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Abstract

This thesis addresses the research in the area of regression testing.

Software systems change and evolve over time. Each time a system

is changed regression tests have to be run to validate these changes.

An important issue in regression testing is how to minimise reuse the

existing test cases of original program for modified program. One

of the techniques to tackle this issue is called regression test selection

technique. The aim of this research is to significantly reduce the num-

ber of test cases that need to be run after changes have been made.

Specifically, this thesis focuses on developing a model for regression

test selection using the decomposition slicing technique.

Decomposition slicing provides a technique that is capable of identi-

fying the unchanged parts of the system. The model of regression test

selection based on decomposition slicing and exclusion of test cases

was developed in this thesis. The model is called Regression Test Se-

lection by Exclusion (ReTSE) and has four main phases. They are

Program Analysis, Comparison, Exclusion and Optimisation phases.

The validity of the ReTSE model is explored through the applica-

tion of a number of case studies. The case studies tackle all types

of modification such as change, delete and add statements. The case

studies have covered a single and combination types of modification

at a time. The application of the proposed model has shown that sig-

nificant reductions in the number of test cases can be achieved. The

evaluation of the model based on an existing framework and compar-

ison with another model also has shown promising results. The case

studies have limited themselves to relatively small programs and the

next step is to apply the model to larger systems with more complex

changes to ascertain if it scales up. While some parts of the model

have been automated tools will be required for the rest when carrying

out the larger case studies.
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Chapter 1

Introduction

1.1 Research Overview

Software engineering is the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software [1]. It is

also defined as a systematic approach to the analysis, design, assessment, imple-

mentation, testing, maintenance and reengineering of software [70]. The generic

activities in all software processes are requirement analysis, design, coding, test-

ing and maintenance [82; 97].

Software testing is an important activity in software development. It identi-

fies defects and problems, and evaluates and improves product quality. Soft-

ware testing has been a serious research topic since the late 1960s [56; 87].

Software testing may represent more than 40% of a software development bud-

get [13; 48; 56; 64; 95]. Moreover, approximately 50% of the elapsed time is

expended in testing software being developed [64; 65].

Software maintenance refers to the modifications of software after delivery.

Other terms suggested for maintenance are software support, software renova-

tion, continuation engineering and software evolution [11]. The IEEE Standard

1219-1993 [2] has defined software maintenance as the modification of a soft-

ware product after delivery to correct faults, to improve performance or other

1



1. Introduction

attributes, or to adapt the product to a modified environment. ISO/IEC 14764-

1999 [4] has defined software maintenance as software product undergoes modi-

fication to code and associated documentation due to a problem or the need for

improvement. Software systems change and evolve over time. It is impossible to

develop any software which does not need to be modified. Each time a system

is modified, regression tests have to be run to validate these modifications. This

issue is called regression testing.

Regression testing is expensive but an essential activity in software mainte-

nance. Regression testing attempts to validate modified software and ensures

that the modified parts of the program do not introduce unexpected errors. The

time used for regression testing can be assumed approximately half of the soft-

ware maintenance activities. Improvements in the regression testing process will

help to lower the elapsed time and the expenses of making changes to software.

This thesis addresses the research in the area of regression testing.

There are a number of common terminologies that have to be defined in order

to discuss regression testing. A Certified program refers to the previously tested

version of a program. A Modified program refers to a program that is obtained by

modifying the certified program. A test suite is a set of test cases that is used to

test a program. T is the test suite that is used to test the certified program and

T’ is the test suite that is used to test the modified program. Regression testing

involves creating test suite T’, to validate the modified program, and running T’

as an input to the modified program [14].

An important issue in regression testing is how to minimise reuse of the ex-

isting test cases of the certified program for the modified program. One of the

techniques to tackle this issue is called regression test selection technique. There

are many studies have discussed regression test selection techniques [10; 21; 22;

28; 43; 44; 51; 53; 54; 55; 89; 90; 102; 103; 110]. These techniques attempt to

reduce the cost of regression testing by selecting appropriate test cases using in-

formation from the certified program, the modified program and the existing test

suite. These techniques are classified as inclusion techniques because they select

2



1. Introduction

test cases from the test suite.

The overall aim of this thesis is to discuss the research of regression test selec-

tion. Specifically, this research aims to reduce the number of test cases that need

to be run after changes have been made. It focuses on developing a model for

regression test selection by exclusion using the decomposition slicing technique.

Exclusion means that the model excludes test cases that are not needed in re-

gression testing. The decomposition slicing technique is capable of identifying

the unchanged parts of the system. The model of regression test selection based

on decomposition slicing and exclusion of test cases was developed in this thesis

and called Regression Test Selection by Exclusion (ReTSE). The ReTSE model

has four main phases: Program Analysis, Comparison, Exclusion and Optimisa-

tion. The initial paper of this model was published in the doctoral symposium

for ESEC/FSE 2009 [77].

Rothermel and Harrold [88] proposed a framework for evaluating regression

test selection techniques. It is based on four categories which are inclusiveness,

precision, efficiency and generality. This framework is used to evaluate the ReTSE

model based on some case studies. The case studies consider every types of

modifications such as change, add and delete statements in the program. Then,

the model is compared to the existing regression test selection technique.

1.2 Criteria for Success

There are four main criteria for success of this research. They are developing,

implementing, analysing and evaluating the new regression test selection model.

1. Development of a new regression test selection model

This research aims to develop a new regression test selection model. The

model will select test cases from the existing test suite for the modified

program. The research will use an exclusion mechanism and decomposition

slicing technique in the proposed model.

2. Implementation of new model
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The proposed model will be implemented through a development of a pro-

totype. The research also will discuss existing tools that are suitable for

the proposed model.

3. Analysis of new model

The proposed model will be analysed based on a number of case studies.

The case studies use small programs that represent all types of modification

such as change, add and delete statements.

4. Evaluation of new model

The evaluation of the proposed model will be divided into two parts. The

first part is based on the existing evaluation framework developed by Rother-

mel and Harrold [88]. The second is based on a comparison between the

proposed model and other existing regression test selection techniques.

1.3 Thesis Outline

This thesis is divided into three main parts; background, the proposed model,

and discussions. The background consists of Chapter 1 and Literature Review

which is divided into three chapters. They are Software Testing (Chapter 2),

Regression Testing (Chapter 3) and Program Slicing (Chapter 4). The proposed

model includes Chapter 5, a description of the model, and Chapter 6, an im-

plementation of the model. The discussions involves case studies in Chapter 7,

analysis and evaluation in Chapter 8 and conclusions of the thesis in Chapter 9.

The full structure of the thesis is as follows.

Chapter 2 provides the basic knowledge of software testing. The chapter pro-

vides some relevant definitions of software testing. Then, it discusses the different

classifications of testing techniques and testing processes. Finally, the chapter dis-

cusses testing in software maintenance.

Chapter 3 provides a background of regression testing and begins with some

definitions of regression testing. Then, it discusses regression testing strategies

and categories and provides an evaluation framework for regression test selection
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technique. The main focus is regression test selection techniques. Finally, the

chapter discusses the implementation of regression testing in different environ-

ments.

Chapter 4 provides basic knowledge of program slicing because one of the

existing slicing techniques is used in the proposed model. The chapter begins

some definitions of program slicing. Then, it discusses representation types of

programs or systems. This is followed by a discussion on various program slicing

techniques, and in particular with specific reference to the decomposition slicing

technique that is used in the proposed model. Finally, it describes the applica-

tions of program slicing.

Chapter 5 describes the proposed model called Regression Test Selection by

Exclusion (ReTSE). The ReTSE model uses the decomposition slicing technique.

Finally, the chapter uses a simple program to evaluate the model.

Chapter 6 presents the prototype of the ReTSE model. This chapter presents

the existing tools used in the relevant phases in the ReTSE model. However,

there are few phases that still work manually. Finally, the chapter discusses how

to fully implement the ReTSE model in the future.

Chapter 7 discusses case studies that represent five types of modification. The

five types of modification are change statements, add statements, delete state-

ments, add variables and delete variables. Five case studies represent one type of

modification at a time. Another two case studies have been presented to tackle

a combination of modification types.

Chapter 8 discusses the analysis and evaluation of the ReTSE model in further

details. The analysis is based on the case studies that are presented in Chapter

7. The evaluation is divided into two parts, the first is based on the existing

framework for regression test selection techniques. The second is the comparison

between the ReTSE model and the Pythia technique.
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Chapter 9 provides the summary of the research. It also reviews the criteria for

success that are presented in Chapter 1. This chapter concludes with suggestions

to enhance the ReTSE model in future.
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Chapter 2

Software Testing

2.1 Introduction

There are various definitions of software testing that are related to specific issues

or problems. Some early definitions are from Myers [64] that define testing as the

process of executing a program with the intent of finding faults. Hetzel [56] has

defined testing as any activity aimed at evaluating an attribute or capability of

a program or system. Testing is a measurement of software quality.

Software testing also known as a dynamic verification. The actual behaviour

of a program on a set of test cases is compared to the expected behaviour [17].

Software testing is an iterative process [95], which consists of test designing, test

execution, problems and problem repair, for validating functionality, and as well

as attempting to break the software.

This chapter discusses software testing in general. The chapter is organised
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as follows. The second section presents classifications of testing techniques. The

third section presents testing processes. The fourth section discusses testing in

maintenance processes.

2.2 Classifications of Testing Techniques

The classifications of testing techniques are divided into three parts. These are:

1. Static and dynamic testing [8; 81; 87].

2. Black-box and white-box testing [8; 87; 97].

3. Manual and automated testing [81; 95].

2.2.1 Static and Dynamic Testing

2.2.1.1 Static Testing

Static testing does not involve actual program execution. Usually, the developer

who wrote the code uses this type of testing in isolation. Static testing is mostly

used in requirements, design and coding phases. For instance, in static testing,

specifications are compared with each other to verify that errors have not been

introduced during the process. This comparison process is illustrated in Fig-

ure 2.1 [8]. The down arrow shows the translation process of information from

the previous artifact to the next artifact. The up arrow shows the verification

process of that translation. The artifacts are compared with each other to verify

that each artifact accurately translates information from the previous artifact.
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Figure 2.1: Using Specifications in Static Testing [8]

2.2.1.2 Dynamic Testing

Dynamic testing is a process of software execution on some test cases and ex-

amining the results to check whether it operated as expected [8]. It is also the

process to confirm that the software functions according to its specification.

The test plan is the important aspect in dynamic testing [8]. It links the

specification to the software to be tested. It should include a complete description

of the strategy for testing, plus the test scripts and expected results. The results

of dynamic tests are always compared with the expected results listed in the

test plan. Any differences that are found must be resolved. After any necessary

changes have been made, the tests will run again. This is part of the regression

testing process that will be discussed in next chapter.
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2.2.2 Black-box vs White-box Testing

2.2.2.1 Black Box Testing

Black-box testing assumes the software as a black box without any knowledge of

internal implementation. Test cases derived from the program specification are

called black-box techniques. In addition, black-box testing techniques are some-

times referred as functional or specification-based testing. The only information

that is used in the functional approach is the specification of the program [66].

There are two distinct advantages of functional based testing. First, they are

independent of how the program is implemented, so the test cases will not be ef-

fected if the implementation changes. Second, the development of test cases can

occur in parallel with the implementation. This can reduce the overall project

development time. On the other hand, functional test cases usually face two

problems. Firstly, there can be significant redundancies amongst test cases. Sec-

ondly, some parts of the tested software may not be tested by functional test

cases because the testers do not know the real code of that software.

2.2.2.2 White Box Testing

Test cases derived from a program itself are called white-box techniques. White-

box testing is also called structural or code-based testing. There are two main

white-box or structural testing techniques; control flow testing and data flow test-

ing [101; 105]. The program shown in Figure 2.2 can be represented as a Control

Flow Graph (CFG) as shown in Figure 2.3. Every statement in the program is

represented by nodes. The flow from one node to another node is called an edge.

Nodes 1 and 4 are called predicate nodes because they have more that one out
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going edge. A path is the flow from the start node (node 1) to the end node

(node 7). Nodes 6 and 7 are non-branching statements which can be treated as

one statement unit [30]. There are four unique paths through the program in

Figure 2.2. The paths are P1 ={1, 2, 4, 6, 7}, P2 = {1, 2, 4, 5, 6, 7}, P3 = {1,

3, 4, 6, 7} and P4 = {1, 3, 4, 5, 6, 7}.

1 if (condition1)

2 x = 1;

else

3 x = 2;

4 if (condition2)

5 x = 10 * x;

6 y = x + 10 / x;

7 write(x, y)

Figure 2.2: The Program for CFG

Figure 2.3: The Control Flow Graph

The effectiveness of structural testing is measured by test coverage, which

measures the code exercised by the test cases [30]. Common coverage metrics
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are statement, branch, and path coverage. Statement coverage requires that all

statements in the program are executed at least one test case [30; 78; 87; 105].

The 100% statement coverage of the program in Figure 2.2 can be achieved by

two test cases from the four paths. The combination of two test cases might be

from {P1, P4}, {P2, P3}, or {P2, P4}. The suitable combination of test cases is

important in statement coverage.

Branch coverage is also called decision coverage [30; 87]. It requires all

branches of the program are traversed at least one test case. The 100% branch

coverage of the program in Figure 2.2 also can be achieved by two test cases from

the four paths. The combination options are {P1, P4} and {P2, P3}. Statement

coverage and branch coverage can be achieved by exercising every path through

the program which is called path coverage. Path coverage is a reliable technique,

however, it is not possible for large systems because the number of paths is ex-

ponential with respect to the number of branches [30].

Data flow based testing basically uses definitions (def ) and uses of variables

(use) in the program [9; 36; 66; 85; 105]. A def is a statement that assigns a value

to a variable or as an input of a variable. For instance, the statement 3 (x = 2) in

Figure 2.2 is called def for the variable x. The occurrence of the variable x in the

statement 6 (y = x + 10 / x) is called use. There are two types of use, namely

computational use (c-use) and predicate use (p-use). The c-use is a statements

where the value of a variable is used to compute the value of other variables or as

an output value. The p-use is a statements where the value of variables is used

in condition statements. The def-use (du) pair is a pair of definition of variable
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and its uses which can be linked by a path without passing any other definition

of the same variable.

2.2.3 Manual and Automated Testing

Manual software testing is the process of testing software that is carried out by an

individual or group. Manual software testing uses more time and labour than au-

tomated testing. Automated software testing is a process of creating test scripts,

which can then be run automatically, repetitively through several iterations. Au-

tomated software testing is more time efficient.

2.3 Testing Processes

Large systems should not be tested as a single entity. Large systems consist of

sub-systems which are built out of modules which are composed of procedures

and functions. The testing process starts from the small units and continues until

the entire system is integrated. The most widely used testing process consists of

five stages: unit testing, module testing, sub-system testing, system testing and

acceptance testing [97]. In general, the main testing activities are component

testing, integration testing and user testing. The sequence and relation between

testing activities are shown in Figure 2.4.

Councill and Heineman [23] define a component as a software element that

conforms to a standard components model and can be independently deployed
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Figure 2.4: Testing Process in Software Development [97]

and composed without modification according to a composition standard. Com-

ponent testing involves unit and module testing as shown in Figure 2.4. In unit

testing, individual components are tested independently to ensure that they oper-

ate correctly. A module is a collection of dependent components that is tested in

module testing process. Sub-system testing involves collections of modules which

have been integrated into sub-systems. In the system testing, the system which

consist of all integrated sub-systems is tested in order to validate that it meets its

functional and non-functional requirements. Finally the acceptance testing will

make sure the system is accepted for operational use. Acceptance testing is some-

times called alpha testing [97]. The alpha testing process is performed until the

system developer and the client agree that the system meets their requirements.

Then, a testing process called beta testing is used after system is ready to be used

as a software product. Beta testing involves delivering a system to a number of

interested customers who will be report issues to the system developers.
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2.4 Testing in Software Maintenance

There are several process models proposed for software maintenance including

those from IEEE and ISO. The IEEE Standard 1219-1998 [3] has proposed a

software maintenance process that has seven phases as shown in Figure 2.5. The

phases are:

Figure 2.5: IEEE Standard 1219-1998 Software Maintenance Process [3]

• Problem/Modification Identification and Classification

This is the beginning phase of software maintenance process which starts

with the Modification Request (MR). MR can be issued by a user, a cus-

tomer, a programmer, or a manager. Then, the MR will be assigned with

a suitable maintenance type, priority and unique identifier. The phase also

has an activities which determine whether to accept or reject the MR. The
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maintenance process will be proceed to the next phase or might be stopped

here.

• Analysis Phase

In this phase, a preliminary plan for design, implementation, testing, and

delivery will be built according to the conducted analysis. Analysis is per-

formed at two levels: feasibility analysis and detailed analysis. Feasibility

analysis identifies alternative solutions and assesses the impact and costs.

Detailed analysis defines the requirements for the change, arranges a test

strategy, and prepares an implementation plan.

• Design Phase

This phase designs a modification to the system. The design phase needs

to use all current system and project documentation, existing software and

databases, and the output of the analysis phase. Some of activities in

design phase include identifying the affected parts of software, modify the

documentation of software, create a test cases for the new parts of the

software, and identifying regression tests for a new version of the software.

• Implementation Phase

This Phase includes the activities of coding and unit testing, integration

and testing of the modified code, risk analysis, and review. The Phase

also includes a test-readiness review to asses preparedness for system and

regression testing.

• Regression/ System Testing

This is the phase in which the entire system is tested to ensure compliance to
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the original requirements plus the modifications. In addition to functional

and interface testing, this phase includes regression testing to validate that

no new faults have been added. Regression testing is one of the important

activity in the software maintenance because it can reflect the overall costs

and resources used in software maintenance. The detailed explanation of

regression testing will be discussed in Chapter 3. Finally, this phase is

responsible for verifying preparedness for acceptance testing.

• Acceptance Testing

This phase has a same process as acceptance testing in software devel-

opment. Its concerned with the fully integrated system and involves users,

customers, or a third party designated by the customer. Acceptance testing

comprises of functional tests, interoperability tests, and regression tests.

• Delivery Phase

This is the phase in which the new version of modified systems is released

for installation and operation. It includes the activity of notifying the

user community, performing installation and training, and preparing and

archival version for backup.

The problems of software maintenance can be classified into the types correc-

tive, adaptive, perfective and preventive maintenance. Although software systems

have emerged in new environments, the problems still occur around four types of

software maintenance that need to be tackled. This means, research activities in

software maintenance and evolution still need to be explored in order to tackle

the modifications of software systems in new environments.
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2.5 Summary

This chapter has discussed software testing in general. The explanation is around

classification of software testing, software testing processes and testing in the soft-

ware maintenance process. These are the important basic knowledge of software

testing in order to explore in more detail on regression testing that focussed in

this thesis.

18



Chapter 3

Regression Testing

3.1 Introduction

According to the IEEE Standard 1219-1998 [3], regression testing can be involved

in different levels such as unit, integration or system level testing. Li [71] also

described regression testing as one kind of testing that is applied at all these three

levels. These three levels of testing are similar to the process of testing in devel-

opment although they have to be focussed on modifications that have occurred

in the program. Most existing regression testing techniques concentrate on unit

testing. Some of the techniques focused on all levels of testing [89; 102].

This chapter discusses regression testing and specifically regression test se-

lection. The chapter is organised as follows. The second section presents an

evaluation framework for regression test selection techniques. The third section

presents regression testing strategies. Then, categories of regression testing tech-

niques are discussed in the forth section. The most significant topic in this chapter
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is about regression test selection techniques presented in the fifth section. Then,

the sixth section discusses a regression testing in different environments.

3.2 An Evaluation Framework for Regression Test

Selection Techniques

Rothermel and Harrold [88] proposed a framework for evaluating regression test

selection techniques. This framework is used to evaluate the proposed model in

the later chapters of the thesis. The framework is based on four categories. They

are:

1. Inclusiveness

Inclusiveness measures the capabilities of techniques to select test cases

that will cause the modified program to give a different output than the

certified program. A regression test selection technique is safe if it selects

all test cases that can give different output.

2. Precision

Precision measures the ability of techniques to avoid select test cases that

cannot give different output between the certified and the modified pro-

grams. A regression test selection technique is precise if the technique is

capable of omitting test cases that cannot give different output.

3. Efficiency

Efficiency measures the computational cost, thus the practicality of a re-

gression test selection technique.
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4. Generality

The generality of a regression test selection technique is its ability to be

used in a wide and practical range of situations.

3.3 Regression Testing Strategies

An important issue in regression testing is how to reuse the existing test suite for

the modified program. There are two main regression testing strategies; retest all,

and selective retest [89]. A retest all approach reruns all the existing test suite

on the modified program. In theory, retest all approach is safe because it can ex-

ercise all modification parts in the modified program. However, it is not practical

to use for large software systems because of the time and resources needed.

Selective retest techniques, in contrast, attempt to reduce the time required

to retest a modified program by selecting a subset of the existing test suite and

retesting only the relevant part of the modified program. Rothermel and Har-

rold [89] have identified two issues in the selective retest techniques: (1) the issue

of how to select test cases from the existing test suite and (2) the issue of identi-

fying where additional test cases may be required. Both issues have been tackled

in the proposed model presented in this thesis.

3.4 Categories of Regression Testing Techniques

Rothermel et al. [92] consider three techniques for reducing the cost of regression

testing. They are regression test selection, test suite minimization and test case

21



3. Regression Testing

prioritization techniques.

3.4.1 Regression Test Selection

Many papers concentrate on regression test selection techniques [10; 21; 22; 28;

43; 44; 51; 53; 54; 55; 89; 90; 102; 103; 110]. Those techniques attempt to reduce

the cost of regression testing by selecting appropriate test cases using information

from the certified program, the modified program and the existing test suite. A

detailed explanation about this category will be given in the next section.

3.4.2 Test Suite Minimization

Test suite minimization techniques decrease cost by minimizing a test suite that

still maintains the same coverage of the initial test suite with respect to a partic-

ular test coverage metric. Harrold et al. [49] propose a minimization technique

that helps to manage a test suite by determining redundant and obsolete test

cases. The technique introduced a mechanism that selects a set of test cases from

the test suite, but still provides the desired testing coverage of the program. The

technique requires an association between the test cases and the testing require-

ments of the program, but it is independent of the test selection criteria and

can be applied if this association can be made. The minimization technique can

also accommodate test suites that use more than one test selection criteria. The

technique can be performed on the entire test suite or on a test suite consisting

of those test cases that test the changed or affected parts of a program. This

technique was incorporated into a data flow testing system called Combat [52].

Hsu and Orso [60] have developed a general framework and tool for supporting
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test-suite minimization called MINTS. Their evaluation shows that MINTS can

be used to instantiate a number of different test-suite minimization problems and

efficiently find an optimal solution for such problems using different solvers [60].

3.4.3 Test Case Prioritization

Many papers concentrate on test case prioritization [20; 31; 32; 63; 67; 68; 72; 75;

76; 83; 84; 91; 92; 98; 109]. Test case prioritization technique provides another

method for assisting with regression testing. The prioritization technique let

testers order their test cases, so that those test cases with the highest priority are

executed earlier than those with lower priority according to some criterion [92].

Elbaum et al. [32] consider 14 test case prioritization techniques classified into

three groups. The groups are based on control, statements and function level of

a program.

3.5 Regression Test Selection Techniques

The subject of selective regression testing has received considerable attention

from the software testing and software maintenance research communities. Some

of the regression test selection techniques are discussed below. These regression

test selection techniques can be divided into few categories based on elements used

in their techniques such as control-flow based [89], textual differencing based [102;

103], code entities based [21] and program slicing based [14; 35; 41; 107].
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3.5.1 Control-flow Based

Rothermel and Harrold [89] propose a safe and efficient regression test selection

technique based on control-flow graphs (CFG). They have proposed two main

algorithms; intraprocedural and interprocedural. The intraprocedural algorithm

operates on individual procedures. The interprocedural algorithm operates on

entire programs or subsystems. In this technique, both the certified and the

modified programs will be transformed into a CFG in order to perform compari-

son. The comparison algorithm compares each node in both CFGs. If both nodes

differ, the algorithm will select test cases from Test Suite (T) that execute the

node in CFG of the certified program to test the modified program.

These two algorithms are implemented in two different tools. They are De-

jaVu1 for intraprocedural algorithm and DejaVu2 for interprocedural algorithm.

Both tools have been developed to analyse C programs. By using both algo-

rithms, this technique is suitable for a level of regression testing including unit,

integration and system level.

Rothermel and Harrold claim that their technique can decrease the time re-

quired to carry out regression testing for the modified program, even when con-

sidering the cost of performing the analysis to select the test cases. Their inter-

procedural test selection algorithm can give huge savings than intraprocedural

test selection algorithm in term of reducing the number of test cases. The tech-

nique can give significant savings when applied to large or complex programs.

This result is based on their experiment of the application of their technique
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to the “Siemens programs” by Hutchins [61]. The result show that DejaVu1

which perform intraprocedural algorithm always selected 100% of test cases for

the modified procedures. This means there is no significant reduction in the size

of test suite for the modified procedures. In contrast to this, DejaVu2 in average

selects about 55.6% test cases for the modified program. This means DejaVu2

can give saving about 44.4% of test cases size. This technique is considered as a

safe regression test selection technique but not precise [89; 90].

3.5.2 Textual Differencing Based

Vokolos and Frankl [102] have developed a tool called Pythia that is used to re-

duce the cost of regression testing. The Unix-based tool implements an analysis

technique that is called textual differencing because it works by comparing the

source files from the certified and modified programs. The Pythia tool can be

used to analyse software systems written in the C programming language. Voko-

los and Frankl claimed that a novel characteristic of Pythia is that it has been

implemented by using standard Unix tools. The characteristics of the Pythia tool

are:

(i) It selects a safe regression test suite.

(ii) It supplys both intraprocedural and interprocedural analysis. So, it can be

used for single C functions or software systems.

(iii) It has been implemented using standard Unix tools.

(iv) The comparison between the certified and the modified programs uses the

Unix tool called diff. No abstract representation of the program is needed
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in the comparison.

(v) Intrumentation, for determining the execution trace of the certified program,

is done directly by the C compiler, during module compilation.

(vi) In principle, it can be easily extended to support other popular programming

languages, such as C++.

The Pythia tool has been integrated into a shell script to include cc, the

C language compiler, pretty, a beautifier for C programs, and diff, the general

purpose file comparison program. Pythia consists of a few stand-alone programs:

kform, instr, xqt, and txt. The functionality of these programs and a description

on how Pythia works is as follows:

(i) The sources file for the certified program is converted using the program

kform– into a canonical form. Kform is a script that uses the program

pretty, the C program beautifier.

(ii) The canonical files are instrumented and compiled using the program instr.

Intrumentation is used to maintain a basic block execution trace for the

certified program. Instr is a script that uses cc, the C compiler.

(iii) The program being tested is executed via the program xqt, which maintains

a history of test cases along with the basic blocks executed by each test

case.

(iv) The modified program are also converted into canonical files with the pro-

gram kform.
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(v) The program txt compares the certified program with the modified program

canonical files, by using diff, and analyses the differences, as reported by

diff, to determine the set of all test cases that have exercised by the modified

statements.

Vokolos and Frankl [102] have used the framework for evaluating selective re-

gression testing techniques developed by Rothermel and Harrold [88]. They have

claimed that textual differencing is a safe selective regression testing technique in

terms of inclusiveness. For precision, textual differencing is not 100% precise due

to the fact that they do not perform semantic analysis. In term of efficiency, the

computational cost of textual differencing will be reasonable. In term of gener-

ality, textual differencing involves all forms of code modifications like insertions,

deletions, and changes of statements. It can works on both in intraprocedural

and interprocedural aspects of a program. They also claimed that their technique

can easily be extended to programs written in languages that have a mechanism

to perform basic block instrumentation and to transform the source code into

canonical form.

Vokolos and Frankl [103] claimed that the Pythia tool can quickly analyse

software systems written in C programs and be effective in reducing the set of

regression test cases. The claim is based on the results from a case study involving

a software system of approximately 11,000 lines of source code written for the

European Space Agency. The system called ORACOLO2 is written in C and

was developed within the Microsoft Visual C++ 1.5 environment. There were

33 different faults discovered and recorded. Each fault was corrected and a new
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version of the program was created for each fault. The results of their case study

shows that Pythia reduced the size of the regression test suite by at least 90%

on average in almost 40% of the program versions (13/33). A reduction of at

least 80% was reported in almost 50% of the program versions (16/33). This

shows that the textual differencing based technique, Pythia, can give significant

reduction in regression test suite size. Pythia is considered as a safe regression

test selection technique but not precise [103].

3.5.3 Code Entities Based

Chen et al. [21] have proposed a regression test selection technique based on

identifying modified code entities such as functions, variables, types, and macros.

Test cases that have traversed modified code entities will be counted in the test

suite for the modified program. The technique has been implemented in a tool

called TestTube that combines static and dynamic analysis to perform selective

retesting of programs or systems written in the C programming language. The

tool has been developed with a combination of existing analysis tools. The col-

lection of tools can be divided into three categories, including instrumentation

tools, program database tools, and test selection tools. In the instrumentation

tools, app (the Annotation Preprocessor C) instruments the source code auto-

matically. The C Information Abstractor (CIA) is used to build a C program

database in the program database tools category. The technique is considered as

a safe regression test selection technique but less precise [88].
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3.5.4 Slicing Based Techniques

There are a number of regression test selection techniques based on program slic-

ing techniques. The concept of program slicing will be explained in detail at

Chapter 4. Binkley [14] conducted a survey about the application of program

slicing to regression testing. He divided into three groups of program slicing that

are used in regression testing. The first group uses dynamic slicing, the second

group presents program slicing using program dependent graphs (PDG), and the

third group is based on Weiser’s data-flow definition of slicing [104].

Agrawal et al. [7] have proposed three algorithms to be used in their technique

called an incremental regression testing. The algorithms are an execution slice,

a dynamic slice, and a relevant slice. The execution slice of the program with

respect to a test case is referred to as the set of statements executed under that

test case. The dynamic program slice with respect to the output variables gives

us the statements that are not only executed but also have an effect on the pro-

gram output under that test case. The relevant slice with respect to the program

output for a test case is referred to the set of statements that, if modified, may

alter the program output for the given test case.

Agrawal et al. [7] have pointed out that the amount of regression testing ef-

fort saved using their technique obviously depends on the nature of test cases as

well as the locations of the modifications made. If the number of test cases are

large and each of them exercise small parts of the program’s functionality then

using these techniques should offer huge savings. The modification parts of the
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program may also have a major effect on the amount of savings implied by using

these techniques. The incremental regression testing technique is considered as a

precise regression test selection technique but less safe [10].

Gupta et al. [45] have developed a data flow based regression testing technique

that uses slicing algorithms to explicitly determine the affected definition-use as-

sociations made by a program change. The technique uses two slicing algorithms

to detect directly and indirectly affected def-use associations. The first algorithm

works backward from the changed statement to its definitions. The second algo-

rithm is a forward walk from the same point as the first algorithm. The forward

algorithm detects uses, and subsequent definitions and uses, that are affected by

a definition that is changed at that point.

Gupta et al. [45] claim that the slicing algorithms are efficient because they

detect the def-use associations without considering either the data flow history

or the complete recomputation of data flow for the certified program. They also

claim that their technique could easily be modified from all-uses criterion to other

data flow testing criteria. The technique can also be extended to interprocedural

regression testing using interprocedural slicing. The technique is considered as a

safe regression test selection technique but less precise [88].

Gallagher et al. [40] have proposed a novel approach for regression test selec-

tion based on exclusion. They claim that an exclusion-based technique is likely

to be more effective that an inclusion-based technique in two ways. First, it will

more confidently identify all non-modification revealing tests in terms of safety.
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Second, in terms of the impact of the approach, by reducing the size of regression

tests by excluding tests that are not related to modification. Gallagher et al.

proposed four steps in his exclusion technique as follows:

1. Decompose and Reduce System Version n. The decomposition slices are

constructed for the considered system and reduced by equivalent slices.

2. Match Tests with Code. The decomposition slices are match to the relevant

test cases using Vokolos and Frankl technique [102].

3. Decompose and Reduce System Version n + 1. The process is same as in

step 1. Then, obtain the tests for decomposition slice clusters that remain

unchanged.

4. Use tests that remain after removing those obtained in step 3. Any tests

for unchanged code are not needed.

3.6 Regression Testing in Different Environments

There are implementations of regression testing techniques in the literature. They

can be divided into four groups: structured based programs, object-oriented based

programs, web based applications and component-based systems.

3.6.1 Structured Based Programs

Structured based program are often composed of program flow structures such

as sequence, selection and iteration compare to object-oriented program that are

based on objects which have their attributes and methods. There are a number
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of techniques as well as tools that are proposed for regression testing for struc-

tured based programs, especially the C programming language. Examples are the

Rothermel and Harrold technique with their tools DejaVu1 and DejaVu2 [89],

TestTube tool by Chen et al. [21], and Pythia tool by Vokolos and Frankl [102].

The explanation of these techniques and tools have already been described in the

previous section.

3.6.2 Object-oriented Based Programs

Orso et al. [79] have introduced a regression test selection technique for Java pro-

grams. The technique can handles the object-oriented features of the language,

is safe and precise, and applicable to large systems. The technique consists of

two parts: partitioning and selection. The partitioning part is executed first in

order to build a high level graph representation of certified and modified programs

and performs an analysis of the graphs. The goal of the analysis is to identify

the parts of the certified and the modified programs that have changed based on

information on changed classes and interfaces. Then, the selection part of the

technique builds a more detailed graph representation of the identified parts of

the certified and the modified programs, analyses the graph to identify differences

between the programs, and selects a set of test cases in the test suite that traverse

the changes. This technique is implemented in a tool called DEJAVOO. Orso et

al. claim the results of the empirical study of their tool is encouraging in terms of

efficiency and effectiveness. The technique reduces the time for regression testing

as high as 62.5% for a largest system. The cost-effectiveness improves with the

size of the program under test.

32



3. Regression Testing

Wu et al. [106] have proposed a regression testing technique based on the

analysis of the dependence relationship among functions in a system. They have

defined that the object-oriented features, such as inheritance, dynamic binding,

polymorphism and message passing are related to the function calls which are

associated with certain objects. The technique performs in two phase analysis.

The first phase is to analyse the affected variables, functions, function dependence

relationships at the statement level after the modification. The technique is safe

because it considers all possible effects of the modification on the system. This

static phase is considerably more efficient. In the second phase, the technique

dynamically select test cases that are needed to be retested by using the function

calling graph (FCG) of each test case in order to precisely process object-oriented

features and thus enhance the precision of the technique. The FCG can be con-

structed based on the record of the calling sequence of functions. So, the required

overhead is proportional to the number of function calls.

Harrold et al. [50] have introduced a safe regression test selection technique

for Java. The technique can efficiently handle the features of object-oriented lan-

guage specifically the Java language, such as polymorphism, dynamic binding,

and exception handling. The technique is an adaptation of Rothermel and Har-

rold technique [89], which is based on a control flow representation of the certified

and modified programs to select test cases to be rerun. The technique performs

three steps. First, it constructs a graph to represent the control flow and the

type of information for the set of classes under analysis. Then, it traverses the

graph to identify affected edges. Finally, based on the coverage matrix obtained
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through instrumentation, the technique selects the test cases that exercise the

affected edges identified from the test suite for the certified program.

Unlike the Rothermel and Harrold technique [89], which is uses the CFG, the

technique by Harrold et al. [50] introduces the Java Interclass Graph (JIG) as a

representation of the program. A JIG accommodates the Java features and ca be

used by the graph-traversal algorithm to identify dangerous entities. Dangerous

entity is an edge that affected by a change by comparing the certified and the

modified programs. Empirical studies indicate that the technique can be effective

in reducing the size of the test suite [50].

3.6.3 Web Based Applications

Tarhini et al. [99] have proposed a safe regression testing selection technique for

web applications based on an Event Dependency Graphs (EDG). The EDG is

used to model the certified and the modified web applications. Then both EDG’s

are compared in order to select the affected nodes and the potentially affected

nodes. The affected nodes are used to select test suite for the certified web appli-

cation. Empirical results show that the technique reduced the test set size [99].

About 44-90% of test cases were eliminated. The selected test cases still cover

the modified and potentially modified components.

Lin et al. [73] have introduced a code transformation approach to regression

test selection. The transformed code forms a local Java program which simulates

the functionality and behavior of the Web service applications in an end-to-end
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manner. Safe regression test selection techniques can then be applied to the

transformed code and safely reduce the test cases for the Web service applica-

tions. This approach is implemented on Web service applications written in Java

and deployed in the Axis server only.

Ruth et al. [93; 94] have proposed a gray-box approach that support safe

regression test selection technique for verification of Web service system in an

end-to-end manner. A gray-box approach is a technique that does not involve

code-based knowledge directly, in contrast to white box approach. Their ap-

proach is based on the safe regression test selection technique by Rothermel and

Harrold [89] which is uses a CFG as a representation of the certified and modi-

fied programs. Each node represents a code entity and each edge represents the

control flow from one code entity to another. The entities can be statements,

methods, classes, or components [94]. Then, the technique identifies affected

edges by comparing the CFGs of certified and modified programs. Finally, based

on the set of affected edges, the technique selects test cases for T’ from test suite

T that need to be rerun.

3.6.4 Components Based System

Gao et al. [42] have proposed a systematic retest method for software components

based on a component retest model. This method has been implemented in a

component test tool called COMPTest. The COMPTest tool can automatically

identify component-based API changes and impacts, as well as reusable test cases

in a component test suite. Gao et al. claimed that the tool has two major
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advantages:

(i) Automatic identification and analysis of API-oriented component changes

and impacts based on given API-based component test models and other

meta-data, such as function and dependency information in a component.

(ii) Automatic black-box test selection for reuse and test suit refreshment for a

component.
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3.7 Summary

This chapter mainly focuses on regression test selection techniques. The chapter

has started with definition of regression testing. Then, the chapter discusses the

evaluation framework for regression test selection techniques, regression testing

strategies and categories. Finally, the chapter explains the applications of re-

gression testing in the different environments. These are basic knowledge that

are important in order to understand regression test selection techniques that are

necessary for the research in this thesis.

These regression test selection techniques attempt to reduce the cost of re-

gression testing by selecting appropriate test cases using information from the

certified program, modified program and test suite. The techniques are classified

as inclusion techniques which select test cases from test suite that are needed in

regression testing. There is no existing techniques that are based on exclusion

technique. The idea of the regression test selection by exclusion is proposed by

Gallagher et al. [40]. Exclusion technique omits test cases from test suite that

are not needed in regression testing.
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Chapter 4

Program Slicing

4.1 Introduction

Program slicing was first introduced by Weiser in 1981 [104]. Since then, program

slicing has grown and become an important research field in software engineering.

This fact was endorsed by Binkley and Gallagher [15], who stated that the num-

ber of citations for the paper by Weiser on program slicing increased significantly

year by year. Recently, there are a number of papers that have done a survey on

program slicing techniques and it applications [29; 38; 74; 96]. Since Weiser’s first

program slicing technique, many program slicing techniques have been introduced

such as dynamic slicing [6; 69], forward slicing [12], decomposition slicing [41],

interprocedural slicing [59], conditioned slicing [18], stop-list slicing [39], amor-

phous slicing [16], hybrid program slicing [86] and abstract slicing [58; 108].

Program slicing is a decomposition technique that produces a new sub-program

relevant to a particular computation. The new sub-program is called a slice, and
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is an executable program that is produced from the original program with respect

to the specified slicing criterion. Slicing criterion is a set of conditions used in

the slicing computation to produce a slice. A basic slicing criterion uses two

main parameters. They are a variable or a set of variables and the location of

interest.

This chapter is organised in six sections. The next section discusses the rep-

resentation of programs or systems. This is followed by a discussion of program

slicing techniques in the third section. The fourth section discusses the decom-

position slicing technique that is used in the model proposed in this thesis. The

fifth section is about the applications of program slicing.

4.2 Representations of Program

Tip [100] states that Weiser’s approach uses data flow and control flow depen-

dences in order to compute a slice. There are other different representations

used in different types of slicing such as control flow graphs, program dependence

graph, and system dependence graph. A brief explanation of these representa-

tions is given below.

4.2.1 Control Flow Graph

A Control Flow Graph (CFG) is a representation of the program with the combi-

nation of nodes and edges from the start node to the end node. A CFG represents

control dependencies of the program. Nodes in the graph are the program state-

ments, while edges represent a flow of control from one to another. In Chapter 2,
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the control flow graph shown in Figure 2.3 (page 11) represents the program in

Figure 2.2 (page 11).

4.2.2 Program Dependence Graph

A Program Dependence Graph (PDG) is an intermediate representation of a

program using a combination of data dependences and control dependences of

the program [34; 59; 80]. Data dependences are used to represent data flow

relations of the program. Control dependences represent control flow relationships

of the program. Control dependences are derived from the CFG. For instance,

in Figure 4.1, statement 7 is dependent on statement 3 because statement 7 has

the use of the variable sum that depends on its definition at statement 3. The

relation of both statements is called data dependence. Statements 5 and 7 show

the relationship between statement and predicate. Statement 7 is dependent on

statement 5 as a predicate. This dependence is called control dependence. An

example of PDG is shown in Figure 4.2 [59]. The bold arrowed lines represent

control dependence edges and the other arrowed lines represent data dependence

edges.

4.2.3 System Dependent Graph

Horwitz et al [59] have introduced the concept of System Dependence Graph

(SDG). SDG is an extension of the PDG. It includes the PDG, which represents

the main program of the system; procedure dependence graphs, which represent

the procedures of the system; and some additional edges. There are two types of

additional edges. These are edges that represent direct dependences between a
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(1) read (n);

(2) i := 1;

(3) sum := 0;

(4) product := 1;

(5) while i <= n

(6) {

(7) sum := sum + 1;

(8) product := product * i;

(9) i ++;

(10) }

(11) write (sum);

(12) write (product);

Figure 4.1: The Program to be Sliced [100]

Figure 4.2: Program Dependence Graph [59].
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call site and the called procedure, and edges that represent transitive dependences

due to calls. An example of the SDG for program in Figure 4.3 is shown in

Figure 4.4 [59]. Transitive interprocedural flow dependences are represented by

using heavy bold arcs. The call edges, parameter-in edges, and parameter-out

edges which connect program and procedure dependence graphs together are

represented by using dashed arrows.

program Main procedure A(x, y) procedure Add(a, b) procedure Increment(z)

sum := 0; call Add(x, y); a := a + b call Add(z, 1)

i := 1; call Increment(y) return return

while (i<11) do return

call A(sum, i)

od

end

Figure 4.3: The Program for SDG [59]

4.3 Program Slicing Techniques

The following is a discussion of some program slicing techniques. This includes

static and dynamic slicing, backward and forward slicing, conditioned slicing and

stop-list slicing.

4.3.1 Static and Dynamic Slicing

The first program slicing technique by Weiser was based on static program anal-

ysis [104]. Weiser’s program slices are called an executable static slice [15]. Ex-

ecutable because the slices are an executable program. Static because the com-

putation of slices is performed without considering the input of the program. A
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Figure 4.4: System Dependence Graph [59]
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basic static slice is shown in Figure 4.5 for the program in Figure 4.1 [100]. Fig-

ure 4.1 shows a program which computes the value of variable sum and product

if the input n is a positive number. Figure 4.5 shows the slice of the original

program with respect to the slicing criterion (product, 12). All statements that

are involved in the computation of the variable product at line 12 are included in

the slice. In other words, all statements that are involved in the computation of

the variable sum have been excluded from the slice. It shows that program slicing

is a useful technique to decrease the size of the program and ease the process of

program manipulation at the later stage in any domains of interest.

(1) read (n);

(2) i := 1;

(3)

(4) product := 1;

(5) while i <= n

(6) {

(7)

(8) product := product * i;

(9) i ++;

(10) }

(11)

(12) write (product);

Figure 4.5: The Slice of the Program w.r.t Criterion (product, 12) [100]

Korel and Laski [69] have proposed dynamic slicing as a counterpart of Weiser’s

static slicing technique. Their technique has considered the input values in the

computation of slice. They introduced the concept of the trajectory which is the

path that has actually been executed for some input. The concepts of data flow

and control flow are used in order to produce Data-data (DD) and Test Control

(TC) relations based on the trajectory. The DD relation is equivalent to the con-
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cept of definition-use (du) and the TC relation is based on control dependence.

A dynamic slice can be computed by using the DD and TC relations. The main

element in their technique is that they compute a slice based on a program exe-

cution (trajectory) not a CFG.

Agrawal and Horgan [6] have also discussed dynamic slicing. They have in-

troduced the concept of Dynamic Dependence Graph (DDG) that is based on

the PDG. The only difference between them is that the DDG creates a separate

node for each occurrence of a statement in the execution history. In other words,

the number of nodes in the DDG is equal to the number of statements in the

execution history including repeated statements. Figure 4.7 shows a DDG of the

program in Figure 4.6 for the test case (N=3, X = -4, 3, -2). Nodes in bold are

the dynamic slice for the test case with respect to the variable Z at the end of

the execution.

S1 read (N);

S2 I := 1;

S3 while (I <= N)

{

S4 read (X)

S5 if (X < 0)

S6 Y := f1(X);

else

S7 Y := f2(X);

S8 Z := f3(Y);

S9 write(Z);

S10 I := I + 1;

}

Figure 4.6: The Program for DDG [6]
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Figure 4.7: Dynamic Dependence Graph [6]

4.3.2 Backward and Forward Slicing

Weiser’s program slicing technique is also known as a backward slicing. Backward

because the way edges are traversed using a dependent graph. Weiser’s back-

ward slicing computes slices using the data flow analysis that begins by tracing

backward the possible statements that have influences on the variable of interest.

For example, the slice for the program in Figure 4.1 with respect to the variable

sum at line 11 is statements 1, 2, 3, 5, 6, 7, 9, 10 and 11. The computation of

the slice starts at line 11 which is the use of the variable sum. From the use

of this variable sum, the slice will be computed backward using the CFG. The

last definition (def ) of the variable sum is at line 7. From this line all related
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definition-uses are considered in the slice.

Bergeretti and Carre [12] have introduced the notion of forward slicing. For-

ward slicing includes all statements that depend on the slicing criterion. Forward

slice can be obtained from the PDG. Horwitz et al. [59] have computed forward

slices for interprocedural program based on the SDG.

4.3.3 Conditioned Slicing

Conditioned program slicing was first introduced by Canfora et al. [18] and later

modified as variants [24; 25; 47; 57]. Conditioned program slicing forms a bridge

between the static and dynamic analysis. The conditioned slicing criterion is a

triple, (p, V, n) where p is some initial conditions of interest and (V,n) are the

two elements of the static slicing criterion. For example, the conditioned slice of

the program in Figure 4.8 with respect to the criterion, ( x >0, {x}, 8) is shown

in Figure 4.9 [47].

S1 scanf(%d, &x);

S2 y = 2 * x;

S3 if (y > x){

S4 x = x + 1;

S5 y = y * y;}

else{

S6 x = x * 2;

S7 y = y x;}

S8 printf(%d, x);

Figure 4.8: The Program for Conditioned Slicing [47]
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S1 scanf(%d, &x);

S2 y = 2 * x;

S3 if (y > x)

S4 x = x + 1;

Figure 4.9: The Conditioned Slice [47]

4.3.4 Stop-List Slicing

Early program slicing techniques required two parameters: a variable or a set of

variables, and a program location of interest. All statements related to this slicing

criterion are included in the program slice. Gallagher et al. [39] have introduced

a new technique that has considered a third additional parameter in the slicing

criterion. The third parameter is called stop-list and is a set of variables that are

not of interest. The computation of a stop-list slice will exclude all statements

that are related to these excluded variables by using the data-flow dependence

analysis. In theory, this technique has the potential to reduce the size of slice

compared to the traditional slicing techniques. The evaluation of this technique

by Gallagher et al. [39] shows that the results are encouraging giving a large

reduction in the slice size.

4.4 Decomposition Slicing

Gallagher and Lyle [41] have introduced the term decomposition slicing. The

technique uses slicing to decompose a program directly into two parts, decompo-

sition slice and complement. The decomposition slice is built for one variable and

is the union of all slices taken at line numbers of the uses of the given variable.

The calculation of these slices can use any independent slicing techniques. There-
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fore, the quality of the decomposition slice is dependent on the quality of the slice

itself. The complement is the sub-program that remains after the decomposition

slice is removed from the original program.

A program slice is dependent on a variable and a location of interest. A de-

composition slice is only dependent on variables and not the location of interest.

For instances, in Figure 4.10 [41], the backward slice with respect to the slicing

criterion (t, 4) is {S1, S2, S3, S4}, while the backward slice with respect to the

slicing criterion (t, 6) is {S1, S2, S5, S6}. The slice with respect to the variable

t at the last statement (S6) is not capable of identifying all the computations

involving the variable t. However, the decomposition slice includes all relevant

computations involving a given variable without statement numbers. It is pro-

duced from the union of both backward slices which includes all statements in

the program.

S1 input a

S2 input b

S3 t = a + b

S4 print t

S5 t = a - b

S6 print t

Figure 4.10: The Program for Decomposition Slice [41]

Figure 4.11 shows a program for calculating the number of lines, words and

characters in a text file. There are five decomposition slices available with re-

spect to each variable (c, nl, nw, nc, inword) in the program. For instance, the

decomposition slice for the variable nw is shown in Figure 4.12. All relevant

statements of the variable nw are included in that decomposition slice. All state-
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ments that are irrelevant to the variable nw are included in the complement of

the decomposition slice on variable nw. This complement is shown in Figure 4.13.

1 #define YES 1

2 #define NO 0

3 main()

4 {

5 int c, nl, nw, nc, inword;

6 inword = NO;

7 nl = 0;

8 nw = 0;

9 nc = 0;

10 c = getchar();

11 while (c != EOF){

12 nc = nc + 1;

13 if (c == ’\n’)

14 nl = nl + 1;

15 if (c == ’ ’ || c == ’\n’ || c == ’\t’)

16 inword = NO;

17 else if (inword == NO){

18 inword = YES;

19 nw = nw + 1;

20 }

21 c = getchar();

22 }

23 printf("%d \n", nl);

24 printf("%d \n", nw);

25 printf("%d \n", nc);

26 }

Figure 4.11: The Program to be Sliced [41]

Gallagher and Binkley [37] have discussed decomposition slice equivalence in

order to reduce the number of decomposition slices. Their empirical study shows

that there can be a significant reduction to the number of decomposition slices by
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1 #define YES 1

2 #define NO 0

3 main()

4 {

5 int c, nw, inword;

6 inword = NO;

8 nw = 0;

10 c = getchar();

11 while (c != EOF){

15 if (c == ’ ’ || c == ’\n’ || c == ’\t’)

16 inword = NO;

17 else if (inword == NO){

18 inword = YES;

19 nw = nw + 1;

20 }

21 c = getchar();

22 }

24 printf("%d \n", nw);

26 }

Figure 4.12: The Decomposition Slice on nw (no. of word) [41]

removing equivalence slices. They have used a differencing program to evaluate

the decomposition slice equivalence. In their case study, the original program

had 95 decomposition slices, removing “empty” slices and combining all equiva-

lent decomposition slices reduced the number to 34, a 62% reduction.

Gallagher et al. [40] have stated that decomposition slicing can be used to

divide a program into three parts as shown in Table 4.1. Only the Independent

and Dependent statements are of interest for software testing. Any changes in

the Independent part will affect only statements in the decomposition slice for

variable v. Any changes in the Dependent part will affect statements not only in

the decomposition slice for variable v, but also any other relevant decomposition
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3 main()

4 {

5 int c, nl, nw, nc, inword;

7 nl = 0;

9 nc = 0;

10 c = getchar();

11 while (c != EOF){

12 nc = nc + 1;

13 if (c == ’\n’)

14 nl = nl + 1;

21 c = getchar();

22 }

23 printf("%d \n", nl);

25 printf("%d \n", nc);

26 }

Figure 4.13: The Complement of Decomposition Slice on nw [41]

slices. The Complement statements cannot be affected by the change. Therefore,

decomposition slicing is capable of identifying the unchanged parts of a program

and this will be used implicitly in the rest of the proposed model in this thesis.

Table 4.1: Classification of Statements in Decomposition Slice for Variable v

Program Parts Includes statement which are...

Independent in the decomposition slice taken with respect to v that
are not in any other decomposition slice

Dependent in the decomposition slice taken with respect to v that
are in another decomposition slice

Complement not independent, i.e. statements in some other decom-
position slice (but not v ’s)

4.5 Applications of Program Slicing

Since Weiser’s first program slicing technique, there are a number of the ap-

plications of program slicing that have been explored such as debugging, pro-
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gram comprehension, software maintenance, software testing, regression test-

ing, program verification, dead code elimination, compiler optimisation, paral-

lelization of sequential programs, showing differences between program, cohe-

sion measurement, clustering equivalent computations and database schema im-

pact [16; 18; 29; 38; 41; 46; 58; 62; 74; 96]. The following are some of the appli-

cations of program slicing.

4.5.1 Debugging

The original program slicing technique by Weiser was developed to aid debugging

activities [104]. In debugging, the purpose is to identify errors that occur in the

program. Program slicing techniques can assist the debugger to detect errors and

the affected statements without considering the unrelated statements. Program

slicing can minimize the size of the original program to the parts of interest

based on the slicing criterion. The application of debugging has also motivated

the introduction of dynamic slicing [46]. Dynamic slicing [6; 69] can offer a better

assistant in debugging. It can produce a smaller slice compared to static slicing

for a specific program input.

4.5.2 Program Comprehension

An early part of the software maintenance phase is program comprehension. Pro-

gram slicing can be used to assist the program comprehension process. For in-

stance, Canfora et al. [18] have used conditioned slicing in the context of program

comprehension and reused an existing software. Conditioned slicing enables the

computation of refined code fragments implementing specific program behaviors.
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Binkley et al. [16] have used amorphous slicing for program comprehension

4.5.3 Software Maintenance

Software maintenance is always dealing with changes. It determines whether a

change at some parts of the program will affect the behavior of the other parts of

the program. Program slicing can be used in order for the maintainer to concen-

trate only on the modified parts of the program. This can minimize the chances

of introducing unexpected errors. Gallagher and Lyle [41] have introduced de-

composition slicing that was used in a new software maintenance process model.

4.5.4 Software Testing

There are two main structural based testing techniques: control flow testing and

data flow testing. Program slicing techniques are based on the manipulation of

control flow and data flow graphs. The important part of software testing that

applies program slicing techniques is regression testing. Slicing based regression

test selection techniques have been discussed in the previous chapter.

4.6 Summary

This chapter has focused on program slicing. The chapter starts with the defi-

nition of program slicing as presented in Section 4.1. Section 4.2 discusses the

representation types of the programs. Section 4.3 explains the program slicing

techniques. The main focus in this chapter is the decomposition slicing tech-

nique that is used in the proposed model as presented in Section 4.4. Finally, the
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applications of program slicing are explained in Section 4.5. All these sections

are important in order to understand program slicing, specifically decomposition

slicing technique. This slicing technique is capable of identifying the unchanged

parts of a program, and this will be used implicitly in the rest of the proposed

model in this thesis.
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Chapter 5

Regression Test Selection by

Exclusion (ReTSE)

5.1 Introduction

This chapter proposes a novel Regression Test Selection by Exclusion (ReTSE)

model using the decomposition slicing technique. The ReTSE model produces

an optimised regression test set for a new version of a program that has been

modified from a previous version. The model is only designed for a program that

compiles and runs properly.

The chapter is organised as follows. The ReTSE model is presented in the

second section which has four sub-sections that describe each phase in the model.

The sub-sections are Program Analysis (which includes Pretty Print and Slicing),

Comparison, Exclusion and Optimisation. The third section illustrates the model

using a simple example.
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5.2 The Model

A high level view of the ReTSE model is shown in Figure 5.1. There are three

inputs of the model. They are the Original Certified Program (OC) which has

previously been tested, the Original Modified Program (OM) which is a new ver-

sion of the program and the existing Test Suite (TS) which includes test cases

and its test histories. Test history is a set of statements executed for a particular

test case. The outputs of the model are a set of Excluded Tests (ET), a set of

Optimised Regression Tests (RTO) and, in some instances, request for new test

cases. The ET is a set of test cases that do not need to be used for regression

testing and RTO is a set of test cases that have been reduced from a set of Re-

gression Tests (RT).

Figure 5.1: The ReTSE Model - High Level

The ReTSE model has four main phases: 1. Program Analysis, 2. Compari-

son, 3. Exclusion and 4. Optimisation, as shown in Figure 5.2. The purpose of

each phase is described together with the expected input and output.
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5.2.1 Phase 1: Program Analysis

The Program Analysis Phase manipulates and analyses the program into a form

suitable for use in later phases. This phase has two steps as shown in Figure 5.3.

They are:

• 1.1 Pretty Print

• 1.2 Slicing

5.2.1.1 Step 1.1: Pretty Print

Input:

• Original Certified Program (OC)

• Original Modified Program (OM)

Output:

• Certified Program (C)

• Modified Program (M)

Generally, Pretty Print is the process of formatting a program into some stan-

dard forms. It consists of changes to positioning, spacing, blank lines, commented

lines, indentation, white spaces and other similar modifications. Both the Origi-

nal Certified and Original Modified Programs (OC and OM) will be transformed
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Figure 5.2: The ReTSE Model -Low Level
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Figure 5.3: The ReTSE Model - Program Analysis

into a standard format called a Certified Program (C) and a Modified Program

(M) respectively. This step is included to standardise the layout of the program

and to make the Comparison Phase later in the model easier to perform. The

new layouts of the programs have the following characteristics:

(i) Only one statement in the line.

(ii) No comment lines.

(iii) No split lines for single statements.

(iv) An indentation is used for:

• the branch of an if statement.

• the body of a while and for statement.
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(v) A curly bracket ({}) is introduced for:

• the branch of an if statement with one statement at a time.

• the body of a while and for statement with one statement at a time.

5.2.1.2 Step 1.2: Slicing

Input:

• Certified Program (C)

• Modified Program (M)

Output:

• Set of Decomposition Slices for C (DS-C)

• Set of Decomposition Slices for M (DS-M)

In Slicing, both the Certified Program (C) and the Modified Program (M) will

be sliced using the decomposition slicing technique. The number of decomposition

slices of C and M corresponds to the number of variables in the program. If a

variable is declared but not used then the decomposition slice will be empty. In

this model, backward slicing is used in the decomposition slicing because it is

capable of identifying all relevant statements of the given variable. A summary

of this Slicing step is shown in the following notations:
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• Set of Decomposition Slices for C (DS-C)

Let program C have vc variables.

DS-Cvi : The decomposition slice for variable vi in the C.

DS-C : The set of decomposition slices for all variables vi in the C.

So, DS-C = {DS-Cvi | i = 1, 2,... vc}

• Set of Decomposition Slices for M (DS-M)

Let program M have vm variables.

DS-Mvi : The decomposition slice for variable vi in the M.

DS-M : The set of decomposition slices for all variables vi in the M.

So, DS-M = {DS-Mvi | i = 1, 2,... vm}

5.2.2 Phase 2: Comparison

Input:

• Set of Decomposition Slices for C (DS-C)

• Set of Decomposition Slices for M (DS-M)

Output:

• Set of pairs of Similar Decomposition Slices (S)

• Set of pairs of Difference Decomposition Slices (D)

• Set of Delete Decomposition Slices (L)

• Set of New Decomposition Slices (N)

• Set of Change Statements (CS)
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• Set of Relevant Change Statements (RCS)

There are two parts in the Comparison Phase. The first part is a comparison

between the DS-C and the DS-M. Here, the comparison is at the textual level.

The results of this comparison will be:

(i) Set of pairs of Similar Decomposition Slice (S)

(ii) Set of pairs of Difference Decomposition Slice (D)

(iii) Set of Delete Decomposition Slice (L)

(iv) Set of New Decomposition Slice (N)

If the DS-Cvi and DS-Mvi exist and there are no differences between them,

then the DS-Cvi and the DS-Mvi will be included in a set of pairs of Similar

Decomposition Slice (S). This means that variable vi exists in both C and M

and the DS-Cvi and the DS-Mvi are similar. If both DS-Cvi and DS-Mvi are

different, then both decomposition slices will be included in a set of pairs of Dif-

ference Decomposition Slice (D). This means that variable vi exists in both C

and M, but the DS-Cvi and the DS-Mvi have some differences. The differences

can be where the statements in the DS-Cvi have been changed, deleted or there

are added statements.

For cases where DS-Cvi and DS-Mvi exist, the ReTSE model use the diff

tool which is a file comparison tool that highlights the differences between two

files. The diff tool is capable of identifying which lines in the two programs have
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changed, been deleted or have an added statement. Therefore, the diff tool can

help in the first part of the Comparison Phase to identify whether DS-Cvi and

DS-Mvi are included in the sets of S or D. Both DS-Cvi and DS-Mvi are included

in the S if there is no output from the diff tool. Otherwise, both DS-Cvi and

DS-Mvi are included in D if there is an output from the diff tool.

If variable vi only exists in C but not in M then DS-Cvi will be included in the

set Delete Decomposition Slice (L). This means there is a decomposition slice for

variable vi in C, but not in M. Otherwise if variable vi only exists in M but not

in C then DS-Mvi will be included in the set New Decomposition Slice (N). This

means there is a decomposition slice for variable vi in M but not in C. A summary

of the first part of the Comparison Phase is shown in the following notations:

• Set of Similar Decomposition Slices (S)

S = {(DS-Cvi , DS-Mvi) | i = 1, 2,... vc & DS-Cvi = DS-Mvi}

• Set of Difference Decomposition Slices (D)

D = {(DS-Cvi , DS-Mvi) | i = 1, 2,... vc & DS-Cvi ≠ DS-Mvi}

• Set of Delete Decomposition Slices (L)

L = {DS-Cvi | vi exists in C & vi does not exist in M}

• Set of New Decomposition Slices (N)

N = {DS-Mvi | vi exists in M & vi does not exist in C}

The second part of the Comparison Phase is a more detailed comparison

between DS-Cvi and DS-Mvi only if they are members of D by analysing the
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output from the diff tool. The diff tool will produce three different types of output;

change, delete, or add, as shown in the following notations:

(i) Change
n1,n2cn3,n4
<old line (from DS-Cvi)
- - -
>new line (from DS-Mvi)

(ii) Delete
n1,n2dn3
<old line (from DS-Cvi)

(iii) Add
n1an3,n4
>new line (from DS-Mvi)

The meaning of the first type (change) is to replace all old lines specified in

the range n1 to n2 from DS-Cvi with all new lines specified in the range n3 to n4

from DS-Mvi. The c character in the output stands for change. Any statement in

the range n1 to n2 from DS-Cvi will be included in the set of Change Statements

for vi (CSvi). Any statement in the range n3 to n4 from DS-Mvi will be included

in a set of Relevant Change Statements for vi (RCSvi). If the statements in the

range n3 to n4 are located at any branch of an if statement, whether a true or

a false branch, then all other statements in the same branch will be included in

RCSvi. If the statements in the range n3 to n4 are located at any body of looping

statements (e.g., while and for), then all other statements in the same body will

be included in RCSvi.

The meaning of the second type (delete) is to remove all lines specified in

the range n1 to n2 from DS-Cvi immediately after line n3 from DS-Mvi. The d
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character in the output stands for delete. Any statement within the range of n1

to n2 from DS-Cvi will be included in a set of Change Statements for vi (CSvi).

A statement at line n3 from DS-Mvi will be included in a set of Relevant Change

Statements for vi (RCSvi). If line n3 is not a statement, then the statement

immediately after the line n3 will be included in the RCSvi. This special rule is

designed to accommodate the way the diff tool works. In this case, line n3 can

be:

• An open curly bracket ({) or a close curly bracket (}) of any branch of an

if statement.

• An open curly bracket ({) or a close curly bracket (}) of the body of a while

or a for statement.

The meaning of the third type (add) is to add all lines specified in the range

of n3 to n4 from DS-Mvi immediately after line n1 from DS-Cvi. The a character

in the output stands for add. Any statement within the range of n3 to n4 from

DS-Mvi will be included in a set of Relevant Change Statements for vi (RCSvi). If

the statements in the range n3 to n4 are located at any branch of an if statement,

either a true or a false branch, then all other statements in the same branch will

be also included in the RCSvi. If the statements in the range n3 to n4 are located

at any body of looping statements (e.g., while and for), then all other statements

in the same body will be included in RCSvi. A statement at n1 from DS-Cvi

will be included in a set of Change Statements for vi (CSvi). If line n1 is not a

statement, then the statement immediately after line n1 will be included in the

CSvi. In this case, line n1 can be:
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• An open curly bracket ({) or a close curly bracket (}) of any branch of an

if statement.

• An open curly bracket ({) or a close curly bracket (}) of the body of a while

or a for statement.

The union of all CSvi will produce a set of Change Statements (CS). The

union of all RCSvi will produce a set of Relevant Change Nodes (RCS).

5.2.3 Phase 3: Exclusion

Input:

• Set of Change Statements (CS)

• Test Suite (TS):

– Test Case (TC)

– Test History (TH)

Output:

• Set of Excluded Tests (ET)

• Set of Regression Tests (RT)

There are two inputs in the Exclusion Phase. One of them is from the outputs

of the Comparison Phase which are a set of Change Statements (CS). The other

input is an existing Test Suite (TS) of the Certified Program (C). The TS includes

a set of pairs of Test Case (TC) and its Test History (TH). The TC is a set of

test cases for the Certified Program (C). The TH is a set of test histories of TC
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where THi is a set of statements executed for the particular TCi. The TCi will

be excluded from the TS if CS is not subset of THi. This TCi is included in

a set of Excluded Tests (ET). ET is a set of test cases that do not need to be

used for regression testing. The remaining test cases in the TS will be the set

of Regression Tests (RT). A summary of this Exclusion Phase is shown in the

following notations:

TS = {(TCi, THi) | ∀i}

TC = {TCi | ∀i}

TH = {THi | ∀i}

Therefore,

ET = {TCi | ((CS ⊄ THi & CS ≠ {}) or (CS = {})) ∀i}

RT = {TCi | ∀i} - ET

If CS is an empty set then all TCi will be excluded from the TS. It means that

all TCi will be included in the ET. Therefore, there is no TCi in the RT. The CS

can be an empty set when D is an empty set. This means M is only involved in

adding or deleting variables that lead to an increase in a member of the L or N

or both of them.

5.2.4 Phase 4: Optimisation

Input:

• Set of pairs of Difference Decomposition Slices (D)

• Set of New Decomposition Slices (N)
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• Set of Regression Tests (RT)

• Set of Relevant Change Statements (RCS)

Output:

• Set of Optimised Regression Tests (RTO)

• Request for New Test Cases

There are four inputs in the Optimisation Phase. Three of them are from the

outputs of the Comparison Phase which are a set of pairs of Difference Decom-

position Slices (D), a set of New Decomposition Slices (N) and a set of Relevant

Change Statements (RCS). The last input is from the output of the Exclusion

Phase which is a set of Regression Tests (RT).

The main objective of this phase is to produce a set of Optimised Regression

Tests (RTO) because the RT that has been produced by the Exclusion Phase

probably has redundant test cases. In some cases, the model will request new

additional test cases. These can be achieved by using the algorithm shown in

Figure 5.4. The algorithm will execute all test cases which are members of RT

onto the union of all DS-Mvi where DS-Mvi is a member of D. This union is called

UDS-M. RTEi is a set of executed statements constructed by running TCi (mem-

ber of RT) onto UDS-M. Then, RTEi will be mapped onto RCS. RCS-current

is a set of statements in RTEi that has covered the elements of RCS. In other

words, RCS-current is the intersection of RTEi and RCS. RCS-coverage is a set

of statements that are union between previous RCS-coverage and RCS-current.

69



5. Regression Test Selection by Exclusion (ReTSE)

If the set RCS-current is a subset of RCS-coverage then the next TCi will

be executed. This situation means that the current TCi is ignored for RTO be-

cause it’s RTEi has covered the elements of RCS that is the same or less than

the coverage from the previous test cases. If RCS-current is a superset or equal

to RCS-coverage then the current TCi is only assigned to the RTO while at the

same time removing all existing TCi from the RTO. Then, RCS-current is set

to RCS-coverage. If RCS-current is not a subset of the set of the current RCS-

coverage then the current TCi should be added to the RTO, and the RCS-current

should be added to the set of RCS-coverage. The execution of test cases will stop

when the RCS obtains full coverage. The RCS obtains full coverage when RCS

is equal to RCS-coverage. Then, the remaining test cases in RT will be ignored

for RTO.

If RCS has failed to achieve full coverage after the execution of all TCi (mem-

bers of RT) onto UDS-M, then the model will flag to the user that additional

new test cases are needed. If N is not an empty set, then the model will also flag

to a user that additional new test cases are needed to cover all decomposition

slices in the N. The empty set N means that there are no decomposition slices in

N. However, the process of designing the additional new test cases is beyond the

scope of the ReTSE model. The summary of this Optimisation Phase is shown

in the algorithm in Figure 5.4 where:

• UDS-M : the union of DS-Mvi where DS-Mvi are members of the D.

• UDS-M = ∪ DS-Mvi | DS-Mvi ∈ D.

• RTEi : a set of statements that executed by running TCi ∈ RT onto UDS-
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M.

• RCS-current : a set of statements.

• RCS-coverage : a set of statements.

The final results of applying this model are:

(i) RTO - a set of optimised regression tests.

(ii) Request New Test Cases - Indicating a request for new test cases.
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Begin

RTO = null;

RCS-current = null;

RCS-coverage = null;

RCS-full = NO;

Request New Test Cases = NO;

While (TCi ∈ RT && RCS-full == NO) do

{
Construct RTEi;
RCS-current = RCS ∩ RTEi;
If (RCS-current ⊂ RCS-coverage) then

Next;

Else if (RCS-current ⊇ RCS-coverage) then

{
RTO = {TCi};
RCS-coverage = RCS-current;

}
Else // if (RCS-current not subset RCS-coverage)

{
RTO = RTO ∪ TCi;
RCS-coverage = RCS-coverage ∪ RCS-current;

}
If (RCS == RCS-coverage) then

RCS-full = YES;

}
If (RT == null) then

RTO = null;

Else if (RCS-full == NO) then

Request New Test Cases = YES;

If (N != null) then

Request New Test Cases = YES;

End

Figure 5.4: Optimisation Algorithm
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5.3 An Illustration of the ReTSE Model

A sample program (Tax Program) is used to illustrate the ReTSE model. The

Tax Program is a simplified version of the original Tax Program that has been

used by Danicic et al. [24] and Hierons et al. [57]. The simplified version only has

a few conditions to calculate a tax and decide its code compared to the original

one. The Tax Program shown in Figure 5.5 is the Original Certified Program

(OC) in the model. The program takes two inputs which are income and age,

and produces two outputs which are a total of tax that needs to be paid and

its relevant tax code. The calculation of tax at statement S8 of the program

in Figure 5.5 has a minor change. The new version of the Tax Program called

the Original Modified Program (OM) in the model is shown in Figure 5.6. The

ReTSE is used in order to obtain optimised regression tests and to identify the

requirements for new test cases for the OM.

5.3.1 Phase 1: Program Analysis

In the Program Analysis Phase, both the original certified and original modified

programs of the Tax Program face two steps which are Pretty Print and Slicing.

5.3.1.1 Step 1.1: Pretty Print

In Pretty Print, the Original Certified Program (OC) in Figure 5.5 and Original

Modified Program (OM) in Figure 5.6 will be transformed into a standard format

of programming style as shown in Figure 5.7 and Figure 5.8 respectively. The

programs in Figure 5.7 and Figure 5.8 are called Certified Program (C) and

Modified Program (M) respectively. A declaration in statement S1 of the program
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#include <stdio.h>

main()

{

S1 int income, tax, age;

S2 char code;

S3 scanf("%d", &income);

S4 scanf("%d", &age);

S5 if (income < 10000)

S6 tax = 0;

else {

S7 income = income - 10000;

S8 tax = (income*40/100); //old

}

S9 if (age < 65)

S10 code = ’L’;

S11 else if (age < 75)

S12 code = ’P’;

else

S13 code = ’T’;

S14 printf("%d\n", tax);

S15 printf("%c\n", code);

}

Figure 5.5: Original Certified Program (OC)

in Figure 5.5 and S1’ of the program in Figure 5.6 is decomposed into individual

declarations of every variable as shown in statements S1, S2 and S3 of the program

in Figure 5.7 and statements S1’, S2’ and S3’ of the program in Figure 5.8. A

comment in statements S8 and S8’ of the programs in Figure 5.5 and Figure 5.6

respectively are removed from the programs. Every branch of if statement has its

own curly bracket ({}) even when it has only one statement as shown in statement

S8 in Figure 5.7.
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#include <stdio.h>

main()

{

S1’ int income, tax, age;

S2’ char code;

S3’ scanf("%d", &income);

S4’ scanf("%d", &age);

S5’ if (income < 10000)

S6’ tax = 0;

else {

S7’ income = income - 10000;

S8’ tax = (income*30/100); //new

}

S9’ if (age < 65)

S10’ code = ’L’;

S11’ else if (age < 75)

S12’ code = ’P’;

else

S13’ code = ’T’;

S14’ printf("%d\n", tax);

S15’ printf("%c\n", code);

}

Figure 5.6: Original Modified Program (OM)

5.3.1.2 Step 1.2: Slicing

In Slicing, both the Certified Program (C) and the Modified Program (M) in

Figure 5.7 and Figure 5.8 respectively have been sliced using the decomposition

slicing technique. The decomposition slice is built for one variable and is the

union of the slices taken at the line numbers of the use of the given variable.

For instance, the decomposition slice for variable income in Figure 5.10(a) is

produced from the union of three backward slices of variable income taken from

statements where it is used. The uses of variable income are in statements S7,
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#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S3 int age;

S4 char code;

S5 scanf("%d", &income);

S6 scanf("%d", &age);

S7 if (income < 10000)

{

S8 tax = 0;

}

else

{

S9 income = income - 10000;

S10 tax = (income*40/100);

}

S11 if (age < 65)

{

S12 code = ’L’;

}

S13 else if (age < 75)

{

S14 code = ’P’;

}

else

{

S15 code = ’T’;

}

S16 printf("%d\n", tax);

S17 printf("%c\n", code);

}

Figure 5.7: Certified Program (C)
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#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ int age;

S4’ char code;

S5’ scanf("%d", &income);

S6’ scanf("%d", &age);

S7’ if (income < 10000)

{

S8’ tax = 0;

}

else

{

S9’ income = income - 10000;

S10’ tax = (income*30/100);

}

S11’ if (age < 65)

{

S12’ code = ’L’;

}

S13’ else if (age < 75)

{

S14’ code = ’P’;

}

else

{

S15’ code = ’T’;

}

S16’ printf("%d\n", tax);

S17’ printf("%c\n", code);

}

Figure 5.8: Modified Program (M)
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S9 and S10. These backward slices are shown in Figure 5.9.

There are four decomposition slices for each C and M corresponding to four

variables which are income, tax, age and code. Decomposition slices for C (DS-C)

are shown in Figure 5.10 - 5.13 in part (a) and decomposition slices for M (DS-M)

are shown in part (b) of the same figures. The output summary of the Slicing

Step is shown below:

• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax, DS-Mage, DS-Mcode}

5.3.2 Phase 2: Comparison

There are two parts in the Comparison Phase. Firstly, the decomposition slices

in the DS-C are compared to the decomposition slices in the DS-M using the

diff tool. For instance, the DS-Cincome in Figure 5.10(a) is compared to the

DS-Mincome in Figure 5.10(b). The output produced from the diff tool shows

that both decomposition slices (DS-Cincome and DS-Mincome) are not the same.

Therefore both decomposition slices are included in a set of pairs of Difference De-

composition Slice (D). The DS-Ctax and DS-Mtax (Figure 5.11) are also included

in D because there is an output produced from the diff tool for this comparison.

The comparisons between DS-Cage and DS-Mage (Figure 5.12) and DS-Ccode and

DS-Mcode (Figure 5.13) do not produce any output from the diff tool. Therefore,

those decomposition slices are included in a set of pairs of Similar Decomposition

Slice (S). There is no decomposition slice included in set N and L. The output

summary of the first part of the Comparison Phase is shown in Table 5.1.
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5. Regression Test Selection by Exclusion (ReTSE)

#include <stdio.h>

main()

{

S1 int income;

S5 scanf ("%d", &income );

S7 if (income < 10000)

else

}

(a) The use at S7

#include <stdio.h>

main()

{

S1 int income;

S5 scanf ("%d", &income );

S7 if (income < 10000)

else

{

S9 income=income -10000;

}

}

(b) The use at S9

#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

}

(c) The use at S10

Figure 5.9: Backward Slices for Variable income at its Uses

Table 5.1: Comparison Results between DS-Cvi and DS-Mvi

Set of Member of Set

D {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)}
S {(DS-Cage, DS-Mage), (DS-Ccode, DS-Mcode)}
L {}
N {}
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[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

}

[10] else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

[15]}

(a) DS-Cincome

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

}

[10] else

{

S9’ income=income -10000;

S10 ’ tax=( income *30/100);

}

[15]}

(b) DS-Mincome

Figure 5.10: Decomposition Slice for Variable income

[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

[L10 }

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

S8’ tax = 0;

[L10] }

else

{

S9’ income=income -10000;

S10 ’ tax=( income *30/100);

}

S16 ’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 5.11: Decomposition Slice for Variable tax
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#include <stdio.h>

main()

{

S3 int age;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

}

S13 else if (age < 75)

{

}

else

{

}

}

(a) DS-Cage

#include <stdio.h>

main()

{

S3’ int age;

S6’ scanf ("%d", &age);

S11 ’ if (age < 65)

{

}

S13 ’ else if (age < 75)

{

}

else

{

}

}

(b) DS-Mage

Figure 5.12: Decomposition Slice for Variable age

#include <stdio.h>

main()

{

S3 int age;

S4 char code;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

S12 code = ’L’;

}

S13 else if (age < 75)

{

S14 code = ’P’;

}

else

{

S15 code = ’T’;

}

S17 printf ("%c\n", code);

}

(a) DS-Ccode

#include <stdio.h>

main()

{

S3’ int age;

S4’ char code;

S6’ scanf ("%d", &age);

S11 ’ if (age < 65)

{

S12 ’ code = ’L’;

}

S13 ’ else if (age < 75)

{

S14 ’ code = ’P’;

}

else

{

S15 ’ code = ’T’;

}

S17 ’ printf ("%c\n", code);

}

(b) DS-Mcode

Figure 5.13: Decomposition Slice for Variable code
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5. Regression Test Selection by Exclusion (ReTSE)

The second part of the Comparison Phase is a more detailed comparison

between DS-Cvi and DS-Mvi only if they are members of D. It analyses the output

from the diff tool. In the given example, only decomposition slices of variable

income (DS-Cincome , DS-Mincome) and tax (DS-Ctax , DS-Mtax) are involved in the

second part of the comparison because they are members of the D that resulted

in the first part of the comparison. The comparison output using the diff tool as

below:

• Comparison between DS-Cincome and DS-Mincome

13c13

< tax = (income*40/100);

- - -

> tax = (income*30/100);

• Comparison between DS-Ctax and DS-Mtax

14c14

< tax = (income*40/100);

- - -

> tax = (income*30/100);

In the comparison between DS-Cincome and DS-Mincome (Figure 5.10), the

statement at line 13 ([L13]) from DS-Cincome is included in the set of Change

Statements for variable income (CSincome). Any statement at L13 from DS-

Mincome is included in the set of Relevant Change Statements for variable income

(RCSincome). Therefore, the statement S10 from DS-Cincome is included in the

CSincome and the statement S10’ from DS-Mincome is included in the RCSincome.

Statement S9’ is also included in the RCSincome because it is located at the same

branch of statement S10’.
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In the comparison between DS-Ctax and DS-Mtax (Figure 5.11), the statement

at line 14 ([L14]) from DS-Ctax is included in the set of Change Statements for

variable tax (CStax). Any statement at L14 from DS-Mtax is included in the set of

Relevant Change Statements for variable tax (RCStax). Therefore, the statement

S10 from DS-Ctax is included in the CStax and the statement S10’ from DS-Mtax

is included in the RCStax. Statement S9’ is also included in the RCStax because it

is located at the same branch of statement S10’. Then the CS is produced from

the union of CSincome and CStax where the RCS is produced from the union of

RCSincome and RCStax. A summary of the second part of the Comparison Phase

is shown below:

CS = CSincome ∪ CStax

= {S10} ∪ {S10}

= {S10}

RCS = RCSincome ∪ RCStax

= {S9’, S10’} ∪ {S9’, S10’}

= {S9’, S10’}

5.3.3 Phase 3: Exclusion

There are six test cases in the existing test suite of the Certified Program of the

Tax Program as shown in Table 5.2. Every Test Case (TCi) in the Test Suite (TS)

has its own coverage onto the Certified Program called Test History (THi). It

has been designed using all path coverage of the program [33]. The THi is shown

in Table 5.3. Symbol ”X” and ”-” indicate statements executed and not executed
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for a particular TCi. The CS that has been produced from the Comparison Phase

has only statement S10. Any TCi where the CS is not subset of THi then the TCi

will be included in the set of Excluded Test (ET). In this example, the statement

S10 is not subset of TH1, TH2 and TH3. Therefore, TC1, TC2, and TC3 will be

included in the set of ET. The remaining test cases in Test Suite are included in

the set of Regression Tests (RT). Therefore, TC4, TC5 and TC6 are included in

the RT. The output summary of this phase is shown below:

RT = {TC4, TC5, TC6}

Table 5.2: Test Suite for Certified Program (Tax Program)

Test Case (TCi) Input Output

TC1 income = 9000 0
age = 50 L

TC2 income = 9000 0
age = 70 P

TC3 income = 9000 0
age = 75 T

TC4 income = 12000 800
age = 50 L

TC5 income = 12000 800
age = 70 P

TC6 income = 12000 800
age = 75 T

5.3.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of the RT will be executed

onto UDS-M. In this example, there are only two DS-Mvi members of D which are

DS-Mincome and DS-Mtax. The union of both decomposition slices (UDS-M) will
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Table 5.3: Test History (THi) of TCi for Certified Program

Statement TH1 TH2 TH3 TH4 TH5 TH6

S1 X X X X X X
S2 X X X X X X
S3 X X X X X X
S4 X X X X X X
S5 X X X X X X
S6 X X X X X X
S7 X X X X X X
S8 X X X - - -
S9 - - - X X X
S10 - - - X X X
S11 X X X X X X
S12 X - - X - -
S13 - X X - X X
S14 - X - - X -
S15 - - X - - X
S16 X X X X X X
S17 X X X X X X

be the same slice as DS-Mtax as shown in Figure 5.11(b) which includes statements

S1’, S2’, S5’ S7’, S8’, S9’, S10’ and S16’. The RCS produced in the second part

of the Comparison Phase is used here. The RCS includes statements S9’ and S10’.

The test cases in RT, which are TC4, TC5 and TC6, are sequently executed

onto the UDS-M. Firstly, the TC4 is executed onto UDS-M. The RTE4 for TC4

is S1’, S2’, S5’ S7’, S9’, S10’ and S16’. The intersection between RTE4 and

RCS contains all members of RCS. That means the RCS obtains full coverage by

executed only the TC4. The execution of test cases is stopped because the RCS

has already achieved full coverage. This means that it is enough to use only TC4

as a regression test for the modified program. Therefore, TC4 will be included in

the RTO. The remaining test cases TC5 and TC6 in RT are ignored for RTO. A
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summary of the Optimisation Phase is given below:

UDS-M = {S1’, S2’, S5’ S7’, S8’, S9’, S10’, S16’}

RCS = {S9’, S10’}

TC4

RTE4 = {S1’, S2’, S5’ S7’, S9’, S10’, S16’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC4}

RCS-full = YES

The final output of the model for this example is given below:

RTO = {TC4}

Request New Test Cases = NO

5.4 Summary

This chapter has discussed the ReTSE model. The model is explained sequen-

tially phase by phase. There are four main phases which have been proposed in

the model which are Program Analysis (which includes Pretty Print and Slicing

steps), Comparison, Exclusion and Optimisation. Then, the model is illustrated

by using a small program as an example. The results of this example show that

the ReTSE model works for that program. Moreover, the model has reduced

three test cases from six test cases in TS at the Exclusion Phase which is 50%

reduction. The model once again has reduced another two test cases from RT at
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the Optimisation Phase. More case studies are presented in Chapter 7.
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Chapter 6

Implementation

6.1 Introduction

This chapter shows how the ReTSE model can be implemented as a fully auto-

mated and integrated tool. The chapter is organised as follows. The following

section discusses existing tools that were used and adapted in the model, through

their relevant phases. The section also discusses how to fully implement the model

in the future.

6.2 Current and Future Implementation

This section discusses the current and future implementation of the ReTSE model.

There are some existing tools that are used in the current prototype implementa-

tion. Each tool is described in its relevant phases. Figure 6.1 shows a sequential

dataflow diagram of the ReTSE model. Every phase has it own data input and

output. The original inputs are Original Certified (OC), Original Modified (OM)
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Figure 6.1: A Sequential Dataflow Diagram of the ReTSE Model

and Test Suite (TS). The final outputs are a set of an Optimised Regression Tests

(RTO) and a Request for New Test Cases (RNTC).

6.2.1 Phase 1: Program Analysis

6.2.1.1 Step 1.1: Pretty Print

Currently, the Pretty Print Step is done manually. However, there is a number

of existing tools that have similar functionality with this step. One of them is a

Linux based tool called indent [19]. It can be applied to the Pretty Print Step to

help the ReTSE model handles large scale programs.

6.2.1.2 Step 1.2: Slicing

The Code Surfer (csurf ) tool [5] was used in the prototype in order to produce de-

composition slices for the Certified Program (C) and the Modified Program (M).

Generally, Code Surfer is a program understanding tool that makes manual re-
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viewing code easier and faster. CodeSurfer calculates a variety of representations

that can be explored through the graphical user interface or accessed through the

Application Programming Interface (API).

Decomposition slices are produced from the union of slices taken at the uses

of a variable. These slices are computed by the csurf tool. For example, the

decomposition slice for the variable income in Figure 5.10 (Chapter 5, page 80)

is computed using the csurf tool. There are three uses of the variable income

in the program in Figure 5.7 (Chapter 5, page 76). These uses are located at

statements S7, S9 and S10. Every slice of these uses can be computed with the

csurf tool as shown in Figure 6.2, Figure 6.3 and Figure 6.4 respectively. The

slices are computed using the backward slicing option in the tool and highlighted

in red. The uses of the variable income are highlighted in yellow as shown in

those figures. Then, the decomposition slice for the variable income is computed

by combining these slices. The decomposition slice for the variable income is

shown in Figure 6.5.

Currently, the csurf tool has only been used in the Slicing Step of the ReTSE

model. However, it seems that the tool can be used throughout the model in fu-

ture. This means that the ReTSE model can become part of the csurf tool. This

is based on the fact that the tool can be programmed, extended, customised and

integrated with other applications using its scripting language. This scripting

language is based on Schema, a general purpose programming language.
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Figure 6.2: Backward Slice for Variable income at Use 1

Figure 6.3: Backward Slice for Variable income at Use 2
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Figure 6.4: Backward Slice for Variable income at Use 3

Figure 6.5: Decomposition Slice for Variable income
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6.2.2 Phase 2: Comparison

The diff tool [26] was used in both parts of the Comparison Phase. In the first

part, the diff tool was only used for a general comparison between the two de-

composition slices taken from DS-C and DS-M. The tool was only used for cases

where DS-Cvi and DS-Mvi existed in DS-C and DS-M respectively. This com-

parison can produce a set of pairs of Similar Decomposition Slices (S) or a set

of pairs of Difference Decomposition Slices (D). However, the production of a

set of Delete Decomposition Slices (L) and a set of New Decomposition Slices

(N) is still performed manually. In the future, this can be implemented by writ-

ing code that can identify which decomposition slices only exist in DS-C or DS-M.

In the second part of the Comparison Phase, the diff tool was used intensively.

The comparison is specifically for the decomposition slices which are members of

D. This part analyses the output from the diff tool when comparing the two de-

composition slices from D. The diff tool shows which lines in the two programs

have changed, been deleted or have an added statement.The analysis of this out-

put is presented in Chapter 5 (Section 5.2.2, page 62).

However, the way the ReTSE model matches those lines that are produced

from the diff tool to the relevant statements in the slices is still done manually.

In the future, this can be implemented by writing code that can identify which

statements in the slice are related to the selected lines of the program. This

code should also be capable of producing a set of Change Statements (CS) and

Relevant Change Statements (RCS). The methods to produce CS and RCS are
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discussed in Chapter 5 (Section 5.2.2, page 62).

6.2.3 Phase 3: Exclusion

The Exclusion Phase is illustrated in the set notation as shown in Chapter 5

(Section 5.2.3, page 67). The implementation of the Exclusion Phase is based on

two inputs which are CS and Test Suite (TS). The TS consists of the Test Case

(TC) and its Test History (TH). The calculation of these inputs will produce two

outputs which are a set of Excluded Tests (ET) and a set of Regression Tests (RT).

Currently, this phase is done manually. In actual practice, the Certified Pro-

gram (C) is assumed to have its own existing test suite which includes test cases

and its own test history. However, for the purpose of analysis the ReTSE model,

Test Specification Language (TSL) and gcov will be discussed as they are the

tools that have been used in this phase.

Generally, the TSL tool [27] is used for producing the test cases of a program.

TSL generates test frames from a specification file written in the extended Test

Specification Language. Then, test frames are used as a guideline to produce test

cases of the Certified Program (C).

The gcov tool is used to generate a test history of each test case. Originally,

the tool was used in order to obtain coverage information for each test case.

The tool shows which lines in the program are actually executed. However, it

is still a manual process in selecting which statements are related to those lines.
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Finally, this process can produce a test history which is a set of statements that

is executed by a relevant test case.

6.2.4 Phase 4: Optimisation

Currently, the Optimisation Phase is performed manually and no specific tool is

used. In Chapter 5, there is an algorithm that can be used to implement the

Optimisation Phase. Its implementation is dependent on four inputs which are

D, N, RT and RCS that have been produced in previous phases. This phase will

produce two outputs which are a set of Optimised Regression Tests (RTO) and

a Request for New Test Cases (RNTC).

6.3 Summary

This chapter shows that the ReTSE model can be implemented as a fully auto-

mated and integrated tool in the future. The implementation can be divided into

four main parts that correspond to the four main phases in the model. There

are two phases in the model that have intensively used an existing tool. These

are the csurf tool in the Slicing Step of the Program Analysis Phase and the

diff tool in the Comparison Phase. The other phases can be implemented based

on set notations or algorithms that have been designed in Chapter 5. The final

step is to integrate all these modules to enhance the ReTSE’s performance and

applicability in future.
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Chapter 7

Types of Modification: Case

Study

7.1 Introduction

This chapter describes five case studies that correspond to the five types of mod-

ifications in order to evaluate the ReTSE model. Another two case studies are

used for multiple modifications. The chapter is organised as follow. Five types

of modifications are presented in the second section. Each case study illustrates

one type of modification at a time. The third section presents another two case

studies that have a combination of different types of modifications in the same

program.
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7.2 Types of Modification

The ReTSE model focuses on five types of modifications. They are:

(i) Change Statements

(ii) Add Statements

(iii) Delete Statements

(iv) Add Variables

(v) Delete Variables

The first three are commonly focused on in existing regression test selection

models. The Tax Program as shown in Chapter 5 Figure 5.5 (page 74) is reused

to evaluate the model based on these five types of modification. It is assumed

that the programs (OC and OM) in the following sections have been through a

Pretty Print Step. The same Certified Program (C) in Chapter 5, Figure 5.7

(page 76) is used in the following sections. However, different versions of the

Modified Program (M) are used to tackle all the types of modifications.

7.2.1 Modification Type 1 - Change Statements (Case 1)

Change Statements refer to a modification of statements without adding or delet-

ing statements. It can be a change in a static value or a change in a variable used.

Application of the model to Change Statements has been described in Chapter 5,

Section 5.3 (page 73).

97



7. Types of Modification: Case Study

7.2.2 Modification Type 2 - Add Statements (Case 2)

In this case, the M has two additional new statements at S9’ and S10’ in order

to add a new condition for tax calculation.

7.2.2.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Pretty Print Step has produced a Certified Program (C) and Modified

Program (M) as shown in Chapter 5, Figure 5.7 (page 76) and Figure 7.1 respec-

tively.

Step 1.2: Slicing

In the Slicing Step, both C and M are decomposed into decomposition slices

corresponding to the variables in the programs. Therefore, both programs have

four decomposition slices. Two decomposition slices for C are shown in part (a)

of Figure 7.2 and Figure 7.3 while the two decomposition slices for M are shown

in part (b) of the same figures. These decomposition slices are DS-Cincome and

DS-Ctax for C and DS-Mincome and DS-Mtax for M that correspond to income and

tax variables. Another two decomposition slices for both C and M are DS-Cage

and DS-Ccode for C and DS-Mage and DS-Mcode for M that correspond to age

and code variables, similar to the example mentioned in Chapter 5, Section 5.3

(page 73). These decomposition slices are not shown in this section because there

are no differences between them, and are also not needed in the next steps. The

output summary of the Slicing Step is given below:
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• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax, DS-Mage, DS-Mcode}

7.2.2.2 Phase 2: Comparison

In the first part of the Comparison Phase, the decomposition slices in the DS-C

are compared to the decomposition slices in the DS-M using the diff tool. The

DS-Cincome in Figure 7.2(a) is compared to the DS-Mincome in Figure 7.2(b). An

output is produced from the diff tool as a result of this comparison, and thus

both decomposition slices are included in a set of pairs of Difference Decompo-

sition Slice (D). The DS-Ctax and DS-Mtax (Figure 7.3) are also included in D

because there is an output produced from the diff tool. The comparisons between

DS-Cage and DS-Mage and DS-Ccode and DS-Mcode are similar to the one discussed

in Chapter 5, Section 5.3.2 (page 78). These decomposition slices are included in

the set of pairs of Similar Decomposition Slices (S) because they do not produce

any output from the diff tool. There are no decomposition slice included in L

and N. The output summary of the first part of the Comparison Phase is shown

in Table 7.1.

Table 7.1: Comparison Results between DS-Cvi and DS-Mvi (Case 2)

Set of Member of Set

D {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)}
S {(DS-Cage, DS-Mage), (DS-Ccode, DS-Mcode)}
L {}
N {}
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#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ int age;

S4’ char code;

S5’ scanf("%d", &income);

S6’ scanf("%d", &age);

S7’ if (income < 10000)

{

S8’ tax = 0;

}

S9’ else if (income < 20000)

{

S10’ tax = ((income-10000)*25/100);

}

else

{

S11’ income = income - 10000;

S12’ tax = (income*40/100);

}

S13’ if (age < 65)

{

S14’ code = ’L’;

}

S15’ else if (age < 75)

{

S16’ code = ’P’;

}

else

{

S17’ code = ’T’;

}

S18’ printf("%d\n", tax);

S19’ printf("%c\n", code);

}

Figure 7.1: Modified Program (M) (Case 2)
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[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

[L9] }

[L10] else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

[15]}

(a) DS-Cincome

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

[L9] }

S9’ else if (income <20000)

{

S10 ’ tax =(( income -10000)*25/100);

[L13] }

else

{

S11 ’ income=income -10000;

S12 ’ tax=( income *30/100);

}

[L19]}

(b) DS-Mincome

Figure 7.2: Decomposition Slice for Variable income (Case 2)

[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

[L10 }

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

S8’ tax = 0;

[L10] }

S9’ else if (income <20000)

[L12] {

S10 ’ tax =(( income -10000)*25/100);

[L14] }

else

{

S11 ’ income=income -10000;

S12 ’ tax=( income *30/100);

}

S18 ’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 7.3: Decomposition Slice for Variable tax (Case 2)
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The second part of the Comparison Phase is a more detailed comparison

between DS-Cvi and DS-Mvi only if they are members of D. In this case, only

the decomposition slices for variables tax (DS-Ctax and DS-Mtax) and income

(DS-Cincome and DS-Mincome) are involved in the second part of the comparison

because they are members of D. The comparison outputs using the diff tool are:

• Comparison between DS-Cincome and DS-Mincome

9a10,13

> else if (income < 20000)

> {

> tax = ((income-10000)*25/100

> }

• Comparison between DS-Ctax and DS-Mtax

10a11,14

> else if (income < 20000)

> {

> tax = ((income-10000)*25/100

> }

In the comparison between DS-Cincome and DS-Mincome (Figure 7.2), the state-

ment at line 9 ([L9]) from DS-Cincome is included in the set of Change Statements

for variable income (CSincome). The statements in the range from line 10 ([L10])

to line 13 ([l13]) from DS-Mincome are included in the set of Relevant Change

Statements for variable income (RCSincome). Line 9 is not a statement but a

closed curly bracket (}), so that, the statement located immediately after line 9

is included in the CSincome. Therefore, statement S9 from DS-Cincome is included

in the CSincome and statements S9’ and S10’ from DS-Cincome are included in the
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RCSincome. Statements S11’ and S12’ are also included in the RCSincome because

they are located at the same branch of statement S9’.

As for the comparison between DS-Ctax and DS-Mtax (Figure 7.3), the state-

ment at line 10 ([L10]) from DS-Ctax is included in the set of Change Statements

for variable tax (CStax). Any statements in the range from line 11 ([L11]) to

line 14 ([L14]) from DS-Mtax are included in the set of Relevant Change State-

ments for variable tax (RCStax). Line 10 is not a statement but a closed curly

bracket (}), so that, the statement located immediately after line 10 is included

in the CStax. Therefore, statement S9 from DS-Ctax is included in the CStax and

statements S9’ and S10’ from DS-Mtax are included in the RCStax. Statements

S11’ and S12’ are also included in the RCStax because they are located at the

same branch of statement S9’. The CS is produced from the union of CStax and

CSincome, while the RCS is produced from the union of RCStax and RCSincome. A

summary of the second part of the Comparison Phase is given below:

CS = CSincome ∪ CStax

= {S9} ∪ {S9}

= {S9}

RCS = RCSincome ∪ RCStax

= {S9’, S10’, S11’, S12’} ∪ {S9’, S10’, S11’, S12’}

= {S9’, S10’, S11’, S12’}
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7.2.2.3 Phase 3: Exclusion

The same test cases (TC) and test histories (TH) shown in Table 5.2 (page 84)

and Table 5.3 (page 85) in Chapter 5 are used in this phase. Any TCi where the

CS is not a subset of THi will be included in the set of Excluded Test (ET). In this

example, statement S9, a member of CS is not a subset of TH1, TH2 and TH3.

Therefore, TC1, TC2, and TC3 will be included in the ET. The remaining test

cases in the Test Suite are included in the set of Regression Tests (RT). Therefore,

TC4, TC5 and TC6 are included in the RT. A summary of the Exclusion Phase

is given below:

RT = {TC4, TC5, TC6}

7.2.2.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of RT will be executed onto

UDS-M. UDS-M is the union of all DS-Mvi where DS-Mvi is a member of D. In

this case study, there are only two DS-Mvi members of D, DS-Mincome and DS-

Mtax. The union of both decomposition slices (UDS-M) has produced the same

slice as DS-Mtax as shown in Figure 7.3(b) which includes statements S1’, S2’, S5’

S7’, S8’, S9’, S10’, S11’, S12’ and S18’. The RCS produced in the second part of

the Comparison Phase is used in this phase. The RCS includes statements S9’,

S10’, S11’ and S12’.

Test cases in RT, TC4, TC5 and TC6, are sequently executed onto the UDS-

M. Firstly, the TC4 is executed onto UDS-M. The RTE4 for TC4 is S1’, S2’, S5’,

S7’, S9’, S10’ and S18’. The RTE4 contains only two members of RCS which
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are statements S9’ and S10’. This means that the RCS still does not achieve full

coverage by the execution of the TC4. TC4 is included in the set of Optimised

Regression Tests (RTO). Then, the TC5 is executed onto UDS-M. The RTE5 for

TC5 is similar to RTE4 and contains only two members of RCS, statements S9’

and S10’. Because the coverage of the RTE5 onto RCS is similar to RTE4, TC5

is included in the RTO to replace its current member, TC4. Next, the TC6 is

executed onto UDS-M. The RTE6 for TC6 is also similar to RTE4 and contains

only two members of RCS, statements S9’ and S10’. Due to the fact that the

coverage of the RTE6 onto RCS is similar to RTE5, then TC6 is included in the

RTO to replace its current member TC5.

Although all the test cases in RT have been executed onto UDS-M, the RCS

is still does not achieved full coverage. Only statements S9’ and S10’ from RCS

are covered by these three test cases in RT. The remaining members of RCS,

statements S11’ and S12’, are still not covered by any test cases. Therefore, the

set RTO has only one test case which is TC6. At the same time, the ReTSE

model has flagged for additional new test cases because the coverage of RCS is

still incomplete. A summary of the Optimisation Phase is given below:

UDS-M = {S1’, S2’, S5’ S7’, S8’, S9’, S10’, S11’, S12’, S18’}

RCS = {S9’, S10’, S11’, S12’}
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TC4

RTE4 = {S1’, S2’, S5’ S7’, S9’, S10’, S18’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC4}

RCS-full = NO

TC5

RTE5 = {S1’, S2’, S5’ S7’, S9’, S10’, S18’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC5}

RCS-full = NO

TC6

RTE6 = {S1’, S2’, S5’ S7’, S9’, S10’, S18’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC6}

RCS-full = NO

The final output of the model for this case is given below:

RTO = {TC6}

Request New Test Cases = YES
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7.2.3 Modification Type 3 - Delete Statements (Case 3)

In this case, The M has deleted a few statements in order to remove one condition

for grading a tax code.

7.2.3.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Pretty Print Step has produced a Certified Program (C) and Modified

Program (M) as shown in Chapter 5, Figure 5.7 (page 76) and Figure 7.4 respec-

tively.

Step 1.2: Slicing

In the Slicing Step, both C and M programs have four decomposition slices

corresponding to four variables which are income, tax, age and code. The decom-

position slices for C (DS-C) are shown in Figures 7.5- 7.8 in part (a). On the

other hand, the decomposition slices for M (DS-M) are shown in part (b) in the

same figures. The output summary of the Slicing Step is shown below:

• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax, DS-Mage, DS-Mcode}

7.2.3.2 Phase 2: Comparison

In the first part of the Comparison Phase, an output is produced from the diff

tool as a result of the comparison between DS-Cage and DS-Mage (Figure 7.7).

Therefore, both decomposition slices are included in a set of pairs of Difference
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#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ int age;

S4’ char code;

S5’ scanf("%d", &income);

S6’ scanf("%d", &age);

S7’ if (income < 10000)

{

S8’ tax = 0;

}

else

{

S9’ income = income - 10000;

S10’ tax = (income*40/100);

}

S11’ if (age < 65)

{

S12’ code = ’L’;

}

else

{

S13’ code = ’T’;

}

S14’ printf("%d\n", tax);

S15’ printf("%c\n", code);

}

Figure 7.4: Modified Program (M) (Case 3)
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#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

}

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

}

(a) DS-Cincome

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

}

else

{

S9’ income=income -10000;

S10 ’ tax=( income *40/100);

}

}

(b) DS-Mincome

Figure 7.5: Decomposition Slice for Variable income (Case 3)

#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

}

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

S8’ tax = 0;

}

else

{

S9’ income=income -10000;

S10 ’ tax=( income *40/100);

}

S14 ’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 7.6: Decomposition Slice for Variable tax (Case 3)
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[L1]# include <stdio.h>

main()

{

S3 int age;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

}

S13 else if (age < 75)

[L10] {

}

else

{

}

}

(a) DS-Cage

[L1]# include <stdio.h>

main()

{

S3’ int age;

S6’ scanf ("%d", &age);

S11 ’ if (age < 65)

{

[L8] }

else

[L10] {

}

}

(b) DS-Mage

Figure 7.7: Decomposition Slice for Variable age (Case 3)

[L1]# include <stdio.h>

main()

{

S3 int age;

S4 char code;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

S12 code = ’L’;

[L10] }

S13 else if (age < 75)

{

S14 code = ’P’;

}

[L15] else

{

S15 code = ’T’;

}

S17 printf ("%c\n", code);

}

(a) DS-Ccode

[L1]# include <stdio.h>

main()

{

S3’ int age;

S4’ char code;

S6’ scanf ("%d", &age);

S11 ’ if (age < 65)

{

S12 ’ code = ’L’;

[L10] }

else

{

S13 ’ code = ’T’;

}

S15 ’ printf ("%c\n", code);

}

(b) DS-Mcode

Figure 7.8: Decomposition Slice for Variable code (Case 3)
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Decomposition Slice (D). The DS-Ccode and DS-Mcode shown in Figure 7.8 are also

included in the D because there is an output produced from the diff tool. The

comparisons between DS-Cincome and DS-Mincome (Figure 7.5) and DS-Ctax and

DS-Mtax (Figure 7.6) do not produce any output from the diff tool. Therefore,

these decomposition slices are included in a set of pairs of Similar Decomposition

Slice (S). No decomposition slice included in L and N. The output summary of

the first part of the Comparison Phase is shown in Table 7.2.

Table 7.2: Comparison Results between DS-Cvi and DS-Mvi (Case 3)

Set of Member of Set

D {(DS-Cage, DS-Mage), (DS-Ccode, DS-Mcode)}
S {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)}
L {}
N {}

Only the decomposition slices for variables age (DS-Cage and DS-Mage) and

code (DS-Ccode and DS-Mcode) are involved in the second part of the Comparison

Phase because they are members of the D. The comparison outputs using the diff

tool are:

• Comparison between DS-Cage and DS-Mage

9,11d8

< else if (age < 75)

< {

< }
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• Comparison between DS-Ccode and DS-Mcode

11,14d10

< else if (age < 75)

< {

< code = ’P’;

< }

In the comparison between DS-Cage and DS-Mage (Figure 7.7), the statements

in the range from line 9 ([L9]) to line 11 ([L11]) from DS-Cage are included in

the set of Change Statements for variable age (CSage). The statement at line

8 ([L8]) from DS-Mage is included in the set of Relevant Change Statements for

variable age (RCSage). In this case, line 8 in DS-Mage is not a statement, but a

closed curly bracket (}), so that, the statement located immediately after line 8

is included in the RCSage. Therefore, statement S13 from DS-Cage is included in

the CSage and no statement from DS-Mage is included in the RCSage.

In the comparison between DS-Ccode and DS-Mcode (Figure 7.8), the state-

ments in the range from line 11 ([L11]) to line 14 ([L14]) from DS-Ccode are

included in the set of Change Statements for variable code (CScode). The state-

ment at line 10 ([L10]) from DS-Mcode is included in the set of Relevant Change

Statements for variable code (RCScode). In this case, line 10 in DS-Mcode is not a

statement but a closed curly bracket (}), so that, the statement located immedi-

ately after line 10 is included in the RCScode. Therefore, statements S13 and S14

from DS-Ccode are included in the CScode and statement S13’ from DS-Mcode is

included in the RCScode. The CS is produced from the union of CSage and CScode.

The RCS is produced from the union of RCSage and RCScode. A summary of the

second part of the Comparison Phase is given below:
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CS = CSage ∪ CScode

= {S13} ∪ {S3, S14}

= {S13, S14}

RCS = RCSage ∪ RCScode

= {} ∪ {S13’}

= {S13’}

7.2.3.3 Phase 3: Exclusion

The same test cases (TC) in Table 5.2 (page 84) and test histories (TH) in

Table 5.3 (page 85) in Chapter 5 are used in this phase. Any TCi where the CS

is not a subset of THi will be included in the set of Excluded Test (ET). In this

example, the statements S13 and S14, which are members of CS, are not subset

of TH1, TH3, TH4 and TH6. Therefore, TC1, TC3, TC4 and TC6 will be included

in the set ET. The remaining test cases in the Test Suite are included in the RT.

Therefore, TC2 and TC5 are included in the RT. A summary of the Exclusion

Phase is given below:

RT = {TC2, TC5}

7.2.3.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of RT will be executed onto

UDS-M. In this example, there are only two DS-Mvi members of D, DS-Mage and

DS-Mcode. The union of both decomposition slices (UDS-M) has produced the

same slice as DS-Mcode as shown in Figure 7.8(b) which includes statements S3’,

S4’ S6’, S11’, S12’, S13’ and S15’. The RCS produced in the second part of the
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Comparison Phase is used in this phase. The RCS only includes statement S13’.

There are only two test cases in the RT which are TC2 and TC5. Both test

cases are executed onto the UDS-M. Firstly, the TC2 is executed onto UDS-M.

The RTE2 for TC2 is S3’, S4’, S6’ S11’, S13’ and S15’. The RTE2 contains a

member of RCS which is statement S13’. This means that the RCS achieved full

coverage by the execution of the TC2. Then, the process will stop because the

coverage of RCS is complete. Therefore, only TC2 will be included in a set of

RTO, while the TC5 will be ignored. A summary of the Optimisation Phase is

given below:

UDS-M = {S3’, S4’, S6’ S11’, S12’, S13’, S15’}

RCS = {S13’}

TC2

RTE2 = {S3’, S4’, S6’ S11’, S13’, S15’}

RCS-current = {S13’}

RCS-coverage = {S13’}

RTO = {TC2}

RCS-full = YES

The final output of the model for this case is given below:

RTO = {TC2}

Request New Test Cases = NO
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7.2.4 Modification Type 4 - Add Variables (Case 4)

In this case, the M has two additional new variables which are married and

discount in order to add new criteria to count the tax payment.

7.2.4.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Pretty Print Step has produced a Certified Program (C) and Modified

Program (M) as shown in Chapter 5, Figure 5.7 (page 76) and Figure 7.9 respec-

tively.

Step 1.2: Slicing

In the Slicing Step, there are four decomposition slices for C that correspond to

four variables which are income, tax, age and code as shown in Figures 7.10- 7.13

in part (a). Besides, there are six decomposition slices for M that correspond

to six variables which are income, tax, age, code, married and discount (see

Figures 7.10- 7.15 in part (b)). The M has two additional new variables (married

and discount) compared to the C. The output summary of the Slicing Step is

listed below:

• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax, DS-Mage, DS-Mcode, DS-Mmarried, DS-Mdiscount}

7.2.4.2 Phase 2: Comparison

In the first part of the Comparison Phase, the diff tool did not produce any out-

put for the comparison between DS-C and DS-M for variables income, tax, age
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#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ int age;

S4’ int married;

S5’ int discount;

S6’ char code;

S7’ scanf("%d", &income);

S8’ scanf("%d", &age);

S9’ scanf("%d", &married);

S10’ discount = 0;

S11’ if (income < 10000)

{

S12’ tax = 0;

}

else

{

S13’ income = income - 10000;

S14’ tax = (income*40/100);

}

S15’ if (age < 65)

{

S16’ code = ’L’;

}

S17’ else if (age < 75)

{

S18’ code = ’P’;

}

else

{

S19’ code = ’T’;

}

S20’ if (married)

{

S21’ discount = 10;

}

S22’ printf("%d\n", tax);

S23’ printf("%c\n", code);

S24’ printf("%c\n", discount);

}

Figure 7.9: Modified Program (M) (Case 4)
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#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

}

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

}

(a) DS-Cincome

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S7’ scanf ("%d", &income );

S11 ’ if (income < 10000)

{

}

else

{

S13 ’ income=income -10000;

S14 ’ tax=( income *40/100);

}

}

(b) DS-Mincome

Figure 7.10: Decomposition Slice for Variable income (Case 4)

#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

}

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S7’ scanf ("%d", &income );

S11 ’ if (income < 10000)

{

S12 ’ tax = 0;

}

else

{

S13 ’ income=income -10000;

S14 ’ tax=( income *40/100);

}

S22 ’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 7.11: Decomposition Slice for Variable tax (Case 4)
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#include <stdio.h>

main()

{

S3 int age;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

}

S13 else if (age < 75)

{

}

else

{

}

}

(a) DS-Cage

#include <stdio.h>

main()

{

S3’ int age;

S8’ scanf ("%d", &age);

S15 ’ if (age < 65)

{

}

S17 ’ else if (age < 75)

{

}

else

{

}

}

(b) DS-Mage

Figure 7.12: Decomposition Slice for Variable age (Case 4)

#include <stdio.h>

main()

{

S3 int age;

S4 char code;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

S12 code = ’L’;

}

S13 else if (age < 75)

{

S14 code = ’P’;

}

else

{

S15 code = ’T’;

}

S17 printf ("%c\n", code);

}

(a) DS-Ccode

#include <stdio.h>

main()

{

S3’ int age;

S6’ char code;

S8’ scanf ("%d", &age);

S15 ’ if (age < 65)

{

S16 ’ code = ’L’;

}

S17 ’ else if (age < 75)

{

S18 ’ code = ’P’;

}

else

{

S19 ’ code = ’T’;

}

S23 ’ printf ("%c\n", code);

}

(b) DS-Mcode

Figure 7.13: Decomposition Slice for Variable code (Case 4)
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(Not Exists)

(a) DS-Cmarried

#include <stdio.h>

main()

{

S4’ char married;

S9’ scanf ("%d", &married );

S20 ’ if (married)

{

}

}

(b) DS-Mmarried

Figure 7.14: Decomposition Slice for Variable married (Case 4)

(Not Exists)

(a) DS-Cdiscount

#include <stdio.h>

main()

{

S4’ int married;

S5’ char discount;

S9’ scanf ("%d", &married );

S10 ’ discount = 0;

S20 ’ if (married)

{

S21 ’ discount = 10;

}

S24 ’ printf ("%d\n", discount );

}

(b) DS-Mdiscount

Figure 7.15: Decomposition Slice for Variable discount (Case 4)
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and code. Therefore, these decomposition slices are included in the S. No decom-

position slice included in D and L. However, DS-Mmarried and DS-Mdiscount are

included in the set of New Decomposition Slices (N) because the decomposition

slices for variables married and discount only exist in the DS-M, but not in the

DS-C. The output summary of the first part of the Comparison Phase is shown

in Table 7.3.

Table 7.3: Comparison Results between DS-Cvi and DS-Mvi (Case 4)

Set of Member of Set

D {}
S {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)

(DS-Cage, DS-Mage), (DS-Ccode, DS-Mcode)}
L {}
N {DS-Mmarried, DS-Mdiscount}

No comparison process is performed in the second part of the Comparison

Phase because there is no decomposition slice in the D. Therefore, no statement

is included in the set of CS and RCS. A summary of the second part of the

Comparison Phase is given below:

CS = {}

RCS = {}

7.2.4.3 Phase 3: Exclusion

The same TC in Table 5.2 (page 84) and TH in Table 5.3 (page 85) in Chapter

5 are used in this phase. Any TCi where the CS is not a subset of THi will be

included in the ET. If the CS is an empty set, then all test cases are included in
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the ET and none in the RT. In this example, the CS is an empty set. Therefore,

all test cases in the TS will be included in the ET and no test case is included in

the RT. A summary of the Exclusion Phase is given below:

RT = {}

7.2.4.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of RT will be executed onto

UDS-M. In this example, there is no test case in RT produced in the Exclusion

Phase. However, the ReTSE model has flagged for additional new test cases

because N is not empty. Therefore, the final output of the model for this case is

given below:

RTO = {}

Request New Test Cases = YES
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7.2.5 Modification Type 5 - Delete Variables (Case 5)

In this case, the M has two deleted old variables which are age and code in order

to remove a criterion to calculate the tax payment.

7.2.5.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Pretty Print Step has produced a Certified Program (C) and Modified

Program (M) as shown in Chapter 5, Figure 5.7 (page 76) and Figure 7.16 re-

spectively.

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ scanf("%d", &income);

S4’ if (income < 10000)

{

S5’ tax = 0;

}

else

{

S6’ income = income - 10000;

S7’ tax = (income*40/100);

}

S8’ printf("%d\n", tax);

}

Figure 7.16: Modified Program (M) (Case 5)
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Step 1.2: Slicing

In the Slicing Step, there are four decomposition slices for C that correspond

to four variables which are income, tax, age and code as shown in Figures 7.17-

7.20 in part (a). Besides, there are only two decomposition slices for M that

correspond to two variables which are income and tax as shown in Figure 7.17

and Figure 7.18 in part (b). The M has two deleted old variables compared to

the C. The output summary of the Slicing Step is given below:

• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax}

#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

}

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

}

(a) DS-Cincome

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ scanf ("%d", &income );

S4’ if (income < 10000)

{

}

else

{

S6’ income=income -10000;

S7’ tax=( income *40/100);

}

}

(b) DS-Mincome

Figure 7.17: Decomposition Slice for Variable income (Case 5)

7.2.5.2 Phase 2: Comparison

In the first part of the Comparison Phase, the comparisons between DS-C and

DS-M for variables income and tax, the diff tool did not produce any output.
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#include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

}

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ scanf ("%d", &income );

S4’ if (income < 10000)

{

S5’ tax = 0;

}

else

{

S6’ income=income -10000;

S7’ tax=( income *40/100);

}

S8’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 7.18: Decomposition Slice for Variable tax (Case 5)

#include <stdio.h>

main()

{

S3 int age;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

}

S13 else if (age < 75)

{

}

else

{

}

}

(a) DS-Cage

(Not Exists)

(b) DS-Mage

Figure 7.19: Decomposition Slice for Variable age (Case 5)
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#include <stdio.h>

main()

{

S3 int age;

S4 char code;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

S12 code = ’L’;

}

S13 else if (age < 75)

{

S14 code = ’P’;

}

else

{

S15 code = ’T’;

}

S17 printf ("%c\n", code);

}

(a) DS-Ccode

(Not Exists)

(b) DS-Mcode

Figure 7.20: Decomposition Slice for Variable code (Case 5)

Therefore, these decomposition slices are included in the S. No decomposition

slice is included in D and N. However, DS-Cage and DS-Ccode are included in L

because the decomposition slices for age and code only exist in the DS-C, but not

in the DS-M. The output summary of the first part of the Comparison Phase is

shown in Table 7.4.

Table 7.4: Comparison Results between DS-Cvi and DS-Mvi (Case 5)

Set of Member of Set

D {}
S {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)}
L {DS-Cage, DS-Ccode}
N {}
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No comparison process is performed at the second part of the Comparison

Phase because there is no decomposition slice in D. Therefore, there is no state-

ment is included in the set of CS and RCS. A summary of the second part of the

Comparison Phase is given below:

CS = {}

RCS = {}

7.2.5.3 Phase 3: Exclusion

The same TC in Table 5.2 (page 84) and TH in Table 5.3 (page 85) as shown in

Chapter 5 are used in this phase. Any TCi where the CS is not a subset of THi

will be included in the set of Excluded Test (ET). If the CS is an empty set, then

all the test cases are included in the ET and none in the RT. In this example,

the CS is an empty set. Therefore, all the test cases in the TS will be included

in the set of ET while none is included in the set of Regression Tests (RT). The

Exclusion Phase can be summarised as below:

RT = {}

7.2.5.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of RT will be executed

onto UDS-M. In this case, there is no test case produced for RT in the Exclusion

Phase. Therefore, the final output of the model for this case is given below:

RTO = {}

Request New Test Cases = NO
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7.3 Combination of Modification Types

7.3.1 Combination 1: Change, Add and Delete State-

ments (Case 6)

In this case, the M has two additional new statements at S9’ and S10’ (in Modified

Program), change at statement S12’ (in Modified Program) and delete statements

at S13 and S14 (in Certified Program) in order to change the condition for tax

calculation.

7.3.1.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Pretty Print Step has produced a Certified Program (C) and Modified

Program (M) (refer to Figure 5.7 in Chapter 5 (page 76) and Figure 7.21).

Step 1.2: Slicing

In the Slicing Step, both C and M programs have four decomposition slices

correspond to variables income, tax, age and code. The decomposition slices

for C are DS-Cincome, DS-Ctax, DS-Cage and DS-Ccode as shown in part (a) of

Figures 7.22- 7.25. The decomposition slices for M are DS-Mincome, DS-Mtax,

DS-Mage and DS-Mcode as shown in part (b) in the same figures. The output

summary of the Slicing Step is given below:

• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax, DS-Mage, DS-Mcode}
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#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ int age;

S4’ char code;

S5’ scanf("%d", &income);

S6’ scanf("%d", &age);

S7’ if (income < 10000)

{

S8’ tax = 0;

}

S9’ else if (income < 20000)

{

S10’ tax=((income-10000)*25/100);

}

else

{

S11’ income=income-10000;

S12’ tax=(income*30/100);

}

S13’ if (age < 65)

{

S14’ code = ’L’;

}

else

{

S15’ code = ’T’;

}

S16’ printf("%d\n", tax);

S17’ printf("%c\n", code);

}

Figure 7.21: Modified Program (M) (Case 6)
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[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

}

[L10] else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

}

(a) DS-Cincome

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

[9] }

S9’ else if (income < 20000)

{

S10 ’ tax =(( income -10000)*25/100);

}

else

[L15]{

S11 ’ income=income -10000;

S12 ’ tax=( income *30/100);

}

}

(b) DS-Mincome

Figure 7.22: Decomposition Slice for Variable income (Case 6)

[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

[L10] }

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

S8’ tax = 0;

[L10] }

S9’ else if (income < 20000)

{

S10 ’ tax =(( income -10000)*25/100);

}

[L15] else

{

S11 ’ income=income -10000;

S12 ’ tax=( income *30/100);

}

S16 ’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 7.23: Decomposition Slice for Variable tax (Case 6)
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[L1]# include <stdio.h>

main()

{

S3 int age;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

}

S13 else if (age < 75)

[L10] {

}

else

{

}

}

(a) DS-Cage

[L1]# include <stdio.h>

main()

{

S3’ int age;

S6’ scanf ("%d", &age);

S13 ’ if (age < 65)

{

}

[L10] else

{

}

}

(b) DS-Mage

Figure 7.24: Decomposition Slice for Variable age (Case 6)

[L1]# include <stdio.h>

main()

{

S3 int age;

S4 char code;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

S12 code = ’L’;

[L10] }

S13 else if (age < 75)

{

S14 code = ’P’;

}

[L15] else

{

S15 code = ’T’;

}

S17 printf ("%c\n", code);

}

(a) DS-Ccode

[L1]# include <stdio.h>

main()

{

S3’ int age;

S4’ char code;

S6’ scanf ("%d", &age);

S13 ’ if (age < 65)

{

S14 ’ code = ’L’;

[L10] }

else

{

S15 ’ code = ’T’;

}

S17 ’ printf ("%c\n", code);

}

(b) DS-Mcode

Figure 7.25: Decomposition Slice for Variable code (Case 6)
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7.3.1.2 Phase 2: Comparison

In the first part of the Comparison Phase, the comparisons between DS-C and DS-

M for variables income (DS-Cincome and DS-Mincome), tax (DS-Ctax and DS-Mtax),

age (DS-Cage and DS-Mage) and code (DS-Ccode and DS-Mcode) have produced an

output from the diff tool. Therefore, these decomposition slices are included in

the set of pairs of Difference Decomposition Slice (D). No decomposition slice is

included in the S, L and N. The output summary of the first part of the Com-

parison Phase is shown in Table 7.5.

Table 7.5: Comparison Results between DS-Cvi and DS-Mvi (Case 6)

Set of Member of Set

D {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)
(DS-Cage, DS-Mage), (DS-Ccode, DS-Mcode)}

S {}
L {}
N {}

All the decomposition slices are involved in the second part of the Comparison

Phase because they are members of D. The comparison output using the diff tool

is illustrated below:
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• Comparison between DS-Cincome and DS-Mincome

9a10,13

> else if (income < 20000)

> {

> tax = ((income-10000)*25/100);

> }

13c17

< tax = (income*40/100);

- - -

> tax = (income*30/100);

• Comparison between DS-Ctax and DS-Mtax

10a11,14

> else if (income < 20000)

> {

> tax = ((income-10000)*25/100);

> }

14c18

< tax = (income*40/100);

- - -

> tax = (income*30/100);

• Comparison between DS-Cage and DS-Mage

9,11d8

< else if (age < 75)

< {

< }

• Comparison between DS-Ccode and DS-Mcode

11,14d10

< else if (age < 75)

< {

< code = ’P’;

< }
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In the comparison between DS-Cincome and DS-Mincome (Figure 7.22), the

statements at lines 9 ([L9]) and 13 ([L13]) from DS-Cincome are included in the

set of Change Statements for variable income (CSincome). The statements in

the range from line 10 ([L10]) to line 13 ([L13]) and at line 17 ([L17]) from DS-

Mincome are included in the set of Relevant Change Statements for variable income

(RCSincome). Line 9 is not a statement but a closed curly bracket (}), so that,

the statement located immediately after line 9 is included in the CSincome. There-

fore, statements S9 and S10 from DS-Cincome are included in the CSincome while

statements S9’, S10’ and S12’ from DS-Mincome are included in the RCSincome.

Statement S11’ is also included in the RCSincome because it located at the same

branch of statement S12’.

In the comparison between DS-Ctax and DS-Mtax (Figure 7.23), the state-

ments at lines 10 ([L10]) and 14 ([L14]) from DS-Ctax are included in the set of

Change Statements for variable tax (CStax). The statements in the range from

line 11 ([L11]) to line 14 ([L14]) and at line 18 ([L18]) from DS-Mtax are included

in the set of Relevant Change Statements for variable tax (RCStax). Line 10 is

not a statement but a closed curly bracket (}), so that, the statement located

immediately after line 10 is included in the CStax. Therefore, statements S9 and

S10 from DS-Ctax are included in the CStax and statements S9’, S10’ and S12’

from DS-Mtax are included in the RCStax. Statement S11’ is also included in the

RCStax because it located at the same branch of statement S12’.

In the comparison between DS-Cage and DS-Mage (Figure 7.24), the statement

in the range from line 9 ([L9]) to line 11 ([L11]) from DS-Cage is included in the
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set of Change Statements for variable age (CSage). The statement at line 8 ([L8])

from DS-Mage is included in the set of Relevant Change Statements for variable

age (RCSage). In this case, line 8 in DS-Mage is not a statement but a closed curly

bracket (}), so that, the statement located immediately after line 8 is included

in the RCSage. Therefore, statement S13 from DS-Cage is included in the CSage

while none from DS-Mage is included in the RCSage.

In the comparison between DS-Ccode and DS-Mcode (Figure 7.25), the state-

ment in the range from line 11 ([L11]) to line 14 ([L14]) from DS-Ccode is included

in the set of Change Statements for variable code (CScode). The statement at line

10 ([L10]) from DS-Mcode is included in the set of Relevant Change Statements

for variable code (RCScode). In this case, line 10 in DS-Mcode is not a statement

but a closed curly bracket (}), so that, the statement located immediately after

line 10 is included in the RCScode. Therefore, statements S13 and S14 from DS-

Ccode are included in the CScode and statement S15’ from DS-Mcode is included in

the RCScode. The CS is produced from the union of CStax, CSincome, CSage and

CScode while the RCS is produced from the union of RCStax, RCSincome, RCSage

and RCScode. A summary of the second part of the Comparison Phase is given

below:

CS = CSincome ∪ CStax ∪ CSage ∪ CScode

= {S9, S10} ∪ {S9, S10} ∪ {S13} ∪ {S13, S14}

= {S9, S10, S13, S14}
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RCS = RCSincome ∪ RCStax ∪ RCSage ∪ RCScode

= {S9’, S10’, S11’, S12’} ∪ {S9’, S10’, S11’, S12’} ∪ {} ∪ {S15’}

= {S9’, S10’, S11’, S12’, S15’}

7.3.1.3 Phase 3: Exclusion

The same TC in Table 5.2 (page 84) and TH in Table 5.3 (page 85) as shown in

Chapter 5 are used in this phase. Any TCi where the CS is not a subset of THi

will be included in the ET. In this example, the CS is not subset of TH1, TH2,

TH3, TH4 and TH6. Therefore, TC1, TC2, TC3, TC4, and TC6 will be included

in the ET. The remaining test cases in the Test Suite are included in the RT.

Therefore, only TC5 is included in the RT. A summary of the Exclusion Phase is

given below:

RT = {TC5}

7.3.1.4 Phase 4: Optimisation

In the Optimisation Phase, there are four DS-Mvi members of D which are DS-

Mincome, DS-Mtax, DS-Mage and DS-Mcode. The union of these decomposition

slices (UDS-M) has produced the same program as the M as shown in Figure 7.21

which includes statements S1’, S2’, S3’, S4’, S5’, S6’, S7’, S8’, S9’, S10’, S11’,

S12’, S13’, S14’, S15’, S16’ and S17’. The RCS produced in the second part of

the Comparison Phase is used in this phase. The RCS includes statements S9’,

S10’, S11’, S12’ and S15’.

The TC5 from RT is executed onto the UDS-M. The RTE5 for TC5 is S1’,

S2’, S3’, S4’, S5’, S6’, S7’, S9’, S10’, S13’, S15’, S16’ and S17’. The RTE5 only
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contains three members of RCS, statements S9’, S10’ and S15’. This means that

the the coverage of RCS is incomplete by the execution of the TC5. Therefore,

the TC5is included in the RTO. At the same time, the model has flagged for

additional new test cases. A summary of the Optimisation Phase is given below:

UDS-M = {S1’, S2’, S3’, S4’, S5’, S6’, S7’, S8’, S9’, S10’,

S11’, S12’, S13’, S14’, S15’, S16’, S17’}

RCS = {S9’, S10’, S11’, S12’, S15’}

TC5

RTE5 = {S1’,S2’,S3’,S4’,S5’,S6’,S7’,S9’,S10’,S13’,S15’,S16’,S17’}

RCS-current = {S9’, S10’, S15’}

RCS-coverage = {S9’, S10’, S15’}

RTO = {TC5}

RCS-full = NO

The final output of the model for this case is given below:

RTO = {TC5}

Request New Test Cases = YES
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7.3.2 Combination 2: All Types of Modification (Case 7)

In this case, the M has included all types of modifications except the delete

statements.

7.3.2.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Pretty Print Step has produced a Certified Program (C) and Modified

Program (M) (refer to Figure 5.7 in Chapter 5 (page 76) and Figure 7.26).

Step 1.2: Slicing

In the Slicing Step, both C and M programs have four decomposition slices.

The decomposition slices for C are DS-Cincome, DS-Ctax, DS-Cage and DS-Ccode

that correspond to variables income, tax, age and code as shown in part (a) of

Figures 7.27- 7.30. The decomposition slices for M are DS-Mincome, DS-Mtax,

DS-Mmarried and DS-Mdiscount that correspond to variables income, tax, married

and discount as shown in part (b) of Figure 7.27, Figure 7.28, Figure 7.31 and

Figure 7.32 respectively. The output summary of the Slicing Step is given below:

• DS-C = {DS-Cincome, DS-Ctax, DS-Cage, DS-Ccode}

• DS-M = {DS-Mincome, DS-Mtax, DS-Mmarried, DS-Mdiscount}

7.3.2.2 Phase 2: Comparison

In the first part of the Comparison Phase, the comparisons between DS-C and

DS-M for variables income (DS-Cincome and DS-Mincome) and tax (DS-Ctax and
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#include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S3’ int married;

S4’ int discount;

S5’ scanf("%d", &income);

S6’ scanf("%d", &married);

S7’ discount = 0;

S8’ if (income < 10000)

{

S9’ tax = 0;

}

S10’ else if (income < 20000)

{

S11’ tax = ((income-10000)*25/100);

}

else

{

S12’ income = income - 10000;

S13’ tax = (income*30/100);

}

S14’ if (married)

{

S15’ discount = 10;

}

S16’ printf("%d\n", tax);

S17’ printf("%c\n", discount);

}

Figure 7.26: Modified Program (M) (Case 7)
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[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

}

[L10] else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

}

(a) DS-Cincome

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

[L9] }

S9’ else if (income < 20000)

{

S10 ’ tax =(( income -10000)*25/100);

}

else

{

S11 ’ income=income -10000;

S12 ’ tax=( income *30/100);

}

}

(b) DS-Mincome

Figure 7.27: Decomposition Slice for Variable income (Case 7)

[L1]# include <stdio.h>

main()

{

S1 int income;

S2 int tax;

S5 scanf ("%d", &income );

S7 if (income < 10000)

{

S8 tax = 0;

[L10] }

else

{

S9 income=income -10000;

S10 tax=( income *40/100);

}

S16 printf ("%d\n", tax);

}

(a) DS-Ctax

[L1]# include <stdio.h>

main()

{

S1’ int income;

S2’ int tax;

S5’ scanf ("%d", &income );

S7’ if (income < 10000)

{

S8’ tax = 0;

[L10] }

S9’ else if (income < 20000)

{

S10 ’ tax =(( income -10000)*25/100);

}

[L15] else

{

S11 ’ income=income -10000;

S12 ’ tax=( income *30/100);

}

S16 ’ printf ("%d\n", tax);

}

(b) DS-Mtax

Figure 7.28: Decomposition Slice for Variable tax (Case 7)
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#include <stdio.h>

main()

{

S3 int age;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

}

S13 else if (age < 75)

{

}

else

{

}

}

(a) DS-Cage

(Not Exists)

(b) DS-Mage

Figure 7.29: Decomposition Slice for Variable age (Case 7)

#include <stdio.h>

main()

{

S3 int age;

S4 char code;

S6 scanf ("%d", &age);

S11 if (age < 65)

{

S12 code = ’L’;

}

S13 else if (age < 75)

{

S14 code = ’P’;

}

else

{

S15 code = ’T’;

}

S17 printf ("%c\n", code);

}

(a) DS-Ccode

(Not Exists)

(b) DS-Mcode

Figure 7.30: Decomposition Slice for Variable code (Case 7)
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(Not Exists)

(a) DS-Cmarried

#include <stdio.h>

main()

{

S4’ char married;

S9’ scanf ("%d", &married );

S20 ’ if (married)

{

}

}

(b) DS-Mmarried

Figure 7.31: Decomposition Slice for Variable married (Case 7)

(Not Exists)

(a) DS-Cdiscount

#include <stdio.h>

main()

{

S4’ int married;

S5’ char discount;

S9’ scanf ("%d", &married );

S10 ’ discount = 0;

S20 ’ if (married)

{

S21 ’ discount = 10;

}

S24 ’ printf ("%d\n", discount );

}

(b) DS-Mdiscount

Figure 7.32: Decomposition Slice for Variable discount (Case 7)
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DS-Mtax) have produced an output from the diff tool. Therefore, these decom-

position slices are included in the D. No decomposition slice is included in the S.

However, the DS-Cage (Figure 7.29) and DS-Ccode (Figure 7.30) are included in

the L because the decomposition slices for variables age and code only exist in

the DS-C, but not in the DS-M. The DS-Mmarried (Figure 7.31) and DS-Mdiscount

(Figure 7.32) are included in the N because the decomposition slices for variable

married and discount only exist in the DS-M and not the DS-C. The output

summary of the first part of the Comparison Phase is summarised in Table 7.6.

Table 7.6: Comparison Results between DS-Cvi and DS-Mvi (Case 7)

Set of Member of Set

D {(DS-Cincome, DS-Mincome), (DS-Ctax, DS-Mtax)}
S {}
L {DS-Cage, DS-Ccode}
N {DS-Cmarried, DS-Cdiscount}

In this case, only the decomposition slices for variables tax (DS-Ctax and DS-

Mtax) and income (DS-Cincome and DS-Mincome) are involved in the second part of

the Comparison Phase because they are members of D. The comparison output

using the diff tool is given below:
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• Comparison between DS-Cincome and DS-Mincome

9a10,13

> else if (income < 20000)

> {

> tax = ((income-10000)*25/100);

> }

13c17

< tax = (income*40/100);

- - -

> tax = (income*30/100);

• Comparison between DS-Ctax and DS-Mtax

10a11,14

> else if (income < 20000)

> {

> tax = ((income-10000)*25/100);

> }

14c18

< tax = (income*40/100);

- - -

> tax = (income*30/100);

In the comparison between DS-Cincome and DS-Mincome (Figure 7.27), the

statements at lines 9 ([L9]) and 13 ([L13]) from DS-Cincome are included in the

CSincome. The statements in the range from line 10 ([L10]) to line 13 ([L13]) and

at line 17 ([L17]) from DS-Mincome are included in the RCSincome. Line 9 is not a

statement but a closed curly bracket (}), so that, the statement located immedi-

ately after line 9 is included in the CSincome. Therefore, statements S9 and S10

from DS-Cincome are included in the CSincome while statements S9’, S10’ and S12’

from DS-Mincome are included in the RCSincome. Statement S11’ is also included

in the RCSincome because it is located at the same branch of statement S12’.
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In the comparison between DS-Ctax and DS-Mtax (Figure 7.28), the statements

at lines 10 ([L10]) and 14 ([L14]) from DS-Ctax are included in the CStax. The

statements in the range from line 11 ([L11]) to line 14 ([L14]) and at line 18

([L18]) from DS-Mtax are included in the RCStax. Line 10 is not a statement

but a closed curly bracket (}), so that, the statement located immediately after

line 10 is included in the CStax. Therefore, statements S9 and S10 from DS-Ctax

are included in the CStax while statements S9’, S10’ and S12’ from DS-Mtax are

included in the RCStax. Statement S11’ is also included in the RCStax because it

is located at the same branch of statement S12’. The CS is produced from the

union of CStax and CSincome while the RCS is produced from the union of RCStax

and RCSincome. A summary of the second part of the Comparison Phase is given

below:

CS = CSincome ∪ CStax

= {S9, S10} ∪ {S9, S10}

= {S9, S10}

RCS = RCSincome ∪ RCStax

= {S9’, S10’, S11’, S12’} ∪ {S9’, S10’, S11’, S12’}

= {S9’, S10’, S11’, S12’}

7.3.2.3 Phase 3: Exclusion

The same TC in Table 5.2 (page 84) and TH in Table 5.3 (page 85) as shown in

Chapter 5 are used in this phase. Any TCi where the CS is not a subset of THi

will be included in the ET. In this example, the CS is not subset of TH1, TH2 and
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TH3. Therefore, TC1, TC2 and TC3 will be included in the ET. The remaining

test cases in the Test Suite are included in the RT. Therefore, TC4, TC5 and TC6

are included in the RT. A summary of the Exclusion Phase is given below:

RTO = RT = {TC4, TC5, TC6}

7.3.2.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of RT will be executed

onto UDS-M. In this example, there are two DS-Mvi members of D, DS-Mincome

and DS-Mtax. The union of these decomposition slices (UDS-M) has produced

the same slice as DS-Mtax as shown in Figure 7.28(b) which includes statements

S1’, S2’, S5’, S7’, S8’, S9’, S10’, S11’, S12’ and S16’. The RCS produced in the

second part of the Comparison Phase is used in this phase. The RCS includes

statements S9’, S10’, S11’ and S12’.

Test cases in RT, TC4, TC5 and TC6 are sequently executed onto the UDS-

M. Firstly, the TC4 is executed onto UDS-M. The RTE4 for TC4 is S1’, S2’, S5’,

S7’, S9’, S10’ and S16’. The RTE4 contains only two members of RCS which are

statements S9’ and S10’. This means that the coverage of RCS is still incomplete

by the execution of the TC4. TC4 is included in the RTO. Next, the TC5 is

executed onto UDS-M. The RTE5 for TC5 is similar to RTE4 and contains only

two members of RCS which are statements S9’ and S10’. Due to the coverage of

the RTE5 onto RCS is similar to RTE4, then the TC5 is included in the RTO to

replace its current member, TC4. After that, the TC6 is executed onto UDS-M.

The RTE6 for TC6 is also similar to RTE5. Due to the coverage of the RTE6 onto
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RCS is similar to RTE5, then TC6 is included in the RTO to replace its current

member, TC5.

Although all test cases in RT have been executed onto the UDS-M, the cov-

erage of RCS is still incomplete. Only statements S9’ and S10’ from RCS are

covered by these three test cases in RT. The remaining statements S11’ and S12’

in the RCS are still not covered by any test cases. Therefore, the RTO has only

one test case which is TC6. At the same time, the model has flagged for addi-

tional new test cases because the coverage of RCS is still incomplete. A summary

of the Optimisation Phase is given below:

UDS-M = {S1’,S2’,S5’,S7’,S8’,S9’,S10’,S11’,S12’,S16’}

RCS = {S9’,S10’,S11’,S12’}

TC4

RTE4 = {S1’, S2’, S5’, S7’, S9’, S10’, S16’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC4}

RCS-full = NO

TC5

RTE5 = {S1’, S2’, S5’, S7’, S9’, S10’, S16’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC5}

RCS-full = NO
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TC6

RTE6 = {S1’, S2’, S5’, S7’, S9’, S10’, S16’}

RCS-current = {S9’, S10’}

RCS-coverage = {S9’, S10’}

RTO = {TC6}

RCS-full = NO

The final output of the model for this case is given below:

RTO = {TC6}

Request New Test Cases = YES

7.4 Summary

The chapter has discussed seven different case studies. The chapter starts with

the five case studies that represent the five types of modification. Each of these

case studies focuses on one type of modification at a time. Then, another two

case studies are presented for multiple modification types at a time. The ReTSE

model works for all of these case studies. Further analysis of the results of these

case studies is presented in the next chapter.
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Chapter 8

Analysis and Evaluation

8.1 Introduction

This chapter presents an analysis and evaluation of the ReTSE model. The anal-

ysis refers to the case studies discussed in Chapter 7. This analysis is presented

in the second section. The evaluation is divided into two parts. The first part is

an evaluation based on an existing evaluation framework proposed by Rothermel

and Harrold [88] as described in Chapter 3, Section 3.2 (page 20). The second

part is an evaluation of the comparison between the ReTSE model and the Pythia

technique proposed by Vokolos and Frankl [102] which is described in Chapter 3,

Section 3.5.2 (page 25). The first part is presented in the third section and the

second part is presented in the forth section.
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8.2 Analysis of Case Studies

Table 8.1 shows the summary of all case studies that have been presented in

Chapter 7. There are three significant results. First, the number of slices in the

set of pairs of Difference Decomposition Slices (D) is the main factor to produce

the number of test cases selected for a set of Regression Tests (RT) and a set of

Optimised Regression Tests (RTO). Test cases are only selected for RT and RTO

if and only if D is not empty. This can be seen in Case 4 (page 115) and Case

5 (page 122) where there are no test cases selected for RT and RTO because D

is empty. This means that by using this model, any instances of add or delete

variables in the Modified Program (M) that do not have slices in D will not select

any test cases for RT and RTO. In the other cases (Case 1, Case 2, Case 3, Case 6

and Case 7), the model has produced at least one test case for RT and RTO due

to D having some slices. This shows the significance of using the decomposition

slicing technique in the model. The decomposition slicing technique is capable of

detecting the situation of add and delete variables in M that can ignore the need

of selecting test cases.

The second significant result is the reduction of the number of test cases for

RT and RTO from the existing Test Suite (TS). There are six test cases in TS that

have been used in all the case studies. The reduction is divided into two parts.

The first part is after the Exclusion Phase which produces the RT. The second

part is after the Optimisation Phase which produces the RTO. At the Exclusion

Phase, the ReTSE model has reduced more than 50% of test cases in TS for RT.

At some point, especially in Case 4 and Case 5, the model has reduced 100% of
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Table 8.1: Summary of Case Studies
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No. of Statements 17 17 17 17 17 17 17
in C
No. of Statements 17 19 15 24 8 17 17
in M
No. of slices 4 4 4 4 4 4 4
in DS-C
No. of slices 4 4 4 6 2 4 4
in DS-M
No. of pair slices 2 2 2 0 0 4 2
in D
No. of pair slices 2 2 2 4 2 0 0
in S
No. of slices 0 0 0 0 2 0 2
in L
No. of slices 0 0 0 2 0 0 2
in N
No. of statements 1 1 2 0 0 4 2
in CS
No. of statements 2 4 1 0 0 5 4
in RCS
No. of test cases 6 6 6 6 6 6 6
in TS
No. of test cases 3 3 2 0 0 1 3
in RT
Test Cases Reduction % 50 50 66.67 100 100 83.3 50
((TS-RT)/TS x 100)
No. of test cases 1 1 1 0 0 1 1
in RTO
Test Cases Reduction % 66.67 66.67 50 - - - 66.67
((RT-RTO)/RT x 100)
Decision for RNTC NO YES NO YES NO YES YES
(Request New Test Cases)
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test cases in TS for RT. That means no test case is selected for RT. In the Opti-

misation Phase, the model once again has reduced at least 50% of test cases from

RT for RTO as shown in Case 1, Case 2, Case, 3 and Case 7. The other cases are

not relevant because RT has only one test case or none. These results show that

the ReTSE model is capable to give a significant reduction of test cases to test

the Modified Program (M). However, these results are only based on case studies

that used small set of test cases. In future, the case studies should used large set

of test cases in order to get concise results. This can be proceed when the model

scale-up with inter-procedural concept in order to tackle large programs.

The third significant result is the ability of the ReTSE model to decide whether

a new test case is needed. This can be seen at the bottom of Table 8.1. The model

has determined that there are no new test cases needed in Case 1, Case 3 and

Case 5, but Case 2, Case 4, Case 6 and Case 7 require new test cases for the M.

However, the process of designing additional new test cases is beyond the scope

of the ReTSE model.

8.3 Evaluation of the ReTSE Model

Rothermel and Harrold’s framework for evaluating selective regression testing

techniques consists of four categories which are inclusiveness, precision, efficiency

and generality [88]. The framework has been described in Chapter 3, Section 3.2

(page 20). The following section is an evaluation of the ReTSE model based on

this framework .
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8.3.1 Inclusiveness

Inclusiveness is measured by safety [88]. The regression test selection technique is

safe if the technique selects all the modification revealing test cases from the test

suite of the Certified Program (C) for the Modified Program (M). The Rothermel

and Harrold’s framework claims that a regression test selection technique is not

safe if it does not take into consideration the effects of new and deleted code. The

inclusiveness of the regression test selection technique is the percentage given by

the expression TCS / MR x (100) in cases where MR is not equal to 0. TCS is

the number of test cases that are selected by the technique. MR is the number

of modification revealing test cases which are taken from TS and execute the

modified parts of the program. Inclusiveness is 100% in case where MR is equal

to 0. The technique is safe if inclusiveness is 100%.

Table 8.2 shows the calculation of inclusiveness of the ReTSE model for each

case study described in Chapter 7. The calculation of inclusiveness is based on

the number of selected test cases which is divided into two parts: before and

after the Optimisation Phase (RT & RTO). RT is a set of Regression Tests that

are selected before the Optimisation Phase. The number of RT should be less

than or equal to the number of MR. If the RT is equal to MR, then the ReTSE

model is safe, while if the RT is less than MR then the model is less safe. RTO

is a set of Optimised Regression Tests that are selected after the Optimisation

Phase. The number of RTO should be less than or equal to the number of RT.

The Optimisation Phase is designed to reduce redundant test cases having the

same coverage and to identify the need of new test cases for the M.
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Table 8.2: Summary of Inclusiveness Calculation
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No. of test cases 6 6 6 6 6 6 6
in TS
No. of Modification 3 3 2 0 0 1 3
revealing test cases (MR)

Before Optimisation Phase
No. of test cases 3 3 2 0 0 1 3
in RT
Inclusiveness (%) 100 100 100 100 100 100 100
(RT/MR x 100)

After Optimisation Phase
No. of test cases 1 1 1 0 0 1 1
in RTO
Reduction of RTO (%) 66.67 66.67 50 - - - 66.67
((RT-RTO)/RT x 100)

The table shows that before the Optimisation Phase, the inclusiveness of the

ReTSE model is 100% for all case studies. This means that the ReTSE model is

safe. However, after the Optimisation Phase, the model has reduced a number

of selected test cases in some cases because the model is also designed to tackle

the issue of redundant test cases. For example, in Case 1, Case 2 and Case 7, the

ReTSE model has reduced 66.67% of test cases in RT (before the Optimisation

Phase) for RTO (after the Optimisation Phase). In Case 3, the reduction of test

cases from RT to RTO is 50%. However, there is no reduction in Case 6 because
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the RT and RTO hold the same test case. There is no selection of test cases in

Case 4 and Case 5 because they have involved add and delete variables that will

not affect other parts of the modified program.

Overall, the ReTSE model can be classified as a safe regression test selection

technique. In addition, the ReTSE model has considered all types of basic mod-

ifications such as change, delete and add statements which are the main features

of a safe technique. Moreover, the ReTSE model has also designed to tackle

another two types of modifications which are delete and add variables in the M.

8.3.2 Precision

Precision measures the extent to which the regression test selection technique

omits non-modification revealing test cases from the test suite of C to test M.

The precision of a regression test selection technique is the percentage given by

the expression TCE / NMR x (100) in cases where NMR is not equal to 0. NMR

is the number of non-modification revealing test cases, and TCE is the number

of test cases that are excluded by the technique. The non-modification revealing

test cases are tests that execute the unchanged parts of the program. Precision

is 100% if NMR = TCE or NMR = 0. The technique is precise if precision is 100%.

Table 8.3 shows the calculation of the precision of the ReTSE model for each

case study described in Chapter 7. The calculation is based on the number of

excluded test cases which is divided into two parts: before and after the Optimi-

sation Phase (ET & ETa). ET is a set of Excluded Tests that are excluded before
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the Optimisation Phase. The number of ET should be less than or equal to the

number of NMR. If the ET is equal to MNR, then the ReTSE model is precise.

If the ET is less than NMR, then the model is less precise. ETa is the number of

test cases that are excluded from RT after the Optimisation Phase. The number

of ETa should be less than or equal to the number of RT.

Table 8.3: Summary of Precision Calculation
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No. of test cases 6 6 6 6 6 6 6
in TS
No. of non-modification 3 3 4 6 6 5 3
revealing test cases (NMR)

Before Optimisation Phase
No. of excluded test cases 3 3 4 6 6 5 3
before Optimisation (ET)
No. of test cases 3 3 2 0 0 1 3
in RT
Precision (%) 100 100 100 100 100 100 100
(ET/NMR x 100)

After Optimisation Phase
No. of excluded test cases 2 2 1 - - - 2
after Optimisation (ETa)
ETa (%) 66.67 66.67 50 - - - 66.67
(ETa/TS x 100)

The table shows that before the Optimisation Phase, the precision of the

ReTSE model is always 100%. This means that the ReTSE model is precise.
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However, after the Optimisation Phase, the model has increased the number of

excluded test cases in some cases because the model is also designed to tackle the

issue of redundant test cases. For instance, in Case 1, Case 2 and Case 7, the

model has excluded 66.67% of test cases after the Optimisation Phase. In Case 3,

the model has excluded 50% of test cases. However, in Case 4, Case 5 and Case 6,

the exclusion is not relevant because there is only one test case or none in the RT.

Rothermel and Harrold [88] have claimed that any regression test selection

technique that does not take into consideration the semantic differences between

two programs is not precise. This is the case where both programs are syntacti-

cally different but semantically equivalent. Therefore, the ReTSE model can be

classified as not precise because the model only considers syntactically different

programs.

8.3.3 Efficiency

The efficiency of regression test selection techniques is measured in terms of their

space and time requirements that lead to computational cost. There are a four

factors that need to be considered when determining the efficiency of the tech-

nique [88]. The first factor is the phase of the lifecycle in which the technique

performs its activities. The second factor is its ability to automate. The third

factor is the extent to which the technique is capable of calculating information

on program modifications. The fourth factor is the ability of the technique to

handle cases in which the modified program contains multiple modifications.
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As described in Chapter 5, the ReTSE model has four phases: (1) Program

Analysis that includes Pretty Print and Slicing steps, (2) Comparison, (3) Exclu-

sion, and (4) Optimisation. The Pretty Print step has time complexity linear in

the size of original programs (OC & OM). In the Slicing step, the time complexity

relatively depends on the number of variables in the programs. The time required

for the Program Analysis Phase can be even less than that because the model

has used an existing tool called csurf for slicing. The Comparison Phase has two

parts. The first has time complexity linear in the number of slices in DS-C and

DS-M, while the second has time complexity linear in the number of slices in D.

The time required for the Comparison Phase can be less than estimated because

the model also has used an existing tool called diff in that phase. Moreover, the

comparison only concentrates on the specific modification parts that are obtained

by the decomposition slicing technique in the model. The time complexity of the

exclusion in phase (3) is linear to the number of test cases in the test suite. The

optimisation in phase (4) has time complexity linear in the number of test cases

in RT and the size of the union of slices in D.

8.3.4 Generality

The generality of a technique is its ability to function in a wide and practical range

of situations. The model works for all types of modifications such as add, delete

and change statements. The model can even handle cases of add and delete

variables in the modified program. Although the model only concentrates on

the intraprocedural program, it can be expanded to the interprocedural program

in future. Although the technique has been evaluated for the C programming
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language, in principal it can be easily extended to similar types of programming

languages.

158



8. Analysis and Evaluation

8.4 Comparison with Pythia Technique

The Pythia technique is used for this comparison because the ReTSE model has

used the same program comparison tool called diff. However, in the Pythia model,

the diff tool is used to compare two programs. On the other hand, the diff tool

is used to compare two decomposition slices in the ReTSE model.

8.4.1 Applying the ReTSE Model using Power Program

Vokolos and Frankl [102] have used Power program to illustrate the Pythia, a

textual differencing technique. The program aims to raise a floating point num-

ber to an integer power, using Dijkstra’s algorithm. The program consists of two

files: main.c and power.c. Each file contains one function. The old version of

the main function (main.c) is shown in Figure 8.1 while the old version of the

power function (power.c) is shown in Figure 8.2. Because the ReTSE model only

concentrates on intraprocedural, it is assumed that the changes only occur in the

power.c function. The new version of power function (power-v1.c) is shown in

Figure 8.3. The old version is called Certified Program (C) and the new version

is called Modified Program (M) in the ReTSE model.

Vokolos and Frankl used five test cases (TCi) to test the Certified Program

(C). The input and output values for each test cases are shown in Table 8.4. Test

case TC2 in Table 8.4 catches an error in the certified program. The THi of each

TCi for C (power.c program) is shown in Table 8.5. In their model, THi is called

a basic block execution trace which is an execution trace of a test case based

on a basic block concept. A basic block is a sequence of consecutive statements
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extern double power();

extern double atof();

extern int atoi();

extern void printf();

extern void exit();

main (argc, argv)

int argc;

char *argv[];

{

S1 double x;

S2 int n;

S3 if (argc !=3)

{

S4 exit(0);

}

S5 x = atof(argv[1]);

S6 n = atoi(argv[2]);

S7 printf("power(%.1f, %d)=\n", x, n);

S8 printf("%g\n\n", power(x, n));

}

Figure 8.1: Certified Program (C)- main.c

with the property that control enters at the beginning statements and may leave

only at the very last statement [102]. However, the THi in Table 8.5 is slightly

different from their paper in order to consider a statement based used in the

ReTSE model. The X symbol in Table 8.5 shows that the statement is executed

for that TCi. The - symbol is for statement not executed. These programs and

information are used to illustrate the ReTSE model in this section.

8.4.1.1 Phase 1: Program Analysis

Step 1.1: Pretty Print

The Original Certified Program and the Original Modified Program of the
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double power(x, n)

double x;

register int n;

{

S1 int recip, sgn;

S2 double y;

S3 if (n < 0)

{

S4 recip = 1;

S5 n = -n;

}

else

{

S6 recip = 0;

}

S7 sgn = 1;

S8 if (x < 0.0e0)

{

S9 x = -x;

}

S10 for (y = 1.0e0; n > 0; --n)

{

S11 while (n % 2 == 0)

{

S12 x *= x;

S13 n /= 2;

}

S14 y *= x;

}

S15 if (recip != 0 && y != 0.0e0)

{

S16 return (sgn*1.0e0/y);

}

else

{

S17 return (sgn*y);

}

}

Figure 8.2: Certified Program (C)- power.c
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double power(x, n)

double x;

register int n;

{

S1’ int recip, sgn;

S2’ double y;

S3’ if (n < 0)

{

S4’ recip = 1;

S5’ n = -n;

}

else

{

S6’ recip = 0;

}

S7’ sgn = 1;

S8’ if (x < 0.0e0)

{

S9’ x = -x;

S10’ if (n % 2 == 1)

{

S11’ sgn = -1;

}

}

S12’ for (y = 1.0e0; n > 0; --n)

{

S13’ while (n % 2 == 0)

{

S14’ x *= x;

S15’ n /= 2;

}

S16’ y *= x;

}

S17’ if (recip != 0 && y != 0.0e0)

{

S18’ return (sgn*1.0e0/y);

}

else

{

S19’ return (sgn*y);

}

}

Figure 8.3: Modified Program (M)- power-v1.c
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Table 8.4: Test Suite for Certified Program (Power Program)

Test Case (TCi) Input Output

TC1 -5.02 25
TC2 -3.03 27
TC3 2.00 1
TC4 1.04 1
TC5 0.0−1 0

Table 8.5: Test History (THi) of TCi for Certified Program (power.c)

Statement TH1 TH2 TH3 TH4 TH5

S1 X X X X X
S2 X X X X X
S3 X X X X X
S4 - - - - X
S5 - - - - X
S6 X X X X -
S7 X X X X X
S8 X X - - -
S9 X X - - -
S10 X X X X X
S11 X X - X X
S12 X X - X -
S13 X X - X -
S14 X X - X X
S15 X X X X X
S16 - - - - -
S17 X X X X X
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power program are assumed to have gone through the Pretty Print Step. The

outputs of this step are a Certified Program (C) and Modified Program (M) as

shown in Figure 8.2 and Figure 8.3 respectively. The M has two additional new

statements at S10’ and S11’ in order to tackle the problem raised in the Certified

Program (C).

Step 1.2: Slicing

In the Slicing Step, both C and M are decomposed into decomposition slices

corresponding to their variables in the programs. Therefore, both programs have

five decomposition slices corresponding to five variables which are x, recip, n, sgn

and y. The decomposition slices for C (DS-C) are shown in Figures 8.4 to 8.7 in

part (a). The decomposition slices for M (DS-M) are shown in part (b) of the

same figures. Decomposition slices for variables sgn and y are similar as shown

in Figure 8.7. The output summary of the Slicing Step is given below:

• DS-C = {DS-Cx, DS-Crecip, DS-Cn, DS-Csgn, DS-Cy}

• DS-M = {DS-Mx, DS-Mrecip, DS-Mn, DS-Msgn, DS-My}

8.4.1.2 Phase 2: Comparison

In the first part of the Comparison Phase, the decomposition slices in the DS-C

are compared to the decomposition slices in the DS-M using the diff tool. There is

no output produced from the diff tool for the comparison between DS-Cx and DS-

Mx (Figure 8.4). Similar result was achieved in the comparison between DS-Crecip

and DS-Mrecip (Figure 8.5). Therefore, these decomposition slices are included in

a set of pairs of Similar Decomposition Slice (S). An output is produced from the
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double power(x, n)

double x;

register int n;

{

S3 if (n < 0)

{

S5 n = -n;

}

else

S8 if (x < 0.0e0)

{

S9 x = -x;

}

S10 for(y=1.0e0; n>0; --n)

{

S11 while (n % 2 == 0)

{

S12 x *= x;

S13 n /= 2;

}

S14 y *= x;

}

}

(a) DS-Cx

double power(x, n)

double x;

register int n;

{

S3’ if (n < 0)

{

S5’ n = -n;

}

else

S8’ if (x < 0.0e0)

{

S9’ x = -x;

}

S12 ’ for(y=1.0e0; n>0; --n)

{

S13 ’ while (n % 2 == 0)

{

S14 ’ x *= x;

S15 ’ n /= 2;

}

S16 ’ y *= x;

}

}

(b) DS-Mx

Figure 8.4: Decomposition Slice for Variable x (Power Program)

double power(x, n)

double x;

register int n;

{

S1 int recip , sgn;

S3 if (n < 0)

{

S4 recip = 1;

}

else

{

S6 recip = 0;

}

S15 if(recip !=0 && y!=0.0e0)

else

}

(a) DS-Crecip

double power(x, n)

double x;

register int n;

{

S1’ int recip , sgn;

S3’ if (n < 0)

{

S4’ recip = 1;

}

else

{

S6’ recip = 0;

}

S17 ’ if(recip !=0 && y!=0.0e0)

else

}

(b) DS-Mrecip

Figure 8.5: Decomposition Slice for Variable recip (Power Program)
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[L1] double power(x, n)

double x;

register int n;

{

S3 if (n < 0)

{

S5 n = -n;

}

S10 for(y=1.0e0; n>0; --n)

[L10] {

S11 while (n % 2 == 0)

{

S13 n /= 2;

}

}

[L16]}

(a) DS-Cn

[L1] double power(x, n)

double x;

register int n;

{

S3’ if (n < 0)

{

S5’ n = -n;

}

S8’ if (x<0.0e0)

[L10] {

S10 ’ if(n%2 == 1)

}

S12 ’ for(y=1.0e0; n>0; --n)

{

S13 ’ while (n % 2 == 0)

{

S15 ’ n /= 2;

}

}

[L20]}

(b) DS-Mn

Figure 8.6: Decomposition Slice for Variable n (Power Program)

diff tool for the comparison between DS-Cn and DS-Mn (Figure 8.6). Therefore,

both decomposition slices are included in a set of pairs of Difference Decompo-

sition Slice (D). The DS-Csgn and DS-Msgn (Figure 8.7) are also included in the

D because the output is produced from the diff tool for this comparison. The

DS-Cy and DS-My (Figure 8.7) are also included in the D because the diff tool

also produces an output from this comparison. The output summary of the first

part of the Comparison Phase is shown in Table 8.6.

The second part of the Comparison Phase is a more detailed comparison

between DS-Cvi and DS-Mvi only if they are members of D. In this case, only the

decomposition slices for variables sgn (DS-Csgn and DS-Msgn), n (DS-Cn and DS-

Mn) and y (DS-Cy and DS-My) are involved in the second part of the comparison
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double power(x, n)

double x;

register int n;

{

S1 int recip , sgn;

S2 double y;

S3 if (n < 0)

{

S4 recip = 1;

S5 n = -n;

}

else

{

S6 recip = 0;

}

S7 sgn = 1;

S8 if (x < 0.0e0)

{

S9 x = -x;

}

S10 for(y=1.0e0; n>0; --n)

{

S11 while (n % 2 == 0)

{

S12 x *= x;

S13 n /= 2;

}

S14 y *= x;

}

S15 if(recip !=0 && y!=0.0e0)

{

S16 return (sgn *1.0e0/y);

}

else

{

S17 return (sgn*y);

}

}

(a) DS-Csgn/DS-Cy

double power(x, n)

double x;

register int n;

{

S1’ int recip , sgn;

S2’ double y;

S3’ if (n < 0)

{

S4’ recip = 1;

S5’ n = -n;

}

else

{

S6’ recip = 0;

}

S7’ sgn = 1;

S8’ if (x < 0.0e0)

{

S9’ x = -x;

S10 ’ if (n % 2 == 1)

{

S11 ’ sgn = -1;

}

}

S12 ’ for(y=1.0e0; n>0; --n)

{

S13 ’ while (n % 2 == 0)

{

S14 ’ x *= x;

S15 ’ n /= 2;

}

S16 ’ y *= x;

}

S17 ’ if(recip !=0 && y!=0.0e0)

{

S18 ’ return (sgn *1.0e0/y);

}

else

{

S19 ’ return (sgn*y);

}

}

(b) DS-Msgn/DS-My

Figure 8.7: Decomposition Slice for Variable sgn/y (Power Program)
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Table 8.6: Comparison Results between DS-Cvi and DS-Mvi (Power Program)

Set of Member of Set

D {(DS-Cn, DS-Mn), (DS-Csgn, DS-Msgn), (DS-Cy, DS-My)}
S {(DS-Cx, DS-Mx), (DS-Crecip, DS-Mrecip)}
S {}
L {}

because they are members of D (shown in the first part of the comparison). The

comparison output using the diff tool is given below:

• Comparison between DS-Csgn and DS-Msgn

19a20,23

> if (n % 2 == 1)

> {

> sgn = -1;

> }

• Comparison between DS-Cn and DS-Mn

8a9,12

> if (x < 0.0e0)

> {

> if (n % 2 == 1)

> }

• Comparison between DS-Cy and DS-My

19a20,23

> if (n % 2 == 1)

> {

> sgn = -1;

> }

In the comparison between DS-Csgn and DS-Msgn (Figure 8.7), the statement

at line 19 ([L9]) from DS-Csgn is included in the set of Change Statement for
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variable sgn (CSsgn). Any statement in the range of lines 20 ([L20]) to 23 ([L23])

from DS-Msgn is included in the set of Relevant Change Statement for variable

sgn (RCSsgn). Therefore, S9 from DS-Csgn is included in the CSsgn and state-

ments S10’ and S11’ from DS-Msgn are included in the RCSsgn. Statement S9’

is also included in the the RCSsgn because it is located at the same branch of

statement S10’. The same happens to the comparison between DS-Cy and DS-My

(Figure 8.7) where statement S9 from DS-Cy is included in the CSy and state-

ments S9’, S10’ and S11’ from DS-My are included in the RCSy.

In the comparison between DS-Cn and DS-Mn (Figure 8.6), line 8 ([L8]) is not

a statement but a close curly bracket (}). Therefore, the statement immediately

after that symbol will be included in the set of Change Statement for variable

n (CSn). Any statement in the range of lines 9 ([L9]) to 12 ([L12]) from DS-

Mn is included in the set of Relevant Change Statement for variable n (RCSn).

Therefore, statement S10 is included in the CSn and statements S8’ and S10’ are

included in the RCSn. Then the CS is produced from the union of CSsgn, CSy

and CSn where the RCS is produced from the union of RCSsgn, RCSy and RCSn.

A summary of the second part of the Comparison Phase is given below:

CS = CSsgn ∪ CSy ∪ CSn

= {S9} ∪ {S9} ∪ {S10}

= {S9, S10}

169



8. Analysis and Evaluation

RCS = RCSsgn ∪ RCSy ∪ RCSn

= {S9’, S10’, S11’} ∪ {S9’, S10’, S11’} ∪ {S8’, S10’}

= {S8’, S9’, S10’, S11’}

8.4.1.3 Phase 3: Exclusion

There are five test cases (TCi) were used by Vokolos and Frankl for Certified

Program (C) of power.c program as shown in Table 8.4. Their THi is shown in

Table 8.5. Any TCi where the CS is not subset of THi, will be included in the

set of Excluded Test (ET). In this case, the CS which includes statements S9 and

S10, is not subset of TH3, TH4 and TH5. Therefore, TC3, TC4, and TC5 will

be included in the set of ET. The remaining test cases in Test Suite are included

in the set of Regression Tests (RT). Therefore, TC1 and TC2 are included in the

RT. A summary of the Exclusion Phase is given below:

RT = {TC1, TC2}

8.4.1.4 Phase 4: Optimisation

In the Optimisation Phase, all TCi that are members of the RT will be executed

onto UDS-M. In this case, there are only three DS-Mvi members of D which are

DS-Msgn, DS-Mn and DS-My. The union of these decomposition slices (UDS-M)

has produced the same program as M (power-v1.c) as shown in Figure 8.3 which

includes statements S1’, S2’, S3’, S4’, S5’, S6’, S7’, S8’, S9’, S10’, S11’, S12’, S13’,

S14’, S15’, S16’, S17’, S18’ and S19’. The RCS produced in the second part of

the Comparison Phase is used here. The RCS includes statements S8’, S9’, S10’

and S11’.
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Test cases in RT, which are TC1 and TC2, are sequently executed onto the

UDS-M. Firstly, TC1 is executed onto UDS-M. The RTE1 for TC1 is S1’, S2’,

S3’, S6’, S7’, S8’, S9’, S10’, S11’, S12’, S13’, S14’, S15’, S16’, S17’ and S19’. The

RTE1 contains all members of RCS. That means the RCS receive full coverage by

executed only the TC1. The execution of test cases is stopped because the RCS

has already achieved full coverage. This means it is enough to use only TC1 as a

regression test for the modified program. Therefore, TC1 will be included in the

RTO. The remaining test case TC2 will be ignored for RTO. A summary of the

Optimisation Phase is given below:

UDS-M = {S1’,S2’,S3’,S4’,S5’,S6’,S7’,S8’,S9’,S10’,S11’,S12’,S13’,S14’,

S15’,S16’,S17’,S18’,S19’}

RCS = {S8’,S9’,S10’,S11’}

TC1

RTE1 = {S1’,S2’,S3’,S6’,S7’,S8’,S9’,S10’,S11’,S12’,S13’,S14’,

S15’,S16’,S17’,S19’}

RCS-current = {S8’, S9’, S10’, S11’}

RCS-coverage = {S8’, S9’, S10’, S11’}

RTO = {TC1}

RCS-full = YES

Therefore, the final output of the model for this case is given below:

RTO = {TC1}

Request New Test Cases = NO
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8.4.2 Results Comparison

The Pythia has selected two test cases from an existing test suite to test a new

version of the power program [102]. The same program has been applied to the

ReTSE model. In the Exclusion Phase, the ReTSE model has selected the same

two test cases as the Pythia technique. Moreover, after Optimisation Phase, the

ReTSE model has selected only one test case to test a new version of the power

program. This is because the model has identified that both test cases (produced

in the Exclusion Phase) are redundant at the same coverage of a new version of

the program. However, this type of a program can be classified as an unsuccessful

case for the ReTSE model because it has computed a bigger decomposition slices

for variables sgn and y. The slices are the same size as M. This issue will consume

more time and cost for the ReTSE model compared to the Pythia.

8.5 Summary

This chapter has discussed the analysis and evaluation of the ReTSE model. The

analysis done on the results obtained from case studies in the previous chapter.

The ReTSE model has been evaluated based on the framework developed by

Rothermel and Harrold. Finally, the ReTSE model has been applied to the

program that has been used in the Pythia paper. The results of this analysis and

evaluation show that the model is capable of producing a significant reduction of

test cases for the Modified Program (M).
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Chapter 9

Conclusions

9.1 Introduction

This chapter summarises and reviews the research. It includes the research back-

ground, the proposed model, its prototype, analysis and evaluation. It also dis-

cusses achievements of the research based on the criteria for success as defined in

Chapter 1. Finally, suggestions are made for future directions.

9.2 Thesis Summary

The research in this thesis is about regression testing specifically on developing a

regression test selection model using the decomposition slicing technique. Regres-

sion testing is the process of attempting to validate a modified program, a change

to a previously tested version of the program which is called the certified program.

It is also to ensure that the modifications of the program did not introduce any

unexpected errors. An important issue in regression testing is how to reuse the
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existing test suite for the modified program. One of the techniques to tackle this

issue is regression test selection. Regression test selection technique attempts to

reduce the time required to retest a modified program by selecting a subset of the

existing test suite and retesting only the relevant parts of the modified program.

The proposed regression test selection model in this thesis has used decom-

position slicing technique as a program analysis tool at an early phase of the

model. The main objective of the decomposition slicing technique is to decom-

pose a program directly into two parts: decomposition slice and complement. The

decomposition slice is built for one variable, which is the union of slices taken

at certain line numbers where the uses of that variable are located in the pro-

gram. The complement is the sub-program that remains after decomposition slice

is removed from the original program. Therefore, the decomposition slicing pro-

vides a technique that is capable of identifying the unchanged parts of the system.

The proposed model is called a Regression Test Selection by Exclusion (ReTSE)

and has been defined in Chapter 5. The ReTSE model has four main phases.

They are Program Analysis which includes Pretty Print and Slicing steps, Com-

parison, Exclusion and Optimisation phases. The Pretty Print Step is a process

to standardise the layout of the program and make the Comparison Phase later

in the model easier to perform. In the Slicing Step, both Certified Program

(C) and Modified Program (M) have been sliced using the decomposition slicing

technique. The number of the decomposition slices produced is dependent on the

number of variables in the program. The Comparison Phase is divided into two

parts. The first is a comparison between decomposition slices for the C and M
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programs. This part determines the decomposition slices to included in S (set of

pairs of Similar Decomposition Slices), D (set of pairs of Difference Decomposition

Slices), N (set of New Decomposition Slices) or L (set of Delete Decomposition

Slices). The second part is a more detailed comparison between the decompo-

sition slices only for those that are members of the set of D by analysing the

output from the comparison tool. This part produces a set of Change Statement

(CS) and a set of Relevant Change Statement (RCS). In the Exclusion Phase,

any test cases in the existing test suite have been excluded based on information

from CS, test cases (TC) and its test histories (TH). The remaining test cases

in test suite have been included in the set of Regression Tests (RT). Finally, in

the Optimisation Phase, the number of test cases in RT has been reduced again

based on information from D, N, RT and RCS. This phase specifically focuses on

redundant test cases.

Currently, the prototype of the ReTSE model is not fully automated. How-

ever, some phases in the model have used existing tools. For instance, the Slicing

Step in the Program Analysis Phase has used CodeSurfer (csurf ) tool as assis-

tant in order to produce decomposition slices for both C and M programs. In the

Comparison Phase, the diff tool has been used intensively in order to compare

decomposition slices from both programs. The other phases are carried out man-

ually.

The validity of the ReTSE model is explored through the application of a

number of case studies. This thesis has described the application of seven case

studies in order to analyse and evaluate the model. Five of them correspond
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to the five types of modifications that can be applied to a program. These are

change statements, add statements, delete statements, add variables and delete

variables. Another two case studies are presented for multiple types of modifica-

tion at a time. The case studies have shown that reductions in the number of test

cases can be achieved. For instance, in the Exclusion Phase, the ReTSE model

has reduced more than 50% of test cases in the test suite. In the Optimisation

Phase, the model once again has reduced at least 50% because of redundant test

cases. At some points, the model has reduced 100% of test cases in test suite.

This is because the model has involved only in add or delete variables. These

cases can be detected by using the decomposition slicing technique as shown in

Case 4 (page 115) and Case 5 (page 122) in Chapter 7.

The evaluation of the model is divided into two parts as described in Chap-

ter 8. The first part is an evaluation based on the Rothermel and Harrold’s

evaluation framework [88]. The framework has four categories which are inclu-

siveness, precision, efficiency and generality. The results from the case studies

show that before the Optimisation Phase, the inclusiveness and precision of the

ReTSE model are always 100%. This means that the ReTSE model is safe and

precise. Moreover, after the Optimisation Phase, the number of test cases in RT

has reduced in some cases such as Case 1 (page 97), Case 2 (page 98), Case 3

(page 107) and Case 7 (page 137). This is because the model is also designed to

tackle the issue of redundant test cases. The efficiency of the ReTSE model is

based on the time complexity of each phase which is linear to it input. In term

of generality, the model works for all types of modifications such as add, delete

and change statements. Moreover, the model can handle cases of add and delete

176



9. Conclusions

variables in modified program.

The second part of the evaluation in Section 8.4 (Chapter 8) is based on the

comparison between the ReTSE model and the Pythia technique. In the paper

written by Vokolos and Harrold [102], the Pythia technique has selected two test

cases from an existing test suite to test a new version of the power program.

The same program has been applied with the ReTSE model. In the Exclusion

Phase, the ReTSE model has selected the same two test cases as the Pythia tech-

nique. Moreover, the ReTSE model has finally selected only one test case to test

a new version of the power program which is called Modified Program (M) in the

ReTSE model. This is because the model has identified that these test cases are

redundant and have the same coverage of the M program.

The results of these analysis and evaluation show that the ReTSE model is

capable of producing a significant reduction of test cases for M.

9.3 Criteria for Success

The criteria for success of the research in this thesis have been presented in

Chapter 1. This section discusses the achievements of these criteria. These

achievements are as follows.

1. The development of a new regression test selection model

The developed model in this thesis is called Regression Test Selection by

Exclusion (ReTSE). The model has four main phases as described in Chap-

ter 5. The first phase is Program Analysis which includes Pretty Print and
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Slicing steps. This phase is discussed in Section 5.2.1 (page 58). The sec-

ond phase is called Comparison. This phase is divided into two parts as

described in Section 5.2.2 (page 62). The third phase is called Exclusion as

described in Section 5.2.3 (page 67). This phase has selected relevant test

cases for the Modified Program (M). The last phase is called Optimisation

as discussed in Section 5.2.4 (page 68). This phase has excluded redundant

test cases that have been selected in the Exclusion Phase.

2. The implementation of the new model

This study has implemented part of the ReTSE model into a prototype tool.

Currently, the prototype of the model is not fully automated as described

in Chapter 6. However, some phases of the model have used suitable ex-

isting tools. For instance, the Slicing Step in the Program Analysis Phase

has used CodeSurfer (csurf ) tool in order to produce decomposition slices

for Certified Program (C) and Modified Program (M) (see Section 6.2.1.2,

page 89). The Comparison Phase has used the diff tool in order to compare

between decomposition slices from C and M (see Section 6.2.2, page 93).

The other phases work manually and all phases are not integrated with each

other. However, some suggestions for further implementation are described

in Chapter 6.

3. An analysis of the new model

This thesis has also presented the analysis of the ReTSE model. It begins

with the application of case studies that represent all types of modifica-

tions such as change statements, add statements, delete statements, add

variables and delete variables. Those case studies are described in Chapter
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7. Section 7.2 (page 97) has presented five case studies that have used one

type of modification at a time. Section 7.3 (page 127) has discussed two

case studies that have a combination of modification types. The analysis

of these case studies has provided in Chapter 8, specifically in Section 8.2

(page 149).

4. An evaluation of the new model

In Chapter 8, the ReTSE model has been evaluated based on two parts.

The first evaluation is based on an existing evaluation framework proposed

by Rothermel and Harrold. This evaluation is described in Section 8.3

(page 151). The second evaluation is a comparison between the ReTSE

model and the Pythia technique, and the evaluation is described in Sec-

tion 8.4 (page 159).

9.4 Future Directions

Although the proposed model presented in this thesis has considerably achieved

the intended goals, there are many potential extensions that can be enhanced in

the future. These extensions are as follows.

1. Fully implemented and integrated

Some of the phases in the ReTSE model have used existing tools, while

others are done manually. Therefore, in the future, the prototype of the

model can be expanded to make it fully automated. Then, all phases in the

model can be integrated as a complete tool.
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2. Designing the new requested test cases

In the ReTSE model, there are two outputs of the Optimisation Phase.

They are a set of optimised regression tests (RTO) and a request for new

test cases. Currently, the model only decides whether new test cases are

needed or not. However, the process of designing the additional new test

cases is beyond the scope of the ReTSE model. Hence, this process can be

extended in the future.

3. Running the selected and new test cases on the modified parts only

If the designing of new test cases is adopted in the ReTSE model, then the

model can be expanded to run all relevant test cases on the modified parts

only. The relevant test cases involve a set of Optimised Regression Tests

(RTO) that are produced from the Optimisation Phase and a set of test

cases that are produced from the designing new test cases. The modified

parts include a combination of the DS-Mvi where DS-Mvi is a member of

D and N (refer to Chapter 5, Section 5.2.2, page 62).

4. Improving generality of the model

Currently, the ReTSE model only works for a single module or function

of C programs and this concept is called intraprocedural. The model can

be expanded to make it more generic by incorporating interprocedural con-

cepts. This can be realised by doing some programming using Schema, a

scripting language that exists in csurf tool in order to produce decomposi-

tion slicing automatically. The ReTSE model also can be applied to other

programming language.

5. Evaluating the model using SIR larger programs
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At this moment, the thesis has used small programs in order to analyse

and evaluate the ReTSE model. Those small programs are discussed in

case studies in Chapter 7. Therefore, the further research can evaluate the

model for larger programs. This can be achieved with the prerequisites

of suggestions 1 and 4. The larger programs can be taken from Software-

artifact Infrastructure Repository (SIR) [27] that provides a lot of sources

for program analysis and software testing.

9.5 Summary

This thesis has discussed a research in the area of regression testing. Specifically,

this research focuses on developing a model for regression test selection by exclu-

sion using the decomposition slicing technique called ReTSE. The case studies

have shown that the model has given a significant reduction in the number of test

cases that need to be run after changes have been made. Evidently, the ReTSE

model offer significant opportunity for enhancement and improvement for future

research.

The PhD process is an iterative process that requires a step by step progres-

sion from simple ideas to more complex abstract notions. In this respect the

development of the ReTSE model took a while to develop and specify and was

done at the expense of developing a more technical tool for the implementation.

Working through simple examples of C code also contributed to understanding

how the model should be constructed.
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