
Durham E-Theses

Exploiting structure to cope with NP-hard graph

problems: Polynomial and exponential time exact

algorithms

VAN-'T-HOF, PIM

How to cite:

VAN-'T-HOF, PIM (2010) Exploiting structure to cope with NP-hard graph problems: Polynomial and

exponential time exact algorithms, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/285/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/285/
 http://etheses.dur.ac.uk/285/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Exploiting structure to cope
with NP-hard graph problems

Polynomial and exponential time exact algorithms

Pim van ’t Hof

School of Engineering and Computing Sciences
Durham University

A thesis submitted for the degree of
Doctor of Philosophy

May 2010

Abstract

An ideal algorithm for solving a particular problem always finds an optimal
solution, finds such a solution for every possible instance, and finds it in poly-
nomial time. When dealing with NP-hard problems, algorithms can only be
expected to possess at most two out of these three desirable properties. All
algorithms presented in this thesis are exact algorithms, which means that
they always find an optimal solution. Demanding the solution to be optimal
means that other concessions have to be made when designing an exact algo-
rithm for an NP-hard problem: we either have to impose restrictions on the
instances of the problem in order to achieve a polynomial time complexity,
or we have to abandon the requirement that the worst-case running time
has to be polynomial. In some cases, when the problem under consideration
remains NP-hard on restricted input, we are even forced to do both.

Most of the problems studied in this thesis deal with partitioning the
vertex set of a given graph. In the other problems the task is to find certain
types of paths and cycles in graphs. The problems all have in common that
they are NP-hard on general graphs. We present several polynomial time
algorithms for solving restrictions of these problems to specific graph classes,
in particular graphs without long induced paths, chordal graphs and claw-
free graphs. For problems that remain NP-hard even on restricted input
we present exact exponential time algorithms. In the design of each of our
algorithms, structural graph properties have been heavily exploited. Apart
from using existing structural results, we prove new structural properties of
certain types of graphs in order to obtain our algorithmic results.

Declaration

No part of this thesis has previously been submitted for any degree at any
institution. Most of the results presented in this thesis have appeared, often
in preliminary form, in the papers [50, 155, 156, 157, 158, 159, 160, 161], all
of which have been subject to peer review. At the beginning of each chapter
we mention where the results presented in that chapter have been published.
Although many of the results have been obtained in collaboration, I have
been heavily involved in and actively contributed to discussions that led to
the results in every section of this thesis.

c© The copyright of this thesis rests with the author. No quotation from
it should be published without the author’s prior written consent, and
information derived from it should be acknowledged.

Acknowledgments

Table tennis is a great sport. Not only because it doesn’t involve running
around a muddy pitch in the freezing cold at six o’clock in the morning, but
also because, very occasionally, table tennis brings together an undergraduate
mathematics student and his future PhD supervisor. Many years passed
between the moment Daniel Paulusma and I first met during a table tennis
practice session at the University of Twente in Enschede, the Netherlands,
and the moment I started as his PhD student at Durham University. Daniel,
thank you for making me feel like a colleague rather than a student from
the very first moment, for sharing me with the pupils of Consett Community
Sports College for one year, for always finding time for me, and for teaching
me so much during the many discussions we had. Could you please tell the
people at EPSRC that their financial support is gratefully acknowledged?

A big thank you goes to Hajo Broersma, for bringing Daniel’s PhD po-
sition to my attention while I was writing my Master’s thesis in Klagenfurt,
Austria, for acting as my second supervisor (again), and for giving me valu-
able advice whenever I needed it. Pinar Heggernes and Iain Stewart, thank
you for agreeing to be my examiners, for carefully reading this thesis, and
for making the viva such an interesting and pleasant occasion. Since work-
ing with others on nice problems is one of the most enjoyable aspects of life
as a researcher, I also wish to express my sincere gratitude to all the coau-
thors of the papers that form the basis of this thesis: Hajo Broersma, Fedor
Fomin, Marcin Kamiński, Daniël Paulusma, Johan van Rooij, Stefan Szeider,
Dimitrios Thilikos, and Gerhard Woeginger.

During my time in Durham I have been fortunate enough to get to know
many great people. I have made too many friends to mention all of them
here. With the risk of offending most and losing some, I’ll mention just one.

iv

Mark Rhodes, what were the chances that one of my fellow PhD students
would not only share my passion for mathematics, table tennis and pool,
but would also become such a dear friend? (You can stop calculating now,
Mark, the question was rhetorical.) Thank you for keeping me company on
many occasions: you brighten up {m,usuall,alread,prett,sunn,da,ever}y time
we meet, especially when you bring your lovely Laura and your incredibly
adorable baby girl Annabelle.

Lotte and Hugh Shankland, thank you so much for allowing me to live
in your amazing museum of a house, for making me feel at home in the
wonderful little city of Durham, and for being so much more than landlords
alone.

Back home, on the other side of the North Sea, there are a few people who
deserve a special mention; having to miss their company on a regular basis
is the main reason why, one day, I might return to the Netherlands. Susanne
and Niels Besseling1, thank you for being the great friends you are, and for
always offering me to stay at your place whenever I visit Enschede. Mirjam en
Stijn Nijenboer2, thank you for being the great friends you are, and for always
offering me to stay at your place whenever I visit Enschede. I can’t wait to
see your little man. Cees Brans, ome Cees, the mathematical exercises you
gave me, or rather the Mars bars that formed the reward for solving them,
contributed in no small part to my growing interest in mathematics; thank
you for asking me why I didn’t consider studying mathematics at university
before I even realized that was an option. My brothers Koen and Jops3,
and Jops’ soon-to-be-wife and even-sooner-to-be-doctor Nienke, you guys
make me laugh out loud (lol) every time we speak, which is not nearly often
enough. And finally, this acknowledgments section wouldn’t be complete
without mentioning the people I owe everything to. Lieve mama en papa, ik
hou van jullie.

1It was a huge honor for me to be “ceremoniemeester” at your wedding.
2It was a huge honor for me to be “ceremoniemeester” at your wedding.
3It is a huge honor for me to be “ceremoniemeester” at your wedding.

White line

Dedicated to my parents, Jeannette & Peter.

Contents

1 Introduction 1
1.1 Notation and terminology . 3

1.1.1 The basics . 3
1.1.2 Some graph classes . 5
1.1.3 Minors, induced minors and contractions 6

1.2 Polynomial time algorithms on restricted input 7
1.2.1 Why restricted input? 9
1.2.2 Pk-free graphs . 11
1.2.3 Chordal graphs . 13
1.2.4 Claw-free graphs . 16

1.3 Exact exponential time algorithms 18
1.3.1 Why exponential time algorithms? 20
1.3.2 Techniques for design and analysis 22

1.4 Thesis overview . 29

2 A new characterization of P6-free graphs 31
2.1 Background and results . 32
2.2 An outline of the algorithm 35
2.3 P4-free and P5-free graphs . 38
2.4 Finding connected dominating subgraphs in P6-free graphs . . 41
2.5 An application of our characterization 49
2.6 Conclusion . 51

3 Partitioning graphs into connected parts 53
3.1 Background and results . 54
3.2 The 2-Disjoint Connected Subgraphs problem 57

CONTENTS vii

3.2.1 An NP-completeness proof 57
3.2.2 A complexity classification for P`-free graphs 58
3.2.3 An exact algorithm . 60

3.3 The Longest Path Contractibility problem 65
3.3.1 A complexity classification for P`-free graphs 65
3.3.2 An exact algorithm . 71

3.4 Conclusion . 74

4 On graph contractions and induced minors 76
4.1 Background and results . 77
4.2 Induced minors in minor-closed graph classes 79
4.3 The H-Contractibility problem 82

4.3.1 Polynomial cases with four dominating vertices 82
4.3.2 NP-complete cases with a dominating vertex 86

4.4 The (H, v)-Contractibility problem 88
4.5 Conclusion . 93

5 Computing role assignments of chordal graphs 95
5.1 Background and results . 96
5.2 Computing 2-role assignments in O(n2) time 99

5.2.1 On chordal graphs . 100
5.2.2 An outline of our algorithm for R5-role assignments . . 101
5.2.3 Phase 1 in detail . 102
5.2.4 Proof of correctness and running time analysis 112
5.2.5 A remark regarding R6-role assignments 113

5.3 Complexity of k-Role Assignment for k ≥ 3 113
5.4 Conclusion . 116

6 Finding induced paths of given parity in claw-free graphs 117
6.1 Background and results . 118
6.2 Recognizing claw-free perfect graphs in O(n4) time 122
6.3 Finding induced paths of given parity 126

6.3.1 Preprocessing the input graph G 127
6.3.2 G′′ is not perfect . 130
6.3.3 G′′ is perfect . 133
6.3.4 Finding induced paths of given parity from s to t in G 134

CONTENTS viii

6.4 Finding shortest induced paths of given parity 136
6.4.1 Shortest paths in elementary and peculiar graphs . . . 137
6.4.2 A closer look at Tarjan’s decomposition algorithm . . 139
6.4.3 Shortest paths in claw-free perfect graphs 143

6.5 Conclusion . 146

7 Finding longest cycles in claw-free graphs 148
7.1 Background and results . 149
7.2 Closed trails of low degeneracy and ordering 151
7.3 Two exact algorithms for finding a longest cycle 154
7.4 Two exact algorithms for finding an OCT 156

7.4.1 Branching on vertices of low degree 157
7.4.2 An O∗(1.6818n) time algorithm 159
7.4.3 An O∗(1.8878n) Time Algorithm 163

7.5 Conclusion . 165

Bibliography 167

List of Figures

1.1 Two P4-witness structures of a graph. 7
1.2 Beineke’s nine forbidden induced subgraphs of a line graph. . 16

2.1 An example of a TECB graph. 33
2.2 A dominating set D and a minimizer D′ of D for uv. 38
2.3 The graph F3. 45
2.4 The net. 46

3.1 The graph G, in case c1 = (x1 ∨ x2 ∨ x3). 58
3.2 The graph G. 60
3.3 The graph G. 66

4.1 The graphs M6,Γ6, and Π6, respectively. 80
4.2 The graph H∗4 (2). 83
4.3 Two H∗4 (2)-witness structures W and W ′ of a graph, where

W ′ is obtained fromW by moving as many vertices as possible
fromW (x1)∪W (x2) toW (y1)∪W (y2)∪W (y3)∪W (y4). The
grey vertices form the connectors CW ′(x1, Y) and CW ′(x2, Y). 84

4.4 The graph H̄. 87
4.5 A subgraph Gw, where cw1 = (xw1 ∨ xw2 ∨ xw3). 89
4.6 A graph H, where v∗ is the grey vertex, and the corresponding

graph G. 91

5.1 A role graph R and a graph G with an R-role assignment. . . 96
5.2 The six different role graphs on two vertices. 99
5.3 A chordal graph G (left) and a clique tree T of G. 100
5.4 All possible labels and all possible transitions between them. . 104

LIST OF FIGURES x

5.5 The graph H and the graph G when k = 4. 114

6.1 An elementary graph with an elementary coloring. 124
6.2 The smallest possible peculiar graph. 125
6.3 A claw induced by {x6, s

′, x2, x3} with center x6. 131
6.4 Two induced paths from s to t of different parity. 132
6.5 Shortest odd path from s to t is not shortest odd induced path.137
6.6 Structure of the graph G with respect to the clique separator

decomposition C. 144

7.1 The graph G3, which is 3-degenerate but not 3-ordered. . . . 154
7.2 The gadget for replacing the edges of G. 166

List of Tables

3.1 The time complexities of SPLIT for some graph classes. 64

5.1 The different labels a vertex v can have. 103
5.2 Combining two labels from different child bags. 107

Chapter 1

Introduction

One of the most well-known conjectures in theoretical computer science states
that the class P of decision problems solvable in polynomial time by a de-
terministic Turing machine does not equal the class NP of decision problems
solvable in polynomial time by a non-deterministic Turing machine. The va-
lidity of this conjecture would imply that we will never find an algorithm with
polynomial worst-case running time that solves an NP-hard problem. Since
the P 6= NP conjecture is widely believed to be true and numerous interesting
computational problems have been shown to be NP-hard, a lot of research is
devoted to finding ways to cope with the intrinsic hardness of such problems.
Ideally, we would like an algorithm to find an optimal solution, find such a
solution for every possible instance, and find it in polynomial time. From
the above it is clear that algorithms for solving NP-hard problems can only
be expected to possess at most two out of these three desirable properties.

If the restriction that the obtained solution be optimal is dropped, then
we find ourselves in the field of heuristics and approximation algorithms. A
heuristic is a method for solving a problem without any guarantee that the
obtained solution is close to optimal. In fact, it is often possible to create
instances on which a heuristic can be shown to perform poorly. However,
despite the lack of any theoretical guarantee on their performance, heuristics
are widely used as they typically work very well on many inputs in practice
(see for example [27, 133]). Unlike a heuristic, an approximation algorithm
produces provably good, albeit suboptimal, solutions. Traditionally, approx-
imation algorithms run in polynomial time and find solutions that are within

2

a reasonable factor of the optimal solution. Unfortunately, for several im-
portant optimization problems it has been shown that they are NP-hard to
approximate within a non-trivial factor (see for example [270]). Motivated
by these discouraging inapproximability results, approximation algorithms
with exponential worst-case running times have recently been proposed (see
for example [43, 86, 122]). These algorithms show that researchers are some-
times willing to drop not just one, but two out of the three aforementioned
desirable properties when dealing with certain NP-hard problems.

All algorithms presented in this thesis are exact algorithms, which means
that they solve problems exactly by always finding an optimal solution. De-
manding the solution to be optimal means that other concessions have to be
made when designing an exact algorithm: we either have to impose restric-
tions on the instances of the problem in order to achieve a polynomial time
complexity, or we have to abandon the requirement that the worst-case run-
ning time has to be polynomial. In some cases, for example in the algorithms
presented in Chapters 3 and 7 of this thesis, we are even forced to do both.

Often instances of an NP-hard problem arising in practice may be as-
sumed to have a certain structure, and sometimes this structure can be used
to solve the problem efficiently. Apart from this practical motivation, it is
interesting from a theoretical point of view to identify classes of instances for
which an NP-hard problem can be solved in polynomial time, as this might
provide insight into what makes certain problems hard. In Section 1.2 we
further motivate the study of polynomial time algorithms on restricted input
and survey some relevant results in the literature. In particular, we focus on
algorithmic results obtained on NP-hard problems restricted to three specific
graph classes, as for most NP-hard problems studied in this thesis we present
algorithms for instances belonging to one of these three classes.

If the problem under consideration remains NP-hard even for restricted
input, or if we require an exact algorithm for solving an NP-hard problem
on general instances, then we have to settle for a super-polynomial time
complexity. Clearly, a trivial brute force algorithm that solves an NP-hard
problem by enumerating and checking all possible solutions is an example of
such an algorithm. Often though it is possible to find an exact algorithm
that has a better worst-case running time than the trivial algorithm, and it
is in those “moderately exponential time algorithms” that we are interested.

1.1 Notation and terminology 3

In Section 1.3 we argue why the study of exact exponential time algorithms
has quickly established itself as a popular field within theoretical computer
science, and briefly describe some techniques that have successfully been used
in the design and analysis of such algorithms.

Before taking a closer look at polynomial and exponential time exact
algorithms in Section 1.2 and Section 1.3 respectively, we start by introducing
the necessary notation and terminology in Section 1.1. We conclude this
chapter by giving a brief overview of the rest of this thesis in Section 1.4.

1.1 Notation and terminology

Most of the standard graph theoretic terminology presented below is derived
from the book by Diestel [91], and we refer to that book for graph terminology
not defined below. Several definitions will be given later in the thesis, either
because they are used in only one chapter of this thesis, or because the pre-
ceding theory provides insight into the concepts in question and makes their
definitions appear more naturally. For a self-proclaimed “relatively low-level
introduction to some of the central notions of computational complexity”,
in particular focussing on the theory of NP-completeness, we refer to the
classic text book by Garey and Johnson [127]. Papadimitriou [219] gives a
very thorough and formal introduction to computational complexity theory.
The O∗-notation, used throughout the thesis to denote the time complexity
of an exponential time algorithm, indicates that we suppress polynomially
bounded factors. In other words, for any exponential function f , we have

O∗(f(n)) = O(f(n) · nO(1)) .

1.1.1 The basics

A graph G = (V,E) is an ordered pair of finite sets, where V is a non-empty
set whose elements are called the vertices of G, and E is a set of unordered
pairs (u, v) with u, v ∈ V called the edges of G. We refer to the vertex
set and edge set of a graph G as V (G) and E(G), respectively, in case the
names of these sets are not explicitly specified. Throughout this thesis, we
use n and m to denote the number of vertices and edges of the graph under
consideration, respectively. In particular, whenever we deal with algorithms,

1.1 Notation and terminology 4

n and m always refer to the number of vertices and edges of the input graph.
The vertices u and v are called the end vertices of the edge (u, v). Apart
from some of the so-called role graphs that will be considered in Chapter 5,
none of the graphs in this thesis have loops, i.e., edges of the form (u, u).
Instead of (u, v) we will consistently write uv to represent an edge between
u and v.

The (open) neighborhood of a vertex v in G is the set NG(v) = {y ∈
V (G) | xy ∈ E(G)} of neighbors of v in G. The closed neighborhood of v is the
set NG[v] = NG(v)∪{u}. For any set S ⊆ V (G), we write NS(v) = NG(v)∩S
and NG(S) = ∪u∈SNG(u) \ S. The degree of v in G, denoted dG(v), is
the number of neighbors of v in G, i.e., dG(v) = |NG(v)|. A vertex of
degree 0 is called isolated, and a vertex of degree 1 is called pendant. If
NG(v) = V (G)\{v} for every vertex v, then G is called complete. We use Kk

to denote the complete graph on k vertices. A vertex is called simplicial if its
neighborhood induces as complete graph. If no confusion is possible, we write
d(v), N(v), and N(S) instead of dG(v), NG(v), and NG(S), respectively.

We say that a graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). If G′ is a subgraph of G and V (G′) = V (G), we say that G′

is a spanning subgraph of G. A subgraph G′ of G is an induced subgraph of
G if for every pair of vertices u, v ∈ V (G′) we have uv ∈ E(G′) if and only if
uv ∈ E(G); we say that V (G′) induces the subgraph G′. For any non-empty
set S ⊆ V , we write G[S] to denote the subgraph of G induced by S. We
say that the set S is connected if G[S] is connected. A vertex v is adjacent
to a connected set S if v has at least one neighbor in S. Two connected sets
S1, S2 ⊆ V (G) are adjacent if S1 contains at least one vertex that is adjacent
to S2. For any proper subset S ⊂ V (G), we write G−S to denote the graph
G[V (G) \ S], i.e., the graph obtained from G by removing all vertices of S
and their incident edges. If S = {v}, we write G − v instead of G − {v}.
Similarly, for any set F ⊆ E(G), the graph G−F is the graph obtained from
G by removing all edges of F . A separator of a connected graph G is a set
S of vertices of G such that G − S is not connected. If a separator S of G
consists of a single vertex s, then s is called a cut vertex of G.

A subset S ⊆ V is called a clique if G[S] is a complete graph, and S

is called an independent set if G[S] contains no edges. A clique S is called
maximal if for every proper superset S′ of S the graph G[S′] is not complete,

1.1 Notation and terminology 5

and S is called maximum if G has no clique containing strictly more vertices
than S; maximal and maximum independent sets are defined analogously.
A set U ⊆ V (G) dominates a set U ′ ⊆ V (G) if every vertex v ∈ U ′ either
belongs to U or has a neighbor in U . We also say that U dominates the
graph G[U ′]. A subgraph H of G is a dominating subgraph of G if V (H)
dominates G. A dominating vertex is a vertex adjacent to all other vertices.

We write Pk and Ck to denote the chordless path and the chordless cycle
on k vertices, respectively. The length of a path or a cycle refers to its number
of edges. Note that the path Pk has length k − 1. A path or a cycle is said
to be odd (respectively even) if it has odd (respectively even) length. A hole
in a graph G is an induced subgraph of G that is a chordless cycle of length
at least 4, and an antihole is the complement of a hole. The length of an
antihole is defined to be the length of its complement, and an antihole is
called odd (respectively even) if its complement is an odd (respectively even)
hole.

A hypergraph H is a pair (Q,S) consisting of a set Q = {q1, . . . , qm},
called the vertices of H, and a set S = {S1, . . . , Sn} of non-empty subsets of
Q, called the hyperedges of H. For any S ∈ S, we write H − S to denote
the hypergraph (Q,S \ S). With a hypergraph H = (Q,S) we associate its
incidence graph I, which is a bipartite graph with partition classes Q and S,
where for any q ∈ Q,S ∈ S we have qS ∈ E(I) if and only if q ∈ S. Note
that a graph is a hypergraph for which every hyperedge contains exactly two
vertices, which means that hypergraphs can be seen as a generalization of
graphs. A 2-coloring of a hypergraph H = (Q,S) is a partition (Q1, Q2) of
Q such that Q1 ∩ Sj 6= ∅ and Q2 ∩ Sj 6= ∅ for 1 ≤ j ≤ n.

1.1.2 Some graph classes

A graph G is called bipartite if V (G) can be partitioned into two independent
sets A and B, called the partition classes of G. A bipartite graph G with
partition classes A and B is called complete if every vertex of A is adjacent
to every vertex of B. We write K`,m to denote a complete bipartite graph
whose two partition classes contain ` and m vertices, respectively. A star is
a complete bipartite graph one partition class of which contains exactly one
vertex. The unique vertex in this class is called the center of the star. A claw
is a four-vertex star K1,3 = ({x, a, b, c}, {xa, xb, xc}), and vertex x is called

1.1 Notation and terminology 6

the center of the claw.
A graph G is called H-free for some graph H if G does not contain an

induced subgraph isomorphic to H. In particular, a graph is called triangle-
free if it does not contain a subgraph isomorphic to the cycle on three vertices,
and a graph is called claw-free if it has no induced subgraph isomorphic to
the claw. For any family H of graphs, we write Forb(H) to denote the class
of graphs that are H-free for every H ∈ H.

The line graph of a graph H with edges e1, . . . , ep is the graph L(H)
with vertices u1, . . . , up such that there is an edge between any two vertices
ui and uj if and only if ei and ej share one end vertex in H. Note that
L(K3) = L(K1,3) = K3; it is well-known that every connected line graph
F 6= K3 has a unique H with F = L(H) (see for example [145]). We call H
the preimage graph of F . For K3 we let K1,3 be its preimage graph.

Let F be a family of non-empty sets. The intersection graph of F is ob-
tained by representing each set in F by a vertex and connecting two vertices
if and only if the two corresponding sets intersect. The intersection graph of
a family of intervals on the real line is called an interval graph. If none of
the intervals is properly contained in another interval, then we have a proper
interval graph. A graph is a proper interval graph if and only if it is a unit
interval graph, i.e., the intersection graph of a family of unit intervals on the
real line [229]. Roberts [229] also showed that proper interval graphs are
exactly the claw-free interval graphs. Proper interval graphs are also known
as indifference graphs [229].

A graph G is perfect if for every induced subgraph H the chromatic
number of H equals the size of a largest clique in H. A graph is chordal if
it does not contain a hole, i.e., an induced cycle of length at least 4. A split
graph is a graph whose vertex set can be partitioned into a clique and an
independent set. A graph G is a split graph if and only if both G and its
complement G are chordal [111].

1.1.3 Minors, induced minors and contractions

Let G and H be two graphs. The edge contraction of edge uv in G removes u
and v from G, and replaces them by a new vertex adjacent to precisely those
vertices that were adjacent to {u, v} in G. We denote the resulting graph by
G\uv. IfH can be obtained fromG by a sequence of edge contractions, vertex

1.2 Polynomial time algorithms on restricted input 7

Figure 1.1: Two P4-witness structures of a graph.

deletions and edge deletions, then H is a minor of G. If H can be obtained
from G by a sequence of edge contractions and vertex deletions, then H is
an induced minor of G. If H can be obtained from G by a sequence of edge
contractions, then H is a contraction of G, and G is called H-contractible.

By definition, G is H-contractible if and only if G has a so-called H-
witness structure W, which is a partition of V (G) into |V (H)| non-empty
connected sets, called H-witness sets, such that every vertex h ∈ V (H)
corresponds to an H-witness set W (h) of G, and for every two vertices
hi, hj ∈ V (H), witness sets W (hi) and W (hj) are adjacent in G if and
only if hi and hj are adjacent in H. By contracting all the edges in each
of the witness sets, we obtain the graph H. See Figure 1.1 for an example
that shows that, in general, a witness structure W is not uniquely defined.
In both witness structures shown in Figure 1.1, contracting all the edges in
each of the witness sets results in the graph P4.

1.2 Polynomial time algorithms on restricted input

Ever since Berge coined the term “perfect graph” in 1963 [25], the class of
perfect graphs has gone on to become one of the most intensively studied
classes in graph theory. In structural graph theory, one of the most chal-
lenging tasks was to prove Berge’s Strong Perfect Graph Conjecture, stating
that a graph is perfect if and only if it does not contain an odd hole or an
odd antihole as an induced subgraph. The quest for an affirmative answer
to this question, eventually obtained by Chudnovsky et al. [64], would take
over 40 years, and culminated in one of the most eagerly anticipated results
in graph theory. Along the way, not only structural but also many algo-
rithmic results were obtained for specific subclasses of perfect graphs. This
led Golumbic [137] to write a book, entitled “Algorithmic Graph Theory and

1.2 Polynomial time algorithms on restricted input 8

Perfect Graphs”, in an attempt to “collect and unify the topic to act as a
springboard for researchers, and especially graduate students, to pursue new
directions of investigations”.

In part driven by this call, many researchers continued to work on per-
fect graphs. Entire books have been devoted to particular families of perfect
graphs, such as tolerance graphs [138] and even the very restricted class
of threshold graphs [206], which is exactly the intersection of cographs and
split graphs. In the foreword of the second edition of his book, published in
2004, Golumbic [137] states that “the world of perfect graphs has grown to
include over 200 special graph classes”. Coincidentally, Brandstädt, Le and
Spinrad [47] mention in the foreword of their 1999 book “Graph Classes: A
Survey” that they describe “almost 200 classes”. In contrast to Golumbic’s
book however, the graph classes included in the book of Brandtädt et al. are
not all subclasses of perfect graphs. The same holds for the numerous classes
that make an appearance in the monograph “Efficient Graph Representa-
tions” by Spinrad [251]. This shows that the study of graphs with particular
structure has most certainly transcended the world of perfect graphs, even
though it was this class that originally caused this field to flourish.

We will not cover 200 graph classes in this section. Instead, we have
chosen to restrict our attention here to three graph classes that play an
important role in this thesis, as almost all algorithms presented here have
been designed to process graphs that belong to one of these classes. We
focus on graphs without long induced paths, chordal graphs and claw-free
graphs in Sections 1.2.2, 1.2.3 and 1.2.4, respectively, as they will appear in
that order in Chapters 2 to 7. In an effort to motivate the study of these
particular graph classes, we list several structural properties and algorithmic
results that have been obtained for these classes. It is not our intention
to give a complete overview of all the results known for these particular
graph classes; the examples included here are merely illustrative. We start
in Section 1.2.1 by motivating the study of restrictions of NP-hard problems
to special graph classes, although one could argue that the publication of the
five aforementioned books on the topic renders this unnecessary.

1.2 Polynomial time algorithms on restricted input 9

1.2.1 Why restricted input?

The most natural motivation for studying restrictions of an NP-hard prob-
lem to specific graph classes is the fact that sometimes those graph classes
simply present themselves in practical applications of the problem. Repre-
senting countries by a vertex and joining vertices if and only if the corre-
sponding countries share a border results in a planar graph. The problem of
determining how many colors are needed to color the countries in such a way
that no two bordering countries receive the same color is then equivalent to
solving the Chromatic Number problem on planar graphs. In this case,
it might even be argued that solving the Chromatic Number problem on
general graphs is less natural than solving the problem on planar graphs.
There are also very natural applications of Chromatic Number and re-
lated coloring problems on restricted input in the field of scheduling (see for
example [137, 207]). For example, the problem of assigning k aircrafts to n
flights, where the ith flight has to be scheduled in the time interval (ai, bi)
and no aircraft can be assigned to two flights with overlapping time inter-
vals, can be modeled as a coloring problem on interval graphs. Assigning the
minimum number of frequencies to radio stations in such a way that interfer-
ence is prevented is equivalent to solving the Chromatic Number problem
on unit disk graphs. It is clear that for coloring problems alone numerous
applications exist in which the input graphs may be assumed to belong to a
specific graph class, and these form just the tip of the iceberg.

Sometimes structure shows up rather more unexpectedly. Many algo-
rithms for solving problems on general graphs start by preprocessing the
input graph, after which several reduction and branching rules are executed.
This results in a “core” graph for which the problem has to be solved. These
core graphs, sometimes called kernels, often have a particular structure,
which can be exploited in order to design a relatively fast algorithm for
solving the problem on this type of graph [95]. Using this fast algorithm
as a subroutine in the main algorithm might speed up the overall running
time. The problems on these structured core graphs can be solved using ad-
hoc methods or by combining known results on this type of graphs (see for
example [2, 174, 259]). A more thorough study of algorithms on restricted
input might provide new tools that can be used by researchers in different ar-

1.2 Polynomial time algorithms on restricted input 10

eas having to deal with specific graph classes. It is important to note that it
is often hard to predict what kind of structure lies at the heart of a problem.
After all, the type of graph that remains after the first stages of an algorithm
depends on the choices the researchers make whilst designing the algorithm.
For this reason one might argue that it is not always necessary to justify in
advance why a certain graph class is studied, as the knowledge gained from
studying that graph class might one day come in handy, when this particular
graph class presents itself in the final stages of an exact algorithm on general
input.

The following question can be seen as another motivation for studying the
algorithmic behavior of NP-hard problems on certain types of graphs: how
far, and in what way, do we need to restrict the input before a certain NP-
hard problem can be solved in polynomial time? A lot of research is devoted
to investigating the boundary between polynomial time solvable and NP-
hard cases of certain problems. Attempts to narrow the gap between easy
and hard cases can start “from above” or “from below”: one can either try
to identify smaller classes of graphs on which the problem remains NP-hard,
or one can try to extend polynomial time results on a specific graph class to
one of its superclasses. This sometimes leads to the publication of a table
in which all polynomial and NP-hard cases of a certain family of problems
are summarized [266]. And then the race is on! The table reappears in
every subsequent paper on the topic, each time with one or more new results
added [53, 152, 190, 226]. Every empty entry yields a straightforward open
question, so researchers are encouraged to join in the game of narrowing the
gap in order to complete the table. We will discuss one of those tables in
Section 1.2.2. If an NP-hard problem turns out to be polynomial time solvable
on some graph classes, but remains NP-hard on others, then we might get
an idea of what it is that makes this specific problem hard. Also knowing
that some NP-hard problems behave similarly on special graph classes might
uncover some connection between those problems that might otherwise have
been overlooked.

It is not always the input graph where structure can be found. Sometimes
a problem imposes a certain structure on the output. A good example is the
family of editing problems, asking whether a certain type of target graph
can be obtained from the input graph by adding and/or removing a cer-

1.2 Polynomial time algorithms on restricted input 11

tain number of vertices and/or edges. Editing problems have applications in
problems related to DNA physical mapping [261] and sparse matrix compu-
tations [175]. Common graph classes that appear in this context are chordal
graphs, interval graphs and cluster graphs. Cluster graphs, also known as
P3-free graphs, will be briefly mentioned in Section 1.2.2, and chordal graphs
return in Section 1.2.3. Typically, an editing problem prescribes a graph
class to which the output graph must belong, and sometimes extra restric-
tions on the output are added. It is also possible that the exact target graph
is prescribed. The two problems studied in Chapter 4 are of this type, as
they ask if a certain input graph G can be transformed into a fixed target
graph H by performing edge contractions and vertex deletions. Most of the
results obtained in that chapter heavily rely on structural properties of the
target graph H.

1.2.2 Pk-free graphs

To get the trivial cases out of the way, let us observe that P1-free graphs
do not exist due to the fact that we defined a graph to have a non-empty
vertex set, and that a graph is P2-free if and only if it has no edges. The first
class of real interest is the class of P3-free graphs. It is easy to see that a
graph is P3-free if and only if each of its connected components is a complete
graph. For this reason, P3-free graphs are also called cluster graphs. Cluster
graphs have applications in several fields where large sets of data need to
be “clustered”, such as computational biology [248], image processing [269]
and VLSI design [144]. Shamir et al. [247] describe in detail how such real
life applications can modeled using cluster graphs, and they prove a range
of results involving cluster editing problems. Next we arrive at the class of
P4-free graphs. This class, better known as the class of cographs, is without
doubt the most intensively studied class in the family of Pk-free graphs. The
class of cographs was discovered independently by several authors in the
1970s [191, 246, 253]. Many of the early results, including eight equivalent
characterizations, are collected and extended in [82] (see also Theorem 11.3.3
in [47]). Worth mentioning is the fact that cographs have a unique tree
representation, a so-called cotree [82]. This cotree representation has been
used to obtain a linear time recognition algorithm for cographs [83], as well
as polynomial time algorithms for restrictions of many NP-hard problems

1.2 Polynomial time algorithms on restricted input 12

such as Maximum Clique and Hamiltonian Cycle to cographs [82].
In contrast to cluster graphs and cographs, no special name seems to be

reserved for the class of Pk-free graphs for any value k ≥ 5. This did not
stop several groups of authors from studying restrictions of NP-hard prob-
lems to these classes, especially over the past decade, as we will see below.
A possible reason for this is the interest of researchers in investigating the
boundary between polynomial time solvable and NP-hard cases of a problem,
as mentioned in Section 1.2.1. The advantage of studying NP-hard problems
on Pk-free graphs is the fact that the class of Pk-free graphs is a subclass
of the class of Pm-free graphs if k ≤ m. As a result, if a problem is shown
to be NP-hard for the class of Pk-free graphs, then this also holds for the
class of Pm-free graphs, for any m ≥ k. Similarly, if a problem is polynomial
time solvable on Pk-free graphs, then this is also true for the class of Pj-free
graphs, for any j ≤ k. Hence, in order to find a computational complexity
classification of an NP-hard problem restricted to the class of Pk-free graphs
for every k, one NP-hardness proof and one polynomial time algorithm suf-
fice. We will present such complexity classifications for the two problems
studied in Chapter 3.

The `-Colorability problem is to determine whether the vertices of a
given graph can be properly colored using at most ` colors. Over the past
decade, restrictions of this problem to the class of Pk-free graphs have been
studied by several groups of authors in an attempt to determine the compu-
tational complexity of the `-Colorability problem for Pk-free graphs for
various combinations of ` and k. This line of research was initiated in 2001 by
Woeginger and Sgall [266], who proved NP-completeness of deciding whether
a P8-free graph is 5-colorable and of deciding whether a P12-free graph is
4-colorable. They also presented a polynomial time algorithm for deciding
whether a P5-free graph can be 3-colored. Their paper is the first one to
include a table, in which all the known complexity results of this type were
summarized. The results obtained in [266] were improved and extended by
several authors in subsequent years [49, 53, 152, 190, 226]. A big step forward
was made when Hoàng et al. [152] presented a polynomial time algorithm for
solving the `-Colorability problem on P5-free graphs for every value of `.

The class of P5-free graphs plays an interesting role with respect to the
Maximum Independent Set problem, which is the problem of finding a

1.2 Polynomial time algorithms on restricted input 13

maximum size independent set in a graph: it is the only minimal graph class
characterized by a single connected forbidden induced subgraph for which
the computational complexity of this problem is unknown [135]. In an at-
tempt to resolve this problem, a vast number of polynomial time algorithms
for finding a maximum independent set on subclasses of P5-free graphs have
been proposed [8, 41, 48, 119, 134, 135, 202, 203, 210, 211, 212, 213]. Since
the computational complexity of the Maximum Independent Set prob-
lem is also unknown for the class of P6-free graphs, similar results have
been obtained on subclasses of P6-free graphs [45, 211, 214]. Very recently,
Maffray [204] presented a polynomial time algorithm that, for every fixed
`, finds a maximum independent set in any `-colorable P5-free graph. His
algorithm is based on a structural property which ensures that every con-
nected `-colorable P5-free graph has a vertex whose non-neighbors induce
a (` − 1)-colorable subgraph. We also mention two problems that can be
solved in polynomial time on P4-free graphs, but remain NP-hard on P5-free
graphs, and therefore also on Pk-free graphs for k ≥ 6: determining the chro-
matic number [183], and finding a minimum dominating set (which remains
NP-hard even on split graphs [29], a subclass of P5-free graphs).

All the results mentioned in this section have been obtained by making
use of structural properties of Pk-free graphs. Characterizations of Pk-free
graphs that have proved to be particularly interesting involve connected dom-
inating subgraphs of Pk-free graphs. For example, the algorithms in [53, 152]
rely on a structural result due to Bacsó and Tuza [15], which states that
every P5-free graph has a dominating clique or a dominating induced P3.
More detailed information on characterizations of Pk-free graphs in terms of
connected dominating subgraphs can be found in Chapter 2. In that chapter,
we also present a new characterization of this type for the class of P6-free
graphs. We use this characterization in Chapter 3 to guarantee the relevant
time complexities of the exact exponential time algorithms presented there.

1.2.3 Chordal graphs

The fact that Golumbic [137] devotes an entire chapter to chordal graphs, and
Brandstädt et al. [47] even choose to introduce chordal graphs in the very first
chapter, entitled “Basic concepts”, of their book on graph classes, can be seen
as evidence of the huge popularity of this class. One reason for this popularity

1.2 Polynomial time algorithms on restricted input 14

is the fact that chordal graphs have applications in many different fields,
which means that they have been studied from different angles. The close link
between chordal graphs and the problem of solving sparse symmetric systems
of linear equations, first established by Parter [221] in 1961, has been well-
documented [133]. The class of chordal graphs, and in some cases its proper
subclass of interval graphs in particular, also plays a central role in database
management systems [19, 256], computer vision [75], phylogenetic trees [55,
56], and many more areas [137]. The wide variety of applications also explains
why chordal graphs appear under many different names in the literature, such
as triangulated graphs, rigid-circuit graphs, monotone transitive graphs and
perfect elimination graphs [47].

It is not only their appearance in various practical applications that make
the class of chordal graphs one of the most well-studied graph classes in
algorithmic graph theory. Chordal graphs have many interesting and diverse
structural properties, which have been used successfully in the design of fast
algorithms and are worth investigating from a theoretical viewpoint alone.
One of the most celebrated characterizations of chordal graphs is based on
a result by Dirac [92], stating that every chordal graph is either complete or
has at least two non-adjacent simplicial vertices. Fulkerson and Gross [121]
proved that this fact can be used in order to recognize chordal graphs in
polynomial time: a simple algorithm that repeatedly finds and removes a
simplicial vertex until no simplicial vertex remains will remove every vertex
of the input graph if and only if that graph is chordal. If a graph is chordal,
then the order in which this algorithm picks the vertices is called a perfect
elimination ordering. The characterization due to Fulkerson and Gross [121]
has therefore become widely known as “a graph is chordal if and only if it has
a perfect elimination ordering”, even though the words “perfect elimination”
do not appear in their paper.

Perfect elimination orderings have proved to be a useful tool in developing
fast algorithms for solving problems involving chordal graphs. Gavril [129]
uses a perfect elimination ordering to find a maximum independent set of a
chordal graph in polynomial time. Rose, Tarjan and Lueker [236] show that
a perfect elimination ordering can be found in linear time, which implies
that chordal graphs can be recognized in linear time. Perfect elimination
orderings can also be linked to an algorithm called Elimination Game, first

1.2 Polynomial time algorithms on restricted input 15

described by Parter [221] in relation to Gaussian elimination on sparse sym-
metric matrices. We will take a close look at this game in Section 6.4.2, as it
is used as a subroutine in an algorithm by Tarjan to find a clique separator
decomposition of a graph. Tarjan’s algorithm in turn appears as a subroutine
in our algorithm for finding shortest induced paths of given parity between
two specified vertices in a claw-free perfect graph, presented in Section 6.4.3.

Chordal graphs can been seen as a generalization of trees, as they are
exactly the intersection graphs of subtrees of a tree [56, 130, 260]. Another
characterization is due to Dirac [92], who showed that a graph is chordal if
and only if every minimal separator is a clique. Perhaps even more impor-
tant, especially from an algorithmic point of view, is the fact that the number
of maximal cliques and the number of minimal separators in a chordal graph
does not exceed the number of vertices of the graph [121], whereas an ar-
bitrary graph might have an exponential number of maximal cliques and
minimal separators. Since it is possible to find all the maximal cliques of a
chordal graph in linear time [35, 137, 236], the Maximum Clique problem
is solvable in linear time on chordal graphs. The same holds for the Chro-

matic Number problem, as chordal graphs were among the first classes of
graphs shown to be perfect [137]. A particularly useful tool for representing
the maximal cliques and minimal separators of a chordal graph is its so-called
clique tree. We will return to clique trees in Section 5.2.1.

Researchers studying chordal graphs have a wealth of structural results at
their disposal, which has led to the discovery of polynomial time algorithms
on chordal graphs for many NP-hard problems. Despite the nice properties
of chordal graphs, some problems remain NP-hard on this class. Finding
a hamiltonian cycle is NP-hard on chordal graphs [30], and the same holds
for the problem of finding a minimum dominating set [42]. In fact, both
problems remain NP-hard when restricted to the class of path graphs, which
are exactly the intersection graphs of paths in a tree and therefore form a
subclass of chordal graphs. Two other examples are the notoriously hard
problems Bandwidth and Cutwidth, each asking for a certain optimum
linear ordering of the vertices of the input graph: these problems remain
NP-hard even on trees of maximum degree 3 [126] and split graphs [150],
respectively. On the positive side, the Bandwidth problem can be solved
in polynomial time on interval graphs [181]. Without defining here what a

1.2 Polynomial time algorithms on restricted input 16

Figure 1.2: Beineke’s nine forbidden induced subgraphs of a line graph.

k-role assignment is, we mention that in Chapter 5 we present a polynomial
time algorithm for finding a 2-role assignment of a chordal graph, and we
show that the problem of finding a k-role assignment is NP-hard on chordal
graphs if k ≥ 3.

1.2.4 Claw-free graphs

In order to properly introduce the class of claw-free graphs, let us first con-
sider the related class of line graphs. Although the name “line graph” first
appeared in a paper by Harary and Norman [147] in 1960, the concept of
line graphs has been studied as early as 1932 [263]. Beineke [24] proved that
a graph is a line graph if and only if it does not contain any of the nine
graphs in Figure 1.2 as an induced subgraph. The smallest and simplest of
these minimal forbidden induced subgraphs is the claw, which immediately
implies that the class of claw-free graphs is a superclass of line graphs. Many
NP-hard problems have been shown to be solvable in polynomial time for the
class of line graphs, and it is natural to ask if these algorithmic results can
be generalized to the class of claw-free graphs. Although Beineke’s charac-
terization of line graphs can thus be seen as the original motivation for the
study of claw-free graphs, interest in the class was boosted in the 1970s and
1980s by several results related to perfect matchings [252, 188], hamiltonian
cycles [139, 140] and perfect graphs [76, 222]. This increase in popularity led
to the publication of hundreds of papers on the topic, almost 200 of which are
referred to in a survey by Faudree, Flandrin and Ryjáček [102]. Although the

1.2 Polynomial time algorithms on restricted input 17

emphasis in [102] is on structural properties of claw-free graphs, the survey
also contains a chapter on algorithmic results. We briefly mention a few of
those results here, and refer to the extensive survey for many more results
and background information.

A celebrated result by Edmonds [96] states that finding a maximum
matching in a graph can be done in polynomial time. Since a maximum
matching in a graph G corresponds to a maximum independent set in the
line graph L(G) of G, the Maximum Independent Set problem can be
solved in polynomial time for line graphs. Using ideas from [96], Sbihi [241]
managed to design a polynomial time algorithm for finding a maximum inde-
pendent set in a claw-free graph. The following two results brought the class
of claw-free graphs to the attention of the active perfect graph community
and undoubtedly sparked a lot of interest in claw-free graphs. Parthasarathy
and Ravindra [222] showed that Berge’s Strong Perfect Graph Conjecture
(see Section 6.2) holds for claw-free graphs, and Chvátal and Sbihi [76] pre-
sented a polynomial time algorithm for testing whether or not a claw-free
graph is perfect. We will discuss this recognition algorithm in detail in Sec-
tion 6.2, as we will use it as a subroutine in one of our algorithms presented
in Chapter 6.

Despite the discovery of many polynomial time algorithms for claw-free
graphs, numerous well-known algorithmic problems remain NP-hard on claw-
free graphs. This automatically holds for problems that were shown to be
NP-hard on line graphs. Examples of such problems are the Hamiltonian

Cycle problem [28], and the Chromatic Number problem (an immediate
corollary of the proof that the problem of determining the minimum number
of colors needed to properly color the edges of a graph is NP-hard [163]).
Since the Maximum Independent Set problem is NP-hard on triangle-free
graphs, and the class of claw-free graphs contains the class of complements of
triangle-free graphs, the problem of finding a maximum clique in a claw-free
graph is NP-hard [225]. For several problems that are NP-hard for claw-free
graphs it has been shown that they become polynomial time solvable when
restricted to claw-free perfect graphs. For example, this is the case for the
problems of determining the chromatic number [165] and finding a maximum
clique [167]. In Section 6.4, we present a polynomial time algorithm for
finding a shortest induced path of given parity between two given vertices in

1.3 Exact exponential time algorithms 18

a claw-free perfect graph.
Very recently, in a series of seven papers spanning over 200 pages in to-

tal, Chudnovsky and Seymour [66, 67, 68, 69, 70, 71, 72] proved a complete
structure theorem for claw-free graphs. They identify a few basic types of
claw-free graphs, and show that every connected claw-free graph can be ob-
tained from one of those basic graphs by simple expansion operations. Even
before the first paper in the series appeared, Chudnovsky and Seymour [65]
already published a survey paper in which they give an exact statement of
the theorem, sketch the proof and give some applications. The class of quasi-
line graphs plays an important role in their papers. A graph is a quasi-line
graph if the neighborhood of every vertex can be covered by two cliques. It
is not hard to see that every line graph is a quasi-line graph, and that ev-
ery quasi-line graph is claw-free. Therefore, if the solution to a problem is
known for line graphs, solving the problem on quasi-line graphs can be an
intermediate step in order to solve the problem on claw-free graphs. This
was shown by King and Reed [180], who used the structural properties of
quasi-line graphs described in [65] to prove the validity of a conjecture by
Reed [227] on quasi-line graphs; the conjecture was known to be true for line
graphs, but it is unclear if the conjecture holds for claw-free graphs. The pa-
per by King and Reed inspired Fiala et al. [104], who study the k-in-a-Path

problem of deciding whether a given graph has an induced path containing
k specified vertices. This problem is known to be NP-complete on general
graphs for any fixed k ≥ 3 [90]. Fiala et al. [104] show that this problem is
NP-complete on line graphs if k is part of the input, but can be solved in
polynomial time on claw-free graphs for any fixed k. Their algorithm reduces
the original problem on claw-free graphs to a problem on quasi-line graphs,
and solves the problem using a characterization of quasi-line graphs from [65]
and related algorithmic results from [180].

1.3 Exact exponential time algorithms

As we mentioned at the beginning of this chapter, exhaustively enumerating
and checking all possible solutions allows us to trivially solve every NP-hard
optimization problem, whose decision variant is NP-complete, in exponen-
tial time. It seems relatively useless trying to find faster exact algorithms

1.3 Exact exponential time algorithms 19

for NP-hard problems, since any such algorithm will still be an exponential
time algorithm (unless, of course, P = NP) and therefore, at least from a
theoretical point of view, hopelessly inefficient. Despite this, many exact
exponential time algorithms have been proposed in the literature. Undoubt-
edly one of the most famous ones dates back to 1962 and is due to Held
and Karp [151]. They presented an elegant exact algorithm that solves the
Traveling Salesman problem in O(n22n) time, an impressive improve-
ment over the trivial O(n!) time complexity. But arguably the main reason
why this algorithm became so well-known is the fact that, for almost 50 years
now, researchers have not been able to come up with an exact algorithm for
the intensively studied Traveling Salesman problem with a better time
complexity than the one by Held and Karp.

It is interesting to note that the paper by Held and Karp predates the
introduction of the concept of NP-completeness [78] by almost a decade.
The lack of a formal framework indicating that the Traveling Sales-

man problem, like many others, does not admit a polynomial time algo-
rithm did not withhold Held and Karp (or rather the editor of the journal
in question) from publishing an exponential time algorithm. After the land-
mark papers of Cook [78] and Karp [176] provided strong evidence of the
intractability of many important combinatorial and graph theoretic prob-
lems, the number of publications involving exact exponential time algo-
rithms rapidly increased [172, 189, 209, 234], especially over the past two
decades [20, 21, 22, 23, 34, 54, 57, 61, 88, 171, 186]. This surge of interest in
exact exponential time algorithms is driven by both practical and theoretical
reasons, which will be discussed in Section 1.3.1.

Despite the large number of publications involving exponential time al-
gorithms, no real attempts seemed to have been made to develop a general
theory on the subject, until Woeginger [265] wrote a survey paper on exact
exponential time algorithms for NP-hard problems in 2003. In this survey,
Woeginger describes four of the most widely applicable and successful tech-
niques for designing exact algorithms. He also mentions known results on
exact algorithms for several NP-hard problems, and formulates many open
problems. Fomin, Grandoni and Kratsch [114] give an overview of some tech-
niques that were not included in Woeginger’s survey. Section 1.3.2 briefly
discusses the six main techniques that are covered in the survey papers by

1.3 Exact exponential time algorithms 20

Woeginger [264] and Fomin, Grandoni and Kratsch [114], and we refer to
those papers for a more detailed introduction. Although we do mention sev-
eral papers to illustrate the successful application of each of the techniques,
we refrain from going into details on how exactly the techniques were used.
As before, it is not our intention to give a complete overview of the field, nor
do we list all the latest results. Interested readers are advised to consult the
aforementioned survey papers, or to get hold of one of the first copies of the
forthcoming book “Exact Algorithms” by Fomin and Kratsch [117].

1.3.1 Why exponential time algorithms?

At the beginning of this chapter, we mentioned that an ideal algorithm for
solving a problem finds an optimal solution to the problem, finds such a
solution for every possible instance, and finds it in polynomial time. In
case the problem under consideration requires an exact optimal solution,
heuristics and approximation algorithms are not applicable, and improving
the running time of the exact algorithm might be the only way to solve larger
instances of the problem. And even if approximate solutions were acceptable,
some NP-hard problems are hard to approximate, as we already mentioned
at the beginning of Chapter 1. Two particularly striking examples of this are
the problems Maximum Clique and Chromatic Number. Although both
problems have trivial n-approximation algorithms, it is known that neither
problem can be approximated in polynomial time within a factor n1−ε for
any ε > 0, unless P = NP [270]. In other words, finding certain reasonable
solutions to some NP-hard problems is just as difficult as computing optimal
solutions, which motivates the study of exact exponential time algorithms.

Running an exponential time algorithm on a faster computer increases
the size of the instances solvable within a given amount of time by an additive
constant, whereas a reduction of the base of the exponential running time
increases that size by a constant multiplicative factor. For example, suppose
we are given an algorithm with time complexity 1.7n and suppose the largest
instance we can solve within a “reasonable” amount of time using this algo-
rithm has size n0. Let n1 be the size of the largest instance we can solve
within the same amount of time, using the same algorithm on a 10-times
faster computer. Since 1.7n1 = 10 ·1.7n0 yields n1 = n0 +log1.7(10) ≈ n0 +4,
we conclude that by using a 10-times faster computer the size of the largest

1.3 Exact exponential time algorithms 21

solvable instance increases by 4. Suppose we manage to improve the al-
gorithm so that it has time complexity 1.3n, and let n2 be the size of the
largest instance we can solve within the same reasonable amount of time,
using this new algorithm on the slow computer mentioned above. Then the
maximum size of instances we can handle doubles, since 1.3n2 = 1.7n0 yields
n2 = log1.3(1.7) · n0 ≈ 2 · n0.

Although in theory exponential time algorithms are considered to be
inefficient, a fast algorithm with exponential worst-case running time might
still be of practical use, and sometimes even outperform a polynomial time
algorithm. For example, it is clear that for small instances an algorithm
with an exponential time complexity of O(1.1n) is expected to run faster
than an algorithm with a polynomial time complexity of O(n5): note that
for example 1.1250 ≈ 2.2 ·1010 whereas 2505 ≈ 9.8 ·1011, which means that for
instances up to size 250 the algorithm with the exponential time complexity
is preferable over the one with the polynomial time complexity.

The ever-increasing speed of modern computers sometimes allows us to
effectively solve large fixed instances of NP-hard problems. In May 2004,
the Traveling Salesman problem of visiting all 24,978 cities in Sweden was
solved, exceeding the 15,112-city tour through Germany found in 2001 [6].
In 2007, Cook, Espinoza and Goycoolea [79] provided the optimal solution
of a 33,810-city instance, and Applegate et al. [7] announced the solution of
a Traveling Salesman problem instance of 85,900 cities two years later.
There is a big gap between results from testing implementations and known
theoretical results on exact algorithms. This gap indicates that there might
be a lot of progress to be made and significantly faster exact algorithms to
be designed.

Some NP-hard problems have better and faster exact algorithms than
others. As an example, let us focus on the Traveling Salesman problem
a bit more. We already mentioned at the start of Section 1.3 that the O∗(2n)
time algorithm for this problem by Held and Karp [151] has not been beaten
for almost 50 years. Constructing an exact algorithm with time complexity
O∗(cn) for some constant c < 2 that solves the Traveling Salesman prob-
lem is in fact an important open problem, and even finding such an algorithm
for the closely related but somewhat easier Hamiltonian Cycle problem
would be a very interesting breakthrough [264]. However, for the Euclidean

1.3 Exact exponential time algorithms 22

Traveling Salesman problem, in which the distance between cities is the
“ordinary” Euclidean distance, a sub-exponentialO∗(c

√
n logn) time algorithm

for some constant c > 0 is known [168], even though this problem is NP-hard
on general input [125, 218]. There are many more NP-hard problems that
admit sub-exponential time algorithms, i.e., algorithms with time complexity
O∗(co(n)) for some constant c > 1 (see [89] for several references). It is nat-
ural to ask which NP-hard problems can be solved in sub-exponential (but
super-polynomial) time.

The complexity class SNP, a subclass of NP, was introduced by Papadim-
itriou and Yannakakis [220] for studying the approximability of optimization
problems (see [220] for the exact definition). Many important NP-complete
problems, such as k-Satisfiability, k-Colorability, Independent Set,
and Clique, have been shown to be SNP-complete under so-called SERF-
reductions [169]. This implies that if any one of those problems turns out to
be solvable in sub-exponential time, then the same holds for every problem
in SNP. An equivalent way of stating this is known as the Exponential Time
Hypothesis, stating that, for any fixed k ≥ 3, the k-Satisfiability problem
does not have a sub-exponential time algorithm. Since each of the aforemen-
tioned problems has withstood numerous attempts of many researchers to
find sub-exponential time algorithms [264], the Exponential Time Hypothe-
sis, although perhaps less well-known than its big brother P 6= NP, is widely
believed to be true. This is another strong indication that some NP-complete
problems might be harder than others. Investigating exact exponential time
algorithms for NP-complete problems might lead to a better understanding
of the worst-case time behavior of these problems.

1.3.2 Techniques for design and analysis

There is a wide range of techniques that can be used in the design and
analysis of good exact algorithms. Some of these techniques appeared in the
literature as early as the sixties and seventies [151, 255], others have been
developed more recently [113]. Below we give an overview of six important
and successful techniques. As mentioned before, we refer to the excellent
survey papers by Woeginger [264] and by Fomin, Grandoni and Kratsch [114],
as well as to the forthcoming book on the subject by Fomin and Kratsch [117],
for more information.

1.3 Exact exponential time algorithms 23

Preprocessing

Preprocessing is a collective term for modifying the input of an algorithm
during the initial phase of computation. It normally consists of analyzing,
restructuring and/or simplifying the input, but strictly speaking a simple
operation like labeling all the vertices of an input graph also counts as pre-
processing. A lot of well-known polynomial time sorting algorithms start by
preprocessing the input array: for example, the heapsort algorithm starts
by building a max-heap on the n-element input array, which can be done in
linear time, and uses the properties of a heap to efficiently sort the input
array in O(n log2 n) time [80]. Obviously, when designing exact exponential
time algorithms, we are only interested in preprocessing steps that reduce the
time complexity by an exponential factor. Sometimes it is not exactly clear
what constitutes preprocessing: removing isolated vertices at the start of an
algorithm can be seen as preprocessing the input graph, but one might also
argue that we are already applying a “proper” (albeit very simple) reduction
rule of the algorithm.

Good examples of the successful use of preprocessing in the design of
exponential time algorithms are due to Horowitz and Sahny [164]. They
consider the Subset Sum problem, asking whether a subset of a given set of
integers adds up to a specified value, and the Knapsack problem, where the
goal is to find a subset of items with maximum value such that the weight of
the items does not exceed a given limit. Both problems can trivially be solved
in O∗(2n) time by considering all possible subsets. By applying a clever
preprocessing trick, involving splitting the input array into two equally sized
arrays, Horowitz and Sahny [164] managed to obtain O∗(2n/2) time exact
algorithms for both problems. Since the publication of these algorithms
in 1974, no faster exact algorithms for the Subset Sum problem and the
Knapsack problem have been found.

Dynamic programming

Dynamic programming across subsets is one of the most standard and widely
used techniques in the design of exact exponential time algorithms for NP-
hard problems. The basic idea is to recursively break the problem down
into subproblems, calculate and store the optimal solution to each of the

1.3 Exact exponential time algorithms 24

subproblems, and combine these solutions to find the optimal solution to
the original problem. For this method to work, we need the property that
optimal solutions of subproblems can be extended to an optimal solution of
the original problem.

One of the first and certainly most celebrated results of applying dy-
namic programming to obtain relatively fast exact algorithms for NP-hard
problems is the O∗(2n) time algorithm for the Traveling Salesman prob-
lem due to Held and Karp [151], already mentioned at the beginning of Sec-
tion 1.3. Other notable examples include exact algorithms by Lawler [189]
for the Chromatic Number problem and the easier 3-Colorability prob-
lem, having time complexities of O∗(2.443n) and O∗(1.443n), respectively.
Unlike the algorithm by Held and Karp, the time complexity of which is
still unbeaten, faster exact algorithms for Chromatic Number and 3-
Colorability are known: these problems can be solved in O∗(2n) [34]
and O∗(1.329n) [23] time, respectively.

Many NP-hard problems can be solved in polynomial, or even linear,
time when restricted to the class of trees. At the end of the 1980s, several
authors independently discovered that the same holds for many NP-hard
problems on graphs whose treewidth is bounded by a constant [13, 26, 37],
and a powerful theorem by Courcelle [84] states that every decision prob-
lem expressible in monadic second order logic can be solved in linear time
on graphs of bounded treewidth. Treewidth is a parameter, introduced by
Robertson and Seymour [231] in 1986, that indicates how tree-like a graph
is (see [40] for an exact definition and more information on treewidth and
tree decompositions). Fomin, Grandoni and Kratsch [114] identify dynamic
programming over tree decompositions as a powerful technique for designing
exact algorithms for graphs whose treewidth is relatively small. Apart from
graphs of bounded treewidth, this technique has been successfully applied on
planar graphs and on sparse graphs, in particular on graphs with small max-
imum degree: see the survey paper by Fomin, Grandoni and Kratsch [114]
for examples and references.

Pruning the search tree

As we mentioned before, a trivial algorithm for solving an NP-complete prob-
lem enumerates and checks all feasible solutions. At any point in the execu-

1.3 Exact exponential time algorithms 25

tion of the algorithm, we can focus on a specific piece of the feasible solution,
such as a specific vertex in a graph problem. By determining all possible
values for this piece, we can branch into different subcases, each subcase
corresponding to a possible value of the piece under consideration. This nat-
urally defines a search tree. If we are lucky, we can determine certain values
for this piece that will never lead to an optimal solution. In that case we
can “prune” the corresponding subtrees of the search tree, which reduces the
search space, and ultimately the overall running time, of the algorithm. An
algorithm that uses this technique of pruning the search tree is sometimes re-
ferred to as a Davis-Putnam-style exponential time backtracking algorithm,
and every branch-and-bound algorithm uses this idea.

The technique of pruning the search tree has successfully been used to
find good exact algorithms for many NP-hard problems, most notably the
3-Satisfiability problem and the Maximum Independent Set problem.
The first exact algorithm for 3-Satisfiability beating a trivial algorithm
was obtained by Monien and Speckenmeyer [209] in 1985. Using the tech-
nique of pruning the search tree, involving more and more reduction and
branching rules, many authors managed to find faster exact algorithms for
3-Satisfiability [?, 185, 186, 209, 242, 243] (see [186] for an extensive sur-
vey of results of this type). However, the currently fastest exact algorithms
for 3-Satisfiability are not based on the technique of pruning the search
tree, but use local search ideas, which we will discuss below.

The story for Maximum Independent Set is very similar. After the
original breakthrough by Tarjan and Trojanowski [255], who showed that the
problem can be solved in O∗(2n/3) ≈ O∗(1.260n) time, all the early papers
are based on the technique of pruning the search tree [21, 172, 234]. The list
of reduction and branching rules grows with the appearance of every sub-
sequent paper, making the case analysis more complex every time. Rather
surprisingly, the fastest published polynomial space algorithm for Maximum

Independent Set is very simple [115]. The crucial idea behind this algo-
rithm, which has a time complexity of O∗(1.221n), is the clever choice of a
non-standard measure in the analysis of the algorithm. This relatively new
idea is called “measure and conquer” and will be discussed below.

1.3 Exact exponential time algorithms 26

Memorization

In a 1986 paper, Robson [234] presents a polynomial space exact algorithm
for the Maximum Independent Set problem that runs in O∗(1.225n)
time. In the same paper, he shows that the time complexity can be re-
duced to O∗(1.211n), although the corresponding algorithm has exponential
space complexity. The technique used to obtain this result is called memo-
rization by Fomin, Grandoni and Kratsch [114], who include memorization
in their survey of new techniques in the design and analysis of exact algo-
rithms. Other authors use the term memoization for the same technique (see
for example page 347 of [80] and page 145 of [216]). It turns out that the time
complexity of many exponential time search tree algorithms, that typically
use a polynomial amount of space, can be reduced at the cost of an expo-
nential space complexity by using this memorization technique [87, ?, 141].
Memorization has also been used in parameterized algorithms [59, 217].

The key idea behind memorization is to store the solution to each sub-
problem in a database as soon as the recursive algorithm first encounters the
subproblem. If a subproblem turns up more than once, the stored solution is
looked up to prevent the algorithm from having to compute the same solu-
tion again. Since an NP-hard problem with instances of size n typically has
an exponential number of subproblems, this database has exponential size.
However, if we implement the database in such a way that we can search
it in time logarithmic in the number of entries, then we can find a stored
subproblem in time polynomial in n.

There are some obvious similarities between memorization and dynamic
programming. After all, both techniques involve solving subproblems only
once and storing the solutions to these subproblems in a database. However,
a bottom-up dynamic programming algorithm will sometimes outperform a
top-down memorization-based algorithm, and vice versa. In case all subprob-
lems of a certain problem have to be solved at least once by an algorithm
solving the problem, then a dynamic programming algorithm is preferable,
since such an algorithm does not involve recursion and needs less time to
maintain the table of stored solutions. However, in case we do not need the
solution to all subproblems to solve the problem, then a memorization-based
algorithm is the better choice. After all, a memorization based algorithm

1.3 Exact exponential time algorithms 27

solves only the subproblems it encounters during execution, whereas a dy-
namic programming algorithm calculates the solution to all the subproblems.

Local search

In the fields of heuristics and randomized algorithms, local search has al-
ready established itself as a very useful tool in the design of fast algorithms.
For example, the technique has played a central role in heuristics for graph
coloring problems since the 1980s: Galinier and Hertz [124] give a survey of
local search methods used in graph coloring heuristics, classify them into four
classes, and conclude that “almost all efficient heuristic algorithms for graph
coloring use a local search”. Local search starts with a candidate solution
(i.e., a random, and therefore not necessarily proper, coloring of a graph) and,
in case this candidate is not the required solution to the problem, moves to
a “nearby” candidate (for example by recoloring one of adjacent vertices that
received the same color in the initial coloring). The meaning of the word
“nearby” depends on the context: for many problems, a distance between
feasible solutions can be defined naturally. Good local search algorithms use
information on why the candidate failed to be a solution to the problem to
cleverly choose the next candidate and move a step in the right direction.
The choice of the next candidate solution is typically made with a certain
degree of randomness. For example, this has led to several local search al-
gorithms for randomized k-Satisfiability [244, 162, 17, 171] (see also the
concise survey by Schöning [245] on this topic).

Among the techniques for designing exact algorithms, local search is a
relative newcomer. In case we are looking for an exact algorithm, we have
to make sure that the algorithm visits every possible candidate solution in
the search space. Dantsin et al. [88] make clever use of a so-called cover code
to derandomize a probabilistic local search algorithm for k-Satisfiability

due to Schöning [244], thereby obtaining the then fastest deterministic algo-
rithms for k-Satisfiability for every value of k ≥ 3. In particular, they
show that 3-Satisfiability can be solved in O∗(1.481n) time. Brueggemann
and Kern [54] slightly improve the pruning technique in [88] and bring the
time complexity down to O∗(1.473n). This is currently the fastest determin-
istic exact algorithm for 3-Satisfiability, which shows that local search,
despite being a relatively new technique in the area of exact exponential

1.3 Exact exponential time algorithms 28

time algorithms, has already proven to be a very successful one. It is also
worth pointing out that the best algorithms for 3-Satisfiability based on
local search [88, 54] are much simpler than the ones based on the technique of
pruning the search tree [186]: the analysis of the algorithm by Kullmann [186]
alone spans 35 pages!

Measure and conquer

Most of the fastest known exact algorithms for NP-hard problems are re-
cursive search tree algorithms. These algorithms use two types of rules:
reduction rules to simplify the instance, and branching rules to recursively
call the algorithm on smaller instances of the problem. The analysis of these
algorithms is based on the bounded search tree technique: after defining a
suitable measure of the size of the subproblems, this measure is used to lower
bound the progress the algorithm makes at each branching step. This often
results in a linear recurrence for every reduction rule and branching rule,
which can be solved using standard techniques. Eventually a running time
of the type O∗(cn) is obtained, for some constant c, by taking the worst case
over all the recurrences.

For the last few decades most successful attempts to improve the running
time of exact algorithms have been focussed on introducing more and more
reduction and branching rules. As a result, many of the currently fastest
algorithms are rather complicated. Strangely enough, the measures used in
the analysis of these algorithms are usually very simple, for example the
number of vertices in case of graph problems or the number of variables
or clauses in case of satisfiability problems. Since adding more rules to an
already complicated algorithm in order to slightly reduce the running time
even further does not seem very inviting, some researchers are investigating
the use of non-standard measures in the analysis of algorithms to achieve
better upper bounds on the worst-case running times. This relatively new
approach is called measure and conquer. Note that measure and conquer
differs from the techniques discussed in the previous sections in the sense
that it is used to analyze, rather than design, exact algorithms.

Fomin, Grandoni and Kratsch [114] are the first authors to describe how
the use of a non-standard measure can be applied as a general technique
to analyze search tree algorithms, and they were the first to use the term

1.4 Thesis overview 29

measure and conquer. However, a few years earlier Eppstein already suc-
cessfully used non-standard measures in the analysis of a search tree algo-
rithms. In [97], he described a simple algorithm for solving the Traveling

Salesman problem for cubic graphs, and used a non-standard measure to
show that his algorithm runs in O∗(1.260n) time. Very recently, Iwama and
Nakashima [?] improved on this by presenting an O∗(1.251n) time algorithm
for the same problem. Beigel and Eppstein’s [23] O∗(1.329n) time exact al-
gorithm for the 3-Coloring problem, that uses a non-standard measure in
the analysis, is currently the fastest one known. Other results contributed
to the use of the measure and conquer technique include the fastest known
exact algorithms for finding a dominating set [235], a minimum connected
dominating set [116], and a minimum independent dominating set [128], and
many more (see also [117]). These results show that, although the measure
and conquer technique was only discovered a few years ago, its results so far
have been impressive.

1.4 Thesis overview

This thesis is based on eight research papers [50, 155, 156, 157, 158, 159,
160, 161]. As a result, the problems studied in Chapters 2 to 7 are quite
diverse. Therefore, rather than surveying related results on those problems
in a separate chapter, we have chosen to start every chapter with a section
“Background and results”, in which we give an overview of previous work
on the problems studied in that chapter, state our contribution in detail,
and place our results in a bigger context. For the same reason, we state
open problems and suggestions for further research in the last section of each
chapter, rather than adding a separate chapter at the end of this thesis.

Graphs without long induced paths play a central role in Chapters 2
and 3. Chapter 2 focuses on the problem of finding certain types of con-
nected dominating subgraphs of such graphs. Our main result is a new char-
acterization of the class of P6-free graphs in terms of connected dominating
subgraphs. In Chapter 3 we study two problems that ask for a partition of
the vertex set of the input graph into connected sets. We determine the com-
putational complexity of both problems when restricted to the class of Pk-free
graphs, for every k. We also present exact exponential time algorithms for

1.4 Thesis overview 30

NP-complete cases of the problems.
Chapter 4 focuses on two problems that ask whether an input graph G

contains a smaller graph H as a “pattern”. We show that the problem of
deciding if G contains a fixed graph H as an induced minor can be solved
in polynomial time if H is planar and G belongs to any non-trivial minor-
closed graph class. We also present computational complexity results on the
problem of deciding whether a given graph G can be contracted to a fixed
graph H, as well as on a new variant of this problem. The presence of a
dominating vertex in the target graph H seems to play an interesting role in
these results.

A k-role assignment of a graph is an assignment of exactly k “roles” to
the vertices of the graph, such that two vertices with the same role have
exactly the same set of roles in their neighborhood (see Chapter 5 for a more
formal definition). The problem of finding a k-role assignment is NP-hard
on general graphs when k ≥ 2. In Chapter 5 we present a polynomial time
algorithm for finding a 2-role assignment of a chordal graph. We also show
that the problem remains NP-hard when restricted to chordal graphs for any
k ≥ 3.

Chapters 6 and 7 have in common that we restrict the problems studied
in both chapters to the class of claw-free graphs. The problems studied in
Chapter 6 involve finding induced paths of odd or even length between two
specified vertices in a graph. Our main result is a polynomial time algorithm
for finding an induced path of given parity between two specified vertices in
a claw-free graph. The problem of finding a longest cycle in a graph, the
topic of Chapter 7, remains NP-hard on claw-free graphs. We present two
exact exponential time algorithms for this problem.

Chapter 2

A new characterization of
P6-free graphs

This chapter is based on the following two papers; the second paper is the
extended journal version of the first paper.

[157] P. van ’t Hof and D. Paulusma. A new characterization of P6-free
graphs. In: Proceedings of the 14th Annual International Computing
and Combinatorics Conference (COCOON 2008), volume 5092 of Lec-
ture Notes in Computer Science, pages 415–424, Springer, 2008.

[158] P. van ’t Hof and D. Paulusma. A new characterization of P6-free
graphs. Discrete Applied Mathematics, 158(7):731–740, 2010.

As the title of this thesis promises, exploiting structural graph properties
has played a major role in the design of the algorithms for solving (restricted
versions of) the various NP-hard problems studied in this thesis. For ex-
ample, in Chapter 5 we make use of the well-known clique tree structure of
chordal graphs, whereas an interesting structural characterization of claw-
free perfect graphs is exploited in Chapter 6. Even more so than in the
other chapters of this thesis, the emphasis in this chapter is on structure.
We study the class of P`-free graphs for several values of `. In particular,
we focus on characterizations of these graph classes in terms of connected
dominating subgraphs. Although the main contribution of this chapter is a
new structural characterization of the class of P6-free graphs, this chapter is
also interesting from an algorithmic point of view. The reason for this is that

2.1 Background and results 32

all our structural results are proved constructively. To be more precise, we
present a polynomial time algorithm for finding certain connected dominat-
ing subgraphs in P6-free graphs, as well as polynomial time algorithms for
finding such subgraphs in P4-free and P5-free graphs. We will use the char-
acterization of P6-free graphs presented in this chapter to obtain the time
complexities of the exact algorithms presented in Chapter 3.

2.1 Background and results

Unless specifically stated otherwise, all graphs in this chapter are non-trivial,
i.e., contain at least two vertices. We mentioned in Section 1.2.2 that the class
of P2-free graphs and the class of P3-free graphs can trivially be characterized
as the class of graphs without any edge and the class of graphs all components
of which are complete graphs, respectively. We also saw that the class of P4-
free graphs (or cographs) has been studied extensively [47]. Wolk [267, 268]
studied the class of trivially perfect graphs, which are exactly the graphs
that are P4-free and C4-free, i.e., the class Forb({P4, C4}). He showed that a
graph G is P4-free and C4-free if and only if each connected induced subgraph
of G contains a dominating vertex (see also Theorem 11.3.4 in [47]). We
show in Section 2.3 that we can slightly generalize this theorem to obtain the
following characterization of P4-free graphs.

Theorem 2.1. A graph G is P4-free if and only if each connected induced
subgraph of G contains a dominating induced C4 or a dominating vertex.

There are many other characterizations of the class of P4-free graphs in
the literature (cf. [47]). We mention one by Bacsó and Tuza [15], obtained
independently by Cozzens and Kelleher [85], who show that a graph G is P4-
free if and only if, in every connected induced subgraph G′ of G, all maximal
cliques dominate G′. Brandstädt et al. [47] included this result in their book
as one of many characterizations of cographs (see Theorem 11.3.5 in [47]).

Apart from characterizing the class of P4-free graphs, Bacsó and Tuza [15]
also characterize the class Forb({P5, C5}). There, they prove that a graph
G is P5-free and C5-free if and only if each connected induced subgraph of
G contains a dominating clique. The same result has been independently
obtained by Cozzens and Kelleher [85]. Liu and Zhou [198] improve this by

2.1 Background and results 33

u

v

w1 w2

Figure 2.1: An example of a TECB graph.

obtaining the following characterization of P5-free graphs.

Theorem 2.2 ([198]). A graph G is P5-free if and only if each connected
induced subgraph of G contains a dominating induced C5 or a dominating
clique.

A graph G is called triangle extended complete bipartite (TECB) if it is a
complete bipartite graph or if it can be obtained from a complete bipartite
graph F by adding some extra vertices w1, . . . , wr and edges wiu,wiv for
1 ≤ i ≤ r to exactly one edge uv of F (see Figure 2.1 for an example).

The following characterization of P6-free graphs is due to Liu, Peng and
Zhao [199].

Theorem 2.3 ([199]). A graph G is P6-free if and only if each connected
induced subgraph of G contains a dominating induced C6 or a dominating
(not necessarily induced) TECB graph.

If we consider graphs that are not only P6-free but also triangle-free, then
we have one of the main results in [198].

Theorem 2.4 ([198]). A triangle-free graph G is P6-free if and only if each
connected induced subgraph of G contains a dominating induced C6 or a dom-
inating complete bipartite graph.

A characterization of P`-free graphs for ` ≥ 7 is given in [16]: Forb({P`})
is the class of graphs for which each connected induced subgraph has a dom-
inating subgraph of diameter at most `− 4.

The main result of this chapter, the proof of which is presented in Sec-
tion 2.4, is the following characterization of the class of P6-free graphs.

Theorem 2.5. A graph G is P6-free if and only if each connected induced
subgraph of G contains a dominating induced C6 or a dominating (not nec-
essarily induced) complete bipartite graph. Moreover, we can find such a
dominating subgraph of G in O(n3) time.

2.1 Background and results 34

This theorem strengthens Theorem 2.3 and Theorem 2.4 in two different
ways. Firstly, Theorem 2.5 shows that we may omit the restriction “triangle-
free” in Theorem 2.4 and that we may replace the class of TECB graphs
by its proper subclass of complete bipartite graphs in Theorem 2.3. Sec-
ondly, in contrast to the proofs of Theorem 2.3 and Theorem 2.4, the proof
of Theorem 2.5 is constructive: we provide an algorithm for finding a desired
dominating subgraph of a P6-free graph G in O(n3) time. Note that we
cannot use some brute force approach to obtain such a polynomial time al-
gorithm, since a dominating complete bipartite graph might have arbitrarily
large size.

To illustrate the incremental technique used to construct the O(n3) time
algorithm in the proof of Theorem 2.5, we use the same technique to give
constructive proofs of Theorem 2.1 and Theorem 2.2 in Section 2.3. We point
out that the proof of Theorem 2.2 in [198] is non-constructive, and to our
knowledge there is no constructive proof of Theorem 2.1 in the literature.
In particular, we present an O(n3) time algorithm that finds a dominating
induced C5 or a dominating clique of a P5-free graph G. Note that we cannot
use a brute force approach to find a dominating clique of a P5-free graph,
as such a clique might have arbitrarily large size. Bacsó and Tuza [15],
and independently Cozzens and Kelleher [85], present a polynomial time
algorithm that finds a dominating clique of a connected graph without an
induced P5 or C5. When run on a P5-free graph G that does contain a C5, the
algorithms in [15] and [85] either find a dominating clique of G or terminate
and state that G contains an induced C5. We point out that the algorithm in
our proof of Theorem 2.2 always finds a dominating clique or a dominating
induced C5 in a P5-free graph.

As mentioned before, Section 2.4 contains a constructive proof of Theo-
rem 2.5. We also show that the characterization in Theorem 2.5 is minimal
in the sense that there exists an infinite family of P6-free graphs for which
a smallest connected dominating subgraph is a (not induced) complete bi-
partite graph. We would like to mention that the algorithm used to prove
Theorem 2.5 also works for an arbitrary (not necessarily P6-free) graph G:
in that case the algorithm either finds a dominating subgraph as described
in Theorem 2.5 or finds an induced P6 in G. We end Section 2.4 by char-
acterizing the class of graphs for which each connected induced subgraph

2.2 An outline of the algorithm 35

has a dominating induced C6 or a dominating induced complete bipartite
subgraph, again by giving a constructive proof. This class consists of graphs
that, apart from P6, have exactly one more forbidden induced subgraph (the
so-called net). This generalizes a result by Bacsó, Michalak and Tuza [14].

As an application of our main result, we consider the Hypergraph 2-

Colorability problem in Section 2.5, which is the problem of deciding
whether a given hypergraph has a 2-coloring. It is well-known that this
problem is NP-complete in general [201]. We prove that for the class of
hypergraphs with P6-free incidence graphs the problem becomes polynomial
time solvable. Moreover, we show that for any 2-colorable hypergraph H

with a P6-free incidence graph, we can find a 2-coloring of H in polynomial
time.

2.2 An outline of the algorithm

In this section we outline the vertex-incremental approach used in the proofs
of Theorem 2.1, Theorem 2.2 and Theorem 2.5. In each of the proofs we
describe an algorithm that finds a desired dominating set D of an input
graph G = (V,E). The algorithm first establishes a connected order π =
x1, . . . , xn of V , i.e., an order π = x1, . . . , xn of the vertices of G such that
Gi := G[{x1, . . . , xi}] is connected for i = 1, . . . , n. It then processes the
vertices of G one by one in a vertex-incremental way, i.e., by adding the next
vertex in the order π in every step. Assuming that in an earlier step the
algorithm has found a desired dominating subgraph Di−1 of Gi−1, it adds
the next vertex xi and extends the previously found solution. If the set
Di−1 dominates Gi, the algorithm sets Di := Di−1 and continues with the
next step. Otherwise, it uses the set Di−1 plus one or more extra vertices
of Gi to find a desired dominating set Di of Gi. We show that such a
transformation can be done in polynomial time by making use of a so-called
minimizer. Since the algorithm only performs n steps, the total running time
stays polynomial. For computational complexity purposes, we represent the
graph G by its adjacency matrix, i.e., the n× n matrix A = (aij) with rows
and columns indexed by the vertices of V such that auv = 1 if uv ∈ E and
auv = 0 otherwise.

In order to explain the concept of a minimizer we need the following

2.2 An outline of the algorithm 36

terminology for a graph G = (V,E). Recall that for any vertex v in G and
any subset D ⊆ V , we write ND(v) to denote the subset of neighbors of v
that are contained in D, i.e., ND(v) := NG(v) ∩D. A vertex v′ ∈ V \D is
called a D-private neighbor of a vertex v ∈ D if ND(v′) = {v}. Let u, v be a
pair of adjacent vertices in a dominating set D of a graph G such that {u, v}
dominates D. Note that this means D is connected. We call a dominating
set D′ ⊆ D of G a minimizer of D for uv if {u, v} ⊆ D′ and each vertex
of D′ \ {u, v} has a D′-private neighbor in G. It is important to note that
a minimizer D′ is connected (because u and v are adjacent vertices in D′

and {u, v} dominates D′) as we will use this property in our algorithms.
The following lemma states that we can obtain a minimizer D′ from D in
polynomial time.

Lemma 2.6. Let D be a dominating set of a graph G, and let u, v ∈ D be
a pair of adjacent vertices such that {u, v} dominates G[D]. We can find a
minimizer of D for uv in O(n2) time.

Proof. Let D = {w1, . . . , wq} with w1 = u and w2 = v be a dominating set
of a graph G = (V,E). Below we explain how we can obtain a minimizer
D′ of D for uv in O(n2) time. We define Si := ∅ for i = 1, . . . , q. For each
x ∈ V we compute in O(n) time the highest index p such that x ∈ N(wp)
but x /∈ N(w1) ∪ · · · ∪N(wp−1) and set Sp := Sp ∪ {x}. Note that such an
index p always exists as uv ∈ E, {u, v} dominates D, and D dominates G.
We then obtain S = {S1, . . . , Sq} in O(n2) total time. By construction, the
non-empty sets in S form a partition of V . It is clear that S1 6= ∅ as v ∈ S1

and S2 6= ∅ as u ∈ S2. We will not include a vertex wi with Si = ∅ in D′,
since all its neighbors will be in S1 ∪ · · · ∪ Si−1.

We cannot define D′ as the set {wk ∈ D | Sk 6= ∅}, as there might be
a vertex wi with Si 6= ∅ whose neighbors in Si are all adjacent to vertices
in {wk ∈ D | Sk 6= ∅ and k ≥ i + 1}. Hence we define a set R := ∅ and
do as follows for i = q, q − 1, . . . , 3 (so for indices in decreasing order). We
set Ti := ∅. For each x ∈ Si we check in O(n) time if there exists an index
p′ ≥ i + 1 such that x ∈ N(wp′) and Tp′ 6= ∅. If so, then R := R ∪ {x}.
Otherwise, we set Ti := Ti ∪ {x}. After setting T1 := S1 and T2 := S2 we
then obtain T = {T1, . . . , Tq} in O(n2) total time.

We define D′ := {wi ∈ D | Ti 6= ∅}. By definition, D′ is a minimizer

2.2 An outline of the algorithm 37

of D for uv if D′ dominates G, {u, v} ⊆ D′, and each vertex of D′ \ {u, v}
has a D′-private neighbor in G. Clearly, {u, v} ∈ D′ as T1 = S1 6= ∅ and
T2 = S2 6= ∅. By construction, each vertex in Ti ⊆ Si is a neighbor of wi and
the non-empty sets in T , together with R in case R 6= ∅, form a partition
of the set of vertices in S1 ∪ · · · ∪ Sq = V . Hence, D′ dominates V \ R. Let
x ∈ R. We claim that x is adjacent to a vertex in D′. Suppose x ∈ Sh.
Because x ∈ R, we have h ≥ 3. By our algorithm, x ∈ N(wj) for some wj
with j ≥ h+ 1 and Tj 6= ∅. By definition, wj ∈ D′. Hence, D′ dominates G.

We claim that for every i ≥ 3 each vertex in Ti with wi ∈ D′ is a D′-
private neighbor of wi in G. This can be seen as follows. First suppose x ∈ Ti
for some wi ∈ D′ with i ≥ 3 is a neighbor of some vertex in {w1, . . . , wi−1}∩
D′. Then x /∈ Si, and consequently x /∈ Ti as Ti ⊆ Si, a contradiction. Now
suppose x is a neighbor of some vertex in {wi+1, . . . , wq}∩D′. Then x is the
neighbor of some vertex wj with j ≥ i + 1 and Tj 6= ∅ by definition of D′.
Then, by our algorithm, x ∈ R instead of x ∈ Ti, which is a contradiction.
Hence, all vertices of Ti are D′-private neighbors of wi in G, for every i ≥ 3.
We conclude that D′ is indeed a minimizer of D for uv.

We point out that a connected dominating set D of a graph G may have
several minimizers for the same edge depending on the order in which its
vertices are considered. Note that the algorithm described in the proof of
Lemma 2.6 also finds all the private neighbors for each of the vertices of the
minimizer; we will use this in the proof of Theorem 2.5.

Example. Consider the graph G and its connected dominating set D in the
left-hand side of Figure 2.2. All D-private neighbors are colored black. Note
that u and v are two adjacent vertices in D and that {u, v} dominates D.
That means we can find a minimizer of D for uv by applying the algorithm
described in the proof of Lemma 2.6.

Suppose we choose the order w1 = u,w2 = v, w3, w4, w5, w6. We first find
non-empty sets S1, S2, S3, S4, S5 and we conclude that S6 is empty. Then we
find that T6 is empty, and that T5, T4, T3 as well as T2 = S2 and T1 = S1 are
non-empty. The set D′ := {u, v, w3, w4, w5} is a minimizer of D for uv. The
right-hand side of Figure 2.2 shows the graph G and the minimizer D′ of D
for uv: every vertex in D′ \ {u, v} has a black colored D′-private neighbor.
Note that u does not have a D′-private neighbor but v does.

2.3 P4-free and P5-free graphs 38

u v w3 w4 w5 w6 u v w3 w4 w5 w6

D D′

Figure 2.2: A dominating set D and a minimizer D′ of D for uv.

If we choose the order w′1 = u,w′2 = v, w′3 = w3, w
′
4 = w6, w

′
5 = w4, w

′
6 =

w5 in the algorithm described in the proof of Lemma 2.6, then we find a differ-
ent minimizer of D for uv. We first find that S′1, S′2, S′3, S′4 are non-empty and
that S′5, S′6 are empty. Then we find that T ′6, T ′5 are empty and T ′4, T ′3, T ′2, T ′1
are non-empty. This means that D′′ := {u, v, w3, w6} is a minimizer of D for
uv. Note that every vertex of D′′ (including u) has a D′′-private neighbor.

2.3 Finding connected dominating subgraphs in P4-
free and P5-free graphs

We now use the technique described in Section 2.2 to prove Theorem 2.1.

Theorem 2.1. A graph G is P4-free if and only if each connected induced
subgraph of G contains a dominating induced C4 or a dominating vertex.

Proof. If G is not P4-free, then G contains an induced subgraph isomorphic
to P4, and that subgraph has no dominating induced C4 nor a dominating
vertex. So in order to prove Theorem 2.1, it suffices to prove that if G is
a connected P4-free graph, then we can find a dominating induced C4 or a
dominating vertex of G.

Let G = (V,E) be a connected P4-free graph with connected order
π = x1, . . . , xn. Let D1 := {x1}. Suppose i ≥ 2. Assume Di−1 induces a
dominating C4 in Gi−1 or is a dominating vertex of Gi−1. We write x := xi.
If x ∈ N(Di−1), then we set Di := Di−1. Suppose otherwise. We show how
we can use Di−1 to find a suitable dominating set Di of Gi, which suffices to
prove Theorem 2.1.

Since π is connected, Gi contains a vertex y (not in Di−1) adjacent to x.

Case 1. Di−1 induces a dominating C4 in Gi−1.

2.3 P4-free and P5-free graphs 39

We write G[Di−1] = c1c2c3c4c1. Without loss of generality, assume that y
is adjacent to c1. Then y must also be adjacent to c2 (respectively c4), as
otherwise xyc1c2 (respectively xyc1c4) is an induced P4, contradicting the
P4-freeness of Gi. In fact, y must be adjacent to c3 as well, since otherwise
xyc2c3 would be an induced P4 in Gi. If y dominates Gi, then we choose
Di := {y}. Otherwise, let z be a vertex of Gi not adjacent to y. Since Di−1

dominates z, z must be adjacent to at least one vertex ck of Di−1. The path
xyckz and P4-freeness of Gi imply that z must be adjacent to x. Hence the
set C := {x, y, ck, z} induces a C4 in Gi. We claim that C also dominates
Gi, which means we can choose Di := C. Suppose C does not dominate Gi,
and let z′ be a vertex not dominated by C. Since Di−1 dominates Gi−1, z′

must be adjacent to at least one vertex c` in Di−1 \ {ck}. Then z′c`yx is an
induced P4 in Gi, a contradiction.

Case 2. Di−1 is a dominating vertex of Gi−1.

We write Di−1 = {d}. If y dominates Gi, then we choose Di := {y}. Oth-
erwise, let z be a vertex of Gi not adjacent to y. Since d dominates z, Di

contains the path xydz. The P4-freeness of Gi implies that z must be ad-
jacent to x. Note that {x, y, d, z} dominates Gi, since d dominates every
vertex in Gi−1. Since {x, y, d, z} also induces a C4 in Gi, we can choose
Di := {x, y, d, z}.

Note that we can easily find a dominating vertex or a dominating induced
C4 of a P4-free graph G in O(n4) time by using a brute force approach.
Using the technique described in the proof of Theorem 2.1, we can find such
a subgraph in O(n2) time, as transforming a set Di−1 to Di takes O(n) time
and there are n − 1 of such transformations. Note that finding a minimizer
was not necessary here.

We now present an algorithmic proof of Theorem 2.2, again using the
technique described in Section 2.2.

Theorem 2.2. A graph G is P5-free if and only if each connected induced
subgraph of G contains a dominating induced C5 or a dominating clique.

Proof. If G is not P5-free, then G contains an induced subgraph isomorphic
to P5, and that subgraph has no dominating induced C5 nor a dominating
clique. So in order to prove Theorem 2.2, it suffices to prove that if G is

2.3 P4-free and P5-free graphs 40

a connected P5-free graph, then we can find a dominating induced C5 or a
dominating clique of G.

Let G = (V,E) be a connected P5-free graph with connected order
π = x1, . . . , xn. Let D1 := {x1}. Suppose i ≥ 2. Assume Di−1 induces a
dominating C5 in Gi−1 or is a dominating clique of Gi−1. We write x := xi.
If x ∈ N(Di−1), then we set Di := Di−1. Suppose otherwise. We show how
we can find a suitable dominating set Di of Gi from Di−1.

Since π is connected, Gi contains a vertex y (not in Di−1) adjacent to x.

Case 1. Di−1 induces a dominating C5 in Gi−1.

We write G[Di−1] = c1c2c3c4c5c1. Since Di−1 dominates Gi−1 and y ∈
V (Gi−1), y must be adjacent to Di−1. Without loss of generality, we assume
that y is adjacent to c1. Obviously, D1 := Di−1∪{y} dominates Gi. Suppose
c3 has a D1-private neighbor c′3. Then c′3c3c4c5c1 is an induced P5 in Gi, a
contradiction. Hence c3 has no D1-private neighbor and D2 := D1 \ {c3}
dominates Gi. Similarly, c4 has no D2-private neighbor c′4, since otherwise
c′4c4c5c1c2 would be an induced P5. So D3 := D2 \ {c4} = {c1, c2, c5, y} still
dominates Gi.

Suppose c2 does not have a D3-private neighbor. Then D4 := {y, c1, c5}
dominates Gi. If c5 has no D4-private neighbor, then {y, c1} dominates Gi
and is a clique of Gi, so we choose Di := {y, c1}. Suppose c5 has a D4-
private neighbor c′5. Since c′5c5c1yx is a path on five vertices, we must have
yc5 ∈ E(Gi) or xc′5 ∈ E(Gi). If yc5 ∈ E(Gi), then {y, c1, c5} is a clique
of G and we choose Di := {y, c1, c5}. In case xc′5 ∈ E(Gi), we can choose
Di := {x, y, c1, c5, c′5}, since {x, y, c1, c5, c′5} ⊃ D4 dominates Gi and induces
a C5 in G.

So we may without loss of generality assume that c2 has a D3-private
neighbor c′2. Suppose yc2 /∈ E(Gi). Since xyc1c2c′2 is a path on five vertices
in Gi, we must have xc′2 ∈ E(Gi). Let D := {x, y, c1, c2, c′2}. We claim
that D dominates Gi. Suppose, for contradiction, that there exists a vertex
z1 /∈ NGi(D). Since z1 must be adjacent to D3, we have z1c5 ∈ E(Gi). But
then z1c5c1c2c′2 is an induced P5 in Gi, a contradiction. Hence, D dominates
Gi. Since G[D] is isomorphic to C5, we can choose Di = D.

Suppose yc2 ∈ E(Gi). If c5 has no D3-private neighbor, then {y, c1, c2}
dominates Gi and we choose Di := {y, c1, c2}. Assume that c5 has a D3-

2.4 Finding connected dominating subgraphs in P6-free graphs 41

private neighbor c′′5. Using similar arguments as before, we may assume that
y is adjacent to c5. Note that the path c′2c2yc5c′′5 cannot be induced in Gi,
so c′2 must be adjacent to c′′5. Let D′ := {c′2, c2, y, c5, c′′5}. We claim that D′

dominates Gi. Suppose D′ does not dominate Gi. Then there exists a vertex
z /∈ NGi(D

′). Recall that D3 = {c1, c2, c5, y} dominates Gi. Hence z must
be adjacent to c1. But then zc1c2c′2c′′5 induces a P5 in Gi, a contradiction.
Hence D′ dominates Gi. Since G[D′] is isomorphic to C5, we can choose
Di := D′.

Case 2. Di−1 is a dominating clique of Gi−1.

Let y be adjacent to d1 ∈ Di−1. Since {y, d1} dominates Di−1 ∪ {y}, we can
compute a minimizer D of Di−1∪{y} for yd1 by Lemma 2.6. If y is adjacent
to all vertices in D\{y}, then D is a clique and we choose Di := D. Suppose
otherwise. Let d2 be not adjacent to y. By the definition of a minimizer, d2

has a D-private neighbor d′2. Since the path xyd1d2d
′
2 cannot be induced in

Gi, we have xd′2 ∈ E(Gi). We claim that the induced cycle C := xyd1d2d
′
2x

dominates Gi. Suppose C does not dominate Gi. Then there exists a vertex
z /∈ NGi(C). Since D dominates Gi−1, z must be adjacent to a vertex
d ∈ D \ {d1, d2, y}. Then zdd2d

′
2x is an induced P5 in Gi, a contradiction.

Hence we can choose Di := V (C).

A closer analysis of the proof of Theorem 2.2 shows that Case 1 takes
O(n) time, while Case 2 takes O(n2) time if we apply Lemma 2.6 to compute
the minimizer. Since there are n − 1 transformations, we find the following
corollary. Note that we cannot use some brute force approach to find such a
subgraph, since a dominating clique might have arbitrarily large size.

Corollary 2.7. We can find a dominating induced C5 or a dominating clique
of a connected P5-free graph in O(n3) time.

2.4 Finding connected dominating subgraphs in P6-
free graphs

In this section we present a constructive proof of our main result, Theo-
rem 2.5. Let G be a connected P6-free graph. We say that D is a type
1 dominating set of G if D dominates G and G[D] is an induced C6. We

2.4 Finding connected dominating subgraphs in P6-free graphs 42

say that D is a type 2 dominating set of G defined by A(D) and B(D) if
D dominates G and G[D] contains a spanning complete bipartite subgraph
with partition classes A(D) and B(D). In the proof of Theorem 2.5 below
we present an algorithm that finds a type 1 or type 2 dominating set of G in
polynomial time by using the incremental technique described in Section 2.2.

Theorem 2.5. A graph G is P6-free if and only if each connected induced
subgraph of G contains a dominating induced C6 or a dominating (not nec-
essarily induced) complete bipartite graph. Moreover, we can find such a
dominating subgraph of G in O(n3) time.

Proof. If a graph is not P6-free, it contains an induced P6 which contains
neither a dominating induced C6 nor a dominating complete bipartite graph.
So to prove Theorem 2.5, it suffices to prove that if G is a connected P6-free
graph, then we can find a type 1 or type 2 dominating set of G in O(n3)
time.

Let G = (V,E) be a connected P6-free graph with connected order π =
x1, . . . , xn. Let D2 := {x1, x2}. Suppose i ≥ 3. Assume Di−1 is a type 1 or
type 2 dominating set of Gi−1. We write x := xi. If x ∈ N(Di−1), which
we can check in O(n) time, then we set Di := Di−1. Suppose otherwise. We
show how we can use Di−1 to find Di in O(n2) time. Since the total number
of iterations is n− 2, we then find a desired dominating subgraph of Gn = G

in O(n3) time.
Since π is connected, Gi contains a vertex y (not in Di−1) adjacent to x.

We can find such a vertex in O(n) time.

Case 1. Di−1 is a type 1 dominating set of Gi−1.

We write G[Di−1] = c1c2c3c4c5c6c1. We claim that D := NDi−1(y) ∪ {x, y}
dominates Gi, which means that Di := D is a type 2 dominating set of Gi
that is defined by A(Di) := {y} and B(Di) := {x} ∪ NDi−1(y) and that
can be obtained in O(n) time. Suppose D does not dominate Gi, and let
z ∈ V (Gi) be a vertex not dominated by D. Since Di−1 dominates Gi−1, we
may without loss of generality assume that yc1 ∈ E(Gi).

Suppose yc4 ∈ E(Gi). Note that z is dominated by Gi−1. Without loss of
generality, assume z is adjacent to c2. Consequently, y is not adjacent to c2.
Since z is not adjacent to any neighbor of y and the path zc2c1yc4c5 cannot

2.4 Finding connected dominating subgraphs in P6-free graphs 43

be induced in Gi, either z or y must be adjacent to c5. If zc5 ∈ E(Gi), then
xyc4c5zc2 is an induced P6 in Gi. Hence zc5 /∈ E(Gi) and yc5 ∈ E(Gi). In
case zc6 ∈ E(Gi) we obtain an induced path xyc5c6zc2 on six vertices, and
in case zc6 /∈ E(Gi) we obtain an induced path zc2c1c6c5c4. We conclude
yc4 /∈ E(Gi).

Suppose y is not adjacent to any vertex in {c3, c5}. Since Gi is P6-free
and xyc1c2c3c4 is a P6 in Gi, y must be adjacent to c2. But then xyc2c3c4c5
is an induced P6 in Gi, a contradiction. Hence y is adjacent to at least one
vertex in {c3, c5}, say yc5 ∈ E(Gi). By symmetry (using c5, c2 instead of
c1, c4) we find yc2 /∈ E(Gi).

Suppose z is adjacent to c2. The path zc2c1yc5c4 on six vertices and the
P6-freeness of Gi imply zc4 ∈ E(Gi). But then c2zc4c5yx is an induced P6.
Hence zc2 /∈ E(Gi). Also zc4 /∈ E(Gi) as otherwise zc4c5yc1c2 would be an
induced P6, and zc3 /∈ E(Gi) as otherwise zc3c2c1yx would be an induced
P6. Then z must be adjacent to c6 yielding an induced path zc6c1c2c3c4 on
six vertices. Hence we may choose Di := D.

Case 2. Di−1 is a type 2 dominating set of Gi−1.

Since Di−1 dominates Gi−1, we may assume that y is adjacent to some vertex
a ∈ A(Di−1). Let b ∈ B(Di−1). Note that a and b are adjacent vertices
in Di−1 ∪ {y} and that {a, b} dominates Di−1 ∪ {y}. Hence we can find a
minimizer D of Di−1∪{y} for ab in O(n2) time by Lemma 2.6. By definition,
D dominates Gi. Also, G[D] contains a spanning (not necessarily complete)
bipartite graph with partition classes A ⊆ A(Di−1), B ⊆ B(Di−1) ∪ {y}.
Note that we have y ∈ D, because x is not adjacent to Di−1 and therefore x
is a D-private neighbor of y. Since y might not have any neighbors in B but
does have a neighbor (vertex a) in A, we chose y ∈ B.

Claim 1. If G[D] contains an induced P4 starting in y and ending in some
r ∈ A, then we can find a type 1 or a type 2 dominating set Di of Gi in
O(n2) time.

We prove Claim 1 as follows. Suppose ypqr is an induced path in G[D] with
r ∈ A. Since D is a minimizer of Di−1 ∪ {y} for ab and r ∈ D \ {a, b},
r has a D-private neighbor s by definition. We already identified s when
running the algorithm of Lemma 2.6. Since xypqrs is a path on six vertices

2.4 Finding connected dominating subgraphs in P6-free graphs 44

and x /∈ N(Di−1) holds, x must be adjacent to s. We first show that D1 :=
ND(y) ∪ {x, y, q, r, s}, obtained in O(n) time, dominates Gi.

Suppose D1 does not dominate G. Then there exists a vertex z ∈ N(D)\
N(D1). Note that G[(D\{y})∪{z}] is connected because the edge ab makes
D \ {y} connected and {a, b} dominates D. Let P be a shortest path in
G[(D \ {y}) ∪ {z}] from z to a vertex p1 ∈ ND(y) (possibly p1 = p). Since
z /∈ N(D1) and p1 ∈ D1, we have |V (P)| ≥ 3. This means that Pyxs is an
induced path on at least six vertices, unless r ∈ V (P), since r is adjacent to
s. However, if r ∈ V (P), then the subpath z

−→
P r of P from z to r has at least

three vertices, because z /∈ N(D1) and r ∈ D1. This means that z
−→
P rsxy

contains an induced P6, a contradiction. Hence D1 dominates Gi.
To find a type 1 or type 2 dominating set Di of Gi, we transform D1 into

Di in O(n2) time as follows. Suppose q has a D1-private neighbor q′. Then
q′qpyxs is an induced P6 in Gi, a contradiction. Hence q has no D1-private
neighbor and the set D2 := D1 \ {q} still dominates Gi. Similarly, r has no
D2-private neighbor r′, since otherwise r′rsxyp would be an induced P6 in
Gi. So the set D3 := D2 \ {r} also dominates Gi. Now suppose s does not
have a D3-private neighbor. We can check this in O(n2) time. Then the set
D3 \ {s} dominates Gi. In that case, we find a type 2 dominating set Di of
Gi defined by A(Di) := {y} and B(Di) := ND(y) ∪ {x}. Assume that we
found a D3-private neighbor s′ of s in Gi. Let D4 := D3 ∪ {s′}.

Suppose ND(y)\{p} contains a vertex p2 that has a D4-private neighbor
p′2. Then p′2p2yxss

′ is an induced P6, contradicting the P6-freeness of Gi.
Hence we can remove all vertices of ND(y) \ {p} from D4, and the resulting
set D5 := {p, y, x, s, s′} still dominates Gi. We claim that D6 := D5 ∪ {q}
is a type 1 dominating set of Gi. Clearly, D6 dominates Gi, since D5 ⊆ D6.
Since qpyxss′ is a P6 and qpyxs is induced, q must be adjacent to s′. Hence
D6 is a type 1 dominating set of Gi, and we choose Di := D6. This proves
Claim 1.

LetA1 := NA(y) andA2 := A\A1. LetB1 := NB(y) andB2 := B\(B1∪{y}).
We can obtain these sets in O(n) time. Since a ∈ A1, we have A1 6= ∅. If
A2 = ∅, then we define a type 2 dominating set Di of Gi by A(Di) := A

and B(Di) := B. Suppose A2 6= ∅. Note |B| ≥ 2, because {b, y} ⊆ B. If
B2 = ∅, then we define Di by A(Di) := A∪{y} and B(Di) := B1 = B \ {y}.
Suppose B2 6= ∅. We check in O(n2) time if G[A1 ∪A2] contains a spanning

2.4 Finding connected dominating subgraphs in P6-free graphs 45

complete bipartite graph with partition classes A1 and A2. If so, we define
Di by A(Di) := A1 and B(Di) := A2 ∪ B. Otherwise we have found two
non-adjacent vertices a1 ∈ A1 and a2 ∈ A2. Let b∗ ∈ B2. Then ya1b

∗a2 is
an induced P4 starting in y and ending in a vertex of A. By Claim 1, we can
find a type 1 or type 2 dominating set Di of Gi in O(n2) extra time. This
finishes the proof of Theorem 2.5.

The characterization in Theorem 2.5 is minimal in some sense due to
the existence of the following family F of P6-free graphs. For each i ≥ 2,
let Fi ∈ F be the graph obtained from a complete bipartite subgraph with
partition classes Xi = {x1, . . . , xi} and Yi = {y1, . . . , yi} by adding the edge
x1x2 as well as for each h = 1, . . . , i a new vertex x′h adjacent only to xh and
a new vertex y′h adjacent only to yh (see Figure 2.3 for the graph F3).

x1 x2 x3

y1 y2 y3

Figure 2.3: The graph F3.

Note that each Fi is P6-free and that the smallest connected dominating
subgraph of Fi is Fi[Xi ∪ Yi], which contains a spanning complete bipartite
subgraph. Also note that none of the graphs Fi contain a dominating induced
complete bipartite subgraph due to the edge x1x2.

We conclude this section by characterizing the class of graphs for which
each connected induced subgraph contains a dominating induced C6 or a
dominating induced complete bipartite subgraph. Again, we will show how
to find these dominating induced subgraphs in polynomial time by using the
incremental technique outlined in Section 2.2. The net is the graph on six
vertices depicted in Figure 2.4.

Theorem 2.8. A graph G is in Forb({P6, net}) if and only if each connected
induced subgraph of G contains a dominating induced C6 or a dominating
induced complete bipartite graph. Moreover, we can find such a dominating
subgraph of G in O(n4) time.

2.4 Finding connected dominating subgraphs in P6-free graphs 46

Figure 2.4: The net.

Proof. Neither the graph P6 nor the net has a dominating induced C6 or
a dominating induced complete bipartite subgraph. Hence to prove Theo-
rem 2.8, it suffices to show that if G is a connected graph in Forb({P6, net}),
then we can find a dominating induced C6 or a dominating induced complete
bipartite subgraph of G in O(n4) time.

Let G = (V,E) be a connected graph in Forb({P6, net}) with connected
order π = x1, . . . , xn. Recall that we write Gi := G[{x1, . . . , xi}], and note
that Gi ∈ Forb({P6, net}) for every i. For every 2 ≤ i ≤ n we want to find
a dominating set Di of Gi that either induces a C6 or a complete bipartite
subgraph in Gi. Let D2 := {x1, x2}. Suppose i ≥ 3. Assume Di−1 induces
a dominating C6 or a dominating complete bipartite subgraph in Gi−1. We
show how we can use Di−1 to find Di in O(n3) time. Since the total number
of iterations is n − 2, we find a desired dominating subgraph of Gn = G in
O(n4) time. We write x := xi and check in O(n) time if x ∈ N(Di−1). If
so then we set Di := Di−1. Suppose otherwise. Since π is connected, Gi
contains a vertex y (not in Di−1) adjacent to x. We can find y in O(n) time.
We first prove a useful claim.

Claim 1. If NDi−1(y) ∪ {x, y} dominates Gi, then we can find a dominating
induced C6 or a dominating induced complete bipartite subgraph of G in O(n3)
time.

We prove Claim 1 as follows. Suppose D∗ := NDi−1(y) ∪ {x, y} dominates
Gi. We check whether G[D∗] is complete bipartite in O(n2) time. If so,
then we choose Di := D∗ and we are done. Otherwise y has a neighbor u
in Di−1 with ND∗(u) \ {y} 6= ∅. If u has no D∗-private neighbor, which
we can check in O(n2) time, then we remove u from D∗ and perform the
same check in the smaller set D∗ \ {u}. Let u′ be a D∗-private neighbor
of u in Gi. Let v ∈ ND∗(u) \ {y}. Then u′ is adjacent to any D∗-private
neighbor v′ of v, as otherwise G[{u, v, y, u′, v′, x}] is isomorphic to the net.
So we find that D1 := (D∗ \ ND∗(u)) ∪ {y, u′} dominates Gi. If u′ does

2.4 Finding connected dominating subgraphs in P6-free graphs 47

not have a D1-private neighbor, then we remove u′ from D1, check if y is
adjacent to two neighbors in the smaller set D1 \ {u′} and repeat the above
procedure which runs in O(n3) total time. Let u′′ be a D1-private neighbor
of u′. Suppose ND1(y) = {x, u}. Then D1 = {x, y, u, u′}. Recall that y
dominates D∗, and therefore D1 \ {u′}, by definition. If x does not have a
D1-private neighbor, then we choose Di := {y, u, u′}. If x has a D1-private
neighbor x′, then the P6-freeness of Gi implies that x′ is adjacent to u′′, and
we choose Di := {x′, x, y, u, u′, u′′}.

Suppose ND1(y) \ {x, u} 6= ∅, say y is adjacent to some vertex t ∈ D1 \
{x, u}. If t does not have a D1-private neighbor, then we remove t from D1

and check if y is adjacent to some vertex in the smaller set D1 \ {x, u, t}.
Let t′ be a D1-private neighbor of t. Note that D1 does not contain any
neighbors of u. Hence the path u′′u′uytt′ is an induced P6 of Gi, unless u′′

is adjacent to t′. However, in that case xyuu′u′′t′ is an induced P6. This
contradiction finishes the proof of Claim 1.

Case 1. Di−1 induces a dominating C6 in Gi−1.

Since Di−1 is a type 1 dominating set of Gi−1, we know from the correspond-
ing Case 1 in the proof of Theorem 2.5 that D := NDi−1(y)∪{x, y} dominates
Gi. We can find D in O(n) time. By Claim 1, we can find a dominating
induced C6 or a dominating induced complete bipartite subgraph of G in
O(n3) extra time.

Case 2. Di−1 induces a dominating complete bipartite subgraph in
Gi−1.

Let A(Di−1) and B(Di−1) denote the partition classes of Di−1. Note that
both A(Di−1) and B(Di−1) are independent sets. Since Di−1 dominates
Gi−1, we may without loss of generality assume that y is adjacent to some
vertex a ∈ A(Di−1). Let b ∈ B(Di−1). Note that a and b are adjacent vertices
in Di−1 ∪ {y} and that {a, b} dominates Di−1 ∪ {y}. Hence we can find a
minimizer D of Di−1∪{y} for ab in O(n2) time by Lemma 2.6. By definition,
D dominates Gi. Also, G[D] contains a spanning (not necessarily complete)
bipartite graph with partition classes A ⊆ A(Di−1) and B ⊆ B(Di−1)∪{y}.
Note that y ∈ D, because x is not adjacent to Di−1 and therefore x is a
D-private neighbor of y, and consequently, y ∈ B because y is adjacent to
a ∈ A and y might not have any neighbors in B. Let A1 := NA(y) and

2.4 Finding connected dominating subgraphs in P6-free graphs 48

A2 := A \ A1. Let B1 := NB(y) and B2 := B \ (B1 ∪ {y}). We can obtain
these sets in O(n) time. Since a ∈ A1, we have A1 6= ∅.

Suppose G[D] contains an induced P4 starting in y and ending in a vertex
in A. Just as in the proof of Theorem 2.5 we can obtain in O(n2) time a
dominating C6 of Gi or else we find that ND(y) ∪ {x, y}, and consequently
NDi−1(y) ∪ {x, y} dominates Gi. In the first case, we choose Di to be the
obtained dominating induced C6. In the second case, we can find a domi-
nating induced C6 or a dominating induced complete bipartite subgraph of
G in O(n3) extra time by Claim 1. So we may assume that G[D] does not
contain such an induced P4. This means that at least one of the sets A2, B2

is empty, as otherwise we find an induced path yab2a2 for any a2 ∈ A2 and
b2 ∈ B2. We may without loss of generality assume that A2 = ∅. Other-
wise, in case B2 = ∅, we obtain B = B1, which means that y is adjacent
to b, so we can reverse the role of A and B. If B2 = ∅, then we find that
A1 ∪B1 ∪ {y} ⊂ NDi−1(y) ∪ {x, y} dominates Gi, and we are done in O(n3)
extra time as a result of Claim 1. So B2 6= ∅. Let b2 ∈ B2.

We claim that D2 := A1 ∪ B2 ∪ {x, y} dominates Gi. Suppose other-
wise. Then there exists a vertex b′1 adjacent to some vertex b1 ∈ B1 but
not adjacent to D2. Then G[{y, a, b1, x, b2, b′1}] is isomorphic to the net, a
contradiction. Hence D2 dominates Gi. From D2 we construct Di in O(n2)
extra time as follows. If x does not have a D2-private neighbor, then we
can choose Di := D2 \ {x}, since G[D2 \ {x}] is a complete bipartite graph
with partition classes A1 and B2∪{y}. Suppose x has a D2-private neighbor
x′. If b2 does not have a D2-private neighbor, then we remove b2 from D2,
and check whether B2 contains another vertex. If not, then we can choose
Di := A1 ∪ {x, y}, since G[A1 ∪ {x, y}] is a complete bipartite graph with
partition classes A1∪{x} and {y}. Suppose b2 has a D2-private neighbor b′2.
Then the path x′xyab2b′2 is a path on six vertices, so we must have x′b′2 ∈ E.

We claim thatD3 := {x′, x, y, a, b2, b′2} dominates Gi. Suppose otherwise.
Then there exists a vertex c′ adjacent to some vertex c in A1 ∪ B2 but not
adjacent to a vertex in D3. Suppose c ∈ A1. Then c′cb2b′2x′x is an induced
P6. Suppose c ∈ B2. Then c′cayxx′ is an induced P6. So D3 dominates Gi.
Since D3 also induces a C6 in Gi, we may choose Di := D3. This finishes
the proof of Theorem 2.8.

2.5 An application of our characterization 49

Bacsó, Michalak and Tuza [14] prove (non-constructively) that a graph
G is in Forb({C6, P6, net}) if and only if each connected induced subgraph
of G contains a dominating induced complete bipartite graph. Note that
Theorem 2.8 immediately implies this result.

2.5 An application of our characterization

The Hypergraph 2-Colorability problem asks whether a given hyper-
graph has a 2-coloring. This problem, also known as Set Splitting, is NP-
complete, even when restricted to hypergraphs for which every hyperedge
has size at most 3 [201]. Note that the problem can be solved in polynomial
time when restricted to hypergraphs for which every hyperedge has size 2,
since that problem is equivalent to the 2-Colorability problem for graphs,
i.e., to checking whether a given graph is bipartite. We now present another
class of hypergraphs for which the Hypergraph 2-Colorability problem
is solvable in polynomial time. We use the characterization of P6-free graphs
in Theorem 2.5 to obtain this result. Let H6 denote the class of hypergraphs
with P6-free incidence graphs.

Theorem 2.9. The Hypergraph 2-Colorability problem restricted to
H6 can be solved in polynomial time. Moreover, for any 2-colorable hyper-
graph H = (Q,S) ∈ H6 we can find a 2-coloring of H in O((|Q| + |S|)3)
time.

Proof. Let H = (Q,S) ∈ H6 with |Q| = q and |S| = s, and let I be the
P6-free incidence graph of H. We assume that I is connected, as otherwise
we just proceed component-wise.

Claim 1. We may without loss of generality assume that S does not contain
two sets Si, Sj with Si ⊆ Sj.

We prove Claim 1 as follows. Suppose Si, Sj ∈ S with Si ⊆ Sj . We show
that H is 2-colorable if and only if H − Sj is 2-colorable. Clearly, if H is
2-colorable then H − Sj is 2-colorable. Suppose H − Sj is 2-colorable. Let
(Q1, Q2) be a 2-coloring ofH−Sj . By definition, Si∩Q1 6= ∅ and Si∩Q2 6= ∅.
Since Si ⊆ Sj , we also have Sj ∩ Q1 6= ∅ and Sj ∩ Q2 6= ∅, so (Q1, Q2) is a
2-coloring of H. This proves Claim 1.

2.5 An application of our characterization 50

Note that we can reach the situation mentioned in Claim 1 in O(q2s2) time.
By Theorem 2.5, we can find a type 1 or type 2 dominating set D of I in
O((q+ s)3) time. Below we show how we use such a dominating set to find a
2-coloring of H in O(q+ s) extra time, assuming H has a 2-coloring. Since I
is bipartite, I[D] is bipartite. Let A and B be the partition classes of I[D].
Since I is connected, we may without loss of generality assume A ⊆ Q and
B ⊆ S. Let A′ := Q \A and B′ := S \B. We distinguish two cases.

Case 1. D is a type 1 dominating set of I.

We write I[D] = q1S1q2S2q3S3q1, so A = {q1, q2, q3} and B = {S1, S2, S3}.
Suppose A′ = ∅, soQ = {q1, q2, q3}. Obviously,H has no 2-coloring. Suppose
A′ 6= ∅ and let q′ ∈ A′. Since D dominates I, q′ has a neighbor, say S1, in B.
If S2 and S3 both have no neighbors in A′, then q′S1q2S2q3S3 is an induced
P6 in I, a contradiction. Hence at least one of them, say S2, has a neighbor
in A′.

We claim that the partition (Q1, Q2) of Q with Q1 := A′ ∪ {q1} and
Q2 := {q2, q3} is a 2-coloring of H. We have to check that every S ∈ S has a
neighbor in both Q1 and Q2. Recall that S1 has neighbors q1 and q2 and S3

has neighbors q1 and q3. Hence S1 has a neighbor in both Q1 and Q2, and
the same holds for S3. Since S2 is adjacent to q2 and has a neighbor in A′,
S2 also has a neighbor in both Q1 and Q2. It remains to check the vertices
in B′. Let S ∈ B′. Since D dominates I and I is bipartite, S has at least
one neighbor in A. Suppose S has exactly one neighbor, say q1, in A. Then
Sq1S1q2S2q3 is an induced P6 in I, a contradiction. Hence S has at least two
neighbors in A. The only problem occurs if S is adjacent to q2 and q3 but
not to q1. However, since S2 is adjacent to q2 and q3, S must have a neighbor
in A′ due to Claim 1. Hence (Q1, Q2) is a 2-coloring of H.

Case 2. D is a type 2 dominating set of I.

Suppose A′ = ∅. Then |B| = 1 as a result of Claim 1. Let B = {S} and
q ∈ A. Since S is adjacent to all vertices in A, we find that B′ = ∅ as
a result of Claim 1. Hence H has no 2-coloring if |A| = 1, and H has a
2-coloring ({q}, A \ {q}) if |A| ≥ 2. Suppose A′ 6= ∅. We claim that (A,A′)
is a 2-coloring of H. This can be seen as follows. By definition, each vertex
in S is adjacent to a vertex in A. Suppose |B| = 1 and let B = {S}. Since
S dominates Q and A′ 6= ∅, S has at least one neighbor in A′. Suppose

2.6 Conclusion 51

|B| ≥ 2. Since every vertex in B is adjacent to all vertices in A, every vertex
in S must have a neighbor in A′ as a result of Claim 1.

2.6 Conclusion

The key contributions of this chapter are the following. We presented a new
characterization of the class of P6-free graphs, which strengthens results of
Liu and Zhou [198] and Liu, Peng and Zhao [199]. We used an algorith-
mic technique to prove this characterization. Our main algorithm efficiently
finds for any given connected P6-free graph a dominating subgraph that is
either an induced C6 or a (not necessarily induced) complete bipartite graph.
Besides these main results, we also showed that our characterization is “min-
imal” in the sense that there exists an infinite family of P6-free graphs for
which a smallest connected dominating subgraph is a (not induced) com-
plete bipartite graph. We also characterized the class Forb({P6, net}) in
terms of connected dominating subgraphs, thereby generalizing a result of
Bacsó, Michalak and Tuza [14].

Our main algorithm can be useful to determine the computational com-
plexity of decision problems restricted to the class of P6-free graphs. To
illustrate this, we applied this algorithm to prove that the Hypergraph

2-Colorability problem is polynomially solvable for the class of hyper-
graphs with P6-free incidence graphs. Are there any other decision problems
for which the algorithm is useful? In recent years, several authors studied the
classical k-Colorability problem for the class of P`-free graphs for various
combinations of k and ` (see Section 1.2.2). Randerath and Schiermeyer [226]
provide a polynomial time algorithm for solving the 3-Colorability prob-
lem on P6-free graphs. Their algorithm relies on the Strong Perfect Graph
Theorem [64] and is rather complicated. Very recently, Broersma et al. [49]
used the characterization of P6-free graphs presented in this chapter to ob-
tain a simpler algorithm, independent of the Strong Perfect Graph Theorem,
for deciding whether a P6-free graph has a 3-coloring. Hoàng et al. [152]
show that for every fixed k ≥ 3 the k-Colorability problem can be solved
in polynomial time for the class of P5-free graphs. They pose the question
whether there exists a polynomial time algorithm to determine if a P6-free
graph can be 4-colored. We leave as an open question whether our char-

2.6 Conclusion 52

acterization of P6-free graphs in Theorem 2.5 can be used to answer this
question.

A natural problem for a given graph class deals with its recognition. We
are not aware of any recognition algorithm for P6-free graphs other than the
trivial algorithm that checks for every 6-tuple of vertices whether they induce
a path. This might be another interesting direction for future research, con-
sidering the following results on recognition of subclasses of P6-free graphs.
Giakoumakis and Vanherpe [136] show that bipartite P6-free graphs can be
recognized in linear time. They do this by extending the techniques devel-
oped in [83] for linear time recognition of P4-free graphs (also see [143]) and
by using a decomposition scheme for bipartite graphs from [120]. Brand-
städt, Klembt and Mahfud [46] show that triangle-free P6-free graphs have
bounded clique-width. The recognition algorithm they obtain from this re-
sult runs in quadratic time. Since the class of P6-free graphs has unbounded
clique-width (cf. [44]), their technique cannot be applied to find a quadratic
recognition algorithm for the class of P6-free graphs.

The next class to consider is the class of P7-free graphs. Recall that
a graph G is P7-free if and only if each connected induced subgraph of G
contains a dominating subgraph of diameter at most three [16]. Using an
approach similar to the one described in this chapter, it is possible to find
such a dominating subgraph in polynomial time. However, a more important
question is whether this characterization of P7-free graphs can be narrowed
down. Also determining the computational complexity of the Hypergraph

2-Colorability problem for the class of hypergraphs with P7-free incidence
graphs is still an open problem. We are not aware of any recognition algo-
rithm for P7-free graphs, or even for the subclasses of bipartite or triangle-free
P7-free graphs, that outperforms the trivial recognition algorithm that checks
for every 7-tuple of vertices whether they induce a path.

Chapter 3

Partitioning graphs into
connected parts

This chapter is based on the following two papers; the second paper is the
extended journal version of the first paper.

[160] P. van ’t Hof, D. Paulusma, and G.J. Woeginger. Partitioning graphs
into connected parts. In: Proceedings of the 4th International Com-
puter Science Symposium in Russia (CSR 2009), volume 5675 of Lec-
ture Notes in Computer Science, pages 143–154, Springer, 2009.

[161] P. van ’t Hof, D. Paulusma, and G.J. Woeginger. Partitioning graphs
into connected parts. Theoretical Computer Science, 410:4834–4843,
2009.

There are several natural and elementary algorithmic problems that check
if the structure of a graph H shows up as a pattern within the structure of
another graph G. One of the most well-known problems of this type is the
H-Minor Containment problem that asks whether a given input graph
G contains a fixed graph H as a minor. A celebrated result by Robertson
and Seymour [232] states that the H-Minor Containment problem can be
solved in polynomial time for every graph H. For two related problems, the
H-Induced Minor Containment problem and the H-Contractibility

problem, asking whether an input graph G contains a fixed graph H as an
induced minor or a contraction, respectively, the computational complexity
picture is not so clear. These two problems are studied in Chapter 4.

3.1 Background and results 54

The two problems studied in this chapter are related to the H-Con-

tractibility problem. For one of these problems, the Longest Path

Contractibility problem, which asks what the longest path is to which
a graph can be contracted, this connection is clear. To see how the other
problem, the 2-Disjoint Connected Subgraphs problem, is related to
H-Contractibility, let us introduce this problem using the concept of
a witness structure. An H-witness structure of a graph, defined in Sec-
tion 1.1.3, can be seen as a partition of its vertex set into |V (H)| connected
sets, where the adjacencies between the sets depend on the target graph H.
In particular, a P2-witness structure of a graph G is a partition of V (G) into
two adjacent connected sets V1, V2. It is trivial to decide whether such sets
V1 and V2 exist, as this is equivalent to checking whether G is connected
and contains at least one edge. However, the problem seems to become a
lot harder if V1 and V2 are required to contain prescribed sets of vertices,
as we will show in Section 3.2.1. This problem is exactly the 2-Disjoint

Connected Subgraphs problem. As will become clear in Section 3.1 this
problem also has a strong connection with the H-Minor Containment

problem. We point out that the characterization of P6-free graphs obtained
in Chapter 2 will make an appearance in this chapter.

3.1 Background and results

Theoretical motivation for research on edge contractions can be found in [52,
103, 193, 194] and comes from hamiltonian graph theory [154] and graph
minor theory [232]. Practical applications include surface simplification in
computer graphics [3, 60] and cluster analysis of large data sets [77, 148,
179]. In the first practical application, graphical objects are represented
using (triangulated) graphs and these graphs need to be simplified. One
of the techniques to do this is by using edge contractions. In the second
application, graphs are coarsened by means of edge contractions.

As we mentioned at the beginning of this chapter, Robertson and Sey-
mour [232] proved that the H-Minor Containment problem can be solved
in polynomial time for every fixed pattern graphH. They obtained this result
by designing an algorithm that solves the following problem in polynomial
time for any fixed k. It follows from a result by Karp [177] that the problem

3.1 Background and results 55

is NP-complete when k is a variable part of the input (see also [232]).

Disjoint Connected Subgraphs

Instance: A graph G and mutually disjoint non-empty sets Z1, . . . , Zt ⊆
V (G) such that

∑t
i=1 |Zi| ≤ k.

Question: Do there exist mutually vertex-disjoint connected subgraphs
G1, . . . , Gt of G such that Zi ⊆ V (Gi) for 1 ≤ i ≤ t?

The first problem studied in this chapter is the 2-Disjoint Connected

Subgraphs problem, which is a restriction of the above problem to t = 2.
We show in Section 3.2.1 that the 2-Disjoint Connected Subgraphs

problem is NP-complete even if one of the given sets of vertices has cardinality
2. Since the appearance of the paper on which this chapter is based [161], the
2-Disjoint Connected Subgraphs problem has attracted a considerable
amount of interest [142, 173, 223]. We mention here a result obtained by
Gray et al. [142], who prove that the 2-Disjoint Connected Subgraphs

problem is NP-complete for the class of planar graphs.
The second problem studied in this chapter is inspired by a concept in-

troduced by Blum [36]: the cyclicity η(G) of a connected graph G is the
largest integer ` for which G is contractible to the cycle C` on ` vertices. We
introduce a similar concept: the path contractibility number ϑ(G) of a graph
G is the largest integer ` for which G is P`-contractible. For convenience,
we define ϑ(G) = 0 if and only if G is disconnected. The second problem
studied in this chapter is the Longest Path Contractibility problem,
which asks for the path contractibility number of a given graph G.

Both the 2-Disjoint Connected Subgraphs problem and the Long-

est Path Contractibility problem deal with partitioning the vertex set
of a given graph into connected sets. Since connectivity is a “global” prop-
erty, both problems are examples of “non-local” problems, which are typi-
cally hard to solve exactly (see e.g. [116]). Arguably the most well-known
non-local problem is the Traveling Salesman problem, for which no ex-
act algorithm with better time complexity than O∗(2n) is known. Another
example of a non-local problem is the Connected Dominating Set prob-
lem. The fastest known exact algorithm for the Connected Dominating

Set problem runs in O∗(1.9407n) time [116], whereas for the general (un-
connected) version of the Dominating Set problem an O∗(1.5063n) time
exact algorithm is known [235]. In an attempt to design fast exact algo-

3.1 Background and results 56

rithms for non-local problems, one can focus on restrictions of the problem
to certain graph classes. One family of graph classes of particular interest
is the family of graphs that do not contain long induced paths. Several au-
thors have studied restrictions of well-known NP-hard problems, such as the
k-Colorability problem and the Maximum Independent Set problem,
to the class of P`-free graphs for several values of ` (see Section 1.2.2 for an
extensive list of references).

We start in Section 3.2.1 by proving that the 2-Disjoint Connected

Subgraphs problem is NP-complete, even if one of the two prescribed sets
of vertices has size 2. We then give a complexity classification for the 2-
Disjoint Connected Subgraphs problem and the Longest Path Con-

tractibility problem on P`-free graphs, for each value of `, in Sections 3.2.2
and 3.3.1, respectively. We show that the 2-Disjoint Connected Sub-

graphs problem restricted to the class of P`-free graphs is polynomial time
solvable if ` ≤ 4 and NP-complete otherwise. Then we show that the
Longest Path Contractibility problem restricted to the class of P`-
free graphs is polynomial time solvable if ` ≤ 5 and NP-complete otherwise.
In Sections 3.2.3 and 3.3.2 we present exact algorithms for NP-hard cases
of the 2-Disjoint Connected Subgraphs problem and the Longest

Path Contractibility problem, respectively. A trivial algorithm solves
the Two Disjoint Connected Subgraphs problem in O∗(2n) time. Let
Gk,r denote the class of graphs all connected induced subgraphs of which
have a connected r-dominating set of size at most k (see Section 3.2.3 for an
exact definition). We present an exact algorithm, called SPLIT, that solves
the 2-Disjoint Connected Subgraphs problem for n-vertex graphs in
the class Gk,r in O∗((f(r))n) time for any fixed k and r ≥ 2, where

f(r) = min
0<c≤0.5

{
max

{ 1
cc(1− c)1−c

, 21− 2c
r−1

}}
.

In particular, SPLIT solves the 2-Disjoint Connected Subgraphs prob-
lem for any n-vertex P6-free graph in O∗(1.5790n) time, and beats the trivial
O∗(2n) time algorithm for solving the problem on P`-free graphs for every
fixed `. We also use SPLIT as a subroutine in an O∗(1.5790n) time exact
algorithm for the Longest Path Contractibility problem restricted to
P6-free graphs.

3.2 The 2-Disjoint Connected Subgraphs problem 57

3.2 The 2-Disjoint Connected Subgraphs prob-
lem

We mentioned at the beginning of this chapter that the problem of deciding
whether the vertices of a graph can be partitioned into two disjoint connected
subgraphs can trivially be solved by testing whether the graph is connected
and has at least one edge. In Section 3.2.1 we show that the problem becomes
NP-complete if we demand the two disjoint connected subgraphs to contain
certain prescribed sets of vertices. In fact, we show the problem is already
NP-complete if one of those prescribed sets consists of just two vertices.
In Section 3.2.2 we provide a complexity classification of the 2-Disjoint

Connected Subgraphs problem restricted to P`-free graphs for every `.
For the classes of P`-free graphs for which the problem turns out to be NP-
complete, we present an exact exponential time algorithm in Section 3.2.3.

3.2.1 An NP-completeness proof

Theorem 3.1. The 2-Disjoint Connected Subgraphs problem restricted
to instances with |Z1| = 2 is NP-complete.

Proof. We use a reduction from 3-Satisfiability, which is well-known to
be NP-complete (cf. [127]). Let X = {x1, . . . , xn} be a set of variables and
C = {c1, . . . , cm} be a set of clauses forming an instance of 3-Satisfiability.
Let X := {x | x ∈ X}. We construct a graph G, depicted in Figure 3.1, as
follows. Every literal in X ∪ X and every clause in C is represented by a
vertex in G. There is an edge between x ∈ X ∪X and c ∈ C if and only if x
appears in c. For i = 1, . . . , n − 1, xi and xi are adjacent to both xi+1 and
xi+1. We add two vertices f1 and f2 to G, where f1 is adjacent to x1 and
x1, and f2 is adjacent to xn and xn.

We claim that the graph G, together with the sets Z1 := {f1, f2} and
Z2 := C, is a yes-instance of the 2-Disjoint Connected Subgraphs prob-
lem if and only if C is satisfiable.

Suppose t : X → {true, false} is a satisfying truth assignment for C. Let
XT (respectively XF) be the set of variables that are set to true (respectively
false) by t, and let XT := {x | x ∈ XT } and XF := {x | x ∈ XF }. We denote
the set of true and false literals by T and F respectively, i.e., T := XT ∪XF

3.2 The 2-Disjoint Connected Subgraphs problem 58

x1 x2 x3 xn

x1 x2 x3 xn

f1 f2

c1 c2 cm

Figure 3.1: The graph G, in case c1 = (x1 ∨ x2 ∨ x3).

and F := XF ∪XT . Note that exactly one literal of each pair xi, xi belongs
to T , i.e., is set to true by t, and the other one belongs to F . Hence, the
vertices in F ∪ {f1, f2} induce a connected subgraph G1 of G. Since t is a
satisfying truth assignment, every clause vertex is adjacent to a vertex in T .
Hence the vertices in T ∪ C induce a connected subgraph G2 of G, which is
vertex-disjoint from G1.

To prove the reverse statement, supposeG1 andG2 are two vertex-disjoint
connected subgraphs of G such that {f1, f2} ⊆ V (G1) and C ⊆ V (G2). Since
f1 and f2 form an independent set in G and G1 is connected, at least one
of each pair xi, xi must belong to V (G1). Since the vertices of C form an
independent set in G, every clause vertex must be adjacent to at least one
literal vertex in (X∪X)∩V (G2). Let t be a truth assignment that sets those
literals to true, and their negations to false. For each pair xi, xi both literals
of which belong to V (G1), t sets exactly one literal to true, and the other
one to false. Then t is a satisfying truth assignment for C.

3.2.2 A complexity classification for P`-free graphs

In Section 2.3 we proved that a graphG is P4-free if and only if each connected
induced subgraph of G contains a dominating induced C4 or a dominating
vertex (Theorem 2.1). We use this characterization of P4-free graphs in
the proof of the complexity classification of the 2-Disjoint Connected

Subgraphs problem below.

Theorem 3.2. The 2-Disjoint Connected Subgraphs problem restricted
to the class of P`-free graphs is polynomial time solvable if ` ≤ 4 and NP-
complete if ` ≥ 5.

3.2 The 2-Disjoint Connected Subgraphs problem 59

Proof. Assume ` ≤ 4. Let G = (V,E) be a P`-free, and consequently P4-
free, graph with non-empty disjoint sets Z1, Z2 ⊆ V . Suppose G, together
with sets Z1 and Z2, is a yes-instance of the 2-Disjoint Connected Sub-

graphs problem, and let G1 = (V1, E1) and G2 = (V2, E2) be vertex-disjoint
connected subgraphs of G such that Zi ⊆ Vi for i = 1, 2. Note that both G1

and G2 are P4-free. As a result of Theorem 2.1, there exist connected sets
D1, D2 such that Di dominates Vi and |Di| ∈ {1, 4} for i = 1, 2. So to check
whether G, together with Z1 and Z2, is a yes-instance of the 2-Disjoint

Connected Subgraphs problem, we act as follows.
We guess a vertex d1 ∈ V \ Z2. If d1 does not dominate Z1, we guess

another vertex d1. If d1 dominates Z1, we check if Z2 is contained in one
component G2 of G[V \ (Z1 ∪ {d1})]. If so, then G1 := G[Z1 ∪ {d1}] and
G2 form a solution of the 2-Disjoint Connected Subgraphs problem.
Otherwise, we choose another vertex d1. If we have checked every vertex
in V \ Z2 without finding a solution, then we guess a 4-tuple D1 ⊆ V \
Z2 and repeat the above procedure with D1 instead of d1. If we do not
find a solution for any 4-tuple D1, then (G,Z1, Z2) is a no-instance of the
2-Disjoint Connected Subgraphs problem. Since we can perform all
checks in polynomial time, this finishes the proof of the polynomial cases.

We now show that the 2-Disjoint Connected Subgraphs problem
is NP-complete for P`-free graphs if ` ≥ 5. Clearly, the problem lies in
NP. We prove NP-completeness by using a reduction from the NP-complete
Hypergraph 2-Colorability problem that asks if a given hypergraph is
2-colorable (cf. [127]). LetH = (Q,S) be a hypergraph withQ = {q1, . . . , qn}
and S = {S1, . . . , Sm}. We may assume m ≥ 2 and Si 6= ∅ for each Si ∈ S.
Let G be the graph obtained from the incidence graph of H by adding the
vertices S ′ = {S′1, . . . , S′m}, where S′i = Si for every 1 ≤ i ≤ m, and by adding
the following edges: qiS′j if and only if qi ∈ S′j , and qiqj if and only if i 6= j.
See Figure 3.2 for the graph G obtained in this way from the hypergraph
(Q,S) with Q = {q1, q2, q3} and S = {{q1, q3}, {q1, q2}, {q1, q2, q3}}. Note
that G is a split graph. Hence G is P5-free, and consequently G is P`-free for
any ` ≥ 5. We claim that G, together with the sets S and S ′, is a yes-instance
of the 2-Disjoint Connected Subgraphs problem if and only if (Q,S)
has a 2-coloring.

Suppose G1 and G2 are vertex-disjoint connected subgraphs of G such

3.2 The 2-Disjoint Connected Subgraphs problem 60

q1 q2

q3

Figure 3.2: The graph G.

that S ⊆ V (G1) and S ′ ⊆ V (G2). Without loss of generality, assume that
V1 := V (G1) and V2 := V (G2) form a partition of V . Then there exists a
partition (Q1, Q2) of Q such that V1 = S∪Q1 and V2 = S ′∪Q2. Note that S
is an independent set in G. Hence Q1 6= ∅ and every vertex in S is adjacent
to at least one vertex in Q1. Similarly, Q2 6= ∅ and every vertex in S ′ has at
least one neighbor in Q2. Since S′i = Si for every 1 ≤ i ≤ m, (Q1, Q2) is a
2-coloring of (Q,S).

Now suppose (Q,S) has a 2-coloring (Q1, Q2). Then it is clear that
G[S ∪Q1] and G[S ′ ∪Q2] are connected, so we can choose G1 := G[S ∪Q1]
and G2 := G[S ′ ∪Q2]. This finishes the proof of the NP-complete cases.

3.2.3 An exact algorithm

In this section we present an exact algorithm that solves the 2-Disjoint

Connected Subgraphs problem for P`-free graphs faster than the trivial
O∗(2n), for every `. We first need to introduce some additional terminology.

Let G = (V,E) be a graph, and let S ⊂ V and p, q ∈ V \ S. We say
that p is separated from q by S if every path in G from p to q contains a
vertex of S. The distance dG(u, v) between two vertices u and v in a graph
G is the length, |V (P)| − 1, of a shortest path P between them. For any
vertex v ∈ V and set S ⊆ V , we write dG(v, S) to denote the length of
a shortest path from v to S, i.e., dG(v, S) := minw∈S dG(v, w). The set
N r
G(S) := {u ∈ V | dG(u, S) ≤ r} is called the r-neighborhood of a set S.

A set S r-dominates a set S′ if (S′ \ S) ⊆ N r
G(S); we also say that S r-

dominates the graph G[S′]. A subgraph H of G is an r-dominating subgraph
of G if V (H) r-dominates G. In case r = 1, we use “dominating” instead
of “1-dominating”. A set S ⊆ V is called a (k, r)-center of G if |S| ≤ k and

3.2 The 2-Disjoint Connected Subgraphs problem 61

N r
G(S) = V . Recall that a set S is called connected if G[S] is connected. The

class of graphs all connected induced subgraphs of which have a connected
(k, r)-center is denoted by Gk,r.

Lemma 3.3. Let G = (V,E) be a connected induced subgraph of a graph
G′ ∈ Gk,r. For each subset Z ⊆ V , there exists a set D∗ ⊆ V with |D∗| ≤
(r − 1)|Z|+ k such that G[D∗ ∪ Z] is connected.

Proof. By definition of Gk,r, G has a connected (k, r)-center D0. Let Di :=
{v ∈ V | dG(v,D0) = i} for i = 1, . . . , r. Note that the sets D0, . . . , Dr

form a partition of V . Let z be any vertex of Z and suppose z ∈ Di for
some 0 ≤ i ≤ r; note that this i is uniquely defined. By definition, there
exists a path P z of length i from z to a vertex in D0, and it is clear that
D0 ∪ P z \ {z} is a connected set of size (i− 1) + |D0| that dominates z. Let
P :=

⋃
z∈Z P

z \ {z}. Clearly, D∗ := D0 ∪ P is a connected set dominating
Z. In the worst case, we have Z ⊆ Dr and all the paths in P are mutually
vertex-disjoint, in which case |D∗| = (r− 1)|Z|+ |D0| ≤ (r− 1)|Z|+ k. This
finishes the proof of Lemma 3.3.

Lemma 3.3 implies the following.

Corollary 3.4. For any fixed k, the 2-Disjoint Connected Subgraphs

problem for Gk,r can be solved in polynomial time if r = 1, or if one of the
given sets Z1 or Z2 of vertices has fixed size.

Proof. Let G = (V,E) be a connected graph in Gk,r, and let G together with
sets Z1, Z2 ⊆ V be an instance of the 2-Disjoint Connected Subgraphs

problem. If G, together with the sets Z1 and Z2, is a yes-instance, then G
has two vertex-disjoint connected subgraphs G1, G2 such that Zi ⊆ V (Gi)
for i = 1, 2. By Lemma 3.3, there exists a set D∗ ⊆ V (G1) such that
|D∗| ≤ (r − 1)|Z1| + k and G[D∗ ∪ Z1] is connected; a similar set exists for
Z2. Note that D∗ has fixed size k if r = 1, and D∗ has fixed size (r−1)|Z1|+k
if Z1 has fixed size. Hence, we can solve the problem in polynomial time by
performing the following procedure.

Initially, set V1 := Z1 and V2 := Z2. For all sets Z ′ ⊆ V \ Z2 in order of
increasing cardinality up to at most (r−1)|Z1|+k, check whether G[Z ′∪Z1]
is connected. If not, choose another set Z ′. Otherwise, add Z ′ to V1 and
check for every vertex v ∈ V \ (Z ′ ∪ Z1 ∪ Z2) whether v is separated from

3.2 The 2-Disjoint Connected Subgraphs problem 62

Z2 by Z1 ∪ Z ′. If so, put v in V1, otherwise put v in V2. After checking all
vertices of V \ (Z ′ ∪ Z1 ∪ Z2), verify whether the graph G[V2] is connected.
If so, the graphs G1 := G[V1] and G2 := G[V2] form the desired solution. If
not, choose another set Z ′ and repeat the procedure. If no solution is found
for any set Z ′, then no solution to the problem exists.

Since all checks can be done in polynomial time and we only have to
perform this procedure a fixed number of times, the 2-Disjoint Connected

Subgraphs problem for Gk,r can indeed be solved in polynomial time if
r = 1, or if one of the given sets of vertices has fixed size.

From now on, we assume that r ≥ 2 (and that the sets Z1, Z2 may
have arbitrary size). We present the algorithm SPLIT that solves the 2-

Disjoint Connected Subgraphs problem for any G ∈ Gk,r, or concludes
that a solution does not exist. We assume 1 ≤ |Z1| ≤ |Z2| and define
Z := V \ (Z1 ∪ Z2). Algorithm SPLIT distinguishes between whether or
not Z1 has a “reasonably” small size, i.e., size at most an for some number
0 < a ≤ 1

2(r−1) , the value of which will be determined later.

Case 1. |Z1| ≤ an.
For all sets Z ′ ⊆ Z in order of increasing cardinality up to at most (r −
1)|Z1|+k, check whether G1 := G[Z ′∪Z1] is connected and G[(Z \Z ′)∪Z2]
has a component G2 containing all vertices of Z2. If so, output G1 and G2. If
not, choose another set Z ′ and repeat the procedure. If no solution is found
for any set Z ′, then output No.

Case 2. |Z1| > an.
Perform the procedure described in Case 1 for all sets Z ′ ⊆ Z in order of
increasing cardinality up to at most d(1− 2a)ne.

Theorem 3.5. For any fixed k and r ≥ 2, algorithm SPLIT solves the 2-

Disjoint Connected Subgraphs problem for any n-vertex graph in Gk,r

in O∗((f(r))n) time, where

f(r) = min
0<c≤0.5

{
max

{ 1
cc(1− c)1−c

, 21− 2c
r−1

}}
.

Proof. Let G = (V,E) be a graph in Gk,r with |V | = n, and let Z1, Z2 ⊆ V

be two non-empty disjoint sets of vertices of G with 1 ≤ |Z1| ≤ |Z2|. If Case
1 occurs, the correctness of SPLIT follows from Lemma 3.3. If Case 2 occurs,

3.2 The 2-Disjoint Connected Subgraphs problem 63

correctness follows from the fact that all subsets of Z may be checked if
necessary, as |Z1| > an implies |Z2| > an, and therefore |Z| ≤ (1− 2a)n. We
are left to prove that the running time mentioned in Theorem 3.5 is correct.
We consider Case 1 and Case 2.

Case 1. |Z1| ≤ an.
In the worst case, the algorithm has to check all sets Z ′ ⊆ Z in order of
increasing cardinality up to (r−1)|Z1|+k ≤ (r−1)an+k. Let c := (r−1)a,
and note that c ≤ 1

2 since we assumed a ≤ 1
2(r−1) . Then we must check at

most
∑cn+k

i=1

(
n
i

)
sets Z ′. Note that

cn+k∑
i=cn+1

(
n

i

)
=
(

n

cn+ 1

)
+
(

n

cn+ 2

)
+ . . .+

(
n

cn+ k

)

=
(
n

cn

)
·
k∑
i=1

(
i∏

j=1

n− cn− i+ 1
cn+ i

)

≤
(
n

cn

)
·
k∑
i=1

(n− cn)i

(cn)i

=
(
n

cn

)
·
k∑
i=1

(1− c
c

)i
.

This, together with the fact that

cn∑
i=1

(
n

i

)
≤ cn ·

(
n

cn

)
,

means that the number of sets we have to check is

O

(
cn ·

(
n

cn

))
.

For each set all the required checks can be done in polynomial time. Since k is
a fixed constant, independent of n, we can use Using Stirling’s approximation,
n! ≈ nne−n

√
2πn, to conclude that the running time for Case 1 is

O∗
((

1
cc · (1− c)1−c

)n)
.

3.2 The 2-Disjoint Connected Subgraphs problem 64

Input graph is... SPLIT runs in...
P5-free O∗(1.5790n)
P6-free O∗(1.5790n)
P`-free (` ≥ 7) O∗((f(`− 3))n)
P7-free O∗(1.7737n)
P8-free O∗(1.8135n)
P100-free O∗(1.9873n)

Table 3.1: The time complexities of SPLIT for some graph classes.

Case 2. |Z1| > an.
In the worst case, the algorithm has to check all O(2(1−2a)n) sets Z ′ ⊆ Z in
order of increasing cardinality up to d(1 − 2a)ne. Since for each set all the
required checks can be done in polynomial time, the running time for Case
2 is

O∗
((

21−2a
)n)

= O∗
((

21− 2c
r−1

)n)
.

Since we do not know in advance whether Case 1 or Case 2 will occur,
the appropriate value of c can be computed by taking

min
0<c≤0.5

{
max

{
1

cc · (1− c)1−c
, 21− 2c

r−1

}}
.

This finishes the proof of Theorem 3.5.

See Table 3.1 for the time complexities of SPLIT for some graph classes.
To prove that the time complexities in Table 3.1 are correct, we use the
characterization of P6-free graphs that we obtained in Section 2.4. We repeat
the theorem here for ease of reference.

Theorem 2.5. A graph G is P6-free if and only if each connected induced
subgraph of G contains a dominating induced C6 or a dominating (not nec-
essarily induced) complete bipartite graph. Moreover, we can find such a
dominating subgraph of G in O(n3) time.

Theorem 3.6. The time complexities of SPLIT shown in Table 3.1 are cor-
rect.

Proof. As we mentioned in Section 2.1, Bacsó and Tuza [16] proved that,
for any ` ≥ 7, a graph G is P`-free if and only if each connected induced

3.3 The Longest Path Contractibility problem 65

subgraph of G has a dominating subgraph of diameter at most `−4. Since a
graph of diameter at most `−4 has an (`−4)-dominating vertex, this means
that every P`-free graph is in G1,`−3 for any ` ≥ 7. Evaluating the function
f in Theorem 3.5 at r = 4, r = 5 and r = 97 yields the running times for
P7-free, P8-free and P100-free graphs in Table 3.1. Since f(2) ≈ 1.5790, it
remains to show that the classes of P5-free and P6-free graphs belong to Gk,2

for some constant k. Since every induced C6 has a dominating connected set
of size 4, and every complete bipartite graph has a dominating connected set
of size 2, the class of P6-free graphs is in G4,2 as a result of Theorem 2.5.
The observation that the class of P5-free graphs is a subclass of the class of
P6-free graphs finishes the proof of Theorem 3.6.

Let G be the graph obtained from a complete graph with vertex set
{x1, . . . , xp} by adding an edge between each xi and a new vertex yi, which
is only made adjacent to xi. The graph G is P5-free, and G does not belong
to Gk,1 for any constant k. This example shows that we cannot reduce r = 2
to r = 1 for P5-free graphs.

3.3 The Longest Path Contractibility problem

3.3.1 A complexity classification for P`-free graphs

Before stating the main theorem of this section, we first present a number of
useful results.

Theorem 3.7. The P4-Contractibility problem is NP-complete for the
class of P6-free graphs.

Proof. Brouwer and Veldman [52] give an elegant reduction from the Hyper-

graph 2-Colorability problem to show that the P4-Contractibility

problem is NP-complete. Given a hypergraph (Q,S) they construct a graph
G such that (Q,S) has a 2-coloring if and only if G is P4-contractible. Hence,
to prove Theorem 3.7, it suffices to show that G is P6-free. Below we show
how G is constructed.

Let (Q,S) be a hypergraph with Q = {q1, . . . , qn} and S = {S1, . . . , Sm},
and assume without loss of generality that Sm = Q. The graph G = (V,E)
is constructed from the incidence graph of (Q,S) as follows. First we add

3.3 The Longest Path Contractibility problem 66

s s′

q1 q2

q3

Figure 3.3: The graph G.

two new vertices s, s′ and a copy S ′ = {S′1, . . . , S′m} of S, such that S′i = Si

for every 1 ≤ i ≤ m. Then we add the following edges:

• SiS′j for every 1 ≤ i, j ≤ m;
• sSi for every 1 ≤ i ≤ m;
• s′S′i for every 1 ≤ i ≤ m;
• S′iqj if and only if qj ∈ Si;
• qiqj if and only if i 6= j.

See Figure 3.3 for the graph G obtained in this way from the hypergraph
(Q,S) with Q = {q1, q2, q3} and S = {{q1, q3}, {q1, q2}, {q1, q2, q3}}. We
claim that G is P6-free. This can be seen as follows. Let P be an induced
path of G with maximum length over all induced paths of G. Note that P
contains at most 2 vertices of Q, since Q is a clique in G. Suppose P starts in
s or s′. By symmetry we may assume that P starts in s. Let Si be the next
vertex of P . If P does not contain any vertex of S ′, then V (P) \ {s, Si} ⊆ Q
and P has length at most 3. Suppose P contains some vertex S′j . Then sSiS

′
j

is a subpath of P and the next vertex on P is either s′ or lies in Q. In the
first case P = sSiS

′
js
′, so P has length 3. In the second case P ends in Q

(as G[S ∪ S ′] is complete bipartite) and has length at most 4.
Suppose P starts in Si or S′i for some 1 ≤ i ≤ m and does not end in s or

s′. By symmetry we may assume P starts in Si. If the second vertex of P is
s, then P does not contain any vertex of S ′ and has length at most 4. If the
second vertex of P is from Q, then P does not contain a vertex from S ′. In
that case, P either ends in Q and has length at most 2, or P ends in S and
consequently does not contain s or more than two vertices of Q, so P has
length at most 3. If the second vertex of P is from S ′ and P does not end

3.3 The Longest Path Contractibility problem 67

in this vertex, then P ends in Q and has length at most 3. Note that we do
not have to consider the case where P ends in S, as we already considered
that case before.

Suppose P starts in Q and does not end in a vertex in {s, s′} ∪ S ∪ S ′.
Then P ends in Q, and consequently, P has length at most 1. We conclude
that G is indeed P6-free.

A pair of vertices (u, v) of a graph G is P`-suitable for some integer
` ≥ 3 if and only if G has a P`-witness structure W with W (p1) = {u} and
W (p`) = {v}, where P` = p1 · · · p`. The two vertices making up the outer
witness sets of the right P4-witness structure in Figure 1.1 in Section 1.1.3
form a P4-suitable pair.

Lemma 3.8. For ` ≥ 3, a graph is P`-contractible if and only if it has a
P`-suitable pair.

Proof. By definition, a graph G is P`-contractible if G has a P`-suitable
pair of vertices. To prove the reverse statement, let G be a P`-contractible
graph and let W be a P`-witness structure of G. Suppose |W (p1)| ≥ 2. Let
x ∈ W (p1) be a vertex that is not a cut vertex of G[W (p1)]; note that any
graph on at least two vertices has at least two such vertices, namely the
leaves of any spanning tree.

Suppose W (p1) contains a vertex y 6= x adjacent to W (p2). Then we
defineW ′(p1) := {x},W ′(p2) := W (p2)∪(W (p1)\{x}) andW ′(pi) := W (pi)
for i = 3, . . . , `.

Suppose x is the only vertex ofW (p1) adjacent toW (p2). As |W (p1)| ≥ 2
and G[W (p1)] is connected, there exists a vertex y ∈W (p1) \ {x} that is not
a cut vertex of G[W (p1)]. We define W ′(p1) := {y}, W ′(p2) := W (p2) ∪
(W (p1) \ {y}) and W ′(pi) := W (pi) for i = 3, . . . , `. So given a P`-witness
structure W of G, we can always find a P`-witness structure W ′ of G with
|W ′(p1)| = 1. Since ` ≥ 3, we did not change the witness sets W (p`) and
W (p`−1) in obtaining W ′. Hence, we can repeat the arguments above for
W (p`) to obtain a P`-witness structureW ′′ of G with |W ′′(p1)| = |W ′′(p`)| =
1. By definition, the two vertices of W ′′(p1)∪W ′′(p`) form a P`-suitable pair
of G.

3.3 The Longest Path Contractibility problem 68

Lemma 3.9. Let x and y be two neighbors of a vertex u in a graph G with
xy ∈ E(G), and let v be some other vertex in G. Then (u, v) is a P`-suitable
pair of G if and only if (u, v) is a P`-suitable pair of G \ xy.

Proof. Suppose (u, v) is a P`-suitable pair of G. By definition, G has a P`-
witness structureW with W (p1) = {u} and W (p`) = {v}. Then x, y ∈ N(u)
are both in the same witness set, namelyW (p2). Hence we may contract edge
xy in order to obtain a P`-witness structureW ′ for G\xy withW ′(p1) = {u}
and W ′(p`) = {v}. The reverse implication is trivial.

Lemma 3.10. For any edge xy of a P`-free graph G, the graph G \ xy is
P`-free.

Proof. Let G = (V,E) be a P`-free graph, and let z be the vertex that is
being created by contracting the edge xy ∈ E. Suppose G \ xy is not P`-free
and let p1p2 · · · p` be an induced P` in G \ xy. Since G is P`-free, we must
have z = pj for some 2 ≤ j ≤ `− 1. Suppose x is adjacent to both pj−1 and
pj+1 in G. Then the path p1 · · · pj−1xpj+1 · · · p` forms an induced P` in G, a
contradiction. Therefore x, and by symmetry y, cannot be adjacent to both
pj−1 and pj+1 in G. Without loss of generality, assume that pj−1x ∈ E and
ypj+1 ∈ E. Then the path p1p2 · · · pj−1xypj+1 · · · p`−1 forms an induced P`
in G, contradicting the P`-freeness of G.

We now present a polynomial time algorithm for deciding whether a P5-
free graph is P4-contractible.

Theorem 3.11. The P4-Contractibility problem is solvable in polyno-
mial time for the class of P5-free graphs.

Proof. Let G = (V,E) be a connected P5-free graph. Lemma 3.8 states
that G is P4-contractible if and only if G contains a P4-suitable pair (u, v).
Since G has O(|V |2) pairs (u, v), it suffices to show that we can check in
polynomial time whether a given pair (u, v) is P4-suitable. It follows from
the definition of a P4-witness structure and the P5-freeness of G that we only
need to consider pairs of vertices at distance 3. If there does not exist such
a pair, then G is not P4-contractible. Suppose (u, v) is a pair of vertices of
G with dG(u, v) = 3.

3.3 The Longest Path Contractibility problem 69

Claim 1. We may without loss of generality assume that N(u) and N(v) are
independent sets of cardinality at least 2.

We prove Claim 1 as follows. Lemma 3.9 and Lemma 3.10 together immedi-
ately imply that we may assume N(u) and N(v) to be independent sets. Now
suppose that N(u) has cardinality 1, say N(u) = {x}. It is clear that (u, v)
is a P4-suitable pair of G if and only if N(v) is contained in one component
of G[V \ {u, v, x}], which can be checked in polynomial time. Hence we may
assume that |N(u)| ≥ 2, and by symmetry |N(v)| ≥ 2.

Claim 2. Let x and x′ be two vertices of G such that x is adjacent to a vertex
w ∈ N(u) but not to a vertex w′ ∈ N(u), and x′ is adjacent to w′ but not to
w. Then N(u) ⊆ N(x) ∪N(x′).

We prove Claim 2 as follows. Clearly u /∈ {x, x′}. As N(u) is an independent
set by Claim 1, u is neither adjacent to x nor to x′. Then xx′ ∈ E, since
otherwise the path x′w′uwx is an induced P5 as a result of Claim 1, contra-
dicting the P5-freeness of G. Now suppose there exists a vertex w′′ ∈ N(u)
not in N(x)∪N(x′). Since w′ and w′′ are not adjacent as a result of Claim 1,
the path w′′uw′x′x is an induced P5 in G. This contradiction proves Claim
2.

Claim 3. Suppose G has a P4-witness structure W with W (p1) = {u} and
W (p4) = {v}. Then at least one of the following holds:

1. there exists a vertex x ∈W (p2) \N(u) with N(u) ⊆ N(x);
2. there exist vertices x, x′ ∈W (p2) \N(u) with N(u) ⊆ N(x) ∪N(x′).

We prove this claim as follows. Suppose W is a P4-witness structure of G
withW (p1) = {u} andW (p4) = {v}, and suppose condition 1 does not hold.
We show that condition 2 must hold. By Claim 1, N(u) is an independent
set of G containing at least two vertices. Since N(u) ⊆W (p2) and G[W (p2)]
is connected, we know that W (p2) \N(u) 6= ∅. Let x ∈ W (p2) \N(u) be a
vertex such that |N(u)∩N(x)| is maximum over all vertices inW (p2)\N(u).
Since condition 1 does not hold, there exists a vertex w′ ∈ N(u) that is not
adjacent to x. Then w′ is adjacent to a vertex x′ ∈ W (p2) \ (N(u) ∪ {x}),
as otherwise w′ would be an isolated vertex in G[W (p2)]. By choice of x,
there exists a vertex w ∈ N(u) ∩ N(x) not adjacent to x′. By Claim 2,
N(u) ⊆ N(x) ∪N(x′). This finishes the proof of Claim 3.

3.3 The Longest Path Contractibility problem 70

It remains to prove how we can check in polynomial time whether (u, v) is a
P4-suitable pair of G. If (u, v) is a P4-suitable pair of G, then by definition
G has a P4-witness structure W with W (p1) = {u} and W (p4) = {v}. Any
such witness structure satisfies at least one of the two conditions in Claim
3. We can check in polynomial time if these conditions hold after guessing
one vertex (respectively two vertices) in V \ (N(u) ∪ N(v) ∪ {u, v}). If so,
we check in polynomial time if N(v) is contained in one component of the
remaining graph (without vertex v). If all our guesses are negative, then
(u, v) is not a P4-suitable pair of G.

Theorem 3.7 and Theorem 3.11 together yield the main result of this
section.

Theorem 3.12. The Longest Path Contractibility problem restricted
to the class of P`-free graphs is polynomial time solvable if ` ≤ 5 and NP-hard
if ` ≥ 6.

Proof. First assume ` = 5. Let G = (V,E) be a P5-free graph. By definition,
ϑ(G) = 0 if and only if G is disconnected. Suppose G is connected. Since
G does not contain an induced path on more than four vertices, G is clearly
not contractible to such a path. Hence we have ϑ(G) ≤ 4. By Theorem 3.11,
we can check in polynomial time whether G is P4-contractible. If so, then
ϑ(G) = 4. Otherwise, we check ifG has a P3-suitable pair. This is a necessary
and sufficient condition for P3-contractibility according to Lemma 3.8. We
can perform this check in polynomial time, since two vertices u, v form a P3-
suitable pair of G if and only if u and v are non-adjacent and G[V \{u, v}] is
connected. IfG is P3-contractible, then ϑ(G) = 3. IfG is not P3-contractible,
then we conclude that ϑ(G) = 2 if G has at least two vertices, and ϑ(G) = 1
otherwise.

Now assume ` = 6. Since a graph G is P4-contractible if and only if
ϑ(G) ≥ 4 and the P4-Contractibility problem is NP-complete for P6-free
graphs by Theorem 3.7, the Longest Path Contractibility problem is
NP-hard for P6-free graphs.

The claim for all other values of ` immediately follows from the fact that
the class of P`-free graphs is a subclass of the class of P`′-free graphs whenever
` ≤ `′.

3.3 The Longest Path Contractibility problem 71

3.3.2 An exact algorithm

Algorithm SPLIT can be extended to an algorithm that solves the Longest

Path Contractibility problem on P6-free graphs in O∗(1.5790n) time.
This extension is described in detail in the proof of the following theorem.

Theorem 3.13. The Longest Path Contractibility problem for P6-
free graphs can be solved in O∗(1.5790n) time.

Proof. Let G = (V,E) be a P6-free graph with |V | = n. By definition,
ϑ(G) = 0 if and only if G is disconnected. Suppose G is connected. Since
G does not contain an induced path on six vertices, G is clearly not P6-
contractible. Hence ϑ(G) ≤ 5. We first show how we can determine in
O∗(1.5790n) time if ϑ(G) = 5, i.e., if G is P5-contractible. We do this by
modifying the algorithm SPLIT such that it decides in O∗(1.5790n) time
whether a pair (u, v) of vertices of G is P5-suitable. Note that G has O(n2)
pairs (u, v) and G is P5-contractible if and only if G has a P5-suitable pair
(u, v) by Lemma 3.8. Before we present the modified algorithm, we introduce
some additional terminology and prove a useful claim below.

Let u, v be two vertices of G for which we want to decide if they form a P5-
suitable pair. It follows from the definition of a P5-witness structure and the
P6-freeness of G that we may without loss of generality assume dG(u, v) = 4.
We define the set of midpoints for (u, v) as S(u, v) := {x ∈ V | dG(x, u) =
dG(x, v) = 2}. If no confusion is possible, we write S = S(u, v). We define
two sets T1 and T2 as follows. Set T1 = T1(u, v) consists of all vertices
in V \ ({u, v} ∪ N(u) ∪ N(v) ∪ S) that are separated from v by S but are
not separated from u by S. Set T2 = T2(u, v) consists of all vertices in
V \ ({u, v} ∪N(u) ∪N(v) ∪ S) that are separated from u by S but are not
separated from v by S. Note that T1 ∩ T2 = ∅ and that we can obtain these
two sets in polynomial time.

Claim 1. We may without loss of generality assume that V = {u, v}∪N(u)∪
N(v) ∪ S ∪ T1 ∪ T2.

We prove Claim 1 as follows. Suppose V ′ = V \ ({u, v} ∪N(u)∪N(v)∪ S ∪
T1 ∪ T2) is non-empty. By definition of T1 and T2, V ′ = W1 ∪W2, where W1

consists of all vertices that are separated from both u and v by S, and W2

consists of all vertices that are separated from neither u nor v by S.

3.3 The Longest Path Contractibility problem 72

First suppose W1 6= ∅. Let x ∈ W1. Note that S ⊆ W (p3) for any
P5-witness structure W of G with W (p1) = {u} and W (p5) = {v}. Since
x is separated from both u and v by S, we must have x ∈ W (p3) for any
P5-witness structureW of G with W (p1) = {u} and W (p5) = {v}; otherwise
x would be an isolated vertex in G[W (p2)] or G[W (p4)], a contradiction.
Hence we may contract x with any of its neighbors, which are either in S or
which are also separated from both u and v by S. Then (u, v) is P5-suitable
for the resulting (smaller) graph G′ if and only if (u, v) is P5-suitable for G.
Furthermore, by Lemma 3.10, G is P6-free. Hence we may continue with G′.

Now suppose W2 6= ∅. Let P be a shortest path in G from a vertex in
N(u) to a vertex in N(v), containing a vertex in W2 but not containing any
vertex of S (such a path exists, since W2 6= ∅). Then P contains at most
one vertex u′ ∈ N(u) and at most one vertex v′ ∈ N(v), as otherwise we can
replace P by a shorter path. Consequently, P contains neither u nor v, and
we may without loss of generality assume that P starts in u′ and ends in v′.
Let x ∈ W2 ∩ V (P). If V (P) = {u′, x, v′}, then dG(x, u) = dG(x, v) = 2.
This would mean x ∈ S, a contradiction. Hence P contains another vertex
y /∈ {u′, x, v′}. Then the path uu′

−→
P v′v contains at least six vertices. As

G is P6-free, P is not an induced path in G. Hence, G[V (P)] contains an
edge st /∈ E(P), where we assume that s occurs before t on the path P from
u′ to v′. Since dG(u, v) = 4, we have u′v′ /∈ E. This means that at least
one of the two vertices s, t is different from u′ and v′. We assume without
loss of generality that this vertex is s. Then the path u′

−→
P st
−→
P v′ satisfies the

requirements but is shorter than P , a contradiction. This proves Claim 1.

We now show how we can modify the algorithm SPLIT to determine if
(u, v) is a P5-suitable pair of G. The modified algorithm takes as input the
graph G[V \ {u, v}] with sets N(u), N(v), S. It returns Yes if G has three
connected subgraphs G1, G2, G3 such that N(u) ⊆ V (G1), S ⊆ V (G2) and
N(v) ⊆ V (G3), and it returns No otherwise. The modified algorithm first
determines which of the two sets N(u) ∪N(v) and S is the smallest. Since
G is P6-free, we know that G ∈ G4,2 (see the proof of Theorem 3.6). Like
the original algorithm SPLIT for graphs in G4,2, the modified algorithm then
distinguishes between whether or not this smallest set has a “reasonably”
small size, i.e., size at most an for some number 0 < a ≤ 1

2 , the value of
which will be determined later.

3.3 The Longest Path Contractibility problem 73

First assume |N(u)|+ |N(v)| ≤ |S|. We distinguish two cases.

Case 1. |N(u)|+ |N(v)| ≤ an.
For all sets Z ′ ⊆ T1 ∪ T2 in order of increasing cardinality up to at most
|N(u)|+|N(v)|+4, check if G1 := G[(Z ′∩T1)∪N(u)] and G3 := G[(Z ′∩T2)∪
N(v)] are both connected. If not, choose another set Z ′. Otherwise, check
whether S is contained in one component G2 of the graph G[(S∪T1∪T2)\Z ′].
If so, conclude that (u, v) is P5-suitable. If not, choose another set Z ′ and
repeat the procedure. If no solution is found for any set Z ′, then conclude
that (u, v) is not a P5-suitable pair of G.

Case 2. |N(u)|+ |N(v)| > an.
Perform the procedure described in Case 1 for all sets Z ′ ⊆ T1 ∪ T2 in order
of increasing cardinality up to at most d(1− 2a)ne.

Now assume |S| ≤ |N(u)|+ |N(v)|. Again, we distinguish two cases.

Case 1. |S| ≤ an.
For all sets Z ′ ⊆ T1∪T2 in order of increasing cardinality up to at most |S|+4,
check if the graph G2 := G[Z ′∪S] is connected. If not, choose another set Z ′.
Otherwise, check whether the graph G[(N(u)∪N(v)∪T1∪T2)\Z ′] contains
two components G1, G3 such that N(u) ⊆ V (G1) and N(v) ⊆ V (G3). If so,
conclude that (u, v) is P5-suitable. If not, choose another set Z ′ and repeat
the procedure. If no solution is found for any set Z ′, then conclude that
(u, v) is not a P5-suitable pair of G.

Case 2. |S| > an.
Perform the procedure described in Case 1 for all sets Z ′ ⊆ T1 ∪ T2 in order
of increasing cardinality up to at most d(1− 2a)ne.

The proof of correctness and the running time analysis are similar to the
proof of Theorem 3.5. Recall that G ∈ G4,2. Hence we find that a ≈ 0.17054
is optimal. After checking O(n2) pairs of vertices in G on P5-suitability,
we find in O∗(1.5790n) time whether G is P5-contractible or not. If G is
P5-contractible, then ϑ(G) = 5.

Suppose G is not P5-contractible. We check if G is P4-contractible. Recall
that G is P4-contractible if and only if G has a P4-suitable pair (u, v) by
Lemma 3.8. Let u, v ∈ V be a pair of vertices of G. By Lemma 3.8, the
definition of a P4-suitable pair, and the P4-freeness of G, we may assume

3.4 Conclusion 74

dG(u, v) = 3. Define Z1 := NG(u), Z2 := NG(v) and G′ := G[V \ {u, v}].
Note that Z1 ∩ Z2 = ∅ as dG(u, v) = 3. Furthermore G′ is P6-free as G is
P6-free. Hence (G′, Z1, Z2) is an instance of the 2-Disjoint Connected

Subgraphs problem for P6-free graphs. By Theorem 3.6, we can decide in
O∗(1.5790n) time whether there exist vertex-disjoint subgraphs G1, G2 of G
such that Zi ⊆ V (Gi) for i = 1, 2. It is clear that such subgraphs exist if and
only if (u, v) is a P4-suitable pair of G. Since we have to check O(n2) pairs
(u, v), we can check in O∗(1.5790n) time whether or not G is P4-contractible.
If so, then ϑ(G) = 4.

Suppose G is not P4-contractible. We check if G has a P3-suitable pair.
This is a necessary and sufficient condition for P3-contractibility according
to Lemma 3.8. We can perform this check in polynomial time, since two
vertices u, v form a P3-suitable pair of G if and only if u, v are non-adjacent
and G[V \ {u, v}] is connected. If G is P3-contractible, then ϑ(G) = 3. If G
is not P3-contractible, then we conclude that ϑ(G) = 2 if G has at least two
vertices, and ϑ(G) = 1 otherwise.

3.4 Conclusion

We showed that the 2-Disjoint Connected Subgraphs problem is al-
ready NP-complete if one of the given sets of vertices has cardinality 2. We
also showed that the 2-Disjoint Connected Subgraphs problem for the
class of P`-free graphs jumps from being polynomial time solvable to being
NP-hard at ` = 5. The Longest Path Contractibility problem re-
stricted to the class of P`-free graphs can be solved in polynomial time if
` ≤ 5, and is NP-complete if ` ≥ 6.

Our algorithm SPLIT solves the 2-Disjoint Connected Subgraphs

problem for P`-free graphs faster than O∗(2n) for any `. We do not know
yet how to improve its running time for P5-free and P6-free graphs (which
are in G1,2 and G4,2, respectively) but expect we can do better for P`-free
graphs with ` ≥ 7 (by using a radius argument). The modification of SPLIT
solves the Longest Path Contractibility problem for P6-free graphs
in O∗(1.5790n) time. Furthermore, SPLIT might be modified into an exact
algorithm that solves the Longest Path Contractibility problem for P`-
free graphs with ` ≥ 7 as well. A more interesting question however is to find

3.4 Conclusion 75

fast exact algorithms for solving the 2-Disjoint Connected Subgraphs

problem and the Longest Path Contractibility problem for general
graphs.

Chapter 4

On graph contractions and
induced minors

Most of the results of this chapter appeared in the following paper.

[156] P. van ’t Hof, M. Kamiński, D. Paulusma, S. Szeider, and D.M. Thi-
likos. On contracting graphs to fixed pattern graphs. In: Proceedings
of the 36th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2010), volume 5901 of Lecture
Notes in Computer Science, pages 503–514, Springer, 2010.

Asking whether a graph G contains a graph H as a minor is equivalent to
asking whetherH can be obtained from a subgraph ofG by a sequence of edge
contractions. We mentioned at the beginning of Chapter 3 that Robertson
and Seymour [232] proved that this problem can be solved in polynomial
time for every fixed graph H. Deciding whether a graph H can be obtained
from an induced subgraph of G, or from G itself, by contracting edges only,
an alternative way of formulating the H-Induced Minor Containment

problem and the H-Contractibility problem, respectively, seems to be
harder; for both problems pattern graphsH are known for which they are NP-
complete [52, 103]. For neither problem a complete complexity classification
is known. In this chapter we study the computational complexity of these
two problems. Using a deep result by Robertson and Seymour [233], proving
Wagner’s Conjecture, we show that the H-Induced Minor Containment

problem can be solved in polynomial time on any non-trivial minor-closed

4.1 Background and results 77

graph class if H is planar. We also identify polynomial time solvable and
NP-complete cases of the H-Contractibility problem and a new variant
of this problem. The presence of a dominating vertex in the target graph H
seems to play an interesting role in these results.

4.1 Background and results

The following well-known result by Robertson and Seymour [232] was already
mentioned in Chapter 3.

Theorem 4.1 ([232]). For every fixed graph H, the H-Minor Contain-

ment problem can be solved in polynomial time.

It is highly unlikely that a similar result holds for the H-Induced Mi-

nor Containment problem, as Fellows, Kratochvíl, Middendorf, and Pfeif-
fer [103] identify both polynomial time solvable and NP-complete cases of the
H-Induced Minor Containment problem. They also prove the following.

Theorem 4.2 ([103]). For every fixed planar graph H, the H-Induced Mi-

nor Containment problem can be solved in polynomial time on planar
input graphs.

In Section 4.2, after recalling some basic notions in parameterized com-
plexity, we consider the Induced Minor Containment problem that takes
as input two graphs G and H and asks whether G has H as an induced mi-
nor. We show that this problem is fixed parameter tractable in |V (H)| if H
is planar and G belongs to any non-trivial minor-closed graph class G, i.e.,
to a class G that contains every minor of each of its members, but does not
contain all graphs. This result generalizes Theorem 4.2, as the class of planar
graphs is minor-closed.

Brouwer and Veldman [52] initiated the research on the H-Contract-

ibility problem. Their main result is stated below.

Theorem 4.3 ([52]). Let H be a connected triangle-free graph. The H-Con-

tractibility problem is solvable in polynomial time if H has a dominating
vertex, and is NP-complete otherwise.

Note that a connected triangle-free graph with a dominating vertex is a
star and that H = P4 and H = C4 are the smallest graphs H for which

4.1 Background and results 78

H-Contractibility is NP-complete. The research of Brouwer and Veld-
man [52] was continued by Levin et al. [193, 194].

Theorem 4.4 ([193, 194]). Let H be a connected graph on at most five
vertices. The H-Contractibility problem is solvable in polynomial time
if H has a dominating vertex, and is NP-complete otherwise.

In the papers by Brouwer and Veldman [52] and by Levin et al. [193]
several other results are shown. To discuss these we need some extra ter-
minology, which we will use later in the chapter as well. For two graphs
G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, we denote their join by
G1 1 G2 = (V1∪V2, E1∪E2∪{uv | u ∈ V1, v ∈ V2}), and their disjoint union
by G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2). For the disjoint union G ∪G ∪ · · · ∪G of
k copies of the graph G, we write kG; for k = 0 this yields the empty graph
(∅, ∅). For integers a1, a2, . . . , ak ≥ 0, we let H∗i (a1, a2, . . . , ak) be the graph
Ki 1 (a1P1∪a2P2∪· · ·∪akPk), where Ki is the complete graph on i vertices
and Pi is the path on i vertices. Note that H∗1 (a1) denotes a star on a1 + 1
vertices.

Brouwer and Veldman [52] show that H-Contractibility is polyno-
mial time solvable for H = H∗1 (a1) or H = H∗1 (a1, a2) for any a1, a2 ≥ 0.
These results have been generalized in [193] leading to the following theo-
rem. Observe that H∗i (0) = H∗i−1(1) = Ki and that Ki-Contractibility is
equivalent to Ki-Minor Containment, and hence solvable in polynomial
time by Theorem 4.1.

Theorem 4.5 ([193]). The H-Contractibility problem is solvable in poly-
nomial time for:

1. H = H∗1 (a1, a2, . . . , ak) for any k ≥ 1 and a1, a2, . . . , ak ≥ 0;
2. H = H∗2 (a1, a2) for any a1, a2 ≥ 0;
3. H = H∗3 (a1) for any a1 ≥ 0;
4. H = H∗i (a1), for any i ≥ 1 and 0 ≤ a1 ≤ 1.

The presence of a dominating vertex seems to play an interesting role in
the complexity classification of the H-Contractibility problem. So far,
in all polynomial time solvable cases of this problem the pattern graph H

has a dominating vertex, and in all NP-complete cases H does not have such
a vertex. Following this trend, we extend Theorem 4.5 in Section 4.3.1 by

4.2 Induced minors in minor-closed graph classes 79

showing that H∗4 (a1)-Contractibility is polynomial time solvable for all
a1 ≥ 0. In Section 4.3.2 however we present the first class of graphs H with
a dominating vertex for which H-Contractibility is NP-complete.

In Section 4.4 we study the following problem, where vertex v specified
in the pair (H, v) refers to a fixed vertex v of H.

(H, v)-Contractibility

Instance: A graph G and a positive integer k.
Question: Does G have an H-witness structure W with |W (v)| ≥ k?

We show that (H, v)-Contractibility is NP-complete whenever H
is connected and v is not a dominating vertex of H. For example, let
P3 = p1p2p3. Then the (P3, p3)-Contractibility problem is NP-complete
(whereas P3-Contractibility is polynomial time solvable).

4.2 Induced minors in minor-closed graph classes

We start this section with a short introduction on the complexity classes
XP and FPT. Both classes are defined in the framework of parameterized
complexity as developed by Downey and Fellows [95]. The complexity class
XP consists of parameterized decision problems Π such that for each instance
(I, k) it can be decided in O(f(k) · |I|g(k)) time whether (I, k) ∈ Π, where
f and g are computable functions depending only on k. So XP consists of
parameterized decision problems which can be solved in polynomial time if
the parameter is considered to be a constant. A problem is fixed parameter
tractable in k if an instance (I, k) can be solved in time O(f(k)·|I|c), where f
denotes a computable function and c a constant independent of k. Therefore,
such an algorithm may provide a solution to the problem efficiently if the
parameter is reasonably small. The complexity class FPT ⊆ XP is the class
of all fixed-parameter tractable decision problems.

A graph class is called non-trivial if it does not contain all graphs. We
show that the Induced Minor Containment problem is fixed parameter
tractable in |V (H)| on input pairs (G,H) with G from any fixed non-trivial
minor-closed graph class G and H planar. Before doing this we first recall
the following notions. A tree decomposition of a graph G = (V,E) is a pair
(X , T), where X = {X1, . . . , Xr} is a collection of bags, which are subsets of

4.2 Induced minors in minor-closed graph classes 80

s

Figure 4.1: The graphs M6,Γ6, and Π6, respectively.

V , and T is a tree on vertex set X with the following three properties. First,⋃r
i=1Xi = V . Second, for each uv ∈ E, there exists a bag Xi such that
{u, v} ⊆ Xi. Third, if v ∈ Xi and v ∈ Xj then all bags in T on the (unique)
path between Xi and Xj contain v. The width of a tree decomposition (X , T)
is max{|Xi|−1 | i = 1, . . . , r}, and the treewidth tw(G) of G is the minimum
width over all possible tree decompositions of G.

Our proof idea is as follows. We check if the input graph G has suffi-
ciently large treewidth. If not, then we apply the monadic second-order logic
result of Courcelle [84]. Otherwise, we show that G always contains H as an
induced minor. Before going into details, we first introduce some additional
terminology.

The k × k grid Mk has as vertex set all pairs (i, j) for i, j = 0, 1, . . . , k −
1, and two vertices (i, j) and (i′, j′) are joined by an edge if and only if
|i − i′| + |j − j′| = 1. For k ≥ 2, let Γk denote the graph obtained from
Mk by triangulating its faces as follows: add an edge between vertices (i, j)
and (i′, j′) if i − i′ = 1 and j′ − j = 1, and add an edge between corner
vertex (k − 1, k − 1) and every external vertex that is not already adjacent
to (k− 1, k− 1), i.e., every vertex (i, j) with i ∈ {0, k− 1} or j ∈ {0, k− 1},
apart from the vertices (k−2, k−1) and (k−1, k−2). We let Πk denote the
graph obtained from Γk by adding a new vertex s that is adjacent to every
vertex of Γk. See Figure 4.1 for the graphs M6,Γ6, and Π6.

Let F denote a set of graphs. Then a graph G is called F-minor-free if
G does not contain a graph in F as a minor. If F = {F} we say that G
is F -minor-free. We need the following results by Fomin et al. [112] and by
Fellows et al. [103], respectively.

4.2 Induced minors in minor-closed graph classes 81

Theorem 4.6 ([112]). For every graph F , there is a constant cF such that ev-
ery connected F -minor-free graph of treewidth at least cF ·k2 is Γk-contractible
or Πk-contractible.

Theorem 4.7 ([103]). For every planar graph H, there is a constant bH such
that every planar graph of treewidth at least bH contains H as an induced
minor.

We also recall the well-known result of Robertson and Seymour [233]
proving Wagner’s conjecture.

Theorem 4.8 ([233]). A graph class G is minor-closed if and only if there
exists a finite set F of graphs such that G is equal to the class of F-minor-free
graphs.

We are now ready to prove our generalization of Theorem 4.2. Recall
that a class of graphs is non-trivial if it does not contain all graphs.

Theorem 4.9. Let G be any minor-closed graph class. Then the Induced

Minor Containment problem is fixed parameter tractable in |V (H)| on
input pairs (G,H) with G ∈ G and H planar.

Proof. Let H be a fixed planar graph with constant bH as defined in The-
orem 4.7. Let G be a graph on n vertices in a minor-closed graph class
G. From Theorem 4.8 we deduce that there exists a finite set F of graphs
such that G is F-minor-free. Note that F is non-empty, because G is non-
trivial. By Theorem 4.6, for each F ∈ F , there exists a constant cF such
that every connected F -minor-free graph of treewidth at least cF · b2H is ΓbH -
contractible or ΠbH -contractible. Let c := min{cF | F ∈ F}. We first check
if tw(G) < c ·b2H . We can do so as recognizing such graphs is fixed parameter
tractable in c · b2H due to a result of Bodlaender [39].

Case 1. tw(G) < c · b2H . The property of having H as an induced minor is
expressible in monadic second-order logic (see for example [103]). Hence, by
a well-known result of Courcelle [84], we can determine in O(n) time if G
contains H as an induced minor.

Case 2. tw(G) ≥ c · b2H . We will show that in this case G is a yes-instance.
By Theorem 4.6, we find that G is ΓbH -contractible or ΠbH -contractible.

4.3 The H-Contractibility problem 82

First supposeG is ΓbH -contractible. ThenG has ΓbH as an induced minor.
It is easy to prove thatMbH has treewidth bH . It is clear from the definition of
treewidth that any supergraph of MbH , and ΓbH in particular, has treewidth
at least bH . Note that ΓbH is a planar graph. Then, by Theorem 4.7, ΓbH
has H as an induced minor. Consequently, by transitivity, G has H as an
induced minor.

Now suppose G is ΠbH -contractible. Let W be a ΠbH -witness structure
of G. We remove all vertices in W (s) from G. We then find that G has ΓbH
as an induced minor and return to the previous situation.

4.3 The H-Contractibility problem

As we mentioned at the beginning of this chapter, the presence of a dominat-
ing vertex seems to play an interesting role in the complexity classification
of the H-Contractibility problem. So far, in all polynomial time solvable
cases of this problem the pattern graph H has a dominating vertex, and
in all NP-complete cases H does not have such a vertex. The first result
of this section follows this pattern: we prove in Section 4.3.1 that H∗4 (a1)-
Contractibility is polynomial time solvable for all a1 ≥ 0. In Section 4.3.2
however we present the first class of graphs H with a dominating vertex for
which H-Contractibility is NP-complete.

4.3.1 Polynomial cases with four dominating vertices

In this section, we extend Theorem 4.5 by showing thatH-Contractibility

is polynomial time solvable for H = H∗4 (a1) for any integer a1 ≥ 0.
Let H and G be graphs such that G is H-contractible. Let W be an H-

witness structure of G. We call the subset of vertices in a witness set W (hi)
that are adjacent to vertices in some other witness set W (hj) a connector
CW(hi, hj). We use the notion of connectors to simplify the witness structure
of an H∗4 (a1)-contractible graph. Let y1, . . . , y4 denote the four dominating
vertices ofH∗4 (a1) and let x1, . . . , xa1 denote the remaining vertices ofH∗4 (a1).
For every 1 ≤ i ≤ a1, we define CW(xi, Y) :=

⋃4
j=1CW(xi, yj), and also call

such a set a connector.
The graph H∗4 (2) is shown in Figure 4.2, and two copies of an H∗4 (2)-

contractible graph G are shown in Figure 4.3. The dashed lines in the left and

4.3 The H-Contractibility problem 83

y1 y2 y3 y4

x1 x2

Figure 4.2: The graph H∗4 (2).

the right graph indicate two different H∗4 (2)-witness structures W and W ′ of
G, respectively. Exactly four vertices of the witness setW (x2) are adjacent to
W (y1)∪W (y2)∪W (y3)∪W (y4), which means that those four vertices form
the connector CW(x2, Y). When we consider the H∗4 (2)-witness structure
W ′ of the right graph, we see that none of the connectors CW ′(x1, Y) and
CW ′(x2, Y), formed by the grey vertices, contains more than two vertices.

The next lemma shows that every H∗4 (a1)-contractible graph has an
H∗4 (a1)-witness structure W ′ where every connector of the form CW ′(xi, Y)
has size at most two.

Lemma 4.10. Let a1 ≥ 0. Every H∗4 (a1)-contractible graph has an H∗4 (a1)-
witness structure W ′ such that for every 1 ≤ i ≤ a1 one of the following two
holds:

(i) CW ′(xi, Y) consists of one vertex, and this vertex is adjacent to all four
sets W ′(y1), W ′(y2), W ′(y3), W ′(y4);

(ii) CW ′(xi, Y) consists of two vertices, each of them adjacent to exactly
two sets of W ′(y1), W ′(y2), W ′(y3), W ′(y4).

Proof. LetW be anH∗4 (a1)-witness structure of anH∗4 (a1)-contractible graph
G. Below we transformW into a witness structureW ′ that satisfies the state-
ment of the lemma.

From each W (xi) we move as many vertices as possible to W (y1) ∪ · · · ∪
W (y4) in a greedy way and without destroying the witness structure. This
way we obtain an H∗4 (a1)-witness structure W ′ of G. See Figure ?? for an
example, where theH∗4 (2)-witness structureW ′ in the right graph is obtained
from the H∗4 (2)-witness structure W on the left by performing this greedy
procedure. We claim that 1 ≤ |CW ′(xi, Y)| ≤ 2 for every 1 ≤ i ≤ a1.

4.3 The H-Contractibility problem 84

W (y1)
W (y2) W (y3)

W (y4)

W (x1) W (x2)

W ′(y1)
W ′(y2) W ′(y3)

W ′(y4)

W ′(x1) W ′(x2)

Figure 4.3: Two H∗4 (2)-witness structuresW andW ′ of a graph, whereW ′ is
obtained fromW by moving as many vertices as possible fromW (x1)∪W (x2)
to W (y1) ∪W (y2) ∪W (y3) ∪W (y4). The grey vertices form the connectors
CW ′(x1, Y) and CW ′(x2, Y).

Suppose, for contradiction, that |CW ′(xi, Y)| ≥ 3 for some xi. Let
u1, u2, u3 be three vertices in CW ′(xi, Y). Let L1, . . . , Lp denote the ver-
tex sets of those components of G[W ′(xi) \ {u1}] that contain a vertex of
CW ′(xi, Y). Note that p ≥ 1, because of the existence of u2 and u3. Below
we prove that p = 1 holds.

Observe that each Lq must be adjacent to at least two “unique” witness
sets from {W ′(y1), . . . ,W ′(y4)}, i.e., two witness sets that are not adjacent to
W ′(xi)\Lq, since otherwise we would have moved Lq toW ′(y1)∪· · ·∪W ′(y4).
Since u1 is adjacent to at least one witness set, this means that p = 1.

The fact that p = 1 implies that u1 must be adjacent to at least two
“unique” witness sets from {W ′(y1), . . . ,W ′(y4)}, i.e., two witness sets that
are not adjacent to W ′(xi) \ {u1}; otherwise we would have moved u1 and
all components of G[W ′(xi) \ {u1}] not equal to L1 to W ′(y1)∪ · · · ∪W ′(y4).
By the same arguments, exactly the same holds for u2 and u3. This is not
possible, as three vertices cannot be adjacent to two “unique” sets out of four.
We conclude that 1 ≤ |CW ′(xi, Y)| ≤ 2 for every 1 ≤ i ≤ a1.

Let 1 ≤ i ≤ a1. Suppose |CW ′(xi, Y)| = 1, say CW ′(xi, Y) = {p}. Then,
by definition, p is adjacent to each of the four witness sets W ′(y1),W ′(y2),
W ′(y3), W ′(y4). Suppose |CW ′(xi, Y)| = 2, say CW ′(xi, Y) = {p, q}. Then p
is adjacent to exactly two of the sets W ′(y1),W ′(y2),W ′(y3),W ′(y4), and q
is adjacent to the other two sets. In all other cases we would have moved p

4.3 The H-Contractibility problem 85

or q (and possibly some more vertices to keep all witness sets connected) to
W ′(y1) ∪ · · · ∪W ′(y4). This completes the proof of Lemma 4.10.

We mention one more result, which can be found in the paper by Levin
et al. [193], but follows directly from the polynomial time result on minors
by Robertson and Seymour [232].

Lemma 4.11 ([193]). Let G be a graph and let Z1, . . . , Zp ⊆ V (G) be p
specified non-empty pairwise disjoint sets such that

∑p
i=1 |Zi| ≤ k for some

fixed integer k. The problem of deciding whether G is Kp-contractible with
Kp-witness sets U1, . . . Up such that Zi ⊆ Ui for i = 1, . . . , p is polynomial
time solvable.

Recall that H∗4 (0)-Contractibility and H∗5 (0)-Contractibility can
be solved in polynomial time by Theorem 4.5. Since H∗5 (0) = H∗4 (1), this
means that H∗4 (a1)-Contractibility can be solved in polynomial time for
0 ≤ a1 ≤ 1. Using Lemma 4.10 and Lemma 4.11 we can prove the following
result.

Theorem 4.12. The H∗4 (a1)-Contractibility problem is solvable in poly-
nomial time for any fixed non-negative integer a1.

Proof. To test whether a connected graph G is H∗4 (a1)-contractible, we act
as follows, due to Lemma 4.10. We guess a set

S = {CW ′(xi, Y) | 1 ≤ i ≤ a1}

of connectors of size at most two. For each connector CW ′(xi, Y) we act as
follows.

If CW ′(xi, Y) has size one, i.e., if CW ′(xi, Y) = {p}, then we guess four
neighbors z1, z2, z3, z4 of p that are not contained in any connector of S, and
we put those vertices in sets Z1, Z2, Z3, Z4, respectively. If a connector has
size two, i.e., if CW ′(xi, Y) = {p, q}, then we guess two neighbors z1, z2 of
p and two neighbors z3, z4 of q, such that all the vertices z1, z2, z3, z4 are
different and none of them belongs to any of the connectors in S; we add
vertex zi to set Zi for i = 1, . . . , 4. We then remove the vertices of every
connector in S from G and call the resulting graph G′.

4.3 The H-Contractibility problem 86

We now check the following. First, we determine in polynomial time
whether the set Z1 ∪Z2 ∪Z3 ∪Z4 is contained in one component D of G′. If
so, we check whether D is K4-contractible with K4-witness sets U1, . . . , U4

such that Zi ⊆ Ui for i = 1, . . . , 4. This can be done in polynomial time due
to Lemma 4.11. If not, then we guess different sets of neighbors for the same
set of connectors S and repeat this step. Otherwise, we check whether the
remaining components of G′ together with the connectors CW ′(xi, Y) ∈ S
form witness sets W ′(xi) for i = 1, . . . , a1. This can be done in polynomial
time; there is only one unique way to do this, because witness setsW ′(xi) are
not adjacent to each other. If all possible sets of neighbors of the connectors
in S do not yield a positive answer, then we guess another set S of connectors
and start all over. As an example, see the right graph in Figure 4.3: if we
guess the three grey vertices as set S, and all of their neighbors in W ′(y1) ∪
. . .∪W ′(y4) as the sets Z1, . . . , Z4, then the algorithm described here would
correctly decide that G is H∗4 (2)-contractible.

Due to Lemma 4.10 the above algorithm is correct. Since we only have
to guess O(n2a1) sets S with O(n4a1) different sets of neighbors per set S,
and a1 is fixed, it runs in polynomial time.

4.3.2 NP-complete cases with a dominating vertex

We show the existence of a class of graphs H with a dominating vertex such
that H-Contractibility is NP-complete. To do this we need the following.

Proposition 4.13. Let H be a graph. If H-Induced Minor Contain-

ment is NP-complete, then so are (K1 1 H)-Contractibility and (K1 1

H)-Induced Minor Containment.

Proof. Let H and G be two graphs. Write K1 = ({x}, ∅). We claim that the
following three statements are equivalent.

(i) G has H as an induced minor;
(ii) K1 1 G is (K1 1 H)-contractible;
(iii) K1 1 G has K1 1 H as an induced minor.

“(i) ⇒ (ii)" Suppose G has H as an induced minor. Then, by definition,
G contains an induced subgraph G′ that is H-contractible. We extend an

4.3 The H-Contractibility problem 87

Figure 4.4: The graph H̄.

H-witness structure W of G′ to a (K1 1 H)-witness structure of K1 1 G by
putting x and all vertices in V (G)\V (G′) in W (x). This shows that K1 1 G

is (K1 1 H)-contractible.

“(ii) ⇒ (iii)" Suppose K1 1 G is (K1 1 H)-contractible. By definition,
K1 1 G contains K1 1 H as an induced minor.

“(iii)⇒ (i)" SupposeK1 1 G hasK1 1 H as an induced minor. ThenK1 1 G

contains an induced subgraph G∗ that is K1 1 H-contractible. Let W be
a (K1 1 H)-witness structure of G∗. If x ∈ V (G∗), then we may assume
without loss of generality that x ∈ W (x). We delete W (x) and obtain an
H-witness structure of the remaining subgraph of G∗. This subgraph is an
induced subgraph of G. Hence, G contains H as an induced minor.

Fellows et al. [103] showed that there exists a graph H̄ on 68 vertices
such that H̄-Induced Minor Containment is NP-complete; this graph is
depicted in Figure 4.4. Combining their result with Proposition 4.13 (applied
repeatedly) leads to the following corollary.

Corollary 4.14. For any i ≥ 1, (Ki 1 H̄)-Contractibility is NP-
complete.

4.4 The (H, v)-Contractibility problem 88

4.4 The (H, v)-Contractibility problem

We start with an observation. We write Kp,1 to denote the star on p + 1
vertices with center c and leaves b1, . . . , bp.

Observation 4.15. The (Kp,1, c)-Contractibility problem is polynomial
time solvable for all p ≥ 1.

Proof. Let graph G = (V,E) and integer k form an instance of the (Kp,1, c)-
Contractibility problem. We may without loss of generality assume that
|V | ≥ k + p. If G is Kp,1-contractible, then there exists a Kp,1-witness
structure W of G such that |W (bi)| = 1 for all 1 ≤ i ≤ k. This can be
seen as follows. As long as |W (bi)| ≥ 2 we can move vertices from W (bi) to
W (c) without destroying the witness structure. Our algorithm would just
guess the witness sets W (bi) and check whether V \ (W (b1) ∪ · · ·W (bp))
induces a connected subgraph. As the total number of guesses is bounded
by a polynomial in p, this algorithm runs in polynomial time.

We expect that there are relatively few pairs (H, v) for which (H, v)-
Contractibility can be solved in polynomial time (under the assumption
P 6= NP). This is due to the following observation and the main result in this
section that shows that (H, v)-Contractibility is NP-complete whenever
v is not a dominating vertex of H.

Observation 4.16. Let H be a graph. If H-Contractibility is NP-
complete, then (H, v)-Contractibility is NP-complete for every vertex
v ∈ V (H).

Theorem 4.17. Let H be a connected graph and let v ∈ V (H). The (H, v)-
Contractibility problem is NP-complete if v does not dominate H.

Proof. Let H be a connected graph, and let v be a vertex of H that does not
dominate H. Let NH(v) denote the neighborhood of v in H. We partition
V (H) \ {v} into the following three sets:

V3 := V (H) \ (NH(v) ∪ {v});
V2 := {w ∈ NH(v) | w is not adjacent to V3};
V1 := {w ∈ NH(v) | w is adjacent to V3}.

4.4 The (H, v)-Contractibility problem 89

xw
1 xw

2 xw
3 xw

n

xw
1 xw

2 xw
3 xw

n

sw tw

cw
1 cw

m sw
1 tw1 sw

n twn

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
L L L L L L

Figure 4.5: A subgraph Gw, where cw1 = (xw1 ∨ xw2 ∨ xw3).

Note that neither V1 nor V3 is empty because H is connected and v does not
dominate H; V2 might be empty. In the top graph in Figure 4.6 a partition
V1, V2, V3 of the set VH \ {v} is depicted using dashed lines.

Clearly, (H, v)-Contractibility is in NP, because we can verify in
polynomial time whether a given partition of the vertex set of a graph G

forms an H-witness structure of G with |W (v)| ≥ k. In order to show
that (H, v)-Contractibility is NP-complete, we use a reduction from 3-
Satisfiability, which is well-known to be NP-complete (cf. [127]). Let
X = {x1, . . . , xn} be a set of variables and C = {c1, . . . , cm} be a set of
clauses making up an instance of 3-Satisfiability. Let X := {x | x ∈ X}.
We introduce two additional variables s and t, as well as 2n additional clauses
si := (xi∨xi∨s) and ti := (xi∨xi∨ t) for i = 1, . . . , n. Let S := {s1, . . . , sn}
and T := {t1, . . . , tn}. Note that all 2n clauses in S ∪ T are satisfied for any
truth assignment. For every vertex w ∈ V1 we create a copy Xw of the set
X, and we write Xw := {xw1 , . . . , xwn }. The literals sw, tw and the sets Xw,
Cw, Sw and Tw are defined similarly for every w ∈ V1.

We construct a graph G such that C is satisfiable if and only if G has
an H-witness structure W with |W (v)| ≥ k. In order to do this, we first
construct a subgraph Gw of G for every w ∈ V1 in the following way:

• every literal in Xw ∪Xw ∪ {sw, tw} and every clause in Cw ∪ Sw ∪ Tw

is represented by a vertex in Gw

• we add an edge between x ∈ Xw∪Xw∪{sw, tw} and c ∈ Cw∪Sw∪Tw

if and only if x appears in c;
• for every i = 1, . . . , n − 1, we add edges xwi x

w
i+1, x

w
i x

w
i+1, x

w
i x

w
i+1, and

4.4 The (H, v)-Contractibility problem 90

xwi x
w
i+1

• we add edges swxw1 , swxw1 , twxwn , and twxwn
• for every c ∈ Cw ∪ Sw ∪ Tw, we add L vertices whose only neighbor is
c; we determine the value of L later and refer to the L vertices as the
pendant vertices.

See Figure 4.5 for a depiction of subgraph Gw. For clarity, most of the
edges between the clause vertices and the literal vertices have not been drawn.
We connect these subgraphs to each other as follows. For every w, x ∈ V1,
we add an edge between sw and sx in G if and only if w is adjacent to x in
H. Let v∗ be some fixed vertex in V1. We add an edge between sv∗1 and sw1
for every w ∈ V1 \ {v∗}. No other edges are added between vertices of two
different subgraphs Gw and Gx.

We add a copy of H[V2 ∪ V3] to G as follows. Vertex x ∈ V2 is adjacent
to sw in G if and only if x is adjacent to w in H. Vertex x ∈ V3 is adjacent
to both sw and tw in G if and only if x is adjacent to w in H. Finally, we
connect every vertex x ∈ V2 to sv∗1 . See Figure 4.6 for an example.

We define L := (2 + 2n)|V1| + |V2| + |V3| and k := (L + 1)(m + 2n)|V1|.
We prove that G has an H-witness structure W with |W (v)| ≥ k if and only
if C is satisfiable.

Suppose ϕ : X → {T, F} is a satisfying truth assignment for C. Let XT

(respectively XF) be the variables that are set to true (respectively false)
by ϕ. For every w ∈ V1, we define Xw

T := {xwi | xi ∈ XT } and X
w
T :=

{x | x ∈ Xw
T }; the sets Xw

F and X
w
F are defined similarly. We define the

H-witness sets of G as follows. Let W (w) := {w} for every w ∈ V2 ∪ V3,
and let W (w) := {sw, tw} ∪Xw

F ∪X
w
T for every w ∈ V1. Finally, let W (v) :=

V (G) \ (
⋃
w∈V1∪V2∪V3

W (w)). Note that for every w ∈ V1 and for every
i = 1, . . . , n, exactly one of xwi , x

w
i belongs to Xw

F ∪ X
w
T . Hence, G[W (w)]

is connected for every w ∈ V1. Since ϕ is a satisfying truth assignment for
C, every cwi is adjacent to at least one vertex of Xw

T ∪X
w
F for every w ∈ V1;

by definition, this also holds for every swi and twi . This, together with the
edges between sv∗1 and sw1 for every w ∈ V1 \ {v∗}, assures that G[W (v)] is
connected. So the witness set G[W (w)] is connected for every w ∈ V (H).
By construction, two witness sets W (w) and W (x) are adjacent if and only
if w and x are adjacent in H. Hence W := {W (w) | w ∈ V (H)} is an
H-witness structure of G. Witness set W (v) contains n|V1| literal vertices,

4.4 The (H, v)-Contractibility problem 91

sv∗ tv
∗

cv∗
1

G

H

v∗

v

V1V2

V3

Figure 4.6: A graph H, where v∗ is the grey vertex, and the corresponding
graph G.

(m + 2n)|V1| clause vertices and L pendant vertices per clause vertex, i.e.,
|W (v)| = (L+ 1)(m+ 2n)|V1|+ n|V1| ≥ k.

Suppose G has an H-witness structureW with |W (v)| ≥ k. We first show
that all of the (m+ 2n)|V1| clause vertices must belong to W (v). Note that
for every w ∈ V1, the subgraph Gw contains 2+2n+(L+1)(m+2n) vertices:
the vertices sw and tw, the 2n literal vertices in Xw ∪Xw, the m+ 2n clause
vertices and the L(m+ 2n) pendant vertices. Hence we have

|V (G)| = (2 + 2n+ (L+ 1)(m+ 2n))|V1|+ |V2|+ |V3|.

Suppose there exists a clause vertex c that does not belong to W (v). Then
the L pendant vertices adjacent to c cannot belong to W (v) either, as W (v)
is connected and the pendant vertices are only adjacent to c. This means
that W (v) can contain at most |V (G)| − (L+ 1) = (L+ 1)(m+ 2n)|V1| − 1
vertices, contradicting the assumption that W (v) contains at least k = (L+
1)(m+ 2n)|V1| vertices. So all of the (m+ 2n)|V1| clause vertices, as well as
all the pendant vertices, must belong to W (v).

4.4 The (H, v)-Contractibility problem 92

We define Wi :=
⋃
w∈Vi

W (w) for i = 1, 2, 3 and prove four claims.

Claim 1: V3 = W3.
The only vertices of G that are not adjacent to any of the clause vertices

or pendant vertices in W (v) are the vertices of V3. As W3 contains at least
|V3| vertices, this proves Claim 1.

Claim 2: For any w ∈ V1, both sw and tw belong to W1.
Let w be a vertex in V1, and let w′ ∈ V3 be a neighbor of w in H. Recall

that both sw and tw are adjacent to w′ in G. Suppose that sw or tw belongs
to W (v)∪W2. By Claim 1, w′ ∈W3. Then W (v)∪W2 and W3 are adjacent.
By construction, this is not possible. Suppose that sw or tw belongs to W3.
Then W3 and W (v) are adjacent, as sw and tw are adjacent to at least one
clause vertex, which belongs to W (v). This is not possible.

Claim 3: For any w ∈ V1, at least one of each pair xwi , x
w
i of literal vertices

belongs to W (v).
Let w ∈ V1. Suppose there exists a pair of literal vertices xwi , x

w
i both

of which do not belong to W (v). Apart from its L pendant vertices, the
vertex twi is only adjacent to xwi , x

w
i and tw. The latter vertex belongs to W1

due to Claim 2. Hence twi and its L pendant vertices induce a component of
G[W (v)]. Since G[W (v)] contains other vertices as well, this contradicts the
fact that G[W (v)] is connected.

Claim 4: There exists a w ∈ V1 for which at least one of each pair xwi , x
w
i of

literal vertices belongs to W1.
Let S′ := {sw | w ∈ V1} and T ′ := {tw | w ∈ V1}. By Claim 2, S′ ∪ T ′ ⊆

W1. Suppose, for contradiction, that for every w ∈ V1 there exists a pair
xwi , x

w
i of literal vertices, both of which do not belong to W1. Then for any

x ∈ V1, the witness set containing tx does not contain any other vertex of
S′∪T ′, as there is no path in G[W1] from tx to any other vertex of S′∪T ′. But
that meansW1 contains at least |V1|+1 witness sets, namely |V1| witness sets
containing one vertex from T ′, and at least one more witness set containing
vertices of S′. This contradiction to the fact that W1, by definition, contains
exactly |V1| witness sets finishes the proof of Claim 4.

Let w ∈ V1 be a vertex for which of each pair xwi , x
w
i of literal vertices

exactly one vertex belongs to W1 and the other vertex belongs to W (v);

4.5 Conclusion 93

such a vertex w exists as a result of Claim 3 and Claim 4. Let ϕ be the
truth assignment that sets all the literals of Xw ∪Xw that belong to W (v)
to true and all other literals to false. Note that the vertices in Cw form an
independent set in W (v). Since G[W (v)] is connected, each vertex cwi ∈ Cw

is adjacent to at least one of the literal vertices set to true by ϕ. Hence ϕ
satisfies C.

4.5 Conclusion

The most challenging task is to find a complete computational complexity
classification of both the H-Induced Minor Containment problem and
the H-Contractibility problem. With regards to the second problem,
all previous evidence suggested some working conjecture stating that this
problem is polynomial time solvable if H contains a dominating vertex and
NP-complete otherwise. However, in this chapter we presented a class of
graphs H with a dominating vertex for which H-Contractibility is NP-
complete. This sheds new light on the H-Contractibility problem and
raises a whole range of new questions.

What is the smallest graphH that contains a dominating vertex for which
H-Contractibility is NP-complete? The smallest graph known so far is
the graphK1 1 H̄, where H̄ is the graph on 68 vertices depicted in Figure 4.4.
By Observation 4.16, we deduce that (K1 1 H̄, v)-Contractibility is NP-
complete for all v ∈ V (K1 1 H̄). The following question might be easier to
answer: what is the smallest graph H that contains a dominating vertex v
for which (H, v)-Contractibility is NP-complete? We showed that (H, v)-
Contractibility is NP-complete ifH is connected and v does not dominate
H. We still expect a similar result for H-Contractibility, i.e., we expect
that the H-Contractibility problem is NP-complete if H does not have
a dominating vertex.

Lemma 4.10 plays a crucial role in the proof of Theorem 4.12 that shows
that H∗4 (a1)-Contractibility can be solved in polynomial time. This
lemma cannot be generalized such that it holds for the H∗i (a1)-Contract-

ibility problem for i ≥ 5 and a1 ≥ 2. Hence, new techniques are required to
attack the H∗i (a1)-Contractibility problem for i ≥ 5 and a1 ≥ 2. Since
a graph is contractible to a complete graph Kk if and only if it has Kk as a

4.5 Conclusion 94

minor, we can solve H∗i (1)-Contractibility in polynomial time for every
i ≥ 1 by Theorem 4.1. Is H∗5 (a1)-Contractibility solvable in polynomial
time for all a1 ≥ 2?

We expect that the (H, v)-Contractibility problem can be solved in
polynomial time for only a few target pairs (H, v). One such class of pairs
might be (Kp, v), where v is an arbitrary vertex of Kp. Using similar tech-
niques as before (i.e., simplifying the witness structure), one can easily show
that (Kp, v)-Contractibility is polynomial time solvable for p ≤ 3. Is
(Kp, v)-Contractibility polynomial time solvable for all p ≥ 4?

We finish this section with some remarks on fixing the parameter k in an
instance (G, k) of the (H, v)-Contractibility problem.

Proposition 4.18. The (P3, p3)-Contractibility problem is in XP.

Proof. We first observe that any graph G that is a yes-instance of this prob-
lem has a P3-witness structure W with |W (p1)| = 1. This is so, as we can
move all but one vertex from W (p1) to W (p2) without destroying the wit-
ness structure (see also Figure 1.1). Moreover, such a graph G contains a set
W ∗ ⊆ W (p3) such that |W ∗| = k and G[W ∗] is connected. Hence we act as
follows.

Let G be a graph. We guess a vertex v and a set V ∗ of size k. We put all
neighbors of v in a set W2. We check if G[V ∗] is connected. If so, we check
for each y ∈ V (G) \ (V ∗ ∪ N(v) ∪ {v}) whether it is separated from N(v)
by V ∗ or not. If so, we put y in V ∗. If not, we put y in W2. In the end we
check if G[W2] and G[V ∗] are connected. If so, G is a yes-instance of (P3, p3)-
Contractibility, as W (p1) = {v}, W (p2) = W2 and W (p3) = V ∗ form a
P3-witness structure of G with |W (p3)| ≥ k. If not, we guess another pair
(v, V ∗) and repeat the steps above. Since these steps can be performed in
polynomial time and the total number of guesses is bounded by a polynomial
in k, the result follows.

Can we strengthen Proposition 4.18 by showing that the (P3, p3)-Con-

tractibility problem also belongs to the class FPT?

Chapter 5

Computing role assignments of
chordal graphs

The results presented in this chapter have appeared in preliminary form in
the following paper.

[159] P. van ’t Hof, D. Paulusma, and J.M.M. van Rooij. Computing role
assignments of chordal graphs. In: Proceedings of the 17th Inter-
national Symposium on Fundamentals of Computation Theory (FCT
2009), volume 5699 of Lecture Notes in Computer Science, pages 193–
204, Springer, 2009.

Deciding whether or not the vertex set of a graph can be partitioned
into two disjoint connected sets is easy, as we explained at the very start of
Chapter 3. Partitioning the vertices of a graph into two independent sets is
also easy, as this is equivalent to finding a proper 2-coloring of a graph, a
problem which is well-known to be solvable in linear time. In this chapter, we
study yet another problem where the goal is to find a partition of the vertices
of a graph into two sets. Suppose you are asked to color the vertices of a
graph with two colors, such that if two vertices v1 and v2 receive the same
color, then the set of colors assigned to the neighbors of v1 coincides with the
set of colors assigned to the neighbors of v2. For example, if both v1 and v2
are colored red, and all the neighbors of v1 are blue, then all the neighbors of
v2 must also be blue. If however v1 and v2 are colored the same, and v1 has
a red and a blue neighbor, then the same must hold for v2. Clearly, a trivial

5.1 Background and results 96

1 2 3

R

1 1

1 1

2

2 23

3 3
G

Figure 5.1: A role graph R and a graph G with an R-role assignment.

solution to this problem assigns the same color to every vertex. Interestingly,
the problem becomes NP-hard if we require that both colors are used, as was
proved by Roberts and Sheng [230]. However, using the structure of chordal
graphs we obtain a polynomial time algorithm for solving this problem on
this graph class. We also show that the problem remains NP-hard on chordal
graphs when more than two colors have to be used.

5.1 Background and results

Given two graphs, say G on vertices u1, . . . , un and R on vertices 1, . . . , k
called roles, an R-role assignment of G is a vertex mapping r : V (G) →
V (R) such that the neighborhood relation is maintained, and the roles of the
neighbors of each vertex u in G are exactly the neighbors of role r(u) in R.
In other words,

for every u ∈ V (G) : r(NG(u)) = NR(r(u)).

Here we write r(S) = {r(u) | u ∈ S} for any subset S ⊆ V (G). An R-
role assignment r of G is called a k-role assignment of G if |r(V (G))| =
|V (R)| = k. An equivalent definition states that r is a k-role assignment of
G if r maps each vertex of G into a positive integer such that |r(V (G))| = k

and r(NG(u)) = r(NG(u′)) for any two vertices u and u′ with r(u) = r(u′).
See Figure 5.1 for an example; note that the R-role assignment of G in this
example is also a 3-role assignment of G.

Role assignments were introduced by Everett and Borgatti [99], who
called them role colorings. They originate in the theory of social behav-
ior. The role graph R models roles and their relationships, and for a given

5.1 Background and results 97

society we can ask if its individuals can be assigned roles such that relation-
ships are preserved: each person playing a particular role has exactly the
roles prescribed by the model among its neighbors. This way one investi-
gates whether large networks of individuals can be compressed into smaller
ones that still give some description of the large network. Since persons of
the same social role may be related to each other, the smaller network can
contain loops. In other words, given a simple instance graph G on n vertices
does there exist a possibly non-simple role graph R on k < n vertices in such
a way that G has an R-role assignment?

From the computational complexity point of view it is interesting to know
whether the existence of such an assignment can be decided quickly (in poly-
nomial time). This leads to the following two decision problems.

R-Role Assignment

Instance: a simple graph G.
Question: does G have an R-role assignment?

k-Role Assignment

Instance: a simple graph G.
Question: does G have a k-role assignment?

Motivation for the research carried out in this chapter comes from the
field of locally constrained graph homomorphisms. A graph homomorphism
from a graph G to a graph R is a vertex mapping r : V (G) → V (R) sat-
isfying the property that the edge r(u)r(v) belongs to E(R) whenever the
edge uv belongs to E(G). If for every u ∈ V (G) the restriction of r to the
neighborhood of u, i.e., the mapping ru : NG(u)→ NR(r(u)), is bijective, we
say that r is locally bijective [1, 184]. If for every u ∈ V (G) the mapping ru
is injective, we say that r is locally injective [105, 106]. If for every u ∈ V (G)
the mapping ru is surjective, r is an R-role assignment of G. In this context,
r is also called a locally surjective homomorphism from G to R.

Locally bijective homomorphisms, also called (full) graphs coverings, have
applications in distributed computing [4, 5, 38] and in constructing highly
transitive regular graphs [31]. Locally injective homomorphisms, also called
partial graph coverings, have applications in models of telecommunication
[106] and frequency assignment [107]. Besides social network theory [99, 224,
230], locally surjective homomorphisms also have applications in distributed

5.1 Background and results 98

computing [58].
The main computational question is whether for every graph R the prob-

lem of deciding if an input graph G has a homomorphism of given local con-
straint to the fixed graph R can be classified as either NP-complete or polyno-
mial time solvable. For locally bijective and injective homomorphisms there
are many partial results, see for example [106, 184] for both NP-complete
and polynomial time solvable cases, but even conjecturing a classification for
these two locally constrained homomorphisms is problematic. This is not
the case for the locally surjective constraint and its corresponding decision
problem R-Role Assignment.

First of all, Roberts and Sheng [230] show that the k-Role Assignment

problem is already NP-complete for k = 2. Fiala and Paulusma [108] show
that the k-Role Assignment problem is also NP-complete for any fixed k ≥
3 and classify the computational complexity of the R-Role Assignment

problem. LetR be a fixed role graph without multiple edges but possibly with
loops. Then the R-Role Assignment problem is solvable in polynomial
time if and only if one of the following three cases holds: either R has no
edge, or one of its components consists of a single vertex incident with a loop,
or R is simple and bipartite and has at least one component isomorphic to an
edge. In all other cases the R-Role Assignment problem is NP-complete,
even for the class of bipartite graphs [108]. If the instance graphs are trees,
then the R-Role Assignment problem becomes polynomial time solvable
for any fixed role graph R [109].

Sheng [249] presents an elegant greedy algorithm that solves the 2-Role

Assignment problem in polynomial time for chordal graphs with at most
one vertex of degree 1. She also characterizes all indifference graphs that have
a 2-role assignment; recall that indifference graphs are exactly the proper in-
terval graphs [229]. In Section 5.2 we present an O(n2) time algorithm for the
2-Role Assignment problem on chordal graphs, thereby settling an open
problem of Sheng [249]. Contrary to the greedy algorithm in [249], which
uses a perfect elimination scheme of a chordal graph with at most one pen-
dant vertex, our algorithm works for an arbitrary chordal graph G by using
a dynamic programming procedure on a clique tree of G. In Section 5.3 we
prove that, for any fixed k ≥ 3, the k-Role Assignment problem remains
NP-complete on chordal graphs.

5.2 Computing 2-role assignments in O(n2) time 99

1 2 1 2 1 2

1 2 1 2 1 2

R1 : R2 : R3 :

R4 : R5 : R6 :

Figure 5.2: The six different role graphs on two vertices.

5.2 Computing 2-role assignments in O(n2) time

In this section, we prove the following result.

Theorem 5.1. The 2-Role Assignment problem can be solved in O(n2)
time for the class of chordal graphs.

We will start by discussing the different 2-role assignments. Following
the notation of Sheng [249], the six different role graphs on two vertices are:

R1 := ({1, 2}, ∅);
R2 := ({1, 2}, {22});
R3 := ({1, 2}, {11, 22});
R4 := ({1, 2}, {12});
R5 := ({1, 2}, {12, 22});
R6 := ({1, 2}, {11, 12, 22}).

These six role graphs are depicted in Figure 5.2.
Let G be a chordal graph. If G contains at most one vertex, then G has no

2-role assignment. Suppose |V (G)| ≥ 2. If G only contains isolated vertices,
then G has an R1-role assignment. If G contains at least one isolated vertex
and at least one component with at least two vertices, then G has an R2-role
assignment. If G is disconnected but does not have isolated vertices, then
G has an R3-role assignment. Now assume that G is connected and has at
least two vertices. If G is bipartite, then G has an R4-role assignment. If
G is not bipartite, then G has a 2-role assignment if and only if G has an
R5-role assignment or an R6-role assignment.

We claim that we only have to check whether G has an R5-role assign-
ment. This is immediately clear if G has a vertex of degree 1, as such a
vertex must be mapped to a role of degree 1 and R6 does not have such a

5.2 Computing 2-role assignments in O(n2) time 100

a b c d

e
f g h

i

a b
e f
b c

e f
i

f g
d

g h
d

Figure 5.3: A chordal graph G (left) and a clique tree T of G.

role. If G does not have any pendant vertex, we use the following result by
Sheng [249].

Theorem 5.2 ([249]). Let G be a chordal graph with at most one vertex of
degree 1 and no isolated vertices. Then G has an R5-role assignment.

We now present an O(n2) time algorithm that solves the R5-Role As-

signment problem for chordal graphs. From the above, it is clear that this
suffices to prove Theorem 5.1. Before doing this we first make some basic
observations on chordal graphs.

5.2.1 On chordal graphs

Let G = (V,E) be a chordal graph. Let K denote the set of maximal cliques
of G. The clique graph C(G) of G has as its vertex set K, and two vertices
of C(G) are adjacent if and only if the intersection of the corresponding
maximal cliques is non-empty. Moreover, every edge K1K2 of C(G) is given
a weight equal to |K1 ∩ K2|. A tree T with vertex set K is a clique tree
of G if and only if T is a maximum weight spanning tree of C(G). Several
alternative definitions and characterizations of clique trees have appeared
in the literature (see for example [35]). See Figure 5.3 for an example of a
chordal graph G and a clique tree of G.

We refer to a set K ∈ K as a bag of T . We define the notions root bag,
parent bag, child bag and leaf bag of a clique tree similar to the notions root,
parent, child and leaf of a “normal” tree. If the bag Kr ∈ K is the root bag
of a clique tree T of G, then we say that T is rooted at Kr. A descendant
of a bag K is a bag K∗ such that K lies on the (unique) path from K∗ to
the root bag Kr in T . Every bag K 6= Kr of a clique tree T has exactly one

5.2 Computing 2-role assignments in O(n2) time 101

parent bag K ′ in T . We say that a vertex v ∈ K is given to the parent bag
K ′ if v ∈ K ∩K ′, i.e., if v is both in the child bag K and in the parent bag
K ′. We say that vertex v ∈ K stays behind if v ∈ K \K ′, i.e., if v is in the
child bag K but not in the parent bag K ′. The definition of a clique tree
given above immediately implies the following observation.

Observation 5.3. Let G be a connected chordal graph with at least two
maximal cliques. Let T = (K, E) be a clique tree of G rooted at Kr. At least
one vertex of any bag K 6= Kr of T is given to the parent bag of K and at
least one vertex stays behind. Moreover, |K| ≥ 2 for all K ∈ K.

It is well-known that a graph is chordal if and only if it has a clique
tree [130]. We will make use of the following results.

Theorem 5.4 ([129]). Every clique tree of a connected chordal graph has at
most n bags.

Theorem 5.5 ([256]). A clique tree of a connected chordal graph can be
constructed in O(n+m) time.

5.2.2 An outline of our algorithm for R5-role assignments

Our algorithm for solving the R5-Role Assignment problem for chordal
graphs takes as input a chordal graph G = (V,E), and either outputs an
R5-role assignment of G, or outputs No if such a role assignment does not
exist. The algorithm starts by computing a clique tree T = (K, E) of G,
which can be done in O(n + m) time due to Theorem 5.5. The algorithm
then executes two phases.

Phase 1. Decide whether or not G has an R5-role assignment

In Phase 1, each vertex v ∈ V is initially assigned a label L(v) = 0. The
algorithm processes the bags of T in a “bottom-up” manner, starting with
the leaf bags of T , and processing a bag K ′ only after all its child bags have
been processed. When processing a bag, our algorithm updates the labels of
the vertices of this bag in order to maintain information about the possible
roles that these vertices can get in a possible R5-role assignment of G, as
well as information about the possible roles of their neighbors. To this end,
it uses the labels defined in Table 5.1.

5.2 Computing 2-role assignments in O(n2) time 102

Labels of two vertices can be conflicting if they represent information
on the possible roles of the vertices that cannot be combined to an R5-role
assignment. For example, no two vertices in a bag can both get label 1,
because this would mean each of them must have role 1. Our algorithm first
checks if there are any conflicting labels. If so, it outputs No. Otherwise, it
updates the labels in order to maintain Invariant 1 below. Here, a solution
on G is an R5-role assignment of G. A partial solution on a subgraph H of G
is a mapping r′ : V (H)→ {1, 2} such that no two adjacent vertices x, y of H
have roles that are forbidden by R5 (i.e., we do not have r′(x) = r′(y) = 1),
and every vertex x in H not adjacent to a vertex in G − H has neighbors
with the roles required by R5 (at least one neighbor y with role r′(y) = 2,
and if r′(x) = 2, also at least one neighbor z with role r′(z) = 1).

Invariant 1. Let V ′ be the set of vertices of G that are not in any descendant
of a bag K ′. Then a partial solution on G[V ′ ∪ K ′] can be extended to a
solution on G if and only if it satisfies the constraints given by the labels of
the vertices on K ∩K ′ for every child bag K of K ′.

Suppose that at some moment bag Kr is processed. We observe that
V ′ ∪K ′ = Kr in Invariant 1 if K ′ = Kr. Hence, our algorithm ensures that
a partial solution on G[V ′ ∪K ′] = G[Kr] can be extended to a solution on G
if and only if it satisfies the constraints given by the labels of the vertices on
K ∩Kr for every child bag K of Kr. Our algorithm will now decide if such
a partial solution on G[Kr] exists. If so, it finds one and goes to Phase 2. If
not, it outputs No.

Phase 2. Produce an R5-role assignment of G

The partial solution on G[Kr] found at the end of Phase 1 is propagated
to a solution of G in a “top-down” manner, processing a bag K only after
its parent bag has been processed. Every time a bag is processed, roles are
assigned in a greedy way such that the constraints imposed by the labels of
vertices it has in common with its child bags are satisfied.

5.2.3 Phase 1 in detail

Table 5.1 shows what labels a vertex v in a bag K can have. We observe
that Phase 2 is only executed if G is indeed R5-role assignable. We implicitly

5.2 Computing 2-role assignments in O(n2) time 103

L(v) = 0 initial label of every vertex
L(v) = 1∗ v belongs to a set J ⊆ K of at least two vertices that are

all labeled 1∗ because they are given to K from the same
child bag in which a vertex with label 21 is left behind;
exactly one vertex in J must get role 1 (and hence all
others must get role 2)

L(v) = 1 v must get role 1 in Phase 2
L(v) = 2 v must get role 2 in Phase 2; it is ensured that v gets a

neighbor with role 1 and a neighbor with role 2
L(v) = 21 v must get role 2 in Phase 2; it is ensured that v gets a

neighbor with role 2, but we must still make sure that v
gets a neighbor with role 1

L(v) = 22 v must get role 2 in Phase 2; it is ensured that v gets a
neighbor with role 1, but we must still make sure that v
gets a neighbor with role 2

L(v) = 1|2 v may get either role 1 or 2 in Phase 2; in the latter case
it is ensured that v gets a neighbor with role 1 and a
neighbor with role 2

L(v) = 1|21 v may get either role 1 or 2 in Phase 2; in the latter case
it is ensured that v gets a neighbor with role 2, but we
must still make sure that v gets a neighbor with role 1

L(v) = 1|22 v may get either role 1 or 2 in Phase 2; in the latter case
it is ensured that v gets a neighbor with role 1, but we
must still make sure that v gets a neighbor with role 2

Table 5.1: The different labels a vertex v can have.

assume this in Table 5.1 and in the remainder of this section, whenever we
write that some vertex gets some role in Phase 2.

Initially, every vertex has label 0, but the label of a vertex can change
several times: the arrows in Figure 5.4 represent all possible transitions be-
tween two labels. This figure will be clarified in detail later on. For now, we
only note that no arrows point downwards in Figure 5.4. This corresponds
to the fact that labels in a higher level contain more information than labels
in a lower level. For example, if a vertex v in bag K has a label 22 and one
of its neighbors in K gets label 2, then we change the label of v into 2 before
processing the parent bag of K. After all, label 2 contains more information
than label 22, as label 2 contains the information that at least one neighbor
of v will get role 2 in Phase 2.

5.2 Computing 2-role assignments in O(n2) time 104

0

1|21 1|22

1∗ 1|2 21 22

1 2

Figure 5.4: All possible labels and all possible transitions between them.

Recall that a bag is processed only if all its child bags have already been
processed. Let K be the bag that is currently being processed. First assume
K 6= Kr, and let K ′ be the parent bag of K. By Observation ??, at least
one vertex in K stays behind, and at least one vertex is given to K ′. We
make sure that when our algorithm moves to K ′ each vertex u ∈ K ∩K ′ has
L(u) 6= 0.

Phase 1a. Deal with leaf bags

Suppose K is a leaf bag of T . Let v be a vertex that stays behind.
Suppose |K| = 2. Then v has degree 1 in G. Let x be the other vertex of

K. By Observation ??, we find that x is given to K ′. Because v has degree
1 in G, we must set L(v) := 1 and L(x) := 22, as v must get role 1, x must
get role 2, and we must ensure that at least one other neighbor of x gets role
2.

Suppose |K| ≥ 3. We assign label 1|2 to every vertex in K. We do so
because of the following. If in Phase 2 all vertices in K ∩K ′ receive role 2,
then we assign role 1 to v and role 2 to all other vertices of K \K ′. If one of
the vertices in K ∩K ′ receives role 1, then we assign role 2 to v and to all
other vertices of K \K ′.

Phase 1b. Deal with non-leaf bags that are not the root bag

Suppose K is not a leaf bag of T . Recall that we process K only after each
of its child bags has been processed. Hence, every vertex in K that is given

5.2 Computing 2-role assignments in O(n2) time 105

to K from a child bag does not have label 0. However, vertices of K might
belong to different child bags, and consequently, they might have received
different labels. We show how to combine these multiple labels into a single
label such that Invariant 1 is maintained.

Case 1: K contains a vertex v that received label 1 in at least one of the child
bags of K.

We output No in the following cases:

• v has received label 2, 21 or 22 in another child bag of K;
• there is a vertex w ∈ K \ {v} that received label 1 in a child bag of K;
• there is a set J ⊆ K of vertices that received label 1∗ in a child bag of
K to which v does not belong.

If the above three cases do not occur we do as follows. We set L(v) := 1
and observe that all other vertices in K must get role 2 in Phase 2.

If |K| ≥ 3, we set L(w) := 2 for every w ∈ K \ {v}; as at least two
vertices get role 2, all vertices in K \ {v} will have both a neighbor with role
1 (namely v) and a neighbor with role 2. We proceed to the next bag.

If |K| = 2, then for the only vertex w ∈ K \ {v}, we set L(w) := 22 if
either the label of w in K is 0, or else belongs to {1|22, 22} in every child bag
of K that contains w. This is because in both cases we must still ensure that
w gets a neighbor with role 2 in Phase 2. In the other case w has received
a label from {1∗, 1|2, 1|21, 21} in at least one child bag of K. Then we set
L(w) := 2. The reason for this is that w is ensured to get a neighbor with
role 2 in Phase 2. If w received label 1|2, 1|21 or 21 in a child bag of K, then
this follows directly from the definition of its label. If w received label 1∗ in
a child bag of K, it also follows from the definition of its label: a vertex with
label 1∗ must have a neighbor with label 21 and this neighbor will get role 2
in Phase 2. We proceed to the next bag.

Case 2: Case 1 does not occur but K contains a vertex that received label 1∗

in at least one of the child bags of K.

For some p ≥ 1, let K contain sets V1, . . . , Vp of vertices that have label 1∗,
each originating from a different child bag. Note that a vertex can be in more
than one set Vi.

5.2 Computing 2-role assignments in O(n2) time 106

For i = 1, . . . , p, let V ′i be the set of vertices of Vi that did not receive
label 2, 21 or 22 in any child bag of K. If V ′i = ∅ for some i we output No,
since in that case there is no vertex in Vi that will get the required role 1 in
Phase 2.

Suppose V ′i 6= ∅ for all 1 ≤ i ≤ p. Note that exactly one vertex of each
V ′i must get role 1 in Phase 2. As K may not contain two vertices that get
role 1, such a vertex must be in V ∗ :=

⋂p
i=1 V

′
i . If |V ∗| = 0, this means that

we must output No.
If |V ∗| = 1, then the only vertex in V ∗ must receive role 1 in Phase 2 in

order to satisfy the constraint imposed by label 1∗ with respect to every Vi.
Let v be this vertex. We set L(v) := 1. Moreover, we set L(w) := 2 for every
w ∈ K \{v} for the following reasons. Firstly, none of the vertices in K \{v}
received label 1 in any of the child bags of K, since we assumed that Case
1 does not occur. Secondly, the constraint imposed by label 1∗ with respect
to every Vi will be satisfied by v. Thirdly, every vertex in K \ {v} has a
neighbor that will get role 1 in Phase 2, namely v, and a neighbor that will
get role 2. The latter is immediately clear if |K| ≥ 3. We show that |K| = 2
does not occur. Let w be the only vertex in K \ {v}. Then w must have
received label 1∗ in a child bag of K as well, because by definition of this
label such vertices come in groups of size at least 2. But then K is a subset
of that child bag, which means that none of the vertices of that child bag
stays behind, contradicting Observation ??. We proceed to the next bag.

If |V ∗| ≥ 2, we do as follows. We set L(w) := 2 for all w ∈ K \V ∗ for the
same three reasons as in the case |V ∗| = 1; the only difference is that we do
not know which vertex in V ∗ will get the required role 1. For determining
the label of the vertices in V ∗ we distinguish the following two situations.

If V ∗ ⊆ (K ∩ K ′) we set L(u) := 1∗ for every u ∈ V ∗. If at least one
vertex v ∈ V ∗ stays behind then we set L(v) = 1|2 for every vertex in V ∗.
After all, if a vertex x ∈ V ∗∩K ′ receives role 1 in Phase 2, then all neighbors
of x (including v) must receive role 2. If all vertices in V ∗ ∩K ′ receive role
2 (or if V ∗ ∩ K ′ = ∅), then we can give the required role 1 to v. In both
situations we proceed to the next bag.

From now on we assume that Case 1 and Case 2 do not hold for bag K, so
K does not contain a vertex that received label 1 or 1∗ in one of the child
bags of K. It is still possible, however, that a vertex v ∈ K received labels

5.2 Computing 2-role assignments in O(n2) time 107

2 21 22 1|2 1|21 1|22

2 2 2 2 2 2 2
21 2 21 2 2 21 2
22 2 2 22 2 2 22

1|2 2 2 2 1|2 1|2 1|2
1|21 2 21 2 1|2 1|21 1|2
1|22 2 2 22 1|2 1|2 1|22

Table 5.2: Combining two labels from different child bags.

in two or more different child bags. In case v received labels from more
than two different child bags, we first combine two labels into a new label,
then combine this new label with the next label, and continue until a single
label remains. Below we give the rules on how to combine the labels that v
received in two different child bags K1 and K2 of K into a single label.

Suppose v ∈ K has label 21 in K1 and label 22 in K2. Label 21 means
that v is ensured to have a neighbor that will receive role 2 in Phase 2. Label
22 means that v is ensured to have a neighbor that will receive role 1 in Phase
2. Hence we set L(v) := 2. Suppose v ∈ K has label 21 in K1 and label 1|22

in K2. Then v cannot get role 1 in Phase 2. Hence we set L(v) := 2.
Arguments like the above, directly following from the definitions of the

labels, can be used for all other combinations. See Table 5.2 for an overview
of how the possible combinations of two labels are combined into a new label.
From now on suppose that every vertex v of K has exactly one label L(v).
We write L(K) := {L(v) | v ∈ K} and distinguish several cases.

Case 3: {22} ⊆ L(K) ⊆ {0, 1|2, 1|21, 1|22, 2, 21, 22}.

Let v ∈ K have L(v) = 22. If K contains another vertex with label 2, 21 or
22, then any v′ ∈ K with L(v′) = 22 (including vertex v) has its required role
2 neighbor and we set L(v′) := 2 for all such v′. Furthermore, if |K| ≥ 3,
then at least one vertex in K \ {v} will get role 2 and we also set L(v′) := 2
for all v′ ∈ K with L(v′) = 22. In both cases we arrive at Case 5, which we
discuss later on.

The case where |K| = 2 remains; let x be the other vertex in K. If
L(x) = 1|22, then we replace it by L(x) := 1|2 since neighbor v will receive
role 2 in Phase 2. This implies that we may assume that L(x) ∈ {0, 1|2, 1|21}.

5.2 Computing 2-role assignments in O(n2) time 108

Now, either x stays behind, or x is given to K ′.
If x stays behind, then v is given to K ′ by Observation ??. The label

of x can only be influenced by v. If L(x) = 1|2, then x can function as the
neighbor with role 2 that v needs, so we set L(v) := 2 and L(x) := 2. If
L(x) ∈ {0, 1|21}, then the fact that none of the neighbors of x will receive role
1 (otherwise x would not have label 0 or 1|21) means we must set L(x) := 1,
and consequently, leave L(v) = 22 unaltered. We proceed to the next bag.

If x is given to K ′, then v stays behind while it still needs a neighbor
with role 2, which can only be x. Hence, we apply the following relabeling
to x that forces x to get role 2: 0→ 21, 1|2→ 2, 1|21 → 21. We proceed to
the next bag.

Case 4: {21} ⊆ L(K) ⊆ {0, 1|2, 1|21, 1|22, 2, 21}.
Let v ∈ K have L(v) = 21. Similar to the previous case, we replace any label
1|22 in K by 1|2. Hence we may assume that L(x) ∈ {0, 1|2, 1|21, 2, 21} for
every x ∈ K \ {v}.

Suppose there exists a vertex x ∈ K \ {v} with L(x) ∈ {0, 1|2, 1|21}
that stays behind. Due to this vertex we change the label of every vertex
v′ ∈ K \ {x}, and in particular of every v′ ∈ K ∩K ′, as follows. If L(v′) ∈
{0, 1|2, 1|21}, then we set L(v′) := 1|2, and if L(v′) ∈ {2, 21}, then we set
L(v′) := 2. This is so, since if none of the vertices in K ∩ K ′ receives role
1 in Phase 2, then Phase 2 assigns role 1 to x; otherwise x gets role 2. The
latter is fine since v will also receive role 2. We proceed to the next bag.

Suppose L(x) = 2 for every vertex x that stays behind. For every vertex
v′ ∈ K with L(v′) = 0, we set L(v′) := 1|21. We may do this because v′

either gets role 1, or gets role 2 in which case it needs at least one neighbor
that gets role 1 in Phase 2. We leave all other labels unaltered. We proceed
to the next bag.

In the remaining case, at least one vertex with label 21 stays behind;
without loss of generality, assume that v is such a vertex. If K ∩ K ′ does
not contain a vertex x with L(x) ∈ {0, 1|2, 1|21}, then v will never have a
neighbor with role 1 and the algorithm outputs No. If K ∩ K ′ contains
exactly one vertex x with L(x) ∈ {0, 1|2, 1|21}, this is the only vertex that
can be the role 1 neighbor of v; hence we set L(x) := 1. If K ∩K ′ contains
multiple vertices with a label from {0, 1|2, 1|21}, then we set the label of each
of them to 1∗. Furthermore, since there will now be a vertex with role 1 in

5.2 Computing 2-role assignments in O(n2) time 109

K, we replace any label 21, 1|21 or 1|2 in K by 2, before we proceed to the
next bag.

Case 5: {2} ⊆ L(K) ⊆ {0, 1|2, 1|21, 1|22, 2}.

Since v will receive role 2, we change the label of every vertex x ∈ K with
L(x) = 0 or L(x) = 1|22 into L(x) := 1|21 or L(x) := 1|2, respectively.
Hence we may assume that L(x) ∈ {1|2, 1|21, 2} for every vertex x ∈ K.
Suppose x is a vertex of K that stays behind with L(x) ∈ {1|2, 1|21}. Then,
just as before, x allows us to change any label 1|21 in K ∩K ′ to label 1|2; x
will be the neighbor with role 1 if necessary. Otherwise, if L(x) = 2 for all
x ∈ K \K ′, then we leave all labels in K unaltered. We proceed to the next
bag.

Case 6: L(v) ∈ {0, 1|2, 1|21, 1|22} for every v ∈ K.

By Observation ?? at least one vertex stays behind and we distinguish four
cases. After each case we proceed to the next bag.

Case 6a: there exists an x ∈ K with L(x) = 1|2 that stays behind.
If |K| ≥ 3, then x allows us to set L(v) := 1|2 for all v ∈ K. This is true,
because in Phase 2 each vertex in K will get a neighbor with role 2 (as
|K| ≥ 3), and if no vertex of K ∩K ′ gets role 1 in Phase 2, we give role 1 to
x.

Suppose |K| = 2. Let K = {x, y} where y is given to K ′. If y gets role
1 in Phase 2, then x will get role 2. If y gets role 2, then it already has a
neighbor in K ′ (as K ′ \K 6= ∅ because K ′ is a maximal clique) with some
role and we set x to have the other. Hence we set L(y) := 1|2.

Case 6b: there exists an x ∈ K with L(x) = 1|21 that stays behind.
Suppose |K| ≥ 3. For the same reasons as in Case 6a, we assign label 1|2 to
every vertex in K ∩K ′. Suppose |K| = 2. Let K = {x, y} where y is given
to K ′. Notice that if y receives role 1 in Phase 2, then we can assign role 2
to x. If y receives role 2 in Phase 2, then x must get role 1, since otherwise
it has no role 1 neighbor. As a result, we apply the following replacements
for the label of y: 0→ 1|22, 1|2→ 1|2, 1|21 → 1|2, 1|22 → 1|22.

Case 6c: there exists an x with L(x) = 1|22 that stays behind.
If |K| ≥ 3, then at least one vertex in K \ {x} gets role 2 in Phase 2. Hence
we change the label of x into 1|2 and return to Case 6a. We may therefore

5.2 Computing 2-role assignments in O(n2) time 110

assume that |K| = 2. Let K = {x, y} where y is given to K ′. In this case, y
cannot get role 1 because then x must get role 2. This is not possible, as then
x does not have a neighbor with role 2. We maintain Invariant 1 as follows.
If L(y) ∈ {1|2, 1|21}, then we set L(y) := 2 and L(x) := 1. If L(y) = 1|22,
then we set L(y) := 2 and L(x) := 2. If L(y) = 0, we also set L(y) := 2, as
a neighbor of y in K ′ \K gets some role in Phase 2, and we give x the other
role.

Case 6d: there exists an x with L(x) = 0 that stays behind.
If |K| ≥ 3, then at least one vertex in K \ {x} gets role 2. Hence we may
change L(x) into 1|21 and return to Case 6b. Thus we may assume that
|K| = 2. Let K = {x, y} where y is given to K ′. As x has label 0 and stays
behind, x must have degree 1 in G. Then x must get role 1, and y must get
role 2. Hence we set L(x) := 1 and we apply the following replacement rules
for the label of y: 1|2→ 2, 1|21 → 2, 1|22 → 22. Note that L(y) 6= 0 due to
the assumption that K is not a leaf bag of T .

Phase 1c. Deal with the root bag

The root bag Kr is the last bag of T to be processed in Phase 1. Since
the root bag is the only bag of T that does not have a parent bag, the case
analysis for Kr slightly differs from the case analysis for other bags of T .

Case 1′: Kr contains a vertex v that received label 1 in at least one of the
child bags of Kr.

The algorithm acts like it does in Case 1 of Phase 1b, with the following
exceptions. Since the root bag is the last bag that is being processed in
Phase 1, the algorithm cannot proceed to the next bag as it does in Case 1:
this time, the algorithm proceeds to Phase 2 instead. The other exception is
when |Kr| = 2 and the only vertex w ∈ Kr \{v} has label 0 or it has received
a label from {1|22, 22} in every child bag of Kr. Instead of setting L(w) := 22

like in Case 1, we output No in this case. This is because w will not get a
role 2 neighbor in Phase 2, which means G is not R5-role assignable.

Case 2′: Case 1′ does not occur but Kr contains a vertex that received label
1∗ in at least one of the child bags of Kr.

The algorithm acts like it does in Case 2 of Phase 1b, with the following
exceptions. Just like in Case 1′, the algorithm proceeds to Phase 2 instead

5.2 Computing 2-role assignments in O(n2) time 111

of to the next bag. The other exception is when |V ∗| ≥ 2. We first set
L(w) := 2 for all w ∈ Kr \V ∗ for the same reasons as in Case 2 of Phase 1b.
However, we then arbitrarily choose a vertex v ∈ V ∗, and set L(v) := 1. We
assign label 2 to every other vertex of V ∗, and proceed to Phase 2.

Suppose Case 1′ and Case 2′ do not hold for bag Kr. Since Kr might have
more than one child bag, vertices in Kr might have received labels in two or
more different child bags. For each vertex v ∈ Kr we combine these multiple
labels into single label using the procedure described in Phase 1b: Table 5.2
shows how to combine the labels v received in two different child bags K1

and K2 of Kr. Hence, we deduce that every vertex of Kr has exactly one
label and this label belongs to {0, 1|2, 1|21, 1|22, 2, 21, 22}. We distinguish
two cases.

Case 3′: Kr contains a vertex v with L(v) ∈ {1|2, 1|21, 1|22}.

If |Kr| ≥ 3, then we set L(v) := 1 and L(x) := 2 for every x ∈ Kr \ {v}.
Since Kr contains at least three vertices, only one of which receives role 1
in Phase 2, every vertex in Kr has a role 2 neighbor, while v is the required
role 1 neighbor for every vertex in Kr \ {v}.

Suppose |Kr| = 2, and let w be the only other vertex of Kr. For the
same reasons as in the case |Kr| ≥ 3, we set L(v) := 1 and L(w) := 2 if
L(w) ∈ {1|2, 1|21, 21}. We may not do this if L(w) ∈ {0, 1|22, 22}, as in
that case w will not have a role 2 neighbor. Suppose L(w) ∈ {0, 1|22, 22}. If
L(v) ∈ {1|2, 1|21} and L(w) ∈ {0, 1|22} then we set L(v) := 2 and L(w) := 1.
If L(v) = 1|2 and L(w) = 22, or if L(v) = 1|22 and L(w) ∈ {1|22, 22}, then we
set L(v) := 2 and L(w) := 2. In both cases we proceed to Phase 2 afterwards.
In the remaining two cases, i.e., when L(v) = 1|21 and L(w) = 22, or when
L(v) = 1|22 and L(w) = 0, we output No.

Case 4′: L(v) ∈ {0, 2, 21, 22} for every v ∈ Kr.

Let V ∗ ⊆ Kr be the set of vertices that have label 0. Suppose V ∗ = ∅. If
there exists a vertex x ∈ Kr with L(x) = 21, then we output No. After all,
every vertex in Kr will receive role 2 in Phase 2, which means that x will not
have its required role 1 neighbor. If L(v) ∈ {2, 22} for every v ∈ Kr, then we
set L(v) := 2 for every v ∈ Kr and proceed to Phase 2.

Suppose V ∗ 6= ∅. If |K| ≥ 3, then every vertex v ∈ V ∗ will receive a
neighbor with role 2: we can replace the label 0 for all v ∈ V ∗ with the label

5.2 Computing 2-role assignments in O(n2) time 112

1|21 and go to Case 3′. Suppose |K| = 2. If |V ∗| = 2, then G is a graph on
two vertices and we output No. Let v be the only vertex in V ∗. Then v must
be of degree 1 in G, so we set L(v) := 1. Now, if the other vertex w ∈ K has
label 2 or 21, we set L(w) := 2 and proceed to Phase 2. If L(w) = 22, then
we output No.

5.2.4 Proof of correctness and running time analysis

Theorem 5.6. The R5-Role Assignment problem can be solved in O(n2)
time for the class of chordal graphs.

Proof. LetG = (V,E) be a connected chordal graph. We apply the algorithm
that we described in this section. After computing a clique tree T = (K, E)
of G, we set L(u) := 0 for every u ∈ V and start with Phase 1. Because we
maintain Invariant 1 every time we process a bag, Phase 1 and consequently
Phase 2 are correct. Hence, our algorithm is correct.

We now perform a running time analysis. Computing a clique tree T of
G can be done in O(n+m) time due to Theorem 5.5. The Phase 1 operation
“compile a list of labels that v received in the child bags of a bag K to which
v belongs” costs O(n) time for each v ∈ V , since every vertex v is in at most
O(n) bags of T due to Theorem 5.4. Hence, all these operations together
cost O(n2) time. We observe that, after compiling a list of labels for a vertex
v in a bag K, determining the new label of v can be done in constant time,
as this list of labels has size at most 9.

Consider a bagK of T in which each vertex has exactly one label (possibly
after combining labels that this vertex has in different child bags of K).
Determining L(K) costs O(n) time. We must do this in order to know how
to determine the new label of each vertex in K. From the description of the
algorithm it then follows that the process of assigning a new label to every
vertex in K costs O(n) time as well. Hence, since there are at most O(n)
bags, this part of the algorithm also costs O(n2) time. We conclude that
Phase 1 runs in O(n2) time.

Due to our greedy approach in Phase 2, this phase can be executed in
O(n2) time. We conclude that the overall running time of our algorithm is
O(n2). This completes the proof of Theorem 5.6.

5.3 Complexity of k-Role Assignment for k ≥ 3 113

5.2.5 A remark regarding R6-role assignments

In our O(n2) time algorithm that solves the 2-Role Assignment problem
for chordal graphs we do not have to check if the input graph has an R6-
role assignment as a result of Theorem 5.2. This is rather “fortunate” as
the R6-Role Assignment problem turns out to be NP-complete even when
restricted to split graphs, a subclass of chordal graphs. We show this by using
a reduction from the Hypergraph 2-Colorability problem restricted to
the class of non-trivial hypergraphs, where a hypergraph H is called non-
trivial if Q contains at least three vertices and Q is a member of S. The
Hypergraph 2-Colorability problem clearly remains NP-complete under
this restriction.

Proposition 5.7. The R6-Role Assignment problem is NP-complete for
the class of split graphs.

Proof. Let (Q,S) be a non-trivial hypergraph. In its incidence graph I we
add an edge between every pair of vertices in Q. This results in a split graph
G. We claim that (Q,S) has a 2-coloring if and only if G has an R6-role
assignment.

Suppose (Q,S) has a 2-coloring (Q1, Q2). Since |Q| ≥ 3, we may without
loss of generality assume that |Q2| ≥ 2. We give each q ∈ Q1 role 1 and
each q ∈ Q2 role 2. We assign role 1 to each S ∈ S. Because (Q1, Q2) is a
2-coloring, each vertex in S has a neighbor with role 1 and a neighbor with
role 2 in G. Because Q is a clique in G, each vertex in Q2 has a neighbor
with role 1 and a neighbor with role 2. For the same reason, each vertex
in Q1 has a neighbor with role 2. Since (Q,S) is non-trivial, Q ∈ S. This
guarantees that also in case |Q1| = 1, each vertex in Q1 has a neighbor with
role 1. We conclude that G has an R6-role assignment.

Suppose G has an R6-role assignment. Then every vertex in S has a
neighbor with role 1 and a neighbor with role 2. By construction, these
neighbors are in Q. This immediately gives a 2-coloring of (Q,S).

5.3 Complexity of k-Role Assignment for k ≥ 3

It is known that the k-Role Assignment problem is NP-complete for any
fixed k ≥ 2 [108]. In this section, we show that the k-Role Assignment

5.3 Complexity of k-Role Assignment for k ≥ 3 114

y z

w x

s2 u4

s1

t1 t′1

t2 u1 t′2

c d

a b

H

pS1
pS2
S

q

uq1

S

Q

G

Hq

Figure 5.5: The graph H and the graph G when k = 4.

problem for chordal graphs is NP-complete for k ≥ 3. We use a reduction
from the Hypergraph 2-Colorability problem. Our NP-completeness
proof is more involved than the one for the general case in [108] as the graph
constructed there (also from an instance of Hypergraph 2-Colorability)
is not chordal.

Theorem 5.8. For k ≥ 3, the k-Role Assignment problem is NP-complete
for the class of chordal graphs.

Proof. Let k ≥ 3. We use a reduction from Hypergraph 2-Colorability.
Let (Q,S) be a non-trivial hypergraph with incidence graph I.

We modify I as follows. Firstly, we add an edge between any two vertices
in Q, so Q becomes a clique. Secondly, for each S ∈ S we take a path
PS = pS1 · · · pSk−2 and connect it to S by the edge pSk−2S, so these new paths
PS are pendant paths in the resulting graph. Thirdly, we add a copy Hq of
a new graph H for each q ∈ Q. Before we explain how to do this, we first
define H. Start with a path u1u2 · · ·u2k−4. Then take a complete graph on
four vertices a, b, c, d, and a complete graph on four vertices w, x, y, z. Add
the edges cu1, du1, u2k−4w, u2k−4x. We then take three paths S = s1 · · · sk−2,
T = t1 · · · tk−2 and T ′ = t′1 · · · t′k−2, and we add the edges sk−2w, ctk−2, dt

′
k−2.

This finishes the construction of H. We connect a copy Hq to q via the edge
quq1, where u

q
1 is the copy of the vertex u1. We call the resulting graph G;

notice that this is a connected chordal graph. See Figure 5.5 for an example.
Suppose G has a k-role assignment r, and let R be a graph on k vertices

such that G has an R-role assignment. We show that we must have R = R∗,

5.3 Complexity of k-Role Assignment for k ≥ 3 115

where R∗ denotes the path r1 · · · rk on k vertices with a loop in vertices rk−1

and rk. To see this, consider a copy Hq of H in G; we show that we can
assign roles to the vertices of Hq in only one way. For convenience, we denote
the vertices of Hq without the superscript q.

Let P be an induced path in G on at most k vertices that starts in a vertex
of degree 1 in G. The k-role assignment r of G must map P to an induced
path on |V (P)| vertices in R; otherwise, if r maps P to an induced path on
less than |V (P)| vertices in R, then |r(V (G))| = |r(V (P))| < |V (P)| ≤ k,
contradicting the assumption that r is a k-role assignment. Hence, we may
write r(ti) = i for i = 1, . . . , k − 2 and r(c) = k − 1. This implies that a
vertex with role 1 only has vertices with role 2 in its neighborhood and a
vertex with role i for 2 ≤ i ≤ k − 2 only has vertices with role i− 1 and role
i+1 as neighbors. Then a vertex with role k can only be adjacent to vertices
with role k − 1 or role k. Hence c must have a neighbor with role k.

Suppose r(d) = k. Then r(t′k−2) ∈ {k − 1, k} and this eventually leads
to r(t′1) ≥ 2 without a neighbor of role r(t′1)− 1 for t′1. This is not possible.
Hence r(d) 6= k. This means that k ∈ r({a, b, u1}). Since a, b, u1 are neigh-
bors of d as well and a vertex with role k can only have neighbors with role
k − 1 and k, we then find that d has role k − 1.

The above implies that a and b have their role in {k−2, k−1, k}. Suppose
k = 3. If r(a) = 1, then r(b) = 2 and r(u1) = 1 implying that r is a 2-role
assignment (as r(c) = r(d) = 2). Suppose r(a) = 2. Then a needs a neighbor
with role 1. Hence r(b) = 1, but then r is a 2-role assignment since r(u1) = 1.
Suppose r(a) = 3. Then r(b) 6= 2, as otherwise b needs a neighbor with role 1.
Hence r(b) = 3 and r(u1) = 1. This means that r is an R∗-role assignment.
Suppose k ≥ 4. If r(a) = k− 2, then a needs a neighbor with role k− 3. So,
r(b) = k − 3. However, this is not possible since vertex b with role k − 3 is
adjacent to vertex c with role k− 1. If r(a) = k− 1, then r(b) = k− 2. This
is not possible either, as then b would still need a neighbor with role k − 3.
Hence r(a) = k and for the same reasons r(b) = k. Then r is an R∗-role
assignment.

We claim that (Q,S) has a 2-coloring if and only if G has a k-role assign-
ment.

Suppose (Q,S) has a 2-coloring (Q1, Q2). We show that G has an R∗-
role assignment, which is a k-role assignment. We assign role i to each pSi

5.4 Conclusion 116

for i = 1, . . . , k − 2 and role k − 1 to each S ∈ S. As (Q,S) is non-trivial,
either Q1 or Q2, say Q2, has size at least two. Then we assign role k − 1 to
each q ∈ Q1 and role k − 2 to neighbor uq1. We assign role k to each q ∈ Q2

and k − 1 to neighbor uq1. As |Q2| ≥ 2, every vertex in Q has a neighbor
with role k. Hence, we can finish off the role assignment by assigning roles to
the remaining vertices of each copy Hq of H as follows. For convenience, we
remove the superscript q. We map each path S, T, T ′ to the path 1 · · · k− 2,
where r(si) = r(ti) = r(t′i) = i for i = 1, . . . , k − 2. If u1 received role k − 2
we assign ui role k− 1− i for i = 2, . . . , k− 2 and we assign uk−2+i role i+ 1
for i = 1, . . . , k − 2. Furthermore, we assign role k − 1 to c, d, w, and role k
to a, b, x, y, z. If u1 received role k− 1, it already has a neighbor with role k
(namely its neighbor in Q). Then we assign ui role k − i for i = 2, . . . , k − 1
and we assign uk−1+i role i+ 1 for i = 1, . . . , k − 3. Furthermore, we assign
role k − 1 to c, d, w, x, and role k to a, b, y, z.

To prove the reverse statement, suppose G has a k-role assignment r. As
we have shown above, by construction, G must have an R∗-role assignment.
Then each pSi must have role i for i = 1, . . . , k − 2. Then r(S) = k − 1 for
each S ∈ S, and each S must have a neighbor in Q with role k − 1 and a
neighbor in Q with role k. We define Q1 = {q ∈ Q | r(q) = k − 1} and
Q2 = Q \ Q1. Then we find that (Q1, Q2) is a 2-coloring of (Q,S). This
completes the proof of Theorem 5.8.

5.4 Conclusion

We have settled an open problem of Sheng [249] by showing that it can be
decided in O(n2) time if a chordal graph has a k-role assignment when k = 2.
We also showed that for any fixed k ≥ 3 the k-Role Assignment problem
remains NP-complete when restricted to chordal graphs.

Role assignments are also studied in topological graph theory. There, a
graph G is called an emulator of a graph R if G has an R-role assignment.
Then the question is which graphs allow planar emulators; see for example
the recent paper by Rieck and Yamashita [228] for nice developments in
this area. An interesting question is the computational complexity of the k-
Role Assignment problem for planar graphs. The answer to this question
is already unknown for k = 2.

Chapter 6

Finding induced paths of given
parity in claw-free graphs

This chapter is based on the following paper.

[155] P. van ’t Hof, M. Kamiński, and D. Paulusma. Finding induced paths
of given parity in claw-free graphs. In: Proceedings of the 35th Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2009), volume 5911 of Lecture Notes in Computer Science, pages
341–352, Springer, 2009.

Finding a shortest path, a maximum independent set or a hamiltonian
cycle in a graph are just a few examples from the wide spectrum of problems
dealing with finding a subgraph (or an induced subgraph) with some particu-
lar property. In this context, very simple subgraphs, such as paths, trees and
cycles, with some prescribed property are often studied. In this chapter and
the next we consider two such problems: Chapter 7 deals with the problem of
finding a longest cycle in a graph, while the problem of finding induced paths
of odd or even length is the main focus of this chapter. Despite the fact that
the structure of the subgraphs we are looking for is very simple, the problem
of finding such subgraphs is NP-hard on general graphs. In both chapters we
consider the case where the input graph is claw-free. Although the problem
studied in Chapter 7 remains NP-hard under this restriction, we show that
the problems studied in this chapter can be solved in polynomial time when
restricted to the class of claw-free graphs. In order to obtain the polynomial

6.1 Background and results 118

time algorithms presented in this chapter, we exploit several structural prop-
erties of claw-free graphs, including a structural characterization of claw-free
perfect graphs due to Chvátal and Sbihi [76].

6.1 Background and results

The following problem has been extensively studied in the context of perfect
graphs.

Parity Path

Instance: A graph G and two vertices s, t of G.
Question: Does G contain an odd and an even induced path from s to t?

We focus on the closely related problem of deciding whether there exists
an induced path of given parity between a pair of vertices. In particular, we
study the following two problems.

Odd Induced Path

Instance: A graph G and two vertices s, t of G.
Question: Does G contain an odd induced path from s to t?

Even Induced Path

Instance: A graph G and two vertices s, t of G.
Question: Does G contain an even induced path from s to t?

The Odd Induced Path problem was shown to be NP-complete by
Bienstock [32]. Consequently, the Even Induced Path problem and the
Parity Path problem are NP-complete as well. Several authors however
have identified a number of graph classes that admit polynomial time algo-
rithms for these problems. Below we survey those results, as well as results
on related problems, before stating our contribution.

Odd Path and Even Path. In the Odd Path and Even Path problems
the task is to find a (not necessarily induced) path of given parity between
a specified pair of vertices. These problems were considered by LaPaugh
and Papadimitriou [187]. They mention an O(n3) time algorithm for solving
both problems due to Edmonds, using a reduction to matching, and propose
a faster one of O(m) time complexity. Their algorithm also finds a shortest
(not necessarily induced) path of given parity between two vertices in O(m)

6.1 Background and results 119

time, even in a weighted graph. Interestingly, as they also show in their
paper, the problem of finding a directed path of given parity is NP-complete
for directed graphs.

Arkin, Papadimitriou and Yannakakis [12] generalized the result of [187]
and designed a linear-time algorithm deciding if all (not necessarily induced)
paths between two specified vertices are of length p mod q, for fixed integers
p and q.

Even Pair. First interest in induced paths of given parity comes from
the theory of perfect graphs. Two non-adjacent vertices are called an even
pair if every induced path between them is even. The Even Pair prob-
lem is to decide if a given pair of vertices forms an even pair. The Even

Pair problem is co-NP-complete due to Bienstock [32], as is the problem of
deciding if a graph contains an even pair. The interest in even pairs was
sparked by an observation of Fonlupt and Uhry [118]: if a graph is perfect
and contains an even pair, then the graph obtained by identifying the ver-
tices that form the even pair is also perfect. Later Meyniel [208] showed that
minimal non-perfect graphs contain no even pair. Those two facts triggered
a series of theoretical and algorithmic results which are surveyed in [100] and
its updated version [101].

There is some evidence that perfect graphs without an even pair can be
generated by performing a small number of composition operations on some
basic graphs. Using such a structural result could then lead to a combinato-
rial algorithm for coloring perfect graphs. Indeed, for coloring perfect graphs
using at most three colors this approach turned out to be successful, as was
shown by Chudnovsky and Seymour in [74]. Linhares Sales and Maffray [197]
study even pairs in order to give characterizations of claw-free graphs that
are strict quasi-parity and perfectly contractile, respectively; a graph is strict
quasi-parity if every induced subgraph is either a complete graph or contains
an even pair, and a graph is perfectly contractile if every induced subgraph
has a sequence of even pair contractions that leads to a complete graph.

Parity Path and Group Path. Arikati, in a series of papers with
different coauthors, developed polynomial time algorithms for the Parity

Path problem in different classes of graphs. Chordal graphs are considered
in [9], where the authors present a linear-time algorithm for the Group

6.1 Background and results 120

Path problem, a generalization of the Odd Induced Path problem. In
the Group Path problem the edges of the input graph are weighted with
elements of some group G. The problem is to find an induced path of given
weight between two specified vertices, where the weight of a path is defined
as the product of the weights of the edges of the path. They present an
O(|G|m+n) time algorithm for the Group Path problem on chordal graphs
using a perfect elimination ordering.

The topic of [11] is Parity Path on circular-arc graphs. The authors
show how to reduce the problem to interval graphs by recursively applying
a set of reductions. Since interval graphs are chordal, the algorithm of [9]
can be used to obtain the solution. This way they obtain a polynomial time
algorithm for circular-arc graphs. In [240] polynomial time algorithms for
the Parity Path problem on comparability and cocomparability graphs,
and a linear-time algorithm for permutation graphs are given. A polynomial
time algorithm for Parity Path on perfectly orientable graphs is presented
in [10]. Sampaio and Linhares Sales [239] obtain a polynomial time algo-
rithm for planar perfect graphs. The authors of [110] characterize even and
odd pairs in comparability and P4-comparability graphs and give polynomial
time algorithms for the Parity Path problem in those classes. Hoàng and
Le [153] show that Parity Path can be solved in polynomial time for the
class of 2-split graphs.

Note that a set F of vertices of a line graph G = L(H) form an odd
(respectively even) induced path in G if and only if the set of edges corre-
sponding to F form an even (respectively odd) path in the preimage graph H
of G. It is well-known that the preimage graph of a line graph can be found in
polynomial time [237]. Combining these two facts with the polynomial time
algorithm for finding (not necessarily induced) paths of given parity in [187]
yields a polynomial time algorithm for solving the Parity Path problem
for the class of line graphs (cf. [258]).

Our interest in the Odd Induced Path problem was in part stirred by
studying Bienstock’s NP-completeness reduction in [32]. He builds a graph
out of a 3-Satisfiability formula and shows that the formula is satisfiable if
and only if there exists an odd induced path between a certain pair of vertices.
This is also shown to be equivalent to the existence of two disjoint induced
paths (with no edges between the two paths) between certain pairs of vertices

6.1 Background and results 121

in the construction. Finding such two paths is then NP-hard in general but
has been proved solvable in polynomial time for claw-free graphs [192]. A
natural question to ask is whether the Odd Induced Path problem can
also be solved in polynomial time for this class of graphs. In Section 6.3
we answer this question in the affirmative by presenting an algorithm that
solves both the Odd Induced Path problem and the Even Induced Path

problem in O(n5) time for the class of claw-free graphs. This implies that
the Even Pair problem can be solved in O(n5) time for claw-free graphs.

As we saw earlier in this section, the Parity Path problem has been
extensively studied in different graph classes. However, a polynomial time
algorithm for claw-free graphs has never been proposed; somewhat surprising,
since claw-free graphs form a large and important class containing, e.g., the
class of line graphs, the class of complements of triangle-free graphs, and
the class of proper interval graphs (see Section 1.2.4 for more information on
claw-free graphs). Our O(n5) time algorithm for solving the Odd Induced

Path and Even Induced Path problems for claw-free graphs immediately
implies that we can solve the Parity Path problem for claw-free graphs
in O(n5) time, thus generalizing the aforementioned polynomial time result
on line graphs. Making use of the structure of claw-free perfect graphs we
also obtain an O(n7) time algorithm for finding shortest induced paths of
given parity between two specified vertices in a claw-free perfect graph. This
algorithm is presented in Section 6.4.

Apart from the Odd Induced Path problem, Bienstock [32] mentioned
two more NP-complete problems in the abstract of his paper. The first
one is to decide whether a graph has an odd hole passing through a given
vertex. The second one is to decide whether a graph has an odd induced path
between every pair of vertices. We show in Section 6.3 that our polynomial
time algorithm for the Odd Induced Path problem implies that both these
problems are solvable in O(n7) time when restricted to the class of claw-free
graphs. The same holds for the problem of deciding whether or not a claw-
free graph contains an even pair.

Several times in this chapter we make use of a fascinating structural char-
acterization of claw-free perfect graphs due to Chvátal and Sbihi [76], who
used this characterization to obtain a polynomial time recognition algorithm
for this graph class. We present the key ideas behind this recognition algo-

6.2 Recognizing claw-free perfect graphs in O(n4) time 122

rithm in Section 6.2, where we also perform a precise running time analysis.
The reason for this is the fact that Chvátal and Sbihi’s algorithm is used as
a subroutine in the polynomial time algorithm presented in Section 6.3, and
its key ideas will be used to obtain the results in Section 6.4.

6.2 Recognizing claw-free perfect graphs in O(n4)

time

A graph is called Berge if it does not contain an odd hole or an odd antihole.
A little over 40 years after Berge [25] conjectured that a graph is perfect
if and only if it is Berge, Chudnovsky et al. [64] confirmed his intuition by
proving the following theorem.

Theorem 6.1 (Strong Perfect Graph Theorem, [64]). A graph is perfect if
and only if it contains no odd hole and no odd antihole.

Shortly afterwards, Chudnovsky et al. [62] presented an O(n9) time algo-
rithm for recognizing Berge graphs. This means we can determine in O(n9)
time whether or not a graph is perfect. The main goal of this section is
to show that the problem of deciding whether or not a claw-free graph is
perfect can be solved in O(n4) time. We point out that we do not actually
present a new algorithm for recognizing claw-free perfect graphs, but merely
perform an exact running time analysis of an existing recognition algorithm
due to Chvátal and Sbihi [76]. Chvátal and Sbihi did not explicitly state
the time complexity of their recognition algorithm, and to the best of our
knowledge no better upper bound on the time needed to recognize claw-free
perfect graphs than the aforementioned O(n9) can be found in the literature.
We will use the recognition algorithm for claw-free perfect graphs as a sub-
routine in the algorithm presented in Section 6.3. Moreover, in Section 6.4
we will exploit the fascinating structure of perfect claw-free graphs exhib-
ited by Chvátal and Sbihi [76] in order to obtain an algorithm for finding
shortest induced paths of given parity in such graphs. Before we present the
key ideas behind Chvátal and Sbihi’s algorithm, we need to introduce some
terminology and techniques they use in their paper.

A set X ⊆ V (G) is a clique separator of a connected graph G if X is a
separator of G that is a clique. Suppose that the graph obtained from G by

6.2 Recognizing claw-free perfect graphs in O(n4) time 123

deleting X consists of k connected components with vertex sets V1, . . . , Vk.
We call the graphs G[V1∪X], . . . , G[Vk∪X] the children of G produced by X.
If any childG[Vi∪X] contains a clique separatorXi, we continue decomposing
the graph G by replacing G[Vi ∪X] by the children of G[Vi ∪X] produced
by Xi. Repeating this procedure until the graph cannot be decomposed
any further yields a collection C = {G1, . . . , Gp} of induced subgraphs of G
without a clique separator, called the atoms of G. We refer to the set C as
a clique separator decomposition of G. Several authors designed polynomial
time algorithms for finding a clique separator decomposition of a graph, the
fastest one being due to Tarjan [254]. We give an explicit description of
Tarjan’s algorithm in Section 6.4, where we also prove some properties about
the obtained clique separator decomposition. These properties are then used
in the proof of the main result of that section. For now, we only mention the
following result.

Theorem 6.2 ([254]). Given a connected graph G, a clique separator de-
composition of G containing at most n − 1 atoms can be found in O(nm)
time.

According to Whitesides [262], the original motivation to study clique
separator decompositions is their relation to the problem of recognizing per-
fect graphs.

Theorem 6.3 ([262]). A graph is perfect if and only if all its atoms are
perfect.

Chvátal and Sbihi [76] discovered that all atoms in a clique separator
decomposition of a claw-free perfect graph G belong to one of two classes of
graphs, which they called “elementary” and “peculiar”. We now give the def-
initions of elementary and peculiar graphs, and show that we can determine
in O(n3) time whether a graph belongs to one of those classes.

Definition 6.4. A graph H is elementary if its edges can be colored with two
colors such that every induced path on three vertices has its two edges colored
differently. We call such a coloring an elementary coloring of H.

See Figure 6.1 for an example of an elementary graph with an elementary
coloring, where the light edges and heavy edges are colored differently. This

6.2 Recognizing claw-free perfect graphs in O(n4) time 124

Figure 6.1: An elementary graph with an elementary coloring.

graph was presented as an example of an elementary graph in [205]. The
authors of [76] describe how elementary graphs can be recognized in polyno-
mial time. Using their arguments, it is easy to prove the time complexity in
the following lemma.

Lemma 6.5 ([76]). It is possible to decide in O(n3) time whether or not a
graph H is elementary. If it is, an elementary coloring of H can be found in
O(n3) time.

Proof. Let H be a graph on n vertices and m edges. We construct a graph
Γ(H) on m vertices as follows: V (Γ(H)) = E(H) and two vertices in Γ(H)
are adjacent if and only if the corresponding edges in G induce a path on
three vertices. It is clear that we can compute the graph Γ(H) in O(n3) time
by checking for each triple of vertices in V (H) whether they induce a path
on three vertices in H. For any edge uv of H, there are at most n vertices
of H that are adjacent to exactly one vertex of {u, v}, which means that the
graph Γ(H) has at most nm edges. It is easy to see that H is elementary
if and only if Γ(H) is bipartite, and any 2-coloring of Γ(H) corresponds to
an elementary coloring of H. Clearly, finding a 2-coloring of a graph with
m vertices and nm edges, or concluding that such a coloring does not exist,
can be done in O(m+ nm) = O(n3) time.

Definition 6.6. A graph H is peculiar if it can be obtained from a complete
graph K as follows. Partition V (K) into six mutually disjoint non-empty
sets Ai, Bi, i = 1, 2, 3. For each i = 1, 2, 3, remove at least one edge with
one end-vertex in Ai and the other end-vertex in Bi+1, where the subscript
4 is interpreted as 1. Finally, add three new mutually disjoint non-empty

6.2 Recognizing claw-free perfect graphs in O(n4) time 125

d1

d2d3

a1b1

a2

b2 a3

b3

Figure 6.2: The smallest possible peculiar graph.

complete graphs Di, i = 1, 2, 3, and for each i = 1, 2, 3 make each vertex in
Di adjacent to all vertices in V (K) \ (Ai ∪Bi).

The smallest possible peculiar graph is depicted in Figure 6.2. Li and
Zang [196] present a simple polynomial time algorithm for recognizing pecu-
liar graphs.

Lemma 6.7 ([196]). It is possible to decide in O(n3) time whether or not a
graph is peculiar.

It is not hard to verify that both elementary graphs and peculiar graphs
cannot contain an odd hole or an odd antihole (cf. [205]), which means they
are perfect by virtue of the Strong Perfect Graph Theorem [64]. As mentioned
before, Chvátal and Sbihi [76] proved that every atom of a clique separator
decomposition of any claw-free perfect graph is either elementary or peculiar.
This means we can formulate their main result as follows.

Theorem 6.8 ([76]). A claw-free graph G with no clique separator is perfect
if and only if it is either elementary or peculiar.

Using the explicit time complexities of the recognition algorithms for ele-
mentary and peculiar graphs in Lemma 6.5 and Lemma 6.7, we can determine
the time complexity of the recognition algorithm for claw-free perfect graphs
by Chvátal and Sbihi [76].

Theorem 6.9 ([76]). It is possible to decide in O(n4) time whether or not
a claw-free graph is perfect.

Proof. Let G be a claw-free perfect graph. To test whether or not G is
perfect, we act as follows. First we find a clique separator decomposition

6.3 Finding induced paths of given parity 126

C = {G1, . . . , Gp} of G, which we can do in O(n3) time by Theorem 6.2.
Since every atom Gi ∈ C is a claw-free graph without a clique separator,
Gi is perfect if and only if Gi is elementary or peculiar by Theorem 6.8.
Lemma 6.5 and Lemma 6.7 together imply that for each atom Gi we can
decide in O(n3) time whether Gi is elementary, peculiar, or neither. By
Theorem 6.3, G is perfect if and only if every atom Gi ∈ C is perfect. Since
we only have to consider at most n− 1 atoms by Theorem 6.2, this yields an
overall time complexity of O(n4).

Corollary 6.10. Let G be a claw-free graph. It is possible to find an odd
hole or an odd antihole of G, or conclude that such a subgraph does not exist,
in O(n5) time.

Proof. Let G be a claw-free graph. We test whether or not G is perfect,
which we can do in O(n4) time by Theorem 6.9. By the Strong Perfect
Graph Theorem, G only contains an odd hole or an odd antihole if G is not
perfect. In that case, we remove a vertex from G and check in O(n4) time
if the obtained graph G′ is perfect. If so, we restore the vertex and repeat
the procedure on G, removing another vertex. If not, we repeat the whole
procedure on the smaller graph G′. By repeating this procedure as long as
possible, we find a minimal imperfect induced subgraph H of G. (A graph
is called minimal imperfect if it is not perfect, but all its proper induced
subgraphs are perfect.) By the Strong Perfect Graph Theorem, H is an odd
hole or an odd antihole of G. The O(n5) overall time complexity follows
from the fact that we have to apply the O(n4) time recognition algorithm
for claw-free perfect graphs O(n) times.

6.3 Finding induced paths of given parity

In this section we present an algorithm that solves the Odd Induced Path

problem inO(n5) time for claw-free graphs. We show that, apart from solving
the decision problem, it is also possible to find an odd induced path between
two given vertices of a claw-free graph, or conclude that such a path does
not exist, in O(n5) time. Here is an outline of our algorithm.

6.3 Finding induced paths of given parity 127

Algorithm solving Odd Induced Path for claw-free graphs

Input : claw-free graph G, vertices s and t of G
Output : YES if G contains an odd induced path from s to t

NO otherwise

Preprocess G to obtain graph G′′

Step 1: add edges to make s and t simplicial
Step 2: delete irrelevant vertices

Test whether or not G′′ is perfect

If G′′ is not perfect, output YES
If G′′ is perfect, find a shortest path P from s to t

If P is odd, output YES
If P is even, define graph G∗ := (V (G′′) ∪ {x}, E(G′′) ∪ {sx, tx})

Test whether or not G∗ is perfect

If G∗ is not perfect, output YES
If G∗ is perfect, output NO

As shown in the outline, we first preprocess the input graph G in order
to obtain a new graph G′′ with certain desirable properties. This preprocess-
ing procedure is described in Section 6.3.1. We then distinguish two cases,
depending on whether or not G′′ is perfect. The case that G′′ is not perfect
is discussed in Section 6.3.2, while Section 6.3.3 deals with the case that G′′

is perfect. In Section 6.3.4 we prove correctness of our algorithm and show
that its time complexity is O(n5). We also explain in Section 6.3.4 how our
algorithm can be slightly modified in such a way that it also solves the Even

Induced Path problem for claw-free graphs in O(n5) time.

6.3.1 Preprocessing the input graph G

Let G be a claw-free graph and let s and t be two vertices of G. Note that
we may without loss of generality assume that G is connected and that s and
t are not adjacent. We make these assumptions throughout the chapter.

Step 1. We add an edge between each pair of non-adjacent neighbors of
s, and we do the same for each pair of non-adjacent neighbors of t. Then

6.3 Finding induced paths of given parity 128

in the resulting graph G′, both s and t are simplicial vertices, i.e., vertices
whose neighborhood form a clique in G′. In general, adding edges is not
a claw-freeness preserving operation. However, the following lemma states
that we do not create claws in Step 1.

Lemma 6.11. The graph G′ is claw-free.

Proof. Suppose, for contradiction, that G′ contains an induced subgraph
isomorphic to a claw. Let K := {x, a, b, c} be a set of vertices of G′ inducing
a claw with center x. Note that the fact that s is simplicial implies x 6= s.
Since G is claw-free, we may without loss of generality assume that at least
two vertices of K must be in NG′(s) ∪ {s}. Since NG′(s) ∪ {s} is a clique of
G′ and {a, b, c} is an independent set of G′, we may without loss of generality
assume that K ∩ (NG′(s)∪{s}) = {x, a} and {b, c} ⊆ V (G′)\ (NG′(s)∪{s}).
Then {x, b, c, s} induces a claw in G with center x, a contradiction.

Step 2. We “clean” G′ by repeatedly deleting irrelevant vertices. A vertex
v ∈ V (G′) is called irrelevant (for vertices s and t) if v does not lie on any
induced path from s to t, and we say that G′ is clean (for s and t) if none
of its vertices is irrelevant. Let G′′ denote the graph obtained from G′ by
repeatedly deleting vertices that are irrelevant. Note that G′′ is claw-free, as
G′′ is an induced subgraph of G′.

We now show that we can perform Step 2 in polynomial time by showing
that we can identify irrelevant vertices in polynomial time. In general, the
problem of deciding whether a vertex is irrelevant is NP-complete. This fol-
lows from a result by Derhy and Picouleau [90], who prove that the following
problem is NP-complete for the class of graphs of maximum degree at most
3.

Three-in-a-Path

Instance: A graph G and three vertices v1, v2, v3 of G.
Question: Does there exist an induced path of G containing v1, v2 and v3?

Chudnovsky and Seymour [73] study the following closely related prob-
lem.

Three-in-a-Tree

Instance: A graph G and three vertices v1, v2, v3 of G.
Question: Does there exist an induced tree of G containing v1, v2 and v3?

6.3 Finding induced paths of given parity 129

Theorem 6.12 ([73]). The Three-in-a-Tree problem can be solved in
O(n4) time, and a desired tree can be found in O(n4) time in case one exists.

Observe that the Three-in-a-Path problem is equivalent to the Three-

in-a-Tree problem for the class of claw-free graphs, since every induced tree
in a claw-free graph is an induced path. Hence, using Theorem 6.12, we can
prove the following result.

Lemma 6.13. The problem of deciding whether a vertex v of a claw-free
graph G is irrelevant for two simplicial vertices s and t of G can be solved in
O(n4) time.

Proof. We claim that there exists an induced path in G from s to t containing
v if and only if G together with s, t, v is a yes-instance of the Three-in-a-

Tree problem. By Theorem 6.12, this proves that we can decide in O(n4)
time if v is irrelevant.

If there exists a path in G from s to t containing v, then that path is
an induced tree containing all three vertices. Now suppose that there exists
an induced subgraph T of G which is a tree containing s, t and v. Recall
that any induced subgraph of a claw-free graph which is a tree is in fact
an induced path. Since vertices s and t are simplicial, any induced path
containing s and t contains exactly one neighbor of s and one neighbor of t.
Hence s and t must be the endpoints of the path T .

After preprocessing the input graph G we have obtained a graph G′′ that
satisfies the following three conditions:

(1) G′′ is claw-free;
(2) both s and t are simplicial vertices of G′′;
(3) G′′ is clean for s and t.

The following lemma implies that solving the Odd Induced Path prob-
lem for G is equivalent to solving the problem for G′′. The lemma also shows
that the entire preprocessing procedure can be performed in O(n5) time.

Lemma 6.14. Every induced path from s to t in G′′ is also an induced path
from s to t in G, and vice versa. Moreover, G′′ can be obtained from G in
O(n5) time.

6.3 Finding induced paths of given parity 130

Proof. It is clear that by adding edges in Step 1 no new induced path from
s to t is created. Since any induced path from s to t in G contains exactly
one vertex of NG(s) and exactly one vertex of NG(t), the graph G′ obtained
after Step 1 contains all induced paths from s to t that were contained in
G. In Step 2, we only remove vertices that do not lie on any induced path
from s to t. This implies that every induced path from s to t in G′′ is also
an induced path from s to t in G, and vice versa. It is clear that we can
perform Step 1 in O(n2) time. In Step 2, we have to check for O(n) vertices
whether or not they are irrelevant. Since we can do this in O(n4) time per
vertex by Lemma 6.13, we can perform Step 2, and consequently the entire
preprocessing procedure, in O(n5) time.

We now distinguish two cases, depending on whether or not G′′ is perfect.

6.3.2 G′′ is not perfect

Suppose G′′ is not perfect. Then G′′ contains an odd hole or an odd antihole
by virtue of the Strong Perfect Graph Theorem. We consider odd antiholes
and odd holes in Lemma 6.15 and Lemma 6.16, respectively. Recall that the
length of an antihole is the number of edges in its complement.

Lemma 6.15. Let H be a connected claw-free graph. If H contains a sim-
plicial vertex, then H does not contain an odd antihole of length more than
5.

Proof. Let s be a simplicial vertex of a connected claw-free graph H. For
contradiction, suppose H contains an odd antihole X such that its comple-
ment X = x1x2 . . . x2k+1x1 is an odd induced cycle with k ≥ 3. Vertex
s does not belong to X, since s is simplicial. Let P be an induced path
from s to a vertex of X such that |V (P)| is minimum. Note that such a
path P exists since H is connected. Without loss of generality assume that
V (P) ∩ V (X) = {x1}.

Let s′ be the neighbor of x1 on P . We claim that s′ is adjacent to at most
one vertex of {xi, xi+1} for 1 ≤ i ≤ 2k. If s′ = s, this claim immediately
follows from the assumption that s is simplicial and the fact that xi and
xi+1 are not adjacent. Suppose s′ 6= s, and let s′′ be the neighbor of s′ on
P not equal to x1. Note that s′′ is not adjacent to any vertex of X due to

6.3 Finding induced paths of given parity 131

x1

x2

x3

x4

x5

x6
x7

s
′

s
′′

s

Figure 6.3: A claw induced by {x6, s
′, x2, x3} with center x6.

the minimality of |V (P)|. Vertex s′ cannot be adjacent to both xi and xi+1,
since then the set {s′, s′′, xi, xi+1} induces a claw in H with center s′. Hence
s′ is adjacent to at most one vertex of {xi, xi+1} for 1 ≤ i ≤ 2k.

Note that vertex s′ is adjacent to at least one vertex of {xi, xi+1} for
3 ≤ i ≤ 2k−1, as otherwise {x1, s

′, xi, xi+1} induces a claw in H with center
x1. This, together with the fact that s′ is adjacent to at most one vertex of
{xi, xi+1} for 1 ≤ i ≤ 2k, implies that s′ is adjacent to exactly one vertex
of {x3, x2k}. Without loss of generality, assume that s′ is adjacent to x2k

and not to x3. Since s′ is adjacent to x1 and s′ is adjacent to at most one
vertex of {xi, xi+1} for 1 ≤ i ≤ 2k, s′ is not adjacent to x2. Note that x3 is
adjacent to x2k, since k ≥ 3. But then {x2k, s

′, x2, x3} induces a claw in H
with center x2k; see Figure 6.3 for an illustration of the case where k = 3.
This contradiction finishes the proof of Lemma 6.15.

We point out that the arguments in the proof of Lemma 6.15 can also be
used to prove that every odd antihole X of a connected claw-free graph H is
dominating, i.e., every vertex of H either belongs to X or has a neighbor in
X.

Lemma 6.16. Let H be a connected claw-free graph that is clean for two
simplicial vertices s and t. If H contains an odd hole, then there exists both
an odd and an even induced path from s to t.

Proof. Let C be an odd hole of H. Let P be an induced path from s to a
vertex p of C and let Q be an induced path from t to a vertex q of C, such
that there is no edge in H connecting a vertex in P [V (P) \ {p}] to a vertex

6.3 Finding induced paths of given parity 132

s s′
s′′

tt′
t′′

p
p+ q

q+

s s′
s′′

tt′
t′′

p
p+ q

q+

Figure 6.4: Two induced paths from s to t of different parity.

in Q[V (Q)\{q}] and such that |V (P)|+ |V (Q)| is minimum. Note that such
paths P and Q exist since H is clean and connected. Let s′ be the neighbor
of p on P , and let t′ be the neighbor of q on Q; we note that possibly s′ = s

and t′ = t.

Claim 1. Both s′ and t′ are adjacent to exactly two adjacent vertices of C.

Suppose p is the only vertex of C that is adjacent to s′. Let p− (respectively
p+) denote the neighbor of p on C when we traverse C in counter-clockwise
(respectively clockwise) order. The set {p, p−, p+, s′} induces a claw in H

with center p, contradicting the claw-freeness of H. Hence s′ must be adja-
cent to at least one vertex of {p−, p+}. Suppose there exists a set D ⊆ V (C)
such that |D| ≥ 3 and s′ is adjacent to every vertex in D. Since C is an
induced cycle, we know that D contains two vertices d1 and d2 that are not
adjacent. Since s is simplicial and therefore does not have two non-adjacent
neighbors, we must have s′ 6= s. Let s′′ 6= p be a neighbor of s′ on P ; possibly
s′′ = s. Vertex s′′ is not adjacent to any vertex of C due to the minimality
of |V (P)|+ |V (Q)|, which means the set {s′, d1, d2, s

′′} induces a claw in H
with center s′. This contradiction finishes the proof of Claim 1 for vertex s′.
By symmetry the claim also holds for vertex t′.

We assume, without loss of generality, that NH(s′)∩V (C) = {p, p+} and
NH(t′) ∩ V (C) = {q, q+}. We distinguish three cases.

Suppose |{p, p+} ∩ {q, q+}| = 0. Since C is an odd hole, the induced
path s′p+−→C qt′ and the induced path s′p

←−
C q+t′ have different parity. Since

by definition there is no edge connecting a vertex in P [V (P)\{p}] to a vertex
in Q[V (Q) \ {q}], this means there exists both an odd and an even induced
path from s to t in H; see Figure 6.4 for an illustration.

Suppose |{p, p+} ∩ {q, q+}| = 1. Without loss of generality, suppose

6.3 Finding induced paths of given parity 133

p+ = q. Then the path s′qt′ is an even induced path from s′ to t′, and the
path s′p

←−
C q+t′ is an odd induced path from s′ to t′. Since by definition there

is no edge connecting a vertex in P [V (P)\{p}] to a vertex in Q[V (Q)\{q}],
this means there exists both an odd and an even induced path from s to t in
H.

Suppose |{p, p+} ∩ {q, q+}| = 2. By Claim 1, neither s′ nor t′ is adjacent
to p−. Since s′ and t′ are not adjacent by the choice of P and Q, the set
{p, p−, s′, t′} induces a claw in H with center p. This contradiction finishes
the proof.

Recall that G′′ is not perfect and has two simplicial vertices s and t. This,
together with Lemma 6.15 and Lemma 6.16, implies that G′′ contains both
an odd and an even induced path from s to t. We now show that we can also
find such paths in O(n5) time.

Lemma 6.17. If G′′ is not perfect, then it is possible to find both an odd and
an even induced path from s to t in G′′ in O(n5) time.

Proof. Since G′′ has two simplicial vertices s and t, G′′ does not contain an
odd antihole of length more than 5 by Lemma 6.15. Since an odd antihole
of length 5 is also an odd hole of length 5, G′′ contains an odd hole by virtue
of the Strong Perfect Graph Theorem. We can find such a hole C in O(n5)
time by Corollary 6.10. Let c be any vertex of C, and let P be an induced
path in G′′ from s to t containing c. Note that such a path P exists since G′′

is clean for s and t. We can find P in O(n4) time as a result Theorem 6.12.
It is clear from the proof of Lemma 6.16 that we can use P to find both an
odd and an even induced path from s to t in G′′.

6.3.3 G′′ is perfect

Suppose G′′ is perfect. In the concluding remarks of their paper, Corneil and
Fonlupt [81] pointed out that a polynomial time recognition algorithm for
perfect graphs implies a polynomial time algorithm for the Parity Path

problem for the class of perfect graphs. Interestingly, the arguments they
used to prove this implication were already mentioned by Hsu [166] in the
paper in which he introduced the Parity Path problem. Using their argu-
ments, we can prove the following lemma.

6.3 Finding induced paths of given parity 134

Lemma 6.18. If G′′ is perfect, then it is possible to find an odd induced path
from s to t in G′′, or conclude that such a path does not exist, in O(n5) time.

Proof. Let P be a shortest path from s to t in G′′. If P has odd length, then
we are done. Suppose P has even length. Let G∗ be the graph obtained
from G by adding a vertex x and edges sx and tx. Note that the graph G∗ is
claw-free, since s and t are simplicial vertices of G′′. We determine whether
or not G∗ is perfect, which we can do in O(n4) time by Theorem 6.9. If G∗

is perfect, then G∗ does not contain an odd hole or an odd antihole by virtue
of the Strong Perfect Graph Theorem. This means that all induced paths
from s to t must be even, so we conclude that there does not exist an odd
induced path from s to t. Suppose G∗ is not perfect. Then G∗ must contain
an odd hole or an odd antihole, and vertex x must be in this odd hole or
odd antihole since G is perfect. Since x has degree two, G∗ cannot contain
an odd antihole. Hence G∗ contains an odd hole. We can find an odd hole
C of G∗ in O(n5) time by Corollary 6.10. The graph obtained from C by
removing vertex x is an odd induced path from s to t in G′′.

6.3.4 Finding induced paths of given parity from s to t in G

We are now ready to prove the main result of this section.

Theorem 6.19. Both the Odd Induced Path problem and the Even In-

duced Path problem can be solved in O(n5) time for the class of claw-free
graphs. Moreover, an induced path from s to t of given parity can be found
in O(n5), if one exists.

Proof. Let G be a claw-free graph, and let s and t be two vertices of G. Recall
that we may without loss of generality assume that G is connected and that
s and t are not adjacent. We preprocess G in O(n5) time as described in
Section 6.3.1, thus obtaining a graph G′′. Recall that G′′ is claw-free, that s
and t are simplicial vertices in G′′, and that G′′ is clean for s and t. We test
whether or not G′′ is perfect, which we can do in O(n4) time by Theorem 6.9.
Below we show that we can find an induced path of given parity from s to t in
G′′, or conclude that such a path does not exist, in O(n5) time. Lemma 6.14
implies that this suffices to prove Theorem 6.19.

If G′′ is not perfect, then we can find both an odd and an even induced
path from s to t in G′′ in O(n5) time by Lemma 6.17. If G′′ is perfect, then

6.3 Finding induced paths of given parity 135

we can find an odd induced path from s to t in G′′, or conclude that such a
path does not exist, in O(n5) time by Lemma 6.18. In order to find an even
induced path from s to t, we define the graph G∗ as the graph obtained from
G′′ by adding the edge st. It is easy to verify that adding the edge st creates
neither a claw nor an odd antihole. Hence the arguments used in the proof
of Lemma 6.18 can also be used to find an even induced path from s to t in
G′′, or conclude that such a path does not exist, in O(n5) time.

Theorem 6.19 immediately implies the following.

Corollary 6.20. Both the Parity Path problem and the Even Pair prob-
lem can be solved in O(n5) time for the class of claw-free graphs.

Bienstock [32] proved that it is NP-complete to decide if a graph contains
an odd induced path between every pair of vertices, which is equivalent to
deciding if a graph contains no even pair. The following corollary of Theo-
rem 6.19 implies that this problem can be solved in polynomial time when
restricted to the class of claw-free graphs.

Corollary 6.21. Deciding whether or not a claw-free graph has an even pair
can be done in O(n7) time.

Proof. Let G be a claw-free graph. For each pair s, t of vertices of G, we can
check in O(n5) time whether or not they form an even pair by Corollary 6.20.
Hence we can decide whether or not G has an even pair by performing this
check O(n2) times, each time with a different pair of vertices of G in the
input.

Another problem Bienstock [32] proved to be NP-complete is the prob-
lem of deciding whether a graph contains an odd hole passing through a
prescribed vertex. The following corollary, which clearly also holds in case
we are looking for an even hole, shows that this problem becomes polynomial
time solvable when restricted to claw-free graphs.

Corollary 6.22. It is possible to find an odd hole passing through a prescribed
vertex of a claw-free graph, or conclude that such a hole does not exist, in
O(n7) time.

6.4 Finding shortest induced paths of given parity 136

Proof. Let G be a claw-free graph and let v be a vertex of G. We can find an
odd hole of G passing through v, or conclude that such a hole does not exist,
as follows. For each pair s, t of non-adjacent neighbors of v, let Gs,t denote
the (claw-free) graph obtained from G by removing v and all its neighbors,
apart from s and t, from G. Clearly, G contains an odd hole through v if
and only if the graph Gs,t contains an odd induced path from s to t for some
pair of non-adjacent neighbors s, t of v. We can find such a path, or conclude
that such a path does not exist, in O(n5) time by Theorem 6.19. The time
complexity of O(n7) follows from the fact that we have to perform our O(n5)
time algorithm for O(n2) pairs of non-adjacent neighbors of v.

6.4 Finding shortest induced paths of given parity

In this section we show that it is possible to find a shortest induced path
of given parity between two specified vertices of a claw-free perfect graph
in polynomial time, in case such a path exists. More specifically, we show
that we can solve the following two problems in O(n7) time for the class of
claw-free perfect graphs.

Shortest Odd Induced Path

Instance: A graph G and two vertices s, t of G.
Task: Find a shortest odd induced path from s to t in G, or conclude that
such a path does not exist.

Shortest Even Induced Path

Instance: A graph G and two vertices s, t of G.
Task: Find a shortest even induced path from s to t in G, or conclude that
such a path does not exist.

Note that a shortest odd induced path between vertices s and t of a graph
G is not necessarily a shortest odd path between s and t in G. For example,
the shortest odd induced path from s to t in the graph in Figure 6.5 has
length 5, whereas the shortest odd path from s to t has length 3.

Unlike the results in the previous section, we do not rely on the recog-
nition algorithm for claw-free graphs that was described in Section 6.2 to
prove the main result of this section. Instead, we make use of the structural
properties of claw-free perfect graphs that were presented by Chvátal and

6.4 Finding shortest induced paths of given parity 137

s t

Figure 6.5: Shortest odd path from s to t is not shortest odd induced path.

Sbihi in [76]. Recall that they showed that a claw-free perfect graph with no
clique separator is either elementary or peculiar (see Theorem 6.8). Below
we first show in Section 6.4.1 that both the Shortest Odd Induced Path

problem and the Shortest Even Induced Path problem can be solved in
O(n4) time for elementary graphs, and in O(n3) time for peculiar graphs. In
Section 6.4.2 we then present in detail Tarjan’s clique separator decomposi-
tion algorithm that was already mentioned in Section 6.2. Finally, we prove
in Section 6.4.3 that the Shortest Odd Induced Path and Shortest

Even Induced Path problems can be solved in O(n7) time for the class of
claw-free perfect graphs.

6.4.1 Shortest paths in elementary and peculiar graphs

Let us start by showing how to find shortest induced paths of given parity in
elementary graphs. Recall that a graph is elementary if and only if its edges
can be colored with two colors such that every induced P3 has both its edges
colored differently.

Lemma 6.23. Both the Shortest Odd Induced Path problem and the
Shortest Even Induced Path problem can be solved in O(n4) time for
the class of elementary graphs.

Proof. Let H be an elementary graph, and let u and v be two vertices of H.
Note that we may assume, without loss of generality, that H is connected
and that u and v are not adjacent. Suppose u and v have a common neighbor
w. The even induced path uwv is the only induced path from u to v that
contains w; in particular, w cannot lie on an odd induced path from u to v.
Hence we may assume that u and v do not have a common neighbor.

We observe that any induced path from u to v in H contains exactly one
vertex from NH(u) and exactly one vertex from NH(v). We also observe that
in any elementary coloring of H, any two consecutive edges of any induced

6.4 Finding shortest induced paths of given parity 138

path will be colored differently. Hence if there exists an odd (respectively
even) induced path from u to v, then the first and the last edge of that path
have the same color (respectively different colors). Using these observations,
we can find a shortest odd induced path from u to v in H as follows.

We first find an elementary coloring ϕ : E(H)→ {0, 1} of H; we can find
such a coloring ϕ in O(n3) time by Lemma 6.5. For every pair u′ ∈ NH(u)
and v′ ∈ NH(v) with ϕ(uu′) = ϕ(vv′), we define Hu′v′ to be the graph
obtained from H by deleting the set (NH(u) ∪ NH(v) ∪ {u, v}) \ {u′, v′}.
Note that Hu′v′ is well-defined, since u and v are not adjacent and have no
common neighbors. We either find a shortest path P ′ from u′ to v′ in Hu′v′ ,
or conclude that such a path does not exist. It is well-known that we can do
this in O(n2) time. If there exists a shortest path P ′ from u′ to v′, then this
path P ′ is clearly an induced path in Hu′v′ . We add the vertices u and v as
well as the edges uu′ and vv′ to P ′, which yields an induced path P from u

to v in H. Since P is induced and ϕ is an elementary coloring, the colors
0 and 1 alternate on P . Then P is an odd induced path from u to v in H,
since ϕ(uu′) = ϕ(vv′). By performing this procedure for all pairs u′, v′ with
ϕ(uu′) = ϕ(vv′), we either find a shortest odd induced path from u to v in
H, or conclude that such a path does not exist. It is clear that the procedure
can be executed in O(n4) time.

To solve the Shortest Even Induced Path problem, we perform the
above procedure for all pairs u′, v′ with ϕ(uu′) 6= ϕ(vv′) instead of ϕ(uu′) =
ϕ(vv′).

It is clear from Definition 6.6 that the vertex set of every peculiar graph
can be partitioned into nine disjoint cliques. Since every induced path con-
tains at most two vertices of any clique, this immediately implies that every
peculiar graph is P19-free. A more careful analysis of the definition of a
peculiar graph yields the following result.

Lemma 6.24. Every peculiar graph is P6-free but not P5-free.

Proof. LetH be a peculiar graph, and let Ai, Bi, Di (i = 1, 2, 3) be a partition
of V (H) as mentioned in Definition 6.6. The set V (H) can be partitioned
into three cliques, namely X1 := A2 ∪ B1 ∪ B2 ∪ D3, X2 := D1 and X3 :=
A1 ∪ A3 ∪ B3 ∪ D2. This immediately implies that H is P7-free, as any

6.4 Finding shortest induced paths of given parity 139

induced path in H contains at most two vertices of any clique. The P6-
freeness of H follows from the observation that for every pair x, y ∈ X2 we
have NH(x) \ {y} = NH(y) \ {x}, which implies that any induced path in H
containing vertices of X1 ∪X3 can only contain at most one vertex from X2.

Let a2 ∈ A2 and b3 ∈ B3 be a pair of non-adjacent vertices of H; note
that such a pair exists by Definition 6.6. Since none of the sets D1, D2, D3

is empty, H contains an induced path d3a2d1b3d2, where di ∈ Di, i = 1, 2, 3
(see also Figure 6.2).

The observation that any induced path from s to t in a P6-free graph H
contains at most three other vertices of H immediately implies the following
result.

Lemma 6.25. Both the Shortest Odd Induced Path problem and the
Shortest Even Induced Path problem can be solved in O(n3) time for
the class of P6-free graphs.

Lemma 6.24 and Lemma 6.25 together immediately yield the following.

Corollary 6.26. Both the Shortest Odd Induced Path problem and the
Shortest Even Induced Path problem can be solved in O(n3) time for
the class of peculiar graphs.

6.4.2 A closer look at Tarjan’s decomposition algorithm

We now take a closer look at Tarjan’s [254] decomposition algorithm, men-
tioned in Section 6.2. We prove some properties of the clique separator
decomposition obtained by this algorithm, and use those properties in the
proof of Theorem 6.29 below. We first introduce some additional terminology
and describe an algorithm, called the Elimination Game, which is used as a
subroutine in Tarjan’s decomposition algorithm.

Recall that a graph is chordal if it does not contain an induced cycle
of length at least 4. If a graph G is a subgraph of a chordal graph H,
then H is called a triangulation of G. A triangulation H of a graph G is
called minimal if none of the proper subgraphs of H is a triangulation of G.
Consider the following algorithm, known as the Elimination Game: given
a graph G = (V,E) and an ordering π = v1, . . . , v|V | of the vertices of G,
repeatedly choose a vertex vi with the lowest index, add edges in order to

6.4 Finding shortest induced paths of given parity 140

make the neighborhood of vi into a clique, and remove vi from the graph.
The output G+

π of the Elimination Game is a triangulation of the input graph
G, and the set Fπ of edges that are added during the Elimination Game are
called fill edges. Note that G+

π = (V,E ∪ Fπ). The total number of fill edges
depends on the order π in which the vertices are considered. If the number of
fill edges is 0, then the order in which the vertices were considered is called a
perfect elimination ordering of G. It is well-known that a graph has a perfect
elimination ordering if and only if it is chordal [121]. An ordering π is called
a minimal elimination ordering if G+

π is a minimal triangulation of G.
Tarjan’s clique separator decomposition algorithm takes as input a con-

nected graph G, and starts by finding a minimal elimination ordering π of the
vertices of G. The algorithm then calculates G+

π by running the Elimination
Game on G and π. For each vertex v of G, the algorithm then computes
C(v) := {w | π(v) > π(w) and vw ∈ E ∪ Fπ}, i.e., the set of neighbors of v
in the graph G+

π that appear after v in the ordering π, where π is interpreted
as a bijection from V to {1, . . . , |V |}. The algorithm repeats the following
decomposition step for each vertex v in increasing order with respect to π: let
A be the vertex set of the connected component of G[V −C(v)] containing v,
and let B := V − (C(v)∪A); if C(v) is a clique of G and B 6= ∅, decompose
G into G′ := G[A ∪ C(v)] and G′′ := G[B ∪ C(v)]; replace G by G′′.

A decomposition step is called successful if a clique separator is found.
Note that such a clique separator is a clique separator of a subgraph of G,
as the size of the graph under consideration decreases with every successful
decomposition step. However, a simple lemma of Gavril [131] implies that
every clique separator found in a successful decomposition step is also a
clique separator of the original input graph G. We point out that in every
successful decomposition step the graph G′ := G[A ∪C(v)] is an atom of G,
i.e., does not contain a clique separator (see also [254]). In other words, in
every successful decomposition step, a new atom of G is obtained.

When Tarjan’s algorithm is run on a graph that has been preprocessed
in the way described in Section 6.3.1, i.e., on a graph G that is clean for two
simplicial vertices s and t, then we can prove another property of a clique
separator found in a successful decomposition step.

Observation 6.27. Let G be a graph that is clean for two simplicial vertices
s and t. Suppose C(v) is a clique separator of a subgraph G′′ of G found in a

6.4 Finding shortest induced paths of given parity 141

successful decomposition step of Tarjan’s algorithm. Then G−C(v) consists
of exactly two components, one containing s and the other containing t.

Proof. As we mentioned before, C(v) is a clique separator of G as a result of
a lemma by Gavril [131], so G − C(v) consists of at least two components.
We first show that s and t cannot belong to the same component. Suppose,
for contradiction, that s and t belong to the same component D of G−C(v).
Let D′ be another component of G − C(v), and let d′ ∈ D′. Suppose there
exists an induced path P from s to t containing d′. Since C(v) is a clique
separator of G−C(v) and d′ is not in the component of G−C(v) containing
both s and t, both the path s

−→
P d′ and the path d′

−→
P t must contain a vertex

of C(v). But then P is not an induced path, since C(v) is a clique of G. This
contradiction shows that d′ is not contained in any induced path from s to t.
By definition, this means that d′ is irrelevant, contradicting the assumption
that G is clean. Hence s and t must belong to two different components D1

and D2 of G− C(v), respectively.
Suppose G − C(v) has another component D3, and let d be a vertex of

D3. Since s, t and d are contained in three different components of G−C(v)
and C(v) is a clique of G, there does not exist any induced path from s to
t containing d. This means that d is irrelevant, contradicting the assump-
tion that G is clean. We conclude that G − C(v) consists of exactly two
components, one containing s and the other containing t.

We now describe an algorithm that allows us to define an ordering on the
atoms of G.

Let G be a graph that is clean for two simplicial vertices s and t. Let
C(v) be the clique separator found in a successful decomposition step, and
let G′ := G[A∪C(v)] be the corresponding atom of G produced in that step,
where A is the vertex set of the connected component of G[V − C(v)] con-
taining v. We define Gi := G′, where the index i ∈ {1, . . . , n} is determined
as follows. By Observation 6.27, G−C(v) contains exactly two components
D1 and D2, where s ∈ V (D1) and t ∈ V (D2). Note that v ∈ A and v /∈ C(v),
which means that v belongs to either D1 or D2. If v belongs to D1, then
we choose i to be the smallest integer from {1, . . . , n} that has not yet been
used. Otherwise we choose i to be the largest integer from {1, . . . , n} that
has not yet been used. We repeat this procedure for each atom G′ created in

6.4 Finding shortest induced paths of given parity 142

a successful decomposition step. The graph G′′ in the last successful decom-
position step is an atom of G, and we define Gi := G′′, where i is the smallest
integer from {1, . . . , n} that has not yet been used. Note that this yields a
clique separator decomposition C of G, where C := {G1, . . . , Gk, G`, . . . , Gn}
for some k < `. For convenience, we relabel the atoms in such a way that
the atoms have consecutive indices, i.e., such that C := {G1, . . . , Gp}, where
p = k+ n− `+ 1. We point out that s belongs to G1 and t belongs to Gp as
a result of Observation 6.27.

Before we prove the main result of this section, we prove one more useful
lemma.

Lemma 6.28. Let G be a graph that is clean for two simplicial vertices s and
t. Let C := {G1, . . . , Gp} be a clique separator decomposition of G obtained by
Tarjan’s decomposition algorithm, where the indices of the atoms have been
determined using the above procedure. Every induced path in G from s to
t passes through each of the atoms G1, . . . , Gp, and passes through them in
increasing order, i.e., passes through Gi before passing through Gj for every
1 ≤ i < j ≤ p.

Proof. Let P be an induced path in G from s to t. We first show that P
contains a vertex of every atom of C. Suppose, for contradiction, that P does
not contain any vertex of some atom Gi ∈ C. Let C be the clique separator
that was found in the successful decomposition step that produced atom Gi.
By Observation 6.27, the graph G − C consists of two components D1 and
D2, where s ∈ V (D1) and t ∈ V (D2). Note that P does not contain a vertex
of C, since C ⊆ V (Gi). Hence the graph G− C contains the path P from s

to t. This contradicts the fact that s and t belong to different components
of G− C. We conclude that P must contain a vertex of every atom of C.

Since s ∈ V (G1), P passes through atom G1 first. Suppose P does not
visit the atoms of C in the order G1, G2, . . . , Gp, and let Gi be the first atom
that P “skips”. Let Gj be the first atom that P visits after leaving atom
Gi−1, j > i. Let C be the clique separator that was found in the successful
decomposition step that produced Gi. By Observation 6.27, the graph G−C
consists of two components D1 and D2, where s ∈ V (D1) and t ∈ V (D2).
From the description of the algorithm used to determine the indices of the
atoms of C, it follows that V (Gj) \ C ⊆ V (D1) would have implied j < i; a

6.4 Finding shortest induced paths of given parity 143

contradiction. Similarly, V (Gi−1)\C ⊆ V (D2) would have implied i < i−1;
a contradiction. Hence V (Gi−1) \ C ⊆ V (D1) and V (Gj) \ C ⊆ V (D2). In
particular, we have s′ ∈ V (D1) and t′ ∈ V (D2), where s′ ∈ V (Gi−1) is the
last vertex of Gi−1 that P visits before visiting Gj , and t′ ∈ V (Gj) is the
first atom that P visits after leaving Gi−1. Note that s′ and t′ are adjacent
vertices of P , and that neither s′ nor t′ is contained in C since C ⊆ V (Gi).
But then the graph G − C contains a path from s to t, using the edge s′t′.
This contradiction to the fact that s and t belong to different components of
G− C finishes the proof of Lemma 6.28.

6.4.3 Shortest paths in claw-free perfect graphs

We are now ready to prove the main result of this section.

Theorem 6.29. Both the Shortest Odd Induced Path problem and the
Shortest Even Induced Path problem can be solved in O(n7) time for
the class of claw-free perfect graphs.

Proof. In order to prove Theorem 6.29, we present an algorithm that solves
both the Shortest Odd Induced Path problem and the Shortest Even

Induced Path problem on claw-free graphs in O(n7) time. The algorithm
takes as input a claw-free perfect graph and two of its vertices s and t.
We first preprocess this input graph by performing the two steps of the
preprocessing procedure described in Section 6.3.1. This way we obtain a
claw-free graph G, such that s and t are simplicial vertices of G, and G is
clean for s and t. The preprocessing phase can be done in O(n5) time by
Lemma 6.14. As a result of Lemma 6.14, in order to prove Theorem 6.29 it
suffices to show that we can solve the two problems on G in O(n7) time.

Next we find a clique separator decomposition of G by using Tarjan’s de-
composition algorithm described in Section 6.4.2. Let C := {G1, . . . , Gp} be
a clique separator decomposition of G obtained by Tarjan’s decomposition al-
gorithm, where the indices of the atoms have been determined using the pro-
cedure described just before Lemma 6.28. We can find such a clique separator
decomposition in O(n3) time by Theorem 6.2. LetXi,i+1 := V (Gi)∩V (Gi+1)
and let X be the set containing all the sets Xi,i+1. It is clear from the descrip-
tion of Tarjan’s algorithm in Section 6.4.2 that every set in X is a non-empty
clique separator of G. As we pointed out just before Lemma 6.28, s belongs

6.4 Finding shortest induced paths of given parity 144

s

X1,2

V2

X2,3

V3 Vp−2

Xp−2,p−1

Vp−1

Xp−1,p

t

Figure 6.6: Structure of the graph G with respect to the clique separator
decomposition C.

to G1 and t belongs to Gp. Since G does not contain irrelevant vertices, we
have s ∈ V (G1) \X1,2 and t ∈ V (Gp) \Xp−1,p.

Note that, in general, a set Xi−1,i might share vertices with the set Xi,i+1,
and possibly with other sets in X . Let us for the moment assume that this is
not the case, i.e., that the sets in X are pairwise disjoint. At the very end of
this proof we will explain why we can make this assumption without loss of
generality. Define X0,1 := ∅, Xp,p+1 := ∅ and Vi := V (Gi) \ (Xi−1,i ∪Xi,i+1)
for i = 1, . . . , p. Let Wi := V1 ∪ · · · ∪ Vi ∪X1,2 ∪ · · · ∪Xi−1,i = V (G1)∪ . . .∪
V (Gi−1)∪(V (Gi)\Xi,i+1) for i = 1, . . . , p−1. See Figure 6.6 for a schematic
representation of graph G with respect to the clique separator decomposition
C.

Claim 1. Let Gi ∈ C. We can solve Shortest Odd Induced Path and
Shortest Even Induced Path in O(n4) time for any induced subgraph of
Gi.

Let G′ be an induced subgraph of one of the atoms Gi ∈ C. The graph Gi is a
claw-free perfect graph without a clique separator, so Gi is either elementary
or peculiar by Theorem 6.8. By Lemma 6.5 and Lemma 6.7 we can decide in
O(n3) time whether Gi is elementary or peculiar. If Gi is peculiar, then Gi
is P6-free by Lemma 6.24. Since every induced subgraph of an elementary
(respectively P6-free) graph is elementary (respectively P6-free), we can solve
Shortest Odd Induced Path and Shortest Even Induced Path for
the graph G′ in O(n4) time as a result of Lemma 6.23 and Lemma 6.25,
respectively. This finishes the proof of Claim 1.

We observe that any induced path from s to t contains either one vertex or

6.4 Finding shortest induced paths of given parity 145

two vertices of each Xi,i+1, since each set Xi,i+1 is a clique. We now restrict
our attention to the graph G1. We claim that all vertices of G1 belong to the
closed neighborhood of s. Suppose there is a vertex v ∈ V (G1) \N [s]. Then
N(s) is a clique separator of G1, contradicting the assumption that G1 is an
atom. Hence we know that for every vertex x ∈ X1,2, there exists only one
induced path from s to x, and it has length 1.

In order to find a shortest odd and a shortest even induced path from
s to any vertex in Xp−1,p, we run the following algorithm for increasing
i = 2, . . . , p − 1. For each vertex v in Xi,i+1 we perform the following two
steps. We state the two steps first, before we describe how to perform them
below.

Step 1. Find a shortest odd induced path from s to v in G[Wi ∪ {v}], or
conclude that such a path does not exist, and find a shortest even induced
path from s to v in G[Wi∪{v}], or conclude that such a path does not exist.

Step 2. For each v′ ∈ Xi,i+1 \ {v}, find a shortest odd induced path from s

to v in G[Wi ∪ {v, v′}] using edge v′v, or conclude that such a path does not
exist, and find a shortest even induced path from s to v in G[Wi ∪ {v, v′}]
using edge v′v, or conclude that such a path does not exist.

To execute Step 1, we act as follows. For all u ∈ Xi−1,i, we find a shortest
odd (even) induced path from u to v in the graph G′ := G[Vi ∪ {u, v}], or
conclude that such a path does not exist. Since G′ is an induced subgraph
of Gi, we can find a shortest odd (even) induced path from u to v in G′

in O(n4) time as a result of Claim 1. Combining those shortest induced
paths of both parities with the shortest induced paths of both parities from
s to u in G[Wi−1 ∪ {u}] yields at most four induced paths from s to v in
G[Wi ∪ {v}]. To check whether there exists a shorter odd or even induced
path from s to v, using two vertices of Xi−1,i, we act as follows. For each
u′ ∈ Xi−1,i \ {u}, we find a shortest odd (even) induced path from u to v in
the graph G[(Vi \NG(u′))∪{u, v}]. We combine those paths of both parities
with the shortest induced paths of both parities from s to u, using edge u′u,
in the graph G[Wi−1 ∪ {u, u′}]. This way we are guaranteed to find both a
shortest odd and a shortest even induced path from s to v in G[Wi ∪ {v}],
unless one of those paths does not exist. For step 2 we perform similar checks
in O(n4) time.

6.5 Conclusion 146

After we have completed both steps for i = p− 1, we have found (if they
exist) shortest odd and shortest even induced paths from s to every vertex in
Xp−1,p, both paths using one and paths using two vertices of Xp−1,p. Recall
that V (G1) ⊆ N [s]. Similarly, we have V (Gp) ⊆ N [t], which means that
there is exactly one induced path from any vertex in Xp−1,p to t, and it has
length 1. This way we find a shortest odd and a shortest even induced path
from s to t, or conclude that such a path does not exist. Since

∑p−1
i=1 |Xi,i+1| ≤

n, we only have to perform the O(n4) procedure for finding shortest induced
paths on O(n3) induced subgraphs of G. Hence the overall time complexity
is O(n7).

What remains is to argue why we may assume that the sets in X are pair-
wise disjoint. Suppose that the algorithm has processed atoms G1, . . . , Gi−1,
and is about to process atom Gi. The algorithm has found the shortest odd
(even) induced paths from s to every vertex in Xi−1,i, using either one or
two vertices of Xi−1,i. After processing atom Gi, the algorithm has extended
those paths to shortest odd (even) induced paths from s to every vertex in
Xi,i+1, using either one or two vertices of Xi,i+1. Suppose Xi−1,i and Xi,i+1

overlap, and let x be in Xi−1,i ∩Xi,i+1. As a result of Lemma 6.28 and the
observation that any induced path can pass through a clique only once, the
paths found for x just before the algorithm starts processing atom Gi are
exactly the same as the paths found after Gi is processed. In other words,
we do not have to perform Steps 1 and 2 for any vertex in Xi−1,i ∩ Xi,i+1,
since it will make no difference to the final solution. That means we can
redefine Xi,i+1 as follows: Xi,i+1 := Xi,i+1 \Xi−1,i. Similar arguments imply
that the same holds for any other set in Xj,j+1 ∈ X with j > i that overlaps
with Xi−1,i. Hence we may assume that the sets in X are pairwise disjoint,
and the clique separator decomposition of G looks like the one sketched in
Figure 6.6.

6.5 Conclusion

We have proved that both the Odd Induced Path problem and the Even

Induced Path problem, and consequently the Parity Path problem, can
be solved in O(n5) time for the class of claw-free graphs. This immediately
implies that we can also decide in polynomial time whether a claw-free graph

6.5 Conclusion 147

contains an odd induced path between every pair of vertices. We also showed
how we can find a shortest induced path of given parity between two specified
vertices of a claw-free perfect graph in O(n7) time. Does there exist a polyno-
mial time algorithm for the Shortest Odd Induced Path and Shortest

Even Induced Path problems for general claw-free graphs? Another inter-
esting question is whether or not there exists a polynomial time algorithm
for the Odd Induced Path and Even Induced Path problems for the
class of planar graphs.

One of Bienstock’s [32] NP-complete problems is to decide whether a
graph contains an odd hole passing through a given vertex. We showed that
this problem, as well as the variant where we want to find an even hole
through a given vertex, can be solved in O(n7) time for the class of claw-
free graphs. Very recently, Shrem et al. [250] obtained a polynomial time
algorithm for detecting a shortest odd hole in a claw-free graph. There are
a number of problems in the literature related to finding holes in graphs.
Checking if a graph has no hole is equivalent to deciding if the graph is
chordal. It is well-known that this problem can be solved in linear time [236].
An interesting related problem is to decide if a graph has an odd hole. The
computational complexity of this problem remains open, even though a seem-
ingly similar problem —deciding if a graph has an even hole— can be solved
in polynomial time [63].

Chapter 7

Finding longest cycles in
claw-free graphs

A preliminary version of this chapter, dealing with finding hamiltonian cycles
in claw-free graphs rather than longest cycles, has appeared in the following
paper.

[50] H.J. Broersma, F.V. Fomin, P. van ’t Hof, and D. Paulusma. Fast ex-
act algorithms for hamiltonicity in claw-free graphs. In: Proceedings of
the 35th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG 2009), volume 5911 of Lecture Notes in Computer
Science, pages 44–53, Springer, 2009.

After looking for induced paths in the previous chapter, we turn our at-
tention to cycles in this chapter. The Hamiltonian Cycle problem, asking
whether or not a graph contains a cycle passing through all its vertices, is a
well-known NP-complete problem. In fact, it was one of the first problems
shown to be NP-complete, as Karp included the problem in the list of 21
assorted combinatorial and graph theoretical problems that he showed to be
NP-complete in his 1972 landmark paper [176], only a year after Cook [78] in-
troduced the concept and identified Satisfiability as the first NP-complete
problem. In this chapter we study the problem of finding a longest cycle in
a graph, which is a more general, and therefore harder, problem than the
Hamiltonian Cycle problem. Like we did in Chapter 6 we restrict the
problem to the class of claw-free graphs. However, unlike the problems stud-

7.1 Background and results 149

ied in the previous chapter, the problem of finding a longest cycle remains
NP-hard under this restriction. We present two exact exponential time algo-
rithms that solve this problem significantly faster than a trivial algorithm,
one using exponential space and one using polynomial space. At the heart of
our algorithms lies a beautiful structural closure concept for claw-free graphs
developed by Ryjáček [238]. We also prove some structural results about
closed trails in a graph, and use those results to obtain fast exact algorithms.

7.1 Background and results

A longest cycle in a graph G is a cycle in G that has the largest number
of vertices among all cycles in G. In this chapter we study the following
problem.

Longest Cycle

Instance: A graph G.
Task: Find a longest cycle in G.

This problem generalizes the well-known NP-complete decision problem
Hamiltonian Cycle (cf. [127]) that asks whether a graph G has a hamilto-
nian cycle, i.e., a cycle passing through all vertices of G. The Hamiltonian

Cycle problem can be seen as a special case of the well-known Traveling

Salesman problem. The input of the latter problem is a complete graph
together with an edge weighting. The goal is to find a hamiltonian cycle
of minimum total weight. Held and Karp [151] present a classic dynamic
programming algorithm that solves the Traveling Salesman problem in
O∗(2n) time and O∗(2n) space for graphs on n vertices. Polynomial space
algorithms for the Hamiltonian Cycle problem were rediscovered sev-
eral times [18, 178, 182]. It is a major and long outstanding open problem
whether the Hamiltonian Cycle problem, and more generally the Trav-

eling Salesman problem, can be solved in O∗(cn) time for some constant
c < 2.

For some graph classes for which the Hamiltonian Cycle, and conse-
quently the Traveling Salesman problem, remains NP-complete, faster
exact algorithms have been designed. For planar graphs, and more generally
for graphs excluding some fixed graph as a minor, the Hamiltonian Cycle

7.1 Background and results 150

problem can be solved in O∗(c
√
n) for some constant c (cf. [93, 94, 265]). The

Traveling Salesman problem can be solved in O∗(1.251n) time for cubic
graphs [170] and in O∗(1.890n) time for graphs with maximum degree 4 [98].
Both algorithms use polynomial space. For graphs with maximum degree 4,
an algorithm with time complexity O∗(1.733n) is known [132], but this algo-
rithm uses exponential space. More generally, Björklund et al. [33] present
an algorithm that solves the Traveling Salesman problem in O∗((2−ε)n)
for graphs with bounded degree, where ε > 0 only depends on the maximum
degree but not on the number of vertices. They show that this bound can
be improved further for regular triangle-free graphs. These algorithms use
exponential space. They also present a O∗((2 − ε)n) time algorithm that
uses polynomial space for bounded degree graphs in which the edges have
bounded integer weights.

Just as we did in Chapter 6, we restrict our attention in this chapter
to the class of claw-free graphs. The Hamiltonian Cycle problem is NP-
complete for claw-free graphs; in fact, the problem remains NP-complete
even on 3-connected cubic planar claw-free graphs [195]. This immediately
implies that the Longest Cycle problem is NP-hard for claw-free graphs
as well. Although this implies that it is unlikely that the problem can be
solved in polynomial time, we present in this chapter two exact algorithms
that solve the Longest Cycle problem on claw-free graphs significantly
faster than in time O∗(2n): our first algorithm uses O∗(1.6818n) time and
exponential space, and our second algorithm uses O∗(1.8878n) time and poly-
nomial space. We give an outline of our algorithms in Section 7.3, where we
show that the problem of finding a longest cycle in a claw-free graph can be
translated into the problem of finding an optimum closed trail (i.e., a closed
trail dominating the largest number of edges) of an associated graph. Two
exact algorithms for finding such an optimum closed trail are presented in
Section 7.4. We start in Section 7.2 by proving several structural properties
of closed trails. These results will be exploited in the subsequent sections to
guarantee the time complexities of our algorithms. We conclude this section
by introducing some additional terminology and notation that will be used
throughout this chapter.

Recall that we defined a graph to have a non-empty vertex set. Hence,
if we say that a particular graph “exists” we mean that its vertex set is non-

7.2 Closed trails of low degeneracy and ordering 151

empty. The maximum degree among the vertices of a graph G is denoted by
∆(G). A graph is called even if all its vertices have even degree. A graph is
called a closed trail if it is a connected even graph. Note that an even graph,
and a closed trail in particular, might consist of a single vertex. A closed
trail that does not consist of a single vertex is called non-trivial; note that
a non-trivial closed trail contains at least three vertices. Let T be a closed
trail of a graph H. An edge e ∈ E(H) is dominated by T if T contains at
least one of the end vertices of e. In this context “dominated” means “edge-
dominated”, and this is the case whenever we speak of domination in this
chapter. Note that, by definition, every edge of a non-trivial closed trail T
is dominated by T itself. For any closed trail T of H, we denote by β(T) the
number of edges of H dominated by T , i.e., β(T) := |E(H) \E(H − V (T))|.
If every edge of H is dominated by T , i.e., if β(T) = |E(H)|, then we say
that T is a dominating closed trail of H. An optimum non-trivial closed trail
or ONCT of H is a non-trivial closed trail of H that dominates at least as
many edges of H as any other non-trivial closed trail of H. A closed trail T
of a graph H is called an optimum closed trail or OCT if β(T) ≥ β(T ′) for
any closed trail T ′ of H. Note that every graph has an OCT, and that an
OCT of H is either an ONCT of H, or a single vertex with degree ∆(H) in
case ∆(H) > β(T) for any non-trivial closed trail T of H.

For any integer k ≥ 1, a graph H is called k-degenerate if every subgraph
of H (including H itself) has a vertex with degree at most k. We say that
H is k-ordered if H allows a vertex ordering v1, . . . , v|V (H)| such that, for
1 ≤ i ≤ |V (H)|, the graph H[{v1, . . . , vi}] is connected and vi has at most k
neighbors in H[{v1 . . . , vi}].

7.2 Closed trails of low degeneracy and ordering

In this section we study structural properties of closed trails. We will use
such properties in the exact algorithms for finding an optimum closed trail
presented in Section 7.4.

A cycle C of a connected graph H is called removable if the graph
H − E(C) is connected, and non-separating if H − V (C) is connected. The
following result is due to Thomassen and Toft [257].

7.2 Closed trails of low degeneracy and ordering 152

Theorem 7.1 ([257]). Every connected graph with minimum degree at least
3 has an induced non-separating cycle.

Theorem 7.1 implies the following result.

Corollary 7.2. Every connected graph with minimum degree at least 3 has
an induced removable cycle.

Proof. Let H be a connected graph with minimum degree at least 3. By
Theorem 7.1, H has an induced non-separating cycle C. Since H − V (C)
is connected, all vertices of V (H) \ V (C) belong to the same component of
H − E(C). Since H has minimum degree at least 3 and C is an induced
cycle, every vertex of C has a neighbor in V (H) \ V (C). Hence H −E(C) is
connected, so C is removable.

Using Corollary 7.2, we can prove the following result.

Lemma 7.3. Every closed trail contains a 2-degenerate spanning closed trail.

Proof. Since a closed trail consisting of a single vertex is 2-degenerate, the
lemma holds for such closed trails. We claim that every non-trivial closed trail
contains a 2-degenerate spanning closed trail. Let H be a counterexample to
this claim with |E(H)| minimum, i.e., H is a non-trivial closed trail which
does not contain a 2-degenerate spanning closed trail. In particular, H itself
is not 2-degenerate. We repeatedly remove vertices from H with degree at
most 2 in the current subgraph of H as long as possible. Let H ′ be the
subgraph of H we obtain this way. Since H is not 2-degenerate, H ′ indeed
exists. Let H1 be a component of H ′. Since H ′ has minimum degree at
least 3, H1 has a removable cycle C by Corollary 7.2. Then C is also a
removable cycle in H, since H is a connected supergraph of H1. Hence
the graph H − E(C) is a spanning non-trivial closed trail of H. Since H
is a counterexample, H − E(C) is not 2-degenerate and H − E(C) does
not contain a 2-degenerate spanning closed trail. But then H − E(C) is a
counterexample to the claim that every non-trivial closed trail contains a
2-degenerate spanning closed trail, contradicting the minimality of H.

The next lemma shows that the notions of degeneracy and ordering are
closely related.

7.2 Closed trails of low degeneracy and ordering 153

Lemma 7.4. Every connected k-degenerate graph is (k+ 1)-ordered, for any
k ≥ 1.

Proof. Let H be a connected k-degenerate graph, and suppose for contra-
diction that H is not (k + 1)-ordered. We repeatedly remove vertices from
H with degree at most k + 1 in the current subgraph of H, until we cannot
remove any vertex with degree at most k + 1 without making the current
subgraph disconnected. Let H ′ be the resulting (connected) subgraph of H.
Since H is not (k+ 1)-ordered, H ′ indeed exists. Let U consist of all vertices
with degree at most k in H ′. By our procedure, every vertex of U is a cut
vertex of H ′, and since H is k-degenerate, U is not empty. Hence H ′ con-
tains at least one cut vertex. Let D be an end-block of H ′, i.e., a maximal
2-connected subgraph of H ′ containing exactly one cut vertex x of H ′. By
our procedure, every vertex of D − x has degree at least k + 2 in H ′, which
means that every vertex of D − x has degree at least k + 1 in D − x. Since
D − x is a subgraph of H, this contradicts the k-degeneracy of H.

It is well-known that a connected graph is 1-degenerate if and only if it
is a tree. It is not hard to see that every tree, and therefore every connected
1-degenerate graph, is 1-ordered. This means that Lemma 7.4 can be slightly
strengthened for k = 1. The following result shows that Lemma 7.4 is best
possible for k ≥ 2.

Proposition 7.5. For any k ≥ 2, there exists a connected k-degenerate graph
that is not k-ordered.

Proof. For any k ≥ 2, let Gk be the graph constructed as follows. Start with
the join of Ck+2 and Kk−1, i.e., the graph obtained from the disjoint union of
a cycle of length k+ 2 and an independent set S on k− 1 vertices by making
every vertex of the cycle adjacent to every vertex of S. Let H be the graph
obtained from this graph by removing one edge cw, where c is a vertex of
the cycle and w is a vertex of S. Take k copies H1, . . . ,Hk of the graph H,
and let c1, . . . , ck denote the copies of vertex c in H1, . . . ,Hk, respectively.
Finally, Gk is obtained by adding a vertex x and edges xc1, . . . , xck. As an
example, the graph G3 is depicted in Figure 7.1.

It is straightforward to verify thatGk is k-degenerate. We claim thatGk is
not k-ordered. For contradiction, suppose Gk is k-ordered. By definition, Gk

7.3 Two exact algorithms for finding a longest cycle 154

xc1

c2

c3

Figure 7.1: The graph G3, which is 3-degenerate but not 3-ordered.

has an ordering v1, . . . , v|V (Gk)| of its vertices such that, for 1 ≤ i ≤ |V (Gk)|,
the graph Gk[{v1, . . . , vi}] is connected and vi has at most k neighbors in
Gk[{v1 . . . , vi}]. Since x is the only vertex of Gk with degree at most k in
Gk, x = v|V (Gk)|. But the fact that x is a cut vertex of Gk implies that
the graph Gk[{v1, . . . , vi}] is not connected for i = |V (Gk)| − 1, yielding the
desired contradiction.

Lemma 7.3 and Lemma 7.4 together imply the following result, which
will be used in the exact algorithms described in the next two sections.

Corollary 7.6. Every graph has a 2-degenerate 3-ordered optimum closed
trail.

Proof. Let T be an optimum closed trail of a graph H, and let S ⊆ E(H)
be the set of edges of H that are dominated by T . By Lemma 7.3, the graph
T contains a 2-degenerate spanning closed trail T ′. Since V (T ′) = V (T),
the set of edges of H dominated by T ′ is exactly the set S. Hence T ′ is an
optimum closed trail of H. Since T ′ is 2-degenerate, T ′ is 3-ordered as a
result of Lemma 7.4.

7.3 Two exact algorithms for finding a longest cycle

In this section we explain our two algorithms that solve the Longest Cycle

problem for a claw-free graph G on n vertices. We assume from now on that
G is connected, since we can treat the components of G separately in case
G is disconnected. We also assume that G contains a longest cycle, i.e., that

7.3 Two exact algorithms for finding a longest cycle 155

G is not a tree. Note that we can check in polynomial time whether G is a
connected graph other than a tree.

For the first, third and fourth step below we do not have to develop any
new theory or algorithms, but can rely on the beautiful existing machinery
from the literature.

Step 1: restrict to the preimage graph H of the closure of G

Since G is claw-free, the set of neighbors of each vertex v in G induces a sub-
graph with at most two components. If this subgraph has two components,
both of them must be cliques. If the subgraph induced by NG(v) is connected
but not complete, we can perform an operation called local completion of G
at v by adding edges joining all pairs of non-adjacent vertices in NG(v). We
recursively repeat the local completion operation, as long as this is possible.
This way we obtain the closure cl(G) of G.

Ryjáček [238] showed that the closure of G is uniquely determined, i.e.,
that the ordering in which one performs the local completions does not mat-
ter. This means we can obtain cl(G) in polynomial time. Ryjáček [238] also
showed that the length of a longest cycle in G equals the length of a longest
cycle in cl(G). In particular, G is hamiltonian if and only if cl(G) is hamil-
tonian. Furthermore he showed that for any claw-free graph G there is a
unique (triangle-free) graph H such that L(H) = cl(G). We can obtain the
preimage graph of a line graph in polynomial time (see e.g. [237]). Hence we
can compute the unique graph H with L(H) = cl(G) in polynomial time.

Step 2: find an OCT of H

Harary and Nash-Williams [146] showed that a hamiltonian cycle in a line
graph of any connected graph on at least three vertices corresponds to a
dominating closed trail of the graph itself. By an easy variation on their
arguments, many researchers have shown that a longest cycle in such a line
graph corresponds to an optimum closed trail of the graph itself. This result,
combined with the results from the previous step, implies that finding a
longest cycle in G corresponds to finding an OCT of H. In Section 7.4 we
present two exact algorithms for finding an OCT of a connected graph with
n edges: one algorithm that uses O∗(1.6818n) time and exponential space,
and one algorithm that uses O∗(1.8878n) time and polynomial space.

Step 3: translate the OCT of H back into a longest cycle in cl(G)

7.4 Two exact algorithms for finding an OCT 156

Let T be the OCT of H that we obtained in Step 2. We construct a longest
cycle in cl(G) by traversing T , picking up the edges (corresponding to vertices
in cl(G)) one by one and inserting dominated edges as soon as an end vertex
of a dominated edge is encountered. For traversing T we use the polynomial
time algorithm that finds a eulerian tour in a connected even graph (cf. [91]).
We point out that in case T consists of a single vertex v, a longest cycle in
cl(G) is any cycle spanning the clique in cl(G) that corresponds to all edges
of H dominated by v.

Step 4: translate the longest cycle in cl(G) into one in G

We can translate the longest cycle in cl(G) obtained in Step 3 into a longest
cycle in G in polynomial time by using the method described by Broersma
and Paulusma [51], who show how to translate a 2-factor of cl(G) into a
2-factor of G. (A 2-factor of G is a spanning subgraph of G in which all
vertices have degree 2.) It is straightforward to adapt this process and apply
it to a single cycle D in cl(G) such that we find, in polynomial time, a cycle
C in G with the same length as D.

We mentioned that the first, third and fourth step above can be performed
in polynomial time. We also mentioned that we will show in Section 7.4 that
the second step can be executed in O∗(1.6818n) time using exponential space,
or in O∗(1.8878n) time using polynomial space. Hence, we have found the
following.

Theorem 7.7. The Longest Cycle problem, and consequently the Hamil-

tonian Cycle problem, for a claw-free graph on n vertices can be solved in
O∗(1.6818n) time, using exponential space. The two problems can also be
solved in O∗(1.8878n) time, using polynomial space.

7.4 Two exact algorithms for finding an OCT

In this section we present two exact algorithms for solving the following
problem.

Optimum Closed Trail (OCT)

Instance: a connected graph H.
Task: find an optimum closed trail of H.

7.4 Two exact algorithms for finding an OCT 157

Both algorithms can be outlined as follows.

Algorithm solving the Optimum Closed Trail problem

Input : a connected graph H
Output : an optimum closed trail of H

Test whether or not H is a tree

If H is a tree, output a vertex v of H with degree ∆(H)
If H is not a tree, find an optimum non-trivial closed trail T of H

Test whether or not β(T) ≥ ∆(H)

If β(T) ≥ ∆(H), output T
If β(T) < ∆(H), output a vertex v of H with degree ∆(H)

The difference between the two algorithms is the way in which they com-
pute an ONCT of H in case H is not a tree. To find an ONCT of a connected
graph H other than a tree, both algorithms start by branching on vertices
of low degree by the same branching procedure, explained in Section 7.4.1.
This way both algorithms obtain a set of subproblems. Each subproblem
has the original graph H as input. However, for some subset of the edges of
H it is already decided whether they will be included in or excluded from
the ONCT. Our first algorithm, described in Section 7.4.2, solves each of the
subproblems using dynamic programming. Our second algorithm, described
in Section 7.4.3, solves each of the subproblems by guessing the remaining
edges of a possible ONCT.

7.4.1 Branching on vertices of low degree

Let H be an instance of the OCT problem, and suppose H is not a tree.
As can be seen in the outline of the algorithms at the start of Section 7.4,
both algorithms find an ONCT of H. In order to find an ONCT of H, both
algorithms start by assigning a so-called parity label `(v) ∈ {0, 1} to each
vertex v of H. Note that if T is an ONCT of H, then dT (v) is even for every
v ∈ V (H). After all, a vertex is either not in T (i.e., dT (v) = 0), or a vertex
has an even number of incident edges in T , since T is a non-trivial closed
trail. Hence we initially set `(v) := 0 for every v ∈ V (H).

7.4 Two exact algorithms for finding an OCT 158

Both algorithms now branch on vertices of degree at most d∗, thus creat-
ing a number of subproblems; more specifically, d∗ = 4 for our first algorithm,
and d∗ = 12 for our second algorithm. The choice of these values of d∗ is
explained in the next sections. During the branching process, the size of the
graphs under consideration decreases, and we might change the `-labels of
certain vertices.

Suppose v is a vertex of degree d ≤ d∗ in H. If `(v) = 0 (respectively
`(v) = 1), then the algorithm branches into 2d−1 subproblems, each subprob-
lem corresponding to a possible way of choosing an even (respectively odd)
number 0 ≤ p ≤ d of edges incident with v that are guessed to be in the
ONCT. We call the chosen edges old trail edges. For each choice W of old
trail edges, we perform the following two operations:

1. set `(w) := `(w) + 1 (mod 2) for every w with vw ∈W ;
2. delete v and all its d incident edges.

Repeat this procedure as long as the remaining graph contains a vertex of
degree at most d∗. Let H ′ be the resulting graph. Then H ′ has minimum
degree d∗ + 1 and each vertex u ∈ V (H ′) has some label `(u) ∈ {0, 1}. Let
E(H) = E(H ′) ∪ R(H ′) ∪W (H ′), where W (H ′) contains all old trail edges
and R(H ′) contains all other edges we removed from H. In the next stage,
edges in W (H ′) will be assumed to be in the ONCT we are looking for,
whereas edges in R(H ′) will be assumed not to be in the ONCT. If there
exists a vertex v ∈ V (H) \ V (H ′) incident with an odd number of old trail
edges, then we discard the subproblem. The reason for this is the fact that
we can never obtain a non-trivial closed trail in such a subproblem, since v
will have odd degree in that trail and that is not possible. Otherwise, we
keep the subproblem and call the tuple (H ′,W (H ′), `) a stage-2 tuple.

Lemma 7.8. The branching phase creates T (n1) = O∗(2
d∗−1

d∗ n1) stage-2 tu-
ples, where n1 is the total number of edges deleted during this phase.

Proof. Since for a vertex v of degree d we remove d edges and create 2d−1

subgraphs, we find T (n1) = 2d−1·T (n1−d), which yields T (n1) = O∗(2
d−1

d
n1).

Since d ≤ d∗, we end up with O∗(2
d∗−1

d∗ n1) stage-2 tuples.

We point out that the time complexity in Lemma 7.8 is O∗(1.6818n1) if
d∗ = 4 and O∗(1.8878n1) if d∗ = 12.

7.4 Two exact algorithms for finding an OCT 159

7.4.2 An O∗(1.6818n) time algorithm

In this section, we start by explaining how the first of our two algorithms
for the OCT problem finds an ONCT of the input graph H in case H is
not a tree. We then prove that our first algorithm for finding an OCT of a
connected graph H is correct, and that it runs in O∗(1.6818n) time.

Let H be an input of the OCT problem other than a tree. In case H
has vertices of degree at most 4, we apply the branching procedure described
in Section 7.4.1. Suppose that during the branching process n1 edges were
deleted (possibly n1 = 0). Then, by Lemma 7.8, O∗(1.6818n1) stage-2 tu-
ples (H ′,W (H ′), `) have been created. Each of these stage-2 tuples will be
processed using the dynamic programming procedure described below.

Let (H ′,W (H ′), `) be a stage-2 tuple. If W (H ′) forms a dominating
closed trail of H, i.e., if every edge of H has at least one end vertex in
common with an edge in W (H ′), then we have found an optimum closed
trail and the algorithm outputs this trail. If this is not the case, then we
enter the dynamic programming phase. In this phase, we consider each
u ∈ V (H ′). We define two labelings `∗ : {u} → {0, 1} with `∗(u) := `(u) and
¯̀ : {u} → {0, 1} with ¯̀(u) := `(u) + 1 (mod 2). We say that ({u}, `∗) is an
option if u is incident with at least one old trail edge. Otherwise ({u}, `∗) is
not an option. Furthermore, for every u ∈ V (H ′), ({u}, ¯̀) is not an option.

Suppose we know for all sets S ⊆ V (H ′) of size at most k and all labelings
`′ : S → {0, 1} whether (S, `′) is an option or not. Then for each set S ⊆
V (H ′) of size k, for each vertex v ∈ V (H ′)\S, and for each {0, 1}-labeling `′

of S ∪ {v}, we do as follows. Let p be the number of old trail edges incident
with v. We consider every possible way of choosing 0 ≤ q ≤ 3 edges incident
with v and a vertex in S. The chosen edges will be referred to as new trail
edges. For each choice N of new trail edges, we set `′(x) := `′(x)+1 (mod 2)
for every x ∈ S with vx ∈ N . We then perform the following three tests.

(1) Check if (S, `′) is an option.
(2) Check if p+ q is even if `′(v) = 0 and odd if `′(v) = 1.
(3) If q = 0, check if there is a path from v to S in H only using old trail

edges.

Only if the answers to tests (1), (2) and (3) are all affirmative, we say that
(S ∪ {v}, `′) is an option. If so, we also check whether

7.4 Two exact algorithms for finding an OCT 160

(4) for each old trail edge e there is a path, consisting of only old trail
edges, connecting e to a vertex in S ∪ {v};

(5) each vertex x in S ∪ {v} has label `′(x) = 0 and each vertex y ∈
V (H ′) \ (S ∪ {v}) incident with an old trail edge has label `(y) = 0;

If the answers to tests (4) and (5) are both affirmative, the algorithm has
detected a non-trivial closed trail T of H (as we prove in Theorem 7.9 below).
We may assume that the algorithm also finds T , since that only requires some
extra “bookkeeping” during the dynamic programming phase; we omitted
the details for clarity of presentation. The algorithm then checks how many
edges of H are dominated by T by computing β(T). If β(T) = |E(H)|,
then T is a dominating closed trail of H. Since every dominating closed
trail is an optimum closed trail, the algorithm outputs T . Otherwise the
algorithm stores T , unless it has already found a non-trivial closed trail T ′

with β(T ′) ≥ β(T) before, in which case T is discarded. If k < |V (H ′)| − 1,
the algorithm repeats the above procedure for all sets S ⊆ V (H ′) of size
k + 1, all vertices v ∈ V (H ′) \ S and all {0, 1}-labelings `′ of S ∪ {v}. If
k = |V (H ′)| − 1, then the algorithm terminates.

We now show that our first algorithm for finding an OCT is correct.

Theorem 7.9 (Correctness). When run on a connected graph H, the algo-
rithm returns an optimum closed trail of H.

Proof. As shown in the outline at the beginning of Section 7.4, the algorithm
starts by checking if the input graph H is a tree. If H is a tree, then every
closed trail of H consists of a single vertex. In particular, an optimum closed
trail of H consists of a single vertex v of degree ∆(H). Hence the algorithm
correctly outputs v in this case. If H is not a tree, then H contains a
non-trivial closed trail; in particular, H contains an ONCT. We show below
that the algorithm in fact finds such an ONCT T of H by executing the
branching and dynamic programming procedures described in Section 7.4.1
and Section 7.4.2, respectively. Since an OCT of H might consist of a single
vertex even if H is not a tree, the ONCT T is not necessarily an OCT of H.
Hence the algorithm checks if a vertex v of maximum degree in H dominates
more edges ofH than T does. If so, then v is an OCT ofH, and the algorithm
correctly outputs v. Otherwise T is both an ONCT and an OCT of H, so
the algorithm correctly outputs T .

7.4 Two exact algorithms for finding an OCT 161

It remains to show that, in case H is not a tree, the algorithm finds
an ONCT T of H by executing the branching and dynamic programming
procedures described in Section 7.4.1 and Section 7.4.2, respectively. Note
that H has an optimum non-trivial closed trail by our assumption that H is
not a tree.

We first show that if the algorithm computes β(T) for a subgraph T of
H, then T is a non-trivial closed trail of H. Only if the algorithm has found
a stage-2 tuple (H ′,W (H ′), `) with some option (S, `) for which the answers
to tests (4) and (5) are both affirmative, it computes β(T) for a subgraph
T of H consisting of all old trail edges in W (H ′) plus all new trail edges
that have been added between the vertices of S. The dynamic programming,
together with tests (3) and (4), ensures that T is connected. Tests (1), (2)
and (5) together with the definition of a stage-2 tuple ensure that T is even.
Hence, every subgraph T of H for which the value of β(T) is computed is
a non-trivial closed trail of H. Note that the algorithm does not compute
β(T) for each non-trivial closed trail T of H, but only for those that can be
“built up” satisfying certain connectivity conditions throughout the dynamic
programming phase.

It remains to show that the algorithm always finds an optimum non-trivial
closed trail T of H. Due to Corollary 7.6 we may assume that T is 3-ordered.
We show that our algorithm stores T , unless it has already stored another
optimum non-trivial closed trail of H before it finds T . Let V ′ consist of all
vertices that are not removed in the branching procedure, so V ′ := V (H ′)
for the graph H ′ in every stage-2 tuple. Let T ′ be the subgraph of T with
V (T ′) = V (T) ∩ V ′. Then there exists a stage-2 tuple (H ′,W (H ′), `) such
that W (H ′) is exactly the set of edges of T that are incident with at least
one vertex in V (T) \ V ′, and such that `(v) = 0 if v ∈ V ′ \ V (T ′), and
`(v) = 0 (respectively `(v) = 1) if v ∈ V (T ′) and v is incident with an even
(respectively odd) number of edges in W (H ′). Since our algorithm considers
all possible stage-2 tuples, it will detect tuple (H ′,W (H ′), `). As T is 3-
ordered, each component of T ′ is 3-ordered. This means that our dynamic
programming procedure, based on the number of ways a vertex can be made
adjacent to a set S with at most three edges, will find a labeling `′ such
that (Ti, `′) is an option for each component Ti of T . As these components
are connected to each other via old trail edges, at some moment (T ′, `) will

7.4 Two exact algorithms for finding an OCT 162

be formed. Then tests (1)-(5) will all be successful and the algorithm will
compute β(T) for the subgraph T . Since T is an optimum non-trivial closed
trail of H, there is no other non-trivial closed trail of H that dominates more
edges of H than T does. Hence the algorithm will store T , unless it has
encountered a non-trivial closed trail T ′ of H with β(T ′) = β(T) before it
found T , in which case the algorithm has stored T ′.

Below we give the overall time complexity of our first algorithm for solving
the OCT problem.

Theorem 7.10 (Running time). The algorithm runs in O∗(1.6818n) time
on a connected graph with n edges.

Proof. From the outline of the algorithm at the beginning of Section 7.4
it is clear that all steps not involving finding an ONCT can be performed
in polynomial time. Hence it suffices to prove that the algorithm finds an
ONCT of a connected graph H other than a tree in O∗(1.6818n) time, where
n = |E(H)|.

We first prove that the dynamic programming procedure presented at the
beginning of Section 7.4.2 runs in O∗(3p) time on any p-vertex graph. Let H ′

be a graph on p vertices. There are
(
p
k

)
sets S ⊆ V (H ′) of cardinality k, each

of those sets has 2k possible labelings `′, and there are
(
k
0

)
+
(
k
1

)
+
(
k
2

)
+
(
k
3

)
=

O(k3) ways to attach a new vertex v to a subset of cardinality k by using
at most 3 edges. Each of the tests (1)-(5) can be done in polynomial time,
and the same holds for computing β(T) for a non-trivial closed trail T of H.
Hence the time complexity of this procedure is

O∗
(p∑
k=1

(
p

k

)
·2k ·O(k3)

)
= O∗

(p∑
k=0

(
p

k

)
·1p−k ·2k

)
= O∗

(
(1+2)p

)
= O∗(3p).

Let H be an instance of the OCT problem having n edges, and suppose
H is not a tree. The algorithm repeatedly branches on vertices of degree at
most d∗ = 4. Let n1 be the number of edges deleted during this branching
phase. Then we obtain O∗(1.6818n1) stage-2 tuples by Lemma 7.8. Let
(H ′,W (H ′), `) be such a stage-2 tuple, where H ′ is a graph of minimum
degree 5 having n2 := n − n1 edges and, say, p vertices. As shown above,

7.4 Two exact algorithms for finding an OCT 163

the dynamic programming procedure uses O∗(3p) time. Since the minimum
degree in H ′ is 5, we obtain n2 ≥ 5p/2, or equivalently p ≤ 2n2/5. Hence
we can process each stage-2 tuple in time O∗(3

2n2
5) = O∗(1.5519n2). This

means that the overall time complexity of our algorithm on a graph H having
n = n1 + n2 edges is

O∗(1.6818n1 · 1.5519n2) = O∗(1.6818n).

The above time complexity is no longer guaranteed if we choose d∗ 6= 4.

Theorem 7.9 and Theorem 7.10 immediately imply the following.

Corollary 7.11. The OCT problem for a connected graph H with n edges
can be solved in O∗(1.6818n) time, using exponential space.

7.4.3 An O∗(1.8878n) Time Algorithm

We describe our second algorithm for solving the OCT problem in the proof
of the following theorem.

Theorem 7.12. The OCT problem for a connected graph H with n edges
can be solved in O∗(1.8878n) time, using polynomial space.

Proof. The second algorithm strongly resembles the first algorithm, described
in Section 7.4.2. The only difference is the way in which the algorithm finds
an ONCT of H in case H is not a tree. In order to prove correctness of
our second algorithm for the OCT problem, it therefore suffices to prove
correctness of the procedure of finding an ONCT of H described below.

Let H be a connected graph other than a tree. The algorithm ex-
ecutes the branching procedure described in Section 7.4.1, but this time
we perform branching on vertices of degree at most d∗ = 12. Suppose we
delete n1 edges during the branching process. By Lemma 7.8, this yields
O∗(211n1/12) = O∗(1.8878n1) stage-2 tuples (H ′,W (H ′), `), where each graph
H ′ has p vertices of degree at least 13 and n2 = n − n1 edges. Note that
n2 ≥ 13p/2, or equivalently p ≤ 2n2/13.

Since we assumedH not to be a tree, H has an ONCT T . By Theorem 7.6
we may assume that T is 2-degenerate. Let T ′ denote the (2-degenerate)
subgraph of T that remains after the branching procedure. Note that T ′ is

7.4 Two exact algorithms for finding an OCT 164

a subgraph of the graph H ′ of some stage-2 tuple (H ′,W (H ′), `). It is well-
known that any 2-degenerate graph on p vertices has at most 2p (or, more
precisely, at most 2p − 3) edges. For every stage-2 tuple (H ′,W (H ′), `), we
check for every possible subset S ⊆ E(H ′) of edges up to cardinality 2p
whether S together with the old trail edges in W (H ′) forms a non-trivial
closed trail T of H. If so, then we compute the number β(T) of edges of H
dominated by T , which can be done in polynomial time. If β(T) = |E(H)|,
then T is a dominating closed trail of H. Since every dominating closed
trail is an optimum closed trail, the algorithm outputs T . Otherwise the
algorithm stores T , unless it has already found a non-trivial closed trail T ′

with β(T ′) ≥ β(T) before, in which case T is discarded. Since we check all
subsets S ⊆ E(H ′) for every stage-2 tuple (H ′,W (H ′), `), we are guaranteed
to find an optimum non-trivial closed trail of H. This proves that our second
algorithm for the OCT problem is correct.

From the outline of the algorithm at the beginning of Section 7.4 it is
clear that all steps not involving finding an ONCT can be performed in
polynomial time. Since the above procedure for finding an ONCT evidently
only uses polynomial space, it remains to determine the time complexity of
this procedure. Using Stirling’s approximation n2! ≈ nn2

2 e−n2
√

2πn2 and the
fact that p ≤ 2n2/13, the total number of checks per stage-2 tuple can be
estimated as follows:

2p∑
k=1

(
n2

k

)
≤ 2p

(
n2

2p

)
≤ 2p

(
n2
4n2
13

)
= O∗

((1
αα(1− α)1−α

)n2
)
,

where α = 4/13, which constitutes O∗(1.8539n2) checks. Since each of those
checks can be performed in polynomial time and the number of stage-2 tuples
we have to process is O∗(1.8878n1), the overall time complexity of our second
algorithm is

O∗(1.8878n1 · 1.8539n2) = O∗(1.8878n) .

If we choose d∗ 6= 12, then this time complexity is no longer guaranteed.

7.5 Conclusion 165

7.5 Conclusion

We presented the first exact algorithms breaking the time complexity bar-
rier of O∗(2n) for the Longest Cycle problem on claw-free graphs. Our
first algorithm uses O∗(1.6818n) time and exponential space, and our second
algorithm uses O∗(1.8878n) time and polynomial space. A natural question
is whether similar approaches can be used for other generalizations of the
Hamiltonian Cycle problem.

Since a hamiltonian cycle is a connected 2-factor, the related NP-hard
problem of determining a 2-factor with the smallest number of components
in a claw-free graphG seems an obvious candidate. It was shown by Broersma
and Paulusma [51] that this problem is equivalent to finding a smallest set
of edge-disjoint stars with at least three edges and non-trivial closed trails
that together dominate all edges of the preimage graph H of the closure of
G. However, the approach in Section 7.4 for finding an OCT of H does not
generalize in a straightforward way to finding such a smallest set of edge-
disjoint stars with at least three edges and non-trivial closed trails. In fact,
we do not believe a similar approach is possible because the counterpart of
Section 7.4 would involve solving the following problem, which turns out to
be NP-hard.

Decomposition in ≥ 3-Stars and Closed Trails (DEC)

Instance: a connected graph H.
Task: find a decomposition (partition) of E(H) into stars with at least three
edges and non-trivial closed trails.

It is not difficult to prove that the DEC problem is NP-hard by a reduction
from the following decision problem, which is known to be NP-complete [200].

Decomposition in ≥ 3-Stars (DECOMP)

Instance: a connected graph H.
Question: can E(H) be decomposed into stars with at least three edges?

Let G be an instance of the DECOMP problem. Replace each edge uv of G
by the gadget illustrated in Figure 7.2, i.e., replace uv by a graph with vertex
set {u, a, b, c, d, e, f, v} and edge set {ua, ab, bc, cd, de, ef, fv, ae, bf}. Then,
considering the edge cd, one readily checks that E(G) has a decomposition
into stars with at least three edges if and only if the newly constructed graph

7.5 Conclusion 166

u v u va

b

c

d

e

f

Figure 7.2: The gadget for replacing the edges of G.

has a decomposition of its edge set into stars with at least three edges and
non-trivial closed trails. This shows that the decision version of the DEC

problem is NP-complete, and hence that the DEC problem is NP-hard. Note
that the construction shows that the DEC problem remains NP-hard even
when restricted to 2-degenerate graphs.

Since a hamiltonian cycle is a connected 2-regular spanning subgraph,
another direction would be to consider the problem of finding a connected
spanning 3-regular subgraph of a claw-free graph. We have no idea how to
generalize our approach in order to solve this problem. We heavily relied
on the closure technique and the relationship between longest cycles in a
claw-free graph G and optimum closed trails in the preimage graph H of the
closure of G. We think it is highly unlikely that there is a natural counterpart
of our approach for finding connected 3-regular spanning subgraphs.

Another interesting open problem is whether we can solve the Traveling

Salesman problem for claw-free graphs in O∗(αn) time for some constant
α < 2. This also requires some new ideas, as our current approach involving
the relationship between longest cycles in a claw-free graph G and optimum
closed trails in the preimage graph H of the closure of G does not suffice.

Can we find an O∗(αn) time algorithm that solves the Hamiltonian

Cycle problem for some constant α < 2 for the class of bipartite graphs,
or equivalently (cf. [215]) for the class of split graphs, or a superclass of
split graphs such as the class of P5-free graphs? As the Hamiltonian Cy-

cle problem is already NP-complete for chordal bipartite graphs [215], this
question is interesting for that class as well. One might also try to design
fast exact algorithms for the Hamiltonian Cycle problem restricted to
superclasses of claw-free graphs such as K1,4-free graphs.

Bibliography

[1] J. Abello, M.R. Fellows, and J.C. Stillwell. On the complexity and
combinatorics of covering finite complexes. Australian Journal of Com-
binatorics, 4:103–112, 1991.

[2] N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Pa-
rameterized algorithms for directed maximum leaf problems. In: Pro-
ceedings of the 34th International Colloquium on Automata, Languages
and Programming (ICALP 2007), volume 4596 of Lecture Notes in
Computer Science, pages 352–262, Springer, 2007.

[3] M. Andersson, J. Gudmundsson, and C. Levcopoulos. Restricted mesh
simplification using edge contraction. In: Proceedings of the 12th An-
nual International Computing and Combinatorics Conference, volume
4112 of Lecture Notes in Computer Science, pages 196–204, Springer,
2006.

[4] D. Angluin. Local and global properties in networks of processors. In:
Proceedings of the 12th Annual ACM Symposium on Theory of Com-
puting (STOC 1980), pages 82–93, 1980.

[5] D. Angluin and A. Gardiner. Finite common coverings of pairs of reg-
ular graphs. Journal of Combinatorial Theory, Series B, 30:184–187,
1981.

[6] D.L. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. The Travel-
ing Salesman Problem: A Computational Study. Princeton University
Press, Princeton, New Jersey, USA, 2006.

BIBLIOGRAPHY 168

[7] D.L. Applegate, R.E. Bixby, V. Chvátal, W. Cook, D.G. Espinoza,
M. Goycoolea, and K. Helsgaun. Certification of an optimal TSP tour
through 85,900 cities. Operations Research Letters, 37(1):11–15, 2009.

[8] C. Arbib and R. Mosca. On (P5, diamond)-free graphs. Discrete Math-
ematics, 250:1–22, 2002.

[9] S.R. Arikati and U.N. Peled. A linear algorithm for the group path
problem on chordal graphs.Discrete Applied Mathematics, 44(1-3):185–
190, 1993.

[10] S.R. Arikati and U.N. Peled. A polynomial algorithm for the parity
path problem on perfectly orientable graphs. Discrete Applied Mathe-
matics, 65(1):5–20, 1996.

[11] S.R. Arikati, C.P. Rangan, and G.K. Manacher. Efficient reduction for
path problems on circular-arc graphs. BIT Numerical Mathematics,
31(2):182–193, 1991.

[12] E.M. Arkin, C.H. Papadimitriou, and M. Yannakakis. Modularity of
cycles and paths in graphs. Journal of the ACM, 38(2):255–274, 1991.

[13] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard
problems restricted to partial k-trees. Discrete Applied Mathematics,
23(1):11–24, 1989.

[14] G. Bacsó, D. Michalak, and Zs. Tuza. Dominating bipartite subgraphs
in graphs. Discussiones Mathematicae Graph Theory, 25:85–94, 2005.

[15] G. Bacsó and Zs. Tuza. Dominating cliques in P5-free graphs. Periodica
Mathematica Hungarica, 21:303–308, 1990.

[16] G. Bacsó and Zs. Tuza. Dominating subgraphs of small diameter. Jour-
nal of Combinatorics, Information and System Sciences, 22(1):51–62,
1997.

[17] S. Baumer and R. Schuler. Improving a probabilistic 3-SAT algorithm
by dynamic search and independent clause pairs. In: Theory and Ap-
plications of Satisfiability Testing, volume 2919 of Lecture Notes in
Computer Science, pages 150–161, Springer, 2003.

BIBLIOGRAPHY 169

[18] E.T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path
problem. Information Processing Letters, 47:203–207, 1993.

[19] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability
of acyclic database systems. Journal of the ACM, 30:479–513, 1983.

[20] R. Beigel and D. Eppstein. 3-coloring in time O(1.3446n): A no-MIS
algorithm. In: Proceedings of the 36th Annual Symposium on Founda-
tions of Computer Science (FOCS 1995), pages 444–452, IEEE Com-
puter Society, 1995.

[21] R. Beigel. Finding maximum independent sets in sparse and general
graphs. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete
Algorithms (SODA 1999), pages 856–857, 1999.

[22] R. Beigel. Improved algorithms 3-coloring, 3-edge-coloring, and con-
straint satisfaction. In: Proceedings of the 12th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2001), pages 329–337, 2001.

[23] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of
Algorithms, 54:168–204, 2005.

[24] L.W. Beineke. Characterizations of derived graphs. Journal of Combi-
natorial Theory, Series B, 9:129–135, 1970.

[25] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren unger-
ade Kreise starr sind. Wissenschaftliche Zeitschrift der Martin-Luther-
Universität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche
Reihe, 10:114, 1961.

[26] M.W. Bern, E.L. Lawler, and A.L. Wong. Linear-time computation
of optimal subgraphs of decomposable graphs. Journal of Algorithms,
8(2):216–235, 1987.

[27] A. Berry, E. Dahlhaus, P. Heggernes, and G. Simonet. Sequential and
parallel triangulating algorithms for Elimination Game and new in-
sights on Minimum Degree. Theoretical Computer Science, 409(3):601–
616, 2008.

BIBLIOGRAPHY 170

[28] A.A. Bertossi. The edge hamiltonian path problem is NP-complete.
Information Processing Letters, 13:157–159, 1981.

[29] A.A. Bertossi. Dominating sets for split and bipartite graphs. Informa-
tion Processing Letters, 19(1):37–40, 1984.

[30] A.A. Bertossi and M.A. Bonuccelli. Hamiltonian circuits in inter-
val graph generalizations. Information Processing Letters, 23:195–200,
1986.

[31] N.L. Biggs. Constructing 5-arc transitive cubic graphs. Journal of the
London Mathematical Society (2), 26:193–200, 1982.

[32] D. Bienstock. On the complexity of testing for odd holes and induced
odd paths. Discrete Mathematics, 90(1):85–92, 1991.

[33] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling
salesman problem in bounded degree graphs. In: Proceedings of the 35th
International Colloquium on Automata, Languages and Programming
(ICALP 2008), volume 5125 of Lecture Notes in Computer Science,
pages 198–209, Springer, 2008.

[34] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via
inclusion-exclusion. SIAM Journal on Computing, 39(2):546–563, 2009.

[35] J.R.S. Blair and B.W. Peyton. An introduction to chordal graphs and
clique trees. In: Sparse Matrix Computations: Graph Theory Issues
and Algorithms, volume 56 of IMA Volumes in Mathematics and its
Applications, pages 1–30, Springer, 1993.

[36] D. Blum. Circularity of graphs. PhD thesis, Virginia Polytechnic Insti-
tute and State University, 1982.

[37] H.L. Bodlaender. Dynamic programming on graphs with bounded
treewidth. In: Proceedings of the 15th International Colloquium on
Automata, Languages and Programming (ICALP 1988), volume 317
of Lecture Notes in Computer Science, pages 105–118, Springer, 1988.

[38] H.L. Bodlaender. The classification of coverings of processor networks.
Journal of Parallel Distributed Computing, 6:166–182, 1989.

BIBLIOGRAPHY 171

[39] H.L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In: Proceedings of the 25th Annual
ACM Symposium on Theory of Computing (STOC 1993), pages 226–
234, 1993.

[40] H.L. Bodlaender. Discovering Treewidth. In: Proceedings of the 31st
Annual Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM 2005), volume 3381 of Lecture Notes in Com-
puter Science, pages 1–16, Springer, 2005.

[41] R. Boliac and V.V. Lozin. An augmenting graph approach to the stable
set problem in P5-free graphs. Discrete Applied Mathematics, 131:567–
575, 2003.

[42] K.S. Booth and J.H. Johnson. Dominating sets in chordal graphs.
SIAM Journal on Computing, 11(1):191–199, 1982.

[43] N. Bourgeois, B. Escoffier and V.Th. Paschos. Approximation of min
coloring by moderately exponential algorithms. Information Processing
Letters, 109(16):950–954, 2009.

[44] A. Brandstädt, J. Engelfriet, H.O. Le, and V.V. Lozin. Clique-width
for 4-vertex forbidden subgraphs. Theory of Computing Systems, 39(4):
561–590, 2006.

[45] A. Brandstädt and C.T. Hoàng. On clique separators, nearly chordal
graphs, and the maximum weight stable set problem. Theoretical Com-
puter Science, 389:295–306, 2007.

[46] A. Brandstädt, T. Klembt, and S. Mahfud. P6- and triangle-free graphs
revisited: structure and bounded clique-width. Discrete Mathematics
and Theoretical Computer Science, 8:173–188, 2006.

[47] A. Brandstädt, V.B. Le, and J. Spinrad. Graph Classes: A Sur-
vey. SIAM Monographs on Discrete Mathematics and Applications 3,
SIAM, Philadelphia, 1999.

[48] A. Brandstädt and R. Mosca. On the structure and stability number of
P5- and co-chair-free graphs. Discrete Applied Mathematics, 132:47–65,
2004.

BIBLIOGRAPHY 172

[49] H.J. Broermsa, F.V. Fomin, P.A. Golovach, and D. Paulusma. Three
complexity results on coloring Pk-free graphs. In: Proceedings of the
20th International Workshop on Combinatorial Algorithms (IWOCA
2009), volume 5875 of Lecture Notes in Computer Science, pages 95–
104, 2009.

[50] H.J. Broersma, F.V. Fomin, P. van ’t Hof, and D. Paulusma. Fast ex-
act algorithms for hamiltonicity in claw-free graphs. In: Proceedings of
the 35th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG 2009), volume 5911 of Lecture Notes in Computer
Science, pages 44–53, Springer, 2009.

[51] H.J. Broersma and D. Paulusma. Computing sharp 2-factors in claw-
free graphs. In: Proceedings of the 33th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2008), volume
5162 of Lecture Notes in Computer Science, pages 193–204, Springer,
2008.

[52] A.E. Brouwer and H.J. Veldman. Contractibility and NP-completeness.
Journal of Graph Theory, 11:71–79, 1987.

[53] D. Bruce, C.T. Hoàng, and J. Sawada. A certifying algorithm for 3-
colorability of P5-free graphs. In: Proceedings of the 20th International
Symposium on Algorithms and Computation (ISAAC 2009), volume
5878 of Lecture Notes in Computer Science, pages 594–604, Springer,
2009.

[54] T. Brueggemann and W. Kern. An improved deterministic local search
algorithm for 3-SAT. Theoretical Computer Science, 329:303–313, 2004.

[55] P. Buneman. The recovery of trees from measures of dissimilarity. In:
Mathematics in the Archaeological and Historical Sciences, pages 387–
395, Edinburgh University Press, Edinburgh, 1972.

[56] P. Buneman. A characterization of rigid circuit graphs. Discrete Math-
ematics, 9:205–212, 1974.

[57] J.M. Byskov. Enumerating maximal independent sets with applications
to graph colouring. Operations Research Letters, 32:547–556, 2004.

BIBLIOGRAPHY 173

[58] J. Chalopin, Y. Métivier, and W. Zielonka. Local computations in
graphs: the case of cellular edge local computations. Fundamenta In-
formaticae, 74:85–114, 2006.

[59] L.S. Chandran and F. Grandoni. Refined memorization for vertex
cover. Information Processing Letters, 93:125–131, 2005.

[60] S. Cheng, T. Dey, and S. Poon. Hierarchy of surface models and irre-
ducible triangulations. Computational Geometry Theory and Applica-
tions, 27:135–150, 2004.

[61] J. Chen, I.A. Kanj, and W. Jia. Vertex cover: further observations and
further improvements. Journal of Algorithms, 41:280–301, 2001.

[62] M. Chudnovsky, G. Cornuéjols, X. Liu, P.D. Seymour, and K. Vušković.
Recognizing Berge Graphs. Combinatorica, 25(2):143–186, 2005.

[63] M. Chudnovsky, K. Kawarabayashi, and P.D. Seymour. Detecting even
holes. Journal of Graph Theory, 48(2):85–111, 2005.

[64] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The
Strong Perfect Graph Theorem. Annals of Mathematics, 164:51–229,
2006.

[65] M. Chudnovsky and P.D. Seymour. The structure of claw-free graphs.
Surveys in Combinatorics 2005, volume 327 of London Mathematical
Society Lecture Note Series, pages 153–171, 2005.

[66] M. Chudnovsky and P.D. Seymour. Claw-free graphs I. Orientable pris-
matic graphs. Journal of Combinatorial Theory, Series B, 97:867–901,
2007.

[67] M. Chudnovsky and P.D. Seymour. Claw-free graphs II. Non-orientable
prismatic graphs. Journal of Combinatorial Theory, Series B, 98:249–
290, 2008.

[68] M. Chudnovsky and P.D. Seymour. Claw-free graphs III. Circular in-
terval graphs. Journal of Combinatorial Theory, Series B, 98:812–834,
2008.

BIBLIOGRAPHY 174

[69] M. Chudnovsky and P.D. Seymour. Claw-free graphs IV. Decomposi-
tion theorem. Journal of Combinatorial Theory, Series B, 98:839–938,
2008.

[70] M. Chudnovsky and P.D. Seymour. Claw-free graphs V. Global struc-
ture. Journal of Combinatorial Theory, Series B, 98:1373–1410, 2007.

[71] M. Chudnovsky and P.D. Seymour. Claw-free graphs VI. Coloring
claw-free graphs. Submitted for publication, manuscript available at
http://www.columbia.edu/∼mc2775/publications.html.

[72] M. Chudnovsky and P.D. Seymour. Claw-free graphs VII. Quasi-
line graphs. Submitted for publication, manuscript available at
http://www.columbia.edu/∼mc2775/publications.html.

[73] M. Chudnovsky and P.D. Seymour. The three-in-a-tree prob-
lem. Combinatorica, to appear, manuscript available at
http://www.columbia.edu/∼mc2775/publications.html.

[74] M. Chudnovsky and P.D. Seymour. Three-colourable perfect graphs
without even pairs. Submitted for publication, manuscript available at
http://www.columbia.edu/∼mc2775/publications.html.

[75] F.R.K. Chung and D. Mumford. Chordal completions of planar graphs.
Journal of Combinatorial Theory, Series B, 62(1):96–106, 1994.

[76] V. Chvátal and N. Sbihi. Recognizing claw-free perfect graphs. Journal
of Combinatorial Theory, Series B, 44:154–176, 1988.

[77] J. Cong and S.K. Lim. Edge separability-based circuit clustering with
application to multilevel circuit partitioning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 23:346–
357, 2004.

[78] S.A. Cook. The complexity of theorem proving procedures. In: Pro-
ceedings of the 3rd Annual ACM Symposium of Theory of Computing
(STOC 1971), pages 151–158, 1971.

[79] W. Cook, D.G. Espinoza, and M. Goycoolea. Computing with domino-
parity inequalities for the travelling saleman problem (TSP). IN-
FORMS Journal on Computing, 19(3), 356–365, 2007.

BIBLIOGRAPHY 175

[80] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. Second edition, MIT Press/McGraw-Hill, 2001.

[81] D.G. Corneil and J. Fonlupt. Stable set bonding in perfect graphs and
parity graphs. Journal of Combinatorial Theory, Series B, 59:1–14,
1993.

[82] D.G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement re-
ducible graphs. Discrete Applied Mathematics, 3:163–174, 1981.

[83] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm
for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[84] B. Courcelle. The monadic second-order logic of graphs I. Recognizable
sets of finite graphs. Information and Computation, 85:12–75, 1990.

[85] M.B. Cozzens and L.L. Kelleher. Dominating cliques in graphs.Discrete
Mathematics, 86:101–116, 1990.

[86] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approxima-
tion of weighted set cover. Information Processing Letters, 109(16):957–
961, 2009.

[87] V. Dahllöf and P. Jonsson. An algorithm for counting maximum
weighted independent sets and its applications. In: Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2002), pages 292–298, 2002.

[88] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-
padimitriou, P. Raghavan, and U. Schöning. A deterministic 2 − 2

k+1

algorithm for k-SAT based on local search. Theoretical Computer Sci-
ence, 289(1):69–83, 2002.

[89] E.D. Demaine and M. Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Computer Journal, 51(3):292–302, 2008.

[90] N. Derhy and C. Picouleau. Finding induced trees. Discrete Applied
Mathematics, 157:3552–3557, 2009.

[91] R. Diestel. Graph Theory. Third edition, Springer-Verlag Heidelberg,
2005.

BIBLIOGRAPHY 176

[92] G.A. Dirac. On rigid circuit graphs. Abhandlungen Mathematischen
Seminar Universität Hamburg, 25:71–76, 1961.

[93] F. Dorn, F.V. Fomin, and D.M. Thilikos. Catalan structures and dy-
namic programming on H-minor-free graphs. In: Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), pages 631–640, 2008.

[94] F. Dorn, E. Penninkx, H. Bodlaender, and F.V. Fomin. Efficient exact
algorithms on planar graphs: Exploiting sphere cut branch decompo-
sitions. In: Proceedings of the 13th Annual European Symposium on
Algorithms (ESA 2005), volume 3669 of Lecture Notes in Computer
Science, pages 95–106, Springer, 2005.

[95] R.G. Downey and M.R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science, Springer, 1999.

[96] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathemat-
ics, 17:449–467, 1965.

[97] D. Eppstein. The traveling salesman problem for cubic graphs. In:
Proceedings of the 8th Workshop on Algorithms and Data Structures
(WADS 2003), volume 2748 of Lecture Notes in Computer Science,
pages 307–318, Springer, 2003.

[98] D. Eppstein. The traveling salesman problem for cubic graphs. Journal
of Graph Algorithms and Applications, 11:61–81, 2007.

[99] M.G. Everett and S. Borgatti. Role colouring a graph. Mathematical
Social Sciences, 21:183–188, 1991.

[100] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray,
O. Porto, and B.A. Reed. Path parity and perfection. Discrete Mathe-
matics, 165-166:233–252, 1997.

[101] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray,
O. Porto, B.A. Reed. In: Perfect Graphs, pages 67–92, Wiley, 2001.

[102] R. Faudree, E. Flandrin, and Z. Ryjáček. Claw-free graphs — A survey.
Discrete Mathematics, 164:87–147, 1997.

BIBLIOGRAPHY 177

[103] M.R. Fellows, J. Kratochvíl, M. Middendorf, and F. Pfeiffer. The com-
plexity of induced minors and related problems. Algorithmica, 13:266–
282, 1995.

[104] J. Fiala, M. Kamiński, B. Lidický, and D. Paulusma. The k-
in-a-path problem for claw-free graphs. In: Proceedings of the
27th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2010), pages 371–382, 2010, available at
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2469.

[105] J. Fiala and J. Kratochvíl. Complexity of partial covers of graphs. In:
Proceedings of the 12th International Symposium on Algorithms and
Computation (ISAAC 2001), volume 2223 of Lecture Notes in Com-
puter Science, pages 537–549, Springer, 2001.

[106] J. Fiala and J. Kratochvíl. Partial covers of graphs. Discussiones Math-
ematicae Graph Theory, 22:89–99, 2002.

[107] J. Fiala, J. Kratochvíl, and T. Kloks. Fixed-parameter complexity of
λ-labelings. Discrete Applied Mathematics, 113:59–72, 2001.

[108] J. Fiala and D. Paulusma. A complete complexity classification of
the role assignment problem. Theoretical Computer Science, 349:67–
81, 2005.

[109] J. Fiala and D. Paulusma. Comparing universal covers in polynomial
time. Theory of Computing Systems, 46:620–635, 2010.

[110] C.M.H. de Figueiredo, J.G. Gimbel, C.P. Mello, and J.L. Szwarcfiter.
Even and odd pairs in comparability and in P4-comparability graphs.
Discrete Applied Mathematics, 91(1-3):293–297, 1999.

[111] S. Földes and P.L. Hammer. Split graphs. In: Proceedings of the 8th
South-Eastern Conference on Combinatorics, Graph Theory and Com-
puting, volume 19 of Congressus Numerantium, pages 311–315, Utilitas
Mathematica, 1977.

[112] F.V. Fomin, P.A. Golovach, and D.M. Thilikos. Contraction bidimen-
sionality: the accurate picture. In: Proceedings of the 17th Annual Eu-

BIBLIOGRAPHY 178

ropean Symposium on Algorithms (ESA 2009), volume 5757 of Lecture
Notes in Computer Science, pages 706–717, Springer, 2009.

[113] F.V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer
approach for the analysis of exact algorithms. Journal of the ACM,
56(5):1–32, 2009.

[114] F.V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in
design and analysis of exact (exponential) algorithms. Bulletin of the
EATCS, 87:47–77, 2005.

[115] F.V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a
simple O(20.288n) Independent Set algorithm. In: Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2006), 18–25, 2006.

[116] F.V. Fomin, F. Grandoni, and D. Kratsch. Solving connected domi-
nating set faster than 2n. Algorithmica, 52(2):153–166, 2008.

[117] F.V. Fomin and D. Kratsch. Exact Algorithms. In preparation (personal
communication).

[118] J. Fonlupt and J.P. Uhry. Transformations which preserve perfectness
and H-perfectness of graphs. Annals of Discrete Mathematics, 16:83–
85, 1982.

[119] J.-L. Fouquet, V. Giakoumakis, F. Maire, and H. Thuillier. On graphs
without P5 and P5. Discrete Mathematics, 146:33–44, 1995.

[120] J.-L. Fouquet, V. Giakoumakis, and J.-M. Vanherpe. Bipartite graphs
totally decomposable by canonical decomposition. International Jour-
nal of Foundations of Computer Science, 10(4):513–534, 1999.

[121] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15:835–855, 1965.

[122] M. Fürer, S. Gaspers, and S.P. Kasiviswanathan. An exponential
time 2-approximation algorithm for Bandwidth. In: Proceedings of the
4th International Workshop on Parameterized and Exact Computation

BIBLIOGRAPHY 179

(IWPEC 2009), volume 5917 of Lecture Notes in Computer Science,
pages 173–184, Springer, 2009.

[123] P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique
trees. In: Proceedings of the 21st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 1995), volume 1017 of
Lecture Notes in Computer Science, pages 358–371, Springer, 1995.

[124] P. Galinier and A. Hertz. A survey of local search methods for graph
coloring. Computers & Operations Research, 33:2547–2562, 2006.

[125] M.R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete ge-
ometric problems. In: Proceedings of the 8th Annual ACM Symposium
on Theory of Computing (STOC 1976), pages 10–22, 1976.

[126] M.R. Garey, R.L. Graham, D.S. Johnson, and D.E. Knuth. Complexity
results for bandwidth minimization. SIAM Journal on Applied Mathe-
matics, 34:477–495, 1978.

[127] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., New York,
1979.

[128] S. Gaspers and M. Liedloff. A branch-and-reduce algorithm for find-
ing a minimum independent dominating set in graphs. In: Proceedings
of the 32nd International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2006), volume 4271 of Lecture Notes in Com-
puter Science, pages 78–89, Springer, 2006.

[129] F. Gavril. Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques and maximum independent set of a chordal
graph. SIAM Journal on Computing, 1:180–187, 1972.

[130] F. Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16:47–56,
1974.

[131] F. Gavril. Algorithms on clique separable graphs. Discrete Mathemat-
ics, 19:159–165, 1977.

BIBLIOGRAPHY 180

[132] H. Gebauer. On the number of hamilton cycles in bounded degree
graphs. In: Proceedings of the 4th Workshop on Analytic and Com-
binatorics (ANALCO 2008), pages 241–248, SIAM, 2008.

[133] A. George and J.W.H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, New Jersey, 1981.

[134] M.U. Gerber, A. Hertz, and D. Schindl. P5-free augmenting graphs
and the maximum stable set problem. Discrete Applied Mathematics,
132:109–119, 2004.

[135] M.U. Gerber and V.V. Lozin. On the stable set problem in special
P5-free graphs. Discrete Applied Mathematics, 125:215–224, 2003.

[136] V. Giakoumakis and J.M. Vanherpe. Linear time recognition and opti-
mizations for weak-bisplit graphs, bi-cographs and bipartite P6-free
graphs. International Journal of Foundations of Computer Science,
14:107–136, 2003.

[137] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Second
edition, Annals of Discrete Mathematics 57, Elsevier, North Holland,
2004.

[138] M.C. Golumbic and A.N. Trenk. Tolerance graphs. Cambridge Univer-
sity Press, Cambridge, 2003.

[139] S. Goodman and S. Hedetniemi. Sufficient conditions for a graph to be
hamiltonian. Journal of Combinatorial Theory, Series B, 16:175–180,
1974.

[140] R.J. Gould and M.S. Jacobson. Forbidden subgraphs and hamiltonian
properties in graphs. Discrete Mathematics, 42(2-3):189–196, 1982.

[141] F. Grandoni. A note on the complexity of mimimum dominating set.
Journal of Discrete Algorithms, 4:209–214, 2006.

[142] C. Gray, F. Kammer, M. Löffler, and R.I. Silveira. Removing local
extrema from imprecise terrains. In: Abstracts of the 26th European
Workshop on Computational Geometry (EuroCG 2010), full version
available at http://arxiv1.library.cornell.edu/abs/1002.2580.

BIBLIOGRAPHY 181

[143] M. Habib and C. Paul. A simple linear time algorithm for cograph
recognition. Discrete Applied Mathematics, 145:183-197, 2005.

[144] L. Hagen and A.B. Kahng. New spectral methods for ratio cut parti-
tioning and clustering. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 11(9):1074–1085, 1992.

[145] F. Harary. Graph Theory. Addison-Wesley, Reading MA, 1969.

[146] F. Harary and C. St. J.A. Nash-Williams. On eulerian and hamiltonian
graphs and line graphs. Canadian Mathematical Bulletin, 8:701–709,
1965.

[147] F. Harary and R.Z. Norman. Some properties of line digraphs. Rendi-
conti del Circulo Mathematico di Palermo, 9:161–169, 1960.

[148] D. Harel and Y. Koren. On clustering using random walks. In: Proceed-
ings of the 21st Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2001), volume 2245 of Lecture
Notes in Computer Science, pages 18–41, Springer, 2001.

[149] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathemat-
ica, 182(1):105–142, 1999.

[150] P. Heggernes, D. Lokshtanov, R. Mihai, and C. Papadopoulos.
Cutwidth of split graphs, threshold graphs, and proper interval graphs.
In: Proceedings of the 34th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2008), volume 5344 of Lecture
Notes in Computer Science, pages 218–229, Springer, 2008.

[151] M. Held and R.M. Karp. A dynamic programming approach to se-
quencing problems. Journal of SIAM, 10:196–210, 1962.

[152] C.T. Hoàng, M. Kamiński, V.V. Lozin, J. Sawada, and X. Shu. Decid-
ing k-colorability of P5-free graphs in polynomial time. Algorithmica,
57:74–81, 2010.

[153] C.T. Hoàng and V.B. Le. Recognizing perfect 2-split graphs. SIAM
Journal on Discrete Mathematics, 13(1):48–55, 2000.

BIBLIOGRAPHY 182

[154] C. Hoede and H.J. Veldman. Contraction theorems in Hamiltonian
graph theory, Discrete Mathematics, 34:61–67, 1981.

[155] P. van ’t Hof, M. Kamiński, and D. Paulusma. Finding induced paths
of given parity in claw-free graphs. In: Proceedings of the 35th Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2009), volume 5911 of Lecture Notes in Computer Science, pages
341–352, Springer, 2009.

[156] P. van ’t Hof, M. Kamiński, D. Paulusma, S. Szeider, and D.M. Thi-
likos. On contracting graphs to fixed pattern graphs. In: Proceedings
of the 36th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2010), volume 5901 of Lecture
Notes in Computer Science, pages 503–514, Springer, 2010.

[157] P. van ’t Hof and D. Paulusma. A new characterization of P6-free
graphs. In: Proceedings of the 14th Annual International Computing
and Combinatorics Conference (COCOON 2008), volume 5092 of Lec-
ture Notes in Computer Science, pages 415–424, Springer, 2008.

[158] P. van ’t Hof and D. Paulusma. A new characterization of P6-free
graphs. Discrete Applied Mathematics, 158(7):731–740, 2010.

[159] P. van ’t Hof, D. Paulusma, and J.M.M. van Rooij. Computing role as-
signments of chordal graphs. In: Proceedings of the 17th International
Symposium on Fundamentals of Computation Theory (FCT 2009),
volume 5699 of Lecture Notes in Computer Science, pages 193–204,
Springer, 2009.

[160] P. van ’t Hof, D. Paulusma, and G.J. Woeginger. Partitioning graphs
into connected parts. In: Proceedings of the 17th International Com-
puter Science Symposium in Russia (CSR 2009), volume 5675 of Lec-
ture Notes in Computer Science, pages 143–154, Springer, 2009.

[161] P. van ’t Hof, D. Paulusma, and G.J. Woeginger. Partitioning graphs
into connected parts. Theoretical Computer Science, 410:4834–4843,
2009.

BIBLIOGRAPHY 183

[162] T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A prob-
abilistic 3-SAT algorithm further improved. In: Proceedings of the
19th Symposium on Theoretical Aspects of Computer Science (STACS
2002), volume 2285 of Lecture Notes in Computer Science, pages 193–
202, Springer, 2002.

[163] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on
Computing, 10:718–720, 1981.

[164] E. Horowitz and S. Sahni. Computing partitions with applications to
the knapsack problem. Journal of the ACM, 21:277–292, 1974.

[165] W.-L. Hsu. How to color claw-free perfect graphs. Annals of Discrete
Mathematics, 11:189–197, 1981.

[166] W.-L. Hsu. Recognizing planar perfect graphs. Journal of the ACM,
34(2):255–288, 1987.

[167] W.-L. Hsu and G.L. Nemhauser. Algorithms for minimum covering
by cliques and maximum clique in claw-free perfect graphs. Discrete
Mathematics, 37:181–191, 1981.

[168] R.Z. Hwang, R.C. Chang, and R.C.T. Lee. The searching over separa-
tors strategy to solve some NP-hard problems in subexponential time.
Algorithmica, 9:398–423, 1993.

[169] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? In: Proceedings of the 39th Annual Sympo-
sium on Foundations of Computer Science (FOCS 1998), pages 653–
663, IEEE Computer Society, 1998.

[170] K. Iwama and T. Nakashima. An improved exact algorithm for cubic
graph TSP. In: Proceedings of the 13th Annual International Comput-
ing and Combinatorics Conference (COCOON 2007), volume 4598 of
Lecture Notes in Computer Science, pages 108–117, Springer, 2007.

[171] K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In: Pro-
ceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2004), pages 328–329, 2004.

BIBLIOGRAPHY 184

[172] T. Jian. An O(20.304n) algorithm for solving Maximum Independent
Set problem. IEEE Transactions on Computers, 35:847–851, 1986.

[173] F. Kammer and T. Tholey. The complexity of minimum convex col-
oring. In: Proceedings of the 19th International Symposium on Algo-
rithms and Computation (ISAAC 2008), volume 5369 of Lecture Notes
in Computer Science, pages 16–27, Springer, 2008.

[174] I.A. Kanj and D. Kratsch. Convex recolorings revisited: complexity
and exact algorithms. In: Proceedings of the 15th International Com-
puting and Combinatorics Conference (COCOON 2009), volume 5609
of Lecture Notes in Computer Science, pages 388–397, 2009.

[175] H. Kaplan, R. Shamir, and R.E. Tarjan. Tractability of parameterized
completion problems on chordal, strongly chordal, and proper interval
graphs. SIAM Journal on Computing, 28(5):1906–1922, 1999.

[176] R.M. Karp. Reducibility among combinatorial problems. In: Complex-
ity of Computer Computations, pages 85–103, Plenum Press, New York,
1972.

[177] R.M. Karp. On the complexity of combinatorial problems. Networks,
5:45–68, 1975.

[178] R.M. Karp. Dynamic programming meets the principle of inclusion and
exclusion. Operations Research Letters, 1:49–51, 1982.

[179] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing,
20:359–392, 1999.

[180] A. King and B. Reed. Bounding χ in terms of ω and δ for quasi-line
graphs. Journal of Graph Theory, 59:215–228, 2008.

[181] D.J. Kleitman and R.V. Vohra. Computing the bandwidth of interval
graphs. SIAM Journal on Discrete Mathematics, 3(3):373–375, 1990.

[182] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach
to the traveling salesman problem. In: Proceedings of the ACM annual
conference (ACM 1977), pages 294–300, ACM Press, 1977.

BIBLIOGRAPHY 185

[183] D. Král’, J. Kratochvíl, Zs. Tuza and G.J. Woeginger. Complexity of
coloring graphs without forbidden induced subgraphs. In: Proceedings
of the 28th Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 2001), volume 2204 of Lecture Notes in Computer Science,
pages 254–262, 2001.

[184] J. Kratochvíl, A. Proskurowski, J.A. Telle. Covering regular graphs.
Journal of Combinatorial Theory, Series B, 71:1–16, 1997.

[185] O. Kullmann. Worst-case analysis, 3-SAT decisions, and lower bounds:
Approaches for improved SAT algorithms. In: Satisfiability Problem:
Theory and Applications, volume 35 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 261–313, 1997.

[186] O. Kullmann. New methods for 3-SAT decision and worst case analysis.
Theoretical Computer Science, 223:1–72, 1999.

[187] A.S. LaPaugh and C.H. Papadimitriou. The even-path problem for
graphs and digraphs. Networks, 14:507–513, 1984.

[188] M. Las Vergnas. A note on matchings in graphs. Cahiers du Centre
d’Études de Recherche Opérationnelle, 17(2-3-4):257–260, 1975.

[189] E.L. Lawler. A note on the complexity of the chromatic number prob-
lem. Information Processing Letters, 5:66–67, 1976.

[190] V.B. Le, B. Randerath, and I. Schiermeyer. On the complexity of 4-
coloring graphs without long induced paths. Theoretical Computer Sci-
ence, 389(1-2):330–335, 2007.

[191] H. Lerchs. On cliques and kernels. Technical report, Department of
Computer Science, University of Toronto, 1971.

[192] B. Lévêque, D.Y. Lin, F. Maffray, and N. Trotignon. Detecting induced
subgraphs. Discrete Applied Mathematics, 157(17):3540–3551, 2009.

[193] A. Levin, D. Paulusma, and G.J. Woeginger. The computational com-
plexity of graph contractions I: polynomially solvable and NP-complete
cases. Networks, 51:178–189, 2008.

BIBLIOGRAPHY 186

[194] A. Levin, D. Paulusma, and G.J. Woeginger. The computational com-
plexity of graph contractions II: two tough polynomially solvable cases.
Networks, 52:32–56, 2008.

[195] M. Li, D.G. Corneil, and E. Mendelsohn. Pancyclicity and NP-
completeness in planar graphs. Discrete Applied Mathematics, 98:219–
225, 2000.

[196] X. Li and W. Zang. A combinatorial algorithm for minimum weighted
colorings of claw-free perfect graphs. Journal of Combinatorial Opti-
mization, 9(4):331–347, 2005.

[197] C. Linhares Sales and F. Maffray. Even pairs in claw-free perfect graphs.
Journal of Combinatorial Theory, Series B, 74:169–191, 1998.

[198] J. Liu and H. Zhou. Dominating subgraphs in graphs with some for-
bidden structures. Discrete Mathematics, 135:163–168, 1994.

[199] J. Liu, Y. Peng, and C. Zhao. Characterization of P6-free graphs. Dis-
crete Applied Mathematics, 155:1038–1043, 2007.

[200] Z. Lonc. On the complexity of some edge-partition problems for graphs.
Discrete Applied Mathematics, 70:177–183, 1996.

[201] L. Lovasz. Coverings and colorings of hypergraphs. In: Proceedings of
the 4th Southeastern Conference on Combinatorics, Graph Theory, and
Computing, pages 3–12, Utilitas Mathematica, 1973.

[202] V.V. Lozin. Stability in P5- and banner-free graphs. European Journal
of Operational Research, 125:292–297, 2000.

[203] V.V. Lozin and R. Mosca. Maximum independent sets in subclasses of
P5-free graphs. Information Processing Letters, 109:319–324, 2009.

[204] F. Maffray. Stable sets in k-colorable P5-free graphs. Information Pro-
cessing Letters, 109(23-24):1235–1237, 2009.

[205] F. Maffray and B.A. Reed. A description of claw-free perfect graphs.
Journal of Combinatorial Theory, Series B, 75:134–156, 1999.

BIBLIOGRAPHY 187

[206] N.V.R. Mahadev and U.N. Peled. Threshold graphs and related topics.
North-Holland, Amsterdam, 1995.

[207] D. Marx. Graph colouring problems and their applications in schedul-
ing. Periodica Polytechnica Electrical Engineering, 48(1):11–16, 2004.

[208] H. Meyniel. A new property of critical imperfect graphs and some con-
sequences. European Journal of Combinatorics, 8:313–316, 1987.

[209] B. Monien and E. Speckenmeyer. Solving satisfiablility in less than 2n

steps. Discrete Applied Mathematics, 10:287–295, 1985.

[210] R. Mosca. Polynomial algorithms for the maximum stable set problem
on particular classes of P5-free graphs. Information Processing Letters,
61:137–143, 1997.

[211] R. Mosca. Stable sets in certain P6-free graphs. Discrete Applied Math-
ematics, 92:177–191, 1999.

[212] R. Mosca. Some results on maximum stable sets in certain P5-free
graphs. Discrete Applied Mathematics, 132:175–183, 2004.

[213] R. Mosca. Some observations on maximum weight stable sets in certain
P5-free graphs. European Journal of Operational Research, 184:849–
859, 2008.

[214] R. Mosca. Independent sets in (P6, diamond)-free graphs. Discrete
Mathematics and Theoretical Computer Science, 11(1):125–140, 2009.

[215] H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete
Mathematics, 156:291–298, 1996.

[216] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006.

[217] R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover
further improved. In: Proceedings of the 16th International Symposium
on Theoretical Aspects of Computer Science (STACS 1999), volume
1563 of Lecture Notes in Computer Science, pages 561–570, Springer,
1999.

BIBLIOGRAPHY 188

[218] C.H. Papadimitriou. Euclidean TSP is NP-complete. Theoretical Com-
puter Science, 4:237–244, 1977.

[219] C.H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[220] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation
and complexity classes. Journal of Computer and System Sciences,
43:425–440, 1991.

[221] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review,
3(2):119–130, 1961.

[222] K.R. Parthasarathy and G. Ravindra. The Strong Perfect Graph Con-
jecture is true for K1,3-free graphs. Journal of Combinatorial Theory,
Series B, 21:212–223, 1976.

[223] D. Paulusma and J.M.M. van Rooij. On partitioning a graph into two
connected subgraphs. In: Proceedings of the 20th International Sympo-
sium on Algorithms and Computation (ISAAC 2009), volume 5878 of
Lecture Notes in Computer Science, pages 1215–1224, Springer, 2009.

[224] A. Pekeč and F.S. Roberts. The role assignment model nearly fits most
social networks. Mathematical Social Sciences, 41:275–293, 2001.

[225] S. Poljak. A note on stable sets and colorings of graphs. Commenta-
tiones Mathematicae Universitatis Carolinae, 15:307–309, 1974.

[226] B. Randerath and I. Schiermeyer. 3-Colorability ∈ P for P6-free graphs.
Discrete Applied Mathematics, 136(2-3):299–313, 2004.

[227] B. Reed. ω, ∆, and χ. Journal of Graph Theory, 27:177–212, 1998.

[228] Y. Rieck and Y. Yamashita. Finite planar emulators for K4,5−4K2 and
K1,2,2,2 and Fellows’ conjecture. European Journal of Combinatorics,
31(3):903–907, 2010.

[229] F.S. Roberts. Indifference graphs. In: Proof Techniques in Graph The-
ory, pages 139–146, Academic Press, New York, 1969.

BIBLIOGRAPHY 189

[230] F.S. Roberts and L. Sheng. How hard is it to determine if a graph has
a 2-role assignment? Networks, 37:67–73, 2001.

[231] N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. Journal of Algorithms, 7:309–322, 1986.

[232] N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint
paths problem. Journal of Combinatorial Theory, Series B, 63:65–110,
1995.

[233] N. Robertson and P.D. Seymour. Graph Minors. XX. Wagner’s conjec-
ture. Journal of Combinatorial Theory, Series B, 92:325–357, 2004.

[234] J.M. Robson. Algorithms for maximum independent sets. Journal of
Algorithms, 7:425–440, 1986.

[235] J.M.M. van Rooij and H.L. Bodlaender. Design by measure and con-
quer – A faster exact algorithm for dominating set. In: Proceedings
of the 25th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2008), volume 3404 of Lecture Notes in Computer
Science, pages 657–668, Springer, 2005.

[236] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of ver-
tex elimination on graphs. SIAM Journal on Computing, 5(2):266–283,
1976.

[237] N.D. Roussopoulos. A max{m,n} algorithm for determining the graph
H from its line graph G. Information Processing Letters, 2:108–112,
1973.

[238] Z. Ryjáček. On a closure concept in claw-free graphs. Journal of Com-
binatorial Theory, Series B, 70:217–224, 1997.

[239] R.M. Sampaio and C. Linhares Sales. On the complexity of finding
even pairs in planar perfect graphs. Electronic Notes in Discrete Math-
ematics, 7:186–189, 2001.

[240] C.R. Satyan and C. Pandu Rangan. The parity path problem on some
subclasses of perfect graphs. Discrete Applied Mathematics, 68(3):293–
302, 1996.

BIBLIOGRAPHY 190

[241] N. Sbihi. Algorithme de recherche d’un stable de cardinalité maximum
dans un graphe sans étoile. Discrete Mathematics, 29(1):53–76, 1980
(in French).

[242] I. Schiermeyer. Solving satisfiablity in less than O(1.579n) steps. Se-
lected papers from Computer Science Logic (CSL 1992), volume 702 of
Lecture Notes in Computer Science, pages 379–394, Springer, 1992.

[243] I. Schiermeyer. Pure literal look ahead: an O∗(1.497n) 3-Satisfiability
algorithm. In: Proceedings of the Workshop on the Satisfiability Prob-
lem, pages 127–136, 1996.

[244] U. Schöning. A probabilistic algorithm for k-SAT and constraint satis-
faction problems. In: Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1999), pages 410–414,
IEEE Computer Society, 1999.

[245] U. Schöning. Algorithmics in exponential time. In: Proceedings of the
22th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2005), volume 3404 of Lecture Notes in Computer Sci-
ence, pages 36–43, Springer, 2005.

[246] D. Seinsche. On a property of the class of n-colorable graphs. Journal
of Combinatorial Theory, Series B, 16:191–193, 1974.

[247] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification prob-
lems. Discrete Applied Mathematics, 144(1-2):173–182, 2004.

[248] R. Sharan, A. Maron-Katz, and R. Shamir. CLICK and EXPANDER:
a system for clustering and visualizing gene expression data. Bioinfor-
matics, 19(14):1787–1799, 2003.

[249] L. Sheng. 2-Role assignments on triangulated graphs. Theoretical Com-
puter Science, 304:201–214, 2003.

[250] S. Shrem, M. Stern, and M.C. Golumbic. Smallest odd holes in claw-
free graphs. In: Proceedings of the 35th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2009), volume
5911 of Lecture Notes in Computer Science, pages 329–340, Springer,
2009.

BIBLIOGRAPHY 191

[251] J. Spinrad. Efficient Graph Representations. Fields Institute Mono-
graphs, volume 19, American Mathematical Society, Providence,
Rhode Island, 2003.

[252] D.P. Sumner. Graphs with 1-factors. Proceedings of the American
Mathematical Society, 42(1):8–12, 1974.

[253] D.P. Sumner. Dacey graphs. Journal of the Australian Mathematical
Society, 18:492–502, 1974.

[254] R.E. Tarjan. Decomposition by clique separators. Discrete Mathemat-
ics, 55:221–232, 1985.

[255] R.E. Tarjan and A.E. Trojanowski. Finding a maximum independent
set. SIAM Journal on Computing, 6:537–546, 1977.

[256] R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively re-
duce acyclic hypergraphs. SIAM Journal on Computing, 13:566–579,
1984.

[257] C. Thomassen and B. Toft. Non-separating induced cycles in graphs.
Journal of Combinatorial Theory, Series B, 31:199–224, 1981.

[258] N. Trotignon. Graphes parfaits: Structure et algorithmes. PhD Thesis,
Université Joseph Fourier - Grenoble I, 2004 (in French).

[259] Y. Villanger, P. Heggernes, C. Paul, and J.A. Telle. Interval completion
is fixed parameter tractable. SIAM Journal on Computing, 38(5):2007–
2020, 2009.

[260] J.R. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne
State University, Detroit, 1972.

[261] M. Waterman and J.R. Griggs. Interval graphs and maps of DNA.
Bulletin of Mathematical Biology, 48:189–195, 1986.

[262] S.H. Whitesides. A method for solving certain graph recognition and
optimization problems, with applications to perfect graphs. Annals of
Discrete Mathematics, 21:281–297, 1984.

BIBLIOGRAPHY 192

[263] H. Whitney. Congruent graphs and the connectivity of graphs. Amer-
ican Journal of Mathematics, 54:150–168, 1932.

[264] G.J. Woeginger. Exact algorithms for NP-hard problems: A survey.
Combinatorial Optimization — Eureka, You Shrink!, volume 2570 of
Lecture Notes in Computer Science, pages 185–207, Springer, 2003.

[265] G.J. Woeginger. Open problems around exact algorithms. Discrete Ap-
plied Mathematics, 156(3):397–405, 2008.

[266] G.J. Woeginger and J. Sgall. The complexity of coloring graphs without
long induced paths. Acta Cybernetica, 15(1):107–117, 2001.

[267] E.S. Wolk. The comparability graph of a tree. Proceedings of the Amer-
ican Mathematical Society, 13:789–795, 1962.

[268] E.S. Wolk. A note on “The comparability graph of a tree”. Proceedings
of the American Mathematical Society, 16:17–20, 1965.

[269] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clus-
tering: theory and its applications to image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 15(11):1101–
1113, 1993.

[270] D. Zuckerman. Linear degree extractors and the inapproximability of
max clique and chromatic number. In: Proceedings of the 38th ACM
Symposium on Theory of Computing (STOC 2006), pages 671–680,
2006.

