
Durham E-Theses

Depth Acquisition from Digital Images

WILLIAMS, DAVID,NICHOLAS

How to cite:

WILLIAMS, DAVID,NICHOLAS (2011) Depth Acquisition from Digital Images, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3334/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3334/
 http://etheses.dur.ac.uk/3334/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Depth Acquisition from Digital Images 

 
A Per-Pixel Approach using Images Captured at Different 

Focus Settings with a Conventional Camera 

 

 

 
David Nicholas Williams 

 

 

 

 
Thesis submitted for the degree of  

 

 
MSc by Research 

  

 
School of Engineering and Computing Sciences 

 

Durham University 

 

 
2011 

 

 

 

 

 

 

 

 

 



 2 

Abstract 
 

 

 

Introduction 
 

Depth acquisition from digital images captured with a conventional camera, by 

analysing focus/defocus cues which are related to depth via an optical model of the 

camera, is a popular approach to depth-mapping a 3D scene. The majority of methods 

analyse the neighbourhood of a point in an image to infer its depth, which has 

disadvantages. A more elegant, but more difficult, solution is to evaluate only the 

single pixel displaying a point in order to infer its depth. This thesis investigates if a 

per-pixel method can be implemented without compromising accuracy and generality 

compared to window-based methods, whilst minimising the number of input images. 

 

Method 
 

A geometric optical model of the camera was used to predict the relationship between 

focus/defocus and intensity at a pixel. Using input images with different focus 

settings, the relationship was used to identify the focal plane depth (i.e. focus setting) 

where a point is in best focus, from which the depth of the point can be resolved if 

camera parameters are known. Two metrics were implemented, one to identify the 

best focus setting for a point from the discrete input set, and one to fit a model to the 

input data to estimate the depth of perfect focus of the point on a continuous scale.  

 

Results 
 

The method gave generally accurate results for a simple synthetic test scene, with a 

relatively low number of input images compared to similar methods. When tested on a 

more complex scene, the method achieved its objectives of separating complex 

objects from the background by depth, and produced a similar resolution of a complex 

3D surface as a similar method which used significantly more input data. 

 

Conclusions 
 

The method demonstrates that it is possible to resolve depth on a per-pixel basis 

without compromising accuracy and generality, and using a similar amount of input 

data, compared to more traditional window-based methods. In practice, the presented 

method offers a convenient new option for depth-based image processing 

applications, as the depth-map is per-pixel, but the process of capturing and preparing 

images for the method is not too practically cumbersome and could be easily 

automated unlike other per-pixel methods reviewed. However, the method still suffers 

from the general limitations of the depth acquisition approach using images from a 

conventional camera, which limits its use as a general depth acquisition solution 

beyond specifically depth-based image processing applications. 
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Glossary 

 
Context-specific definitions of terms used commonly in this thesis. 

 

Depth Acquisition 

 

The algorithmic extraction of depth information about a scene from some input 

describing the scene. In this work, the input is digital images of the scene. 

 

Depth Map 

 

A two dimensional array describing the depths of scene points, with some pre-defined 

correspondence (projection) between elements and the location of the scene points 

they refer to. A depth-map is useful for describing the 3D geometry of a surface. 

 

Conventional Camera 

 

A camera system which can be readily purchased ‘off-the-shelf’, and functions as the 

vast majority of camera systems do: by focusing visible light rays through a lens onto 

a sensor. In this work it is assumed that the conventional camera has manual controls 

for (at least) focus setting, aperture setting, and exposure time, i.e. point-and-shoot 

compact cameras are not included in this definition. 

 

Geometric Optics 

 

A simple and classical model of the behaviour of visible light. Light is modelled as 

rays (vectors) which travel in absolutely straight lines, though they can be refracted 

(for example by a camera lens) to manipulate their direction. Therefore, using simple 

geometry combined with a mathematical model to describe the focusing behaviour of 

the camera lens, the propagation of light through the camera system can be predicted. 

 

Depth from Focus (DFF) 

 

The approach to depth acquisition where the level of focus of a point is quantified 

using some measure, obtained by modelling the visual features perfectly focused 

points should have. By evaluating the same point in a series of images with different 

focus levels at the point, the image which displays the point with the maximum level 

of focus is actively searched for. Assuming the camera settings used to capture the 

image are known, an optical model of the camera system can be used to relate this to 

the depth of the point. 

 

Depth from Defocus (DFD) 

 

The opposite approach to depth from focus, depth from defocus models the features of 

defocus blur in images, and then directly evaluates the blur (if any) around a point in 

an image in order to infer the magnitude of defocus. Magnitude of defocus is related 

to depth using an optical model. DFD is a more direct method of depth acquisition 

which can theoretically work with single input images. 
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Chapter 1 

 
Introduction 

 

 

1.1 Background 

 

Photography using the conventional camera has been a highly popular form of image 

capture since its inception, and with the advent of digital photography the possibilities 

and accessibility of the technology have increased tremendously. A particularly 

important feature of digital photography is the ability to process digital images with a 

computer, which has opened up a field of research in Image Processing.  

One of the main branches of Image Processing is concerned with the 

extraction of geometrical structure of the scene depicted in an image. Some of this 

structure may be directly visible in the image. Additionally, deeper geometrical 

properties which are not directly available in the image may be inferred by analysing 

the image in conjunction with some prior knowledge of, for example, the camera 

system, the scene, or properties of light. 

 One geometrical property of a scene which is not present in a raw digital 

image is depth. To the Human viewer an image may appear to depict depth as the 

relative depths of different objects in the scene seem to be differentiable, but this 

apparent depth is just an optical illusion based on cues such as perspective. In actual 

fact, an image is a 2D projection of the 3D scene it depicts (Figure 1.1.1). 

 

 
Figure 1.1.1 (a) 3D scene with x,y,z dimensions, front of camera parallel to xy plane (b) Image of the scene is a 2D 

projection, maintaining the xy dimensions and flattening the z dimension, or depth from the camera. 

 

The 2D projection amounts to a preservation of geometric proportions in the plane 

parallel to the front of the camera lens, and a flattening along the dimension of depth 

or distance away from the camera. This loss of the depth dimension is an unavoidable 

consequence of the way a camera operates, and is therefore a fixed limitation of 

digital images.  

However, if we can assume prior knowledge of the camera system used to 

capture the image, specifically the optics of the system, an interesting question arises: 

Is it possible, exploiting this prior knowledge, to reverse the effects of the projection 

and therefore infer depth information from the image? This question is the basis of an 

entire field of research, and is the basis of this work. 

The justifications for depth acquisition from images are various, but they all 

stem from a common idea: because the physical world is 3D, the ability to image real-
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world scenes in 3D is naturally advantageous. The acquisition of the depth dimension 

in an image will mean that every point in the image has coordinates in three 

dimensions. The resolution of 3D structure is a fundamental goal of Computer Vision 

in itself, but it should be emphasised that far more appropriate hardware than the 

camera exists to address this problem, for example laser scanners and radar.  

The more specialised applications which are solved uniquely by combining 

digital images with depth information are of far more interest here. The general focus 

of such applications is on the imaging itself, and the goal is to enhance images beyond 

what it is possible to capture using the conventional camera, or indeed to achieve with 

traditional 2D Image Processing. A few examples include arbitrary image re-focusing, 

image segmentation by depth, object detection and recognition by depth, depth-based 

image filtering, and depth-based edge detection. 

 

 

1.2 The Digital Camera 

 

The functionality and operation of the digital camera are at the core of this work. The 

digital camera operates in much the same way as a traditional film camera, and indeed 

the basic concept of operation has remained constant since the invention of the device. 

Figure 1.2.1 shows the arrangement of basic components of the camera. 

 

 

 
Figure 1.2.1 Illustration of the basic components and operation of the conventional digital camera. 

 

 

1.2.1 Basic Camera Operation 

 

A simple high-level overview of the operation of a digital camera is as follows: Light 

rays incident from the scene are allowed into the camera through an opening in front 

of the lens called the aperture. The light rays are focused by the lens(es) onto the 

image sensor. Normally the shutter blocks the light from reaching the sensor, but 

when the shutter release is pressed the shutter is removed for a pre-defined time 

interval (exposure time). The light collected by the image sensor during this time 

forms the image. 
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1.2.2  The Digital Image 

 

The operation of the camera described above reveals precisely what a digital image is: 

A sampling of the visible light from the scene which is focused onto the image sensor. 

Specifically, the image sensor is made up of a uniform rectangular grid of sub-

sensors, typically numbering in the millions. Each sub-sensor is capable of detecting 

the light particles (photons) which fall on it, from which it can determine the colour 

and intensity of the light. By collecting photons at each sub-sensor for the duration of 

the time interval that the shutter is up, a cumulative sample of light with a specific 

colour gained from the addition of the photons is built up by every sub-sensor. 

 The resulting digital image is therefore a rectangular array of these samples, 

where each sample is represented as a pixel. The familiar RGB colour format is 

assumed to be the norm in this work, where each pixel represents a colour as a 

combination of the three primary colour channels of Red, Green and Blue. 

 An important point to discuss in further detail here is the fact that the digital 

image is a 2D projection of the 3D scene. It is clear from the operation of the camera 

and specifically the way the digital image is captured by the sensor why this 2D 

projection occurs. The preservation of geometrical proportions in the plane parallel to 

the front of the camera is due to the image sensor also being parallel to this plane, and 

the flattening of the depth dimension due to the light being collected on this plane 

regardless of the depth of the point of origin. 

 

 

1.2.3  Camera Parameters 

 

It is important to emphasise that the components of the camera system shown in 

Figure 1.2.1 are common to all conventional digital cameras. Moreover, all cameras 

which are manually controllable, regardless of specific functionality or model 

variations, share a set of three operational parameters which control these 

components. This is a crucial point as it means that we can discuss and make 

assumptions about the camera system in an abstract and general way, without 

worrying about the specific model of camera in use. The only assumption here is that 

we are referring to a manually controllable camera system as opposed to a fixed-

parameter point-and-shoot camera, and from this point onwards that assumption is 

made. 

To follow is a discussion of the three parameters of the camera system referred 

to above. Specifically, the parameters are focus setting, aperture setting, and exposure 

time. Generally, for a constant scene and camera position, these parameters can be 

thought of as entirely controlling the appearance of the final image, and any 

photographer with experience of manually controllable cameras will be aware of this. 

The way in which these parameters control and define the optics of the camera system 

and the effects they have on the image are crucial. 

 

 Focus Setting 

The focus setting of the camera is an intuitive concept. It determines the distance of 

the focal plane of the lens, or in other words, it determines the distance from the 

camera at which a point in the scene is sharply in-focus. Theoretically speaking, all 

points on the focal plane will be in perfect focus, and a point will become increasingly 

defocused as it moves away from the focal plane in either direction. 
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 Aperture Size 

The aperture size and its effect on the image are less intuitive, but equally important. 

The aperture is an opening which allows light into the lens system. Conventionally, it 

is near-circular in shape and is made up of a series of interlocking blades which can 

slide in synchronisation to change the size or diameter of the opening (see Figure 

1.2.3.1). 

The effect of the aperture size is closely related to the focus setting; it controls 

the rate of defocus as a point moves away from the focal plane. This determines what 

is known as the depth-of-field, which is the distance either side of the focal plane at 

which scene points still appear to be in focus. Note that in reality all points away from 

the focal plane are defocused, but the defocus can be so slight as to be unnoticeable 

below a certain distance threshold, leading to the depth-of-field visual effect. 

The extremes of aperture size best demonstrate the effect of this parameter. 

Some visual examples can be seen in Figure 1.2.3.1. With very small aperture size, 

the depth-of-field is very large and all the scene points appear to be in-focus. This 

effect is demonstrated by the classic pinhole camera which produces an all-focused 

image of a scene through a tiny opening. On the other hand, as the aperture size 

increases, defocus is more noticeable as a point moves away from the focal plane. 

With a very large aperture size, points in the image may appear to be almost instantly 

defocused if they are not exactly on the focal plane. 

 

 

 
Figure 1.2.3.1 Relationship between aperture size and depth-of-field.  

The visual effect of depth of field is shown in the example images. Images taken from www.wikipedia.com 
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 Exposure Time 

The most straightforward parameter is exposure time, which is simply the time 

interval that the shutter is raised for when an image is captured, or the amount of time 

that light from the scene is allowed to reach the image sensor. Intuitively, if exposure 

time is too low it will create an under-exposed image which is too dark, and if it is too 

high it will create an over-exposed image which is too saturated. The goal when 

setting the exposure time is generally to get the average intensity to a level where 

colour balance and variance is optimal. Though this may appear trivial, it is a crucial 

consideration in an Image Processing context because the precise colour and intensity 

of individual pixels are the data being worked with. 
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Chapter 2 

 
Optics 

 

 

Having discussed the basics of digital photography, including the conventional digital 

camera and the digital images, this chapter will introduce and discuss the optics of the 

camera system. Using a digital image, the only data we have about a scene is the light 

received by the camera sensor to form the image. Therefore, in order to interpret the 

data in images it is essential to understand and develop a model of the optics of the 

camera system. 

 

 

2.1 Focus/Defocus and Depth 

 

When using a single camera, the most obvious physical cue to the depth of points in 

the scene is defocus blur. This fact is of paramount significance, and is the concept on 

which all the techniques and related research described in this work are based. 

 Defocus blur as a cue to depth is, on consideration, a rather intuitive notion. 

From common experience, the subject of an image being in sharp focus whilst other 

objects in front of or behind the subject are blurred due to defocus, should be familiar. 

Often, defocus blur is used purposefully to draw attention to particular objects in an 

image or to create visual effects. 

 As will be discussed in the sections to follow, defocus blur is much more than 

a visual cue to depth. It is a quantifiable and predicable optical phenomenon, and 

more importantly for the purposes of this work, it is a fixed function of depth from the 

camera, under certain assumptions. 

 In order to infer depth from defocus blur in an image, we must first analyse the 

optics of the camera system and, as already mentioned, develop a model which 

attempts to universally describe the function of defocus blur. After such a model has 

been developed, we have a basis for mathematically analysing the properties of the 

defocus blur and its functional relationship to depth, which can then be used to 

compute depth information directly from images. 

 

 

2.2 The Camera Lens 

 

The module of the camera system of most importance when developing a model of its 

optics is the camera lens. A typical camera lens is displayed in Figure 2.2.1. 
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Figure 2.2.1 A typical camera lens. Image taken from www.wikipedia.com 

 

From the image of a typical camera lens in Figure 2.2.1, it is immediately obvious 

that the lens module is not optically trivial. The aperture and the focus settings are 

both included in the module, and typically the module contains a series of several 

lenses, although we will refer to it as a lens (singular) for convenience. 

  There is no way of predicting how different camera lenses will differ in their 

number and type of lenses, construction quality and range of aperture and focus 

settings, and there is indeed a huge variety of variation across these factors in 

different camera/lens models. However, though these variables exist, the actual 

function of the lens is known: to focus light from the scene onto the image sensor. 

The lens can therefore be abstracted as an optical ‘black box’ which, given a certain 

input (light from the scene) and a known set of parameters (focus and aperture 

settings) will always produce the same output (light focused onto the image sensor in 

a certain manner).  

Since this functionality is universal across all lenses, and we know that the 

parameters will achieve certain pre-defined optical effects, we can assume that any 

lens will have a uniform set of optical properties. We can therefore include these 

properties in our optical model of the camera system without worrying about the 

specific lens being used.  

 

 

2.3 The Thin Lens Model 

 

The Thin Lens Model is a well-known classical optical model for lenses. It is a simple 

model based on first-order geometric optics. As will be discussed in detail in further 

sections, the Thin Lens Model will form the basis for both the optical model of the 

camera system and the model of defocus blur used in this work. The trade-offs 

involved in this choice of model will also be discussed in more depth, but as will 

become clear, a primary advantage of the Thin Lens Model is its inherent simplicity, 

whilst still being able to model all the optical effects required by this work. 

 It should be emphasised here that the main interest is in the functional 

predictions of the model, as opposed to the optics themselves. Though a clearly 

defined model is essential, a thorough examination of the Physics and Optics involved 

is outside the scope of this work, and therefore concepts are discussed with the 

assumption that the reader has a foundation in the basic terms and concepts of Optics. 
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2.3.1  What is the Thin Lens Model? 

 

The Thin Lens Model is used to describe the first-order geometric optics of ‘thin’ 

lenses. Assuming that the lens in symmetrical around a centre C, has spherical edges, 

and has an optical axis which runs through C and is perpendicular to both edges, the 

definition of ‘thin’ is that the thickness of the lens (measured between the surfaces 

along the axis) is negligible in proportion to the focal length of the lens (the distance 

behind the lens along the axis at which rays from an infinitely distant point converge). 

This definition is clarified in Figure 2.3.1.1. 

 An important note here is that Figure 2.3.1.1 depicts a converging lens, which 

projects a real image onto a screen. The opposite type of lens is a diverging lens, 

which produces a virtual image which cannot be projected onto a screen but can be 

viewed by an observer. In the camera system, where a real image is projected onto an 

image sensor, we are clearly interested in the properties of converging lenses. 

Therefore, the discussion from here on will focus on the converging thin lens, and 

unless otherwise stated this is what the term lens will refer to. 

 

 

 
Figure 2.3.1.1 A thin lens with thickness t and focal length f. The lens is defined as thin if t << f.  

Focal length f is defined as the distance behind the lens that incident light rays from infinity converge. 

 

 

In the Thin Lens Model, the first-order approximation of geometric optics is 

employed. This assumes that the angle between a ray of light and the optical axis is 

negligible, i.e. below around 10 degrees, an assumption referred to as the paraxial 

approximation. Under the paraxial approximation any optical effects due to the 

thickness of the lens, and the distance light rays travel through the lens perpendicular 

to the optical axis, can be overlooked. The most relevant consequence of this 

approximation is the widely-known thin-lens formula, which describes the focusing 

behaviour of the lens. 

 

 

2.3.2  The Thin Lens Formula 

 

21

111

ddf
     (Eqn 2.3.2.1) 



 19 

 
Figure 2.3.2.2 Diagrammatical representation of the Thin Lens Formula (ray diagram not to scale). 

 

 

The Thin Lens Formula gives the relationship between the distance of a point p in 

front of the lens, d1, and the distance behind the lens where light rays from p are 

brought into focus by the lens, d2, where both distances are measured along the optical 

axis. In simpler terms, it describes how the focusing of a point varies with its depth in 

the scene. By examining the formula, some important properties of this relationship 

under the Thin Lens Model are revealed.  

 Firstly, as is implied by the Thin Lens Formula, and can be explained as a 

consequence of the paraxial approximation, the distances d1 and d2 ( and f ) are taken 

as parallel to the optical axis. This means that d1 and d2 actually specify planes which 

are perpendicular to the optical axis and parallel to the ‘face’ of the lens. This will be 

a fact central to the discussions to follow.   

 Secondly, we can make some statements about the variation of d2 as d1, the 

independent variable, varies. It is immediately clear that as d1 increases (a point 

moves away from the lens) d2 also increases. However, since f is a constant, the rate 

of change of d2 as d1 increases must slow exponentially, until the limit of d2 = f is 

reached when d1 is infinite. This upper limit of d2 is the situation shown in Figure 

2.3.1.1, and indeed is the very definition of f. The lower limit of d2 is set by the 

optical limits of the lens, however for simplicity we can assume here that a point will 

never be close enough to the lens (d1 will never be low enough) for the lower limit of 

d2 to be reached. 

 

 

2.4   Optical Model of the Camera System 

 

Having discussed the general properties of the Thin Lens Model, the concepts must be 

used to provide a model for the optics of the camera system, and specifically, to 

explain the behaviour of defocus blur and its relationship to depth. The optical model 

of the Camera System described in this section is one commonly used in the literature, 

and is the model used in this work. 
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2.4.1   Assumptions about the Camera Lens  

 

Before applying concepts from the Thin Lens Model to the camera system, some 

important assumptions and simplifications have to be made regarding the camera lens. 

The lens module in a professional camera is typically a series of multiple individual 

lenses (see Chapter 1). This presents an apparent difficulty in applying the Thin Lens 

Model, which models the optics of a single lens. However, by making two strict 

assumptions about the lens, it is possible to sidestep this issue and treat the lens 

module as a single, converging thin lens.  

Firstly, we must assume that despite being made up of (potentially) a mixture 

of converging and diverging lenses, the overall, functional behaviour of the lens 

module is converging, i.e. the lens module focuses incident light rays as a real image 

that can be projected onto a sensor.  

Secondly, we must assume that the parameters of the lens module are fixed at 

the time of image capture, so that the functional optical properties of the lens module 

are constant. 

If both of these assumptions hold then for a single image capture we can treat 

the lens module, functionally, as an abstract single converging thin lens with a fixed 

focal length. 

 

 

2.4.2   Application of the Thin Lens Model to the Camera System 

 

With the camera lens simplification assumed, modelling the camera system using the 

Thin Lens Model becomes straightforward. The basic configuration is shown in 

Figure 2.4.2.1. 

 

 

 
Figure 2.4.2.1 Components of the optical model of the camera system (not to scale). 

 

 

Figure 2.4.2.1 displays a 2D representation of the camera system which will be used 

to diagrammatically illustrate the optical model of the camera system. Though only 

displayed in 2D, visualising the situation in 3D is achieved by simply assuming that 

the system is symmetrical (apart from the rectangular image sensor) around the 

optical axis, which of course runs through its centre. 
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For clarification, the individual components displayed in Figure 2.4.2.1 are as 

follows: 

 

 Scene Point p 

The point p is a point in the scene in front of the camera. Scene point p represents a 

point in the scene of infinitesimal size, a concept useful for describing the optical 

properties of the system without worrying about resolution. 

 

 Aperture 

The aperture in this model is simply a circular opening in front of the lens, with a 

given diameter. The only optical effect of the aperture under this model is to block 

any incident light rays which do not travel freely through the opening, therefore we 

ignore in this model non-geometric optical effects such as light wave diffraction at the 

aperture edges. 

 

 Lens 

The camera lens, as explained in the previous paragraphs, is modelled as a single, 

converging, thin lens with a set focal length (at capture time). The lens has an optical 

axis which runs through its centre and indeed through the centre of the entire camera 

system. 

 

 Image Sensor 

The image sensor is modelled as being directly behind the lens, at a fixed distance less 

than or equal to the focal length of the lens (for any given parameters). Importantly, 

the image sensor lies on a plane which is perpendicular to the optical axis, and the 

sensor intersects with the optical axis at its centre. 

 

 

2.5   Defocus Blur 

 

Using the defined model of the camera system, both the optical cause and the visual 

effect of defocus blur can be explained in terms of the depth of points in the scene, 

and more importantly the relationship between these factors can be quantified. This 

provides the basis for inferring the depth of a point in an image, directly from the 

defocus blur (or lack of defocus blur) which can be seen visually in the image at that 

point. 

 

 

2.5.1   Visual Effect of Defocus Blur in Images 

 

Before the cause of defocus blur is examined, it will be useful to examine the visual 

effect of the phenomenon in images. The effect is commonplace in everyday 

photography, and amounts to some spatial area around the blurred point appearing 

softer, and of lower colour variance. The intuitive concept of a spatial area of some 

size around the point being related to the blur is crucial.  

Perhaps the clearest way to examine the visual effect of defocus blur of a 

single point is by looking at a single point light source against a black background.  
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Figure 2.5.1.1 Increasing defocus blur of a point of light (real images from [28]). 

 

 

Figure 2.5.1.1 shows actual images of a point of light at different levels of defocus. 

The leftmost image is the original point, and as the level of defocus increases, the 

magnitude of the blur around the point increases. From these images some important 

facts about the defocus blur of a point become clear. 

 

 The actual point of light in the scene does not grow in size, but the region of blur 

around it does grow in size as the point becomes increasingly defocused. The 

spatial location (in the 2D image plane) of the original point in the scene is 

therefore at the centre of the blur region, and this location does not change if the 

camera position is constant. 

  

 The defocus blur region appears to maintain a constant ‘shape’ which is scaled up 

as the magnitude of the blur increases. In fact, this shape or form of the blur is 

defined primarily by the aperture shape, and can be assumed practically constant 

as long as the aperture shape and size are constant. Here we see a pentagonal blur 

form indicating a conventional aperture was used to capture these images (see 

Figure 1.2.3.1). A crucial point to introduce here is that this blur form can be 

modelled mathematically as a point spread function. 

 

 

2.5.2   Cause of Defocus Blur in the Camera System 

 

With an understanding of the visual effect of defocus blur in images, the next logical 

step is to establish the cause of the effect using the optical model of the camera 

system. The ultimate goal in doing this is to reveal the relationship between the effect 

of defocus blur around a point in the image, the cause of this defocus blur in the 

camera system, and ultimately the depth of the point in the scene. 

 When examining the optics of defocus blur, the obvious starting point is to 

look at the special case of a point in perfect focus, i.e. when the point has no defocus 

blur in the image. This special case is shown in Figure 2.5.2.1.  
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Figure 2.5.2.1 A scene point p in perfect focus. 

 

 

To give a definition, p is in perfect focus when the incident light rays from p are 

focused by the lens onto a single point on the image sensor. Hence, the point in the 

scene is mapped to a point in the image. 

 This special case of p in perfect focus allows us to specify a reference plane 

termed the focal plane. The focal plane can be defined as the equifocal plane of the 

sensor plane, i.e. it represents the distance along the optical axis at which points in 

front of the lens are focused perfectly onto the sensor plane, as given by the Thin Lens 

Formula. In other words, assuming all parameters in the system are constant, the focal 

plane can be taken as a constant, and any scene point lying exactly on the focal plane 

will be in perfect focus. 

 The focal plane is a somewhat abstract concept, yet has real practical value as 

a reference plane. This is because of a unique property which will be clarified in the 

discussions to follow: It represents the unique depth in the scene at which p has no 

defocus blur, and as p moves away from the focal plane in either direction, the 

magnitude of defocus blur of p increases. Therefore, the focal plane provides a 

convenient reference depth to which all other depths in the scene can be relative.   

Figure 2.5.2.2 illustrates the optics of the system as p moves away from the 

focal plane, towards the camera. As expected, the consequence of this is p becoming 

increasingly blurred due to defocus in the image. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

Figure 2.5.2.2 Ray diagrams (not to scale) illustrating the increase in the size of the defocus blur region as point p 
moves away from the focal plane towards the camera in (a), (b) and (c). 
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The cause of the defocus blur as p moves away from the focal plane and towards the 

lens can be seen directly in Figure 2.5.2.2. The optical explanation is simple, and 

comes from the basics of the Thin Lens Model. We know from the Thin Lens 

Formula that as a point moves towards the lens along the optical axis, light rays from 

the point are focused to a decreasing distance behind the lens.  

This is precisely what happens here; the light rays from p are focused to a 

point further in front of the sensor plane as p moves further towards the camera. When 

the light rays converge before the sensor plane, we know from simple geometric 

optics that they will continue travelling on their respective vectors from the 

convergence point and hence re-spread. Therefore, the light rays arrive spread over a 

region of the image sensor, instead of at a point as in Figure 2.5.2.1.  

The increase in magnitude of defocus blur as p moves further away from the 

focal plane is simply due to the point of convergence moving further away from the 

sensor plane, hence the light rays having more distance over which to spread, hence 

arriving over a larger region of the image sensor, hence the visual effect of greater 

defocus blur. This is clear from Figure 2.5.2.2. 

 The opposing case of increasing defocus blur as p moves away from the focal 

plane and the camera towards infinity is similar in principle to the above, but with an 

important difference. In this case, the defocus blur is again caused by the light rays 

from p arriving over a region of the image sensor, but this happens because the light 

rays have not yet converged, i.e. the theoretical point of convergence is behind the 

image sensor (the light rays never reach this point as they are blocked by the image 

sensor). Again, this focusing behaviour is predicted by the thin lens formula. Figure 

2.5.2.3 illustrates the increase in defocus blur magnitude as p moves further towards 

infinity. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

Figure 2.5.2.3 Ray diagrams (not to scale) illustrating the increase in the size of the defocus blur region as point p 
moves away from the focal plane towards infinity in (a), (b) and (c). 
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Chapter 3 

 
Focus / Defocus and Depth 

 

 

This chapter will discuss how, using the optical model of the camera system 

developed in Chapter 2, the depth of a 3D point in a scene can be related to, and 

therefore inferred from, the level of focus or magnitude of defocus blur of the point in 

an image captured using a conventional camera. 

 

 

3.1 Depth from Defocus 

 

The optical model of the Camera System can explain the cause of defocus blur, and 

gives some basic mathematical relationships between the depth of a point light source 

in a scene, and the magnitude of defocus blur around that point in the image. 

 It follows that the depth of a point could be directly inferred from the defocus 

blurring of the point in the image, by analysing the properties of the blur, and working 

in reverse through the optical model to infer the depth of the point in the scene. 

 This approach is referred to in the literature as Depth-From-Defocus (DFD). It 

is a very popular and mainstream approach to the problem of depth acquisition from 

digital images, and the most important aspects of this approach will be discussed in 

this section. 

 

 

3.1.1 Point Spread Functions 

 

Under the camera system model used here the defocus blur of a point, as previously 

mentioned, can be described using a point spread function (PSF). The concept of this 

is simple; the blur is caused by light from a point being spread over a region, hence a 

PSF can be used to model the blur. Note here that it is assumed that the in-focus point 

would appear at the centre of the region of blur in the image. This assumption can be 

justified using geometric optics, and can be seen clearly in Figure 2.5.2.2 and Figure 

2.5.2.3 where the centre of the blur region, and the position of the in-focus point, is 

given by the optical axis. 

A PSF describing blur can be said to have two components: form and scale. 

The form of the function describes the ‘shape’ of the blur region, and the scale 

describes the size (diameter) of the blur region. The concepts of shape and size of a 

blur region can be seen by referring again to Figure 2.5.1.1, where the blur of a single 

point keeps a pentagonal shape (PSF form) and increases in size (PSF scale) as the 

magnitude of blur increases. 

 To understand the meaning of the shape and scale of the blur region, it is best 

to visualise the situation in 3D. Figure 2.5.2.1, Figure 2.5.2.2 and Figure 2.5.2.3 

illustrate the optics of defocus blur in 2D. By picturing the light ray triangles in these 

figures as 3D light cones in the real camera system, the 3D situation can be 

conceptualised easily. In 2D, the effect of the aperture on the shape of the light cone is 

not emphasised, but when visualising the light as a cone, it can be seen immediately 

that the cross-section of the cone must take the shape of the aperture opening, as the 
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aperture blocks completely any light rays which collide with its edges. This assumes a 

geometrical model of light rays, and ignores wave effects such as diffraction at the 

aperture edges. 

 Since the cross-section of the light cone takes the shape of the aperture, it 

follows that the intersection of the light cone with the image sensor must also take this 

shape (the paraxial approximation means here that any skewing of the shape due to 

angles of incidence can be assumed negligible). 

 Visualising the blur region as an intersection of the light cone with the image 

sensor, it is clear how the region can be said to have a constant shape related 

principally to the aperture, with a diameter which related to the depth of the point 

source of the light cone by the Thin Lens Formula and simple geometry. 

 Therefore, for a given camera system under constant parameters, the defocus 

blur can be modelled by establishing a functional form describing the shape of the 

blur. Then, the scale of the PSF gives the depth of the blurred point. 

 

 

3.1.2 PSF Form 

 

Establishing the functional form of the defocus blur PSF is non-trivial. From the 

optical model of the camera system, it might seem theoretically possible to attempt to 

directly calculate the shape of the blur region using ray-tracing, and hence estimate 

the form of the blur PSF under the optical assumptions of the model. However, in real 

images, complex optical effects which the model does not account for cause the real 

blur PSF to be more complex, both in overall shape and in the spread of light 

throughout the blur region. 

See for example Figure 2.5.1.1. Though the outer edges of the blur region take 

the pentagonal shape of the aperture as predicted by first-order geometric optics, the 

spread of light within the region of blur is not constant, but forms a complex pattern. 

This is due to optical effects (both geometric and non-geometric) of the complex 

arrangement of individual lenses in a real camera which cannot be predicted by the 

model, and cannot be generalised across camera/lens module models. 

 The complexity of the ‘real’ blur PSF form means that in practice it must be 

approximated. There are two general approaches to approximating this PSF function 

form. 

 

 

3.1.2.1 Models Approach 

 

The first approach attempts to employ a simplified model, a 2D function with few 

parameters, to approximate the real PSF form. Such models are generally based on a 

combination of assumptions from optical models and observations of real camera 

systems. They are fully intended to provide a trade-off between accuracy and 

practicality. The practical advantage of these models lies not only in their simplicity, 

but their ability to be scaled continuously. This means that the blur PSF can be 

applied at any scale, where the loss in information is limited only by the resolution of 

the image being analysed. Some examples of commonly used defocus blur 

approximations in research are detailed below. 
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 Pillbox Model 

The pillbox model is by far the simplest defocus blur model. In short, it is the 

approximation described in the first paragraph of this section which treats the blur 

region as aperture-shaped with a constant, uniform spread of light rays throughout the 

region. This is the model directly predicted by first-order geometric optics. As a 

further simplification, the shape of the aperture is taken as the ideal circle, rather than 

the more realistic pentagon. The function Pr, where r is the radius of the blur region, 

is shown in Eqn 3.1.2.1.1, and the plot of the function is illustrated in Figure 

3.1.2.1.2. 
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 (Eqn 3.1.2.1.1) 

 

 

 
Figure 3.1.2.1.2 Illustration of the plot of the Pillbox Model. Taken from [23]. 

 

 

 Gaussian Model 

As mentioned in the opening paragraph, the pillbox model of defocus blur is the 

prediction of simple first-order geometric optics. In practice, the optics of real camera 

lenses are very complex, and are affected by optical phenomena such as aberrations 

(both geometric and non-geometric) and diffraction, and also due to unpredictable 

lens configurations and imperfections. Because of this, the pillbox model with its 

uniform, constant spread of light is often an inappropriate approximation of the real 

blur PSF form. 

 A far more accurate model for blur in practice is the circular 2D Gaussian of 

blur in an image (blur magnitude is often seen ‘falling off’ away from the centre of 

the blur region). The equation for the circular Gaussian defocus blur model is given 

by Eqn 3.1.2.1.3, where r is the standard deviation of the circular Gaussian and is 

proportional to the radius of the blur region. The function plot is illustrated in Figure 

3.1.2.1.4. 
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  (Eqn 3.1.2.1.3) 

 

 
Figure 3.1.2.1.4 Illustration of the plot of the Circular Gaussian Model. Taken from [23]. 

  

 

3.1.2.2 Empirical Approach 

 

The second approach to blur PSF form approximation is the empirical approach. Here 

the idea is to sidestep the modelling of complex lens optics, and acquire the blur PSF 

directly from images captured using the camera system. 

A common method of doing this involves sampling real point-spreads from 

images captured in a calibration stage. For example, the images in Figure 2.5.1.1 

could be used (and probably were used) to provide samples of real point spreads for a 

particular camera system. In this way, a discrete approximation of the point-spread 

function of the camera system can be acquired from real image data. The advantage of 

this approach is its ability to capture the ‘real’ blur PSF for a particular camera system 

as a discrete function, completely sidestepping the issue of accurately modelling the 

complex optics of the system, which is a difficult problem and may result in inferior 

simplified models [49].  However, there are also some clear disadvantages compared 

to the first approach: Scales between those sampled can only be estimated by 

interpolation, the acquisition of samples could be prone to error, and of course the 

whole process is cumbersome considering it must be performed not only for each 

camera system used, but also for each set of lens parameters used. 

 

 

3.1.3 PSF Scale 

 

The approximation of the defocus blur PSF form is the essential first step in relating 

defocus blur in images to depth. However, assuming we have a model of the PSF 

form, how do we proceed to infer depth directly from images using this model? 

 The principle of relating defocus blur to depth, knowing the functional form of 

the blur PSF, is to identify the correct scale of the PSF which caused the blur. As 

discussed previously, by analysing the optics of the camera system we can conclude 

that there is a mathematical relationship between the radius of the defocus blur region 

and the depth of a blurred point. Hence, by identifying the correct scale of the PSF 
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which has caused the defocus blurring of a point in the image, we can directly infer 

the depth of the point in the scene. 

 This process can be broken down into two general stages. The most interesting 

stage here, the identification of the correct scale of blur PSF, leads to the second stage 

of relating this scale to depth by some conversion process. 

By far the most popular approach to describing defocus blur in the Image 

Processing literature is as a linear filtering of a perfectly focused image with a defocus 

blur kernel (PSF). By following this convention, an image or a small window of an 

image which contains defocus blur can be described by the following convolution 

equation: 

 

II r
ˆ      (Eqn 3.1.3.1) 

 

 

In Eqn 3.1.3.1, I is the observed image window, Î is the perfectly focused version of 

the image window, βr is the defocus blur PSF with scale r, and * indicates the 

convolution operation. 

 The intuitive explanation of this convolution operation is that the observed 

image is a result of the filtering of the perfectly focused image signal with the blurring 

signal. The idea is therefore to remove the blurring signal from the observed image, to 

reveal the perfectly focused image. Only the correct scale of the defocus blur PSF, or 

the blurring signal, will reveal the perfectly focused image, and this is the basis on 

which we can identify the correct scale of blur. Mathematically, this process of 

removing the blur PSF from the observed image is known as deconvolution. 

 The importance of a prior model on the form of the blur PSF becomes 

apparent in the deconvolution stage, because it greatly simplifies the process. For 

example, one simple approach to the identification of the correct blur scale is to test a 

number of different scales of the known PSF, and then analysing the resulting image 

for each deconvolution. The image which is judged to be in best focus can then be 

used to identify the correct scale of blur PSF. 

 The specifics of blur scale identification through deconvolution are complex. 

There are many methods, and this process constitutes a field of research in Image 

Processing in its own right, therefore it is somewhat outside the scope of this work to 

give a full discussion of the various methods here. However, some of these methods 

which are specific to the context of this work will be examined in further detail in 

Chapter 4. 

 

 

3.1.4 Relationship between PSF and Depth 

 

Assuming that for a given blurred point, the correct scale of the defocus blur PSF 

which caused the blur has been identified, the remaining step in depth acquisition is to 

relate the blur PSF scale to the actual depth of the point in the scene. 

This stage is considered in this work to be of lesser importance, as it is 

principally determined by the application, and can be considered as an additional 

independent stage. Nonetheless, it is important to discuss for completeness. 

The actual type of depth information required for the application largely 

determines how blur scale is related to depth. For example, some applications require 

real, physical measurements of depth (in distance units) whereas others, particularly 

Computational Photography and Image Processing applications, require only a 
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relative measure of depth, or even as little detail as a grouping or simple ordering of 

points by depth. 

From previous discussion of the Thin Lens Model and geometric optics, we 

know that the relationship between blur PSF scale and the depth of a point is 

mathematical, and predictable. Whilst it would in theory be possible to recover this 

relationship analytically using ray-tracing through the camera system, this method 

would likely be too inaccurate and/or cumbersome in practice. A far more common 

method would use an empirical calibration stage. For example, a scene with depth 

markers could be used to determine the actual scale of blur at different depths, 

directly from the images captured with the camera system under fixed settings. 

 In the case where only relative depth, or some form of depth index is required 

for the application, the relationship between the blur PSF scale and depth becomes far 

simpler. In this case, the depth value can be related directly to the blur scale.  

 

 

3.2 Depth from Focus 

 

Another mainstream approach to the problem of depth acquisition from digital images 

is termed Depth-from-Focus (DFF). As implied by the name, this approach takes the 

problem from a different perspective, and in many respects is the opposite of the 

Depth-from-Defocus (DFD) approach (Section 3.1). 

 With DFD the emphasis is on evaluating the properties of defocus blur of 

image points, and using prior models based on camera system optics to directly infer 

the depth of the points from the blur. DFF, on the other hand, is less concerned with 

directly modelling the optics of defocus blur (although the optics are always an 

important consideration), and more concerned with evaluating the actual effects of the 

blur in images to determine whether or not a point in the image is in-focus. 

 In general, DFF can be regarded as a search problem, where the goal is to 

identify, from a set of images of a scene captured using different camera parameters, 

the image where a point is most focused. This implies that a number of assumptions 

must be made about the set of images: 

 

 Single Viewpoint 

The analysis of variations over a single point implies that the set of images must be 

captured from a single, constant viewpoint by a single camera. There is also an 

implication here, of course, that the scene is static. Whilst initially seeming to be a 

limitation, the situation of a fixed camera position to ‘frame’ a scene is common 

practice in current photography, and in many application cases it is appropriate to 

assume that the scene is static. 

 

 

 Geometric Alignment 

In order to identify the same scene point in a set of images, the geometrical mapping 

between the 2D position of a scene point in any two images in the set must be known 

(often it is convenient to pre-process images so that this is a 1:1 mapping). This is one 

of the areas in DFF where a strict model of optics must be employed to determine the 

mapping.  
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 Radiometric Alignment 

In addition to being geometrically aligned, it is often essential in DFF based methods 

that the set of images must be radiometrically aligned. The variation of camera 

parameters and stochastic variations in scene illumination between images can cause 

unwanted variations in the colour intensity of a scene point between images. Since it 

is sometimes this variation which is being analysed in a DFF method, it is obviously 

crucial to normalise the intensity of the set of images, taking these variations into 

account. 

 

 Global Depth Interval 

As the DFF approach is a search problem, it follows that the range of focus settings of 

the input images should be global over the scene. This means that every point in the 

scene should come into focus (so far as settings allow) in at least one image. This of 

course applies only to scene points within the depth range of interest to the 

application. 

 

 

3.2.1 The Optics of DFF 

 

In terms of optics, the DFF approach is somewhat the inverse of the DFD approach. 

In previous discussion of the optics of defocus blur, the emphasis has been on the 

points in the scene. The explanation of defocus blur used in DFD approaches explains 

blur in terms of light from each point source in the scene spreading over a region of 

the image sensor. The converse perspective of defocus blur, used in DFF approaches, 

is to consider the source(s) of the light which arrives at each point on the image 

sensor.   

 From this new perspective on defocus blur, a point in an image in defined as 

perfectly in-focus if all the light reaching that point on the image sensor came from a 

single point-source in the scene. An image point becomes defocused when it displays 

light from more than one point in the scene, with the magnitude of defocus increasing 

as the number of scene points where the light originated from increases. 

 The above definitions, as already mentioned, are just an alternative way of 

phrasing the same optics of defocus blur described in Section 2.5. Figure 3.2.1.1 and 

Figure 3.2.1.2 illustrate this, and are similar to Figure 2.5.2.1, Figure 2.5.2.2 and 

Figure 2.5.2.3, but with some important differences. 

 Firstly, it must be emphasised here that the camera settings are variable, and 

the scene is static. Therefore, a surface from the scene is pictured at a static position, 

while the focal plane of the lens varies. The varying focal plane signifies a varying 

focal length of the lens, which is a simplified abstraction of the varying focus setting 

of the camera. 

 Secondly, Figure 3.2.1.1 and Figure 3.2.1.2 show only the light which 

converges on a particular point on the image sensor. The implication is that these light 

rays are incident from any scene point which lies within the light cone. Of course, 

these are not the only light rays from these scene points which will end up reaching 

the image sensor, but they are all the light rays from the scene which are focused by 

the lens onto the specific point on the image sensor. This again highlights that we are 

looking at the optics of defocus blur from the perspective of a point on the image 

sensor rather than from the perspective of a point in the scene. 
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Figure 3.2.1.1 A scene point p on a surface in the scene in perfect focus at point x on the image sensor  

(not to scale). 

 

 

Figure 3.2.1.1 should be familiar from Section 2.5, as it is essentially identical to 

Figure 2.5.2.1. The reason for this is that Figure 3.2.1.1 shows the special case of a 

scene point p being brought into perfect focus on the image sensor; a case which 

looks identical from any perspective. However here p is not the emphasis, but rather a 

point x on the image sensor where the light rays from p converge. The reason x will 

display a perfectly in-focus point in the image is that all the light rays reaching x on 

the image sensor originate from the single scene point p. 

 This special case of x displaying the perfectly focused point p occurs at 

precisely the focus setting which means that p lies on the focal plane. If the focus 

setting of the camera is changed, then the position of the focal plane will change and x 

will show a defocused point. As should be clear from Section 2.5, the further the focal 

plane is moved away from the perfect focus position, the more defocused the image 

will be at point x on then image sensor. Figure 3.2.1.2 illustrates the optics of this 

increasing defocus at point x as the focal plane moves towards, and away from, the 

camera from the perfectly focused position. 

 

 

(a) 
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(b) 

 
(c) 

 
(d) 

 
 

Figure 3.2.1.2 Ray diagrams (not to scale) illustrating the increasing size of the region of the surface in the scene 
around point p which is focused to point x on the image sensor as the focal plane moves towards the camera in (a), 

(b) and away from the camera in (c),(d). 
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Figure 3.2.1.2 is very similar to Figure 2.5.2.2 and Figure 2.5.2.3 (Section 2.5). 

Again, the defocus blur at point x on the image sensor is caused by a spread of the 

light cone, but from this perspective we think of the light cone as being spread over a 

region at the source, and converging to a precise point at the destination (the image 

sensor).  

Here, again from simple geometric optics, we can see how as the focal plane 

moves away in either direction from the position where p is in perfect focus, the light 

cone integrates a larger region of the scene (where the region is parallel to the sensor 

plane) and hence point x in the image becomes more defocused.  

The position of point p is included in all the diagrams to highlight the most 

important feature of the DFF approach: The goal is to find the image at which a given 

point in the image, x, shows a scene point p in perfect focus. We can see from Figure 

3.2.1.2 that some light from p will always reach point x on the image sensor. When p 

is in perfect focus, point x receives all the light rays coming from p, but as p becomes 

more defocused, fewer light rays from p end up reaching x as they are spread over a 

larger and larger region surrounding x on the sensor (see Section 2.5). Put another 

way, as p becomes more defocused, x receives a lower proportion of light rays from p, 

and an increasingly greater proportion of light rays from the region surrounding p in 

the scene. This fact is central to the DFF approach. 

 It should be noted here that the above interpretation of the optics of defocus 

only holds under certain assumptions about the scene: That surfaces in the scene are 

predominantly fronto-parallel, mostly continuous, fairly large relative to image 

resolution, and negligibly self-occluding. 

 

 

3.2.2 Depth Resolution 

 

Since DFF is a search based method, unlike DFD, the acquisition of depth using the 

DFF approach has an inherent limitation on the resolution of depth-mapping that can 

be achieved. The set of images used as input to a DFF search are equivalent to a 

depth-based sampling of the scene, where the resolution of this sampling depends on 

two key factors: 

 

 Grain of Focus Setting 

The focus setting of the camera system in use is a limitation on the depth resolution in 

the set of images. The focus setting on modern digital cameras is often on a discrete 

scale, but even if on a continuous scale the setting can only reasonably be set by the 

photographer to a certain precision. Since each successive focus setting will move the 

focal plane by some minimum distance in the depth dimension, this defines the 

maximum grain of depth resolution available using that particular camera system. 
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Figure 3.2.2.1 The minimum distance between the focal planes of two successive focus setting defines the 

maximum depth resolution of the camera system (diagram not to scale). 

 

 Depth-of-Field 

The maximum depth resolution of the camera system is not only dependent on the 

minimum distance between the focal planes at successive focus settings, but the 

ability to discriminate between the blur of a point between these focus settings. 

For example, suppose a point p is in perfect focus at focus setting f, and that 

the next available focus setting is f’. The depth distance between the focal planes at f 

and f’ defines the maximum depth resolution only if the defocus blur of p at f’ is 

distinguishable from the defocus blur of p at f. 

The minimum distance away from the focal plane at which defocus blur 

becomes distinguishable from perfect focus is termed the depth-of-field of the camera 

system. As previously explained, the depth-of-field is a visual phenomenon and not an 

optical one. The reality is that defocus blur increases continuously as a point moves 

away from the focal plane, but to the human viewer, and to some extent in Image 

Processing because of the limits of image resolution, there is a certain threshold 

beneath which the defocus blur is indistinguishable from perfect focus. This threshold 

defines the depth-of-field. 

 

 
Figure 3.2.2.2 Illustration of the concept of depth-of-field. As the aperture size decreases, depth-of-field increases 
[41]. This means the point becomes less blurred due to defocus as it moves away from the focal plane (or the focal 

plane moves away from the point). Therefore, the point remains visually in-focus over a larger depth interval 
around the point of perfect focus. 
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The maximum depth resolution of a camera system is therefore set by a combination 

of focus setting grain, and depth-of-field. The focus setting grain sets a physical limit 

on resolution, whereas depth-of-field defines the level of discrimination between 

defocus blur at different depths, hence determining effective depth resolution. 

 

 

3.2.3 Identifying Focus 

 

Assuming that the input images conform to the required specification, i.e. they are 

aligned, cover a global range of focus settings for the scene, and are of appropriate 

depth resolution, the main concern of the DFF approach is the process of 

quantitatively evaluating focus (or conversely, defocus blur magnitude) so the image 

in input set can which displays a point in best focus be identified.  

Importantly, it is not generally reasonable to assume that for any given scene 

point, any image from the set will display that point in perfect focus. This follows 

from the fact that the image set will have a limited depth resolution. However, in a 

pure DFF approach, it should be assumed from the global nature of the images that 

the focus of the point will be maximised by one distinct image from the set. 

The specifics of some current DFF methods will be discussed in detail in 

Chapter 4. However, as a general overview, the following paragraphs briefly 

introduce some of the most mainstream approaches to evaluating focus in images. 

 

 Window-Based 

Window-based methods are similar in nature to the analysis of defocus blur seen in 

DFD, in that it involves analysing a spatial window in the image to evaluate the level 

of defocus blur. The important distinction however is that unlike DFD, the defocus 

blur is not directly modelled in terms of its functional effect on an image point. 

Rather, the effects of the blur over the entire region of the window are analysed. 

Typically, the blur is assumed to include every image point in the window. 

 An example approach to evaluating the blur effect quantitatively is to take the 

first or second differential of the window, and assume that the rate of variation of 

colour will decrease over the image as it becomes more blurred, due to the smoothing 

effect of blur.  

 The windowing approach is generally local with respect to the set of images, 

i.e. each image is evaluated individually without an explicit global relationship being 

drawn between images. It relies on the assumption that that the rate of colour 

variation in the scene is high when under perfect focus. A difficulty of the approach is 

choosing the window dimensions. If too small, different levels of blur are more 

difficult to distinguish, but as the window increases in size, the depth-map resolution 

decreases as all points within the window are assumed to be of equal depth. 

 

 Pixel-Based 

Pixel-based methods are unique to the DFF approach, and are based on the approach 

to the camera system Optics discussed previously in this chapter (Section 3.2.1). The 

idea of pixel-based analysis of defocus blur in a DFF approach is simple: If the image 

set is global, then any given pixel will show a certain scene point in its sharpest focus 

in one of the images. Therefore, the aim is to determine this in-focus image using the 

variation in colour of the pixel over the set of images (this is the only data available). 

The basis on which we can infer the in-focus image from this colour variation 

data is from assumptions about the optics of the camera system, and to a lesser extent 
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assumptions about the scene. From Section 3.2.1, the model of the camera system 

used in this work can explain defocus from the perspective of individual image sensor 

points (image pixels), and this is the model on which per-pixel evaluation of defocus 

blur is based. Specific examples of this approach are too detailed to discuss here, but 

will be analysed in detail in Chapter 4. Indeed, the method proposed in this work 

follows a pixel-based approach to depth acquisition. 

In the sense that the variation in pixel colour intensity is analysed over the 

entire image set, pixel-based methods can be considered to be global. They require 

very few assumptions about the defocus blur, typically fewer even than window-based 

DFF methods, and being per-pixel they maximise the resolution (in the image plane) 

of the depth-map, as the resolution matches the resolution of the input images. 

 

 

3.3 DFD Vs DFF 

 

To conclude this chapter, the relative advantages and disadvantages of the DFD and 

DFF approaches are evaluated in this short section. It is important to explicitly 

evaluate and highlight the differences and trade-offs involved in the two approaches, 

as these factors are central to discussions in the remaining chapters. 

  

 Depth-from-Defocus 

The overriding advantage of the DFD approach is the ability to use very few, or even 

single, input images. Because defocus blur is directly modelled, the behaviour and 

effects of the blur can be predicted, and so incomplete data is acceptable. The ability 

to work with fewer images means that DFD methods are generally less cumbersome, 

require less preparation of input images, and work better in application environments, 

particularly within general photography applications. 

 However, DFD approaches suffer from many practical difficulties. Firstly, the 

direct modelling of blur is difficult. Approximation models are inherently inaccurate, 

and empirical methods of sampling the defocus blur kernel are cumbersome to obtain. 

Moreover, identifying the correct scale of blur is in practice very difficult, particularly 

with conventional apertures, and the deconvolution of the image with a blur kernel is 

mathematically ill-posed, meaning that in practice strong scene priors are required to 

achieve accurate results. A further disadvantage of the DFD approach is the overheads 

and Image Processing difficulties of analysing the image using spatial windows 

around each image point being processed.  

 

 Depth-from-Focus 

The overriding advantage of the DFF approach (compared to DFD) is its simplicity. 

DFF sidesteps the practical difficulties of directly modelling defocus blur, taking the 

more empirical approach of analysing only the effects of the blur in the image data to 

estimate its magnitude. In addition, if the per-pixel analysis of images is employed (a 

per-pixel is by definition impossible with DFD) then Image Processing overheads and 

practical difficulties are reduced significantly, allowing for a greater depth-map 

resolution for the same processing time. 

 The clear disadvantage of the DFF approach is the fact that the image set must 

be global, i.e. each scene point in the depth interval of interest must come close to 

perfect focus in at least one image. This implies not only that single images cannot be 

used, but that the set of images must grow as the scene depth increases to achieve the 
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same depth resolution. The greater amount of input data required by DFF (compared 

to DFD) is unavoidable by the nature of the two approaches. 
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Chapter 4 

 
Related Work 

 

 

The previous three chapters have introduced the problem of depth acquisition from 

digital images, developed and discussed a general optical model of the camera system, 

and categorised the approaches to a solution most commonly found in the literature. 

In this chapter, this background information will be put into context by discussing in 

detail various previous work from the field on which the method proposed in this 

work is based, either directly or indirectly. 

This chapter is loosely structured by the category which the work best fits into. 

First, there is a discussion of DFF techniques, and then there is a brief discussion of 

DFD techniques. 

 

 

4.1 DFF Techniques 

 

As will be discussed in the next chapter, the depth acquisition method proposed in this 

work is best categorised as a Depth-From-Focus (DFF) technique. Therefore, it shares 

significant similarities with, and draws inspiration from, many previous DFF 

techniques found in the literature. 

Another important aspect of the proposed method is that it does not use image 

windowing but rather evaluates depth on a per-pixel basis using the variation in 

intensity of a single pixel across a variety of digital images captured with different 

camera settings. This multi-image per-pixel approach, whilst being less common than 

the windowing approach, has been an important feature of some previous work, most 

notably in [21, 22, 23]. Clearly, it is such work which is most directly relevant to the 

proposed method. 

 

 

4.1.1 Confocal Stereo 

 

A very recent method which is categorized as DFF and per-pixel is ‘Confocal Stereo’ 

developed in [21, 22, 23]. The method uses a hardware setup identical the one 

assumed in this work, i.e. a single unmodified digital camera at a fixed position, 

which is used to capture an array of images over a range of aperture and focus 

settings. 

Assuming that the images are aligned such that a given scene point is 

projected to the same pixel in each image, each scene point is represented by a 2D 

array of intensities of that pixel (one from each aperture/focus pair) called an AFI 

(Aperture Focus Image). The approach is then to use the AFI data for a scene point to 

estimate the focus setting which shows the point in best focus, therefore this method 

can be categorised as DFF and per-pixel. The relationship between intensity (under 

known camera settings) and depth is derived from a general optical model of the 

camera system developed specifically for the method, which is very similar to the 

optical model employed in this work. This relationship is used to model the intensity 

variation pattern across the AFI when each focus setting is ‘correct’, therefore this 
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idealised model can be used as a search metric for the correct focus setting in real AFI 

data. 

The modelling of intensity variation across the AFI is based on a property 

defined as ‘confocal constancy’. The confocal constancy property is derived directly 

from the optical model of the camera system, which is based largely on the same 

geometric optical effects described in Section 2.5. In particular, this means that the 

following simplifications to the camera system are assumed: 

 

 The camera lens does not absorb any energy from light rays which travel through 

it onto the image sensor. 

 There is a perfect focus setting for every scene point. 

 The aperture only blocks light rays from entering the camera lens, it does not have 

any effect on their direction (i.e. there is no diffraction). 

 

As pointed out in [21, 22, 23] the above assumptions are well approximated by 

professional off-the-shelf lenses and DSLR camera systems. In addition to the 

simplifications assumed about the camera system, the method also relies on some 

strict assumptions (again, simplifications) about the scene: 

 

 The scene must be complex in colour/texture (i.e. negligible regions of smooth 

colour gradient). 

 The scene must have very low self-occlusion (i.e. all the light rays from a scene 

point reach the camera and are not blocked by other scene points closer to the 

camera). 

 

As with the simplifications of the camera system, the above simplifications are 

acceptable, as it is clear that they can reasonably mostly hold in many natural scenes. 

An important point to make here is that the above scene assumptions must in general 

be made for a per-pixel approach to depth acquisition, as they follow from the 

limitations (defined by geometric optics) of the light intensity data available at a 

single point (pixel) in the image. Therefore, these scene assumptions must also be 

made for the method proposed in this work. 

With the above assumptions in place, the confocal constancy property can be 

derived using simple geometric optics. The property can be introduced by looking at 

the special case of a scene point being perfectly in-focus. Taking Iαf as the image at 

aperture setting α and focus setting f, and assuming a scene point p projects to the 

pixel (x,y) in every Iαf, then the light rays from p focused by the camera system to the 

pixel (x,y) are restricted to a cone, the solid angle of which is determined by α. With 

very low scene self-occlusion assumed, the intensity at the pixel (x,y) in Iαf is 

proportional to the integral of the radiance of the light rays over this cone: 
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Where Cxy(α,f) is the light cone, ω is the solid angle, and L(p,ω) is the radiance of the 

light rays from p. The constant k is camera system specific and is determined by the 

response of the image sensor. 

If we assume that the radiance of the light from p is constant over the light 

cone of the largest aperture (and therefore of all smaller apertures) then the integral is 

no longer necessary as L(p) = L(p,ω), and the intensity at Iαf (x,y) is proportional to the 

solid angle of the light cone Cxy(α,f). 

 

 

)(||),(||)(),(
f),(

pLfCkpLdkyxI xy

C

f

xy




  


 

(Eqn 4.1.1.2) 

 

 

Therefore, the radiance of the light cone defined by each aperture α, and the radiance 

of the light cone defined by a reference aperture α1, should have a ratio which is 

constant and independent of the specific scene point in question or the scene in 

general: 
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(Eqn 4.1.1.3) 

 

 

The constant Rxy(α,f) depends on the camera lens in use, and incorporates a variety of 

optical factors without the need to directly model them. In general, it varies across 

different α and f, as well as with the pixel position (x,y) in the image plane, hence the 

need to compute a separate constant Rxy(α,f) for the range of focus and aperture 

settings, and each pixel position. 

It is important to state that, whilst the confocal constancy property is based on 

an optical model, it is argued in [21, 22, 23] that each Rxy(α,f) should be collected 

empirically in a calibration stage for a given camera, image resolution, and set of 

aperture and focus settings. Briefly, this is done by placing a planar surface in perfect 

focus for a given focus setting, and calculating the ratios of intensities at each aperture 

for each pixel in the knowledge that all points at that focus setting are in perfect focus. 

With the constants of proportionality Rxy(α,f) known, the process of 

identifying the in-focus focus setting of a point from the AFI becomes fairly 

straightforward. By scaling each pixel in the AFI by the appropriate constant Rxy(α,f), 

the variation in intensity due to the aperture setting is counteracted for each focus 

setting in the AFI. Then, by the most direct application of the confocal constancy 

property, the in-focus focus setting should be the focus setting with the minimum 

intensity variance as the aperture setting changes. Another more advanced search 

metric applies the concept of confocal constancy more generally, by analysing not 

only the in-focus focus setting but also the other focus settings, to predict and search 

for constant-intensity ‘regions’ of the AFI rather than simply searching for the 

constant-intensity ‘column’ of the in-focus focus setting. The AFI model for each 

‘candidate’ focus settings is fitted to the real AFI for a scene point, and the best fit is 
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deemed the correct focus setting and hence the depth for that scene point. The use of 

all the AFI data rather than just the intensities of the single candidate focus setting 

leads to a higher level of accuracy for this search metric, as reported in [21, 22, 23]. 

An important point to discuss is that the Confocal Stereo method relies on the 

assumption that a given scene point should project to the same pixel (x,y) in every 

image. In the above discussions of the basis of the method, this was assumed. 

However, in practice changing the camera settings often changes the geometric 

projection of light rays from the scene onto the image sensor. Moreover, changing the 

camera parameters can also vary radiometric factors which can affect pixel intensity 

locally and globally. Therefore, post-capture geometric and radiometric alignment of 

the set of images is essential to account for this. This is an important general point as 

it applies to all methods where one or more camera parameters are varied, and it is 

particularly emphasised as important for the Confocal Stereo method as the subtle 

variations in intensity which are analysed in the AFI rely on highly accurate and 

precise scene-point-to-pixel correspondence and the removal of other radiometric 

factors which vary intensity as camera settings change. See Chapter 5 for an extended 

discussion of the alignment procedure in the context of the proposed method. 

Briefly, the geometric alignment is performed using a model which 

incorporates both radial magnification caused by focus variation, and a stochastic shift 

factor parallel to the image plane caused by the mechanical movements of the camera 

as settings are changed (this is only relevant because of the very high image 

resolutions used in [21, 22, 23]. For lower image resolutions it is not an important 

factor). The radiometric alignment deals with global lighting change (between 

capturing successive images) by normalising all images to a reference image. 

The Confocal Stereo method clearly takes a very similar approach to the 

method proposed in this work in terms of the hardware assumptions, scene 

assumptions, optical model and intensity-variation-based per-pixel approach to depth 

acquisition. The advantages of this approach are clear, and include a pixel-resolution 

depth-map, the ability to deal with very fine detail or a high depth differential, the 

avoidance of explicit blur modelling (one of the greatest practical difficulties 

discussed in the literature) and the simplicity of Image Processing due to the per-pixel 

approach. 

Confocal Stereo does display general disadvantages of a per-pixel approach 

such as the need for accurate geometric and radiometric alignment, and strong 

assumptions about scene structure. In addition, whilst allowing for use of an off-the-

shelf camera with no modifications, the method does require a cumbersome empirical 

calibration stage (on which the accuracy of the method depends entirely) for each 

camera system before it can be used. However, the most significant disadvantage of 

the Confocal Stereo method is the number of input images required. For a given depth 

resolution, i.e. number of focus settings, this method will have many more images 

than a DFF method which varies only focus setting (such as the method proposed in 

this work) because of the range of aperture settings required for each focus setting. 

The authors concede this limitation in [21, 22, 23], but argue that it is a trade-off of 

the increased accuracy of the method, which relies on use of the Confocal Constancy 

property, for which the data from both the change in focus setting and change in 

aperture setting is essential. 
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4.1.2 Edge and Depth from Focus 

 

The method developed in [02] has many similarities of approach to the method 

proposed in this work. As in [21, 22, 23], a fixed-position conventional camera setup 

is used to capture images, and a simple geometric optical model is used to model the 

camera system. However, unlike [21, 22, 23], the method in [02] varies only the focus 

setting of the camera between input images. This, along with the general approach of 

the method, is what makes it most relevant to the method proposed in this work. 

The method in [02] is interesting in terms of categorisation, as it can be regarded as a 

hybrid between both DFF/DFD and per-pixel/spatial windowing approaches. The 

method does not perform a classic search of the input images to locate the in-focus 

position of a point, but nor does it attempt to directly model or evaluate defocus blur 

to infer the depth of a point. Instead, it evaluates the intensity change of a point (pixel) 

as focus setting changes, using a one-dimensional row of neighbourhood pixels (not a 

2D window) as part of this process. It is this aspect which places the method between 

a per-pixel and window-based technique. 

In order to remain valid, the method assumes a very strict step-edge scene 

model, i.e. the scene is made up of overlapping planar surfaces which are parallel to 

the image place. An additional assumption is that at each edge (overlap of two 

surfaces), the intensity must be constant (and different) at each side of the edge. It is 

noted in [02] that these assumptions are a limitation of the method, as clearly they 

limit the practical application and validity of the method in natural scenes where these 

assumptions are unlikely to hold in general. 

Again, in [02] a geometric optical model is used, and the spatio-focal image is 

defined using definitions based on geometric optics. The intensities on both sides of 

the edge are defined as L1 and L2, respectively (L1 > L2). Then, based on a blur 

kernel with circular symmetry, and geometric optics, the change in intensity at an 

edge point p can be reasoned about. 

The basic concept is that where a point is near to an edge, as the blur kernel 

shrinks to the in-focus position and then grows again, the intensity at the point should 

reach a peak at L1 (if on the L1 side) or a trough at L2 (if on the L2 side). This 

happens because as the blur kernel radius increases, the intensity of the (blurred) point 

incorporates more of the other edge’s intensity. However when the blur kernel shrinks 

to zero (i.e. the point is in focus) this will lead to a peak or trough at this intensity. 

This is similar in concept to the basis of the method proposed method in this work 

(see Chapter 5). It follows logically that edge points should be between ‘peak’ and 

‘trough’ points in the image. 

Once an edge points has been detected, its depth is calculated by looking at the 

pixels in a one-dimensional slice (perpendicular to the edge) of the spatial 

neighbourhood of the point, and how the intensities of this one-dimensional spatial 

neighbourhood change as focus setting changes. The slice of the neighbourhood is 

perpendicular to the edge so that, under a geometric optical model, the variation due 

to intensity on either side of the edge is maximised. A synthetic image termed a 

‘spatio-focal image’ is built using the intensities of the spatial slice in one dimension, 

and the focal length in the other, to give an intensity distribution around the edge 

point as focus setting is changed. A model derived from geometric optics is then used 

to identify in this spatio-focal image the focal length at which the edge point is in 

focus. This model, which is based on the strict step-edge scene model, gives an ideal 

pattern of intensity distribution for an edge point based on the idea that the intensities 

L1 and L2 gradually merge across the spatial dimension as defocus increases, or 
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gradually separate across the spatial dimension as focus increases, to give a 

predictable pattern in which the in-focus focal length is a midpoint. 

The main advantages of the method presented in [02] are in its general 

approach to the depth acquisition problem. This is an example of an approach which, 

using only a (discrete) variation in focus setting, can evaluate depth on a continuous 

scale by analysing only the change in intensity of (and around) a scene point as focus 

setting changes. This approach avoids the limitations and difficulties of using a model 

of focus as a search metric (classic DFF) and/or an explicit defocus blur model 

(classic DFD), instead analysing the effects of defocus blur in terms of intensity 

variation using simple and well-understood geometric optics (in addition to the strict 

scene model) to find the in-focus focal length. Importantly, this approach represents a 

third option between directly modelling focus (assumptions about the scene) in classic 

DFF techniques, and directly modelling blur (assumptions about the camera system) 

in classic DFD techniques. This is of great relevance here as it is very similar to the 

approach of the method proposed in this work. 

Despite the importance and advantages of the general approach taken in [02], 

the method does have some major limitations which come as a result of their 

implementation of the approach. The most prominent of these limitations is the very 

strict, and practically unrealistic, assumptions about the scene, on which the 

modelling of the intensity variation around a point (in the spatio-focal image) is 

based. It is noted in [02] that although the method is stable where these assumptions 

hold, it would degrade in performance rapidly if the assumptions were not held. This 

represents a major limitation in the practical application and generality of the method. 

Another disadvantage of the method is that, although a new approach is taken, there is 

still a reliance on evaluating neighbourhood pixels around the point of interest. 

Though in [02] this only involves a one-dimensional slice rather than a full two-

dimension window as in classic DFF, this still introduces difficulties such as selecting 

the correct neighbourhood size and general image processing issues seen in window-

based techniques. A further disadvantage of the method is that, by definition, it can 

only be applied to edge points. Since a step-edge scene model is assumed, it follows 

that the method can produce a full depth-map using only the depth of edge points. 

However, in a 3D scene with complex geometry and textures the method would not 

work, i.e. it is not general enough to acquire the depth at arbitrary 3D points and 

cannot produce a full depth-map of a complex, highly textured 3D scene. 

The method proposed in this work attempts to implement the same general 

approach taken in [02], and all the advantages of this approach, in a way which avoids 

the practical disadvantages of the method in [02]. For example, by evaluating depth 

on a per-pixel basis (no analysis of the neighbourhood of the point) and by allowing a 

far more flexible scene model which allows for much more generality (for example, 

the ability to estimate the depth of any scene point, and allowing for complex surface 

textures and more complex scene geometry). See Chapter 5 for a full discussion of 

the method proposed in this work. 

 

 

4.1.3 Classic DFF Techniques 

 

The classic DFF approach as defined in the literature is a pure search problem, where 

a numerical measure of the level of focus of a scene point is used to identify, from a 

set of input images, the changing focus of the scene point. 
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Most commonly, the input images vary only in focus setting [23], as this 

provides a straightforward link between level of focus and depth, and the focus 

measure is estimated by evaluating the level of (defocus) blur in the local spatial 

neighbourhood of the scene point, which is described using an appropriately sized 

image window centred on the scene point. Examples of work which take this classical 

DFF approach can be seen in [27, 32, 51, 47, 42, 08, 30]. 

An essential point in classical DFF is that the focus measure used in the search 

should ideally be unimodal, monotonic about the mode, and maximum only when an 

image is perfectly focused [27]. An example of a measure which, according to optical 

theory, should satisfy these requirements is one based on gradient magnitude (i.e. an 

edge detector) around a scene point, for example see [27, 51, 47]. 

From these idealised requirements, it appears that a brute-force maximisation 

approach should be sufficient to solve the DFF search problem. However, due to 

noise introduced between input images by both the camera system and the scene, 

assuming that this is not perfectly corrected in the image alignment stage, such 

measures typically produce a focus setting/ focus measure profile with multiple local 

maxima and/or an incorrect global maximum. 

For this reason, and because focus measure evaluation can be expensive, more 

sophisticated search techniques such as curve fitting (for example using a Gaussian-

type function) are used in [27, 32, 51] to locate the correct focus measure from the 

data. An additional advantage of curve fitting is that, in principle, the true focal plane 

depth can be located between the sampled depths (input image focus settings), rather 

than simply selecting the sampled depth which shows the point in ‘best’ focus. This 

idea of fitting data to a functional relationship between depth and focus (derived from 

optical theory) is also adopted in the method proposed in this work (see Chapter 5). 

The limitations of the classical DFF approach, particularly when compared to 

the proposed method, are discussed in detail at various points in this work; however a 

summary will be given here. The feature of the approach from which the greatest 

limitations arise is the necessity to analyse the spatial neighbourhood of a scene point 

in order to estimate its depth. Aside from the practical Image Processing difficulties, 

which in practice limit the depth-map resolution in the image plane [28], the reliance 

on the spatial neighbourhood of a scene point leads to some fundamental limitations. 

Firstly, the neighbourhood must have non-uniform intensity for any focus 

measure to be discriminative [52]. Importantly, this excludes in practice not only 

areas of flat intensity but areas of constant intensity variation (assuming the focus 

measure is symmetrical), i.e. any region with a linear intensity gradient [23], both of 

which are abundant in natural scenes. Furthermore, in practice these restrictions are a 

theoretical minimum, with many classic DFF focus measures explicitly measuring 

high-frequency intensity content in a neighbourhood [01]. Examples of such focus 

measures are seen in [27, 51, 42, 31]. 

Secondly, the neighbourhood must be (generally) planar, and (generally) 

parallel to the image plane. If different regions of the neighbourhood are at different 

depth levels (for example at a step-edge or a complex surface with rapidly varying 

depth) then the optical assumptions on which the focus measure is based break down, 

and the focus measure may evaluate in an unpredictable manner. A related issue is 

that even if the window covering the local neighbourhood does not directly display 

multiple depth levels, other points near to the window in the image plane which are 

heavily blurred may introduce unrelated high-frequency information into the window, 

due to the spatial spread of the defocus blur region, which can cause the focus 

measure to evaluate unpredictably [52]. 
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For these reasons, and because of general Image Processing issues such as 

computational efficiency increasing with increasing window size, the selection of an 

appropriate window size is an unavoidable problem of classical DFF. A smaller size 

increases depth-map resolution in the image plane and better avoids multiple levels of 

depth and contamination from nearby blurred points in the window, but a larger size 

is better able to distinguish between different levels of defocus blur. This trade-off is a 

problem with all window-based depth acquisition methods (including DFD methods, 

discussed in Section 4.2) which has no obvious general solution [28]. 

 

 

4.2 DFD Techniques 

 

The Depth from Defocus (DFD) approach to depth acquisition is fundamentally 

different from DFF. In DFF, as discussed in the previous section, the idea is to search 

over a set of images captured with known camera parameters, to locate the parameters 

(and hence the depth) which yield the maximum focus of each scene point, as defined 

by some focus measure.  

Conversely, DFD evaluates depth by directly evaluating the defocus of scene 

points, and linking the level of defocus (via an optical model of the camera system) to 

depth. It should be emphasised here that the method proposed in this work is not what 

is traditionally defined as a DFD method, as it does not directly model or evaluate 

defocus blur in order to infer depth. However, the reliance on the optical model of the 

camera system and the implicit modelling of defocus blur are key to the proposed 

method, and hence the method draws from various previous work on DFD techniques 

which explores these factors. Therefore in this section some relevant DFD techniques 

will be discussed. 

 

 

4.2.1 Image and Depth from a Conventional Camera with a Coded Aperture 

 

A recent example of a DFD technique which explicitly evaluates the form and scale of 

the blur PSF in order to infer depth is the technique proposed in [28]. In this work, 

defocus blur is modelled as a convolution of the focused image with a blur PSF, and 

the approach is to control the form of this PSF so that its scale can be linked to depth 

on an empirically derived scale. The PSF form is controlled by deliberately modifying 

the camera aperture with a pattern. The reason for doing this, and the key feature of 

the technique, is to maximise the level of discrimination between the blurring effect at 

different scales of the PSF, therefore maximising the accuracy and resolution of depth 

acquisition. 

The basic principle of the technique in [28] is identical to the traditional DFD 

approach discussed in Section 3.1, i.e. linking the scale of the blur PSF to the depth of 

a point, where the form of the PSF is assumed known. However, the key observation 

here is that though the PSF produced by a conventional aperture can provide depth 

cues, it is very difficult to reliably differentiate between the blurring effect at similar 

scales of the conventional aperture PSF. Clearly, this limits the accuracy of linking 

PSF scale to depth, leading to low depth resolution and accuracy of depth-mapping. 

The solution in [28] is to place an occlusion pattern (2D piece of card) over a 

conventional aperture to modify or ‘code’ the blur PSF so that the form conforms to 

two key criteria: 
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1. Reliable discrimination between the blurring effects caused by different 

scales of the PSF is possible. 

2. The PSF is easily invertible, so that the focused image can be recovered by 

deconvolution of the PSF with a blurred image. 

 

The search for a coded aperture which conforms best to these criteria is guided by 

examining the Fourier transform of the PSF formed by the coded aperture. Taking a 

PSF f, the Fourier transform of f will have a number of zero frequencies. Looking at a 

particular one of these frequencies, ω, if an image x has been blurred (convolved) by f, 

then the Fourier transform of x, X, will also have a value of zero at frequency ω. 

The basic principle of the search for a coded aperture pattern is that (the 

Fourier transforms of) different scales of the pattern will have different sets of zero 

frequencies. The goal is to find a pattern where these zero frequencies are distinct and 

distinguishable between different scales, particularly between similar scales. In doing 

this, the goal is to find a blur PSF which maximises the ‘difference’ of the effect on 

the blurred image as scale is varied, resulting in an easier identification of the correct 

scale by deconvolution with the blurred image. 

In [28], the search for a pattern is implemented as a random search over a 

space of ‘practical’ patterns (symmetrical, cut from a single piece of card, no floating 

regions). For each pattern, the heuristic used is to take the minimum KL-divergence 

between the frequency distributions of the Fourier transforms of any two scales of the 

pattern. The goal of the search is to maximise this value. 

Using the KL-divergence as a measure of distance between two scales of a 

pattern is key not only because it promotes differentiable zero-frequency values 

between any two scales, but because it promotes distributions where there is a 

differentiable amount of content at any given frequency. This is very important in 

practice, as noise introduced by the imaging system and other environmental variables 

will mean that no frequency is exactly zeroed. Therefore, it is important to be able to 

distinguish between ‘noise’ content and ‘real’ content at the zero frequencies of a 

particular scale, which is much easier if all other scales have a significant amount of 

‘real’ content (i.e. above the noise level) at the zero frequency. 

Having identified a coded aperture pattern, the depth acquisition process in 

[28] is fairly straightforward and conventional for a DFD technique. Importantly, it is 

possible to apply the process using only a single input image. This is an inherent 

theoretical advantage of the DFD approach and it is indeed employed in practice in 

[28]. 

First, a discrete set of PSF scales, along with their associated depths, is 

determined empirically. This is done by capturing the blur of a single point of white 

light against a black background over a set of known depths and using the actual blur 

images as the PSF for each of the set of depths. This works since the blurred image is 

of a point of light at intensity 1 isolated against a background of intensity 0, so if the 

PSF is a convolution of the original focused point with the blurred image, then the 

blurred image is identical to the PSF. Indeed, such an empirical approach can be 

preferable to a functional modelling of the PSF form as it takes into account non-

geometric optical effects and any camera-system optical effects which are difficult to 

predict using an optical model. 

The method then proceeds by dividing the image into small windows, 

assuming that the depth is constant over each window. Though it would be possible, 

within the boundary limits of the largest scale of the PSF, to evaluate each pixel-point 

separately, this is deemed in [28] to be too computationally expensive in practice. 
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This loss of depth-map resolution (in the plane orthogonal to the depth axis) is a key 

disadvantage of the window-based approach. 

Each window is then deblurred by all scales of the PSF, and the correct scale 

is taken as the one producing the most plausible deblurred image, according to a 

reconstruction error based on a prior model of a focused natural image. The prior 

employed in [28] is a sparse derivative model, i.e. a natural image should be largely 

smooth with occasional sharp changes in intensity (for example at object edges). 

The main strength of the technique is, clearly, that it is able to use only a 

single image as input. This means that the practical issues introduced by capturing and 

aligning multiple input images, which are necessary in all the DFF techniques 

discussed in the previous section as well as the technique proposed in this work, are 

conveniently avoided. However, it must be emphasised that the key strength of this 

work is the factor which allows a single image to be used in practice: the use of a 

coded aperture to reliably distinguish between similar blur scales, which means that 

reliance on additional information provided by the redundancy of multiple images is 

lowered to the point where using a single input image is feasible in practice. 

Of course, the method does have limitations, which are significant even in the 

context of a single image input. As mentioned above, the method is expensive, 

meaning in practice only a course grain of resolution can be achieved in the plane 

orthogonal to depth as points must be grouped and evaluated together in small 

windows. This means that the method is inappropriate for scenes with highly complex 

3D surfaces, which are not smooth. Moreover, the empirical sampling of a set of 

different scales of the PSF limits the depth resolution of the method. Ignoring the fact 

that depth resolution is limited in the first place by the arbitrarily chosen set of scales 

and associated depths, the spatial resolution of the samples is limited by the pixel 

resolution of both the samples themselves and the blurred input image (which must be 

identical). As noted in [28], this is a particular issue when attempting to differentiate 

between similar, very small, PSF scales. These issues result in a depth-map which is, 

in practice using a single image, quite low in resolution. Indeed, as discussed in [28] 

the raw depth-map produced by the technique may require user guidance in a post-

processing stage to reach a useful level of accuracy. 

 

 

4.2.2 Relative Defocus 

 

Examples of DFD techniques which take a direct approach to modelling defocus blur 

are common in the literature, for example [28, 14, 19, 24, 49, 43]. However there is a 

fundamentally different DFD approach, for example in [36, 37], which looks at 

relative differences in blur to infer depth. In [36, 37] the method requires a minimum 

of two input images whose different defocus blurs are compared relatively (under a 

model of the blur PSF) as opposed to the approach of evaluating blur, and hence 

depth, directly from a single image. 

The method in [36, 37], as is typical of DFD techniques, uses the basic geometric 

optical model of the camera system described in Section 2.5, with the minor 

difference that the 3D points focused to the image plane are assumed to originate from 

a curved (spherical) 3D ‘surface of focus’ in the scene, as opposed to a flat plane of 

focus. The method is based on capturing an all-focus image of a scene (i.e. using a 

pinhole aperture so every scene point is in-focus), and capturing a second image of 

the same scene using a larger aperture, such that depth of field is smaller, therefore 
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defocus blur is introduced with the familiar relationship between depth in the scene 

and blur magnitude. 

The input therefore provides, for each scene point, a relative difference 

between the point perfectly in focus and the point blurred due to defocus, which 

depends exclusively on the depth of the point in the scene since the optical parameters 

of the camera system are known. The difference is described as relative because it is 

only meaningful in the context of other points in the scene, for example if a point a is 

more blurred than a point b in the second image, it indicates that a is at a greater 

distance from the surface of focus than b. This is the basis on which a depth-map of 

the scene can be constructed. 

An important note about this technique is that the use of multiple images does 

not mean that alignment of the images must be performed prior to processing. This is 

an inherent advantage where, as is possible with some DFD techniques with strong 

scene priors, the method can be applied to a single image [23, 28]. However, this 

advantage is maintained in [36, 37] despite the multi-image input due to the 

convenient fact that varying aperture size does not alter the projection of the scene 

onto the image sensor at all, at least under a purely geometric optical model. 

Therefore, images captured at different aperture sizes, assuming a static camera and 

scene, generally require little or no geometric alignment to match up corresponding 

scene points. This advantage of using aperture rather than focus setting to control blur 

is commonly exploited in depth acquisition techniques, for example [44, 43]. Another 

method commonly employed to avoid the requirement for geometric alignment, even 

when varying the focus setting, is compensating for changing perspective projection 

using the camera zoom setting [50, 08]. In fact, as discussed in Chapter 5, modern 

camera lenses can by default provide a uniform image projection as focus setting 

varies, as is the case with the camera used to capture test images in this work.  

Finally, because of the very low number of input images required in practice 

(a theoretical minimum of two), a hardware implementation which captures two (or 

more) images simultaneously is feasible in practice, which removes the requirement 

for the static scene assumption. Indeed, such a hardware implementation is presented 

in [37]. 

 

 

4.2.3 Alternative Approaches to DFD 

 

 Variational Bayesian Based Techniques 

So far in the discussion of DFD, the importance of the modelling of defocus blur to 

the approach has been referred to frequently. In particular, two distinct methods of 

modelling have been explored: the approach of modelling the PSF using a function 

with a set of parameters, and an approach of modelling by empirical sampling of the 

real blur PSF. The issues surrounding the former approach of functional modelling of 

defocus blur are explored in Section 3.1, with the important assumption that a 

functional model must be manually selected based on some compromise of real world 

optics basis and practical mathematical convenience. 

However, there is an area of work in Machine Learning, Variational Bayesian-

based methods of blind deconvolution, which provide another option for deriving a 

model for defocus blur. Such methods provide the advantages of both the approaches 

for deriving a blur PSF discussed above, in that PSF is derived from real data as in 

empirical sampling, but like functional modelling the PSF resolution is not limited to 
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a sampling resolution and the process is purely mathematical (i.e. there is no 

practically cumbersome, error-prone sampling stage). 

Relevant examples of work in this area can be seen in [03, 04, 06, 46, 16]. In 

[03], for example, variational inference is used to estimate the blur PSF and the 

focused image directly from a single blurred image, using no assumptions about 

either. All that is required is that prior probability distributions of the blur and focused 

image (and noise) are supplied, along with prior distributions for the parameters 

(denoted hyperparameters) of these prior distributions. Then, variational inference is 

performed to simultaneously estimate PSF and focused image. Because variational 

inference is used, the posterior distributions (i.e. the probability distributions of the 

PSF and focused image which are converged to) are purely probabilistic so their 

uncertainty is measurable, and are derived only from the real data of the single blurred 

image (although the priors have some influence). It should be noted that the method in 

[03] is given generally, with no direct mention of a depth acquisition application. 

However, applying the variational Bayesian approach in DFD techniques is found 

commonly in the literature [48], such techniques include [39, 40, 26]. 

 

 Active Illumination Techniques 

In the discussion of DFD so far, there has been an assumption of passive image 

capture using a conventional camera. This passive capture of visible light information 

imposes certain theoretical restrictions on depth acquisition using either DFF or DFD. 

As previously discussed, in the case of DFF the restriction is on the discrimination of 

a focus measure where there is low-frequency scene content, and in the case of DFD 

the restriction is on the ill-posed nature of the blur deconvolution problem which 

cannot be addressed without strong priors.  

However, by projecting patterns of visible light directly onto the scene, and 

capturing images with a conventional camera as before, these difficulties can be 

reduced by inserting known depth cues into the images. This is known as active 

illumination, and though strictly an active depth acquisition technique, it is 

fundamentally very similar in terms of imaging hardware to the passive approach 

taken in this work, and so is relevant to the discussion here. 

The trivial relative depth cues that scene illumination can provide in images 

are obvious, and are common to the Image Processing literature, for example in [45] 

where crude illumination from a camera flash is used to indicate objects in the 

‘foreground’ of a scene. Far more precise depth cues can be provided by projecting 

specially designed light patterns onto a scene to control the frequency attributes of the 

neighbourhood of a point [13, 29, 33, 17, 18].  

It is straightforward to see how modifying the frequency of the scene content 

can assist in DFF techniques by increasing the frequency of content generally, and by 

tailoring the focus measure specifically to the known dominant frequency 

characteristics where the projected pattern is in-focus (i.e. where the point is in focus) 

[33]. Where DFD is concerned, it can be shown that by controlling the illumination of 

a surface, it is theoretically possible to fully reconstruct a blurred image of that 

surface by deconvolution [23, 13]. This is similar to an idea seen in [28], where the 

frequency profile of a scene is estimated using a prior to reduce the difficulty of the 

blind deconvolution problem in DFD, except here the prior is not simply estimated 

but known. 

The disadvantages of active illumination, however, are due to the very fact 

that light must be projected onto the scene. For example, this may be inappropriate or 

cumbersome in a practical setting, and in addition there is an issue of separating the 
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light pattern from the ‘true’ images of the scene in any application where the intent is 

to perform some Image Processing on the image(s) using the resolved depth 

information, for example post-exposure refocusing. In certain cases the projected light 

pattern may be too complex for separation to be possible [38]. 

 

 Modifying camera optics to control defocus  

There are many examples in the literature of modifying the conventional camera 

optics in order to control the incident light rays in ways which result in a known 

modification of the defocus produced by the lens. This approach is similar in nature to 

the previously described active illumination approach, except that instead of 

modifying and controlling the light which is emitted from the scene, the light rays 

which have already been emitted from the scene are modified and controlled before 

they are captured by the camera sensor.  

An example of this type of approach already discussed in detail in this chapter 

is [28], which uses a coded aperture to control the PSF of the defocus blur in a way 

which can be predicted. Similar work using a coded aperture to control defocus 

includes [15]. 

 Another common method used to control defocus in order to improve depth 

discrimination in DFD techniques is the use of optical masks, or filters, which are 

placed in front of the camera lens to control the frequency characteristics of the light 

which passes through to the camera lens, providing control over properties of the 

defocus which can be exploited to infer depth [20, 12, 25]. Further examples of 

modification of light rays as they enter the camera system can be seen in [07, 10], in a 

technique known as Wavefront Coding, where light waves are coded in, for example, 

the aperture stop to produce a defocus blur PSF with known characteristics. 
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Chapter 5 

 
Proposed Method 

 
 

In this chapter, the method for depth acquisition proposed in this work is discussed. 

The method covers a process from the capture of raw images of a scene, to the pre-

processing of the input images, to the computation of a raw depth-map of the scene 

from the input images. Broadly, the process can be thought of in terms of a data 

collection stage (image capture and alignment) and a depth-mapping stage (computing 

a depth-map of the scene from the input images). Though the latter stage is of primary 

interest in this work, the former stage is obviously an essential part of the process and 

must be clearly defined in order to understand and control the input. 

 

 

5.1 Overview 

 

The proposed method comes under the category of Depth-From-Focus (DFF). DFF is 

discussed in chapter 1, but briefly, this means that the depth of a point is acquired by 

locating the depth where the point is in best focus using a sample of images captured 

at focus settings across a global depth interval, i.e. a depth interval which contains all 

scene points. 

The proposed method produces a per-pixel depth-map of a scene. This is an 

important feature of the proposed method, considering that DFF approaches typically 

use analysis of a spatial window around a pixel of interest to evaluate focus. The 

advantages of the per-pixel approach will be discussed in a section later in this 

chapter.  

The idea on which the proposed method is based is predicted by the optical 

model of the camera system developed in Chapter 2, and specifically, the 

interpretation of the model discussed in Section 3.2. The specifics of this will be 

discussed in detail in the sections to follow, but to give some context to the remainder 

of the chapter it will be useful to briefly introduce the idea here.  

The model predicts that when a scene point p lies on the focal plane, the lens 

brings p to exact focus at a pixel x on the image sensor, resulting in p being perfectly 

in-focus at pixel x in the image. As the focal plane moves away from p, either towards 

or away from the camera, light from an increasingly large region of the scene with p 

at its centre is focused to pixel x. Crucially, this can be interpreted as the centre of p 

still being projected to pixel x, even though all the light from p is not focused to pixel 

x, as it is when p is in-focus. 

Assuming the above optical predictions, the basic idea of the proposed method 

is straightforward. By capturing N images at a sample of different focal plane depths 

over a global depth interval, ensuring that a given scene point p is projected to the 

same pixel x on the image sensor in every image, we have N intensities of p, taken 

from pixel x in each of the N input images. Assuming we know the depth of the focal 

plane for each image, on either a real or relative scale, we can link each intensity 

value to a known depth of focal plane. The goal is then to locate, from this sampling 

of intensity variation over depth, the intensity/depth which displays the point p in-

focus. As shall be discussed, this can be done in a discrete manner (i.e. locate the 
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sample intensity/depth showing p in best focus) or a continuous manner (i.e. locate 

the intensity/depth of p in perfect focus along the continuous scales of 

intensity/depth). 

 

 

5.2 The Proposed Method 

 

In this section the process of the proposed method is introduced and discussed in 

detail. The theory behind the method is given, and to give the discussion some 

practical focus, the method is explained using a real test dataset, which is the set of 

images captured of the test scene used by the method to produce results in Chapter 6. 

 

 

5.2.1 Data Collection Stage 

 

 

5.2.1.1 Image Capture 

 

In line with much of the related work in the literature, this technique assumes the use 

of a single digital camera at a fixed position. It may seem that these are arbitrary 

limitations, as using a multi-camera, multi-angle setup is likely to improve results by 

increasing the volume and redundancy of data. However it is important to emphasise 

that a general goal in any depth-acquisition method is to minimise the number of input 

images with respect to accuracy of results. The method can be extended to a multi-

camera, multi-angle hardware implementation in an application by simple repetition. 

 

The specifics of the hardware setup are as follows. 

 

 Camera Model 

The digital camera used for capture is assumed to be a conventional digital camera, 

i.e. it offers manual control over focus setting, aperture size and exposure time. It is 

beneficial for the camera to have a relatively large image resolution, as though in 

principle the method will apply to any resolution of image, in practice a large image 

resolution and therefore depth-map resolution can be advantageous.  

To capture the test dataset, the camera model used was the Olympus Camedia 

E20-p, which fulfils the manual control requirements and has a 5 megapixel image 

resolution. 

 

 Initial Camera Settings 

In the proposed method, the focus setting is the only variable camera parameter. 

However, the initial settings chosen for aperture and exposure time must be 

considered in order to optimise the input data for the depth-mapping stage. 

 In order to minimise depth-of-field, as discussed in Section 3.2.2, the 

maximum available aperture size should be used. By minimising depth-of-field, we 

allow for the maximum depth resolution available with the camera in use. The 

aperture size used to capture the test dataset is f/2.0. 

 An equally important setting for capturing optimal data is the exposure time. 

In order to maximise the variance in intensity of a scene point over different focus 

settings, which is important to minimise the obscuring effects of noise on the input 

data, the exposure time must be correct.  If it is too low then image noise will be very 
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obscuring since the variance of intensity will be low. If it is too high the pixels may be 

too saturated; another form of noise which will obscure the image data. 

 

 Scene 

The test scene used in this work is a synthetic scene, designed specifically for the 

purpose of a proof-of-concept of the method, and qualitatively and quantitatively 

comparing the accuracy of results. There is an intrinsic issue in evaluating the 

accuracy of depth-maps of any test scene, which is that a ground-truth image (i.e. a 

‘true’ depth-map) of the scene is required. For complex scenes this is often 

impractical to obtain, as specialised hardware such as 3D laser scanners may be 

required. Therefore, the test scene in this work, the images of which make up the test 

dataset, is constructed in such a way as to avoid this issue whilst still providing a 

multi-depth scene of adequate intensity complexity to obtain meaningful results. 

 The scene consists of two books (with flat surfaces) covered with two real 

images. The faces of the books are parallel to the front of the camera, and the first is 

placed at 0.400m from the camera and the second at 0.600m from the camera. A 

millimetre scale was used to manually measure the distances, and so the estimated 

error on the distances is ±0.001mm. The books overlap, therefore the overall setup of 

the test scene is two complex-textured (but flat-surfaced) images on two different 

planes parallel to the front of the camera. 

 Figure 5.2.1.1.1 displays the arrangement of the two books and the position of 

the camera used to capture the test dataset from a top down perspective. 

 

 

 
Figure 5.2.1.1.1 Shows the top-down arrangement of the camera and the scene in the test dataset. 

 

 

 Focus Settings 

The focus setting on the Olympus Camedia E20p is controlled by an electric motor, 

and can be changed only in discrete increments. The focus range of the camera is 

known (20cm to infinity) and a scale of ‘focus setting notches’ to distance of the focal 

plane has been calculated empirically to form a correspondence between focus setting 

and focal plane depth. With certain camera lenses, a highly accurate scale may be 

provided by the manufacturer, so this empirical estimation stage is unnecessary. The 

empirically estimated scale for the Olympus Camedia E20p is given in Table 

5.2.1.1.2. In Figure 5.2.1.1.3, the plot of focus setting against depth is shown, 

illustrating how the increase in depth of the focal plane accelerates as focus setting 

increases. This relationship will be recognisable to photographers as the focus ranging 

from some initial depth to ‘infinity’ using a finite focus setting scale. 
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Image Index Focus Setting (notches) Depth (mm) 

1 30 289 

2 32 297 

3 34 305 

4 36 312 

5 38 320 

6 40 331 

7 42 342 

8 44 353 

9 46 364 

10 48 380 

11 50 400 

12 52 415 

13 54 433 

14 56 445 

15 58 458 

16 60 470 

17 62 490 

18 64 510 

19 66 533 

20 68 558 

21 70 580 

22 72 600 

23 74 630 

24 76 665 

25 78 720 

26 80 770 

27 82 820 

28 84 870 

29 86 920 

30 88 970 

31 90 1020 

32 92 1070 

 
Table 5.2.1.1.2 Empirically estimated scale for the test dataset relating image index, corresponding focus setting 

value (in discrete notches) and depth from camera of focal plane. 
 

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Image Index

F
o
c
a
l 
P

la
n
e
 D

e
p
th

 (
m

m
)

 
 

Figure 5.2.1.1.3 Plot showing the relationship given between image index and depth for the test dataset, as given 
by the scale in Table 1. 
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For the test dataset, it was decided to take 32 samples of focal plane depth; i.e. 32 

different focus settings were used. The focal plane begins in front of the first book, 

and is moved forward by advancing the focus setting by 2 notches at a time. The final 

position of the focal plane is behind the second book, so that the test dataset is global. 

To re-emphasise the point, the focus setting is known for each image, and so by 

extension the depth of the focal plane for each image is known, by using the 

empirically estimated scale given in Table 5.2.1.1.2. 
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 All images from the test dataset 

 

 

 
Figure 5.2.1.1.4 The 32 images in the test dataset, sequence is in rows from left to right, top to bottom. The first 

plane comes into best focus in image 11 (highlighted in yellow) and the second plane comes into best focus in 
image 22 (also highlighted in yellow).  
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5.2.1.2 Image Alignment 

 

 

 Geometric Alignment 

As previously mentioned, an essential feature of the input image set is that a given 

scene point must be projected to the same pixel in each image, i.e. that the images are 

geometrically aligned. In real camera systems, the projection of a scene point onto the 

image sensor can change in a non-linear fashion as camera parameters are changed, so 

the process of geometric alignment becomes a process of correcting these distortions.  

The main geometric distortion comes from magnification caused by changes 

in either zoom or focus settings. As we assume zoom is fixed, only the magnification 

caused by change in focus is relevant here. The magnification caused by change in 

focus is radial, and is predicted by the simple geometric optics of the thin lens model. 

This radial magnification can be modelled directly, but in practice it may be more 

accurate to link the focus setting of a particular camera system to the level of radial 

magnification empirically, in a pre-calibration stage. 

For the test dataset, using the Olympus Camedia E20p camera, the issue of 

radial magnification as focus setting is changed is conveniently sidestepped. The lens 

in this camera system is optically configured so that the magnification effect of focus 

change is countered and the projection of the scene remains constant as focus setting 

is changed. However, in other camera systems this may not be the case, and so for 

generality it is important to mention that an explicit magnification correction may be 

required.  

Another geometric distortion to consider is shift parallel to the image plane. 

This shift can be caused by movement of the camera unit or movement in the scene. 

Furthermore, in very high-resolution images, a stochastic shift may be introduced by 

the mechanical movements of the camera lens as settings are changed [21, 22, 23].  

Clearly, the effects of this shift are far easier to factor out than those of radial 

magnification. Using the test dataset, it is sufficient to ignore such a shift by assuming 

that both the camera and scene were static over the time interval where the input 

images are captured (a reasonable assumption in many practical photography 

situations), and the resolution of the images at 5 megapixels is low enough to avoid 

the tiny stochastic shift due to mechanical movements in the camera. 

 

 Radiometric Alignment 

Assuming the set of images are geometrically aligned, a scene point is represented by 

the variation of the intensity value of a certain pixel across the set of input images. As 

previously mentioned, this variation of intensity is the basis on which the in-focus 

intensity and therefore the in-focus image will be identified by the proposed method. 

However, this variation of intensity may become distorted by additional factors which 

‘weight’ each successive intensity value between images. The process of radiometric 

alignment is the process of correcting for these additional factors so that the 

relationship between focal plane and intensity can be examined directly. 

 As with geometric distortions, changing camera parameters can cause 

radiometric distortions in a predictable way. The main parameters that cause 

radiometric distortion as they are changed are the aperture and exposure time, 

however in the proposed method these parameters are fixed, which is indeed an 

advantage. The one variable parameter, focus setting, can be said to have a 

radiometric effect because of the inverse-squared attenuation of light rays with the 
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distance travelled to the image sensor. However in general this effect is so subtle that 

it can be ignored in practice, and in the test dataset the distances involved are certainly 

low enough to disregard this effect.  

 A radiometric distortion which is far more applicable to the proposed method 

is global lighting shift. In a typical scene in practice, it is highly likely that ambient 

light levels are not constant over the time interval where the set of input images is 

captured. Indeed, even for the test dataset which was captured under controlled 

lighting conditions, this assumption cannot be made because of the unpredictable 

variation in intensity of electric lights. 

 Fortunately, normalising the global lighting level over a set of images is 

relatively straightforward. Under the assumption that the lighting is truly ambient and 

global, it can be modelled as a multiplicative factor for each input image. Then, all the 

input images can be normalised such that they have the same global lighting factor as 

some reference image, so that the effect of global lighting shift between the input 

images is corrected for, and the images are radiometrically aligned. 

 

 

5.2.2 Depth-Mapping Stage 

 

 

5.2.2.1 Input Data 

 

The data collection stage deals with the capture and alignment of the set of input 

images. When this stage is complete, the set of input images Φ is suitable as input to 

the depth-mapping stage. Before detailing the specifics of the depth-mapping process 

using Φ as input, it will be useful to clarify some properties of Φ on which the entire 

process is based. 

 

 Φ is the set of input images, of size N, where Φi (1 ≤ i ≤ N) refers to the i
th

 

image. 

 All Φi (i = 1…N) have the same resolution of X by Y pixels. 

 Φ has been geometrically aligned, therefore Φi(x,y), the pixel at (x,y) in Φi, 

displays the centre of the same scene point for i = 1…N. The scene can therefore 

be described in terms of an ‘image plane’, where Φi(x,y) (i = 1…N) displays the 

scene point at (x,y) on this image plane, which we refer to as P(x,y). 

 The depth of the focal plane in any Φi is known in advance (from the image 

capture stage). 

 The depth of the focal plane increases monotonically from Φi … ΦN, starting at 

depth d1 in Φi and finishing at depth d2 in ΦN, where (d2 - d1) is a global depth 

interval which contains the entire scene, i.e. the depth of any P(x,y) is within this 

depth interval. 

 Let the vector I(x,y), where I(x,y)i = Φi(x,y), i = 1…N describe the intensity 

variation of the scene point P(x,y) as the depth of the focal plane increases from 

image Φi … ΦN. Since we assume that for each i the depth of the focal plane is 

known, I(x,y) actually gives a sample of intensity/depth pairs. 

 

With the above definitions in place, it is straightforward to see how the input data is 

separated per-pixel. The vector I(x,y) takes the intensity of the same single pixel (x,y) 

from each input image, and this provides input data for one unique scene point. This 

one-to-one relationship between the vector I(x,y) and the corresponding scene point 
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P(x,y) is an important feature of the proposed method. As should be expected, the 

method will process each vector I(x,y) independently to find the depth of P(x,y) to 

give a depth-map of resolution XY, the same as the image resolution.  

 

 

5.2.2.2 Intensity and Focal Plane Depth 

 

As indicated, the proposed method will infer the depth of each sampled scene point 

P(x,y) in the image plane, using the variation in intensity of P(x,y) as the depth of the 

focal plane moves from the front to the back of the scene. The intensity/depth samples 

are given by I(x,y). The process is defined for one individual point, with the 

assumption that it can be repeated for all points (or indeed for as many points as are 

required) to output a depth-map of the scene. 

 As indicated in the overview of the method in the introduction to this chapter, 

the depth-map is computed by locating from the intensity/depth sampling given by 

I(x,y), the intensity/depth where P(x,y) is in-focus. In order to locate this point, it is 

necessary to model the relationship between the intensity of P(x,y) and the focal plane 

depth. This modelling is based on the predictions of the optical model of the camera 

system outlined in Chapter 2. 

Let d indicate the depth of P(x,y), and for simplicity let d be exactly equal to 

the focal plane depth in the image Φj (1 ≤ j ≤ N). This means that intensity I(x,y)j 

describes P(x,y) in-focus. From the optical model of the camera system, P(x,y) will be 

blurred in the images Φi (i ≠ j), and the blur magnitude (diameter) will be greater the 

further away the focal plane depth of a given image Φi is from depth d. According to 

the optical model which is derived from the thin lens model, the PSF of the blur of 

P(x,y) should be identical as the focal plane moves the same distance away from 

depth d in either direction, towards or away from the camera. Therefore, on a plot of 

I(x,y), i.e. a plot of intensity of P(x,y) against focal plane depth, there should be 

symmetry around the depth where P(x,y) is in-focus.  

Though the symmetry in the data is the key feature of the relationship between 

intensity and focal plane depth, the optical model of the camera system also predicts 

other features of the relationship. For example, it predicts that as we move away from 

the focal plane depth where a point P(x,y) is in-focus, the intensity should represent an 

average intensity of the increasingly large region of blur with P(x,y) at the centre. In 

real scenes, as we increase the size of a region around a certain point, we incorporate 

a series of increasing-sized local ‘features’. Therefore as the region of blur expands it 

should incorporate a series of increasing-sized local features. The intensity should 

therefore keep converging to the average intensity of each local feature, resulting in 

an intensity/depth relationship which converges to a set of intermediary values, which 

themselves converge to some global value (where the extreme of ‘global’ is the 

average intensity of the whole scene). 

Of course, it is acknowledged that the optical model of camera system used is 

very simplistic and idealised, and perfect symmetry around the in-focus depth will not 

generally occur when using real lenses. However, the central hypothesis of the 

proposed method is that in practice, the optics of the camera system as predicted by 

the model will have a sufficiently greater effect on the intensity/depth variation than 

unaccounted-for optical effects, noise, and inaccuracies in image capture and 

alignment, that it will be possible to recognise the pattern of the relationship described 

above in real data and use it to locate the depth that a scene point is in-focus. 
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In practice, this pattern is indeed visible. What we typically see is a fast 

convergence to a particular intensity, which can be regarded as global. In some cases, 

the repeated re-convergence to more local average intensities is also recognisable, but 

this is often very subtle. Importantly, this typically results in a sharp local minimum 

or maximum point at the in-focus focal plane depth. Figure 5.2.2.2.1 shows plots of 

the samples of intensity at different focal plane depths for four randomly selected 

scene points taken from the test dataset. As is clear from all four plots, the 

relationship predicted above is present in real data, and can therefore provide 

assistance in the search for the depth where a scene point is in-focus. 
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Figure 5.2.2.2.1 Four randomly selected scene points from the test dataset, plotting I(x,y) against focal plane depth 
given in Table 5.2.1.1.2. (a) A straightforward sharp peak at in-focus depth (b) Trough trend with local peak at in-

focus depth (c) peak trend with local trough at in-focus depth (d) Straightforward broad peak at in-focus depth. 
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When interpreting Figure 5.2.2.2.1 it is important to remember that the test dataset 

contains only two depth levels: 400mm and 600mm. (a) and (b) show points from the 

first depth level at 400mm and (c) and (d) show points from the second depth level at 

600mm. 

 Immediately obvious from all four plots in Figure 5.2.2.2.1 is evidence 

supporting the symmetry hypothesis. There is some noise, and potentially some 

obscuring factors, for example in (c) and (d) where the intensity converged to close to 

the camera appears to be slightly lower than the intensity converged to away from the 

camera. However, the overriding effect is one of symmetry, as predicted by the 

optical model. 

 Another effect which can be observed in the plots is the repeated convergence 

to a local average intensity. In (a), the convergence to the global intensity value is 

rapid, and the effect is not clear. However, in (b) and (c), the effect is clearly 

displayed in the respective local deviations from the general trend of the intensity 

variation around the in-focus depth. In (d) the convergence seems relatively smooth, 

and this may be due to a lack of highly localised features near to that particular scene 

point, so that the blur averages the intensity smoothly towards the global average. 

 

 

5.2.3 Metrics for Finding the In-Focus Depth 

 

Having predicted the features of the intensity/depth relationship, the goal is to develop 

metrics which can be used to identify the in-focus depth by identifying those features 

in real data. The two metrics developed in this work are discussed in the following 

two sections. 

 

 

5.2.3.1 Metric 1 

 

The first metric developed, Metric 1, is a classic Depth-From-Focus search. That is, 

from the N samples of intensity of a point P(x,y) given in I(x,y), find the intensity 

which represents P(x,y) most in-focus. In a broader sense, this means that we are 

searching for the input image which shows P(x,y) in the best focus. Because of this, 

the depth resolution of the depth-map will match the depth resolution of the input 

images. Therefore this metric is best suited for applications where this limit on depth 

resolution is acceptable, for example, Image Processing applications which only 

require information about the input images themselves. 

 Metric 1 is based on the hypothesised relationship between intensity and focal 

plane depth discussed in a previous section. Using the samples of intensity/depth for a 

point P(x,y) given by I(x,y), the aim is to locate the intensity/depth sample which 

shows P(x,y) in best focus. Because only the samples in I(x,y) are being searched 

over, the process is greatly simplified. In effect, we are searching for the point which 

is closest to the ‘true’ in-focus intensity/depth. 

 The task of searching for such a point can be performed by ranking each 

‘candidate’ sample using a weighted sum of three factors, which quantify the features 

that the in-focus sample should have, as predicted by the optical model. The factors 

used in Metric 1 can be summarised as symmetry around the candidate sample, sum 

of rates of change of intensity around the candidate sample, and distance of the 

candidate sample from the mean intensity. Importantly, all three factors are based on 
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the relationship of a candidate to the other samples from the set, as should be expected 

since the hypothesised relationship between intensity and depth of focal plane is being 

evaluated.  

Where the term ‘around the candidate’ is used in the summary of the first and 

second factors, this refers to those samples adjacent to the candidate sample in the 

plot of the sample set, within a certain interval width either side of the candidate. This 

interval width, an integer, is a parameter used in the ranking function and literally 

refers to the number of samples to the left, and right, respectively, on the plot of the 

sample set to consider when evaluating the candidate on the first and second factors. 

Though each factor has a basis in the optical model used in this work, the 

method of numerically evaluating the factor take some influence from empirical 

observation of data, to better emphasise the features seen in ‘best-focus’ samples in 

practice. Below the method of calculating each factor is explained, with the 

explanations taking the geometrical perspective of the sample set as a plot of intensity 

against depth of focal plane, for purposes of clarity. Finally the entire ranking 

function is presented. 

 

 Symmetry around the Candidate Sample 

 

The optical model predicts that the effect of the defocus blur on intensity should be 

identical when the plane of focus is at the same distance either side of a scene point, 

causing a global bilateral symmetry in the data with the line of symmetry at the in-

focus focal plane depth (see Chapter 2). This symmetry is straightforward to evaluate 

by considering the differences in intensity between samples within the interval to the 

left of the candidate, and the estimated intensity (calculated by interpolation between 

the two nearest samples) at the same depth on the right side of the candidate. This is 

clarified for an example interval width of 3 in Figure 5.2.3.1.1. 

 

 

 
Figure 5.2.3.1.1 Showing how symmetry factor is calculated for an interval width of 3, by taking differences 

between the intensity of a sample to the left of the candidate and its corresponding intensity at the same depth to 
the right of the candidate, which is estimated by interpolation between the two samples either side. 

 

 

After taking the difference for each of the i samples within the interval of width i, a 

total value for symmetry, S, is then calculated by summing each difference. Clearly as 

S increases there is less symmetry around the candidate, so in the ranking function the 

inverse of S is used so that the symmetry increases as this inverse value increases. 
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 Sum of gradients around the Candidate Sample 

 

The optical model predicts that the rate of change of intensity with respect to depth of 

focal plane, i.e. the gradients between samples on the plot, is likely to be greater on 

average for samples closer to the in-focus focal plane depth. Briefly, this is because 

when the focal plane depth is closer to the in-focus focal plane depth d, the sample 

intensity is an average of a scene region with a smaller radius, which will generally be 

an increasingly local feature (with the most local feature being the scene point itself at 

focal plane depth d). This intensity is therefore likely to change rapidly near to d, 

whereas further from d it is likely to more smoothly converge to a more global 

average, resulting in greater rate of change of intensity with respect to focal plane 

depth closer to the in-focus focal plane depth.  

 In practice, the most straightforward way to calculate a numerical value 

representing this factor is to sum the absolute magnitude of the gradients between 

each successive sample within the interval, on both sides of the candidate, to produce 

a value G for this factor. This effectively takes a sampling of the rates of change of 

intensity around the candidate in the interval area, and emphasises those candidates 

which show large differences in intensity between successive samples within this 

region. As the value of G increases, it indicates that the candidate is more likely to be 

the best-focus sample. 

The decision to use the sum of absolute gradient magnitude, with no specific 

weighting depending on the proximity of each sample to the candidate, is based on 

analysis of the gradients in real data. Although the optical model predicts that rate of 

change will generally be greater towards the in-focus focal plane depth, there is no 

obvious way to predict or even generalise the pattern of gradients around the 

candidate for individual samples. Therefore, evaluating the entire interval area only 

on gradient magnitude is judged, empirically, to be the best general way to evaluate 

the prediction of the optical model in real sample sets. Note there is no requirement to 

make the region evaluated equal on both sides of the candidate, as with the first 

factor, as rate of change (and not specific intensity values) is being evaluated, and this 

calculation is only intended as a general sampling of the region around the candidate. 

Figure 5.2.3.1.2 clarifies the explanation of the calculation of this factor, again 

for a sample interval of 3. 

 

 
Figure 5.2.3.1.2 Showing how the sum of gradients around the candidate is taken for interval 3. Each gradient 

between the successive samples is taken, giving 2i gradients for interval width i, the absolute magnitude of these 
values is summed to give a value G. 

 
 



 68 

 Difference from Mean 

 

This factor is closely related to the previous factor, but isolates the evaluation of the 

absolute difference in intensity between a candidate sample point and the mean 

intensity of all sample points, to produce a value D. The optical model predicts that as 

the focal plane moves away from the in-focus depth, the intensity value of the 

samples will converge to some global average intensity I. Since the mean will 

therefore be biased towards I, it implies that the best-focus sample, which is more 

likely to have an intensity which differs significantly from I relative to the other 

samples, will generally be among the samples with intensity furthest from the mean. 

 Of course, the model does not explicitly predict that the best-focus sample will 

have the greatest distance from this mean. On the contrary, it is not forbidden by the 

model for the in-focus intensity to be equal to the mean intensity, even where the 

intensity varies arbitrarily at other focal plane depths. However, it can be seen 

empirically that in general, a significant difference from the mean intensity, relative to 

other samples, is a good indication that a sample is the best-focus sample, therefore in 

combination with the previous two factors it can be used effectively to rank a 

candidate sample. 

 

 Ranking Function 

 

Having introduced how the individual factors are calculated, the ranking function is a 

straightforward weighted sum of these, where S(i) is the symmetry value, G(i) is the 

sum of gradients value, and D is the difference from mean intensity for a candidate 

sample. The parameter i is the interval width that the calculations of S(i) and G(i) are 

based on. 

 

DciGb
iS

a
Rank  )(

)(
 

(Eqn 5.2.3.1.3) 

 

The ranking function will simply be maximised on every candidate sample from the 

sample set, to find the estimated best-focus sample from that set for each scene point. 

 

To conclude the discussion of Metric 1, the weighting parameters {a, b, c} and the 

interval parameter i will be explained in more detail: 

  

 The weighting parameters {a, b, c} will be empirically determined, and will be 

constant for any given implementation of Metric 1. Their purpose is to 

simultaneously normalise and weight the influence of each factor. Each factor has 

been quantified on a scale such that the likelihood of the candidate being the best-

focus sample either increases or decreases monotonically as the value of the factor 

increases. However, with respect to each other the scales of the factors are 

somewhat arbitrary, and so require normalisation before being used together to 

give the rank. Even assuming the scales are normalised, however, the factors still 

need to be weighted according to their respective influence on the rank. Although 

each factor has basis in the optical model, there is no obvious way to predict from 

the model the influence each should have on the overall ranking in practice. The 

most straightforward way to achieve both normalisation and appropriate 
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weighting of the three factors is by incorporating both into the three weighting 

parameters {a, b, c} and calibrating these empirically for a set interval width. 

 

 The interval width i is an important parameter. The integer value of i is essentially 

a trade-off between basing the calculation of factors S(i) and G(i) on more data as 

the value of i increases, thereby giving these values more data support and greater 

accuracy, but at the same time losing two potential candidate samples from either 

end of the sample set every time i is increased by 1. This happens because no 

candidate points can be considered within a distance i of the boundary (i.e. the 

first and last element) of the sample set, as if so there would not be an equal 

interval width on both sides of the candidate, which is essential to the calculation 

of both S(i) and G(i). The value of i producing the best results can be determined 

empirically, as will be the case in the results of Metric 1 presented in Chapter 6. 

 

 

5.2.3.2 Metric 2 

 

The second metric, Metric 2, takes a different approach to locating the intensity/depth 

where a point P(x,y) is in-focus. Here, the goal is to locate this intensity/depth on a 

continuous scale of intensity/depth, again using I(x,y) as input. In other words, this 

metric takes I(x,y) as a set of intensity/depth samples, assuming that these samples are 

taken from a function describing the relationship between intensity and focal plane 

depth. Therefore, unlike in Metric 1, the true in-focus intensity/depth point is searched 

for, which may be between samples in I(x,y). 

 Metric 2 therefore makes no assumptions about the input images. In theory, 

none of the input images could show P(x,y) in perfect or even good focus, but Metric 

2 could still identify the depth of focal plane where P(x,y) should be in-focus. Because 

of this, it is imprecise to describe Metric 2 as a purely DFF approach; to some extent 

it is a hybrid of DFF and DFD as the in-focus depth is not estimated by a simple 

search over the input images to find the image of best focus, but rather the 

relationship between depth and blur is analysed to infer the depth of focus, even 

though blur is not directly modelled.  

Metric 2 is more suitable for general depth-mapping applications, where we 

would like to infer the depth of each point on a continuous scale and not limit the 

depth resolution to that of the image set. 

 The basis of Metric 2 is identical to that of Metric 1, in that the same 

relationship between intensity and focal plane depth, predicted by the optical model of 

the camera system and discussed in Chapter 3, is assumed. Clearly, we would like to 

model this relationship using a function relating intensity to depth of focal plane, 

where parameters of this function describe (at least) the depth of the in-focus focal 

plane. Then, by fitting the function to the data in I(x,y), we can take the best-fit 

parameter as the in-focus depth for the point P(x,y). 

 The function chosen to describe the relationship between intensity and focal 

plane depth was a Gaussian-style function, given by Eqn 5.2.3.2.1. 
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The parameter we are most interested in recovering by fitting the function is the in-

focus depth of focal plane, i.e. df in Eqn 5.2.3.2.1. As discussed in Chapter 3, the 

optical model predicts that this depth should be at the point of bilateral symmetry in 

the data. Furthermore, the model predicts that the intensity at depths away from this 

point should converge to some global value. Eqn 5.2.3.2.1 is a very simple model 

which incorporates both of these features of the relationship between intensity and 

focal plane depth.  

It is accepted that this is too simple a model to describe precisely the 

relationship between intensity and focal plane depth, as in many cases we are likely to 

see not a single convergence to a global value, but a repeated convergence to 

intermediate intensity values, as discussed earlier in this chapter. However, here our 

only concern is the recovery of the in-focus depth. If the precise intensity value at this 

depth were required, then a more comprehensive model would be advantageous. Such 

a model could be a linear combination of Gaussian-style functions with a common 

mean. Here though, it is important to emphasise that Eqn 5.2.3.2.1 provides a model 

of the intensity-depth relationship which is sufficient for the purpose of recovering the 

in-focus depth, and a more comprehensive model would be more computationally 

expensive to fit to the data in practice. 

In Figure 5.2.3.2.2 below, the fitting of Eqn 5.2.3.2.1, and the inferred depth 

of focus, are shown for the four random scene points in the test dataset shown in 

Figure 5.2.2.2.1. 
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(d) 

 
 

Figure 5.2.3.2.2 Eqn 5.2.3.2.1 fitted to the data from the scene points I(x,y) from four random scene points shown 
previously in Figure 5.2.2.2.1. The dotted line in each plot shows the point of symmetry, i.e. the inferred in-focus 

depth, which is the parameter df. 
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Figure 5.2.3.2.2 illustrates empirically the validity of the claim that fitting Eqn 

5.2.3.2.1 to the samples of intensity/depth from a scene point can find the point of 

symmetry in the data. The symmetry point is given by the best-fit value of the 

parameter df, shown as a dotted line. 

 It may seem obvious to point out that a much simpler iterative bilateral 

symmetry search could be employed to solve the problem of finding the symmetry 

point on the ‘continuous’ depth scale (continuous down to a small grain size 

resolution). However, such a simple approach would have difficulties which are dealt 

with by fitting Eqn 5.2.3.2.1 to the data using an optimisation algorithm (such as trust 

region).  

Firstly, a simple symmetry search could only consider the differences between 

points within a certain distance either side of a candidate symmetry point, meaning 

that boundary points would be less supported by data than points in the centre of the 

depth scale. There is no straightforward metric for comparing the confidence in the 

symmetry value based on very local data as opposed to more global data. Secondly, a 

simple symmetry search would not necessarily deal with slight skew and noise in the 

data in the same way that fitting Eqn 5.2.3.2.1 does. It might be possible to control 

this problem using tactics such as smoothing the data, and weighting the symmetry of 

points closer to the candidate symmetry point as more relevant, but again there are no 

obvious general rules about precisely how this should be done.  

Fitting Eqn 5.2.3.2.1 to the data deals with both these problems automatically, 

to give a much more general solution to the problem. Because the actual function 

relating intensity to depth of focal plane is modelled (and not just the symmetry aspect 

of the relationship), all data can be taken into account for any candidate point, and any 

skew or noise in the data is dealt with automatically as the function is fitted to the 

global data, and the effect of local anomalies is therefore reduced. 

 

 

5.3 Theoretical Strengths / Limitations of the Proposed Method 

 

To conclude this chapter, the theoretical strengths and limitations of the proposed 

method will be discussed, in the context of the input hardware setup. In other words, 

the strengths and limitations of the method compared to other approaches with very 

similar input hardware setups. Note the strengths and limitations of the general depth 

acquisition approach, i.e. using multiple images captured with a conventional camera 

at a fixed position, are briefly discussed in Chapter 1. 

 A discussion of the practical strengths and limitations of the proposed method 

based on results using test data is given in Chapter 6. 

 

 

5.3.1 Strengths 

 

 No Direct Blur Modelling 

The typical traditional approach to depth acquisition from images is to model defocus 

blur in an attempt to recover its magnitude, and hence the depth of the blurred point 

(see Chapter 2). However, directly modelling defocus blur caused by a camera system 

is a very difficult problem. General models of defocus blur are, by definition, loose 

estimations of the true blur model which varies from camera to camera, and 

specialised models for a particular camera system often require cumbersome 

modifications or pre-calibration to obtain an empirical model. 
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 On the other hand, approaches which avoid directly modelling blur typically 

do so by searching only for characteristics of focus in images. These naïve pure DFF 

approaches, however, can only infer depth at the resolution which the input images 

cover. Clearly, this is not an adequate general solution to the problem of depth 

acquisition from images. 

 There is, however, a third class of approach which incorporates the 

relationship between defocus blur and depth, whilst avoiding the direct modelling of 

the blur. The proposed method takes this approach by analysing the change in 

intensity at the centre of the region of blur over a global range of focus settings. In 

other words, the effect of the blur in the image is utilised in depth acquisition, without 

having to directly infer the cause of the defocus blur effect (i.e. the magnitude of the 

blur) using a blur model. 

 

 Low Number of Input Images 

In the proposed method, the image set must span a global range of focus settings such 

that the focal plane moves from the front to the back of the scene. However, there is 

no specific requirement of the resolution or even the spacing of the focal plane of 

each image over this range. In addition, only the focus setting parameter is varied, i.e. 

aperture size and zoom are kept constant; therefore there is only one image per focal 

plane. Compared to other approaches which require an image set with a global focal 

plane range, the proposed method requires a low number of input images. 

 For example, in naïve DFF methods the depth resolution is determined by the 

resolution of the focal plane samples across the range, i.e. the number of images. 

Though this is true of the proposed method using Metric 1, Metric 2 can theoretically 

be applied to image sets where no points are shown in-focus in any particular image. 

The problem of depth resolution being improved by the number of images also occurs 

in more advanced techniques [21, 22, 23]. The approach used in [21, 22, 23] also has 

the limitation of requiring several images per focal plane, as aperture size is also 

varied to provide the necessary input data. 

 

 Practicality of Image Capture 

The practical ease of image capture is a very important advantage of the proposed 

method. As mentioned above, only the depth of the focal plane is varied across the 

input image set and all other camera parameters such as zoom and aperture size are 

constant. In addition, there is no need to modify the camera system, and any pre-

calibration of the camera in use is minimal. This means that the method can be readily 

applied in practice using existing hardware with very little difficulty. 

 

 Simple Image Processing 

Because the proposed method works in a per-pixel manner, it avoids many of the 

practical Image Processing difficulties associated with techniques which use 

windowing to evaluate focus/blur in the input images. For example, there are no 

difficulties with image boundaries, and the problem is readily parallelisable with no 

data redundancy. This is particularly applicable when working with high-resolution 

images/depth-maps. 
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5.3.2 Limitations 

 

 Scene/Camera System Assumptions 

One major limitation of the proposed method is that is relies on fairly strong 

assumptions about both the scene and the camera system in use. 

As previously highlighted, the optical model of the camera system on with the 

theoretical aspects of the proposed method are based is very simplistic. However, it is 

claimed that in reasonable practical situations, the optics predicted by this model will 

be the overwhelmingly dominant factor in the true optics of the camera system, so in 

practice this should not present a problem. 

The scene assumptions are also very specific. The optics on which the method 

is based require that the scene be largely fronto-parallel, and suitably complex in 

intensity variation (i.e. a flat-colour surface such as a blackboard would not be 

suitable). There are also very strong assumptions about the local environment of the 

scene. For example, the scene is assumed to be completely static with fixed non-

ambient lighting (ambient lighting is allowed to vary) over the time interval of image 

capture. In practice these assumptions simply translate to limitations on the 

application of the proposed method. However, it is claimed here that there are many 

application areas, particularly in natural scenes where there is a fairly static local 

environment, where these assumptions are reasonable. 

 

 Susceptibility to Noise 

Since the proposed method relies on analysis of intensity variation as blur changes, 

the method is not very robust to noise. Noise would become a particular problem if 

ambient lighting conditions were not ideal (i.e. too low or too bright) or changed over 

the exposure interval (i.e. during image capture) or rapidly between the captures of 

successive images in the input set. Though as previously discussed the global lighting 

over the image set can be normalised, it must be recognised that in a typical practical 

situation this is likely to add noise to the input data. 

 The impact of noise, however, is mainly on the raw depth-map produced by 

the method. Since this method produces high-resolution depth-maps, it is likely that 

post-processing of the depth-map could reduce the impact of anomalies due to random 

noise, assuming that the majority of scene points are not significantly affected by 

noise. 
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Chapter 6 

 
Results, Analysis and Evaluation 

 
 

In this chapter, results of the proposed method using real data are presented. Firstly, 

the method is tested on a test scene. This provides both proof of concept for the 

method, and the basis for both quantitative and qualitative analysis of results. 

Secondly, results of the method when applied to a more natural test scene used in [21, 

22, 23] are presented, and a comparison is given between these results and the results 

from [21, 22, 23]. Finally, in context of all the presented results, the strengths and 

limitations of the method are evaluated.  

 

 

6.1 Results of the Proposed Method using the Test Scene 

 

 

6.1.1 Test Data 

 

As discussed in Chapter 5, the proposed method is tested using an artificial test scene 

with two depth levels. A full overview is given in Chapter 5, but as a brief re-

introduction, this test scene is intentionally simple in structure so that the accuracy of 

the depth-maps produced by the method is straightforward to verify, but the scene 

simulates the variance of intensity in a ‘natural’ scene by using photographs of natural 

scenes at both levels, so in this sense the two depth levels cannot be inferred trivially.  

Before presenting the results, two specific points about the use of the test data 

in producing these results must be specified: 

  

 Firstly, the raw images of the test scene are of 5 megapixel resolution. Rather than 

use this entire image area, it was decided to use only a patch of 1024 by 1024 

pixels at the centre of each image. This lower resolution allows for a lower 

running time and smaller input and output file sizes, allowing more a practical 

testing framework. Generally a greater volume of test data will produce more 

statistically meaningful results. However in the case of this test scene, this is not 

particularly true, since there are only two depth levels meeting at roughly the 

centre of the scene, therefore a 1 megapixel patch taken from the centre of the 

image area is a very good statistical sample of the entire 5 megapixel image area. 

Moreover, as the proposed method is per-pixel, a patch can be taken as a sample 

of the entire image area without introducing image processing obstacles. 

 

 Secondly, the test data is converted from RGB to greyscale. The conversion from 

the three channels R, G, and B to a single greyscale intensity is done using the 

following formula: 

 

 

I = 0.2989 * R + 0.5870 * G + 0.1140 * B 

(Eqn 6.1.1.1) 
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Since the proposed method looks at intensity, conversion to greyscale is a 

convenient way to acquire a single intensity value from the separate intensities of the 

R, G and B channels. Again, another way of achieving this would be to evaluate the 

three channels separately and average the results, but for a more practical testing 

framework it was decided to do this averaging of the channels prior to running the 

method. 

 

 

6.1.2 Metric 1 

 

To give a brief re-introduction, Metric 1 is designed to produce a discrete depth-map 

where each scene point (pixel) is given a depth index referring to the image where 

that point is judged to be most in-focus. For a detailed discussion of Metric 1 see 

Chapter 5. 

 Since Metric 1 will produce a discrete, relative depth-map of the test scene, it 

is relatively straightforward to analyse the accuracy of the depth-map quantitatively, 

as the correctly focused image for each of the two levels in the test scene is obvious 

from observation. Specifically, in terms of index of the 32-image test set, the first 

level is in-focus at image 11 and the second level is in-focus at image 22. The in-

focus images from the test data patch are shown in Figure 6.1.2.1.  

Figure 6.1.2.2 shows the ‘ground-truth’ image that will be used to 

quantitatively evaluate the accuracy of Metric 1. This ground-truth image was 

produced manually based on the observation of the in-focus images of the two levels 

in the test scene being 11 and 22 respectively. It is estimated that this ground-truth 

image has an error of +-5 pixels per row, meaning +-5120 pixels overall, therefore an 

estimated percentage error of +-0.488% to 3 s.f. 

 

 

 
Figure 6.1.2.1 Image 11 (left) and Image 22 (right) from the test data patch taken from the test scene. Image 11 

shows the first level in-focus, Image 22 shows the second level in-focus. 
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Figure 6.1.2.2 The manually produced ground-truth image for the test data patch of the test scene 

 

 

 

6.1.2.1 Parameters 

 

As discussed in Chapter 5, Metric 1 has three parameters which weight the 

importance of the symmetry around the candidate sample, cumulative rate of change 

around the candidate sample, and deviance of the sample from the mean intensity. 

These parameters are referred to as a, b, c respectively. 

 Parameters a, b are reliant on another parameter, the interval width i, the 

number of samples around the candidate sample with which to evaluate a and b (see 

Chapter 5). The interval width will be varied as part of the test results, and the ‘best 

values’ of the other three parameters a, b, c were chosen empirically based on a trial-

and-error calibration stage on the test scene. The values selected were a = 0.2, b = 3.0 

and c = 4.0. Since these test results are intended as a proof-of-concept, it was deemed 

that choosing these values in this way is sufficient, rather than attempting to optimise 

the results over the entire range of parameters. It is proposed, however, that if these 

parameter values produce accurate results in the test scene, they are likely to have 

general validity for any natural scene. 

 On the other hand, it was decided to evaluate the effect of the change of 

interval width i on the results of Metric 1 on this test scene, as this parameter is more 

closely related to the data itself. For different datasets which have, for example, a 

different number/frequency of focal plane depth sampling, it is likely that different 

interval widths will be appropriate to produce optimal accuracy in results because of 

the trade-off between the results being based on more data and the number of 

potential candidate samples being decreased. 

 

 

6.1.2.2 Results 

 

Figure 6.1.2.2.1 shows the depth-maps produced varying the interval width from 1 to 

10, with 10 as the maximum possible value of the interval width without the ‘true’ 

depth values at sample 11 and 21 being unable to be evaluated. Of course, there is no 

assumption that this information is known a priori, but since this is a test and 
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evaluation of Metric 1 it is not useful to evaluate with interval widths which are 

known to produce inaccurate results. Again, the parameters are set at a = 0.2 b = 3.0  

c = 4.0. Figure 6.1.2.2.1 also shows the ground-truth image for the test data patch, 

giving a visual indication of the accuracy of each depth-map. 

 

 

 
 

Figure 6.1.2.2.1 Depth maps produced by Metric 1 with a = 0.2 b = 3.0 c = 4.0, and interval width 1…10. The 

ground-truth image is also shown for visual comparison. 

 

 

From visual comparison of the depth-maps with the ground-truth image in Figure 

6.1.2.2.1, we can see that the accuracy of the depth-map appears to increase 

significantly as interval width increases. This trend can also be seen numerically by 

comparing histograms of the depth-maps (Figure 6.1.2.2.2), and comparing the 

distance and absolute error between each depth-map and the ground-truth image 

(Figure 6.1.2.2.3, Table 6.1.2.2.4, Figure 6.1.2.2.5). 
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interval width = 9                                                          interval width = 10 

 
Figure 6.1.2.2.2 Histograms of the depth-maps in Figure 6.1.2.2.1, with the correct depth levels in darker blue. 

The frequency of depth values at or close to the correct depth values increases as the interval width increases (note 
this does not show whether or not the values are correct). 

 

 

As seen from the ground-truth image, any point in the test data patch has a ‘correct’ 

depth value at either the value of 11 or 22. In the histograms in Figure 6.1.2.2.2, these 

‘correct’ values are shown in a darker shade. As mentioned, we can see visually in 

Figure 6.1.2.2.1 that as the interval width increases from 1 to 10, the accuracy of the 

depth-map (i.e. the similarity to the ground-truth image) increases. Although the 

histograms show nothing about the accuracy of individual points in the depth-maps, it 

is clear from a statistical point of view, supported by qualitative evidence in Figure 

6.1.2.2.1, that they also show this increase in accuracy. 

 In addition to this conclusion, there is other interesting information available 

in Figure 6.1.2.2.2 which is not shown directly in Figure 6.1.2.2.1. If we examine the 

distribution of the frequencies of depth values in each depth-map, as shown in the 

histograms, we see that as interval width increases the distribution of frequencies 

around the two ‘correct’ values converges to resemble two Gaussian distributions, 

with the ‘correct’ values at the mean, or the peaks, of each Gaussian. This implies that 

as interval width increases, not only is the absolute number of correct depth values 

increasing, but the incorrect results are becoming more generally accurate. 

For example with interval width = 2, in addition to the correct depth values not 

having a relatively large frequency compared to the incorrect ones, the distribution is 

quite flat, meaning that there is little or no statistical evidence to support a hypothesis 

that a significant proportion of the incorrect values are ‘almost’ correct. Therefore we 

can conclude that the depth-map is largely meaningless.  

However with interval width = 9, and in fact with widths 7, 8 and 10, we see 

two very clear Gaussian-like distributions with means at the correct values. Therefore 

statistically speaking, we can infer that the depth-maps have a high percentage of 

absolutely correct depth values, and also that any incorrect depth values are likely to 

be ‘close’ to being correct. 

The above suggests that the hypothesis of a greater interval width increasing 

depth-map accuracy is correct. To provide further support for this conclusion, the 

differences between each depth-map and the ground-truth image (Figure 6.1.2.2.3), 

and the (non-normalised) absolute error of each depth-map (Table 6.1.2.2.4) are 

given.  

Figure 6.1.2.2.5 shows the relationship between absolute error and interval 

width, and shows that the gain from increasing interval width in terms of accuracy 

decreases at an accelerating rate as interval width increases. This is an important 
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relationship to consider, as a greater interval width introduces the disadvantages of 

reducing the number of potential candidate samples, as well as (slightly) increasing 

processing time in practice. Although ‘correct’ results are possible in the test scene 

with interval width 10, this cannot be assumed in general. In practice, a lower interval 

may be chosen to incorporate a greater range of candidate samples, therefore the 

trade-off between interval width and accuracy is a very important consideration. 

 

 

 
 

Figure 6.1.2.2.3 Images of absolute distance between depth-maps and ground-truth image (black = 0, white = 31) 
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Interval Width Absolute Error From Ground Truth (non-normalised) 

1 11508963 

2 10392717 

3 8430714 

4 5572529 

5 2672702 

6 2147187 

7 1749955 

8 1527782 

9 1380541 

10 1362082 
Table 6.1.2.2.4 Absolute error between depth-maps with interval widths 1…10 and ground-truth image (error 

±0.488%). Note the error figures are not normalised or scaled; they are provided raw as a relative indication of 

change in error magnitude as interval width changes. 
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Figure 6.1.2.2.5 Plot of the error between depth-maps with interval widths 1…10 and ground-truth image (data 

from Table 6.1.2.2.4). 
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6.1.2.3 Best Depth-Map Produced by Metric 1 

 

 

 
Figure 6.1.2.3.1 The best depth-map produced by Metric 1 under the test parameters and interval width 10. Shown 
here in higher resolution so greater level of detail can be seen (actual depth-map resolution is 1024x1024 pixels).  

 

 

6.1.3 Metric 2 

 

As a brief re-introduction, Metric 2 is designed to produce a continuous, absolute 

depth-map. This means that the testing of Metric 2 is different to the testing for Metric 

1 in a subtle but important way. With Metric 1, the depth-maps produced were 

discrete and the depth values were limited to the in-focus depths in each of the input 

images. In this way, the depth-maps produced by Metric 1 could be described as 

relative, although absolute depth values can be assigned with prior knowledge of the 

in-focus depths in each image, which of course are available for the test scene.  

By contrast, the depth-maps produced by Metric 2 are continuous, i.e. the 

depth values inferred can lie between the set of in-focus depths from the input images. 

Therefore it is more natural to describe the depth values inferred by Metric 2 as 

absolute rather than relative, assuming again that the in-focus depth of each input 

image is known. This distinction introduces an important consideration when testing 

Metric 2 using the test scene. Rather than being able to assess the accuracy of results 

in a discrete, relative manner by comparing to the manually produced ground-truth as 
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for Metric 1, the accuracy of results must be assessed absolutely against the depth 

values of the ground-truth image. 

Because the ground-truth for the test scene has been manually produced by 

selecting the depth levels which are visually the most ‘in-focus’, it would be 

inappropriate to assume that the depth values of the ground-truth are completely 

accurate in terms of absolute depth. Instead, a known error must be assigned to the 

‘estimated’ ground-truth values to give the analysis of the error of the results validity. 

The error of the ground-truth has therefore been estimated simply as the sum of half 

the distance, in absolute terms, between consecutive depth levels around the two 

chosen ‘in-focus’ depth levels at image 11 and 22.  

Assuming no human error in judging which depths are the most in-focus, 

which is reasonable considering the clear visual difference between the images, the 

logic behind this choice of error region is that the ‘true’ depth level could not lie 

closer to the less focused image than the more focused image, by simple geometric 

optics, therefore the ‘halfway’ point between the in-focus image and the less focused 

image, must be the boundary of the region where the true in-focus depth lies. 

Therefore, when testing Metric 2 we will keep the same ground-truth image 

used when testing Metric 1, but calculate the percentage errors of that ground-truth 

image using the empirically obtained depth scale seen in Chapter 5. 

 

 

6.1.3.3 Error of ground-truth 

 

As discussed, the images in the input set judged manually to show the first and second 

depth levels of the test scene in best focus are, respectively, image 11 and 22. The 

empirically determined focal plane depth of these images is 400mm and 600mm, 

respectively. In Table 6.1.3.1.1 below, the empirically determined depths of focal 

plane of the images before and after the ‘best-focus’ images are given. 

 
Image Index Focus Setting (notches) Depth (mm) 

 
10 48 380 

11 50 400 

12 52 415 

 
21 70 580 

22 72 600 

23 74 630 

 
Table 6.1.3.1.1 The absolute depths of the focus settings surrounding the focus settings judged to be ‘in focus’ in 

Metric 1. 

 

 

The estimates for the absolute depth of the two depth levels are therefore estimated as 

400mm for the first depth level and 600mm for the second depth level. The 

percentage error of these estimates is calculated as half the distance between the in-

focus image focal plane and the focal plane of the consecutive image in either 

direction. These calculations are given below: 
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First Depth Level (400mm) 

 

error towards camera   =  100
400

2

380400





  =  -2.50% 

error away from camera  =  100
400

2

400415





 = +1.88% 

 

Second depth level (600mm) 

error towards camera  =  100
600

2

580600





  =  -1.67% 

error away from camera =  100
600

2

600630





 = +2.50% 

 

 

The percentage errors around both depth level estimates are of the estimates are 

similar and, in fact, quite low. This is strong evidence that, even though the ground-

truth image is manually produced, it is viable for testing the accuracy of Metric 2 over 

an absolute depth scale. As before, since the ground-truth was constructed manually, 

we will estimate that a maximum of 5 pixels per row are at the incorrect depth level at 

the boundary. This Figure is relevant when analysing the absolute error of the depth-

maps, but can easily be avoided when qualitatively analysing the error images as high 

errors at the boundary between levels can be ignored. 

 

 

6.1.3.2 Implementations of Metric 2 

 

The basic principle of Metric 2, as discussed in Chapter 5, is a model-fitting 

approach. In theory, the model fitting of Metric 2 can be fully automated without any 

guiding heuristics; however in practice the use of heuristics is likely to improve 

results. To investigate this proposition, the results from two different implementations 

of Metric 2 are evaluated. 

The first uses no heuristic, selecting initial parameters for the model fitting 

randomly. However, the second follows the heuristic of keeping the initial parameters 

equal to the fitted parameters of the previously evaluated neighbouring pixel, where 

we begin evaluating the top-left pixel with random initial parameters and proceed 

through each row in turn, down through the scene area. This heuristic is based on an 

assumption that natural scenes are composed primarily of smooth surfaces (in terms 

of both depth and colour) so that, whilst not at the boundary of a surface, it is highly 

likely that neighbouring pixels will share a similar intensity/depth profile, and hence it 

is reasonable to assume that the fitted model parameters of a particular pixel will 

make good initial parameter estimates in the fitting of the model for a neighbouring 

pixel. It should be made clear here that this assumption is expected to hold well for 

this particular test scene, as it contains only two surfaces which are almost completely 

smooth in depth, and fairly smooth in colour, so we should expect greater than typical 

accuracy from the second implementation in the resulting depth-maps. 
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 In Figure 6.1.3.2.1 a depth-map produced by both implementations of Metric 

2 is given. Note that due to the pseudo-random nature of the implementation (even the 

second implementation has random initial parameter values for the first pixel 

evaluated), it can be said that these depth-maps were not arrived at deterministically 

and are therefore just ‘samples’ of results from Metric 2, unlike the depth-maps 

produced by Metric 1 which are repeatable under the same input parameters. Also 

shown in Figure 6.1.3.2.1 are the ground-truth image and a graphical representation 

of the absolute error of each depth-map (black indicates zero error, white indicates a 

maximum absolute error of 1050mm). These error images give a visual indication of 

the difference in accuracy between the two depth-maps. 

 A certain amount of qualitative analysis of the results can be performed by 

comparing the error images from Figure 6.1.3.2.1. The first implementation shows a 

significant proportion of low-intensity pixels at both depth levels, particularly the 

‘second’ surface at 600mm from the camera. However, the consistency of results is 

poor, with accurate low-intensity pixels being interspersed with inaccurate high-

intensity pixels across almost the entire depth-map. In fact, there is only one area, 

around the lettering on the first depth level, where the depth-map is consistently 

accurate. This can be seen by the patch of low-intensity pixels in that area. 

 The second implementation, on the other hand, clearly shows improvement in 

accuracy over the first implementation, since the average intensity of the error image 

is visibly lower, and there are clearly far larger ‘patches’ of very low intensity at both 

depth levels. As mentioned, this behaviour was expected, as neighbouring pixels are 

likely to have very similar intensity/depth profiles and therefore a similar fitting is 

likely to occur where the fitting of the model to each subsequent pixel uses the fitted 

model parameters of the previous pixel as initial parameters. However, whilst for 

large patches of the scene this has proved to be beneficial, it has also been counter-

productive in other areas of the scene. In the depth-map, there is a very noticeable 

artefact of straight horizontal lines at very similar intensity. Where this intensity is 

low it indicates the advantage of using the heuristic; however where the intensity is 

high is indicates a major disadvantage of the heuristic. The hypothesis here is that the 

neighbouring pixels in a row which have produced very inaccurate depth results also 

have similar intensity-depth profiles. Because the first in the row has been poorly 

fitted, perhaps being caught in a local minima or maxima in the fitting algorithm, the 

remainder of the row which it is assumed share similar profiles have also been poorly 

fitted, due to poor initial parameters being used. In addition to this, there is also the 

possibility that these pixels have a profile ‘shape’ that is difficult to accurately fit the 

Gaussian model to, and so fairly meaningless results are produced for all these pixels.  

 An interesting general observation of both depth-maps, which is again visually 

clear from the error images, is that even where the accuracy across each respective 

depth level (particularly in the first implementation) is far from perfect and somewhat 

inconsistent, there remains a very clear distinction in average intensity between the 

two depth levels. This can be seen in both the depth-maps and the error images, and 

importantly, the difference is particularly noticeable at the boundary. This is an 

interesting observation because it suggests that even if accuracy of Metric 2 is 

inconsistent and unpredictable at the per-pixel level, the average result over the entire 

scene may be more useful in practice. For example, it is clear just from visual 

inspection that either depth-map, with some additional processing, could be used to 

accurately extract the boundary between the two depth levels, therefore both 

implementations of Metric 2 can in this case produce good input to depth-based edge 

detection. 
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Figure 6.1.3.2.1 Raw depth-map image, ground-truth image, and absolute error image for Metric 2. The first 
implementation is the left column, the second implementation is the right column. 
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Again, as for Metric 1, we can analyse histograms of the depth-maps to perform some 

more quantitative analysis of the results. Figures 6.1.3.2.2 and 6.1.3.2.3 display 

histograms of the depth-maps for the first and second implementation of Metric 2, 

respectively. Since these depth-maps are continuous, the depth levels have been 

separated into 32 depth ranges. The absolute depth range represented by each of the 

32 depth ranges is detailed in Table 6.1.3.2.4. 

 The data in the histograms in Figures 6.1.3.2.2 and 6.1.3.2.3 largely support 

the conclusions drawn from the qualitative analysis of the depth-maps. Both 

histograms are similar enough in ‘shape’ that the conclusions drawn from them can be 

drawn generally for Metric 2, regardless of the slightly different implementations. 

This in itself is good support for the validity of Metric 2. As with the histograms for 

the depth-map produced by Metric 1, there are clear peaks at the ranges containing the 

correct depth levels, that is levels 5 and 13. Here however the peaks are less 

Gaussian-like, most noticeably around level 13 where the peak falls off slowly over 

ranges 13-19, and in addition there appear to be a spike of incorrect results at range 

17. It should be noted that there are also spikes of incorrect results at the end ranges. 

This can be explained by the fact that the fittings were limited to the range 289-

1070mm for the mean parameter (representing the depth of the point). From the point 

of view of analysing the results, no significance should therefore be drawn from the 

spike of incorrect results at these ranges. These end ranges represent results which are 

so inaccurate that they are not worth consideration and should simply be ignored as 

failures of Metric 2. 

 The fact remains that both histograms show an abundance of results in the 

correct range for both implementations, which supports the conclusions which can be 

drawn visually from the depth-maps and error images. The qualitative comparison 

between the accuracy of results of the two implementations, that the second 

implementation shows generally more accurate results, is supported very well by the 

quantitative data in the histograms. This is because whilst the two histograms have 

very similar general shape, the second histogram clearly suggests that the second 

implementation produced a more generally accurate depth-map than the first 

implementation, as the peaks at the correct depth ranges show a greater frequency and 

each of the frequencies of the incorrect depth ranges is ‘scaled down’ i.e. each 

respective incorrect range has a lower frequency in the second histogram than in the 

first. Therefore this provides very good quantitative support of the conclusion that the 

second implementation provides a similar but generally more accurate depth-map than 

the first implementation of Metric 2.  
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Figure 6.1.3.2.2 Histogram showing frequency of depth values (in 32 depth ranges) in the depth-map for the first 

implementation. 
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Figure 6.1.3.2.3 Histogram showing frequency of depth values (in 32 depth ranges) in the depth-map for the 

second implementation. 
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Depth Range No. Lower Boundary (mm) Upper Boundary (mm) 

1 289.0 313.5 

2 313.5 337.9 

3 337.9 362.4 

4 362.4 386.8 

5 386.8 411.3 

6 411.3 435.8 

7 435.8 460.2 

8 460.2 484.7 

9 484.7 509.1 

10 509.1 533.6 

11 533.6 558.1 

12 558.1 582.5 

13 582.5 607.0 

14 607.0 631.4 

15 631.4 655.9 

16 655.9 680.4 

17 680.4 704.8 

18 704.8 729.3 

19 729.3 753.7 

20 753.7 778.2 

21 778.2 802.7 

22 802.7 827.1 

23 827.1 851.6 

24 851.6 876.0 

25 876.0 900.5 

26 900.5 925.0 

27 925.0 949.4 

28 949.4 973.9 

29 973.9 998.3 

30 998.3 1022.8 

31 1022.8 1047.3 

32 1047.3 1070.0 

 

Table 6.1.3.2.4 The absolute depth range covered by each depth range in the histograms shown in Figures 
6.1.3.2.2 and 6.1.3.2.3.  The ‘correct’ depth ranges are highlighted. Note the upper boundary of each range is non-

inclusive. 

 
 

6.2 Results of the Proposed Method Using the Hair Dataset Scene 

 

The results from Section 6.1, using the simple test scene, provide a proof of concept 

for the method and a good basis for analysis of the method. In this section, the testing 

of the method will be extended by presenting results of the method using input data 

from a much more complex and ‘natural’ scene, which is used in [21, 22, 23] (data 

provided by Samuel Hasinoff, co-author of [21, 22] and author of [23]). This means 

that in addition to verifying that the proposed method produces meaningful results 

using more complex test scene data, there will be a basis for direct comparison of 

results with the method(s) in [21, 22, 23] on this test data. 

 

 

6.2.1 The Hair Dataset Scene 

 

The scene used is the scene referred to as the Hair Dataset in [23]. For full detail refer 

to [23] p66-67. The layout of the scene is displayed in Figure 6.2.1.1, and the key 

details of the scene and the full set of images of the scene used in [21, 22, 23] are 

summarised below. 
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Figure 6.2.1.1 The layout of the entire ‘Hair Dataset’ scene used in [21, 22, 23]. Image taken from [23]. 

  

The Hair Dataset scene, as seen in Figure 6.2.1.1, consists of a wig and some flowers 

in front of a mostly white-coloured board which is parallel to the front of the camera. 

This scene is much more complex and ‘natural’ than the test scene used in Section 

6.1. It contains flowers which have complex, non-planar 3D geometry, has surfaces 

with different types of 3D surface texture, and has more complex-shaped objects, 

meaning that the object edges are not straight and uniform like the edge between the 

two depth levels in the test scene.  

The full Hair Dataset consists of 61*13 images, captured using 61 different 

focus settings across 13 different aperture settings. See Chapter 4 for details of the 

input data to the method in [21, 22, 23], which will be from here on referred to as 

Confocal Stereo. 

 To test the proposed method on the Hair Dataset scene only a subset of this 

full image set is used. Specifically, this subset consists of the 61 images captured at 

the largest aperture diameter available, to minimise depth of field and therefore 

maximise depth discrimination between images at different focus settings (see 

Chapter 3). Note that this significantly smaller subset of the input image data required 

for the proposed method in comparison to the full dataset required for Confocal 

Stereo is an important difference between the methods. 

 Another modification to the original images in the Hair Dataset for the 

purposes of testing the proposed method was that, as with the test dataset used in 

Section 6.1, the original colour images of the dataset were converted to greyscale, 

using the same weightings given in Section 6.1.1. Again, this was done to simplify 

testing by avoiding the practicality issues of repeating the method on three separate R, 

G and B colour channels, instead just running the method once on a single greyscale 

intensity channel. Again, the fact that the proposed method produced the presented 

results using only one intensity channel from the input images is a consideration to 

make when comparing results with those from Confocal Stereo. 

 As with the test dataset, only a small patch of the Hair Dataset scene images is 

used to produce results. This was done for reasons of practicality, but also so that the 

testing of the proposed method could be focused on specific areas of the scene. For 

example, it is more relevant to perform analysis of the performance of the proposed 

method at the boundaries between different objects, than in flat areas of similar 

texture like the hair of the wig (for example see Figure 6.2.2.2), since the proposed 

method is expected to produce better results in the former case and poorer results in 

the latter case. 
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The analysis of results will focus on one particular patch, which will be 

referred to as the sample patch, shown in Figure 6.2.1.2. Additional examples of 

results from other patches of the scene are also presented in Figure 6.2.2.2. 

 

 

 
Figure 6.2.1.2 The location of the sample patch used for testing in a full resolution image of the scene. This 
illustrates how impractical it would be to test the method using the entire image area, which has a very large 

resolution. 

 

 

The patch contains a flower set against the background board. The results from this 

sample were chosen for analysis to demonstrate that the proposed method can handle 

the complex geometry and texture of the flower, set against the planar background 

board which has fairly uniform colour and smooth geometry, simultaneously with the 

same set of input parameters (Metric 1 will be used). Using this sample will test two 

main aims of the proposed method on the complex scene: 

 

 Clearly and accurately separate the general depth level of the complex flower 

object from the plain background. 

 Resolve the complex 3D surface of the flower object. 

 

The extent to which the proposed method achieves these aims, which are quite general 

aims for natural complex scenes, will be a basis of analysis of the results produced 

from the sample of the Hair Dataset scene. 

A final important note before results are presented is that there is no ground-

truth for the Hair Dataset (a ground-truth was not captured for the Hair Dataset in 

[21, 22, 23]). However, where the results from the test dataset focused on the absolute 

quantitative accuracy of the proposed method, the analysis of results from the Hair 

Dataset sample will be more focused on the general performance of the proposed 

method on the complex geometry in the sample, and on relative comparison with the 

results produced for the sample by Confocal Stereo. For this type of analysis an 

absolute ground-truth is not necessary, although clearly if one were available it would 

provide useful additional quantitative analysis of the accuracy of the proposed 

method. 
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6.2.2 Results 

 

Before presenting the results of the method using the Hair Dataset, a few points about 

the implementation of the method used in this testing must be clarified. 

 Firstly, Metric 1 was used to produce the results. This is because no absolute 

depths of the focal planes at each focus setting for the Hair Dataset were available. 

To deal with this, it was assumed that the focal plane depths increased at a constant 

rate from focus setting 1 to focus setting 61, i.e. the depth between each consecutive 

focal plane is equal.  

This assumption is acceptable for Metric 1, as it simply means that the 

symmetry factor in the ranking function (see Chapter 5) is done using matching 

‘pairs’ of samples either side of the candidate sample. Since symmetry is only 

evaluated over the interval width, and assuming the interval width is suitably low 

relative to the number of samples (for example less than a third), then over the 

interval width it is reasonable to expect this assumption of uniformly distanced focal 

plane depths to be a good approximation of the actual focal plane depths. 

 However, for Metric 2, which attempts to fit a model precisely to the entire 

sample set, this assumption about the focal plane depths is inappropriate. Over the 

entire sample set, it is likely to result in a significant skew of the data which will have 

a significant effect of the fit of the model to the sample set. 

 Another reason why Metric 1 is preferable to Metric 2 as a test of the proposed 

method on the Hair Dataset sample is that Metric 1 evaluates depth in a discrete, 

relative manner by selecting the ‘best focus’ sample from amongst the samples, 

whereas Metric 2 evaluates depth absolutely and on a continuous scale. A relative 

depth-mapping is again the only appropriate option since the depths of the focal 

planes at each sample are unknown, and similarly a continuous depth-mapping would 

be meaningless if the absolute focal plane depths of the samples are unknown.  

As should be expected, Confocal Stereo gives a discrete depth-mapping of the 

Hair Dataset, therefore yet another reason to use Metric 1 is that the results of the 

proposed method using Metric 1 can be directly compared to the results of Confocal 

Stereo on the Hair Dataset. 

The images in Figure 6.2.2.1 show an entirely focused greyscale image of the 

sample patch area of the scene showing all the detail in the patch, examples of 

different focus settings from the image set of the patch used as input to the proposed 

method, the best depth-map of the patch produced by Confocal Stereo, the depth-map 

produced by the proposed method (Metric 1) and the absolute error image between 

these depth-maps. 
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Figure 6.2.2.1 (a) All-focus greyscale image of the sample patch (b) Image from the input set at focus level 5  

(c) focus level 30 (d) focus level 45 (e) Best depth-map produced by Confocal Stereo (f) depth-map produced by 
Metric 1 with interval width = 10, a = 0.2, b = 3.0, c = 4.0 (g) Absolute error image between (e) and (f), zero error 

indicated by black, max error of 60 focus settings indicated by white. 

 

As mentioned, Figure 6.2.2.2 provides two additional examples of patches from the 

scene, and compares the results with the results of Confocal Stereo, to give some 

additional informal support for the analysis and comparison of the methods to follow. 

For Patch 1, a flat area of hair, the Metric 1 resolves the ‘general’ depth level quite 

well, but is not as successful (assuming the Confocal Stereo depth-map is more 

accurate) at resolving the finely detailed geometry of some of the hair strands (see 

error image). On the other hand, for Patch 2 the ‘general’ level of depth is resolved by 

Metric 1 quite differently (inaccurately) compared to Confocal Stereo, but Metric 1 is 

at least successful in identifying the objects broadly, i.e. the stalk can be identified 

distinctly from the hair background in the depth-map. 
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Figure 6.2.2.2 Examples of results from two other patches of the Hair Dataset scene, to give additional support to 

the analysis of results. Metric 1 used with parameters interval width = 10, a = 0.2, b = 3.0, c = 4.0. 

 

 

Bringing the focus of the analysis to the sample patch, the most interesting images in 

Figure 6.2.2.1 are (e), the best depth-map produced by Confocal Stereo, (f), the depth-

map produced by the proposed method, and (g) the error image between these two 

depth-maps. 

 The depth-map (f) was produced using the same parameters for Metric 1 that 

were found to produce the best results for the test dataset in Section 6.1.2. That is, an 

interval width of 10, and weighting parameters a = 0.2, b = 3.0, c = 4.0. These input 

parameters were chosen in order to produce supporting evidence for the hypothesis in 

Section 6.1.2 that the parameters should produce good results (for Metric 1) in 

general, and are not specific to a particular scene or type of scene. 

 In terms of the two main aims for testing the proposed method on the Hair 

Dataset sample patch, defined in Section 6.2.1, the depth-map (f) shows visually 

encouraging results. The first aim, that the depth-map should show a clear and 

accurate distinction in depth level between the flower object and the plain 

background, is clearly met by the depth-map produced. The edges of the flower object 

against the background are clearly defined in (f), and it can be seen from visual 

comparison with (a) that the flower object could easily be separated from the 

background using the depth information in (f), even with minimal or no post-

processing of (f). 

 An important note to make here is that the depth level of the background in (f) 

is clearly inaccurate. Indeed, the depth-map is such that darker intensities indicate an 

object which is nearer to the camera (i.e. depth value increases as intensity increases). 

Therefore (f) appears to show the background being in front of the flower. However, 

this inaccuracy is not a concern, as the background is never in good focus in the input 

images using the widest aperture (it does not fall within the range of focal planes), and 

is very uniform in colour and texture. Such a surface is a known failure case for the 

proposed method, as the optical theory it is based on requires the defocus blurring of 

complex textures to reveal depth information (see Chapter 5). However, for the 

purposes of identifying that objects are broadly on different depth levels (i.e. 
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separating the flower from the background) all that is required is consistency in the 

failure case, as is seen in (f). The proposed method, particularly Metric 1, is tailored to 

provide such consistency since depth can be estimated in a deterministic way, 

meaning that for similar input (i.e. every scene point in the background) a consistent 

output is expected. 

 The second aim of the test was to verify that the complex 3D surface geometry 

of the flower can be meaningfully resolved. Since no ground-truth is available for the 

Hair Dataset, it is impossible to verify the accuracy of the depth-map (f) in an 

absolute quantitative manner. A qualitative analysis of (f) by visual comparison with 

(a) shows that the major geometrical features of the flower, particularly the edges, are 

identified in (f). However, the reconstruction of the surface of the flower is not 

smooth, and it is difficult to visually evaluate how accurately the changing depth of 

the flower surface has been resolved in (f). In order to perform a better analysis of (f) 

in terms of the fulfilment of the second aim, it is necessary to do a quantitative 

comparison of (f) and (e), which is the best depth-map of the sample produced by 

Confocal Stereo in [21, 22, 23]. 

 The absolute error image (g) between the depth-maps produced by the 

proposed method using Metric 1 and Confocal Stereo for the sample patch, shows 

absolute error as intensity. Black indicates an error of zero, whereas white indicates 

the maximum error of 60 focus settings. The error image (g) is a visual representation 

of the quantitative relative difference in results between the proposed method and 

Confocal Stereo. It can be seen from the generally low intensity of (g) that the depth-

map (f) produced by Metric 1 is similar to the depth-map (e) produced by Confocal 

Stereo. In particular, the error is very low at the edges of the flower, and there is also 

generally low error with several patches of almost no error across the surface of the 

flower. Assuming that depth-map (e) is approximately accurate, this provides some 

quantitative evidence that the proposed method has indeed resolved the surface of the 

flower generally accurately. This assumption that (e) is approximately accurate is also 

the basis of comparison between (e) and (f). 

It is reasonable for comparison of the two methods to assume that depth-map 

(e) is more accurate than (f). Note that it would be inappropriate to explicitly assumed 

that (e) is the ground-truth of the patch, i.e. Confocal Stereo produced a perfect depth-

map of the patch, as this is obviously not the case and would negate any sensible 

comparison of the results. However, it is reasonable to assume that (e) is sufficiently 

accurate that the proposed method should aim to produce a depth-map which is 

roughly as accurate, i.e. very similar to (e). This is because Confocal Stereo is 

expected to be more absolutely accurate than the proposed method, for several 

reasons. 

Firstly, Confocal Stereo required significantly more input data to produce (e) 

than the proposed method required to produce (f), since the former requires images 

over 61 focus settings and 13 aperture settings, whereas the proposed method requires 

only a subset of these images across one aperture setting. In fact, by utilising the 

ability of the proposed method to estimate depth between focus settings using Metric 

2, it is even possible to further reduce the number of input images by taking a subset 

of the focus settings, without necessarily losing depth resolution in the resulting 

depth-map. Related to this is the fact that (e) was produced using all 3 RGB channels 

from the input images whereas (f) was produced using only a single greyscale 

intensity channel. This alone effectively means dividing the amount of input data by 3 

when using the proposed method (although it does not necessarily have to be done if 

the extra data redundancy of the three channels is wanted).  
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The fact that (f) is similar to (e), despite the significantly lower amount of 

input data used to produce (f), indicates a major advantage of the proposed method 

over Confocal Stereo. Indeed, it strongly suggests that much of the input data used for 

Confocal Stereo is redundant, since (f) was produced by the proposed method using a 

much smaller subset of the data used to produce (e). This is a particularly important 

point when it is considered that no explicit optimisation of Metric 1 was performed to 

produce (f), and indeed, that Metric 1 or Metric 2 (if the data had been appropriate) 

could have been optimised to produce potentially even more accurate depth-maps 

than (f).  

The focus of this section is on presenting and comparing the results from the 

proposed method, and Confocal Stereo, on the Hair Dataset sample patch. For further 

and more general discussions and comparisons of the strengths and limitations of the 

proposed method and Confocal Stereo, refer to the discussion of Confocal Stereo in 

Chapter 4 and the general concluding discussion of the strengths and limitations of 

the proposed method in Chapter 7.  

 

 

6.3 Evaluation of Results 

 

Having presented and analysed various results of the proposed method and compared 

them with results of similar depth acquisition method [21, 22, 23], this chapter will be 

concluded by evaluating the strengths and limitations of the method in the context of 

the presented results and analysis from all previous sections. 

 

 

6.3.1 Comparison of Metric 1 and Metric 2 

 

The comparison of results of Metric 1 and Metric 2 must be placed in context. 

Thought the two metrics are based on the same underlying optical theory, they 

actually take quite different approaches to solving the depth acquisition problem. 

From the same set of samples of a scene point, Metric 1 takes a discrete, search-based 

approach to finding the sample closest to the true in-focus depth of the point, and 

Metric 2 fits a model to the sample set to estimate the true depth of the point 

absolutely on an effectively continuous scale.  

The two approaches have intrinsic strengths and limitations which make them 

suited to different applications in practice. Therefore, an absolute and direct 

comparison of results from the two metrics without any application context has little 

value. However, it is worthwhile to evaluate the metrics against each other by 

identifying and comparing their respective strengths and limitations, and then 

comparing their practical effectiveness in real applications with respect to these 

strengths and limitations. 

  As a basic starting point, a direct comparison of the results presented in this 

chapter from Metric 1 and Metric 2 gives the obvious conclusion that, for this test 

scene, Metric 1 produces results which are in the absolute sense more accurate. This 

can be seen quantitatively in the distribution of results in the best depth-maps 

produced by Metric 1 and Metric 2 (Figures 6.1.2.3.1 and 6.1.3.2.1 respectively), and 

qualitatively from visual comparison of the depth-map and error images. This 

apparent difference in accuracy, however, cannot be assumed to be general, and must 

be analysed in context of the test scene. 
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 Firstly, there is the issue of the accuracy of the test scene ground-truth image. 

The term ‘accuracy’ has a slightly different definition for Metric 1 and Metric 2. For 

Metric 1, it is appropriate to assume that within the depth resolution of the sample set, 

the ground-truth is entirely accurate, with the exception of some accounted-for edge 

pixels since it is produced manually. This is because within the depth resolution of the 

input images of the test scene, it is clear visually which image (intensity/depth 

sample) shows both depth levels in best focus.  

For Metric 2 however, there is a different level of precision on the depth 

resolution (i.e. it is effectively continuous) therefore it is inappropriate to consider the 

accuracy of results without reference to the estimated error of the ground-truth, on the 

continuous scale. This is the fundamental reason why direct comparison of results 

from both metrics is flawed, however it is also the basis for analysing the strengths 

and limitations of both metrics, and the applications they are suited for.   

 Clearly, Metric 1 produces results which are generally very accurate on the 

test scene. The best depth-map produced shows an overwhelming majority of results 

at the correct depth levels, from analysis of the histogram, error image and visual 

inspection of the depth-map itself. The test scene contains two very smooth, 

completely fronto-parallel surfaces, and this is precisely the type of scene that Metric 

1 is suited for. Since Metric 1 operates with a discrete depth resolution, defined by the 

depth resolution of the set of input images, it is more appropriate for scenes with 

smooth surfaces which are largely parallel to these sample depth levels. It will not 

deal well with surfaces which are not (significantly) fronto-parallel, even where the 

depths of these surfaces transitions smoothly between the sampled depth levels, as 

these smooth transitions cannot be resolved very well with only a discrete set of 

possible depths, i.e. there will be one or more sharp edges between depth levels where 

in fact a smooth gradient should occur in the depth-map. 

 This is the most important strength/limitation trade-off with Metric 1. For the 

appropriate type of scene, i.e. smooth, mostly fronto-parallel surfaces without 

complex geometry in the depth dimension, it is likely to be more accurate than Metric 

2 whilst also being far less computationally complex (i.e. faster in practice). However, 

the limitation is in the strict restrictions on the scene. Not only must the conditions 

mentioned be satisfied, but the input images must contain a sampling of depth which 

is sufficient in resolution to accurately capture the depths of the scene surfaces. 

 The strengths and limitations of Metric 2, however, are biased in the opposite 

way to those of Metric 1. The strength of Metric 2 lies in its ability to deal with 

complex geometry, within the general limitations of the optical model. Whilst very 

complex geometry which varies quickly, non-smoothly or without pattern is 

inherently difficult to deal with (though this is a limitation of passive depth 

acquisition methods in general [23]), Metric 2 at least has no theoretical barrier  to 

resolving smooth depth-maps of surfaces which are not fronto-parallel. This is 

particularly true as surfaces become smoother or have shallower depth gradients, for 

example surfaces which are angled less than 45 degrees from the image plane. In 

addition to this, the depth resolution of Metric 2 is not defined by the depth resolution 

of the set of input images, although of course there is a natural correlation between a 

higher input resolution and greater accuracy of results (see Chapter 5). 

Of course, the trade-off for the additional flexibility in the types of scene 

Metric 2 can deal with is that it is liable to be far less accurate relative to running time 

than Metric 1. Because the process of fitting a model to the sample data is more 

computationally complex than a simple search over the samples using a ranking 

function, and the running time in practice is lengthened by the nature of the fitting 
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algorithm (where a longer running time generally correlates to greater accuracy), there 

is a significant increase in practical running time of Metric 2 compared to Metric 1, 

which is a severe limitation of Metric 2. In addition to this the inherent difficulty of 

general model fitting to a dataset, as opposed to a more targeted search over the 

dataset relying on strict assumptions and heuristics, as in Metric 1, means that in 

general Metric 2 is likely to be less accurate than Metric 1, assuming an appropriate 

depth resolution is present in the input images. This is in spite of, and not relative to, 

the significantly longer running time of Metric 2. 

The complementary strengths and limitations of both metrics are compounded 

by general strengths and limitations of the method itself. These strengths and 

limitations were covered in detail in Chapter 5, but are worth mentioning explicitly 

here. A common strength of both metrics is that both are per-pixel, meaning that 

depth-map resolution matches input image resolution, and it is possible to capture 

fine-grain detail in geometry. As discussed in previous paragraphs, this is a particular 

strength of Metric 2 which is better suited to dealing with complex geometry in the 

depth dimension than Metric 1. However, it is also relevant to Metric 1. For example 

the per-pixel approach allows the edges of surfaces to be more precisely resolved 

than, for example, a window-based DFF technique. 

While Metric 1 suffers from the depth-resolution issues common to search-

based DFF techniques, Metric 2 overcomes this limitation set by the input images by 

employing a method which is a hybrid between DFF and DFD. However, both 

metrics suffer from the limitations and restrictions placed on the scene which follow 

from the assumptions of the optical model used. This is particularly true since the 

methods are per-pixel, as strict assumptions about the composure of the scene must be 

made,  such as largely fronto-parallel and smooth surfaces, complex intensity textures 

on surfaces, and a feature becoming increasingly global as the region of the scene 

examined becomes larger. Such assumptions are necessary because the method relies 

on all light rays from a region of the scene being summarised by one intensity value at 

a pixel, so strict assumptions must be made about the light sources in order to infer 

useful information from this value. At least in a window-based DFF technique, the 

evaluation of a region of the scene can be done on a case-by-case basis without being 

forced to make such generalised assumptions about the entire scene. 

The strengths and limitations of the general method, and of the individual 

metrics provides a strong indication of which types of application the method, and 

each metric, is best suited for in practice. To give the discussion of practical 

application some context, Chapter 1 provides detailed discussion of the types of 

applications that depth acquisition techniques can ultimately be applied to, and indeed 

the method presented in this work has the potential to be applied in practice to solve 

real computer vision problems.  

However, in order for a reasonable discussion it is necessary to assume a 

practically viable input phase, that is the capture and calibration of image data for use 

by the method. Clearly, the manual capture and calibration of images for the test 

scene in this work is far too cumbersome and time-consuming as a process to be 

viable in practice. However, it is not difficult to see how hardware and software could 

be streamlined to automate this process and remove these difficulties; therefore for the 

remainder of this discussion it will be assumed that there is no barrier to practical use 

of the method because of difficulties in the input phase. 

Generally speaking, the method presented in this work, using either metric, is 

appropriate for any application where a fine grain of resolution is required in the plane 

orthogonal to the depth dimension. This is because the method is per-pixel, offering a 
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depth-map at equal resolution to the input images. A good example of an application 

which can benefit from a high resolution in this plane is depth-based edge detection.  

Depth-based edge detection is the extraction of edges in a scene where there is 

a difference in depth on either side of that edge only in depth. Many traditional edge 

detection techniques rely on intensity differentials to extract edges from scenes. 

Though intensity differentials are generally a good cue to a difference in depth at an 

edge, this is not necessarily always the case, and conversely if looking only for edges 

where there is a difference in depth, an intensity based edge detection algorithm can 

easily give false positives, for example in patterns on a planar surface.  

Depth based edge detection benefits from a per-pixel depth acquisition 

approach as this allows for arbitrarily complex (down to a pixel resolution) edge 

shapes to be identified on a per-pixel basis, and allows pixels to be processed 

individually with no reference to their neighbourhood, so if desired only a subset of 

candidate ‘edge pixels’ can be processed without having to include the processing of 

all surrounding ‘surface pixels’. 

In a depth-based edge detection application, the choice of metric would be 

based on the limitations each metric imposes, in the context of the application goals 

and the scene.  

Metric 1 would be appropriate for quickly identifying different depth levels in 

the scene, essentially segmenting the scene into a discrete set of depth levels which 

depend on the depth resolution of the set of input images. In practice, this could be 

very useful for extracting a particular object from a scene where it is known that the 

object is set a reasonable distance (relative to the depth sampling resolution) in front 

of or behind other objects in the scene. Here, we are less interested in the precise 

absolute depth of the object and more in its depth relative to the rest of the scene so 

that it can be extracted. Metric 1 is therefore appropriate because it provides a much 

faster and probably more accurate way of solving this problem than Metric 2. 

 Metric 2, on the other hand, would be more appropriate where an object’s 

borders must be extracted for edge detection, but the edges of the object are in focus 

at multiple different depth levels of the sample set, i.e. the object surface is not fronto-

parallel. In this case, the simple depth level segmentation described above would not 

be an effective solution (assuming the depth resolution of the sample set is low 

relative to the difference in depth between different edges of the object), and a more 

general description of the changing depth of the object surface would be required. 

Here, the absolute and continuous depth-maps produced by Metric 2 would be a far 

more appropriate basis for a solution.  

Indeed, the example of depth-based edge detection reveals a general difference 

between the metrics when applied in practice. Metric 1 is more appropriate for 

applications which require knowledge of the relative depths, or even just simple depth 

order, of various surfaces within a scene. Metric 2 is more appropriate for any 

application where a general depth-mapping of a scene is required, so that complex 

surfaces spanning multiple levels of depth sampled by the input images can be 

meaningfully extracted and analysed. 
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Chapter 7 
 

Conclusions and Future Work 
 

 

To conclude this thesis, this chapter will make some general concluding remarks 

about the method and results presented in the context of previous work, and there will 

be a discussion of potential future work which was outside the scope of this thesis, but 

if investigated could extend and enhance the methods presented here.  

 

 

7.1 Conclusions 

 

A proof of concept of the methods presented in this work, with thorough discussion of 

results and analysis of strengths and limitations, is given in Chapter 6, so will not be 

repeated here. This section will instead make some general concluding remarks about 

the method in the context of the related work discussed in Chapter 4. 

 The main objectives of the method presented in this work can be summarised 

as follows: 

 

 To use a set of input images captured with an off-the-shelf conventional camera 

system, with pre-defined settings, as input. Within this objective, there is an 

implied emphasis on minimising the number of input images used. 

 To produce depth-map output with, at a maximum, the same resolution in the 

image plane as the input images. 

 To perform all evaluation of the input images on a per-pixel basis, such that the 

depth of an arbitrary scene point can be evaluated using the single corresponding 

pixel in each input image, with no dependency on other pixels, and no specific 

dependency on pre-computed global scene parameters. In other words, the 

evaluation of a scene point can be completely isolated so that no Image Processing 

difficulties are introduced, and parallel processing of results is trivial. 

 

 

In conclusion, it is clear that given the assumptions about the scene are held, and 

given the application is appropriate (see Chapter 6), the method presented in this 

work fulfils these objectives. Furthermore, through use of the two different metrics, 

the method is capable of producing a discrete, relative depth-map or a continuous, 

absolute depth-map.  

The most appropriate recent method to compare the proposed method against 

is the Confocal Stereo method presented in [21, 22, 23]. A comparison of results from 

both of these methods on a sample patch of a scene is given in Chapter 6, and here a 

general comparison of the strengths and limitations of each method will be discussed. 

Firstly, as the proposed method has been shown to work accurately using input 

images where only the focus setting is varied, as opposed to varying both focus and 

aperture settings in [21, 22, 23], the proposed method demonstrates far less data 

redundancy and represents a much more practical, and faster, way of acquiring image 

input. This relatively low amount of required input data in relation to similar methods 

is a major success of the proposed method. 
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Secondly, strongly related to the first point, the proposed method provides the 

possibility, through Metric 2, of extending beyond the limitations of traditional DFF 

so that depth can be inferred on an effectively continuous scale. Again, this represents 

an advantage over similar methods such as the method in [21, 22, 23], which despite 

relying on a significantly larger amount of input data, cannot offer more than a 

discrete depth evaluation, limited to the focal plane depths of the set of input images. 

This is strongly linked with the first point in the previous paragraph because again, it 

introduces a further opportunity to reduce the number of input images used, which 

was a major objective of the proposed method. 

Although the initial objectives are fulfilled by the proposed method under 

certain conditions, the lack of generality of the method is its biggest limitation. For 

example, though the method is based on a very similar optical model to that used in 

other recent work such as [21, 22, 23, 28], the way in which the predictions of the 

model are generalised so that they can be applied on a per-pixel basis, rather than a 

more specific, case-by-case window-based approach as used by [28] or a more 

directly data-driven (albeit with much more input data) approach as used in [21, 22, 

23], means that much of the analytical potential of the optical model is sacrificed in 

favour of minimising the input data and taking the per-pixel approach. As a result, it 

is likely that in practice, the results produced by the method presented in this work 

will have greater inherent limitations on accuracy compared to those of [21, 22, 23] 

and [28]. Note that this statement is intended to be very general, and made without 

consideration to the differences in input data.  

A particular example of where the proposed method is inherently flawed is the 

evaluation of very fine grain complex scene detail. For example, it is claimed in [21] 

that the depth of a single strand of hair can be resolved on a per-pixel basis by the 

Confocal Stereo method, with a theoretical underpinning using a broadly similar 

optical model as is used in this work. However, this is because the Confocal Stereo 

method can work without any implicit evaluation of neighbourhood pixel intensities. 

The method in this work does employ such an implicit evaluation of the region around 

a scene point, and the model breaks down considerably if this neighbourhood is not 

(practically) on the same depth plane. A single hair set a significant distance in front 

of any other scene object, for example, is a good example of where this flaw in the 

model would affect the accuracy of results considerably. It is likely that the proposed 

method would not produce accurate results for such complex geometry (see Figure 

6.2.2.2). Related to this point, the optical model employed in the proposed method 

will also struggle with other features of complex scenes such as shadowing, occlusion 

of objects, and reflections of light, although it must be emphasised that these are 

fundamental barriers to passive depth acquisition techniques using only light intensity 

data as input. 

As a concluding remark, it is clear that under certain conditions, all of which 

are reasonable in a practical application where the scene domain is known and 

controlled, the proposed method fulfils its objectives. Though the trade-offs made to 

reduce the amount of input data and maximise the depth-map resolution place certain 

fundamental limitations on the types of scene the method can deal with, it is 

nonetheless true that the proposed method, given an appropriate scene, is capable of 

producing depth-maps of acceptable accuracy which are absolute and continuous, or if 

the application requires it, relative and discrete. 
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7.2 Future Work 

 

Following naturally from the previous section is a discussion of future lines of 

investigation which could be undertaken to extend or enhance the method presented in 

this work. Although the research, development and results produced provided a 

satisfactory proof-of-concept for the method, and sufficient data on which to analyse 

and make reasonable conclusions about the method, there is no doubt that given a 

wider project scope there would be many opportunities to extend the work presented 

in this thesis to enhance both the absolute accuracy and range of application of the 

method. Some of the most prominent of these possible extensions are as follows: 

 

 Investigation of the effect of aperture setting 

Although from the optical model it was assumed that the maximum aperture setting 

of the camera system should be used for image capture, due to the maximum depth 

discrimination this facilitates, this assumption was not verified experimentally. It is 

hypothesised by the model that reducing the size of the aperture could have a 

‘smoothing’ effect on the samples, and in practice is it entirely possible that this 

could make it easier to accurately fit a model to the set of samples in Metric 2. A 

future investigation could evaluate the trade-off between the positive effect of this 

smoothing and the negative effect of depth discrimination loss on the input data, and 

ultimately on the accuracy of results. 

 

 More explicit and rigorous modelling 

Though the results in this work provided a proof-of-concept for the method, there 

were a lot of assumptions placed on the modelling of the relationship between 

intensity and focal plane depth in the sample set for a scene point. For example, in 

Metric 1 the weighting parameters used were manually selected rather than 

optimised. Such an optimisation could be driven by data or optical theory, and indeed 

this extends to optimising the ranking function that the search is based on in general. 

For Metric 2 there are several factors, again each representing a large scope of 

additional work, which could be investigated to optimise the accuracy of results. An 

obvious starting point is an extension of the model of the functional relationship 

between focal plane depth and pixel intensity. It is explicitly conceded in this work 

that using a single Gaussian-type function as a model makes many general 

assumptions about the data (which are likely to hold in practice). A more rigorous 

extension to the model, based on optical theory, would be to include a mixture of 

multiple Gaussian-type functions, with a common mean at the in-focus depth, to 

reflect the multiple peaks and troughs of intensity we expect to see as the focal plane 

depth approaches the depth of the scene point. Assuming we account for the extra 

difficulty of fitting a more complex model, such a model offers the general 

enhancement of a better fit to the data, i.e. more absolute accuracy of the mean and 

therefore the depth of the point, as well as extended capabilities of Metric 2 such as 

the ability to better predict the intensity of the scene point at arbitrary distance out-of-

focus. In practice this capability could be useful in applications such as computerised 

post-exposure re-focusing of the scene. 

 

 Consideration of non-geometric optical effects 

A very broad extension to the method would be to include the consideration of non-

geometric optical effects, such as diffraction at the edges of the aperture, in the optical 

model. Such effects have been used successfully as defocus cues in [20] for example. 
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Although these effects have a minor impact on intensity compared to geometric 

optical effects, their impact increases in importance as input image resolution 

increases, since we are evaluating per-pixel and minor optical effects will be more 

emphasised in individual pixels as resolution increases. The optical model employed 

in this work simply disregards the non-geometric light wave effects.  

Clearly, an investigation of the impact that these effects have on intensity 

could result in a more rigorous and ultimately accurate model, that as previously 

stated would be more appropriate for very high resolution (i.e. above ~16Megapixel) 

images. 

 

 Post-processing of depth-maps 

In Chapter 6, the results presented were ‘raw’ depth-maps, as produced directly by 

both metrics. It would be an interesting extension to this work to investigate how 

post-processing of these raw depth-maps, using a priori knowledge about for 

example the metric itself or the scene, could be done to improve the accuracy of the 

depth-maps by reducing the number of anomalous results. For example, for the best 

depth-map produced by Metric 1, a simple modal filter based on the knowledge that 

the scene consists of smooth planar surfaces, could almost eradicate erroneous results 

by setting the depth value of every pixel to be the same as the majority of pixels in its 

neighbourhood. Obviously, such post processing could be extended to model more 

complex scene expectations and assumptions, and would be implemented in an 

application-specific way.  

This would be a relatively simple way to enhance the accuracy of the method 

in practice, by assuming that although the accuracy of individual pixels of the depth-

map may be poor, the depth-map in general is accurate. Of course, such an 

enhancement would contradict the per-pixel nature of the method, in particular the 

ability to isolate results to individual pixels without needing to evaluate neighbouring 

pixels, but in a practical application this may be acceptable and appropriate. 
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