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Ion Sensitive Organic Field Effect Transistors 

 

Supachai  Ritjareonwattu 

 

Abstract 
 

 

Ion sensitive organic field-effect transistors (ISOFETs) with a metal–oxide–

semiconductor field-effect transistor (MOSFET) architecture have been fabricated by 

using poly(3-hexylthiophene) (P3HT) and poly(methyl methacrylate) (PMMA) as 

the semiconductor and dielectric layers, respectively.  To avoid any pin-holes in the 

dielectric layer, the ISOFET was coated by two separate PMMA layers.  An 

Ag/AgCl double-junction reference electrode was used as the gate.  The results show 

that the uncoated ISOFET exhibited transistor behaviour in aqueous solutions.  

However, these devices possessed a small sensitivity of about 0.5 nA dec-1 to H+, K+ 

and Na+ ions.   

Langmuir-Blodgett membranes were then used to improve the ISOFET 

response to the target ions in solution.  By coating the gate dielectric (PMMA) with 

an LB membrane of pure arachidic acid (AA), the ISOFETs showed a significantly 

higher sensitivity to H+ ions of about 3.5 nA pH-1, but no improvement in the pK 

response (< 0.5 nA dec-1).  The compact ionised layers of carboxylic acid head 

groups were thought to lead to the improvement in the pH sensitivity; however, the 

layers of long hydrocarbon chains prevented large monovalent ions, such as K+ and 

Na+, from interacting with the ionised carboxylic acid head groups.   

ISOFETs coated with an arachidic acid/valinomycin (AA/val) mixture did not 

show any selectivity to K+ ions, but exhibited enhanced sensitivities to both K+ and 

Na+ ions.  Instead of trapping K+ ions, the valinomycin molecules in the AA 

membrane were thought to disrupt the membrane architecture and provide ion-

leakage channels.  Pure valinomycin-coated ISOFETs also revealed enhancements in 

both sensitivity and selectivity to K+ ions over Na+.  This may be due to the fact that 

the cavity in the valinomycin molecules can accommodate a K+ ion but not a Na+ 

ion.  



 To study facilitated K+ transport across the membrane, LB films of AA/val 

mixture and pure valinomycin were coated on porous supports.  The responses of 

both uncoated and coated membranes were similar.  After deposition, collapse of the 

LB film into the pores may provide leakage channels.  This probably led to the 

observed gradual decrease of the potentials across the membranes. 
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Chapter 1 

Introduction 

 

 

 Sensors are electronic devices that can convert various quantities – called 

measurands – to readable signals.  Such devices are able to monitor not only physical 

but also chemical quantities.  The traditional way to measure a chemical quantity 

required bulky instrumentation and, of course, was a high-cost process.  The 

discovery of ion exchange membranes in the 1930s led to the development of ion-

sensitive electrodes (ISEs) [1].  Although ISEs are generally compact and cheaper 

than the traditional instrumentation, their sensitivity and selectivity remain 

problematic.  In addition, it is impracticable to downscale ISEs for use in integrated 

circuit (IC) technology.    

Following the invention of metal-oxide-semiconductor field effect transistors 

(MOSFETs) in the 1960s [2], ion sensitive field effect transistors (ISFET) were 

developed as chemical sensors [3, 4].  ISFETs basically exploited the MOSFET 

architecture [5].  As a result, chemical sensors became compact and convenient [6].  

In the beginning, these devices were fabricated from inorganic materials.  These 

generally require high-cost deposition methods, such as molecular beam epitaxy.  In 

addition, the use of inorganic ion-sensitive layers restricts the range of ions that can 

be detected.   

 By using organic materials, more effective ion-sensitive membranes are 

available for use in ISFET architectures.  Moreover, these materials are cheap and 

require low-cost manufacturing processes [7].  Tremendous advances in chemistry 

and materials science have let to progress by providing organic semiconductors with 

high carrier mobilities.  Organic field effect transistors (OFETs) therefore offer 

promising applications in the fields of sensors, large-scale displays and disposal 

devices [7].   

The main objectives of this research are to fabricate organic field-effect 

transistors which can detect ions in an aqueous solution and to investigate their 

electrical behaviour.  At the moment, the performance of OFETs is significantly 

lower than that of inorganic devices.  Therefore, one key aim is to study the use of 

Langmuir-Blodgett (LB) membranes to enhance the performance of the OFET 
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sensors.  The background physics of organic thin film transistors is described in 

Chapter 2.  This includes a discussion of the conduction mechanisms in organic 

semiconductors.  The basic concepts of ion-sensitive membranes and ion-sensitive 

organic field effect transistors are also examined.  The experimental techniques used 

in this research are thermal vapour deposition, photholithography, spin-coating, 

thermal annealing and Langmuir-Blodgett deposition.  All these methods are 

described in Chapter 3. 

Chapter 4 focuses on Langmuir-Blodgett membranes.  Arachidic acid, 1,2-

dipalmitoyl-sn-glycero-3-phosphatidic acid and valinomycin have been studied.  

Their isotherms and thin film deposition are described and discussed.  To imitate the 

biological structure of living cells, mixtures of arachidic acid and valinomycin have 

also been investigated.   

Details concerning the OFET fabrication are given in Chapter 5.  Two types 

of transistor, i.e. standard and interdigitated devices, were studied.  Their transfer and 

output characteristics have been investigated, both in air and in deionised water.  

Some important factors in characterising ion-sensitive organic field effect transistors 

(ISOFETs) are noted towards the end of this chapter. 

Chapter 6 focuses on the hydrogen-ion responses of the ISOFETs.  The 

details of LB deposition onto the ISOFETs are also examined. Both uncoated and 

coated devices have been characterised in non-buffered solutions.  The measurement 

procedure and the results are also discussed in this chapter. 

In Chapter 7, the potassium and sodium responses of the ISOFETs are 

reported.  Some devices were coated with LB membranes of arachidic acid, 

valinomycin and arachidic/valinomycin mixtures.  Similar to Chapter 6, all uncoated 

and coated ISOFETs are characterised using non-buffered solutions.  This chapter 

also offers models to explain the trapping process of the ion-sensitive membranes. 

Chapter 8 gives the results from a preliminary study into the behaviour of 

Langmuir-Blodgett films deposited onto porous substrates.  The details of LB 

deposition are also described.  Some electrical characteristics of LB membranes are 

reported and discussed. 

 Conclusions are provided in Chapter 9.  Additionally, some suggestions for 

the further work are given. 
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Chapter 2 

Organic Thin Film Transistors 

 

 

2.1  Introduction 

In the mid-1920s, the concept of the field effect transistor (FET) was 

introduced by Lilienfeld [1].  He proposed a method for controlling an electric 

current between two terminals by applying a voltage at a point between the 

electrodes.  This idea had the potential for commercialising an inexpensive amplifier.  

It was, however, ignored due to the lack of technology to produce appropriate 

materials for implementing such a device.   Later on, in the late 1940s, the bipolar-

junction transistor (BJT) was introduced and led to the rapid expansion of the 

electronics industry.   

Kahng and Atalla developed the first metal-oxide-semiconductor (MOS) 

field-effect transistor (FET) at Bell Laboratories in 1960 [2].  Their MOSFET device 

was much slower than the BJT [3].  This technology required significant progress in 

material preparation to improve the carrier mobility.  After a long development 

period, MOSFETs have become the key basic electronic unit for integrated circuits 

due to their simple structure [4].   

The increase in the cost of inorganic-based FET devices is now making 

organic transistors an attractive proposition for certain applications. In fact, organic 

semiconductor materials have been available for many years but have not been used 

in commercial devices due to their very low carrier mobilities.  However, these 

values are now similar to that found in amorphous silicon, and organic electronic 

devices have become the focus of research into various applications, such as 

transistors, display devices, solar cells and sensors [5].   Despite their relatively low 

mobilities, organic materials have significant advantages over inorganic crystalline 

compounds.  These include low manufacturing costs, mechanical flexibility and the 

ability to make large-area devices.  This chapter focuses on the physics background 

of organic field-effect transistors.  Some general aspects of organic materials and 

FET devices will first be introduced.   
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2.2  Organic Semiconductors 

Organic compounds are carbon-based materials.  However, not all carbon-

containing molecules are organic.  A few carbon-containing molecules are classified 

as inorganic.  These include carbides, carbonates, simple oxides of carbon and 

cyanides.  Traditionally, urea and oxalic acid do not include a carbon in their 

molecules, but are classified as organic.  Organic materials are generally electrically 

insulating, but some have a conductivity in between those of a conductor and an 

insulator.  Such compounds are classified as organic semiconductors.  

Organic semiconductive materials can take various forms, such as small 

molecules and polymers.  Small organic molecules with semiconductor character are 

generally polycyclic aromatic compounds (comprised of benzene rings), such as 

pentacene (Figure 2.1a), anthracene (Figure 2.1b) and rubrene (Figure 2.1c).  

Polymeric organic semiconductors are comparatively large molecules, such as 

poly(3-hexylthiophene) (Figure 2.1d), poly(p-phenylene vinylene) (Figure 2.1e), and 

polyacetylene (Figure 2.1f).  

 

 

(a) 

 

(b) 
 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 2.1  Chemical structure of some organic semiconductors. (a) Pentacene.  

(b) Anthracene.  (c) Rubrene.  (d) Poly (3-hexylthiophene).  (e) Poly(p-

phenylene vinylene).  (f) Polyacetylene. 

 

Carbon is an element with electron configuration 1s2 2s2 2p2.  When 

interacting with other atoms, the 2s orbital can hybridise with the 2p orbital in a 

number of ways, i.e. sp3, sp2 and sp hybridisations.  In sp3 hybridisation, only -
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bonds are formed between the carbon and the other atoms.  In contrast, carbon atoms 

with sp2 and sp hybridisations have p orbitals (left over) to form -bonding in the 

molecules, as shown in Figure 2.2.   bonds are strong and the electrons are located 

between the pair of the atoms.  In contrast, electrons associated with the  bond can 

diffuse throughout the molecule.  Most organic semiconductors (or conjugated 

organic materials) include sp2 hybridised carbon atoms.  

 

 

Figure 2.2  Schematic diagrams of  and  bonds formed between carbon atoms. 

 

 

Molecular Orbitals 

Molecular orbital theory is used to account for the energy distribution of 

electrons in a molecule.  In this theory, electrons do not belong to any individual 

atom or fixed in any bond, but are shared with the whole molecule.  Therefore, each 

nucleus in a molecule has an influence on the behaviour of the assembly of electrons.  

Atomic orbitals in each constituent atom are combined linearly to derive the 

molecular orbitals.  A set of molecular orbitals is then used to represent an electron 

configuration.  The molecular orbitals are basically divided into three main groups, 

namely bonding orbitals, anti-bonding orbitals and non-bonding orbitals: 
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(a) A bonding orbital represents a wave function of an electron that has a high 

probability of being located between the nuclei.  If an electron is in this 

orbital, it will tend to hold the nuclei together. 

(b) An anti-bonding orbital represents a wave function of an electron that has 

a high probability of not being located between the nuclei.  By contrast 

with a bonding orbital, the bond will be weakened if an electron is in this 

anti-bonding orbital. 

(c) A non-bonding orbital represents a wave function of an inner electron 

which tends to associate with only one nucleus.  Therefore, this type of a 

molecular orbital does not contribute to the bonds in the molecule.  

  

This section will focus on only bonding and anti-bonding molecular orbitals 

because these contribute to the electrical conductivity of the material.  Assuming a 

system has two identical atoms, A and B, the system will possess two identical 

valence orbitals when the atoms are far away from each other.  When atom A comes 

closer to atom B, the nucleus of A will have an influence not only on its electrons but 

also on the electrons of B, and vice versa.  In this fashion, the electrons are shared 

between the whole system, but not any individual atom.  Therefore, the two valence 

orbitals will split into two molecular orbitals, bonding and anti-bonding orbitals, as 

shown in Figure 2.3a.  In the case of four atoms in the system, four identical valence 

orbitals are split into four different molecular orbitals (Figure 2.3b).  In a similar 

way, four molecular orbitals can be divided into bonding and anti-bonding groups.  

The highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) are shown in Figure 2.3.  The energy difference between 

the HOMO and LUMO levels is the HOMO-LUMO gap, or band gap. 

Assuming an organic semiconductor molecule has N carbon atoms, all the 

valence orbitals will form molecular orbitals, half of which are bonding orbitals and 

the other half are anti-bonding orbitals.  If the system has only one molecule, the 

energy states of the electrons are discrete in the bonding and anti-bonding regimes.  

When a system has many organic molecules, the gap between two adjacent energy 

states becomes smaller in both regimes.  As shown in Figure 2.4, the energy states 

will become continuous if the system has a large number of the molecules.  Anti-

bonding energy states form a conduction band, while bonding energy states form a 

valence band.  
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Figure 2.3  (a) Molecular orbitals of two identical atoms. (b) Molecular orbitals 

of four identical atoms. 

  

 

(a) (d)(c)(b)
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Figure 2.4  Energy diagram of carbon atoms: (a) A single carbon atom.  (b) A 

molecule with two carbon atoms.  (c) A large molecule of many carbon atoms.  

(d) Bulk material.  
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Charge Transport in Organic Semiconductors 

 In a polycrystalline organic semiconductor, the -bonding orbitals overlap 

mainly with the -orbitals in the same molecule.  This overlapping with the orbitals 

of adjacent molecules is, however, limited due to the disordered structure of the 

material.  Therefore, the  electrons cannot move freely to an adjacent molecule due 

to the presence of potential barriers between the molecules.  In a bulk material,  

electrons can move from one molecule to the other molecules using hopping or 

related mechanisms.  In the hopping process, a phonon is absorbed by the  electron 

in the valence band.  However, only phonons with sufficient energy can excite the  

electron to energy states in the higher anti-bonding energy state in the conduction 

band.  As noted above, anti-bonding (*) electrons have a low probability of being 

confined in a molecule.  These electrons are therefore likely to hop to adjacent 

molecules.   

 In practice, a -conjugated system in each organic semiconductor molecule is 

generally disrupted by kinks, twists and/or other defects in its molecule.  The  

electrons therefore require an intramolecular hopping process during charge 

transport.  This intramolecular hopping is also phonon-assisted.  Both inter- and 

intramolecular processes depend on various parameters, such as temperature, band 

gap and external electric field.  After absorbing a phonon, the  electron is, in reality, 

not delocalised completely.  The excited  electrons, however, interact with the 

surrounding molecules and lead to the formation of polarons.  These quasiparticles 

have a relatively low velocity and thus a low mobility. 

 

 

p-Type  and n-Type Organic Semiconductors 

When  electrons in a -conjugated semiconductor absorb phonons, they will 

leave energy states in the valence band unoccupied (vacant).  The excited  electrons 

will occupy energy states in the conduction band.  The number of vacant states (free 

holes) is equal to the number of occupied states (free electrons).  In practice, the 

numbers of the holes and the electrons are not identical.  In a similar fashion to 

inorganic semiconductors, organic semiconductors can be categorised into two 

groups based on the nature of the charge carriers.  These are p-type and n-type 
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semiconductors, which have holes and electrons as the majority carriers, 

respectively.   

P-type organic semiconductors generally possess high HOMO levels, 

resulting from the overlap of the  bonding molecular orbitals.  Therefore, these 

materials tend to donate  electrons to the electron traps or the localised states.  The 

donated electrons are localised (trapped) and cannot move freely in the bulk material.  

The number of holes in the semiconductor is therefore higher than the number of free 

electrons, and the majority carriers are holes in valence band.  Acenes and oligomers 

are typical p-type organic semiconductors.  Many organic materials have p-type 

characteristics, but only a few organic semiconductors have a hole mobility 

comparable to that of amorphous silicon (~ 1 cm2 V-1 s-1 [5]).  However, many p-type 

materials have the advantages of being compatible with solution-process techniques, 

such as spin-coating and ink-jet printing.   

Poly (3-hexylthiophene) was used as a p-type semiconductor in this research 

since its solution is stable in chloroform and can be deposited using spin-coating or 

casting.  Organic FETs may be fabricated by depositing poly(methyl methacrylate) 

(PMMA) as a dielectric on top of P3HT [6].   PMMA is cheap and also compatible 

with the solution processing.   

N-type semiconductors generally have low HOMO levels.  In these materials, 

unoccupied energy states in the conduction band tend to accept electrons from 

localised states in the HOMO-LUMO gap.  This electron-accepting process provides 

free electrons in the conduction band.  Therefore, the majority carriers in these 

materials are electrons.  N-type semiconductors have not attracted as much interest as 

p-type materials [7].  This may be because many of these materials are not very 

stable in air.  Relatively few stable organic semiconductors are available, such as the 

fullerene C60 and its derivatives.  However, some of these materials cannot be 

fabricated by solution-process methods, but require molecular-beam techniques to 

fabricate devices with high carrier mobilities.  Such relatively high-cost processing 

method makes these organic materials lose key advantages over amorphous silicon.    
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2.3  Organic Field Effect Transistors 

An organic field-effect transistor (OFET) is a device in which the 

semiconductor layer is an organic material.  In a similar fashion to typical thin film 

FET devices, an OFET has three terminals: a gate, a drain and a source.  Various 

techniques can be used to fabricate OFETs: for example, vacuum evaporation, 

solution-casting or spin-coating.  With these methods, OFETs can be built up on 

substrates, such as silicon wafers, glass, metals and plastics.  Such OFETs have been 

used to realise low-cost devices, large-area electronic products, flexible electronic 

devices and biodegradable electronics.  For example, flexible flat panel displays can 

be manufactured using polymeric substrates and organic semiconductors [8].   

Inorganic dielectric materials are not very well suited to flexible devices 

because of their relative fragility.  This problem can be circumvented by using an 

organic insulator.  In addition, the manufacturing cost can be reduced by using an 

organic dielectric.  OFETs using both organic semiconductor and dielectric layers 

have attracted the highest interest in recent years.   

Organic materials are generally comprised of large molecules with various 

functional groups.  This results in properties that are dependent on certain physical 

and/or chemical factors, such as temperature [9], light [10], gas [11] and pH [12].    

Therefore, the OFETs can also be exploited as sensors.  In this research, OFETs were 

employed to detect monovalent ions in aqueous solutions.      

 

 

 

2.3.1  OFET Structure 

Various configurations can be used to fabricate organic transistors.  The 

common components of the FET structure are a semiconductor layer, a dielectric (or 

insulator) layer and a conductor (to form the three terminals).   The structure of a 

typical field-effect transistor is shown in Figure 2.5.    

Organic field-effect transistors may be built up using different methods.  By 

using an organic single crystal grown by vapour phase epitaxy (VPE), OFETs with 

high carrier mobilities can be achieved.   
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Figure 2.5  Schematic diagram of a typical field-effect transistor. 
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Figure 2.6  Schematic diagrams of thin-film transistors: (a) Top-gate structure. 

(b) Bottom-gate structure. 
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The performance of these single crystal OFETs is superior to those of thin-

film devices [13].  However, sophisticated techniques are needed for the crystal 

growth process.  Although it is possible to use these methods in the laboratory, it is 

impractical for industry to adopt them due to their low yield and high manufacturing 

costs. 

In the operation of organic FETs, carriers are accumulated to form a channel 

in the surface layer of the semiconductor material.  All the remaining material is used 

as a substrate to support the device.  The manufacturing cost of the FET can 

therefore be reduced by depositing only the required amount of semiconductor 

material on a cheaper substrate.    

In the past few years, not only has the quality of organic materials improved, 

but deposition techniques have been developed to build up reliable thin-film devices.  

This type of field-effect transistor is comprised of thin films of a semiconductor 

active layer, a dielectric layer, and metallic contacts.  Two distinct configurations of 

this device are the top-gate structure and the bottom-gate structure, as shown in 

Figure 2.6.  All the thin-film layers are deposited on a supporting substrate, such as 

glass or plastic material.     

In this research, the top-gate architecture was used because this is compatible 

with the Langmuir-Blodgett (LB) technique, which was used to deposit a selective 

layer on top of the gate dielectric.   

 

 

 

2.3.2  Electrical Behaviour 

In this research, the devices were p-type OFETs because P3HT was used as 

the semiconductor.  Therefore, this section focuses only on the operation of p-type 

OFETs.  When operating a p-type field-effect transistor, it is generally connected as 

shown in Figure 2.7.  Vds is the voltage applied across the source and the drain while 

Vgs is the voltage between the gate and the source, which is held at zero potential.  Id 

is the current which flows into the device via the drain terminal.   
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Figure 2.7  A circuit for biasing a thin – film transistor. 

 

The drain current is a function of both Vgs and Vds.  For Vgs =  0 V, 

theoretically there is no drain current.  In this case, the device is in the off mode since 

there is no carrier channel formed in the semiconductor layer.  When Vgs < 0, free 

holes will accumulate at the interface between the insulator and the semiconductor 

[14].  This forms the channel between the source and drain.  Charges can then flow 

through the device.  The drain current depends on the voltage between the source and 

drain.  

If  |Vds| < |Vgs| (in the case of p – type devices), the drain current can be 

derived from Ohm’s law [15] 

 

ds d d d

L L
V = I R = I I

σA σtW
               (2.1) 

 

where L is channel length, A is the cross-section area (A = tW, where t is the 

thickness of the channel and W is the channel width), and  is conductivity of the 

semiconductor layer.  The latter is given by 

 

d
d

J μ
σ = = J ; ν = μE

E ν
              (2.2) 

 

av dJ = e n ν                  (2.3) 

 

where J is the current density,  E is the electric field,   is the carrier mobility, d is 

the drift velocity of the free carriers, e is the charge of free electrons, and nav is the 

average carrier density in the channel.    
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 By substituting Equations 2.2 and 2.3 into Equation 2.1,  

 

d av

W
I =  (n e t) μ V

L ds                (2.4) 

  

For low Vds and Vgs < 0, the FET device is operated in the accumulation 

regime.  Therefore, the average value of the induced charge (qind) at the interface 

between the insulator and the semiconductor is 

 

ds
ind, av av i gs T

V
q = n e t = C (V -V -

2
)               (2.5) 

 

where the threshold voltage, VT, is the gate voltage required to induce a carrier 

channel at the insulator/semiconductor interface [16].  By substituting Equation 2.5 

into Equation 2.4, the drain current in the linear regime [16] is  

 

ds
d, lin i gs T ds

VW
I =  C (V - V - ) μ V

L 2
              (2.6) 

 

As Vds increases, the conductivity of the channel decreases since the gate-

drain voltage become smaller.  At the onset of the saturation regime, the channel is 

‘pinched-off’.  In this mode, the drain current becomes constant and independent of 

Vds.  By sustituting Vds = Vgs – VT, the drain current [16] is  

 

2
d, sat i sat gs T

W
I =  C  μ  (V - V )

2L
              (2.7) 

 

From Equations 2.6 and 2.7, OFETs can therefore be characterised by either 

scanning Vds while keeping Vgs constant (referred to as output characteristics), or 

scanning Vgs while keeping Vds constant (referred to as transfer characteristics). 
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Figure 2.8  (a) Transfer characteristics in the saturation regime. (b) Output 

characteristics of a typical P3HT FET (L = 75 μm, W = 1500 μm) [17]. 

 

Figures 2.8a and 2.8b show typical transfer and output characteristics of an 

OFET [17].  The field effect mobility of the devices can be calculated using the 

above equations.  The transconductance (gm) and conductance (gd) can be derived 

from Equation 2.6  

 

ds

d
m i

gs V

I W
g = = C μ V

V L


 lin ds                (2.8a) 

 
gs

d
d i lin

ds V

I W
g = C μ V - V

V L




 gs T               (2.8b) 

 

when |Vgs -  VT| >> |Vds| [18].  Either gm or gd can be used to calculate the 

mobility by using the Equation 2.9: 

 

dm
i lin

ds gs

gg W
=  C  μ

V V L




 
               (2.9) 
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2.4  Ion Selective Membranes 

Ion selective membranes are active layers which sense changes in ion 

concentration.  The selection of the active membrane is a key to producing high-

performance ISOFETs.  These membranes are generally in direct contact with the 

test solutions.  Their wettability, semi-permeability, and ion selectivity are important 

parameters in their selection. 

Ion-selective membranes can be categorised into two major groups: a 

membrane with fixed charged sites and a membrane containing ionophores.  

Membranes in the first category have functional groups fixed within them; examples 

are  or .  These groups are bound in the membrane by covalent 

bonds or by strong ionic bonds.  When the membrane is in contact with the test 

solution, some of the targets ions will be attracted to the functional groups.  

Consequently, the trapped ions in the membrane cannot diffuse freely, but are fixed 

at active sites.    

3SO , COO   +
3NR

Ionophores are lipid-soluble molecules that can transport certain ions across a 

membrane.  Structurally, an ionophore molecule has a hydrophobic outer surface, 

while the interior is hydrophilic.  Apart from ionophores, the membranes in this 

second category are comprised of lipids which have two main parts: a hydrophilic 

head and a hydrophobic tail.  Hydrophilic heads generally point out towards water, 

while the hydrophobic tails point in to the membrane.  With this structure, ions 

cannot penetrate directly across the membrane.  However, the ionophores can 

interact with some ions at the outer surface of the membrane and then transport them 

through the membrane.  There are two main types of ionophores:  

 

(a) Ion carriers:  These molecules trap particular ions and shield their charge 

from their surroundings.  In this way, they can facilitate ion transport 

across the hydrophobic layer of the lipid membrane. 

(b) Ion channels:  These molecules provide a hydrophilic channel through the 

lipid membrane.  Certain ions can then move across the membrane 

without interacting with the hydrophobic layer. 

 

Most of the membranes in the first group are glass membranes used in 

conventional ion-sensitive electrodes [19].  The techniques for depositing these 
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membranes on substrates are generally high-temperature processes, such as chemical 

vapour deposition.  In contrast, membranes in the second group can be deposited 

using low-temperature processes, such as the LB technique.  The ion-sensitive 

membranes in this research were membranes with mobile sites. 

 This research focuses on the use of ion carriers to fabricate an ion-sensitive 

membrane.  When the ions are trapped in the membrane, they form complexes with 

the ion carriers.  In practice, these ion-carrier complexes cannot dissolve in any lipid 

solvent, but only the lipids with dielectric constant below 35.  Such lipid solvents are 

also called mediators.  If the permittivity is above this limit, the membranes cannot 

keep their shape in water because the lipid mediators will dissolve.  Some ionophores 

and their target ions are shown in Table 2.1. 

 

Table 2.1  Ionophores and the target ions 

Ionophore Type Target Ions 

Amphotericin [20] Channel Na+, K+ 

Crown ether [21] Carrier Na+, K+ 

Gramicidin [22] Channel H+, Na+, K+ 

Nystatin [23] Channel Li+, Na+, K+ 

Valinomycin [24] Carrier K+ 

 

 

 

 

2.5  Ion Sensitive Field Effect Transistors 

In 1970, Bergveld [25] introduced the first ion sensitive field effect transistor 

(ISFET) which is a device sensitive to the ions in a solution.  Over the past decades, 

ISFET devices have been developed for measuring various molecules [26], such as 

inorganic salts [27], enzymes [28] and glucose [29].  The structure of the ISFET is 

adapted from that of MOSFET, as shown in Figure 2.9.  However, a reference 

electrode is used as the gate.  By removing the gate electrode from the structure, the 

outer layer of the device is in contact with the solution and can interact with the ions 

in the solution.  In this way, the gate voltage at the ISFET outer layer depends on the 

ionic concentration.   
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Figure 2.9  Schematic diagram of (a) a MOSFET.  (b) An ISFET.  

 

At equilibrium (no current flows through a membrane), a potential across the 

membrane of an ISFET is known as the Nernst potential (ENernst).  This can be 

written  

 

0
Nernst

RT
E E ln

Z ion  a       (2.10) 

 

0
Nernst

RT
E E ln [i

Z
  on]      (2.11) 

  

where E0 is the standard reduction potential (compared to the standard half cell of 

hydrogen), Z is the total charge in each ion, T is the temperature of the solution, R is 

the gas constant (1.987 cal K-1mol-1), and aion is the ion activity of ions.  However, in 

practice, the ion activity approximates to the ion concentration.  Therefore, Equation 

2.10 can be rearranged as Equation 2.11. 

 Equation 2.11 shows that the potential across the membrane depends on the 

ion concentration.  When changing the ion concentration, VT will therefore change 

accordingly.  The Nernst potential can be included into Equation 2.6 using an 

effective threshold voltage (VT, eff). 

 

0
T, eff T Nernst T

RT
V V - E = V E ln[io

Z
   n]            (2.12) 
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When substituting VT, eff in Equation 2.6, the drain current of the ISFET can 

be rewritten 

 

0 ds
d i gs T

VW RT
I =  C V E + ln[ion] V  μ V

L Z 2

      
  

ds            (2.13) 

 

 * * ds
d i G T

VW
I =  C V V  μ V

L 2
  
 

ds


     (2.14) 

 

where 

 

 *
G gs

RT
V = V + ln[ion]

Z
      (2.15a) 

 

*
T TV = V E 0        (2.15b) 

 

where  is an corresponding gate voltage and  is the corresponding threshold 

voltage when operating in a solution. 

*
GV *

TV

The drain current of the ISFET is in a similar form to that of the MOSFET.  

However, a change of the ion concentration leads to a variation of the gate voltage of 

the ISFET through Equation 2.15a.     

Figure 2.10 shows typical charge and potential distributions across the 

ISOFET structure.  The Nernst potential from Equation 2.11 is induced across the 

ion-sensitive membrane.  When the activity (concentration) of the solution increases, 

the charge distribution will vary correspondingly.  This induces the change of the 

charge at the dielectric/semiconductor interface.  The redistribution of the charge 

across the device structure will lead to the change of the potential distribution across 

the ISOFET.  As a consequence, the drain current will vary based on the 

concentration of the solution.  However, the distribution of the potential across the 

ISOFET depends on the properties of the materials and also the interaction between 

the ions and the membrane [30]. 
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Figure 2.10  Charge and potential distributions across the ISOFET structure; 

dashed line represents the distributions when the activity (concentration) of the 

solution changes [30]. 

 

 

Ion Sensitive Organic Field Effect Transistors 

In this research, ion sensitive devices were fabricated using organic materials 

as both the semiconductor and dielectric.  Therefore, this section will focus on an ion 

sensitive organic field effect transistor (ISOFET).  In the similar fashion to ISFETs, 

ISOFETs have electrical properties which depend on ion concentrations in solution.     
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Figure 2.11  Schematic diagram of an ion sensitive organic field effect transistor 

with a top-gate configuration. 

 

The structure of an ISOFET is similar to that of an organic field effect 

transistor.  However, ISOFETs have an active layer (or ion-selective layer) in their 

structure for detecting target ions in solution.  A typical diagram of an ISOFET is 

shown in Figure 2.11.  Some organic materials that are used as the dielectric have a 

polar moeity in their molecules which can interact with the ions in solution.  For 

example, polyvinyl chloride (PVC) has chloride atoms.  This polymer can therefore 

interact with positive ions in the solution.  Most organic dielectrics are, however, not 

sensitive to particular ions and/or have low sensitivity.  An ion-selective membrane 

is an essential part for enhancing the ion sensitivity of the OFETs.  For example, the 

pH response can be improved significantly by depositing a stearic acid LB film on 

top of the gate dielectric [31].  Some ion-sensitive devices are also made by 

combining ion-sensitive molecules with the dielectric layer [32].   
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Figure 2.12  Schematic diagram of an ion sensitive organic field effect transistor 

with the bottom-gate structure. 

 

 

As shown in Figure 2.11, the ISOFET is in direct contact with a test solution.  

A reference electrode forms as the gate electrode.  An alternative device architecture 
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is depicted in Figure 2.12.  With this structure, the reference electrode is not 

necessary part for operating the device since the gate electrode is beneath the 

dielectric layer [12, 33].  Attempts to exploit this structure in this research were 

unsuccessful because it is not compatible with the LB technique.  For example, it 

was found that the dielectric and the semiconductor layers were both removed from 

the substrate during the LB deposition of an ion-sensitive membrane. 

 The top-gate structure shown in Figure 2.11 was therefore used in this study.  

The semiconductor layer in this structure was deposited directly on a glass substrate.  

By making the substrate hydrophobic, the semiconductor could be attached firmly to 

the substrate.   

 

 

2.6  Reference Electrodes 

An electrode with a stable electric potential is required for the operation of 

organic field-effect transistors, as shown in the Figure 2.11.  As noted above, this 

reference electrode forms the gate.  Its fixed potential results from the constant 

reaction rate of a redox process.  Fixed concentrations (buffered or saturated) of each 

of the reactants in the reference electrode are used to keep the reaction rate constant.   

Various types of reference electrodes are currently available.  These include 

the standard hydrogen electrode (SHE, E0 = 0.000 V), the saturated calomel electrode 

(SCE, E0 = +0.244 V saturated), the copper-copper (II) sulfate electrode (E0 = +0.314 

V) and the silver/silver chloride electrode (Ag/AgCl, E0 = +0.197 V saturated).  The 

structure of a Ag/AgCl reference electrode is depicted in Figure 2.13.  By contrast 

with SHE or SCE electrodes, a Ag/AgCl electrode does not require any preparation 

before use.  In addition, this kind of a reference electrode is compact due to its 

simple structure.   

 The overall reaction of a silver chloride electrode can be written  

 

                (2.16) 0
( ) ( )Ag Cl AgCls s e   
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Figure 2.13  A structure of a silver/silver chloride reference electrode. 

 

 

Therefore, the Nernst potential is  

   

-

0

Cl

RT
E E ln a

F
                (2.17) 

 

The activity of chloride ion ( ) is dependent on the concentration of the 

chloride ions in the solution.  The corresponding Nernst equation for the Ag/AgCl 

reference electrode is  

-Cl
a

 

  0 1
E E 0.059log

Cl
 

  
             (2.18) 

 

The activities of the Ag wire and AgCl are unity and, therefore, to a good first 

approximation, only the chloride ion concentration determines the E value. 

Minor drift in case of Ag/AgCl electrodes usually comes from a change in the 

concentration of Cl- ions.  This electrode is not suitable for use in a basic solution.  

When the electrode is in a solution with [OH-] above 0.1 M, silver oxide (Ag2O) 

and/or silver hydroxide (AgOH) will form at the surface of the silver wire in the 

electrode.  This will lead to a mixed Ag/AgCl/Ag2O potential, and hence its potential 

will depend on the pH.  In using Ag/AgCl electrodes, basic solutions (pH > 7) should 

be avoided in order to keep the electrode potential stable and constant. 
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2.7  Conclusions 

  Organic thin-film transistors have some advantages over inorganic-based 

devices.  This is due to the fact that organic semiconductors and organic dielectrics 

are cheap and require low-cost manufacturing process compared to silicon devices.  

Thin film transistor devices have various applications, such as flexible displays, solar 

cells and chemical sensors.   

 By adapting a structure of MOSFETs, an organic field-effect device can be 

used as an ion-sensitive device.  The gate electrode is removed to expose the 

dielectric layer to a solution.  In operating this device, a reference electrode is used as 

the gate.  However, organic dielectrics have low sensitivity and low selectivity to 

target ions in an aqueous solution.  By depositing an appropriate ion-sensitive 

membrane on top of the gate dielectric, ion-sensitive organic FETs are therefore able 

to detect target ions in a solution.      
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Chapter 3 

Experimental Techniques 

 

 

3.1  Physical Vapour Deposition  

Physical vapor deposition (PVD) is a technique that is used to coat a thin film 

onto a surface under a vacuum environment.  All PVD techniques use physical 

processes to vaporise a material and then condense the vapour onto a substrate.  

There is no chemical reaction associated with PVD, only a phase transition.  Physical 

vapour deposition techniques are generally categorised into two main methods: 

thermal vapour deposition and sputtering.  Thermal vapour deposition is used in this 

research; this was employed for depositing metal layers onto glass substrates.  In 

practice, there are a variety of PVD techniques based on thermal evaporation 

sources, such as filaments and electron-beam systems.  In this section, the focus is on 

thermal vapour deposition, which uses a filament as the thermal source. 

 

Thermal Vapour Deposition 

Thermal vapour deposition is often used to deposit metal films.  It requires a 

vacuum environment to allow the gaseous molecules of the source material to move 

directly to a substrate without colliding with the background gaseous molecules.  In 

addition, these molecules and the source material have a high temperature, and hence 

are very reactive to oxygen.  Under a vacuum, unwanted oxidation reactions are 

minimised.     

A schematic diagram of thermal vapour deposition is shown in Figure 3.1.  

The evaporation process is undertaken in a glass bell jar or similar vacuum vessel.  

The solid source material is placed on a filament.  A crystal microbalance detector is 

placed at the same distance from the source as the substrate.  This is used for 

monitoring the thickness of the deposited film.  A high vacuum is created using the 

combination of a rotary pump and a diffusion pump.  The air in the bell jar is 

evacuated until the pressure is below 10-6 mbar.  The mean free path of the residual 

gas molecules, , can then be calculated using kinetic theory.   
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B
2

k T
λ =

Pπd 2
                (3.1) 

  

where d is the diameter of gaseous molecules, T is the temperature, P is the gas 

pressure, and kB is Boltzmann’s constant.  

From Equation 3.1, the mean free path of the molecules of the gas in the 

chamber is greater than 500 cm when the pressure is below 10-5 mbar and the 

temperature is 300 K.  Since the distance between a filament and a substrate is about 

30 cm, the vaporised molecules will travel to the substrate without a collision with 

other molecules. 
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Bell Jar
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by Diffusion Pump  

Figure 3.1  Schematic diagram of thermal vapour deposition. 

 

In this research, an Edwards Auto306 evaporator was used to deposit a 

chromium/gold layer on a glass substrate.  The chamber was first pumped using an 

Edwards RV12 rotary pump until the pressure reached about 10-2 mbar.  An Edwards 

EXT255H diffusion pump was then used to evacuate the system to a pressure of less 

than 10-5 mbar.  A crystal detector, as a microbalance, was used to monitor thickness 

of the evaporised film. 

 

Shadow Mask Deposition 

 Shadow mask deposition is a method that selectively coats a material onto a 

substrate through a shadow mask.  A schematic diagram of this process is shown in 

Figure 3.2.   
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Figure 3.2  (a) Schematic diagram of the shadow mask deposition.  (b) Thin film 

deposited on the masked substrate.  (c) Thin film on the substrate after removing 

the mask.   
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Figure 3.3  A diagram of the shadow mask used for depositing the source and 

drain electrodes in this research. 

 

Table 3.1  The channel widths and channel lengths of the shadow mask. 

Channel Length 

(m) 

Channel Width 

(m) 
W/L ratio 

Channel Length 

(m) 

Channel Width 

(m) 
W/L ratio 

50 4000 80 200 4000 20 

50 4000 80 200 4000 20 

50 2000 40 200 2000 10 

50 2000 40 200 2000 10 

50 1000 20 100 2000 20 

50 1000 20 100 2000 20 

50 500 10 100 1000 10 

50 500 10 100 1000 10 
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The shadow mask is placed in contact with the substrate and then the source 

material is evaporated.  Some of this material is coated on the substrate, but some is 

also coated on the mask, as shown in Figure 3.2b.  When removing the mask, a 

deposited layer on a substrate has the same pattern as that of the mask, as depicted in 

Figure 3.2c. 

The shadow mask used in the research is shown in Figure 3.3.  The channel 

length (L) is the gap between the electrodes and the channel width (W) is the width 

of the electrodes.  This method was used to fabricate the non-interdigitated pattern of 

source/drain electrodes; the various electrode dimensions are listed in Table 3.1.  

Before depositing the chromium and gold layers, each metal had an in-situ cleaning 

for 30 seconds by heating it to the evaporation temperature while the main shutter 

was closed.  In this way, the surface of the source material was cleaned. 

 

 

3.2  Photolithography  

Photolithography (or "optical lithography") is a process to transfer a pattern 

onto a substrate.  This method uses light (generally ultra-violet (UV) light) to transfer 

a geometric pattern from a mask to a light-sensitive photoresist (or simply resist) on 

the substrate. The process of photolithography is depicted in Figure 3.4a.  In this 

research, photolithography was used to transfer an interdigitated electrode pattern on 

to glass substrates.  A typical interdigitated pattern is shown in Figure 3.4b. 

The samples are first coated with photoresist.  There are two types of 

photoresist, positive and negative.  A negative resist is comprised of monomers 

which are polymerised under exposure to UV light.  As shown in Figure 3.4, the 

unexposed area of the resist remains soluble and is then removed after the exposure 

by the developer.  The area that is in direct contact with the etching solution is 

removed, while the polymerised resist protects the area underneath from the etching 

process.  After removing the photoresist, a complementary pattern to that on the 

mask is obtained on the substrate. 

By contrast, a positive resist is a light-sensitive polymer.  The area exposed to 

the UV light becomes soluble in a developer.  By removing this area, an identical 

pattern to that on the mask is transferred to the substrate.  

 

  33



 

 

 

Substrate

Photoresist

Mask

Negative Positive

Metal Coating

Exposure

Development

Transfer

Strip

UV Light
Substrate

Photoresist

Mask

Negative Positive

Metal Coating

Exposure

Development

Transfer

Strip

UV Light

 
 

(a) 

 

 

 

400 m400 m

 
 

(b) 

 

Figure 3.4  (a) Photolithographic process of transferring a pattern onto a 

substrate.  (b) Typical interdigitated pattern. 
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In this research, the surface of hydrophobic glass substrates was first coated 

with chromium and gold.  The chromium layer was required to improve the adhesion 

between the gold layer and the glass substrate.  Following this, Microposit S1813 

positive resist was spin-coated on the gold layer.  Before exposure, the resist-coated 

samples were baked on a hot plate at 95 C for 5 min.  The samples were masked by 

the interdigitated patterned mask and then exposed to UV light for 5 seconds.   The 

samples were developed using Microposit 351B developer (aqueous sodium 

hydroxide) (351B developer : DI water is 1 : 4) for 30 seconds.  The samples were 

then rinsed with DI water and dried using filtered N2.  Before etching the metal 

layers, the samples were baked at 120 C for 5 min.  After rinsing with DI water, the 

resist was removed using the Microposit 1112A resist remover (ethyleneglycol n-

butyl ether).   

 

 

3.3  Spin – Coating  

Spin-coating is a solution process to deposit a thin film on a flat substrate.  

Figure 3.5 shows a diagram of the process.  After dissolving a source material in an 

appropriate solvent, an excess amount of the resulting solution is placed on a 

substrate.  The substrate is then rotated at a high speed.  The uniformity and the 

thickness of coated layers depend on the spinning speed.  With a suitable speed, the 

solution is spread uniformly and covers the whole surface of the substrate.  This 

technique is generally used to produce thin films of polymer, such as photoresist [1], 

PMMA [2] and P3HT [3], onto various substrates, e.g. silicon wafers, glass and 

plastics.  The spin speed depends on the solution concentration. 
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Figure 3.5  Schematic diagram of the spin-coating process. 

 

  35



 

Following film deposition, the spin-coated layer is left, generally in air, to 

evaporate the solvent.  In some cases, the samples need a particular treatment, such 

as vacuum drying at a controlled temperature.  By repeating the spin-coating process, 

a multilayer structure may be obtained.  However, it is essential that the solvent used 

in the next spin - coating should not dissolve the previously coated film. 

  

 

3.4  Thermal Annealing  

Thermal annealing is a process of heat treatment that is used to modify both 

the mechanical and electrical properties of materials, such as strength, hardness and 

electrical conductivity.  Samples are heated to a particular temperature and 

maintained at that temperature for a period of time to recrystallise the lattice, to 

reduce dangling bonds and also to relieve internal stresses.  In addition, some 

polymers require an appropriate heat treatment for polymerisation.   

When organic materials are processed at elevated temperatures, they may 

become more reactive.  A vacuum oven is therefore required to prevent the oxidation 

reaction between the organic materials and molecules of water and oxygen gas.  In 

addition, the required temperature for evaporating the solvent is lower when the 

samples are kept in vacuum.   

In this study, the main purposes of employing vacuum annealing were to 

evaporate the solvent from the organic layers, and to enhance the properties of the 

dielectric layer.  A vacuum oven OV-11 (Jeio Tech) was used to anneal the samples 

after each spin-coating step.  The vacuum was kept below 1 mbar during the thermal 

annealing.   

 

 

3.5  Langmuir-Blodgett Deposition  

The Langmuir-Blodgett (LB) technique is a simple method for transferring 

organic monolayers onto substrates such as glass, metallised glass and silicon.  

Various organic materials, such as fatty acids and phospholipids, can be arranged 

into monolayers and then deposited onto substrates by this method.  The molecules 

are generally comprised of two main parts, namely hydrophobic and hydrophilic 

sections, as shown in Figure 3.6.  When a fatty acid is placed on a water surface, its 
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hydrophobic part is oriented towards the air.  In contrast, the hydrophilic part of the 

molecule is in contact with the subphase (water). 
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Figure 3.6  Amphiphilic molecule (fatty acid) on the surface of water (subphase). 

 

When a solution of fatty acid is dropped onto the water (Figure 3.7a), the 

amphipathic (or amphiphilic) molecules try to align themselves (Figure 3.7b). At the 

same time, solvent molecules evaporate from the floating film (Figure 3.7c).  An 

expanded monomolecular film is then formed on the subphase (Figure 3.7d). 

However, the amphipathic molecules are loosely attached to each other.  To produce 

a crystalline film, a barrier is moved to compress and force the molecules closer to 

each other.  The condensed floating monolayer is therefore in the form of a two-

dimensional crystal (Figure 3.7e).  

 

 

 - A Isotherms 

 A surface pressure () - area (A) isotherm is a plot of surface pressure against 

molecular area when the temperature is fixed.  Generally, this is simply referred to as 

an isotherm.  In essence, an appropriate pressure for film deposition is obtained from 

the isotherms since they provide information about phase changes of a floating 

monolayer of a particular material on a subphase.  A typical isotherm is shown in 

Figure 3.8. 
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Figure 3.7  Formation of monomolecular film : (a) organic solution dropped onto 

the subphase,  (b) organic molecules spread on the subphase, (c) solvent 

molecules evaporate, (d) expanded monomolecular films formed on the 

subphase,  (e) condensed film on the subphase. 
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Figure 3.8  A typical isotherm showing surface pressure versus molecular area.  
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 When a floating layer is compressed, the phase transition basically occurs in 

the two-dimensional layer.  This two-dimensional phase change is analogous to that 

of the three dimensions of a bulk material.  As shown in Figure 3.8, molecules are 

initially in gas phase (G).  In this phase, molecules have no or very slight interactions 

between molecules.   

When reducing the area of the floating layer, the molecules move closer and 

start to interact with each other.  However, the interaction in this phase is weak 

because the molecules are still distant from their neighbours.  This leads to a gradual 

increase of the surface pressure.  In this phase, the molecules show thermodynamic 

behaviour similar to that in a (3-dimensional) liquid phase.  This is generally called 

the expanded phase (E). 

If the decrease of the trough area continues, the interaction between 

molecules finally becomes strong.  The area reaches a limiting value and the surface 

pressure increases sharply.  This is similar to a three-dimensional solid phase.  This 

phase of the floating monolayer is known as the condensed phase (C).  The rising 

pressure seen in the isotherm marks the onset of the closed packed structure of the 

floating monolayer.   

 

 

Film Deposition 

After the condensed monolayer of the amphipathic molecules is formed on 

the subphase (Figure 3.9a), a substrate is lowered into the subphase.  When this is 

removed, a monolayer is transferred to the substrate (Figure 3.9b). If the substrate is 

again lowered into the subphase, a further monolayer is deposited (Figure 3.9c). By 

moving the substrate up and down, a multilayer molecular film is built up on the 

substrate (Figure 3.9d).  The thickness of the film is therefore dependent on the 

number of dips into the subphase. 

Three types of LB membranes are shown in Figure 3.10.  A Y-type LB film 

can be deposited easily on substrates by moving the substrates in and out of the 

subphase.  In case of Y-type deposition, the multilayer architecture will possess a 

hydrophobic surface (Figure 3.10b) if the deposition process is ended in air.  In 

contrast, if the process finishes in the subphase, a hydrophilic surface (Figure 3.10a) 

will be obtained.   
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Figure 3.9  Y-type deposition of monomolecular film onto a substrate : (a) 

Moving the substrate out of the subphase. (b) Monomolecular layer attached 

onto the substrate while moving out the subphase. (c) A further monomolecular 

layer is deposited onto the substrate while moving the substrate down into the 

subphase. (d) A multilayer film is deposited on the substrate by repeatedly 

moving the substrate up and down. 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.10  (a) Y-type deposition on hydrophilic surface.  (b) Y-type deposition 

on hydrophobic surface.  (c) X-type deposition.  (d) Z-type deposition. 
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In the Y-type deposition mode, the floating layer is transferred on both the 

downstroke and the upstroke.  In the X-type deposition mode, the monolayer is, in 

contrast, transferred onto a substrate only on the downstroke.  A typical structure of 

X-type LB films is depicted in Figure 3.10c.  However, in the Z-type deposition 

mode, the monolayer is transferred only on the upstroke.  Figure 3.10d shows a 

typical Z-type LB film.  In essence, certain conditions are required to obtain an X-

type or Z-type film; for example, high pH values can favour X-type deposition of 

fatty acid materials. 

To improve film quality, a metal salt, such as CdCl2, is added to the water.  

Since the metal ions bind to the hydrophilic parts, the molecules are then attached to 

the neighboring molecules.  As a result, a monomolecular layer of cadmium 

arachidate is formed.  This film is more stable and the quality of deposited film on 

the substrate is improved [4].   

A transfer ratio, or deposition ratio ( ), is used to characterise the quality of 

film transfer.  This is the ratio between the decreased area of monolayer film on the 

subphase and the deposited area of the solid substrate, i.e., 

τ

 

 L

S

A
τ =

A
        (3.2) 

 

where AL is the decrease in monolayer area while a substrate is dipped trough the 

subphase at the constant pressure and AS is the deposited area on the substrate.  If the 

film is of high quality, the transfer ratio should be within the range of 0.95 to 1.05 

[4].   

In this research, the LB technique was used to build up artificial membranes 

on a substrate.  The LB membranes were used as an ion-selective layer.  The 

hydrophobic substrates were first moved into the subphase and then pulled out of the 

subphase.    

 

 

 

 

 

  41



 

3.6  Conclusions 

The background concepts to the experimental techniques used in this research 

have been presented.  Although various PVD techniques could be used to deposit a 

metal layer onto substrates, only thermal vapour deposition has been described in 

detail.  This method has been used to deposit both chromium and gold layers on glass 

substrates.  The shadow mask technique for transferring a standard pattern of 

source/drain electrodes onto substrates has been introduced.  The photolithographic 

method for transferring an interdigitated pattern of source/drain electrodes has also 

been explained.  Spin-coating was used for depositing semiconductor and dielectric 

layers.  The process of vacuum annealing is also described.  This was used for 

evaporating the solvent from the organic layers and enhancing the properties of the 

spin-coated layers.  Finally, the LB technique for fabricating a well-ordered 

membrane on substrates has been outlined.  
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Chapter  4 

Langmuir-Blodgett Membranes 

 

 

4.1  Materials 

In this research, an artificial membrane is fabricated to imitate the membranes 

found in human cells.  The hydrocarbon chain in naturally occurring lipids and 

phospholipids in cell membranes contains generally between 16 to 20 carbon atoms.  

Arachidonic acid, one of the major constituents [1], contains 20 carbons in the 

normal hydrocarbon chain, with 4 double bonds.  This fatty acid plays a significant 

role in maintaining the fluidity of the cell membrane [2] because the double bonds 

prevent the molecules of the fatty acids from packing together tightly.  In normal 

circumstances, all the constituents will be held in the form of a stable cell membrane 

because the cytoskeleton forms scaffolding which supports all the fatty acids and 

lipids.  On the other hand, no supporting microstructure is imbedded in the artificial 

membrane.  Therefore, any double bond in a fatty acid molecule can lead to a weak 

attractive force between the molecules.  In this research, arachidic acid (AA), instead 

of arachidonic acid, was used to avoid the double bonds in the fatty acid molecules.  

With an unbranched saturated hydrocarbon chain, AA molecules can form a close-

packed floating monolayer on a subphase.  As a result, an artificial AA membrane 

can be transferred onto a substrate more efficiently and effectively than a membrane 

of arachidonic acid.  Arachidic acid was therefore selected as the basic constituent of 

the artificial membranes in this research.   

The 16-carbon phospholipids are one of the most common constituents in cell 

membranes.  Although both saturated and unsaturated fatty acids are generally found 

in cell membranes throughout the human body, fatty acids with a saturated 

hydrocarbon chain are more inert than unsaturated fatty acids and not reactive to 

water (H2O) or oxygen (O2) molecules.  This makes 1,2-dipalmitoyl-sn-glycero-3-

phosphatidic acid (DPPA) suitable for this research because this phospholipid is 

comprised of two palmitoyl groups, in the form of a 16-carbon saturated hydrocarbon 

chain.  This kind of fatty acid can be exposed to an aqueous environment without 

undergoing any chemical reactions with oxygen or water.  Furthermore, this 
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molecule has its hydrocarbon chains of the same length, similar to the main 

constituents in cell membranes.   

An ion channel or ionophore is required to sensitise a layer to potassium ions.  

Although many ionophores have been studied and characterised, valinomycin [3-11] 

shows a high sensitivity and potential for detecting potassium ions in an aqueous 

solution.  Following incorporation in an active layer, such as PVC [12], photoresist 

[13] or lacquer [14], valinomycin can detect potassium ions in saline solution with a 

low interference from sodium or other ions.  However, there is little work on the 

incorporation of this molecule in an active layer of an ion-sensitive organic field 

effect transistor. 

In this chapter, the main objective is to study the characteristics of Langmuir-

Blodgett (LB) membranes of the materials noted above.  The substrate is a single-

crystal silicon wafer.   

 

 

Arachidic Acid 

 

 

 

Figure 4.1  Chemical structure of arachidic acid. 

 

Arachidic acid, or eicosanoic acid, is a saturated fatty acid comprised of a 

long chain hydrocarbon with only single bonds, as shown in Figure 4.1.  Its chemical 

formula is C19H39COOH and its molecular weight is 312.5 g mol-1.  Arachidic acid 

(anhydrous; Sigma grade,  99%) was obtained from Sigma Chemicals. This 

material can be completely dissolved by chloroform under normal conditions, but it 

is insoluble in water.  Because the molecular structure of arachidic acid is that of a 

single hydrocarbon chain, its cross-sectional area per molecule is around 0.19 nm2.  

In this work, AA is used as a basic component in creating the LB film.  

However, the hydrocarbon chain is not long enough to provide the strong Van der 

Waals force to hold the crystalline film stable on a subphase.  Therefore, CdCl2 is 

added to a subphase to improve a stability of the floating crystalline layer [15].  The 

reaction between AA and cadmium chloride is  
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2HClCOO)HCd(CCdClCOOHH2C 2391923919    (4.1) 

 

Since each cadmium ion (Cd2+) binds with two arachidate groups, a 

monolayer of cadmium arachidate (CdAA) is more rigid than the corresponding 

monolayer of AA on the surface of a subphase.   

 

 

1,2-Dipalmitoyl-sn-Glycero-3-Phosphatidic Acid  

1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) is a phospholipid 

with two saturated hydrocarbon chains, as shown in Figure 4.2.  The empirical 

formula of this material is in its sodium salt form, C35H68O8PNa; its molecular 

weight is 670.87.  Normally, this material is in the form of a white powder.  1,2-

Dipalmitoyl-sn-glycero-3-phosphatidic acid (TLC grade,  98%) was obtained from 

Fluka Chemicals.  

 

 

 

 

Figure 4.2  Chemical structure of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic 

acid. 

 

1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid can be completely dissolved 

by warm chloroform.  However, when the solution is cooled, some molecules of 

DPPA can precipitate out of the solution due to its low solubility at room 

temperature.  Therefore, the solution must be warmed to make DPPA completely 

dissolve before using it in the experiment. 
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Valinomycin 

Valinomycin is a dodecadepsipeptide because it is comprised of twelve 

amino acids.  As shown in Figure 4.3, these amino acids are connected in a circle.  

Generally, its molecular weight is 1111.32 and its empirical formula is C54H90N6O18.  

This material is normally dissolved by non-polar solvents [7] at room temperature.  

However, chloroform is used as the solvent in this research due to its low boiling 

point.  Valinomycin (TLC grade,  98%) was obtained from Fluka Chemicals. 

 

 

 

Figure 4.3  Chemical structure of valinomycin. 

 

A valinomycin molecule is normally arranged so that its twelve carbonyl 

groups (hydrophilic groups) are inside the molecule.  The methyl groups and 

isopropyl groups (hydrophobic groups) are pointed outwards.  The shape of the 

valinomycin molecule is very flexible because of its sheer size.  As a result, the 

molecular structure is not locked into the form depicted in Figure 4.3.  Thus, this 

molecule can be dissolved in a polar solvent by exposing the hydrophilic groups to 

the solvent molecules; however, it can also be dissolved in a non-polar solvent by 

exposing the hydrophobic groups to the solvent molecules. 

The twelve carbonyl groups from the amino acids are arranged to form an ion 

compartment or ionophore that is specific to potassium ions.  The molecule traps K+ 

within this cavity and transports K+ across the membrane.  When K+ is trapped inside 

valinomycin, a potassium-ion complex is formed; the shape and size of valinomycin 

is changed slightly from that shown in Figure 4.3.  Within the membrane 

environment, this change is sufficient to free this ion complex from the neighbouring 
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molecules.  This complex is a hydrophobic macromolecule; it can move through LB 

membrane because its exterior is made up from the methyl and isopropyl groups.  

Consequently, the complex moves across the membrane and the K+ ion is released 

from valinomycin on the other side.  In this way, valinomycin functions as a K+ 

carrier [3]. 

 

 

Silicon Substrates 

Silicon wafers were used as a substrate for supporting the LB films.  In this 

work, a p-type Si wafer was cut into 1 x 3 cm2 pieces, as shown in Figure 4.4.  To 

remove all particles and contamination from the surface of the substrate, the silicon 

was immersed in a series of solvents and left in an ultrasonic bath for 15 minutes.  

The substrates were rinsed by analytical-grade solvents and dried by filtered nitrogen 

gas.  By using isopropanol, acetone, 2% Decon solution and DI water in sequence, 

both polar and non-polar contaminations are removed from the surface.  The wafers 

were finally treated using 2% dimethyldichlorosilane to provide hydrophobic 

surfaces. 

 

 

1 cm1 cm

 
Figure 4.4  A silicon substrate. 

 

 

4.2  Pressure - Area Isotherms 

Langmuir-Blodgett films are normally deposited at a pressure within the 

condensed phase.  The purpose of these experiments was to investigate the surface 

pressure - area isotherms of materials that were used in this work, namely AA, DPPA 

and valinomycin.  In addition, a mixture of fatty acid and valinomycin was studied to 

find the optimum condition for pressure control during film deposition. 
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The LB trough was cleaned by using isopropanol and deionised (DI) water 

respectively, before carrying out the experiments. The LB trough was filled with DI 

water (subphase).  To improve the quality of the deposited film, the surface of a 

subphase was cleaned until the difference between the maximum and minimum 

pressures was less than 0.5 mN m-1.  This was done by compressing the surface of a 

subphase without spreading any fatty acid.  Since the aqueous subphase was exposed 

to the air, carbon dioxide (CO2) dissolved into the DI water.  As the result, the pH of 

the subphase was around 5.5.  All the experiments were undertaken in the cleanroom 

at 293 K. 

After preparing the LB equipment, a solution of the appropriate material was 

dispersed via a syringe onto the subphase.  The solution was left on the subphase for 

10 minutes, to allow for solvent evaporation.   

 

 

Arachidic Acid 

To measure an isotherm, 30 l of a solution of arachidic acid (conc. = 1.02 

mg ml-1; in chloroform) was spread on the surface of a subphase.  About 10 minutes 

was allowed for the chloroform to evaporate until the surface pressure reached a 

stable value.  The monolayer was then compressed at a rate of 2.0  0.1 cm2 s-1 (the 

barrier speed was approximately 1 mm s-1) and the isotherm was recorded as shown 

in Figure 4.5a.  The observable transition of the arachidic acid monolayer from the 

gaseous phase into the expanded phase occurred at a molecular area of about 0.25  

0.01 nm2.  A condensed or solid phase of AA was noticeable when the surface 

pressure exceeded about 25 mN m-1.  Similarly, Pezron et al [16] reported that the 

film entered into an expanded phase when the molecular area was lower than 0.25 

nm2, and the phase transition into the solid condensed state was observed at a surface 

pressure of about 26 mN m-1.   When the graph in the condensed region was 

extended to intercept the x axis, it is evident that the area per arachidic acid molecule 

is approximately 0.21  0.01 nm2.  This interpolation method was also used in 

subsequent work.  The result shows that the molecular area of AA is similar to the 

theoretical value noted in Section 4.1.  At a given surface pressure, the 

reproducibility of AA on DI-water subphase was better than 0.01 nm2. 
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Figure 4.5  Isotherms of arachidic acid at 293 K, pH 5.5, measurement using 

subphase as :  (a) DI water.  (b) 1 mg ml-1 KCl solution.  (c) 0.1 mg ml-1 CdCl2 in 

DI water.  
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Using potassium chloride (KCl) solution at a concentration of about 1 mg ml-

1 as a subphase, 20 l of the solution of AA (conc. = 1.02 mg ml-1; in chloroform) 

was spread on the subphase.  After allowing 10 minutes for evaporation of the 

solvent, the isotherm of AA was measured and plotted as in Figure 4.5b.  It is evident 

that the transitions from the gaseous phase to the expanded phase and from the 

expanded phase to the condensed phase occur at the same surface pressures as those 

for the monolayer on the DI water subphase.  With the molecular area of 0.21  0.01 

nm2 in case of the KCl subphase, the presence of the K+ ions did not have an 

observable effect on the molecular area in the condensed phase of the AA.  Similarly, 

the reproducibility of AA isotherms on KCl solution subphase at a specific surface 

pressure was better than 0.01 nm2.  

Pezron et al [16] showed that the presence of the monovalent salt did not 

have an effect on the isotherm of arachidic acid at a pH of 5.6.  In contrast, Goddard 

et al [17] reported that the effect of the alkaline ions on the isotherms of pure AA 

could be observable at a pH above 12, when the carboxylic groups of the fatty acid 

were fully ionised.   In this study, a small repeatable bump occurs at a surface 

pressure of about 10 mN m-1.  This agrees with that reported by Goddard [17].  The 

bump occurring in Figure 4.5b may therefore be the effect of potassium monovalent 

ions (K+) on AA molecules on the aqueous subphase.  However, this small bump 

may also result from other contamination, such as fatty acid or ions.  Further work is 

needed to clarify this. 

Figure 4.5c shows the isotherm of arachidic acid on cadmium chloride 

solution at a concentration of 0.1 mg ml-1. The molecular area of cadmium arachidate 

is approximately 0.20  0.01 nm2; this is slightly smaller than that of AA.  Unlike the 

isotherm of AA, the expanded phase is not observed in the isotherm of CdAA.  In 

this case, when cadmium chloride is added to the subphase, each cadmium ion is 

bound to two COO- groups of AA to form cadmium arachidate (CdAA), an organic 

salt.  Consequently, each arachidic acid molecule is attached to another more tightly 

than in the case of AA.  As noted in previous work [18, 19], Cd2+ is a suitable 

divalent ion to improve the stability of a monomolecular layer of AA.  Adding 

divalent ions into subphase can improve the transfer ratio of the LB film.  In this 

work, arachidic acid and cadmium arachidate were both transferred onto substrates at 

a surface pressure of 32 mN m-1.   
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1,2-Dipalmitoyl-sn-Glycero-3-Phosphatidic Acid  

1,2-dipalmitoyl-sn-glycero-3-phosphatidic acid was dissolved in chloroform 

at a concentration of 0.5 mg ml-1.   200 l of the solution was spread on the surface 

of an aqueous subphase.   The isotherm of DPPA was shown in Figure 4.6a.  This 

was found to be similar to that of cadmium arachidate.  However, the molecular area 

of DPPA, approximately 0.07  0.01 nm2, is far less than the theoretical value, about 

0.38 nm2 (due to the two hydrocarbon chains in the DPPA molecule).  The result 

suggests an error in the concentration of the DPPA solution.   As noted in datasheet 

of the Matreya Company, DPPA can be completely dissolved in warm chloroform.  

However, a dramatic decrease in the solubility of DPPA at room temperature led to 

the precipitation of DPPA in the solution.  This makes the concentration of the DPPA 

solution uncertain.  DPPA could be dissolved completely without any precipitation at 

room temperature, if the concentration was more diluted, less than 0.1 mg ml-1.   

The solubility of DPPA could be increased by using an ethanol:hexane 

mixture or an ethanol:chloroform mixture.  In the case of using the ethanol:hexane 

(1:4) mixture, the molecular area was about 0.52 nm2.  However, the isotherm has a 

large hysteresis loop as shown in Figure 4.6b.  Both the hysteresis and the very large 

molecular area probably result from the remains of solvent in the monolayer due to 

its low evaporation rate.   

In case of using the ethanol:chloroform mixture (1 : 9) as the solvent, DPPA 

was dissolved at a concentration of about 0.91 mg ml-1.  The DPPA isotherm is 

shown in Figure 4.6c.  Similar to the isotherm of CdAA, no phase transition is 

observed in the isotherm of DPPA.  This agrees with the work of Minones et al, who 

experimented in forming a monolayer using a DPPA solution with a concentration of 

about 0.46 mg ml-1 [20].  However, the result in this study shows that the molecular 

area is about 0.23 nm2, one half of the theoretical value.  This may be because the 

DPPA did not dissolve completely in such solvent.   

As shown in Figure 4.6c, it is difficult to indicate the transition pressure 

between the expanded phase and the condensed phase.  The slope in the expanded 

phase is clearly different from that in the condensed phase.  The transition pressure 

can then be approximated using the interception point between the slopes of the 

expanded and condensed phases.  In this work, an ethanol:chloroform mixture was 

used to dissolve DPPA since the addition of ethanol increased the DPPA solubility. 
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Figure 4.6  Isotherms of DPPA at 293 K, pH 5.5 :  (a) Using pure chloroform as 

a solvent (conc. =  0.5 mg ml-1).  (b) Using an ethanol : hexane mixture (1 : 4) as 

a solvent (conc. =  0.83 mg ml-1).  (c) Using an ethanol : chloroform mixture (1 : 

9) as a solvent (conc. =  0.91 mg ml-1). 
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In Figure 4.6c, the slope of the isotherm is -504.5 pN nm-3 (in the expanded 

phase) when the surface pressure is between 2 mN m-1 and 18 mN m-1.  On the other 

hand, the slope becomes -1585.8 pN nm-3 (in the condensed phase) when the 

pressure is more than 22 mN m-1.  Therefore, the interception point between the 

slopes is approximately 20 mN m-1.  Minones reported that the surface pressure at 

which the monolayer of DPPA (spread on water at pH 6 and 293 K) changed from 

the expanded phase to the condensed phase was approximately 24 mN m-1 [20].  The 

difference between these values may be the result from the differences in the 

temperature and the pH of the subphase.  Based on the result in Figure 4.6c, 

monolayers of DPPA were deposited onto substrates at surface pressure of about 22 

mN m-1, at a temperature of 298 K and a pH value of about 5.5. 

 

 

Pure Valinomycin 

Birdi [21] noted that the valinomycin isotherm on the aqueous subphase is 

independent of the compression speed if a valinomycin concentration on the 

subphase surface is low.  In contrast, the behaviour depends significantly on the 

compression rate of the barriers when a high-concentration solution of valinomycin 

is spread on a subphase.  In this study, when spreading valinomycin solution on a 

subphase, the valinomycin concentration was initially low.  By compressing the 

trough barriers, the valinomycin concentration increased while the molecular area 

reduced gradually.  Nature (or phase) of the floating film will therefore depend on 

the compression.  Hence, the compression speed is likely to have an influence on the 

LB deposition.  Birdi [21]reported that the compression speed will become a key 

factor in film deposition when the molecular area approaches 2 nm2 (high 

valinomycin concentration).  With a proper compression rate, the monolayer of 

valinomycin could therefore be deposited on a substrate. 

To obtain an isotherm of pure valinomycin, 10 l of valinomycin solution 

(conc. = 0.96 mg ml-1; in chloroform) was spread onto the aqueous subphases, DI 

water and KCl solution.  The floating film was then left for about 10 minutes to 

evaporate the solvent.  In this study, the floating layer of valinomycin was 

compressed at two speeds, 0.1 and 0.8 mm s-1.  Figure 4.7 shows the isotherms 

obtained from the two different speeds. 
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Figure 4.7  Isotherms of valinomycin at 293 K, pH 5.5, with compression speeds 

of 0.1 mm s-1 (black) and 0.8 mm s-1 (red).  

 

In case of the 0.1 mm s-1 compression speed (black line), the phase change is 

unclear.  This leads to a problem in defining the onset of the condensed phase of 

valinomycin.  In addition, the result suggests that the floating layer may probably not 

enter the condensed phase at the slow speed.  Instead, the molecules may pile up and 

form a multimolecular layer of valinomycin [22].  In contrast, a constant-pressure 

plateau region, at about 30 mN m-1, is evident for the isotherm (red line) when the 

barriers were moved at speed of 0.8 mm s-1.  Baoukina et al suggested that the 

coexistence of the liquid-expanded (LE) and the liquid-condensed (LC) phases is a 

relevant factor behind the presence of the constant-pressure plateau on isotherms 

[23].  The plateau region may therefore indicate the presence of the liquid-condensed 

phase.   

When using the compression speed of 0.8 mm s-1, the isotherm of pure 

valinomycin does not reveal any condensed phase, as in case of arachidic acid or 

cadmium arachidate, since the LB trough has an insufficient area to show the entire 

isotherm.  Although valinomycin molecules in the plateau region do not form a 

close-packed structure as in the condensed phase, the floating layer in this region is 

more compact than that in the expanded phase.  However, it is impractical to transfer 

a floating layer in the plateau region.   In this work, the floating layer was therefore 
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transferred onto substrates at the surface pressure at 25 mN m-1 and a compression 

speed at 0.8 mm s-1.  At this pressure, valinomycin has the most compact layer before 

entering into the plateau region. 
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Figure 4.8  The isotherms of valinomycin at 293 K, with compression speeds of 

0.8 mm s-1, pH 5.5; using DI water () and 1 mg ml-1 KCl () as a subphase, 

respectively. 

 

Because valinomycin molecules are sensitive to potassium ions in solution, 

an experiment using a KCl subphase was undertaken.  A KCl solution concentration 

of 1 mg ml-1was used as a subphase.  As shown in Figure 4.8, the effect of potassium 

ions in the subphase on an isotherm of valinomycin is not obvious at this low 

concentration.  Caspers et al [9], as well as Kemp and Wenner [11], reported similar 

results showing that the influence of the potassium ions in the subphase was not 

apparent for concentrations below about 7 mg ml-1 (<1 M); however, the condensed 

phase showed two distinct sections when the concentration was higher than 1 M.  In 

Figure 4.8, the molecular area is approximately 3.60 nm2, similar to that reported by 

Kemp and Wenner [11], when using DI water as a subphase.  In case of using 1 mg 

ml-1 KCl as a subphase, the molecular area is approximately 3.50 nm2, which is 

similar to the result reported by Ries and Swift [24].  When a molecule of 

valinomycin interacts with K+ and forms a valinomycin-K+ complex, its size is 

slightly reduced compared to uncomplexed valinomycin.  This may be a reason why 
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the molecular area in case of 1 mg ml-1 KCl is slightly smaller than that in case of DI 

water.  Overall, these experiment suggests that K+ ions in the subphase do not have a 

significant effect on forming a monolayer of valinomycin on a subphase. However, 

to avoid any influence of residual K+ in the measurement, the deposition of 

valinomycin monolayer was undertaken on DI water.  

 

 

Arachidic Acid/Valinomycin Mixtures  

In section 3.2.3, valinomycin was shown to form a floating layer on an 

aqueous subphase; however, the isotherm of valinomycin suggests that the 

valinomycin monolayer is not stabilised fully on the subphase due to the flexibility of 

valinomycin molecules.  Pathirana and Neely [6] have suggested that interactions 

between molecules of valinomycin and fatty acid in a monolayer could help the 

valinomycin molecules to form a valinomycin-K+ complex when in contact with a 

potassium-containing solution. Thus, this subsection concerns isotherms of the 

mixtures of valinomycin and AA. 

The valinomycin and the arachidic acid solutions were prepared separately at 

a concentration of 1 mg ml-1.  Then, a mixed solution with 1 %w/w of valinomycin 

was made by adding 10 l of the valinomycin solution into 990 l of the arachidic 

acid solution.  The solution with 5 %w/w of valinomycin was made by adding 50 l 

of the valinomycin solution into 950 l of the arachidic acid solution. 

In these experiments, the mixed solution of about 20 l was spread over the 

subphase surface.  Isotherms of the solutions with 1% and 5% of valinomycin by 

weight were measured on subphases of both DI water and KCl solutions.  Since a 

valinomycin molecule has a different molecular weight from that of an AA molecule, 

an interpolated molecular weight (MWi) is required for calibrating an isotherm.  By 

using a linear interpolation, a MWi is calculated from Equation 4.2. 

 

 k
i

k

a × MW
MW =

100 k                                                                    (4.2) 

 

where  is a concentration (% w/w) of molecule k in the mixture and  is a 

molecular weight of molecule k.   

ka kMW
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In these experiments, the interpolated MW could be calculated as shown in 

Table 4.1.  

 

Table 4.1  The interpolated molecular weight of a mixture between valinomycin and AA 

% w/w Valinomycin % w/w AA Interpolated Molecular Weight 

1 99 320.5 

5 95 352.4 

 

By using the average molecular weight of the mixture, the isotherms of the 

AA/val mixtures on a DI water subphase are plotted and shown in Figure 4.9a.  Both 

isotherms of the AA/val mixtures on an aqueous subphase are similar to that of pure 

AA.  This may be due to the low content of valinomycin in the floating layer.  

However, the isotherms of the 1% and 5% w/w valinomycin mixtures have 

characteristics inherited from valinomycin molecules when the surface pressure is 

below 30 mN m-1.  Since valinomycin has a molecular weight of approximately 

1111, three times greater than that of arachidic acid, this makes the Van der Waals 

forces between valinomycin and AA molecules much greater than the forces between 

molecules of arachidic acid.  Therefore, valinomycin molecules dominate the 

characteristics in the expanded phase of the isotherm.   

When the surface pressure is above 30 mN m-1, the isotherms show that both 

1% and 5% mixtures are in the condensed phase region, a characteristic inherited 

from arachidic acid.  This may be because only arachidic acid, not valinomycin, can 

form a close-packed structure when using this LB system with the small trough area.  

Both isotherms of the mixtures, however, have small differences from that of pure 

arachidic acid, perhaps due to experimental errors.  In this work, the floating 

monolayers with 1 % and 5 % w/w valinomycin were transferred onto a substrate at a 

surface pressure slightly less than 30 mN m-1. 

Figure 4.9b shows the isotherms of the 1% and 5% AA/val mixtures when 

using a 1 mg ml-1 KCl subphase.  With the KCl subphase, the isotherms in the 

expanded phase are different from those on the DI water (Figure 4.9a).  Small 

‘bumps’ occur at a surface pressure of approximately 8 mN m-1.   
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Figure 4.9  Isotherms of mixtures of 1% and 5% valinomycin in AA compared to 

those of pure AA and pure valinomycin at 293 K, with compression speeds of 

about 0.1 mm s-1, pH 5.5, (a) DI water subphase.  (b) 1 mg ml-1 KCl solution 

subphase.  
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By using a 0.75 mg ml-1 KCl solution as a subphase, Goddard et al reported 

that similar bumps for pure AA were evident at approximately 12 mN m-1 when the 

pH of a subphase was above 12 [17].  Additionally, Goddard et al also showed that 

the pH of a KCl solution subphase has a significant influence on the size of these 

bumps [17].  Since an AA floating layer does not ionise completely on a weak basic 

solution, the size of these bumps becomes smaller when decreasing pH of a KCl 

solution subphase below 12.  The experimental results in this study therefore suggest 

that the presence of small bumps is due to the interaction of K+ ions and the arachidic 

acid molecules.   

Although there is no evidence of the influence of K+ on the valinomycin 

isotherm in this study, the presence of valinomycin in the floating layer seems to 

have an effect on the isotherm of the AA/val mixtures on the KCl subphase.  When 

increasing the amount of valinomycin in the mixture, the bump becomes larger.  This 

may indicate that the valinomycin molecules can assist the dissociation of arachidic 

acid on the KCl subphase.  Each valinomycin molecule is comprised of six amines, 

as shown in Figure 4.3.  Generally, amines are bases although they are significantly 

weaker than alkali metal hydroxides.  The pH around the valinomycin molecules is 

therefore increased.   The surroundings of the arachidic acid become more basic 

when increasing the amount of valinomycin.  This increase of the local pH may 

influence the bump on the arachidic acid isotherm and hence, result in the increase in 

size of the bump. 

In Figure 4.9b, the effect of the potassium ions disappears from the isotherms 

of the arachidic acid/valinomycin mixture, when the surface pressure increases above 

30 mN m-1.  Therefore, the isotherms of the mixtures on the KCl subphase converge 

to that of pure arachidic acid.  This shows that the valinomycin molecules did not 

form any K+-valinomycin complex on the 1 mg ml-1 KCl subphase.  Kemp and 

Wenner [11] showed that pure valinomycin monolayers can, however, form 

complexes on highly concentrated (3M or > 200 mg ml-1) KCl solutions.  Although 

the molecular area of valinomycin is significantly larger than that of arachidic acid, 

there is no apparent effect on the isotherms of the AA/val mixtures.  Similar to the 

case of pure arachidic acid, the molecular areas of both mixtures are about 0.20 nm2.  

There are two possible explanations.  First, valinomycin molecules may still be 

embedded in the floating layer; however, their shape is changed significantly in the 

condensed phase, and/or their alignment is altered from a horizontal alignment to a 
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vertical alignment.  Second, some valinomycin molecules may be expelled from the 

floating layer and pile up on top of the arachidic acid monolayer.    

The isotherms of the mixture in Figure 4.9b show that a floating layer on the 

KCl solution may be more condensed than that on the DI water in Figure 4.9a.  This 

suggests that KCl solutions are probably suitable for transferring the monolayers of 

the AA/val mixtures onto substrates.  However, the main goal of this work is to 

fabricate an organic-based device for detecting K+ ions.  To avoid effects from 

residual K+ ions in the subphase, DI water was used as the subphase in this work.   

 

 

4.3  LB Film Deposition 

Even though one of the primary objectives of this research is to deposit an 

active LB layer onto an ISFET, a p-Si wafer with a hydrophobic surface was used as 

a basic substrate in pilot experiments.  Therefore, this section will focus on 

transferring a floating layer on a subphase to a Si substrate using the LB technique.  

To deposit high-quality LB films, it is necessary to control three main parameters: 

drying time; dipping speed; and dipping pressure.  As noted above, a suitable 

pressure to deposit the LB film is within the condensed phase because the floating 

film has a dense structure in this phase.   

In the case of a hydrophobic surface, a monomolecular layer is transferred 

from the subphase surface in the first downwards movement.  The next layer is 

coated onto the substrate when it is moved upwards.  A dip, defined as a downward 

and upward movement of the substrate, causes the substrate be coated with two 

layers of a floating monolayer.  Normally, the front and back surfaces of the 

substrate are in contact with the monomolecular layer during dipping into the 

subphase.  As a result, the dipping area of substrate is four times the area of the 

dipping surface of the substrate. 

After applying the solution to the subphase, the chloroform solvent was left to 

evaporate completely from the water surface (approximately 10 minutes).  The 

barriers were then controlled to maintain a constant surface pressure.  Before dipping 

the Si substrate into the subphase, the compressed monolayers of AA, CdAA and 

valinomycin on the subphase were left approximately 10 minutes to stabilise the film 

at the control pressure.  However, the DPPA monolayer was left on the subphase for 
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at least 2 hours before film deposition as suggested by Lukes et al [4].  In all 

depositions, the temperature was 293 K and the pH was 5.0. 

   

 

Arachidic acid 

The surface pressure for depositing arachidic film should be greater than 25 

mN m-1 to ensure that the deposition occurs in the condensed phase.  Therefore, the 

surface pressure in these deposition experiments was set at 32 mN m-1.   

To transfer a monolayer of AA onto silicon, it was dipped 10 mm into the 

subphase.  Figure 4.10 shows that every dip of the Si wafer into the subphase causes 

a steady decrease in the monolayer area.  The ten short steps in this graph indicate 

that there are ten successive dips into the subphase.  The reduction in area is about 

4.7 cm2 per dip.  Since the Si wafer is 1 cm wide, the dipping area of Si wafer is 

approximately 1 cm2.  This suggests that the LB film of AA is deposited on both 

sides of the Si wafer and it is coated during both the downward and upward 

movements.    
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Figure 4.10  (a) Arachidic acid film on a Si wafer.  (b) Dipping profile for 

depositing arachidic acid film onto a Si wafer. 
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The experimental result shows that the transfer ratio is 1.2, in contrast to the 

theoretical value of 1.  This agrees with the conclusion of Claesson [18] that it is 

difficult to transfer compact monolayers of AA onto substrates using the LB 

technique. Due to the effects of ionic repulsion among hydrophilic groups, it is also 

difficult to keep the monolayer of AA stable at an exact surface pressure [18, 25].  

However, a LB film could be transferred onto a hydrophobic surface of a substrate 

by using an appropriate dipping speed.  In this research, the LB layers were 

transferred successfully onto a Si wafer at a dipping speed of about 0.08 mm s-1.  

 

 

Cadmium arachidate  

To enhance the quality of the arachidic acid LB film, 10 mg of cadmium 

chloride (CdCl2) was added to the subphase (DI water).  Consequently, CdAA, an 

organic salt, formed on the water surface, as indicated by Equation 4.1.  Similar to 

arachidic acid, the Si wafer was dipped about 10 mm into the subphase.  The ten 

steps on the graph in Figure 4.11 are similar to the arachidic-acid dipping profile.  

This shows that 20 monomolecular layers of Cd arachidate are deposited onto the Si 

wafer. 
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Figure 4.11  (a) Cadmium arachidate film on a Si wafer.  (b) Dipping profile for 

depositing cadmium arachidate film onto a Si wafer 
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The dipping profile gives an average transfer ratio of approximately 1.00  

0.05.  This value is much closer to the theoretical value than in the case of AA.  This 

suggests that the arachidic acid monolayer incorporated with Cd2+ ions can form a 

compact structure when compared to pure arachidic acid without Cd2+ ions, as 

indicated by the isotherm in Figure 4.5a.   

 

 

1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid  

Lohner et al showed that it was quite difficult to transfer 1,2-Dipalmitoyl-sn-

glycero-3-phosphatidic acid  monolayers onto Si wafers using the LB technique 

without the addition of calcium ions in the subphase [26].  However, this research 

attempted to avoid effects from residual ions on an ion-sensitive device.  Therefore, 

the floating monolayer was transferred onto a substrate by using DI water as a 

subphase.  Howarth suggested that the monomolecular layer of DPPA needs a long 

stabilising time before dipping the Si wafer into the subphase [22].  In this study, the 

floating DPPA monolayer was controlled at a constant surface pressure for 

approximately two hours.   
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Figure 4.12  A profile of the pressure control of a DPPA monolayer at constant 

pressure of 25 mN m-1, 297 K. 

 

By keeping the surface pressure constant at 25 mN m-1, a pressure-control 

profile of the DPPA floating layer is depicted in Figure 4.12.  This curve shows that 
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a monolayer of DPPA exhibited good stability on a pure water subphase.  Since 

DPPA is in the form of an organic salt (C35H68O8PNa), its head group was ionised (to 

give the phosphate ions, ) when spread onto subphase (DI water).  Each DPPA 

molecule was tightly held together and formed a compact monomolecular layer on 

the subphase as a result of hydrogen bonding.   


3PO

Figure 4.12 shows that DPPA molecules can form a stable monolayer on a 

subphase.  However, the floating layer was not transferred successfully to the silicon 

substrates, as shown in Figure 4.13.  The deposited layer in the previous dip peeled 

off during the next excursion into the subphase.  Although the transfer ratio is about 

0.51 for the first dip, it decreases to about 0.07 for the last dip.  The average transfer 

ratio was about 0.35.  This shows that the amount of the DPPA monolayer 

transferred onto the Si decreases while the dipping progresses.  This suggests that the 

DPPA monolayer did not firmly attach to the Si wafer as this was moved through the 

surface of subphase.  Unlike AA or CdAA molecules, both palmitoyl groups of 

DPPA molecules are not aligned parallel, but form an angle of about 145 [27].  

Although the pamitoyl hydrocarbon chains are hydrophobic, these groups are not 

upright like alkane groups in AA or CdAA molecules.  Therefore, the compressed 

monolayer of DPPA might not be able to form a tightly packed monolayer.  This 

structure probably trapped some water molecules in the floating layer.  This may be 

the reason why the deposited layer peeled off the surface of the Si wafer when the Si 

was repeatedly dipped into the subphase [18].  Additionally, in Figure 4.13a, it is 

evident that the deposited film has the poor optical quality.   

To improve the quality of the DPPA LB film, 10 layers of AA or CdAA were 

first coated onto a Si wafer by dipping a 15 mm length into the subphase; then 10 

layers of DPPA were deposited onto this treated Si wafer.  Monolayers of DPPA 

could be transferred effectively onto this fatty-acid coated Si wafer as shown in 

Figure 4.14a and 4.14b.  For deposition onto the AA layer, the transfer ratio of DPPA 

was 0.95  0.05.  In contrast, the transfer ratio was 1.00  0.05 in the case of 

deposition onto a cadmium arachidate layer. 
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Figure 4.13  (a) DPPA film on Si wafer, 20 dips.  (b) Dipping profile of a DPPA 

film onto Si wafer. 
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Figure 4.14   (a) DPPA film on arachidic acid/Si wafer, 5 dips of DPPA on 10 

AA layers.  (b) DPPA film on Cd arachidate/Si wafer, 5 dips of DPPA on 10 

CdAA layers. 
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Pure Valinomycin  

Valinomycin molecules could be formed into a floating layer at the air-water 

interface, as described in previous section.  However, the doughnut-like shape of 

valinomycin molecules makes it difficult to deposit a high-quality LB valinomycin 

film onto a substrate.  Due to weak interactions between the valinomycin molecules 

on the subphase, a relatively small external force on the surface of a subphase can 

break the fragile floating film.  This is a reason why the stability of a floating 

valinomycin monolayer depends markedly on the surface pressure [22], although it 

was not very dependent on the pH and ionic concentration.   
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Figure 4.15  Pressure-control profiles of valinomycin; constant surface pressure 

of 15 mN m-1 

 

Howarth reported that the area decayed dramatically when the surface 

pressure was controlled at 30 mN m-1; however, the area decayed only slowly when 

the pressure was kept below 23 mN m-1 [22].  Therefore, it is possible to deposit a 

floating monolayer of valinomycin onto a substrate at a pressure below 23 mN m-1 

[22].  However, an attempt to repeat the results of Howarth was not successful; the 

area of the valinomycin monolayer still decayed, even though the pressure was held 

at 15 mN m-1, as shown in Figure 4.15.   After compression for about 40 min, the 

area was constant at a value of about 45 cm2 since it reached the minimum area of 

the trough.   
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In this study, although a valinomycin monolayer could not be stabilised on an 

aqueous subphase, an attempt to transfer such a floating monolayer onto silicon was 

undertaken at a constant surface pressure (15 mN m-1) without the film stabilisation 

on the subphase after the surface pressure reached such pressure.  Figure 4.16 shows 

the dipping profile of valinomycin onto a Si wafer.  The result shows that the area of 

the trough decreased continuously during the deposition until it reached the 

minimum area (approximately 45 cm2).  The small bumps on the curve correspond to 

movements of the substrate into and out of the subphase.  Moreover, the slope of the 

curve was steeper during moving the substrate into the subphase.  This reveals that 

some valinomycin molecules were transferred onto the silicon.  When pulling the 

substrate upwards, the curve decreased less steeply.  This indicates that some 

valinomycin came out of the substrate surface.  Howarth et al have reported the same 

problem which occurred in transferring valinomycin onto both hydrophobic and 

hydrophilic silicon substrates [5, 22].   
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Figure 4.16  Dipping profile of a valinomycin film deposited on a Si wafer 
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4.4  Conclusions 

The LB membranes in this study were deposited to imitate cell membranes in 

living cells.  Therefore, arachidic acid and 1,2-dipalmitoyl-sn-glycero-2-phosphatidic 

acid were studied.  Since the LB membranes were also used as ion-sensitive 

membranes in the following chapters, valinomycin and its mixture with AA were 

investigated.  Their isotherms and deposition on Si wafer were studied.  The results 

show that arachidic acid can form a compact monolayer on an aqueous subphase.  

However, with a small amount of CdCl2 in the subphase, the molecules of cadmium 

arachidate form a more stable floating monolayer.  In case of DPPA molecules, the 

isotherm shows that their floating layer has a compact architecture on DI water.  In 

contrast, the valinomycin isotherms show that valinomycin formed a loosely packed 

structure. 

Arachidic acid LB films were built-up successfully on Si wafers.  Despite its 

condensed isotherm, DPPA films were of poor optical quality when they were 

transferred directly to the surface of the substrates.  Improved film quality was 

achieved by coating the substrate surface with a several layers of the AA film before 

the DPPA deposition.  It was difficult to deposit valinomycin on silicon wafers.  This 

is because of the low stability of the valinomycin monolayer on aqueous subphase. 
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Chapter 5 

Ion Sensitive Organic Field Effect Transistors 

 

 

5.1  Structure and Deposition Techniques 

 

5.1.1  ISOFET Structure 

The drain current flowing through the ISOFET is dependent on the gate 

voltage or the accumulated charge on the gate surface.  By removing the gate 

electrode and modifying the insulator surface to respond to target ions, a device with 

an open gate area is able to detect ions in solution. 

 

1

2

3

4

5

6

8

9

7

1

2

3

4

5

6

8

9

7

Figure 5.1 Structure of an ISOFET. 1 

Hydrophobic glass. 2 Chromium. 3 Gold. 4 

P3HT. 5 PMMA. 6 LB film. 7 Epoxy resin. 8 

Electrolyte solution. 9 Reference (gate) 

electrode. 

 

A bottom-gate structure is often used for organic FETs, but in this study a 

top-gate structure was necessary to provide open access to the gate dielectric.  As 

illustrated in Figure 5.1, the substrate was a glass slide which was cleaned and 

rendered hydrophobic.  Thermal evaporation was then used to define the source and 

drain electrodes.  A chromium (Cr) layer was first evaporated to increase the 

adhesion between the gold and the hydrophobic glass [1].  A gold (Au) layer was 

then deposited on top of the Cr.  Patterned Cr and Au layers were used as the source 

and drain electrodes.  In this work, two configurations of electrodes were used: a 

standard pattern and an interdigitated pattern, as depicted in Figures 5.2a and 5.2b, 

respectively.  The shadow mask technique was used to transfer the standard pattern 

on to the substrate. In contrast, photolithography was used to define the interdigitated 

electrodes.  Full details on the photolithography are described in Section 3.2. 
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(a) 

 

(b) 

Figure 5.2  Patterns of source and drain electrodes.  (a) Standard pattern.  (b) 

Interdigitated pattern. 

 

Poly(3-hexylthiophene) (P3HT) was used as the semiconductive material.  

After defining the electrodes, this layer was deposited on top of the metal layer.  

Poly(methyl methacrylate) (PMMA) was used as the gate dielectric.  Langmuir-

Blodgett films were then deposited on top of this dielectric layer for some devices.  

Finally, the devices were encapsulated, by hand, using an epoxy resin.   

As shown in Figure 5.1, the ISOFET configuration requires a reference 

electrode for operation.  This electrode functions as the gate.  Both the ISOFET and 

the electrode were operated in an aqueous solution, providing a connection between 

the reference electrode and the transistor.  

 

 

5.1.2  Materials 

Hybrid organic/inorganic architectures have been used as chemical sensors.  

For example, Bartic et al [2] reported that the polythiophene-based transistors were 

fabricated by using P3HT as the semiconductive layer and Ta2O5 as the gate layer.  

These hybrid P3HT/Ta2O5 thin-film transistors were able to detect not only charged 

but also uncharged molecules in an aqueous solution.  By operating at low voltages, 

these transistor devices were stable in aqueous solutions.  P3HT can easily be 

deposited on a substrate using a solution-process technique, such as spin coating [2].   

In this work, P3HT was therefore selected as the semiconductor layer.  

Poly(methyl methacrylate) was used as the gate insulator because this material 

exhibits low leakage currents and can be used to produce devices with a high carrier 
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mobility and minimal hysteresis [3].  The ISOFET device should be able to detect the 

concentration of ions in an aqueous solution because the ions adsorbed on the surface 

of the dielectric layer are proportional to their concentration in the solution. 

 

 

Poly(3-hexylthiophene) 

Unsubstituted polythiophenes (PT) are based on a cycloalkene group, as 

depicted in Figure 5.3.  By adding or removing the electrons from the conjugated -

orbitals, electrons can flow through the polymer chain.  The sulphur (S) atom in the 

cycloalkene provides PT molecules with a weak hydrophobicity.  Therefore, PT 

molecules are not soluble in normal non-polar solvents.   

Poly(3-hexylthiophene) is a polymer of substituted thiophenes, as shown in 

Figure 5.3b.  The addition of the alkyl chain increases the hydrophobicity of the 

polymer.  P3HT can therefore dissolve in basic nonpolar solvents, such as 

tetrahydrofuran (THF) or chloroform [2,4,5].   

 

 

 

 

(a) 
 

(b) 

Figure 5.3   Structure formulas : (a) Unsubstituted polythiophenes.  (b) Poly(3-

hexylthiophene). 

 

 

Poly(3-hexylthiophene) (molecular weight 25,000 – 35,000,  98.0%) was 

purchased from Sigma-Aldrich and dissolved in chloroform in a glass vial to a 

concentration of 10 mg ml-1. The vials were sealed by thermoplastic (Parafilm M) to 

protect the solution from moisture.  These were also wrapped in aluminum foil to 

shield the solution from light and kept on a magnetic stirrer overnight before use. 
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Poly(methyl methacrylate) 

Poly(methyl methacrylate), a transparent thermoplastic, is synthesised using a 

methyl methacrylate monomer.  Its chemical structure is shown in Figure 5.4.  

PMMA is a safe alternative compared to other polymers, such as polycarbonate, 

because this material does not possess the toxic bisphenol-A subunit.  Poly(methyl 

methacrylate) does not have the extreme impact strength of some engineered 

polymers, but its strength is higher than glass or polystyrene.  Apart from its 

moderate physical properties, this material is a preferable choice for the gate 

dielectric of an organic FET because of its superior electrical properties.  

Furthermore, the cost of PMMA is low and it requires only simple processing (e.g. 

spin – coating) to form high-quality thin films.  

 

 

 

Figure 5.4  Structural formula of PMMA 

 

 

 The glass transition temperature of PMMA, normally varies from 85 to 165 

°C.  For a polymer with the molecular weight of about 105, the glass transition 

temperature is approximately 105 °C [6].  Kuo et al [7] reported that the Tg of 

PMMA was approximately 100 C.  However, Zulfikar et al [8] found that the Tg 

temperature of PMMA depended on the molecular weight (MW); for example, Tg for 

about 116 C for a MW of approximately 350,000.  In this study, PMMA films were 

hence annealed at about 135 C.  By annealing PMMA above the glass transition 

temperature, the rubbery viscous amorphous material can be changed to a brittle 

glassy amorphous polymer. 

Poly(methyl methacrylate) (molecular weight 93,000) was purchased from 

Sigma-Aldrich.  It was dissolved in anisole (methoxybenzene) to a concentration of 

42 mg ml-1.  The resulting solutions were sealed using Parafilm M and kept on a 

magnetic stirrer overnight before use. 
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5.1.3  Device Fabrication 

 

Metal Deposition 

In this research, thermal vapour deposition was used to deposit a metal film 

onto the substrates.  Further background details are described in Section 3.1.  A 

hydrophobic slide glass was used as a substrate.  Before vacuum evaporation, the 

substrate was heated on a hot plate to remove any moisture adsorbed on its surface.  

The vacuum system was evacuated until the pressure was below < 10-5 mbar.   By 

thermally evaporating Cr ( 20 nm) and then Au ( 20 nm) through a shadow mask 

(Figure 3.3), a standard pattern of the source and drain electrodes was transferred 

onto the substrate: the channel width, W, and length, L, were 2,000 m and 50 m, 

respectively.  

To transfer the interdigitated pattern onto the substrate, Cr and Au were 

evaporated on the surface of the substrate directly without any mask and 

subsequently patterned using photolithography.  The positive-type photoresist was 

used to pattern the source and drain electrodes.  The full details of the 

photolithography process are provided in Section 3.2.  After removing the excess 

metal layer, the substrate was patterned with the interdigitated electrodes; the 

channel width, W, and length, L, were 22,000 m and 25 m, respectively. 

 

 

Spin Coating 

The background to spin coating is given in Section 3.3.  Before spin coating, 

the metallised substrates were baked on a hot plate at 120 ºC for 10 min.  The P3HT 

(thickness about 55 nm) was deposited at a spin speed of 5000 rpm for 45 s.  To 

avoid the oxidation of P3HT during annealing, the samples were baked at a low 

temperature (25 ºC) in a vacuum oven for 10 min to remove any residual solvent.   

Following this, spin coating was used to deposit two separate layers of 

PMMA.  This technique was used to avoid any pin-holes in the gate dielectric.  Each 

layer of PMMA was coated on the substrate using a two-step process: spinning at 

500 rpm for 10 s followed by 3000 rpm for 50 s.  To minimise the effect of pin-

holes, the first PMMA layer was heated above its glass transition temperature (Tg) to 

provide an increase in density.  After coating the first layer of PMMA, the sample 
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was thus kept in the vacuum oven at 135 ºC for 60 min.  Subsequently, the second 

layer of PMMA was coated using the same two-step process and the resulting 

structure was baked in the vacuum oven at 135 ºC for 120 min.  The samples were 

left to cool in vacuum oven overnight.  The overall thickness of both PMMA layers 

was approximately 130 nm.   

 

 

Encapsulation 

An Araldite epoxy resin (molecular weight < 700) was used to encapsulate 

the final device by hand. The ratio of the resin to the hardener was 1 : 1. After 

mixing for 45 s, the resin was ready for encapsulation.  The devices were sealed by 

opening an active area (approximately 3 mm x 4 mm) to allow the electrolyte 

solution to come into direct contact with only the gate insulator.  The encapsulated 

devices were left in air to set the resin for an hour before the second encapsulation.  

This double encapsulation was used to avoid any unwanted electrochemical reactions 

at the electrodes due to pinholes formed during the hardening of the resin. 

.   

 

5.2  Electrical Characteristics 

Carbon dioxide can dissolve in DI water and have a significant influence on 

its pH.  Therefore, the pH of the solution (DI water) was monitored using a Philips 

PW9420 pH meter.  The pH was measured before and after the measurements.  If the 

pHs differed by more than 0.5, the experiments were repeated until the pH values 

were approximately constant (pH difference < 0.5). In this way, the H+ ion 

concentration in the solution could be assumed to be constant. The electrical 

characteristics of the ISOFET were recorded using an HP 4140B 

picoammeter/voltage source.  

Before the electrical measurements, both the gate electrode and the pH 

electrode were rinsed using DI water.  All the measurements were undertaken at 

room temperature and with the devices in the dark. 
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5.2.1  Gate Electrodes 

Gold wires and standard silver/silver chloride (Ag/AgCl) reference electrodes 

were used to probe the built-in potential in the solution.  As shown in Figure 5.5, the 

potential obtained from gold wires decreased significantly after measuring for a few 

minutes (because of their polarised characteristics).  Although Ag/AgCl reference 

electrodes are nonpolarised, the potential from the single junction Ag/AgCl reference 

electrodes decreased slightly during monitoring the potential in DI water.  During the 

measurement of the potential in the dilute solution, some ions leak from the 

electrodes and contaminate the measuring solution.  As a consequence, a small 

change is evident while measuring the potential.  However, by using double junction 

Ag/AgCl reference electrodes, a stable response was obtained while measuring the 

potential in DI water, as shown in Figure 5.5.  Thus, a double junction Ag/AgCl 

reference electrode was used in this work.  
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Figure 5.5  Potentials across the different gate electrodes, gold wires, single 

junction Ag/AgCl and double junction Ag/AgCl, in DI water. 
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5.2.2  Reference FET Characteristics 

To characterise the standard (non-interdigitated) reference FET, an aluminum 

(Al) gate electrode was evaporated on top of the dielectric layer after fabricating the 

ISOFET on the hydrophobic glass substrate.  The output and transfer characteristics 

of the devices with standard source-drain electrodes were tested in air in the 

measurement chamber (in the dark) using an HP 4140B picoammeter/voltage source.  

The results are shown in Figure 5.6a and 5.6b.  The transistor is turned off when 

applying Vgs with a magnitude below 10 V; the leakage current was less than 15 nA.  

As shown in the Figure 5.6a, the drain current (Id) reaches the saturation region if the 

magnitude of the Vgs is greater than 20 V and the magnitude of Vds is above 15 V. 

The transfer characteristics in Figure 5.6b reveal some hysteresis.  This 

suggests that charge could not move freely through the P3HT layer but was trapped 

in localised states.  By extrapolating the result reported by Huang et al [9], the 

dielectric constant (r) of PMMA with 150 nm thickness is approximately 2.5 at 1 

MHz.  By determining the threshold voltage using graph (Id)
1/2 versus Vgs, the 

electron mobility was calculated by using Equation 2.7; a value of VT of 

approximately 10 V and a field-effect mobility of about 4.5 x 10-3 cm2 V-1 s-1 were 

obtained.   

 

 

5.2.3  I–V Characteristics of the Standard ISOFETs in DI Water 

 

Transfer Characteristics 

The ISOFETs with the standard (non-interdigitated) pattern of source and 

drain electrodes were characterised in DI water using the HP 4140B 

picoammeter/voltage source.  To monitor the ISOFET behaviour in solution, an 

Ag/AgCl reference electrode was used as the gate electrode, instead of the Al gate 

electrode as in the previous section.  The drain current was monitored by scanning 

Vgs over the range 1 V  -1 V  1 V and applying Vds of 0 V.   

The transfer graphs for different Vds values are shown in Figure 5.7.  By 

applying constant Vds = 0 V, the transfer curve in Figure 5.7a reveals that the 

transistor was in the cut-off mode.  This small drain current shows the level of the 

leakage current from the gate to the drain electrode.  
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(b) 

Figure 5.6  Output and transfer characteristics of the reference FET with an 

standard pattern of source and drain electrodes and an aluminum layer as the gate 

electrode.  This device was measured in air within the chamber (without light).  

(a) Output characteristics.  (b) Transfer characteristics.  
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Figure 5.7  Transfer characteristics of the standard ISOFET (Cr/Au/P3HT/650 

nm PMMA), varying Vgs between -1.0 and 1.0 V, W/L ratio = 40; using (a) Vds 

0.  (b) Vds -0.5.  (c) Vds -1.0.  (d) Vds -1.5 V. 

 

 

 

 

 

 

Table 5.1  Transconductance values of the ISOFET coated with 650 nm PMMA 

Vds (V) Vgs (V) PMMA Thickenss (nm) W/L ratio gm (nA V-1) 

0  1.0  650 40 cut-off 

-0.5  1.0 650 40 -0.25 

-1.0  1.0 650 40 -0.41 

-1.5  1.0 650 40 -0.57 
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The transconductance (gm) of the device was obtained by equating the slopes 

of the transfer curves in Figure 5.7b, 5.7c and 5.7d.  Table 5.1 shows the gm values of 

the ISOFET with different Vds.  It is evident that the transconductance of the ISOFET 

increases when the magnitude of Vds increases.  The dependence of gm on Vds reveals 

that the transistor was operating in the accumulation regime [6].  By fixing Vds below 

0 V, the drain current of the device increased when increasing Vgs.  The results show 

that the drain current of the ISOFETs depended on both Vgs and Vds.  It is evident 

that this device required a high voltage (Vgs > 1.0 V) to induce a field effect.  

Although the transconductance of the ISOFETs could be increased by increasing Vds, 

the magnitude of Vds was limited to avoid unwanted electrochemical reactions, both 

on the surface of the dielectric layer and at the dielectric/semiconductor interface.  

Therefore, the transconductance of the device with the 650 nm PMMA was low.  

This resulted in a low sensitivity to a change of Vgs.  Since the change of ion 

concentration in the solution has a direct influence on Vgs, 650 nm of PMMA was 

not the best thickness for providing a high-sensitive device.   

To improve the sensitivity of the devices requires a thinner dielectric layer 

and also higher applied voltages.  As noted above, it is, however, necessary to keep 

the voltages below 1 V.  Hence, the thickness of PMMA was reduced to 150 nm.  

The span of Vgs was kept below 1 V and Vds was varied between 0 and -0.6 V.  The 

transfer characteristics of the ISOFET with 150 nm PMMA are shown in Figure 5.8. 

Compared to the data shown in Figure 5.7, the transfer graphs in Figure 5.8 

show an improved field-effect response.  Table 5.2 reveals that the devices with the 

thinner PMMA layer have the higher transconductance.  The device has higher 

sensitivity to a change of Vgs because the thinner dielectric layer (PMMA) can 

produce a greater electric field at the dielectric/semiconductor interface.  However, 

the leakage current was about the same order of magnitude compared to the transfer 

characteristics in Figure 5.7.  This is because the devices with the 150 nm PMMA 

were operated at lower Vgs and Vds.  The semilogarithmic graphs in Figure 5.9 

correspond to the data in Figures 5.8b, 5.8c and 5.8d.  The curve for Vds = -0.2 V 

shows the widest dynamic range of the drain current (two orders of magnitude). 
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Figure 5.8  Transfer characteristics of the standard ISOFET (Cr/Au/P3HT/150 

nm PMMA), varying Vgs between -0.5 and 0.5 V, W/L ratio = 40; using (a) Vds 

0.  (b) Vds -0.2.  (c) Vds -0.4.  (d) Vds -0.6 V. 

 

 

 

 

 

 

Table 5.2  Transconductance values of the ISOFET coated with 150 nm PMMA 

Vds (V) Vgs (V) PMMA Thickenss (nm) W/L ratio gm (nA V-1) 

0  0.5  150 40 cut-off 

-0.2  0.5 150 40 -0.98 

-0.4  0.5 150 40 -1.55 

-0.6  0.5 150 40 -2.05 
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Figure 5.9  Semilogarithmic transfer graphs corresponding to the data in Figure 

5.8b, 5.8c and 5.8d. 
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Figure 5.10  Output characteristics of the ISOFET with standard source-drain 

electrodes; scanning Vds 0 V  -1 V  0 V; Vgs = 0, -0.2, -0.4, -0.6, -0.8 V; 

W/L ratio = 40. 
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Output Characteristics 

 To obtain the output curves of the devices, Vgs was fixed while scanning Vds 

0 V  -1 V  0 V. The output characteristics of the ISOFET, in DI water and using 

a Ag/AgCl reference electrode, are shown in Figure 5.10.  A clear field effect is 

evident, although the magnitudes of the drain currents are low – in the nA range.    

Figure 5.11 shows the typical hysteresis which occurred during scanning  Vds 

0 V  -1 V  0 V and fixing Vgs at -0.8 V.  By defining Ia and Ib as shown in Figure 

5.9, Id is the difference between the drain currents at Vds 0 V.  This value can be 

used to represent the width of the hysteresis of the drain current.     
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Figure 5.11  Output characteristics of the ISOFET with standard source-drain 

electrodes; scanning Vds 0 V  -1 V  0 V;  Vgs = -0.8 V, in DI water. 

 

 

Figure 5.12 shows the relation between Id and Vgs for Vds = 0 V.  It is 

evident that Id increases when the magnitude of Vgs increases.  However, the 

increase in Id is not uniform, and can be divided into two regions.  In the first region 

(solid line, |Vgs| < 0.4 V), the rise of Vgs leads to a slow increase in Id.  In the 

second region (dashed line, |Vgs| > 0.4 V), the increase in Vgs gives rise to a rapid 

increase in Id. The slope in the second region is five times greater than that in the 

first region.     
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Figure 5.12  Id versus Vgs, Vds = 0 V, the standard ISOFET, in DI water. 
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Figure 5.13  Leakage current, Id, leakage, versus Vgs, Vds = 0 V, the standard 

ISOFET, in DI water. 
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When using Vds = 0 V, the drain current reflects the leakage current (Id, leakage) 

from the gate to the drain electrode.  By using the drain current at Vds = -1 V as a 

reference value, the percentage of Id, leakage was then calculated.  As shown in Figure 

5.13, the leakage current is dependent on the gate voltage (Vgs).  This curve has a 

similar shape to that shown in Figure 5.12, and can be divided into two regions (|Vgs| 

< 0.4 V and |Vgs| > 0.4 V).  When |Vgs| was set below 0.4 V, the leakage current is 

less than 0.1 nA or 2% of the maximum drain current (Id, Vds-1V). 

 

 

5.2.4  I–V Characteristics of Interdigitated ISOFETs in DI Water 

 

Output Characteristics 

 The output characteristics of the ISOFET with the interdigitated source and 

drain electrodes, measured in DI water and using a Ag/AgCl reference electrode, are 

shown in Figure 5.14.  In the same fashion as the previous section, Vgs was fixed 

while scanning Vds over the range 0 V  -1 V  0 V.  The output curves reveal a 

field-effect response of the device, with the levels of Id of the order of several tens of 

nanoamps, significantly higher than these reported in the previous section.   
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Figure 5.14  The output characteristics of the ISOFET with interdigitated source-

drain electrodes; scanning Vds 0 V  -1 V  0 V, Vgs = 0, -0.4, -0.8, -1.0 V, in 

DI water, W/L ratio = 880. 
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Theoretically, the drain current is proportional to the W/L ratio of an 

ISOFET.  This suggests that Id of the interdigitated ISOFET in Figure 5.13 should be 

approximately 20 times higher than that of the standard ISOFET in Figure 5.9.  In 

practice, the Id of the interdigitated ISOFET is only about 5 times higher than that of 

the standard ISOFET.  However, the drain current is only strictly proportional to the 

W/L ratio if the device is operated in its saturation mode.  To avoid unwanted 

chemical reactions, the operating points of the devices described in this work were 

limited to the low voltage region, and hence, the ISOFETs were not in the saturation 

mode, but in the accumulation mode in the linear regime.  This may be the reason 

why the drain currents of the devices are not directly proportional to the W/L ratio of 

the devices.    

Figure 5.15 show the typical hysteresis which occurred during scanning Vds 0 

V  -1 V  0 V and fixing Vgs at -1.0 V.  By contrast to the previous section, Ia and 

Ib are defined at Vds -0.5 V since this part of the output curve exhibits the largest 

hysteresis;  Id is the difference between the drain currents at Vds -0.5 V.       
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Figure 5.15  Output characteristics of the ISOFET with standard source-drain 

electrodes, scanning Vds 0 V  -1 V  0 V;  Vgs = -1.0 V, in DI water. 
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Figure 5.16  Id versus Vgs, Vds = -0.5 V, the interdigitated ISOFET, in DI water. 
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Figure 5.17  Leakage current, Id, leakage versus Vgs, Vds = 0 V, the interdigitated 

ISOFET, in DI water. 
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In Figure 5.16, the curve shows the relation between Id and Vgs at Vds -0.5 

V.  It is evident that Id increases as the magnitude of Vgs increases.  Unlike the 

response of the standard ISOFET, the hysteresis of the drain current is linearly 

proportional to the gate voltage.  The levels of the Id of the interdigitated ISOFETs 

reveal that the hysteresis of the device is higher than that of the standard device.  In 

transferring more current through the source and drain electrodes, more electrons 

will be transported through the channel adjacent to the dielectric/semiconductor 

interface.  As Id increases, more electrons are therefore available for trapping in 

localised states at the interface.  This may be the reason why the hysteresis of the 

interdigitated ISOFETs is larger than that of the standard device.  

The leakage of the drain current was measured at different Vgs values by 

applying Vds = 0 V.  In the same manner as above, the percentage of Id, leakage was 

calculated by comparing with the maximum drain current (Id, Vds-1V).  As depicted in 

Figure 5.17, Vgs partly influences the leakage current.  The interdigitated pattern of 

source and drain electrodes provides a large device area for transferring the charge.  

When considering the electrodes in Figure 5.2, the bulk area of the interdigitated 

electrodes, which is open to the solution, is much smaller than that of the standard 

electrodes.  This probably reduces the leakage of the drain current when using the 

interdigitated source-drain electrodes. 

 

 

5.2.5  Some Important Factors in Characterising ISOFETs  

 

Light Effects 

Since P3HT is a semiconductor with the band gap of 1.9 eV [10], the 

ISOFETs with P3HT as the active layer should be sensitive to light.  Two 15-watt 

Kodak incandescent illuminators with a Kodak OC safelight filter were used to 

examine the light effects.  The OC filter provides an amber light (dark yellow) with a 

peak emission at 590 nm [11].  The light sources were on the wall about 1 m above 

the ISOFET.  The standard ISOFETs did not show any observable response to this 

light.  This may be due to the small area for accumulating the free carriers generated 

by the photons.  However, light exposure did become a crucial factor when 

characterising the devices using interdigitated source-drain electrodes.  
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 To investigate the influence of light on the drain current, Vds was scanned 

from 0 V to -1 V for six cycles while keeping Vgs constant at 0 V.  The maximum Id 

of each cycle at Vds = -1 V was then selected.  The results are shown in Figure 5.18.  

The drain current under illumination is about twice that of the same device examined 

in the dark.  In Figure 5.18, under constant illumination, the drain current decreased 

with time, becoming stable after about 1000 s.  In practice, it was difficult to keep the 

illumination constant during experiments.  In addition, a small fluctuation of the light 

can lead to a large change of Id.  Experiments with ISOFETs were therefore all 

undertaken in the dark to avoid the unwanted change in the drain current. 
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Figure 5.18  Typical responses of the interdigitated ISOFET under steady-state 

illumination, Vgs = 0 V, Vds = -1 V, in DI water. 

 

 

 

Period for Stabilising the Drain Current 

 To characterise the ISOFETs, Vds was scanned from 0 V  -1 V  0 V 

while keeping Vgs at a constant value.  Following immersion in DI water, three 

consecutive measurements are shown in Figure 5.19a.  The drain current drifted to 

lower values during scanning of Vds.  This drift is a significant factor when 

measuring the drain current immediately after immersing the device into the DI 

water. 
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Figure 5.19  Comparison of the conditioning period using Vgs = 0 V, in DI water.  

(a) The ISOFET was left in DI water for 0 hr before the experiment.  (b) The 

ISOFET was left in DI water for 2 hr before the experiment.  
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The drain current drifted about 24 % per hour (12 nA/hr) at Vds = -1 V.  This 

is lower than the 40 % per hour drift reported for a silicon-based ISFET with an 

aluminum oxide sensing layer, but higher than 6 % per hour for a device with a 

tantalum oxide sensing layer [12].  The relatively low stability of the aluminum 

oxide layer is due to the oxidisation of the oxide in an aqueous solution.  However, 

tantalum oxide is not reactive to ions in solutions.  The H+ ions in DI water cannot 

oxidise the polymeric membrane.  The PMMA layer should therefore be stable in DI 

water.  However, the above experiments reveal that the PMMA layer was not stable 

immediately after immersing in DI water.  Hydroxide ions can penetrate the 

dielectric and also the P3HT and interact with localised states near the valence band.  

This might hinder transition of the electrons from the valence band to localised 

states.  This may explain why negative drifts were observed when leaving the 

ISOFETs in the DI water.  

After the ISOFETs were left in the DI water 2 hr before the experiments, the 

responses of the device were more stable, as depicted in Figure 5.19b.  In contrast to 

the responses in Figure 5.19a, there is virtually no drift during scanning three cycles 

of Vds.  After 2 hr in DI water, the active region of the ISOFET probably becomes 

completely hydrated and the interaction between the ions and the localised states has 

reached the equilibrium.  In this work, the ISOFETs were left in DI water for about 2 

hr before starting any measurement.  

 

 

5.3  Conclusions 

Ion sensitive organic field effect transistors have been fabricated successfully 

on hydrophobic glass using a top-gate structure.  Standard source/drain electrodes 

were deposited using thermal evaporation.  An interdigitated pattern of the 

source/drain electrodes was transferred on the substrates using photolithography.  

The P3HT and PMMA were deposited as the semiconductor and dielectric layers by 

spin-coating.  Annealing after each step of spin coating was required to evaporate the 

residual solvent. 

The ISOFETs exhibited a field effect and the response could be improved by 

using thinner PMMA layers.  The results show that the ISOFETs were operated in 

accumulation mode.  Interdigitated source/drain electrodes were used to increase the 
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drain current and sensitivity.  A hysteresis of the drain current was observed, which 

depended on the gate voltage.  Due to their lower operating voltages, the 

interdigitated ISOFETs showed lower leakage currents than for the standard devices.  

The devices were operated in the dark since light had a significant effect on the drain 

current.  In addition, the results showed that the devices should be left in DI water for 

2 hr in order for them to stabilise.  
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Chapter 6 

Hydrogen – Sensitive Sensors 

 

 

6.1  Devices 

In this chapter, the organic field effect transistor was used as a sensor to 

detect hydrogen ions (H+) in an aqueous solution.  The devices were fabricated and 

encapsulated as described in Chapter 5.  Two types of ISOFETs were studied: 

uncoated and coated devices.  Uncoated ISOFETs were used to investigate the 

responses to ions in solution by using a PMMA layer as the ion-sensitive membrane.  

The sensitivity of the devices was enhanced by depositing an LB membrane on top 

of the PMMA gate dielectric.   

 

 

6.1.1  Uncoated Devices 

As noted in Chapter 5, there were two types of an uncoated device based on 

the pattern of source and drain electrodes, namely a standard device and an 

interdigitated device.  Poly(methyl methacrylate) was deposited as the dielectric 

layer on top of the poly(3-hexylthiophene) semiconductor.  This insulator functioned 

as the active layer in monitoring the concentration of H+ ions.  The devices were 

stored in a desiccator before and after use in the experiments. 

 

 

6.1.2  Coated Devices with LB membrane 

Osa [1] reported that a stearic acid LB membrane could enhance significantly 

the sensitivity of Si-based ISFETs.  Langmuir-Blodgett membranes were used in this 

study to improve not only the sensitivity but also the selectivity of the devices.  With 

a similar molecular structure to stearic acid, arachidic acid was used to modify the 

dielectric surface of ISOFETs.   

Apart from arachidic acid, valinomycin and a mixture of AA and val were 

also investigated.  All these LB membranes were used as the H+-sensitive layer in 

this chapter.  Although the uncoated standard devices showed a field effect in 
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aqueous solutions, the response to a change of pH was relatively small compared to 

the interdigitated devices.  Therefore, the study on the enhancement of the devices 

using LB membranes focused on only the devices with interdigitated source and 

drain electrodes. 

 

 

Arachidic Acid 

Arachidic acid was coated on the ISOFETs using the same procedure 

described in Section 4.3.  The main objective of Chapter 4 was to investigate the 

deposition of a close-packed structure of arachidic acid.  The floating layer was 

therefore transferred onto silicon substrates at 32 mN m-1 to ensure that the 

transferred layer was in the condensed phase before deposition.  Although it was 

essential to coat dense LB films on the surface of ISOFETs, the ion-sensitive 

coatings were also required to have channels for H+ ions.   Instead of the highly 

dense membranes in the condensed phase, LB films with a ‘looser’ architecture were 

used in this Chapter.  The AA monolayers were transferred onto substrates at 27 mN 

m-1.  This surface pressure is slightly below the boundary of phase transition into the 

AA condensed phase.  Ten LB monolayers (Y-type deposition) were transferred onto 

the PMMA dielectric.  After cleaning the surface of the subphase, 40 l of AA of 

concentration of 1.17 mg ml-1 in chloroform (CHCl3) was dispersed on the subphase 

surface using a micropipette.  The AA was left on the subphase surface for 10 min in 

order to allow the chloroform to evaporate.   

As shown in Figure 6.1a, the surface area of the fatty acid decreased abruptly 

when starting to control the surface pressure of the floating film at 27 mN m-1.  This 

led to a rapid increase of the surface pressure.  After the pressure was approximately 

27 mN m-1, the area of the fatty acid film stabilised.  At this pressure, the AA 

monolayer was left for 10 min before starting the LB deposition.  In Figure 6.1a, 

there are small fluctuations while transferring the LB monolayer onto the ISOFET.  

The first and the second dips in the small frame of Figure 6.1a are enlarged in Figure 

6.1b.  The dipping speed was 0.08 mm s-1 and the drying period (between dips) was 5 

min.  The substrate started in air and was dipped in and out of the subphase five 

times.  Ten Y-type LB monolayers of AA were deposited on the ISOFET. 
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Figure 6.1  (a) Dipping profile of pure arachidic acid on an interdigitated 

ISOFET using DI water as the subphase; at a constant surface pressure of 27 mN 

m-1.  (b) Enlarged dipping profile (within the frame of Figure 6.1a).  
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Arachidic Acid-Valinomycin Mixtures 

A mixture for the LB deposition was prepared by adding 5 mg valinomycin to 

95 mg arachidic acid.  This was mixed and then dissolved in 100 ml chloroform to 

prepare a solution at a concentration of 1 mg ml-1.  40 l of this solution was then 

dispersed on the subphase using a micropipette.  By using the same method as 

described for depositing AA monolayers on ISOFETs, the floating film was left 

uncompressed for a further 10 min.  The compressed film was left at a constant 

surface pressure of 27 mN m-1 for 10 min before deposition.  The substrate was then 

dipped into the subphase to transfer 10 LB monolayers (Y-type deposition) onto the 

PMMA dielectric.   

After starting to control the surface pressure of the mixed AA deposition, the 

area of the trough decreased rapidly to keep the pressure constant at 27 mN m-1.  The 

addition of the small amount of valinomycin (5% w/w) reduced the stability of the 

mixed LB film significantly compared to a pure AA film.  This suggests that the 

molecules of valinomycin in the floating membrane disrupted the close packed 

arrangement of the AA molecules.  In the aqueous ambient, proton (H+)-valinomycin 

complexes can be formed more readily than the other monovalent cation-

valinomycin complexes [2].  The reaction between H+ ion and valinomycin is 

 

  Valinomycin   +   H+    H+-Valinomycin Complex             (6.1) 

 

Some molecules will interact with the protons and form proton-valinomycin 

complexes, while others remain uncomplexed.  The AA/val monolayer would 

therefore consist of both uncomplexed and complexed molecules of valinomycin.  

However, at a fixed surface pressure, some complexed molecules might lose their H+ 

ions to become uncomplexed (or vice versa).  The molecules losing the H+ ions 

would become larger while those capturing H+ ions would be smaller.  The 

complexed molecules could then move more easily throughout the membrane.  

Hence, the molecules in the floating monolayer may not be packed as well as those 

of the AA monolayer.  This is one reason why only a small content of valinomycin 

was used in the mixture.  Despite the decrease of the film stability on the subphase, 

the floating monolayer could be transferred successfully, as shown in Figure 6.2a and 

6.2b. 
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Figure 6.2  (a) Dipping profile of a mixture of arachidic acid and valinomycin 

(5% w/w) on an interdigitated ISOFET using DI water as the subphase; at a 

constant surface pressure of 27 mN m-1.  (b) Enlarged dipping profile (within the 

frame of Figure 6.2a). 
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Valinomycin 

In Figure 6.3, the deposition profile is similar to the results in Section 4.3.  It 

was found difficult to stabilise the surface pressure of the floating layer in order for 

the normal LB deposition process to be used [3].  The surface pressure decreased 

abruptly after starting to control the pressure at 15 mN m-1.  Although the pressure 

could be controlled at 14.00  0.20 mN m-1, the area at the floating film decreased 

significantly to maintain the constant surface pressure.  After leaving valinomycin on 

the subphase to stabilise for 10 min, the deposition was undertaken as shown in 

Figure 6.3.  Howarth et al reported the same deposition problem in a previous study 

[3].   
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Figure 6.3  Dipping profile of pure valinomycin on an interdigitated ISOFET 

using DI water as the subphase; at the constant surface pressure of 15 mN m-1. 

 

As shown in Figure 6.3, the surface pressure of pure valinomycin cannot be 

stabilised on the subphase.  Instead of establishing the close-packed structure on the 

subphase, the forces from the barriers may break the valinomycin floating layer 

during the pressure control.  This probably leads to a significant decrease of the 

trough area before the first dip.   With the instability of the valinomycin layer, 

numerous water molecules are probably incorporated in the floating film.  The 

valinomycin that was deposited on the downwards movement simply came off the 

substrate during the upwards movement.  Hence, the floating layer of valinomycin 

could not be built up as a multilayer film on the substrate.   
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Figure 6.4  (a) Dipping profile of pure valinomycin on an interdigitated ISOFET 

using DI water as the subphase; without controlling the surface pressure.  (b) 

Enlarged dipping profile (within the frame of Figure 6.4a). 
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To transfer the valinomycin monolayer successfully onto the ISOFET, an 

excess of valinomycin solution (approximately 20 l of a chloroform solution with 

concentration 1 mg ml-1) was dispersed over the subphase surface and left for 30 

minutes.  As noted above, the pressure was uncontrolled to avoid any damage to the 

valinomycin floating layer during film deposition.  It was then found to be possible 

to transfer this floating layer (now significantly more than a monolayer in thickness) 

by raising and lowering the substrate through the floating valinomycin/air interface 

(Y-type deposition).   

The dipping profile using this method is depicted in Figure 6.4a.  By 

dispersing the relatively large amount of valinomycin on the subphase, a 

multimolecular layer would be formed on the subphase (i.e. instead of a 

monomolecular layer).  The surface pressure was 25.00  0.05 mN m-1 before the 

first dip and 21.60  0.05 mN m-1 after the fifth last dip.  As shown in Figure 6.4b, 

the pressure gradually decreased when lowering and raising the substrate through the 

valinomycin floating layer.  The profile indicates that the surface pressure increased 

gradually during the drying period, instead of decreasing as in case of pressure-

controlled deposition.  When some molecules were deposited on the substrate, other 

molecules may be able to spread out to fill in the empty vacant area on the subphase.  

The floating layer was then stabilised at a new lower surface pressure. 

 

 

6.2  Solution Preparation 

A double junction Ag/AgCl reference electrode was used as the gate.  The 

solution pH was kept below 7 to avoid the formation of silver hydroxide (AgOH), 

which can occur in basic solutions and affect the potential across the Ag/AgCl 

electrode.  Furthermore, the pH of the solution was kept above 2 because the Araldite 

epoxy resin could be oxidised when in contact with a strong acid for a long period.   

 

 

6.2.1  Buffer solutions 

Two buffers, pH 4 and pH 7, were used to calibrate the pH meter before use. 

Buffer tablets, pH 4 (phthalate) and pH 7 (phosphate), were obtained from Fisher 

Scientific.  After putting each tablet into a beaker with 100 ml DI water, the beaker 
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was covered with Parafilm M and left in the ultrasonic bath for two hours (until the 

tablet completely dissolved).  The solutions were used without further filtering and 

kept at room temperature.  

 

 

6.2.2  Test Solutions 

All test solutions were based on non-chlorides to avoid an additional potential 

from the effect of chloride ions on the Ag/AgCl reference electrode.  Only acetic acid 

was used to adjust the pH of the solution.  This simple organic acid was added to the 

DI water to prepare non-buffered solutions, instead of buffer solutions which 

generally comprise various inorganic and organic ions.  Therefore, interference from 

the other inorganic anions was minimised.  After adjusting the pH, all the solutions 

were covered with parafilm M and left overnight at room temperature before use.   

As a result of the above precautions, the pH was stable during the experiments.    

 

 

6.3  Experimental Methods 

 

6.3.1  Electrical Measurements 

Deionised water was used as the initial test solution in all the experiments.  

This was a reference to ensure the devices were stable before measuring the pH of 

the test solutions.  The pH of DI water (always in the range 5.5 to 5.8) was measured 

before the experiment.  Before use, the ion sensitive field effect transistor was rinsed 

with DI water to remove any contamination from its surface.  As noted in Section 

5.2.5, the ISOFET stabilisation was necessary for accurate measurements.  The 

ISOFETs were therefore placed in a reference solution (DI water) for two hours. 

The Vds was scanned over the range 0 V  -0.2 V  0 V.  The period was 

approximately 90 seconds, as depicted in Figure 6.5.  At the same time, Vgs was set 

at 0 V.  Id was then measured at Vds = -0.2 V.  Although the other conditions (such as 

Vgs, Vds and pH of the solution) were fixed, the measured drain current at Vgs = -0.2 

V would change significantly if the value of Id at Vgs = 0 V was not stable.  

Therefore, before changing Vgs to -0.2 V, it was kept constant at 0 V until Id was 

stable (approximately constant in each scanning cycle of Vds; the difference of the Id 
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in each cycle was less than 0.05 nA).  For example, 6 cycles of Vds were required to 

make the ISOFET stable as shown in Figure 6.5.  In this Figure, Id decreased 

exponentially to its final value as Vds was scanned. 

After the drain current of the devices was stable at Vgs = 0 V, Vgs was 

changed to -0.2 V.  The increase in the magnitude of the drain current is shown in 

Figure 6.5.  However, when Vgs returned to 0 V, Id did not return to its previous 

value (before changing Vgs to -0.2 V).  As shown in Figure 6.5, three cycles of Vds 

(Vgs constant at 0 V) were required to return Id to its initial value.  This sequence of 

measurements was therefore repeated until obtaining 5 measurements of Id at Vgs -0.2 

V and Vds -0.2 V were obtained.  

 

 

0 500 1000
-45

-50

-55

-60

0.0

-0.1

-0.2

0.0

-0.1

-0.2

0 500 1000

2nd excitation

 

I d (
nA

)

Time (s)

reference level

Vds - 0.2 V

1st excitation  V
gs

 (
V

)

2nd excitation1st excitation

 

 V
ds

 (
V

)

 
Figure 6.5  Typical responses of the ISOFET in DI water using sequence of the 

scan in Vds over the range 0 V  -0.2 V  0 V.  The structure of the device: 

Cr/Au/P3HT/PMMA/10 AA.  Measurement in the dark at room temperature. 
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6.3.2  pH Characterisation Procedure 

 In a similar method to that described in the  previous section, Vgs was fixed at 

0 V and Vds was scanned from 0 V  -0.2 V  0 V until Id was stable (generally 

about 5 or 6 cycles of Vds).  Vgs was then changed to -0.2 V, and the drain current 

was measured.  A second measurement was undertaken after Id returned to its stable 

value.   By repeating this measuring process, the average Id at  Vgs = -0.2 V and  Vds 

= -0.2 V was obtained using 5 measurements of Id.   

After the measurements, the Ag/AgCl reference electrode and the ISOFET 

were rinsed using DI water.  The ISOFET was then immersed in a test solution with 

the highest pH, and 5 measurements of Id were undertaken.  The ISOFET and 

Ag/AgCl electrode were rinsed with DI water to remove any residual ions from the 

previous measurements.  The test solution was changed to that with the lowest pH; 

then back to the second highest value and so on.  The typical sequential responses of 

the ISOFET in the solutions with different pHs is shown in Figure 6.6.  This 

measuring sequence was employed to obtain the ‘real’ responses (e.g. rather than an 

effect due to drift of the drain current with time).    
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Figure 6.6  Typical sequential responses of the ISOFET in different pH 

solutions.  The structure of the device : Cr/Au/P3HT/PMMA/10 monolayers of 

95%AA + 5%val.  Measurement in the dark at room temperature. 
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6.4  pH Responses  

 

6.4.1  Uncoated ISOFETs 

The responses of the uncoated ISOFETs with the standard (non-

interdigitated) pattern of source and drain electrodes were measured using the 

measuring sequence as described in the previous section.  The devices had a W/L 

ratio of about 40.  The drain current was measured at Vds = -0.2 V and Vgs = -0.6 V.  

A typical pH response of the uncoated standard devices is shown in Figure 6.7.  

When increasing the solution pH, the drain current increased.  However, this 

response to the H+ concentration was small with a sensitivity of 0.18  0.1 nA pH-1 

(or nA dec-1) 
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Figure 6.7  The pH response of an uncoated standard ISOFET (W/L ratio = 40) 

at room temperature. Vds = -0.2 V and Vgs = -0.6 V.   

 

As noted in Section 5.1.3, in the case of the interdigitated ISOFETs, the 

distance between the source and drain was 25 m.  This was half the distance 

between the electrodes in case of the standard devices.  For Vds = -0.6 V, the electric 

field of the interdigitated ISOFETs was increased.  Additionally, their W/L ratio was 

increased to 880.  These factors made the carrier accumulation between the 

electrodes increase significantly.  Consequently, more than ten cycles of Vds were 

required to return Id to the stable state, and hence the period to measure the ISOFET 
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response in each solution was more than two hours.  However, such a period might 

lead to a change in the hydrogen ion concentration due to water evaporation.  As the 

evaporation rate of water in still air is approximately 84.4 g m-2 hr-1 [4], the 2 hr 

period can result in approximately 0.34 g water evaporating from a 100 ml beaker (5 

cm diameter).  To keep this water evaporation below 0.1 g, the measuring period was 

limited to 30 min; in essence, Vgs was reduced from -0.6 V to -0.2 V when 

characterising the pH responses of the interdigitated ISOFETs.   

The pH response of the interdigitated ISOFET shown in Figure 6.8 is similar 

to that of the standard ISOFET; the magnitude of Id increases with the solution pH.  

The sensitivity of the uncoated interdigitated device is 0.5  0.1 nA pH-1, 

significantly greater than the standard ISOFET.   
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Figure 6.8  The pH response of the uncoated interdigitated ISOFET (W/L ratio = 

880) at room temperature.  Vds = -0.2 V and Vgs = -0.2 V. 

 

The results for both uncoated standard and interdigitated ISOFETs are 

consistent with the result reported previously by Bartic et al. [5].  This may be 

because the oxygen atoms, negatively charged in the PMMA, can attract H+ ions 

(positive) in the solutions.  Since the adsorbed ions are positive charges, they prevent 

hole accumulation at the interface between the semiconductor and insulator.  An 

increase in the pH (i.e. to a more basic solution) will decrease the positive charge (H+ 

ions) density in the solution.  Fewer H+ ions are therefore adsorbed on the PMMA 
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surface.  This leads to an increase in the density of holes in the accumulation layer of 

the P3HT [6].  As the result, the magnitude of the drain current increased when the 

pH of the solution increased. 

 

 

6.4.2  LB-Coated ISOFETs 

Pure arachidic acid (AA), pure valinomycin (val) and a mixture of 95%AA + 

5%val were deposited on top of the interdigitated ISOFETs using the LB technique.  

Their pH responses were measured using the same method as described in section 

6.4.1.  The pH response of the interdigitated ISOFET coated with 10 LB layers of 

pure AA is shown in Figure 6.9.  As before, the magnitude of the drain current 

increased when increasing the pH.   
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Figure 6.9  The pH response of the interdigitated ISOFET coated with 10 LB 

layers of pure AA, at room temperature, Vds = -0.2 V and Vgs = -0.2 V. 

 

Figure 6.10 shows the pH response of the ISOFET coated with 10 layers of 

95%AA + 5% val.  The pH response of the ISOFET coated with multilayer 

valinomycin is shown in Figure 6.11.  Both responses are similar to that of the AA-

coating ISOFET in Figure 6.9; the magnitude of the drain current increased when the 

pH increased.   
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Figure 6.10  The pH response of the interdigitated ISOFET coated with 10 LB 

layers of 95%AA + 5 %val; at room temperature; Vds = -0.2 V and Vgs = -0.2 V.   
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Figure 6.11  The pH response of the interdigitated ISOFET coated with 

multilayer valinomycin; at room temperature; Vds = -0.2 V and Vgs = -0.2 V.   
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Table 6.1 compares the sensitivities of the uncoated and coated ISOFETs 

with the interdigitated source-drain pattern.  The sensitivity of the ISOFET coated 

with pure AA membrane was approximately 3.4  0.1 nA pH-1, almost an order of 

magnitude greater than the corresponding uncoated device.   

 

Table 6.1  The pH sensitivities of the ISOFETs with interdigitated source-drain pattern. 

Device Sensitivity 

Uncoated ISOFET 0.5  0.1  nA pH-1 

ISOFET/10 LB AA 3.4  0.1  nA pH-1 

ISOFET/10 LB 5%val+95% AA 2.3  0.1  nA pH-1 

ISOFET/10 LB val 1.8  0.1  nA pH-1 

 

Figure 6.12 shows a schematic diagram of the 10-layer arachidic acid 

membrane.  Thermodynamically, the hydrated H+ and water molecules are small and 

hence able to move freely through the LB membrane.  When the LB membrane was 

submerged into water, the carboxylic head groups (-COOH) ionised and formed 

negative charge layers within the membrane.   
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Figure 6.12  Schematic diagram of the 10-layer AA membrane when exposed to 

the acid solutions. 

 

The H+ ions from the –COOH groups were not bound to the LB membrane, 

but able to diffuse out of the carboxylic acid layers.  As some H+ ions were lost from 

the membrane following ionisation, the negatively charged layer might exert a strong 
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attractive force on the holes compared to the weak forces from the negative polarity 

of the PMMA molecules.  This led to the accumulation of the large number of holes 

at the P3HT/PMMA interface of the AA-coated ISOFETs.   

Apart from attracting holes in the semiconductor layer, the ionised layers of 

carboxylic acid also generate a strong attractive force to trap positive ions.  When 

decreasing the pH of the solution, the ionised carboxylic acid layers trapped 

significantly more H+ ions than the PMMA surface.  This would give a difference in 

the net negative charge on the ISOFET surface, and hence lead to a change of Nernst 

potential as shown in Figure 2.10.  Therefore, the number of the holes accumulated at 

the semiconductor/insulator interface also changed.  As the result, the ISOFET 

coated with AA membrane was more sensitive to the variation of pH than the 

uncoated devices.   

In Figure 6.9, saturation of the drain current is evident when the pH is below 

4.  However, the magnitude of the saturated drain current is much higher than that of 

the uncoated device in Figure 6.8.  This suggests that only a few outer ionised 

carboxylic acid layers interacted with the H+ ions in solution, while the inner layers 

might possess a net negative charge.  With a decrease in the pH, more H+ ions were 

available in the solution.  However, the device showed a response to an increase in 

the number of H+ ions if the pH was above 4.  This probably reveals that the ionised 

outer layers may be fully recombined with H+ ions at pH 4.  Hence, the outer layers 

could not respond to the increase in the H+ concentration when the pH was reduced 

below 4.  Meanwhile, the large number of H+ ions in solution was probably unable to 

increase the H+ penetration into the inner carboxylic acid layers.  This may be 

because the inner layers of 20-carbon alkyl groups of the AA membrane prevented 

the H+ penetrating the inner carboxylic acid layers.  Therefore, the total number of 

H+ ions trapped in the AA layers was constant.  This would lead to a constant net 

charge on the surface of the ISOFET.  As a consequence, the ISOFET was not 

sensitive to a change of H+ ions when the pH was below 4. 

From Table 6.1, the sensitivity of the ISOFET coated with AA/val mixture 

was approximately 2.3  0.1 nA pH-1.  A schematic diagram of the 10-layer 

membrane of 95%AA + 5 %val is given in Figure 6.13.  As the sizes of valinomycin 

and arachidic acid molecules are different, the layers of arachidic acid, the major 

constituent, are disrupted considerably by the valinomycin molecules.  As a result, 
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the layers of carboxylic acid head groups are not as close-packed as those in the pure 

AA membrane.  The electric field generated from the negative charge of the AA/val 

membrane was therefore weaker than that produced from the pure AA membrane.  

However, the force generated from the ionised AA/val membrane was significantly 

stronger than that from the uncoated surface (i.e. PMMA molecules).  Consequently, 

the number of holes accumulating at the P3HT/PMMA interface of the AA/val-

coated ISOFET was less than that at the semiconductor/insulator interface of the AA-

coated ISOFET.  These accumulating holes were, however, greater in number than 

those gathering at the P3HT/PMMA interface of the uncoated ISOFETs.   
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Figure 6.13  Schematic diagram of the 10-layer membrane of 95%AA + 5 %val 

when exposed to the acid solutions. 

 

As the molecular organisation of the AA/val membrane was disrupted, more 

H+ ions were able to penetrate the membrane when compared to the pure AA 

membrane.  However, the sensitivity of the ISOFET coated with AA/val mixture was 

lower than that of the AA-coated ISOFETs.  This may be because the disruption 

from the valinomycin molecules provides pinholes in the AA/val layers.  Some of the 

trapped H+ ions may leak from the membrane through these pinholes, and lower the 

Nernst potential, as a result. Therefore, fewer holes were trapped in the ionised 

carboxylic acid layers.  With the same change in pH, the change in Id of the AA/val 

ISOFETs was therefore smaller than that occurred in the AA-coated ISOFETs.  This 

led to the lower sensitivity of the AA/val ISOFETs.   
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  The pH response in Figure 6.10 does not show any saturation region.  Instead 

of complete recombination, the H+ leakage due to the disruption of the valinomycin 

molecules probably makes the layers of the ionised carboxylic acid head groups 

partially recombine with the H+ ions at pH below 4.  In addition, the pinholes may 

lead to the penetration of more H+ into the inner carboxylic acid layers.  Some free 

ionised carboxylic head groups therefore remained in the AA/val film.  These free 

negative sites can then trap more H+ ions when the pH decreases below 4. 

Table 6.1 shows that the sensitivity of the ISOFET coated with the pure 

valinomycin was approximately 1.8  0.1 nA pH-1.  Although valinomycin molecules 

do not ionise in water, the presence of twelve peptide bonds in valinomycin provides 

a stronger negative polarity than that from the ester groups of PMMA molecules.  As 

a result, the attractive force generated from the peptide bonds is significantly greater 

and able to accumulate more holes when compared to the uncoated ISOFETs.  The 

magnitude of Id therefore increased significantly for the valinomycin membrane on 

the ISOFETs.   

Theoretically, a peptide bond has less negative polarity than an ionised 

carboxylic acid head group.  This is a reason why the drain current magnitude of the 

AA/val-coated ISOFETs was lower than that of the pure AA-coated ISOFETs.  

However, the result in Figure 6.11 shows a higher drain current of the valinomycin-

coated ISOFET than the AA/val-coated ISOFET.  This is probably because arachidic 

acid molecules are not ionised completely in low-pH solutions since arachidic acid is 

a weak acid (its dissociation constant, pKa, > 4.7 [7]). 
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Figure 6.14  Schematic diagram of the multilayer valinomycin when exposed to 

the acid solutions. 

 

Multilayers of valinomycin, rather than monolayers, were deposited onto the 

ISOFETs using the method described in Section 6.1.2.  More valinomycin molecules 
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were deposited on the ISOFET than those expected from the 10-monolayer 

valinomycin film.  These led to the greater attractive force than that produced from 

the disrupted membrane of the AA/val mixture. 

The sensitivity of the ISOFET coated with pure valinomycin is the lowest 

among all coated ISOFETs in this study - but higher than that of the uncoated 

devices.  As shown in Figure 6.14, the pure valinomycin membrane probably does 

not possess a close-packed architecture.  As a result, the surface area for trapping H+ 

ions in the valinomycin membrane is significantly larger than that of uncoated 

PMMA surface.  This reveals that the Nernst potential across the valinomycin layer 

is larger than that on the PMMA surface.  When the pH decreased, more H+ ions may 

be trapped in the valinomycin membrane.  This would lead to an increase of the 

ISOFET sensitivity when the device was coated with pure valinomycin membrane.  

However, when compared to the ionised carboxylic head groups, the attractive forces 

from the valinomycin film were weak and hence bound fewer H+ ions.  In case of the 

valinomycin-coated device, the change of the number of H+ ions trapped in the 

valinomycin membrane was smaller than those occurred in the other ISOFETs coated 

with the pure AA or the AA/val mixture, when the pH of the solution was changed.  

The valinomycin-coated ISOFET therefore became less sensitive to H+ than the other 

coated ISOFETs. 

With a SiO2 ion sensitive layer, Bartic et al [5] reported that the sensitivity of 

the organic-based transistor to H+ ions was 12.5 nA pH-1 at Vgs = -2 V and Vds = -2 

V; however, the sensitivity increased significantly to 62.5 nA pH-1 when Vgs = -2 V 

and Vds = -10 V.  By using Ti2O5 [6], the sensitivity of the ion sensitive FET could 

be increased to approximately 160 nA pH-1 at Vgs = -0.5 V and Vds = -0.2 V.  These 

results show that the ISOFET sensitivity could be enhanced by using a high dielectric 

constant material as an ion sensitive membrane.  Additionally, Vogel et al [8] 

showed that the sensitivity of Si-based ISFET was improved by coating the LB 

membrane on top of the gate dielectric.  However, the sensitivities of the coated 

devices in this study were significantly lower compared to those of the devices with 

inorganic active insulators, such as SiO2 (> 50 nA pH-1) or Ti2O5 (> 150 nA pH-1). 

This is probably because dielectric constants of organic LB films are lower than 

those of inorganic membranes. 
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6.5  Conclusions 

Organic field effect transistors can detect hydrogen ions in aqueous solutions.  

Uncoated ISOFETs showed a response to H+ ions, although their sensitivity was 

small.  The sensitivity of the devices was improved significantly by coating the gate 

dielectric (PMMA) with an LB film, which functioned as an ion-sensitive membrane.  

In this research, LB films of AA, AA/val and pure val were all investigated.   

It was found that the ISOFETs coated with the LB membranes of AA, AA/val 

or pure val have significantly higher sensitivities than that of the uncoated device.  

The devices with the AA membrane exhibited the highest sensitivity to H+ ions.  This 

may be because a number of H+ ions are trapped in the compact ionised layers of 

carboxylic head groups.  However, a small amount of valinomycin will probably 

disrupt the compact molecular architecture of the LB membrane.  This could lead to 

leakage of H+ ions from the ionised carboxylic acid layers.  Therefore, the sensitivity 

of devices with an AA/val film was slightly less than those with a pure AA 

membrane.   

In case of valinomycin membranes, the presence of twelve ester groups in 

valinomycin molecules provides a stronger ionic force to attract H+ ions than the 

single ester group in PMMA molecules.  Its porosity may also increase the active 

area for H+ trapping in the membrane. As a consequence, devices with valinomycin 

membranes have higher sensitivity to H+ than the uncoated devices.  However, their 

sensitivity was found to be lower than those with AA or AA/val membranes. It is 

suggested that the ionic force from the ester groups is weaker than that from the 

carboxylic head groups.   
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Chapter 7 

Potassium – Sensitive Sensors 

 

 

7.1  Experimental Procedure 

In this research, sulphate salts were used to avoid any interference from 

chloride ions.  Both sodium sulphate and potassium sulphate (anhydrous, ACS 

reagents,  99.0%) were dissolved in DI water to concentrations of 0.5, 1, 5, 10, 50 

mg ml-1.    The concentrations of the test solutions were limited to 50 mg ml-1 to 

prevent any precipitation of the salt during the experiments.  The pH can vary with 

concentration of the solution.  However, with the use of very low K2SO4 

concentration, the pH was found to be approximately constant in all the test 

solutions.   

As the standard (non-interdigitated) ISOFETs exhibited lower sensitivity to 

H+ ions in Chapter 6, only interdigitated devices were used in this chapter.  The 

ISOFET was conditioned in DI water for two hours, as described in Chapter 6.  The 

experiments started with DI water (as a reference solution).  Following this, the 

device was tested in one of the K2SO4 solutions.  Before testing in the next solution, 

the device was rinsed with DI water.  The solution was changed alternately between 

high-concentration solutions (> 5 mg ml-1) and low-concentration solutions (< 5 mg 

ml-1).   In some cases, the device was tested in solutions with the addition of Na+, 

thereby investigating the selectivity of valinomycin. 

To maintain the stability of the pH during the measurements, the solutions 

were covered by parafilm and left overnight at room temperature before use in the 

experiments.  As noted in Chapter 6, all electrical measurements were undertaken in 

the dark at room temperature.  Vds and Vgs were scanned and changed as described in 

Section 6.3.1.  Five measurements were undertaken in the same solution.  The 

average of the drain current was calculated at Vds = -0.2 V and Vgs = -0.2 V.  The 

graphs were then plotted to show the pK or pNa responses of the devices versus the 

average of Id. 
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7.2  pK Responses 

The pK response of the uncoated interdigitated device is shown in Figure 7.1.  

The magnitude of the drain current became smaller on increasing the concentration 

of K+ ions.  On applying a negative voltage to the gate electrode, the accumulated 

charges near the PMMA surface would ideally be only hydroxide ions (OH-), while 

those around the gate would be H+.  It is, however, impractical to separate the 

positive ions from the negative ions completely by applying a small negative voltage.  

The concentration of K+ ions would therefore decrease at a distance from the 

reference electrode.  The concentration of hydroxide ions would be low around the 

reference electrode but higher near the surface of the dielectric.  Therefore, the 

majority of the ions are negative on the PMMA surface with a small number of 

positive ions.   Around the gate electrode, the majority ions are, in contrast, positive 

with small number of OH- ions.  The net negative charge on the PMMA surface leads 

to an effective potential across the ISOFET insulator.  This potential produces the 

electric field which accumulates holes at the insulator/dielectric interface.   
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Figure 7.1  pK response of an uncoated interdigitated ISOFET. 
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At low concentrations (below 5 mg ml-1) of K+, the magnitude of the drain 

current decreases with an increase in the potassium concentration. The result 

suggests that fewer holes are accumulated at the P3HT/PMMA interface when 

increasing the concentration of K+ ions.   

From the atomic perspective, a potassium ion has one proton more than the 

number of electrons.  In contrast, a hydrogen ion (H+) does not have any electrons, 

but one proton.  After the first ionisation, there is no electron cloud surrounding a 

hydrogen nucleus, while there are 3 electron shells (18 electrons) surrounding a 

potassium nucleus.  As a result, negative ions can come closer to a hydrogen ion than 

a potassium ion, and hence hydrogen ions exert a stronger Coulombic force to 

negative ions than potassium ions.  However, the sensitivity of the uncoated device 

to K+ ions is about 1.5 nA dec-1 (at low concentrations, < 5 mg ml-1), as shown in 

Figure 7.1.  This is significantly higher than the sensitivity to H+ ions, approximately 

0.5 nA dec-1, as shown in Figure 6.8.  Consequently, K+ ions were able to accumulate 

on the PMMA surface more effectively than H+ ions.  This suggests that the 

attractive force for the ions is Van der Waals force in nature, rather than a Coulombic 

force between the ions and the ester group of PMMA.  For example, ions with 

greater mass would be able to adsorb on PMMA more readily than those with light 

mass.   

Van der Waals forces are a sum of attractive and repulsive forces between 

molecules.  In this research, the relevant forces are those between hydrated ions and 

a planar dielectric surface that is assumed to be infinite.  The Van der Waals force 

(Fw) between a spherical mass and an infinite wall can be written [1] 

 

 

2 2 3

w 22

2π n λR
F =

3d d + 2R
       (7.1) 

 

where n is the number of molecules per cm3,  is the London-Van der Waals 

constant, which is proportional to the molecular weight of the particle [2], R is the 

radius of the molecules, and d is the distance between the wall and the edge of the 

molecule.   

In case of adsorbed ions on ISOFETs, the n and d parameters are 

approximately constant in all the experiments.  In solution, ions will be in the form of 
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hydrated ions, surrounded by water molecules.  The water molecules will dominate 

the molecular size of any hydrated ion.  If ions have the same charge, their molecular 

radii can approximately be constant.  As reported by Nightingale [3], the molecular 

radius of hydrated H+ is about 0.28 nm, while those of hydrated K+ and hydrated Na+ 

are 0.33 nm and 0.35 nm, respectively.  In Equation 7.1, the Van der Waals force 

therefore depends on the molecular weight (via the  term).   

In this study, the hydration number, which is the number of water molecules 

surrounding an ion in the solution, may be used to explain the experimental results.  

The hydration number for H+ is 4 [4], while that of K+ ions is approximately 6 [5].  

The molecular weight of hydrated K+ ions is about 147, which is significantly more 

than that of hydrated H+ ions, about 73.  Therefore, the Van der Waals force of K+ 

ions would be more than that of H+ ions.  This may be the explanation of why the 

devices respond to K+ ions better than H+ ions at low concentrations. 

In Figure 7.1, the drain current becomes saturated for potassium 

concentrations greater than about 5 mg ml-1.  This indicates that the effective 

potential across the PMMA becomes constant when the ionic concentration is 

increased.  Hence, the accumulated charge on the PMMA surface remains constant, 

although the concentration of K+ ions is increased.  The accumulated K+ ions form a 

space charge on the PMMA surface and also produce a repulsive force.  This 

Coulombic force then prevents other K+ ions from aggregating on the PMMA.   

Figure 7.2 shows the potassium response of the ISOFET with an AA LB 

membrane. In a similar fashion to Figure 7.1, the magnitude of Id is inversely 

proportional to the concentration of potassium ions, and saturates for potassium 

concentrations greater than about 5 mg ml-1.  However, the magnitude of the drain 

current in Figure 7.2 has increased significantly, approximately five times higher 

than that of the uncoated device in Figure 7.1.  This suggests that the effective 

potential across the dielectric layer of the device coated with AA membrane was 

greater compared to that of the uncoated ISOFET.  This is probably due to the fact 

that the LB membrane can ionise, forming a negative plane of carboxylic acid groups 

when the device was submerged in the solution, as shown in Figure 7.3.  These dense 

negative charges can induce a larger Nernst potential, and hence generate a 

significantly stronger electric field across the dielectric.  More holes were then 

accumulated at the P3HT/PMMA interface.   
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Figure 7.2  pK response of an interdigitated ISOFET with 10 LB monolayers of 

pure AA. 
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Figure 7.3  Schematic diagram of the ISOFETs coated by 10 LB monolayers of 

AA when exposed to the aqueous solutions. 
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The K+ response of the ISOFET device coated with 95% AA+5% val is 

shown in Figure 7.4.  As the main constituent of the LB membrane is arachidic acid, 

the K+ response of this device is similar to that of the AA-coated device, as depicted 

in Figure 7.2.   
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Figure 7.4  pK response of an interdigitated ISOFET with 10 LB monolayers of 

95%AA + 5%val. 

 

Transistor devices which were coated with layers of pure valinomycin were 

then tested.  A larger response to K+ ions (compared to the other coated devices) is 

evident in Figure 7.5.  This shows that more K+ ions could be accumulated in the 

valinomycin-coated membrane than in the other LB membranes studied.   

Table 7.1 shows the sensitivities of both uncoated and coated ISOFETs to 

potassium ions.  The sensitivity of the AA-coated device is less than 0.5 nA dec-1, 

which is similar to that of the uncoated devices.  This indicates that LB layers did not 

have any influence on the ISOFET sensitivity.  As noted above, the carboxylic acid 

groups of the AA molecules form a charged plane inside the LB membrane when 

hydrolysed in water.  However, the membrane has a Y-type structure with its 

hydrophobic outer surface in contact with the solution.  This prevents hydrated K+ 

ions penetrating the membrane.  Only small molecules, such as hydrated H+ ions, can 

penetrate and be trapped at the hydrolysed carboxylic planes.  Larger K+ ions would 

be adsorbed on the surface of the AA membrane by Van der Waals forces.  

Therefore, the sensitivity of the ISOFET is similar to that of the uncoated device. 
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Figure 7.5  pK response of an interdigitated ISOFET with 10 LB monolayers of 

pure valinomycin. 

 

 

 

 

 

 

 

Table 7.1  The sensitivities of the interdigitated ISOFETs to potassium ions. 

Device Sensitivity 

Uncoated ISOFET 0.5  0.1 nA dec-1 

ISOFET/10 LB AA       < 0.5  nA dec-1 

ISOFET/10 LB 5%val+95% AA 0.9  0.1  nA dec-1 

ISOFET/10 LB val 1.5  0.1  nA dec-1 
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As shown in Table 7.1, the average sensitivity of the ISOFET coated with 10 

LB monolayers of 95%AA + 5%val is about 1 nA dec-1, significantly higher than the 

responses measured to hydrogen ions, as described in Chapter 6.  The magnitude of 

Id is much higher than that of the uncoated device but significantly lower than that of 

the AA-coated device.  Based on the model in Figure 2.10, the Nernst potential of the 

AA/val coated device is expected to be lower than that of the AA-coated device.  

This may be because the net negative charge becomes smaller.  Hence, more K+ ions 

would be able to penetrate into the LB membrane and become trapped at the 

carboxylic acid groups.  As shown in Figure 7.6, the presence of valinomycin is 

likely to disrupt the close packing of fatty acid molecules, leading to a leakage of K+ 

ions into the membrane. 
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Figure 7.6  Schematic diagram of the ISOFETs coated by 10 LB monolayers of 
5%val + 95%AA when exposed to the aqueous solutions. 

 

Table 7.1 shows that the average sensitivity of the ISOFET coated with pure 

valinomycin is approximately 1.5 nA dec-1.  In comparison with the other coated 

devices, this valinomycin-coated ISOFET has the highest sensitivity to K+ ions.  

When compared to the model in Figure 2.10, the valinomycin membrane induced the 

highest potential among the coated devices.  This may be because the valinomycin 

molecules trap a K+ ion within their cavity, as depicted in Figure 7.7.  The 

valinomycin then shields the repulsive force of the trapped K+ ions.  In this way, 

more K+ ions could be accumulated in the membrane. 
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Valinomycin generally requires a fatty-acid host matrix to form a favourable 

membrane structure to complex with K+ ions [6-8].  The fatty acid is essential to 

transport the ions across the LB membrane.  In fact, valinomycin can interact with 

K+ and form the complex although the response of the pure valinomycin membrane 

to K+ is lower than that of the valinomycin/fatty acid films [9].  In this work, the 

molecules of valinomycin were used to trap potassium ions within the membrane, 

instead of transporting the ions across the LB layer in their complexed form.  The pK 

sensitivity in Figure 7.5 may therefore originate from the formation of K+-

valinomycin complexes.   
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Figure 7.7  Schematic diagram of the ISOFETs coated by multimolecular layers 
of pure valinomycin. 

 

 

To form the complex, a valinomycin molecule needs to change its 

conformation, as shown in Figure 7.8.  The experimental results suggest that 

valinomycin may form a complex with K+ ions in aqueous ambient although there is 

no fatty acid in the LB membrane.  This is probably because the valinomycin 

molecules are not closely packed in the LB film.  Therefore, the molecules are able 

to deform on interaction with K+, forming the complex. 

 

           

K+K+

 
            (a)               (b) 

Figure 7.8  Schematic diagrams of molecular structures.  (a) Uncomplexed 

valinomycin.  (b) Valinomycin - K+ complex. 
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7.3  pNa Responses 

Figure 7.9 shows the sodium response of the uncoated ISOFET.  This is 

similar to the pK response in Figure 7.1.  The magnitude of Id decreases when the 

concentration of Na+ ions increases.  When the number of Na+ in the solution 

increases, more Na+ ions were adsorbed on the PMMA surface.  As a result, fewer 

holes were accumulated at the semiconductor/insulator interface.   
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Figure 7.9  pNa response of an uncoated interdigitated ISOFET. 

 

The Na+ response of the ISOFET device coated with 95% AA+5% val is 

shown in Fig. 7.10.  The ISOFET coated with AA/val mixture has the similar 

response as that of the uncoated devices. The magnitude of the drain current 

decreased when increasing the concentration of Na+ ions.  In comparison with the pK 

response, the Na+ response of the ISOFET coated with pure valinomycin is shown in 

Figure 7.11.  The magnitude of the drain current is much higher than that of the 

uncoated device in Figure 7.9.  This reveals that more holes were accumulated at the 

P3HT/PMMA interface.  This is because more negative charges were accumulated in 

valinomycin film than on the uncoated surface, which may be due to the presence of 

peptide bonds in valinomycin molecules.  These bonds have greater positive polarity 

than ester groups in PMMA.  Therefore, more hydroxide ions can be trapped in the 

valinomycin membrane than on the PMMA surface.  As a consequence, a larger 

Nernst potential was induced to trap more holes.   
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Figure 7.10  pNa response of an interdigitated ISOFET with 10 LB monolayers 

of 95%AA + 5%val. 
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Figure 7.11  pK and pNa responses of an interdigitated ISOFET with 10 LB 

monolayers of pure val. 
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Table 7.2 summarises the sensitivities of both uncoated and coated ISOFETs 

to H+, K+ and Na+ ions.  The sensitivity of the uncoated ISOFET to Na+ ions is about 

0.5 nA dec-1, similar to that of its pH response.  However, in contrast to the response 

to K+ ions, the results do not reveal any saturation at high ionic concentrations.  This 

is probably because the Van der Waals force, FW, between Na+ ions and the PMMA 

surface depends on the inner water shell of Na+.  The hydration number of the inner 

shell for a Na+ ion is 3 – 4 [10].  The hydrated Na+ ions therefore have a molecular 

weight less than 95.  As described in Section 7.2, hydrated Na+ ions have a similar 

molecular weight to hydrated H+, but are much lighter than hydrated K+.  This lower 

weight of the hydrated Na+ ions leads to a smaller Van der Waals force than that 

from hydrated K+ ions.  At the same concentration as K+ ions, a smaller number of 

Na+ ions are therefore adsorbed at the PMMA surface.  These will produce weaker 

repulsive force compared to that from the K+ ions.  Therefore, on increasing the 

concentration, more Na+ ions could be accumulated at the PMMA surface without 

any saturation.  

 

Table 7.2  Sensitivities of the ISOFETs to H+, K+ and Na+. 
 

 

Sensitivity 
Device 

pH [K+] [Na+] 

ISOFET 0.5  0.1  nA pH-1 0.5  0.1 nA dec-1 0.6  0.1   nA dec-1 

ISOFET/10 LB AA 3.4  0.1    nA pH-1 < 0.5   nA dec-1 - 

ISOFET/10 LB 5%val+95% AA 2.3  0.1   nA pH-1 0.9  0.1   nA dec-1 1.0  0.1   nA dec-1 

ISOFET/10 LB val 1.8  0.1    nA pH-1 1.5  0.1   nA dec-1 0.5  0.1   nA dec-1 

The result in Figure 7.9 reveals that the device did not reach its detection 

limit.  The uncoated ISOFET has a wider measuring range for Na+ than that for K+ 

ions.  However, the uncoated device with the PMMA surface does not have 

selectivity to any particular ion, but is able to detect H+, K+ and Na+.  Since ester 

groups do not have any selectivity to different negative ions, the PMMA surface can 

interact with any cation in an aqueous solution.  This is similar to inorganic surfaces, 

such as Si3N4 [11] or Ta2O5 [12].  These surfaces show responses to both H+ and 

other alkali-metal ions [13].     
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As shown in Table 7.2, the sensitivity of the ISOFET coated with AA/val 

film is approximately 1 nA dec-1.  Valinomycin in general does not form complexes 

with Na+ [14].  However, the device with 5% w/w valinomycin in the coated 

membrane has a similar sensitivity to Na+ ions as to K+ ions.  This suggests that 

neither K+ nor Na+ forms a valinomycin complex inside the LB membrane.  Instead, 

both Na+ and K+ ions were probably trapped in the ionised carboxylic acid layers.  

This may be the reason why the LB film of the AA/val mixture does not function as a 

K+-selective coating.   

The sensitivity of this AA/val-coated device to Na+ is higher than that of the 

uncoated ISOFET.  This suggests that the attractive force to Na+ ions is stronger than 

the Van der Waals force of the PMMA surface.  This may be because the 

valinomycin molecules disrupt the membrane and allow Na+ ions to leak into the LB 

film.  The ionised carboxylic acid layers in the AA/val membrane generate a stronger 

Coulombic force than the dipole and Van der Waals forces from the PMMA surface.  

As a result, more Na+ ions may be trapped at the carboxylic acid layer in the AA/val 

membrane more than those adsorbed on the PMMA surface. Moreover, the ionised 

carboxylic acid layers generate a stronger electric field than the dipoles of the ester 

groups in the PMMA layer, and thereby accumulate more holes at the 

semiconductor/dielectric interface.  This may be an explanation of the large drain 

current of the ISOFET with the AA/val membrane in Figure 7.10.    

As shown in Figure 7.11, the drain current of the valinomycin-coated 

ISOFET seems to become constant when the Na2SO4 concentration is higher than 1 

mg ml-1.  This device can show a small response to Na+ ions, approximately 0.5 nA 

dec-1.  In this case, the outer shell of hydrated ions may be the key factor in the 

complexation between valinomycin and ions (instead of the inner shell).  As reported 

by Andreoli et al [14], the size of the pore in the centre of the valinomycin molecule 

(around 0.6 nm) can accommodate an outer shell of hydrated K+ ions (less than 0.5 

nm) but it is too small to fit an outer shell of hydrated Na+ ions (about 0.65 nm).  

Hence, hydrated Na+ cannot move through the valinomycin membrane, but may 

accumulate at the surface.  As a result, Na+ ions may be adsorbed on the surface of 

valinomycin film.   

The peptide bonds in valinomycin molecules probably produce strong 

attractive forces and thereby trap Na+ ions effectively.  With the small number of Na+ 

ions, the surface of the valinomycin membrane may be covered with hydrated Na+ 
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ions.  Therefore, an increase of the Na+ concentration cannot produce further 

adsorption on the valinomycin membrane.   As a result, the induced Nernst potential 

will then become constant. 

For clinical application, the device is required to detect potassium ions in the 

concentration range between 2 and 10  mEq L-1 (or milliequivalent molar) [15] and 

to detect sodium ions in the range between 0 and 200 mEq L-1 [16].  However, the 

potassium concentration in human serum is in the range of 3.5 – 5 mEq L-1 [17, 18] 

while the sodium concentration is in the range of 135 – 150 mEq L-1 [17, 18].   In 

this study, the devices were tested in potassium solutions in the range of 0.5 – 50 mg 

ml-1 (or 2.9 – 296.9 mEq L-1) and sodium solutions in the range of 0.5 - 50 mg ml-1 

(or 3.5 – 352.0 mEq L-1).  It is evident that the ISOFETs in this study have potential 

for clinical use. 

 

 

7.4  Conclusions 

Uncoated ISOFETs show a small response to both K+ and Na+ ions since the 

ester group in PMMA molecules does not have the selectivity to any monovalent ion 

while producing a weak ionic force to attract the ions.  The ISOFETs with the AA 

membrane do not show any enhancement in the response to monovalent ions.  

However, the devices coated with the LB film of the AA/val mixture have shown 

improvements in the sensitivity to both K+ and Na+.  Although the ion-sensitive 

membrane of this device contains valinomycin, it does not show any selectivity to K+ 

ions over Na+ ions.  By depositing the pure valinomycin membrane, the response of 

the ISOFETs has been improved, with both an increase in sensitivity and selectivity 

to K+ ions. 
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Chapter 8 

A Preliminary Study into the Behaviour of LB Films 

Deposited onto Porous Supports  

 

 

 

In living cells, cell membranes have significantly higher selectivity to K+ ions 

over Na+ ions.  The mechanism is based on the transfer of the ions across the 

membrane, instead of trapping them on/in the membrane.  By adapting this 

mechanism to the ISOFET, the performance of the device may be enhanced.  

Therefore, the main objective of this chapter is to investigate a measurement system 

mimicking the semi-permeable membrane found in living cells.  This work focuses 

on a preliminary study of porous membranes with and without LB films coated on 

their surfaces. 

  

 

8.1  Membrane Preparation 

 

8.1.1  Porous Membranes 

Lipid bilayer membranes are, in practice, very fragile.   With small forces, the 

membranes can be damaged easily.  In living cells, a microfilament, based on a 

protein network, is used as the structural scaffolding for the cell membrane, which 

has a similar structure to a lipid bilayer.  This protein filament generally increases the 

mechanical strength of the membrane and makes it sustainable in the natural 

environment.   

Since Langmuir-Blodgett membranes are fragile, appropriate physical 

supports are necessary to provide robust artificial membranes.  To imitate the 

transportation mechanism across cell membranes in living cells, porous substrates are 

therefore used as a support for an artificial membrane.  Millipore porous membranes 

were selected for supporting the LB film in this study.  These membranes are made 

up from nylon 6,6, generically known as a polyamide.  Nylon 6,6 is made of 

hexamethylenediamine and adipic acid, as shown in Figure 8.1. 
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(a) 

 

 
(b) 

 
(c) 

Figure 8.1  (a) Nylon 6,6.  (b) Hexamethylenediamine.  (c) Adipic acid. 
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(c) 

Figure 8.2  A porous membrane. (a) Millipore membrane with 0.45 m pore 

size. (b) Image from the scanning electron microscope.  (c)  Schematic diagram 

of the ISOFET with the porous support coated with ion-sensitive membranes. 
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The Millipore membranes are hydrophilic and are not reactive to most acids, 

bases, or electrolytes.  However, the membranes can be degraded by very strong 

acids.  They can provide a high flow rate on application of an adequate pressure.  

Figure 8.2a shows a typical circular membrane with a diameter of 2.5 cm.  Figure 

8.2b shows an image from a scanning electron microscope.  The membrane has pore 

sizes ranging from 0.2 to 1.2 m.  The average pore size is approximately 0.45 m, 

and the membrane thickness is about 170 m. 

Millipore membranes swell following immersion in DI water.  A change in 

size of membranes can lead to damage of the LB films.  Therefore, it was essential to 

leave these nylon membranes in DI water for 48 hr to avoid any swelling during LB 

film deposition.  After deposition of an LB film, the coated membranes were kept in 

DI water at room temperature until use in the experiment.  Figure 8.2c shows a 

typical schematic diagram of the ISOFET with the porous support coated with ion-

sensitive membranes. 
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Figure 8.3  A porous membrane with the holder, used for LB film deposition. 

 

The nylon membranes were not rigid; therefore, it was impractical to dip 

these into an aqueous subphase without some support.  As shown in Figure 8.3, the 

membrane was clamped in a custom-made holder.  The area on each side of the 

nylon membranes available for LB deposition was approximately 3.5 cm2.     

 

 

8.1.2  LB Film Deposition  

Monolayers of arachidic acid/valinomycin mixtures and valinomycin were 

deposited onto the porous membranes using the Langmuir-Blodgett method, as 

described in Chapter 4. 
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Arachidic Acid/Valinomycin Mixture 

As noted in section 4.3.4, pure valinomycin does not form a stable monolayer 

on the surface of an aqueous subphase.  Pathirana and Neely have suggested that 

interactions between a fatty acid and valinomycin may promote complex formation 

of valinomycin molecules with potassium ions [1].  A mixture of arachidic acid and 

valinomycin, with a 9:1 weight ratio, was deposited onto the nylon membrane.  

Monolayers of arachidic acid/valinomycin mixture were successfully transferred 

onto the porous support by using the substrate holder shown in Figure 8.2.  The 

dipping profile in Figure 8.4 shows two dip cycles.  The results reveal a reduction in 

the monolayer area during dipping with a transfer ratio of 0.97  0.02.  

Figure 8.4 shows that a monolayer was transferred to the substrate when the 

substrate was first moved downwards into the subphase.  This is expected for a 

hydrophobic substrate and suggests that the surface of these nylon membranes is 

partly hydrophobic.  This is probably related to the 6-carbon alkyl (hexyl) groups in 

the nylon molecules, as shown in Figure 8.1a.  By starting and ending the deposition 

in air, the LB films on porous membranes should have a Y-type structure, as shown 

in Figure 3.10b.  As described in Section 6.2.1, the small decrease of the trough area 

during the drying period may result from the complexation between H+ ions and 

valinomycin molecules in the floating layer. 
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Figure 8.4 Dipping profile of the mixture of arachidic acid and valinomycin (9:1 

weight ratio) on the Millipore 0.45 m porous membrane. 
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Valinomycin 

To transfer the LB film of valinomycin onto porous substrates, a large 

monolayer area was required due to the large area of the substrate.  In this study, 50 

l of 0.2 mg ml-1 valinomycin solution in chloroform was spread on DI water.  The 

film was left on the surface of the subphase for 60 min to stabilise the valinomycin 

molecules.  As shown in Figure 4.15, a floating layer of pure valinomycin could not 

be stabilised on the LB trough surface while keeping the surface pressure constant at 

about 15 mN m-1.  By contrast with the film deposition of pure arachidic acid, when 

the surface pressure reached 15 mN m-1, the floating layer was not stabilised on the 

subphase before deposition.  However, the film was deposited immediately onto the 

porous substrate at a dipping speed of 0.08 mm s-1.   
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Figure 8.5 Dipping profile of valinomycin on the Millipore 0.45 m porous 

membrane. 

  

The dipping profile of pure valinomycin on the Millipore membrane is shown 

in Figure 8.5.  By contrast with the unsuccessful deposition of pure valinomycin onto 

the silicon surface in Section 4.3, the valinomycin film was transferred successfully 

onto the porous membrane with the transfer ratio of 0.86  0.02.  This is probably 

because the valinomycin molecules could anchor themselves in the holes of the 

porous membrane.  This may prevent the transferred layer from peeling off during 

the next dip.   
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8.2  Electrical Characteristics  

A schematic diagram of the measuring system is shown in Figure 8.6.  This 

was used to measure the built-in potential across a membrane.  In this figure, two 

compartments contain saline solution with an insertion ‘slot’ for the membrane.  The 

compartments were made from polytetrafluoroethylene (PTFE) to render them inert 

to chemicals.  The potential was measured using a high-impedance voltmeter.  In this 

study, Ag/AgCl reference electrodes were used as the electrodes in the measurement 

compartments.   This high-impedance system can couple significant noise.  

Therefore, an aluminum Faraday cage was used for electrical isolation.   
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Figure 8.6  Schematic diagram of the measuring system. 1) PTFT compartments. 

2) Solutions. 3) Membrane. 4) Electrodes. 5) Voltmeter. 6) Faraday cage. 

 

 

 

8.2.1  Uncoated Porous Membranes 

With the uncoated 0.45 m porous membrane, the measured potential 

responses are shown in Figure 8.7.  There is no significant change during measuring 

the voltages across the reference electrodes.  In case of DI water, KCl solution and 

NaCl solution, the responses fluctuated around mean values of -5.0, 0.5 and -2.5 mV.  

In this work, both double junction Ag/AgCl electrodes were filled with 3M NaCl 

solution.  With the same concentration in both compartments, the built-in potentials 

between the electrodes and the solution are almost identical.  In theory, the potential 
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across the electrodes should be zero.  In practice, porous frits in reference electrodes 

which are used as a salt bridge are not perfectly identical.  Small differences between 

these frits probably accounts for the non-zero potentials measured in these 

experiments.  The differences of the average values of the responses may result from 

an extra interface between the inner solutions of the electrodes and the test solution.  

This will provide an extra liquid junction potential in the measuring system. 
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Figure 8.7  Potentials across 0.45 m porous membrane; the same concentration 

in both compartments, DI water, KCl (0.01M) and NaCl (0.01M). 

 

When the KCl concentration in the left compartment is 10 times higher than 

that in the right compartment, the potential (red) across the Ag/AgCl electrodes 

decreases with time, as shown in Figure 8.8.  The gradual change reveals that the 

difference in concentration between the compartments becomes smaller.  This 

indicates that both K+ and Cl- ions can diffuse through the porous membrane.  The 

response seems to converge to the potential across the solutions with the same 

concentration.  To some extent, the partly hydrophobic property may hinder the ion 

diffusion across the Millipore membrane.  This may account for the 60 min period 

over which the measured potential charges.   
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Figure 8.8  Potentials across the uncoated 0.45 m porous membrane; the same 

concentration in both compartment (0.01M:0.01M) and 10 times different 

concentrations (0.01M:0.001M). 

 

 

 

8.2.2  Coated Porous Membranes 

 

Mixture of Arachidic Acid and Valinomycin 

With the LB film of the arachidic acid/valinomycin mixture, the potentials 

across the electrodes in KCl solutions are shown in Figure 8.9.   In case of the same 

concentration in both compartments, the measured potential fluctuated around the 

average value, 2.5 mV.  When using the 10-time difference in concentrations as in 

Figure 8.9, the signal varies with time.  

During the first few minutes of the measurement, the potential across the 

electrodes in the different concentration solutions (KCl 0.01M : KCl 0.001M) was 

significantly higher than the response of the same concentration solutions (KCl 

0.01M : KCl 0.01M) in both compartments.  These results indicate that the LB 

membrane of the arachidic acid/valinomycin mixture does not form a barrier to the 

ions.  Similar to the results of the uncoated membrane in Figure 8.8; the change of 

the potentials during the measurements may come from the diffusion of the ions 
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across the coated membrane.  Despite the fact that the transfer ratio is approximately 

unity, the LB film may not be well organised on these Millipore substrates.  The 

surface is probably too rough to allow arachidic acid and valinomycin molecules to 

form a compact film.  Additionally, the molecules of valinomycin may disrupt the 

LB membrane.  These probably provide diffusion channels for the ions.    

 

0 10 20 30 40 50 60

-10

-5

0

5

10
 Same concentration in both compartments
 10 times different concentrations in the compartments

V
dc

 (
m

V
)

Time (min)
 

Figure 8.9  Potentials across the 0.45 m porous membrane coated with 4 LB 

 

alinomycin 

embrane coated with a pure valinomycin 

film ar

layers of 95%AA+5%valinomycin; KCl (0.01M) : KCl (0.01M) and KCl 

(0.01M) : KCl (0.001M). 

 

 

V

The measured potentials across a m

e illustrated in Figure 8.10.  The response is approximately constant when 

using the solutions with the same concentration.  However, a variation in potential 

was evident when the solutions have 10-times difference in their concentrations.  

These responses are similar to those for AA/val mixture.  The valinomycin molecules 

on the porous membrane might not form a compact monolayer.  Instead, there may 

be holes in the valinomycin film on the porous membrane.  The ions may thus leak 

through the membrane via these holes. 
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Figure 8.10  Potentials across the 0.45 m porous membrane coated with 2 L

 

Artificial membranes coated on porous membranes have a similar 

B 

layers of pure valinomycin; KCl (0.01M) : KCl (0.01M) and (0.01M) : KCl 

(0.001M). 

 

architecture to cell membranes in living cells.  Sato et al [2] reported that bilipid 

layer membranes containing valinomycin could show a selective response to K+ ions.  

This suggests that artificial membranes will exhibit the semi-permeable 

characteristics if highly packed LB membranes are deposited successfully on porous 

membranes.  In this work, the LB films coated on the porous substrates are supposed 

to be semi-permeable.  Only K+ ions, but not Cl- ions, should pass through the 

membranes because of the presence of valinomycin molecules.  In this way, a 

potential across the membrane obeys the Nernst equation, as described in Chapter 2.  

With a 10-times difference in concentration, a potential should be approximately 59 

mV.  However, the results of both coated membranes are significantly less than that 

theoretical value.  Moreover, they are similar to the responses of the uncoated 

membrane.  These suggest that the artificial membranes in this study did not exhibit 

any semi-permeable characteristics due to the ion leakage through the holes in the 

LB membranes.   
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8.3  Conclusions 

f arachidic acid/valinomycin mixture and valinomycin were 

success

 

Monolayers o

fully deposited on the 0.45 m porous membrane.  However, the films of 

arachidic acid/valinomycin mixture and valinomycin cannot fully insulate the porous 

membrane.  In addition, the responses of coated membranes are similar to that of the 

uncoated membranes.  These responses are approximately constant when the 

concentrations in both compartments are the same.  The potentials across the 

membranes, however, tend to decrease gradually when the concentrations between 

the two compartments were 10-times different.  This gradual change probably comes 

from ion leakage through the holes in the LB membrane. 
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Chapter 9 

Conclusions and Suggestions for Further Work 

 

 

9.1  Conclusions 

The main objectives of this research were to characterise ion sensitive organic 

field-effect transistors (ISOFET), to examine the effects of organic Langmuir-

Blodgett membranes on the ISOFET devices and to investigate the behaviour of 

Langmuir-Blodgett films on porous supports. 

  In this study, organic materials were used to fabricate thin film transistors 

because they are cheap and require low-cost manufacturing process compared to 

inorganic materials [1].  A metal-oxide-semiconductor field effect transistor 

architecture was employed to fabricate the ISOFET.  To use the transistors as an ion-

sensitive device, the gate electrode was, however, removed to expose the dielectric 

layer to a solution [2].  In operating this device, a silver/silver chloride double-

junction reference electrode was used as the gate.  The LB films were coated on top 

of the dielectric of some transistors.  In this way, these transistors were modified to 

specify to particular ions. 

To fabricate source and drain electrodes, thermal vapour deposition was used 

to deposit 20 nm chromium and 20 nm gold layers on glass substrates.  Two patterns 

of source/drain electrodes, namely standard and interdigitated patterns, were used in 

this research.  The standard pattern was transferred onto the substrates using the 

shadow mask technique, while the photolithographic method was employed to 

transfer the interdigitated pattern.     

By using spin-coating, poly (3-hexylthiophene) (P3HT) and poly(methyl 

methacrylate) (PMMA) were coated on substrates as semiconductor and dielectric 

layers, respectively.  It was found that a 55 nm P3HT layer was deposited using spin-

coating at a spin speed of 5000 rpm for 45 s.  In the case of PMMA deposition, a 

two-step process was employed by spinning at 500 rpm for 10 s followed by 3000 

rpm for 50 s.  Two separate PMMA layers were coated to avoid any pin-holes in the 

gate dielectric.  Before depositing the subsequent layer, the samples were annealed in 
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vacuum to remove any residual solvent.  The total thickness of both PMMA layers 

was approximately 130 nm. 

 By mimicking membranes in living cells, Langmuir-Blodgett films were used 

as ion-sensitive membranes. These LB coatings were used to enhance the sensitivity 

and selectivity of the ion-sensitive field effect transistors.  Arachidic acid (AA), 1,2-

dipalmitoyl-sn-glycero-2-phosphatidic acid (DPPA), valinomycin (val) and the 

arachidic acid/valinomycin mixture were investigated.  The results show that AA, 

DPPA and AA/val mixture could form a compact floating layer on the DI water, 

while valinomycin formed a loosely packed architecture on the subphase.  AA and 

AA/val films were transferred successfully onto the substrate.  However, it was not 

possible to coat DPPA and pure val films on a substrate with a high transfer ratio.  

Instead of using a constant-pressure deposition process, a constant-trough-area 

deposition method was used to transfer the pure-valinomycin floating layer onto an 

ISOFET.  Since an excess of valinomycin was dispersed on the subphase, the surface 

pressure was approximately constant during the film deposition; hence, the thickness 

of each valinomycin layer was approximately uniform. 

 Reference FETs were characterised in air by depositing an aluminum gate 

electrode on top of the PMMA layer.  The results show that the threshold voltage 

(VT) was approximately 10 V and the field-effect mobility was approximately 4.5 x 

10-3 cm2 V-1 s-1.  In the case of the ISOFETs, by using Ag/AgCl reference electrode 

as the gate, the device was biased at very low operating voltages (below 1 V) to 

avoid any unwanted electrochemical reaction.   

Due to the fact that P3HT has the band gap of 1.9 eV [3], the P3HT devices 

are generally sensitive to light.  Therefore, the ISOFET devices were operated in the 

dark to avoid any unwanted effect on the drain current.  In addition, the results 

showed that it was essential to leave the ISOFETs in DI water for 2 hr in order for 

them to stabilise before use. 

All the experiments were undertaken in DI water and aqueous solutions.  The 

results show that the ISOFETs were operated in the accumulation mode and the 

interdigitated devices possessed the high sensitivity over the standard FETs.  

Moreover, the hysteresis of the drain current depended on the gate voltage.  Since the 

interdigitated ISOFETs were operated at the lower gate voltages, they showed lower 

leakage currents than for the standard devices.   
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 To measure a pH response, the devices were tested in acidic solutions to 

prevent the presence of silver hydroxide (AgOH) in the reference electrode.  

Additionally, acetic acid was used to prepare test solutions to avoid interference from 

chloride ions.  The uncoated ISOFETs showed a small pH response, with the 

sensitivity of about 0.5  0.1 nA pH-1.  By coating some LB membranes on top of the 

gate dielectric (PMMA), the ISOFETs showed a significantly higher sensitivity to 

the H+ ions.  The ISOFET coated with a pure AA had a pH sensitivity of 

approximately 3.4  0.1 nA pH-1, while that coated with an AA/val film had the 

sensitivity of about 2.3  0.1 nA pH-1.  These results suggest that the compact ionised 

layers of carboxylic head groups may lead to an improvement in the pH sensitivity of 

the ISOFETs.  However, the valinomycin molecules may disrupt the membrane 

architecture of the AA/val film, and hence the sensitivity of the devices with the 

AA/val film was slightly less than those with the pure AA membrane.  In the case of 

the valinomycin-coated ISOFET, its sensitivity to H+ ions was about 1.8  0.1 nA 

pH-1.  This is probably due to the fact that the twelve peptide bonds [4] in 

valinomycin molecules can generate a stronger force to attract H+ ions than the single 

ester group in PMMA molecules.  Moreover, the porous structure of the valinomycin 

film may increase the active area for H+ trapping in the membrane. This provides the 

valinomycin-coated devices with a greater sensitivity to H+ ions than the uncoated 

devices. 

To investigate pK and pNa responses, sulphate salts (K2SO4 and Na2SO4) 

were used to prepared test solutions to avoid the interference from chloride ions.  It 

was found that the uncoated ISOFETs had a small response to both K+ and Na+ ions.  

This is because the ester groups in PMMA molecules do not have selectivity to any 

monovalent ion but produce a weak ionic force to attract any ions in solution.  In the 

case of the ISOFET coated with a pure AA membrane, the coated devices had the 

same selectivity to K+ ions as to Na+ ions.  This indicates that the ionised carboxylic 

acid layers in the AA film do not have selectivity to any particular monovalent ion.  

In the case of the ISOFETs coated with an AA/val film, the sensitivity to both K+ and 

Na+ improved significantly but the devices did not show any selectivity to K+ ions 

over Na+ ions.  However, the valinomycin-coated ISOFET has shown enhancements 

in both sensitivity and selectivity to K+ ions. 
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 Langmuir-Blodgett membranes coated on top of the dielectric have a similar 

structure to the membranes in living cell.  However, the valinomycin trapped target 

ions within the membrane, instead of transporting the ions through the membrane.  

To study the facilitated movement of potassium ions across the membrane, LB 

membranes of arachidic acid/valinomycin mixture and valinomycin were coated on a 

0.45 m porous nylon membrane.  It was found that the responses of both AA/val-

coated and valinomycin-coated membranes were similar to that of the uncoated 

membrane.  This may reveal that the coated films did not fully insulate the 

membrane.  This led to the gradual decrease of the potentials across the membranes 

when the concentrations between two compartments were 10-times difference.  In 

addition, this may indicate that the collapse of the LB membrane due to the water 

removal after film deposition probably provides the leakage channels across the 

membrane.   

 

 

9.2  Suggestions for Further Work 
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Figure 9.1  Schematic diagram of the measurement configuration using a 

reference electrode. 

 

Apart from thickness of the dielectric, distance between the gate and the 

device is likely to be a key factor to obtain a good response.  Therefore, the further 

study is required to optimise an arrangement of a gate electrode.  Figure 9.1 shows a 

schematic diagram of the measurement configuration with a reference electrode as 

the gate.  With this configuration, the organic thin-film transistors have exhibited 
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field-effect characteristics.  However, the magnitude of the drain current was small 

and hence led to the small sensitivity to monovalent ions. Since the ISOFET is 

operated in solution, it is impractical to enhance the ISOFET response by increasing 

the operating voltages over 1 V. 
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Figure 9.2  Schematic diagram of the measurement configuration using a needle 

electrode [5,6]. 

 

The distance between the gate (reference electrode) and the ISOFET was 

relatively large, approximately 5 cm.  It is evident that the reduction of this gap can 

strengthen an electric field exerting on the ISOFET.  Additionally, a Ag/AgCl 

reference electrode has some measurement limitations, such as the interference from 

chloride ions.  Therefore, a metal needle (such as Au or Pt) may be an appropriate 

gate electrode.  Figure 9.2 shows a schematic diagram of the measurement 

configuration using a metal needle as the gate electrode [5,6].  In this way, the gap 

between the gate and the ISOFET can be reduced to less than 5 mm; hence the 

strength of the electric field should increase more than 10 times over that generated 

from the measurement configuration in Figure 9.1.  In addition, with a gold or 

platinum needle, the ISOFET device can be operated in acid solutions, basic 

solutions and chloride-salt solutions. 
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