne,
Australia.

Kirkpatrick S, Gelatt C D, Jr and Vecchi M P 1983 Optimization by simulated annealing,
Science 220, 671–680.

Lewicki R, Barry B and Saunders D M 2010 Negotiation McGraw-Hill Higher Education.
ISBN: 0073381209.

Lewis R 2007 A Survey of Metaheuristic–based Techniques for University Timetabling
Problems, OR Spectrum vol 30 (1), 167–190.

Liu J, Jing H and Tang Y Y 2002 Multi-agent oriented constriant satisfaction,Artificial
Intelligence 136, 101–144.

Matuszek 2009 ‘Backtracking’. April 12th, 2010.
URL: www.cis.upenn.edu/ matuszek/cit594-2009/Lectures/35-backtracking.ppt

McCollum B 2007 in ‘A Perspective on Bridging the Gap between Research and Practice
in University Timetabling, Practice and Theory of Automated Timetabling VI, Lecture
Notes in Computer Science’ Vol. 3867 Springer pp. 3–23.

Meisels A, Kuflik T and Gudes E 1991 Limited–resource scheduling by generalized rule–
based system, Knowledge–Based System 4, 215–224.

Michalewicz Z 1994 Genetic Algorithms + Data Structure = Evoluation Programs second
extended edition edn Springer-Verlag.

M.Nandhini and S.Kanmani 2009 in ‘Implementation of class timetabling using multi
agents’ International Conference on Intelligent Agent & Multi-Agent Systems Chennai.

BIBLIOGRAPHY 160

Montana D, Herrero J, Vidaver G and Bidwell G 2000 A multiagent society for military
transportation scheduling, Journal of Scheduling 3, 225–246.

Murray K and Rudova H 2007 in ‘Modeling and solution of a complex university course
timetabling problem’ the 6th international conference on Practice and theory of auto-
mated timetabling VI pp. 189–210.

Murthy S, Akkiraju R, Rachlin J andWu F 1997 in ‘Agent-Based Cooperative Scheduling’
AAAI Workshop on Constraints and Agents pp. 112–117.

Norberciak M 2006 in ‘Universal Method for Solving Timetabling Problems Based on
Evolutionary Approach’ the International Multiconference on Computer Science and
Information Technology Wisla, Poland.

Oates B J 2006 Researching Information Systems and Computing SAGE Publications.

Oon W C and Lim A 2002 in ‘Multi-Player Game Approach to Solving Multi-Entity
Problems’ Eighteenth national conference on Artificial intelligence Edmonton, Alberta,
Canada pp. 961–962.

Oprea M 2007 MAS—UP–UCT: A Multi-Agent System for University Course Timetable
Scheduling, International Journal of Computers, Communications&Control 2, 94–102.

Ozcan E and Alkan A 2002 in ‘Timetabling using a Steady State Genetic Algorithm’ the
4th International Conference on the Practice and Theory of Automated Timetabling
Gent, Belgium.

Paechter B, Rankin R, Cumming A and Fogarty T C 1998 in ‘Timetabling the Classes of
an Entire University with an Evolutionary Algorithm’ the 5th International Conference
on Parallel Problem Solving from Nature Amsterdam, Netherlands.

Parkes D C and Ungar L H 2001 in ‘An Auction-Based Method for Decentralized Train
Scheduling’ the 5th International Conference on Autonomous Agents pp. 43–50.

Pnueli A 1986 in ‘Specification and Development of Reactive Systems’ Information Pro-
cessing Amsterdam Holland pp. 845–858.

Rao A S 1996 in ‘AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language’ Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-96).

BIBLIOGRAPHY 161

Rao A S and Georgeff M P 1991 in ‘Modeling rational agents within a BDI-architecture’
the Second International Conference on Principles of Knowledge Representation and
Reasoning Morgan Kaufmann Publishers San Mateo, Ca.

Rich D C 1995 in ‘A smart genetic algorithm for university timetabling’ Practice and
Theory of Automated Timetabling Edinburgh Scotland.

Rosenschein J S and Zlotkin G 1994 Rules of Encounter Designing Conventions for Auto-
mated Negotiation among Computers The MIT Press Cambridge, Massachusetts Lon-
don, England.

Rudova H and Matyska L 2000 in ‘Constraint-based Timetabling with Student Schedules’
the third International Conference on Practice and Theory of Automated Timetabling
Constance Germany.

Sandholm T 1993 in ‘An Implementation of the Contract Net Protocol Based on Marginal
Cost Calculations’ The 11th National Conference on Artificial Intelligence AAAI Press.

Sandholm T 1998 in ‘Contract types for satisfacing task allocation: I theoretical results,
AAAI Spring Symposium: Satisficing Models’.

Sandholm T W 1999 Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence The MIT Press chapter Distributed Rational Decision Making.

Schaerf A 1999 A Survey of Automated Timetabling,Artificial Intelligence Review 13, 87–
127.

Selim S M 1988 Split Vertices in Vertex Colouring and Their Application in Developing
a Solution to the Faculty Timetable Problem, The Computer Journal 31, 76–82.

Sen S 1997 Developing an Automated Distributed Meeting Scheduler, Intelligent Systems
and Their Applications 12.

Sheau H, Safaai-Deris and Hashim S Z M 2009 in ‘Investigating Constraint-Based Rea-
soning for University Timetabling Problem’ Vol. 1 Proceedings of the International
MultiConference of Engineers and Computer Scientists Hong Kong.

Sierra C, Faratin P and Jennings N R 1997 in ‘A Service-Oriented Negotiation Model
between Autonomous Agents’ Vol. 1237 the eighth European Workshop on Modeling
Autonomous Agents in a Multi-Agent World Springer pp. 17–35.

BIBLIOGRAPHY 162

Smith K A, a Abramson D and Duke D 2003 Hopfield neural networks for timetabling:
formulations, methods, and comparative results, Computers and Industrial Engineering
44, 283–305.

Smith R G 1980 The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver, IEEE Trans. Computers 29, 1104–1113.

Socha K, Knowles J and Sampels M 2002 in ‘A MAX–MIN Ant System for the University
Course Timetabling Problem’ the third International Workshop on Ant Algorithms
Brussels Belgium.

Sousa P, Ramos C and Neves J 2003 The Fabricare scheduling prototype suite: Agent
interaction and knowledge base, Journal of Intelligent Manufacturing 14, 441–455.

Strnad D and Guid N 2007 A multi-agent system for university course timetabling, Ap-
plied Artificial Intelligence 21, 137–153.

Thompson J M and Dowsland K A 1998 A robust simulated annealing based examination
timetabling system, Computers & Operations Research 25, 637–648.

Torres L, Palacios O, Pacheco R and Cortes A 2006 Automated University Timetabling
Technical report Department of Computer Science University of Texas at El Paso 500
W. University, El Paso, TX 79968, USA.

van Hoeve W J and Katriel I 2006 Handbook of Constraint Programming Elsevier chapter
Global Constraints.

Vermeulen I, Bohte S, Elkhuizen S, Bakker P and Poutr H L 2008 in ‘Decentralized
Online Scheduling of Combination-Appointments in Hospitals’ the 18th International
Conference on Automated Planning and Scheduling Sydney Australia.

Weiss G 2000 Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence The MIT Press.

Werra D 1985 An introduction to timetabling, European Journal of Operational Research
19, 151–162.

Woods D and Trenaman A 1999 in ‘Simultaneous satisfaction of hard and soft timetable
constraints for a university department using evolutionary timetabling’ Artificial In-
telligence & Cognitive Science 1999 Cork, Ireland pp. 1–7.

BIBLIOGRAPHY 163

Wooldridge M 2002 An Introduction to MultiAgent Systems John Wiley & Sons, Ltd.

Wooldridge M and Jennings N 1995 Intelligent Agents: Theory and Practice, Knowledge
Engineering Review 10(2).

Yang Y and Paranjape R 2011 A multi-agent system for course timetabling, Intelligent
Decision Technology 3, 113–131.

Yang Y, Paranjape R and Benedicenti L 2006 in ‘An agent based general solution model
for the course timetabling problem’ the fifth international joint conference on Au-
tonomous agents and multiagent systems pp. 1430–1432.

Yin R K 2009 Case Study Research Design and Methods SAGE.

