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Abstract

The AdS/CFT (anti-de Sitter/conformal field theory) correspondence enables us to

construct some strongly coupled quantum field theories by means of general relativity,

and this approach provides new universality classes of condensed matter systems. In

this dissertation, we will consider three systems.

The first system (chapter 2) is the Reissner-Nordstrom (RN)-AdS4 black hole at

finite temperature. By solving the Dirac equation for a massive, charged spinor in

this background, we find that the fermions have a Rashba-like dispersion relation,

and the Fermi surface has a spin-orbit helical locking structure. We use an improved

WKB method that takes into account the spin-orbit coupling. The effective potential

has a potential well with a barrier. The quasibound states in the potential well can

tunnel through the barrier into the horizon, giving an imaginary part to the mode.

The second system (chapter 3) is the two-charge black hole in AdS5 at zero tem-

perature, which gives an analytically solvable model for the holographic Fermi surface.

Descending from type IIB supergravity, the two-charge black hole describes N coinci-

dent D3-branes with equal, nonzero angular momenta in two of the three independent

planes of rotation orthogonal to the D3-brane world volume. The IR geometry of the

extremal two-charge black hole is conformal to AdS2 × R3, and the electric field

vanishes in the near horizon limit.

The third system (chapter 4) is the extremal RN-AdS5 black hole, in which quan-

tum criticality is studied by solving the Klein-Gordon equation. The Green’s function

near quantum critical points is analytically obtained. There are two types of instabil-

ity: the first one is triggered by a zero mode, and gives a hybridized critical point; the

second one is triggered by the instability of the IR geometry, and gives a bifurcating

critical point.
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Chapter 1

Introduction to applied AdS/CFT

1.1 What is in common among water, CO2, and a

magnet?

Theoretical physics tries to understand nature in terms of a few simple principles. As

an example, water, CO2, and a magnet are seemingly different things, but they all

have a second-order phase transition with the same critical exponents; they belong

to the same universality class. Close to the critical points A, B, and C illustrated

in figure 1.1, they are described by the same quantum field theory (QFT) with the

action1

S =

∫
ddx

(
1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

4!
φ4

)
. (1.1)

In d > 4 dimensions, the theory is non-renormalizable, which implies that it is only

well-defined under a certain energy scale, and in the low energy limit, quantum effects

can be neglected and the mean field theory can be used. In d < 4 dimensions, the

theory is super-renormalizable, which implies that in the high energy limit, the theory

becomes free, while in the low energy limit, the theory becomes strongly coupled, and

1Written in Euclidean signature. The statistical mechanics in d spatial dimensions at finite
temperature is equivalent to a quantum field theory in d spacetime dimensions at zero temperature.

1



T

p

ice

water

vapor

A

critical point

water
T

p

solid

liquid

gas

B

critical point

CO2

T

H

M > 0

M < 0

C

Tc

magnet

Figure 1.1: Schematic plot of phase diagrams for water, CO2, and a magnet. Here
T is the temperature, p is the pressure, and H is the magnetic field. There is a
second-order phase transition at critical points A, B, and C.
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Figure 1.2: (Adapted from ref. [2].) Schematic plot of the phase diagram near a
quantum critical point. FL stands for Fermi liquid, and SLQL stands for semi-local
quantum liquid.

the standard technique of perturbation in λ is not valid. In this case, the theory flows

to an infrared-stable fixed point when d < 4 [1]. Another example of a strongly

coupled system is the Yang-Mills theory. In the high energy limit, the theory is

asymptotically free, while in the low energy limit, the theory is strongly coupled and

has a mass gap.

Understanding different phases of quantum matter by their phase transitions is a

significant and challenging task in modern physics [3]. In general, the quantum phase

transition happens by tuning a parameter to a quantum critical point at the absolute

zero temperature. At nonzero temperature, the quantum critical point will become a

quantum critical region. Studying the quantum phase transition at zero temperature
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can give key insights to understand the quantum critical region at nonzero temper-

ature. The quantum phase transition can happen for both insulators and metals.

Figure 1.2 shows a typical phase diagram. The special feature for metals is that they

have a Fermi surface. The metal in the quantum critical region is called the strange

metal, which is a strongly interacting system. A puzzle about the strange metal

behavior is that the resistivity grows linearly with temperature. Another phase, un-

conventional superconductivity (without a quasiparticle description), will appear at

the quantum critical region.

It is a formidable task to understand strongly interacting QFTs in general. It is

desirable to start from some simple, computable models. The AdS/CFT correspon-

dence, or gauge/gravity duality, provides us a tool to study some quantum critical

systems in terms of classical gravity [4, 5, 6]. This duality maps some strongly inter-

acting systems, which are difficult to study by conventional methods, to a classical

gravity system, which is well-established as Einstein’s general theory of relativity.

The gravity has one more dimension; this extra dimension plays the role of the en-

ergy scale. To make the duality work, we also need to take the “large N” limit, which

means that the gauge theory has a large number of local degrees of freedom. These

models are not realistic in nature, but they capture many essential features of the

real world systems, such as unconventional superconductors and quantum chromody-

namics (QCD).

1.2 The AdS/CFT dictionary

Generally, the holographic principle states that some quantum theories of gravity in

(d+1)-dimensional spacetime is equivalent to a quantum field theory in d-dimensional

spacetime without gravity. The first example of the AdS/CFT correspondence states

that the type IIB superstring theory on AdS5×S5 is equivalent to the N = 4 SU(N)
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super-Yang-mills theory on the boundary of AdS5 [7]. Another example is that the

M-theory on AdS4 × S7/Zk is equivalent to the N = 6 SU(N)k × SU(N)−k super-

Chern-Simons theory (ABJM theory) on the boundary of AdS4 [8].

Under certain conditions, the quantum theory of gravity can be approximated

by the classical theory of gravity. In the first example above, the parameters in the

gravity side are the AdS radius L, the string length ls, and the Planck length lp; the

parameters in the gauge theory side are the ’t Hooft coupling λ = g2
YMN and the

number of colors N . They have the following relations

(
L

ls

)4

∼ λ,

(
L

lp

)4

∼ N. (1.2)

In the λ→∞ and N →∞ limits, the strings are weakly coupled and can be described

by classical gravity. Starting from

Zstring = ZCFT, (1.3)

in the strong coupling and large N limits, we have

ZCFT[J ] ≈ eSgrav , (1.4)

where the equations of motion in the bulk are solved with boundary conditions de-

pending on the source J [9, 10]. Supergravities on AdS5, AdS4, and AdS7 can be

used as consistent truncations of the type IIB superstring and M-theory [11].

Some entries of the AdS/CFT dictionary are
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bulk ←→ boundary

fields local operators

spin spin

mass scaling dimension ∆

metric gµν energy-momentum tensor T µν

gauge field Aµ conserved current Jµ

gauge symmetry global symmetry

black hole deconfined phase at temperature T

Euclidean black hole confined phase

charged black hole system at chemical potential µ

To study a system at finite temperate and density, the simplest geometry is the

Reissner-Nordström (RN) black hole in AdS space. The action is

S =

∫
dd+1x

√
−g
(
R +

d(d− 1)

L2
− 1

4
FµνF

µν

)
. (1.5)

The metric ansatz of Poincaré coordinates is

ds2 =
L2

z2

(
−f(z)dt2 + dx2 +

dz2

f(z)

)
. (1.6)

The solution for the AdSd+1 charged black hole with chemical potential µ is

f(z) = 1− (1 + µ̃2)
( z
zh

)d
+ µ̃2

( z
zh

)2(d−1)

, (1.7)

A(z) = µ
[
1−

( z
zh

)d−2]
dt, (1.8)

where

µ̃2 =
d− 2

2(d− 1)
µ2. (1.9)
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Figure 1.3: Boundary value problem. For the RN-AdS black hole in Poincaré coordi-
nates, the AdS boundary is at z = 0, and the horizon is at z = 1.

The Hawking temperature is

T =
d− (d− 2)µ̃2z2

h

4πzh
. (1.10)

The retarded Green’s function can be obtained by solving the equations of motion

in the bulk with in-falling boundary condition at the horizon [12]. The poles of the

Green’s function correspond to the quasinormal modes in the bulk. In the equations

of motion, the horizon is always at a singular point, and the AdS boundary can be at

either a singular point or an ordinary point. The prescribed behaviors at the horizon

and the AdS boundary determine the quasinormal modes, which are eigenvalues from

a boundary value problem illustrated in figure 1.3. In the following, we assume the

black hole is at finite temperature. At T = 0, the near horizon behavior will be

changed.

1.2.1 Klein-Gordon equation in AdS space

To obtain the Green’s function for a scalar operator in the dual CFT, we will solve

the Klein-Gordon equation for a scalar field Φ. After the Fourier transform

Φ(z, xµ) =

∫
dωdd−1k

(2π)d
e−iωt+ik·xφ(z), (1.11)
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the equation of motion for φ is

φ′′ +

(
f ′

f
− d− 1

z

)
φ′ +

(
(ω + qAt)

2

f 2
− k2

f
− m2

z2f

)
φ = 0, (1.12)

where q is the charge of the scalar, and m2 is above the Breitenlohner-Freedman (BF)

bound [13]: m2 ≥ m2
BF = −d2/4. To obtain the retarded Green’s function, we impose

the in-falling boundary condition at the horizon z = 1:

φ = (1− z)−iω/4πT (1 + · · · ), (1.13)

where T = |f ′(1)|/4π for the coordinates eq. (1.6), and “· · · ” denotes higher orders

of (1− z). The asymptotic behavior near the AdS boundary z = 0 is

φ = Az∆−(1 + · · · ) +Bz∆+(1 + · · · ), (1.14)

where

∆± = −d
2
±
√
d2

4
+m2. (1.15)

In the standard quantization, the retarded Green’s function is

G = (2∆+ − d)
B

A
. (1.16)

When −d2/4 ≤ m2 ≤ −d2/4 + 1, there is an alternative quantization, by which the

Green’s function is G ∼ A/B [14].
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1.2.2 Dirac equation in AdS space

To have a fermionic operator OΨ in a dual field theory, we consider a spinor Ψ in

gravity with the action2

SΨ = −i
∫
dd+1x

√
−gΨ̄(γµDµ −m)Ψ, (1.17)

where Ψ is a spinor of mass m and charge q, and Ψ̄ = Ψ†γt. Vielbein indices are

underlined, and related to coordinate indices by γa = eaµγ
µ. The covariant derivative

is

Dµ = ∂µ +
i

4
ωµ,abγ

ab − iqAµ, (1.18)

where ω is the spin connection, γab = 1
2
[γa, γb], and Aµ is a gauge field.

We choose the gamma matrices according to ref. [16]. Consider the Euclidean

Clifford algebra, {γ̃a, γ̃b} = δab in D dimensions. In the case D = 2, we take γ̃0 = σ3

and γ̃1 = σ2. Given a Clifford algebra γ̃a in D = 2n dimensions, a Clifford algebra in

D + 2 = 2n+ 2 dimensions is

Γ̃0 = id⊗ σ3, Γ̃1 = id⊗ σ2, Γ̃a = γ̃a−2 ⊗ σ1. (1.19)

For odd dimensions, in the usual way we identify γ̃2n+1 with the product of other

gamma matrices (up to a factor of i). The Lorentzian Clifford algebra can be recovered

by multiplying one of the γ̃a by i. We choose γt = iγ̃1, γz = γ̃0, γx = γ̃2, · · · . For

AdS4, the gamma matrices are

γt =

iσ2 0

0 iσ2

 , γz =

σ3 0

0 σ3

 , γx =

σ1 0

0 −σ1

 , γy =

 0 −iσ1

iσ1 0

 .

(1.20)

2Appropriate boundary terms should be added to make the variational principle well-posed and
cancel any divergences. See, for example, the appendix of ref. [15].
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Assuming the metric is diagonal and depends only on the radial coordinate z, the

spin-connection term in the Dirac equation can be eliminated by using the rescaled

spinor ψ̃ = (−ggzz)1/4Ψ. The equation of motion for ψ̃ is

[γµ(∂µ − iqAµ)−m]ψ̃ = 0. (1.21)

The Fourier transform of ψ̃ is

ψ̃(xµ, z) =

∫
d4k

(2π)4
eikµx

µ

ψk(z), (1.22)

where kµ = (ω,k). Because of rotational symmetry, we assume without loss of gener-

ality that the spatial momentum is in the x direction. We also assume that At is the

only nonzero component of A. By plugging a single Fourier mode ψ̃ ∼ e−iωt+ikxψ(z)

into eq. (1.21), we obtain the equation of motion for ψ:

[
−i
√
−gttγt(ω + qAt) +

√
gzzγz∂z + i

√
gxxγxk −m

]
ψ = 0. (1.23)

For AdSd+1, ψ is a 2n-component spinor where n = b(d+ 1)/2c. We write ψ as

ψα =

u1α

u2α

 , (1.24)

where α = 1, 2, · · · , 2n−1. For the choice of gamma matrices as eq. (1.20), eq. (1.23)

reduces to two decoupled equations

[√
−gttσ2(ω + qAt) +

√
gzzσ3∂z − i(−1)α

√
gxxσ1k −m

]
ψα = 0, (1.25)

where ψα are the 2n−1 two-component spinors appearing in the 2n−1 spinor equations,

respectively, with momentum alternating between +k and −k. Therefore the second

9



block of equations, i.e., the one for ψ2, is related to the first black by k → −k. A

third block (if present) is identical to the first, the fourth block to the second, and so

on.

A way to generalize the system eq. (1.17) is to add a dipole coupling as [17, 18]:

Ψ̄( /D −m− ip /F )Ψ, (1.26)

where /F = 1
2
γµνFµν . For the RN-AdSd+1 solution, /F = −(d − 2)µzd−1γzt. By

defining µp ≡ (d − 2)µp, the Dirac equation (1.25) is simply changed by (−1)αk →

(−1)αk − µpzd−2.

To obtain the retarded Green’s function, we impose the in-falling boundary con-

dition at the horizon z = 1:

u1α = (1− z)−iω/4πT (1 + · · · ), (1.27)

u2α = (1− z)−iω/4πT (1 + · · · ). (1.28)

The asymptotic behavior near the AdS boundary z = 0 is

u1α = bαz
r1(1 + · · · ) + dαz

r2(1 + · · · ), r1 = m, r2 = 1−m (1.29)

u2α = aαz
s1(1 + · · · ) + cαz

s2(1 + · · · ), s1 = −m, s2 = m+ 1 (1.30)

where “· · · ” denotes higher orders of z. If m > 1/2, the term bαz
m will become

subleading compared to dαz
1−m in eq. (1.29). If m = 1/2, 3/2, 5/2, · · · , we need to

multiply a ln z before the subleading terms. If m = 1, 2, 3, · · · , we may still need a

ln z if the Dirac equation is coupled to a gauge field.
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The Green’s function is3

GR(ω, k) =


G11

G21

. . .

 , Gα = i
bα
aα
, (1.31)

where 1 is the a 2 × 2 unit matrix. In the following chapters, we sometimes denote

G as the Green’s function and it refers to G1. When m ≤ 1/2, there is an alternative

definition of the Green’s function by Gα = −iaα/bα. The simple diagonal form of

the Green’s function is due to the fact that only block-diagonal gamma matrices

appear in the Dirac equation (1.23). If Ay is present, the Green’s function will not be

diagonal, which implies that the up spins and down spins are mixed by a magnetic

field. Another example is that when there is electric dipole coupling as ψ̄γ5 /Fψ [20].

The prescription when the Green’s function is not diagonal can be found in ref. [16].

1.2.3 Vector and tensor perturbations

The correlation functions of vector and tensor perturbations can be obtained by

using gauge invariant variables [21]. The conductivity is obtained from the retarded

current-current correlation function

G̃µν(x− y) = iθ(x0 − y0)〈[Jµ(x), Jν(y)]〉. (1.32)

The Fourier transform is denoted by Gµν(p), where p2 = −ω2 + k2. At zero tem-

perature, all components of Gµν are determined by a scalar function Π(p2) as Gµν =

(ηµν − pµpν/p2)Π(p2). At finite temperature, the Lorentz invariance is broken, and

3Note that different choice of gamma matrices may lead to different AdS/CFT prescription for
the Green’s function. The “−i” factor in eq. (1.31) is needed for eq. (1.20). For the case without
the “−i” factor, the leading term “1” in eq. (1.28) will be replaced with “i”. A way to check the
consistency is that whether Im(G) > 0 is always held. Another way to check is by the exact result
G = i when m = 0 and k = 0 [19].

11



Gµν can be split into transverse and longitudinal parts:

Gµν(p) = P T
µνΠ

T (ω,k) + PL
µνΠ

L(ω,k). (1.33)

In general, we need to turn on all the perturbations

Ãµ = e−iωt+ik·xAµ, g̃µν = e−iωt+ik·xgµν . (1.34)

To calculate the conductivity, we need to turn on the perturbations e−iωtAx(z) and

e−iωtgtx(z). After eliminating gtx, we obtain a single equation for Ax as

A′′x +

(
f ′

f
− d− 3

z

)
A′x +

(
ω2

f 2
− A′2t z

2

f

)
Ax = 0. (1.35)

1.3 Brief review and summary

Charged black holes in asymptotically AdS space can be regarded as the dual descrip-

tion of some strongly interacting fermionic systems at finite charge density, such as

non-Fermi liquids. This is an application of the gauge/gravity duality, which allows

us to calculate the Green’s function by solving the bulk Dirac equation. There are

several charged black hole systems we may choose, and each of them corresponds

to a distinctive quantum critical system. Here I will discuss three most influential

geometries, which are the RN black hole in AdS, the electron star, and a dilatonic

black hole. Each of them captures some key features of the finite density systems,

but also has some disadvantages. The study of the gauge/gravity duality by these

three geometries helps us to gain more insights to the quantum critical systems.

A well-studied example is the RN black hole in AdS as the geometry [22, 23, 24].

The most consequent result is that the dispersion relation of excitations near the

Fermi surface is determined by the IR geometry. The solution of the Green’s function

12



contains both UV and IR data. The IR Green’s function can be exactly solved as

Gk(ω) ∼ ω2νk , due to the IR geometry containing an AdS2 factor. If νk > 1/2, the

excitations near the Fermi surface are stable, i.e., there are quasiparticles with long

enough lifetime, and thus the system describes the Fermi liquid. If νk < 1/2, the exci-

tations near the Fermi surface are unstable, i.e., there are no quasiparticles, and thus

the system describes the non-Fermi liquid. If νk = 1/2, a delicate cancelation between

the UV and IR data gives a marginal Fermi liquid, which was proposed to explain

the unconventional superconductors before [25]. Moreover, νk can become imaginary,

which indicates an instability due to the pair production in the near horizon region.

The RN black hole system also has some disadvantages. First, the system has

nonzero entropy at zero temperature, which suggests that this geometry is not the true

ground state. Second, the pair production in the near horizon region will backreact

on the metric and change the geometry eventually. After we take into account the

backreactions of the bulk fermions, the IR geometry will be changed into Lifshitz

geometry [26]. Third, the matching between the UV and IR data can only be done

numerically.

The electron star is constructed by taking into account the backreactions of the

fermions [27]. This geometry is close to the realistic case, at a price that heavy

numerical calculations will be needed to solve the Einstein’s equations and the Dirac

equation. The IR geometry has a Lifshitz scaling with dynamical critical exponent z.

The result shows that this system also has Fermi surfaces, but the excitations near

the Fermi surface are more stable than the RN black hole system for ω . kz. The

properties of the system can be qualitatively seen by the effective potential for the

Dirac equation. For certain parameters, the effective potential of the Dirac equation

has a potential well with a barrier. The quasibound states in the well can tunnel

through the barrier to the horizon, which will lead to an instability. As a result, these

quasinormal modes have a small imaginary part. However, the WKB method used in
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previous works could not explain the sign of this imaginary part, because the effect

of spin on the Green’s function was not taken into account.

In chapter 2, we study the Green’s function of a gauge invariant fermionic operator

in a strongly coupled field theory at nonzero temperature and density using a dual

gravity description. The gravity model contains a charged black hole in four dimen-

sional anti-de Sitter space and probe charged fermions. In particular, we consider the

effects of the spin of these probe fermions on the properties of the Green’s function.

There exists a spin-orbit coupling between the spin of an electron and the electric

field of a RN black hole. On the field theory side, this coupling leads to a Rashba

like dispersion relation. We also study the effects of spin on the damping term in the

dispersion relation by considering how the spin affects the placement of the fermionic

quasinormal modes in the complex frequency plane in a WKB limit.

In ref. [28], another improved geometry, a charged dilatonic black hole in AdS5

as a consistent truncation of the type IIB supergravity, is studied as the ground

state of the gravity dual to a fermionic system. At low temperature, the entropy

and the specific heat are proportional to the temperature, like the Fermi liquid. An

exact value of the Fermi momentum kF , which indicates the existence of the Fermi

surface, was found for a special choice of parameters. In general, the Fermi momentum

cannot be analytically solved in the first two geometries. The exact value of kF

solved in the third geometry indicates that it has more elegance besides its favorable

thermodynamical property and demands further study.

In chapter 3, we find exact, analytic solutions of the Dirac equation for a charged,

massless fermion in the background of a charged, dilatonic black hole in AdS5. The

black hole descends from type IIB supergravity, where it describes D3-branes with

equal angular momenta in two of the three independent planes of rotation orthogonal

to the world-volume. The Green’s function near the Fermi surface for a strongly

coupled fermionic system can be extracted holographically from an exact solution of
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the Dirac equation at zero frequency but nonzero momentum. There can be several

Fermi momenta, and they take the form kF = q − n − 1/2 (in units of the chemical

potential), where q is the charge of the spinor, and n is a non-negative integer that

labels the Fermi surfaces. Much as for holographic Fermi surfaces based on the RN-

AdS5 solution, the dispersion relation of the excitations near the Fermi surface is

determined by the geometry close to the horizon, and one can obtain Fermi liquid,

marginal Fermi liquid, and non-Fermi liquid behaviors depending on the value of kF .

The main difference between the RN black hole and the charged dilatonic black

hole is due to the IR geometry. In the RN-AdS5 black hole system, the IR geometry

is AdS2 × R3, and the electric field is constant at the horizon. In our system, the IR

geometry is conformal to AdS2×R3, and the electric field vanishes at the “horizon,”

which is a naked singularity. In terms of the dynamical critical exponent z and the

hyperscaling violation exponent θ, this IR geometry corresponds to the limit z →∞

with η = −θ/z = 1 [29, 27]. There is still flux behind the horizon due to the dilaton

field. The two systems are similar in that the dispersion relation of the excitation

near the Fermi surface is determined by the IR scaling dimension. The two systems

are different in that νk for the RN black hole could become imaginary, while in our

system νk is always real, which implies that the instability near horizon in the RN

black hole system is absent in our system.

In chapter 4, we find exact, analytic solutions of the Klein-Gordon equation for

a scalar field in the background of the extremal RN-AdS5 black hole. The Green’s

function near a quantum critical point for a strongly coupled system can be extracted

holographically from an exact solution for the scalar at zero frequency (ω), but ar-

bitrary momentum (k), mass, and charge. By examining the Green’s function near

ω = 0, there are two types of instability: the first one is triggered by a zero mode, and

gives a hybridized critical point; the second one is triggered by the instability of the

IR geometry, and gives a bifurcating critical point. The two types of instability can

15



happen at the same time, and give a mixed critical point. Without tuning an extra

parameter, only the second type of instability can happen at k = 0. At the critical

point with the superfluid velocity, the scalar can develop either type of instability,

depending on the parameters. The zero mode can also be obtained by tuning a double

trace deformation. The phase diagrams can be analytically drawn.

Appendix A includes some notes on how to take advantage of the Heun function

and the hypergeometric function in solving the equations of motion.
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Chapter 2

The spin of holographic electrons

at nonzero density and

temperature

This chapter is a lightly edited version of ref. [30], which was written in collaboration

with Christopher P. Herzog.

2.1 Introduction

Through gauge/gravity duality [7, 9, 10], a charged spinor field in an asymptotically

anti-de Sitter (AdS) space in a classical limit can be used to model strongly interacting

fermions in field theory. While the start of this program can be traced back to refs.

[31, 32] which solve the Dirac equation in pure AdS space, with refs. [33, 19, 34]

there has been a resurgence of interest in the subject focused on fermions at nonzero

charge density in the hope of modeling strongly interacting cousins of Fermi liquids.

These so-called non-Fermi liquids are believed to underly some of the interesting

physics of heavy fermion compounds and high temperature superconductors. Initial

gauge/gravity duality studies focused on charged black hole backgrounds. By tuning
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the parameters of the fermionic field, both Fermi liquid and non-Fermi liquid behavior

can be obtained [22].

These holographic models of strongly interacting fermions appear to be delicate to

construct. The charged black hole is subject to a wide variety of potential instabilities

in the zero temperature limit. For example, if the field theory contains an operator

dual to a charged scalar field in the bulk, the black hole can develop scalar hair in a

holographic superfluid phase transition [35, 36, 37, 38]. If a four fermion interaction

term with the right sign is added to the Dirac Lagrangian, there can be a Bardeen-

Cooper-Schrieffer phase transition at low temperatures in the bulk [39]. Even with no

extra terms in the Lagrangian, if the fermions have a large enough charge, the con-

densation of a Fermi sea in the bulk will modify the geometry, producing an electron

star at low temperatures [40, 41, 27]. The field theories dual to these electron stars

exhibit the usual Fermi liquid behavior. In contrast, the non-Fermi liquid behavior

found by [22] occurs in the limit where the Fermi sea outside the black hole is very

small.

The delicate nature of these systems aside, they seem to be promising toy models

to address some of the questions surrounding strongly correlated electron systems.

The current paradigm surrounding these toy models appeals to ideas of confinement

in large N gauge theories [24, 42, 43, 44]. The charge of the black hole should be

carried by deconfined degrees of freedom – non-gauge invariant fermions behind the

horizon. The added Dirac field is dual to a confined degree of freedom, i.e. a gauge

invariant fermion or mesino. Just as in QCD where the mesons and baryons interact

weakly with each other in a large N limit, these mesinos form a Fermi liquid which

by definition is effectively weakly interacting. It is the conjectured fermions behind

the horizon which lead to non-Fermi liquid like behavior.

Our goals in this chapter are modest. We would like to provide a more careful

consideration of spin physics and spin-orbit coupling in these holographic systems
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than has appeared heretofore in the literature. A qualitative discussion of spin-orbit

effects appears in ref. [45] in the context of coupling fermions to a d-wave holographic

superconductor, but we shall try to be more quantitative and precise here. By spin

orbit coupling, we mean that a bulk charged fermion moving perpendicular to an

applied electric field experiences an effective magnetic field that splits the degeneracy

between the two spin states.

Let us start with an electrically charged black hole in AdS4 at nonzero temperature

to which we add a spinor field. Using the standard gauge/gravity duality dictionary,

we may compute the quasinormal mode (QNM) spectrum of the spinor field which will

allow us to deduce where the retarded Greens function for the dual gauge invariant

fermionic operator has poles [12, 46]. When the charge of the black hole is large

enough, the imaginary parts of many of these quasinormal modes will be small, and

we plot in figure 2.1a the real part of the freqency of these modes versus momentum.

One may think of these curves as dispersion relations for fermionic quasiparticles in

the field theory. Alternately, one may think of these curves as locations where the

field theory may have a nonzero density of states. (To compute the actual density

of states, we need the full Green’s function including the residues of the poles, and

these residues may vanish at special points.) The system is rotationally symmetric,

and one can envision the full k dependence by rotating the graph around the ω-axis.

The details of this numerical computation are presented in section 2.3.

The similarity between figure 2.1a and figure 2.1b is one of the central observations

of this chapter. Figure 2.1a resembles four copies of figure 2.1b. Figure 2.1b is the

dispersion relation for a nonrelativistic two dimensional electron gas with a spin orbit

(or Rashba) coupling. The Rashba Hamiltonian can be written

H =
k2

2meff

− λ~σ · (ẑ × ~k)− µ , (2.1)
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where λ is the Rashba coupling constant, µ a chemical potential, ~σ the Pauli matrices,

meff the electron effective mass, and ẑ the unit vector perpendicular to the gas.

From the bulk spacetime point of view, the similarity between these two figures

is straightforwardly explained. Electrons with the dispersion relation (2.1) can be

produced by a two dimensional slab-like geometry with a strong electric field per-

pendicular to the slab. On the gravity side, the charge of the black hole provides

the electric field. The slab lies between the boundary of AdS on one side and the

horizon on the other. More precisely, deriving a Schrödinger equation for the spinor

field, one finds a potential barrier between the well in which the spinors live and the

horizon. Tunneling through the barrier produces the small negative imaginary part

of the QNMs.

For the 2+1 dimensional field theory, this similarity naively presents a puzzle.

The usual derivation of the Hamiltonian (2.1) is intrinsically 3+1 dimensional and

relies on the presence of the electric field and a notion of spin-orbit coupling. In

the context of heavy fermion compounds and strange metals, one anticipates that

spin should be essentially an internal SU(2) symmetry of the electrons. There are

no strong magnetic or electric fields in these compounds, and the Fermi surface or

surfaces should be spin degenerate. There is no obvious mechanism for breaking the

SU(2) symmetry of these strongly interacting fermions at nonzero density.

The solution to this puzzle is that by the rules of the AdS/CFT correspondence,

the dual field theory is intrinsically relativistic. Spin is not an internal symmetry but

instead implies a corresponding transformation rule under the Lorentz group. In 2+1

dimensions, angular momentum dualizes to a scalar. Massive free fermions satisfying

the Dirac equation (γµpµ − im)ψ = 0 carry a spin determined by the sign of their

mass 1
2
sgn(m) (see for example [47]).1 In contrast, massless fermions, because the

little group is too small, carry no spin at all. We believe that the fermions in our field

1In our conventions, the gamma matrices obey {γµ, γν} = 2ηµν where ηµν = (−+ +).
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theory are massless for two reasons. The first is that the field theory is conformal and

a mass term breaks scale invariance. The second is that while a mass term for the

fermions breaks parity in 2+1 dimensions, the state we consider in the field theory

appears to be parity invariant. In support of this claim, note that the Hamiltonian

(2.1) is invariant under the parity operation that sends (kx, ky) → (−kx, ky) and

ψ → σxψ.

There is an alternate intrinsically 2+1 dimensional way of motivating the Hamil-

tonian (2.1). Our black hole background is dual to a conformal theory at nonzero

chemical potential µ and temperature. The presence of energy and charge density

identifies a preferred Lorentz frame uµ = (1, 0, 0). From an effective field theory point

of view, it is natural to expect a modified Dirac equation of the form [48]

[(1 + F )pµ + (−µ+G)uµ] γµψ = 0 , (2.2)

where pµ = (ω, kx, ky) is the four momentum and F and G are arbitrary functions

of ω and k =
√
k2
x + k2

y. Note we have not included a bare mass in this expression.

Choosing gamma matrices γt = iσz, γ
x = σx and γy = σy and setting F and G to

zero, we recover (2.1) without the k2 term and with λ = 1. (In other words, the

Rashba coupling itself is the Hamiltonian for a massless relativistic fermion in 2+1

dimensions.) To add the k2 term, we may posit that G(ω, k) ∼ k2 which is allowed

by the symmetries. To get the different bands in figure 2.1a, we may additionally

posit the existence of several species of massless fermions with different charges qi,

replacing µ with µqi in (2.1). Ideally, we would like to derive this effective Dirac

equation from an action, but we do not know how.

One may object on technical grounds to the nonextremal black hole background

used to produce figure 2.1a. From earlier work on the electron stars [40, 41, 27], for

the large charge, low mass fermion chosen, it is clear that the bulk Fermi sea will
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Figure 2.1: (a) The dispersion relation in the boundary theory for a bulk fermion
with charge times chemical potential divided by temperature µq/4πT = 25 and mass
times AdS radius mL = 2. (b) The dispersion relation for a fermion with a Rashba
type coupling. The Fermi surface in both cases is indicated by the dashed line.

cause a back reaction of the black hole background. In principle, one should use

the numerically computed electron star metrics to produce figure 2.1a. However, the

phase transition between the charged black hole and the electron star is third order

[41], and there are many qualitatively similar features between the charged black hole

and electron star backgrounds. Using the numerical electron star metrics, which are

only exact in an Oppenheimer-Volkoff approximation, should not change the story in

a qualitative way.2

We begin this chapter by revisiting the Dirac equation in these charged black hole

and electron star backgrounds in section 2.2. We show, using the Pauli-Lubanski

pseudovector, how to identify the different spin components of the fermion. Next

in section 2.2.1, we review how to compute the QNMs of a spinor field in these

backgrounds, and connect the QNMs to poles of the retarded Green’s function in the

dual field theory. Section 2.2.2 reviews how to convert the Dirac equation into an

effective Schrödinger equation for the spinor for use in a WKB approximation. The

WKB limit will give us qualitative insight into the nature of this spin-orbit coupling.

Finally, in section 2.3, we employ the machinery set up in the earlier sections to

2See [42, 49] for progress going beyond the Oppenheimer-Volkoff approximation. Note that in the
Oppenheimer-Volkoff approximation, the electrons are heavy and the spin splitting is very small.
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compute the QNMs of the spinor in a charged black hole in AdS4, giving the details

behind figure 2.1a. Section 2.3.1 contains a discussion of the numerical solution of

the Dirac equation, while 2.3.2 discusses the Dirac equation in a WKB limit. The

WKB calculation contains some unusual features which we discuss at length. We are

able to show how the WKB approximation gets the sign of the imaginary part of the

quasinormal modes correct. Making use of Heun polynomials, appendix A.1 contains

some exact analytic solutions of the Dirac equation for a charged spinor in a black

hole in AdS5.

2.2 The Dirac Equation Revisited

To have a gauge invariant fermionic operator OΨ in a dual field theory, we consider

a spinor Ψ in a curved spacetime with the action

SΨ = −i
∫
dd+1x

√
−gΨ(γµDµ −m)Ψ , (2.3)

where Ψ is a spinor of mass m and charge q, and we follow the convention of sec-

tion 1.2.2.

With AdS/CFT applications in mind, we make the following simplifying assump-

tions on the metric and gauge field. We assume a translationally and rotationally

invariant metric of the form

ds2 = gttdt
2 + gxx(dx

2 + dy2 + . . .) + gzzdz
2 , (2.4)

where the diagonal metric components gµµ(z) depend only on a radial coordinate z.

Additionally, we assume that At is the only nonzero component of the vector potential

and that it is a function only of the radial coordinate z. In other words, there is a

radial electric field whose strength may vary as a function of the radial direction.
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The type of spacetimes we have in mind are Reissner-Nordström (RN) black holes

and electron stars in AdS, both of which obey this set of assumptions.

Given these assumptions, the Dirac equation takes a particularly simple form. The

spin-connection term in the Dirac equation can be eliminated by using the rescaled

spinor ψ̃ = (−ggzz)1/4Ψ. The equation of motion for ψ̃ is eq. (1.21). Because of

rotational symmetry, we assume without loss of generality that the spatial momentum

is in the x direction. By plugging a single Fourier mode ψ̃ ∼ e−iωt+ikxψ(z) into

eq. (1.21), we obtain the equation of motion for ψ as eq. (1.23). Because we have

set momentum in the y direction to zero, the Dirac equation for the four component

spinor ψ decouples into equations for two-component spinors ψ = (ψ+, ψ−)T :

[√
−gttσ2(ω + qAt) +

√
gzzσ3∂z ± i

√
gxxσ1k −m

]
ψ± = 0 . (2.5)

We argue that ψ± correspond to fermions with opposite spin. To see the spin

direction, consider the Pauli-Lubanski pseudovector

Wa =
1

2
εabcdJ

bcP d , (2.6)

where Jab = i
4
[γa, γb] and P a = −iDa. We will show that ψ = (ψ+, 0) and ψ = (0, ψ−)

are eigenstates of Wy. Acting on e−iωt+ikxψ(z), P a = −ieaµgµνDν is given by

P a = (
√
−gtt(ω + qAt), −i

√
gzz∂z,

√
gxxk, 0) . (2.7)

Thus we obtain Wy =

i

2



−i
√
gzz∂z

√
gxxk −

√
−gtt(ω + qAt) 0 0

√
gxxk +

√
−gtt(ω + qAt) i

√
gzz∂z 0 0

0 0 i
√
gzz∂z

√
gxxk +

√
−gtt(ω + qAt)

0 0
√
gxxk −

√
−gtt(ω + qAt) −i

√
gzz∂z


.

(2.8)

24



We find then that the Dirac equation (2.5) can be written in terms of the Wy

component of the Pauli-Lubanski pseudovector:

Wy

ψ+

ψ−

 =
1

2
m

1 0

0 −1


ψ+

ψ−

 , (2.9)

which means that the spin of ψ+ is in the y-direction, and the spin of ψ− is in the

opposite direction. Because we assumed that the momentum is in the x-direction,

and the system has rotational invariance, the direction of spin is always perpendicular

to the plane defined by the momentum and the radial direction z. The Dirac equation

decouples into these spin eigenstates.

This decoupling of spin eigenstates is in good agreement with flat space, nonrel-

ativistic intuition [45]. Starting with a massive fermion moving in the x-direction,

the fermion in its own rest frame will experience both an electric field in the radial

z-direction and a magnetic field in the y-direction. This magnetic field will induce

an energy splitting between the y-spin up fermion and the y-spin down fermion. The

WKB limit we consider later will further strengthen this non-relativistic intuition.

There is also a possible coupling between the curvature and the spin.

2.2.1 From quasinormal modes in the bulk to dispersion re-

lations in the boundary

In this section, we would like to take advantage of the well known AdS/CFT relation

between QNMs of the bulk spacetime and poles in the Greens functions of the dual

field theory [12]. To that end, we begin by discussing the QNM boundary conditions

for the Dirac equation (2.5).
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We will assume that our metric in the limit z → 0 is asymptotically of anti-de

Sitter form:

gtt ∼ gxx ∼ gzz ∼
1

z2
. (2.10)

There are two linearly independent solutions of the two component Dirac equation

which approach the boundary as

χ1 ∼

 zm

0

 and χ2 ∼

 0

z−m

 . (2.11)

We apply the “Dirichlet” boundary condition that the χ2 solution vanish. Using these

boundary conditions, the relation between the scaling dimension of the dual operator

OΨ and the mass of the spinor is ∆ = m + d/2 [31]. The unitarity bound on the

scaling dimension restricts us to m ≥ −1/2.3

As the “Dirichlet” boundary condition is Hermitian, the quasinormalness of the

modes comes from the boundary condition applied in the interior of the geometry.

We assume that gtt → 0 at some zh > 0, and at this horizon, the phase velocity

of the spinor wave function is in the positive z-direction. For example, for a non-

extremal blackhole, we may take the time and radial metric components to vanish as

−gtt ∼ gzz ∼ 4πT (zh − z) where T is the Hawking temperature. In this case, our

ingoing boundary condition is

ψ± ∼ (zh − z)−iω/4πT

 1

1

 . (2.12)

One may also consider more exotic situations, for example the Lifshitz geometry in

the interior of the electron star [40].

3Using the “Neumann” boundary condition, we may consider spinors with dimension ∆ = −m+
d/2 and m ≤ 1/2.
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Solving the Dirac equation with “Dirichlet” boundary conditions at z = 0 and in-

going boundary conditions at the horizon is only possible for a discrete set of complex

frequencies ω called QNMs. As we tune k in the Dirac equation, a given QNM will

trace out a curve in the complex ω plane. Provided the imaginary part of the QNM

is small, this curve is essentially a dispersion relation for a quasi-stable particle.

To relate the QNMs to poles in the fermionic two-point function in the dual

field theory, let us briefly recall how to compute these two-point functions. The

first step is to solve the Dirac equation with ingoing boundary conditions at the

horizon and arbitrary boundary conditions at z = 0, yielding a solution of the form

ψ± = b±χ1 +a±χ2 for each spin component where a± is interpreted as proportional to

a source in the dual field theory and b± as an expectation value. The retarded Green’s

function is in reality a 2 × 2 matrix, but our choice of momentum has diagonalized

it. Through the theory of linear response, the retarded Green’s function is Gαβ
R =

iδαβbα/aβ [16]. If aα vanishes, GR will have a pole.

2.2.2 A Schrödinger form for the Dirac equation

While at least three papers have considered the WKB limit of the Dirac equation in

this AdS/CFT context [22, 27, 24], these papers have largely ignored the effects of

the spin of the electron. Our focus here shall be on the spin.

The WKB approximation in this case assumes that the dimensionful parameters

m, ω, qAt, and k are large compared to the scale ∂z lnψ± over which the wave function

varies. We may capture this limit by introducing a small parameter ~ multiplying ∂z

in the Dirac equation,

[
~
√
gzzσ3∂z −m+

√
−gttσ2(ω + qAt)± i

√
gxxσ1k

]
ψ± = 0 , (2.13)

and then expanding in ~.
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Our first step is to convert the Dirac equation into Schrödinger form. As noted

in this AdS/CFT context by [22], there is no unique procedure. Given an equation

in Schrödinger form, one has the usual freedom to reparametrize the coordinate y =

f(z) and rescale the wave function φ → Zφ subject to the constraint Z2f ′ is a

constant. However, there is an additional functional degree of freedom associated

with converting a Dirac equation into Schrödinger form; one can introduce the scalar

wave function φ± such that

ψ± =

 αφ± + ~β ∂zφ±

γ φ± + ~δ ∂zφ±

 . (2.14)

The condition that φ± satisfies a Schrödinger type equation −∂2
zφ± + V φ± = 0 puts

three constraints on the functions α, β, γ, and δ, but leaves a family of potentials

V (z) parametrized by an undetermined function [50].

One simple choice is to select φ± to be proportional to the first component of the

two component spinor ψ±:

ψ± =

 √
Z±k φ±

i
√
gzzm
√
Z±k φ±−~ ∂z(

√
Z±k φ±)

Z±k

 (2.15)

where we have introduced a normalization factor

Zk ≡ (gzz)
1/2
[√
−gtt(ω + qAt)−

√
gxxk

]
. (2.16)

Given these substitutions, φ± satisfies a Schrödinger equation of the form

−∂2
zφ± + V±k,mφ± = 0 , (2.17)

28



where the potential function is

Vk,m(z) =
1

~2

(
gzzm

2 − Z−kZk
)
− mgzz

~
∂z(
√
gzzZk)

Zk
+
√
Zk∂

2
z

1√
Zk

. (2.18)

Note that the spin dependence of the potential enters only at subleading order. At

leading order in ~, Vk,m is independent of the sign of k.

At leading order in ~, the spinor potential Vk,m is exactly what one obtains for

a charged scalar particle in this curved spacetime. If we start with the scalar wave

equation (DµD
µ−m2)Φ = 0 and let Φ = e−iωt+ikxZ(z)φ(z) where Z =

√
gzz(−g)−1/4,

then we obtain −∂2
zφ+ Vsφ = 0 where

Vs(z) =
1

~2

(
gzzm

2 − Z−kZk
)

+ Z∂2
z

1

Z
, (2.19)

and we have introduced factors of ~ analogously to the spinor case.

There is an important difference between the scalar and the spinor case. The

normalization factor Zk may vanish at a point in spacetime where the energy of the

particle is equal to the local chemical potential plus a k dependent correction. At

such a point, the spinor potential Vk,m will have singularities at subleading order in

~. We will see in the next section how these subleading singularities mean that while

scalar QNMs can lie in the upper half plane, the spinor QNMs will not.

Before getting into the details, we can say something about the number of zeroes

Zk possesses in the interval 0 < z < zh. In general, we will associate the boundary

value of At with a chemical potential: At(0) = µ; at the horizon we set At(zh) = 0.

Given the boundary conditions described in section 2.2.1 for the metric gµν , close to

the horizon we find that Zk ∼ ω/4πT (zh− z). At the boundary, we find instead that

Zk(0) = ω + qµ− k. Thus, if ω + qµ− k and ω are of the same sign, there will be an

even number of zeroes between the boundary and the horizon. If they have opposite

sign, there will be an odd number. In the cases we consider below, qµ > k − ω, and
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so the parity of the number of zeroes is determined by the sign of ω, odd if ω < 0

and even if ω > 0.

Before continuing to an example, we would like to point out another simple choice

of Schrödinger equation. We can let φ± be proportional to the second component

of ψ± rather than the first. To compute this alternate Schrödinger equation, we do

not need to do the calculation again. Note instead that eq. (2.13) is invariant under

k → −k, m → −m, and ψ± → σ1ψ±. Thus the Schrödinger equation for the second

component is given by replacing Vk,m with V−k,−m. Interestingly, this symmetry im-

plies that the potentials Vk,m and V−k,−m have the same quasinormal mode spectrum

(being careful to exchange the boundary conditions on the two components of ψ± as

well). The existence of this second isospectral potential allows for some cross checks

when we perform a WKB analysis below.

2.3 An Example: AdS-Reissner-Nordström Black

Hole

To study a fermionic system at nonzero temperature and density, we use the RN black

hole as the background geometry, solve the Dirac equation coupled to a U(1) gauge

field, and obtain the QNMs. We will solve the Dirac equation both numerically and

using WKB. Our main interest is the location of the poles of the Green’s function.

Most of our results are for the m = 2 spinor in AdS4.

We consider a charged black hole in AdS4 in the Poincaré patch for which the

metric has the form

ds2 =
L2

z2

(
−f(z)dt2 + dx2 + dy2 +

dz2

f(z)

)
. (2.20)
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The conformal boundary is at z = 0, and the horizon is at z = zh, where f(zh) = 0.

We set L = 1 and zh = 1, which are allowed by two scaling symmetries [38]. The

charged black hole solution and its probe limit are as follows:

RN-AdS4: f = 1−
(

1 +
µ2

4

)
z3 +

µ2

4
z4 with At = µ(1− z) ; (2.21)

probe limit: f = 1− z3 with At = µ(1− z) . (2.22)

We work in the probe limit µ = 0 and µq = µq held fixed. In this limit, the electric

field does not backreact on the geometry. If we use the full solution to the RN black

hole, the qualitative features will not change, as we will discuss at the end of section

2.3.1.

2.3.1 Numerics

To solve the Dirac equation (2.5) numerically in this spacetime, we approximate the

ingoing solution by a Taylor series near the horizon z = 1, integrate numerically to

a point near the boundary z = 0, and fit the numerical solution to the boundary

expansion ψ± = b±χ1 + a±χ2. The numerical integration was performed using Math-

ematica’s NDSolve routine [51]. As we are interested in QNMs and the corresponding

Green’s function singularities, we focus on the value of the source a±.

Figure 2.2 presents a density plot of |a+| as a function of complex ω. We see that

the poles of the Green’s function in the complex ω plane have the following features:

• As we increase the chemical potential µq, there are more and more poles along

the negative real ω axis. Decreasing µq moves these poles to the right. Once

they cross the imaginary axis, they begin to move away from the positive real

axis. See figure 2.2.
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Figure 2.2: Motion of the poles in the complex ω plane as we increase µq. From left
to right, µq = 5, 15, 25. Other parameters are m = 2 and k = 0.

Figure 2.3: Motion of the poles in the complex ω plane as we increase k. From left
to right, k = 5, 10, 15. Other parameters are m = 2 and µq = 25.

• If we fix µq and increase the momentum k, the poles move to the right. As

ω = 0 corresponds to the Fermi surface, when a pole crosses the imaginary axis,

we obtain a Fermi momentum kF . See figure 2.3.

We can obtain many Fermi momenta k
(n)
F and many Fermi surfaces. The poles close

to the real ω axis correspond to quasibound states, and the number of them at k = 0

equals the number of Fermi surfaces. The number of Fermi surfaces grows linearly

with the chemical potential, which can be seen by comparing figure 2.2 and figure 2.11

in the next section (or equivalently tables (2.39) and (2.39)).
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Figure 2.4: Dispersion relation for a massless fermion with µq = 20. Its mirror image
k → −k is for the opposite helicity. There are no poles in the Green’s function at
k = 0.

For the other spin (k → −k), the poles will be in slightly different locations. The

spin splitting can be seen more obviously by looking at figure 2.1. The figure is a plot

of the dispersion relation and was constructed by superposing density plots of |a+|

and |a−| in the k-ω plane. The density plot of |a+| corresponds to the parabolas on

the left and |a−| to the parabolas on the right.

For comparison, we also plot the dispersion relation for a massless m = 0 bulk

fermion in figure 2.4. (Here only |a+| is plotted. The density plot for the other spin

component |a−| is the mirror image.) Unlike the massive case, there do not seem

to be well defined quasiparticles close to the k = 0 axis. For the m = 0 case there

are no poles in the Green’s function at k = 0 and m = 0. This fact can be checked

analytically by solving the Dirac equation to obtain GR(ω, k = 0) = i [22]. From a

bulk point of view, the absence of these poles is presumably related to the absence of

a rest frame for a massless particle. As can be seen in figure 2.4, poles do appear for

k 6= 0. For the field theory dual, the interpretation is more obscure. Ref. [49] relates

the absence to strong interactions with a background continuum of states existing

inside an “IR lightcone”. Why then the interactions are suppressed for larger bulk

masses still needs to be explored.
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kx

ky

Figure 2.5: The left plot shows the Fermi surfaces with spin splitting. The parameters
are m = 2 and µq = 25. The right plot illustrates the directions of spin for massive
bulk fermions.

Figure 2.5 (left) shows the location of the Fermi surfaces in momentum space and

also demonstrates the spin splitting effect. As we discussed above, the spin of the bulk

spacetime fermions is perpendicular to the momentum and the electric field. Thus the

bulk Fermi surfaces are spin polarized, as shown schematically in figure 2.5 (right). A

similar effect has been studied in spin Hall systems [52] and observed in experiments

[53] for electrons that while confined to a plane still have a three dimensional spin.

Note that for the 2+1 dimensional field theory fermions, the spins shown in figure

2.5 (right) are misleading. From a purely 2+1 dimensional perspective, we argued

in the introduction that the fermions are both massless and spinless. The extra

degrees of freedom producing the second Fermi surface come from the hole states.

The dispersion relation for the hole states has been bent upward, emptying out the

infinite Fermi sea and producing a second Fermi surface.

Before moving on to WKB, we promised a discussion of the validity of our probe

approximation. The temperature for the charged black hole solution eq. (2.21) is

T =
12− µ2

16π
. (2.23)
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Figure 2.6: Temperature dependence of the dispersion relation with fixed µq = 25.
This is the only plot that uses the full solution of the RN black hole in this chapter.
The chemical potential for the three plots are µ ≈ 1.7665, 3.2218, 3.4615 (from left
to right). The extremal case corresponds to µ = 2

√
3 ≈ 3.4641. These are spin up

fermions.

If we lower the temperature by increasing the chemical potential µ, more Fermi sur-

faces will appear, but the size of the outer Fermi surface will remain roughly the same,

as figure 2.6 shows. By comparing figure 2.6 and figure 2.1a, we can see that if we

consider the high temperature regime, i.e., T/µ > 0.1, there is no essential difference

between the full RN solution and the probe limit in eq. (2.22).

2.3.2 WKB

The rough picture of the WKB analysis of the Schrödinger equation (2.17) with the

spinor potential function Vk,m (2.18) is easily explained. Schematically, we may write

our potential as

Vk,m =
V0

~2
+
V1

~
+ V2 . (2.24)

Considering only the leading order term V0 = gzzm
2 − ZkZ−k, there is a barrier at

the conformal boundary z = 0 provided m2 > 0. At the horizon z = 1, the potential

V0 is unbounded below provided ω2 > 0. For intermediate values 0 < z < 1 and

appropriate choices of k, µ, and q, one may find a potential well where V0 < 0

separated from the horizon by a barrier where V0 > 0 (see figure 2.7). For discrete
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a) horizon

V0HzL
HIL Ω<Ωmin

b) horizon

V0HzL
HIIL Ωmin<Ω<0

c) horizon

V0HzL
HIIIL 0<Ω<Ωmax

d) horizon

V0HzL
HIVL Ω>Ωmax

Figure 2.7: The leading order potential V0 for the spinor or scalar when ω 6= 0. There
exist quasi-bound states when ωmin < ω < ωmax.

a) horizon

V0HzL
Ω=0, k<kF

b) horizon

V0HzL
Ω=0, k>kF

Figure 2.8: The leading order potential V0 for the spinor or scalar when ω = 0. There
exists a bound state provided k is not too large.

choices of ω, the wave function will satisfy a Bohr-Sommerfeld type quantization

condition, and the potential well will support quasi-bound states. Tunneling through

the barrier to the horizon gives ω a small imaginary part. Note in the special case

ω = 0 shown in figure 2.8, the potential at the horizon becomes a barrier, suggesting

that the quasinormal modes have very small imaginary part close to the origin.

The detailed picture of this WKB analysis is more intricate. At leading order in

~, the Schrödinger potentials for the spinor and scalar are identical, and the results
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will be independent of the spin that is this chapter’s main focus. Moreover, there is

an important qualitative difference in the QNM spectrum for the spinor and scalar

that is not captured at this leading order. The charged scalar QNMs may lie in the

upper half of the complex ω plane signaling a perturbative instability [36, 37], while

the spinor QNMs will not. Yet, as we will see, the leading order WKB analysis would

put the spinor QNMs in the upper half plane as well.

To capture the effects of spin, we will keep the first subleading term in the ~

expansion of Vk,m. Our WKB wavefunction is then

φWKB =
1

V
1/4

0

exp

(
±1

~

∫ √
V0

(
1 + ~

V1

2V0

)
dz

)
. (2.25)

The classical turning points are defined in terms of the zeroes of V0.

To set up the WKB problem, let z1 < z2 be the turning points bounding the

classically allowed region. Similarly, let z2 < z3 bound the potential barrier. We

begin by writing formal expressions for the WKB wave functions to the left and right

of the three points z1, z2, and z3 valid to next to leading order in ~:

φ1 =
1

V
1/4

0

(
A1e

1
~
∫ z1
z

√
V0(1+~V1/2V0)dz +B1e

− 1
~
∫ z1
z

√
V0(1+~V1/2V0)dz

)
, (2.26)

φ2 =
1

(−V0)1/4

(
A2e

i
~
∫ z
z1

√
−V0(1+~V1/2V0)dz

+B2e
− i

~
∫ z
z1

√
−V0(1+~V1/2V0)dz

)
, (2.27)

φ3 =
1

(−V0)1/4

(
A3e

i
~
∫ z2
z

√
−V0(1+~V1/2V0)dz +B3e

− i
~
∫ z2
z

√
−V0(1+~V1/2V0)dz

)
,(2.28)

φ4 =
1

V
1/4

0

(
A4e

1
~
∫ z
z2

√
V0(1+~V1/2V0)dz

+B4e
− 1

~
∫ z
z2

√
V0(1+~V1/2V0)dz

)
, (2.29)

φ5 =
1

V
1/4

0

(
A5e

1
~
∫ z3
z

√
V0(1+~V1/2V0)dz +B5e

− 1
~
∫ z3
z

√
V0(1+~V1/2V0)dz

)
, (2.30)

φ6 =
1

(−V0)1/4

(
A6e

i
~
∫ z
z3

√
−V0(1+~V1/2V0)dz

+B6e
− i

~
∫ z
z3

√
−V0(1+~V1/2V0)dz

)
. (2.31)

Figure 2.9 portrays a typical potential with the regions labeled in which the six WKB

wave functions are valid.
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z1 z2 z3

Φ1 Φ2 Φ3

Φ4 Φ5

Φ6

Figure 2.9: A typical spinor or scalar potential at leading order in ~. The classi-
cal turning points are z1, z2, and z3. The WKB wave functions φi correspond to
eqs. (2.26)–(2.31)

The wave functions in adjacent regions will be related by connection matrices Mi

such that vi+1 = Mivi where vi = (Ai, Bi)
T . Given these connection matrices, we can

obtain a semi-classical quantization condition on ω by applying boundary conditions.

We will take Dirichlet boundary conditions at z = 0 that A1 = 0. At the horizon, we

have ingoing boundary conditions that φ ∼ (1 − z)−iω/3. The WKB wave function

(2.31) has the near horizon expansion φ6 ∼ A6(1 − z)−i|ω|/3 + B6(1 − z)i|ω|/3. Thus

when ω > 0 we should take B6 = 0, and when ω < 0 we should take instead A6 = 0.

The equation

v6 = M5M4M3M2M1v1 (2.32)

then provides a Bohr-Sommerfeld like quantization condition on ω.

The matrices Mi are all well known. To go from a classically forbidden region to

the classically allowed region, we use the standard WKB connection formula

M =

 i
2

1

1
2

i

 . (2.33)
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Thus we find that M1 = M and M3 = M−1. To go from φ2 to φ3 or from φ4 to φ5,

we make use of the fact that
∫ z
a
f(z)dz = −

∫ b
z
f(z)dz +

∫ b
a
f(z)dz:

M2 =

 0 e−iL

eiL 0

 , M4 =

 0 e−K

eK 0

 , (2.34)

where

L ≡ 1

~

∫ z2

z1

√
−V0

(
1 + ~

V1

2V0

)
dz , K ≡ 1

~

∫ z3

z2

√
V0

(
1 + ~

V1

2V0

)
dz . (2.35)

The connection matrix M4 deserves closer scrutiny because the integral K is not

always well defined. From eq. (2.18), we see that the potential term V1 (for the φ+

case) has the form

V1 = −gzzm
∂z(
√
gzzZk)

Zk
. (2.36)

Thus V1 will have a simple pole where Zk vanishes. From the form of V0 = gzzm
2 −

Z−kZk, it is clear that Zk will only vanish in a classically forbidden region where

V0 > 0. Thus, the integral L will never be singular in this way. Let z = ai be the

locations of the simple poles of V1. Near ai, the integrand for K looks like 1
2
(z−ai)−1.

We regulate the singularity by taking a small semi-circular detour in the complex z

plane. The detour introduces a factor of ±iπ/2, depending on the choice of detour

above or below the singularity. This extra phase factor introduces a relative minus

sign between the two nonzero entries of M4. We do not need to worry about the

overall sign as it will not affect the quantization condition.

We can be more precise about where Zk has zeroes. From (2.16), Zk is manifestly

positive in the region 0 < z < 1 if both ω > 0 and k < 0. Thus in this case, there will

be no singularity to worry about. However, if ω < 0 there will in general be one such

value z = a1 and if ω > 0 and k > 0, there will be either zero or two such values.
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Given the matrices Mi and the relation (2.32), we find the quantization condition

on ω looks in general like

cosL(ω) + ice−2K(ω) sinL(ω) = 0 . (2.37)

In deriving (2.37), we made the implicit assumption that the turning points lie on

the real axis. However, the quantization condition implies ω is not real, and if ω is

not real, the turning points will in general not lie on the real axis. To get out of this

apparent contradiction, we assume that |ce−2K | � 1. Then the imaginary part of

ω should be small, and we can use (2.37) to estimate it. We find the QNMs at ωn,

n = 1, 2, 3, . . ., satisfy

L(Reωn) = π(n− 1/2) , Imωn ≈ c
e−2K

dL/dω

∣∣∣∣
ω=Reωn

. (2.38)

In all our examples, it is also true that dL/dω > 0. Thus the sign of the imaginary

part is determined by the sign of ce−2K .

Specializing to the φ+ case for concreteness, there are several cases to consider.

• When ω > 0 and k < 0, the singularities at z = ai are absent, and we find for

both the scalar and spinor the quantization condition (2.37) with c = −1/4.

These QNMs lie in the lower half plane.

• For the scalar when ω < 0, the change in the WKB boundary conditions at the

horizon leads to the relation (2.37) with c = 1/4. These QNMs lie in the upper

half plane.

• For the spinor when ω < 0, there is a pole in V1 at z = a1. Deforming the

contour to avoid the pole adds a phase factor πi/2 to the integral K. Thus

while c = 1/4 as in the scalar case, e−2K < 0 is negative. These QNMs lie in

the lower half plane.
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• We may also consider the case where ω > 0 and k > 0. In this case, Zk may

have no zeroes or two zeroes in the region 0 < z < 1. If there are no zeroes, we

reduce to the ω > 0 and k < 0 case. If there are two zeroes, then e−2K > 0 and

the QNMs are still in the lower half plane.

At first order in ~, the WKB approximation already works pretty well. Below

are tables comparing the first order WKB against numerical integration of the Dirac

equation. For m = 2 and µq = 25 we have the following results when k = ±5,

illustrating the spin splitting:

k = −5 k = 5

numeric WKB numeric WKB

−7.90− 0.00516i −7.99− 0.00504i −6.40− 0.00398i −6.48− 0.00383i

−4.23− 0.00597i −4.30− 0.00587i −3.04− 0.00476i −3.10− 0.00471i

−1.42− 0.00545i −1.47− 0.0052i −0.504− 0.00471i −0.540− 0.0044i

0.574− 0.0390i 0.576− 0.041i

We have presented the same information graphically in figure 2.10.

For m = 2, k = 0, we also present results for µq = 50 and µq = 75.

µq = 50 µq = 75

numeric WKB numeric WKB

−26.35− 0.172i −26.77− 0.135i −45.98− 0.214i −46.50− 0.165i

−20.84− 0.248i −21.25− 0.18i −39.14− 0.313i −39.64− 0.227i

−16.29− 0.281i −16.66− 0.19i −33.41− 0.361i −33.87− 0.24i

−12.41− 0.292i −12.74− 0.18i −28.43− 0.385i −28.87− 0.24i

−9.03− 0.290i −9.34− 0.17i −24.02− 0.394i −24.42− 0.23i

−6.10− 0.278i −6.37− 0.16i −20.05− 0.394i −20.42− 0.22i

−3.57− 0.255i −3.80− 0.14i −16.45− 0.388i −16.80− 0.21i

−1.44− 0.218i −1.63− 0.12i −13.18− 0.377i −13.51− 0.195i

−10.20− 0.362i −10.50− 0.18i

−7.50− 0.343i −7.77− 0.17i

−5.06− 0.319i −5.31− 0.15i

−2.90− 0.288i −3.11− 0.13i

−1.05− 0.240i −1.23− 0.11i

The results are presented graphically in figure 2.11.
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Figure 2.10: Normal modes obtained by the Bohr-Sommerfeld quantization, marked
by red dots. The parameters are m = 2, k = 5, and µq = 25. Here |S| = |aα| is the
source (denominator) of the Green’s function.

Figure 2.11: Quasibound states in the complex ω plane. The red dots are the quasi-
normal modes obtained by the generalized WKB formula. The parameters are m = 2,
k = 0. Two values of µq are considered.
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We will stop at first order in the WKB approximation, but there are some inter-

esting complications that appear at second order. There exist second order poles in

Vk,m at z = 0, 1 and ai that require a more careful consideration. Regardless of the

background, the second order poles near z = ai have the universal form

Vk,m ≈
3/4

(z − ai)2
. (2.39)

In our particular case, at the conformal boundary, we find that

Vk,m =
m2 −m~

~2z2
+O(z−1) . (2.40)

At the horizon, we have instead

Vk,m = −
(

1

4
+

16ω2

~2(12− µ2)2

)
1

(1− z)2
+O(1− z)−3/2 . (2.41)

The issue with second order poles in the potential is that the naive WKB wave

functions do not have the proper scaling behavior near such points. Langer [54]

proposed a modification, justified by a rescaling of the wave function and redefinition

of z, that boils down to adding by hand a term of the form 1
4
(z−zs)−2 to the potential

for each second order pole zs. These Langer modification factors are second order in

our ~ expansion, and thus we have neglected them.

2.4 Discussion

We have tried to show in this chapter that spin affects in important ways the physics

of holographic constructions involving fermions. The pole of the field theory fermionic

Green’s function obeys a Rashba type dispersion relation, indicating the importance

of spin orbit coupling in the gravitational side of the construction. The spin also
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plays an important role in determining the lifetimes of quasiparticles. Without the

spin corrections in the WKB approximation, the fermionic dispersion relation would

have an imaginary part of the wrong sign! That spin plays an important role in the

bulk is ironic given that in a 2+1 dimensional field theory dual, we argued in the

introduction that the fermions should be both massless and (hence) spinless.

This work leaves open several issues that we would like to return to at some point.

One is a more thorough exploration of the parameter space of our model. We would

like to understand better the qualitative difference between bulk fermions with large

masses mL & 1 and small masses mL . 1 illustrated by figures 2.1a and 2.4. While

the gravity explanation is related to the absence of a rest frame for a relativistic

particle, the field theory interpretation is less clear. The limit ω → 0 played an

important role in previous works on the subject (see for example [22]), and we would

like to see what our WKB formalism predicts for the magnitude of the imaginary part

of the dispersion relation and the corresponding lifetime of the quasiparticles. (How

does including ~ corrections change the results of [27]?) Third, it would be interesting

to consider the T → 0 limit in more detail.

It would also be interesting to work with a wider variety of backgrounds, for ex-

ample the electron star or the holographic superconductor. We believe the qualitative

nature of our story involving spin-orbit coupling and quasinormal mode placement

will not change, but there may be other interesting effects. For example, with the

d-wave superconductor studied in [45], it was precisely this spin-orbit coupling which

gave rise to Fermi arcs.
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Chapter 3

Analytic fermionic Green’s

functions from holography

This chapter is a lightly edited version of ref. [55], which was written in collaboration

with Steven S. Gubser.

3.1 Introduction

Charged black holes in asymptotically anti-de Sittter (AdS) space can be regarded

as the gravitational dual description of certain strongly interacting fermionic systems

at finite charge density, such as non-Fermi liquids [33]. This is an application of

the gauge/gravity duality [7, 9, 10], which allows us to calculate fermionic Green’s

function by solving the bulk Dirac equation [31, 32, 46]. A particularly well-studied

example is the Reissner-Nordström (RN) black hole in AdS as the geometry [19, 34,

22, 23]. We will focus instead on a particular dilatonic black hole in AdS5, explored

originally in ref. [28]; see also ref. [56] for related work.

The dilatonic black hole in question is sometimes referred to as the two-charge

black hole. From a five-dimensional point of view, this is because two of the three

mutually commuting U(1) subgroups of the SO(6) gauge group of maximal gauged
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supergravity are nonzero and equal, while the third is zero. From a ten-dimensional

point of view, this black hole describes N coincident D3-branes with equal, nonzero

angular momentum in two of the three independent planes of rotation orthogonal to

the D3-brane world-volume. The dilatonic black hole enjoys several advantages over

the better studied RN-AdS5 black hole:

• The entropy and specific heat of the dilatonic black hole are proportional to

temperature, as compared to a nonzero, O(N2) entropy at extremality for the

RN-AdS5 black hole.

• Exact information about the position and properties of Fermi surfaces is avail-

able for the dilatonic black hole, for massless bulk fermion actions with no Pauli

couplings. This stands in contrast with the RN-AdS5 black hole, where one must

resort to numerics to find kF . (This is even true of ref. [57], in which numer-

ical work led to strong evidence that the Fermi momenta are simple algebraic

numbers.)

• Pair creation of fermions near the horizon, and back-reaction of the resulting

fermionic matter, must distort the RN-AdS5 geometry to some extent. But for

the dilatonic black holes there is some evidence, to be explained below, that

pair creation of fermions is suppressed.

A notable disadvantage of the dilatonic black hole is that its extremal limit—which

will be our main focus—has a naked singularity. Any nonzero temperature cloaks

the naked singularity with a horizon, but as temperature is taken to zero, the dilaton

as well as curvature invariants become larger and larger at the horizon, until at zero

temperature they diverge. Nevertheless it is straightforward to pick out physically

reasonable boundary conditions for fermions: In particular, for ω = 0 one can simply

demand that the allowed solutions are regular as the naked singularity is approached.
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The main aim of this chapter is to solve the massless Dirac equation,

γµ(∇µ − iqAµ)Ψ = 0, (3.1)

in the extremal limit of the dilatonic black hole background, and to show that the

corresponding Green’s function exhibits one or more Fermi surfaces if q > 1/2. For

1/2 < q < 1, there is only a single Fermi surface, and vF is not well-defined. For

1 < q < 3/2, there is still only a single Fermi surface, but vF is well defined. For

q > 3/2, there are additional Fermi surfaces at kF = q−n−1/2, where n is a positive

integer. The outermost Fermi surface has the simplest properties: assuming q > 1,

the Green’s function near the Fermi surface takes the form

G =
Z

−ω + vF (k − kF )− Σ(ω, kF )
, (3.2)

where

kF = q − 1

2
vF =

4(q − 1)

4q − 3

Σ =
Γ(q + 1/2)Γ(1− q)eiπ(1−q)

24q−5
√
π(4q − 3)Γ(q − 1)Γ(q)

ω2q−1

Z =
8Γ(q + 1/2)√

π(4q − 3)Γ(q − 1)
. (3.3)

Formulas generalizing eq. (3.3) to Fermi surfaces with n > 0 can be found in sec-

tion 3.4.

The organization of the rest of this chapter is as follows. In section 3.2, we solve

the Dirac equation at ω = 0 in terms of hypergeometric functions, and find the normal

modes that determine the location of Fermi surfaces. In section 3.3, we study the

near horizon geometry (hereafter IR for infrared), solving the Dirac equation and

obtaining the IR Green’s function. In section 3.4, we obtain the Green’s function

47



near Fermi surface by matching the IR solution to a zero-frequency solution away

from the IR. In section 3.5, we numerically solve the Green’s function and explain

the main features at general ω. In section 3.6, we conclude with some discussion.

3.2 Normal modes

The two-charge black hole in AdS5 is determined by

L =
1

2κ2

[
R− 1

4
e4αF 2

µν − 12(∂µα)2 +
1

L2
(8e2α + 4e−4α)

]
, (3.4)

which is from a consistent truncation of the type IIB supergravity with three U(1)

charges Q1 = Q2 = Q and Q3 = 0. The solution in the extremal case is

ds2 = e2A(−hdt2 + dx2) +
e2B

h
dr2

A = ln
r

L
+

1

3
ln

(
1 +

Q2

r2

)
B = − ln

r

L
− 2

3
ln

(
1 +

Q2

r2

)
h =

(r2 + 2Q2)r2

(r2 +Q2)2
α =

1

6
ln

(
1 +

Q2

r2

)
Aµdx

µ = Φdt Φ =

√
2Qr2

(r2 +Q2)L
. (3.5)

The “horizon” for this black hole is at r = 0, which is a spacetime singularity. For

the non-extremal case, and its ten-dimensional lift, see ref. [28].

We will solve the Dirac equation for a massless spinor in the above background,

but we keep the mass term at first. If the metric is diagonal and depends only on the

radial coordinate r, the Dirac equation can be simplified by using the rescaled spinor

Ψ̃ = (−ggrr)1/4Ψ. The equation of motion for Ψ̃ is

[γµ(∂µ − iqAµ)−m]Ψ̃ = 0. (3.6)
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We assume that the momentum is in the x direction. By plugging a single Fourier

mode Ψ̃ ∼ e−iωt+ikxΨ̂ to eq. (3.6), the equation for Ψ̂ is

[
−i
√
−gttγt(ω + qAt) +

√
grrγr∂r + i

√
gxxγxk −m

]
Ψ̂ = 0. (3.7)

We choose the following gamma matrices for AdS5:

γt =

iσ1 0

0 iσ1

 γr =

σ3 0

0 σ3


γx =

−σ2 0

0 σ2

 γy =

 0 −σ2

−σ2 0

 γz =

 0 iσ2

−iσ2 0

 . (3.8)

Then eq. (3.7) reduces to two decoupled equations

[√
−gttσ1(ω + qAt) +

√
grrσ3∂r + (−1)α

√
gxxiσ2k −m

]
ψα = 0, (3.9)

where ψ1 and ψ2 are two-component spinors. The equation for ψ2 is related to the

equation for ψ1 by k → −k.

The (massive or massless) Dirac spinor Ψ in the AdS5 maps to a chiral spinorial

operator OΨ at the boundary [31, 32, 46]. The asymptotic behavior of ψα near the

AdS boundary is

ψα
r→∞−−−→ aαr

m

1

0

+ bαr
−m

0

1

 . (3.10)

The expectation value of the boundary spinorial operator dual to the bulk spinor Ψ

has the form 〈OΨ〉 = (0, b1, 0, b2)T . In fact, OΨ = 1
2
(1 − γr)OΨ, which means that

the boundary spinorial operator is left-handed. By imposing the in-falling boundary
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condition at the horizon, we can obtain the retarded Green’s function as

G =



0

G1

0

G2


, Gα =

bα
aα
. (3.11)

Note that if we use the alternative quantization, the Green’s function is G̃α =

−aα/bα, and the boundary spinorial operator is right-handed. If m = 0, G1 and

G2 are related by G2 = −1/G1 [22]; therefore, the alternative quantization for G1 is

the standard quantization for G2, and vice versa. By taking into account both G1

and G2, the alternative quantization gives the same Fermi momenta as the standard

quantization does, when m = 0 [22].

We will focus on ψ1 ≡ (u1, u2)T in the following. The square roots in the Dirac

equation can be eliminated, following a method which has appeared, for example, in

ref. [58]. Define u± = u1 ± iu2. From eq. (3.9), we obtain

u′+ + λ̄(r)u+ = f̄(r)u− (3.12)

u′− + λ(r)u− = f(r)u+, (3.13)

where

λ(r) = i

√
|gtt|
grr

(ω + qAt), f(r) =
m√
grr
− ik

√
gxx

grr
. (3.14)

The eqs. (3.12) and 3.13 can be decoupled to obtain two second-order differential

equations:

u′′+ + p̄(r)u′+ + q̄(r)u+ = 0 (3.15)

u′′− + p(r)u′− + q(r)u− = 0, (3.16)
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where

p(r) = −f
′

f
, q(r) = |λ|2 − |f |2 + pλ+ λ′. (3.17)

After we solve eq. (3.16) for u−, we need to plug in u− to eq. (3.13) to obtain u+.1

For the metric we consider,

λ =
i(ω + qΦ)

heA−B
, f =

m√
he−B

− ik√
heA−B

. (3.18)

In the following, we will only study the m = 0 case, in which p(r) and q(r)

are rational functions of r. We are most interested in the following two questions:

whether there are Fermi surfaces, and whether there are quasiparticles near the Fermi

surfaces. We will solve the Dirac equation at ω = 0 first, and the solution indicates

that there are one or more Fermi surfaces when q > 1/2, as summarized more precisely

in the text following eq. (3.1). Then the perturbation at small ω will give the Green’s

function near the Fermi surfaces.

When ω = 0, the boundary condition for at the horizon is that the solution is

regular. The solution for u± can be written as2

u− =

(
r

r + i
√

2Q

)νk (r + i
√

2Q

r − i
√

2Q

)q/2

2F1

(
νk − q +

1

2
, νk; 2νk + 1;

2r

r + i
√

2Q

)
(3.19)

and

u+ = (−1)−νk+q+1/2u∗−, (3.20)

where

νk =
k√
2Q

. (3.21)

1We cannot only solve eqs. (3.15) and (3.16) and discard eqs. (3.12) and (3.13), because there
are only two boundary conditions. After we solve u− from the second-order equation (3.16), u+ is
fully determined by the first-order equation (3.13).

2Note that (−1)α := (−1 + iε)α = eiπα and (−1− iε)α = e−iπα.
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The chemical potential
√

2Q is a unit of the energy scale. To have physical bound

states, Q and q must have the same sign; we assume Q > 0 and q > 0. This system

has rotational invariance; we can choose k = (k, 0, 0), where k > 0. Thus we have

νk > 0, without loss of generality.

By defining νk − q + 1/2 = −n, the solution for u1 and u2 is

u1 =
u+ + u−

2
=

(−1)n+1u∗− + u−
2

(3.22)

u2 =
u+ − u−

2i
=

(−1)n+1u∗− − u−
2i

. (3.23)

The Green’s function G1(ω, k) at ω = 0 is real:

G1 = lim
r→∞

u2

u1

= lim
r→∞

(
−i

(−1)n+1u∗− − u−
(−1)n+1u∗− + u−

)
= G∗1. (3.24)

This apparently implies that the spectral density is zero at ω = 0. However, we need

to shift the pole at ω = 0 by ω → ω + iε, and then we will obtain a delta function in

the imaginary part.3

The normal modes are determined by u1|r→∞ = 0. In general, the hypergeometric

function 2F1(α, β; γ; z) has a branch cut from z = 1 to ∞. At the AdS boundary,

u−|r→∞ = 2F1(−n, νk; 2νk + 1; 2− iε). (3.25)

Thus, u− and u∗− take values at different sides of the branch cut, as shown in figure 3.1.

However, if α = −n, where n = 0, 1, 2, · · · , the hypergeometric function is an nth-

order polynomial of z, and the branch cut from z = 1 to∞ is absent. More generally,

the equation that determines the normal modes is eq. (A.37) in appendix A.2, in

3For example, for a free electron near kF (k⊥ ≡ k − kF ):

1

−ω + vF k⊥ − iε
= P 1

−ω + vF k⊥
+ iπδ(ω − vF k⊥).
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O 1 2

z =
2r

r + i
√

2Q

z̄ =
2r

r − i
√

2Q

horizon boundary

Figure 3.1: The real axis in the complex r-plane maps to a circle in the complex
z-plane. The hypergeometric function F (α, β; γ; z) has a branch cut from z = 1 to
∞ in general, but the branch cut is absent when α is a non-negative integer.

which we conclude that there are no physical solutions when n is not a non-negative

integer.

At the AdS boundary r → ∞, u∗− = u− if α = −n, where n = 0, 1, 2, · · · .

Therefore, if n is even, ν
(n)
k = q − n − 1/2 gives the Fermi surface for the standard

quantization (u1 = 0); if n is odd, ν
(n)
k = q − n − 1/2 gives the Fermi surface for

the alternative quantization (u2 = 0). This conclusion is for the Green’s function

G1, which obtained by the upper-half components of the bulk spinor. Recall that

G2 = −1/G1, which is obtained by the lower-half components of the bulk spinor. In

the following, we use the standard quantization only. Taking into account both G1

and G2, we conclude that the Fermi momenta are determined by ν
(n)
k = q − n− 1/2,

where n is a non-negative integer such that q−n−1/2 > 0. Note that the alternative

quantization gives the same Fermi momenta, with the difference that the boundary

fermionic operator is right-handed.

By perturbation, we can obtain the analytic solution of the Green’s function near

the Fermi surface. The Green’s function can be written as

GR(ω, k) =
Z

−ω + vF (k − kF )− Σ(ω, kF )
, (3.26)
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where kF = |kF | is the Fermi momentum, vF is the Fermi velocity, and

Σ(ω, k) = h(k)Gk(ω), Gk(ω) = c(k)ω2νk . (3.27)

As fermionic Green’s functions, G and G satisfy Im(G) > 0 and Im(G) > 0 for all

real ω. The result shows that vF > 0, Z > 0, and h > 0. The Fermi momenta are

determined by

k
(n)
F√
2Q

= q − n− 1

2
, (3.28)

where n = 0, 1, 2, · · · , bq−1/2c. When n is even, eq. (3.26) is for G1; when n is odd,

eq. (3.26) is for G2. Again note that we need to shift the ω = 0 pole to the lower half

complex ω-plane by ω → ω + iε to obtain a well-defined retarded Green’s function.

3.3 IR geometry and Green’s function

We expect that the Green’s function near the Fermi surface can be obtained by the

perturbation of small ω around the exact solution. However, the ordinary pertur-

bation method is not enough when the black hole is extremal. As pointed out in

ref. [22], when it is sufficiently close to the horizon, ω-dependent terms cannot be

treated as small perturbations no matter how small ω is. This section and the next

are in parallel with ref. [22], in which a systematic method is developed for treating

the extremal black hole system. Usually this method relies on numerics to fix certain

quantities, such as the Fermi velocity. The example we provide is exactly solvable,

in the sense that a perturbative treatment of the small ω regime can be obtained

through matched asymptotic expansions of analytically known functions.

We divide the geometry into inner and outer regions, as shown in figure 3.2. The

inner region refers to the IR (near horizon) geometry, in which the Dirac equation

can be exactly solved to give an IR Green’s function. The outer region refers to the
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r small
[AdS2 × R

3]
IR

r → ∞

AdS5

UV

ψI ψO

ωζ → ∞ ωζ → 0

Figure 3.2: The inner (near horizon) and outer regions, where the solutions of the
Dirac equation are denoted by ψI and ψO, respectively.

remaining geometry, in which we can make perturbations for small ω. Then we need

to match the inner and outer regions.

The IR geometry is examined as follows. In the r → 0 limit, the metric becomes

ds2 =

(
r

Q

)2/3(
−2r2

L2
dt2 +

L2

2r2
dr2 +

Q2

L2
dx2

)
. (3.29)

Therefore, the IR geometry is conformal to AdS2 × R3. This can be made more

explicit by change of variables

r =
L2

2

ζ
, L2 =

L√
2
, (3.30)

and the metric becomes

ds2 =

(
L2

2Qζ

)2/3 [
L2

2

ζ2

(
−dt2 + dζ2

)
+
Q2

L2
dx2

]
. (3.31)

The gauge field At becomes

Φ =
L3

2

Qζ2
. (3.32)

We will switch back to the r coordinate. Note that in the RN-AdS black hole system,

Φ ∼ r, and thus the electric field E = ∇Φ is constant at the horizon. In our system,

Φ ∼ r2, and thus the electric field E = ∇Φ ∼ r falls off toward the horizon. This

leads to a significant difference relative to the Dirac equation in AdS2. In the near
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horizon limit r → 0 (ζ → ∞), the contribution by the electric field to the Dirac

equation is negligible. Nevertheless, the flux is conserved by d(e4α ∗F ) = 0.

We solve the Dirac equation in the geometry eq. (3.29) without the electric field.

The solution for u± with in-falling boundary condition4 is

u− = C
√
rW1/2,νk(−iω/r) (3.33)

u+ = iνC
√
rW−1/2,νk(−iω/r), (3.34)

where W is a Whittaker function, and C is a constant. Denote ψI as the solution

in the inner region. In the near boundary limit of the IR geometry, the asymptotic

behavior is

ψI → α
(ω
r

)−νk
+ β

(ω
r

)νk
as

ω

r
→ 0. (3.35)

More precisely, the inner region solution can be written as

ψI = v+r
νk(1 + · · · ) + Gk(ω)v−r

−νk(1 + · · · ), (3.36)

where v± must be chosen to match the normalization of eqs. (3.19) and (3.20). By

expanding ψI = (u1, u2)T from eqs. (3.33) and (3.34), we know that v± take the

following form

v+ = λ+

1

1

 , v− = λ−

−1

1

 , (3.37)

where λ± are constants. The Green’s function Gk(ω) depends on the ratio λ+/λ−.

However, the self-energy Σ is independent of λ± after matching the inner and outer

4The in-falling wave in terms of the coordinate ζ is eiωζ as ζ →∞.
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regions. We choose λ+ = λ−, and then the IR Green’s function is5

Gk(ω) = eiπ(1/2−νk) Γ(1/2− νk)
Γ(1/2 + νk)

(ω
4

)2νk
. (3.38)

The IR Green’s function can be generalized to finite temperature when the back hole

is near extremal:

Gk(ω) = i
(πT

2

)2νk Γ
(

1
2
− νk

)
Γ
(

1
2

+ νk − iω
2πT

)
Γ
(

1
2

+ νk
)
Γ
(

1
2
− νk − iω

2πT

) . (3.39)

The main difference between the RN-AdS black hole system and our system is

attributed to the IR geometry with the gauge field. In the RN-AdS5 black hole

system, the IR geometry is AdS2×R3, and the electric field is nonzero at the horizon.

The IR scaling exponent has the form νk =
√
k2 − k2

o , which depends on the charge

of the spinor, and will become imaginary if the charge is large. The system with this

IR behavior is studied as a semi-local quantum liquid [24]. The imaginary νk implies

an instability causing by the pair production near the black hole horizon [22, 59].

It has been argued that back-reaction from the pair production alters the IR region

to a Lifshitz geometry [26]; a candidate of the final geometry was constructed as

the electron star [40, 41, 27]. In our system, νk is always real, and the electric field

approaches zero in the near horizon limit.

5Other ways to write down Gk(ω) are

−ie−iπν Γ(−2ν)Γ(1 + ν)

Γ(2ν)Γ(1− ν)
ω2ν ,

(tanπν + i)π

Γ(ν + 1/2)2

(ω
4

)2ν

.
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3.4 Green’s function near the Fermi surface

In the outer region, the solution at small ω can be written as

ψO = η+ + Gk(ω)η−, (3.40)

where

η± = η
(0)
± + ωη

(1)
± + ω2η

(2)
± + · · · . (3.41)

The asymptotic behavior near the horizon is

η
(0)
± = v±r

±νk + · · · , r → 0, (3.42)

which is matched with the inner region solution, eq. (3.36). Here η
(0)
+ = (u1, u2)T ,

where u1 and u2 are solutions in the outer region as eqs. (3.22) and (3.23). We expand

u1 in the r → 0 limit

u1 =
in+1

√
2(
√

2Q)νk
rνk(1 + · · · ). (3.43)

Similarly, we can expand u2 and the solution of η
(0)
− . The normalization constants v±

are

v± =
in+1

√
2(
√

2Q)νk

±1

1

 . (3.44)

The asymptotic behavior near the boundary is

η
(n)
± → a

(n)
± rm

1

0

+ b
(n)
± r−m

0

1

 , r →∞. (3.45)

Consequently, the Green’s function near ω = 0 to the first order is [22]

GR(ω, k) =
b

(0)
+ + ωb

(1)
+ + Gk(ω)

(
b

(0)
− + ωb

(1)
−
)

a
(0)
+ + ωa

(1)
+ + Gk(ω)

(
a

(0)
− + ωa

(1)
−
) . (3.46)
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We only summarize the result of the perturbation method given in appendix C of

ref. [22]. Some notations are slightly changed here. Define

J t = (Ψ̄0,Γ
tΨ0) = −

∫ ∞
0

dr
√
grr(−gtt) (η

(0)
+ )†η

(0)
+

Jx = (Ψ̄0,Γ
xΨ0) =

∫ ∞
0

dr
√
grrgxx (η

(0)
+ )†σ3η

(0)
+ , (3.47)

which are integrations of hypergeometric functions in our system. Note that both

J t and Jx are negative. The various functions in the Green’s function eq. (3.26) are

determined as follows:

vF =
Jx

J t
, Z = −(b

(0)
+ )2

J t
, h = −v

†
−iσ

2v+

J t
, (3.48)

where the quantities above are evaluated at k = kF .

By plugging u1 and u2 into eq. (3.47), the integration can be evaluated for non-

negative integers n. The first three results of J t are

J t (0) = −
(4ν − 1)

√
π/2 Γ(ν − 1/2)

8QΓ(ν + 1)

J t (1) = −
(8ν2 + 6ν − 1)

√
π/2 Γ(ν − 1/2)

8(2ν + 1)2QΓ(ν + 1)

J t (2) = −
(8ν2 + 10ν − 1)

√
π/2 Γ(ν − 1/2)

8(2ν + 1)2QΓ(ν + 2)
. (3.49)

By induction, we find that the nth J t is given by

J t (n) = − n!
√
π[8ν2 + (4n+ 2)ν − 1]Γ(ν + 1/2)Γ(ν − 1/2)

2n+3
√

2Q(2ν + 1)Γ(ν + n/2 + 1/2)Γ(ν + n/2 + 1)
, (3.50)

where ν = ν
(n)
k .
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Figure 3.3: Fermi velocity as a function of charge q, where q > n+1 for the nth Fermi
surface. The solid lines are for n = 0, 2, · · · , and the dashed lines are for n = 1, 3,
· · · (from left to right).

After we obtain Jx, the Fermi velocity is

v
(n)
F =

2(2ν + 1)(2ν − 1)

8ν2 + (4n+ 2)ν − 1
, (3.51)

where ν = ν
(n)
k . When n is even, v

(n)
F is for G1; when n is odd, v

(n)
F is for G2. If we

take
√

2Q = 1, the only independent parameter is the charge of the spinor, in terms

of which the vF can be written as

v
(n)
F =

4(q − n)(q − n− 1)

4q2 − 3(2n+ 1)q + 2n(n+ 1)
. (3.52)

We can see that 0 ≤ vF < 1, and vF → 1 as q → ∞. The Fermi velocities as a

function of the charge is plotted in figure 3.3.

If n is even, for the Green’s function G1,

Z(n) =
2
√

2QΓ(n/2 + 1/2)Γ(ν + n/2 + 1)

πΓ(n/2 + 1)Γ(ν + n/2 + 1/2)
v

(n)
F ; (3.53)

if n is odd, for the Green’s function G2,

Z(n) =
2
√

2QΓ(n/2 + 1)Γ(ν + n/2 + 1/2)

πΓ(n/2 + 1/2)Γ(ν + n/2 + 1)
v

(n)
F , (3.54)
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Figure 3.4: Z/vF as a function of charge q, where q > n + 1/2 for the nth Fermi
surface. When q = n + 1/2, Z/vF = 2/π, as indicated by the horizonal line. The
solid lines are for n = 0, 2, · · · , and the dashed lines are for n = 1, 3, · · · (from left
to right).
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Figure 3.5: Spectral density as a function of ω at three different values of k. We
plot the near ω = 0 region for q = 4.5 and n = 2, which give kF = 2. The dotted,
dashed, and solid curves are for k = 1.8, 1.9, and 2, respectively. When k = kF , the
quasiparticle peak becomes a pole.

where ν = ν
(n)
k . The ratio Z/vF as a function of charge is plotted in figure 3.4. The

self-energy is given by

Σ(n) =
Γ(2ν + n+ 1)Γ(1/2− ν)eiπ(1/2−ν)ω2ν

26ν−1(
√

2Q)2ν−1Γ(n+ 1)Γ(ν + 1/2)3
v

(n)
F , (3.55)

where ν = ν
(n)
k . The spectral density ρ = Im(G) as a function of ω at different values

of k is plotted in figure 3.5. As k → kF , the quasiparticle peak will become a delta

function at k = kF .
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Another way to write down the Green’s function is

G(ω, k) =
h1

k⊥ − 1
vF
ω − h2e

iγkF ω2νkF
, (3.56)

where k⊥ = k − kF , h1 = Z/vF , h2 = |Σ/(ω2νvF )|, and

γk = π(1/2− νk) + arg Γ(1/2− νk). (3.57)

The Green’s function in the form of eq. (3.56) is analyzed in ref. [22] in detail. The

poles never appear in the upper half complex ω-plane of the physical sheet. The three

cases νk > 1/2, νk = 1/2, and νk < 1/2 correspond to Fermi liquid, marginal Fermi

liquid, and non-Fermi liquid, respectively.

The Green’s function for the non-Fermi liquid (νk < 1/2) can be written as

G = − c1k
1/2νk−1
⊥

ω − c2k
1/2νk
⊥

, (3.58)

where

c1 =
h1

2ν(h2eiγk)1/2νk
, c2 =

1

(h2eiγk)1/2νk
. (3.59)

The residue vanishes as k → kF . The pole ω∗ moves along a line approaching the

origin with the angle

θ∗ = arg(ω∗) =


(

1
2

+ 1
4νk

)
π k < kF(

1
2
− 1

4νk

)
π k > kF .

(3.60)

We can see that θ∗ /∈ (0, π), which is the upper half plane of the physical sheet

θ ∈ (−π/2, 3π/2). There is a particle-hole symmetry due to Im(ω∗)|k⊥ = Im(ω∗)|−k⊥ .
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What is especially interesting is the marginal Fermi liquid. In the νk → (1/2)+

limit,

Σ(n) = −ω − ω(2 lnω − iπ + c̃(n))ε+O(ε2), (3.61)

where ε = νk − 1/2, and c̃(n) is a real constant. We can see that the −ω in Σ exactly

cancels the −ω in the denominator of eq. (3.26), which is a delicate cancellation

between the UV and the IR data. The Green’s function for the marginal Fermi liquid

is

G =
h1

k⊥ + 1
2
(n+ 1)ω lnω + c(n)ω

, (3.62)

where h1 and c(n) can be easily obtained by the exact solution. The residue also

vanishes as k → kF .

3.5 Green’s function at arbitrary ω

To obtain the Green’s function when ω is not small, we can solve the Dirac equation

numerically with the boundary condition near the horizon as eqs. (3.33) and (3.34).

Alternatively, we will solve the flow equation for ξ = u2/u1 as follows

∂rξ = − 2m√
grr

ξ +
(√

|gtt|
grr

(ω + qAt) +
√

gxx

grr
k
)

+
(√

|gtt|
grr

(ω + qAt)−
√

gxx

grr
k
)
ξ2, (3.63)

with the boundary condition ξ|r=0 = i (ω 6= 0). The Green’s function is obtained

by r2mξ|r→∞. A typical case of the spectral density ρ = Im(G) as a function of ω is

plotted in figure 3.6, in which the peaks correspond to quasibound states.

The non-analytic features of the Green’s function from the RN-AdS black hole at

finite temperature are studied in detail in ref. [30]. The poles of the Green’s function

are schematically plotted in figure 3.7, in which we ignore a small difference that
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Figure 3.6: Spectral density as a function of ω at k = 2 with q = 10 and
√

2Q = 1.
We can see five peaks for the quasibound states. As we increase k from small k, the
peaks will move to the right. Each time a pole go across ω = 0, we obtain a Fermi
momentum. Therefore, there are five Fermi surfaces from G1, as the formula of k

(n)
F

predicts.

the poles in the finite temperature case cannot be exactly at the origin ω = 0. The

RN-AdS black hole system and our system have some similar features, as follows.

Consider the m = 0 case. There are no poles in the Green’s function at k = 0, so

we start with a small k. If the charge of the spinor q is sufficiently large, there are

quasibound states. As we increase k, the poles with Re(ω) < 0 will move to the

right. When a pole goes through the origin ω = 0, we obtain a normal mode, which

indicates a Fermi surface. The number of the quasibound states equals the number

of the Fermi surfaces.

The schematic plots of the dispersion relation and the Fermi surface are shown in

figure 3.8. Our system has at least one Fermi surface when q > 1/2. If we increase q,

more Fermi surfaces will appear, and the Fermi surfaces are equally spaced.

The number of quasibound states can be estimated by the WKB method. The

effective potential is6

Veff =
m2

grr
+
gxx

grr
k2 − |g

tt|
grr

(ω + qΦ)2. (3.64)

6This is the leading order of the effective potential, in the sense of ref. [27]. Higher order terms
contain singularities. A more rigorous WKB treatment is in ref. [30], which shows that the singular-
ities in higher order terms are essential to the negative sign of the imaginary part of the quasinormal
modes.
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Figure 3.7: Schematic plot of the poles of the Green’s function. The generic feature
is that there are quasibound states when the charge of the spinor is sufficiently large.
The highly damped modes are plotted from the RN-AdS black hole system.

k

ω

kx

ky
n = 0

Figure 3.8: Schematic plot of dispersion relation and the Fermi surface by the massless
spinor in the bulk (for massive spinor in the bulk, see ref. [30]). The system has
rotational invariance, and we only show some intersections. If we decrease the charge
q, the Fermi surfaces will shrink but keep the same space.

The distinctive shapes of the effective potential are plotted in figures 3.9 and 3.10.

At the AdS boundary, Veff = 0. The near horizon behavior is

Veff → −
ω2

4r4
+

(
k2

2Q2
− qω√

2Q
− ω2

4Q2

)
1

r2
+

m2

2Q2/3r4/3
+ · · · . (3.65)

We need to treat ω = 0 and ω 6= 0 cases separately. Assume at least one of k and m

is nonzero, otherwise the Green’s function has no poles.

When ω = 0, the leading term in Veff is positive as r → 0, which implies that the

state cannot tunnel to the horizon and thus is stable. This is similar to the electron
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Figure 3.9: Effective potential when ω = 0.
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Figure 3.10: Effective potential when ω 6= 0.

star, but different from the extremal RN-AdS black hole, in which there are no stable

bound states when νk is imaginary.

When ω 6= 0, the leading term in Veff is negative, which implies that there are

no exact bound states with ω 6= 0. The state can tunnel through a barrier to the

horizon, which will lead to an imaginary part of the modes. The qualitative features

of the effective potential are similar to the RN-AdS black hole. If q is large enough,

there is a potential well with a barrier. The quasibound states in the well can tunnel

through the barrier. In figure 3.7, the modes near the real ω axis corresponds to the

quasibound states.

3.6 Discussion

Starting from a dilatonic black hole derived from a consistent truncation of type

IIB supergravity, we have studied the fermionic Green’s function dual to massless

fermions in the bulk. We obtained exact analytic results at zero frequency, and exact

asymptotic results for small frequencies. These analytic results capture key features
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Table 3.1: Comparison between the RN-AdS black hole system and our system, with
the same UV geometry as AdS5.

RN-AdS black hole two-charge black hole

Charge Q1 = Q2 = Q3 = Q Q1 = Q2 = Q, Q3 = 0

Entropy S = constant S ∝ T → 0

IR (near horizon) geometry AdS2 × R3 conformal to AdS2 × R3

Electric field near horizon E = constant E ∝ r → 0

Stability near horizon
unstable due to
pair production

stable against
pair production

IR scaling exponent νk νk ∝
√
k2 − k2

o νk ∝ k

νk T 1/2 Fermi liquid (FL), marginal FL, non-FL

of the strongly coupled fermionic system modeled by the gauge/gravity duality, and

they provide a new universality class for the strange metal phase at quantum criti-

cality. Provided that the charge of the bulk fermion is not too small, there are Fermi

surfaces. Their Fermi momenta are equally spaced, and there are a finite number of

them, approximately proportional to the charge of the bulk fermion. The IR scaling

dimension is always real. The properties of the RN-AdS black hole system and our

system are compared and summarized in table 3.1.

There are several instabilities that can modify the bosonic background, including

the superconducting and the Gregory-Laflamme instabilities; however, these instabili-

ties all involve extra fields not present in our consistent truncation of the supergravity

lagrangian, eq. (3.4).
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Chapter 4

Analytic quantum critical points

from holography

This chapter is a lightly edited version of ref. [60].

4.1 Introduction

Phase transitions for some strongly interacting systems can be modeled by the

gauge/gravity duality [7, 9, 10]. For example, holographic superconductors have

been constructed in terms of asymptotic anti-de Sitter (AdS) spaces [37, 38]. In this

chapter, we consider quantum phase transitions, i.e., the phase transitions that hap-

pen at zero temperature. Understanding the quantum critical points is a significant

challenge in condensed matter physics, such as non-conventional superconductors.

In the gravity description, a phase transition happens when a scalar field in an AdS

background develops an instability. Solving the Klein-Gordon equation for the scalar

field in the bulk gives the Green’s function of a scalar operator in the boundary.

The critical point can be identified by the non-analyticity of the Green’s function at

ω = 0.
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Previous studies have made major conceptual progress in understanding the quan-

tum critical points in terms of the Reissner-Nordström (RN) black hole in AdS4 [2]

(for another system, see ref. [61]; the low-energy effective field theory is also identified

in ref. [62]). The extremal RN-AdS black hole has an AdS2 factor in its near horizon

(hereafter IR for infrared) geometry [22]. This AdS2 factor plays an essential role

in the properties of the system, and defines a universal intermediate energy phase

[24, 63]. The behavior of the system near the quantum critical point is encoded in

the Green’s function near ω = 0, which contains both UV and IR data. The UV

data can be solved from the Klein-Gordon equation at ω = 0 in the bulk, and the

IR data can be analytically solved from the Klein-Gordon equation at arbitrary ω in

AdS2 [2, 22]. The zero mode, which triggers the onset of the instability of the system,

belongs to the UV data, and relies on numerical calculations in AdS4.

We find that if we use AdS5 instead, the Klein-Gordon equation at ω = 0 can be

analytically solved; the Green’s function captures essential features of the RN-AdS

system. We consider the standard/alternative quantization first. For a scalar field

with mass m and charge q, the zero modes are solved as

νk =
q√
3
− n± −

∆± − 1

2
, (4.1)

where n± is a nonnegative integer, ∆± is the scaling dimension of the boundary

operator, and νk is the IR scaling exponent:

∆± := 2±
√
m2 + 4, (4.2)

νk :=
1

2
√

3

√
m2 + k2 − 2q2 + 3. (4.3)

The zero modes are always at nonzero k, and the n± = 0 mode triggers the onset of

the instability. The instabilities and the corresponding quantum critical points are
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classified as follows (the name and interpretation of the quantum critical points are

from ref. [2]):

• The first type of instability is triggered by a zero mode, which exists only if

q is large enough. This instability gives a hybridized critical point, which is

described by an order parameter in a Ginzburg-Landau sector hybridized with

a strongly coupled sector, the CFT1 dual to the IR AdS2.

• The second type of instability happens when the IR scaling exponent νk becomes

imaginary, which implies the instability of the IR geometry. This instability

gives a bifurcating critical point, for which the Green’s function bifurcates into

the complex plane.

• The two types of instability can happen at the same time, and give a mixed

critical point, such as a marginal critical point, which is described by a marginal

term.

We then study the quantum critical points at ω = 0 and k = 0. Without introducing

an extra parameter, we can only have a bifurcating critical point. We can tune the

superfluid velocity to reach all three quantum critical points. The phase diagram can

be analytically obtained for the onset of the instability from the normal phase.

Instead of the superfluid velocity, the zero mode can also be obtained by tuning

another parameter κ+, the coefficient of a double trace deformation in the CFT, giving

a hybridized critical point [2, 64]. The analytic result allows us to draw the phase

diagram for arbitrarily large m2, where the numerical result is difficult to achieve.

The Green’s function (or susceptibility) for various critical points can be obtained.

This chapter is organized as follows. In section 4.2, we give the general solution

of the Klein-Gordon equation at ω = 0, and the Green’s function near ω = 0. In

section 4.3, we classify the instabilities according to the parameters m2 and q, and give

the critical values of the superfluid velocity. In section 4.4, we consider the parameter
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of the double trace deformation, and draw the phase diagram. In section 4.5, we

conclude with some discussion.

4.2 Solution for the Klein-Gordon equation

The extremal RN-AdS5 black hole in Poincaré coordinates is1

ds2 =
1

z2

(
−f(z)dt2 + dx2 +

dz2

f(z)

)
, (4.4)

f = 1− 3z4 + 2z6, At =
√

6 (1− z2), (4.5)

where x = (x1, x2, x3), and the gauge potential is A = Atdt. We set the AdS radius

L = 1, and the horizon is at zh = 1.

To obtain the Green’s function for a scalar operator in the dual CFT, we will solve

the Klein-Gordon equation for a scalar field Φ. After the Fourier transform

Φ(z, xµ) =

∫
dωd3k

(2π)4
e−iωt+ik·xφ(z), (4.6)

the equation of motion for φ is

φ′′ +

(
f ′

f
− 3

z

)
φ′ +

(
(ω + qAt)

2

f 2
− k2

f
− m2

z2f

)
φ = 0, (4.7)

where we assume k = (k, 0, 0) without loss of generality, q > 0, and m2 is above the

Breitenlohner-Freedman (BF) bound [13]: m2 ≥ m2
BF = −4. The horizon z = 1 is

an irregular singularity for this equation. The in-falling boundary condition near the

horizon z = 1 is

φ ∼ W− iq√
6
,νk

(
− iω

6(1− z)

)
, (4.8)

1The action is S =
∫
d5x
√
−g (R− 12− 1

4F
2).
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ωζ → ∞ ωζ → 0

Figure 4.1: The inner (near horizon) and outer regions, where the solutions of the
Klein-Gordon equation are denoted by φI and φO, respectively.

where Wλ,µ(z) is a Whittaker function. The asymptotic behavior near the AdS bound-

ary is2

φ = Az∆−(1 + · · · ) +Bz∆+(1 + · · · ). (4.9)

The retarded Green’s function is3

G =
B

A
. (4.10)

When −4 ≤ m2 ≤ −3, there is an alternative quantization, by which the Green’s

function is G = A/B [14].

To study the instability near a quantum critical point, we need to solve the Green’s

function near ω = 0. When it is sufficiently close to the extremal horizon, ω-dependent

terms cannot be treated as small perturbations no matter how small ω is. In ref. [22],

a systematic method is developed for treating the extremal black hole system. We

divide the geometry into inner and outer regions, as shown in figure 4.1. The inner

region refers to the IR (near horizon) geometry, in which the Klein-Gordon equation

can be exactly solved as eq. (4.8). The outer region refers to the remaining geometry,

in which we can make perturbations for small ω. Then we need to match the inner

and outer regions.

2When ∆+ − ∆− = 2n, where n = 1, 2, · · · , there are extra terms bz∆+ ln z (1 + · · · ). When
∆+ = ∆−, φ = Az2 ln z +Bz2 + · · · .

3We use the same normalization as in ref. [2]. By another normalization, the Green’s function is
G = (2∆+ − 4)B/A.
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In the inner region, the IR Green’s function Gk(ω) is solved as eq. (A.61) (see

appendix A.4) [22]. In the outer region, the solution at small ω can be written as

φ(z) = η+(z) + Gk(ω)η−(z), (4.11)

where

η± = η
(0)
± + ωη

(1)
± +O(ω2). (4.12)

At the leading order, the asymptotic behavior near the horizon z = 1 is

η
(0)
± → [12(1− z)]−1/2±νk , (4.13)

which we also use to fix the normalization of the solution. The asymptotic behavior

near the AdS boundary z = 0 is

η
(0)
± → a

(0)
± z

∆− + b
(0)
± z

∆+ . (4.14)

The Green’s function to the first order in ω is [22]

G(ω, k) =
b

(0)
+ + ωb

(1)
+ + Gk(ω)

(
b

(0)
− + ωb

(1)
−
)

a
(0)
+ + ωa

(1)
+ + Gk(ω)

(
a

(0)
− + ωa

(1)
−
) . (4.15)

Note that if we consider a neutral scalar, the first order terms in ω are zero, and then

we need to expand to the second order. The analytic solution of φ at ω = 0 below

gives the leading order of the Green’s function. By perturbation around ω = 0, we

can obtain the higher-order coefficients. The Green’s function can be generalized to

nonzero temperature when T << µ (chemical potential) by replacing the IR Green’s

function Gk(ω) with eq. (A.62) in appendix A.4. The results we just described can be

found in ref. [22]. We now go beyond ref. [22] and obtain analytic solutions for a
(0)
±

and b
(0)
± .
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When ω = 0, we can solve φ in terms of hypergeometric equations. The general

solution of φ for eq. (4.7) at ω = 0 is4

φ(z) =C1z
∆−

(1− z2)−1/2+νk

(2z2 + 1)−1/2+νk+∆−/2
2F1

(∆− − 1

2
+ νk −

q
√

3
,

∆− − 1

2
+ νk +

q
√

3
; ∆− − 1;

3z2

2z2 + 1

)
+C2z

∆+
(1− z2)−1/2+νk

(2z2 + 1)−1/2+νk+∆+/2
2F1

(∆+ − 1

2
+ νk −

q
√

3
,

∆+ − 1

2
+ νk +

q
√

3
; ∆+ − 1;

3z2

2z2 + 1

)
. (4.16)

The asymptotic behavior near the horizon z → 1 is

φ→
[2

3
(1− z)

]−1/2+νk

 C1 3−∆−/2Γ(∆− − 1)Γ(−2νk)

Γ
(∆−−1

2
− νk +

√
3

3
q
)
Γ
(∆−−1

2
− νk − q√

3

) +
C2 3−∆+/2Γ(∆+ − 1)Γ(−2νk)

Γ
(∆+−1

2
− νk + q√

3

)
Γ
(∆+−1

2
− νk − q√

3

)


+
[2

3
(1− z)

]−1/2−νk

 C1 3−∆−/2Γ(∆− − 1)Γ(2νk)

Γ
(∆−−1

2
+ νk + q√

3

)
Γ
(∆−−1

2
+ νk − q√

3

) +
C2 3−∆+/2Γ(∆+ − 1)Γ(2νk)

Γ
(∆+−1

2
+ νk + q√

3

)
Γ
(∆+−1

2
+ νk − q√

3

)
 .

(4.17)

The asymptotic behavior near the boundary z → 0 is

φ→ C1z
∆− + C2z

∆+ . (4.18)

By eqs. (4.13) and (4.14), the solutions of a
(0)
± and b

(0)
± are

a(0)
+ a

(0)
−

b
(0)
+ b

(0)
−



=
νk√
m2 + 4


181/2+νk · 3−∆+/2Γ(∆+ − 1)Γ(2νk)

Γ
(∆+−1

2
+ νk + q√

3

)
Γ
(∆+−1

2
+ νk − q√

3

) −181/2−νk · 3−∆+/2Γ(∆+ − 1)Γ(−2νk)

Γ
(∆+−1

2
− νk + q√

3

)
Γ
(∆+−1

2
− νk − q√

3

)
−181/2+νk · 3−∆−/2Γ(∆− − 1)Γ(2νk)

Γ
(∆−−1

2
+ νk + q√

3

)
Γ
(∆−−1

2
+ νk − q√

3

) 181/2−νk · 3−∆−/2Γ(∆− − 1)Γ(−2νk)

Γ
(∆−−1

2
− νk + q√

3

)
Γ
(∆−−1

2
− νk − q√

3

)

 . (4.19)

It can be checked that a
(0)
+ b

(0)
− − a

(0)
− b

(0)
+ = νk/

√
m2 + 4 is satisfied.

4When ∆+ is an integer, the two hypergeometric functions in eq. (4.16) are linearly dependent.
We can choose another two linearly independent solutions as eq. (A.47) in appendix A.3.
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4.3 Analytic Green’s functions

4.3.1 Zero modes and the phase diagram

The zero mode is a gapless mode in the Green’s function at ω = 0. The singularity of

a fermionic Green’s function at ω = 0 indicates a Fermi surface, while the singularity

of a bosonic Green’s function at ω = 0 indicates instability. In the fermionic case,

solving G−1(ω = 0,k) = 0 gives k = kF , where kF is the Fermi momentum. Similarly,

in the bosonic case, solving G−1(ω = 0,k) = 0 gives the k = kS, where we use the

subscript S for superfluid. The analytic solution enables us to solve for the zero

modes, which are the only normal modes.

The zero modes are determined by a
(0)
+ = 0 for the standard quantization, and

b
(0)
+ = 0 for the alternative quantization. By eq. (4.19), we have

∆± − 1

2
+ νk −

q√
3

= −n±, (4.20)

where n± is a nonnegative integer, the “+” sign is for the standard quantization, and

the “−” sign is for the alternative quantization. Although the above result is derived

under the assumption that ∆+ is not an integer, eq. (4.20) is generally valid when

m2 ≥ −4 for the standard quantization, and when −4 < m2 < −3 for the alternative

quantization (see appendix A.3). The solution of k is denoted by kS. The existence

of a real kS requires νk ≥ 0, which implies

q√
3
≥ n± +

∆± − 1

2
. (4.21)
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The first type of instability is initiated by the nodeless zero mode, n± = 0. We

set n± = 0 in the following. Solving k from eq. (4.20) gives

k2
S = 12

( q√
3
− 1±

√
m2 + 4

2

)2

+ 2q2 −m2 − 3

= 6
[
q −
√

3

3
(1±

√
m2 + 4)

]2

+ 2(1±
√
m2 + 4), (4.22)

where

q ≥
√

3

2
(1±

√
m2 + 4). (4.23)

For the standard quantization, kS is always nonzero. For the alternative quantization,

kS is nonzero except for a special case: m2 = −3 and q = 0, in which, however,

eq. (4.16) is not valid and the solution of φ by eq. (4.44) below shows that k = 0 is

not a zero mode. Moreover, kS is always nonzero for all n± ≥ 0.

If eq. (4.23) is not satisfied, i.e., the zero mode does not exist, there can still be

the second type of instability when νk is imaginary. The critical value of k is

k2
IR = 2q2 −m2 − 3, (4.24)

where

q2 >
m2 + 3

2
. (4.25)

As explained in ref. [22], this instability is due to the backreaction of pair production

in the IR geometry for a charged scalar, or the mass below the AdS2 BF bound for

a neutral scalar; the parameter set for which νk is imaginary is called the oscillatory

region. The imaginary IR scaling dimension δk = 1/2 + νk implies the conformality

lost after the annihilation of two fixed points of the CFT dual to the AdS2, leading

to an instability of the IR geometry [65, 66].
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Table 4.1: The critical value of the superfluid velocity (± is for the standard and
alternative quantization, respectively).

m2 q Superfluid velocity Sx

−4 ≤ m2 ≤ −3 a
0 ≤ q ≤

√
3

2
(1±

√
m2 + 4)

IR geometry instability
at Sx = kIR/q

q ≥
√

3
2

(1±
√
m2 + 4)

Zero mode instability
at Sx = kS/q

m2 > −3

0 ≤ q <
√

m2+3
2

No instability√
m2+3

2
≤ q ≤

√
3

2
(1 +

√
m2 + 4)

IR geometry instability
at Sx = kIR/q

q ≥
√

3
2

(1 +
√
m2 + 4)

Zero mode instability
at Sx = kS/q

aFor the alternative quantization, the m2 = −4 and −3 cases are not included.

When a zero mode exists, there is always the second type of instability for k < kIR,

by comparing eqs. (4.23) and (4.25):

√
m2 + 3

2
<

√
3

2
(1±

√
m2 + 4), (4.26)

and kIR ≤ kS, by comparing eqs. (4.22) and (4.24). The solution of k as a function

of m2 and q is illustrated in figures 4.2 and 4.3. The blue lines are solutions of kS

from eq. (4.20); the outermost one is n = 0. The boundary of the shaded region is

the solution of kIR from eq. (4.24).

By perturbation around the solution at ω = 0, we can obtain the retarded Green’s

function near the zero mode

G =
h1

k⊥ − 1
vS
ω − h2e

iγkSω2νkS
, (4.27)

where k⊥ = k−kS, and the quantities vS, h1, and h2 can be calculated by the formulas

given in appendix C of ref. [22]. As explained in ref. [22], when the momentum changes

from k > kS to k < kS, a pole of the Green’s function moves across the origin to

the upper half complex ω-plane, signaling an instability. As a comparison, analytic
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Figure 4.2: Phase diagram for the standard quantization. The solid lines correspond
to zero modes. The oscillatory region is shaded, and will move to the right as we
increase m2. In the right plot, the tip of the oscillatory region corresponds to a
bifurcating critical point at k = 0. The dotted line is the BPS bound for q ≤ ∆+/

√
3,

where q is the R-charge [67, 68].
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Figure 4.3: Phase diagram for the alternative quantization. The oscillatory region is
shaded. The dashed lines are solutions to eq. (4.20), but do not represent zero modes.
The dotted line is the BPS bound for q ≤ ∆−/

√
3.
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Figure 4.4: Schematic plot of the poles of the Green’s function when q is large.

fermionic Green’s functions can be obtained for a massless spinor in the background

of the two-charge black hole in AdS5; the Fermi momenta are kF = q − n − 1/2 (in

units of the chemical potential), where q is the charge of the spinor, and n labels the

Fermi surface [55]. The RN-AdS black hole background is more complicated due to

the extra feature of the oscillatory region.

It is helpful to understand the normal modes by looking at the poles of the Green’s

function at arbitrary ω. The numerical calculations suggest the following features, as

illustrated in figure 4.4. At q = 0 and k = 0, all the poles of the Green’s function

are in the lower half ω-plane, and not close to ω = 0. As we increase the charge q,

there are more and more poles moving across the origin to the upper half ω-plane,

and the first one is labeled by n = 0. Suppose we start from a large q. As we

increase k, the poles will move to the right, across the origin to the lower half ω-

plane. Therefore, the largest k corresponds to the n = 0 mode, which triggers the

onset of the instability. The situation is similar to the fermionic case with a crucial

difference that the quasibound states in the upper half plane in figure 4.4 are now in

the lower half plane [30].

According to ref. [2], we can associate the first type of instability with the hy-

bridized critical point, and the second type of instability with the bifurcating critical

point. Recall that the system has rotational symmetry. In the fermionic case, a
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nonzero kF gives a spherical Fermi surface. However, in the bosonic case, the con-

densation of the scalar cannot happen at a spherical shell of the momentum space.

Instead, the quantum phase transition happens at ω = 0 and k = 0. Without tuning

extra parameters, only the second type of instability can happen. By tuning an extra

parameter, both types of instability can happen at k = 0.

4.3.2 Bifurcating critical point

When the IR scaling exponent νk at k = 0 becomes imaginary, there is a bifurcating

critical point [2]. We will denote ν := νk=0 = 1
2
√

3

√
u, where u = m2 − 2q2 + 3. From

u > 0 to u < 0, the Green’s function at ω = 0 keeps finite, but bifurcates into the

complex plane and has a cusp [2].

Near νk = 0, the quantities a
(0)
± and b

(0)
± in the Green’s function can be expanded

as

a
(0)
± = α± νkα̃ + · · · ,

b
(0)
± = β ± νkβ̃ + · · · . (4.28)

By eq. (4.19), we have

α = 31−∆+/2Γ(∆+−1)√
2(m2+4) Γ

(
∆+−1

2
+ q√

3

)
Γ
(

∆+−1

2
− q√

3

)
α̃ = −

Γ(∆+−1)
(
ψ
(

∆+−1

2
+ q√

3

)
+ψ
(

∆+−1

2
− q√

3

)
+2γ−ln 18

)
√

2(m2+4) 3−1+∆+/2Γ
(

∆+−1

2
+ q√

3

)
Γ
(

∆+−1

2
− q√

3

)
β = − 31−∆−/2Γ(∆−−1)√

2(m2+4) Γ
(

∆−−1

2
+ q√

3

)
Γ
(

∆−−1

2
− q√

3

)
β̃ =

Γ(∆−−1)
(
ψ
(

∆−−1

2
+ q√

3

)
+ψ
(

∆−−1

2
− q√

3

)
+2γ−ln 18

)
√

2(m2+4) 3−1+∆−/2Γ
(

∆−−1

2
+ q√

3

)
Γ
(

∆−−1

2
− q√

3

) , (4.29)

where ψ(x) := Γ′(x)/Γ(x) is the digamma function, and γ is the Euler-Mascheroni

constant. It can be checked that αβ̃ − βα̃ = −1/(2
√
m2 + 4) is satisfied.
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Near the bifurcating critical point ν → 0, the IR Green’s function can be written

as

Gk=0(ω) = −1 + 2νG0(ω), (4.30)

where G0(ω) is the IR Green’s function when ν = 0, which can be obtained by eq. (4.8)

with νk = 0:

G0(ω) = − ln(−2iω)− 2γ − ψ
(1

2
− iq√

6

)
. (4.31)

Particularly, for a neutral scalar,

G0(ω) = − ln
(
−iω

2

)
− γ. (4.32)

By expanding the Green’s function, eq. (4.15), at small ν, we obtain the Green’s

function for the bifurcating critical point:

G =
β G0(ω) + β̃

αG0(ω) + α̃
. (4.33)

The finite temperature generalization of G0(ω) is given by eqs. (A.64) and (A.65) in

appendix A.4.

Note that eq. (4.33) is obtained by taking the ν → 0 limit at fixed ω. If we

want to examine the poles of the Green’s function, we need a Green’s function valid

to arbitrarily small ω. To do so, we need to use Gk=0(ω) instead of G0(ω). In the

condensed side (u < 0), there are infinite number of poles in the upper half ω-plane;

these massive states will condense and lead to instability [2].

4.3.3 Critical points with superfluid velocity

A superfluid with a supercurrent flow can be studied holographically by turning on

a vector potential

Ax = Sx + Jxz2 + · · · , (4.34)
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where Sx is the superfluid velocity, which is the source, and Jx is the supercurrent,

which is the expectation value [69, 35, 70, 71, 72]. The Klein-Gordon equation for a

scalar φ coupled with both At and Ax at ω = 0 and k = 0 is

φ′′ +

(
f ′

f
− 3

z

)
φ′ +

(
q2A2

t

f 2
− q2A2

x

f
− m2

z2f

)
φ = 0. (4.35)

When the superfluid velocity is too large, the superfluid phase will return to the

normal phase. At the critical point, Ax = Sx is a constant. From eq. (4.35), we can

see that the superfluid velocity plays the same role as the momentum k,5 which is

consistent with the fact that the superfluid velocity is the gradient of the phase of

the order parameter. The phase diagrams are figures 4.2 and 4.3 by replacing k with

qSx.

According to previous studies of holographic superconductors, there are two mech-

anisms for instabilities: (1) When the charge of the scalar is large, the effective mass

m2
eff = m2 + gttq2A2

t is negative enough to produce an unstable mode [36, 37]. (2)

When it is close to the zero temperature, and the effective mass m2
eff = (m2−2q2)/12

is below the AdS2 BF bound m2
BF = −1/4, the IR geometry is unstable [38, 22, 75].

Here the quantum critical point can be reached by tuning the superfluid velocity,

and the above two mechanisms for instabilities correspond to the two types of in-

stabilities we discussed before: zero mode instability and IR geometry instability,

respectively. They can happen at the same time, giving a mixed critical point, as

shown in figures 4.2 and 4.3, when a solid line touches the oscillatory region.

We call the stable region (k or qSx > max(kS, kIR)) the normal phase, and we call

the unstable region the superfluid phase. When the mass is small (−4 ≤ m2 ≤ −3),

there are two cases: (i) For small charge, the scalar is unstable due to the second

5We reinterpret k as the superfluid velocity (in the x-direction). Another way to reinterpret k is
the magnetic field added by Ay = Bx, assuming that the metric is not changed. After a separation
of variables Φ ∼ X(x)φ(z), the magnetic filed plays the same role as k2 (qB ↔ k2) in the equation
for φ [73, 38]. In terms of a dyonic black hole in AdS4, the quantum critical point by the second
type of instability is studied in ref. [74].
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type of instability; (ii) For large charge, the scalar is unstable due to the first type of

instability. When the mass is large (m2 > −3), there are three cases: (i) For small

charge, the scalar is stable; (ii) For intermediate charge, the scalar is unstable due to

second type of instability; (iii) For large charge, the scalar is unstable due to the first

type of instability. The result is summarized in table 4.1.

4.4 Adding a double trace deformation

4.4.1 Hybridized critical point

Without the superfluid velocity, the zero mode at k = 0 can also be achieved by tuning

another parameter κ+, which describes a double trace deformation in the boundary

CFT:

κ+

2

∫
ddxO2, (4.36)

where 〈O〉 = B [2, 76]. The Green’s function becomes

G(κ+) =
1

G−1 + κ+

. (4.37)

Similarly, starting from the alternative quantization, we can add a double trace

deformation with coefficient κ−, which is related to κ+ by κ− = −1/κ+. The

alternative quantization is allowed only if the m2 of the scalar is in the interval

m2
BF ≤ m2 ≤ m2

BF + 1 [14], which leads to a slight difference between AdS4 and AdS5

as illustrated in figure 4.5. Since we are interested in the instability triggered by a

zero mode at k = 0, we do not want other instabilities to exist. Therefore, we require

u > 0, i.e., the parameters are not in the oscillatory region, in which the system is

already unstable. In AdS4, if we start from the alternative quantization, there is still
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Figure 4.5: A slight difference between AdS4 and AdS5. We set the AdS radius L = 1.
In AdS5, we can only start from the standard quantization.

an interval of m2 not in the oscillatory region. In AdS5, however, we can only start

from the standard quantization.6

The Green’s function at the leading order in ω is

G(ω, k) =
b

(0)
+ + Gk(ω)b

(0)
−

a
(0)
+ + κ+b

(0)
+ + Gk(ω)(a

(0)
− + κ+b

(0)
− )

. (4.38)

The boundary condition for a pole in the Green’s function at ω = 0 is a
(0)
+ +κ+b

(0)
+ = 0.

Thus, by eq. (4.19), the critical value of κ+ is

κc = 3−
√
m2+4 ×

Γ
(

∆−−1
2

+ νk + q√
3

)
Γ
(

∆−−1
2

+ νk − q√
3

)
Γ(∆+ − 1)

Γ
(

∆+−1
2

+ νk + q√
3

)
Γ
(

∆+−1
2

+ νk − q√
3

)
Γ(∆− − 1)

. (4.39)

When κ+ = κc, we obtain a hybridized critical point, which is described by an order

parameter in the Ginzburg-Landau sector hybridized with a strongly coupled sector,

the emergent CFT1 dual to the IR AdS2 [2]. The Green’s function near a hybridized

critical point can be written as

G(ω, k) =
1

κ+ − κc + hkk2 − hωω + hC(ν)(−iω)2ν
, (4.40)

6When m2 ≥ −3, eq. (4.36) is an irrelevant term. We assume that the UV geometry is not
changed, and examine (both UV and IR) instabilities by the Green’s function.
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where

h =
a

(0)
− + κcb

(0)
−

b
(0)
+

= − ν
√
m2 + 4 (b

(0)
+ )2

, C =
Γ(−2ν)Γ

(
1
2

+ ν − iq√
6

)
Γ(2ν)Γ

(
1
2
− ν − iq√

6

) 22ν . (4.41)

For a neutral scalar, the first order in ω vanishes, so we need to write hωω
2 instead.

We assume ν < 1/2 for a charged scalar, or ν < 1 for a neutral scalar. For

example, ν < 1 for a neutral scalar means −3 < m2 < 9, which is already a large

range. Then we do not need hω since the ω2ν term is dominant as ω → 0. For the

Green’s function, ω = 0 is a branch point in the complex ω-plane, and we define the

physical sheet as θ ∈ (−π/2, 3π/2). The Green’s function has a pole at

ω∗ = i

(
κc − κ+

hC(ν)

) 1
2ν

. (4.42)

Note that h < 0, and for q > 0,

0 < arg
1

(−C)1/2ν
<
π

2
, ν <

1

2
, (4.43)

(see appendix A.4); for q = 0, C is real and negative. Therefore, when κ+ < κc, the

pole will be in the upper half ω-plane of the physical sheet. When κ+ > κc, the pole

will be either in the lower half ω-plane of the physical sheet, or on a non-physical

sheet.

We can easily plot the critical value of κ+ for the hybridized critical point as a

function of u, as shown in figure 4.6. The boundary for the bifurcating critical point

is u = 0. The two curves u = 0 and κ+ = κc intersect at (u, κ+) = (0,−2), which

is a marginal critical point. When κ+ changes across the curve from κ+ > κc to

κ+ < κc, a pole will move across the origin to the upper half ω-plane, causing an

instability. We can see that κc is a single-valued function of u, which implies the

following. If we keep increasing or decreasing κ+, after a pole moves across the origin
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Figure 4.6: The tentative phase diagram for a neutral scalar (q = 0), with different
ranges of u = m2 + 3. The small u part is consistent with ref. [2]. The bifurcating
critical point is at u = 0, and the oscillatory region is u < 0. The hybridized critical
point is at κ+ = κc. The curve crosses the horizontal axis at u = 8. The red shaded
region when κ+ < κc is for IR instability, and the blue shaded region when κ+ > 0 is
for UV instability. The white regions are stable.

of the complex ω-plane, it will never come back to the origin. However, we cannot

exclude the possibility that a pole can appear from infinity in the upper half ω-plane,

or a pole in the upper half ω-plane can move to infinity and disappear. The analytic

solution cannot capture these features. We hope further numerical calculations can

be helpful to make this clear.7

We will refer to the IR instability as the singularity of the Green’s function at

|ω| → 0, and UV instability as the singularity of the Green’s function at |ω| →

∞ in the upper half complex ω-plane. For a CFT at zero density, the boundary

for the UV instability is κ+ = 0 [2]. If the UV and IR instabilities are related, a

tentative phase diagram for a neutral scalar is shown in figure 4.6. The boundary for

the hybridized critical point is much more intricate than previous numerical results

showed [2]. Especially, the curve will cross the u axis (κ+ = 0). From eq. (4.39), we

can see that when 1 − ∆− = −n, i.e., m2 = (n + 1)2 − 4, where n = 0, 1, · · · , the

denominator of κc is infinity; thus, if there is no other infinity in the numerator, we

have κc = 0, which implies that the static Green’s function G(ω = 0)→∞. However,

7There are two challenges in numerical calculations. One is that the result becomes inaccurate
very quickly as the Im(ω) becomes large; the other is that it is more difficult to obtain the expectation
value accurately when the scaling dimension is large.
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when ∆+ (or ∆−) is a integer, we need to use eq. (A.47) in appendix A.3 to calculate

the Green’s function, and the result is usually finite. This puzzle is largely related to

the renormalization near integer values of ∆± (see appendix A.3).

4.4.2 Marginal critical point

The marginal critical point happens at both u = 0 and κ+ = κc. Recall that the

IR scaling dimension δk = 1/2 + νk; when ν = 0, the double trace deformation is

marginally relevant in the IR CFT [2]. The only possible parameters for the marginal

critical point are m2 = −3 and q = 0. The critical value of κ+ is κc = −2, which

can be obtained from eq. (4.39) by setting q = 0 and k = 0 first, and then taking the

m2 → −3 limit. The direct calculations are as follows. The solution of φ in the outer

region at ω = 0 and k = 0 is

φO =
z√

1− z2

(
C1 + C2 ln

1− z2

2z2 + 1

)
. (4.44)

The solution in the inner region is

φI =
ln[12(1− z)]√

12(1− z)
+ G0(ω)

1√
12(1− z)

, (4.45)

where G0 is given by eq. (4.32). By matching φO and φI , we obtain

α =
1√
6

β =
1

2
√

6

α̃ =
1√
6

ln 18 β̃ =
1

2
√

6
ln 18− 3√

6
. (4.46)

By expanding eq. (4.38) at small ν, the Green’s function near the marginal critical

point is

G =
β G0(ω) + β̃

(α + κ+β)G0(ω) + α̃ + κ+β̃
, (4.47)
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which gives

G =
lnω − 2 ln 6 + 6 + γ − iπ/2

(κ+ + 2)(lnω − 2 ln 6 + 6 + γ − iπ/2)− 12
, (4.48)

where the critical value of κ+ is −2.

We can replace the zero temperature Green’s function Gk(ω) with the finite tem-

perature Green’s function, eq. (A.62) in appendix A.4, and the phase diagram of T -κ+

can be obtained [2]. At finite temperature T << µ, the result is

G =
ψ
(

1
2
− iω

2πT

)
+ ln πT

18
+ 6 + γ

(κ+ + 2)
[
ψ
(

1
2
− iω

2πT

)
+ ln πT

18
+ 6 + γ

]
− 12

, (4.49)

whose imaginary part is

ImG =
π

24
tanh

ω

2T
=


πω

48T
ω << T

π

24
sgn(ω) ω >> T.

(4.50)

4.5 Discussion

Starting from the extremal RN-AdS5 black hole, we have studied the quantum critical

points by solving the Klein-Gordon equation in the bulk. The result gives us a glimpse

of some strongly interacting systems, whose properties are beyond the reach of the

perturbative method in quantum field theory. Just like the harmonic oscillator and

the hydrogen atom as exactly solvable models capture essential features in quantum

mechanics, the exactly solvable model in this work, together with a previous fermionic

one [55], captures many essential features in AdS/CMT.

We have calculated the Green’s function to the leading order in ω. The non-

analyticity of the Green’s function indicates two types of instabilities: one is triggered

by a zero mode, and the other is triggered by the instability of the IR geometry. In the

standard/alternative quantization, the zero modes of the system are always at finite
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Figure 4.7: The left plot is the phase diagram for section 4.3.3. The parameter Sx is
the superfluid velocity. SC denotes (holographic) superconductor. The right plot is
the phase diagram for sections 4.3.2 and 4.4, according to ref. [2]. The parameter g
is u for the bifurcating critical point, or κ+ for the hybridized critical point.

k. However, we can tune an extra parameter to make the zero mode be at k = 0.

We considered the quantum critical points of two systems, whose finite temperature

phase diagrams are illustrated in figure 4.7. The extra parameter in the first system

is the superfluid velocity. The RN-AdS5 geometry describes the normal phase, and

depending on the parameters (m2, q), the system can develop zero mode instability,

IR geometry instability, or be stable. The extra parameter in the second system is the

double trace deformation. The zero mode instability gives a hybridized critical point.

In the second system, besides the above IR instabilities, there is also UV instability,

which is not captured by the analytic solution.

There are several remaining questions in the second system as follows. (i) What

is the full phase diagram including both UV and IR instabilities? We already have

the boundary for the IR instabilities. To find the stable region, we need not only

the boundary for the UV instabilities, but how the poles move as we change the

parameters. (ii) What happens to the Green’s function when ∆+ approaches an

integer? This is related to the curve crossing the u-axis (κ+ = 0) in figure 4.6. It

seems that the ∆+ approaching an integer limit is not the same as the result obtained

by setting ∆+ be the integer. (iii) What are the analogous models in condensed matter

physics?
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There is another related work [77] for the two-charge black hole in AdS5, in which

the massless Klein-Gordon equation is analytically solved. We can obtain the zero

modes as νk = q − 2n− 3, where νk =
√
k2 + 1 and n is a nonnegative integer. Only

the first type of instability exists, because the electric field approaches zero in the

near horizon limit [55].
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Appendix A

Mathematical notes

A.1 Analytic results from Heun polynomials

In the AdS/CFT correspondence, some perturbation equations can be written in

terms of the Heun equation, which has four regular singularities. Under certain

conditions, the solution of the Heun equation is a polynomial, which can help us to

obtain an exact solution to the Green’s function. The Heun differential equation is

d2y

dx2
+

(
γ

x
+

δ

x− 1
+

ε

x− a

)
dy

dx
+

αβx−Q
x(x− 1)(x− a)

y = 0 , (A.1)

where α+β+1 = γ+δ+ε [78]. The regular singularities are at x = 0, 1, a, and∞. The

solution to this equation is called the Heun function, if it is regular at both x = 0 and

x = 1 (assuming a > 1). We denote the Heun function by HeunG(a,Q;α, β, γ, δ;x),

which is symmetric in α and β. The Heun function can be written as a power series

HeunG(x) =
∑∞

r=0 crx
r where the coefficients satisfy a three term recursion relation

[78]:

(r−1+α)(r−1+β)cr−1−{r[(r−1+γ)(1+a)+aδ+ε]+Q}cr+(r+1)(r+γ)acr+1 = 0 .
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Given this recursion relation, it is clear that if α or β = −n and if cn+1 = 0, then

HeunG(x) is an nth order polynomial.1 In general, the condition cn+1 = 0 is an

(n + 1)th order algebraic equation in the parameters of the Heun function. Since

we need to solve an (n + 1)th-order algebraic equation to obtain an nth-order Heun

polynomial, we usually cannot obtain explicit solutions when n ≥ 4. (For comparison,

the series expansion for the hypergeometric function 2F1(α, β, γ;x) is defined by a two

term recursion relation, and the polynomial condition is just α = −n.) The set of

solutions cn+1 = 0 may include unphysical regions of parameter space, for example

regions where the charge or momentum is imaginary. We will need to further restrict

the solution set.

Setting

ψ =

 u1

u2

 , (A.2)

the two coupled equations (2.5) for u1 and u2 can be reduced to a single second-order

ODE. To avoid the awkward square root, we define u± = u1±u2, and then the Dirac

equations are

∂zu+ −
i(ω + qAt)

f
u+ =

m+ ikz

z
√
f

u− , (A.3)

∂zu− +
i(ω + qAt)

f
u− =

m− ikz
z
√
f

u+ . (A.4)

1There are other types of “Heun polynomials” [78]. For example, another solution to the Heun
equation is x1−γHeunG(a, (aδ+ ε)(1− γ) +Q;α+ 1− γ, β + 1− γ, 2− γ, δ;x), which indicates that
the HeunG on the right-hand side is a polynomial of order n when α + 1 − γ = −n. In this work,
other polynomials give unphysical results or the same results as the case α = −n.
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The equation for u− is given by2

u′′− +

(
f ′

2f
+

m

z(m− ikz)

)
u′− +

[
(ω + qAt)

2

f 2
− m2

z2f
− k2

f

+
i(ω + qAt)

f

(
− f

′

2f
+

m

z(m− ikz)

)
+
iqA′t
f

]
u− = 0 . (A.5)

We need to solve this equation with in-falling wave boundary condition at the horizon,

and then plug u− into eq. (A.4) to obtain u+.

For the massless fermion in AdS5, we obtain a second-order ODE with four regular

singularities as follows:3

u′′− +
f ′

2f
u′− +

[
(ω + qAt)

2

f 2
− k2

f
− if ′(ω + qAt)

2f 2
+
iqA′t
f

]
u− = 0 , (A.6)

where f = 1− z4 and At = 1− z2. The solution is

u− ∼ (z + 1)iω/4+1/2(z − 1)−iω/4+1/2(z + i)−q/2+1/2−ω/4(z − i)−3/2+q/2+ω/4

×HeunG

(
1

2
,
3− (1− i)ω

2
− ik2

4
− q; 2,

3− ω
2
− q, 3 + iω

2
,
3− iω

2
;
(1− i)(z + 1)

2(z − i)

)
.

(A.7)

We can see that when

ω = 2n+ 3− 2q , n = 0, 1, 2, · · · , (A.8)

we can obtain an nth-order polynomial solution pn,

HeunG(x) = pn =
n∑
r=0

crx
r , x =

(1− i)(z + 1)

2(z − i)
, (A.9)

2Note that this equation can be put in Schrödinger form and gives an alternate starting point
for a WKB approximation. The corresponding Schrödinger potential is complex which makes phase
integral methods substantially more involved.

3While we have focused on AdS4 backgrounds in chapter 2, with an appropriate choice of gamma
matrices [16], eq. (2.5) also holds for AdS5.
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if k satisfies an (n+ 1)th-order algebraic equation.

The zeroth-order polynomial is

p0 = 1 , when k2 = 6− 4q . (A.10)

With this exact solution, we can obtain the Green’s function

G(ω = 3− 2q, k =
√

6− 4q, q) =
4− 2q −

√
6− 4q

4− 2q +
√

6− 4q
i . (A.11)

For the other sign of k, G(−k) = −1/G(k). We can see that Im(G) > 0 is always

satisfied (if k is real). The first-order polynomial is

p1 = 1− 2ω − 2iω − 6 + ik2 + 4q

iω + 3
x , when k2 = 15− 6q ±

√
4q2 − 20q + 33 .

(A.12)

The Green’s function

G(ω = 5− 2q, k =

√
15− 6q ±

√
4q2 − 20q + 33, q) (A.13)

can be exactly expressed. If we take the plus sign, for example, the result is

15− 4q + (7− 2q)
√

4q2 − 20q + 33− (3 +
√

4q2 − 20q + 33)
√

15− 6q +
√

4q2 − 20q + 33

15− 4q + (7− 2q)
√

4q2 − 20q + 33 + (3 +
√

4q2 − 20q + 33)
√

15− 6q +
√

4q2 − 20q + 33
i .

(A.14)

To obtain the second-order polynomial, we need to solve a third-order algebraic equa-

tion for k. There are higher-order polynomials, and the results are more complicated.

The denominator of the above two Green’s functions are non-zero for all real q. It is

unlikely that we can solve for a Fermi momentum kF in this way.
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The exact results can be used to check the numerical program. For example, some

exact results are

G(ω = 1, k =
√

2, q = 1) = (3− 2
√

2)i , (A.15)

G(ω = 1, k =
√

6, q = 2) =
59− 24

√
6

5
i , (A.16)

G(ω = −1, k = 0, q = 3) = i , (A.17)

where the last one is consistent with G(ω, k = 0) = i for massless spinors [22]. As

more examples, we list the numerical value of the exact result and the numerical

result in some special cases as follows:

ω k q exact numerical

7
√

21 +
√

57 −1 0.21336115i 0.21336116i

5
√

15 +
√

33 0 0.16186619i 0.16186620i

3
√

9 +
√

17 1 0.10121094i 0.10121094i

1
√

6 2 0.04244923i 0.04244924i

0 23/4 5/2 0.04177353i 0.04177353i

There is a hidden algebraic structure in the Heun equation. A representation of

the SU(2) algebra is

S+ = z2∂z − 2sz , (A.18)

S− = −∂z , (A.19)

S0 = z∂z − s , (A.20)

where [S+, S−] = 2Sz, [S0, S±] = ±S±, and S2 = s(s+1). If we consider the following

Hamiltonian problem Hy(z) = Ey(z) with

H =
∑

i,j=−,0,+
i≥j

aijSiSj +
∑

i=+,0,−

biSi , (A.21)
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we obtain a differential equation with polynomial coefficients [79]:

P4 y
′′(z) + P3 y

′(z) + P2 y(z) = Ey(z) , (A.22)

where

P4 = a++z
4 + a+0z

3 + (a00 − a+−)z2 − a0−z + a−− , (A.23)

P3 = 2(1− 2s)a++z
3 + [(1− 3s)a+0 + b+]z2 + [2s(a+− − a00) + a00 + b0]z (A.24)

+ sa0− − b− ,

P2 = 2s(2s− 1)a++z
2 + 2s(sa+0 − b+)z + s2a00 − sb0 . (A.25)

There is a correspondence between the Heun equation and the spin system by the

following identification:

a++ = 0 , a+0 = 1 , a−− = 0 , (A.26)

a00 − a+− = −(1 + a) , a0− = −a , (A.27)

2s(a+− − a00) + a00 + b0 = −(γ(1 + a) + δa+ ε) , (A.28)

sa0− − b− = aγ , s2a00 − sb0 − E = Q , (A.29)

b+ − 3s = α + β , 2s(s− b+) = αβ . (A.30)

Solving eq. (A.30) gives s = −α/2 or s = −β/2. If the total spin s is an integer or half-

integer, the H in eq. (A.21) has a finite dimensional representation. Therefore, the

eigenvalues satisfy an algebraic equation by diagonalizing H. This algebraic equation

is equivalent to the condition for the existence of a Heun polynomial solution. If s is

not an integer or half-integer, the Hilbert space is infinite dimensional.

The interpretation of why there exist some exact solutions to the Green’s function

is as follows. When m = 0, in the three-dimensional parameter space (ω, k, q),
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there are discrete one-dimensional lines (subspaces) that are labeled by n = 1, 2, · · · .

On these lines, the Hilbert space (accidentally) becomes finite dimensional. So the

eigenvalues satisfy an nth-order algebraic equation. When n ≤ 4, we can explicitly

solve the algebraic equation.

A.2 Mathematical notes for chapter 3

Hypergeometric function 2F1(α, β; γ; z). We will denote 2F1 by F for simplicity in the

following. The derivative of the hypergeometric function can also be expressed by a

hypergeometric function:

d

dz
F (α, β; γ; z) =

αβ

γ
F (α + 1, β + 1; γ + 1; z). (A.31)

The following formula can be used to combine the sum of two hypergeometric func-

tions:

γF (α, β; γ; z) + αzF (α + 1, β + 1; γ + 1; z) = γF (α, β + 1; γ; z). (A.32)

In general, the hypergeometric function has branch points at z = 0, 1, and ∞. By

convention, we make a branch cut from z = 1 to ∞, and take the principle branch as

−2π < arg z ≤ 0 for |z| > 1. The following formula can be used to transform a value

above the branch cut to another value below the branch cut:

F (α, β; γ; z) = (1− z)−αF
(
α, γ − β; γ;

z

z − 1

)
. (A.33)

The z = 2 point has the following special property:

z → z

z − 1
: 2± iε→ 2∓ iε. (A.34)
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By eq. (A.33) and (−1− iε)−α = eiαπ, we have

F (α, β; γ; 2 + iε) = eiαπF (α, γ − β; γ; 2− iε). (A.35)

We define

F (α, β; γ; 2) := F (α, β; γ; 2− iε). (A.36)

The condition for the normal modes is

F (−n, νk; 2νk + 1; 2) = ±F (−n, νk + 1; 2νk + 1; 2), (A.37)

where n = −νk + q − 1/2. The plus sign is for G1 and the minus sign is for G2.

We assume that n is a non-negative integer at first. If n is even, the above equation

with the plus sign is satisfied; If n is odd, the above equation with the minus sign

is satisfied. We can numerically check that they are the only solutions when q > 0.

When q < 0, there is another set of solutions due to the q → −q, ω → −ω, u1 ↔ u2

symmetry of the Dirac equation; however, these solutions are unphysical because they

give Im(G) < 0. Intuitively, only if a particle and the black hole have the same charge

can there be a balance between the attractive gravitational force and the repulsive

electromagnetic force on the particle.

For non-negtive integer n,

F (−n, ν; 2ν + 1; 2) =


Γ(n/2 + 1/2)Γ(ν + 1/2)√

π Γ(ν + n/2 + 1/2)
if n is even

Γ(n/2 + 1)Γ(ν + 1/2)√
π Γ(ν + n/2 + 1)

if n is odd.

(A.38)
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Gamma function. Useful identities for the Gamma functions include

Γ
(
n+

1

2

)
=

(2n)!

4nn!

√
π =

(2n− 1)!!

2n
√
π

Γ(z)Γ(1− z) =
π

sinπz

Γ(z)Γ(z + 1/2) = 21−2z
√
π Γ(2z). (A.39)

Whittaker function. Whittaker’s equation is

d2W

dz2
+

(
−1

4
+
λ

z
+

1/4− µ2

z2

)
W = 0. (A.40)

We can write down the general solution as C1Wλ,µ(z)+C2W−λ,µ(−z), where for large

|z| one has

Wλ,µ(z) ∼ e−z/2zλ(1 + · · · ), |z| → ∞. (A.41)

As special cases, W±1/2,µ(z) are related to the modified Bessel function Kν(z) by

W1/2,µ(z) =
z

2
√
π

(
Kµ+1/2

(z
2

)
+Kµ−1/2

(z
2

))
W−1/2,µ(z) =

z

2µ
√
π

(
Kµ+1/2

(z
2

)
−Kµ−1/2

(z
2

))
. (A.42)

A.3 Mathematical notes for chapter 4

Hypergeometric function 2F1(α, β; γ;x). We will denote 2F1 by F for simplicity. The

following formulas are helpful to obtain and understand the analytic solutions:

F (α, β; γ;x) = (1− x)−βF
(
γ − α, β; γ;

x

x− 1

)
. (A.43)
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If Re(γ) > Re(α + β),

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
. (A.44)

A connection formula for the hypergeometric function is

F (α, β; γ;x) = AF (α, β;α + β − γ + 1; 1− x)

+B(1− x)γ−α−βF (γ − α, γ − β; γ − α− β + 1; 1− x), (A.45)

where

A =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
, B =

Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
. (A.46)

Other solutions for the Klein-Gordon equation (4.7). If ∆+ is an integer, eq. (4.16)

is no longer a general solution. If 2νk is not an integer, the general solution for eq. (4.7)

at ω = 0 can be written as

φ(z) =C1
z∆+(1− z2)−1/2−νk

(2z2 + 1)−1/2−νk+∆+/2
2F1

(∆+ − 1

2
− νk −

q√
3
,

∆+ − 1

2
− νk +

q√
3

; 1− 2νk;
1− z2

2z2 + 1

)
+C2

z∆+(1− z2)−1/2+νk

(2z2 + 1)−1/2+νk+∆+/2
2F1

(∆+ − 1

2
+ νk −

q√
3
,

∆+ − 1

2
+ νk +

q√
3

; 1 + 2νk;
1− z2

2z2 + 1

)
.

(A.47)

If 2q/
√

3 is not an integer, the general solution can also be written as

φ(z) =C1z
∆+

(1− z2)−∆+/2+q/
√

3

(2z2 + 1)q/
√

3
2F1

(∆+ − 1

2
− νk −

q√
3
,

∆+ − 1

2
+ νk −

q√
3

; 1− 2q√
3

;
2z2 + 1

1− z2

)
+C2z

∆+
(1− z2)−∆+/2−q/

√
3

(2z2 + 1)−q/
√

3
2F1

(∆+ − 1

2
− νk +

q√
3
,

∆+ − 1

2
+ νk +

q√
3

; 1 +
2q√

3
;

2z2 + 1

1− z2

)
.

(A.48)

If all ∆+, 2νk, and 2q/
√

3 are integers, it is likely that the solution is an elementary

function. It is especially convenient to use eq. (A.47), because the boundary condition

at the horizon to obtain zero modes is simply C1 = 0. We will discuss some special

cases, in which we only consider the standard quantization.
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Special case 1 : m2 = −4 (∆+ = 2). By using eq. (A.47), the result for the static

Green’s function is

G(ω = 0) =
1

2

[
ψ
(1

2
+ νk −

q√
3

)
+ ψ

(1

2
+ νk +

q√
3

)
+ 2γ + ln 3

]
, (A.49)

where ψ(x) is the digamma function.

Special case 2 : m2 = −3 (∆+ = 3). Similarly, the result for the static Green’s

function is

G(ω = 0) = (3ν2
k − q2)

[
ψ
(

1 + νk−
q√
3

)
+ψ

(
1 + νk +

q√
3

)
+ 2γ+ ln 3− 1

]
+

1

2
− 3νk.

(A.50)

Special case 3 : m2 = 0 (∆+ = 4) and q = 0. The solution for eq. (4.7) at ω = 0 is

φO = C1 + C2

(
3

1− z2
+ ln

1− z2

2z2 + 1

)
. (A.51)

The solution for eq. (4.7) in the inner region is φI = eiω/[12(1−z)]. We obtain G(ω =

0) = 0, which implies κc →∞ at u = 3, and thus is consistent with figure 4.6.

Special case 4 : m2 = 5 (∆+ = 5). This corresponds to u = 8 in figure 4.6.

The result is cumbersome, but it is clear that the Green’s function at ω = 0 is a

finite number, which implies that κc 6= 0. However, figure 4.6 shows that κc = 0

at u = 8. This inconsistency can be explained as follows. If we take the limit that

∆+ approaches an integer, eq. (4.16) diverges, and we need a renormalization, which

changes κc.

Let’s take a more careful examination about the cases when ∆+ = 2, 3, · · · . When

∆+ = 2, i.e., m2 = m2
BF = −4, φ = Az2 ln z +Bz2 + · · · , where A is the source. Now

we consider ∆+ > 2. According to eq. (4.19), the expectation value B is divergent
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when ∆+ is an integer. If we add a small number δ to ∆+, we have

B =
b

δ
+Br +O(δ), (A.52)

where Br is the renormalized value of B. By the expansion

zδ = 1 + δ ln z +
1

2
(δ ln z)2 + · · · , δ → 0, (A.53)

we have

φ = Az∆−(1 + · · · ) +Bz∆++δ(1 + · · · )

= Az∆−(1 + · · · ) + z∆+

( b
δ

+Br + b ln z +O(δ ln z)
)

(1 + · · · ), (A.54)

where “· · · ” denotes higher-order terms in z. The renormalized Green’s function

by the standard quantization is Gr = Br/A. Since there is a logarithm, the near

boundary expansion should be evaluated at a UV cutoff z = LUV (LUV/L << 1).

Therefore, there are two noncommuting limits: δ → 0 and LUV → 0. The Green’s

function obtained by eq. (4.19) makes sense only if the following condition is satisfied:

∣∣∣δ · ln LUV

L

∣∣∣ << 1. (A.55)

A.4 IR Green’s function

The IR Green’s function Gk(ω) for the scalar field is given in ref. [22]. We will briefly

review the result first. The IR geometry described by

f = 12(1− z)2, At = 2
√

6(1− z). (A.56)

102



Define the AdS2 coordinate

ζ =
1

12(1− z)
. (A.57)

The solution to the Klein-Gordon equation with the in-falling boundary condition at

the horizon is

φ ∼ W− iq√
6
,νk

(−2iωζ), (A.58)

where Wλ,µ(x) is a Whittaker function with the following asymptotic behavior:

Wλ,µ(x) ∼ e−x/2xλ(1 + · · · ), |x| → ∞. (A.59)

By expanding eq. (A.58) at ωζ → 0, we obtain

φ = ζ1/2−νk + Gk(ω)ζ1/2+νk . (A.60)

The IR Green’s function at zero temperature is

Gk(ω) =
Γ(−2νk)Γ(1

2
+ νk − iq√

6
)

Γ(2νk)Γ(1
2
− νk − iq√

6
)

(−2iω)2νk . (A.61)

The finite temperature generalization at T << µ (chemical potential) is

G(T )
k (ω) = (4πT )2νk ×

Γ(−2νk)Γ
(

1
2

+ νk − iq√
6

)
Γ
(

1
2

+ νk − iω
2πT

+ iq√
6

)
Γ(2νk)Γ

(
1
2
− νk − iq√

6

)
Γ
(

1
2

+ νk − iω
2πT

+ iq√
6

) . (A.62)

Near the bifurcating critical point ν → 0,

G(T )
k=0(ω) = −1 + 2νG(T )

0 (ω), (A.63)

where

G(T )
0 (ω) = −ψ

(1

2
+

iq√
6
− iω

2πT

)
− 2γ − ln(4πT )− ψ

(1

2
− iq√

6

)
. (A.64)
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Particularly, for a neutral scalar,

G(T )
0 (ω) = −ψ

(1

2
− iω

2πT

)
− γ − ln(πT ). (A.65)

For q > 0 and ν < 1/2, eq. (4.43) can be proved by

arg
1

(−C)
= arg

(
−

Γ(2ν)Γ(1
2
− ν − iq∗)

Γ(−2ν)Γ(1
2

+ ν − iq∗)

)
= arg[cos π(ν − iq∗)]

= arctan(tan πν tanhπq∗) < πν, (A.66)

where we have used the reflection formula Γ(x)Γ(1−x) = π/ sin πx, and the fact that

we can put any positive number inside arg(x) without changing its value.
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