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Abstract

The design of liberalised electricity markets (e.g., the energy, capacity and ancillary

service markets) is a topic of much debate, regarding their ability to trigger ade-

quate investment in generation capacities and to incentivize flexible power system

operation.

Long-term generation investment (LTGI) models have been widely used as a

decision-support tool for generation investments and design of energy policy. Of

particular interest is quantification of uncertainty in model outputs (e.g., generation

projections or system reliability) given a particular market design while accounting

for uncertainties in input data as well as the discrepancies between the model and the

reality. Unfortunately, the standard Monte Carlo based techniques for uncertainty

quantification require a very large number of model runs which may be impractical to

achieve for a complex LTGI model. In order to enable efficient and fully systematic

analysis, it is therefore necessary to create an emulator of the full model, which may

be evaluated quickly for any input and which quantifies uncertainty in the output

of the full model at inputs where it has not been run. The case study shows results

from the Great Britain power system exemplar which is representative of LTGI

models used in real policy processes. In particular, it demonstrates the application

of Bayesian emulation to a complex LTGI model that requires a formal calibration,

uncertainty analysis, and sensitivity analysis.

In power systems with large amounts of variable generation, it is important to

provide sufficient incentives for operating reserves as a main source of generation

flexibility. In the traditional unit commitment (UC) model, the demand for oper-

ating reserves is fixed and inelastic, which does not reflect the marginal value of

operating reserves in avoiding the events of load shedding and wind curtailment.

Besides, the system-wide reserve constraint assumes that the operating reserve can

be delivered to any location freely, which is not true in real-world power system

operations. To recognize the value and deliverability of operating reserves, dynamic

zonal operating reserve demand curves are introduced to an enhanced determinis-

tic UC model for co-optimizing the day-ahead schedules for energy and operating

reserves. In the case study on the RTS-73 test system, comparisons are made be-
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tween the choices of reserve policies (e.g., single, seasonal or dynamic zones) and

of different reserve zonal partitioning methods. Results suggest that the enhanced

deterministic UC model produces on average lower operational cost, higher system

reliability and higher energy and reserve revenues than the traditional one.

Finally, we discuss future directions of methodological research arising from cur-

rent energy system challenges and the computer models developed for better un-

derstanding of the impacts of market incentives on power system planning and

operations.
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Chapter 1

Introduction

Electricity market reform is being implemented or considered in many power sys-

tems in order to meet their own needs. The electricity market (e.g., energy-only

market, capacity market and ancillary service market) provides long-term incen-

tives for efficient investment in generation capacity, by means of high energy prices

and/or capacity prices and/or capacity payments. There is much debate on the ef-

fectiveness of different market designs on incentivizing the adequate amount and the

right type of generation capacities. In the short-term, the availability of a flexible

resource at times when it is needed will also be affected by the market design; this is

an important issue when there is a large amount of variable generation (VG) whose

variability and uncertainty require power system flexibility to manage. This chapter

will first introduce the research background, and then identify the aims and original

contributions of our research. In addition, thesis outline will be presented at the

end of this chapter.

1.1 Background

Electricity market liberalisation has been implemented or considered in many coun-

tries. Meanwhile, many electricity markets are evolving in response to the needs

of power systems [2]. For example, the electricity markets in the United Kingdom

(UK) experienced the changes from the Pool (during years 1990 – 2000) to the New

Electricity and Trading Arrangements (NETA) (during years 2001 – 2005), and
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in year 2005 then the NETA was expanded to the British Electricity Trading and

Transmission Arrangements (BETTA) to become the single GB electricity market

of England, Wales, and Scotland [3, 4]. The most recent change of of electricity

wholesale trading in GB has been the Electricity Market Reform (EMR) which has

been running since 2009. The setup of an electricity market aims to facilitate the

delivery of a secure, decarbonised and affordable supply of electricity. Delivering

a secure electricity supply, which is the primary goal of power systems, not only

requires sufficient reliable capacity to minimise the risk of supply shortages, but

also calls for diverse energy sources, including renewables, nuclear, Carbon Capture

Storage equipped plant, gas and demand side management [5]. Capacity adequacy

has become a general concern due to a number of industry trends and regulatory

barriers [2, 5–8], including plant closures under Large Combustion Plant Directive

in the the European Union (EU), the integration of a large amount of variable gen-

eration with low capacity values [9, 10], the establishment of low price caps, and

the carbon price floor that drives accelerated plant closures and also introduces

regulatory uncertainty.

A reliable and economic power system relies on adequate and efficient planning

and operations that happen on different time frames. In planning, it is necessary

to account for up to 10 ∼ 40 years into the future, long enough to make and imple-

ment investment decisions. Good planning will equip the system with the adequate

amount and the right type of resources that supply the energy, and energy prices

in the market should usually be relatively stable. Price spikes caused by energy

and reserve shortages in the energy market supplemented by additional payments

(e.g., capacity payments, uplift payments) if applicable provide signals for invest-

ment. By contrast, the operational time frame often refers to day-ahead or real-time

and sometimes to longer horizons (e.g., 48-hour). In most power systems, the opera-

tional problem is solved by an optimization problem that considers the cost-effective

operation of the existing fleet, subject to technical and reliability constraints. In

well-designed day-ahead or real-time markets, the pricing signals will provide the

incentives for market participants to offer their energy and flexibility for use by the

system operator.
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Investments in generation are high risk. In the context of liberalised electricity

markets as opposed to centralised ones with central planning, it is private generation

companies who make investment decisions driven by the maximization of return on

investment. The investment decision is often made based on price signal feedbacks

and the imperfect foresight of cost estimates, revenue risks, and rate of return [11].

The risks exposed to investors range from policy (e.g., the price cap, CO2 prices and

renewable targets) and market (e.g., fuel cost, demand forecast and electricity price)

risks, to technology (e.g., capital cost, construction costs/times and decommissioning

costs) and finance (e.g., hurdle rate) risks [12] and they create uncertainty (i.e.,

imperfect knowledge) in the financial returns of an investment. Various long-term

generation investment (LTGI) models have been developed for predicting real-world

generation projections and hence guiding investment decisions and the design of

energy policy [13–20]. From the perspective of policymakers, who wish to adequately

account for uncertainty around future generation projections and system reliability

related to the real world, it becomes increasingly important to consider various

sources of uncertainty existing in these models.

Market designs, particularly market incentives, play an important role in shap-

ing generation investments and operational decisions under uncertainty [11, 21, 22].

As one of the mainstream electricity market designs, an energy-only market ad-

dresses long-term adequacy by rewarding generators for their actual generation at

the price of energy. Examples of energy-only markets are Australia’s National Elec-

tricity Market (ANEM), Alberta, Nordpool and Electric Reliability Council of Texas

(ERCOT) [2]. An energy price cap is typically set to protect consumers from ex-

tremely high prices due to limited demand side participation. The ideal price cap

would reflect the value of lost load (VOLL) which represents the theoretical value

attributed to security of electricity supply (or preventing blackouts) by electricity

consumers [23]. However, the VOLL are usually very high, which are often not po-

litically attractive, so lower market price caps might be established. If no further

intervention is taken, an energy price cap set below the putative scarcity value of

energy will distort the perfect price signal for investment to some extent. This may

lead to the “missing money” problem. Even without the establishment of an energy
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price cap, prices in an energy-only market tend to be very volatile, exposing in-

vestors to high risks. Risk-adverse investors may find themselves reluctant to invest

based on the possibility of price spikes.

The introduction of an increasing proportion of VG (e.g., wind generators) to

future power systems is likely to exacerbate the “missing money” problem. On the

one hand, due to the near-zero, zero, or negative bid-based costs of wind producers,

electricity markets will experience increased price volatility and declined average

price [24]. On the other hand, the limited predictability (i.e., forecasting errors) of

VG often leads to the “out-of-merit” dispatch, which means that units are brought

online to hold spinning reserve to protect against unexpected outages or rapid ramps

in demand and wind generation. The “out-of-merit” dispatch results in not only

a substantial reduction in market clearing price that would otherwise increase as

demand increases, but also uncertain and reduced capacity factors, increased main-

tenance costs and shortened expected lifetimes of conventional generators [25, 26].

The profitability of many existing generation units will be under pressure, espe-

cially for marginal power plants of which the marginal cost (the additional cost

incurred in production of one unit) is the highest among all operational ones, such

as gas-fired power plants (Combined-Cycle Gas Turbines/CCGTs, Open-Cycle Gas

Turbines/OCGTs), as experienced in some European countries [27].

Maintaining sufficient aggregate revenues in an energy-only market can mainly

be achieved by increasing either the price cap or the frequency of scarcity peri-

ods [28]. An increase in the frequency of scarcity periods may resort to a change in

the shape of the net load profile which is difficult to manage, or to an increase in

market concentration which, however, is undesirable because market competition is

threatened. In the real-world, the primary measure left to regulators for adjusting

investment incentives is increasing the energy price cap. At present, the ANEM

operators sets a market price cap of AUS$13, 500/MWh, but the case study in [29]

finds that the price cap may need to be lifted up to as high as AUS$80, 000/MWh

to support a 100% renewable market and to maintain the same reliability standard.

A tight energy price cap together with uncertainty around the frequency of

scarcity pricing leads to insufficient revenues and increased generation risks, which
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makes it unattractive to new entries. It is argued that the wholesale energy-only

markets in many countries are sending too volatile or inadequate price signals to

existing and new flexible generating recourses including flexible conventional gener-

ators and storage devices [17, 30–35]. Some of the main driving factors for concern

over energy-only markets, as discussed in [36], include high financial risks in gener-

ation investment (referring to Section 2.3.1 for more details), limited demand side

participation that creates price spikes [37], market power due to imperfect compe-

tition, and distorted energy prices due to current procedures for procurement and

use of operating reserves.

Many markets have implemented or considered some hedging mechanisms (e.g.,

contracts market [28], operating reserve demand curves (ORDCs) [38,39]) to manage

price risks and some complementary market designs including capacity payments, ca-

pacity markets (installed capacity requirement [40] and capacity demand curve [20])

and capacity subscription [36]. These market incentives are designed to compen-

sate the contribution of capacity and operational flexibility to the system, so as to

enhance the robustness of the power system against various sources of uncertainty.

In ANEM’s energy-only market, market participants may rely on option contracts

to hedge against occasional price spikes1. Retailers are allowed to participate in a

market for call options which provide them with a fixed maximum price for some

contracted volume of capacity over a contracted future period in order to cover the

majority of their anticipated load demand. On June 1, 2014, ERCOT implemented

an ORDC to improve the determination of prices of wholesale energy and operat-

ing reserve in scarcity conditions2. In the UK, the first capacity market auction

was run in 2014 for delivery of capacity from the winter of 2018/19 [23]. In the

United States (US), capacity markets are more common and with different design

details (cleared auction price, contract length, etc.), such as in Independent System

Operator-New England (ISO-NE) and Pennsylvania-New Jersery-Maryland Inter-

1http://www.asx.com.au/documents/products/ASX AustralianElectricityFuturesandOptions

ContractSpecifications July2015.pdf
2https://business.directenergy.com/blog/2014/june/ercot-implements-operating-reserve-

demand-curve
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connection (PJM), New York Independent System Operator (NYISO) [41]. Ireland,

Spain, Ontario are also examples of energy markets with capacity mechanisms. Al-

ternative policies such as the forward and bilateral energy contracts are designed

to recover some part of investment cost [3] and financial option contracts can be

employed for risk management purposes [33]. For example, in the UK, carbon price

support and feed-in tariffs and an emissions performance standard are proposed for

supporting low carbon generation [5].

With the growing integration of renewables, the increasing need for flexible ca-

pacity requires new market rules and productions. Several options are feasible to

improve system flexibility, including investing dispatchable flexible and back-up gen-

eration, demand-side participation and storage, interconnections and market tools

(e.g. market coupling or capacity remuneration mechanisms) [42]. Generation flex-

ibility, as the most affordable way to provide flexibility [43] is defined by California

Independent System Operator (CAISO) as the resource’s ramping speed, ability

to sustain a ramp, ability to change ramp directions, ability to reduce output and

not encounter emission limitations, start time, and ability to cycle on and off fre-

quency [44].

Regarding incentives for generation flexibility in system operations, some mecha-

nisms are in place including efficient centralised scheduling and pricing, 5-min settle-

ments, ancillary service markets, make-whole payments, and day-ahead profit guar-

antees [2]. A new flexible ramping market which proposes spot market (five minute

interval) and forward procurement (integrated day-ahead) products has emerged in

California. The idea of incorporating specific requirements for flexible unit operat-

ing characteristics in the year-ahead resource adequacy requirements has also been

proposed by CAISO, which may eventually develop into five year forward capacity

procurement process [45]. More research is required to evaluate the potential value

of flexibility to help inform the proper design of markets and the pricing of various

flexible products.
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1.2 Aims of research

Overall, the research explores the role that a market design (e.g., market incen-

tives or mechanisms) plays in decision-making under uncertainty for both long-term

generation investment and short-term (day-ahead and real-time) power system op-

eration.

Regarding the impacts of market incentives on long-term generation investments,

it is desirable to provide policymakers with plausible projections of future generation

capacity or system reliability under different market designs (e.g., energy-only and

capacity market). To understand both uncertainty around these projections and the

ways they relate to the real-world, this thesis will carry out calibration (the use of

observed data to match a model with the real process), uncertainty analysis (UA)

(assessing uncertainty in variables or measurements and exploring the propagation

of uncertainty) and sensitivity analysis (SA) (studying how varying values of an

independent variable affect a particular dependent variable) of a computationally

intensive LTGI model with careful management of various sources of uncertainty.

Regarding the impacts of market incentives on short-term power system opera-

tions, this thesis explores how to incorporate the potential value of flexibility in the

deterministic unit commitment model to help inform the proper design of operating

reserve markets, that is, the pricing of operating reserve products. An alternative

is to represent the timing and the locational values of operating reserves by zonal

operating reserve demand curves (Z-ORDCs) in order to reward to improve reserve

deliverability and adequate incentive for flexible generating resources in a transmis-

sion network. It is important to investigate the effectiveness of different reserve

policies (e.g., single, seasonal or dynamic reserve zones) that have been proposed to

emphasize the locational and timing value of operating reserves.

1.3 Original contributions

The research has a number of original contributions:

1) Use of Bayesian emulation that is based on a Gaussian Process model as an

approximation to a LTGI model to systematically manage three major sources
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of uncertainty (in Section 2.3). The sources of uncertainty include input un-

certainty arising from unknown precise values for model inputs, structural

uncertainty due to imperfect science that is used to approximate the under-

lying true system, and functional uncertainty representing unknown functions

when model evaluations take a long time. This is the first time that such

emulation techniques have been used to manage these uncertainties associated

with generation investments (in Section 4.2.1).

2) Presenting a statistical approach for the calibration of LTGI models, based

on a Bayesian update of prior judgments. Given some historical observations

of the output of interest, one can infer from observations improved knowl-

edge of uncertain model parameters and the imperfect model structure (in

Section 4.2.3);

3) Quantifying a plausible range of model outputs that is consistent with the

available knowledge (both historical observations and expert knowledge) based

on a Bayesian update of prior judgments, and demonstrating that a failure to

account for uncertainties may result in misleading results to investors and

policymakers (in Section 4.3);

4) Studying the robustness of electricity market designs (energy-only and capac-

ity markets) against uncertainty through an UA of system reliability metrics

(e.g., loss-of-load expectation/LOLE) in a quantitative manner. Also, demon-

strating how to determine regions of market design parameter space with a

high probability of maintaining the system reliability target (in Section 4.4).

5) Performing an efficient and comprehensive SA of a LTGI model and identifying

the most important input or groups of inputs (in Section 4.5).

6) Proposing an enhanced deterministic unit commitment (EDUC) model in-

corporating dynamic zonal ORDCs for studying the impact of incentives for

generation flexibility on system or market performances. (in Chapter 5).
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1.4 Thesis outline

The overall structure of the thesis is described below.

Chapter 2 firstly provides a literature review of research results on generation

investments in electricity markets, covering the economic, political and technical

aspects. Since various sources of uncertainty are involved in the long-term planning

period, the key uncertainties that define the quality of generation projections are

identified.

Chapter 3 presents a model specification of a LTGI model and then uses it to

make projections of operational thermal capacities and LOLEs at each decision year

during the planning horizon of interest. LTGI models are generally computation-

ally intensive and so only a limited number of simulations can be carried out. A

statistical methodology based on Bayesian emulation for addressing the computa-

tional challenge of model evaluations and enabling efficient calibration, UA and SA

is presented in this chapter.

Chapter 4 demonstrates a case study relating to the GB power system planning.

First, a formal calibration is carried out on the LTGI model that runs through

a historical planning horizon. Next, calibration results (the updated information

of model parameters and model discrepancy) are applied to future projections of

thermal capacities and LOLEs. Then, a robustness index is presented and quantified

through an UA of the maximum LOLE over the future planning period. Last, a

comprehensive SA is carried out and results of SA imply ways of improving the

market robustness most efficiently by focusing on the most important model inputs.

Chapter 5 proposes an enhanced deterministic unit commitment model incor-

porating hourly updated Z-ORDCs. Reserve zones are defined by the approach of

spectral clustering. A case study on system performances using the RTS-73 test

system is given. Comparisons are made between the choices of reserve policies (e.g.,

single, seasonal or dynamic zones) and of reserve zone partitioning methods.

In Chapter 6, conclusions are drawn and suggestions for future work are pre-

sented.
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Chapter 2

Impact of market incentives on

system adequacy

This chapter first gives a review of evolving electricity market designs and system

adequacy metrics with the increasing integration of VG. Different market designs

will have distinct influences on the bidding behaviour of GENCOs and consumers,

on the dynamic behaviour of market prices and investment incentives, and hence

on the investment decisions. For guiding the decision-making in energy policies and

generation investments or the evaluations of the social effects of some interventions,

various types of LTGI models have been developed in academic and industrial areas.

Then, this chapter describes various sources of uncertainty involved in the LTGI

models, which poses great challenges in model computations, model applications

and the interpretation of model outputs. Assessing uncertainty is necessary to make

sense of model results, which requires tasks of calibration, predictions, uncertainty

analysis (UA) and sensitivity analysis (SA). Existing work on dealing with these

tasks is not comprehensive enough, due to huge burden of model computations and

inadequate consideration of uncertainties. In order to fill in the research gap, we

will adopt Bayesian emulation in Chapter 3 which can enable these computational

tasks by approximating the full model with an emulator while quantifying all major

sources of uncertainties.
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2.1 Electricity markets in transition

Both research problems – the LTGI problem in the planning framework and the

unit commitment (UC) problem in the operational framework, will be studied un-

der the context of liberalised electricity markets. The design of electricity markets

evolves with the change in the energy structure (the proportions of different energy

suppliers including coal-fired plants, gas-fired plants and renewables) and with the

need for new investments. Accordingly, some changes have been seen in the roles

that market participants play, in market competitiveness and in the methodology of

system adequacy metrics used in practice. Our main focus is to explore the effec-

tiveness and robustness of the mainstream electricity market models in sending the

right price signals and investment incentives for maintaining system flexibility and

adequacy.

2.1.1 Market participants

The problems of planning and operations are relevant to the interest of private

investors, demand customers, policymakers, system operators and other market

participants. Different participants play distinct roles in the wholesale electricity

market (spot market) where electricity is traded through bids to buy and through

offers to sell.

On the supply side, the privatisation and liberalization of electricity markets

make the decision of investing in generation capacity transfer from generally state-

owned monopolies to competitive and private investors or GENCOs who sell their

electricity in the spot markets [46]. In a market-based system, costs cannot be

automatically passed on to consumers [46], and investors are exposed to highly

volatile market prices.

On the demand side, customers (e.g., retail suppliers) and companies (e.g., large

industrial companies) consume electricity they need. In liberalised electricity mar-

kets, very large consumers may be exposed to volatile electricity prices and they may

wish to participate in the demand management program by modifying their demand

pattern in response to the market prices. Long-term price elasticity of demand as a
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whole that accounts for the programs of reducing energy consumption over the full

period of investment has been considered in some LTGI models, as in [18, 47–49].

Although policymakers cannot make decisions on investing a new plant in lib-

eralized electricity markets, they play a role in encouraging a diverse, low-carbon

and flexible generation mix by providing incentives [46]. For shaping the future

structure of electricity supply and system reliability, it is important to investigate

the anticipated investment behaviour in the electricity market driven by different

policy designs.

A system operator takes the main responsibility of managing the electricity net-

work to ensure the security, reliability and efficiency of supply of electricity. The

system operator undertakes the task of real-time dispatch of generation, managing

security, planning incentives and contracts signed with generation firms for maintain-

ing generation-demand balance and system security during future trading periods.

The entity who plays the role of a system operator can be owned by the transmis-

sion grid company, or may be fully independent according to the design of electricity

markets, and so it may be named differently in different power systems. For exam-

ple, in Europe, a transmission system operator (TSO) administers the transmission

grid on a national or regional basis. In the United States (US), a regional transmis-

sion organization (RTO) or an independent system operator (ISO) performs similar

functions as the European TSO.

2.1.2 Overview of market designs

Overall, three major electricity market models around the world are discussed here

and they are categorized into centralised and liberalised (competitive) markets [2,41].

The first is the centralised vertically integrated structure where most or all assets

(i.e., generation, transmission and distribution) within a certain geographical area

are owned and operated by a single entity. The second is the competitive energy-only

market design where resources are only paid for the energy and ancillary services (op-

tional)1. The third is the competitive energy plus capacity market design where an

1https://www.hks.harvard.edu/hepg/Papers/MISO Resource Adequacy 112305.pdf
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additional revenue mechanism is available to reward generators for their installed or

available capacity, in addition to revenues from selling energy and ancillary services.

The key feature of liberalised electricity markets is that the potentially competitive

functions of generation and retail are separated from transmission and distribution;

and a wholesale electricity market and a retail electricity market are established.

Centralised vertically integrated structure

During early days of the electric power industry, a vertically integrated structure was

favoured by governments. Under a vertically integrated structure, no competition

exists between different utilities and ideally the energy price is set by the highest

short-run marginal cost/SRMC of running generators (the cost imposed on electric-

ity suppliers by extracting one more unit of supply). The centralised generation

capacity expansion takes the objective of minimizing the total social cost (includ-

ing investment cost, operational cost, reliability cost, environmental cost, etc.) or

maximizing the social welfare, as opposed to the process of liberalised generation

investments where private GENCOs make decisions with an objective of maximizing

the expected profit of a new investment.

The US took the traditional model of the vertically integrated electricity utility

for decades. Later, the US adopted the power pools together with interconnections

over a larger network (electrical grid) instead of a single utility before moving to

liberalisation and ISOs and RTOs in the last decade of the 20th century. The tran-

sition from a vertically integrated structure to a deregulated (competitive) structure

(e.g, an energy-only or a energy plus capacity design) is primarily driven by the need

for a more efficient supply of electricity. A healthy competitive market might also

help attract investment in new technologies given right incentives.

In the late 1980s, UK began the preparations for privatisation with the generat-

ing companies. Reforms in England and Wales, Scotland, and Northern Ireland were

implemented in 1990s and then the liberalisation of different parts of the industry

such as British Energy and National Grid happened at different times. The liberal-

ization in the UK was followed by several other Commonwealth countries including

Australia and New Zealand, and regional markets such as Alberta. In many rapidly
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developing countries, previous vertically integrated utilities (e.g., China’s power sec-

tor [50] and the state electricity boards in India) are now being restructured.

In the 21st century, market designs are rapidly evolving to address various chal-

lenges posed by VG to power system adequacy, operational efficiency and ancillary

services. The electricity market reform (EMR) was recently implemented by the UK

government for purposes of ensuring security of electricity supply while achieving

decarbonisation goals affordably. The GB EMR has introduced support mechanisms

including the Feed-in Tariffs with Contract for Differences, Carbon Price Floor and

Emissions Performance Standard to support investment in low-carbon generation,

as well as the capacity market for supporting security of supply.

Energy-only market

As a central transaction platform in power markets, an energy-only market deals

with day-ahead scheduling and real-time dispatch for energy and ancillary services

(mainly referring to operating reserve) coordinated by system operators.

In a perfect energy-only market, generators offer their SRMCs as price takers

who cannot change market prices. The market-clearing (spot) energy price is deter-

mined by the intersection of the generation supply curve and the electricity demand

curve (the equilibrium solution). All generators are remunerated at the same hourly

market-clearing energy price, set by the SRMC of the marginal plant needed to meet

demand, which is the basic principle of liberalized wholesale power markets. The

market-clearing energy price reflects the VOLL when there is a shortfall in elec-

tricity supply. A perfect market brings sufficient income to generator investors [3]

under the assumption that investors are risk neutral, which, however, is not the

case in practical world. It is investors’ risk aversion that raises concern over simple

arguments that energy only markets can deliver security of supply.

A perfect energy-only market does not exist in practical world. On the one hand,

the VOLL is very difficult to estimate and highly uncertain due to the inclusion of

the consumers’ costs and the wider social costs from blackouts [51]. In real-world

power systems, regulators usually set the energy price cap lower than the real VOLL

in times of scarcity to avoid extremely high market prices [46], which may result
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in insufficient revenues for generators, especially the marginal plants who rely on

price spikes to recover their costs. Scarcity refers to times when the supply may be

insufficient or too costly to deploy to meet the high demand. In order to provide

additional incentives for investments in flexible resources, scarcity pricing is often

implemented in an energy-only market [2] and it will be discussed in more detail

in the following section. On the other hand, it is difficult to administer a perfectly

competitive market environment. Market power is exercised when a GENCO is

capable of profiting from increasing prices (price markups) above competitive levels

(uniform market-clearing prices) for a sustained period of time. The price markup

in the market can be monitored as the difference between the spot energy price

and the SRMC [52]. Strategic interactions among different GENCOs are also seen

both on short-term operational decisions (i.e., strategic bidding in the spot market)

and on long-term investment decisions (i.e., strategic investments in an oligopoly

situation).

Scarcity pricing

As explained in Section 1.1, increased penetrations of VG reduce the average elec-

tricity prices but increase the need for flexible capabilities such as fast ramping,

frequent on-off cycling and balancing ORs, and hence increase the operational cost

of thermal generators [53,54]. To ensure capacity adequacy and revenue sufficiency,

energy-only market is often combined with scarcity pricing, ancillary service scarcity

pricing, or emergency demand-response pricing.

Scarcity pricing refers to arrangements to modify prices in the wholesale elec-

tricity market (spot market) when the system operator reduces demand through

administrative actions such as emergency load shedding [55]. Scarcity pricing in-

troduces a price floor and a price cap to the spot market, which improves revenue

certainty for providers of last resort resources (including generation and demand

response).

An alternative to the floor and cap mechanism is ancillary service scarcity pricing.

Ancillary service markets include those for provision of spinning contingency reserve,

non-spinning contingency reserve and regulating reserve at both short-term (spot)
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and longer-term (bilateral) markets. Additional operating reserves and normal bal-

ancing reserve such as regulating reserve are needed for balancing the increasing

penetration of VG. Hence, the ancillary service clearing prices for those services

will be increased, and market participants will face greater uncertainty in ancillary

service demands and prices. With effectively and well designed ancillary service

markets, the impacts of VG on resource adequacy and revenue sufficiency can be

mitigated. A well tested idea is applying ORDCs during scarcity [39] which has

been found in operation in some RTOs in the US, such as NYISO, ISONE, MISO

and ERCOT. The ORDC is designed to introduce an additional price component to

the energy price and to ensure that the resultant energy price reflects the increasing

value of electricity as the possibility of rotating outages increases.

Capacity mechanisms

Capacity market and some form of capacity payments are two main capacity mech-

anisms designed to support the revenue adequacy of electricity suppliers. Capacity

market is a bilateral contract and forward market where participants purchase or sell

a volume of capacity products which meet reliability requirements2. The capacity

payments mechanism is a fixed revenue system of payment for participants offering

generation capacity. Capacity market is more commonly adopted than the capacity

payments mechanism, because it is generally reckoned to be hard to predict the

capacity outcome triggered by a given payment.

New designs of forward capacity obligations and associated auction mechanisms,

such as the determination of capacity prices and reserve margins, are proposed in [33]

to determine capacity prices. The use of a reliability option contract, a new variant

on reserve requirements, is gaining support in the EU [56]. In a reliability option

contract, a strike price is established via a capacity auction in the day-ahead market.

The establishment of the strike price mitigates market power during scarcity because

generators must pay the difference between the market-clearing energy price and the

strike price and hence do not benefit from price manipulation.

2https://www.hks.harvard.edu/hepg/Papers/California.PUC.Capacity.Markets.White.Paper.pdf
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2.1.3 A review on the effectiveness study of market designs

Some modelling and simulation studies have been conducted to examine the effec-

tiveness of capacity mechanisms on improving capacity adequacy in both industrial

and academic world.

Three market designs, namely, the capacity payment, the competitive capacity

market and their joint combination are examined in [18], based upon a long-term

system dynamics model in an energy-only market. A variable capacity payment

mechanism is modelled and studied in [14], which appears to help stabilize the mar-

ket price and reserve margin, and may bring extra credits for consumers in the long

run. The interactions between neighboring power systems are highlighted in [57], in

which the effects of several market designs (e.g, energy-only markets, price-capped

market with a forward capacity market, price-capped market with a capacity mecha-

nism) on incentivising capacity adequacy are tested on two simplified interconnected

markets. In [48], the investment decisions of private firms are represented by a two-

stage game. The model results in the Spanish power system case study show that

the two examined regulatory mechanisms, namely, capacity payment and price adder

are ineffective and costly in delivering the desired level of capacity in an oligopolistic

context.

In the GB EMR process, a suite of models has been developed including a fully

integrated power market model, the dynamic dispatch model [58] provided by De-

partment of Energy & Climate Change (DECC), and network modules designed

and built by UK National Grid. The dynamic dispatch model covers the GB power

market over the medium to long term, which allows the impact of policies on the

investment and dispatch decisions to be analyzed, provided with data, assumptions

and scenarios. In the dynamic dispatch model, a forward capacity market based

on a capacity demand curve (see Section 3.2.1) will be triggered (from 2018/19) if

the amount of generation capacity in an energy market where plant is no longer

profitable is not enough to meet the security of supply reliability target [58]. To

draw some confident conclusions on the effect of the forward capacity market on the

GB power system adequacy based on model simulations, it is necessary to calibrate

some model parameters that represent our assumptions of the real-world.
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The capacity market proposal of PJM is modelled in [20], where the effects of

assumptions concerning investor behaviour on the effectiveness of different capacity

demand curves (capacity payments as a function of reserve margin) are assessed.

The simulation results from the present PJM installed capacity system show that

although there is significant uncertainty regarding the future effects of capacity

mechanisms on financial and adequacy consequences (generator profits, consumer

payments and reserve margins), the use of capacity demand curves reduces risk ex-

posure of generators and consumers, lowers costs to consumers and increases new

investments. Again, these results would have been more convincing if model valida-

tion or calibration work was done.

In real-world analysis relying on computer models, key issues are how well these

models represent the real world and how much uncertainty is involved in these model

results. These concerns are often addressed by model calibration and uncertainty

quantification. More details on the various sources of uncertainty and the ways of

dealing with uncertainty will be presented in Sections 2.3, 2.5.

2.1.4 System adequacy/reliability metrics

Metrics used by system operators to evaluate whether a current or future power

system meets adequacy or reliability requirements are evolving with the energy

structure of power systems [59]. These metrics include a fixed gross capacity margin

or derated capacity margin, probabilistic metrics (e.g., loss-of-load probability -

LOLP, loss-of-load expectation - LOLE and expected unserved energy - EUE), or

economic standards.

The gross capacity margin is normally expressed as the percentage of the level

by which available nameplate or gross generation capacity exceeds the maximum

expected level of demand (e.g., the peak demand) to the peak demand. For example,

standards of a planning capacity margin of 10% to 20% are used in some regional

power systems such as CAISO and SERC/South Carolina Electric & Gas Company

(SCE&G) [60].

The derated capacity margin attempts to account in a margin metric for the

different availability statistics of different plants in a power system [61]. Derated
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conventional capacity is usually defined as expected (in the mathematical sense)

available conventional capacity for generation during the period being examined

after accounting for unit-specific seasonal availability ratings. For example, the

availability probability of a CCGT plant is 85% during the peak time according

to the Office of Gas and Electricity Markets/Ofgem’s Electricity Capacity Assess-

ment [62]. The derated capacity, also called the capacity value of VG is handled

differently by capacity resource planners from conventional generation because of its

intermittent nature. Different metrics may be used to quantify the capacity value

of an additional generator of VG, such as effective load-carrying capability (the ad-

ditional load that could be served by the additional generation without increasing

the adequacy risk level) or equivalent firm capacity (the completely firm generating

capacity that replaces the additional generation and gives the same risk level) [63].

Derated margin is a derived quantity which acts as a proxy for the results of a

full risk calculation, such as LOLE. However, the derated capacity margin does not

indicate how likely it is to have a shortfall. To assess risk at all, probabilistic metrics -

LOLP, LOLE and EUE have been commonly used as the reliability standard in many

markets. Ireland, Spain, GB and some regional markets in the US such as MISO and

PJM have all opted to conduct their adequacy assessment based on a probabilistic

risk metric such as LOLE [60–62, 64]. LOLP is defined as the probability that

generation is insufficient to meet demand at a snapshot in time [65]. LOLE is the

expected (in the mathematical sense) number of periods (e.g. half hours, hours,

daily peaks) of periods of shortfall within the time window under study [66]. EUE

is the expected (in the mathematical sense) amount of energy that is unserved by

electricity suppliers within the time window under study.

The early history of adequacy assessment using LOLP is reviewed in [67]. Cur-

rently in the US, such as in PJM, MISO, ISO-NE markets, a generally accepted

generating capacity adequacy criterion is an LOLP of one day in ten years or an

LOLE of 0.1 daily peaks per year. The 0.1 LOLE is specified at a time resolution

of days (typically the expected number of daily peaks on which there is a short-

fall) [60]. In GB, the reliability standard is set by the government at 3 hours LOLE

per year at an hourly resolution [68]. Due to the different time resolutions used for
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defining the LOLE metric, the one day LOLE in the US is not the same as 24 hours

LOLE in GB. It should be noted that the same standard of LOLE does not result

in the same level of reliability in different power systems, because the LOLE study

varies across a range of different modelling assumptions (e.g., accounting for load

forecast uncertainty or not) and reliability modelling tools (e.g., different models of

load forecast uncertainty).

Other markets choose both reliability and economic metrics (e.g., a target of

minimizing customer costs while maintaining a specified capacity margin in South-

eastern Electric Reliability Corporation (SERC)/Southern Company), and a com-

bination of reliability metrics (i.e., the capacity margin and LOLE in the Canadian

Maritimes, the LOLP and EUE in Northwest/Bonneville Power Administration) for

system adequacy assessment [60].

2.2 Overview of long-term generation investment

models

Complex LTGI models have been developed as a decision-support tool of planning

energy systems and designing public energy policy. LTGI models differ with respect

to their adopted mathematical forms and their underlying economic assumptions,

i.e., the mechanism of electricity markets and the behaviour of how each firm makes

its investment decisions. Prior to providing a review of basic LTGI model types,

the various techniques for developing two critical sub-models, namely the modelling

of spot market prices and the economic assessment of an investment project are

described.

2.2.1 Modelling of spot energy prices

As a signal for generation dispatch and investment in liberalised market, the spot

energy price and its formation deserve a careful study. A well-designed and well-

functioning market is supposed to generate prices that do not only compensate for

operation costs, but also allow generators to recover the investment costs with low
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profitability risks [21]. This long-term consideration should help to discern which

of the pricing approaches is more appropriate. However, the full long-run incentive

effects of these pricing rules have not been well understood.

Generally, there are two types of short-term spot energy price simulation models.

One is completely based on data analysis techniques and historical electricity price

data, such as normal distributions of the electricity day-ahead price used in [69–71],

time series analysis of historical electricity prices in [72–74], and artificial intelligence

techniques which map the relationship between the input parameters (e.g., load lev-

els, time periods) and electricity prices [75,76]. The other one is based on a bottom-

up description of the power system, especially the supply-demand balance and the

strategic behaviour of GENCOs [77–79]. The bottom-up electricity price model is

capable of incorporating the temporal fluctuations and short-term uncertainties in

supply and demand, and investigating the effects of varying installed capacity and

demand level on future prices. However, computational efficiency becomes one of the

major challenges when one considers to calculate the high-resolution (hourly or even

half-hourly) spot energy price with the inclusion of generator-level inter-temporal

operational constraints during a long-term planning period, which can account for

30 or more years.

A simple bottom-up electricity price model is based on aggregating the demand

and generation at all buses in the transmission network. The conventional gen-

erators of the same technology can be aggregated and stacked in a merit order.

Merit order, as a simplified dispatch engine, provides a ranking of available electri-

cal generation in ascending order of their SRMCs of production. Then, the uniform

market-clearing price equals the largest SRMC of all generators online. In GB

EMR process, the dynamic dispatch model uses aggregated cost information for

each technology, makes dispatch decisions according to the generation merit order

and calculates the spot energy price as the SRMC of the marginal plant plus a mark

up. In [49, 77, 80], a probabilistic dispatch algorithm based on the Baleriaux-Booth

method [81] is used to determine the spot market price while characterizing the

short- and long-term uncertainties in demand by discrete probability distributions

and modelling forced outages and scheduled maintenance in thermal generators.
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In [13], a computationally efficient probabilistic costing method is employed based

on a mix of normal distribution approximation to the distribution of net demand

as well as a normal distribution approximation to available conventional generation

capacity that is subject to forced outages. Since investment cost recovery requires

a sufficiently long time horizon beyond the forward market, GENCOs should gain

some knowledge of current and future market prices for scheduling and investment

purposes. A forward-looking simulation is conducted in [4, 13, 82] to predict future

market prices during the dynamic process of investment.

However, the perfect economic merit order is always distorted to some extent due

to technical limitations such as minimum stable generation and minimum up/down

times. In non-sequential modelling methods, the chronological characteristics of

demand level, generation output and wind availability are removed from their prob-

ability distributions, and hence the inter-period dynamics and constraints at the

unit level cannot be examined. With an increasing wind penetration, the issues of

overgeneration, lack of reserve, and high start costs, resulting from system flexibil-

ity limitations may become significant in assessing the system reliability and the

economic performance of a new investment. Unit construction and commitment

is combined with economic dispatch in [83, 84] to produce prices that serve as the

control signal for new investments.

The economic dispatch models have well-defined solution for linear or uniform

market clearing prices and generators being paid the system marginal price can re-

cover their full operational costs, but the more general UC models may produce

no analogous energy prices that fully recover generators’ operational costs including

start-up/shut-down costs [38]. This is the context where uplift or make-whole pay-

ments arise. In many imperfect energy-only markets, uplift payments are added on

top of the linear or uniform market clearing prices, which is the so-called non-linear

pricing rules, in order to ensure generators are sufficiently compensated for their

full operational costs. The analysis in [21] investigates the long-term impact of two

major groups (i.e., linear and non-linear) of pricing rules on the optimal energy mix

under an energy-only market. It is found that the need for uplift payments is in-

creasingly prominent for a power system with high penetration of renewable energy
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sources.

2.2.2 Economic evaluation of a new investment

Investment decisions largely depend on the profitability of a projected investment

or project. There exist different aspects of economic assessment, including the NPV

analysis, real options theory and utility theory.

The net present value (NPV) analysis/the discounted cash flow method is often

used in LTGI models, as in [4,47,57,85]. The NPV provides an indicator of how much

value an investment adds to a GENCO, by accounting for the difference between the

present (discounted) value of revenues (cash inflows) and the present value of costs

(cash outflows). The discount rate used for discounting future cash flows to the

present value is a key parameter of this analysis. Some common rates are a firm’s

weighted average cost of capital, the hurdle rate (the minimum acceptable rate of

return), and variable discount rates (varying discount rates with the riskiness of

investments). Generally, if the NPV is positive the project is worthwhile to be

invested in, while the project should be turned down if the NPV is negative. If the

NPV is zero the investor is paying exactly what the project is worth.

In a risky investment environment, there is uncertainty about future cash flows

and the expected (in a mathematical sense) value is often estimated. To reflect the

investors’ risk aversion, the NPV method can be used together with a risk-adjusted

discount rate as in [49] or the risk functions of plants’ profit, such as value-at-risk

(VaR) [86] and conditional value-at-risk [87]. Often, the VaR calculation relies on a

Monte-Carlo (MC) simulation-based approach for a complete economic evaluation

of an investment under a set of scenarios, as conducted in [13,46,88]. Increasing the

number of scenarios generally reduces the sampling errors and hence improves the

robustness of the estimation of the true risk function, while the computational time

will be unavoidably increased.

Real options theory adopted in [77, 78, 89, 90] is an alternative method of as-

sessing investments under uncertainty. Real option theory considers subsequent

decisions that can modify the project once it is undertaken, while the NPV ap-

proach does not allow for this flexibility of the project and consequently underval-
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ues its benefits. Regarding the LTGI problem, the NPV approach only looks at

one possibility (i.e., investing in a new generation capacity or not) in isolation. By

contrast, real options theory assesses a full range of possibilities, allowing a flexible

and dynamic representation of investment timing and different options (e.g. delay-

ing investments, abandoning the project, or changes in the cost effectiveness of the

investment project) [91].

Utility theory models risk preferences in profitability assessment by quantifying

the utility function of a decision marker in the objective function. As used in [92,93],

risk-averse firms maximize the concave utility function of profit with an exponential

form, while a risk-neutral firm maximizes a linear utility function of profit.

2.2.3 Basic model types

Regardless of the market price models and the economic evaluation methods, the

modelling techniques vary among different LTGI models. There is always a trade-off

between detail (e.g., short-term spot energy price models) and scope (e.g., research

aims, assumptions).

Linear programming

Linear programming is one of the simplest modelling approaches applied to the

LTGI problem. In [94], a multi-period and multi-criteria model based on deter-

ministic linear programming and the analytical hierarchy process for the generation

expansion problem is proposed. Linear portfolio optimisation models are developed

for investigating the impact of VG in generation resource planning in [95, 96]. In a

linear programming formulation, simplifications must be made on the commitment

configurations as well as the ramping and reserve constraints, which could result in

overly restricted cycling (i.e., start-up and shut-down) of conventional generators.

Mixed Integer programming

The LTGI problem includes discrete decisions (e.g., the number of new power plants

of each technology) and hence is often formulated as a mixed integer programming
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problem. Growing attention has been paid to incorporating UC constraints into a

such a mixed integer programming program.

A detailed integer block UC formulation within a capacity planing model is

proposed in [97]. The idea is to group the generation with similar technical and cost

characteristics and transforming the number of plants on-line to the commitment

state, so the dimensionality of the UC program can be largely reduced. Ref. [98]

further compares the reduction of computation time and the loss of accuracy under

different levels of aggregation. Another simplification technique of UC employed

in [83] is to reduce the size of the search space by adding physical constraints and

additional heuristic constraints – priority ordering among small flexible units with

similar technical and cost characteristics.

However, even with simplified UC programs, the computation time can be dras-

tically increased within a multistage planning horizon. One group of approaches to

speeding up a multistage program is adopting a rolling-horizon setting. Essentially,

the multistage model is solved by solving successively several submodels with shorter

and shorter horizons, e.g., [99]. A second group of approaches to accelerating the

computational speed is to carefully select a limited number of representative days

or weeks to represent possible system states rather than to simulate many years

of hourly operations. A vast majority of existing approaches to selecting a repre-

sentative relies on either simple heuristics or clustering algorithms. In [83], simple

heuristics are used to select four representative weeks characterizing the average of

the net load profiles of four seasons and one or more weeks representing extreme con-

ditions. A collection of independent days are randomly simulated from the historic

load and renewables data using binning strategy in [100], where the sampling ap-

proach allows for parallelization to improve computational efficiency. The heuristic

approaches lack a consistent criterion for assessing the validity of the approxima-

tion. In comparison, clustering algorithms are more advanced by dividing similar

load, wind speed and/or solar patterns into clusters with regard to some distance

functions and picking one representative period from each of resulting clusters [101].

Scenario reduction techniques, such as the fast-backward method, are also used to

select representative periods, e.g., [102]. Another advanced approach is to optimize
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the selection of representative periods using a user-defined criterion. Ref. [103] in-

troduces a week selection method of minimising the least square error between the

approximate and the actual load or net load (demand minus wind generation) du-

ration curve. All these selection approaches introduce structural uncertainty to be

explained in Section 2.3, because there is always a mismatch between the selected

days and the real-world operational conditions.

Both a mixed integer program and a linear program are deterministic and they

omit a key feature of the real investment problem that involves various sources

of uncertainty (see Section 2.3), and these deterministic programs are unlikely to

produce results relevant to the real world.

Stochastic programming

Stochastic programming provides a powerful tool for solving the problem in terms

of making optimal and sequential decisions on dispatch and investment in time

along with a precise description of uncertainty and the folding of uncertainty over

time [104]. In the formulation of stochastic programming, uncertainties are very of-

ten represented as scenario trees that may be constructed from some expert knowl-

edge or historical observations.

In [105], a two-stage stochastic programming model for investments in thermal

generation capacity is developed for studying the impact of demand response at high

wind penetration levels. In the objective function of cost minimization, operational

costs on an annual basis are approximated as those calculated from several weeks

representing high, medium and low load seasons, respectively. In [106], a multistage

stochastic mean-variance optimisation model is developed for portfolio optimisation

in deregulated electricity markets. A multistage framework enables the modelling of

investment decisions at multiple future time points, using the information up to that

time point. To gain computational tractability, the mutistage stochastic program is

simplified through the stage-aggregation (aggregating the decision stages) and linear

decision rules.

The quality of investment decisions largely depend on the selected scenarios that

cannot fully represent the uncertain operational conditions. Besides, the solution
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time of the optimisation model scale with the size of the scenario tree that expands

exponentially with the number of uncertain parameters and decision stages [106].

Dynamic programming

Dynamic programming has the advantage of handling stochastic and multistage

planning or investment models while linking different time periods together so that

time-linking constraints such as those related to hydro and storage may be con-

sidered [107]. In the dynamic programming formulation, the number of generating

units of each type of unit is considered as the state variable and the number of new

generating units constructed in a year is represented as the control variable.

A dynamic programming based generation planning framework in a competi-

tive, energy-only electricity market is presented in [108], in which price dynamics

are simulated by a price-demand model with the consideration of short-term price

uncertainties, and then the annual profit is stochastically simulated using Monte

Carlo (MC) approach. In [49, 77, 89], stochastic dynamic programming has been

used for solving the optimal sequential investment problems where uncertainty in

demand and fuel prices is represented as a discrete Markov chain. In these papers,

only one investor within a market is studied. The investor is assumed to be a new

entrant to the market, and its effect on the profitability of the existing fleet of gener-

ation capacity is ignored. A framework combining dynamic programming and game

theory is proposed in [109], in which a forward dynamic programming has been

used for solving the long-term investment problem faced by each GENCO and the

Cournot game is applied to model the strategic interactions among market players.

The greatest concern towards the application of dynamic programming is the

curse of dimensionality. In this case, the dimension of the state space grows rapidly

with the increasing number of possible capacity mixes at each year and number of

planning years, resulting in a substantial increase in computing requirements. In

the presence of uncertainty capturing different sources of uncertainty such as energy

from wind, demands, prices, and rainfall.

One solution is limiting the number of decision alternatives to be evaluated at a

time. In [49], only one new plant of each technology can be constructed within the
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planning horizon of 10 years in the case study. A second approach is conducting

a year-by-year optimisation with static or dynamic look-ahead algorithms to avoid

the problem of short-sighted decision-making [110]. The computational efficiency

for the multiple executions of dynamic programming can be significantly improved

compared with the global dynamic programming optimisation. A third approach is

approximate dynamic programming (ADP) [111] that has recently been proposed to

address complex deterministic and stochastic sequential decision-making problems

with a large number of decision variables and uncertainties. ADP has been success-

fully applied to modelling long-term energy policy and investment decisions in [107]

with the capability of capturing short-term variations in intermittent energy and

demand, as well as storage. The key underlying idea is to replace the true value

function with some form of (parametric or non-parametric) statistical approxima-

tion. ADP is not used in our current work but it should be explored as one of our

directions for future methodological research.

System Dynamics

System dynamics is an approach to understand the nonlinear and dynamic behavior

of complex systems using flows, internal feedback loops, and time delays [112].

In LTGI models based on system dynamics, the feedback loops denote the re-

sponse of new investments to price signals (e.g., energy and capacity prices), and

the time delays refer to the lead times of capacity construction. Continuous or dis-

crete differential equations are used to represent the dynamics (change) of installed

capacity over a planning horizon [113]. In comparison to some traditional analyti-

cal or optimisation methods, system dynamics models are easier to implement and

they have more flexibility in modelling the interactions involved in the complex long-

term investment decision-making process. Optimization-based models are restricted

somehow (e.g., the problem size and complexity) in order to guarantee that there is

an optimal solution. By contrast, System dynamics models often choose a simplified

response function (e.g., profit versus action/decision) instead of an objective (min-

imizing cost or maximizing profit) when dealing with decision-making problems.

Besides, system dynamics models use dynamic simulation to study the behaviour
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of systems and the impact of alternative policies. The simulation technique can

efficiently capture linear or non-linear interactions between inputs and outputs, and

easily implement delays involved in the investment implementation, bounded ra-

tionality of making decisions (e.g., imperfect spot energy price forecasts used for

making investment decisions), and imperfect foresight toward future developments

(e.g., uncertain load growth and fuel prices).

System dynamics has been applied to addressing issues of market incentives and

regulatory effects [14, 17, 18, 114], competitive strategies and market power [4], and

most importantly the dynamics of investment decisions and investment cycles [4,14–

16]. A system dynamics model is developed and calibrated (to variables like system

capacity and the wholesale spot energy price in both PJM and ISO-NE) in [115],

where the simulation results show that liberalisation is a driver of boom-and-bust

cycles on generation capacity growth. Simulations in [14, 17, 18] explore the effects

of different market mechanisms on the amplitude of boom-and-bust cycles.

System dynamics programs and investment optimisation programs can comple-

ment each other in performing a LTGI study [110]. In [70], a mixed integer program-

ming model is formulated for each GENCO to maximize its total expected profit

over the whole planning horizon, and system dynamics obtains and updates the in-

formation that is needed for individual GENCOs such as the long term electricity

demand and electricity price development.

Hierarchical models

Generation investment decision-making requires the coordination between long-term

or medium-term generation planning and short-term operation. Mathematical pro-

gramming with a single objective function might be inadequate for determining

both optimal bidding strategies and investment decisions in liberalised markets. For

example, one may wish to study the impacts of design of policies determined by

policymakers on investment decisions made by GENCOs. To account for multiple

objectives of different market participants, the multilevel or hierarchical modelling

technique has been employed in recent studies.

Ref. [116] develops a bi-level market equilibrium model where the upper-level
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decisions are design of policies made by the leader (policymakers) and the lower-level

decisions are investment decisions made by followers (GENCOs). Ref. [117] employs

a two-stage stochastic program to explore the effects of different market designs

and demand-side bidding (i.e., a price responsive demand) on capacity adequacy,

while accounting for uncertainty in demand, fuel costs and transmission capacities.

In [118–120], a bi-level optimisation model is formulated with the investment game

in the upper level and the market clearing game in the lower level, in order to analyse

the competitive behaviour among individual GENCOs considering non-cooperative

investment game or incomplete information of rival producers in the energy market.

Hierarchical models can not be directly handled by traditional equilibrium prob-

lems due to the mixing of primal and dual variables. Complementarity models are

introduced in [116, 121–125] to cast equilibrium problems using the mixed comple-

mentary problem format. The implementation of a mixed complementary problem is

to firstly formulate an optimisation model for each player, then obtain the first-order

optimality conditions (Karush-Kuhn-Tucker/KKT conditions) for each mathemat-

ical program, and finally combine all those conditions together with the market

clearing conditions, resulting in a (linear or nonlinear) complementarity problem.

In an uncertain context, stochastic equilibrium models can be reformulated from a

standard two-stage stochastic optimization capacity expansion model, as described

in [85].

The scalability of a hierarchical model is a bottleneck for its applications to

long-term/multi-period generation investments in large-scale electricity networks.

Moreover, it is difficult to deal with a mathematical program with equilibrium con-

straints because the feasible region of the program is not necessarily convex or or

even connected. The lower-level problems in a hierarchical problem are often re-

quired to be free from integer variables and to be as simple as possible so that the

mixed complementary problem/mathematical program with equilibrium constraints

can be solved within reasonable time.
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2.2.4 Challenges in the applications of LTGI models

The various types of LTGI models as reviewed in Section 2.2.3 have in common a high

dimensional input space, with considerable uncertainty over both the appropriate

values of inputs and over the relationship between the model structure and the

real world. In real-world applications, it is challenging but valuable to carry out a

comprehensive uncertainty analysis that considers all sources of uncertainty.

There exist studies on modelling some stochastic quantities in LTGI models, such

as short-term and long-term demand uncertainty described by normal distribution

function [17, 18] or a discrete binary Markov chain in [19]. However, uncertainty

in some internal model parameters and uncertainty in the model structure (see

Section 2.3 for more explanations) are usually not considered in the literature but

they will be emphasized in our work.

Another challenge is that the LTGI models are often computationally intensive.

A single model run may take many hours [4, 13] or even many days or weeks with

more detailed modelling of short-term power system operations [21, 97]. Conse-

quently, the number of possible runs of a complex LTGI model is limited, which

makes it difficult to perform a comprehensive UA and SA.

2.3 Sources of uncertainty

The role of risk and uncertainty is of great importance in the LTGI problem. Both

risk and uncertainty are based on lack of certainty in a potential fact, an event,

an outcome or a scenario, etc. Here, a risk refers to a factor that may result in

uncertain financial returns of investment, such as demand, fuel prices and spot

prices. Uncertainty refers to a situation which involves imperfect and/or unknown

information due to limited observability and/or stochastic behaviour, as well as lack

of knowledge.

Inherent uncertainty is involved in projecting revenues (and costs) over the long

lifetimes (20 to 50 years) of a new generation capacity, and thus it influences the

decision-making on investments and energy policies. Therefore, it is necessary to ad-

equately account for uncertainty around the outcomes (e.g., projections of generation
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capacity and system reliability) of a LTGI model related to the real world [126,127].

Three major sources of uncertainty, namely, input uncertainty, structural uncer-

tainty and functional uncertainty, will be taken into account in the LTGI problem.

Other sources of uncertainty, such as observation error are assumed not to contribute

much extra uncertainty.

2.3.1 Input uncertainty

Input uncertainty comes from the model parameters that are inputs to the model

but whose appropriate values are unknown to us. Among these model inputs, there

are some parameters whose values cannot be inferred by statistical methods, such

as future design of energy policy, as this is totally controlled by policymakers. By

contrast, uncertainty in some internal model parameters that represent particular

modelling assumptions may be reduced by learning from historical observations, in

order to move the model closer to the real process or system [128].

Predictions of the future profit of an investment rely on the outcome of random

events (regarding their predictability such as wind speed or generator outages).

These random events are often represented by statistical models, such as modelling

the wind speed at a certain time snapshot as a normally distributed random vari-

able which is characterized by the parameters of mean and variance. It is commonly

assumed in the literature that all of uncertainty in the wind speed has been en-

compassed by a specified probability model. However, there is still uncertainty in

the input parameters and the structure of the probability model regarding its ac-

curacy in representing the real-world wind speed (as will be further discussed in

Sections 2.3.2).

Examples of input uncertainty in the LTGI model mainly include risk factors

ranging from policy risks, technology risks, finance risks to market risks.

Policy risks

Design of future energy policies is unknown to investors. Some administratively

determined values, such as the energy price cap in an energy market have a significant

impact on investment decisions. Uncertainty in carbon prices is largely dominated
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by carbon policies supporting investment in low-carbon generation including the

Carbon Price Support mechanism [129] and the European Emissions Trading Scheme

(EU ETS). The Carbon Price Support is proposed by the GB EMR consultation

with a carbon price floor made up of the price of CO2 from the EU ETS and the

Carbon Price Support rate per ton CO2.

Technology risks

Technology risks, such as uncertainty in future capital costs, construction costs

and decommissioning costs, affect the type of generation capacity to be invested.

In comparison, nuclear and coal power plants are less attractive than CCGT and

OCGT power plants because they have higher capital costs and longer lead time.

Finance risks

Private investors make their investment decisions based on their forecasted prof-

itability of a new investment over a long time horizon, during which there is un-

certainty of a return and a potential for financial loss. Rate of return, expressed

as a proportion of the annual income to the original investment, is one of the fi-

nance risks. Generally, investors would require a higher rate of return for choosing

a generation technology with a higher cost of capital.

An investor’s risk attitude toward finance risks is unknown to other investors

and policymakers. There are three alternative risk preferences – risk aversion (the

preference for a certain outcome over a risky outcome), risk neutrality (indifference

between a certain outcome and a risky outcome), and risk loving (the preference for

a risky outcome over a certain outcome).

Market risks

In an electricity market, investors and policymakers are exposed to electricity price

risks arising from the unknown bidding behaviour of GENCOs, as well as from future

projections on fuel prices and electricity demand that are difficult to predict [13].

Uncertainty in fuel prices is passed on to uncertainty in electricity prices since the

fuel cost is included in the energy offer of GENCOs to the spot market. Due to
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the recent improvement of energy efficiency, economic downturn and the potential

increasing level of demand side response, the demand growth rate has considerable

uncertainty, which contributes to long-term electricity price risks.

2.3.2 Structural uncertainty

Structural uncertainty arises from the fact that the model and the reality are almost

always not the same. More specifically, there may be unknown functional relation-

ships or imperfect science in the model equations or errors in the structure of the

model due to the lack of knowledge of the underlying true system or process. Struc-

tural uncertainty is referred to as model inadequacy or model discrepancy between

the model and the reality; this is expected even with the best values of model pa-

rameters. Structural uncertainty often exists in complex LTGI models and needs to

be calibrated and quantified against the real-world observations.

2.3.3 Functional uncertainty

As mentioned in Section 2.2.4, LTGI models with a high-dimensional input space

are often computationally intensive. A particular issue in high dimensional models

is that while broad knowledge of the model input-output relationship across a range

of credible inputs is required when it comes to carry out computational tasks of

calibration, UA or SA, it is usually only possible to cover sparsely this input space

with model runs. At any untried point (where the full LTGI model has not been run),

the function representing the relationship between the model inputs and outputs

are unknown to us, which forms functional uncertainty. In order to enable a quick

evaluation of the function at any input, a meta-model is often used in replace with

the full model. The meta-model gives an evaluation of a model output at any

untried input point as an approximation to the output evaluated by the full model.

Uncertainty in this approximation (between the meta-model and the full model), in

principle, arises from functional uncertainty.
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2.4 An illustrative example of uncertainty

An example presented here is used to illustrate the three major sources of uncertainty

– input uncertainty, structural uncertainty and functional uncertainty.

Example 1. (The concentration of a chemical3). Suppose the concentration of a

chemical that evolves in time is modeled as e(r, t) satisfying the differential equation,

de(r, t)

dt
= re(r, t), (2.1)

where r is a rate parameter and t is time.

The equation (2.1) above can be written as,

e(r, t) = e0 exp(rt). (2.2)

We wish to learn about the best value of the model parameter r for describing

the real system (i.e., the concentration of a chemical) when some observations are

available. Assuming the initial conditions are e0 = e(r, t = 0) = 1 and a measure-

ment at t = 3.5s, we run the model from t = 0s to t = 5s at five selected values of the

model parameter r. Fig. 2.1 shows the five simulation runs indicated by the colored

lines and the measurement at t = 3.5s is shown with a black dot, with measurement

error given by the error bars.

If the analytic solution to the function e(r, t) as expressed in (2.2) is unknown,

which is common for complex functions, the solution would be generated by numer-

ically solving the differential equation. To answer which values of r produce the

output e(r, t) that is consistent with the observations, we now focus on the function

e(r, t = 3.5) as a function of r only.

Fig. 2.2 presents the five simulation runs (in colored points) and the observation

(in solid black horizontal line) at t = 3.5s. If the analytical model e(r, t = 3.5) =

exp(3.5r) is known, a single value of r would be easily identified if the measurement

error is ignored. However, uncertainty in the observation of e(r, t = 3.5), indicated

by the two dotted black horizontal lines, leads to uncertainty in the inferred values of

3This toy example is adapted from one of Michael Goldstein’s presentations titled “Bayesian

uncertainty analysis for complex systems modelled by computer simulators”.
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Figure 2.1: Concentration of a chemical that evolves in time at different rates.

r, that is, a range (in green) of possible values of r consistent with the measurements,

with all the implausible values of r in red/yellow in Fig. 2.2.

Apart from uncertainty in the model parameter r, structural uncertainty (or

model discrepancy) around the model output e(r) itself is indicated by the red

dashed lines in Fig. 2.2. The consideration of model discrepancy results in more

uncertainty in the estimated value of r, and hence a larger range (in green/yellow)

of r values, with all the implausible values of r in red.

Functional uncertainty at untried input data is indicated by the solid purple

lines, as shown in Fig. 2.3. Without the consideration of model discrepancy, func-

tional uncertainty and measurement uncertainty result in the plausible values of

r in green in Fig. 2.3. Supposing that functional uncertainty is independent from

structural uncertainty, the additive effect of these two sources of uncertainty leads

to the uncertainty range quantified by the blue solid lines. Hence, the range (in

green/yellow) of possible values of r is enlarged, in comparison with that shown in

Fig. 2.2.
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Figure 2.2: Concentration of a chemical as a function of the rate parameter at time 3.5s, accounting

for structural uncertainty and observation errors.
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Figure 2.3: Concentration of a chemical as a function of the rate parameter at time 3.5s, accounting

for structural uncertainty, observation errors, and functional uncertainty.
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2.5 Dealing with uncertainty

For real-world applications of LTGI models such as design of energy policy or de-

termination of investment decisions, it may be necessary to quantify, analyse and

reduce uncertainty in model outputs. General tools for dealing with uncertainty are

calibration, UA and SA. Different assumptions on the characteristics of uncertainty

may provide different implications for policymakers. Therefore, it is important to

describe and analyze uncertainty in a systematical way that reflects the use of the

model for policy purposes. Meanwhile, it is necessary for policymakers to design a

robust energy policy against different sources and assumptions of uncertainty.

2.5.1 Calibration

Calibration or history matching refers to the process of learning from observations

and tuning a model to the real process to best approximate and predict reality.

Calibration is a valuable tool for validating a LTGI model and ensuring the quality

of investment decisions to be delivered by the design of energy policy.

Some calibration work is found on the statistical modelling of fuel prices or elec-

tricity prices based on historical data [73, 74]. However, there is limited work on

calibrating a complex LTGI model. Dan Eager et. al. developed a LTGI model

described in [82] and found a set of model parameters for projecting future genera-

tion capacities. The model is validated by showing graphical comparisons between

the simulated and observed market dynamics (i.e., capacity margin, total installed

capacity, installed capacity for each generator, and average monthly spot energy

prices) since the introduction of the NETA to England and Wales in GB wholesale

electricity market. However, there is no calibration work done regarding tuning

the model parameters to better match with the real world. The modellers in [115]

manually varied some model parameters that potentially have substantial effect on

the price behaviour, gradually achieving a reasonable match between the simulated

results and the historical data of peak spot prices for PJM and ISO-NE. The qual-

ity of calibration is examined through visual graphs and two statistical measures

- the mean absolute error over the mean and the Theil statistics [130]. However,
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the calibration method based on trial-and-error used in [115] is very inefficient for

resource-demanding models. In addition, it is incapable of capturing and quantifying

the structural uncertainty that applies to future projections of model outcomes.

A formal calibration typically involves calibration of a subset of uncertain model

parameters against historical observations of the model output whilst modelling the

discrepancy between the model and the real system. Uncertainty in calibration

parameters whose values are unknown to modellers may be reduced via inference

using statistical methods. In Bayesian approaches, uncertainty in model parameters

is specified ex ante as a probability distribution based on the prior beliefs of the

model user or other experts, and these prior beliefs are updated according to Bayes’

rule (i.e., by identifying values of calibration parameters that are plausible with

respect to historical observations of the model output). A more detailed description

will be given in Section 3.3.4.

In the example presented in Section 2.4, the calibration process involves the

inference of the rate parameter and of the model discrepancy based on the available

observations. To the best of our knowledge, no such formal calibration of LTGI

models has previously been done. If a calibration against historical observations

is not performed, this severely limits the conclusions which can be drawn from

assumptions based models regarding investment decisions, the capacity requirements

and policy design in the real system.

2.5.2 Prediction

Prediction is estimation of model outputs at input configurations that have not been

tested. There is uncertainty about how close the true real-world outcomes will be to

the prediction that is the outputs simulated by the model. As model users, investors

or policymakers should wish to be provided with a plausible range of the possible

model outcomes rather than a single value or scenario. It is also of great value to

quantify uncertainty around a prediction using a probability interval.

Suppose investors or policymakers are determining the combined values of all

decision/control variables that trigger the adequate amount of generation capacity

at low costs. Predictions will be made at the selected settings of control inputs. In
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this situation, uncertainty in the predicted total installed capacity arises from many

sources, particularly from input uncertainty and structural uncertainty.

2.5.3 Uncertainty analysis

Uncertainty analysis focuses on uncertainty quantification and propagation of un-

certainty from model inputs and structure to model outputs. Uncertainty quan-

tification is a process of assessing the uncertainty of variables (e.g., model inputs,

model outputs and observations) that are used in decision-making problems or the

uncertainty of a measurement in experiments. Propagation of uncertainty explores

the whole picture of model predictions while accounting for various sources of un-

certainty in model inputs and structure. Depending on nature of the variable and

the technique we adopt, uncertainty in a variable may be characterized by a (joint)

continuous/discrete probability distribution or a set of quantitative/qualitative sce-

narios.

UA is most relevant when those outputs provide guidance in real-world decision-

making problems, such as using a LTGI model for investigating the uncertainty of

future LOLEs, and further for suggesting the settings of the energy price cap that

has an effect on the range of LOLE. Since there exist various kinds of uncertainties

in the lengthy planning process, the lack of UA will lead to the underestimation the

risks exposing to the investors.

A number of techniques such as MC simulations, scenario planning and Bayesian

statistics can be used for carrying out an UA. In [18], MC simulations are employed

to determine the average value and the highest and lowest limits of confidence inter-

vals for variation of reserve margin and generation total price caused by uncertainty

in annual demand growth rate. However, MC-based UA is particularly challenging

for a high-dimensional energy planning model that is expensive, in time and compu-

tational resources to evaluate at any point of the input space. Scenario planning, as

the simplest and aggregate form of UA, characterizes uncertainty using a small num-

ber (typically three to five) of plausible scenarios (i.e., possible alternative futures),

and more often expresses the resultant model outputs in qualitative terms such as

“high” or “low” than in quantified terms such as probabilities [131]. Compared with
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numerical simulation based UA, scenario planning is relatively easy to implement

and to explain but it is not analytically rigorous as the qualitative terms such as

“plausible” it relies on do not convey clear and precise meaning. Besides, scenario

planning is not comprehensive due to the limited number of scenarios selected that

may not represent the full range of potential futures.

A formal UA based on probability distributions provides the analyst with a com-

prehensive picture, that is, the full range of outcomes giving all extremes, and with

an understanding of the outcomes given a specific setting (a real-life scenario) of in-

put variables. In practice, we can collect a small number of quantitative judgements

from a group of experts, and then fit a proper distribution to those judgements. Use-

ful individual judgements on an uncertain quantity/event include plausible limits,

mean, quantiles (e.g., median and tertiles), and likelihoods using Roulette method

(using the bins in the Roulette grid) [132]. However, a probability distribution is

more difficult for stakeholders in government to understand than scenarios. They

may also be skeptical on the credibility of a probability distribution that is formed

based on many assumptions.

2.5.4 Sensitivity analysis

Sensitivity analysis studies the relationship between a model’s inputs and outputs.

Quantifying the output uncertainty is the role of UA, but there is often interest

in identifying which inputs have the strongest or negligible influence on outputs;

this can be addressed by ranking the sensitivity of model outputs to variation or

uncertainty in model inputs [133]. In addition, one may wish to know how much

of the overall uncertainty in the output of a model or system can be attributed to

uncertainty in particular inputs or groups of inputs, in which case variance-based

methods are widely used for measuring the sensitivity of the output to an input

variable by the amount of variance in the output caused by that input.

In the LTGI problem, there can be many parameters of interest, and investors or

policymakers might not be fully aware of critical parameters that affect uncertainty

in their objectives (e.g., investors’ future profits or power system reliability). There-

fore, sensitivity information is useful in giving decision-makers an idea of uncertainty
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involved with new investments and policy design, and hence implying effective ways

to reduce decision uncertainty by focusing on the most important model inputs.

One measurement of sensitivity is partial derivatives, as expressed as ∂f(x)/∂xi,

which measures the change in output f(x) when a particular input xi was perturbed

slightly from the nominal (base-line) value. This measurement is referred to as local

SA because it is limited to exploring the impact of an infinitesimal change in an

input. When the nominal input values are perturbed slightly, the SA results have

limited value in understanding the consequences of input uncertainty. Besides, local

SA is unable to account for any nonlinearity in the response to xi. Alternatively,

global SA methods are more commonly used.

One simple global SA method, the one-way or one-at-a-time method has been

employed in [13,16,18,20,115,134,135], where each input is perturbed only one at a

time from its nominal value while all others are held constant at their nominal values

for each run of the model, and then the resulting change in output is regarded as a

measure of sensitivity to the varied input. However, the one-way method is incapable

of taking into account interactions among different inputs.

Multi-way SA can identify the combined effects of two or more inputs, through

varying the inputs together rather than individually using a large and highly struc-

tured set of simulator runs [136]. In the one-way and multi-way methods where

the inputs are substantially perturbed, there is a question of determining the per-

turbation or uncertainty range. For example, variations in the inputs are chosen

randomly within the upper and lower range of an input, without accounting for the

relative credibility of these values.

To avoid the arbitrary definition of variations, probabilistic SA is an alternative

approach to multi-way SA that can address interactions and nonlinearities [137,138].

Probabilistic SA emphasizes on the careful and explicit specification of a probability

distribution of model inputs. Therefore, it has the unique ability to describe the

relationship between input uncertainty and output uncertainty.

42



2.5.5 Methods of carrying out calibration, uncertainty anal-

ysis and sensitivity analysis

A conventional way to conduct a formal calibration or a UA/SA is the MC method

of drawing random configurations of inputs from their uncertainty distributions,

running the model for each input configuration to obtain the set of outputs, and

constructing the output distribution (which can in principle be evaluated to any

desired accuracy).

Computationally intensive models associated with large studies tend to have

high-dimensional inputs. The MC-based method may require thousands of (if not

more) individual evaluations in order to avoid sparse coverage of the model input

space. It may be practically impossible for complex models to achieve very dense

coverage of input space even if very large computer resource is available [131]. Even

where a very large number of runs may be possible by acquiring additional comput-

ing resource, the approach adopted in our work allows results to be obtained in a

systematic way with a smaller computing resource.

The Bayesian approach is applied in our work to inferring the unknown val-

ues of some parameters and quantifying the model discrepancy of the LTGI model.

Directly using such a complex computer model for statistical inference produces in-

tractable likelihood functions. There are methods of indirect inference [139], approx-

imate Bayesian computation [140], and likelihood-free Markov chain Monte Carlo

(MCMC) [141] proposed to overcome the computational challenge of intractable

likelihoods in complex computer models. However, for carrying out a comprehen-

sive UA and SA, there still need a large number of computationally expensive model

runs. The underlying idea of resolving the intractable model runs is to use a sim-

pler and more efficient model as an approximation to the original model. Bayesian

emulation is such an approach that introduces a statistical emulator to approximate

the full computer model and to quantify the functional uncertainty in the output of

the model at all points in the input space where it has not been evaluated. In this

way, Bayesian emulation can systematically deal with various sources of uncertainty

(e.g., input uncertainty, structural uncertainty, functional uncertainty) and enable
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very efficient calibration, UA and SA of a complex computer model.

Bayesian emulation has been successfully applied to complex galaxy formation

models [142], climate models [143, 144], infectious disease models [145] and DNA

population dynamics [146], etc. The Bayesian approach adopted in our work is based

on a Gaussian process (GP) emulator, which characterizes uncertainty regarding the

simulator as a GP and uncertainty regarding the inputs and outputs by complete

probability distributions. More theory and technical details of Bayesian emulation

will be presented in Chapter 3.

2.6 Chapter summary

This chapter first gives an overview of electricity market designs in transition for

facilitating the integration of VG, including vertically integrated structure, energy-

only market, scarcity pricing, and capacity mechanisms. Next, the roles that market

participants play in the LTGI problem are explained, followed by the evolution of

system adequacy metrics. Then, the modelling studies on the LTGI problem in the

literature are reviewed.

The computer models and the real world are not the same, due among other

issues to uncertainties in input parameters and discrepancies between the model

structure and the real world. An example was presented to illustrate three major

sources of uncertainty, namely, input uncertainty, structural uncertainty and func-

tional uncertainty. In order to use LTGI models robustly for decision support, it is

necessary to quantify uncertainty in the relationship between model outputs and the

real-world equivalents. In order to systematically and efficiently manage uncertainty

in a complex LTGI model, it is necessary to create an emulator of the full model,

which may be evaluated quickly for any input and which quantifies uncertainty in

the output of the full model at inputs where it has not been run. The statistical

methodology, Bayesian emulation, will be demonstrated in the next chapter.
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Chapter 3

Application of Bayesian

calibration to long-term

generation investment models

This chapter presents methodology for carrying out formal calibration, uncertainty

analysis (UA) and sensitivity analysis (SA) of a computationally intensive long-term

generation investment (LTGI) model (i.e., the simulator) with careful management

of various sources of uncertainty. Calibration links the model with the real world

by learning from historical observations the updated information of some uncertain

model parameters and model discrepancy. UA and SA are powerful tools for making

sense of uncertainty around model inputs and outputs when a LTGI model is used

for real-world analysis.

LTGI models, such as the one proposed in [4, 13] and used as an exemplar in

our work, are often computationally expensive to run. The traditional MC-based

techniques require a very large number of simulator runs that may be impractical to

achieve. In comparison, Bayesian emulation enables very efficient calibration, UA

and SA. A Bayesian emulator approximates the simulator as a Gaussian process

model and quantifies uncertainty in the approximation. A simple example is pre-

sented to illustrate the performance of an emulator. Finally, descriptions are given

on how to carry out validation, calibration, and SA within a Bayesian framework.
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Figure 3.1: Diagram of the Bayesian framework.

3.1 Diagram of the methodology

A highly efficient Bayesian approach described in [133,137,144,147] will be employed

to tackle the computational challenge found when performing calibration, prediction,

UA and SA on complex computer models. Fig. 3.1 shows a diagram of the proposed

Bayesian framework, which is based on a Gaussian process (GP) model (i.e., the

emulator) that is built as an approximation of the simulator using a limited number

of simulation runs (i.e., training data). The traditional MC-based method directly

uses the simulator for model evaluations at untried model inputs. By contrast, the

Bayesian approach uses the emulator for evaluations and only a small number of

simulator evaluations are required for the development of the emulator.

In Section 3.2, a brief description of the simulator under study is provided,

emphasizing uncertain model inputs and outputs that are of interest. The theoretical

foundations of the Bayesian framework are illustrated in Section 3.3.

3.2 The simulator

A brief description of the simulator under study is provided in this section, with

emphasis on the uncertain model inputs and the output of interest. The LTGI

model developed by Eager, Bialek and Hobbs [4, 13] will be used as an exemplar
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to demonstrate the application of the Bayesian approach to a decision-support tool.

The modeling technique of this simulator is based on system dynamics which is most

commonly used in industrial practice particularly in modeling electricity markets

under uncertainty [113]. Whilst this is a specific application, the Bayesian framework

as presented here can be generally applied to models in which uncertainty plays a

key role and where the link between the model and reality is of great importance

and interest to model users. For more discussions, please refer to Section 4.6.

3.2.1 High-level formulation of the simulator

The simulator developed in [4,13] provides projections of installed thermal capacity

and LOLE given a scenario of on-shore and off-shore wind capacities over a long

planning horizon T . The simulator is system dynamics based and it obtains an

investment response as a function of a performance index (e.g, profitability and its

likelihood) instead of using optimality or equilibrium criterion as in optimization

based models. The simulator is stochastic because it considers annual load distri-

bution, generator availability, annual load growth rate, and stochastic fuel prices.

Forward-looking MC simulations are conducted at each decision year to obtain the

performance index of an investment. A full description of the simulator may be

found in [4, 13].

Fig. 3.2 shows the structure and the main inputs and outputs of the simulator.

A high level description of the five main modules within the simulator is provided

in eqs. (3.1a)–(3.1e).

Ft = h1

(

κ, qt
)

(3.1a)

Pmarkup,t = h2

(

NDt, {AGg,t}, θmarkup, uvoll

)

, ∀g ∈ G (3.1b)

[

Pe,t, {Cg,t, y
L
t }

]

= h3

(

CMt, Ft, Pmarkup,t

)

, ∀g ∈ G (3.1c)

[

yBg,t, y
M
g,t, y

D
g,t

]

= h4

(

θV aR, {Pe,τ}, {Cg,τ}, ucone

)

, ∀τ ∈ {t, . . . , t+ τf − 1} (3.1d)

yg,t = h5

(

cg,t−1, y
B
g,t, y

M
g,t, y

D
g,t, RTg,t

)

. (3.1e)

The five modules are described in the following sections.
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Figure 3.2: The model structure of the simulator.

Fuel price module

In (3.1a), h1(·) simulates annual fuel and carbon prices (both in the past and future)

using mean-reverting stochastic processes [13, 148], as expressed as,

dFt = χ(MRt − Ft)dt + vol(Ft)dWt, (3.2)

MRt =
κ

χ

dqt
dt

+ χqt, (3.3)

where Ft is the fuel price at year t, MRt the reference time dependent mean reverting

level, vol(·) characterizes the expected change and the local uncertainty (the year-

to-year volatility) of each fuel type, Wt a standard one-dimentional Wiener process,

qt the DECC central estimate, κ a multiplier, and χ is the speed of mean reversion.

Projected fuel prices depend on the reference long-run fuel price projections,

referring to the DECC projections here. A multiplier κ is used to adjust the central

estimate qt upwards or downwards, which reflects the long-run or global uncertainty

of fuel and carbon prices arising from market changes or political interventions.

Applying a multiplier to the trend of future carbon prices, as shown in Fig. 3.3,

results in different trend levels of carbon prices (in solid and dashed lines) associated
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Figure 3.3: Different trend levels of carbon prices (in solid and dashed black lines) using the central

estimates of carbon prices published by DECC [1] as a reference (in solid black line); The expanding

shaded area (in light grey) reflecting the local uncertainty along the trend level.

with local uncertainty (in shaded areas).

Price markup module

In (3.1b), h2(·) calculates the energy price markup, as shown in the upper graph

in Fig. 3.4. For simplicity, all generators are stacked in merit order and dispatched

whenever they are available. The wholesale energy price model is

Pe,t = SRMCg + Pmarkup,t, (3.4)

where

Pmarkup,t := uvolle
b·CMt . (3.5)

The price markup Pmarkup,t is represented as an exponential function of the ca-

pacity margin. The markup reaches the energy price cap at a capacity margin of

zero. The parameter b is calibrated so that the markup approaches zero at a cut-

in point of capacity margin, denoted as θmarkup. The price markup given as (3.5)

becomes prominent when peaking plants Ng − 1, Ng are on the margin. The price
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Figure 3.4: Upper: Energy prices cleared in merit-order with price markup; Lower: Price markup

functions with different values of θmarkup.

markup can be derived from the joint probability distribution of the capacity margin

CMNg−1 and CMNg . Different assumptions on the value of θmarkup, that is, on the

competitiveness level of the power system, lead to different levels of price markup,

as shown in the lower graph in Fig. 3.4.

Production simulation module

In (3.1c), h3(·) performs the probabilistic production costing method in a nonequi-

librium market settlement. The method performs a convolution of generator outages

with the annual net load (demand minus wind generation) curve NDt and calculates

the energy prices, costs, revenues and LOLE. Since an existing published model is

adopted, discussion about more details on the form of this model is beyond the scope

of this thesis.
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Decision making module

In (3.1d), h4(·) is the module of decision-making under uncertainty. At each decision

year, the investor assesses the distribution of the value of a project Vt based on the

NPV of the first τf years of forecasted profitability of new and existing generation

capacity. To consider the investor’s risk preference, the VaR of the distribution of Vt

is selected according to Pr(Vt ≤ VV aR,t) = θV aR, and then VV aR,t is used for making

investment decisions. The smaller the value of θV aR is, the more risk averse the

investor is assumed, and the lower level of investment would be.

Given the cost estimations, the energy prices and the capacity price if a capacity

market is available, h4(·) calculates the gross margin of per MW of a plant, as

defined as the overall revenue received from the energy and the capacity market

minus its variable costs. We refer to Section III in [13] and Section 8.2.4.1 in [4]

for more details. Then, the module outputs are annual decisions on the investment

in new thermal generators and the mothballing/de-mothballing of existing thermal

generators.

Capacity dynamics module

The last function h5(·) in (3.1e) simulates capacity dynamics that update the gener-

ation capacity portfolio at each decision year by adding the newly installed and/or

demothballed capacity and removing the mothballed and/or retired capacity. The

module inputs include exogenous variables such as plant life time and thermal plant

retirements, and endogenous variables such as new builds and new mothballed/de-

mothballed capacity. The module outputs are the installed thermal capacity of each

technology and system reliability index (e.g., LOLE) at the decision year.

Capacity mechanisms module

Capacity mechanisms h6(·) may refer to a forward capacity market, capacity pay-

ment, or a reliability option contract. A capacity demand curve derived by DECC

and announced in advance of each auction is considered here. Fig. 3.5 shows a rep-

resentation of supply and demand in the UK capacity market where the intersection

of the capacity demand curve and the supply curve sets capacity prices [35]. A ca-
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Figure 3.5: Capacity market supply and demand curve.

pacity balance target represents the estimated optimal level of installed capacity in

the system. The capacity price at capacity balance target is determined by the net

CONE that represents the cheapest cost of a new entrant peaking plant minus its

expected annual energy market revenue [23]. In this model of a capacity market, the

net CONE, the slope of the demand curve and the capacity price cap are the main

design parameters [20], among which the key uncertainty and complexity driving

capacity pricing comes from the net CONE. The net CONE is administratively de-

termined in the capacity market (like VOLL). However, the true value of net CONE

highly uncertain due to the uncertain cost structure bid by the market participants

and estimates of revenues from energy market [23].

3.2.2 Model inputs and outputs

Model inputs

In the decision-making module (3.1d) as described in Section 3.2.1, two common

electricity market designs, namely the energy-only market design and the forward

capacity market design will be studied. There are too many model parameters to
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explore all of them in a reasonable execution time. The inputs of interest here are

the source of uncertainty that can result in a substantially different trend in the long-

run investment decisions. SA helps identify the influential parameters, and hence

can be used for screening out unimportant variables in high-dimensional problems

before a full sensitivity analysis is performed. The selection of model inputs in our

work is based on the one-way SA results obtained from [4] as well as our research

aims of exploring the impacts of market designs.

Among the modules described in Section 3.2.1, six model inputs are identified

and categorized into three types from policymakers’ perspective: control variables

u := {ucone, uvoll, uco2} that are determined by the capacity market design, energy

price cap policy and the carbon policy, respectively; calibration parameters θ :=

{θmarkup, θV aR} of which unknown values are expected to be learned using historical

observations of the model output [133], as further explained in Section 3.3.4; and

a forcing input ω := ωgas reflecting the global uncertainty (uncertainty in the long-

term trend) of future gas prices. Two inputs (calibration parameters) are used for

model calibration, five for forecasting under an energy-only market design and six

for forecasting under a capacity market design.

We cannot calibrate the control inputs {ucone, uvoll, uco2}, since they will be ad-

ministratively determined in the future, nor can we calibrate the forcing input ωgas

as the future long-term trend of gas prices might not be independent from the his-

torical trend due to market changes. Calibration parameters are those representing

model assumptions such as the market competitiveness and the investors’ risk pref-

erence, and it should be reasonable to assume that these parameters do not change

over time. So the calibration parameters are the only things that we can vary to

improve the accuracy of the model, i.e., to match it more closely to the real-world.

The above input categorization is derived from a policymaker’s perspective; an

investor might have a different categorization of inputs. For example, θV aR will be

a control input since the investor has the freedom of choosing a risk preference,

and {ucone, uvoll, uco2} will be forcing inputs as these policy-related parameters are

uncertain to the investor. Apart from the six model inputs, other model parameters

that make the simulator stochastic such as fuel price volatility vol(·) and the variance
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of the normally distributed demand growth rate are not assumed to have a long-

run effect on investment decisions. The selected model inputs are assumed to be

constant over the planning horizon. This approach allows direct exploration of the

relationship between one parameter (used to represent a model input) and model

outputs. Similar practices can be found in [16,18,20,135]. The dimensionality of the

input space can be extended if independent values are needed for an input variable

at each year or at each stage (e.g., every five years). Also more model parameters

(e.g., the mean or the variability of demand growth rates) can be included in the

input space if they are deemed to contribute substantial additional uncertainty.

Model outputs

One of the outputs of interest is the time series of annually installed thermal gener-

ation capacity yG = {yGt }, ∀t ∈ 1 . . .T , where yGt =
∑

g∈G

yg,t. The historical observa-

tions of operational thermal capacities are available, which allows for calibration in

the history matching procedure. The planning time horizon of interest T is either

the past (t ∈ P), for which observations exist, or the future (t ∈ F), for which a

projection is made.

A second output of interest is the time series of annual LOLE - loss-of-load ex-

pectation over the future planning horizon yL := {yLt }, ∀t ∈ 1 . . .F . A third output

of interest is the maximum annual LOLE, as expressed as y := max(yLt ), ∀t ∈ F ,

because we are interested in determining energy policy scenarios within which the

maximum value in annual LOLEs over the future planning horizon does not ex-

ceed, at any time, a given threshold (e.g. 3 hours per year). After the invest-

ment/mothballing/demothballing decisions are made, the LOLE is computed as

the number of hours in a year Nt multiplying by the snapshot LOLP, that is, the

probability that net load (load minus wind generation) is not met by supply from

conventional generators at a randomly chosen point in any hour within the year, as

expressed as,

yLt = Nt × Pr(NDt > Gt), (3.6)

where Pr(·) is the estimate of the LOLP, estimated using convolution, as described

in [4,13]. Given a specific MC sample of annual demand growth rate, there is a net
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load distribution NDt and hence a solution to an estimate of LOLE at each decision

year t according to (3.6). With 100 MC samples of annual demand growth rate at

year t, there will be 100 values of yLt . The expected (in the mathematical sense)

value of yLt is chosen as the LOLE at year t, denoted as yLt .

The simulator is stochastic because the quantities including future fuel prices

and annual demand growth rate are modelled as random variables. However, the

expected value of MC simulated annual LOLEs, yLt , is a deterministic function of the

six selected model inputs if the number of MC simulations is sufficiently large. The

simulator returns the same outputs yGt , y
L
t if repeatedly executed on the same set of

inputs. The statistical metric - LOLE can not be directly observed in the history.

The loss-of-load events are rare and the observed loss-of-load time durations in many

historical years were zero in the GB power system. In order to properly conduct

calibration over P, the time series of historical thermal capacity yG := {yGt }, ∀t ∈ P

are chosen to calibrate against as historical observations are readily available. Given

a set of model inputs x := {u, θ, ω} of NI elements, the simulator output is {yG, yL}.

In this way, the simulator can be described as a deterministic function, f(·),

[yG, yL] = f(x). (3.7)

3.3 Bayesian Approach

In this section, calibration, UA and SA within a Bayesian framework are introduced

as ways of dealing with uncertainty in a LTGI simulator. The Bayesian approach

is based on a very efficient emulator that is built on top of the simulator as an

approximation and estimates the uncertainty in this approximation.

3.3.1 Introduction to the Bayesian approach

As presented in Section 3.2, the real-world problem of generation investments has

been modelled as a simulator that is sophisticated and computationally expensive,

particularly when there are a large number of stochastic variables taken into ac-

count [4,82,97] (see Section 4.1.3 for details). Variation or uncertainty in the input

values of x propagates into output uncertainty, resulting in a range of projections of
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generation capacities and LOLEs. It is important to manage uncertainty in order

to provide model users (e.g., policymakers and investors) with the whole picture of

model outputs. A sufficient management of uncertainty ensures the proper appli-

cations of LTGI models, such as probabilistic predictions of generation projections

and robust design of energy policy. The computational complexity of the simulator

makes it difficult to perform enough runs to get a dense coverage of the input space

and therefore it is impractical to carry out a comprehensive UA and SA.

An alternative is to build a simplified model (a metamodel) as an approxima-

tion to the simulator behaviour in order to enable efficient prediction, UA and SA.

One example in the area of energy modeling is the use of a non-Bayesian statistical

method – multivariate adaptive regression splines, in combination with the LP-based

bounding method in representing the input-output relationship of an integrated

planning model [149]. Like Bayesian emulation, multivariate adaptive regression

splines provides policy analysts a direct view of the multidimensional surface (re-

sponse surface) of the model as a function of selected inputs. Uncertainty in the

response arising from input assumptions is characterized in the form of bounds by

the bounding method using multivariate adaptive regression splines, as opposed to

by the probability distribution using Bayesian emulation. Bayesian emulation is

more general than the metamodelling approach adopted in [149]. Firstly, the ap-

proach of multivariate adaptive regression splines is mainly applicable to linear or

nonlinear convex optimization models, because the algorithm is heuristic so it does

not guarantee optimal parameter estimates when solving a nonconvex optimization

problem that may have many local, non-optimal minima. The bounding method

proposed in [149] uses mathematical properties of linear programs, and so it cannot

be applied to some types of power system planning models, such as those based

on system dynamics, mixed integer programming and stochastic programming as

reviewed in Section 2.2.3. In addition, Bayesian emulation allows for an explicit

incorporation of prior information and consideration of structural and functional

uncertainty that are failed to consider in [149].

For the purpose of exploring uncertainty regarding the model output propa-

gated from all major sources of uncertainty, namely, input uncertainty, structural
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uncertainty and numerical uncertainty as explained in Section 2.3, Bayesian emu-

lation is employed to enable very efficient calibration, predictions [126], UA [127]

and probabilistic SA [137]. Bayesian emulation is based on a statistical meta-model

(the emulator) that is built to approximate the LTGI model and to quantify the

uncertainty in the approximation. Within the Bayesian framework, all sources of

uncertainty are quantified through probabilities [133].

Bayesian statistics takes a much broader definition of probability than frequen-

tists. The frequentist statistics defines the probability as the limit of the frequency

of the trials when an event is repeated for a large number of times [133]. The uncer-

tainty in the repeatable event, called aleatory uncertainty, arises from its intrinsic

randomness and unpredictability [133]. Examples of aleatory uncertainty include

the outcomes of tossing dice and getting a full house in poker [150]. However, most

of the uncertain quantities of our interest, such as the population of the city of

London in year 1900, are not repeatable. This kind of non-repeatable uncertainty,

named as epistemic uncertainty [133], is due to our lack of knowledge or data and

in principle it might be reduced by gathering more information (e.g., referring to a

reference book or historical data). To encompass epistemic uncertainty, in Bayesian

statistics, probability is interpreted as the degree of belief, which is sometimes re-

ferred to as personal probability or subjective probability. Hence, uncertainty in

some internal model parameters which is categorized into epistemic uncertainty can

be managed by Bayesian approaches.

A fully Bayesian approach based on Gaussian Processes (GPs) is employed in

our work, in the sense that the (prior and posterior) beliefs about model inputs, the

model structure, and the model outputs of interest are all treated as uncertain and

described through probability distributions. The prior distribution formulates our

prior beliefs about the value of some parameters that are uncertain before we observe

the data. The prior distribution can often be suggested by experts. The posterior

distribution specifies our updated beliefs about the parameters after we observe the

data. The posterior is achieved according to the Bayes’ rule, which combines the

prior with the observed data. A Bayesian emulator based on a GP gives a parametric

representation between the (joint) probability distribution of model inputs and that
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of model outputs. That is, a complete probability distribution instead of moments

(e.g., mean, variance, skewness) or scenarios are used to characterize model outputs.

In the existing literature, a small number of scenarios are usually used for mod-

elling input uncertainty in LTGI models. In scenario-based approaches, the results

from predictions, UA and SA largely depend on the selected scenarios. Therefore,

the choice of scenarios needs to be representative and qualitative. A simple tech-

nique is to choose the high, medium and low levels of a relevant quantity based

on experience or modelling analysis. Some advanced scenario sampling techniques,

such as importance sampling and scenario reduction [151, 152] can be used to limit

the number of selected scenarios while preserving as much statistical information as

possible. However, these scenarios levels will neither be exhaustive nor cover cred-

ible worst cases extensively, as opposed to a probability distribution. In addition,

even without explicit probability judgments, choices of scenarios include implicit

probability judgments in terms of what is credible. Comparing a probability distri-

bution with scenarios, model results may well be less sensitive to precise choice of

probability judgments than to precise choice of a small number of scenarios.

The aim of Bayesian emulation is to evaluate the function (simulator) f given

in (3.7) at a small number of carefully configured input points, and to approximate

this function as accurately as possible with a statistical representation (emulator)

f̃ . The emulator is computationally less demanding to evaluate than the simulator.

The emulator encodes our uncertainty in the value of the function f(x) where it

has not been evaluated. That is, the emulator forms a probability distribution over

the simulator and for the simulator outputs at new test points. This uncertainty

information is useful in making more robust predictions on new test points.

The Bayesian approach is a two-stage approach, involving emulation of the sim-

ulator’s response in the first stage and calibration and UA/SA using the emulator in

the second stage. The application of Bayesian emulation to the LTGI problem seeks

to estimate the relative credibility of different future system outcomes of interest

(e.g., investment projections or system adequacy) in a quantitative manner.
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3.3.2 Emulation using a Gaussian process

A deterministic simulator is represented by the function f(·) in (3.7), with the

simulator inputs comprising the function’s argument and the simulator output(s)

comprising the function value. f(·) is treated as an uncertain function, as the value

of f(x) for any value of x is unknown until the simulator is run at x. In the

Bayesian approach, our prior uncertainty on the function f(·) is modelled with a

GP f̃(·) = GP(·, ·), with mean function E[f(x)|β] = m(x) and covariance function

Cov[f(x), f(x′)|λ, γ] = λ−1c(x, x′) [133], so that,

f(x)|β, λ, γ ∼ f̃(x) = GP

(

m(x); β, λ−1c(x, x′); γ

)

, x, x′ ∈ X , (3.8)

where x, x′ are any two points over the standardised input space X ; m(x); β denotes

that m(x) has parameters of a vector of regression coefficients β if a regression

function is assumed; λ is a vector of unknown scale hyperparameters; c(x, x′) is the

correlation function of parameters γ; γ is a diagonal matrix of NI positive correlation

hyperparameters γ := {γ1, . . . , γNI
} for each input dimension; and c(x, x′) provides

spatial correlation across X using a positive-definite function such that c(x, x) =

1, ∀x.

Definition: f̃(x) is a GP if for any finite subset of input data x(1), . . . , x(m) ⊂ X ,

the marginal distribution over that finite subset of random variables f̃(x(1)), . . . , f̃(x(m))

has a multivariate Gaussian distribution,
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According to the definition, a GP is a statistical distribution over functions with

a continuous domain. This means that at any input point where the simulator is

not evaluated, uncertainty around the output evaluated by the emulator is modelled

as a one-dimensional Gaussian distribution (which is the marginal distribution at

that point) conditional on the emulator parameters.

As discussed in 3.2.2, both the input space X and the output space T are a

space of vectors in the simulator under study. To deal with a vector output, one

simplified approach is to consider the time index as a new input to the model and
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use a univariate emulator with a stationary, separable covariance structure. The

covariance structure is separable in input x and time t, so that

Cov[f(x, t), f(x′, t′)] = Cov[f(x), f(x′)] Cov[f(t), f(t′)], (3.9)

where the covariance function Cov[f(t), f(t′)] depends on planning years t, t′ and

some additional hyperparameters.

By assuming a stationary and separable covariance structure, the computational

demand is alleviated as the dimension of the covariance matrices to be inverted is

reduced [153]. However, a separable covariance structure is lack of flexibility in ac-

counting for interactions between different types of correlations and it implies the

conditional independence of outputs [147,153]. A multivariate GP with nonseparable

covariance functions is generally the best option in general multi-output problems,

yet this option may make it infeasible to solve large-scale realistic problems. In our

work, a very general dimension-reducing technique, principal component analysis as

described in [147], is adopted for defining a new, orthogonal basis for a set of mul-

tivariate data. In the new representation, the outputs are transformed and treated

as independent, using many univariate (single-output) emulators. In this way, the

approach of emulating an univariate output described in [133] can be generalized

for emulating multivariate outputs.

The above GP in (3.8) specifies our prior beliefs about the properties of the

unknown function f(·) we are modelling. The forms of the prior mean m(x) and

covariance function λ−1c(x, x′) in a univariate GP used here are given by,

m(x) = 0,

λ−1c(x, x′) = λ−1

NI
∏

i

γ
4(xi−x′

i)
2

i

= λ−1 exp(−
I

∑

i=1

(xi − x′
i)
2ρi)

(3.10)

where the index i denotes the i-th element of the input vector x, and ρi := −4 ln γi

is the spatial correlation parameter between the simulation output and the input

parameter i.

The prior mean of the GP model is zero because the output is standardised and

represented via principal components (see Section 3.3.2), so that the transformed
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output in a new representation can be modelled with a mean of 0 and a marginal

variance close to 1. Gamma prior distribution Γ(5, 5) is specified for the marginal

precision λ, and independent Beta prior distributions Be(1, 0.1) are assigned to the

spatial dependence parameters γi. The Gamma prior for λ is chosen so that the

marginal variance for each GP process is close to 1 with standardised simulator

outputs. The Beta prior for γi gives substantial prior mass near 1, which makes the

correlation parameter ρi close to 0; this reflects our prior assumption that the output

has a low dependence on each input parameter. The justification for choosing these

priors can also be found in [147].

Given the prior GP model (3.10), the following three steps are taken to develop

the emulator:

Step 1: Defining the standardised input space of interest through prior knowledge

of these parameters; and selecting a small set of well designed input configurations,

known as design points, D := [x(1), x(2), . . . , x(d)] of d elements.

Step 2: Running the simulator f(·) at each of these design points, and obtaining

the simulator output, f(D) := (f(x(1)), f(x(2)), . . . , f(x(d)))T of d elements.

Step 3: Fitting an emulator by combining the training data (D, f(D)) with the

prior GP model given in (3.8).

In step 3, before fitting an emulator, the input data are normalised to the range

[0,1] by subtracting the mean from the data and dividing by the range of the data;

and the output data are standardised by subtracting out the mean and dividing by

the standard deviation of the data. The prior GP model is updated in the presence

of training data by means of a likelihood function, that relates our prior assumptions

of hyperparameters to training data based on Bayesian inference, as explained later

in Section 3.3.2. This leads to an updated distribution (i.e., a posterior GP model)

that can be used, for example, for predicting new test points. In particular, for

any point x′, the posterior distribution of the vector output [f(x′)|D, f(D), λ, γ] is

a multivariate Gaussian distribution according to the definition of GP (for more

details on the estimation of {λ, γ} via an MCMC scheme, we refer to [154]).

Validation is required to ensure that an emulator is sufficiently accurate. We

expect a good enough estimate given the training data, and that the uncertainty

61



assessment associated with predictions of function values are reasonable. By replac-

ing the simulator with the emulator, we are able to proceed with Bayesian inference

to calibrate the emulator and to carry out MC simulations for UA and SA. This

means that computational tasks such as calibration, UA and SA can be carried out

efficiently based on the emulator.

Design

Observing runs of the simulator (i.e., the training data) is the first step to build

an emulator, as they are used for learning and estimating hyperparameters of the

emulator. The set of points in the space of simulator inputs at which the simulator

is run is called the design points. Good input configurations to run the simulator at

are important for training the emulator in order to get better results.

As suggested by experts, good design points must be spread over the plausible

ranges. Given a 6-dimensional input space, for instance, every possible combination

of an extreme low (i.e., 0.005-quantile of its prior distribution), medium (i.e., 0.5-

quantile of its prior distribution) and an extreme high (i.e., 0.995-quantile of its

prior distribution) value for each input might be tried, resulting in 36 = 729 runs

of the simulator which can go beyond our computational ability when each model

run takes several hours or days. A major concern with this design is that even the

36 combinations of the 6 inputs would give a poor coverage across the whole prior

parameter space because the design gives much more extreme points for inputs at

which we are less likely to predict. However, a uniform coverage of the input space

is needed by the emulator in order to predict well for a realistic range of inputs.

To reduce the number of input configurations while ensuring reasonable space-

filling properties, a maximin Latin hypercube design is employed here. In a Latin

hypercube, there are as many equally distributed levels of each factor (i.e., each

input variable) as the number of needed or desired runs in the design, which is also

one benefit of this design [155]. Alternatives to Latin hypercubes in experimental

designs for computer experiments include orthogonal arrays, Hammersley designs

and a combination of different designs [156,157]. Latin hypercube is chosen because

it is simple to implement and is flexible enough to provide data capable of cover small
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and large design spaces reasonably well compared to other designs [157]. To get

improved space-filling properties, the maximin Latin hypercube design maximises

the minimum distance between the design points, subject to that the levels of all

factors are evenly spaced from the lower bound to the upper bound [158]. This

maximin design can be done by generating a random Latin hypercube and then

permuting the entries in each column such that the maximin criteria is satisfied.

However, in practice, there is no guarantee of obtaining a globally optimal design

when the exhaustive search is not feasible.

To proceed with the Latin hypercube design, one must decide the number of

sample points to use. There is no general rule of thumb regarding the relationship

between the sample size and the number of inputs because it really depends on the

problem. Validation is necessary to demonstrate whether or not the emulator is a

good approximation to the simulator (see Section 3.3.3 for more detail).

Dimension Reduction

As described in Section 3.2.2, the simulator output of interest y := f(x) is a vector

of T elements. To cope with the high-dimensional model output space, principal

components analysis (PCA), described in [159] is used to project the high dimen-

sional output data into a new lower dimensional representation of the data that

contains most of the variance in the data with minimal loss of information. The

principal component basis vectors Kf = [k1, . . . , kpf ] are are an uncorrelated or-

thogonal basis set. They can be obtained via singular value decomposition of the

standardised simulation output matrix f(D). Each basis vector is scaled so that the

output of νp(x) has a mean of 0 and a marginal variance close to 1.

Based on PCA, the T -dimensional simulator output f(x) is modelled using a

pf -dimensional basis representation [147]:

f(x) ∼

pf
∑

p=1

kpνp(x), p = 1, . . . , pf , (3.11)

where νp(x) are mean 0 independent GP models as formulated in (3.8) with their

priors given in (3.10).

The basis vector maps the data vector from an original space of T variables
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which are possibly correlated to a new space of pf variables which are uncorrelated

over the dataset. Therefore, the problem of building an emulator that maps [0, 1]NI

to R
T is reduced to building pf independent, univariate GP models for each νp(x).

Bayesian inference

Bayesian inference is the basic technique for developing and utilizing an emulator.

Bayes’ theorem is used in Bayesian inference in order to provide the posterior prob-

ability distribution of the model parameters rather than so-called point estimates.

Bayes’ theorem is written as,

P (θ|D) =
P (θ)P (D|θ)

P (D)
, (3.12)

where P (θ|D) is the posterior probability density of θ conditional on available data,

P (θ) is the prior probability density of parameter θ, P (D|θ) describes the likelihood

- the probability density of observing the data D given the parameter value θ, and

the denominator P (D) is the evidence or marginal likelihood - the total probability

of the observed data. The probability P (D) can be simply viewed as a normalizing

constant, and hence Bayes’ theorem can be expressed as,

P (θ|D) ∝ P (θ)P (D|θ), (3.13)

that is, the posterior probability is proportional to the prior probability times the

likelihood.

For the sake of illustrating Bayesian inference, an example of inference on a

binomial parameter is presented here; this example is adapted from the example

presented in [160].

Example 2. (Inference on a binomial parameter). Suppose we have been given

data M consisting of a series of m coin flips which contain r positive trials. The

data were assumed to be generated by a sequence of independent draws from a

Bernoulli distribution with parameter θb, which is the probability model of flipping

Heads. Let Mi = 1 if flip i was Heads, and Mi = 0 otherwise. Let mH =
∑m

i=1Mi

be the number of heads in m tosses. Then, the likelihood model is P (M |θb) =

θmH

b (1 − θb)
m−mH . Suppose that prior knowledge about θ is described by a Beta
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Figure 3.6: Prior and posterior density functions of the parameter θb in the probability model of

flipping Heads.

distribution Be(θb|αb, βb), so that P (θb|αb, βb) ∝ θαb−1
b (1 − θb)

βb−1. By varying αb

and βb, a wide range of possible prior beliefs of θb can be obtained.

Applying Bayes’ theorem 3.18 gives the posterior density of θb as the Beta dis-

tribution Be(θb|mH + αb, m−mH + βb),

P (θb|mH , m, αb, βb) ∝ θmH

b (1− θb)
m−mHθαb−1

b (1− θb)
βb−1)

∝ θmH+αb−1
b (1− θb)

m−mH+βb−1 (3.14)

Suppose available information on the parameter θb in the probability model of

flipping Heads is described by a Beta distribution Be(θb|10, 10), so that it is judged

to be equally likely that the coin flip would be Heads in 20 coin tosses. A random

trial of size 11 is conducted, where only 5 flips were Heads. Using the results above,

the corresponding posterior distribution is then Be(θb|15, 16). Fig. 3.6 plots the prior

and posterior densities of θb. It can be seen from Fig. 3.6 that the initial uncertainty

in the value of θ represented by the prior density plot (in red) is significantly reduced

by the data, resulting in the posterior density plot (in blue).

Assume a more informative prior, such as a Be(θb|100, 100) distribution of θb.

Given the same 11 coin tosses, the corresponding posterior distribution, Be(θb|105, 106)

(in green line in Fig. 3.6, is very different from Be(θb|15, 16). With the same data

set available, the difference in the resultant posterior distribution in the two case
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Figure 3.7: The emulator of the concentration function of a chemical e(r, t = 3.5) developed by

using 3 training data.

lies in that in the second case the prior is stronger so the data has less effect on it.

When there is less data, the posterior becomes more influenced by the prior.

An illustrative example of the emulator

Once an emulator is built, it can be used to make predictions at new input points.

Below is an example to illustrate that the emulator quantifies the uncertainty in

the output where the simulator is not evaluated, and the quality of the emulator is

affected by the number of training data.

Example 1. (The concentration of a chemical, continued). The toy example

given in Section 2.4 Chapter 2 is used here to explain how the emulator works as an

approximation of the simulator.

Three emulators are respectively developed for approximating the f unction

e(r) = exp(3.5r) over r ∈ [0.0.6] using the three, four and five function evalua-

tions (e.g., training data) given by the blue circles, as shown in figs. 3.7–3.9. In each

of the three figures, the purple line gives the true function e(r), the red line gives

the posterior mean GP estimate, and the black lines quantify uncertainty bounds

of the GP emulator, namely, 5th and 95th percentiles of the emulator output, given

the available training data.
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Figure 3.8: The emulator of the concentration function of a chemical e(r, t = 3.5) developed by

using 4 training data.
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Figure 3.9: The emulator of the concentration function of a chemical e(r, t = 3.5) developed by

using 5 training data.
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It is clearly seen that the emulator reproduces the training data at the design

points with no approximation error. The black lines are formed by draws from

the emulator (the posterior GP) at a large number of selected values of the input

parameter r, integrating (by sampling from the posterior distributions of) the hy-

perparameters of the emulator. A comparison made among the three figures reveals

that the credible interval narrows, that is, the accuracy of the emulator can be im-

proved with an increasing number of training data. In Fig. 3.8, the purple line plots

the analytical expression of the model e(r, t = 3.5) = exp(3.5r).

Note that in Fig. 3.8 at the rate parameter region of 0.53 − 0.6, the simulator

(the purple line) rises beyond the credible interval quantified by the emulator. This

is because that parameter region is beyond the range of training data. An emulator,

like any statistical model, is not guaranteed to fit anywhere in the input space. In

the region of the input space where there are no training data, the fit of the emulator

will depend heavily on the priors and the model assumptions chosen, and these may

not be reflective of reality. Hence, it is important to carefully select the design points

at which the model is evaluated and to do validation checks on an emulator.

3.3.3 Validation of an emulator

The emulator exactly reproduces the training data because it has been fitted using

that data. Hence, the training data cannot be used for validation. The aim of

validation is to test the ability of the emulator to predict at untried input points.

Our validation diagnostics are based on comparisons between emulator outputs

and simulator runs for a new data, called as test points. The procedure of validating

a GP emulator is described as follows.

Step 1: Select a small set of well designed input configurations from the input

space, known as validation sample designs, V := [x∗(1), x∗(2), . . . , x∗(Nv)] of Nv ele-

ments using an optimised Latin hypercube design procedure. When the simulator

is slow to run, it is necessary to keep the size of the validation sample as small as

possible, although it might not be a good thing because ideally there would be a

large validation sample.

Step 2: Run the simulator at each of the test points to produce the output vector
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f(V ) := (f(x∗(1)), f(x∗(2)), . . . , f(x∗(Nv)))T .

Step 3: Evaluate the emulator’s predictions for f̃(V ) at the test points and

obtaining the means, variances, covariances and 95% credibility intervals for the

purposes of our diagnostics.

Step 4: Apply validation diagnostics as an indicator of a validation failure.

A number of validation diagnostics are provided in [161], including the Maha-

lanobis distance, the pivoted Cholesky decomposition, eigen decomposition, and

graphical methods such as credible interval diagnostic (plots of credible intervals of

the emulator predictions against the simulator predictions), plots of the individual

errors against the emulator predictions, plots of the errors against the index, and

plots of error against inputs.

The main diagnostic used in our work is credible interval diagnostic, which plots

the predicted values by the emulator with 90% or 99.8% credibility intervals, against

the simulator outputs at each validation point. The 90% credible interval is quan-

tified by 5th and 95th percentiles of the emulator output, and the 99.8% credible

interval is quantified by 0.01th and 99.9th percentiles of the emulator output. It is

expected to see approximately 90% of simulator outputs lie within the 90% credible

interval; this is an approximate proportion due to the randomness of the emula-

tor output Having some simulator outputs falling outside of the 99.9% credibility

intervals of of the emulator outputs is a clear evidence of failure. If there are no

indications of conflict across such diagnostics within the test set that has been used,

we then have confidence to say that the emulator represents the simulator accu-

rately. A second diagnostic is to plot the standardised errors (ratio of residual to

mean of simulation output) against the index (the planning year), as will be shown

in Section 3.3.3. A third diagnostic is to calculate the root mean squared errors of

the predictions, which is a widely used indicator of accuracy in computer experi-

ments [156].

3.3.4 Bayesian calibration

The goal of model calibration here is to identify plausible values of calibration

parameters whilst simultaneously inferring the model discrepancy using physical
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observations of the output over the time period P. Among the inputs x := {u, θ, ω}

described in Section 3.2.2, {u, ω} are already known historically. The calibration

parameters θ are assumed to have unknown best values due to our incomplete knowl-

edge of the real-world. If the simulator were run with these best values, it would

reproduce the observations plus a model discrepancy term δ plus observation errors

if any. With the emulator f̃(·) as an approximation of the simulator, the relationship

between the observations, the model discrepancy and the emulator at the best value

of θ can be written as [127],

yobs = f̃(u, θ, ω) + δ + ǫ, (3.15)

where yobs := {yobs,1, . . . , yobs,NP
} is the single time series of historical thermal ca-

pacity over the past planning horizon P.

The model discrepancy δ quantifies the mismatch between the model and the

observations at the best setting for the calibration parameter θ. The mismatch

may arise from inadequacies in the simulator, such as in the model equations, model

structure or logic [127]. δ is modelled by a linear combination of basis functions [162]:

δ =

pδ
∑

j=1

djϑj , (3.16)

where dj ’s are basis functions; and the weights ϑj ’s are modelled as independent GP

priors over x.

Here the basis functions are independent Normal kernels that are separated along

the t direction; this modelling technique is driven by the expectation that the dis-

crepancies, if they exist, should have a strong time persistence. The number of basis

functions and the kernel width (or the standard deviation of the kernel) are often

specified by the model users; they are chosen so that the kernels of the discrepancy

are well separated along the time axis. Therefore, their specification depends on the

application (see Section 4.2).

The weights of the discrepancy kernels are modelled as independent mean 0 GP

priors,

ϑj |γϑj, λϑj ∼ GP(0, λ−1
ϑj c(x, x

′); γϑj), j = 1, . . . , pδ (3.17)

s where the correlation function c(x, x′) is a function of parameters γϑ := {γϑj}, j =
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1, . . . , pδ, and independent beta priors Be(1, 0.1) are assumed for γϑ and gamma pri-

ors Γ(1, 0.0001) are for λϑ := {λϑj}. The beta priors for the correlation parameters

γϑ assume low dependence between the discrepancy and each input parameter. The

gamma priors for the precision parameters λϑ are rather uninformative, which leads

to a very small model discrepancy when the historical observations are uninforma-

tive, as explained in [147].

To find plausible values for the calibration parameters, θ, alongside inferring the

model discrepancy, first suppose that the prior knowledge of the calibration parame-

ters, the discrepancy parameters λϑ, γϑ and the emulator parameters λp and γp is de-

scribed by the joint prior distribution P (θ, λ, γ), where λ := {λp, λϑ}, γ := {γp, γϑ}.

This prior distribution is updated using the observations and the set of training

runs obtained from the simulator. This updating is the so-called Bayesian inference

(described in Section 3.3.2), implemented according to Bayes’ theorem [127]:

P (θ, λ, γ|yobs, f(D)) ∝ P (yobs, f(D)|θ, λ, γ)P (θ, λ, γ), (3.18)

where the left hand term of (3.18) is the posterior distribution of the calibration

parameters of interest and P (yobs, f(D)|θ, λ, γ) is the joint distribution of the ob-

served data and the training runs f(D), conditional on these calibration parameters.

The marginal posterior distribution for each of θ, λ and γ can be obtained through

integration over the other parameters.

For more discussions and technical details regarding this Bayesian calibration

approach see [127, 162].

3.3.5 Variance-based sensitivity analysis

Calibration helps reduce input uncertainty as described in the last subsection, while

the output uncertainty can be reduced most efficiently if those inputs that influence

the output most strongly are focused on. SA provides such a tool of exploring how

much of the total output uncertainty is attributed to uncertainty in a particular

input or a group of inputs, and hence identifying which input parameters are the

most influential to the output variations.

SA takes various forms of studying the relationship between a simulator’s in-
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puts and outputs, such as variance decompositions, partial derivatives in local SA

(see Section 3.3.5 for more details) and variance decompositions in variance-based

SA. The variance-based SA will be used in our sensitivity analysis for two main

reasons. Firstly, the variance-based SA, as a class of probabilistic SA, quantifies

the input and output uncertainties as probability distributions, which is consistent

with the uncertainty modelling in the GP-based Bayesian approach. Secondly, the

variance-based SA is an attractive global SA because it explores the full range of

the input space and accounts for nonlinear responses and interactions. To densely

cover the whole input space, it may involve many thousands of simulator runs. The

Bayesian approach enables the use of a very efficient emulator in replace of an sim-

ulator, which substantially reduces computational expense. Moreover, the Bayesian

approach quantifies uncertainty where the simulator has not been evaluated, thus

allowing understanding of consequences of using limited number of runs.

Variance-based measures of sensitivity prioritizes uncertainties by decomposing

the output variance into fractions attributable to inputs and sets of inputs and mea-

suring the sensitivity of the output to an input variable by the amount of variance

in the output contributed by that input. One variance-based measurement is known

as “main-effect index” that quantifies the contribution to the output variance of the

main effect of a subset of inputs xJ , averaged over the joint distribution of all the

other input variables x−J [136], as expressed as,

SMJ
=

SVJ

Var(y)
, (3.19)

where

SVJ = VarxJ

(

Ex−J
(f(x)|xJ)

)

= VarxJ

(
∫

f(x)P−J |J(x−J |xJ)dx−J

)

, (3.20)

Var(y) =

NI
∑

i=1

SVi +

NI
∑

i<j

SVij + · · ·+ SV12...NI
. (3.21)

As shown in (3.21), the mean-effect measurement provides a decomposition of

the output variation into terms relating to the main effects and various interactions

between the input variables. In (3.20) P−J |J(x−J |xJ) denotes the probability density
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function of x−J conditional on the value of xJ and E(f(x)|xJ) denotes the expected

value of the simulator output at x, conditional on a subset of input variables xJ ,

averaged over the joint distribution of all the other input variables x−J . The effects

of single input parameter and two-input interactions are shown in the following

SVi = Var(E(f(x)|xi)) = Var(

∫

f(x)p−i|i(x−i|xi)dx−i), (3.22)

SVij = Var(E(f(x)|xij))) = Var(

∫

f(x)p−ij|ij(x−ij|xij)dx−ij). (3.23)

The other variance-based sensitivity measurement is “Total-effect index” or “total-

order index”. It is often used when the number of input variables is large. “Total-

effect index” measures the contribution to the output variance of xi, including all

variance caused by its interactions, of any order, with any other input variables x−i.

It is expressed as,

STi
=

Ex−i

(

Varxi
(y|x−i)

)

Var(y)

= 1−
Varx−i

(

Exi
(y|x−i)

)

Var(y)
. (3.24)

The following steps are used to implement variance-based SA based on an emu-

lator within the Bayesian framework.

• Quantify the uncertainty in each input using probability distributions that

identify in detail how the inputs might be varied.

• Sample from the distributions of model inputs as design of experiments.

• Run the emulator plus the discrepancy term as an approximation to the sim-

ulator a number of times at sampled designs.

• Using the resulting model outputs obtained in the last step to calculate the

sensitivity measurements of interest.

3.4 Chapter summary

This chapter has briefly presented the mathematical model of a computationally

expensive LTGI model as the simulator. The relationship between the inputs and
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outputs of interest represented by the simulator (i.e., the LTGI model) is approxi-

mated by a Bayesian emulator while adequately accounting for uncertainty in real-

world applications. The emulator is capable of managing uncertainties arising from

different sources, including its stochastic inputs, imperfect science and the limited

number of evaluations of the LTGI model.

At any input point where the simulator has not been run, the prediction produced

by the emulator is an approximation to the simulator evaluation. The emulator’s

evaluation is not a point estimate or a single scenario, but a probability distribution

with uncertainty information that covers a range of plausible values or scenarios.

Besides, this Bayesian method allows for calibrating uncertain model parameters

and quantifying the model discrepancy, so that the probabilistic predictions made

by the emulator are consistent with historical observations of the model output.

Moreover, Bayesian emulation enables efficient UA for uncertainty quantification

and variance-based SA for prioritizing uncertainty in model inputs according to

their contributions to variations in model outputs.
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Chapter 4

Case study on GB power system

In this chapter, a case study on the GB power system is presented, where Bayesian

emulation is employed to enable calibration, prediction, uncertainty analysis (UA)

and sensitivity analysis (SA) regarding a complex LTGI model.

Bayesian calibration reduces uncertainty in calibration parameters and quanti-

fies the model discrepancy using available historical observations (e.g., historically

installed thermal capacity in operation). Then, the model discrepancy is applied

to making future projections on thermal capacities. Using the Bayesian method,

policymakers can be provided with a realistic picture of the possible model out-

comes with probabilities attached. The robustness of different electricity market

designs (i.e., energy-only and capacity markets) against uncertainties (e.g., input

uncertainty, structural uncertainty and functional uncertainty) is studied in terms

of the probability of meeting a LOLE threshold given a scenario of market design

parameters; this is achieved by performing an UA of the maximum LOLE over a

future planning horizon. Finally, a probabilistic SA is conducted to identify the

most influential inputs (a particular input or a group of inputs) to the variations of

the model output of interest.
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4.1 Data, assumptions and computational time

4.1.1 Data

The data used here are consistent with those provided in [4], including the initial

capacity mix, wind and demand data, as well as financial and technical assumptions

for generators. Our assumed prior distributions of the six model inputs are listed in

Table 4.1.

Table 4.1: Summary of prior distributions of model inputs

Inputs Prior Unit Description

ucone U(31.8, 66.3) £/kW-year Net cost of new entry

uvoll U(1000, 30000) £/MWh Energy price cap

uco2 U(0.8, 1.2) N/A Multiplier to the central projection of carbon prices

ωgas N(1, 0.062) N/A Multiplier to the central projection of gas prices

θV aR U(0.005, 0.55) N/A Investor’s value-at-risk

θmarkup U(0, 25) GW Energy price markup parameter

Expert knowledge can be incorporated in the model by assigning prior distribu-

tions to model inputs. When there is little knowledge about an uncertain parameter

in the model, a uniform distribution is commonly used as a prior carrying little

information, but with credible upper and lower bounds. The bounds of control and

forcing inputs can be reasonably wide as weak priors over which we may wish to

achieve the desired understanding through UA and SA.

The net CONE only takes effect under the capacity market design, and its prior

range is consistent with the low, central and high estimates provided in [62]. The

prior range of the energy price cap, uvoll, is referred to that of its benchmark - VOLL.

According to the study in [51], (1000− 30000) is a reasonable range for VOLL that

is estimated for domestic, industrial and commercial electricity consumers in GB.

Hence, the energy price cap uvoll is assumed to sample from U(1000, 30000)£/MWh;

a narrower prior range with a lower upper limit of the energy price cap (e.g.,

20000£/MWh) may be chosen when the energy price cap is administratively set

below the VOLL or when there is a lower estimate of VOLL. The risk attitude θV aR
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is sampled from the uniform distribution U(0.5%, 55%) reflecting a range of invest-

ment assumptions from extremely risk averse to risk neutral. In the GB power

system with 60 GW peak demand, θmarkup is sampled from U(0, 25) [GW]. The

chosen range of θmarkup implies that the energy price uplift function is used under

system conditions with a fairly tight capacity margin (range 0− 41%). A prior uni-

form distribution U(0.80, 1.20) is assigned to uco2. In the case that uco2 = 1.05, the

reference trend of carbon prices, which takes DECC’s central forecast [163], would

be shifted upwards by 5%. The uncertainty range of future carbon prices resulting

from the chosen range of uco2 is broadly in line with the range of DECC’s carbon

projections in [163]. The prior belief for the forcing input ωgas is a normal distribu-

tion N(1, 0.062), which indicates bias over the reference gas price level, and results

in a range consistent with that estimated by DECC [1].

4.1.2 Assumptions

In the application of Bayesian emulation to the LTGI problem, our main assumptions

are as follows:

(1) Assume that known sources of uncertainty (e.g., observation errors) not in-

cluded in the LTGI emulator are not likely to contribute much extra uncer-

tainty, in comparison with the contribution of the three major sources of un-

certainty (e.g., input uncertainty, structural uncertainty and functional uncer-

tainty) that are accounted for;

(2) Assume that structural uncertainty obtained from model calibration is a good

proxy for structural error to be applied in future projections;

(3) Assume that the model outputs depend upon a set of selected model inputs

that are explained in Section 3.2.2 and these inputs are judged to be important

determinants of the output of model simulations;

(4) Assume that the risk preference and the investment logic of a representative

investor do not change over time in the long-term decision-making process.
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In the GB case study, the robustness of two mainstream market designs, namely,

energy-only and capacity markets will be compared in Section 4.4. Regarding the

capacity demand curve adopted in the UK capacity market, as shown in Fig. 3.5 in

Section 3.2.1, there are some main features and modelling assumptions according to

some UK capacity market proposals [23, 164], which are as follows:

(1) A 4-year ahead auction for capacity will be held every year since year 2014

(e.g. an auction in 2020 would be for delivery in 2024/2025).

(2) If successful at auction, an existing plant will be awarded a one-year contract

at the clearing price and new entrants will have access to fifteen-year contract;

(3) The capacity price cap is set as 1.5 times of the net CONE;

(4) The choice of the net CONE is based on the assumptions on the projected

level of revenue from a capacity market agreement that is required to permit

investment in new generation capacity.

(5) A 1.5 GW range is set above and below the capacity target level [23], reflect-

ing an increasing appetite for capacity at lower prices. This capacity range

together with the capacity price cap determines the slope of the capacity de-

mand curve.

4.1.3 Computational time

The simulator was run in the Matlab/Simulink R2012a environment using an In-

tel(R) Core(TM) i5−3470 3.20GHz processor with 8.00GB RAM. The run time for

a single simulation of the 30-year generation planning varied between 140 and 600

minutes, with 100 MC simulations of the forward-looking years of operation for each

investment decision. The Gassian Process Model/Sensitivity Analysis (GPM/SA)

code package that was developed by Los Alamos National Laboratory1 has been

1The Matlab code for implementing Bayesian emulation is available online from

https://github.com/libqueso/gpmsa-matlab/tree/master/Examples
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adapted in our work for carrying out emulation, UA and SA (as provided in Ap-

pendix A.1). In comparison with simulator runs, one emulator evaluation in the

same environment took approximately 10−4 seconds, a speed ratio in the order of

107 ∼ 109. Note that the simulator output is a single scenario or a certain value

while the emulator output is a probability distribution. The time needed for de-

veloping and validating an emulator includes that for obtaining training data and

validation data by running the simulator, and that for fitting the emulator to the

training data which takes about 6 minutes.

Traditional MC-based probabilistic SA that is directly applied to the simulator

would take several months or even over one year for a thousand simulations, which

would be required to give a sense coverage of the input space. However, with the

developed emulator, sensitivity analysis can be achieved within several seconds.

The advantage of the emulator-based approach in saving computational time is

clearly seen. It is noted that the simulated simulator outputs are deterministic

as explained in Section 3.2.2, while the emulator outputs are probabilistic with

uncertainty bounds because for any input, the emulator outputs is modelled by a

multivariate normal distribution conditional on the emulator parameters.

4.2 Emulation, validation and calibration

It will be shown here how the simulator can be emulated and validated, and then

calibrated against historical observations of the model output. In practice a good

simulator is needed in that it is able to reasonably well reproduce the dynamics of

observations (at least for some parameter values).

4.2.1 Emulating the long-term generation investment model

Prior to carrying out model calibration against the observations of installed thermal

capacity, an emulator is needed for approximating the relationship between the

calibration parameters and the installed thermal capacity. Since the introduction

of NETA in 2001, an energy-only market has been implemented in the GB power

system. Before 2001, the Pool market in England and Wales included capacity
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Figure 4.1: Three principal components of the standardised simulation data (historical thermal

capacities in operation).

payments. To ensure that the LTGI model keeps the same energy-only structure

during the simulation process, the model is run from year 2000 to year 2014 for

calibration purposes. During the past time period, the energy price cap was set

as 10000£/MWh. The long-term gas price level ωgas was set as 1, implying that

historical gas prices have been chosen during the decision-making process.

The emulator is built using 12 training data that are composed of 12 design

points over the two-dimensional input space (θV aR, θmarkup) and the corresponding

12 scenarios of annual outcome of the total thermal capacity over the planning

horizon P. The observation data yGobs, against which the simulator is calibrated,

consists of a single time series of total thermal capacity from year 2003 to year

2014. Note that the observations at years 2001− 2002 are omitted from calibration

because the investment decisions do not take effect until 2003 due to construction

delays associated with thermal power plants. Fig. 4.1 shows 3 principal components

used in capturing 98% variability of the time series of standardised thermal capacity.

Note that the first two principal component (in blue and green lines) has much bigger

vertical scale than the third one (in red line); this confirms that most of the variation

in the simulation data is captured by the first two principal components.
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Note that the only model output for calibration is the time series of total ther-

mal capacity in operation. For comparison purposes, Fig. 4.2 gives a breakdown of

simulated (in lines) and observed (in circles) installed thermal generation capaci-

ties at all design points, and also historically observed on-shore and off-shore wind

capacities. Only 0.5 GW new nuclear plant was built in year 2014 at one of the

12 simulated scenarios, and no new coal plant was chosen to be invested across all

scenarios. The top two graphs show that the simulated nuclear and coal capacities

are very close to the observations. The most attractive generation type is CCGT,

which is revealed by both simulation results and observations. In 2015, there is a

significant decline in the amount of OCGT across all simulated scenarios; this is

due to plant retirements. The input data of onshore and offshore wind capacities

are obtained from rounding the actual historical data. About 9 GW solar capacities

had been installed by 2015 but they are not considered in our simulation. These

approximations do not affect the simulation results much, because wind and solar

have small capacity values [9, 10, 165] and they have insignificant contribution to

power system reliability when the total capacity is low.

4.2.2 Validation results

Apart from the training data, 6 additional model runs on a maximin Latin hypercube

design are used for validation. Fig. 4.3 shows the 12 design points (in red circles)

and the 6 test points (in blue stars) that are sampled from the prior ranges of two

calibration parameters, respectively. Each axis is divided into the same number of

intervals as the desired sample size, and the points (between which the minimum

distance is maximised) have been sampled within those intervals.

The validation procedure described in Section 3.3.3 is carried out.

Each graph in Fig. 4.4 presents the reference plausible range (probabilistic pre-

diction) of the emulator’s prediction compared with the evaluation of the simulator

at a validation point. A common indicator of a validation failure is to have signif-

icantly more than about 10% of simulator’s evaluations lying outside of the 90%

credible interval (the 5th and 95th percentiles) of the reference distribution, or to

have significantly more than 0.2% simulator’s evaluations falling outside of the 99.8%
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Figure 4.2: Simulated (in colored lines) and observed (in circles) capacities of each generation

technology in operation over the past planning horizon.
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Figure 4.3: Distribution of training data and test data in a 2-dimensional Latin hypercube design.
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Figure 4.5: Boxplots of residuals at each planning year.

credible interval as a clear evidence of failure. Fig. 4.4 shows that almost all the

results produced by the simulator are located within the 90% credibility intervals

(in solid black lines) of model output predicted by the emulator, suggesting that the

emulator performs well. At a test point (e.g., θV aR = 0.21, θmarkup = 15.89) which

is closer to a design point (see Fig. 4.3), there is less uncertainty in the emulator

output.

The analysis of prediction errors is also used as a diagnostic. Fig. 4.5 shows a

boxplot of residuals (i.e., differences between predicted mean values from the em-

ulator and observed values from the simulator) at each planning year. The root

mean-square error (RMSE) between the emulator’s mean of evaluation and the

simulator’s evaluation is 46.4 MW. The ratio of RMSE to the mean value of the

simulated output is 0.62%; this number is small enough to indicate a good mean

prediction by the emulator. If the results from diagnostics are not satisfactory, more

training data may be chosen for developing the emulator.
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4.2.3 Calibration results

Once the emulator is validated, we can then proceed to use it to calibrate the simu-

lator. Calibration obtains the posterior distributions of the calibration parameters

by combining the priors with observed data, and meanwhile infers the model dis-

crepancy, so that these may be applied to future projections. The formal calibration

approach makes significant improvement on the validation work presented in [82].

In [82], no formal calibration work has been done on uncertain model parameters,

and the simulation results at the assumed ‘good’ values of model parameters are

graphically compared against observations without giving any quantitative informa-

tion, and issues such as structural uncertainty are not accounted for.

Parameter Calibration

Fig. 4.6 shows probability density functions for the marginal (diagonal bar plots) and

bivariate (off-diagonal contour plots) posterior distributions of the two calibration

parameters on the original scale. The red and blue contour lines represent the
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Figure 4.7: An illustrative example of the model discrepancy consisting of three normal kernels.

50th and 90th percentiles of the bivariate posterior distributions, respectively. As

compared with their prior uniform distributions specified in Section 4.1, the posterior

distributions are constrained in these two dimensions by removing input values that

result in implausible outputs.

The posterior distribution of θV aR is constrained within the range of 0.25− 0.5,

showing that the investor tends to be risk-averse when they are faced with uncer-

tainties in the future such as fuel prices and demand growth rates. The posterior

distribution of θmarkup indicates that it is plausible for generators to receive an uplift

payment when the capacity margin falls into the range of 6−17 GW (on the original

scale).

Calibrated and Discrepancy-adjusted Simulator

Assumptions have to be made about the model discrepancy that adjusts the simu-

lated thermal capacity over the time axis. It is expected that the number of normal

kernels should be small. A large number of normal kernels would result in too many
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thermal capacities; Left: Calibrated simulations; Center: Discrepancy-adjusted calibrated simula-

tions after adding the discrepancy term to the calibrated simulations; Right: The discrepancy term

between emulated and observed values.

uncertain parameters σ2
ϑ, λϑ that need calibrating and there will be insufficient data

(i.e., the limited number of observations available) to reduce uncertainty in these

parameters. It is also expected that the discrepancy between simulated and actual

thermal capacity has a strong time persistence over the planning horizon. However,

only one or two normal kernels may not be flexible enough to model the discrep-

ancy over a long planning horizon. Therefore, it is justified to use a reasonably

small number of wide normal kernels to model δ, as long as the kernels fully cover

the time horizon. It is simpler to model the discrepancy using a straight line than

normal kernels, but a straight line has less flexibility as it cannot capture the po-

tentially non-linear pattern of the discrepancy on the time axis. As explained in

Section 3.3.4, each kernel weight is a GP which is a smooth function of x with both

positive and negative values, because the model discrepancy is expected to change

smoothly with the input condition x.

Here, the model discrepancy is represented by a linear combination of 3 weighted

normal kernels centered on years (2005, 2009, 2013), each with a standard deviation

of 2. The three kernels are evenly distributed over time and they cover the whole

historical planning horizon. Fig. 4.7 shows an illustrative example of the discrepancy
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model. The top graph shows the three normal kernels, the middle graph shows the

weighted normal kernels (by assigning a real number to each weight) and the bottom

graph gives the resultant model discrepancy. The resultant discrepancy term in our

case study, shown as the right graph in Fig. 4.8, is very small compared with the

total thermal capacity. Since there is only one observation available which is not

very informative, the posterior of the discrepancy largely depends on its prior which

have very small values, as explained in Section 3.3.4.

The uncertainty in the calibration parameters, represented by the prior or poste-

rior distributions, propagates into the output uncertainty, resulting in a probability

distribution over the outputs. Fig. 4.8 shows how the calibration and the discrepancy

term reduce the plausible output space when observations are available. A credible

interval of [5%, 95%] is taken as the plausible range in our case study. Without cal-

ibration, a wide range of simulator outputs is simulated by the simulator, as shown

by the light grey lines in both the left and the centered graphs. With calibration,

a much narrower plausible range of simulator outputs is evaluated by the emulator

by the dashed black lines in the left column. After adding the discrepancy term to

the calibrated evaluations, the predicted range of simulator outputs, as quantified

by the black lines in the centered graph, more closely matches the observation data

compared with that predicted by the calibrated simulator. The plots in the right

column quantify the plausible range of the model discrepancy, which has a much

lower order than the model output and grows slightly over time.

4.3 Predictions using the discrepancy-adjusted and

calibrated emulator

This section uses the results of calibration (i.e., the posterior distributions of calibra-

tion parameters and model discrepancy) for obtaining plausible future projections

of thermal capacity and LOLEs under the energy-only market design. Apart from

uncertainty in calibration parameters and model discrepancy, additional uncertainty

on the inputs (u, ω) takes effect in making future projections. Following a Bayesian

approach allows for the combination of the simulator runs, the posterior distribu-
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tions of the calibration parameters θ, and the model discrepancy.

4.3.1 Future projections on operational thermal capacities

in an energy-only market

As for calibration, the first stage for obtaining plausible future projections is building

an emulator; this is trained using a group of 25 design points over the 5-dimensional

input space x = {uvoll, uco2, θV aR, θmarkup, ωgas} and the corresponding 25 scenarios

of annual installed thermal capacity over period of years 2013 − 2040. The same

validation approach described in Section 3.3.3 was employed by using 6 additional

model runs and similar results were obtained suggesting a good fit. All these design

and test points are sampled using a Latin hypercube design over their prior ranges

given in Table 4.1. A relatively narrow range U(1000, 20000)£/MWh is chosen for

uvoll in this study. Alternatively, during the sampling process, the priors of the

two calibration parameters may be replaced with the posteriors obtained during the

calibration stage; this can potentially improve the quality of emulator built upon the

limited number of training data. In order to compare the future projections made

by the pre-calibrated simulator with the calibrated one, the prior distributions of

calibration parameters are used in our study.

Fig. 4.9 gives a scatterplot matrix of the 25 normalised design points (in red

circles) and 6 normalised test points (in blue points) in the five-dimensional input

space. Some parts of the input space have not been covered by the 25 points, such

as the top-right corner and the bottom-left corner in the two-dimensional scatter-

plot of (uvoll, θmarkup). More design points in a Latin hypercube would give a better

exploration of the input space at the expense of longer computational time of the

simulator. Three principal components are chosen to capture 95% of the standard-

ised simulation output (future operational thermal capacities) under the energy-only

market design, as shown in Fig. 4.10. The first two principal components (in blue

and green lines) capture most of the variation in the simulation data than the third

one (in red line). Given 5 model inputs and 3 principal components, there are in

total 18 hyperparameters in the emulator fitted to 25 training data. Then, there

are 7 degrees of freedom left in the estimation. It would be desirable to have more
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Figure 4.10: Three principal components of the standardised simulation data (future thermal ca-

pacities in operation).
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training data so that the fitted emulator resulting from more degrees of freedom

carries more merits.

Fig. 4.11 shows a breakdown of simulated scenarios of operational thermal capac-

ities given a projection of future on-shore and off-shore wind capacity. On average,

the projected total thermal capacity into the future is falling for three main reasons.

First, GB system has a fast pace of power plant retirements. Almost all coal-fired

power plants will be closed by 2025, combined with the retirement of the majority

of the UK’s ageing nuclear fleet and over 5 GW of OCGT fleet within a decade from

2015. The electricity supply gap is too big to close by only building enough new

CCGT plants. Second, some thermal capacities will be replaced by wind capacities

subsidized by the government. The projected wind capacity will reach the target of

45 GW by 2030. Meanwhile, the uncertain demand growth rate used in the simula-

tor is assumed to have a mean of 0 [4] and so the residual demand to be supplied by

thermal plants is declining. Third, there may be insufficient incentives for private

GENCOs to invest in any type of thermal capacity, particulary when there is a low

energy price cap under the energy-only market design.

Fig. 4.12 presents validation results of the emulator that is used for predicting

future thermal capacities under an energy-only market design. The red, black and

blue solid lines in each graph quantify the 50%, 90% and 99.8% credibility intervals of

the emulator’s prediction respectively, compared against the simulator’s evaluations

(in circles) at test points. It can be seen from Fig. 4.12 that most of the simulation

output lie within the 90% credibility intervals and all lie within the 99.8% credi-

bility intervals of the emulator output, suggesting that the emulator performs well.

Fig. 4.13 shows a boxplot of the ratio of residuals to the mean of simulated thermal

capacity at each planning year. The residual in year 2024 is larger than others be-

cause the surge in the thermal capacity (lying within 95th and 99.9th percentiles)

shown in the middle-right graph in Fig. 4.12 is not fully captured by the principal

components. Such an isolated outlier might be ignored because there are no large

residuals systematically observed at that particular test point. The ratio of RMSE

to the mean value of the simulated output is 1.5%, implying a good mean prediction

by the emulator. It is acknowledged that the validation set is not large enough to

91



5

10

15

N
uc

le
ar

 [G
W

]

0

5

10

15

20

C
oa

l [
G

W
]

30

40

50

60

C
C

G
T

 [G
W

]

0

5

10

O
C

G
T

 [G
W

]

2015 2020 2025 2030 2035
8

10

12

14

16

O
n−

sh
or

e 
W

in
d 

[G
W

]

Planning Year
2015 2020 2025 2030 2035
0

10

20

30

40

O
ff−

sh
or

e 
W

in
d[

G
W

]

Planning Year

Figure 4.11: A breakdown of simulated generation projections across all design points.
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Figure 4.12: Predictions of future thermal capacities at test points for validation; Circles show the

thermal capacities simulated by the simulator; Dashed red line, solid black lines and solid blue lines

indicate the mean, the 5th and 95th percentiles, and the 0.1th and 99.9th percentiles of the LOLE

profile predicted by the emulator.
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Figure 4.13: Boxplots of residuals at each future planning year.

have great certainty over the accuracy of the emulator that has 5 input variables.

More validation data are generally desired if one wants to gain greater certainty.

The validated emulator is then used for making predictions in the second stage,

where the control variables are fixed but the calibration and forcing parameters re-

main uncertain. In this case, the output uncertainty results from uncertainty in forc-

ing and calibration parameters, functional uncertainty, and structural uncertainty.

As a consequence, a probabilistic prediction (with uncertain bounds) of generation

projections at an input point is estimated by the emulator here as shown in Fig. 4.16,

whereas in [82] a deterministic scenario (path) is produced by the simulator which

uses a specific set of plausible values of calibration parameters. Without taking

into account uncertainty in calibration parameters and structural uncertainty, the

simulator’s estimation may be inconsistent with historical observations.

Fig. 4.14 shows a probabilistic prediction of future thermal capacities at fixed

values of uvoll := 10000 and uco2 := 1. The grey lines in the left and center col-

umn show all the simulations obtained from the simulator. A comparison is made

between the plausible range of thermal capacities predicted by the simulator before
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Figure 4.14: Uncertainty quantification in future generation projections; Left: Simulator before

calibration; Center: Discrepancy-adjusted calibrated simulations; Right: Discrepancy term applied

to future projections.

calibration (in dashed lines in the left column), and the calibrated and discrepancy-

adjusted simulator (in black lines in the center column). As expected, a much wider

plausible range of future thermal capacities is predicted by the emulator before

calibration; in this case, the prior distributions of calibration parameters are used

instead of their posterior distributions and no model discrepancy is accounted for.

The right column in Fig. 4.14 shows the model discrepancy applied to future pro-

jections. The discrepancy is consistent with that inferred from history matching (in

Fig. 4.8) for the first 12 simulation years of interest (2015 - 2026). In order to reflect

the increasing uncertainty far into the future, the model discrepancy is assumed to

increase by 5% per year from 2026 onwards. The discrepancy term used here is

simply an illustration of mitigating the risk of making overconfident projections. In

reality, a much larger model discrepancy is expected than what is used here, when

projecting thermal capacities over 25 years into the future. To obtain a large model

discrepancy, the prior of the discrepancy model can be modified (by assigning an

informative prior of the marginal precision model in (3.17)). Alternatively, a larger

growth rate of the model discrepancy projected into the future can be assumed.
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Figure 4.15: Predictions of LOLEs at data points for validation; Circles show the annual LOLE

simulated by the simulator; Dashed red line, solid black lines and solid blue lines indicate the mean,

the 5th and 95th percentiles, and the 0.1th and 99.9th percentiles of the LOLE profile predicted by

the emulator.
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Figure 4.16: Predictions of thermal capacities at different values of (uvoll, uco2). Crane lines are

simulation output and black lines indicate the plausible range of projected thermal capacities.
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Figure 4.17: Predictions of LOLE profiles at different values of (uvoll, uco2). Crane lines are

simulation output and black lines indicate the plausible range of the projected annual LOLEs.
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4.3.2 Future projections on annual LOLEs

The time series of LOLE are calculated in (3.1c) as a metric for system reliability

using the same set of design points as used for emulating thermal capacities in

Section 4.3.1. The LOLE profiles under the energy-only market design are emulated

and validated using the Bayesian approach as described in Section 3.3.2.

The validation results presented in Fig. 4.15 indicate that the mean of the emula-

tor’s evaluation reasonably matches the simulator’s output of the LOLE profile and

almost all the test data lie in the 90% credible intervals predicted by the emulator.

The original credible intervals of LOLE predicted by the emulator contain negative

values that have no physical meaning. This is because the emulator output is a

continuous response of the input variables. When the uncertainty range is large and

the LOLE in a year is close to zero at some input settings, the emulator will produce

negative evaluations. All the negative values that are drawn from the emulator are

replaced with zero before calculating the credibility intervals. Although this ap-

proach introduces discontinuity at zero, the results are still usefulness because the

larger values of LOLE is of more importance to power system reliability and hence

of more interest to policymakers.

For exploring the combined effects of (uvoll, uco2), the probabilistic predictions of

thermal capacities and LOLE are presented in Fig. 4.16 and Fig. 4.17 respectively,

at selected combinations of “high”, “middle” and “low” values of both variables.

In comparison with the GB standard of 3 hours per year LOLE [61], the risk of

security of supply from year 2023 onwards for some choices of input settings can be

very high, as shown by the grey lines in Fig. 4.17. The right-hand graphs in Fig. 4.16

and Fig. 4.17 show that thermal capacities decline and the LOLE increases as the

value of uco2 increases (i.e., the trend level of carbon prices increases) but the effect is

small. One of the advantages of the probabilistic predictions is that it is natural and

computationally efficient to determine the combination of (uvoll, uco2) with a high

probability of keeping the LOLE at each planning year below some set threshold.
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4.4 A study on the robustness of market designs

using the calibrated emulator

This subsection presents a study on the robustness of two market designs, namely

energy-only market and capacity market in the context of uncertainty. The robust-

ness of a specific setting of a market design is indicated by the probability of not

exceeding a certain threshold of LOLE, denoted as yLT (e.g., 3 hours per year),

given as,

R(u) = Pr(yL < yLT |u). (4.1)

Obtaining future projections of the maximum LOLE is necessary for exploring

scenarios of energy policies that can plausibly be applied to the GB power sys-

tem without increasing LOLE by more than a certain threshold. The calibration

procedure as shown in Section 4.2 produces the posterior distribution of calibra-

tion parameters θ that will be applied to obtain plausible predictions of LOLE over

the future planning years. Following the Bayesian emulation technique allows for

the combination of the simulator runs and the posterior distributions of calibration

parameters.

4.4.1 Emulating the maximum LOLE under two market de-

signs

In the study on the robustness of market designs, a wider prior range U(1000, 30000)

has been chosen for the energy price cap uvoll under both market designs. The

prior distributions of all other model inputs are the same as those provided in 4.1.

The simulator is run forward to year 2040 to produce the output of interest - the

maximum LOLE, and then an emulator is built for each of the two market designs.

An emulator is trained in an energy-only market design using a group of 35 design

points over the 5-D input space and the corresponding 35 scenarios of the maximum

LOLE over period F . The other emulator is trained in a capacity market design

using a new group of 40 design points over the 6-D input space because the capacity

market design needs an extra control parameter ucone.

99



−5

0

5

10

15

1 2 3 4 5 6
Validation points

M
ax

im
um

 L
O

LE
 [h

ou
rs

/y
ea

r]

Figure 4.18: Predictions of the maximum LOLE under an energy-only market design at test points;

Circles show the simulator’s evaluations; Horizontal red line, blue lines indicate the mean, the 5th

and 95th percentiles of the maximum LOLE predicted by the emulator, respectively.

Apart from training data, a handful of extra design points are used for validating

the emulators for both market designs. The boxplots in Fig. 4.18 and Fig. 4.19 show

that all test points (in circles) lie in the 5th and 95th percentiles (in horizontal blue

lines) of the distribution of the maximum LOLE. The validation results indicate

that the emulators are accurate enough for carrying out the robustness study.

4.4.2 Uncertainty analysis of the maximum LOLE

In the LTGI model described in Section 3.2.1, there is uncertainty in the input values

of x, which propagates into output uncertainty, resulting in a range of the maximum

LOLE. An UA will derive the uncertainty range of the maximum LOLE under

energy-only or capacity market design, given that the model inputs including the

parameters of market designs have specified probability distributions (see Table 4.1).

A full UA is achieved here through exploring the posterior distributions of all model

inputs together with the emulator via Markov chain Monte Carlo [154, 166].

Fig. 4.20 shows the uncertainty range of the maximum LOLE under an energy-
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Figure 4.19: Predictions of the maximum LOLE at test points under a capacity market design;

Circles show the simulator’s evaluations; Horizontal red line and blue lines indicate the mean, 5th

and 95th percentiles of the maximum LOLE predicted by the emulator, respectively.
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Figure 4.20: Uncertainty range of the maximum LOLE given all exogenous uncertain inputs of

interest under two market designs. Crane circles show the simulated data of the maximum LOLE

at design points. Red crosses ‘+’ display data beyond the whiskers.
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only market design (on the left column) and a capacity market design (on the right

column). The box shows the interquartile range, which accounts for 25th – 75th

percentile. The whiskers add 1.5 times the interquartile range to the 75th percentile

and subtract 1.5 times the interquartile range from the 25th percentile. The central

line shows the median (the 50th percentile) of the data. The center of the box gives

the mean of the data. As can be seen in Fig. 4.20, the reliability of the system under

an energy-only market design appears much riskier than under a capacity market

design, implying that capacity adequacy will be a great concern at lower settings of

LOLE and the system is less robust to market risks and investors’ risk attitude in

the context of energy-only markets.

4.4.3 Algorithm and results of the robustness study

The procedure of quantifying R(u) at a given set of control variables is described as

follows:

Step 1: Choose a set of values from control variables u := {ucone, uvoll, uco2},

obtained from their prior distributions;

Step 2: Take a sample from the posterior distribution of calibration parameters

θ := {θV aR, θmarkup}, obtained after calibration;

Step 3: Take a sample from the forcing parameter ω := {ωgas}, obtained from

its prior distribution;

Step 4: Take a sample from the posterior distribution of GP model parameters,

denoted as λ, γ, obtained after calibration;

Step 5: For each combination (θ, ω, λ, γ), use the emulator to predict the prob-

ability density function P (yL|u, θ, ω, λ, γ), and compute the probability Pr(yL <

yLT |u, θ, ω, λ, γ);

Step 6: Average out over (θ, ω, λ, γ) to get the probability Pr(yL < yLT |u).

Applying the above procedure to the calibrated emulators developed in 4.3, Ta-

ble 4.2 shows the probabilities of the maximum LOLE exceeding 3-hour per year

under different settings of design parameters in energy-only and capacity markets.

Note that the variable ucone only applies in capacity markets. Comparing the re-

sults between the second and the third columns, at the same setting of uvoll, uco2
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Table 4.2: A comparison of the probabilities of exceeding the threshold (3-hour per year) of LOLE

between energy-only market and capacity market

Control Variables u Energy-only Market Capacity Market

ucone uvoll uco2 R(u) E(yL) Var(yL) R(u) E(yL) Var(yL)

£/kW/yr £/MWh N/A N/A hrs/yr (hrs/yr)2 N/A hrs/yr (hrs/yr)2

31.89 1000 1 1 44.16 2.83 0.97 4.17 0.69

47.18 5000 1.2 1 11.61 1.46 0.71 3.37 0.75

47.18 5000 1 1 11.45 1.43 0.53 3.02 0.34

47.18 5000 0.8 1 11.33 1.40 0.20 2.50 0.67

66.21 2000 1 1 29.92 2.36 0.75 3.54 0.89

31.89 10000 0.8 0.98 6.87 1.61 0.768 3.50 1.14

47.18 15000 1 0.83 3.90 1.22 0.09 2.20 0.62

66.21 19500 1 0.57 3.21 1.68 0.04 1.51 0.45

in both markets, the expected value of the maximum LOLE, E(yL), informing the

expected level of the security of supply, considerably reduces with the introduc-

tion of capacity payment. Although some combinations of the control variables in

the two market designs may result in similar expectations of the maximum LOLE,

for example, setting uvoll = 25000£/MWh in an energy-only market, and setting

ucone = 47.18£/kW/yr, uvoll = 5000£/MWh in a capacity market, the variances of

the maximum LOLE, Var(yL), however, are generally larger in energy-only markets.

A comparison between Pr(yL < 3|u) in both markets shows that a capacity mar-

ket design is generally more robust to uncertainties than energy-only market. The

results from the 2-nd and 5-th rows reveal that the increase in carbon prices may

discourage thermal investments and hence reduce the level of security of supply in

both markets. However, the effect of the control parameter uco2 is insignificant.

A clearer way to show the impact of the capacity and energy price caps on the

long-term system reliability is making a large number of predictions on the maximum

LOLE at possible scenarios of two control parameters ucone, uvoll. Fig. 4.21 displays

the probability map of the maximum LOLE not exceeding 3 hours a year given 100

combinations of ucone and uvoll sampled from their prior distributions while averaging

over the joint distribution of all other input variables. This quantitative information
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Figure 4.21: Probability map of the maximum LOLE not exceeding 3 hours a year given different

combinations of ucone and uvoll in the capacity market.
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Figure 4.22: Uncertainty range of the maximum LOLE in an energy-only market, conditional on

values of uvoll = 10000£/MWh and uco2 = 1 and averaging on all other input variables.
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Figure 4.23: Uncertainty range of the maximum LOLE in a capacity market, conditional on values

of ucone = 47.18£/kW/yr, uvoll = 10000£/MWh and uco2 = 1 and averaging on all other input

variables.

would be very helpful for choosing good values of ucone, uvoll.

To help policymakers understand the use of Bayesian emulation for design of

energy policy, the plausible ranges (i.e., the probabilistic prediction) of the maxi-

mum LOLE at a specific setting of control variables under an energy-only market

and a capacity market are graphically shown in Fig. 4.22 and Fig. 4.23, respec-

tively. In each figure, a comparison is made between the output predicted by the

simulator before calibration, shown as the left-hand box plot, and by the calibrated

simulator, shown as the right-hand box plot. In this case, uncertainty in the max-

imum LOLE propagates from uncertainty in forcing and calibration parameters as

well as the approximation error between the emulator and the simulator. Since

uncertainty in calibration parameters has been reduced through the calibration pro-

cedure (as shown in Fig. 4.6), the plausible range of maximum LOLE produced by

the calibrated simulator is much narrower than that produced by the pre-calibrated

simulator as shown by the two box plots in both figures.

The probabilistic prediction made by the calibrated emulator has a lower risk
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of overfitting than the deterministic prediction made by the simulator which uses

a single set of values (point estimates) of model inputs as in [82]. Using a poste-

rior distribution covering a range of possible values for calibration parameters leads

to a range of output evaluations that are consistent with historical observations.

Whereas, using point estimates of pre-calibrated parameters produces a point esti-

mate of LOLE lying somewhere in between the left-hand box plot in Fig. 4.23; this

is a conservative estimation in an uncertain environment.

4.5 Sensitivity analysis results

A comprehensive probabilistic SA can be efficiently conducted based upon the em-

ulators validated and calibrated in Sections 4.2–4.4. The implementation requires

a distribution for the uncertain inputs given in Table 4.1. The SA approach based

on an emulator has benefits of allowing full exploration of the input space, esti-

mating variance-based measures at a low computational cost, and accounting for

interactions and nonlinear responses. By contrast, directly using a limited number

of training data in SA, is far less informative, because it does not fully explore the

input space. It is acknowledged that although an emulator allows SA to explore the

whole input space, it does so by extrapolation from the training data.

4.5.1 Sensitivity to generation projections

A probabilistic SA is firstly conducted on the emulator developed in 4.2 to study the

individual and combined effects of calibration parameters on the historical thermal

capacities.

Firstly, the following mean-effect functions for each input parameter xi are ex-

plored,

M(xi) = Ex−i
(yG|xi) =

∫

yP−i|i(x−i|xi)dx−i, (4.2)

where Ex−i
(yG|xi) quantifies the expected value of the simulator output yG to vary-

ing an individual input xi, averaged over the probability distribution of all the other

input variables x−i and conditional on the value of xi.
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3

Figure 4.24: Sensitivity analysis of θ = {θV aR, θmarkup} in history matching

Fig. 4.24 plots the average response surface of the time series of historical gen-

eration capacities to each of the two calibration parameters. The two graphs in

Fig. 4.24 indicate that the two parameters have time-delay effects, that is, it takes

some time (a few years) to make changes to the installed thermal capacity due to

construction delays of new investments. In addition, the time series of operational

thermal capacities is not changing smoothly with the values of calibration param-

eters, because long-term generation investments naturally display boom-and-bust

cycles in a liberalised electricity market [14, 17, 18, 115]. This is also one of the

reasons of using principal components (an orthogonal basis set) in representing the

time series of thermal capacities, so that the weight of a basis are relatively smooth

functions of the model inputs. The clearly visible sinusoidal pattern across 2014

suggest that there is a nonlinear relationship between the calibration parameters

and the annual thermal capacities.

Table 4.3 provides the variance contributions of individual and joint calibration

parameters to the total variance of the model output in terms of the main effect

index defined in (3.19). The quantitative information delivers a clear message that

the price markup model parameter θmarkup alone is dominating variations in installed

thermal capacity.
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Table 4.3: Main-effect sensitivity measures of single and joint calibration parameter effects on

generation projections (% total variation) in history matching

Input variables θV aR θmarkup (θV aR, θmarkup)

% of total variation 6 85 9

Table 4.4: Main-effect sensitivity measures of single and joint parameter effects on generation

projections (% total variation) in the energy-only market

Inputs uvoll uco2 ωgas θV aR θmarkup

uvoll 57.6 0.46 0.13 0.01 0.53

uco2 0.46 2.3 0.12 0.02 0.24

ωgas 0.13 0.12 0.8 0.02 0.33

θV aR 0.01 0.02 0.02 0.6 0.13

θmarkup 1.84 0.53 0.33 0.13 34.9

A probabilistic SA is then carried out on the emulator developed in Section 4.3

for analyzing the effects of the five model inputs {uvoll, uco2, ωgas, θV aR, θmarkup} on

future generation projections in energy-only markets. Table 4.4 provide the variance

contributions of individual model inputs and those of two-input interactions to the

overall variance associated with the projections of thermal capacity. It is clearly

seen that the most important input parameters are uvoll and θmarkup, as varying

these contributes the most to variations in projected future thermal capacities. An

index of 57.6% indicates that uncertainty about uvoll accounts for over half of the

overall uncertainty in the output. Uncertainty in θmarkup accounts for 34.9% of the

overall uncertainty in the output. Both parameters take effect on scarcity pricing,

that is, modifying the uniform market-clearing energy prices in scarcity situations.

The results from SA highlight the significant long-term effect of scarcity pricing on

incentivizing the investment of conventional generation capacity in future electricity

markets with a high penetration of wind power.
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Figure 4.25: Main-effect sensitivity plots for each parameter individually varied whilst averaging

over others in the energy-only market.

4.5.2 Sensitivity to system reliability

In this section, a probabilistic SA is conducted on the emulators developed for

predicting the maximum LOLE under an energy-only and a capacity market design

in Section 4.3. Three methods are considered for assessing the influence of the input

parameters on system reliability.

Fig 4.25 and Fig 4.26 plot the mean-effect functions of each input xi, representing

the expected value of the maximum LOLE against the value of each input in the

energy-only and capacity markets. These plots show the input that has the greatest

effect on the maximum LOLE is the energy price cap uvoll in both market designs.

Besides, an increase in θmarkup, that is, a decrease in the capacity margin where the

energy price markup applies, considerably reduces the maximum LOLE, justifying

scarcity rents as investment incentives. On the one hand, it is noted that uvoll is

assumed to have a rather wide range (1000, 30000) over which it is varied. Similar to

all other SA approaches discussed in Section 2.5.4, the probabilistic SA approach has

the same issue of often observing larger impact on the output in response to larger

variations in an input. Changing the range of variation will change the SA measures

and may alter the ranking of inputs resulting from their contribution to variation
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Figure 4.26: Main-effect sensitivity plots for each parameter individually varied whilst averaging

over others in the capacity market.

in the output. On the other hand, different sets of training data were gathered for

testing the consistency of these mean-effect plots. The mean-effect results for the gas

price parameter ωgas in Fig. 4.26 are associated with a large degree of uncertainty

due to its insignificant effect. The plots of all other five model inputs do not vary

much among different sets of training data.

Table 4.5: Main-effect sensitivity measures of single and joint parameter effects on the maximum

LOLE (% total variation) in the energy-only market

Inputs uvoll uco2 ωgas θV aR θmarkup

uvoll 57.52 0.64 0.07 3.00 7.86

uco2 0.64 0.62 2.24e− 3 0.11 0.24

ωgas 0.07 2.24e− 3 0.09 0.04 0.04

θV aR 3.00 0.11 0.04 1.35 5.7

θmarkup 7.86 0.24 0.04 5.7 12.47

Secondly, based on the eqs. (3.19)–(3.21), Table 4.5 and Table 4.6 show the main

effect of particular inputs and two-input interactions on the output of interest in

energy-only and capacity markets, respectively. In each table, the diagonal data
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Table 4.6: Main-effect sensitivity measures of single and joint parameter effects on the maximum

LOLE (% total variation) in the capacity market

Inputs ucone uvoll uco2 ωgas θV aR θmarkup

ucone 0.71 1.32 1.89 0.10 0.40 0.69

uvoll 1.32 53.75 7.54 0.35 0.65 1.73

uco2 1.89 7.54 2.96 1.25 2.13 11.06

ωgas 0.10 0.35 1.25 0.43 0.08 0.24

θV aR 0.40 0.65 2.13 0.08 1.47 1.04

θmarkup 0.69 1.73 11.06 0.24 1.04 5.41

Table 4.7: Total effect sensitivity measures (% of total variation) in the energy-only and capacity

markets

Market ucone uvoll uco2 ωgas θV aR θmarkup

Energy-only N/A 79.2 0.22 0.36 2.02 36.38

Capacity 7.18 74.52 29.96 4.2 8.87 22.35

show the percentage of variance that is due to the corresponding input alone, and

the remaining data are the percentage of variance that is due to the second-order

interactions. The total two-input interactions have less influence on the output

variations than the main effect of the single parameter uvoll in both markets. For

the capacity market, Table 4.6 shows that future carbon price level uco2 has limited

effects on its own and most of its contribution to the output variance comes through

interactions with the other parameters.

Thirdly, Table 4.7 gives the total-effect sensitivity indices of each input parameter

under the two market designs, calculated from (3.24). In both markets, variations

in the maximum LOLE mostly arise from change in the energy price cap uvoll and

its interactions with other input parameters. The second most important input

in terms of its total-effect on variation in the maximum LOLE is the energy price

markup parameter θmarkup in an energy-only market, while in a capacity market, it

is the long-run level of carbon prices uco2.

Overall, both the main-effect and the total-effect sensitivity indices show that in

terms of impact on the maximum LOLE, the administratively determined parameter
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uvoll is the most important model input. The setting of VOLL can affect whether a

capacity market has a net cost or benefit. The choice of ucone also has an effect on

the economic impact of a capacity market. This is relevant to the question of how

to achieve the target system reliability at the lowest cost. Estimates of LOLE are

very dependent on estimates assigned to the valuations of VOLL, net CONE and

carbon prices, indicating the role that energy policy plays in shaping investment

decisions. From the perspective of a private investor, to reduce uncertainty in system

reliability, it seems that reducing future policy risks faced by private companies in

power generation would be a good strategy. Moreover, uncertainty in the price

markup θmarkup, reflecting the competitiveness of electricity market or the level of

scarcity rent at peak demand hours, deserves a careful study.

4.6 Generality of the Bayesian framework

The GB case study has provided a full exemplar of how the Bayesian framework

can be applied in a large, complex problem, showing all important tasks of cali-

bration, validation, uncertainty analysis and sensitivity analysis. As mentioned in

Section 3.3.1, the Bayesian framework is very useful for those who rely on models to

understand complex processes involving uncertainty, and those who wish to know

how much they can trust the model outputs. The unique characteristics found in

different models suggest that the emulator must be tuned for each particular model,

e.g. the dimensionality of the input and the output space, and prior distributions for

inputs, the emulator and the discrepancy. Besides, different parametric forms can

be chosen for the emulator and the model discrepancy to reflect the characteristics

of a particular model.

Examples of power system models to which Bayesian emulation could be applied

include: models discussed in [58,167], which are used in GB Electricity Market Re-

form; a model presented in [20] to study the capacity market proposal of PJM; and

models described in [14, 16–19] which are used for academic and industrial studies

of electricity markets. The particular uncertainty modelling methods used in these

studies are different to those used in the LTGI model described in our work. For ex-
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ample, methods for the modelling of uncertainties within the model (e.g., load, wind

generation, fuel prices, policy options), energy dispatch (e.g., Dynamic Dispatch

Model (DDM) [58], PLEXOS [167]) and investment logic may differ. A particular

challenge for fitting an emulator to the DDM in [58] is the high-dimensional input

space of this model, meaning that a careful selection of the inputs to be included

in any emulator must be carried out. A key similarity between the DDM and the

LTGI exemplar is that outputs for both models are in the form of a time-series, so

the dimension reduction techniques and the form used for the model discrepancy de-

scribed here could be applied directly to the DDM. The PJM capacity market model

in [20] can be enhanced by employing the Bayesian emulation method to provide a

more realistic and confident assessment of capacity market designs. Some model pa-

rameters (e.g., parameters in the utility function) that were originally chosen based

on behavioral assumptions, can be more rigorously calibrated against historical ob-

servations of model outputs of interest by fitting an emulator to the model retaining

the same main features but with an energy-only market design where historical data

were observed.

4.7 Chapter summary

In our GB case study, for model inputs, uncertainty in regulatory decisions (e.g.,

energy price cap, net CONE and carbon prices), future gas prices, and calibration

parameters (e.g., investor’s risk preference and energy price markup) has been ac-

counted for and specified with prior distributions. For model outputs, both the

real-world observations and the simulated outputs of operational thermal capacities

as well as simulated LOLE profiles have been considered. Uncertainty in model out-

puts explored in our work arises from not only input uncertainty but also uncertainty

associated with the model (i.e., structural uncertainty and functional uncertainty)

that are often ignored in the existing literature.

While considering these three major sources of uncertainty, we apply a Bayesian

framework to the GB case study. Calibration has been carried out first to reduce

uncertainty in some of the inputs whist quantifying the structural uncertainty by
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learning from historical observations. Then the UA explores the output distribution

of interest with reduced risks. Future projections of the long-term generation projec-

tions and LOLEs, as well as the maximum LOLE are obtained using a combination

of the simulator, calibrated model parameters and model discrepancy. The calibra-

tion results and the predictions in the case study have been compared the validation

performed by Eager et al. in [4, 13, 82], as discussed in Section 4.2.2. Moreover, we

proposed a robustness index of market designs in the uncertain context and then

conducted a quantitative robustness study by exploring the distribution of the max-

imum LOLE. SA results quantitatively show that the investment decisions and the

maximum LOLE are most sensitive to the two factors affecting scarcity pricing – the

energy price cap and the price markup, which imply by the model that the scarcity

pricing policy plays an important role in shaping generation investment decisions

and hence the long-term system reliability.
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Chapter 5

Implications of operating reserve

market designs

In this chapter, we discuss the market implications of the short-term operating

reserve market design. The timing and locational values of operating reserves need

to be rewarded to improve the deliverability and the price signal of operating reserves

that are mostly provided by flexible generating resources in a transmission network.

An enhanced deterministic unit commitment (EDUC) model incorporating hourly

updated zonal operating reserve demand curves (Z-ORDCs) is proposed in this

chapter. Reserve zones are hourly determined by the approach of spectral clustering.

A case study on the implications of operating reserve market designs using the RTS-

73 test system is given. Comparisons are made between the choices of reserve policies

(e.g., single, seasonal or dynamic zones) and of reserve zone partitioning methods.

5.1 Introduction

To encourage a low-carbon and secure supply of electricity, it is argued that market

incentives are needed for rewarding the ancillary services provided by relatively

clean and flexible sources. Operating reserve is among the larger class of ancillary

services. In terms of its value, operating reserve is a crucial service for ensuring

that the day-ahead operational planning of generators’ schedule can accommodate

the uncertainty arising from unexpected variations in the load profile or faults in
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generators, transformers and transmission links. In terms of its cost, operating

reserve keeps spinning generators partially loaded (running at non-optimal operating

points) in order to respond to system contingencies and variations or unpredictability

in demand and variable generation (VG), such as wind and solar. A large portion of

the operating reserve requirement is provided by thermal and hydropower plants in

many countries. Alternative sources are demand response and energy storage, but

currently they only contribute to a small fraction of the requirement. The additional

variability and uncertainty arising from VG units may increase the total amount of

and more frequent procurement of operating reserve. Therefore, a proper pricing

mechanism for operating reserves is required when it is economic to do so. To achieve

this, the potential value of these operating reserve services under uncertain system

conditions must first be recognized.

5.1.1 Operating reserve

Different power systems use different terms and definitions for operating reserve,

but the functionality is very similar. The term operating reserve is defined in our

work as the capability above the firm demand needed by the system operator for

regulation, balancing forecasting errors of load and VG (such as wind and solar),

and dealing with faults of equipment (e.g., generators and transmission lines). Our

definition of operating reserve is similar to that given by NERC1.

According to the required response time (ramp rate and start time), operating

reserves is classified as spinning reserves (10 minutes) and non-spinning reserves

(10 ∼ 30 minutes) with both upward and downward directions respectively [168].

The spinning reserve is the on-line reserve capacity that is provided by synchronized

(committed) generators. The non-spinning reserve is the off-line generation capacity

that can be synchronized to the grid within 10 minutes of an order by the system

operator and that is able to maintain that output for at least two hours. Upward

reserves from generators that are available to increase output and load that is allowed

to curtail have historically been more often required for reliability purposes, due

1The North American Electric Reliability Corporation
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to the sudden failure of large generators and transmission lines. As opposed to

upward reserves, downward reserves have historically been less needed for reliability

since it is far less likely to see that large loads suddenly disconnect. However, in

power systems with a high penetration of variable generation/VG that increases and

decreases output stochastically, both upward and downward reserves are valuable in

assisting in generation and load balance. The value of operating reserve is illustrated

at two dimensions - time and space, in Sections 5.1.2, 5.1.3.

5.1.2 Timing value of operating reserve

The timing value (the value depending on time) of operating reserves changes with

the time-varying conditions of power system operation. Traditionally, in power

systems with a low penetrations of VG, spinning and non-spinning reserves are

designed with deterministic rules such as a percentage of the aggregate load and/plus

the largest unit in the system [169]. However, new operating reserve methodologies

may be required for coping with the additional variability and uncertainty of VG.

Probabilistic methods have been proposed in [170–172] for determining operating

reserve requirements in the presence of wind power. The common approach is to

explore the variability and the forecasting error distributions of the net load (load

net of wind) in setting the operating reserve requirements. In the wind integration

study carried out in Minnesota [171], more operating reserve margin was allocated for

hourly forecasting errors in the net load, in order to account for the high variability of

wind when wind generation is in the middle range of the rated capacity. In the “All

Island Grid Study” in Ireland [173], the additional contribution for wind generation

in addition to the size of the largest on-line unit is included in the spinning reserve

requirement. The 3σ rule - 3 times the standard deviation of 10-minute changes

(variability) in the net load has been suggested to cover the majority of expected

variability [174]. The 3σ rule has a limitation of accounting for the tail of the net

load distribution. The study in [174] explored the 3+5 rule, which requires the

system to carry hourly spinning reserve no less than 3% of hourly forecasted load

plus 5% of hourly forecasted wind generation, and the results show that the 3 + 5

rule usually works well and the quantity of reserves held was always no less than
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that by the 3σ rule. These deterministic operating reserve requirements based on

some simple probabilistic analysis can easily been incorporated into a deterministic

UC model. However, it is acknowledged here that these simple rules lack a rigorous

scientific basis, and in particular that the standard deviation will not characterise

the tail unless the net load distribution can reasonably be assumed normal.

An alternative to planning operating reserves is using stochastic programming.

In stochastic programming, reserve requirements and generation schedules are co-

optimized for achieving an economical objective that includes the cost/benefit in

day-ahead and real-time markets. A two-stage scenario-based stochastic program-

ming model, such as the one developed in [175], is a stylized stochastic UC model.

In the first stage, the day-ahead operational costs and constraints are considered.

In the second stage, some scenarios of real-time system operational conditions (e.g.,

realized load, wind generation and generator availability) are considered, so that the

scenario-based operational cost included in the objective function acts as an approx-

imation to the real-time operational and reliability costs. The case study in [175]

shows that the results outperform those from peak-load-based reserve requirements

and the 3+5 rule. However, stochastic programming-based UC models are often

computationally expensive to solve. In addition, it is challenging to select and

properly weight qualitative scenarios serving as inputs to a stochastic programming

formulation.

In order to achieve a balance between considering the real-time system condi-

tions and ensuring the computational efficiency in the UC model, a multi-segment

operating reserve demand curve (ORDC), has been tested and found in operations

in some US RTOs (e.g., MISO, ERCOT, PJM) [39]. The ORDC is used to rep-

resent the value of operating reserves by avoiding load shedding events [39, 176].

In ERCOT, the price (marginal value) of available operating reserves is calculated

as the product of value of lost load (VOLL) and loss-of-load probability (LOLP).

A dynamic (hourly or daily) system-wide ORDC has been designed for address-

ing the time-varying operating conditions in [177], where it has been found that in

comparison with the traditional deterministic UC program, the one incorporating

the ORDC produces less volatile energy and operating reserve prices and on aver-
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age higher prices for the days without price spikes, which indicates that generators

are exposed to less price risks. As opposed to the scenario-based stochastic pro-

gramming, the ORDC approximates the change in real-time system reliability cost

based on some probability analysis methods instead of scenarios. The reliability cost

makes a significant proportion to the total system cost in real-time markets due to

the very high VOLL. Therefore, an UC model incorporating an ORDC produces

closer results to the stochastic program solution than a traditional UC model.

5.1.3 Locational value of operating reserve

The locational value of operating reserves emphasizes the deliverability of available

operating reserves across a transmission network. Traditionally, operating reserve

requirements incorporated in deterministic unit commitment models, such as the

largest unit and the 3 + 5 rule aiming at different types of operating reserve, are

simply imposed to the entire transmission network, rather than a regional or a

bus-level. However, it may happen that the procured reserve is not deliverable

to a desired location within the network. To address this issue, the concept of

reserve zones has been proposed and implemented in many day-ahead electricity

markets (e.g., Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT),

California ISO (CAISO) [178]), aiming for infrequent intrazonal congestion [179] by

enforcing zonal reserve requirements rather than system reserve requirements [180].

The industrial practice of zonal configuration conducted by SOs varies due to

lack of consensus on the methodology of reserve zone partitioning. Two popu-

lar partitioning methods are based on identifying zones with similar nodal prices

(i.e., LMPs) and linear sensitivity factors (e.g., Power Transfer Distribution Factors

(PTDFs)) [181].

In the LMP-based method, buses are separated into higher and lower LMP areas

if congestion occurs, and then the buses with similar LMPs are clustered to define a

zone [182,183]. The LMP represents the cost of supplying extra 1 MW of energy to

a particular bus in the transmission system. Without any transmission congestion,

the LMPs across the transmission network will be equal (uniform) because the cost

of producing the energy from a marginal power plant will be the same at a particular
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time (at the same system-level of demand). When there is transmission congestion

on the way to deliver energy, there is a cost component (congestion cost) added to

the formation of LMP (as will be explained in Section 5.2.3), which makes the LMP

at the bus where energy is delivered to different from any other LMP. The difference

among LMPs arising from congestion cost makes LMPs a good basis for determining

reserve zones.

In the PTDF-based method, the common procedure is divided into two steps.

First, critical lines that are likely to be congested are identified based on expert

knowledge [184], power flow information [185,186] or customized off-line studies [187].

Changes of injection in different buses (e.g., generation level, demand level) will in-

fluence the flows through critical lines to various levels. Second, buses with similar

effects on the flows through critical lines are clustered into one zone. Since the

PTDF represents the sensitivity relation between changes in injections or loads at

a bus and changes in flows through a line, buses characterized by similar PTDFs

with respect to critical lines desirably define a region of similar sensitivity to line

congestion under various system conditions [188]. The sign of the PTDF provides a

clear distinction whether a power injection in a particular bus increases or decreases

the flow through a line. In the case that there is only one congested line that is

identified to be critical, the two buses at the two ends of a congested line have a

negative and a positive PTDF with respect to this line, respectively. The congested

line becomes the zonal interface (the line connecting two zones) and the two buses

will be separated into two zones (zone 1,2). If there is a sudden increase in the

injection of a load bus in zone 1, extra energy needs to be transferred from gener-

ators that are located in zone 1, in order to prevent the congestion situation from

worsening. The intra-zonal deliverability can be governed by intra-zonal congestion

management. A desired zonal partition is supposed to lead to infrequent intra-zonal

congestion.

Different variants of the PTDF-based method of zonal partition have been pro-

posed in existing literature. In [189], the zones have been formed based on the

combined effect of real and reactive line power flow sensitivity indexes. A proce-

dure of sequential network partition and congestion contribution identification is
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presented in [187], where connectivity of the partitioned zones in complex networks

is guaranteed. However, the process of zonal partition in [187] involves solving a

complex mixed integer non-linear programming model, which takes a large amount

of computational time. In [185,186], the reserve zone partitioning method employed

the k-means algorithm to group buses of similar values of weighted PTDFs. The

weight is used for emphasizing the importance of a line according to its absolute

level of power flow, with larger values assigned to lines that are more likely to be

congested. The k-means clustering chooses a random rather than the optimal ini-

tialization. To address this limitation, the authors in [181] designed an algorithm

that performs the zonal partition starting from a pre-partition with a reasonably

large number of zones and then continuing to merge two of the closest zones until

any desired number of zones is produced. A second limitation of k-means clustering

is that the choice of k, denoting the number of clusters, is an input parameter. An

inappropriate choice of k may yield poor results. A third limitation of k-means clus-

tering is that it makes strong assumptions that the resulting clusters form disjoint

convex sets of the underlying space (or, to be precise, the clustered sets are compact

and have convex boundaries). In the situation where nested reserve zones are pre-

ferred as studied in [190], k-means clustering is incapable of delivering such form of

the clusters. Therefore, a more general clustering method is needed for performing

zone partition.

5.1.4 Contributions of this chapter

We propose an enhanced deterministic unit commitment (EDUC) model to incen-

tivise both the timing and the locational value of operating reserves. This is achieved

by introducing hourly zonal ORDCs (Z-ORDCs) into a deterministic UCmodel. The

Z-ORDCs truthfully represent the marginal benefit of zonal operating reserves by

considering the VOLL and the expected unserved energy or the expected curtailed

wind while tackling the complexity of inter-zonal reserve sharing. The EDUC model

produces co-optimized schedules for energy, intrazonal and inter-zonal reserves, for

purposes of reducing out-of-market corrections and stabilizing market revenues for

flexible generators as opposed to the traditional single-zone deterministic UC model.
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The contributions of this chapter are three-fold.

• An EDUC model incorporating dynamic Z-ORDCs is developed in Section 5.2.

This is an extension to the single-zone deterministic UC model incorporating

a system-wide ORDC proposed in [177].

• A spectral clustering method is applied to reserve zone partitioning, as in

Section 5.4.1. Spectral clustering is more general than k-means clustering used

in [185] in the sense that spectral clustering does not make strong assumptions

on the form of the clusters and hence can solve very general problems like

nested reserve zones. Moreover, there is a general procedure for choosing the

number of clusters in the spectral clustering method.

• The formulation of Z-ORDCs in Section 5.4.2 depends on decision variables

of intrazonal reserve and inter-zonal reserve sharing as well as uncertain pa-

rameters of load, wind generation and conventional generator availability. By

introducing the variable of inter-zonal reserve sharing to the deterministic UC

model, a tradeoff is made between the value and the cost for each zone with

the optimal amount of reserve sharing.

The remainder of this chapter is organized as follows. Section 5.2 presents the

model formulation of the EDUC and the pricing of energy and operating reserves.

Section 5.3 describes the uncertainty modelling of load, wind, and generator avail-

ability. Section 5.4 discusses the reserve zone partitioning and the development of

Z-ORDCs. Section 5.5 shows a case study on the RTS-73 test system. Section 5.6

concludes this chapter.

5.2 Model formulation and pricing

5.2.1 Formulation of the enhanced deterministic UC model

The model formulation of the EDUC is expressed below in (5.1), with an objective

of minimizing the market-wide social cost as in (5.1a) subject to generator-level,

zonal-level, and system-level constraints as in (5.1b)–(5.1y).

122



min
∑

h∈H

∑

c∈C

[

V Cc(uc,hP c + pc,h) + FCcuc,h + SUcvc,h + vwc
zh

+ veuezh

]

, (5.1a)

s.t. (λb,h ≥ 0) :
∑

l∈L|B+

l
=b

fl,h −
∑

l′∈L|B−

l′
=b

fl′,h +
∑

c∈Cb

(P cuc,h

+ pc,h) +
∑

w∈Wb

Pw
w,h = Db,h, ∀h ∈ H, b ∈ B, (5.1b)

fl,h = Bl(θb,h − θb′,h), ∀h ∈ H, l = (b, b′) ∈ L, (5.1c)

(ηl,h ≤ 0) : −F̄l ≤ fl,h ≤ F̄l, ∀l ∈ L, (5.1d)

θmin
b ≤ θb,h ≤ θmax

b , ∀h ∈ H, b ∈ B, (5.1e)

θRef ,h = 0, ∀h ∈ H, (5.1f)

0 ≤ pc,h ≤ uc,hP̄c − P c, ∀h ∈ H, c ∈ C, (5.1g)

vc,h − yc,h = uc,h − uc,t−1, ∀h ∈ H, c ∈ C, (5.1h)

vc,h + yc,h <= 1, ∀h ∈ H, c ∈ C, (5.1i)

t
∑

k=t−UTc+1

vc,k ≤ uc,h, ∀t ∈ (UTc, . . . ,T), c ∈ C, (5.1j)

t
∑

k=t−DTc+1

yc,k ≤ 1− uc,h, ∀t ∈ (DTc, . . . ,T), c ∈ C (5.1k)

− 60R60
c ≤ pc,t−1 − pc,h ≤ 60R60

c , ∀h ∈ H, c ∈ C, (5.1l)

rρc,h ≤ τρR
τρ
c , ∀h ∈ H, c ∈ C, ρ ∈ {su, sd, nsu, nsd}, (5.1m)

pc,h + rsuc,h + rnsuc,h ≤ (P c − P c)(uc,h − yc,t+1), ∀h ∈ H, c ∈ C, (5.1n)

pc,h − rsdc,h − rnsdc,h ≥ 0, ∀h ∈ H, c ∈ C, (5.1o)

(αρ,zq
zh

≥ 0) : rρzh ≥ Rρ,req
zh

, ∀h ∈ H, ρ ∈ {su, sd, nsu, nsd}, zh ∈ Zh, (5.1p)

(αu,sq
c,h ≥ 0) :

∑

zh∈Zh

ruzh ≥ P cuc,h + pc,h + rsuc,h + rnsuc,h , ∀h ∈ H, c ∈ C, (5.1q)

(αρ,ro
zh

≤ 0) : Oρruzh <=
∑

c∈zh(c)

rρc,h, ∀h ∈ H, zh ∈ Zh, ρ ∈ {su, nsu}, (5.1r)

(αeue
zh,k

≥ 0) : veuezh
≥ Aeue

zh,k
ruzh +Beue

zh,k
, ∀h ∈ H, k ∈ K, zh ∈ Zh, (5.1s)

(αwc
zh,q

≥ 0) : vwc
zh

≥ Awc
zh,q

rdzh +Bwc
zh,q

, ∀h ∈ H, q ∈ Q, zh ∈ Zh, (5.1t)

ruz′
h
,zh

≤ r̄z′
h
,zh, ∀h ∈ H, zh, z

′
h ∈ Zh, z

′
h < zh, (5.1u)
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ruz′h,zh ≥ −r̄zh,z′h, ∀h ∈ H, zh, z
′
h ∈ Zh, z

′
h < zh, (5.1v)

(αu
zh

≤ 0) : ruzh =
∑

c∈zh(c)

(rsuc,h + rnsuc,h ) +
∑

z′h∈Zh|z
′

h<zh

ruz′
h
,zh

−
∑

z′h∈Zh|z
′

h>zh

ruzh,z′h, ∀zh ∈ Zh,

(5.1w)

(αd
zh

≤ 0) : rdzh =
∑

c∈zh(c)

(rsdc,h + rnsdc,h ), ∀zh ∈ Zh, (5.1x)

(αzz
z′h,zh

≤ 0) : r̄z′
h
,zh =

∑

l∈Iz′
h
,zh

(

F̄l − δlfl,h + (1− δl)fl,h
)

, ∀zh, z
′
h ∈ Zh, (5.1y)

where,

Aeue
zh,k

=
veueh,k − veueh,k+1

ruzh,k − ruzh,k+1

, Beue
zh,k

= −ruzh,kA
eue
zh,k

+ veueh,k , (5.2a)

Awc
zh,q

=
vwc
h,q − vwc

h,q+1

rdzh,q − rdzh,q+1

, Bwc
zh,q

= −rdzh,qA
wc
zh,q

+ vwc
h,q. (5.2b)

pc,h, r
ρ
c,h, r

u
zh
, rdzh ≥ 0, ruz′

h
,zh

∈ R, uc,h, vc,h, yc,h ∈ {0, 1}, (5.2c)

The social cost in a traditional deterministic UC has a major component of the

operational cost that includes variable, no-load, and start-up costs of conventional

generators as formulated as the first three terms in (5.1a). By contrast, two new

objective terms veuezh
, vwc

zh
representing the zonal values of upward and downward

operating reserves has been added to the EDUC model. The Z-ORDCs are rep-

resented by the piecewise linear opportunity cost functions of zonal reserves; these

functions are further replaced by decision variables veuezh
, vwc

zh
and a set of linear con-

straints (5.1s) (5.1t) that form a convex basin using the constrained cost variable

technique described in [191]. The parameters in the linearised constraints are ex-

pressed in (5.2a) (5.2b), and further explanations are given in Section 5.4.2. Similar

practice in formulating the relationship between system-wide reserves and risk costs

can be found in [192].

Apart from the new constraints of formulating piecewise linear Z-ORDCs, con-

straint (5.1p) places a lower limit (e.g., 6% of forecasted load plus 10% wind gener-

ation) on the upward operating reserve (both spinning and non-spinning reserve)

at each zone in order to protect the local area from contingencies [193]. Con-

straint (5.1q) is the system-wide N-1 reserve requirement enforcing that the total

available upward reserve is larger than the output plus the upward reserve provided
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by any generating unit. Constraint (5.1r) ensures that both the spinning and non-

spinning reserve supplied by generators accounts for a certain ratio (e.g., 50%) of the

total available upward operating reserve at each zone. Equations (5.1w) define that

the total available upward operating reserves in a zone equal those provided by con-

ventional generators located in the same zone plus the imported reserve and minus

the exported reserve to any other zone. Equations (5.1x) define that the downward

operating reserves in a zone all come from conventional generators located in the

same zone. Constraints (5.1u) (5.1v) set limits on the inter-zonal upward reserve

sharing ruz′
h
,zh

between z′h and zh with a positive or negative direction. We define

reserve delivered out of zone z′h into zone zh as positive, and reserve delivered into

zone z′h out of zone zh as negative. The limit of reserve sharing from zone z′h to zh,

denoted as r̄z′
h
,zh, can rely on off-line analysis or expert suggestions [186,194]. Here,

r̄z′h,zh is treated as a variable dependent on the line flows given in (5.1y), where δl

equals 1 if B+
l ∈ zh(b), otherwise δl equals 0 if B−

l ∈ zh(b).

The remaining constraints have been commonly included in the traditional single-

zone deterministic UC formulation. Constraint (5.1b) is enforced to restore the nodal

power balance at any time. Equation (5.1c) are linearised power flow equations.

Transmission constraints (5.1d) prevent over-loaded lines. Constraints (5.1e) set

the limits of the voltage angles, and constraint (5.1f) sets the voltage angle at the

reference bus as zero.

Constraints (5.1g)–(5.1l) include generation limits, on/off switch, on/off state,

minimum-up time, minimum-down time, and the hourly ramping constraints, as

in [195]. Constraints (5.1m) specify the limit of each research type ρ at the gen-

erator level, denoted as R
τρ
c . For example, the maximum amount of the upward

and downward spinning reserve is set as one sixth of its hourly ramping limit if the

unit is committed. The unit-level limit of the upward and downward non-spinning

reserve is set as half of its hourly ramping limit, for a fast generator at all times and

for a slow generator only when it is committed. Constraints (5.1n) and (5.1o) ensure

that the total amount of power output and upward/downward operating reserves

meets the minimum and maximum generation limitations as in [195, 196].

In the formulation (5.1), η, α are the dual variables for constraints (5.1b) and (5.1p)–
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(5.1y), respectively. The decision variables are reserve sharing ruzh,z′h
, as well as the

generation output, the reserve provision, the commitment, the start-up and the

shut-down variables of conventional generators, denoted as pc,h, r
ρ
c,h, uc,h, vc,h, yc,h,

respectively.

5.2.2 Traditional deterministic UC model

The model formulation of a traditional single-zone deterministic UC model is ex-

pressed below in (5.3), with an objective of minimizing the market-wide operational

cost, subject to generator-level and system-level constraints.

min
∑

h∈H

∑

c∈C

[V Cc(uc,hP c + pc,h) + FCcuc,h + SUcvc,h] , (5.3a)

s.t. (5.1b)−−(5.1o) (5.3b)

(αρ,s ≥ 0) : rρ,s ≥ Rρ,req, ∀h ∈ H, ρ ∈ {su, sd, nsu, nsd} (5.3c)

(αs
c,h ≥ 0) :

∑

c′∈C

rsuc′,h + rnsuc′,h ≥ P cuc,h + pc,h + rsuc,h + rnsuc,h , ∀h ∈ H, c ∈ C (5.3d)

(αρ,so ≤ 0) : Oρ
∑

c∈C

(rsuc,h + rnsuc,h ) <=
∑

c∈C

rρc,h, ∀h ∈ H, ρ ∈ {su, nsu} (5.3e)

5.2.3 Energy and operating reserve pricing

Both the EDUC model formulated as (5.1) and the traditional deterministic UC

model as in (5.3) are mixed integer programs. After solving the mixed integer

program, integer variables are fixed as constants and so the mixed integer program

is replaced with a linear program, from which the energy and operating reserve prices

are derived. In the day-ahead energy and operating reserve market, the locational

market prices (LMP) at each bus b and the reserve market clearing price (RMCP) of

each type ρ provided by resource c are cleared together and calculated on an hourly

basis.

The LMP is defined as the marginal cost (i.e., the change in the objective func-

tion) of supplying an extra unit (e.g., MWh) of electric energy at a specific bus b

while considering the marginal cost of electric suppliers and the physical transmis-

sion network [197]. Similarly, the RMCP is the marginal cost of providing an extra

unit (e.g., MWh) of a specific reserve product ρ from a resource (here referring to a
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conventional generator) c while considering the reserve requirements. Based on the

marginal pricing concept [198], the LMPs or the RMCPs are derived from the dual

variables (i.e., the Lagrange multipliers) of energy or reserve related constraints in

the linear program in replace of the UC program, respectively. The dual variable of

a constraint gives the change in the optimal value of the objective function (profit

or cost) due to the relaxation of a given constraint (i.e., through a small change in

the constraint parameter).

Regarding the EDUC model, the LMPs and RMCPs are calculated using,

LMPb,h = [λb,h] +







∑

l

(−ηl,h
∂fl,h
∂Db,h

) +
∑

zh,z
′

h
∈Z

(

αzz
z′
h
,zh

∑

l′∈Iz′
h
,zh

∂fl′,h
∂Db,h

)






, (5.4)

RMCP ρ
c,h =



























∑

zh|c∈zh(c)

[

∑

c′∈C

αu,sq
c′,h − Oραρ,ro

zh
+ αρ,zq

zh
− αu

zh
+
∑

k(α
eue
zh,k

Aeue
zh,k

)

]

,

if ρ = {su, nsu},
∑

zh|c∈zh(c)

[

αρ,zq
zh

− αd
zh

+
∑

q(α
wc
zh,q

Awc
zh,q

)
]

, if ρ = {sd, nsd}.

(5.5)

The LMP shown in (5.4) is defined for each bus location b. Ignoring marginal

losses, the LMP includes two cost components of energy and congestion [190,199] as

shown in the two pairs of square brackets. The dual variable of the power balance

equation (5.1b), λb,h, represents the additional energy cost of supplying one extra

unit of load demand at bus b. The derivative
∂fl,h
∂Db,h

= Jl,b represents the PTDF

between bus b and line l, that is, sensitivity of the power flow through the lth

transmission line to the load level at bus b. The dual variable of (5.1d), ηl,h, denotes

sensitivity of the congestion cost to the transmission limit of line l. The dual variable

of (5.1y), αzz
z′
h
,zh
, indicates sensitivity of the congestion cost to the transmission limit

of the interface between two reserve zones. When one or more of power flows are

constrained, LMPs will vary among buses. Otherwise, LMPs are the same at all

buses.

The RMCP of each generator defined in (5.5) is determined by the dual variables

of constrains (5.1p)–(5.1x) relating to the decision variables ruzh, r
d
zh

as well as the

coefficients of ruzh, r
d
zh

in these constraints. It is shown that RMCP ρ
c,h are identical

when operating reserve resources c are located in the same reserve zone. Even when
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there are sufficient supply of reserves (no reserve shortage or energy re-dispatch),

reserve prices might not be zero due to the cost of risks reflected by the Z-ORDCs,

as expressed as
∑

k(α
eue
zh,k

Aeue
zh,k

) in (5.5).

Regarding the traditional single-zone deterministic UC model, the LMPs and

RMCPs are derived from the following equations,

LMP s
b,h = [λb,h] +

[

∑

l

(−ηl,h
∂fl,h
∂Db,h

)

]

, (5.6)

RMCP ρ,s
c,h =











[

∑

c′∈C

αs
c′,h

]

+ αρ,s −Oραρ,so, if ρ = {su, nsu}

αρ,s, if ρ = {sd, nsd}

(5.7)

The LMP shown in (5.6) includes the energy cost and the congestion cost that

are the same as the first two components in (5.4). The price of upward spin-

ning/nonspinning reserve shown in (5.7) is determined by the dual variables of the

system-wide requirement (5.3c), the N-1 constraint (5.3d) and the ratio of upward

reserve (5.3e). The price of downward spinning/nonspinning reserve shown in (5.7)

is determined by the dual variables of the system-wide requirement (5.3c).

5.3 Uncertainty modelling

Modelling uncertainty in load, wind generation and generator availability is the

first stage of this work. The uncertainty models will further be used in the zonal

partition and the development of Z-ORDCs.

Load uncertainty mainly arises from the day-head forecasting errors. The nor-

malized day-ahead forecasting error at each bus usually has been modelled as inde-

pendent, identically and normally distributed random variables with mean zero and

a given standard deviation, such as in [177, 200]. This uncertainty model of load

forecasting errors is sufficient for the purpose of our work, because our intention is to

present the methodology of developing zonal, dynamic and elastic reserve demand

curves that is general to all types of forecasting models of load and wind generation.

Uncertainty in the availability of a conventional generator is mainly due to

forced outages. The cumulative distribution function of the total available conven-

tional generation is discrete and represented by a capacity outage probability table
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(COPT). The COPT is used for the probability density distribution of the random

change in the power system while developing the Z-ORDCs (see Section 5.4.2). The

COPT does not capture the chronological characteristics of generator outages, while

a chronological model such as a two-state Markov process model of generator outages

produces more realistic results in short-term power system operational planning. To

account for the mismatch between the real-world and the forecasted generator avail-

ability, a two-state Markov process model is chosen for generating post-contingency

scenarios of generator outages in the real-time market, as described in Section 5.4.1.

For more details on the Markov model of generator outages, we refer to [201].

The day-ahead forecast uncertainty of wind power has been characterized as

a normal distribution in [202, 203]. In comparison with the normal distribution,

a beta distribution is more appropriate to model the normalized wind generation

p̂ww,h that lies within the interval [0, 1] [204], because the beta distribution accounts

for its bounded and fat-tailed nature [204–206]. Here, the mean is assumed to be

the forecasted wind power generation and the standard deviation depends on the

forecasted level of wind power with respect to the rated wind power, as in [204],

µ(p̂ww,h) = p̂ww,h = Pw
w,h/C

w,

σ(p̂ww,h) = 0.03 + 0.15(Pw
w,h/C

w).
(5.8)

Correlation, including that between load/wind uncertainty at different locations

and that between load and wind uncertainty is not considered in our current work,

but it will be explored in terms of improving the method of reserve zone partitioning

by accounting for the correlation of post-contingency power flows (as described in

Section 5.4.1) in order to match closer to the real-world.

5.4 Development of ZORDCs

5.4.1 Determination of reserve zones

The matrixK formed by PTDFs can be used by SOs for defining reserve zones, each

comprising the buses of similar PTDFs and hence similar sensitivity to line flows.

A finer metric “Weighted PTDF” was proposed in [185] to emphasize critical lines
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(i.e., transmission bottlenecks) and diminish the least important lines, especially in

the context of stochastic operating conditions due to large amounts of wind. A new

partitioning method of reserve zones is presented here.

Spectral clustering approach

Spectral clustering, as one of the graph theory-based methods [207] is employed to

separate points that is represented in form of the similarity graph G = (V, E) with

vertices V and edges E . In the reserve zone partitioning, there are a set of buses

b1, . . . , bNb
representing vertices and some notion of similarity (weights of the edge of

two vertices are connected) Kbb′ := K(b, b′) ≥ 0 between all pairs of buses bi and bj .

The goal of clustering is to divide the buses into several groups such that buses in

the same group are similar and buses in different groups are dissimilar to each other.

Spectral clustering uses the eigenvectors of a graph Laplacian matrix derived from

the data, which changes the representation of a large amount of data from the high-

dimensional original space to a low-dimensional space so that clusters can be easily

detected in the new representation. Whereas, traditional k-means clustering deals

with the data points directly in the original data space. By using a low-dimensional

representation of the data space, spectral clustering often performs more efficient

than traditional k-means clustering, even for large data sets [208].

The difficulty in implementing the spectral clustering lies in choosing a sparse

similarity graph. Once the similarity graph is in hand, the remaining work of spectral

clustering is to solve a simple linear problem, as opposed to k-means, where there

are problems of getting stuck in local minima or finding the optimal initializations

by restarting the algorithm for several times. Spectral clustering can be used in very

general problems with non-convex data that k-means is incapable of dealing with;

this is particularly useful in delivering nested reserve zones.

Spectral clustering uses eigenvectors of matrices derived from the similarity ma-

trix of points, thereby projecting the original high-dimensional data into a low-

dimensional space that can be easily clustered. For details on the theory of spectral

partitioning, see [208]. The similarity matrix K := (Kbb′)b,b′∈B used in spectral
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clustering is symmetric with its values defined as:

Kbb′ =







exp
(

− ω‖Kb −Kb′‖2/2
)

if b 6= b′

0 if b = b′,

where,

ω‖Kb −Kb′‖
2 =

∑

l∈L

ωl(Kbl −Kb′l)
2, (5.9)

where ‖Kb − Kb′‖ is the Euclidean distance between any two buses b, b′; and vec-

tors Kb and Kb′ denote the corresponding columns of K in Nl-dimensional space.

Therefore, similarity of buses will be examined by comparing their distances using

the metric of Euclidean distance. The line vector ω := {ωl} assigns larger weights

to critical lines. Small values of Kbb′ will be given to two nodes whose injections

have similar influences on those identified critical lines. The above definition of K

follows Gaussian kernel similarity function [208].

The objectives of clustering are to find a partition of the similarity graph such

that 1) the edges between different groups have a very low weight (which means

that the PTDFs of buses in different zones are dissimilar to each other); and that

2) the edges within a group have high weight (the PTDFs of buses in the same

cluster are similar to each other). To satisfy both objectives, a spectral clustering

algorithm based on the normalized graph Laplacian described in [208] is employed

(see Appendix A.2 for more details). The normalized graph Laplacian matrix is

defined as

Lsym := D−1/2LD−1/2 = I−D−1/2KD−1/2, (5.10)

where D is the degree matrix defined as the diagonal matrix with the degrees

d1, . . . , dNb
with di =

∑

j=1

NbKij , and L := D−K is the unnormalized graph Lapla-

cian matrix.

Given the input of the similarity matrix K ∈ RNb×Nb , the outputs are bus clus-

ters B1, . . . , BNz with Bz = {b|yb ∈ Cz}. To enforce clustering stability, the number

of clusters Nz is chosen such that all the first Nz eigenvalues λ1, · · · , λNz of the nor-

malized Laplacian matrix are very small but the λNz+1 is relatively large. That is,

find Nz that maximizes the eigengap |λNz+1 − λNz |; this is justified by perturbation

theory or spectral graph theory [208]. Basically, the first Nz eigenvectors of the
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Laplacian matrix carry all the information about the Nz connected components in

the graph that we wish to cluster, exactly one eigenvector possessed by each con-

nected component. Hence, the first Nk eigenvalues represent the features of the Nz

connected components. According to the perturbation theory, spectral clustering

work better with larger eigengap, because the eigenvectors of the idea case (where

the graph has Nz connected components) and the perturbed case (where the Nz con-

nected components are not completely disconnected) will be closer. The eigengap

heuristic works well when the data contains very well pronounced clusters. In am-

biguous cases where there is no well-defined gap (e.g., there exist approximately the

same eigengap between all eigenvalues), the eigengap heuristic returns ambiguous

results as other clustering methods do.

Determination of line weights

Prior to implementing spectral clustering, the line weight vector ω in (5.4.1) and (5.9)

is determined. The procedure of calculating line weights starts from generating a

considerable number of post-contingency scenarios of hourly load and wind gener-

ation from their day-ahead forecast distributions as well as generator outages from

two-state Markov process models using sequential Monte Carlo simulations, then

performs the optimal power flow that determines the least-cost conventional gen-

eration scheme for each post-contingency scenario s ∈ S, and finally derives the

post-contingency power flow f̂l,s and the lagrangian multiplier η̂l,s assigned to each

line constraint.

The optimal power flow procedure used here is a linear program, as follows,

min
∑

c∈C

V Ccp̂c,s + V wc
∑

w∈W

p̂wc
w,s − V lol

∑

b∈B

p̂lsb,s, (5.11a)

s.t.
∑

l∈L|B+

l
=b

f̂l,s −
∑

l∈L|B−

l
=b

f̂l′,s +
∑

c∈Cb

p̂c,s −
∑

w∈Wb

(Pw
w − p̂wc

w,s) = Db − d̂lsb,s, ∀b ∈ B

(5.11b)

0 ≤ p̂wc
w,s ≤ Pw

w , ∀h ∈ H, w ∈ W (5.11c)

f̂l,s = Bl(θb − θb′), ∀h ∈ H, l = (b, b′) ∈ L (5.11d)

− F̄l ≤ f̂l,s ≤ F̄l, ∀l ∈ L (5.11e)
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P̄c ≤ p̂c,s ≤ P c, (5.11f)

where the objective of optimal power flow is to minimize the generation costs and

the penalty costs of involuntary load shedding and wind curtailment. Note that

only committed generators in the scheduling stage are accounted for in the optimal

power flow procedure.

Instead of defining a utilization metric (e.g., ωl := µ(s,
|f̂l,s|

F̄l
) + σ(s,

|f̂l,s|

F̄l
)) as line

weights as in [185, 186], both line utilization and congestion cost are considered in

the definition of line weights in (5.13). The use of line weights identifies not only

the often-congested lines but also the critical lines whose congestion is relatively

expensive to manage. The first term in (5.13) defines the line utilization as the

ratio of post-contingency power flow to the transmission limit. The second term

in (5.13) uses the dual variable η̂l,s to describe the total added cost of shifting

generation necessary to alleviate the congestion on line l. Like the line utilization,

the congestion cost term is also transformed to the range (0, 1) dividing by the

maximum congestion cost on all lines at any hour. To reflect the relative importance

of line utilization and congestion cost in the definition of line weights, a reasonable

(or preferred) proportion ε ∈ (0, 1) is assumed for line utilization and the remaining

proportion (1− ε) for congestion cost.

ωl = µ(s, ω̂l,s) + σ(s, ω̂l,s), (5.12)

where

ω̂l,s = ε
|f̂l,s|

F̄l

+ (1− ε)
|η̂l,s|

max(l ∈ L, |η̂l,s|)
, ∀l ∈ L, s ∈ S. (5.13)

5.4.2 Development of zonal operating reserve demand curves

The Z-ORDCs are developed here to represent the incremental values of upward

and downward operating reserves in terms of their contributions to the reduction

in the zonal value of expected unserved energy (Z-VEUE) and the zonal value of

expected curtailed wind (Z-VECW).

The Z-VEUE is the product of VOLL and the zonal expected unserved energy
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(ZEUE), expressed as a function of the total upward available reserve,

Z-VEUEzh(r
u
zh
) = V lolE

[

max(0,∆Mzh − ruzh)
]

= V lol

∫ ruzh

0

(x− ruzh)φzh(x)dx,
(5.14)

where φzh(·) denotes the probability mass function of the system imbalances ∆Mzh

at zone zh, that is, the forecasting error of net load minus generator outages, and

E
[

max(0,∆Mzh − ruzh)
]

accounts for the excess of positive system imbalances over

the amount of upward operating reserves provided by conventional generators.

Similarly, the Z-VECW denotes the product of the value of curtailed wind and the

expected curtailed wind energy and is expressed as a function of the total downward

available reserve as follows,

Z-VECWzh(r
d
zh
) = V wcE

[

max(0,−∆Mzh − rdzh)
]

= V wc

∫ −rdzh

−∞

(−x− rdzh)φzh(x)dx,
(5.15)

where E
[

max(0,−∆Mzh − rdzh)
]

denotes the expected curtailment of wind gener-

ation, that is, the excess of negative system imbalances Mzh over the amount of

downward operating reserves rdzh provided by conventional generators.

With sufficient regularity assumptions, the Z-VEUE as a function of zonal up-

ward operating reserve is linearised at some input points ruzh,k where the correspond-

ing output points are veuezh,k
. The same practice is applied to the Z-VECW. These

piecewise linear functions are expressed as,

veuezh,k
= Aeue

zh,k
ruzh,k +Beue

zh,k
, ifrdzh,k ≤ rdzh ≤ rdzh,k+1, ∀k ∈ K

vwc
zh,q

= Awc
zh,q

rdzh,q +Bwc
zh,q

, ifrdzh,q ≤ rdzh ≤ rdzh,q+1, ∀q ∈ Q.
(5.16)

from where the coefficient and constant parameters are derived as shown in (5.2a) (5.2b).

The linearised constraints (5.1s) (5.1t) are derived by employing the constrained

cost variable technique as described in [191, 192]. By incorporating the Z-ORDCs

into the EDUC model, a tradeoff is made between normal energy dispatch and

reservation of generator capacities as well as interface capacities.

134



5.5 Case study

This section evaluates system performances given different reserve policies (single,

seasonal and dynamic zones). The proposed EDUC model is tested on a modified

IEEE RTS-73 bus 3-area test system used in [186,194]. The system has 73 nodes, 96

conventional units, 9 wind farms, 117 lines, and 51 loads. Wind farms with 3900 MW

of capacity are placed at nodes 2, 14, 16, 20, 23, 26, 37, 44, 47. Modifications to each of

the three identical areas of the test system follow [194,209]: line (11−13) is removed;

480 MW of load is shifted from nodes 14, 15, 19 and 20 to node 13; and the capacity

of line (14 − 16) is decreased to 350 MW. A study on the system performances is

conducted at each day of the peak load week (week 51). A parameter ε of 0.5 is

chosen in the determination of line weights. The hourly day-ahead load forecasting

error at each bus is standardised as the proportion of the central forecast, and the

standardised load forecasting error is modelled as N(0, 0.052). Given the probability

distribution functions of uncertainty in load and wind generation (as in (5.8)) at each

bus as well as the probability mass function of available conventional generating

capacity (described by the COPT), the probability mass function of the aggregated

system imbalances at each zone, φzh(·), can be calculated using convolution under

the independence assumption.

5.5.1 Market setup

In the day-ahead market of energy and operating reserves, reserve zones are firstly

determined using the spectral clustering approach as described in Section 5.4.1,

the EDUC is solved to produce the schedules, the cost information as well as the

energy and reserve prices (i.e., LMPs and RMCPs) calculated on an hourly ba-

sis using (5.4) and (5.5). Afterwards, the operations are simplified to a 24-hour

security-constrained unit commitment (by removing all the relevant objective terms

and constraints to operating reserves in (5.1)) that produces the dispatch of gener-

ators and the additional commitments of fast generators in the real-time market. A

total number of 500 post-contingency scenarios (i.e., hourly load, wind generation,

and generator outages) are simulated on each day, representing the stochastic op-
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erational conditions in the real-time market. A pricing model is then run by fixing

the commitment variables of fast generators to derive the real-time LMPs.

In order to investigate the impact of some reserve policies on system perfor-

mances, comparisons are made between the case of traditional single-zone deter-

ministic UC without incorporating ORDCs (C-T), of EDUC with seasonal zones

(C-S), of EDUC with dynamic (hourly) zones determined by the spectral clustering

approach (C-DS), and of EDUC with dynamic (hourly) zones determined by the

k-means clustering (C-DK) approach that has been used in [185, 186]. In case C-

S, seasonal zones are determined using the k-means clustering approach applied to

weights that are based on average line utilizations over a season, as in [210].

5.5.2 Comparison of reserve zone partition between spectral

clustering and k-means clustering

Different reserve zone partitioning methods may result in different clustering results.

First, seasonal zones are determined by k-means clustering, in which the weighted

PTDF is used as the centrality measurement and the weights are based on average

line utilizations over a season as defined in [185]. Second, the k-means clustering

based method proposed in [185] is used to determine hourly zones, where the number

of clusters is chosen as the number of congested zonal links. Third, the spectral

clustering based method described in Section 5.4.1 is carried out and is compared

with k-means clustering.

Fig. 5.1 shows the three seasonal reserve zones. Figures 5.2–5.3 show different

reserve zone partitioning results by spectral clustering and k-means clustering at

selected two hours in peak load week. At hour 7 on day 351, the wind penetration is

as high as 56.1%, the 3 reserve zones identified by spectral clustering and k-means

clustering are slightly different, as shown by Figs. 5.2, 5.3.

The advantage of our proposed reserve zone partitioning method is not clearly

seen from these clustering results, but will take effect in system performances pro-

duced by the EDUC model, as will be discussed in the following subsection.
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Figure 5.1: Three seasonal reserve zones (in colored shades).
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Figure 5.2: Three reserve zones (in colored shades) identified by spectral clustering at hour 7 on

day 351.
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Figure 5.3: Three reserve zones (in colored shades) identified by k-means clustering at hour 7 on

day 351.
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5.5.3 Impact of reserve policies on system cost and reliabil-

ity

Simulations are run on each day of the peak load week in order to study the impact

of reserve policies (e.g., single, seasonal or dynamic reserve zones) on the operational

cost of conventional generators, and on system reliability indicated by the amount

of load shedding.

Table 5.1 presents averaged daily results of operational costs and load shedding

over 500 scenarios obtained in the four cases (C-T, C-S, C-DS and C-DK). The

operational cost of conventional generators indicates system economics while the

information of load shedding is used as an indicator of system reliability.

In the peak load week, the operational costs of the traditional UC and the model

proposed in our work (cases C-T and C-DS) are the lowest among the four cases,

followed by the operational cost achieved in case C-DK which is on average lower

than that in case C-S. The operational cost here accounts for the start-up costs

of conventional generators committed in the day-ahead market and those of fast

generators committed in the real-time market, as well as the variable and fixed

operational costs of conventional generators in the real-time markets. In terms of

the daily operational cost, the proposed reserve zone partitioning method based on

spectral clustering is more favorable than the seasonal zones and the dynamic zones

based on k-means clustering as used in [185, 186].

In the column of load shedding in each case, the first number gives the expected

amount of load shedding, the second number in the bracket the largest amount

of load shedding, and the index number shows the number of contingencies where

the event of load shedding happens. Due to the introduction of reserve zones and

the incorporation of Z-ORDCs, both the expected and the largest amount of load

shedding have been significantly reduced in cases using the EDUC model (i.e., C-

S, C-DS, C-DK), compared with case C-T using the traditional UC model. In

the traditional UC, the low operational cost is achieved on the sacrifice of system

reliability. On the three cases C-S, C-DS, C-DK, there seems no direct answer to

the question of which reserve policy adopted is the best in terms of the resultant
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load shedding, because the reliability indicator depends on the day and the wind

penetration. However, on average, the results show that in cases C-DS, C-DK

where a dynamic reserve policy is used, the expected and the largest amount of load

shedding are among the lowest.

A comparison of operational cost and load shedding between the four cases C-T,

C-S, C-DS, and C-DK shows that case C-DS achieves an overall better operational

performance in terms of its on average lower operational cost as well as higher system

reliability.

Table 5.1: Averaged daily results of operational cost and load shedding over 500 scenarios

Day WP a Operational Cost Load Shedding

C-T C-S C-DS C-DK C-T C-S C-DS C-DK

% M$ M$ M$ M$ MWh MWh MWh MWh

351 42.0 1.520 1.521 1.514 1.529 4.3(476)8 2.1(296)12 0.9(173)10 1.1(129)9

352 18.5 2.779 2.789 2.775 2.790 2.1(233)30 0.5(44)19 0.4(43)16 0.4(43)26

353 11.1 3.058 3.055 3.051 3.056 0.8(394)2 0.6(292)2 0.2(84)2 0.3(86)3

354 27.2 2.335 2.448 2.333 2.354 0.5(229)3 0.1(50)1 0.0(0.4)1 0.1(49)1

355 22.1 2.402 2.401 2.401 2.402 1.1(211)9 0.1(19)4 0.0(0.7)2 0.0(0.7)2

356 7.7 2.222 2.234 2.217 2.242 0.0(0)0 0.0(0)0 0.0(0)0 0.0(0)0

357 8.7 2.109 2.111 2.096 2.114 0.0(0)0 0.0(0)0 0.0(0)0 0.0(0)0

Ave 20.9 2.346 2.366 2.341 2.355 1.3(220) 0.5(100) 0.2(43) 0.3(44)

a WP is the abbreviation of wind penetration that is defined as the ratio of forecasted

daily wind energy to forecasted daily load.

5.5.4 Market implications of reserve policies

After running the UC models and the pricing models in the day-ahead market and

the real-time market, day-ahead LMPs and RMCPs as well as contingency-specific

real-time LMPs are determined. A two-settlement policy as described in [190, 193,

211] is used to calculate energy and reserve revenues, load payments and uplift

payments. After the generators’ offers are cleared in the day-ahead market, the extra

amount of energy cleared in the real-time market is charged from load consumers

and paid to suppliers at the real-time LMP. Vice versa, the reduced amount of
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energy cleared in the real-time market is charged from suppliers and paid back to

load consumers at the real-time LMP. The uplift component is paid if at the end of a

day, a generator’s start-up and no-load costs are not covered by any energy revenue

in addition with reserve revenue it receives. The operating reserve providers are paid

at the RMCP if cleared in the day-ahead market, but may not be dispatched in the

real-time market. Contingency-specific disqualification can be made to operating

reserves that are not deliverable in the real-time market as described in [186].

Table 5.2: Averaged daily results of energy and reserve revenues over 500 scenarios (millions $)

Day WP Energy Revenue Reserve Revenue

C-T C-S C-DS C-DK C-T C-S C-DS C-DK

351 42.0 2.252 2.287 2.396 2.322 0.081 0.199 0.235 0.221

352 18.5 3.816 4.427 4.244 4.415 0.119 0.234 0.217 0.223

353 11.1 5.133 6.022 5.661 6.156 0.094 0.361 0.261 0.376

354 27.2 3.154 3.369 3.224 3.286 0.090 0.143 0.128 0.142

355 22.1 3.385 4.067 3.606 3.886 0.103 0.275 0.236 0.247

356 7.7 3.246 3.330 3.252 3.336 0.056 0.261 0.234 0.258

357 8.7 2.774 3.219 3.084 3.124 0.095 0.254 0.171 0.217

Ave 20.9 3.394 3.817 3.638 3.789 0.091 0.247 0.212 0.241

Table 5.2 compares the impacts of different reserve policies (i.e., single, seasonal

and dynamic reserve zones) and UC models on averaged daily results of conventional

generators’ energy and reserve revenues. The three cases using the EDUC model

incorporating Z-ORDCs produce higher energy and reserve revenues than the case

using a traditional deterministic UC model. However, there is no general conclu-

sion on whether a dynamic reserve policy or a certain reserve partitioning method

increases or decreases wholesale prices. The relative outcomes of energy and reserve

revenues among the three cases where an EDUC is adopted depend on the day and

the level of wind penetration. On the peak load week, the case adopting our pro-

posed reserve partitioning method (i.e., C-DS) produces on average lower energy and

reserve reserves than the cases adopting seasonal zones or dynamic zones partitioned

by k-means clustering.
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In the EDUC model, the demand curve of operating reserves is represented by

piecewise linear cost functions that approximate the value of expected unserved en-

ergy or the value of expected curtailed wind corresponding to the level of operating

reserves. These cost functions create a day-ahead price adder to wholesale prices

(including energy and reserve prices) in the day-ahead energy market, aiming to

improve the scarcity price signal. More specifically, wholesale prices will increase

automatically as available operating reserves decrease, which happens when electric-

ity demand becomes extremely high or for other reasons (e.g., generator outages),

there is not enough generation to maintain needed operating reserves. A distinct

feature of ORDCs is that even when the reserve requirements are not violated, there

may be a price paid to available operating reserves. By contrast, in the traditional

deterministic UC model, the reserve demand curve is a step function and the reserve

price of a certain type equals to the dual variables of the corresponding system-wide

reserve requirement; this price does not reflect the marginal value of operating re-

serves in avoiding events of load shedding and wind curtailment. Energy prices are

coupled with reserve prices in UC models with a co-optimization of energy and op-

erating reserve. In general, the inclusion of the Z-ORDCs increased the LMPs at

nearly all buses for the peak load week considered.

Table 5.3: Averaged daily results of load and uplift payments over 500 scenarios (millions $)

Day WP Load Payment Uplift Payment

C-T C-S C-DS C-DK C-T C-S C-DS C-DK

351 42.0 3.628 3.716 3.965 3.758 0.056 0.015 0.009 0.016

352 18.5 4.624 5.405 5.255 5.375 0.278 0.176 0.087 0.110

353 11.1 4.632 5.687 5.548 5.813 0.144 0.017 0.012 0.023

354 27.2 4.308 4.573 4.365 4.464 0.093 0.088 0.044 0.065

355 22.1 4.254 4.817 4.264 4.641 0.091 0.020 0.018 0.018

356 7.7 3.533 3.601 3.515 3.605 0.279 0.002 0.001 0.008

357 8.7 3.223 3.503 3.516 3.508 0.319 0.018 0.015 0.018

Ave 20.9 4.029 4.459 4.347 4.452 0.165 0.048 0.027 0.037
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Table 5.3 compares the load payment and uplift payment in the four cases.

Generally, the load payment is increased and the uplift payment for conventional

generators is reduced when Z-ORDCs are implemented in system operations, be-

cause of the increased average energy and reserve prices. Among the three cases

where the EDUC model is used in the day-ahead market operations, the one with

dynamic reserve zones partitioned by spectral clustering as proposed in our work

produces on average lower load payment and uplift payment, which is preferable

from the perspective of market efficiency.

5.6 Chapter summary

Flexibility of conventional generators provided by standby operating reserves is valu-

able in balancing random disturbances, particularly in a transmission network inte-

grated with a considerable amount of uncertain wind power. The zonal operating

reserve demand curves are incorporated in the EDUC model to reflect the forecasted

values in reducing the cost of expected unserved energy and curtailed wind of op-

erating reserve. The new reserve pricing scheme for the EDUC model is proposed;

this settlement scheme includes a price component for zonal reserves introduced by

operating reserve demand curves. A spectral clustering approach is employed to de-

termine the optimal number of zones and to define reserve zones at each scheduling

hour in the day-ahead market.

Simulations on the IEEE RTS-73 test case show introducing dynamic reserve

zones improves the deliverability of operating reserves compared with using the

single zone and seasonal zones in terms of the improved system reliability. Im-

plementing appropriate Z-ORDCs in market operations incentivises the availability

of operating reserves in terms of increased reserve revenues, which contributes to

the flexible and reliable system operations, especially in power systems with large

amounts of VG. It is also shown that the spectral clustering approach proposed

in our study works well in delivering reserve zones which contribute to improving

system reliability and operational efficiency.
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Chapter 6

Discussion and Conclusions

In this chapter, we briefly summarize main research results regarding the effects

of different market designs or incentives on long-term generation investments and

short-term power system operations. To achieve these results, our work has been

divided into two parts – the application of Bayesian methodology to a LTGI model

and the introduction of zonal operating reserve demand curves to a deterministic

UC model. We argue that much can be gained by combining the two models and

improving the Bayesian methodology for addressing the resultant computational

challenge. We will discuss future directions of the methodological research arising

from current power system challenges and the computer models developed for better

understanding of these issues and guiding of electricity market designs.

6.1 General discussion of results

6.1.1 Bayesian application to the LTGI problem

In the first part of the thesis (Chapter 2-4), we provided a review of evolving elec-

tricity markets and LTGI models, and emphasized the key role that different sources

of uncertainty play in LTGI models that are used as a decision-support tool for real-

world analysis. We then presented a Bayesian framework for evaluating the impacts

of two mainstream wholesale market designs (e.g., energy-only market, capacity

market) on generation investments and system adequacy based on a LTGI model
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developed in [4, 13]. In particular, we showed for the first time how Bayesian emu-

lation enables very efficient model calibration, uncertainty analysis and sensitivity

analysis of a complex LTGI model while systematically managing various sources of

uncertainty in the model.

LTGI models, incorporating very complex formulations of the electricity price

formation and the investment decision-making logic (and even more complex mod-

els that include detailed operational modelling) have been widely used for making

generation projections and designing energy policy to maintain system reliability. A

great concern of model users (e.g., investors and policymakers) is how well the model

represents the real-world and how much credibility can be assigned to the model

outputs. A second concern is that running such models of decision-making under

uncertainty is often very computationally demanding, yet hugely important for en-

ergy policy-making. Particularly, a large number of model evaluations are needed

for uncertainty analysis and sensitivity analysis in order to give robust answer to

questions about the impact of energy policies on future power system investments

and reliability. The Bayesian method allows these two concerns to be addressed.

In the Bayesian approach, an emulator (a Gaussian Process model) is fitted to

a limited number of model evaluations at a sparse coverage of input space that are

possible to obtain. To validate and assess the adequacy of a Gaussian process emula-

tor, some diagnostics are carried out by comparing simulator outputs and emulator

outputs at some test points (a new set of design points used for validation purposes).

The validated emulator represents uncertainty in the relationship between a set of

uncertain inputs and the outputs of interest of the LTGI model. More specifically,

the emulator quantifies the uncertainty in the output where the simulator is not

evaluated. In principle, the Bayesian method is capable of addressing all sources

of uncertainty that propagate into uncertainty in the model output. Three major

sources of uncertainty, namely, input uncertainty (unknown precise values for model

inputs), structural uncertainty (imperfect science in the model equations, and errors

in model structure or logic) and functional uncertainty (unknown model outputs at

inputs where the model has not been run) have been accounted for in our work.

All of the following were accomplished in case studies on the representative Great
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Britain exemplar:

(1) In model calibration, the posterior distributions of calibration parameters are

derived from the product of their prior beliefs and the likelihood of historical

observations given the calibration parameters. Meanwhile, the model discrep-

ancy is inferred from observations and is then applied to future projections.

(2) In making predictions, probabilistic predictions of model outputs (e.g., gen-

eration projections and LOLEs) are made by the calibrated and discrepancy-

adjusted emulator while accounting for input uncertainty, structural uncer-

tainty and functional uncertainty, as opposed to a point estimate (or a deter-

ministic scenario) of model outputs produced by the simulator.

(3) Through uncertainty analysis of the maximum LOLE over a future planning

horizon, the robustness of two market designs (i.e., an energy-only market

design and a capacity market design) are compared given different scenarios

of market design parameters. The robustness is indicated by the probability

of the maximum LOLE meeting a reliability standard (e.g., no larger than

3 hours per year). Simulation results show that a capacity market design

generally is more robust to uncertainties than an energy-only market design.

(4) Through variance-based sensitivity analysis, under both an energy-only mar-

ket and a capacity market, the energy price cap is identified to be the most

important model input that affects investment decisions and system reliability

in terms of how much of the output variance is attributed to each contributory

source of uncertainty.

6.1.2 Zonal operating reserve demand curves incorporated

in the enhanced deterministic unit commitment model

In the second part, we developed an enhanced deterministic UC model incorporating

zonal operating reserve demand curves and compared system performances resulted

from different choices of reserve policies (e.g., single, seasonal or dynamic zones) and
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of reserve zone partitioning methods. The enhanced deterministic UC model is tai-

lored for a transmission network integrated with a considerable amount of uncertain

wind power, and is aiming to produce better signals of energy and operating reserve

prices as incentives for flexible resources.

An improved dynamic zone partitioning method based on spectral clustering is

employed to determine the optimal number of zones and to define reserve zones at

each hour, depending on the post-contingency line flows. The clusters of reserve

zones produced by spectral clustering are compared with that derived from k-means

clustering in the case study of the IEEE-73 bus system. In general, the proposed

determination of reserve zones is flexible in varying the number and the geographic

feature of zones at each hour according to the forecasted day-ahead operating con-

ditions. Once the reserve zones are identified, the zonal operating reserve demand

curves can be developed as piece-wise linear approximations to the zonal value of ex-

pected unserved energy and/or expected curtailed wind that is a function of upward

and/or downward operating reserves.

In the IEEE-73 case study, the simulation results on the peak load week are

compared between four cases, namely, the case of traditional single-zone determinis-

tic UC without incorporating ORDCs, the case of enhanced deterministic UC with

seasonal zones, the case of enhanced deterministic UC with dynamic (hourly) zones

determined by the spectral clustering approach proposed in our work, and the case of

enhanced deterministic UC with dynamic (hourly) zones determined by the k-means

clustering approach proposed in [185].

The indicators for operational efficiency include the amount of load shedding

and the operational cost. The case using our proposed enhanced deterministic UC

model together with the reserve zone partitioning method has an improved opera-

tional efficiency in terms of its on average lower operational cost and higher system

reliability than the other three cases. The simulation results on the operational effi-

ciency imply that dynamic and zonal operating reserve demand curves enable more

efficient utilization of upward and downward operating reserves than the methods

of single zone, seasonal zones and dynamic zones produced by k-means clustering.

In terms of the market implications of reserve polices, the energy revenue, reserve
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revenue and uplift payment for conventional generators, as well as load payment are

compared among the four cases. Generally, the introduction of zonal operating re-

serve demand curves into the enhanced deterministic UC model improves scarcity

pricing of energy and locational operating reserves since the produced reserve mar-

ket clearing prices reflect the risk cost of the system. Therefore, there is an increase

in the energy and reserve revenue and a decrease in the uplift payment for conven-

tional generators in cases where the enhanced deterministic UC model is employed.

The decline in the uplift payment implies less distorted market signals, which is

desirable in terms of market efficiency. On average, the enhanced deterministic UC

model produces higher load payment but provides improved reliability services for

consumers.

6.2 Future directions of the methodological re-

search

6.2.1 Extensions and challenges of Bayesian emulation

Long-term generation investment models of multiple outputs

In the Bayeisan application to the LTGI problem, it is assumed that the simulator

produces three different outputs (e.g., time series of installed thermal capacity, time

series of LOLEs and the maximum LOLE), or that we are only interested in three

outputs. Covariances between these outputs are ignored, and so the outputs are em-

ulated individually using independent or uncorrelated emulators. The independence

assumption or transformation is one of the most common simplification techniques

to cope with multiple outputs of the simulator. Under the independence assump-

tion, each output will be predicted separately, reducing the multi-output problem

to several individual single-output problems.

However, joint uncertainty, represented by covariances as well as variances, in

several outputs, sometimes, is of importance for real-world analysis. Improper inde-

pendence assumption could lead to significant over-estimation of output uncertainty

in situations of strong correlation between outputs. For instance, the outputs of in-
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terest in the LTGI model are the installed capacity of each generation technology

and there are correlations between investments in different technologies. Or, when

we are interested in using a combination of the expected unserved energy, the loss-

of-load expectation and consumer costs as the reliability metric, it is desirable to

develop an emulator of multiple outputs and to account for their joint uncertainty.

For questions involving correlated multiple outputs, a multivariate emulator based

on a multivariate GP is an alternative [144]; this is one of the interesting research

directions.

Heterogeneous behaviour of long-term generation investment models

In our existing work on the long-term generation investment problem, the adopted

simulator produces relatively smooth outputs, because there assumes no sudden

change of long-term fuel prices or a political intervention that are enforced as a

model input. When these sudden changes or interventions are taken into account

in the model specification, the simulators may have discontinuous response such as

sudden shifts, or have sharp changes of gradient [133].

The Bayesian emulation approach is widely applicable to various types of simu-

lators where the model output is deterministic [133], stochastic [146], dynamic [212]

or multi-variate [144]. However, the basic GP emulator as used in our work will

very likely smooth out these discontinuities or sharpness, resulting in a locally poor

representation of the simulator. This is because the basic GP emulator assumes

that the response of simulator outputs to its inputs is smooth. Besides, it is a prior

expectation that the simulator does not respond much more significantly to changes

in an input over some parts of the input space than over others. In order to adapt to

the non-smooth or unstable response, GPs with less smooth covariance structures

may be used and they need large numbers of well-designed training data in order

to be developed. Alternatively, new kinds of emulator may be explored to allow for

heterogeneity including discontinuities and heterogeneous variance.
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Dynamic LTGI models

For making long-term decisions on generation investments and energy policy, a com-

mon model type is a dynamic LTGI simulator that produces a time series of the

output of interest. A practical challenge in dealing with a full dynamic model lies in

the high dimensionality of the input space. In the GB case study presented in Chap-

ter 4, we have assumed that the input variables are constants over the long-term

planning horizon in order to limit the dimensionality of the input space, or number

of uncertainties considered. However, the values of control or forcing inputs at each

year or at each stage (e.g., every five years) may vary independently and hence they

require independent variables to represent which results in a higher dimensionality of

the input space. For instance, the energy price cap might change with the increasing

integration of variable generation and the evolving market designs during the future

planning period. The long-term trend of forcing gas prices may be vulnerable to a

sudden change that may aries from the production of shale gas in the international

market.

To deal with the input dimensionality in a dynamic model, we may emulate

the full simulator based on emulating the single-step function by recursively up-

dating a state vector. The full simulator can be represented as {y1, . . . , yT} =

f(y0, u1, . . . , uT , ω1, . . . , ωT , θ), where the inputs are initial conditions y0, a time

series of external control and forcing inputs {u1, . . . , uT , ω1, . . . , ωT} and constant

parameters θ; and the outputs are a time series {y1, . . . , yT}. By contrast, the single-

step function inputs is expressed as yt = f(yt−1, ut, ωt, θ), where the inputs are the

current value of the state variable (i.e., the value of the full simulator output at

the previous time point) yt−1, the associated control and forcing input {ut, ωt} and

constant parameters θ; and the output is the value of the state variable at the next

time point yt.

It can be seen that the dimensionality of the input space of interest is signifi-

cantly reduced for emulating the single-input function, as opposed to emulating the

full function. Moreover, a single-step emulator achieves more accurate numerical

solutions than the full one [213] and is able to make predictions over arbitrary time

steps [133].
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The single-step function approach also offers time savings for dealing with very

computationally expensive simulators in situations where emulation through the full

emulator is infeasible, such as for long-term generation planning models with detailed

UC programs [83, 98]. In Chapter 3, we have adopted a reasonably complex LTGI

model to demonstrate the systematic method of calibration, uncertainty analysis and

sensitivity analysis. A relatively efficient production costing model was built in the

model and no chronological features in operational constraints were captured. Such

a model provides limited implication for problems regarding system flexibility and

its incentives. The single-step function approach opens an opportunity of utilizing a

more comprehensive LTGI model. This research direction will be further discussed

in Section 6.2.2.

High-dimensional LTGI models

For practical policy making, there are situations where the single-step function ap-

proach is not applicable to a LTGI model or where the model has tens or hundreds

of input variables even after using the single-step function approach. With a high

dimensional input space, the number of design points will be considerably large in

order to cover the whole input space. Then, fitting a Bayesian emulator to a large

set of design points will be computationally expensive because there is a large size

of covariance matrix to be dealt with. Correspondingly, there will be a large number

of hyperparameters in the emulator, and so the quality of the fitted emulator may

not be satisfactory.

Efficient algorithms for dimensionality reduction of the input space are of paramount

importance to allow effective probabilistic analysis. Screening, which is also called

feature selection in the machine learning area, can be applied prior to calibration

and uncertainty analysis as part of the emulator construction. Some screening meth-

ods [214], such as screening design methods, ranking methods and wrapper methods

can be used to identify variables with negligible total effects on the output variables.

Screening enables efficient experimental design (fewer design points filling up a lower

dimensional input space) and improves interpretability (less quantities represented

by the remaining variables to be estimated or measured in the future).
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6.2.2 Studying the impacts of spot market designs on in-

vestment incentives

Chapter 5 has studied how reserve policies in a spot market (day-ahead or real-time

market) affect the price signals of energy and operating reserves, and hence influence

system and market efficiency at the operational level. In a planning framework, the

long-term effects of reserve policies on investment decisions or system reliability re-

main to be explored. More detailed operational or pricing modelling (e.g., ramping,

commitment, storage, correlations of renewables and load, advanced pricing rules)

can be included in the LTGI model, and will be associated with higher dimensional

uncertainty (i.e., input variables) and operational constraints. This would permit

study of research questions such as the effectiveness of some new market designs

(e.g., green electricity certificates, CO2 certificates [215]), as well as the impacts on

system reliability and flexibility of the use of energy storages or the demand side

management in the decentralized electricity generation.

An interesting direction of our future work is to employ the single-step function

approach of Bayesian emulation in the framework of approximate dynamic program-

ming (ADP) proposed in [111] to address very complex multi-period optimization

(identifying the values of one or more inputs that will minimise or maximise the

output) or decision analysis (finding an optimal decision according to a formal de-

scription of decision criteria). A relevant question is to identify the optimal scenario

of energy policy that delivers the target reliability for consumers with a certain

credibility level at the lowest level of cost over the long term. Analyses of energy

policies in electricity markets as a sequential decision under uncertainty have been

severely restricted by dimensionality and computational burdens. Some types of

uncertainty are affected by decisions in energy policies or investments. For instance,

the investment decision made by one investor today will change the probability

distribution of next period’s decisions of rival investors if more than one investors

are considered. These rival decisions depend on (largely exogenous) demand levels,

fuel and carbon prices and the (endogenous) plant mix. Hence, there is a need for

capturing endogenous uncertainties in a flexible way rather than using the typical
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modelling techniques such as exogenous scenario trees or probability distributions.

multistage, multi-dimensional stochastic dynamic programming is an natural choice

for modelling the dynamics of power systems as well as endogenous uncertainties,

but it suffers from the so-called curse of dimensionality [216]. In this situation, the

ADP framework can be adopted as a tractable alternative solution to the large-

scale decision-making problems that take place over multiple time periods under

uncertainty.

The central challenge of ADP lies in fitting the value function approximation for

making decisions. The value function captures the information about the future state

of the system while making the decisions for the current time [107]. Lookup tables,

parametric representations (e.g., a linear or nonlinear function), and nonparametric

representations (e.g., neural networks) can all function as the value function. The

emulator, as a parametric statistical model, can also be used to approximate the

true value function that covers the entire state space. The emulation approach is

appealing because of its high efficiency and flexibility in approximating linear and

non-linear functions as well as in dealing with uncertainty, but care has to be put into

the assignments of prior beliefs and the quality of the value function approximation.

6.3 Thesis conclusion

This thesis has for the first time demonstrated the application of Bayesian emu-

lation to the calibration and interpretation of power system planning models. In

addition, this thesis has developed an enhanced deterministic UC model for inves-

tigating the effects of reserve policies on the short-term operational and market

efficiency. These adopted techniques include 1) uncertainty modelling in both the

LTGI problem and the deterministic UC problem; 2) Bayesian emulation, calibra-

tion, uncertainty analysis and probabilistic sensitivity analysis when a LTGI model

is employed for real-world applications; and 3) co-optimization of energy and oper-

ating reserve products in the day-ahead electricity market considering a multi-zone

transmission network.

Our work has introduced methodologies of analyzing the role that market incen-
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tives play on power system reliability and flexibility. Regarding the complex real-

world power system planning and corresponding mathematical models, this thesis

has provided a unified Bayesian framework which accounts for the major sources

of uncertainty and quantifying uncertainty in model outputs in order to make it

transparent to modellers and policymakers alike. The Bayesian framework has a

radical effect on real-world power system modelling and model usage. A prediction

from a Bayesian emulator is a plausible range of a model output with probability

attached rather than a single deterministic scenario of the model output produced

by a deterministic simulator. The emulator provides generally orders of magnitude

higher computational efficiency than the simulator. Thereby, emulators enable for-

mal calibration, uncertainty analysis and sensitivity analysis that require a large

number of model evaluations at a dense coverage of the input space.

Regarding the day-ahead power system operational planning, this thesis has pro-

posed a novel enhanced deterministic UC model that incorporates zonal operating

reserve demand curves and co-optimizes the energy and the zonal operating reserves.

The enhanced deterministic UC model is developed for more efficient utilization and

remuneration of operating reserves - one of the major sources of system flexibility,

which facilitates the integration and the consumption of variable generation in a

transmission network. To explore the long-term effects of reserve policies on system

investment and adequacy, a more comprehensive LTGI model with operational de-

tails and advanced reserve polices may be used in our future research, which poses

challenges and hence requires extensions to the Bayesian emulation approach.
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Appendix A

Basic and Auxiliary Results

Section A.1 provides the Matlab source code for three major functions used in the

application of Bayesian emulation to a LTGI model. The first function is the main

routine consisting of subroutines for implementing calibration, uncertainty analy-

sis, sensitivity analysis based on Bayesian emulation. The second function is a

subroutine for processing and packaging main inputs including simulation data, ob-

servations and the model discrepancy. The third function is a subroutine for plotting

main outputs including the posterior distribution of calibration parameters, model

predictions estimated by a calibrated and discrepancy-adjusted emulator, and results

from variance-based sensitivity analysis.

Section A.2 provides the Matlab source code for spectral clustering which is

used in reserve zone partitioning. Section A.3 gives the code for developing piece-

wised linearised zonal operating reserve demand curves given the probability mass

function of real-time system imbalances. All comments to the code are in emph

italics. Section A.4 lists the publications over the course of PhD.

A.1 Matlab source code for Bayesian applications

A.1.1 The main function

% read data

dat=fd(1,‘pcpct’,0.99);
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% run setupModel.m, which structures simulation data and observations, and as-

signs defaults for priors in the emulator, and MCMC parameters.

params=setupModel(dat.obsData,dat.simData);

% run automated step-size selection algorithm; nlev: number of candidate step sizes

for each parameter; nburn: number of MCMC iterations at each candidate step size.

nburn=500; nlev=21;

params=stepsize(params,nburn,nlev);

% run MCMC subroutine; nmcmc: the number of draws in one call; pout: contain-

ing everything from set-up and MCMC results, including the posterior samples for

calibration parameters kept in the pout.pvals.

nmcmc=10000;

pout=gpmmcmc(params,nmcmc,‘step’,1);

save pout pout;

nmcmc=nmcmc+nburn*nlev;

pvec=floor(linspace(nburn*nlev+1,nmcmc,500));

pout.pvec=pvec; % pvec: subset of MCMC runs to be used for prediction

% run main output subroutine for generating plots.

fdPlots(pout,pvec,1:3);

theta = [pout.pvals.theta]’;% theta: posterior samples of calibration parameters

% variance-based sensitivity analysis; rn: the perturbation ranges of six model in-

puts.

rn=[0 1;0 1;0 1;0 1;0 1;0 1];

% gSens: computes main and total effect sensitivity indices (two-factor interaction

effect indices optional).

sens=gSens(pout,‘pvec’,pvec,‘varlist’,‘all’,‘rg’,rn);

pout.sens=sens; % sens: structure storing all sensitivity output

save pout pout; % pout: containing everything from set-up and MCMC, calibration

and sensitivity results

StmPm=[sens.smePm;sens.stePm]’; % smePm: holds mean of main effect sensitiv-

ity indices; stePm: holds mean of total effect sensitivity indices
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SiePm=sens.siePm’; % siePm: holds mean of two-factor interaction effect sensitivity

indices

A.1.2 Main inputs

% Read data file: fd.m

function params=fd(doPlot,varargin);

pcpct=0.95; % pcpct: proportion of total variance explained by principal components

nkern=3; % number of normal kernals used for modeling the discrepancy

% read in design

design=textread(‘design.txt’); m=size(design,1);

% standardize inputs to unit hypercube

xmin=min(design); xrange=max(design)-xmin;

design=(design-repmat(xmin,m,1))./repmat(xrange,m,1);

% read in simulation data

simdata=textread(‘sim outputs’); % simdata: first column is “time/year,” remain-

ing colunms are model outputs

ysim=simdata(:,2:end); tsim=simdata(:,1); % ysim: time series of model runs; tsim:

planning year

% read in observation data

n=1; % number of observations

for ii=1:n inf=[‘obs outputs’ int2str(ii)];

obsdataii=textread(inf); % obsdata: observation data

obsdata{ii}=obsdataii(1:end-1,:); ydat{ii}=obsdataii(:,2);

tdat{ii}=obsdataii(:,1)-min(obsdataii(:,1)); Sigy{ii}=1.0ˆ2.*eye(length(ydatii));

end

% summary statistics from simulation data

ysimmean=mean(ysim,2); ysimStd=ysim-repmat(ysimmean,1,m);

% ysimStd: standardized simulation data - subtracting row means (“time”) and di-

vided by overall standard deviation

ysimsd=std(ysimStd(:)); ysimStd=ysimStd/ysimsd;

% interpolate to data grid and standardize observation data consistent with the stan-
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dardization of simulation data

for ii=1:n

yobs(ii).y=ydatii; yobs(ii).t=tdatii;

yobs(ii).ymean=interp1(tsim,ysimmean,yobs(ii).t,‘linear’,‘extrap’);

yobs(ii).yStd=(yobs(ii).y-yobs(ii).ymean)/ysimsd;

yobs(ii).Sigy=Sigyii;

end

% compute principal components Ksim on simulations ysimStd using singular value

decomposition (SVD);S is an n-by-p rectangular diagonal matrix of non-negative sin-

gular values of ysimStd; U is an n-by-n matrix whose columns are the left singular

vectors of ysimStd; and W is a p-by-p whose columns are the right singular vectors

of ysimStd.

[U,S,V]=svd(ysimStd,0);

lam=diag(S).ˆ2/sum(diag(S).ˆ2); lam=cumsum(lam); % lam is a vector of singular

values that are the square roots of the eigenvalues of the matrix ysimStdˆTysimStd

pu=sum(lam<pcpct)+1; % pu is the specific rank of the truncated matrix Ksim;

only the pu largest singular values are considered in the low-rank matrix approxima-

tion

Ksim=U(:,1:pu)*S(1:pu,1:pu)./sqrt(m); % a truncated n-by-pu score matrix Ksim

that is the nearest possible matrix of rank pu to the original matrix

% linear interpolation of eigenvectors constructed from simulator runs to obtain their

representation on the data grid

for ii=1:n yobs(ii).Kobs=zeros(length(yobs(ii).yStd),pu);

for jj=1:pu yobs(ii).Kobs(:,jj)=interp1(tsim,Ksim(:,jj),yobs(ii).t,‘linear’,‘extrap’); end

end

% construct kernel basis for discrepancy: 3 equally-spaced kernels with bandwidth

equal to separation between centers

Dgrid = [3 7 11]; % user-specified kernel centers

Dwidth = Dgrid(2)-Dgrid(1); % user-specified widths of model discrepancy

pv=length(Dgrid); % user-specified number of kernels for discre pancy

% compute the kernel function map, for each kernel

182



Dsim=zeros(size(ysimStd,1),pv);

for jj=1:pv

% first the observations

for ii=1:n

yobs(ii).Dobs(:,jj)=normpdf(yobs(ii).t,Dgrid(jj),Dwidth);

end

% now the simulations

Dsim(:,jj)=normpdf(tsim,Dgrid(jj),Dwidth);

end

% normalize discrepancy kernel basis for numerical stability

Dmax=max(max(Dsim*Dsim’));

Dsim=Dsim/sqrt(Dmax);

for ii=1:n; yobs(ii).Dobs=yobs(ii).Dobs/sqrt(Dmax); end

A.1.3 Main outputs

%% Plot main results fdPlots.m; plotnum indicates which plots are to be drawn

function fdPlots(pout,pvec,plotnum,varargin)

xlabs={};% control and forcing input labels for plotting

thlabs={’θV aR’,’θmarkup’};% calibration parameter labels for plotting

labs=[xlabs thlabs]; nxlabs=length(xlabs); nlabs=length(labs);

model=pout.model; data=pout.data; pvals=pout.pvals(pvec); nreal=length(pvals);

pu=model.pu; % pu: number of principal components

pv=model.pv; % pv: number of kernel basis functions

p=model.p; % p: number of x parameters (control and forcing)

q=model.q; % q: number of θ parameters (calibration)

doPlot(1:3)=0;

if exist(’plotnum’); doPlot(plotnum)=1; end

% process input arguments

ngrid=21; subset=1:nlabs; lsub=length(subset);

parseAssignVarargs(’ngrid’,’subset’);
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if nxlabs, thsub=subset(subset>p)-p; else thsub=subset; end

% Set up prediction grid

grid=linspace(0,1,ngrid);

if doPlot(1)

% plot density estimates for univariate and bivariate marginal posterior distributions

of calibration parameters θ

figure(1); clf;

if length(pvec)>1000, pvec2=pvec(floor(linspace(1,length(pvec),1000)));

else pvec2=pvec; end

t=zeros(length(pvec),q);

for i=1:q for j=1:length(pvec) t(j,i)=pout.pvals(pvec2(j)).theta(i); end end

t=t(:,thsub); gPlotMatrix(t,‘Pcontours’,[0.5 0.9],‘ustyle’,‘imcont’,...

‘lstyle’,‘imcont’,‘ngrid’,ngrid,‘ksd’,0.1,‘labels’,thlabs(thsub));

figure(1); print -depsc2 fdPost;

end

if doPlot(2)

% plot predictions produced by the calibrated emulator and by the calibrated and

discrepancy-adjusted emulator, as well as the model discrepancy

h=[]; ctr=0;

if ctr,

for ii=1:pout.model.m ysim(:,ii)=pout.simData.orig.y(:,ii)-pout.simData.orig.ymean;

end

for ii=1:pout.model.n yobsii=pout.obsData(ii).orig.y-pout.obsData(ii).orig.ymean;

end

else

ysim=pout.simData.orig.y;

for ii=1:pout.model.n, yobsii=pout.obsData(ii).orig.y; end

end

reps=0;

if reps ind=1; nind=length(ind);
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else ind=1:pout.model.n; nind=pout.model.n; end

tr=[min(pout.simData.orig.t) max(pout.simData.orig.t)];

rtr=range(tr);

for ii=1:nind jj=ind(ii); figure(2); clf;

outF=strcat(’fdPreds’,int2str(ii));

% calibrated prediction eta

pred=gPred(pout.obsData(jj).x,pvals,model,data,’uvpred’);

% pred.u: array of posterior realizations from simulator model weight processes eval-

uated at calibrated values of θ

% eta: prediction produced by the emulator (statistical representation of simulator)

at each θ, on original scale

eta=pout.simData.Ksim*pred.u’.*pout.simData.orig.ysd; save ’etapred’ eta ’-ascii’;

% etabounds: 5% and 95% credible intervals from eta

etabounds=prctile(eta,[5 95],2);

% meanmat: matrix with columns equal to the mean of the original simulations

across the planning horizon if ctr, meanmat=0;

else meanmat=repmat(pout.simData.orig.ymean,[1 2]); end

% delta: discrepancy

% pred.v: array of posterior realizations from discrepancy model weight processes

% deltaR: discrepancy realizations on original scale

deltaR=pout.simData.orig.Dsim*pred.v’.*pout.simData.orig.ysd;

save ‘deltapred’ deltaR ‘-ascii’;

deltaRbounds=prctile(deltaR,[5 95],2); % deltaRbounds: 5 − 95% credible intervals

from deltaR

yhat=deltaR+eta;% yhat: calibrated simulator (eta) + discrepancy (deltaR)

yhatbounds=prctile(yhat,[5 95],2); % yhatbounds: 5 − 95% credible intervals from

yhat

h(1)=gPackSubplot(1,3,1,1); plot(pout.simData.orig.t,ysim,’y’); hold on;

if ii==nind, ll=pout.model.n; else ll=ind(ii+1)-1; end

for kk=jj:ll, plot(pout.obsData(kk).orig.t,yobskk,’bo’); hold on; end
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plot(pout.simData.orig.t,etabounds+meanmat,’g’,’LineWidth’,1);

ylabel(’Thermal Capacity [GW]’,’FontSize’,15);

title(‘calibrated simulator’,‘Fontsize’,15);

h(2)=gPackSubplot(1,3,1,2); plot(pout.simData.orig.t,ysim,‘y’); hold on;

for kk=jj:ll, plot(pout.obsData(kk).orig.t,yobskk,’bo’); hold on; end

plot(pout.simData.orig.t,yhatbounds+meanmat,’k’,’LineWidth’,1);

set(gca,‘YtickLabel’,‘’);xlabel(‘Time [year]’,‘FontSize’,12);

title(‘discrepancy-adjusted’,‘Fontsize’,12);

h(3)=gPackSubplot(1,3,1,3);plot(pout.simData.orig.t,deltaRbounds,‘c’,‘LineWidth’,1);

hold on;

line(tr(1):rtr/100:tr(2),0,‘LineStyle’,‘–’);set(gca,‘YaxisLocation’,‘right’);

title(‘discrepancy’,‘Fontsize’,12); figure(2); print(’-depsc2’,outF);

end end

if doPlot(3)

h=[]; ctr=0;

me=pout.sens.tmef.m; npred=size(me,3);

if ctr, meanmat=repmat(pout.simData.orig.ymean,[1 npred]); else meanmat=0; end

figure(3); clf; colormap(‘copper’);

tdat=0:1.0/(npred-1):1.0; AzEl=[45 55]; np=min(lsub,4);

for ii=1:lsub jj=subset(ii);

if nxlabs tt=pout.simData.orig.xrange(jj)*tdat+pout.simData.orig.xmin(jj);

else tt=pout.simData.orig.xrange(p+jj)*tdat+pout.simData.orig.xmin(p+jj); end

r=squeeze(me(jj,:,:))-meanmat;

h(ii)=gPackSubplot(ceil(lsub/np),np,ceil(ii/np),mod(ii-1,np)+1,0.6);

surf(repmat(pout.simData.orig.t,size(tdat)),...

repmat(tt,size(pout.simData.orig.t)),r); colormap hsv; view(AzEl);

xlabel(‘Time [year]’); ylabel(labs(jj)); zlabel(‘Thermal Capacity’); alpha(0.25);

axis tight; set(gca,‘Xgrid’,‘on’,‘Ygrid’,‘on’,‘Zgrid’,‘on’); end

figure(3); print -depsc2 fdMeSens; end
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A.2 Matlab source code for spectral clustering

%% Run SpectralCluster.m for hourly zone determination using spectral clustering

% PTDF: the PTDF matrix of the transmission network; w: the matrix of line

weights.

function [idx k] = SpectralCluster(PTDF,w)

[numl numb] = size(PTDF); % numl: number of lines; numb: number of buses.

WPTDFD= zeros(numb,numb);% WPTDFD: the numb-by-numb weighted Euclidean

distance between any two buses.

SimMat = zero(numb,numb);% SimMat: the numb-by-numb similarity matrix of

two buses.

D = zeros(numb,numb);% D: the numb-by-numb diagonal elements of the adjacency

matrix.

for i = 1:numb

for j = 1:numb if i =j WPTDFD(i,j) = w*abs(PTDF(:,i) - PTDF(:,j)).ˆ2; Sim-

Mat(i,j) = exp(-WPTDFD(i,j)/2*2ˆ2); end end

D(i,i) = sum(SimMat(i,:));% D: the diagonal degree matrix.

end

k = 8;% k: the initial number of eigenvectors to be taken in spectral clustering;

W = SimMat;% W: the weighted adjacency matrix.

L = D-W;% L: numb-by-numb unnormalized graph Laplacian matrix.

Lsym = D(̂-0.5)*L*Dˆ(-0.5);% Lsym: numb-by-numb normalized graph Laplacians.

Lnorm = (Lsym - min(Lsym(:)))/(max(Lsym(:)) - min(Lsym(:)));% Lnorm: numb-

by-numb normalized graph Laplacians in unit hypercube.

[V,E] = eigs(Lnorm,k,‘sm’);% Compute the first k numb-by-1 eigenvectors V(:,1),. . . ,V(:,k)

and eigenvalues E(1,1),. . . ,E(k,k) of Lnorm.

lambda = diags(E);% lambda: the first k eigenvalues

lambdaD = zeros(k-1,1);% lambdaD: the eigengap;

for i=2:k lambdaD(i) = abs(lambda(i)-lambda(i-1)); end

k = find(lambdaD==max(lambdaD));% k: the revised number of reserve zone that

maximizes the eigengap.

for i = 1:numb for j = 1:k
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T(i,j) = V(i,j)/(sum(V(i,1:k).ˆ2)ˆ(1/2));% T: the matrix containing the normalized

vectors V(:,1),. . . ,V(:,k) as columns.

end end

opts = statset(‘Display’,‘final’);

% Cluster the points T (i, :) i = 1,...,numb in Rˆk into k clusters with the k-means

algorithm, returning an numb-by-1 vector idx containing the cluster indices of each

point clusters and the k cluster centroid locations in the k-by-k matrix ctrs.

[idx,ctrs] = kmeans(T,k,...‘Distance’,‘city’,...‘Replicates’,5,...‘Options’,opts); end

A.3 Matlab source code for developing Z-ORDCs

% Construct Z-ORDCs using the discrete probability density of discrete levels of sys-

tem imbalances stored in matrix of [cap,prob] and calculate the parameters [A,b,wA,wb]

in the constrained cost variable constraints of the enhance unit commitment model.

%Suppose r(i), r(i+1), c(i), c(i+1) as one of the cost segments, then the correspond-

ing constraint on r and Y is,

Y ≥ c(i) +m ∗ (r − r(i)), m =
c(i− 1)− c(i)

r(i− 1)− r(i)
,

this becomes m ∗ r−Y <= m ∗ r(i)− c(i); this is the constrained variable technique.

function[A,b] = CalORDC(cap,prob)

global K %number of segments of linearized operating reserve demand curve

rumax = max(-min(cap),0);% the maximum amount of upward reserve

A = zeros(K,1); b = zeros(K,1); deltar = rumax/K;

if deltar>0 r = 0:deltar:rumax; id = find(cap+r(1)<=0);

Y(1) = sum((-cap(id)-r(1)*ones(length(id),1)).*prob(id));

if Y(1)>0 for i=1:K ns = i+1; id = find(cap+r(ns)<=0);

if isempty(id) break;

else Y(ns) = sum((-cap(id)-r(ns)*ones(length(id),1)).*prob(id));

m = diff(Y(ns-1:ns))./ deltar;% slopes

b = - m * r(ns-1) + Y(ns-1); b(i) = b; A(i) = m;

end end end end
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