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Abstract

In this thesis, we research the computational complexity of the graph colouring problem

and its variants including precolouring extension and list colouring for graph classes that

can be characterised by forbidding one or more induced subgraphs. We investigate the

structural properties of such graph classes and prove a number of new properties. We

then consider to what extent these properties can be used for efficiently solving the three

types of colouring problems on these graph classes. In some cases we obtain polynomial-

time algorithms, whereas other cases turn out to be NP-complete.

We determine the computational complexity of k-Colouring, k-Precolouring

Extension and List k-Colouring on Pk-free graphs. In particular, we prove that

4-Precolouring on P8-free graphs is NP-complete, 4-Precolouring Extension on

P7-free graphs is NP-complete, and List 4-Colouring on P6-free graphs is NP-complete.

In addition, we show the existence of an integer r such that 4-Colouring is NP-complete

for Pr-free graphs with girth 4. In contrast, we determine for any fixed girth g ≥ 4 a lower

bound r(g) such that every Pr(g)-free graph with girth at least g is 3-colourable. We also

prove that 3-List Colouring is NP-complete for complete graphs minus a matching.

We present a polynomial-time algorithm for solving 4-Precolouring Extension on

(P2 + P3)-free graphs, a polynomial-time algorithm for solving List 3-Colouring on

(P2 + P4)-free graphs, and a polynomial-time algorithm for solving List 3-Colouring

on sP3-free graphs. We prove that List k-Colouring for (Ks,t, Pr)-free graphs is also

polynomial-time solvable. We obtain several new dichotomies by combining the above

results with some known results.
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Chapter 1

Introduction

Graph colouring involves the labeling of the vertices of some given graph by integers

called colours such that no two adjacent vertices receive the same colour. The goal is

to minimize the number of colours. The problem of graph colouring was first raised by

Francis Guthrie while he was trying to color a map of the counties of England. Later in

1890, Heawood [50] proved that every planar map can be colored with no more than five

colors. After then, a number of researchers tried to reduce the number of colours to four,

until the Four Colouring Theorem was proved by Appel and Haken [1]. Graph colouring

is one of the most fundamental concepts in both structural and algorithmic graph theory,

which arises in a vast number of theoretical and practical applications such as classical

settings like map colouring and job scheduling, as well as more recent settings like time

slot allocation, aircraft scheduling, biprocessor tasks, frequency assignment and pattern

matching. Many variants and generalisations of this concept have been studied over

the years, and there are some very good surveys [85, 93] and books [14, 45, 60] on the

subject. We survey computational complexity results of the graph colouring problem

and its variants precolouring extension and list colouring when the input is restricted

to some special graph class. Before presenting these results we first state the necessary

terminology.

1.1 Graph Colouring Terminology

For the colouring problems that we consider self-loops, directed edges and multiple edges

are irrelevant. Hence, we only consider finite undirected graphs with no multiple edges
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and no self-loops, i.e., a graph G is an ordered pair (V,E) that consists of a finite set V

of elements called vertices and a set E of unordered pairs uv with u, v ∈ V called edges.

The sets V and E are called the vertex set and edge set of G, respectively.

A colouring of a graph G = (V,E) is a mapping from the vertex set of G to an

infinite set of positive integers, i.e., φ : V → {1, 2, . . .}, such that φ(u) 6= φ(v) whenever

uv ∈ E. We call φ(u) the colour of u. We let φ(U) = {φ(u) | u ∈ U} for a subset

U ⊆ V . A k-colouring of G is a colouring φ of G with 1 ≤ φ(u) ≤ k for all u ∈ V .

In that case we say that G is k-colourable. The problem Colouring is that of testing

whether a given graph admits a k-colouring for some given integer k. If k is fixed, i.e., not

part of the input, then we denote the problem as k-Colouring. The smallest integer k

for which a graph G is k-colourable is called the chromatic number of G denoted χ(G).

The Precolouring Extension problem takes as input a graph G, an integer k and a

precolouring of G, i.e., a mapping φW : W → {1, 2, . . . k} for some subset W ⊆ V , and

asks whether φW can be extended to a k-colouring of G. If k is fixed, we denote this

problem as k-Precolouring Extension.

A list assignment of a graph G = (V,E) is a function L that assigns a list L(u) of

so-called admissible colours to each u ∈ V . If L(u) ⊆ {1, . . . , k} for each u ∈ V , then L is

also called a k-list assignment . Equivalently, L is a k-list assignment if |⋃u∈V L(u)| ≤ k.
The size of a list assignment L is the maximum list size |L(u)| over all vertices u ∈ V .

We say that a colouring φ : V → {1, 2, . . .} respects L if φ(u) ∈ L(u) for all u ∈ V . The

List Colouring problem is to test whether a given graph has a colouring that respects

some given list assignment. For a fixed integer k, the List k-Colouring problem has

as input a graph G with a k-list assignment L and asks whether G has a colouring that

respects L. For a fixed integer `, the `-List Colouring problem has as input a graph

G with a list assignment L of size at most ` and asks whether G has a colouring that

respects L.
Note that k-Colouring can be viewed as a special case of k-Precolouring Ex-

tension by choosing W = ∅, and that k-Precolouring Extension can be viewed

as a special case of List k-Colouring by choosing L(u) = {φW (u)} if u ∈ W and

L(u) = {1, . . . , k} if u ∈ V \W . Finally, List k-Colouring can be readily seen as a

special case of k-List Colouring. All these relationships are displayed in Figure 1.1.

In computational complexity theory, the class P contains all decision problems that

are solvable in polynomial time, and the class NP contains all decision problems for which
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Figure 1.1: Relationships between Colouring and its variants. An arrow from one
problem to another problem indicates that the latter problem is a special case of the first
one, whereas k and ` are any two integers for which ` ≥ k.

a candidate solution can be verified in polynomial time. Trivially P ⊆ NP holds. It is

widely believed that P 6= NP, but this problem is still open. A decision problem is called

NP-complete if it is in NP and every other problem in NP can be transformed to this

problem in polynomial time. Theorem 1.1.1 gives the computational complexity of the

considered problems on general graphs.

Theorem 1.1.1. For general graphs, k-Colouring, k-Precolouring Extension,

List k-Colouring and k-List Colouring are polynomial-time solvable if k ≤ 2 and

NP-complete if k ≥ 3.

Proof. It is well-known that k-Colouring is NP-complete for all k ≥ 3 (see [35]). Erdös,

Rubin and Taylor [32] and Vizing [94] observed that 2-List Colouring is polynomial-

time solvable on general graphs. Then Theorem 1.1.1 follows from the relationships as

displayed in Figure 1.1.
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Due to Theorem 1.1.1 one has put restrictions on the input graph. In this thesis we

follow this line of research and only consider input graphs that belong to some special

graph class. Before presenting the results known in the literature and our own results

we first state the necessary definitions of these graph classes.

1.2 Definitions of Graph Classes and Other Terminology

In this section we give the definitions of a number of graph classes known in the literature.

We first recall some basic graph notions, some of which we need in later chapters as well.

We refer to the textbook of Diestel [29] for any undefined graph terminology.

The union of two graphs G and H is the graph with vertex set V (G)∪V (H) and edge

set E(G) ∪ E(H). If V (G) ∩ V (H) = ∅, then we call the union of G and H the disjoint

union of G and H denoted G+H. We denote the disjoint union of r copies of G by rG.

The graph Kr denotes the complete graph on r vertices, i.e., V (Kr) = {u1, . . . , ur} and
E(Kr) = {uiuj | 1 ≤ i < j ≤ r}. The vertex set of a complete graph is called a clique.

The size of a largest clique in a graph G is called the clique number of G, denoted ω(G).

For r ≥ 1, the graph Pr denotes the path on r vertices, i.e., V (Pr) = {u1, . . . , ur} and

E(Pr) = {uiui+1 | 1 ≤ i ≤ r−1}. For r ≥ 3, the graph Cr denotes the cycle on r vertices,

i.e., V (Cr) = {u1, . . . , ur} and E(Cr) = {uiui+1 | 1 ≤ i ≤ r − 1} ∪ {uru1}. The length

of a path or cycle is its number of edges. A cycle is odd if it has odd length. The graph

rP1 denotes the independent set on r vertices. The size of a largest independent set in

a graph G is called the independence number of G, denoted α(G). For positive integers

p and q, the Ramsey number R(p, q) is the smallest number of vertices n such that all

graphs on n vertices contain an independent set of size p or a clique of size q. Ramsey’s

Theorem (see e.g. [29]) states that such a number exists for all positive integers p and q.

Let G = (V,E) be a graph. The degree degG(u) of a vertex u in G is the number

of edges incident with it, or equivalently the size of its neighbourhood NG(u) = {v ∈
V | uv ∈ E}. A vertex of degree 1 is also called a pendant vertex or a leaf. The minimum

and maximum degree of G are denoted δ(G) and ∆(G), respectively. If all vertices are

of the same degree, then G is said to be regular. If all vertices have degree equal to

p for some integer p, then G is also called p-regular. A path between two vertices u

and v is also called a (u, v)-path. The distance distG(u, v) between two vertices u and

v in G is the length of a shortest (u, v)-path. The maximum distance in a graph G is

called the diameter of G denoted diamG = max{distG(u, v) | u, v ∈ V }. A graph H is
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a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset S ⊆ V (G),

we let G[S] denote the induced subgraph of G, i.e., that has vertex set S and edge set

{uv ∈ E(G) | u, v ∈ S}. For a graph H, we write H ⊆ G and H ⊆i G to denote that H

is a subgraph or an induced subgraph of G, respectively. We say that G is connected if

for every pair of distinct vertices u and v, there exists a path connecting u and v, whereas

G is k-connected for some integer k ≥ 1 if G[V \U ] is connected for every subset U ⊆ V

of at most k − 1 vertices. If a graph is not connected, then it is called disconnected. A

maximal connected subgraph of G is called a connected component. The girth of G is the

length of a shortest cycle in G; if G has no cycles, then the girth of G is equal to ∞.

The complement of G denoted by G has vertex set V and an edge between two distinct

vertices if and only if these vertices are not adjacent in G. A set D ⊆ V (G) dominates

G if each vertex of G is either in D or adjacent to some vertex in D. In that case, D is

called a dominating set of G. If D = {u}, then we call u a dominating vertex of G.

For two graphs G and H, a vertex mapping f : V (G) → V (H) is called a (graph)

isomorphism when uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). In that case we say that

G and H are isomorphic. Let G be a graph and {H1, . . . ,Hp} be a set of graphs. We

say that G is (H1, . . . ,Hp)-free if G has no induced subgraph isomorphic to a graph in

{H1, . . . ,Hp}; if p = 1, we may write H1-free instead of (H1)-free.

Proposition 1.2.1. Let H ′ be an induced subgraph of a graph H. Then every H ′-free

graph is H-free.

The following preprocessing technique is often used in graph colouring. Let G =

(V,E) be a graph with a k-list assignment L for some integer k ≥ 1. Let W ⊆ V be the

set of those vertices of G whose lists have size at most 2. Remove all vertices of V \W
with degree at most k− 1 from G. Iterate this until we obtain a graph G∗≥k such that all

vertices not in W have degree at least k. Note that G∗≥k may be the empty graph. We

observe the following.

Proposition 1.2.2. Let G = (V,E) be a graph with a k-list assignment L for some

integer k ≥ 1. Let W ⊆ V be the set of those vertices of G whose lists have size at most

2. Then G∗≥k can be obtained in polynomial time, and G∗≥k has a colouring that respects

the restriction of L to V (G∗≥k) if and only if G has a colouring that respects L. Moreover,

for any set of graphs {H1, . . . ,Hp}, G∗≥k is (H1, . . . ,Hp)-free if G is (H1, . . . ,Hp)-free.

Proof. Because we must search for at most |V | times for a vertex of degree at most
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k − 1, the graph G∗≥k can be obtained in polynomial time. Let (H1, . . . ,Hp) be a set

of graphs. Because we only remove vertices in order to get G∗≥k, we find that G∗≥k is

(H1, . . . ,Hp)-free if G is (H1, . . . ,Hp)-free.

We now prove the remaining statement. If G has a colouring that respects L, then
G∗≥k has a colouring that respects the restriction of L to V (G∗≥k), because G∗≥k is a

subgraph of G. To prove the reverse implication, suppose that G∗≥k has a colouring that

respects the restriction of L to V (G∗≥k). By considering the vertices of V \V (G∗≥k) in the

reverse order of their removal, there is always a colour from {1, . . . , k} available to colour

them.

We will now give the definitions of a number of graph classes that have been studied

as regards the Colouring problem and the variants we consider. Most of these graph

classes can be found in textbooks on special graph classes such as the textbooks of

Brandstädt, Le and Spinrad [14] and Golumbic [45]. As we shall see, most (but not all)

of them can be characterised by one or more forbidden induced subgraphs.

An asteroidal triple in a graph is a set of three mutually non-adjacent vertices such

that each pair of them are joined by a path that avoids the neighbourhood of the third

including the third vertex itself, and AT-free graphs are exactly those graphs that contain

no such triple. We refer to the Ph.D. Thesis of Koehler [66] for a characterisation of AT-

free graphs in terms of forbidden induced subgraphs.

An anticycle is the complement of a cycle. Anticycles are also called co-cycles. A

graph is odd-(anti)cycle-free if it contains no induced odd (anti)cycle. A graph is a tree

if it is connected and cycle-free. A graph is a forest if each of its connected components

is a tree. Equivalently, a forest is a graph with girth g = ∞. A graph is a linear forest

if each of its connected components is a path. A graph is bipartite if its vertex set can

be partitioned into two sets A and B such that every edge has one of its end-vertices

in A and the other one in B. Equivalently, a graph is bipartite if and only if it is odd-

cycle-free. The complement of a bipartite graph is called a co-bipartite graph. Hence, a

graph is a co-bipartite graph if and only if it is odd-anticycle-free. For r ≥ 1 and s ≥ 1,

the graph Kr,s denotes the complete bipartite graph with partition classes of size r and

s, respectively, i.e., V (Kr,s) = {u1, . . . , ur} ∪ {v1, . . . , vs} and E(Kr,s) = {uivj | 1 ≤ i ≤
r and 1 ≤ j ≤ s}. For r ≥ 1, the graph K1,r is also called a star. In particular, the graph

K1,3 is called a claw, and a K1,3-free graph is called claw-free. Equivalently, a graph is a

complete bipartite graph if and only if it is bipartite, connected and (P1 + P2)-free.
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Figure 1.2: Relationships between graph classes; an arrow from one graph class to another
one is to indicate that the second graph class is a proper subclass of the first one. All
graph classes displayed in this figure can be found in Table 1.3 showed in Section 1.6.

A hole in a graph is an induced cycle of length at least 5, and an antihole is the

complement of a hole. A graph is odd-(anti)hole-free if it contains no odd (anti)hole. In

the literature, an induced C4 is sometimes considered to be a hole as well, but this is
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not the case under our definition (which is from [14]). A C3-free graph is also called a

triangle-free graph, and a P4-free graph is also called a cograph. Cographs and bipartite

graphs are examples of perfect graphs. A graph is perfect if the chromatic number of

every induced subgraph equals the size of a largest clique in that subgraph. By the

Strong Perfect Graph Theorem [22], a graph is perfect if and only if it is odd-hole-free

and odd-antihole-free.

A matching in a graph is a set of pairwise non-adjacent edges, i.e., no two edges have

a common end-vertex. A matching is perfect if every vertex of the graph is incident to

exactly one edge of the matching. A complete graph minus a matching is obtained from a

complete graph Kn after removing the edges of some (possibly empty and not necessarily

perfect) matching M . Equivalently, a graph G on n vertices is a complete graph minus

a matching if and only if G is (3P1, P1 + P2)-free if and only if G has minimum degree

at least n− 2 (4.2).

A graph G is distance-hereditary if distG′(u, v) = distG(u, v) for all induced subgraphs

G′ ⊆i G and all pairs of vertices u, v ∈ V (G′). Equivalently, a graph is distance-

hereditary if and only if it contains no hole, no induced domino (the graph obtained

from a cycle with vertices a, b, c, d, e, f by adding the edge cf), no induced gem (the

graph obtained from a P4 by adding a dominating vertex) and no induced house (the

graph isomorphic to P 5) [4].

A graph is a comparability graph if there exists an assignment of exactly one direction

to each of its edges such that (a, c) is a directed edge whenever (a, b) and (b, c) are

directed edges. We refer to Gallai [34] for a characterisation in terms of forbidden induced

subgraphs. The complement of a comparability graph is called a co-comparability graph.

The class of co-comparability graph is properly contained in the class of AT-free graphs

(see [24]). A graph is a permutation graph if line segments connecting two parallel lines

can be associated to its vertices in such a way that two vertices are adjacent if and only

if their line segments intersect. Equivalently, a graph is a permutation graph if and only

if it is a comparability and a co-comparability graph [30].

A chord of a cycle C is an edge between two vertices u, v ∈ V (C) with uv /∈ E(C). A

graph is chordal if every induced cycle on four or more vertices has a chord. Equivalently,

a graph is chordal if and only if it contains no induced cycle on four or more vertices.

Chordal graphs are also called triangulated graphs. A graph is a block graph if it is

connected and every maximal 2-connected component is a complete graph. The diamond
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denoted K−4 is the graph K4 minus an edge. Then a graph is a block graph if and only

if it is chordal and has no induced diamond [4].

A graph G is a split graph if its vertices can be partitioned into a clique and an

independent set; if every vertex in the independent set is adjacent to every vertex in the

clique, then G is a complete split graph. Split graphs coincide with (2P2, C4, C5)-free

graphs [33]. A graph G is a threshold graph if there exists a real number t (the threshold)

together with real weights wv associated to each vertex v ∈ V (G) such that for any

two vertices u and v, uv ∈ E(G) if and only if wu + wv ≥ t. Equivalently, a graph is

a threshold graph if and only if it is (2P2, C4, P4)-free [21]. A clique in a graph G is

maximal if it is not properly contained in some other clique of G. A graph is a trivially

perfect graph if for every induced subgraph the size of a maximum independent set in

that subgraph equals its number of maximal cliques. A graph is a trivially perfect graph

if and only if it is (C4, P4)-free [98].

A graph is a (not necessarily disjoint) union of two complete graphs if and only if it is

(3P1, P4, C4)-free. Equivalently, a graph G is the complement of a union of two complete

graphs if and only if it is (C3, P4, 2P2)-free. This can be seen as follows. First, suppose

that G is the complement of a union of two complete graphs. Then G is a disjoint union

of a complete bipartite graph F and a (possibly empty) independent set. Therefore, G

is (C3, P4, 2P2)-free. Now suppose that G is (C3, P4, 2P2)-free. Due to the 2P2-freeness,

G contains at most one connected component F with more than one edge. Due to the

(C3, P4)-freeness, F must be a bipartite graph with bipartition classes A and B. Since

F is connected and P4-free, every vertex in A is adjacent to every vertex in B. Hence,

G is a disjoint union of a complete bipartite graph and a (possibly empty) independent

set, which in turn shows that G is the complement of a union of two complete graphs.

A graph is an interval graph if intervals of the real line can be associated with its

vertices in such a way that two vertices are adjacent if and only if their correspond-

ing intervals overlap. Equivalently, a graph is interval if and only if it is AT-free and

chordal [76]. An interval graph is proper if it has an interval representation in which no

interval is properly contained in any other interval. Equivalently, a graph is a proper

interval if and only if it is interval and claw-free [96]. Proper interval graphs are also

known as linear interval graphs and as indifference graphs. Moreover, the class of proper

interval graphs coincides with the class of unit interval graphs, which are interval graphs

that have an interval representation in which all intervals have the same length [87].
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The line graph of a graph G with edges e1, . . . , ep is the graph line(G) with vertices

u1, . . . , up such that there is an edge between any two vertices ui and uj if and only if

ei and ej share an end-vertex in G. Beineke [5] gave a list of nine forbidden induced

subgraphs that characterize line graphs. A line graph may not be perfect. However, a

line graph of a bipartite graph is well-known to be perfect; this can be seen by using

the Strong Perfect Graph Theorem after observing that an odd cycle on at least five

vertices in a line graph corresponds to such a cycle in the original graph and every odd

antihole contains the graph C5 as a subgraph. Line graph of complete graphs are also

called triangular graphs.

We say that we identify two vertices u and v in a graph G if we remove both vertices

and replace them by a new vertex adjacent to precisely those vertices to which u and v

were adjacent. If u and v were neighbours in G, then this operation is also called an edge

contraction. A graph G contains a graph H as a minor if it can be modified into H by

a sequence of edge contractions, edge deletions and vertex deletions. A graph is planar

if it can be drawn in the plane so that its edges intersect only at their end-vertices. By

Kuratowski’s Theorem [74], a graph is planar if and only if it contains neither K5 nor

K3,3 as a minor.

Figure 1.2 shows the relationships between the various graph classes. In this figure,

an arrow from one graph class to another one is used to indicate that the first graph class

is a proper superclass of the second one. We refer to the textbook of Brandstädt, Le

and Spinrad [14] where these inclusions are shown for a number of perfect graphs except

for the following classes: block graphs, co-bipartite graphs, complete graphs, complete

bipartite graphs, complete split graphs, complete graphs minus a matching, line graphs of

complete bipartite graphs, and unions of two complete graphs. The arrows entering and

leaving these graph classes in Figure 1.2 can be readily seen from the definitions of the

corresponding graph classes and their characterisations by forbidden induced subgraphs.

The same holds for the remaining graph classes, which are the classes of AT-free graphs,

claw-free graphs, line graphs, line graphs of complete graphs, and planar graphs.

We finish this section by giving the definitions of the basic NP-complete problems that

we use for our NP-hardness reductions. The problem Satisfiability is the problem of

determining if the variables of a given Boolean formula in conjunctive normal form can

be assigned in such a way as to make the formula evaluate to TRUE. Karp [63] proved

that the problem is NP-complete even if there are three variables per clause. In that case
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the problem is called the 3-Satisfiability problem. A variant of the 3-Satisfiability

problem is called Not-All-Equal 3-Satisfiability with un-negated literals only. This

NP-complete problem [88] is also known as Hypergraph 2-Colourability and is

defined as follows. Given a set X = {x1, x2, . . . , xn} of logical variables, and a set

C = {C1, C2, . . . , Cm} of three-literal clauses over X in which all literals are un-negated,

does there exist a truth assignment for X such that each clause contains at least one true

literal and at least one false literal?

1.3 Results for H-free Graphs

Recall that cographs, triangle-free graphs and claw-free graphs are P4-free graphs, C3-

free graphs and K1,3-free graphs, respectively. In this section we focus on these and other

graph classes characterised by forbidden induced subgraphs.

Král’ et al. [69] completely determined the computational complexity of Colouring

for graph classes characterised by one forbidden induced subgraph. We show similar

dichotomy results for the problems Precolouring Extension, List Colouring and

k-List Colouring in Chapter 3 and Chapter 4. We summarize these results in the fol-

lowing theorem. Note that the first part of statement (iv) is also given in Theorem 1.1.1.

Theorem 1.3.1. Let H be a fixed graph. Then the following four statements hold.

(i) Colouring is polynomial-time solvable for H-free graphs if H is an induced sub-

graph of P4 or of P1 + P3; otherwise it is NP-complete for H-free graphs [69].

(ii) Precolouring Extension is polynomial-time solvable for H-free graphs if H is

an induced subgraph of P4 or of P1 + P3; otherwise it is NP-complete for H-free

graphs.

(iii) List Colouring is polynomial-time solvable for H-free graphs if H is an induced

subgraph of P3; otherwise it is NP-complete for H-free graphs.

(iv) For all ` ≤ 2, `-List Colouring is polynomial-time solvable. For all ` ≥ 3, `-

List Colouring is polynomial-time solvable for H-free graphs if H is an induced

subgraph of P3; otherwise it is NP-complete for H-free graphs.
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Due to Theorem 1.3.1 we can from now on assume that the upper bound on the

number of available colours is fixed. In the literature many papers have appeared that

considered the complexity of k-Colouring, k-Precolouring Extension and List

k-Colouring forH-free graphs. Below we survey these. We start with the following two

theorems. The first one is due to Král’ et al. [69] but has also been proven by Kamiński

and Lozin [61]. The second one is due to Holyer [54], who settled the case k = 3, and

Leven and Galil [77] who settled the case k ≥ 4.

Theorem 1.3.2. For all k ≥ 3 and all g ≥ 3, the k-Colouring problem is NP-complete

for graphs of girth at least g.

Theorem 1.3.3. For all k ≥ 3, the k-Colouring problem is NP-complete for line

graphs of k-regular graphs.

Theorem 1.3.2 implies that for any k ≥ 3, k-Colouring is NP-complete for the

class of H-free graphs whenever H contains a cycle. Because line graphs are claw-free,

Theorem 1.3.3 implies that for all k ≥ 3, the k-Colouring is NP-complete on H-free

graphs whenever H is a forest with a vertex of degree at least 3. This means that only

the case in which H is a linear forest remains. We consider this case below.

Combining the result from Balas and Yu [3] on the number of maximal independent

sets in an sP2-free graph and a result from Tsukiyama et al. [92] on the enumeration of

such sets leads to the known result that List k-Colouring is polynomial-time solvable

on sP2-free graphs for any two integers k and s. We extended this result by showing that

List 3-Colouring is polynomial-time solvable on sP3-free graphs for all s ≥ 1 (4.4).

We also showed that List 3-Colouring is polynomial-time solvable on (P2 + P4)-free

graphs in the same paper. In addition, we made the following proposition.

Proposition 1.3.4. Let H be a graph. If List 3-Colouring is solvable in polynomial

time for H-free graphs, then it is also solvable in polynomial time for (H+P1)-free graphs.

Proof. Let G be an (H + P1)-free graph with a 3-list assignment L. If G is H-free, we

are done. Suppose that G contains an induced subgraph H ′ that is isomorphic to H.

Because G is (H+P1)-free, every vertex in V (G)\V (H ′) must be adjacent to a vertex in

H ′. We guess a colouring of V (H ′) that respects the restriction of L to H ′. Afterwards

we apply Theorem 1.1.1. Since H ′ has a fixed size, the number of guesses is polynomially

bounded.
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We proved that 4-Precolouring Extension is polynomial-time solvable on (P2 +

P3)-free graphs (2.1). Hoàng et al. [53] proved that for all k ≥ 1, List k-Colouring is

polynomial-time solvable on P5-free graphs. This was generalised by Couturier et al. [27]

who showed that for all k ≥ 1 and all s ≥ 0, List k-Colouring is polynomial-time

solvable on (sP1 + P5)-free graphs. Couterier et al. [27] also showed that their result is

tight by proving that List k-Colouring is NP-complete for some integer k on H-free

graphs, whenever H is a supergraph of P1 + P5 with at least five edges. In particular,

they proved that List 5-Colouring is NP-complete on (P2 + P4)-free graphs.

Randerath and Schiermeyer [83] showed that 3-Colouring is polynomial-time solv-

able on P6-free graphs. This was generalised by Broersma et al. [16] who showed that

List 3-Colouring is polynomial-time solvable for P6-free graphs. For P6-free graphs

it is also known that 5-Precolouring Extension is NP-complete [16] and that List

4-Colouring is NP-complete (4.5). For P7-free graphs it is known that 6-Colouring is

NP-complete [16] and that 4-Precolouring Extension is NP-complete (3.3). Woegin-

ger and Sgall [97] proved that 5-Colouring is NP-complete for P8-free graphs and that

4-Colouring is NP-complete for P12-free graphs. The latter result was improved by

Le, Randerath and Schiermeyer [75], who showed that 4-Colouring is NP-complete for

P9-free graphs. We improved this further by showing that 4-Colouring is NP-complete

for P8-free graphs (2.2).

Taking into account the relationships displayed in Figure 1.1 showed in Section 1.1,

we summarize all the results in Theorem 1.3.5. Note that the first part of statement (iv)

is also given in Theorem 1.1.1.

Theorem 1.3.5. Let H be a fixed graph. Then the following five statements hold:

(i) k-Colouring is NP-complete for H-free graphs if

• k ≥ 3 and H ⊇i Cr for some r ≥ 3 [69, 61]

• k ≥ 3 and H ⊇i K1,3 [54, 77]

• k ≥ 4 and H ⊇i P8

• k ≥ 6 and H ⊇i P7 [16].

(ii) k-Precolouring Extension is NP-complete for H-free graphs if

• k ≥ 4 and H ⊇i P7
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• k ≥ 5 and H ⊇i P6 [16].

(iii) List k-Colouring is NP-complete for H-free graphs if

• k ≥ 4 and H ⊇i P6

• k ≥ 5 and H ⊇i P2 + P4 [27]

(iv) List k-Colouring is polynomially solvable for H-free graphs if k ≤ 2 or

• k ≤ 3 and H ⊆i sP1 + P2 + P4 for some s ≥ 0

• k ≤ 3 and H ⊆i sP1 + P6 for some s ≥ 0 [16]

• k ≤ 3 and H ⊆i sP3 for some s ≥ 0

• k ≥ 1 and H ⊆i sP1 + P5 for some s ≥ 0 [27]

• k ≥ 1 and H ⊆i sP2 for some s ≥ 0 [3, 92].

(v) 4-Precolouring Extension is polynomially solvable for H-free graphs if

• H ⊆i P2 + P3.

As a consequence of Theorem 1.3.5 we obtain dichotomy results for k-Colouring,

k-Precolouring Extension and List k-Colouring when H is small. This is shown

in Theorem 1.3.6.

Theorem 1.3.6. The following three statements hold:

(i) For any graph H on at most six vertices, 3-Colouring, 3-Precolouring Ex-

tension, and List 3-Colouring are polynomial-time solvable on H-free graphs

if H is a linear forest, and NP-complete otherwise.

(ii) For any graph H on at most five vertices, 4-Colouring, and 4-Precolouring

Extension are polynomial-time solvable on H-free graphs if H is a linear forest,

and NP-complete otherwise.

(iii) For any graph H on at most four vertices and any integer k ≥ 3, k-Colouring,

k-Precolouring Extension, and List k-Colouring are polynomial-time solv-

able on H-free graphs whenever H is a linear forest, and NP-complete otherwise.
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Note that statement (ii) of Theorem 1.3.6 is not valid for List 4-Colouring due to

exactly one missing case, which is the complexity of List 4-Colouring for (P2+P3)-free

graphs.

Table 1.1 shows a summary of the existing results for Pr-free graphs. This table

is obtained from Theorem 1.3.5 as well. We include this table, because it is the most

updated version of similar tables from other papers [19, 53, 75, 85, 97].

k-Colouring k-Precolouring Extension List k-Colouring
r k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

r ≤ 5 P P P P P P P P P P P P
r = 6 P ? ? ? P ? NP-c NP-c P NP-c NP-c NP-c
r = 7 ? ? ? NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c
r ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Table 1.1: The complexity of k-Colouring, k-Precolouring Extension and List
k-Colouring on Pr-free graphs for fixed k and r.

1.4 Results for (H1, H2)-free Graphs

When we forbid two induced subgraphs, only partial results are known. We survey these

below and also mention a number of results for (H1, . . . ,Hp)-free graphs for p ≥ 3.

Figure 1.3: The graph S2,2,3

For 1 ≤ h ≤ i ≤ j, let Sh,i,j denote the tree with only one vertex x of degree 3,

and the tree has exactly three leaves, which are of distance h, i and j to x, respectively.

For example, Figure 1.3 shows the graph S2,2,3. Schindl [89] showed the following result.

Following his notation, we let Ah,i,j denote the line graph of Sh,i,j .

Theorem 1.4.1 ([89]). Let {H1, . . . ,Hp} be a finite set of graphs. The Colouring

problem is NP-complete for (H1, . . . ,Hp)-free graphs if the complement of each Hi has a
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connected component isomorphic neither to any graph Ah,i,j for 1 ≤ h ≤ i ≤ j nor to

any path Pr for r ≥ 1.

Theorem 1.4.1 has several other interesting consequences. For instance, Schindl [89]

showed that it implies that Colouring is NP-complete for graphs with no odd hole Cr
and no odd antihole Cr on at most r vertices for any fixed r ≤ 7, whereas Colouring is

well-known to be polynomial-time solvable on perfect graphs, which are precisely those

graphs with no odd hole and no odd antihole [22].

By Theorem 1.3.2, Colouring is NP-complete for (H1, . . . ,Hp)-free graphs if every

Hi contains an induced cycle. Král’ et al. [69] proved that the Colouring problem

is NP-complete for (K4,K
−
4 ,K1,3)-free graphs and for (H1, . . . ,Hp)-free graphs if either

every Hi contains an induced claw, or every Hi contains some induced subgraph that is a

spanning subgraph of 2P2. Dabrowski et al. [28] proved that Colouring is polynomial-

time solvable on (C3, S1,2,3, S1,1,2 + P2)-free graphs. Král’ et al. [69] showed that for

any fixed graph H2, the Colouring problem is polynomial-time solvable on (C3, H2)-

free graphs if and only if it is so for (C+
3 , H2)-free graphs. Here, C+

3 denotes the graph

obtained from C3 after adding one pendant vertex. Maffray and Preismann [78] showed

that 3-Colouring is NP-complete even on (C3,K1,5)-free graphs. We showed that 4-

Colouring is NP-complete for (C3, P164)-free graphs (2.3). Randerath [82] showed that

the Colouring problem is polynomial-time solvable for (C3, S1,1,2)-free graphs and for

(C3, H
L)-free graphs, where HL is the “letter-H” graph, i.e., the graph obtained from

a claw by adding two pendant vertices to exactly one of its leaves. Randerath and

Schiermeyer [84] showed that Colouring is polynomial-time solvable on (C3, cross)-free

graphs, where the cross is the graph obtained from the graph K1,4 by adding one pendant

vertex to one of its leaves. We showed that Colouring can be solved in polynomial

time for (C3, 2P3)-free graphs [17]. In particular, we showed that every (C3, 2P3)-free

graph can be coloured by at most five colours. Recently, Pyatkin [81] improved this

result by showing that every (C3, 2P3)-free graph is 4-colourable. We also showed that

Colouring can be solved in polynomial time for (C3, P2+P4)-free graphs in Section 4.3.

By combining the above results from [17, 19, 78, 82, 84] with some new results, Dabrowski

et al. [28] showed the following result (also see [17]).

Theorem 1.4.2. Let H be a fixed graph on at most six vertices. Then Colouring is

polynomial-time solvable for (C3, H)-free graphs if H is a forest not isomorphic to K1,5,

and otherwise it is NP-complete.
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Golovach and Paulusma [39] made the following proposition, which is based on the

fact that for all r, t ≥ 1, (Kr, Pt)-free graphs can be coloured with at most (t − 1)r−2

colours [49].

Proposition 1.4.3. Colouring is polynomial-time solvable on (Kr, F )-free graphs for

some linear forest F if k-Colouring is polynomial-time solvable on F -free graphs for

all k ≥ 1.

Then by combining Proposition 1.4.3 with Theorem 1.3.5 one finds that Colouring

is polynomial-time solvable on (Kr, sP1 + P5)-free graphs and on (Kr, sP2)-free graphs

for all r ≥ 1 and s ≥ 0. Using the results above combined with some other results on

graph classes of bounded clique-width [11, 12, 13], Golovach and Paulusma [39] gave

the following summary for the case when exactly two induced graphs H1 and H2 are

forbidden. Recall that C+
3 denotes the graph with vertices a, b, c, d and edges ab, ac, ad, bc,

whereas F5 denotes the 5-vertex fan also called the gem, which we defined as the graph

with vertices a, b, c, d, e and edges ab, bc, cd, ea, eb, ec, ed.

Theorem 1.4.4. Let H1 and H2 be two fixed graphs. Then the following holds:

(i) Colouring is NP-complete for (H1, H2)-free graphs if

1. H1 ⊇i Cr for some r ≥ 3 and H2 ⊇i Cs for some s ≥ 3

2. H1 ⊇i K1,3 and H2 ⊇i K1,3

3. H1 and H2 contain a spanning subgraph of 2P2 as an induced subgraph

4. H1 ⊇i C3 and H2 ⊇i K1,r for some r ≥ 5

5. H1 ⊇i C3 and H2 ⊇i P164

6. H1 ⊇i Cr for r ≥ 4 and H2 ⊇i K1,3

7. H1 ⊇i Cr for r ≥ 5 and H2 contains a spanning subgraph of 2P2 as an induced

subgraph

8. H1 ⊇i K4 or H1 ⊇i K−4 , and H2 ⊇i K1,3

9. H1 ⊇i Cr + P1 for 3 ≤ r ≤ 4 or H1 ⊇i Cr for r ≥ 6, and H2 contains a

spanning subgraph of 2P2 as an induced subgraph.

(ii) Colouring is polynomial-time solvable for (H1, H2)-free graphs if
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1. H1 or H2 is an induced subgraph of P1 + P3 or of P4

2. H1 ⊆i C3 + P1 and H2 ⊆i K1,3

3. H1 ⊆i C+
3 , and H2 ⊆i K1,r for r ≤ 4

4. H1 ⊆i C+
3 and H2 6= K1,5 is a forest on at most six vertices

5. H1 ⊆i C+
3 , and H2 ⊆i sP2 or H2 ⊆i sP1 + P5 for s ≥ 0

6. H1 = Kr for r ≥ 4, and H2 ⊆i sP2 or H2 ⊆i sP1 + P5 for s ≥ 0

7. H1 ⊆i F5 or H1 ⊆i P5, and H2 ⊆i P1 + P4

8. H1 ⊆i F5 and H2 ⊆i P5

The NP-completeness results from Theorem 1.4.4 carry over to the Precolouring

Extension problem. Other than those results, not many additional results seem to be

known for the Precolouring Extension problem on (H1, H2)-free graphs. Both Hu-

jter and Tuza [57] and Jansen and Scheffler [59] showed that Precolouring Extension

can be solved in polynomial time on P4-free graphs. Hence, Precolouring Exten-

sion can be solved in polynomial-time on (H1, H2)-free graphs whenever H1 ⊆i P4 or

H2 ⊆i P4.

Golovach and Paulusma [39] also completely classified the complexity of List Colour-

ing and `-List Colouring (` ≥ 3) for (H1, H2)-free graphs.

Theorem 1.4.5 ([39]). Let H1 and H2 be two fixed graphs. Then List Colouring is

polynomial-time solvable for (H1, H2)-free graphs in the following cases:

1. H1 ⊆i P3 or H2 ⊆i P3

2. H1 ⊆i C3 and H2 ⊆i K1,3

3. H1 = Kr for some r ≥ 3 and H2 = sP1 for some s ≥ 3.

In all other cases, even 3-List Colouring is NP-complete for (H1, H2)-free graphs.

Not so many results are known for k-Colouring on (H1, H2)-free graphs. We

only mention the following. We showed that for all integers k, r, s, t ≥ 1, the List

k-Colouring problem, and thus, the k-Colouring problem is polynomial-time solv-

able on (Ks,t, Pr)-free graphs (4.6). By taking s = t = 2, this means that for all in-

tegers k, r ≥ 1, the k-Colouring problem is polynomial-time solvable on (C4, Pr)-free

graphs. Consequently, for all integers g ≥ 5 and k, r ≥ 1, the k-Colouring problem is
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polynomial-time solvable on Pr-free graphs of girth at least g. This result is best possi-

ble with respect to the girth due to our result of that 4-Colouring is NP-complete on

(C3, P164)-free graphs (2.3).

1.5 Results for Bounded Graph Parameters

In Table 1.2 we summarize known results on colouring when some graph parameter is

bounded. We will apply some of these results in later chapters.

Graph parameter Col Precol List
Col

k-Col k-Precol List k-Col k-List
Col

All graphs NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Treewidth ≤ p (p ≥ 1) P P P P P P P
Clique-width ≤ 1 P P P P P P P
Clique-width ≤ 2 P P NP-c P P P k ≥ 3:NP-c
Clique-width ≤ p (p ≥ 3) P NP-c NP-c P P P k ≥ 3:NP-c
Degree ≤ 2 P P P P P P P
Degree ≤ 3 P P NP-c P P k ≥ 3:NP-c k ≥ 3:NP-c
Degree ≤ 4 NP-c NP-c NP-c k = 3:NP-c k = 3:NP-c k = 3:NP-c k = 3:NP-c

k = 4: ? k = 4: ? k = 4:NP-c k = 4:NP-c
k ≥ 5:YES k ≥ 5:YES k ≥ 5:NP-c k ≥ 5:NP-c

Girth ≥ p (p ≥ 3) NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Clique number ≤ 1 P P P P P P P
Clique number ≤ p (p ≥ 2) NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Independence number ≤ 1 P P P P P P P
Independence number ≤ 2 P P NP-c P P P k ≥ 3:NP-c
Independence number ≤ p (p ≥ 3) NP-c NP-c NP-c P P P k ≥ 3:NP-c
Diameter ≤ 1 P P P P P P P
Diameter ≤ 2 NP-c NP-c NP-c k = 3: ? k = 3: ? k = 3: ? k = 3: ?

k ≥ 4:NP-c k ≥ 4:NP-c k ≥ 4:NP-c k ≥ 4:NP-c
Diameter ≤ p (p ≥ 3) NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Asteroidal number ≤ 1 P P P P P P P
Asteroidal number ≤ 2 ? NP-c NP-c P P P k ≥ 3:NP-c
Asteroidal number ≤ p (p ≥ 3) NP-c NP-c NP-c ? ? ? k ≥ 3:NP-c

Table 1.2: The computational complexity of Colouring (Col), Precolouring
Extension (Precol), List Colouring (List Col), k-Colouring (k-Col), k-
Precolouring Extension (k-Precol), List k-Colouring (List k-Col), and k-
List Colouring (k-List Col) for graphs with some graph parameter that is bounded
by some fixed constant. This bound is an upper bound for all cases with one excep-
tion: the fixed bound on the girth is a lower bound. We write “P”, “NP-c” and “?” to
indicate that a certain problem is polynomial-time solvable, NP-complete or open, re-
spectively, whereas “YES” means that every instance from the corresponding graph class
is a yes-instance.
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We only explain those results that cannot be deduced from results that follow from

the relationships in Figure 1.1 showed in Section 1.1.

All graphs. All results on general graphs follow from Theorem 1.1.1. Because every graph

has girth at least 3, this case is also covered by the row in Table 1.2 that corresponds to

the girth, i.e., choose g = 3.

Graphs of bounded treewidth. A tree decomposition of G is a pair (T ,X ), where X is a

collection of subsets of V , called bags, and T is a tree whose vertices are the sets of X ,
such that the following three properties are satisfied.

• ⋃X∈X X = V ,

• for each edge uv ∈ E, there is a bag X ∈ X with u, v ∈ X,

• for each x ∈ V , the set of bags containing x forms a connected subtree of T .

The width of a tree decomposition (T ,X ) is the size of a largest bag in X minus 1. The

treewidth of G is the minimum width over all possible tree decompositions of G. We will

frequently use the following theorem due to Jansen and Scheffler [59].

Theorem 1.5.1. Let G be a graph class of treewidth at most t, then List Colouring

can be solved in time O(nkt+1) for n-vertex graphs of G that have a k-list assignment.

Due to Theorem 1.5.1, List Colouring is polynomial-time solvable for known graph

classes such as cycles, series-parallel graphs, d-outerplanar graphs (for fixed d), Halin

graphs and trees (see Bodlaender [9]). To keep Figure 1.2 showed in Section 1.2 somewhat

readable, we only included the class of trees in this figure.

Graphs of bounded clique-width. The graph parameter clique-width is defined via a graph

construction process where only a limited number of vertex labels are available; vertices

that share the same label at a certain point of the construction process must be treated

uniformly in subsequent steps. In particular, one can use the following four operations:

the creation of a new vertex with label i, the vertex-disjoint union of already constructed

labeled graphs, the relabeling of all vertices of label i with label j, and the insertion of

all possible edges between vertices of label i and label j. The clique-width of a graph

G is the smallest number k of labels that suffices to construct G by means of these

four operations. For instance, every complete graph has clique-width 1. Any graph of

bounded treewidth has bounded clique-width, whereas the converse statement is not true

(e.g. consider the class of cliques).
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Theorem 1.5.2. Let G be a graph class of bounded clique-width. The following two

statements hold:

(i) Colouring can be solved in polynomial time on G

(ii) For all k ≥ 1, List k-Colouring can be solved in linear time on G.

Proof. Statement (i) is due to Kobler and Rotics [64] (also see Rao [86]). Statement

(ii) follows from the fact that for any fixed integer k, the List k-Colouring problem

can be expressed in so-called Monadic Second Order Logic with logical formulas that do

not use edge set quantifications, and such problems are linear-time solvable on graphs of

bounded clique-width, as shown by Courcelle, Makowsky and Rotics [25].

Statement (i) of Theorem 1.5.2 is not valid for Precolouring Extension and List

Colouring. For instance, Bonomo, Durán and Marenco [10] proved that Precolour-

ing Extension is NP-complete for distance-hereditary graphs, which have clique-width

at most 3 [46]. Also, complete graphs minus a matching are readily seen to have clique-

width at most 3. However, already 3-List Colouring is NP-complete for this graph

class (4.2). Theorem 1.5.2 together with the above statement explains the row in Ta-

ble 1.2 that corresponds to the case when the clique-width is at most p for some fixed

p ≥ 3. We now consider the two rows corresponding to clique-width at most 1 and 2. A

graph has clique-width at most 1 if and only if it is a disjoint union of complete graphs.

A graph has clique-width at most 2 if and only if it is a cograph [26]. As such we copied

the rows for graphs of clique-width at most 1 and at most 2, respectively, from the

corresponding rows of Table 1.3, which we provide in Section 1.6.

Graphs of bounded degree. Kratochvíl and Tuza [72] showed that List Colouring is

polynomial-time solvable on graphs of maximum degree 2. This result is tight, as they

also showed that already 3-List Colouring is NP-complete even for planar graphs of

maximum degree 3. Chlebík and Chlebíková [20] showed that Precolouring Exten-

sion is polynomial-time solvable on graphs of maximum degree 3. This result is tight,

because already 3-Colouring is NP-complete for graphs of maximum degree 4 (see [36]).

Kochol, Lozin and Randerath [65] explored to what extent the degree-3 condition can

be relaxed by determining the complexity of 3-Colouring for each graph class G(H)

defined as follows. A graph class G(H) consists of all graphs of maximum degree at most

4, for which the neighbourhood of each vertex of degree 4 induces some graph isomorphic
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to H. They show that 3-Colouring is NP-complete for a class G(H) if H contains one

of the graphs in {4P1, 2P1 + P2, 2P2}, and linear-time solvable otherwise. Note that the

problem k-Precolouring Extension is trivially polynomial-time solvable on graphs

with maximum degree at most p if p ≤ k − 1. Golovach and Paulusma [39] showed that

List 3-Colouring is NP-complete for graphs of maximum degree 3, in which all cycles

have arbitrarily large girth and any two degree-3 vertices are of arbitrary large distance

from each other. However, the complexity of 4-Colouring and 4-Precolouring Ex-

tension is not known for graphs of maximum degree 4. Due to Theorem 1.3.3, the

k-Colouring problem is NP-complete on (2k − 2)-regular line graphs for all k ≥ 3.

Graphs of large girth. The results in Table 1.2 follow from Theorem 1.3.2. Kamiński and

Lozin [61] also showed that for all fixed g ≥ 3, the 3-Colouring problem is NP-complete

for line graphs of 3-regular graphs of girth at least g.

Graphs of bounded clique number. A graph has clique number 1 if and only if it is a

disjoint union of complete graphs. As such we refer to the corresponding row of Table 1.3

provided in Section 1.6 for the complexity results in this case. By choosing g = 4 in the

statement of Theorem 1.3.2, one obtains that k-Colouring is NP-complete on triangle-

free graphs for all k ≥ 3. Consequently, k-Colouring is NP-complete on graphs of

clique number at most 2 for all k ≥ 3.

Graphs with bounded independence number. Recall that a graph has independence num-

ber α if and only if it is (α+1)P1-free. Hence, all results for Colouring, Precolouring

Extension, List Colouring and k-List Colouring follow from Theorem 1.3.1. The

List k-Colouring problem is constant-time solvable on rP1-free graphs for all k ≥ 1

and r ≥ 1, because every colouring of any graph G on more than kr vertices respects no

k-list assignment.

Graphs of bounded diameter. We first note that a graph has diameter 1 if and only if it

is a complete graph. Hence, we can copy the corresponding row of Table 1.3 showed in

Section 1.6 for this case. We claim that for all k ≥ 1 the problems k-Colouring and

k-Precolouring Extension are polynomially equivalent on all graphs of diameter at

most p for any p ≥ 1. This can be seen as follows. First, k-Colouring is a special case of

k-Precolouring Extension. Second, if we are given a graph G of diameter at most p

with a precolouring φW for someW ⊆ V (G), then we identify any two vertices ofW that

are coloured alike. This operation is allowed, because it does not increase the diameter of
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the graph. For the same reason we may add an edge between the remaining precoloured

vertices (which all have distinct colours). Hence we have obtained an equivalent instance

of k-Colouring for graphs of diameter at most p. It is not difficult to see that k-

Colouring is NP-complete for graphs of diameter d for all pairs (k, d) with k ≥ 3 and

d ≥ 2 except when (k, d) ∈ {(3, 2), (3, 3)}. Recently, Mertzios and Spirakis [80] solved

one of the two remaining cases by showing that 3-Colouring is NP-complete even for

triangle-free graphs G = (V,E) of diameter 3, radius 2 and minimum degree δ = θ(|V |ε)
for every 0 ≤ ε ≤ 1.

Graphs with bounded asteroidal number. Recall that an asteroidal triple in a graph is a

set of three mutually non-adjacent vertices such that each two of them are joined by a

path that avoids the neighbourhood of the third. An asteroidal set in a graph G is an

independent set S ⊆ V (G), such that every triple of vertices of S forms an asteroidal

triple. The asteroidal number is the size of a largest asteroidal set in G. Complete

graphs are exactly those graphs that have asteroidal number at most one, and that AT-

free graphs are exactly those graphs that have asteroidal number at most two. Hence we

refer to Table 1.3 provided in Section 1.6 for these two cases. Because Colouring and

k-List Colouring (k ≥ 3) are NP-complete for graphs of independence number at most

3 (see Table 1.2), we find that these problems are NP-complete for the class of graphs

with asteroidal number at most 3. The complexity of the problems k-Colouring, k-

Precolouring Extension and List k-Colouring on graphs with asteroidal number

at most p is not known for any fixed p ≥ 3.

1.6 Results for the Graphs in Figure 1.2

Before we discuss the results known for the graph classes in Figure 1.2 showed in Sec-

tion 1.2, we first introduce the following well-known concept. An edge colouring of a

graph G = (V,E) is a mapping φ : E → {1, 2, . . .} such that φ(e) 6= φ(f) for any distinct

edges that have a common end-vertex. We call φ(e) the colour of e. A k-edge colouring

of G is a colouring φ of G with 1 ≤ φ(e) ≤ k for all e ∈ E. In that case we say that G is

k-edge colourable. The chromatic index of a graph G is the smallest integer k for which

G is k-edge colourable. Note that an edge mapping φ : E(G) → {1, . . . , k} is a k-edge

colouring of G if and only if φ is a k-colouring of line(G). Hence the chromatic index

of G is equal to the chromatic number of line(G). Vizing’s theorem [95] tells us that
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the chromatic index of any graph G, or equivalently, the chromatic number of line(G)

is either ∆(G) or ∆(G) + 1. An edge e = uv of a graph G is a dominating edge if {u, v}
is a dominating set of G.

Theorem 1.6.1. For all k ≥ 1, the List k-Colouring problem is constant-time solvable

on line graphs of graphs that have a dominating edge.

Proof. Let k ≥ 1 be an integer and G be a graph on n vertices with a dominating edge

e = uv and a k-list assignment L. Because e is dominating, degG(u) ≥ n
2 or degG(v) ≥ n

2 .

Hence, ∆(G) ≥ n
2 . By Vizing’s theorem, the chromatic number of line(G) is at least

∆(G) ≥ n
2 . This means that line(G) has no colouring that respects L if k ≤ n

2 − 1.

Suppose that k ≥ n
2 . Then n ≤ 2k, which is a constant because k is fixed. Hence the

result follows.

Table 1.3 provides a summary of the complexity results for the problems Colouring,

Precolouring Extension, List Colouring, k-Colouring, k-Precolouring Ex-

tension, List k-Colouring and k-List Colouring for the graph classes displayed

in Figure 1.2 showed in Section 1.2. Below we explain the results in this table. We

consider the rows of Table 1.3 one by one, and only explain those results that cannot be

deduced from results for other graph classes using the relationships in Figures 1.1 and 1.2

that are showed in Section 1.1 and Section 1.2. Due to Theorem 1.1.1 we may restrict

ourselves to k ≥ 3 when considering the problems k-Colouring, k-Precolouring Ex-

tension, List k-Colouring and k-List Colouring. However, instances from some

graph classes may always be yes-instances for some of these problems for certain values

of k. Such cases are mentioned explicitly in Table 1.3 by denoting them with a “YES”

just as we did in Table 1.2 showed in Section 1.5. Also the other abbreviations used in

Table 1.3 originate from Table 1.2. For clarity we copied the first row of Table 1.2; this

is the row corresponding to general graphs.

All graphs. Recall that all results on general graphs follow from Theorem 1.1.1; also see

Table 1.2.

AT-free graphs. Stacho [90] proved that 3-Colouring is polynomial-time solvable on

AT-free graphs. Recently, Kratsch and Müller [71] extended this result by showing

that even List k-Colouring is polynomial-time solvable on these graphs for any fixed

integer k ≥ 1. All NP-completeness results follow from the corresponding results for co-

comparability graphs. The complexity of Colouring for AT-free graphs is not known.
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Graph Class Col Precol List Col k-Col k-Precol List k-Col k-List Col
All NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
AT-free ? NP-c NP-c P P P k ≥ 3:NP-c
Bipartite P NP-c NP-c k ≥ 2:YES k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Block P P P P P P P
Chordal P NP-c NP-c P P P k ≥ 3:NP-c
Claw-free NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Co-bipartite P P NP-c P P P k ≥ 3:NP-c
Co-comparability P NP-c NP-c P P P k ≥ 3:NP-c
Cograph P P NP-c P P P k ≥ 3:NP-c
Comparability P NP-c NP-c P k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Complete P P P P P P P
Complete bipartite P P NP-c k ≥ 2:YES P P k ≥ 3:NP-c
Complete minus matching P P NP-c P P P k ≥ 3:NP-c
Complete split P P NP-c P P P k ≥ 3:NP-c
Distance-hereditary P NP-c NP-c P P P k ≥ 3:NP-c
Interval P NP-c NP-c P P P k ≥ 3:NP-c
Line NP-c NP-c NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Line of complete P NP-c NP-c P P P k ≥ 3:NP-c
Line of complete bipartite P NP-c NP-c P P P k ≥ 3:NP-c
Perfect P NP-c NP-c P k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c
Permutation P NP-c NP-c P P P k ≥ 3:NP-c
Planar NP-c NP-c NP-c k = 3:NP-c

k ≥ 4:YES
k ≥ 3:NP-c k ≥ 3:NP-c k ≥ 3:NP-c

Proper interval P NP-c NP-c P P P k ≥ 3:NP-c
Split P P NP-c P P P k ≥ 3:NP-c
Threshold P P NP-c P P P k ≥ 3:NP-c
Tree P P P k ≥ 2:YES P P P
Trivially perfect P P NP-c P P P k ≥ 3:NP-c
Union of two complete P P NP-c P P P k ≥ 3:NP-c

Table 1.3: The computational complexity of the colouring problems for the graph classes
in Figure 1.2 showed in Section 1.2.

Recall that AT-free graphs are exactly those graphs with asteroidal number at most 2.

Hence, the missing entry in Table 1.3 is included in Open Problem 3.

Bipartite graphs. A graph is readily seen to be bipartite if and only if it is 2-colourable.

All NP-completeness results follow from the result of Kratochvíl [70] who proved that

3-Precolouring Extension is NP-complete for planar bipartite graphs.

Block graphs. Bonomo, Durán and Marenci [10] showed that List Colouring can be

solved in polynomial time for block graphs.

Chordal graphs. We show how to solve List k-Colouring in polynomial time for chordal

graphs. A graph is chordal if and only if it has a tree decomposition whose set of bags
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is exactly the set of its maximal cliques [37]. Moreover, such a tree decomposition can

be constructed in linear time [7]. This means that we can do as follows. Let G be a

chordal graph with a k-list assignment L. We compute the size ω(G) of a largest clique

in G in linear time. If ω(G) ≥ k+ 1, then G has no colouring respecting L. If ω(G) ≤ k,
then the treewidth of G is at most k− 1, and we apply Theorem 1.5.1. The polynomial-

time result for Colouring follows from the corresponding result for perfect graphs. All

NP-completeness results follow from the corresponding results for interval graphs.

Claw-free graphs. All (NP-completeness) results follow from the corresponding results

for line graphs. The 3-Colouring problem is even NP-complete for claw-free graphs

of maximum degree 4 [65]. Kamiński and Lozin [62] gave a necessary condition for the

polynomial-time solvability of 3-Colouring in subclasses of claw-free graphs defined by

forbidding a finite number of induced subgraphs.

Co-bipartite graphs. Hujter and Tuza [56] showed that Precolouring Extension can

be solved in polynomial time on co-bipartite graphs. The polynomial-time result for

List k-Colouring follows from the corresponding result for co-comparability graphs.

All NP-completeness results follow from the corresponding results for complete graphs

minus a matching.

Co-comparability graphs. All polynomial-time results follow from the corresponding re-

sults of AT-free graphs and perfect graphs. All NP-completeness results follow from the

corresponding results for permutation graphs.

Cographs. Both Hujter and Tuza [57] and Jansen and Scheffler [59] showed that Pre-

colouring Extension can be solved in polynomial time on cographs. The polynomial-

time result for List k-Colouring follows from the corresponding result for permutation

graphs. All NP-completeness results follow from the corresponding results for complete

bipartite graphs.

Comparability graphs. All polynomial-time results follow from the corresponding results

for perfect graphs. All NP-completeness results follow from the corresponding results for

bipartite graphs.

Complete graphs. All (polynomial-time) results follow from the corresponding results for

block graphs.

Complete bipartite graphs. The proof of Theorem 4.5 in the paper by Jansen and Schef-

fler [59] is to show that List Colouring is NP-complete on P4-free graphs but in
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fact shows that 3-List Colouring is NP-complete for complete bipartite graphs. All

polynomial-time results follow from the corresponding results for bipartite graphs and

cographs.

Complete graphs minus a matching. Recall that we proved that 3-List Colouring is

NP-complete for complete graphs minus a matching (4.2). All polynomial-time results

follow from the corresponding results for co-bipartite graphs.

Complete split graphs. The proof of Theorem 2 in the paper by Golovach and Heg-

gernes [38] shows that 3-List Colouring is NP-complete for complete bipartite graphs.

By adding all possible edges between vertices in one bipartition class of their complete

bipartite gadget graph, one can in fact prove that 3-List Colouring is NP-complete for

complete split graphs. All polynomial-time results follow from the corresponding results

for threshold graphs.

Distance-hereditary graphs. Recall that Bonomo, Durán and Marenco [10] proved that

the Precolouring Extension problem is NP-complete for distance-hereditary graphs.

The NP-completeness result for k-List Colouring follows from the corresponding re-

sult for cographs. Because distance-hereditary graphs have clique-width at most 3 [46],

List k-Colouring is polynomial-time solvable for these graphs by Theorem 1.5.2. The

polynomial-time result for Colouring follows from the corresponding result for perfect

graphs.

Interval graphs. All polynomial-time results follow from the corresponding results for co-

comparability graphs. All NP-completeness results follow from the corresponding results

for proper interval graphs.

Line graphs. Recall that Holyer [54] showed that 3-Colouring is NP-complete for line

graphs of regular graphs, and recall that Leven and Galil [77] extended this result by

showing that k-Colouring is NP-complete on these graphs for all k ≥ 4.

Line graphs of complete graphs. König [67] showed that Colouring is polynomial-time

solvable on line graphs of complete graphs. Bonomo, Durán and Marenco [10] proved

that Precolouring Extension is NP-complete for line graphs of complete graphs.

Because complete graphs have a dominating edge, List k-Colouring is polynomial-

time solvable on this graph class for all k ≥ 1 by Theorem 1.6.1. Kubale [73] showed in

Theorem 8 of his paper that 3-List Colouring is NP-complete on line graphs line(G)
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of bipartite graphs G with ∆(G) = 3. By a small modification of the proof of this result

we find that 3-List Colouring is NP-complete on line graphs of complete graphs.

Line graphs of complete bipartite graphs. Colbourn [23] showed that Precolouring

Extension is NP-complete for line graphs of complete bipartite graphsKn,n. By another

small modification of the proof of Theorem 8 of the aforementioned paper of Kubale [73]

we find that 3-List Colouring is NP-complete on line graphs of complete bipartite

graphs. Because complete bipartite graphs have a dominating edge, List k-Colouring

is polynomial-time solvable on this graph class for all k ≥ 1 by Theorem 1.6.1. The

polynomial-time result for Colouring follows from the corresponding result for perfect

graphs.

Perfect graphs. Grötschel [47] showed that Colouring on a perfect graph can be solved

in polynomial time. All NP-completeness results follow from the corresponding results

for comparability graphs.

Permutation graphs. Jansen [58] showed that Precolouring Extension is NP-complete

for permutation graphs. The NP-completeness result for k-List Colouring follows

from the corresponding result for cographs. All polynomial-time results follow from the

corresponding results for co-comparability graphs.

Planar graphs. Garey, Johnson and Stockmeyer [36] proved that 3-Colouring is NP-

complete even for planar graphs with maximum degree 4, whereas every planar graph

is 4-colourable by the Four Colour Theorem [1]. We note that Dvořák, Kawarabayashi

and Thomas [31] showed that 3-Colouring can be solved in linear time for triangle-free

planar graphs improving a result of Kowalik [68] who gave the first o(n2)-time algorithm

for solving 3-Colouring on triangle-free planar graphs.

Proper interval graphs. Marx [79] showed that Precolouring Extension is NP-

complete for proper interval graphs. The NP-completeness result for k-List Colouring

follows from the corresponding result for unions of two complete graphs. All polynomial-

time results follow from the corresponding results for interval graphs.

Split graphs. Hujter and Tuza [57] showed that Precolouring Extension can be

solved in polynomial time on split graphs. The polynomial-time result for List k-

Colouring follows from the corresponding result for chordal graphs. All NP-completeness

results follow from the corresponding results for threshold graphs.
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Threshold graphs. All polynomial-time results follow from the corresponding results

for split graphs. All NP-completeness results follow from the corresponding results for

complete split graphs.

Trees. All (polynomial-time) results follow from the corresponding results for block

graphs and bipartite graphs.

Trivially perfect graphs. All polynomial-time results follow from the corresponding re-

sults for cographs. All NP-completeness results follow from the corresponding results for

threshold graphs.

Unions of two complete graphs. The proof of Theorem 11 in the paper by Jansen [58] is

to show that List Colouring is NP-complete for unions of two complete graphs, but in

fact shows that 3-List Colouring is NP-complete for these graphs. All polynomial-time

results follow from the corresponding results for cographs.

1.7 Generalizing Graph Colouring

For two graphs G and F , a mapping f : V (G) → V (F ) is called a homomorphism from

G to F if f(u)f(v) ∈ E(F ) whenever uv ∈ E(G). The Homomorphism problem is

that of testing whether a given graph G allows a homomorphism to some given graph

F . This is a generalisation of the Colouring problem. If F is the complete graph on

k vertices, then testing whether there exists a homomorphism from a graph G to F is

equivalent to testing whether G is k-colourable. The most famous result in this area

is the Hell-Nešetřil dichotomy [51]. According to this dichotomy, deciding whether a

given graph allows a homomorphism to a fixed graph F is polynomial-time solvable if

F is bipartite, and NP-complete otherwise. Since graph homomorphisms are beyond the

scope of this thesis, we do not discuss graph homomorphisms any further but refer to

Hell and Nešetřil [52] for a survey on them.

1.8 Open Problems

Recall that Table 1.1 provided in Section 1.3 shows the complexity of k-Colouring,

k-Precolouring Extension and List k-Colouring on Pr-free graphs on Pr-free

graphs for fixed k and r. This leads to the following open problem.
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Open Problem 1. Complete the classification of the complexity of k-Colouring,

k-Precolouring Extension and List k-Colouring for H-free graphs.

As we have seen earlier this chapter, Golovach and Paulusma [39] completely classified

the complexity of List Colouring and `-List Colouring (` ≥ 3) for (H1, H2)-free

graphs. But the classification of the complexity of Precolouring Extension for

(H1, H2)-free graphs is still open.

Open Problem 2. Complete the classification of the complexity of Precolour-

ing Extension for (H1, H2)-free graphs and the complexity of List Colouring for

(H1, H2, H3)-free graphs.

Finally, the entries in Table 1.2 provided in Section 1.5 marked “?” are also open.

Open Problem 3. Determine the complexity of the entries in Table 1.2 marked “?”.

1.9 Thesis Overview

We consider the Colouring problem and its variants restricted to those graphs that

can be characterised by one or more forbidden induced subgraphs. Note that one may

also forbid a graph H as a (not necessarily induced) subgraph; we refer to Golovach,

Paulusma and Ries [40] for more details on this. Also note that some of the polynomial-

time algorithms in this thesis are far from practical: our main objective was to research

the borderline of being tractable or intractable. For example, the 2nnO(1) time algorithm

by Björklund, Husfeldt and Koivisto [6] to solve Coloring may be more practical than

our polynomial-time algorithms. This thesis is based on six research papers [18, 19, 41,

42, 43, 44], the results of which we have already stated in Section 1.3 and Section 1.4.

The paper [19] and the paper [41] are the journal versions of the paper [18] and the

paper [42], respectively. In the coming chapters we will prove these results.

In Chapter 2, we focus on the problems Colouring and k-Colouring. We first

prove that 4-Colouring on (P2 + P3)-free is NP-complete, and 4-Colouring on P8-

free graphs is NP-complete. We then show the existence of an integer r such that 4-

Colouring is NP-complete for Pr-free graphs with girth 4. In contrast, we also deter-

mine for any fixed girth g ≥ 4 a value r(g) such that every Pr(g)-free graph with girth at

least g is 3-colourable. Here we tried to make r(g) as large as possible.
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In Chapter 3, we investigate the problem Precolouring Extension and the prob-

lem k-Precolouring Extension. We first give a computational complexity classi-

fication for Precolouring Extension. We show that for a fixed graph H, Pre-

colouring Extension is polynomial-time solvable for H-free graphs if H is an in-

duced subgraph of P4 or of P1 + P3; otherwise Precolouring Extension is NP-

complete for H-free graphs. Next, we present a polynomial-time algorithm for solving

4-Precolouring Extension for (P2+P3)-free graphs. We finish this chapter by show-

ing that 4-Precolouring Extension on P7-free graphs is NP-complete.

In Chapter 4, we focus on the List Colouring problem and its two variants List

k-Colouring and k-List Colouring. We first present a computational complex-

ity classification for k-List Colouring on H-free graphs, which immediately yields

a complexity classification for List Colouring on H-free graphs. We show that for

a fixed integer ` and a fixed graph H, `-List Colouring is polynomial-time solv-

able on H-free graphs if ` ≤ 2 or H is an induced subgraph of P3; otherwise `-List

Colouring is NP-complete for H-free graphs. We then show that 3-List Colour-

ing for (3P1, P1 + P2)-free graphs is NP-complete. Next we settle the computational

complexity of List 3-Colouring for (P2 + P4)-free graphs and for sP3-free graphs for

any fixed s by presenting a polynomial-time algorithm for each of the graph classes.

We then show that List 4-Colouring on P6-free graphs is NP-complete. Finally, we

show a polynomial-time algorithm for List k-Colouring on (Ks,t, Pr)-free graphs for

all integers k, r, s, t ≥ 1.
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Colouring

The main ingredients of this chapter are from the following papers.
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In this chapter, we focus on the problems Colouring and k-Colouring. We

first prove that 4-Colouring on (P2 + P3)-free is NP-complete in Section 2.1, and 4-

Colouring on P8-free graphs is NP-complete in Section 2.2. For graphs with girth 4,

we show the existence of an integer r such that 4-Colouring is also NP-complete for

Pr-free graphs with such girth in Section 2.3. In contrast, we also determine for any

fixed girth g ≥ 4 a value r(g) such that every Pr(g)-free graph with girth at least g is

3-colourable in Section 2.4. Here we tried to make r(g) as large as possible.

2.1 4-Colouring for (P2 + P3)-free Graphs

In this section, we present a polynomial-time algorithm for solving 4-Colouring on

(P2 +P3)-free graphs. This algorithm heavily relies on a number of structural properties,

some of which are valid even for sP3-free graphs for any fixed integer s ≥ 1. In the

latter case we prove them for sP3-free graphs, because we consider sP3-free graphs in

Section 4.4 and there we need these properties as well. Before showing these properties,

we first introduce some additional terminology.

Let G = (V,E) be a graph. Let I be an independent set in G, and let X be a subset

of V \I. We write I(X) := NG(X) ∩ I and I(X) := I\NG(X), so I = I(X) ∪ I(X)

and I(X) ∩ I(X) = ∅. If every vertex in NG(I)\X has at most one neighbour in I(X)

then we say that X pseudo-dominates I. This notion plays a crucial role in the design

of our algorithm. An example of a set X that pseudo-dominates a set I is illustrated in

Figure 2.1.

X NG(I) \ X

I(X) I(X)

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸
Figure 2.1: A set X that pseudo-dominates a set I.

Recall that for positive integers p and q, the Ramsey number R(p, q) is the smallest

number of vertices n such that all graphs on n vertices contain an independent set of

size p or a clique of size q. Also recall that Ramsey’s Theorem states that such a number
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exists for all positive integers p and q. Using Ramsey numbers we can prove the following

structural result on pseudo-dominating sets.

Lemma 2.1.1. Let I be an independent set in a k-colourable sP3-free graph G = (V,E)

for some integer s ≥ 2. Then G[V \I] contains a set X of cardinality at most R(s, k+ 1)

that pseudo-dominates I.

Proof. We may assume that G[V \I] contains more than R(s, k + 1) vertices; otherwise

there is nothing to prove. Let X be a subset of V \ I with R(s, k + 1) vertices that

dominates the maximum number of vertices in I over all subsets of V \I of size R(s, k+1).

Suppose that X does not pseudo-dominate I. Then there is a vertex v ∈ NG(I) \X
adjacent to at least two vertices in I(X). This means that any vertex x ∈ X has two

neighbours ux, wx in I that are not adjacent to any vertex in X\{x}; otherwise the set

X ′ = (X ∪ {v}) \ {x} of size R(s, k + 1) dominates more vertices than X, contradicting

the maximality of X. From the definition of Ramsey number R(s, k + 1), we find that

X has an independent set {x1, . . . , xs} or a clique of size k+ 1. In the first case we have

an induced sP3 consisting of the s paths uxixiwxi , contradicting the sP3-freeness of G.

In the second case, when X has a clique of k + 1 vertices, G is not k-colourable, which

contradicts our assumptions as well. This completes the proof.

We note that the upper bound on the size of X in Lemma 2.1.1 can be slightly

improved for s = 2, as we showed in the paper [17].

Before we prove our main result of this section, we need two more lemmas.

Lemma 2.1.2. Let G be an sP3-free graph that contains a set X and an independent

set I, such that X pseudo-dominates I. Let k ≥ 1. If I(X) contains more than k(s− 1)

vertices with degree at least k in G, then G is not k-colourable.

Proof. Let G, I and X be defined as in the statement of the lemma. Let k ≥ 1. Let S be

the subset of vertices in I(X) that have degree at least k in G. Suppose |S| > k(s− 1).

In order to derive a contradiction, assume G has a k-colouring φ.

Every vertex in G with degree at least k must have at least two neighbours with the

same colour in φ. Thus, because every vertex in S has degree at least k, every vertex

in S has at least two neighbours with the same colour. Because S contains more than

k(s − 1) vertices, this means that there exist s vertices u1, . . . , us in S and a colour

j such that each ui has (at least) two neighbours xi and yi with colour j. The set
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{x1, . . . xs} ∪ {y1, . . . , ys} is an independent set because all its vertices have the same

colour, namely colour j. Because X pseudo-dominates I, a vertex ui is neither adjacent

to xh nor to yh whenever h 6= i. This implies that the s paths xiuiyi form an induced

sP3 in G, which is not possible. This contradiction yields that G is not k-colourable.

Lemma 2.1.3. Let G = (V,E) be an sP3-free graph with a k-list assignment L for some

integer k ≥ 1. Let W ⊆ V be the set of those vertices in G whose lists have size at most

2. If every vertex in V \W has degree at least k, and G has a colouring that respects L,
then G contains a set D of size at most k · R(s, k+ 1) + (k2 + 3) · (s− 1) that dominates

V \W .

Proof. Let G = (V,E) be an sP3-free graph with a k-list assignment L for some integer

k ≥ 1. Let W ⊆ V be the set of those vertices in G whose lists have size at most 2.

Assume that every vertex in V (G) \W has degree at least k, and that G has a colouring

that respects L. The second assumption implies that G is Kk+1-free. If s = 1, then

every component of G is a complete graph at most k vertices. Consequently, G has no

vertex of degree at least k, and the statement of the lemma holds. Assume that s ≥ 2

and assume without loss of generality that G is not (s− 1)P3-free. Let S be the vertex

set of an induced subgraph of G that is isomorphic to (s− 1)P3, hence |S| = 3(s− 1). If

S is a dominating set of G, then the statement of the lemma holds.

Suppose S is not a dominating set of G. Let G′ be the graph obtained from G

after removing S ∪W and all vertices in NG(S). Because G is (Kk+1, sP3)-free and S

induces an (s− 1)P3, we find that G′ is (Kk+1, P3)-free. Hence, every component of G′

is isomorphic to a graph from {K1, . . . ,Kk}.
We partition the vertices of G′ into at most k independent sets I1, . . . , Ik as follows.

First we form I1 by taking exactly one vertex from each component of G′. We remove

I1 from G′ and repeat the above step to obtain I2 if there were any vertices of G′ left.

We proceed in this way until all vertices of G′ have been used. This will happen after at

most k steps, because every component of G′ has at most k vertices at the start of this

procedure.

We apply Lemma 2.1.1 to each Ih in order to find a set Xh with |Xh| ≤ R(s, k + 1)

in G that pseudo-dominates Ih for h = 1, . . . , k.

We apply Lemma 2.1.2 to G and each Ih in order to find that |Ih(Xh)| ≤ k(s − 1)

for h = 1, . . . , k. Then D = S ∪ X1 ∪ · · · ∪ Xk ∪ I1(X1) ∪ · · · ∪ Ik(Xk) has at most
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3(s − 1) + k · R(s, k + 1) + k · k · (s − 1) = k · R(s, k + 1) + (k2 + 3) · (s − 1) vertices.

Because D is a dominating set in G, this completes the proof of Lemma 2.1.3.

Because any (P2 + P3)-free graph is 2P3-free, we can apply Lemma 2.1.3 for W = ∅,
k = 4 and s = 2. After observing that the Ramsey number R(2, 5) = 5, this leads us to

the following lemma that is crucial for our algorithm.

Corollary 2.1.4. Let G = (V,E) be a (P2 + P3)-free graph of minimum degree at least

4. If G has a 4-colouring, then G contains a dominating set D of size at most 39.

Note that Lemma 2.1.4 involves a minimum degree condition. This is not a problem

since we can apply Proposition 1.2.2 by setting L(u) = {1, 2, 3, 4} for every u ∈ V (G)

for the list assignment L in the statement of this proposition.

Broersma et al. [16] showed that 3-Precolouring Extension is polynomial-time

solvable for P6-free graphs. They note that their proof of this result can be used to show

the stronger statement that List 3-Colouring can be solved in polynomial time for

P6-free graphs. Because every (P2 + P3)-free graph is P6-free, we obtain the following

lemma which we need for proving the correctness of our algorithm.

Lemma 2.1.5. The List 3-Colouring problem can be solved in polynomial time for

the class of (P2 + P3)-free graphs.

We also need the following lemma, which follows immediately from Lemma 2.1.5.

Lemma 2.1.6. Let G = (V,E) be a (P2 + P3)-free graph. Then a partition of V into

three (possibly empty) independent sets I1, I2, I3 can be found in polynomial time if it

exists.

We now give a polynomial-time algorithm for the 4-Colouring problem restricted

to (P2 + P3)-free graphs. Let G be a (P2 + P3)-free graph that is an instance of 4-

Colouring. By Proposition 1.2.2 we may assume that G has minimum degree at least

4. We also assume that each vertex u has been assigned an initial list L0(u) = {1, 2, 3, 4}
of admissible colours.

Outline. Our algorithm is a branching algorithm. The main idea is to obtain in polyno-

mial time a polynomial-bounded set L of list assignments for G that have the following

two properties. First, G has a 4-colouring if and only if G has a colouring that respects

at least one list assignment in L . Second, for every list assignment in L , we either have
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that all its lists have size at most two or else that the union of its lists that contain at least

2 colours has size 3; in the first case we can use Theorem 1.1.1, and in the second case

we can use Lemma 2.1.5 after removing all vertices with a single colour in their list from

G. Because we obtain L in polynomial time and its size is bounded by a polynomial,

this means that the total running time of our algorithm is polynomial.

Our algorithm consists of two phases. In Phase 1 we first check for a “small” dominating

set D. Such a set D must exist in the case that G is 4-colourable, as we prove later.

Because D has small size, the total number of 4-colourings of G[D] will be “small” as

well. The algorithm considers every 4-colouring of G[D]. Given such a 4-colouring of D,

it partitions the remaining vertices of G in four different ways using Lemma 2.1.6. We

use these partitions, together with further structural properties of (P2 +P3)-free graphs,

for a branching procedure. At the end of Phase 1, we either have found that G has no

4-colouring or we have obtained a set L of list assignments, for which we will prove the

desired properties specified in the outline. In Phase 2 we consider the list assignments of

L one by one to determine whether G has a colouring respecting at least one of them.

We now describe Phases 1 and 2 in detail. Here, we use the following terminology. If we

say that we “colour the vertices of a set U according to their lists”, then we mean that we

assign every vertex u ∈ U a colour that is in the list of u, and moreover, such that two

adjacent vertices in U do not get the same colour. Afterwards, for every u ∈ U , we may

remove the colour of u from the list of every neighbour of u in NG(U). This is what we

call updating the list assignment. Also, when colouring a vertex, say with colour i, then

we set its list of admissible colours to {i}. After proving a number of lemmas, we show

in Theorem 2.1.14 that our algorithm is correct and that it runs in polynomial time.

Phase 1. Determining the set L .

Step 1. Check if G has a dominating set of size at most 39. If such a set does not exist,

then return NO. Otherwise, let D be such a dominating set.

Step 2. Check if G[D] is 4-colourable. If not, then return NO.

Assume that G[D] is 4-colourable and set L = ∅. Perform Steps 3-9 for every 4-colouring

φD of G[D].

Step 3. First update the list assignment. Then, for i = 1, . . . , 4, letDi ⊆ D be the subset

of vertices with colour i, and let Fi = G[V \ (D∪NG(Di)]. Note that V (Fh)∩V (Fi) 6= ∅
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D

NG(D1)\D

F1

D1 D2 D3 D4

I1
1 I1

2 I1
3

u

Figure 2.2: A graph G decomposed as V (G) = D ∪ (NG(D1) \D) ∪ V (F1), where edges
inside the different parts are not displayed; note that vertex u belongs to F1∩ (NG(D2)\
D) ∩ F3 ∩ F4 in this particular example.

is possible for h 6= i. For i = 1, . . . , 4 check whether NG(Di) \ D can be partitioned

into three independent sets, where one or more of such sets are allowed to be empty;

in particular, all three sets are empty if NG(Di) \ D = ∅. If such a partition does not

exist for some i, then stop considering φD. Otherwise, let Ii1, Ii2, Ii3 be such a partition

for i = 1, . . . , 4. Figures 2.2 and 2.3 illustrate that

V (G) = D ∪ I11 ∪ I12 ∪ I13 ∪ I21 ∪ I22 ∪ I23 ∪ I31 ∪ I32 ∪ I33 ∪ I41 ∪ I42 ∪ I43
= D ∪ Ii1 ∪ Ii2 ∪ Ii3 ∪ V (Fi) for i = 1, . . . 4,

where two sets Iij and I
i′
j′ may intersect but only if i 6= i′.

Step 4. For i = 1, . . . , 4, determine the set Qi of isolated vertices of Fi, i.e., that have

no neighbours in Fi. For i = 1, . . . , 4, let F ′i be the graph obtained from Fi by removing

all vertices of Qi.

If some F ′i is “small”, then deal with this case in Step 5. Otherwise move on to Step

6. This case distinction is mainly made for technical reasons, i.e., it will simplify later

statements.

Step 5. Check if there exists a graph F ′i that has at most two vertices. If so, then pick

an arbitrary such F ′i and do as follows. Colour the vertices of Qi with colour i. Consider

every possible colouring of the vertices of F ′i according to their lists. Each time, update
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D

I

D1 D2 D3 D4

I1
1 I1

2 I1
3 I2

1 I2
2 I2

3 I3
1 I3

2 I3
3 I4

1 I4
2 I4

3

I1
1 ∩ I2

2 I1
3 ∩ I2

3 ∩ I3
2 I3

2 ∩ I4
3

v

Figure 2.3: A graph G decomposed as V (G) = D∪⋃i,j I
i
j , where edges inside the different

parts are not displayed; note that I11 ∩ I22 6= ∅, I13 ∩ I23 ∩ I32 6= ∅ and I32 ∩ I43 6= ∅, whereas
all other sets Iij do not intersect in this particular example; also note for instance that
v ∈ I11 ∩ I22 belongs to F3 ∩ F4 as well.

the list assignment and put the resulting list assignment in L . Stop considering φD.

From now on assume that F ′i consists of at least three vertices for all 1 ≤ i ≤ 4.

Step 6. For i = 1, . . . , 4 and j = 1, . . . , 3 do as follows. Check if Iij 6= ∅. If so, then do as

follows. Find a vertex aij ∈ Di that has the maximum number of neighbours in Iij over

all vertices in Di; we allow aij = aij′ for some j 6= j′. Define Ĩij = Iij ∩NG(aij) if Iij 6= ∅,
and Ĩij = ∅ otherwise.

For i = 1, . . . , 4, let Ii = Ii1 ∪ Ii2 ∪ Ii3 \ (Ĩi1 ∪ Ĩi2 ∪ Ĩi3). Let I∗ = I1 ∪ I2 ∪ I3 ∪ I4.

Now, process the graphs F ′i further by first preforming Step 7 and then Step 8. Note

that if some F ′i is non-bipartite, then F
′
i is not processed at all in Step 7. Otherwise, F ′i

is either connected and bipartite, or else disconnected and bipartite. In the latter case,

F ′i is the disjoint union of at least two edges due to the (P2 + P3)-freeness of G and the

fact that F ′i contains no isolated vertices by definition; as we shall see this property will

be crucial.

Step 7. For i = 1, . . . , 4 do as follows.

7a. If F ′i is connected and bipartite, then do as follows. Give all the vertices of one

partition class colour i. Consider both possibilities. In both cases, colour the vertices of
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Qi with colour i, update the list assignment, put the resulting list assignment in L and

restore all lists to the situation at the end of Step 6.

7b. If F ′i is disconnected and bipartite, then do as follows for every j with Ĩij 6= ∅.
Consider every edge in F ′i that has no end-vertex with list {i} already. If both end-

vertices are adjacent to all but at most three vertices of Ĩij , then arbitrarily pick one of

these end-vertices and colour it with i. If exactly one end-vertex is adjacent to all but at

most three vertices of Ĩij , then colour that end-vertex with colour i. Afterwards, let Sij
be the set of edges in F ′i , both end-vertices of which are not coloured i. Consider every

possible colouring of the end-vertices of the edges in Sij according to their lists. Each

time, colour the vertices of Qi with colour i, update the list assignment, put the resulting

list assignment in L , and restore the lists to the situation at the end of Step 6.

Step 8. For i = 1, . . . , 4, do as follows. If F ′i is connected or non-bipartite, then choose

an edge ei = uivi of F ′i . Otherwise, i.e., if F ′i is disconnected and bipartite, then choose

for all 1 ≤ j ≤ 3 a vertex uij that is adjacent to all but at most three vertices in Ĩij . Here,

it is allowed that {ui, vi} ∩ {ui∗ , vi∗} 6= ∅ for any two connected graphs F ′i and F
′
i∗ with

indices i∗ < i and that uij = ui
∗
j∗ for any two disconnected graphs F ′i and F

′
i∗ with indices

i∗ ≤ i and 1 ≤ j∗ ≤ j ≤ 3.

After considering all 1 ≤ i ≤ 4, letM be the set that consists of the following vertices:

the vertices ui, vi for every connected F ′i and the vertices ui1, ui2, ui3 for every disconnected

F ′i ; note that |M | ≤ 12. Check whether there exists a colouring of G[M ] that respects the

lists of the vertices in M , and moreover, that neither colours ui nor vi with colour i for

each connected F ′i , and that colours none of ui1, ui2, ui3 with colour i for each disconnected

F ′i . If so, then call such a colouring suitable and M a suitable branch set, and continue

as described below.

For each connected F ′i , let Ĩ
i(ēi) be the set of vertices in (Ĩi1 ∪ Ĩi2 ∪ Ĩi3) \ M that

are adjacent neither to ui nor to vi. For each disconnected F ′i , let Ĩ
i
j(ū

i
j) be the set of

vertices in Ĩij \M that are not adjacent to uij . Colour M with a suitable colouring. For

i = 1, . . . , 4, if F ′i is connected, then colour all vertices in Ĩi(ēi) according to their lists,

and if F ′i is disconnected, then colour all vertices in every Ĩij(ū
i
j) according to their lists.

Afterwards, colour all remaining uncoloured vertices in I∗ according to their lists. Only

then update the resulting list assignment, put it in L and restore all lists to the situation

at the end of Step 7.

Repeat the above procedure until all suitable branch sets, all their suitable colourings,
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all colourings of the vertices in the sets Ĩi(ēi), all colourings of the vertices in the sets

Ĩij(ū
i
j) and all colourings of any remaining uncoloured vertices in I∗ have been considered.

Phase 2. Determining if G has a colouring that respects a list assignment in

L .

Do as follows for every L ∈ L . Determine the set UL of vertices of G that have a list

of size 1. Colour every vertex in UL with the (unique) colour from its list. If there are

two adjacent vertices in UL coloured alike, then stop considering L. If such vertices do

not exist, then update L and remove UL from G. Denote the resulting graph and list

assignment by G′ and L′, respectively. If all lists in L′ have size at most 2, then apply

Theorem 1.1.1. If the union of all lists in L′ has size 3, then apply Lemma 2.1.5. If this

leads to a colouring of G′ respecting L′, then return YES. If after considering all L ∈ L

no YES-answer has been returned, then return NO.

We prove the correctness of our algorithm and analyze its running time in Theorem 2.1.14.

For doing this, we need the following lemmas.

Lemma 2.1.7. For i = 1, . . . , 4 and j = 1, . . . , 3, the number of vertices of Iij that is not

adjacent to aij in Step 6 of Phase 1 is at most 38.

Proof. In order to obtain a contradiction, suppose that there exists a pair of indices (i, j)

such that a0 = aij is not adjacent to 39 vertices b1, . . . , b39 in Iij . Consider a vertex bh
for some 1 ≤ h ≤ 39. Because bh is in NG(Di), it has a neighbour ah ∈ Di; note that

ah 6= a0 by definition. Suppose that ah is not adjacent to two vertices c and c′ of Iij
that are neighbours of a0. Then G contains an induced P2 + P3, where P2 = ahbh and

P3 = ca0c
′. This is not possible. By our choice of a0, we find that ah cannot be adjacent

to all neighbours of a0 in Iij ; otherwise ah has more neighbours in Iij than a0. We conclude

that ah is adjacent to all but one neighbour of a0 in Iij . By our choice of a0, this implies

that ah cannot be adjacent to a vertex bh′ with h′ 6= h. Hence, we found that Di contains

vertices a1, . . . , a39 (where each ai is adjacent to bi and to all but one neighbour of a0
in Iij). However, then |D| ≥ |Di| ≥ 40, which is not possible as D has size at most 39

according to Step 1 of Phase 1. This completes the proof of Lemma 2.1.7.

Lemma 2.1.8. For each edge uv in each F ′i , there exists at most one vertex in each Ĩij
that is adjacent neither to u nor to v.
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Proof. Suppose that there exists a pair of indices (i, j) such that Ĩij contains two vertices

b and b′ that are both adjacent neither to u nor to v. Then G contains an induced

P2 + P3, where P2 = uv and P3 = baijb
′. This is not possible.

Lemma 2.1.9. For all 1 ≤ i ≤ 4 and all 1 ≤ j ≤ 3, if F ′i is a disjoint union of at

least two edges, then all but at most one edge of F ′i have at least one end-vertex that is

adjacent to all but at most three vertices of Ĩij.

Proof. Suppose that F ′i is a disjoint union of at least two edges. In order to obtain a

contradiction, let st and uv be two edges in F ′i , such that each vertex of {s, t, u, v} is not
adjacent to at least four vertices of Ĩij .

We claim that s is adjacent to all but at most one neighbour of u in Ĩij , or else that u

is adjacent to all but at most one neighbour of s in Ĩij . In order to obtain a contradiction,

suppose that s is not adjacent to two vertices in Ĩij ∩NG(u), one of which we call b, and

that u is not adjacent to two vertices c, c′ in Ĩij ∩NG(s). Recall that Ĩij is an independent

set. Then G contains an induced P2 + P3, e.g., P2 = bu and P3 = csc′. This is not

possible. Hence, we may assume without loss of generality that s is adjacent to all but

at most one neighbour of u in Ĩij .

By the same argument as above, we find that s is adjacent to all but at most one

neighbour of v in Ĩij , or else that v is adjacent to all but at most one neighbour of s

in Ĩij . Lemma 2.1.8 tells us that {u, v} dominates all but at most one vertex of Ĩij .

Consequently, in the first case, s is adjacent to all but at most three vertices of Ĩij , and

in the second case v is adjacent to all but at most three vertices of Ĩij . Hence, in both

cases we find a vertex of {s, t, u, v} that is adjacent to all but at most three vertices of

Ĩij . This is in contradiction with our assumption on {s, t, u, v}. Hence, we have proven

Lemma 2.1.9.

Lemma 2.1.10. In Step 7b of Phase 1, each Sij contains at most one edge.

Proof. In Step 7b of Phase 1, a graph F ′i is disconnected and bipartite and has at least

three vertices. Then, because G is (P2 + P3)-free, F ′i is a disjoint union of at least two

edges. Then Lemma 2.1.9 tells us that all but at most one edge of F ′i have at least one

end-vertex adjacent to all but at most three vertices of Ĩij . Hence, a set Sij contains at

most one edge.
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Lemma 2.1.11. In Step 8 of Phase 1, each Ĩi(ēi) contains at most one vertex, and each

Ĩij(ū
i
j) contains at most three vertices.

Proof. Consider a set Ĩi(ēi) for some ei = uivi in F ′i in Step 8 of Phase 1. By definition,

Ĩi(ēi) consists of vertices that are adjacent neither to ui nor to vi. We apply Lemma 2.1.8

and find that Ĩi(ēi) contains at most one vertex. We note that each set Ĩij(ū
i
j) in Step 8

of Phase 1 contains at most three vertices by definition.

Lemma 2.1.12. Let L be a list assignment in the set L in Phase 2. Then either all lists

in L have size at most 2, or the union of the lists in L that contain at least two colours

has size 3.

Proof. Let L ∈ L . The algorithm has added L to L in Step 5, 7a, 7b, or 8, when

considering some 4-colouring φD of D. Note that for all w ∈ D, L(w) = {φD(w)}, and
consequently, |L(w)| = 1. The sizes of the lists of the vertices in V (G) \ D depend on

which step L was added to L . Hence, we distinguish the following four cases.

Case 1. L was added to L in Step 5.

Then there exists a graph F ′i that has at most two vertices. Note that

V (G) = D ∪ (NG(Di) \D) ∪Qi ∪ V (F ′i ).

Let w ∈ V (G) \D. If w ∈ NG(Di) \D, then i /∈ L(w), because w is adjacent to a vertex

in Di, which has colour i. If w ∈ Qi, then L(w) = {i} due to Step 5, hence |L(w)| = 1.

If w ∈ V (F ′i ), then |L(w)| = 1 due to Step 5. Hence, the union of the lists in L that

contain at least 2 colours does not contain colour i, and consequently, has size at most

3. This means that either all lists in L have size at most 2, or the union of the lists in L
that contain at least 2 colours has size 3.

Case 2. L was added to L in Step 7a.

Suppose that this happened when considering 1 ≤ i ≤ 4. Then F ′i is connected and

bipartite. Let B1
i and B2

i be the two partition classes of F ′i . We may assume without

loss of generality that L is obtained after the algorithm assigned colour i to every vertex

of B1
i . Note that

V (G) = D ∪ (NG(Di) \D) ∪Qi ∪B1
i ∪B2

i .

Let w ∈ V (G)\D. If w ∈ NG(Di)\D, then i /∈ L(w). If w ∈ Qi, then L(w) = {i} due to
Step 7a, hence |L(w)| = 1. If w ∈ B1

i , then L(w) = {i} due to Step 7a, hence |L(w)| = 1.
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If w ∈ B2
i , then i /∈ L(w), because the algorithm updates the list assignment in Step 7a

after colouring each vertex of B1
i with colour i, and each vertex of B2

i is adjacent to at

least one vertex of B1
i as F ′i is connected. Hence, the union of the lists that contain at

least 2 colours does not contain colour i, and consequently, has size at most 3.

Case 3. L was added to L in Step 7b.

Suppose that this happened when considering 1 ≤ i ≤ 4. Then F ′i is disconnected and

bipartite. Because F ′i has at least three vertices and G is (P2 +P3)-free, this means that

F ′i is a disjoint union of at least two edges. Let Ti be the set of vertices of F ′i that have

list {i} in L. Let Ui denote the union of all vertices in the edges of Si1 ∪Si2 ∪Si3; here we

let Sij = ∅ if Ĩij = ∅. Let Wi = V (F ′i ) \ (Ti ∪ Ui). Note that

V (G) = D ∪ (NG(Di) \D) ∪Qi ∪ Ti ∪ Ui ∪Wi.

Let w ∈ V (G)\D. If w ∈ NG(Di)\D, then i /∈ L(w). If w ∈ Qi, then L(w) = {i} due to
Step 7b, hence |L(w)| = 1. If w ∈ Ti, then L(w) = {i} by definition, hence |L(w)| = 1.

If w ∈ Ui, then |L(w)| = 1 due to Step 7b. If w ∈ Wi, then i /∈ L(w), because i is an

end-vertex of an edge, the other end-vertex of which has colour i according to Step 7b.

Hence, the union of the lists that contain at least 2 colours does not contain colour i,

and consequently, has size at most 3.

Case 4. L was added to L in Step 8.

Then the algorithm has obtained L starting from some suitable branch set M and some

suitable colouring of G[M ]. Note that

V (G) = D ∪ I∗ ∪ Ĩ11 ∪ Ĩ12 ∪ Ĩ13 ∪ Ĩ21 ∪ Ĩ22 ∪ Ĩ23 ∪ Ĩ31 ∪ Ĩ32 ∪ Ĩ33 ∪ Ĩ41 ∪ Ĩ42 ∪ Ĩ43
= D ∪ (Ii1 \ Ĩi1) ∪ (Ii2 \ Ĩi2) ∪ (Ii3 \ Ĩi3) ∪ Ĩi1 ∪ Ĩi2 ∪ Ĩi3 ∪ V (Fi) for i = 1, . . . 4.

Let w ∈ V (G)\D. If w ∈ I∗, then |L(w)| = 1 due to Step 8. If w ∈ Ĩi(ēi)∪{ui, vi} for
some edge ei = uivi with ui, vi ∈M , then |L(w)| = 1 due to Step 8. If w ∈ Ĩij(ūij)∪{uij}
for some vertex uij ∈ M , then |L(w)| = 1 due to Step 8 as well. In all other cases, w

belongs to a set Ĩij for at least one 1 ≤ i ≤ 4 and some 1 ≤ j ≤ 3. If F ′i is connected

or non-bipartite, then w is adjacent to a vertex in M , which is an end-vertex of some

chosen edge ei = uivi. If F ′i is disconnected and bipartite, then w is adjacent to a vertex

inM , which is some chosen vertex uij . In both cases, this neighbour of w is coloured with

a colour not equal to i, because the colouring of M is assumed to be suitable. Because
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i /∈ L(w) by definition, this means that |L(w)| ≤ 2. Hence, all lists of L have size at

most 2. This completes the proof of Lemma 2.1.12.

Lemma 2.1.13. If L contains a list assignment that is respected by some colouring of

G, then the algorithm returns YES.

Proof. Let L ∈ L be a list assignment that is respected by some colouring φ of G.

Because L is respected by φ, colouring every vertex in UL with the (unique) colour from

its list does not result in two adjacent vertices with the same colour; each u ∈ UL receives

colour φ(u).

We remove all vertices in UL from G and denote the resulting graph and list assign-

ment by G′ and L′, respectively. Let φ′ be the restriction of φ to V (G′). Then L′ is
respected by φ′.

Lemma 2.1.12 tells us that either all lists in L have size at most 2, or the union

of the lists in L that contain at least two colours has size 3. Consequently, either all

lists in L′ have size at most 2, or the union of the lists in L′ has size 3. In the first

case the algorithm applies Theorem 1.1.1. In the second case the algorithm applies

Lemma 2.1.5. In both cases the algorithm will conclude that G′ has a colouring that

respects L′ (because φ′ is such a colouring). Hence, it will return YES. This completes

the proof of Lemma 2.1.13.

Theorem 2.1.14. The 4-Colouring problem can be solved in polynomial time for (P2+

P3)-free graphs.

Proof. Let G = (V,E) be a (P2 + P3)-free graph with n vertices. Recall that we may

assume that G has minimum degree at least 4 due to Proposition 1.2.2.

Correctness. We start with proving that our algorithm is correct, i.e., that its output

is YES if and only if G has a 4-colouring.

First suppose that the output of our algorithm is YES. Note that such an output only

occurs in Phase 2. Hence, a graph G′ has a colouring respecting a list assignment L′,
where G′ and L′ are obtained by removing all vertices from G that have a list of size 1,

i.e., belong to a set UL for some L ∈ L . Colouring the vertices in UL with the (unique)

colour from their list does not yield two adjacent vertices coloured alike, as otherwise the

algorithm would have stopped considering L and thus would not have modified L into

L′. Because of this and because the algorithm updates L before removing UL, we can
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extend the colouring of G′ to a colouring of G by assigning every vertex that is not in

G′, i.e., that belongs to UL, the unique colour in its list. Because every list in every list

assignment of L is a subset of {1, 2, 3, 4}, the resulting colouring is a 4-colouring of G.

Now suppose that G has a 4-colouring φ. Lemma 2.1.4 tells us that G has a domi-

nating set of size at most 39. Consequently, our algorithm will find such a dominating

set in Step 1. Because G is 4-colourable, G[D] is 4-colourable. Hence, the algorithm

does not return NO in Step 2. Instead it considers each 4-colouring of G[D] including the

4-colouring φD of G[D] with φD(a) = φ(a) for all a ∈ D.

In Step 3, the algorithm checks if a partition into three (possibly empty) independent

sets Ii1, Ii2, Ii3 of NG(Di)\D exists for i = 1, . . . , 4. Because all vertices in each NG(Di)\D
are adjacent to a vertex in Di, i.e., to a vertex a with colour φ(a) = i and because φ

is a 4-colouring, we find that the restriction of φ to the vertices of NG(Di) \ D is a

3-colouring of G[NG(Di)\D]. This means that NG(Di)\D can be partitioned into three

(possibly empty) independent sets corresponding to the three colour classes of this 3-

colouring. Hence, the algorithm will find independent sets Ii1, Ii2, Ii3 that form a partition

of NG(Di)\D for i = 1, . . . , 4. Note that these four partitions into three independent sets

may be different than the ones induced by φ. This does not matter; for our correctness

proof we only need the algorithm to find some partition Ii1, I
i
2, I

i
3 of NG(Di) \ D for

i = 1, . . . , 4, and the fact that the restriction of φ to NG(Di) \D is a 3-colouring ensures

that this is going to happen.

In Step 4, the algorithm determines for i = 1, . . . , 4, the set Qi that consists of all

isolated vertices in Fi and constructs the graph F ′i obtained from Fi by removing the

vertices of Qi.

In Step 5, the algorithm checks whether there exists a graph F ′i that has at most two

vertices for some 1 ≤ i ≤ 4. If so, then the algorithm considers each possible colouring

of these vertices, so including the colouring of F ′i that corresponds to φ. In addition, it

colours each vertex of Qi with colour i. We may assume without loss of generality that

φ(u) = i for all u ∈ Qi. If φ(u) 6= i for some u ∈ Qi, then we may redefine φ by setting

φ(u) := i for the following reason. All neighbours of u in G belong to NG(Di) \D, i.e.,

are adjacent to a vertex in Di, which φ has assigned colour i, and as such, no neighbour

of u is assigned colour i by φ. Hence, the algorithm goes to Phase 2 with a set L of list

assignments that include a list assignment L that is respected by φ. Then it will return

YES due to Lemma 2.1.13.
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From now on, suppose that every F ′i has at least three vertices. We observe that F ′i
has at least two edges, because F ′i contains no isolated vertices.

In Step 6, the algorithm determines the set Ĩij for i = 1, . . . , 4 and j = 1, . . . , 3. It

also determines the set I∗ that consists of all vertices of NG(D) \D that are not in some

set Ĩij .

In Step 7, the algorithm checks for i = 1, . . . , 4 whether F ′i is connected and bipartite,

or whether F ′i is disconnected and bipartite. Here, we observe that a graph F ′i may be

non-bipartite, and in that case the algorithm does not process F ′i in Step 7. Otherwise,

after processing F ′i , the algorithm will place one or more new list assignments in L .

Then L may contain a list assignment that is respected by φ in the following two cases.

The first case is in Step 7a, when F ′i is connected and bipartite for some 1 ≤ i ≤ 4,

such that φ(u) = i for every vertex u in one partition class of F ′i . Because the algorithm

considers both partition classes of F ′i , one of the two created list assignments that are to

be placed in L is respected by φ. Consequently, the algorithm will return YES due to

Lemma 2.1.13.

The second case may be in Step 7b. We first note that in this step the algorithm

colours a vertex of all but at most one edge with colour i due to Lemma 2.1.10. Hence,

if F ′i is a disconnected and bipartite graph, in which all but at most one edge contain

a vertex coloured i by φ, and moreover, such that the algorithm picks exactly those

vertices u with φ(u) = i to get colour i for some 1 ≤ j ≤ 3 with Ĩij 6= ∅, then the

resulting list assignment is respected by φ. In that case, the algorithm will return YES

due to Lemma 2.1.13. We emphasize that in this step the algorithm considers at most

three possible assignments of colour i to vertices in F ′i , namely one assignment for each

nonempty Ĩij . If in each case the algorithm assigns colour i to one or more different

vertices than the ones that are coloured i by φ, then the resulting list assignment that is

placed in L will not be respected by φ. We take this into account when analyzing Step

8.

Assume that the algorithm has not yet placed a list assignment in L that is respected

by φ.

In Step 8, the algorithm creates list assignments by processing the graphs F ′i for

i = 1, . . . , 4 in sequential order. Let 1 ≤ i ≤ 4 and consider a graph F ′i . In line with Step

8, we distinguish between the following two cases.

Case 1. Suppose that F ′i is connected or non-bipartite.
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If φ colours an end-vertex of every edge in F ′i with colour i, then F ′i must be a bipartite

graph; the set of vertices coloured i and the set of vertices not coloured i form the two

partition classes. In that case, the algorithm has already placed, namely in Step 7a or

7b, a list assignment in L that is respected by φ. This is in contradiction with our

assumption that the algorithm has not yet done this. Hence, F ′i contains at least one

edge e = uv with φ(u) 6= i and φ(v) 6= i.

Case 2. Suppose that F ′i is disconnected and bipartite.

Then, because G is (P2 + P3)-free and F ′i contains no isolated vertices, F ′i is a disjoint

union of edges. Because F ′i has at least three vertices, this means that F ′i has at least

two edges. The algorithm considers the sets Ĩij for j = 1, . . . , 3 in sequential order. Let

1 ≤ j ≤ 3 and consider a set Ĩij . Let Zi be the set of vertices in F ′i that are adjacent to

all but at most three vertices of Ĩij . By Lemma 2.1.9 we find that Zi 6= ∅, because all

but at most one edge in F ′i contains a vertex adjacent to all but at most three vertices

of Ĩij , and F ′i has at least two edges. Suppose that every vertex in Zi is coloured i by

φ. Then every one of those edges that contains a vertex adjacent to all but at most

three vertices of Ĩij contains exactly one vertex of Zi, because two vertices that are both

coloured with colour i cannot be adjacent. However, in that case, the algorithm would

already have placed a list assignment in L that is respected by φ, namely in Step 7b.

Hence, Zi contains a vertex u with φ(u) 6= i.

By our case analysis we find that there exists a suitable branch set M , such that the

restriction of φ to M is a suitable colouring of G[M ]. Our algorithm will detect this

in one of the branches in Step 8. At some point it will also colour the vertices in each

Ĩi(ēi), the vertices in each Ĩij(ū
i
j) and all remaining uncoloured vertices in I∗ according

to φ, because it considers all possibilities exhaustively. We conclude that after Step 8 has

finished, the algorithm has put a list assignment L in L that is respected by φ. Then,

by Lemma 2.1.13, it will return YES. This completes our correctness proof.

Running time analysis. We prove that Phase 1 can be performed in polynomial time

and leads to a set L of polynomial size by showing that each step of Phase 1 performs

in polynomial time and each time the algorithm places a polynomial number of list

assignments in L .

The algorithm performs Step 1 in O(n39) time by brute force. In Step 2 we find

at most 4|D| ≤ 439 different 4-colourings of G[D]. The algorithm performs Step 3 in

polynomial time by applying Lemma 2.1.6 at most four times. It performs Step 4 in
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linear time, because it only has to detect the isolated vertices in each Fi. Afterwards, it

has immediately obtained the graphs F ′i .

The algorithm performs Step 5 in linear time; in addition to considering at most one

colouring of some set Qi of isolated vertices, it needs to consider at most 32 colourings of

a set of at most two vertices that can be detected in linear time; note that each vertex of

such a set has indeed a list of size at most 3, because it is adjacent to an already coloured

vertex in D and the algorithm updated the list assignment in Step 3. If the algorithm

starts Phase 2 directly after Step 5, then we have a set L of size at most 439 · 32, which
is a constant. Otherwise, we must continue our running time analysis with Step 6.

For i = 1, . . . , 4 and j = 1, . . . , 3, the algorithm determines a required vertex aij ∈ Di

in Step 6 in polynomial time. By Lemma 2.1.7, each aij is adjacent to all but at most 38

vertices of Iij , hence the set I∗ has at most 4 · 3 · 38 = 456 vertices.

The algorithm performs Step 7a in polynomial time, because it only has to check

whether the graphs F ′i are connected and bipartite, and if this is the case, then it only

has to construct two list assignments, each of which corresponds to the partition class of

F ′i whose vertices are coloured with colour i; note that the vertices in Qi are coloured in

only one way. Hence, it places at most 4 · 2 = 8 different list assignments in L .

The algorithm performs Step 7b in polynomial time. This can be seen as follows. The

algorithm checks in polynomial time whether a graph F ′i is disconnected and bipartite,

i.e., whether F ′i is a disjoint union of at least two edges. If so, then it places at most

4 · 3 · 32 = 108 different list assignments in L , because each set Sij contains at most one

edge according to Lemma 2.1.10, and the vertices in Qi are coloured in only one way for

each 1 ≤ j ≤ 3 with nonempty Ĩij .

In Step 8 the algorithm considers in worst case all edges ei in every F ′i that is con-

nected or non-bipartite, all colourings of their end-vertices ui and vi, all colourings of

the vertices in Ĩi(ēi), all possible triples of vertices ui1, ui2, ui3 in every F ′i that is a disjoint

union of at least two edges, all the colourings of these triples, all colourings of the vertices

in Ĩi1(ūi1) ∪ Ĩi2(ūi2) ∪ Ĩi3(ūi3) and all colourings of the remaining uncoloured vertices in I∗.

The number of edges ei is at most n2. The number of colourings to be considered for the

two end-vertices of an edge ei is at most 32. The number of colourings to be considered

for the vertices in a set Ĩi(ēi) is at most 3, because Ĩi(ēi) has size at most 1 due to

Lemma 2.1.11. The number of triples of vertices ui1, ui2, ui3 is at most n3. The number of

colourings to be considered for each such triple is at most 33. The number of colourings
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to be considered for the vertices in Ĩi1(ūi1) ∪ Ĩi2(ūi2) ∪ Ĩi3(ūi3) is at most 93, because each

Ĩij(ū
i
j) has size at most 3 due to Lemma 2.1.11. Recall that I∗ has at most 152 vertices.

Hence, the set of remaining uncoloured vertices of I∗ in some branch has at most 3152

colourings. This means that the total number of list assignments obtained in Step 9 is at

most p(n) = n2 · 32 · 3 · n3 · 33 · 93 · 3152. Hence, if we start Phase 2 after Step 9, then we

have a set L of size at most 439(8 + 108 + p(n)), which is polynomial. We also conclude

that Phase 1 can be performed in polynomial time.

In Phase 2, the algorithm preprocesses each L ∈ L in quadratic time; first it colours

every vertex in UL with the unique colour in its list, then it checks whether there exist

two vertices in UL that are coloured alike, and if not, it updates L and then removes all

vertices in UL from G. Afterwards, Lemma 2.1.12 implies that the algorithm can apply

(in polynomial time) Theorem 1.1.1 or else Lemma 2.1.5 for every resulting graph G′

and list assignment L′. Because L has polynomial size as we deduced above, this means

that our algorithm can perform Phase 2 in polynomial time. This completes the proof

of Theorem 2.1.14.

2.2 4-Colouring for P8-free Graphs

In this section we prove that 4-Colouring is NP-complete for P8-free graphs. We

use a reduction from the 3-Satisfiability problem. Recall that this problem is NP-

complete [63]. We consider an arbitrary instance I of 3-Satisfiability that has variables

{x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm} and define a graph GI . Next we show that

GI is P8-free and that GI is 4-colourable if and only if I has a satisfying truth assignment.

Here is the construction that defines GI .

• For each clause Cj we introduce a 7-vertex cycle with vertex set

{bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1}.

We say that these vertices are of b-type, c-type and d-type, respectively. They

induce disjoint 7-cycles (i.e., cycles on seven vertices) in GI which we call clause-
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components.

• For each variable xi we introduce a copy of a K2, i.e., two vertices joined by an

edge xixi. We say that both xi and xi are of x-type, and we call the corresponding

disjoint K2s in GI variable-components.

• For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 . For

h = 1, 2, 3 we either add the edge cj,hxih or the edge cj,hxih depending on whether

xih or xih is a literal in Cj , respectively.

• We add an edge between any x-type vertex and any b-type vertex. We also add an

edge between any x-type vertex and any d-type vertex.

• We introduce one additional new vertex a which we make adjacent to all b-type,

c-type and d-type vertices.

See Figure 2.4 for an example of a graph GI . In this example C1 is a clause with ordered

literals xi1 , xi2 , xi3 and Cm is a clause with ordered literals x1, xi3 , xn. The thick edges

indicate the connections between the literal vertices and the c-type vertices of the clause

gadgets. We omitted the indices from the labels of the clause gadget vertices to increase

the visibility.

We now prove two lemmas. Lemma 2.2.1 shows that the graph GI is P8-free (in fact

it shows a slightly stronger statement as this will be of use for us in Section 3.3). In

Lemma 2.2.2 we prove that GI admits a 4-colouring if and only if I has a satisfying truth

assignment.

Lemma 2.2.1. The graph GI is P8-free. Moreover, every induced path in GI on seven

vertices contains a.

Proof. Let P be an induced path in GI . We show that GI is P8-free by proving that

P has at most seven vertices. We also show that P contains a in the case that P has

exactly seven vertices. We distinguish a number of cases and subcases.

Case 1. a /∈ V (P ).
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a

C1 Cm

b c d c d c b b c d c d c b

x1 x1 xi1 xi1 xi2 xi2 xi3 xi3 xn xn

Figure 2.4: The graph GI in which clauses C1 = {xi1 , xi2 , xi3} and Cm = {x1, xi3 , xn}
are illustrated.

Case 1a. P contains no x-type vertex.

This means that P is contained in one clause-component, which is isomorphic to an

induced 7-cycle. Consequently, P has at most six vertices.

Case 1b. P contains exactly one x-type vertex.

Let xi be this vertex. Then P contains vertices of at most two clause-components. Since

xi is adjacent to all b-type and d-type vertices, we then find that P contains at most two

vertices of each of the clause-components. Hence P has at most five vertices.

Case 1c. P contains exactly two x-type vertices.

First suppose that these vertices are adjacent, say P contains xi and xi. By the same

reasoning as above we find that P has at most four vertices.

Now suppose the two x-type vertices of P are not adjacent. By symmetry, we may

assume that P contains xh and xi. If P contains no b-type vertex and no d-type vertex,

then there is no subpath in P from xh to xi, a contradiction. If P contains two or more

vertices of b-type and d-type, then P contains a cycle, another contradiction. Hence P

contains exactly one vertex z that is of b-type or d-type. Then xhzxi is a subpath in P .

If both xh and xi have a neighbour in V (P )\{z}, then this neighbour must be of c-type,

and consequently an end-vertex of P (because a c-type vertex is adjacent to only one

x-type vertex). Hence P contains at most five vertices.
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Case 1d. P contains at least three x-type vertices.

Then P contains no b-type vertex and no d-type vertex, because such vertices would have

degree 3 in P . However, on the other hand the three x-type vertices come from at least

two different variable-components. Since any c-type vertex is adjacent to exactly one

x-type vertex, P must contain a b-type or d-type vertex to connect the x-type vertices

of P to one another. We conclude that this subcase is not possible.

Case 2. a ∈ V (P ).

First suppose a is an end-vertex of P . If |V (P )| ≥ 2 then P contains exactly one vertex

that is of b-type, c-type or d-type. Since every x-type vertex is adjacent to only one other

x-type vertex, this means that P can have at most four vertices.

Now suppose a is not an end-vertex of P . Then P contains exactly two vertices that

are of b-type, c-type or d-type. By the same arguments as above, we then find that P

has at most seven vertices. This completes the proof of Lemma 2.2.1.

Lemma 2.2.2. The graph GI is 4-colourable if and only if I has a satisfying truth

assignment.

Proof. Suppose we have a 4-colouring of GI with colours {1, 2, 3, 4}. We may assume

without loss of generality that a has colour 1, that b1,1 has colour 3 and that b1,2 has

colour 4. This implies that all x-type vertices have a colour from {1, 2}. Furthermore,

for i = 1, . . . , n, if xi has colour 1 then xi has colour 2, and vice versa. Hence we find

that all b-type and d-type vertices have a colour from {3, 4}. Then by symmetry we may

assume that every bj,1 has colour 3 and every bj,2 has colour 4. This means that every cj,1
has a colour from {2, 4}, every cj,2 has a colour from {2, 3, 4} and every cj,3 has a colour

from {2, 3}. Now suppose there is a clause Cj with each of its three literals coloured by

colour 2. Then cj,1 must have colour 4 and cj,3 must have colour 3. Consequently, dj,1
has colour 3 and dj,2 has colour 4. Then cj,2 cannot have a colour in a proper 4-colouring

of GI . Hence this is not possible and we find that at least one literal in every clause is

coloured by colour 1. This means we can define a truth assignment that sets a literal

to FALSE if the corresponding x-type vertex has colour 2, and to TRUE otherwise. So a

4-colouring of GI implies a satisfying truth assignment for I.

For the converse, suppose I has a satisfying truth assignment. We use colour 1 to

colour the x-type vertices representing the true literals and colour 2 for the false literals.

Since each clause contains at least one true literal, we note that we can colour cj,1, cj,2
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and cj,3 and also all other remaining vertices in a straightforward way. This implies a

4-colouring for GI and completes the proof of Lemma 2.2.2.

By Lemmas 2.2.1 and 2.2.2 we obtain the main result of this section.

Theorem 2.2.3. The 4-Colouring problem is NP-complete for P8-free graphs.

2.3 4-Colouring for (C3, P164)-free Graphs

In Section 2.4, we determine for any fixed girth g ≥ 4 a value r(g) such that every

Pr(g)-free graph with girth at least g is 3-colourable. We tried to make r(g) as large

as possible. In contrast, in this section we show that 4-Colouring is NP-complete

for (C3, P164)-free graphs. As the problem is clearly in NP, we are left to prove NP-

hardness. The NP-hardness reductions for k-Colouring for Pr-free graphs involve the

presence of triangles in the gadgets. For example, for the gadget used in the proof for

the NP-complete result of 4-Colouring on P8-free graphs in Section 2.2, every variable-

component xixi together with every b-type vertex or with every d-type vertex form a

triangle. In that case, all the b-type and d-type vertices will be given a colour different

from xi and xi for all i. Hence, the main task is to design a triangle-free gadget. Then

we replace a number of edges of a gadget that is used in the NP-hardness reductions by

this triangle-free gadget. We first present this gadget and its properties. We then show

how to incorporate it in our final gadget that proves our NP-hardness reduction, which

is from the problem Not-All-Equal 3-Satisfiability with un-negated literals only.

Recall that this problem is NP-complete [88].

The edge-replacing gadget

We define four independent sets A, B, C and D with |A| = |B| = 10 and |C| = |D| = 5.

We add an edge between every vertex in A and every vertex in B. We also add an

edge between every vertex in C and every vertex in D. This leads to two vertex-disjoint

complete bipartite graphs with partition classes A,B and C,D, respectively.

For every subset Ai ⊆ A of five vertices, we create two cycles Qi and Ti, each on 5

new vertices. We say that Qi is a Q-cycle and that Ti is a T -cycle. We add 5 edges

between the vertices of Qi and Ai in such a way that these edges form a matching. We

do the same for Ti and Ai. We also add 5 matching edges between the vertices of Qi
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Figure 2.5: The graph F ; only one Q-cycle, R-cycle, S-cycle and one T -cycle are dis-
played.
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and D, and do the same for Ti and C. We let Q and T denote the set of all
(
10
5

)
(= 252)

Q-cycles and
(
10
5

)
(= 252) T -cycles, respectively. Similarly, we define two sets R and S

of all
(
10
5

)
(= 252) R-cycles and

(
10
5

)
(= 252) S-cycles, respectively. Here, each R-cycle

and each S-cycle correspond to exactly one subset Bi ⊆ B of five vertices. For each such

Bi there are matchings between its vertices and the vertices in its R-cycle and S-cycle,

respectively. There is also a matching between the vertices of each R-cycle and C, and

between the vertices of each S-cycle and D. Finally, we add a new vertex u adjacent

to every vertex of A ∪D, and a new vertex v adjacent to every vertex of B ∪ C. Since

any two neighbours of every vertex are not adjacent in the resulting graph called F , we

obtain that F is C3-free; see Figure 2.5.

Lemma 2.3.1 states some useful properties of F that we will use later on.

Lemma 2.3.1. The graph F is 4-colourable. Moreover, u and v are given different

colours in every 4-colouring of F .

Proof. We first show that F is 4-colourable. We choose a vertex c ∈ C and a vertex

d ∈ D, which we give colour 1 and 2, respectively. We give each vertex of (A ∪D) \ {d}
colour 3 and each vertex of (B ∪ C) \ {c} colour 4. We give u colour 1 and v colour 3.

Consider a Q-cycle. We give its vertex adjacent to d colour 1 and colour its other four

vertices by colours 2 and 4. Consider a T -cycle. We give its vertex adjacent to c colour

4 and colour its other four vertices by colours 1 and 2. By symmetry, we can also give

the vertices of every R-cycle and S-cycle an appropriate colour such that in the end we

have obtained a 4-colouring of F .

We now prove that u and v are not coloured alike in every 4-colouring of F . Let φ be

a 4-colouring of F . First suppose that |φ(C)| ≥ 2 and |φ(D)| ≥ 2. Because C and D are

partition classes of a complete bipartite graph, we then may without loss of generality

assume that φ(C) = {1, 4} and φ(D) = {2, 3}. This means that u can only get a colour

from {1, 4} and v can only get a colour from {2, 3}. Hence, u and v are not coloured

alike.

In the remaining case, we assume without loss of generality that |φ(D)| = 1. If

|φ(A)| = 4, then we cannot colour a vertex in B. Hence, |φ(A)| ≤ 3. If |φ(A)| = 3, then

every vertex of B ∪ {u} receives the same colour. Because v is adjacent to the vertices

of B, this means that v must receive a different colour.

Suppose that |φ(A)| ≤ 2. Then A contains a subset Ai of five vertices that are

coloured alike, say with colour 3. We observe that u does not get colour 3. Consider the
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Q-cycle corresponding to Ai. Its five vertices can neither be coloured with colour 3 nor

with the colour in φ(D). Because this cycle needs at least three colours, this means that

φ(D) = φ(Ai) = {3}. Because every vertex of A is adjacent to every vertex of B, colour

3 is not used on B, so |φ(B)| ≤ 3.

First suppose that |φ(B)| ≤ 2. Then B contains a subset Bj of five vertices that are

coloured alike, say with colour 4. We consider the S-cycle corresponding to Bj . Because

every vertex of this cycle is not only adjacent to a vertex of Bj with colour 4 but also

adjacent to a vertex of D with colour 3, we find that only colours 1 and 2 are available

to colour its five vertices. This is not possible. Hence, |φ(B)| = 3, so φ(B) = {1, 2, 4}.
This means that v must receive colour 3, whereas we already deduced that u does not

get colour 3. This completes the proof of Lemma 2.3.1.

Using the edge-replacing gadget

We now present our reduction for showing that 4-Colouring is NP-complete for the class

of (C3, P164)-free graphs. This reduction is from the Not-All-Equal 3-Satisfiability

problem with un-negated literals only. Recall that this problem is NP-complete [88]. We

consider an arbitrary instance I of Not-All-Equal 3-Satisfiability with un-negated

literals only that has variables {x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm}. From I we

first construct a graph G∗I . We then explain how to incorporate our edge-replacing gadget

F . This will yield a graph G′I . In Lemma 2.3.2 and Lemma 2.3.4 we will show that G′I
is (C3, P164)-free. In Lemma 2.3.6 we will show that G′I is 4-colourable if and only if I

has a satisfying truth assignment in which each clause contains at least one true literal

and at least one false literal.

Here is the construction that defines the graph G∗I .

• For each clause Cj we introduce a gadget with vertex set

{aj,1, aj,2, aj,3, bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{aj,1cj,1, aj,2cj,2, aj,3cj,3, bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1},
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and a disjoint gadget called the copy that has vertex set

{a′j,1, a′j,2, a′j,3, b′j,1, b′j,2, c′j,1, c′j,2, c′j,3, d′j,1, d′j,2}

and edge set

{a′j,1c′j,1, a′j,2c′j,2, a′j,3c′j,3, b′j,1c′j,1, c′j,1d′j,1, d′j,1c′j,2, c′j,2d′j,2, d′j,2c′j,3, c′j,3b′j,2, b′j,2b′j,1}.

We say that all these vertices (so, including the vertices in the copy) are of a-type,

b-type, c-type and d-type, respectively. We call the gadget and its copy clause

gadgets.

• Every variable xi is represented by a vertex in G∗I , and we say that these vertices

are of x-type.

• For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 and add

edges cj,hxih and c′j,hxih for h = 1, 2, 3.

• We add an edge between every x-type vertex and every b-type vertex. We also add

an edge between every x-type vertex and every d-type vertex.

• We add an edge between every a-type vertex and every b-type vertex. We also add

an edge between every a-type vertex and every d-type vertex.

In Figure 2.6 we illustrate an example in which Cj is a clause with ordered variables

xi1 , xi2 , xi3 . The thick edges indicate the connection between the variables vertices and

the c-type vertices of the two copies of the clause gadget. The dashed thick edges indicate

the connections between the a-type and c-type vertices of the two copies of the clause

gadget. We omitted the indices from the labels of the clause gadget vertices to increase

the visibility.

Before we show how to obtain the graph G′I , we introduce the following terminology.

Let H be some graph. An F -identification of an edge st ∈ E(H) is the following opera-

tion. We remove the edge st from H but keep the vertices s and t. We take a copy of
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a a′a a′a a′
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x1 xi1 xi2 xi3 xn

Figure 2.6: The graph G∗I for the clause Cj = {xi1 , xi2 , xi3}.

F and remove u and v from it. We then add an edge between s and NF (u) and an edge

between t and NF (v). Note that by symmetry we could reverse the role of u and v in this

operation. Lemma 2.3.1 ensures that s and t have different colours in any 4-colouring of

the new graph G′I .

In order to obtain G′I from G∗I we first apply consecutive F -identifications on all edges

between a-type and c-type vertices, on all edges between c-type and x-type vertices and

on all edges between two b-type vertices. We take a complete graph on four new vertices

r1, . . . r4 called r-type vertices, and apply consecutive F -identifications on each edge

between them. This leads to a graph K. We connect K to the modified graph G∗I by

adding an edge between every ai,j and every vertex in {r2, r3, r4} and an edge between

every a′i,j and every vertex in {r1, r3, r4}. This completes the construction of G′I .

We need the following lemma.

Lemma 2.3.2. The graph G′I is C3-free.

Proof. In order to prove the lemma we must check if G′I has an edge the end vertices

of which share a common neighbour. Recall that F is C3-free and that u and v do not

form an edge. Hence, we only have to consider edges in G′I that are also in G∗I . Such

edges connect the following vertices: a-type with b-type, a-type with d-type, b-type with
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c-type, c-type with d-type, b-type with x-type, and d-type with x-type. By construction,

the end vertices of all these edges have no common neighbour. We conclude that G′I is

C3-free.

In order to prove that G′I is P164-free, we first need the following lemma.

Lemma 2.3.3. Let P be an induced path in F . Then the following statements hold:

(i) If P starts in u and ends in v, then |V (P )| ≤ 8.

(ii) If P starts in u and contains v as an internal vertex, then |V (P )| ≤ 9.

(iii) If P starts in u and does not contain v, then |V (P )| ≤ 45.

(iv) If P does not contain u or v as end-vertices, then |V (P )| ≤ 90.

Proof. Let P be an induced path in F . We assume that P has maximal length under

each of the four statements (i)-(iv) we must show.

We first prove (i). Suppose that P starts in u and ends in v. Let w and x denote the

neighbours of u and v on P , respectively, Then w ∈ A∪D and x ∈ B ∪C. If w ∈ A and

x ∈ B then |V (P )| = 4. If w ∈ D and x ∈ C then |V (P )| = 4 as well. By symmetry, we

are left to consider the case in which w ∈ A and x ∈ C. Then the neighbour of w must

be on a Q-cycle or T -cycle. Because this cycle has five vertices, P can contain at most

four vertices of it. When P leaves the cycle, its next vertex must be on C; this vertex is

adjacent to v, so it must be x. Hence, we find that |V (P )| ≤ 8, as desired.

We now prove (ii). Suppose that P starts in u and contains v as an internal vertex.

Let w be the neighbour of u on P , and let x, x′ be the neighbours of v on P where x

denotes the neighbour of v that is closest to w on P . Then w ∈ A∪D and {x, x′} ⊂ B∪C.

Suppose that w is neither adjacent to x nor to x′. If w ∈ A, then x, x′ ∈ C. If w ∈ D,

then x, x′ ∈ B. In both cases, the subpath of P that goes from w to x cannot contain a

vertex from B ∪C, because such a vertex is adjacent to v. This subpath cannot contain

a vertex from A ∪D either, because then u has more than one neighbour of P . Hence,

these two cases are not possible. We find that w must be adjacent to x. If x′ has another

neighbour on P , then this neighbour must be on an R-cycle or S-cycle, and P must end

on this cycle. Because P can contain at most four vertices from an R-cycle or S-cycle,

we find that |V (P )| ≤ 9, as desired.

We now prove (iii). Suppose that P starts in u and does not contain v. Let w be

the neighbour of u on P . Then w ∈ A ∪ D. We suppose that w ∈ D. The case in
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which w ∈ A uses the same arguments but leads to a shorter path since if w ∈ A then P

alternates between vertices from the set C with |C| < |B| instead of B and path segments

of R-cycles (as we will see soon). We find that P has maximum length if the neighbour of

w on P belongs to C and if after passing through this neighbour P alternates as much as

possible between vertices from B and path segments of R-cycles. Because every R-cycle

has five vertices, P can use at most 4 of them. If P uses four vertices of such a cycle, at

least two vertices of B are excluded, i.e., they cannot be used due to the matching edges

between the cycles and B. We choose those cycles that exclude the same two vertices

of B. In this way we can let the number of vertices from B that are on P be 8 and the

number of cycles that P passes through be 9, where P uses three vertices from the first

and last cycle, and four vertices from the other 8 cycles. As P also contains u,w and a

vertex from C, we find that |V (P )| ≤ 45, as desired.

Finally, we prove (iv) by applying the same arguments as (iii), i.e., we can let P

alternate as much as possible between vertices from B and path segments of R-cycles

and as much as possible between vertices from D and path segments of Q-cycles. In this

way we find that |V (P )| ≤ 45 · 2 = 90; note that this bound is not tight, but this will be

irrelevant for our purposes.

We are now ready to prove that G′I is P164-free.

Lemma 2.3.4. The graph G′I is P164-free (but not P163-free).

Proof. We call a path Q in G′I an F -path if the following two conditions are both met.

Firstly, there exists an edge e in G∗I on which we applied an F -identification such that

Q starts in one end-vertex of e and ends in the other end-vertex of e. Secondly, none of

the internal vertices of Q belongs to G∗I , i.e., they are all contained in the corresponding

copy of F used in the F -identification. We say that Q is of type ac, bb, or cx if the

end-vertices of e are of type a, c, or b, b, or c, x, respectively.

Let P be an induced path in G′I . First suppose that P contains no vertex of K. We

need four claims; the first three claims are required to prove the last claim.

Claim 1. P contains at most two different F -paths of ac-type.

We prove Claim 1 as follows. Suppose that P contains at least three different F -paths

of ac-type. Then P contains no vertices of b-type or d-type, because such vertices would

have degree 3 in P . Hence the three F -paths in P must be made connected by vertices of
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x-type. Because every c-type vertex is adjacent to exactly one x-type vertex and the set

of x-type vertices is independent, this is not possible. Hence, we have proven Claim 1.

Claim 2. P contains at most two different F -paths of cx-type.

We prove Claim 2 as follows. Suppose that P contains at least three different F -paths

of cx-type. Because every x-type vertex is adjacent to exactly two c-type vertices, this

means that P contains at least two x-type vertices. Consequently, P has at least one

vertex that is of b-type or d-type in order to ensure its connectivity. Because a vertex of

type b or d is adjacent to all x-type vertices, we then find that P contains exactly two

x-type vertices. One of these two x-type vertices must be adjacent to two c-type vertices.

This is not possible, as this x-type vertex is also adjacent to the b-type or d-type vertex

of P . Hence, we have proven Claim 2.

Claim 3. If P contains an F -path of bb-type, then P does not contain any other F -path.

We prove Claim 3 as follows. Let P contain an F -path of bb-type; note that P contains

at least two b-type vertices. In order to obtain a contradiction, suppose that P contains

another F -path. First suppose that this second F -path is of bb-type. Then P contains

at least four b-type vertices. Then, in order to be connected, P must contain at least

one a-type or x-type vertex. Such a vertex would be adjacent to all b-type vertices, and

consequently have degree at least four in P . This is not possible as P is an induced path.

Hence, P contains only one F -path of bb-type. Now suppose that the second F -path is

of ac-type or of cx-type. In both cases P contains a vertex, namely of a-type or x-type,

that is adjacent to two b-type vertices and to one other vertex, namely its neighbour on

the second F -path. Then P is not an induced path. Hence, this is not possible, and we

have proven Claim 3.

Claim 4. The following statements hold:

(i) If P starts in an a-type vertex and ends in an a-type vertex, then |V (P )| ≤ 29.

(ii) If P starts in an a-type vertex and does not end in an a-type vertex, then |V (P )| ≤
73.

(iii) If P starts in an a-type vertex and has no other a-type vertex, then |V (P )| ≤ 66.

(iv) If P neither starts nor ends in an a-type vertex, then |V (P )| ≤ 117.
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We prove Claim 4 as follows. By Claims 1-3, we find that P contains at most four

different F -paths. This leads to five different cases.

Case 1. P contains exactly four different F -paths.

By Claims 1–3, two of these F -paths are of type ac and two are of type cx. Then P

contains neither b-type nor d-type vertices. In particular, moving along P and denoting

the types of the vertices of P that belong to G∗I leads to the following sequences of types:

a, c, x, c, a. We say that the ordered type of P is T (P ) = acxca. Also, in the remaining

cases we make use of this notation.

We use Lemma 2.3.3 to deduce the following. If P starts in an a-type vertex and

ends in an a-type vertex then |V (P )| ≤ 5 + 4 · 6 = 29. If P starts in an a-type vertex

and does not end in an a-type vertex then |V (P )| ≤ 5 + 4 · 6 + 44 = 73. If P neither

starts nor ends in an a-type vertex then |V (P )| ≤ 44 + 5 + 4 · 6 + 44 = 117. We note

that statement (iii) of Claim 4 is satisfied in a trivial way, because P contains two a-type

vertices.

Case 2. P contains exactly three different F -paths.

By Claims 1–3, either two of these F -paths are of type ac and one is of type cx, or two

are of type cx and one is of type ac. In the first case, P contains at least two a-type

vertices. Then P cannot contain a b-type or d-type vertex, because such a vertex would

be adjacent to the two a-type vertices and the x-type vertex. This means that an x-type

vertex must connect the two F -paths of type ac. This is not possible, because in that

case P would contain four different F -paths. Hence, P has two F -paths of type cx and

one of type ac. Then the two F -paths of type cx either share an x-type vertex, or P

contains at least two x-type vertices. Then P cannot contain a b-type or d-type vertex;

in the first case the x-type vertex will have three neighbours on P and in the second

case the b-type or d-type vertex will have three neighbours on P . Hence, we find that

T (P ) = acxc or T (P ) = cxca. We observe that statement (i) of Claim 4 is not applicable

in this case; P only contains one a-type vertex. We find that |V (P )| ≤ 4 + 3 ·6 + 44 = 66

if P starts in an a-type vertex. This shows statements (ii) and (iii). If P neither starts

nor ends in an a-type vertex, then |V (P )| ≤ 44 + 4 + 3 · 6 + 44 = 110 ≤ 117. Hence,

statement (iv) in Claim 4 is valid as well.

Case 3. P contains exactly two different F -paths.
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By Claim 3, these two F -paths are not of type bb. We find that

T (P ) ∈ {acx, cabac, cabxc, cadac, cadxc, cxbac, cxbxc, cxc, cxdac, cxdxc, xca}.

We use the arguments of Cases 1 and 2 to find that the bounds in Claim 4 are valid.

Case 4. P contains exactly one F -path.

We find that T (P ) is contained in one of

{abac, abxc, adac, adxc, caba, cabc, cabx, cada, cadc, cadx}
∪ {cbac, cbxc, cdac, cdxc, cxba, cxbc, cxbx, cxda, cxdc, cxdx}
∪ {dcbbcd, xbac, xbxc, xdac, xdxc}.

We use the arguments of Cases 1 and 2 to find that the bounds in Claim 4 are valid.

Case 5. P contains no F -paths.

If P contains no vertices of G∗I , then |V (P )| ≤ 90 by Lemma 2.3.3. Suppose P contains

at least one vertex from G∗I . We find that T (P ) is contained in one of

{aba, abc, abx, ada, adc, adx}
∪ {babc, badc, bcdcdc, bxbc, bxdc}
∪ {cbabc, cbadc, cbxbc, cbxdc, cdabc, cdadc, cdcb, cdcdcb, cdxbc, cdxdc}
∪ {dabc, dadc, dcdcb, dxbc, dxdc}
∪ {xba, xbc, xbx, xda, xdc, xdx}.

Note that some of the strings in the above set are substrings of others; we added these

for ease of verification. We use the arguments of Cases 1 and 2 to find that the bounds

in Claim 4 are also valid in this case. This completes the proof of Claim 4.

By Claim 4, we conclude that |V (P )| ≤ 117 as 29 ≤ 66 ≤ 73 ≤ 117, if P contains no

vertex of K. By using Claim 4, we now prove the desired upper bound on |V (P )| in
case P does contain one or more vertices from K. We distinguish a number of cases

depending on the number of r-type vertices. Throughout the case analysis we assume

that P is an induced path in G′I of maximal length.

Case 1. P contains no r-type vertices.

Then either P contains only vertices of V (G′I)\V (K) or only vertices of K. We already
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showed that |V (P )| ≤ 164 in the first case. By Lemma 2.3.3, we find that |V (P )| ≤ 90 ≤
164 in the second case.

Case 2. P contains exactly one r-type vertex.

Because P is maximal, the r-type vertex of P has two neighbours on P . If both these

neighbours are a-type vertices then there are no other vertices of K on P , and we

find that |V (P )| ≤ 73 + 1 + 73 = 147 due to Claim 4. If both these neighbours are

from K, then we find that |V (P )| ≤ 44 + 1 + 44 = 99, due to Lemma 2.3.3. In the

remaining case, one neighbour is of a-type and one neighbour is from K, and we find

that |V (P )| ≤ 73 + 1 + 44 = 118.

Case 3. P contains exactly two r-type vertices.

Because P is maximal, each r-type vertex has two neighbours. By construction, r-type

vertices are not adjacent to each other. Hence, we obtain three subpaths after removing

the two r-vertices, say P = P1rP2rP3, where r denotes an r-type vertex. Because a-type

vertices are adjacent to three r-type vertices, we find that each a-type vertex is adjacent

to at least one r-type vertex on P . This means that P1 and P3 have at most one a-type

vertex, and this vertex must be one of their end-vertices if it exists. It also means that

P2 has at most two a-type vertices, which can only be end-vertices of P2. If P1 belongs

to K, then |V (P1)| ≤ 44 by Lemma 2.3.3; otherwise |V (P1)| ≤ 73 by Claim 4. The same

goes for P3. If P2 belongs to K then |V (P2)| ≤ 6 by Lemma 2.3.3; otherwise |V (P2)| ≤ 29

by Claim 4. We conclude that |V (P )| ≤ 66 + 1 + 29 + 1 + 66 = 163 by Claim 4. By

following the proof of Lemma 2.3.3 and by letting T (P1) = cxca, T (P2) = acxca, and

T (P3) = acxc, we find an induced path on 163 vertices in G′I . Hence, G
′
I is not P163-free.

Case 4. P contains exactly three r-type vertices.

Because each a-type vertex is adjacent to three r-type vertices, we find that each a-type

vertex is adjacent to at least two r-type vertices. Hence, P can contain at most two

a-type vertices. If P contains no a-type vertex, then |V (P )| ≤ 3 + 2 · 6 + 2 · 44 = 103.

If P contains exactly one a-type vertex, then this a-type vertex has two neighbours in P

and these neighbours are of r-type. Then |V (P )| ≤ 44 + 4 + 6 + 44 = 98. If P contains

exactly two a-type vertices, then both these vertices have two neighbours on P and these

two neighbours are of r-type. Then |V (P )| ≤ 44 + 5 + 44 = 93.

Case 5. P contains all four r-type vertices.

Then P cannot contain an a-type vertices. Hence, P is a path in K. As such, |V (P )| ≤
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4 + 3 · 6 + 2 · 44 = 110.

We note that in all five cases, |V (P )| ≤ 163 holds. Hence, G′I is P164-free, as desired.

Moreover, in Case 3, we identified an induced path in G′I on 163 vertices. Consequently,

G′I is not P163-free. This completes the proof of Lemma 2.3.4.

We also need the following lemma.

Lemma 2.3.5. The graph G∗I has a 4-colouring in which every aj,h has colour 1 and

every a′j,h has colour 2 if and only if I has a truth assignment in which each clause

contains at least one true and at least one false literal.

Proof. Suppose G∗I has a 4-colouring in which every aj,h has colour 1 and every a′j,h has

colour 2. Since a1,1 with colour 1 and a′1,1 with colour 2 are adjacent to every b-type

vertex, we may assume by symmetry that every bj,1 and every b′j,1 has colour 3, whereas

every bj,2 and every b′j,2 has colour 4. Since every a-type vertex is also adjacent to every

d-vertex, every d-type vertex must have a colour from {3, 4}. This implies the following.

Firstly, it implies that all x-type vertices have a colour from {1, 2}. Secondly, it implies

that every cj,1 has a colour from {2, 4}, every cj,2 has a colour from {2, 3, 4} and every

cj,3 has a colour from {2, 3}. Thirdly, it implies that every c′j,1 has a colour from {1, 4},
every cj,2 has a colour from {1, 3, 4} and every cj,3 has a colour from {1, 3}.

Now suppose there is a clause Cj with each of its three literals coloured by colour 2.

Then cj,1 must have colour 4 and cj,3 must have colour 3. Consequently, dj,1 has colour

3 and dj,2 has colour 4. Then cj,2 cannot have a colour in a proper 4-colouring. Hence

this is not possible and we find that at least one literal in every clause is coloured by

colour 1. By considering the copies, in a similar way we find that at least one literal in

every clause is coloured by colour 2. Hence, we can define a truth assignment that sets a

literal to FALSE if the corresponding x-type vertex has colour 2, and to TRUE otherwise.

So the graph G∗I has a 4-colouring in which every aj,h has colour 1 and every a′j,h has

colour 2 implies a truth assignment for I in which each clause contains at least one true

and at least one false literal.

For the converse, suppose I has a satisfying truth assignment in which each clause

contains at least one true and at least one false literal. We use colour 1 to colour the

x-type vertices representing the true literals and colour 2 for the false literals. Since each

clause contains at least one true literal, we can colour cj,1, cj,2 and cj,3, respecting the

precolouring. Similarly, since each clause contains at least one false literal, we can colour
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c′j,1, c
′
j,2 and c′j,3, respecting the precolouring. We colour all other remaining uncoloured

vertices in a straightforward way. This completes the proof of Lemma 2.3.5.

The following lemma is the last lemma we need in order to state our main result.

Lemma 2.3.6. The graph G′I is 4-colourable if and only if I has a satisfying truth

assignment in which each clause contains at least one true literal and at least one false

literal.

Proof. Suppose that G′I is 4-colourable. By Lemma 2.3.1, the vertices of the edges on

which we applied F -identifications do not have the same colour. This means that G∗I
is 4-colourable. It also means that the vertices r1, . . . , r4 are not coloured alike. We

may assume without loss of generality that ri gets colour i for i = 1, . . . , 4. Then, by

construction, every aj,h has colour 1 and every a′j,h has colour 2 in G′I , and consequently

in G∗I . By Lemma 2.3.5, I has a truth assignment in which each clause contains at least

one true and at least one false literal.

Suppose that I has a truth assignment in which each clause contains at least one true

and at least one false literal. By Lemma 2.3.5, G∗I has a 4-colouring in which every aj,h
has colour 1 and every a′j,h has colour 2. By Lemma 2.3.1 we can extend the 4-colouring

of G∗I to a 4-colouring of G′I .

The main result of this section follows directly from Lemmas 2.3.2, 2.3.4 and 2.3.6

after recalling that 4-Colouring is in NP and that Not-All-Equal 3-Satisfiability

with un-negated literals only is NP-complete and observing that the construction of G′I
can be carried out in polynomial time.

Theorem 2.3.7. The 4-Colouring problem is NP-complete even for (C3, P164)-free

graphs.

2.4 Colouring Graphs without Short Cycles and Long In-

duced Paths

We consider the relation between the girth of a graph and the length of a forbidden

induced path for the k-Colouring problem. As a start, recall that graphs with girth

g = ∞ are forests, and consequently, these graphs are 2-colourable. What if g is finite?

In this section we determine, for any fixed girth g ≥ 4, a value r(g) such that every
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Pr(g)-free graph with girth at least g is 3-colourable. Here we tried to make r(g) as

large as possible. However, in general it is not trivial to construct, for given k and g, a

k-chromatic Pr-free graph of girth g for r as small as possible, or, for given k and r, a

k-chromatic Pr-free graph of girth g for g as large as possible. For example, the Grötzsch

graph [48] is 4-chromatic, P6-free and of girth 4. Hence, the bound of Sumner [91]

is tight. Brinkmann and Meringer [15] constructed a 4-chromatic P10-free graph with

girth 5. Hence, the bound in Table 2.1 for P10-free graphs is tight with respect to the

girth. We are not aware of examples of 4-chromatic graphs of girth at least 6 without

long induced paths and expect that some of our bounds in Table 2.1 can be improved.

Sumner [91] showed that every P5-free graph of girth at least 4 is 3-colourable. Randerath

and Schiermeyer [85] extended this result by showing that for all r ≥ 4, every Pr-free

graph of girth at least 4 is (r − 2)-colourable. We extend the result of Sumner [91] in

another direction. Our results lead to Table 2.1. Note that for the cases g ∈ {4, 5, 7}
the values are slightly worse than the value for the general case g ≥ 8; the difference

between them is 1. The proofs of the results in Table 2.1 are constructive, i.e., yield

polynomial-time 3-colouring algorithms.

girth forbidden induced path
g = 4 P5-free [91]
g = 5 P7-free
g = 6 P10-free
g = 7 P12-free
g ≥ 8 Pr-free for r = 2g + dg−24 e − 3

Table 2.1: 3-colourable Pr-free graphs of given girth.

We start with some additional terminology. For a vertex v and subset U ⊆ V we

define dist(v, U) = min{dist(v, u) | u ∈ U}; note that dist(v, U) = 0 if and only if v ∈ U .

For a subset U ⊆ V and integer s, we define N=s(U) = {v ∈ V | dist(v, U) = s} and

N≤s(U) = {v ∈ V | dist(v, U) ≤ s}. We make two assumptions that are valid throughout

this section. First, we may assume that the graphs we consider are connected. Second, we

may assume that they have minimum degree at least 3; this follows from Proposition 1.2.2

by setting L(u) = {1, 2, 3} for every u ∈ V (G) for the list assignment L in the statement

of this proposition.

Proposition. Let G be a graph and u be a vertex of degree at most 2. Then G is
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3-colourable if and only if G− u is 3-colourable.

We show the four new bounds in Table 2.1 in Theorems 2.4.1–2.4.4, respectively.

Theorem 2.4.1. Every P7-free graph of girth 5 is 3-colourable, and such a 3-colouring

can be found in O(n2) time.

Proof. Let G = (V,E) be a connected P7-free graph with minimum degree at least 3

such that g(G) = 5. Consider uv ∈ E and let U = {u, v}. See Figure 2.7 for an example.

We first prove four useful properties of the sets N=s(U):

Figure 2.7: A P7-free graph of girth 5.

1. N=1(U) is an independent set;

2. N=2(U) induces a bipartite graph;

3. N=3(U) is an independent set;

4. N=s(U) = ∅ for s ≥ 4.

We first prove property 1. Suppose that w1w2 is an edge in N=1(U). Then none

of w1 and w2 is adjacent to both of u and v, because of the C3-freeness of G. Hence

we may assume without loss of generality that w1 is adjacent to u and w2 is adjacent

to v. Then the cycle uvw2w1u is a C4, which is not possible. We prove property 2 as

follows. In order to obtain a contradiction, suppose that G[N=2(U)] contains an odd

cycle Cl = x1x2 · · ·xlx1. Because g(G) = 5 and G is P7-free, l = 5 or l = 7. Let w be a

vertex in N=1(U) adjacent to x1 and assume without loss of generality that w is adjacent
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to u. Then wv /∈ E. If l = 5, then w is not adjacent to x2, . . . , x5, because g(G) = 5.

By the same reason, x1x2x3x4 is an induced path in G. Then vuwx1 . . . x4 is an induced

P7. Hence l = 7. Because g(G) = 5, we find that w is adjacent to none of the vertices

x2, x3, x6, x7. By the same reason, x1x2x3x4 and x1x7x6x5 are induced paths in G. If w

is not adjacent to x4, then vuwx1 . . . x4 is an induced P7. Hence, w must be adjacent to

x4. If w is not adjacent to x5, then vuwx1x7x6x5 is an induced P7. Hence, w must be

adjacent to x5. However, now we have a triangle wx4x5w, which is not possible because

g(G) = 5. We conclude that property 2 must hold.

We prove property 4 before property 3. Suppose that property 4 is not true. First

suppose that N=5(U) 6= ∅. Then, for a vertex x ∈ N=5(U), there is a path w1 . . . w4x

where wi ∈ N=i(U). We assume without loss of generality that w1 is adjacent to u.

However, then uvw1 . . . w4x or vuw1 . . . w4x is an induced P7. Hence N=5(U) = ∅, and
consequently, N=s(U) = ∅ for s ≥ 5. This means that for property 4 to be non-valid, we

must have N=4(U) 6= ∅.
First suppose that G[N=4(U)] contains an edge xy. There is a path w1w2w3 such

that w1 ∈ N=1(U), w2 ∈ N=2(U), w3 ∈ N=3(U) and w3x ∈ E. Assuming that uw1 ∈ E,

we get the induced path vuw1w2w3xy isomorphic to P7. Hence, such an edge xy does not

exist implying that N=4(U) is an independent set. Suppose that a vertex x ∈ N=4(U) is

adjacent to at least two vertices z1 and z2 in N=3(U) and let uw1w2z1x be a (u, x)-path

in G. Because g(G) = 5, we find that z1z2 /∈ E and w2z2 /∈ E. Then vuw1w2z1xz2

is an induced P7. Hence, x is adjacent to exactly one vertex in N=3(U). Recall that

N=5(U) = ∅. Then we find that d(x) = 1. However, G has no such vertices, because G

has minimum degree at least 3. We conclude that property 4 must hold.

For the proof of property 3, we first suppose that x1x2x3 is an induced path in

G[N=3(U)]. Then there are adjacent vertices w1 ∈ N=1(U) and w2 ∈ N=2(U) such that

w2x1 ∈ E. Because w1 is adjacent to a vertex in U , we assume without loss of generality

that w1 is adjacent to u and get the path vuw1w2x1x2x3. Because g(G) ≥ 5, this path

is an induced P7. Hence G[N=3(U)] is P3-free.

We now suppose that xy is an edge in G[N=3(U)]. Because G has minimum degree

at least 3 and G[N=3(U)] is P3-free, y is adjacent to at least two vertices z1 and z2 in

N=2(U). By definition, there are adjacent vertices w1 ∈ N=1(U) and w2 ∈ N=2(U)

such that w2x ∈ E, and we can assume that uw1 ∈ E. Because g(G) = 5, we find that

z1, z2, w2 are three different vertices that are pairwise non-adjacent, and that z1w1 and
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z2w1 cannot be both edges in G. We assume without loss of generality that z1w1 /∈ E.

Then vuw1w2xyz1 is an induced P7, which is not possible. We conclude that property 3

must hold, and we have proven all four properties.

Using these four properties we construct a 3-colouring of G as follows. We colour the

vertices u and v by the colours 1 and 2 respectively, and all the vertices of the independent

set N=1(U) by 3. The vertices of the bipartite graph G[N=2(U)] are coloured by 1 and 2.

Finally, the vertices of the independent setN=3(U) are coloured by 3. The computational

complexity for colouring u and v is O(1). The computational complexity for the rest of

the algorithm is O(n2). Hence, the algorithm performs in time O(n2). This completes

the proof of Theorem 2.4.1.

Theorem 2.4.2. Every P10-free graph of girth 6 is 3-colourable, and such a 3-colouring

can be found in O(n2) time.

Proof. Let G = (V,E) be a connected P10-free graph with minimum degree at least 3

and girth 6. Let U = {x1, . . . , x6} be the vertex set of a C6 in G (vertices are enumerated

in the cycle order). We observe that this 6-vertex cycle is induced, because g(G) = 6.

Denote by Xi the set of vertices of N=1(U) adjacent to xi for i = 1, . . . , 6. Using the

(C3, C4, C5)-freeness of G, we observe the following:

1. Xi is independent for 1 ≤ i ≤ 6;

2. Xi ∩Xj = ∅ for 1 ≤ i < j ≤ 6;

3. if yiyj ∈ E for yi ∈ Xi, yj ∈ Xj and 1 ≤ i < j ≤ 6, then j − i = 3.

Let H1, . . . ,Hm be the connected components of G[V \ N≤1(U)]. We need the fol-

lowing claim.

Claim 1. Each graph Hj is either an isolated vertex or a star K1,t for some t ≥ 1.

We prove Claim 1 as follows. Consider a graph Hj for some 1 ≤ j ≤ m. First we

show that Hj is P4-free. In order to obtain a contradiction, suppose that Hj contains

an induced path v1v2v3v4. Let z1 . . . zs be a shortest path such that z1 ∈ U and zs ∈
{v1, . . . , v4}. Without loss of generality we assume that z1 = x1, z2 ∈ X1 and either

zs = v1 or zs = v2.

Because g(G) = 6, we find that zs−1 is adjacent to exactly one vertex of the path

v1v2v3v4. If zs = v1 then x5x4 . . . x1z2 . . . zs−1v2 . . . v4 is an induced path with at least
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Figure 2.8: A subgraph of a P10-free graph of girth 6.

10 vertices. Hence zs = v2, and moreover, any shortest path between U and {v1, . . . , v4}
neither contains v1 nor v4. If s ≥ 4 then x5x4 . . . x1z2 . . . zs−1v2v3v4 is and induced path

with at least 10 vertices. Hence s = 3, i.e., v2 is adjacent to a vertex of X1. If v4 is

adjacent to a vertex y in some set Xj then xjyv4 is another shortest path between U and

{v1, . . . , v4}. However, we already deduced that such paths do not contain v4. Hence,

v4 /∈ N≤2(U). The graph G has no vertices of degree one, and therefore v4 is adjacent to

a vertex w ∈ V (Hj). Because g(G) = 6, we find that w is not adjacent to v1, v2, v3 and

z2. This means that x5x4 . . . x1z2v2v3v4w is an induced P10. This is not possible. See

Figure 2.8 for an example. Hence, Hj is P4-free. Observe that every connected P4-free

graph without induced C3 and C4 is either an isolated vertex or a star. This completes

the proof of Claim 1.

We are now ready to construct a 3-colouring of G. Using properties 1–3, we colour

vertices x1, x3, x5 and all vertices of X2, X4, X6 with colour 1, and x2, x4, x6 and all

vertices of X1, X3, X5 with colour 2. Now we colour each Hj . If Hj consists of an

isolated vertex, then we colour this vertex with colour 3. Suppose that Hj is a star K1,t

. Let w be its central vertex and z1, . . . , zt be its leaves.

If w /∈ N≤2(U), then we colour z1, . . . , zt with colour 3 and w with colour 1. Now

let w be adjacent to a vertex of Xi for some 1 ≤ i ≤ 6. In this case we colour w with

colour 3. It remains to prove that each leaf zs can be coloured by 1 or 2. Suppose

that it is not so for some zs. Then zs is adjacent to two vertices in the sets X1, . . . , X6

that have colour 1 and 2, respectively. By symmetry, we assume that zs is adjacent to

y1 ∈ X1. Because g(G) = 6, we find that zs is not adjacent to vertices X2 and X6, and

therefore, zs must be adjacent to some vertex y4 ∈ X4 in order to have a neighbour with
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colour 1. Because g(G) = 6, we find that w is not adjacent to any vertices of X1 ∪X4.

By symmetry, we can assume that i = 2, i.e., that w is adjacent to a vertex y2 ∈ X2.

Because G has minimum degree at least 3 and x1x2 · · ·x6x1 is an induced cycle in G, we

find that X3 6= ∅. Let y3 ∈ X3. However, then y2wzsy1x1x6 . . . x3y3 is an induced P10

due to g(G) = 6. This means that each zs is adjacent either only to vertices coloured

by 1 or only to vertices coloured by 2 in the sets X1, . . . , X6. In the first case we can

colour zs with colour 2, and in the second case we can colour zs with colour 1. It takes

O(n) time for colouring vertices in N≤1(U). It takes O(n2) time for colouring all Hj

graphs. Hence, the algorithm performs in O(n2) time overall. This completes the proof

of Theorem 2.4.2.

Theorem 2.4.3. Every P12-free graph of girth 7 is 3-colourable, and such a 3-colouring

can be found in linear time.

Proof. Let G = (V,E) be a connected graph of girth 7. Let U = {x1, . . . , x7} be the

vertex set of a C7 in G (vertices are enumerated in the cycle order). We observe that this

7-vertex cycle is induced, because g(G) = 7. Denote by Xi the set of vertices of N=1(U)

adjacent to xi for i = 1, . . . , 7. Using the (C3, C4, C5, C6)-freeness of G, we observe the

following:

1. Xi ∩Xj = ∅ for 1 ≤ i < j ≤ 7;

2. X1 ∪ . . . ∪X7 is independent.

Let H be the subgraph of G induced by the set V \ ({x1, . . . , x7} ∪X1 ∪ . . . ∪X6);

note that X7 ⊆ V (H). We claim that H is bipartite. In order to obtain a contradiction,

suppose that H contains an odd cycle Cl = v1v2 · · · vlv1. Because g(G) = 7 and G is

P12-free, we deduce that l ∈ {7, 9, 11}. Let y1 . . . ys be a shortest path, such that y1 ∈ U
and ys ∈ {v1, . . . , vl}. We may assume without loss of generality that ys = v1. By

definition, s ≥ 2.

Suppose that l < 11. Then ys−1 is not adjacent to any vertex of {v2, . . . , vl}. If

y1 = x7, then G has an induced path x2 . . . x6y1 . . . ysv2 . . . vl−1 with at least 12 vertices,

which is not possible. See Figure 2.9 for an example when l = 9. If y1 = x1, then we find

that G has an induced path x6x5 . . . x2y1 . . . ysv2 . . . vl−1 with at least 13 vertices, which

is not possible either. If y1 ∈ {x2, . . . , x6}, then we apply the same arguments as for the

case y1 = x1.
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Figure 2.9: A subgraph of a P12-free graph of girth 7.

Suppose that l = 11. If ys−1 is adjacent to exactly one vertex of {v1, . . . , vl}, then we

use the same arguments as for the case l < 11. Let ys−1 be adjacent to at least two vertices

of {v1, . . . , vl}. Because g(G) = 7, we deduce that ys−1 is adjacent to exactly two vertices,

namely v1, v6 or v1, v7. By symmetry, we may assume that ys−1 is adjacent to v1, v7.

If y1 = x7, then G has an induced path x2 . . . x6y1 . . . ysv2 . . . v6 on at least 12 vertices,

which is not possible. If y1 = x1, then G has an induced path x6x5 . . . x2y1 . . . ysv2 . . . v6
on at least 13 vertices, which is not possible either. If y1 ∈ {x2, . . . , x6}, then we apply

the same arguments as for the case y1 = x1. We conclude that H is bipartite.

We now colour G as follows. We colour x1, x3, x5 with colour 1, x2, x4, x6 with colour

2, the vertices of X1 ∪ . . . ∪X6 and x7 with colour 3, and finally all the vertices of the

(bipartite) graph H with colours 1 and 2. It is not difficult to see that the algorithm

performs in linear time. This completes the proof of Theorem 2.4.3.

Theorem 2.4.4. Every Pr-free graph with r = 2g+ dg−24 e− 3 and g ≥ 8 is 3-colourable,

and such a 3-colouring can be found in linear time.

Proof. Let G = (V,E) be a connected graph of girth g ≥ 8. Let U = {x1, . . . , xg} be the

vertex set of a Cg in G (vertices are enumerated in the cycle order). We observe that this

g-vertex cycle is induced. Let s = dg−24 e − 1. We will prove the following two properties

of the sets N=t(U):

1. N=t(U) is independent for 1 ≤ t ≤ s;

2. each x ∈ N=t(U) is adjacent to exactly one vertex in N=t−1(U) for 1 ≤ t ≤ s.



2.4 Colouring Graphs without Short Cycles and Long Induced Paths 75

We first prove property 1. In order to obtain a contradiction, suppose that N=t(U)

contains two adjacent vertices y and z for some 1 ≤ t ≤ s. By the definition of N=t(U),

we find that U contains two vertices xi, xj with dist(y, xi) = t and dist(z, xj) = t.

Because the distance between xi and xj in the cycle G[U ] is at most bg2c, we find that

G[N≤t(U)] contains a cycle of length at most 2t+ 1 + bg2c ≤ 2dg−24 e− 1 + bg2c < g. This

is not possible. Hence, property 1 is valid.

The proof of property 2 is similar. Suppose that x ∈ N=t(U) is adjacent to at least

two different vertices in N=t−1(U). This implies that there are two paths between x and

U of length at most t. Therefore G has a cycle of length at most g − 1, which is not

possible. Hence, property 2 is valid as well.

We now distinguish two cases; first we consider the case g = 9 and then the case

g 6= 9.

Case 1. g = 9.

Then r = 17, so G is P17-free, and s = 1. Let X ⊆ N=1(U) be the set of vertices adjacent

to x9 and let Y ⊆ N=2(U) be the set of vertices adjacent to the vertices of X. Because

G has no cycles of length less than 9, we can deduce two extra properties in addition to

properties 1 and 2:

3. Y is independent;

4. vertices of Y are not adjacent to the vertices of N=1(U) \X.

Let H be the subgraph of G induced by the set V \ (N≤1(U) ∪ Y ). We claim that

H is bipartite. In order to obtain a contradiction, suppose that H contains an odd cycle

Cl = v1v2 · · · vlv1. Because g = 9 and G is P17-free, we find that 9 ≤ l ≤ 17. Let y1 . . . yt
be a shortest path such that y1 ∈ U and yt ∈ {v1, . . . , vl}. Suppose that yt = v1. We

observe that t ≥ 3. Because g = 9 and l ≤ 17, we find that yt−1 is adjacent to at most

one vertex of {v2, . . . , vl}.
Suppose that yt−1 is adjacent to zero vertices of {v2, . . . , vl}. If y1 = x1, then G has

an induced path x8x7 . . . x2y1 . . . ytv2 . . . vl−1 on at least 17 vertices. This is not possible,

because G is P17-free. See Figure 2.10 for an example. If y1 ∈ {x2, . . . , x9}, then we use

the same arguments.

Suppose that yt−1 is adjacent to exactly one vertex of {v2, . . . , vl}. Because g = 9,

we find that l = 15 or l = 17. This implies that the 7-vertex sets {v2, . . . , v8} and

{vl−6, vl−5, . . . , vl} are disjoint. Because g = 9, we find that yt−1 is not adjacent to any



2.4 Colouring Graphs without Short Cycles and Long Induced Paths 76

Figure 2.10: A subgraph of a P17-free graph of girth 9.

vertex of {v2, . . . , v7, vl−5, vl−4, . . . , vl}. Because g = 9 and l ≤ 17, we find in addition

that yt−1 cannot be adjacent to both v8 and vl−6. By symmetry, we may assume that yt−1
is not adjacent to v8. If y1 = x1, then x8x7 . . . x2y1 . . . ytv2 . . . v8 is an induced path in G

with at least 17 vertices. This is not possible, because G is P17-free. If y1 ∈ {x2, . . . , x9},
then we use the same arguments. We conclude that H is bipartite.

Using properties 1-4 and the fact that H is bipartite, we can colour G as follows. We

colour vertices x1, x3, x5, x7 with colour 1, vertices x2, x4, x6, x8 with colour 2, vertex x9
and the vertices of the (independent) set N=1(U) \ X with colour 3, all vertices in X

and Y with colour 1 and 3, respectively, and finally, all vertices of the (bipartite) graph

H with colours 1 and 2.

Case 2. g 6= 9.

Let H be the subgraph of G induced by the set V \ N≤s(U). We claim that H is

bipartite. In order to obtain a contradiction, suppose that H contains an odd cycle

Cl = v1v2 · · · vlv1. Because G is Pr-free for r = 2g + dg−24 e − 3, we find that g ≤ l ≤
2g + dg−24 e − 2.

Let y1 . . . yt be a shortest path such that y1 ∈ U and yt ∈ {v1, . . . , vl}. We may

assume without loss of generality that y1 = x1 and yt = v1. Recall that s = dg−24 e − 1

and observe that t ≥ s + 2. If ys−1 is adjacent to at least two vertices of {v2, . . . , vl},
then l ≥ 3g− 6. However, we also have 3g− 6 > 2g+ dg−24 e− 2 ≥ l as g ≥ 8. Hence, this

is not possible, and consequently, yt−1 is adjacent to at most two vertices of {v1, . . . , vl}.
First suppose that ys−1 is adjacent to zero vertices of {v2, . . . , vl}. Then G has an

induced path xg−1xg−2 . . . x2y1 . . . ytv2 . . . vl−1 on at least g+ l+ t− 4 vertices. However,
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g + l + t− 4 ≥ 2g + s− 2 = 2g + dg−24 e − 3 = r, which is not possible as G is Pr-free.

Now suppose that ys−1 is adjacent to exactly one vertex of {v2, . . . , vl}. By definition,

yt−1 is not adjacent to any vertex of {v2, . . . , vg−2} ∪ {vl, vl−1, . . . , vl−g+4}. Moreover,

yt−1 cannot be adjacent to both vg−1 and vl−g+3. The reason is that in that case G has a

cycle of length l−g+3−(g−2)+1 = l−2g+6 ≤ 2g+dg−24 e−2−2g+6 < 3g−6−2g+6 = g.

We assume without loss of generality that yt−1 is not adjacent to vg−1. Then we find

that G has an induced path xg−1xg−2 . . . x2y1 . . . ytv2 . . . vg−1 on 2g+t−4 vertices, which

is not possible as 2g + t − 4 ≥ 2g + s − 2 = r and G is Pr-free. We conclude that H is

bipartite.

Using properties 1 and 2 and the fact that H is bipartite, we colour G as follows.

First suppose that g is even. For 1 ≤ i ≤ g/2, we colour x2i−1 with colour 1 and x2i with

colour 2. Then we colour the vertices of the (independent) sets N=1(U), . . . , N=s(U)

with colours 1 and 3, where we alternate the colours starting with colour 3. Finally

we colour the vertices of the (bipartite) graph H with colours 1 and 2 if N=s(U) was

coloured by 3, and with colours 2 and 3 otherwise.

Now suppose that g is odd. Then g ≥ 11. Let X ⊆ N=1(U) be the set of vertices

adjacent to xg. By property 2, the vertices of X are not adjacent to any vertex of

{x1, . . . , xg−1}. Because g ≥ 11, we have s ≥ 2. For 1 ≤ i ≤ bg/2c, we colour x2i−1 with

colour 1 and x2i with colour 2. Then we colour xg and the vertices of the (independent) set

N=1(U)\X with colour 3, and the vertices ofX with colour 1. Then we colour the vertices

of the (independent) sets N=2(U), . . . , N=s(U) with colour 2 and 3, where we alternate

the colours starting with colour 2. Finally, we colour the vertices of the (bipartite) graph

H with colours 1 and 3 if N=s(U) was coloured by 2, and with colours 1 and 2 otherwise.

It takes linear time to colour the vertices in {x1, ..., xg} ∪ N=1(U)∪, ...,∪N=s(U). It

also takes linear time to colour the bipartite graph H. Hence, the algorithm performs in

linear time overall. This completes the proof of Theorem 2.4.4.
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In this chapter, we investigate the problem Precolouring Extension and the

problem k-Precolouring Extension. We first give a computational complexity clas-

sification for Precolouring Extension in Section 3.1. In particular, we show that

for a fixed graph H, Precolouring Extension is polynomial-time solvable for H-free

graphs if H is an induced subgraph of P4 or of P1 + P3; otherwise Precolouring Ex-

tension is NP-complete for H-free graphs. Next, based on the algorithm for solving

4-Colouring for (P2 + P3)-free graphs that is introduced in Section 2.1, we present

a polynomial-time algorithm for solving 4-Precolouring Extension for (P2 + P3)-

free graphs in Section 3.2. In contrast, we show that 4-Precolouring Extension on

P7-free graphs is NP-complete in Section 3.3 by using a similar approach for proving

Theorem 2.2.3 which states that 4-Colouring on P8-free graphs is NP-complete.

3.1 Precolouring Extension for H-free Graphs

We use statement (i) of Theorem 1.3.1 and a number of other results from the literature

to obtain the following dichotomy, which complements statement (i) of Theorem 1.3.1.

Theorem 3.1.1. Let H be a fixed graph. If H is an induced subgraph of P4 or of P1+P3,

then Precolouring Extension can be solved in polynomial time for H-free graphs;

otherwise it is NP-complete for H-free graphs.

Theorem 3.1.1 shows that Precolouring Extension is polynomial-time solvable

on (P1 + P3)-free graphs, which contain the class of 3P1-free graphs, i.e., complements

of triangle-free graphs. As such, Theorem 3.1.1 also generalizes a result of Hujter and

Tuza [56] who showed that Precolouring Extension is polynomial-time solvable on

complements of bipartite graphs. Below we prove Theorem 3.1.1.

Proof. Let H be a fixed graph. If H is not an induced subgraph of P4 or of P1 + P3,

then the statement (i) of Theorem 1.3.1 tells us that Colouring, and consequently,

Precolouring Extension is NP-complete for H-free graphs. Jansen and Scheffler [59]

showed that Precolouring Extension is polynomial-time solvable for P4-free graphs.

Hence, we are left with the case H = P1 + P3.

Let (G, k, φW ) be an instance of Precolouring Extension, where G is a (P1+P3)-

free graph, k is an integer and φW : W → {1, . . . , k} is a precolouring defined on some

subset W ⊆ V (G). We first prove how to transform (G, k, φW ) in polynomial time into

a new instance (G′, k′, φW ′) with the following properties:
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(i) G′ is a 3P1-free subgraph of G, k′ ≤ k and φW ′ : W ′ → {1, . . . , k} is the restriction
of φW to some W ′ ⊆W ;

(ii) (G′, k′, φW ′) is a yes-instance if and only if (G, k, φW ) is a yes-instance.

Suppose that G is not 3P1-free already. Then G contains at least one triple T of three

independent vertices. Let u ∈ T . Here we make the following choice if possible: if there

exists a triple of three independent vertices that intersects with W , then we choose T to

be such a triple and pick u ∈ T ∩W .

D1 D2 D3 D4

N(u)

u

1

Figure 3.1: An example of a graph G that shows a vertex u that belongs to a set of (at
least) three independent vertices and the corresponding complete graphs D1, . . . , Dp. In
this example, p = 4 and edges between vertices in N(u) have not been displayed. Also
note that the vertices in V (D1) ∪ · · · ∪ V (D4) have the same neighbours in N(u), as
stated in Claim 1.

Let S = V (G) \ ({u}∪N(u)). Because G is (P1 +P3)-free, G[S] is the disjoint union

of a set of complete graphs D1, . . . , Dp for some p ≥ 2; note that p ≥ 2 holds, because

the other two vertices of T must be in different graphs Di and Dj . We refer to Figure 3.1

for an example. We will use the following claim.

Claim 1. Every vertex in V (D1) ∪ · · · ∪ V (Dp) is adjacent to exactly the same vertices

in N(u).

We prove Claim 1 as follows. First suppose that w and w′ are two vertices in two different

graphs Di and Dj , such that w is adjacent to some vertex v ∈ N(u). Then w′ is adjacent

to v, as otherwise w′ and u, v, w form an induced P1 + P3 in G, which is not possible.

Now suppose that w and w′ are two vertices in the same graph Di, say D1, such that w

is adjacent to some vertex v ∈ N(u). Because p ≥ 2, the graph D2 is nonempty. Let w∗
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be in D2. As we just showed, the fact that w is adjacent to v implies that w∗ is adjacent

to v as well. By repeating this argument with respect to w∗ and w′, we then find that

w′ is adjacent to v. Hence, we have proven Claim 1.

We now proceed as follows. First suppose that u ∈ W . Let φW (u) = x. We assign

colour x to an arbitrary vertex of every Di that does not contain a vertex coloured with

x already and that contains at least one vertex outside W . Now suppose that u /∈ W .

Then by our choice of u no vertex from V (D1) ∪ · · · ∪ V (Dp) belongs to W . In that

case, u must be adjacent to every vertex of W . We let x be a new colour not used by

φW , and we assign x to u and also to an arbitrary vertex of every Di. Afterward, in

both cases, we remove all vertices coloured x from G. We let G′ denote the resulting

graph, and we let W ′ ⊆ W denote the resulting set of precoloured vertices. We observe

the following. If u ∈ W , then by symmetry we may assume that φW (u) = x = k. If

u /∈ W , then we already deduced that u is adjacent to every vertex of W . If every

colour of {1, . . . , k} is used on W by φW , then (G, k, φW ) is a no-instance because there

is no colour available for u. As we can detect this situation in polynomial time, we may

assume without loss of generality that this is not the case. Then, by symmetry, we may

assume that φW (W ) ⊆ {1, . . . , k − 1}, and consequently, we can take x = k in this case

as well. We now prove that (G′, k − 1, φW ′) is a yes-instance if and only if (G, k, φW ) is

a yes-instance.

First suppose that (G′, k − 1, φW ′) is a yes-instance. Then G′ allows a (k − 1)-

colouring φ′ that extends φW ′ . We assign colour k to every vertex that we removed from

G. Because those vertices form an independent set of G, this results in a k-colouring φ

of G that extends φW ′ . Because every vertex removed from W had colour k and because

W ′ ⊆W , we find that φ is a colouring of G that extends φW .

Now suppose that (G, k, φW ) is a yes-instance. Then G allows a k-colouring φ that

extends φW . Let V ∗ ⊆ V (D1)∪ · · · ∪ V (Dp) be the set of vertices that we removed from

G besides vertex u, so V (G′) = V (G) \ ({u} ∪ V ∗). We note that our algorithm would

assign colour k to every vertex of {u} ∪ V ∗, whereas φ may colour a vertex from V ∗

with a colour different from k. However, whenever v ∈ {u} ∪ V ∗ belongs to W , we do

have φ(v) = k. The reason is that both φ and the colouring prescribed by our algorithm

give such a vertex v the same colour, as they both extend φW , and the algorithm would

assign colour k to v. We first show how to modify φ such that it assigns colour k to all

the other vertices of {u} ∪ V ∗ as well.
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Let v be a vertex in ({u}∪V ∗)\W with φ(v) 6= k. First suppose that v = u. As u /∈W ,

our choice of u implies that W ⊆ N(u), and consequently, φW (W ) ⊆ {1, . . . , k − 1} as
we already argued. Because W ⊆ N(u), we find that φW does not use colour φ(u).

Because φW (W ) ⊆ {1, . . . , k− 1}, we also find that φW does not use colour k. Then, by

symmetry, we may modify φ by assigning colour k to every vertex of G that had colour

φ(u) and vice versa. Hence, we may assume without loss of generality that φ(u) = k.

Now suppose that v ∈ V ∗. Then v ∈ V (Di) for some 1 ≤ i ≤ p. If Di does not

contain a vertex w with colour φ(w) = k, then we change the colour of v into k. We may

do so for the following two reasons. First, all neighbours of v outside Di are adjacent to u

with φ(u) = k, and as such these neighbours of v did not receive colour k from φ. Hence,

φ does not assign colour k to any neighbour of v in G. Second, v /∈ W by assumption,

which means that we still extend φW when we change φ(v). If Di does contain a vertex

w with colour φ(w) = k, then we swap the colours of v and w. We may do so for the

following three reasons. First, w is the only neighbour of v with colour k, and v is the

only neighbour of w with colour φ(v), because Di is a complete graph, and because v and

w have exactly the same set of neighbours outside Di due to Claim 1. Second, v /∈ W
by assumption. Third, w /∈ W , as otherwise φW (w) = k because φ extends φW , and in

that case we would have put w in V ∗ instead of v.

Due to the above, we may assume without loss of generality that every vertex v ∈
{u} ∪ V ∗ has colour k. Recall that our algorithm puts a vertex from every Di in V ∗

unless V (Di) ⊆W and Di contains no vertex precoloured with colour k by φW . We then

find that every vertex from V (G) \ ({u} ∪ V ∗) that is not precoloured by φW is adjacent

to a vertex {u}∪V ∗, i.e., to a vertex that received colour k from φ. Because the vertices

of V (G)\ ({u}∪V ∗) that are precoloured by φW have a colour not equal to k, this means

that the set of vertices in G that are given colour k by φ is {u} ∪ V ∗. Consequently, the
restriction φ′ of φ to V (G′) = V (G) \ ({u} ∪ V ∗) is a (k − 1)-colouring of G′. Because φ

extends φW and W ′ = W \ ({u} ∪ V ∗), we find that φ′ is a colouring of G′ that extends

φW ′ .

We observe that (G′, k − 1, φW ′) satisfies condition (i) except that G′ may not be

3P1-free. Therefore we repeat the step described above until the resulting graph is 3P1-

free, and consequently both conditions (i) and (ii) are satisfied. This takes polynomial

time in total, because every step takes polynomial time and in every step the number

of vertices of the graph reduces by at least 1. Hence, we may assume without loss of
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generality that in our initial instance (G, k, φW ), the graph G is 3P1-free.

We now apply the algorithm of Hujter and Tuza [56] for solving Precolouring

Extension on complements of bipartite graphs. Because G is 3P1-free, G has no three

mutually nonadjacent vertices. Suppose that u and v are two nonadjacent vertices in W .

Then every vertex of V (G) \ {u, v} is adjacent to at least one of {u, v}. This means that

we can remove u, v if they are both coloured alike by φW in order to obtain a new instance

(G−{u, v}, k− 1, φW\{u,v}) that is a yes-instance of Precolouring Extension if and

only if (G, k, φW ) is a yes-instance. If u and v are coloured differently by φW , then we

add an edge between them. We perform this step for any pair of non-adjacent vertices in

W . Afterward, we have found in polynomial time a new instance (G∗, k∗, φW ∗) with the

following properties. First, |V (G∗)| ≤ |V (G)|, k∗ ≤ k and φW ∗ : W ∗ → {1, . . . , k} is a

precolouring defined on some clique W ∗ of G∗. Second, (G∗, k∗, φW ∗) is a yes-instance if

and only if (G, k, φW ) is a yes-instance. Hence, we may consider (G∗, k∗, φW ∗) instead.

BecauseW ∗ is a clique, we find that (G∗, k∗, φW ∗) is a yes-instance if and only if G∗ is k∗-

colourable. Because G is 3P1-free and G∗ is obtained by only removing vertices from G,

we find thatG∗ is 3P1-free as well. This means that we can solve the Colouring problem

with input (G∗, k∗) by using the statement (i) of Theorem 1.3.1 (which in this particular

case comes down to computing the size of a maximum matching in the complement

of G∗). The running time of our transformation is O(n2). The running time of the

algorithm by Hujter and Tuza [56] is O(n3). Therefore the overall running time of our

algorithm is O(n3). This completes the proof for the case H = P1 + P3, and we have

proven Theorem 3.1.1.

3.2 4-Precolouring Extension for (P2 + P3)-free Graphs

In this section, we present a polynomial-time algorithm for solving 4-Precolouring

Extension on (P2 + P3)-free graphs by generalizing Theorem 2.1.14 in the following

way.

Theorem 3.2.1. The 4-Precolouring Extension problem can be solved in polyno-

mial time for (P2 + P3)-free graphs.

Proof. Let G = (V,E) be a (P2 + P3)-free graph with a set W ⊆ V such that each

vertex in W is precoloured with a colour from {1, 2, 3, 4}. We may assume without

loss of generality that every vertex in V \W has degree at least 4. This can be seen
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as follows. We consecutively remove vertices of V \ W with degree at most 3 from

G until this is no longer possible. We denote the remaining graph, which we obtain

in polynomial time, by G∗. Because we only removed vertices, G∗ is (P2 + P3)-free.

Then due to Proposition 1.2.2, G has a 4-colouring extending the precolouring of W

if and only if G∗ has a 4-colouring extending the precolouring of W . Because G∗ is

also 2P3-free, we may apply Lemma 2.1.3 for k = 4 and s = 2 to find a set D of at

most 39 vertices that dominates V \W in the case that G∗ has a 4-colouring extending

the precolouring of W . We put all vertices of W in D and run the remainder of the

algorithm of Theorem 2.1.14 for graph G[V (G∗) ∪ W ] under the additional condition

that we let the algorithm only consider 4-colourings of D that do not change the colours

of the vertices of W as prescribed by the given precolouring of W . As such, the number

of different 4-colourings of D considered by the algorithm is still at most 439. Hence,

the correctness proof and running time analysis are exactly the same as in the proof of

Theorem 2.1.14.

3.3 4-Precolouring Extension for P7-free Graphs

In this section we show that 4-Precolouring Extension is NP-complete for the class

of P7-free graphs. We use a reduction from the Not-All-Equal 3-Satisfiability

problem with un-negated literals only. Recall that this problem is NP-complete [88].

We consider an arbitrary instance I of Not-All-Equal 3-Satisfiability that has

variables {x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm}, and we define the graph G∗I
from Section 2.3 with a precolouring on some vertices of G∗I . Let us first repeat the

construction of G∗I .

• For each clause Cj we introduce a gadget with vertex set

{aj,1, aj,2, aj,3, bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{aj,1cj,1, aj,2cj,2, aj,3cj,3, bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1},

and a disjoint gadget called the copy with vertex set

{a′j,1, a′j,2, a′j,3, b′j,1, b′j,2, c′j,1, c′j,2, c′j,3, d′j,1, d′j,2}
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and edge set

{a′j,1c′j,1, a′j,2c′j,2, a′j,3c′j,3, b′j,1c′j,1, c′j,1d′j,1, d′j,1c′j,2, c′j,2d′j,2, d′j,2c′j,3, c′j,3b′j,2, b′j,2b′j,1}.

We say that all these vertices (so including the vertices in the copy) are of a-type,

b-type, c-type and d-type, respectively. They induce 2m disjoint 10-vertex compo-

nents in G∗I which we will call clause-components. We precolour every aj,h by 1

and every a′j,h by 2.

• Every variable xi will be represented by a vertex in G∗I , and we say that these

vertices are of x-type.

• For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 and add

edges cj,hxih and c′j,hxih for h = 1, 2, 3.

• We add an edge between every x-type vertex and every b-type vertex. We also add

an edge between every x-type vertex and every d-type vertex.

• We add an edge between every a-type vertex and every b-type vertex. We also add

an edge between every a-type vertex and every d-type vertex.

In Figure 3.2 we illustrate an example in which Cj is a clause with ordered variables

xi1 , xi2 , xi3 . The thick edges indicate the connection between the variables vertices and

the c-type vertices of the two copies of the clause gadget. The dashed thick edges indicate

the connections between the (precoloured) a-type and c-type vertices of the two copies

of the clause gadget. We omitted the indices from the labels of the clause gadget vertices

to increase the visibility.

The following lemma states that the graph G∗I is P7-free. This has been proven

implicitly in Lemma 2.3.4 but for clarity reasons we provide an explicit proof here.

Lemma 3.3.1. The graph G∗I is P7-free.

Proof. Let P be an induced path in G∗I . We show that P has at most six vertices. We

distinguish the following cases.
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Figure 3.2: The graph G∗I for the clause Cj = {xi1 , xi2 , xi3}.

Case 1. P contains no a-type vertex.

Let I ′ be the instance obtained from I after adding a copy of every clause. Then P is

contained in a graph isomorphic to the graph GI′ as defined in Section 2.2 after removing

the negative variables. Hence, by Lemma 2.2.1, P contains at most six vertices.

Case 2. P contains exactly one a-type vertex.

We may assume without loss of generality that a1,1 is this vertex.

Suppose a1,1 is an end-vertex of P . If the (only) neighbour of a1,1 is a b-type or

d-type vertex, then P contains no other b-type or d-type vertex. This implies that P

can contain at most two other vertices, namely one x-type vertex and one c-type vertex.

Suppose the neighbour of a1,1 on P is a c-type vertex (so this neighbour must be c1,1).

Then P contains no b-type vertex and no d-type vertex. Hence P contains at most two

other vertices, namely an x-type vertex and another c-type vertex. Hence P has at most

four vertices.

Suppose a1,1 is not an end-vertex of P . Suppose c1,1 is a neighbour of a1,1 on P . Let

z be the other neighbour of a1,1 on P . Then z must be a b-type or d-type vertex. This

means that P contains no other b-type or d-type vertex, and if P contains an x-type

vertex this vertex must be adjacent to z. Then c1,1 is an end-vertex of P , and P contains
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at most two other vertices, namely an x-type vertex and another c-type vertex. Hence

P has at most five vertices.

Suppose c1,1 is not a neighbour of a1,1 on P . Then both neighbours of a1,1 are b-type

or d-type vertices. This means that P contains no x-type vertex. Consequently, P can

contain at most two other (c-type) vertices. Hence P has at most five vertices.

Case 3. P contains exactly two a-type vertices.

Suppose P contains no b-type vertex and no d-type vertex. Then the a-type vertices

must be the end-vertices of P that must be joined in P by two c-type vertices and one

x-type vertex. Hence P has five vertices.

Suppose P contains a vertex z that is a b-type or d-type vertex. Because such a

vertex is adjacent to both a-type vertices, P contains no other b-type or d-type vertex

and P does not contain an x-type vertex. Then P might only contain at most two other

vertices (that are of c-type). This means that P has at most five vertices.

Case 4. P contains at least three a-type vertices.

Then P contains no b-type vertex and no d-type vertex. Hence, every a-type vertex

of P must be an end-vertex of P . This is not possible and completes the proof of

Lemma 3.3.1.

By Lemmas 2.3.5 and 3.3.1 we obtain the main result of this section.

Theorem 3.3.2. The 4-Precolouring Extension problem is NP-complete for P7-free

graphs.



Chapter 4

List Colouring

The main ingredients of this chapter are from the following papers.

Section 4.1, 4.2, 4.5:
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Algorithms and Computation (ISAAC 2012), Lecture Notes in Computer Science, to

appear.

Section 4.3, 4.4:

[19] H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song. Updating the complex-

ity status of coloring graphs without a fixed induced linear forest. Theoretical Computer

Science, 414:9–19, 2012.

[18] H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song. Narrowing down the

gap on the complexity of coloring Pk-free graphs. In: Proceedings of the 36th Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science (WG 2010), volume

6410 of Lecture Notes in Computer Science, pages 63–74, 2010.

Section 4.6:

[44] P.A. Golovach, D. Paulusma and J. Song. Coloring graphs without short cycles

and long induced paths. In: Proceedings of the 18th International Symposium on Funda-

mentals of Computation Theory (FCT 2011), volume 6914 of Lecture Notes in Computer

Science, pages 193–204, 2011.
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In this chapter, we focus on the List Colouring problem and its two variants

List k-Colouring and k-List Colouring. We first present a computational com-

plexity classification for k-List Colouring on H-free graphs in Section 4.1, which

immediately yields a complexity classification for List Colouring on H-free graphs.

In particular, we show that for a fixed integer ` and a fixed graph H, `-List Colouring

is polynomial-time solvable on H-free graphs if ` ≤ 2 or H is an induced subgraph of

P3; otherwise `-List Colouring is NP-complete for H-free graphs. We then show that

3-List Colouring for (3P1, P1+P2)-free graphs is NP-complete in Section 4.2. Next we

settle the computational complexity of List 3-Colouring for (P2 +P4)-free graphs and

for sP3-free graphs for any fixed s by presenting a polynomial-time algorithm for each of

the graph classes in Section 4.3 and Section 4.4, respectively. In particular, the algorithm

for List 3-Colouring on sP3-free graphs relies on structural properties of 3-colourable

sP3-free graphs as we showed in Section 2.1. We then show that List 4-Colouring

on P6-free graphs is NP-complete in Section 4.5 by modifying the construction of the

gadget used for proving Theorem 3.3.2 which states that 4-Precolouring Extension

is NP-complete for P7-free graphs. Finally, we show a polynomial-time algorithm for

List k-Colouring on (Ks,t, Pr)-free graphs for all integers k, r, s, t ≥ 1 in Section 4.6.

4.1 List Colouring and `-List Colouring for H-free Graphs

In this section we classify List Colouring and `-List Colouring onH-free graphs. In

order to show these results, we need the following lemma, which is well-known (cf. [10]).

We give its proof in order to explain the bound on the running time stated in this lemma.

Lemma 4.1.1. List Colouring can be solved in O((n+k)
5
2 ) time on n-vertex complete

graphs with a k-list assignment.

Proof. Let G = (V,E) be a complete graph on n vertices u1, . . . , un with some k-list

assignment L. Let V (G) = {u1, . . . , un}. Then we construct a bipartite graph B as

follows. One partition class of B consists of n vertices u1, . . . , un, whereas the other

partition class consists of vertices 1, . . . , k. We add an edge between two vertices ui
and j if and only if j ∈ L(ui). Now G has a colouring that respects L if and only

if B has a matching that contains an edge with ui as one of its end-vertices for i =

1, . . . , n. We can solve the latter problem in O((n + k)
5
2 ) time by using the Hopcroft-

Karp algorithm [55].
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Note that Lemma 4.1.1 implies that List Colouring is polynomial-time solvable on

H-free graphs, whenever H is an induced subgraph of P3. For all other graphs H, List

Colouring is NP-complete for H-free graphs. This follows from our next result.

Theorem 4.1.2. Let ` be a fixed integer, and let H be a fixed graph. If ` ≤ 2 or H is an

induced subgraph of P3, then `-List Colouring is polynomial-time solvable on H-free

graphs; otherwise `-List Colouring is NP-complete for H-free graphs.

Proof. Early papers by Erdös, Rubin and Taylor [32] and Vizing [94] already observed

that 2-List Colouring is polynomial-time solvable on general graphs. Hence, we can

focus on the case ` ≥ 3. Because the `-Colouring problem is a special case of the

`-List Colouring problem, the following results are useful. Kamiński and Lozin [61]

showed that for any k ≥ 3, the k-Colouring problem is NP-complete for the class of

graphs of girth (recall that the girth is the length of a shortest induced cycle) at least p

for any fixed p ≥ 3. Their result implies that for any ` ≥ 3, the `-Colouring problem,

and consequently, the `-List Colouring problem is NP-complete for the class of H-free

graphs whenever H contains a cycle.

The proof of Theorem 4.5 in the paper by Jansen and Scheffler [59] is to show that

3-List Colouring is NP-complete on P4-free graphs but as a matter of fact shows that 3-

List Colouring is NP-complete on complete bipartite graphs, which are (P1+P2)-free.

The proof of Theorem 11 in the paper by Jansen [58] is to show that List Colouring

is NP-complete for (not necessarily vertex-disjoint) unions of two complete graphs but

in fact shows that 3-List Colouring is NP-complete for these graphs. As the union of

two complete graphs is 3P1-free, this means that 3-List Colouring is NP-complete for

3P1-free graphs.

The above results leave us with the case when H is an induced subgraph of P3. By

Lemma 4.1.1 we can solve List Colouring in polynomial time on complete graphs.

This means that we can solve `-List Colouring in polynomial time on connected

P3-free graphs for any ` ≥ 1. Hence we have proven Theorem 4.1.2.

4.2 3-List Colouring for Complete Graphs Minus a Match-

ing

We prove that 3-List Colouring is NP-complete for complete graphs minus a match-

ing. In order to prove this we use a reduction from a variant of Not-All-Equal
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3-Satisfiability with un-negated literals only, which we denote as Not-All-Equal

(≤ 3, 2/3)-Satisfiabili-ty with un-negated literals. Recall that the problem Not-

All-Equal 3-Satisfiability with un-negated literals only is NP-complete [88]. The

problem Not-All-Equal (≤ 3, 2/3)-Satisfiability with un-negated literals takes as

input an instance I that has a set of variables X = {x1, . . . , xn} and a set of literal

clauses C = {C1, . . . , Cm} over X with the following properties. Each Ci contains either

2 or 3 literals, and these literals are all un-negated. Moreover, each literal occurs in at

most three different clauses. The questions is, does there exist a truth assignment for

X such that each clause contains at least one true literal and at least one false literal?

One can prove that Not-All-Equal (≤ 3, 2/3)-Satisfiability is NP-complete by a

reduction from Not-All-Equal-3-Satisfiability via a well-known folklore trick.1

Let I be an arbitrary instance of Not-All-Equal (≤ 3, 2/3)-Satisfiability with

un-negated literals. We let x1, x2, . . . , xn be the variables of I, and we let C1, C2, . . . , Cm

be the clauses of I. We first define a graph GI with a list assignment L of size three. We

then show that GI is a complete graph minus a matching, and that GI has a colouring

that respects L if and only if I has a satisfying truth assignment in which each clause

contains at least one true and at least one false literal.

We construct GI and L as follows.

• We let ai 6= bj if a 6= b or i 6= j. We represent every variable xi by a vertex with

L(xi) = {1i, 2i} in GI . We say that these vertices are of x-type and these colours

are of 1-type and 2-type, respectively.

• For every clause Cp with two variables we fix an arbitrary order of its variables

xh, xi and we introduce a set of vertices Cp, ap,h, ap,i, bp,h, bp,i that have lists of ad-

missible colours {3p, 4p}, {1h, 3p}, {1i, 4p}, {2h, 4p}, {2i, 3p}, respectively, and we

add edges Cpap,h, Cpbp,h, Cpap,i, Cpbp,i, ap,hxh, bp,hxh, ap,ixi, bp,ixi.

For every clause Cp with three variables we fix an arbitrary order of its variables

xh, xi, xj and we introduce a set of vertices Cp, ap,h, ap,i, ap,j , bp,h, bp,i, bp,j that have

lists of admissible colours {3p, 4p, 5p}, {1h, 3p}, {1i, 4p}, {1j , 5p}, {2h, 5p}, {2i, 3p},
{2j , 4p}, respectively, and we add edges Cpap,h, Cpbp,h, Cpap,i, Cpbp,i, Cpap,j , Cpbp,j ,

1If a literal x appears in t ≥ 4 clauses C1, . . . , Ct, then we replace x by 2t new literals x1, . . . , x2t and
add 2t new clauses (x1, x2), (x2, x3), . . . , (x2t, x1), which guarantee that x1, x3, . . . , x2t−1 have the same
values in any satisfying truth assignment. Hence, we may replace x by x2i−1 in Ci for i = 1, . . . , t.
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ap,hxh, bp,hxh, ap,ixi, bp,ixi, ap,jxj , bp,jxj .

We say that the new vertices are of C-type, a-type and b-type, respectively. We

say that the new colours are of 3-type, 4-type and 5-type, respectively.

• For each variable xj that occurs in three clauses we fix an arbitrary order of the

clauses Cp, Cq, Cr, in which it occurs. Then we do as follows. First, we modify the

lists of ap,j , aq,j , bp,j and bq,j . In L(ap,j) we replace colour 1j with a new colour 1′j .

In L(aq,j) we replace colour 1j with a new colour 1′′j . In L(bp,j) we replace colour

2j with a new colour 2′j . In L(bq,j) we replace colour 2j with a new colour 2′′j .

Next we introduce four vertices a′p,j , a
′
q,j , b

′
p,j , b

′
q,j with lists of admissible colours

{1j , 1′j}, {1′j , 1′′j }, {2j , 2′j}, {2′j , 2′′j }, respectively. We say that these vertices are of

a′-type or b′-type, respectively. We say that the new colours are also of 1-type or

2-type, respectively. We add edges ap,ja′p,j , a
′
p,ja
′
q,j , a

′
p,jxj , aq,ja

′
q,j , bp,jb

′
p,j , b

′
p,jb
′
q,j ,

b′p,jxj , bq,jb
′
q,j . For each variable xj that occurs in at most two clauses, we do not

do anything additional.

• We add an edge between any two not yet adjacent vertices of GI whenever they

have no common colour in their lists.

In Figure 4.1 we give an example, where in order to increase the visibility we display the

complement graph GI of GI instead of GI itself.

As can be seen from Figure 4.1, the graph GI is isomorphic to the disjoint union of a

number of P1s and P2s. This means that GI is a complete graph minus a matching. We

formally prove this statement in Lemma 4.2.1, whereas the hardness reduction is stated

in Lemma 4.2.2.

Lemma 4.2.1. The graph GI is a complete graph minus a matching.

Proof. Let z ∈ V (G). Then we obtain the following due to the construction of GI . If z

is of C-type or x-type, then z is adjacent to all other vertices in GI . If z is of a-type or

b-type, then z is adjacent to all vertices of GI except perhaps one vertex, which is of a′-

type or b′-type, respectively. Finally, if z is of a′-type or b′-type, then z is adjacent to all

vertices of GI except one vertex, which is of a-type or b-type, respectively. We conclude

that every vertex in GI has degree at least |V (GI)| − 2. Recall that complete graphs
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C1 Cp Cq Cr

ap,h bp,h
ap,i bp,i

ap,j bp,j
aq,j bq,j

ar,j br,j

a′
p,j

b′
p,ja′

q,j b′
q,j

x1 xh xi xj xn

Cm

{31, 41, 51} {3p, 4p, 5p} {3q, 4q, 5q} {3r, 4r, 5r}

{1h, 3p} {2h, 5p}{1i, 4p} {2i, 3p}{1′
j, 5p} {2′

j, 4p}{1′′
j , 4q} {2′′

j , 3q}{1j, 5r} {2j, 4r}

{1j, 1
′
j}

{2j, 2
′
j}{1′

j, 1
′′
j }

{2′
j, 2

′′
j }

{11, 22} {1h, 2h} {1i, 2i} {1j, 2j} {1n, 2n}

{3m, 4m, 5m}

1

Figure 4.1: An example of a graph GI in which a clause Cp and a variable xj are
highlighted. Note that in this example Cp is a clause with ordered variables xh, xi, xj ,
and that xj is a variable contained in ordered clauses Cp, Cq and Cr.

minus a matching are exactly those graphs that are (3P1, P1 + P2)-free, or equivalently,

graphs of minimum degree at least n − 2, where n is the number of vertices. Hence GI
is a complete graph minus a matching.

Lemma 4.2.2. The graph GI has a colouring that respects L if and only if I has a

satisfying truth assignment in which each clause contains at least one true and at least

one false literal.

Proof. First suppose that GI has a colouring that respects L. Consider a variable xj
contained in ordered clauses Cp, Cq, and Cr. If the colour of xj is 1j then the colour of

a′p,j is 1′j . Consequently, the colour of a′q,j is 1′′j . We conclude that none of the colours of

ap,j , aq,j , ar,j is of 1-type. Similarly, if the colour of xj is 2j , then none of the colours of

bp,j , bq,j , br,j is of 2-type. We use this observation as follows. Consider a clause Cp with

three literals ordered as xh, xi, xj . If xh, xi and xj all have a 1-type colour, then ap,h,

ap,i and ap,j have colours 3p, 4p and 5p, respectively. Then there is no colour available for

Cp. A similar argument can be made for clauses that contain only two literals. Hence, we

find that at least one literal in every clause is coloured with a 1-type colour. Analogously,

we find that at least one literal in every clause is coloured with a 2-type colour. This
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means that the truth assignment that sets a literal to TRUE if the corresponding x-type

vertex has a 1-type colour, and to FALSE otherwise, is a satisfying truth assignment in

which each clause contains at least one true and one false literal.

Now suppose that I has a satisfying truth assignment in which each clause contains

at least one true and at least one false literal. We give each x-type vertex that represents

a true literal its 1-type colour, whereas we colour all other x-type vertices with their

2-type colour. Consider a variable xj contained in ordered clauses Cp, Cq, and Cr. If

the colour of xj is 1j then we colour b′p,j by 2j and b′q,j by 2′j . Consequently, we can

colour bp,j , bq,j , br,j with their 2-type colour. If the colour of xj is 2j then we colour

a′p,j by 1j and a′q,j by 1′j . Consequently, we can colour ap,j , aq,j , ar,j with their 1-type

colour. We use this observation as follows. Consider a clause Cp with literals ordered

as xh, xi, xj . Due to our observation and the definition of L, we may assume without

loss of generality that xh, xi are true and xj is false. Then using our observation we can

colour ap,h, ap,i, ap,j , bp,h, bp,i, bp,j with colours 3p, 4p, of 1-type, of 2-type, of 2-type, 4p,

respectively. This means that we can colour Cp by 5p. A similar argument can be made

if Cp consists of two literals only. Hence, we find that GI has a colouring that respects

L. This completes the proof of Lemma 4.2.2.

By observing that 3-List Colouring belongs to NP and using Lemmas 4.2.1 and 4.2.2,

we have proven Theorem 4.2.3.

Theorem 4.2.3. The 3-List Colouring problem is NP-complete for complete graphs

minus a matching.

4.3 List 3-Colouring for (P2 + P4)-free Graphs

In this section we show how to test in polynomial time whether a given (P2 + P4)-free

graph G has a colouring φ that respects some given 3-list assignment L of G.

Theorem 4.3.1. The List 3-Colouring problem can be solved in polynomial time for

(P2 + P4)-free graphs.

Proof. Let G be a (P2+P4)-free graph with a list assignment L. We start by making two

assumptions. Firstly, we assume that G is connected as otherwise we apply our algorithm

on each component of G. Secondly, we assume that G contains an induced subgraph H
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isomorphic to P6. If not, then G would be P6-free and we could use the polynomial-time

algorithm for solving List 3-Colouring for P6-free graphs [16].

We first guess a colouring of H respecting the restriction of L to V (H). We then

start our algorithm, which we run at most 36 times as this is an upper bound on the

number of possible 3-colourings of H. From the description of the algorithm it will be

immediately clear that its running time is polynomial in |V (G)|.
Our algorithm first applies the following subroutine. Let U ⊆ V (G) contain all

vertices that have a list consisting of exactly one colour. For every vertex u ∈ U we

remove this single colour φ(u) from the lists of its neighbours. If this results in an empty

list at some vertex, then we output NO. We remove u from G and repeat this process in

the remaining graph as long as there exists a vertex with a list of size 1. This process is

called updating the graph. Note that during this procedure we also removed all vertices

of H. We restore the vertices of H back into G. We may assume that G is still connected;

otherwise, due to the (P2 + P4)-freeness of G, every component not containing H is a

single vertex and can be coloured trivially. Let S be the set of vertices that still have a

list of admissible colours of size 3. If S = ∅, then we can apply Theorem 1.1.1.

Suppose S 6= ∅. Let T be the set of vertices of V (G) \ V (H) that have at least one

neighbour in H. Because we coloured every vertex in H and updated G, every vertex of

T has a list of exactly two admissible colours, and consequently, S ∩ (V (H) ∪ T ) = ∅.
Since G contains no induced P2 + P4, we find that V (G)\(V (H) ∪ T ), and consequently

S, is an independent set in G. Since we assume that G is still connected, each vertex in

S has at least one neighbour in T (so T 6= ∅).
For convenience we order the vertices of H along the P6 as p1, p2, . . . , p6, starting

with vertex p1 with degree 1 in H. Let T ∗ ⊆ T consist of all vertices in T that have

a neighbour in S. Let T1 denote the subset of vertices of T ∗ adjacent to p1, p3, p5 and

not to p2, p4, p6; let T2 denote the subset of vertices of T ∗ adjacent to p2, p4, p6 and

not to p1, p3, p5; let T3 denote the subset of vertices of T ∗ adjacent to p2, p5 and not to

p1, p3, p4, p6.

Claim 1. T ∗ = T1 ∪ T2 ∪ T3.

We prove Claim 1 as follows. Because T1 ∪ T2 ∪ T3 ⊆ T ∗ by definition, we only have to

prove that T ∗ ⊆ T1∪T2∪T3. Let u ∈ T ∗. Because u has a list of two admissible colours,

u is not adjacent to two adjacent vertices of H (as these vertices have different colours).

By definition, u has a neighbour v ∈ S.
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Case 1. u is adjacent to p1.

Then u is not adjacent to p2. Hence, p4p5 and vup1p2 form an induced P2 + P4 in G

unless u is adjacent to a vertex of {p4, p5}.
Suppose u is adjacent to p4. Then u is neither adjacent to p3 nor to p5. Recall that u

is not adjacent to p2. Then u must be adjacent to p6, as otherwise vup1p2 and p5p6 form

an induced P2 + P4 in G. However, now we find that p2p3 and vup6p5 form an induced

P2 +P4 in G. We conclude that u cannot be adjacent to p4. Because u is not adjacent to

p4 and u must be adjacent to a vertex of {p4, p5}, we find that u is adjacent to p5. Then

u is not adjacent to p6. Recall that u is not adjacent to p2. This means that u must be

adjacent to p3, as otherwise p2p3 and vup5p6 form an induced P2 + P4 in G. Hence, we

obtain u ∈ T1.

Case 2. u is not adjacent to p1 but u is adjacent to p2.

Then p4p5 and vup2p1 form an induced P2 + P4 in G unless u is adjacent to a vertex

from {p4, p5}. Suppose u is adjacent to p4. Then u is not adjacent to p5. This means

that u is adjacent to p6, as otherwise p5p6 and vup2p1 form an induced P2 + P4 in G.

Hence, we obtain u ∈ T2. Suppose u is not adjacent to p4. Then u must be adjacent to

p5. This means that u is not adjacent to p6. Because u is adjacent to p2, we find that u

is not adjacent to p3. Recall that u is not adjacent to p1. Hence, we obtain u ∈ T3.

Case 3. u is neither adjacent to p1 nor to p2 but u is adjacent to p3.

Then p5p6 and vup3p2 form an induced P2 + P4 in G unless u is adjacent to a vertex

from {p5, p6}. Suppose u is adjacent to p5. Then u is not adjacent to p6, and we find

that p1p2 and vup5p6 form an induced P2 + P4 in G. Suppose u is adjacent to p6. Then

u is not adjacent to p5, and we find that p1p2 and vup6p5 form an induced P2 +P4 in G.

Both cases are not possible.

Because the remaining cases follow from symmetry, we conclude that u ∈ T1 ∪ T2 ∪ T3.
Hence T ∗ ⊆ T1 ∪ T2 ∪ T3, and we have proven Claim 1.

Claim 2. Either T1 ∪ T2 or T3 is empty.

We prove Claim 2 as follows. Assume T1∪T2 6= ∅ and T3 6= ∅. Without loss of generality,

assume there is a vertex u ∈ T1 and a vertex v ∈ T3. By definition, u is adjacent to p1,

p3 and p5. Since u has a list of 2 admissible colours, p1, p3 and p5 are coloured by the

same colour, say colour 1. Because p2 is adjacent to p1, vertices p1 and p2 have different
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colours. Thus the colours of p2 and p5 are different. Then v has only one admissible

colour in its list. This contradiction proves Claim 2.

Using Claim 2 we distinguish two cases.

Case 1. T1 ∪ T2 is empty and T3 is not empty.

Since every vertex in T3 has a list of 2 admissible colours, p2 and p5 are coloured the

same. Recall that S is an independent set. Hence we can safely colour all the vertices in

S by the same colour as p2 and p5. We are left to apply Theorem 1.1.1.

Case 2. T3 is empty and T1 ∪ T2 is not empty.

If one of T1 and T2 is empty, say T2 = ∅, we proceed as in Case 1. We now assume that

none of T1 and T2 is empty. As before, this means that p1, p3, p5 must have the same

colour, say colour 1, whereas p2, p4, p6 also have the same colour, say colour 2. Recall

that S is an independent set. Hence, we can safely colour all vertices of S that only

have neighbours in T1 by colour 1, and all vertices of S that only have neighbours in T2
by colour 2. Afterwards we remove them from G. If no vertices of S remain we apply

Theorem 1.1.1. Suppose S did not become empty. Then each (remaining) vertex of S

has a neighbour in T1 and T2. We first try the case that all vertices of T1 receive colour

2. For this colouring of T1, all vertices in S get reduced lists of size at most 2, so we can

again apply Theorem 1.1.1.

We are left to consider the possibility that colour 3 is used on at least one vertex of

T1. We try all possible |T1| = O(|V (G)|) choices in which we give one fixed vertex x ∈ T1
colour 3. Below we describe what we do for each such choice.

We first update G. If G then only contains vertices that have a list of admissible

colours of size 2, we apply Theorem 1.1.1. Otherwise, we restore x and all vertices of H

back into G and redefine sets T1, T2 and S accordingly. We find that no vertex in T2 is

adjacent to x, because such vertex would have received colour 1 and would have been

removed when we were updating G. Furthermore, by definition of S, no vertex in S is

adjacent to x, and we may again assume that each vertex in S is adjacent to a vertex in

T1 and to a vertex in T2.

Let y be an arbitrary vertex of T2. Suppose there exists an edge ab such that a ∈ T2,
b ∈ S and y is not adjacent to a, b. Then G contains an induced P2 + P4 formed by xp1
and bap6y. This is not possible. Hence, the vertex y is adjacent to at least one of the

vertices of every edge ab with a ∈ T2 and b ∈ S. We consider both the case in which
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y gets colour 1 and in which y gets colour 3. Then, in each case, we reduce the list of

admissible colours of each vertex s ∈ S by at least one, which can be seen as follows.

Suppose y gets colour i ∈ {1, 3}. If s is adjacent to y, then s cannot receive colour

i. Otherwise, as we just proved, s is adjacent to a neighbour of y in T2. Because this

neighbour is in T2, it is adjacent to p6 as well, and consequently it gets colour j = 1 if

i = 3 and colour j = 3 if i = 1. This means that s cannot receive colour j. Hence, after

updating the graph we may apply Theorem 1.1.1. This finishes Case 2, and thus the

description of our algorithm is completed.

Corollary 4.3.2. The Colouring problem can be solved in polynomial time for the

class of triangle-free (P2 + P4)-free graphs.

Proof. We first note that a graph can be coloured with at most one colour if and only if

it consists of isolated vertices only. Secondly, a graph can be coloured with at most two

colours if and only if it is bipartite. Both cases can clearly be checked in polynomial time.

By Theorem 4.3.1, we can also check in polynomial time whether a triangle-free (P2+P4)-

free graph is 3-colourable. We complete the proof by showing that every triangle-free

(P2 + P4)-free graph can always be coloured with at most 4 colours. This means that

such a graph has chromatic number 4 if it is not 3-colourable.

Let G be a triangle-free (P2 + P4)-free graph. We may assume that G is connected

and that |V (G)| ≥ 5. Consider an induced P2 of G, say with vertices v1 and v2. Let G′

be the graph of G obtained from G after removing v1, v2 and all their neighbours. Then

G′ contains no triangle and no induced P4, because G is triangle-free and (P2 +P4)-free.

This implies that G′ is bipartite. Because G is triangle-free, the set of neighbours of v1
is an independent set and the set of neighbours of v2 is an independent set.

Due to the above we can define the following 4-colouring of G. Assign colour 1 to

all neighbours of v1 (including v2) and colour 2 to all neighbours of v2 (including v1).

Assign colours 3 and 4 to all the vertices of G′ corresponding to the bipartition of G′.

This completes the proof of Corollary 4.3.2.

4.4 List 3-Colouring for sP3-free Graphs

In this section we show how to test in polynomial time whether a given sP3-free graph

admits a colouring that respects some given 3-list assignment. Our polynomial-time
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algorithm heavily relies on a number of structural properties of 3-colourable sP3-free

graphs that we have shown in Section 2.1.

Theorem 4.4.1. The List 3-Colouring problem can be solved in polynomial time for

the class of sP3-free graphs for any fixed integer s ≥ 1.

Proof. Let G = (V,E) be a graph with a k-list assignment L for some integer k ≥ 1.

Let W ⊆ V be the set of those vertices of G whose lists have size at most 2. By

Proposition 1.2.2 we may assume that every vertex in V \W has degree at least 3. Recall

that R(s, 4) is the smallest number of vertices n such that all graphs on n vertices contain

an independent set of size s or a clique of size 4. By using brute force, we search for a setD

of size at most 3R(s, 4)+12(s−1) that dominates V \W . This takes O(|V |3R(s,4)+12(s−1))

time, which is polynomial because s is fixed. If such a set does not exist, then G has

no colouring respecting L due to Lemma 2.1.3. If we find a dominating set D of size at

most 3R(s, 4) + 12(s − 1), then we guess a possible 3-colouring of D that respects the

restriction of L to D, and we apply Theorem 1.1.1. Because |D| ≤ 3R(s, 4) + 12(s− 1),

the total number of these guesses is 3|D| ≤ 33R(s,4)+12(s−1). This number is constant

because s is fixed. Hence, our algorithm runs in polynomial time.

4.5 List 4-Colouring for P6-free Graphs

We prove that List 4-Colouring is NP-complete for P6-free graphs. We use a re-

duction from the Not-All-Equal 3-Satisfiability problem with un-negated literals;

recall that this is an NP-complete problem [88]. We consider an arbitrary instance I

of Not-All-Equal 3-Satisfiability with variables x1, x2, . . . , xn and 3-literal clauses

C1, C2, . . . , Cm that all contain un-negated literals only. From I we construct a graph GI
with a 4-list assignment L. Next we show that GI is P6-free and that GI has a colouring

that respects L if and only if I has a satisfying truth assignment in which each clause

contains at least one true and at least one false literal.

To obtain the graph GI with its 4-list assignment L we modify the construction

of the (P7-free but not P6-free) graph used to prove Theorem 3.3.2 which states that

4-Precolouring Extension is NP-complete for P7-free graphs. We do this as follows.

• For each clause Cj , we introduce five vertices aj,1, bj,1, aj,2, bj,2, aj,3 that have lists

of admissible colours {2, 4}, {3, 4}, {2, 3, 4}, {3, 4}, {2, 3}, respectively, and we add

the edges aj,1bj,1, bj,1aj,2, aj,2bj,2, bj,2aj,3.
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We take a copy C ′h for each clause Ch.

For each copy C ′h, we introduce five vertices a′j,1, b
′
j,1, a

′
j,2, b

′
j,2, a

′
j,3 that have lists

of admissible colours {1, 4}, {3, 4}, {1, 3, 4}, {3, 4}, {1, 3}, respectively, and we add

the edges a′j,1b
′
j,1, b

′
j,1a
′
j,2, a

′
j,2b
′
j,2, b

′
j,2a
′
j,3.

We say that all these vertices (so including the vertices in the copy) are of a-type

and b-type, respectively. They induce a disjoint union of 2m P5s in GI , which we

call clause-components.

• We represent every variable xi by a vertex, which we also denote by xi and which

we give a list of admissible colours L(xi) = {1, 2} in GI . We say that these vertices

are of x-type.

• For every clause Cj , we fix an arbitrary order of its variables xi1 , xi2 , xi3 and add

edges aj,hxih and a′j,hxih for h = 1, 2, 3.

• We add an edge between every x-type vertex and every b-type vertex.

In Figure 4.2 we illustrate an example in which Cj is a clause with ordered variables

xi1 , xi2 , xi3 . The thick edges indicate the connection between these vertices and the a-

type vertices of the two copies of the clause gadget. We omitted the indices from the

labels of the clause gadget vertices to increase the visibility.

We now prove two lemmas. Lemma 4.5.1 shows that the graph GI is P6-free. In

Lemma 4.5.2 we prove that GI has a colouring that respects L if and only if I has a

satisfying truth assignment in which each clause contains at least one true and at least

one false literal.

Lemma 4.5.1. The graph GI is P6-free.

Proof. Let P be an induced path in GI . We show that P has at most five vertices. We

distinguish the following cases.

Case 1. P contains no x-type vertex.

This means that P is contained in one clause-component, which is isomorphic to an

induced P5. Consequently, P has at most five vertices.
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a b a b a ababa

x1 xi1 xi2 xi3 xn

Cj C ′
j

1

Figure 4.2: The graph GI for the clause Cj = {xi1 , xi2 , xi3}.

Case 2. P contains exactly one x-type vertex.

Let xi be this vertex. Then P contains vertices of at most two clause-components. Since

xi is adjacent to all b-type vertices, we then find that P contains at most two vertices of

each of the clause-components. Hence P has at most five vertices.

Case 3. P contains exactly two x-type vertices.

Let xh and xi be these two vertices. If P contains no b-type vertex, then there is no

subpath in P from xh to xi, a contradiction. If P contains two or more b-type vertices,

then P contains a cycle, another contradiction. Hence P contains exactly one b-type

vertex z. Then xhzxi is a subpath in P . If xh has a neighbour in V (P )\{z}, then this

neighbour must be of a-type, and consequently, an end-vertex of P (because an a-type

vertex is adjacent to only one x-type vertex). The same holds for xi. Hence P contains

at most five vertices.

Case 4. P contains at least three x-type vertices.

Then P contains no b-type vertex, because such vertices would have degree 3 in P .

However, then there is no subpath between any two x-type vertices in P . We conclude

that this subcase is not possible. This completes the proof of Lemma 4.5.1.

Lemma 4.5.2. The graph GI has a colouring that respects L if and only if I has a

satisfying truth assignment in which each clause contains at least one true and at least

one false literal.

Proof. First suppose that GI has a colouring that respects L. Consider a clause Cj with

literals ordered as xi1 , xi2 and xi3 . Suppose that xi1 , xi2 and xi3 all have colour 2.
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Since the list of aj,1 is {2, 4}, we find that aj,1 must receive colour 4. Consequently, its

neighbour bj,1 must have colour 3. Similarly, aj,3 must have colour 3 and bj,2 must have

colour 4. This means that aj,2 has neighbours, namely xi2 , bj,1, bj,2, with colours 2, 3, 4,

respectively. However, L(aj,2) = {2, 3, 4}. Hence, this is not possible. We conclude that

at least one literal in every clause is coloured with colour 1. By considering the copy

gadgets, we find in a similar way that at least one literal in every clause is coloured

with colour 2. This means that the truth assignment that sets a literal to FALSE if the

corresponding x-type vertex has colour 2, and to TRUE otherwise, is a satisfying truth

assignment of I in which each clause contains at least one true and at least one false

literal.

Now suppose that I has a satisfying truth assignment in which each clause contains at

least one true and at least one false literal. We use colour 1 to colour the x-type vertices

representing the true literals and colour 2 to colour the x-type vertices representing the

false literals. Since each clause contains at least one true literal, we can colour aj,1,

aj,2 and aj,3 respecting their lists. Similarly, since each clause contains at least one

false literal, we can colour a′j,1, a
′
j,2 and a′j,3 respecting their lists. We colour all other

remaining uncoloured vertices in a straightforward way. This completes the proof of

Lemma 4.5.2.

The observation that List 4-Colouring belongs to NP, together with Lemmas 4.5.1

and 4.5.2, immediately gives us the main result of this section.

Theorem 4.5.3. The List 4-Colouring problem is NP-complete for P6-free graphs.

4.6 List k-Colouring for (Ks,t, Pr)-free Graphs

We prove the following theorem.

Theorem 4.6.1. For all integers k, r, s, t ≥ 1, the List k-Colouring problem can be

solved in polynomial time on (Ks,t, Pr)-free graphs.

Proof. Atminas, Lozin and Razgon [2] showed that for any two integers r and w, there

exists an integer b(r, w) such that any graph of treewidth at least b(r, w) contains

the path Pr as an induced subgraph or the complete bipartite graph Kw,w as a (not

necessarily induced) subgraph. We will combine this result and Ramsey’s Theorem

in the following way. Let k, r, s, t ≥ 1, and let G be a (Ks,t, Pr)-free graph with
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some k-list assignment L. We use a as a short-hand notation for the Ramsey num-

ber R(max{k + 1, s, t},max{k + 1, s, t}). Using Bodlaender’s algorithm [8] we can test

in linear time whether the treewidth of G is at most b(r, a)− 1.

First suppose that the treewidth of G is at most b(r, a)− 1. Jansen and Scheffler [59]

showed that List k-Colouring can be solved in time O(nkt+1) on an n-vertex graph

with treewidth at most t that has a k-list assignment. Hence, because b(r, a) − 1 is a

constant, we can uses this result to test in polynomial time whether G has a colouring

repecting L.
Now suppose that the treewidth of G is at least b(r, a). We claim that in this case

G is not k-colourable. This can be seen as follows. Due to the aforementioned result

of Atminas, Lozin and Razgon [2] and our assumption that G is Pr-free, we find that

G contains the complete bipartite graph Ka,a as a subgraph. Let S1 and S2 be the

partition classes of this complete bipartite graph. By Ramsey’s Theorem, we find that

both S1 and S2 either contain an independent set of size max{k+1, s, t} or a clique of size

max{k+1, s, t}. If both of them contain an independent set of size max{k+1, s, t}, then
G[S1 ∪ S2], and consequently, G contains an induced Ks,t, which is not possible. Hence,

at least one of them, say S1, contains a clique of size max{k+1, s, t}. Then G[S1] is not k-

colourable. Consequently, G is not k-colourable. Since Bodlaender’s algorithm performs

in linear time, List k-Colouring can be solved in time O(nkt+1) on an n-vertex graph

with treewidth at most t that has a k-list assignment.
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(H1, . . . ,Hp)-free, 5

(u, v)-path, 4

∆(G), 4

α(G), see Independence number

L, see List assignment

χ(G), see Chromatic number

δ(G), 4

`-List Coloring problem, 2

ω(G), see Clique number

G, see Complement

⊆i, see Induced subgraph

k-Coloring problem, 2

k-List Coloring problem , see `-List Col-

oring problem

k-Precoloring Extension problem, 2

k-colorable, 2

k-coloring, 1

k-connected, 4

k-edge colorable, 23

k-edge coloring, 23

k-list assignment, 2

p-regular, 4

3-Satisfiability problem, 10

Admissible colors, 2

Anticycle, 6

Antihole, 7

Asteroidal number, 22

Asteroidal set, 22

Asteroidal triple, 6

AT-free graph, 6

Bags, 18

Bipartite graph, 6

Block graph, 8

Chord, 8

Chordal, 8

Chromatic index, 23

Chromatic number, 2

Claw, 6

Clique, 4

Clique number, 4

Clique-width, 20

Co-bipartite graph, 6

Co-comparability graph, 8

Cograph, 8

Color, 1

Coloring, 1

Coloring problem, 2

Comparability graph, 8

Complement, 4

Complete bipartite graph, 6

Complete graph, 4
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Complete graph minus a matching, 8

Complete split graph, 9

Connected, 4

Connected component, 4

Cycle, 4

Degree, 4

Diameter, 4

Diamond, 8

Disconnected, 4

Disjoint union, 4

Distance, 4

Distance-hereditary graph, 8

Dominate, 5

Dominating set, 5

Dominating vertex, 5

Edge, 1

Edge coloring, 23

Edge contraction, 10

Edge set, 1

Forest, 6

Girth, 4

Graph, 1

Hole, 7

Identify, 9

Independence number, 4

Independent set, 4

Induced subgraph, 4

Interval graph, 9

Isomorphic, 5

Isomorphism, 5

Leaf, see Pendant vertex

Length, 4

Line graph, 9

Linear forest, 6

List k-Coloring problem, 2

List assignment, 2

List Coloring problem, 2

Matching, 8

Maximal clique, 9

Minor, 10

Neighborhood, 4

Not-All-Equal 3-Satisfiability prob-

lem, 10

Odd (cycle), 4

Path, 4

Pendant vertex, 4

Perfect graph, 8

Permutation graph, 8

Planar graph, 10

Precoloring, 2

Precoloring Extension problem, 2

Proper interval graph, 9

Ramsey number, 4

Ramsey’s Theorem, 4

Regular, 4

Respect, 2

Satisfiability problem, 10

Size of a list assignment, 2

Split, 9

Star, 6
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Subgraph, 4

Threshold graph, 9

Tree, 6

Tree decomposition, 18

Treewidth, 19

Triangle, 8

Trivially perfect graph, 9

Union, 3

Union of two complete graphs, 9

Vertex, 1

Vertex set, 1


