
Durham E-Theses

Graph Algorithms and Complexity Aspects on Special

Graph Classes

STEWART, ANTHONY,GRAHAM

How to cite:

STEWART, ANTHONY,GRAHAM (2017) Graph Algorithms and Complexity Aspects on Special Graph

Classes, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/12144/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12144/
 http://etheses.dur.ac.uk/12144/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Durham University

Doctoral Thesis

Graph Algorithms and
Complexity Aspects on Special

Graph Classes

Author:

Anthony Stewart

Supervisors:

Daniël Paulusma

Matthew Johnson

A thesis submitted for the degree of Doctor of Philosophy

Algorithms and Complexity in Durham

School of Engineering and Computing Sciences

May 2017

http://www.dur.ac.uk/
http://community.dur.ac.uk/a.g.stewart
http://community.dur.ac.uk/daniel.paulusma
https://community.dur.ac.uk/matthew.johnson2
http://community.dur.ac.uk/algorithms.complexity/
https://www.dur.ac.uk/ecs/

Abstract

Graphs are a very flexible tool within mathematics, as such, numerous problems

can be solved by formulating them as an instance of a graph. As a result, however,

some of the structures found in real world problems may be lost in a more general

graph. An example of this is the 4-Colouring problem which, as a graph

problem, is NP-complete. However, when a map is converted into a graph, we

observe that this graph has structural properties, namely being {K5, K3,3}-minor-

free which can be exploited and as such there exist algorithms which can find

4-colourings of maps in polynomial time.

This thesis looks at problems which are NP-complete in general and determines

the complexity of the problem when various restrictions are placed on the input,

both for the purpose of finding tractable solutions for inputs which have certain

structures, and to increase our understanding of the point at which a problem

becomes NP-complete.

This thesis looks at four problems over four chapters, the first being Parallel

Knock-Out. This chapter will show that Parallel Knock-Out can be solved

in O(n + m) time on P4-free graphs, also known as cographs, however, remains

hard on split graphs, a subclass of P5-free graphs. From this a dichotomy is shown

on Pk-free graphs for any fixed integer k.

The second chapter looks at Minimal Disconnected Cut. Along with some

smaller results, the main result in this chapter is another dichotomy theorem

which states that Minimal Disconnected Cut is polynomial time solvable for

3-connected planar graphs but NP-hard for 2-connected planar graphs.

The third chapter looks at Square Root. Whilst a number of results were found,

the work in this thesis focuses on the Square Root problem when restricted to

some classes of graphs with low clique number.

The final chapter looks at Surjective H-Colouring. This chapter shows that

Surjective H-Colouring is NP-complete, for any fixed, non-loop connected

graph H with two reflexive vertices and for any fixed graph H ′ which can be

obtained from H by replacing vertices with true twins. This result enabled us to

determine the complexity of Surjective H-Colouring on all fixed graphs H

of size at most 4.

Declaration of Authorship

No part of this thesis has previously been submitted for any degree at any in-

stitution. Most of the results presented in this thesis have appeared, often in

preliminary form, in the papers [41, 44, 57, 58, 60, 61], all of which have been

subject to peer review. At the beginning of each chapter it is mentioned where

the results presented in that chapter have been published. Although many of the

results have been obtained in collaboration, I have been heavily involved in and

actively contributed to discussions that led to the results in every section of this

thesis.

The copyright of this thesis rests with the author. No quotation from it should

be published without the author’s prior written consent and information derived

from it should be acknowledged.

This work was supported by the Engineering and Physical Sciences Research

Council.

iii

Acknowledgements

Seven years ago today, I received my application to study at Durham was accepted

(thanks for the memory Facebook). I came to Durham on a 4 year, integrated

Masters in Physics. I am now finishing off a Ph.D in Algorithms and Complexity

from the Engineering and Computing Sciences department; I think it’s fair to say

that things haven’t exactly gone to plan. Now though I have one of the harder

parts of my thesis to write, somehow I have to thank everyone who has got me

here in under a page.

I think I first have to thank my parents, who were determined that I would have

the best education possible, even if that’s not what 11 year old me wanted at the

time. The importance they put on my education is the reason I am here today.

I would also like to thank Dani, my wonderful girlfriend who has been a constant

source of support (in part because she probably wants me to leave Durham at

some point) through the process of writing up this thesis.

Next I must thank my supervisor, Prof. Daniel Paulusma. I first met Daniel in my

third year where he was my final year project supervisor, his constant enthusiasm

and positivity on my project helped to make it one of the most enjoyable parts

of my undergraduate degree and it was him that suggested I carry on with that

style of work and do a Ph.D here. Throughout my Ph.D he has been hugely

supportive and it has been a pleasure doing research with you.

I would also like to thank everyone I have had the pleasure of with working with,

as a co-author or just through discussions, in particular my second supervisor

Matthew Johnson and my other co-authors Petr Golovach, Marcin Kaminski,

Dieter Kratsch, Barnaby Martin and Dimitrios Thilikos.

Durham has been a huge chapter of my life, and it has taught my so much more

than just Physics and Computer Science. I have developed a lot as a person and a

significant amount of that is down to the Canoe Club and all of the members over

the last 7 years. You have all made my time at Durham such a great experience

and got me hooked on a sport I hope I will continue for many year to come.

I could carry on, but to save the margins: to all my friends at Durham and

everywhere; to everyone who has helped me to get here; thank you!

iv

Contents

Abstract ii

Declaration of Authorship iii

Acknowledgements iv

Contents v

List of Theorems viii

1 Introduction 1

1.1 Graph Theory . 1

1.1.1 A (very) brief introduction 1

1.1.2 The Seven Bridges of Königsberg 2

1.1.3 Terminology . 3

1.1.4 Graph Classes . 6

1.1.5 Graph Parameters . 9

1.2 Complexity Theory . 11

1.2.1 Running Time of an Algorithm 11

1.2.2 Non-Deterministic Polynomial Time 13

1.2.3 Complexity Classes . 15

1.2.4 Coping with Hardness . 16

2 Parallel Knock-Out on Pk-free Graphs 19

2.1 Introduction . 20

2.1.1 Known Results . 21

2.1.2 Our Results . 22

2.2 Preliminaries . 24

2.3 Cographs . 26

2.4 Split Graphs . 39

2.5 Conclusions . 42

v

Contents vi

3 Minimal Disconnected Cut on Planar Graphs 45

3.1 Introduction . 46

3.1.1 Our Results . 48

3.1.2 Related Work . 50

3.2 Preliminaries . 52

3.3 3-Connected Planar Graphs . 54

3.4 2-Connected Planar Graphs . 64

3.4.1 Minimal Connected Cut on 2-Connected Apex Graphs . . 66

3.5 A Generalisation . 69

3.6 Semi-Minimality . 71

3.7 Conclusions . 75

4 Square Root on Graphs with Low Clique Number 77

4.1 Introduction . 78

4.2 Squares of Low Clique Number 81

4.3 Conclusions . 87

5 Surjective H-Colouring with 2-reflexive H 89

5.1 Introduction . 90

5.1.1 Our Results . 94

5.2 Two Non-Adjacent Reflexive Vertices 96

5.2.1 Factor Cuts . 96

5.2.2 The Hardness Reduction 100

5.3 Target Graphs Of At Most Four Vertices 111

5.4 Conclusions . 118

Bibliography 119

List of Theorems

Theorem 2.1.
The Parallel Knock-Out problem can be solved in O(n+m)
time on cographs with n vertices and m edges. 37

Theorem 2.2.
The Parallel Knock-Out problem and, for any k ≥ 2, the k-
Parallel Knock-Out problem are NP-complete for split graphs. 39

Corollary 2.1.
The Parallel Knock-Out problem restricted to Pr-free graphs
is linear-time solvable if r ≤ 4 and NP-complete if r ≥ 5. 42

Theorem 3.1.
A 3-connected K3,3-minor-free graph G has a minimal disconnected
cut if and only if K2,r ≤c G for some r ≥ 2. 54

Theorem 3.2.
It is possible to find in O(mn2) time whether a graph G with n
vertices and m edges contains Dr as a subdivision for some r ≥ 2. 62

Theorem 3.3.
Minimal Disconnected Cut can be solved in O(n3) time on
3-connected planar graphs with n vertices. 63

Theorem 3.4.
Minimal Disconnected Cut is NP-complete for the class of
2-connected planar graphs. 64

Theorem 3.5.
Minimal Connected Cut(3) is NP-complete even for the class
of 2-connected apex graphs. 66

Theorem 3.6.
Let G be a K3,3-minor-free graph. Let U be any minimal cut of G.
Then every component of G[U] is a path or a cycle, or in case G is
planar and U is disconnected, every component of G[U] is a path.
Moreover, G has a minimal disconnected cut of size 2 or for every
minimal disconnected cut U of G it holds that G[V \U] has exactly
two components. 70

Corollary 3.1.
Minimal P-Cut is polynomial-time solvable for k-connected pla-
nar graphs if k ≥ 3 and NP-complete if k ≤ 2. 70

Theorem 3.7.
The Semi-Minimal Disconnected Cut problem can be solved
in linear time for planar graphs. 73

Theorem 3.8.
The problem of deciding whether a graph contains the graph Dr

as a subdivision is NP-complete if r is part of the input. 75

vii

List of Theorems viii

Theorem 4.1.
Square Root can be solved in O(n) time for K4-free graphs on n
vertices. 82

Theorem 4.2.
Square Root can be solved in O(n) time for 3-degenerate graphs
on n vertices. 85

Theorem 4.3.
For every two integers r, t ≥ 1, Square Root can be solved in
time O(n) for (Kr, Pt)-free graphs on n vertices. 86

Theorem 5.1.
Let i and j be positive integers, i ≤ j. Then (i, j)-Factor Cut
with Roots is NP-complete. 98

Theorem 5.2.
For every connected 2-reflexive graph H, the Surjective H-
Colouring problem is NP-complete. 108

Theorem 5.3.
For any graph H that can be obtained from a 2-reflexive graph
H ′ by replacing vertices with true twins; the Surjective H-
Colouring problem is NP-complete. 110

Theorem 5.4.
LetH be a graph with |VH | ≤ 4. Then Surjective H-Colouring
is NP-complete if some connected component of H is not loop-
connected or is an irreflexive complete graph on at least three ver-
tices, orH ∈ {C∗4 , D, paw∗}. Otherwise Surjective H-Colouring
is polynomial-time solvable. 112

Corollary 5.1.
Let H be a graph on at most four vertices. Then the three problems
Surjective H-Colouring, H-Compaction andH-Retraction
are polynomially equivalent. 117

Dedicated to my parents, Ian and Barbara Stewart

ix

“I may not have gone where I intended to go, but I think I have ended up where

I intended to be.”

Douglas Adams

Chapter 1

Introduction

1.1 Graph Theory

1.1.1 A (very) brief introduction

Figure 1.1: The London Tube Map (modified from [74])

A graph is a representation of relationship data; it consists of a set of objects,

which we call vertices, and a set of relationships, which we call edges. For example,

in Figure 1.1 we see a small part of the well known London Underground map.

This is simply a graph where the vertices are stations and the edges form the

network of tracks between the stations.

Another common application of graphs is in social networks, where the vertices

represent individuals and the edges represent a connection or friendship. Al-

ternatively, graphs could represent circuit diagrams, neighbouring regions, or a

multitude of other scenarios.

Put simply, Graph Theory is a branch of Discrete Mathematics which looks at

problems on data which can be formulated as a set of relationships.

1

Chapter 1. Introduction 2

1.1.2 The Seven Bridges of Königsberg

(a) Diagram by Leonhard Euler [30]

C

A

B

D

(b) As a graph G.

Figure 1.2: The Seven Bridges of Königsberg.

The Seven Bridges of Königsberg is a well known problem presented in a paper

by Leonhard Euler [30] which was later translated into English in several books

including Graph Theory, 1736-1936 by Biggs, Lloyd and Wilson [5]. Königsberg

was a city split by the river Pregel, with four distinct bodies of land, which we

shall call regions, which were connected by 7 bridges as depicted by Figure 1.2a.

The problem is to formulate a route through the city, navigating the river using

only the bridges and using each bridge exactly once. Euler used a branch of

mathematics known as geometry of position (geometriam situs) [30]; this branch

of mathematics looks at the position of objects, but not the distances between

them.

Euler first mentions that the problem could be solved by looking at all possible

paths, but dismissed this idea as “laborious” and “impossible for configurations

with significantly more bridges” [5]. We note in Figure 1.2a, that Euler has

labelled the land masses A to D and the bridges a to g.

To solve this problem, Euler calculated the number of times a region would have

to be visited in a valid route. The result he found was that if there are more than

two regions (or exactly one region) to which an odd number of bridges lead, it is

impossible to create a tour. This can be seen by considering the fact that to visit

Chapter 1. Introduction 3

a region, we must enter by one bridge and leave by another, hence two bridges

are required. Visiting the region again requires a further two bridges. The only

exceptions are the regions from which we start and end, since only one bridge is

required to leave or arrive upon them respectively. Alternatively, if we start and

end at the same region, then we see that all regions must have an even number

of bridges leading to them.

We can formulate Euler’s result using graph theoretic terminology. We use a

vertex to represent each region; a bridge between two regions is represented by

an edge between the two corresponding vertices. We see a depiction of this graph

in Figure 1.2b.

We call the number of edges ending at a vertex the degree of the vertex. For

example, the middle-left vertex (A) in Figure 1.2b has degree 5, whereas all of

the other vertices have degree 3. For a valid walk across the bridges, Euler’s result

states that there is a valid solution only if either exactly 0 or exactly 2 vertices

have odd degree. Since all four vertices have odd degree, the Seven Bridges of

Königsberg problem has no solution.

Whilst Euler did not explicitly use graph theory in his proof, his work is widely

regarded to be the earliest example of this branch of Mathematics [5].

1.1.3 Terminology

In this thesis we mostly use the notation presented in Graph Theory by Reinhard

Diestel [26]. Some notation which is specific to each chapter shall be defined at

the start of the relevant sections, however, the more general notations shall be

discussed here.

We denote a set as a comma-separated list within braces, for example we may

define the set X = {x, y, z}.

Chapter 1. Introduction 4

For clarity, we sometimes use an ellipsis to simplify increasing sequences; for

example {x1, . . . , x4} = {x1, x2, x3, x4} and 1 + · · ·+ n =
∑n

i=1(i).

We now present a table of the commonly used set notations:

Not’ Usage Meaning

∈ x ∈ X x is in the set X

⊆ Y ⊆ X every element of Y is in X

= Y = X X and Y contain the same elements

6 Y 6= X, x 6∈ X Y does not equal X, x is not in the set X

⊂ Y ⊂ X Y ⊆ X and Y 6= X

⊇ Y ⊇ X every element of X is in Y

⊃ Y ⊃ X Y ⊇ X and Y 6= X

∧ Φ1(x) ∧ Φ2(x) True if and only if Φ1(x) and Φ2(x) are true

∨ Φ1(x) ∨ Φ2(x) True if and only if Φ1(x) or Φ2(x) are true

| {x | Φ(x)} Set built on x such that function Φ(x) holds

{x ∈ X | Φ(x)} Shorthand for {x | x ∈ X ∧ Φ(x)}

∪ S ∪ T The set of elements which belong to either S or T

∩ S ∩ T The set of elements which belong to both S and T

\ S \ T The set of elements which belong to S but not T

+ S + x The set S with the addition of x (S ∪ {x})

− S − x The set S with x removed ({s ∈ S | s 6= x})

∀ ∀x ∈ X, . . . For every x in X, the following is true...

∃ ∃x ∈ X, . . . For at least one x in the set X, the following is true...⋃ n⋃
i=1

(Si) The union of all sets S1 to Sn : S1 ∪ . . . ∪ Sn⋃
S∈X

(S) The union of all sets within X.⋂
As defined for

⋃
but with the intersection.

|| |S| The number of elements in the set S

Table 1.1: Basic set notation

Chapter 1. Introduction 5

We define a graph as a tuple or pair of sets, G = (V,E). Each element of V is a

vertex and each element of E is an edge, an unordered pair of vertices from the

set V . We denote vertices by lower-case letters, usually later in the alphabet for

example u or v. We also denote edges by lower-case letters, usually earlier in the

alphabet, e.g. e = uv where uv is shorthand for {u, v}.

We generally use lower-case letters from the middle of the alphabet to denote

other values. Where this can be assumed without ambiguity, n is the number of

vertices in a graph and m is the number of edges.

Where we have two or more graphs, for example, G and H, we may define them as

follows: G = (VG, EG) and H = (VH , EH) so as to be able to distinguish between

the vertex sets VG and VH and between the edge sets EG and EH .

A function is a mapping from elements of one set to elements of another set. For

example we would write f : VG → VH to denote a function which takes a vertex

from a graph G and returns a vertex from a graph H. In such a case we call VG

the domain for f and we would call VH the codomain of f . We define the image

of a function as the set of values which are mapped to by at least one element in

the domain.

In general, given a function f : X → Y and a value x ∈ X, we denote the value

to which x is mapped by the function f as f(x). For a set S ⊆ X, we use the

notation f(S) to denote the set {f(x) | x ∈ S}.

A function is injective if every element in the codomain is mapped to by at most

one value in the domain and a function is surjective if every value in the codomain

is mapped to by at least one value in the domain, in other words if the codomain

and image are the same. A function is bijective if it is both injective and surjective,

that is if the domain and codomain are of the same size and every element of the

codomain is mapped to by exactly one element of the domain.

Chapter 1. Introduction 6

1.1.4 Graph Classes

With an undirected graph, edges are not directional, that is if u is adjacent to

v, then v is by definition adjacent to u and we consider two edges uv ∈ E and

vu ∈ E to be indistinguishable. Conversely a directed graph G = (V,A) (also

known as a digraph) has a set of arrows which are defined with a direction, such

that uv ∈ A and vu ∈ A represent different things. It may be the case that while

there is an arrow from u to v, the reverse is not true.

We say that a graph has multiple edges if it contains at least two edges with the

same endpoints. We call an edge which starts and ends at the same vertex, e = vv,

a self-loop. We say a graph is simple if it does not contain multiple edges or

self-loops; unless otherwise specified, all graphs in this thesis are simple and

undirected.

We say that a graph H = (VH , EH) is a subgraph of G = (VG, EG) if VH is a

subset of VG and EH is a subset of EG. We say that H is a spanning subgraph if

VH = VG. For a subset S ⊆ V , we let G[S] denote the subgraph of G induced by

S, which has vertex set S and edge set {uv ∈ EG | u, v ∈ S}.

A set I ⊆ VG is called an independent set of G if no two vertices in I are adjacent

to each other in G. A subset C ⊆ VG is called a clique of G if every pair of vertices

in C are adjacent to each other in G. We say that a subset with a property is

maximal, if there is no vertex which can be added to the subset such that the new

subset also has the property. For example a subset C ⊆ VG is called a maximal

clique of G if C is a clique and there is no vertex outside of C adjacent to every

vertex within C.

A subset D ⊆ VG is a dominating set of a graph G = (V,E) if every vertex of G is

in D or adjacent to a vertex in D. We say a vertex v is a dominating vertex if {v}

is a dominating set. We say a graph is disconnected if we can partition it into two

components such that there are no edges between the two components. A subset

Chapter 1. Introduction 7

S ⊆ VG is called a cutset or cut if the removal of the vertices in S disconnects the

graph. That is, if the graph G[VG \ S] is disconnected.

The union of two graphs G and H is the graph with vertex set VG ∪ VH and edge

set EG ∪ EH . If VG ∩ VH = ∅, then we say that the union of G and H is disjoint

and write G+H. We denote the disjoint union of r copies of G by rG.

We say that two graphs G and H are isomorphic if they are structurally the same.

That is, there exists a bijective function f : VG → VH such that uv is an edge

in G if and only if f(u)f(v) is an edge in H.

Using these properties, we can introduce the concept of graph classes. A class

of graphs is a subset of the set of all possible graphs, in which all graphs share

certain properties or structures.

For n ≥ 1, the graph Pn denotes the path on n vertices, that is the graph with

VPn = {u1, . . . , un} and EPn = {uiui+1 | 1 ≤ i ≤ n − 1}. When we refer to

a path of length m, we are referring to a path with m edges which has m + 1

vertices, we denote this Pm+1. A cycle is similar to a path, except that the

end vertices are also adjacent such that the graph forms a circle. For n ≥ 3,

the graph Cn denotes the cycle on n vertices, that is, VCn = {u1, . . . , un} and

ECn = {uiui+1 | 1 ≤ i ≤ n− 1} ∪ {unu1}.

The graph Kn denotes the complete graph on n vertices, that is, the n-vertex

graph whose vertex set is a clique. A graph is complete bipartite if its vertex set

can be partitioned into two sets, such that two vertices u and v are adjacent if

and only if u and v belong to different partitions. The graph Kp,q is the complete

bipartite graph with partitions of sizes p and q, respectively.

We may also describe a graph class by forbidding certain structures. Let G

be a graph and let {H1, . . . , Hp} be a set of p graphs. We say that a graph

G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in

{H1, . . . , Hp}. If p = 1 we may write H1-free instead of (H1)-free. For example a

Chapter 1. Introduction 8

graph which is K3-free has no cliques of size larger than 2. That is, if a vertex u

is adjacent to v and v is adjacent to w, it is not possible for u to be adjacent to w.

As well as forbidding certain induced subgraphs we can also describe structures

in other ways. An edge contraction is an operation where given an edge uv ∈ EG,

we remove the vertices u and v. We then insert a new vertex which is adjacent

to every vertex which was previously adjacent to u or v; this operation does not

create a self-loop. An example of this is shown in Figure 1.3.

Figure 1.3: An example of an edge contraction.

Graph minors are commonly used to describe forbidden structures. A graph H is

a minor of a graph G if we can get to H from G by deleting vertices and deleting

or contracting edges. We say that a graph G is (H1, . . . , Hp)-minor-free if none

of the graphs H1, . . . , Hp are minors of G. As with forbidden induced subgraphs,

if p = 1 we may write H1-minor-free instead of (H1)-minor-free.

A commonly used graph glass is that of planar graphs. A graph is planar if it can

be drawn on the surface of a sphere without any edges crossing. We call such a

drawing a planar embedding. It has been shown that the class of planar graphs

is the same as the class of (K5, K3,3)-minor-free graphs [25]. A related class is

that of outerplanar graphs which are what we call a subclass of planar graphs.

That is every outerplanar graph is also a planar graph, although not every planar

graph is outerplanar. Conversely we say that planar graphs are a superclass of

outerplanar graphs. A graph is outerplanar if it can be drawn in the plane such

that no vertex is entirely surrounded by edges.

We say that a graph H is a k-factor of a graph G if H is a k-regular spanning

subgraph of G. By k-regular we mean that every vertex has degree k. A 1-factor

of a graph is a disjoint union of paths of length 1. A graph is k-factorable if it

admits a k-factor.

Chapter 1. Introduction 9

We say that H is an [i, j]-factor of a graph G if H is a spanning subgraph of

G and each component of H is either i-regular or j-regular. A [1, 2]-factor of a

graph is a disjoint union of cycles and paths of length 1.

In this thesis we also make reference to a similar concept which we define as an

(i, j)-factor. We say that H is an (i, j)-factor of a graph G if H is a spanning

subgraph of G and H can be separated into two components such that every

vertex in one component has degree at most i and every vertex in the other has

degree at most j. A (1, 2)-factor of a graph is a disjoint union of paths of length

at most 2.

There exist many more graph classes, far too many to name in this section so

we recommend Information System on Graph Classes and their Inclusions at

graphclasses.org [25] as a reference.

1.1.5 Graph Parameters

We use certain graph parameters to describe aspects of a graph. The simplest

example of a parameter is simply the size of a graph which is the number of

vertices in the graph. We denote this |G| = |VG|. Another example of a parameter

is the clique number of a graph which is the size of the largest clique in a graph. In

general a parameter is a function which maps a graph to a number. A commonly

used parameter is the treewidth of a graph, to understand this we must first

explain a tree decomposition of a graph.

A tree decomposition of a graph G is a pair (T,X) in which T is a tree and

X = {Xi | i ∈ VT} is a collection of subsets (called bags) of VG such that the

following three conditions hold:

i)
⋃

i∈VT
Xi = VG,

ii) for each edge xy ∈ EG, x, y ∈ Xi for some i ∈ VT , and

iii) for each x ∈ VG the set {i | x ∈ Xi} induces a connected subtree of T .

http://graphclasses.org/

Chapter 1. Introduction 10

The width of a tree decomposition ({Xi | i ∈ VT}, T) is equal to one less than the

size of the largest bag in X. The treewidth tw(G) of a graph G is the minimum

width over all tree decompositions of G. If T is restricted to be a path, then we say

that (X,T) is a path decomposition of a graph G. Using our general description

of a parameter, we can describe treewidth as a function tw : G → Z where G is

the set of all graphs. The pathwidth pw(G) of G is the minimum width over all

path decompositions of G. A class of graphs G has bounded treewidth (pathwidth)

if there exists a constant p such that the treewidth (pathwidth) of every graph

from G is at most p. Treewidth is a very useful concept since many problems can

be solved easily on trees since no two vertices in different branches are adjacent.

Graphs with bounded treewidth have a treelike structure which often allows us

to use similar approaches to solve problems.

We will define any additional graph parameters that are required as they are

needed.

Chapter 1. Introduction 11

1.2 Complexity Theory

1.2.1 Running Time of an Algorithm

Some problems are harder than others; a large part of modern security is based

on the fact that it is relatively easy to multiply large numbers together but there

is no known algorithm to quickly find the factors of a large number [87].

Figure 1.4: The States of America coloured with four colours.

A well studied problem is that of colouring. Given a map with separate regions,

can you colour each region so that no two regions that share a border are the

same colour? In Figure 1.4 we see the United States of America coloured using

four colours.

We study this problem from a graph theoretic perspective. First we describe the

problem instance as a graph where each vertex is a region and two vertices are

adjacent if and only if they share a border. We call the problem of labelling the

vertices of a graph with k distinct colours such that no two adjacent vertices are

assigned the same colour k-Colouring.

Chapter 1. Introduction 12

If the problem were to find a colouring if one exists, using only two colours,

then we can do that with relative ease. We now present a simple algorithm for

2-Colouring.

2-Colouring

input : a connected graph G

output : a valid 2-colouring if one exists; no otherwise

Step 1. Choose any vertex and colour it red.

Step 2. Repeat the following step until either every region is coloured (in which

case return the colouring) or one region is given a colour which is the same as

one of its neighbours (in which case return no):

For a region which has just been coloured red or blue, colour each of its

neighbours blue or red respectively.

As a Mathematician, however, simply stating “it’s easy” is not enough; we want

to quantify exactly how easy it is. To do this we introduce a concept we call

big O notation. Big O notation is used to describe the limiting behaviour of a

function as the argument tends towards infinity. In computer science we use big O

notation to classify algorithms based up how a limited resource, usually time or

memory, scales with the size of the input. Within this thesis we concerned with

how much time an algorithm requires to complete.

We say that an algorithm is O(f(n)) if there exist constants k, n0 > 0 such that

in the worst case, the algorithm completes in a time bounded by k · f(n) for all

inputs of size n > n0. We call this the time complexity of the algorithm. Since

we are dealing with the asymptotic limits, we can neglect smaller order terms,

for example O(n2 + n) = O(n2) and O(2n + n2) = O(2n).

Chapter 1. Introduction 13

We can determine the complexity for the 2-Colouring algorithm described

above on a map with n regions. We can assume that it takes a constant time

to colour a region and O(n) time to find all regions adjacent to another region.

Since we must do the latter for each region, we see that the entire algorithm runs

in O(n2). We say that the running time is polynomial with respect to the size of

the input since the running time can be bound by a polynomial function.

In practice we say a problem is tractable if there exists an algorithm that can

solve it in polynomial time.

1.2.2 Non-Deterministic Polynomial Time

We say that a problem is a decision problem if it has a Yes/No answer. For

example the corresponding decision problem for k-Colouring asks: Can we

colour a graph G using only k colours? To which the answer would be either Yes

or No.

We will now consider the colouring problem again, but this time we want to know

if it is possible to colour a map using three colours. If we start as we did before, we

colour a vertex red, then we colour one of its neighbours blue and any neighbours

of both of these vertices green. Next we choose a vertex adjacent to only one of

these vertices, without loss of generality we assume that its neighbour which has

already been coloured is green. We now have to decide whether to colour this

new vertex red or blue. We see an example of this in Figure 1.5.

Figure 1.5: An example of a partial 3-Colouring on a subset of a graph.

We cannot assign a colour to this fourth vertex since it could be either red or blue

and a solution may be possible with one colour assigned but not the other.

Chapter 1. Introduction 14

Computers are deterministic, that means that in a given state we can do one

operation, for example we can set the fourth vertex to either red or blue. Or we

can create an additional instance of the problem and try and solve the problem

twice, once with the vertex set to red and a second time with the vertex set to

blue. Obviously this would double the running time each split and as such would

give us an algorithm which ran in O(2n) (exponential time).

We can, however, consider a hypothetical “non-deterministic” computer which

could set the fourth vertex to both red and blue simultaneously and then could

proceed like this in the same way as the algorithm for 2-Colouring. We

say that problems which could be solved in polynomial time on a hypotheti-

cal non-deterministic machine are non-deterministic, polynomial time. We define

a class, NP, which is the set of all decision problems which can be solved in poly-

nomial time on a non-deterministic machine and we say that such problems are

“in NP”.

We denote the class of all decision problems which can be solved in polynomial

time on a traditional, deterministic, machine as P. Since a non-deterministic

machine can do everything that a deterministic machine can do, it is clear that

every problem in P is also in NP. Further, it has been shown [1] that a problem

belongs to NP, if and only if we can verify in polynomial time (with respect to the

size of the problem instance) whether or not a candidate solution to it is valid.

For example, if we were given a 3-colouring of a graph, we can simply check each

pair of vertices (O(n2)) and check that no two adjacent vertices have the same

colour. As such we see that the 3-Colouring problem is in NP.

We have seen above that we cannot easily adapt our 2-Colouring algorithm

to solve 3-Colouring in polynomial time. In fact, despite a huge amount of

research on the area, no one has managed to find an algorithm which can solve

3-Colouring in polynomial time, nor has anyone successfully proved that such

Chapter 1. Introduction 15

an algorithm does not exist. The best known algorithm for 3-Colouring is

O (1.3289n) which was discovered by Beigel and Eppstein in 2005 [4].

In fact, there is no problem within NP which has been proven not to have a

polynomial time algorithm which leads to the following question:

Does P = NP?

This is arguably the biggest question in Computer Science and one of the Clay

Mathematics Institutes Millennium Prize Problems. It is widely regarded as the

case that there are probably problems in NP with no polynomial time solution,

that is P (NP.

1.2.3 Complexity Classes

We have already established our first two complexity classes, P and NP. From

this we can define two further classes, the first of which is called NP-hard. Let

P : G → {Yes, No} and Q : H → {Yes, No} be decision problems. We say

that P can be reduced to Q if there exists some function r : G → H which runs

in polynomial time such that P (i) = Q(r(i)). That is, given an instance of P ,

we can create an instance of Q such that an answer to the latter problem is an

answer to the former.

We say that a problem Q is NP-hard if every problem in NP can be reduced to Q

in polynomial time. Hence if Q were to have a polynomial time algorithm then

all of NP would as well and we would see that P = NP. We define the class of

NP-complete problems as those problems which are both in NP and NP-hard. We

see an example of this in Figure 1.6.

Throughout this thesis we will assume that P (NP; we will be looking at prob-

lems in NP and trying to either provide a polynomial time algorithm to solve

them or prove that they are NP-complete.

Chapter 1. Introduction 16

P

NP

NP-complete

NP-hard

P = NP =
NP-complete

NP-hard

C
om

p
le

x
it

y

Figure 1.6: Euler diagram for P, NP, NP-complete and NP-hard sets of prob-
lems [28]. The scenario where P (NP is shown on the left, whereas the scenario
where P = NP is shown on the right.

A further complexity class is called FPT. A problem is fixed parameter tractable

if it has an input of the form (x, k) where k is some parameter, which is rela-

tively small compared to x, and its running time is in O (f(k) p(|x|)) where p is a

polynomial function on x and f is some function that depends only on k [27].

1.2.4 Coping with Hardness

In an ideal world, when presented with a problem, we would like a polynomial

time algorithm which will give us the optimal solution for every possible instance

of the problem. As soon as it becomes clear that the problem is NP-hard, it is

clear that if we want a polynomial time algorithm, we have to make concessions

somewhere. One branch of Computer Science in which there is extensive research

is approximation algorithms. These algorithms may not always find the best

solution, or they may have a small probability of returning the wrong answer.

However, in many situations these algorithms will provide a reasonable solution.

This thesis looks at the other approach, seeing if there are tractable solutions when

we apply restrictions on the input to the problem. It is often the case that real

world inputs have structures within the data which can be exploited to achieve

Chapter 1. Introduction 17

faster running times. These structures may not always be present in the general

version of the problem. We shall recall the colouring problem just once more in

this chapter. The problem of 4-Colouring is NP-complete [40]. However, maps

have a property which is not always present in graphs which we can make use of;

we can draw any map (as long as it does not contain any disconnected regions)

as a graph with no two edges crossing over. We call this type of graph a planar

graph and as previously mentioned, it can be described using forbidden minors.

In 1852 [75] Francis Guthrie, while trying to colour the map of counties of Eng-

land, noticed that only four different colours were required to colour any map

he considered. He conjectured that any map could be coloured using only four

colours. There were several early attempts to prove this conjecture [93] but these

were all proven false.

During the 1960s and 1970s, a German mathematician named Heinrich Heesch

started developing methods to solve this problem using computers. Unfortunately

he was unable to secure the time on a supercomputer required to finish his re-

search [100], however, others took up his methods and approach. In 1976, it was

proven by Appel and Haken [2]. Since then there have been algorithms found

which can find a 4-colouring in O(n2) [90].

In this thesis we will study four problems; Parallel Knock-Out (Chapter 2),

Minimal Disconnected Cut (Chapter 3), Square Root (Chapter 4) and

Surjective H-Colouring (Chapter 5) which are all NP-Complete in general.

Each chapter looks at the complexity of the problem with restricted graph classes.

Chapter 2

Parallel Knock-Out on Pk-free

Graphs

Lampert and Slater [65] introduced the following procedure, called a knock-out

scheme, for a graph G = (V,E) with minimum degree at least 1:

1. Let every v ∈ V select exactly one neighbour.

2. Eliminate all selected vertices.

3. Repeat the procedure with the smaller graph on the remaining vertices.

4. Stop as soon as

a. there are no vertices left, or

b. one of the remaining vertices has degree 0.

If there exists a scheme which stops due to step 4a, then we say that the graph G

is KO-reducible. Steps 1 and 2 form a round.

The Parallel Knock-Out problem is to decide whether or not a graph G is

KO-reducible. This problem is known to be NP-complete in general and has been

studied for several graph classes. In this chapter it is shown that the problem is

NP-complete, even for split graphs, a subclass of P5-free graphs. In contrast, the

main result is that it is linear-time solvable for P4-free graphs, commonly known

as cographs.

This result was initially presented at the 39th International Symposium on Math-

ematical Foundations of Computer Science (MFCS 2014), Budapest, Hungary [57]

and has been published in Discrete Applied Mathematics [58].

19

Chapter 2. Parallel Knock-Out on Pk-free Graphs 20

2.1 Introduction

We consider parallel knock-out schemes for finite undirected graphs with no self-

loops and no multiple edges. The parallel knock-out number of a graph G, denoted

by pko(G), is the minimum number of rounds in a parallel knock-out scheme that

eliminates every vertex of G. If G is not KO-reducible, then pko(G) = ∞. We

see an example of a firing round on P5 in Figure 2.1 in which all but one vertex

is eliminated.

Figure 2.1: An example firing round on P5.

Examples. The graph P5, depicted in Figure 2.1 cannot be eliminated. If we

denote the vertices v1, . . . , v5, we see that v1 and v5 must fire upon v2 and v4

respectively as they only have one neighbour. v2 must fire upon v1 as otherwise

v1 would become an isolated vertex. v4 must fire upon v3 for the same reason

which leaves nothing to fire at v5. Some graphs can always be knocked out; every

graph G with a Hamiltonian cycle has pko(G) = 1, as each vertex can select

its successor on a Hamiltonian cycle C of G after fixing some orientation of C.

Also every graph G with a perfect matching has pko(G) = 1, as each vertex can

select its matching neighbour in the perfect matching. In fact it is not difficult

to see [11] that a graph G has pko(G) = 1 if and only if G contains a [1,2]-factor,

that is, a spanning subgraph in which every component is either a cycle or an

edge. We see an example of this in Figure 2.2.

Figure 2.2: An example of a 1 round scheme on a graph with a [1, 2]-factor.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 21

We study the computational complexity of the Parallel Knock-Out problem,

which is the problem of deciding whether a given graph is KO-reducible.

Parallel Knock-Out

Instance: a graph G = (V,E).

Question: is G KO-reducible?

Our main motivation is the close relationship with cycles and matchings as illus-

trated by the above examples. We also consider the variant in which the number

of rounds permitted is fixed. This problem is known as the k-Parallel Knock-

Out problem, which has as input a graph G and ask whether pko(G) ≤ k for

some fixed integer k (i.e. that is not part of the input).

k-Parallel Knock-Out

Instance: a graph G = (V,E).

Question: is pko(G) ≤ k?

2.1.1 Known Results

The 1-Parallel Knock-Out problem is equivalent [11] to testing whether

a graph has a [1, 2]-factor, which is well-known to be polynomial-time solvable

(see e.g. [13] for a proof). However, both the problems Parallel Knock-Out

and k-Parallel Knock-Out with k ≥ 2 are NP-complete even for bipartite

graphs [13]. On the other hand, it is known that Parallel Knock-Out and

k-Parallel Knock-Out (for all k ≥ 1) can be solved in O(n3.5 log2 n) time on

trees [11]. Broersma et al. in [12] gave an O(n5.376) time algorithm for solving

Parallel Knock-Out on n-vertex claw-free graphs (K1,3-free graphs). Later

this was improved to an O(n2) time algorithm for almost claw-free graphs (which

generalise the class of claw-free graphs) [59]. The latter paper also gives a full

characterisation of connected almost claw-free graphs that are KO-reducible. In

particular it shows that every KO-reducible almost claw-free graph has parallel

Chapter 2. Parallel Knock-Out on Pk-free Graphs 22

knock-out number at most 2. In general, KO-reducible graphs (even KO-reducible

trees [11]) may have an arbitrarily large parallel knock-out number. Broersma et

al. [12] showed that a KO-reducible n-vertex graph G has pko(G) ≤ min{−1
2

+

(2n − 7
4
)
1
2 , 1

2
+ (2α − 7

4
)
1
2} (where α denotes the size of a largest independent

set in G). This bound is asymptotically tight for complete bipartite graphs [11].

Broersma et al. [12] also showed that every KO-reducible graph with no induced

(p+ 1)-vertex star K1,p has parallel knock-out number at most p− 1.

2.1.2 Our Results

To date the only graph classes of unbounded tree-width for which Parallel

Knock-Out is known to be polynomial-time solvable are complete bipartite

graphs [11] and almost claw-free graphs [59], and we aim to identify further such

classes. In particular we want to address the open problem of whether Parallel

Knock-Out is polynomial-time solvable on graph classes whose clique-width is

bounded by a constant. This seems a very challenging problem, and in this paper

we focus on graphs of clique-width at most 2 (which may have arbitrarily large

tree-width). It is known that a graph has clique-width at most 2 if and only if it

is a cograph [22]. Cographs are also known as P4-free graphs (a graph is called

Pk-free if it has no induced k-vertex path).

In Section 2.3 we give a linear-time algorithm for solving the Parallel Knock-

Out problem on cographs. The first step of the algorithm is to compute the

cotree of a cograph. The cotree is a decomposition of a cograph where each leaf

represents a vertex and every other node represents either the join or disjoint

union of its children. The algorithm then traverses the cotree twice. The first

time to compute how many “free firings” are available outside a certain subgraph

before all vertices must fire internally. The second time to compute to what extent

the subgraphs can be reduced by themselves without “firings” from outside. In

this way it will be verified whether the whole graph is KO-reducible. In Section 2.4

Chapter 2. Parallel Knock-Out on Pk-free Graphs 23

we prove that both the Parallel Knock-Out problem and the k-Parallel

Knock-Out problem (k ≥ 2) are NP-complete even for split graphs. Because

split graphs are P5-free, our results imply a dichotomy result for the computational

complexity of the Parallel Knock-Out problem restricted to Pk-free graphs,

as shown in Section 2.5, where we also give some (other) open problems.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 24

2.2 Preliminaries

Let G1 and G2 be two disjoint graphs. The join operation ⊗ adds an edge between

every vertex of G1 and every vertex of G2. The union operation ⊕ creates the

disjoint union of G1 and G2 (note that we may also write G1 +G2).

It is well known (see, for example, [10]) that a graph G is a cograph if and only

if G can be generated from K1 by a sequence of operations, where each operation

is either a join or a union. Such a sequence corresponds to a decomposition tree,

which has the following properties:

1. its root r corresponds to the graph Gr = G;

2. every leaf x of it corresponds to exactly one vertex of G, and vice versa,

implying that x corresponds to a unique single-vertex graph Gx;

3. every internal node x has at least two children, is either labelled ⊕ or ⊗,

and corresponds to an induced subgraph Gx of G defined as follows:

– if x is a ⊕-node, then Gx is the disjoint union of all graphs Gy where

y is a child of x;

– if x is a ⊗-node, then Gx is the join of all graphs Gy where y is a child

of x.

A cograph G may have more than one such tree but has exactly one unique

tree [18], called a cotree, if the following additional property is required:

4. Labels of internal nodes on the (unique) path from any leaf to r alternate

between ⊕ and ⊗.

For a node x, we refer to the vertex and edge sets of Gx as Vx and Ex respectively.

We denote the cotree of a cograph G by TG and use the following result of Corneil,

Perl and Stewart [19] as a lemma.

Lemma 2.1 ([19]). Let G be a graph with n vertices and m edges. Deciding if G

is a cograph and constructing TG (if it exists) can be done in time O(n+m).

Chapter 2. Parallel Knock-Out on Pk-free Graphs 25

Let G be a graph and let {H1, . . . , Hp} be a set of graphs. We recall that G

is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in

{H1, . . . , Hp}. If p = 1 we may write H1-free instead of (H1)-free. A P4-free

graph is also called a cograph. A graph G is a split graph if its vertex set can

be partitioned into a clique and an independent set. Split graphs coincide with

(2K2, C4, C5)-free graphs [38]; since 2K2 is an induced subgraph of P5, it is clear

that any graph containing P5 as an induced subgraph also contains 2K2 and is

hence not a split graph. As such we see that every split graph is P5-free.

We need some formal terminology for parallel knock-out schemes. For a graphG =

(VG, EG), a KO-selection is a function f : VG → VG with f(v) ∈ N(v) for all

v ∈ VG. If f(v) = u, we say that vertex v fires at vertex u, or that u is knocked

out by a firing of v. If u ∈ U for some U ⊆ VG then the firing is said to be internal

with respect to U if v ∈ U ; otherwise it is said to be external (with respect to U).

For a KO-selection f , we define the corresponding KO-successor of G as the

subgraph of G that is induced by the vertices in VG \ f(VG); if G′ is the KO-

successor of G we write G; G′. Note that every graph without isolated vertices

has at least one KO-successor. A sequence

G ; G1 ; G2 ; · · · ; Gs,

is called a parallel knock-out scheme or KO-scheme. A KO-scheme in which Gs is

the null graph (∅, ∅) is called a KO-reduction scheme; in that case G is also called

KO-reducible. A single step in a KO-scheme is called a (firing) round . Recall that

the parallel knock-out number of G, pko(G), is the smallest number of rounds of

any KO-reduction scheme, and that if G is not KO-reducible then pko(G) =∞.

We will use the following result of Broersma et al. [11].

Lemma 2.2 ([11]). Let p and q be two integers with 0 < p ≤ q. Then Kp,q is

KO-reducible if and only if pko(Kp,q) ≤ p if and only if q ≤ 1
2
p (p+ 1).

Chapter 2. Parallel Knock-Out on Pk-free Graphs 26

2.3 Cographs

In this section we present our algorithm, which we call Cograph-PKO, for solving

Parallel Knock-Out in linear time on cographs. We present a fully worked

example on page 29.

Sketch: We start by giving some intuition. Let G be a cograph. We may assume

without loss of generality that G is connected, as otherwise we could consider

each connected component of G separately.

We first construct the cotree TG = (VTG
, ETG

). Because G is connected, the root

r of TG is a ⊗-node. Recall that Gr = G by definition. We observe that if H is a

spanning subgraph of G then pko(H) ≥ pko(G) since any KO-scheme for H also

works on G. Consider a partition (X, Y) of the set of children of r such that

p =
∑
x∈X

|Gx| ≤
∑
y∈Y

|Gy| = q.

Note that G has a spanning complete bipartite graph H with partition classes⋃
x∈X Vx and

⋃
y∈Y Vy. Hence, if q ≤ 1

2
p(p + 1) then H, and thus G, is KO-

reducible by Lemma 2.2. However, such a partition (X, Y) need not exist, but G

might still be KO-reducible. In order to find out, we must analyse the cotree of G

at lower levels.

The main idea behind our algorithm is as follows. As mentioned above, the

graph Gx corresponding to a join node x has at least one spanning complete bi-

partite subgraph. We will show that it is sufficient to consider only bipartitions,

in which one bipartition class corresponds to a single child z of x. We choose z in

such a way that if the corresponding complete bipartite subgraph is unbalanced

(with respect to the ratio prescribed in Lemma 2.2) then the vertices of Gz cor-

respond to a “large” bipartition class. We will then try to reduce Gz as much

as possible by internal firings only. If Gz cannot be reduced to the empty graph,

Chapter 2. Parallel Knock-Out on Pk-free Graphs 27

then external firings are needed. In particular, some of these external firings will

be internal firings for supergraphs of Gz. Hence, we first traverse TG from top to

bottom, starting with the root r, to determine the number of external firings for

each graph Gz. Afterwards we can then use a bottom-up approach, starting with

the leaves of TG, to determine the number of vertices a graph Gz can be reduced

to by internal firings only. If this number is zero for r then G is KO-reducible;

otherwise it is not.

x

z(x) F (x)

Figure 2.3: A join node within a cotree.

Full Description: Let G be a connected cograph with corresponding cotree

TG = (VTG
, ETG

), and let x ∈ VTG
. We say that |Gx| is the size of x. We

fix a largest child of x, that is, a child of x with largest size over all children

of x. We denote this child by z(x) (if there is more than one largest child we

pick an arbitrary largest one). Let C(x) consist of all other children of x in TG

(so excluding z(x)). We write F (x) =
(
VF (x), EF (x)

)
=
∑

y∈C(x)Gy. We see an

example of this in Figure 2.3.

In our algorithm we recursively define two functions f and l that assign a positive

integer to the nodes of VTG
. We write f(x) = ⊥ or l(x) = ⊥ if we have not yet

assigned an integer f(x) or l(x) to node x; for some nodes x our algorithm might

never do this (as we shall see, l will define an integer for a node x if and only

if f has defined an integer for x). The meaning of these two functions will be

made more clear later. In particular, we will show that f(x) (if defined) is the

number of vertices in VG \ Vx adjacent to each vertex of Vx (recall that Vx is the

vertex set of Gx). This function will help us in determining how many additional

Chapter 2. Parallel Knock-Out on Pk-free Graphs 28

internal firing rounds we have when we expand Gx to a larger subgraph of G by

moving up the tree. The integer l(x) (if defined) is, as we will prove, equal to the

smallest number of vertices in Gx that cannot be knocked out internally (that

is, within Gx) by any KO-scheme of G. We will show that l(r) is defined, that

is, l(r) 6= ⊥. Hence, there exists a KO-scheme that knocks out all vertices of

Vr = VG if and only if l(r) = 0.

Cograph-PKO

input : a connected cograph G

output : yes if G is KO-reducible; no otherwise

Step 1. Compute the size |Gx| for all x ∈ VTG
.

Step 2. Recursively define a function f . Initially set f(x) := ⊥ for all x ∈ VTG
.

Set f(r) := 0. Now let x be a vertex in TG with f(x) 6= ⊥.

2a. If x is a ⊕-node: f(y) := f(x) for all y ∈ C(x) ∪ {z(x)}.

2b. If x is a ⊗-node: f(z(x)) := f(x)+ |F (x)| (and keep f(y) = ⊥ for y ∈ C(x)).

Step 3. Let B = {` | ` is a leaf of TG with f(`) 6= ⊥}.

Step 4. Recursively define a function l. Initially set l(x) := ⊥ for all x ∈ VTG
.

Set l(`) := 1 for all ` ∈ B. Now let x be a vertex in T that is either a ⊕-node

with l(y) 6= ⊥ for all y ∈ C(x) ∪ {z(x)} or a ⊗-node with l(z(x)) 6= ⊥.

4a. If x is a ⊕-node: l(x) := l(z(x)) +
∑

y∈C(x) l(y).

4b. If x is a ⊗-node: l(x) := max{0, l(z(x))−f(x)·|F (x)|− 1
2
|F (x)|(|F (x)|+1)}.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 29

Step 5. If l(r) = 0 then return yes; otherwise return no.

Note that for some x ∈ VTG
, it may happen indeed that f(x) = ⊥ or l(x) = ⊥

holds (for example, if x is a leaf node not in B then l(x) = ⊥).

Example. We illustrate the working of Cograph-PKO by applying it to the

graph G of Figure 2.4 which leads to Figure 2.5 on page 31, in which the size,

f -value and l-value are displayed except for the leaves and all y-nodes except y3.

The other y-nodes have the same f -value and l-value as y3, namely equal to ⊥

(our algorithm does not need to compute f and l for these nodes). Because

l(r) = 0 we conclude that G is KO-reducible. Indeed this can also be seen as

follows.

Round 1: v1, . . . , v6 fire at v17; v7 fires at v1; v8 fires at v2; v9 and v13 fire at each

other; v10 and v14 fire at each other; v11 and v15 fire at each other; v12 and v16 fire

at each other; v17 fires at v3.

Round 2: v4, v5, v6 fire at v7; v7 fires at v4; v8 fires at v5.

Round 3: v6 and v8 fire at each other.

In order to prove correctness of Cograph-PKO we need some new terminology and

a number of lemmas. Let x be a node in TG. Recall that Vx is the vertex set of

Gx. We say that a vertex v ∈ VG is complete to a set U ⊆ VG with v /∈ U if v is

adjacent to all vertices of U .

We point out that once f(x) has been given a value, this value is never changed.

Lemma 2.3. Let x ∈ VTG
with f(x) 6= ⊥. The following two statements hold:

(i) any vertex in VG \ Vx adjacent to a vertex of Vx is complete to Vx;

(ii) the number of vertices in VG \ Vx complete to Vx is equal to f(x).

Chapter 2. Parallel Knock-Out on Pk-free Graphs 30

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

Figure 2.4: An example of a cograph G.

Proof. Let x ∈ VTG
with f(x) 6= ⊥. Statement (i) follows from the definition

of TG. We prove (ii) as follows. Let dist(x, r) denote the distance between x and

r (the root node) in TG. We use induction on dist(x, r). The claim is true for

dist(x, r) = 0 because in that case x = r, VG \Vx = ∅ and we recall that f(r) = 0

by definition.

Let dist(x, r) ≥ 1. Then x has a parent in TG. Denote this parent by x′. By the

induction hypothesis, f(x′) is equal to the number of vertices not in Gv′ that are

complete to Vx′ . Because Vx is contained in Vx′ , these vertices are complete to Vx

as well. Suppose that x is a ⊕-node. Then x′ is a ⊗-node; the fact that f(x) 6= ⊥

means that by construction, x = z(x′). This means that all vertices in F (x′) are

complete to Vx. Hence, the total number of vertices in VG \ Vx that are complete

to Vx is equal to f(x′) + |F (x′)| = f(x). Suppose that x is a ⊗-node. Then x′

is a ⊕-node. This means that no vertex in F (x′) is adjacent to a vertex in Vx.

Hence, the total number of vertices in VG \ Vx that are complete to Vx is equal to

F (x′) = f(x).

The following lemma follows directly from the construction of our algorithm on

page 28.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 31

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

r

z(r)

x

x′

z(x)

z(x′)

y1

y2

y3

(17, 0, 0)

(16, 1, 1)

(8, 1, 1)

(6, 3, 6)

(2,⊥,⊥)

(8, 1, 0)

(4, 5, 4)

(2,⊥,⊥)

(2,⊥,⊥)

Figure 2.5: The cotree TG of the graph G of Figure 2.4. For each node x
we show the triple (|Vx|, f(x), l(x)) with f -values and l-values obtained from
executing Cograph-PKO. Note that B = {v1, v2, v3, v4, v5, v6}∪{v9, v10, v11, v12}.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 32

Lemma 2.4. Let x ∈ VTG
. Then l(x) 6= ⊥ if and only if Vx ∩B 6= ∅.

Before we continue, we first introduce a number of new notions, namely of

x-pseudo-KO-selection, x-pseudo-KO-successor, x-pseudo-KO-scheme, x-pseudo-

reducibility and pseudo(x). Each of these notions play an important role in

proving the correctness of our algorithm.

Let x be a node in TG. An x-pseudo-KO-selection of G is a function f : Vx → VG

with f(v) ∈ N(v) for all v ∈ VG. We copy some terminology. If f(v) = u, we say

that v fires at u, or that u is knocked-out by a firing of v. Note that every KO-

selection of G is an x-pseudo-KO-selection of G. However, the reverse implication

is not true if x 6= r, because we do not let any vertices in VG \ Vx fire according

to this definition.

For an x-pseudo-KO-selection f , we define the x-pseudo-KO-successor of Gx as

the subgraph of G induced by VG \ f(Vx). We write G ;x G′ to denote that G′

is an x-pseudo-KO-successor of G. We call a sequence

G ;x G1 ;x · · · ;x Gs

an x-pseudo-KO-scheme (where each single step is called a round) of G if in

addition there is no vertex of Vx that fires at a vertex of Vx in some round i and

at a vertex in VG \ Vx in some round j > i. Note that an r-pseudo-KO-scheme of

G is a KO-reduction scheme of G. Let Gs
x be the subgraph of Gs induced by Vx.

Then we say that Gx is x-pseudo-reducible to Gs
x. Define pseudo(x) as the number

of vertices in a smallest graph to which Gx is x-pseudo-reducible and say that a

corresponding x-pseudo-KO-scheme of G is optimal.

Lemma 2.5. The cograph G is KO-reducible if and only if pseudo(r) = 0.

Proof. Recall that Vr = VG. Then the statement of the lemma holds because

every KO-reduction scheme of G (if there exists one) is an r-pseudo-KO-scheme

with pseudo(r) = 0, and vice versa.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 33

The following lemma is crucial for the correctness of our algorithm.

Lemma 2.6. Let x ∈ VTG
be a ⊗-node with l(x) 6= ⊥. Then l(x) = pseudo(x).

Proof. Let x ∈ VTG
be a ⊗-node with l(x) 6= ⊥. By Lemma 2.4, Vx ∩B 6= ∅. We

write z = z(x). Let |Vz| = q and |F (x)| = p. This enables us to write:

l(x) = max{0, l(z)− f(x) · |F (x)| − 1
2
|F (x)|(|F (x)|+ 1)}

= max{0, l(z)− f(x) · p− 1
2
p(p+ 1)}.

Note that q ≥ 1 and p ≥ 1 by the definition of a ⊗-node.

Let d denote the number of internal ⊗-nodes on the longest path from x to a leaf

in the subtree of TG rooted at x. We prove the lemma by induction on d.

I. The Base Case.

Let d = 0. Then every child of x is either a leaf itself or all its children are leaves.

First suppose z is a leaf. Because Vx ∩ B 6= ∅, we find that z ∈ B. Hence,

l(z) = 1. Then, as p ≥ 1, we find that l(z) − f(x) · p − 1
2
p(p + 1) ≤ 0. Hence,

l(x) = 0. Note that q = 1. Because z is a largest child of x, all children of x are

leaves. Hence, Gx is a complete graph on p + 1 vertices. This means that Gx is

KO-reducible. We conclude that pseudo(x) = 0 = l(x).

Now suppose that z is not a leaf. Then z has at least two children (which are all

leaves since d = 0). Hence, q ≥ 2. Because Vx ∩ B 6= ∅, every child of z is in B,

that is, Vz = B is an independent set, in particular, q = |B|. Because l(`) = 1

for every ` ∈ B, this means that l(z) = |B| = q. We distinguish three cases.

Case 1. q < p.

Then l(z)− f(x) · p− 1
2
p(p+ 1) = q − f(x) · p− 1

2
p(p+ 1) ≤ 0. Hence, l(x) = 0.

Let y1, . . . , yr, z be the children of x for some r ≥ 1. In fact, because 2 ≤ q < p

and z is the largest child of x, we find that r ≥ 2. Assume that |Vy1| ≥ · · · ≥ |Vyr |.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 34

By definition, q = |Vz| ≥ |Vy1|. Because q < p, we can pick a set D of q−|Vy1| ≥ 0

vertices of VF (x) \ Vy1 . We define T1 = Vy1 ∪D and Ti = Vyi \D for i = 2, . . . , r.

Note that |T1| = q.

Let {|T1|, . . . , |Tr|} = {j1, . . . , jr}, without loss of generality we may assume j1 ≥

· · · ≥ jr. Choose s such that js > 0 and either s = r or js+1 = 0. Because

|T1| = q, we find that j1 = q. We recall that for any i > j ≥ 2, every vertex of

Ti is adjacent to every vertex of Tj and is adjacent to every vertex of Vy1 . We

partition Vx into s subsets. For the first subset we pick js vertices from Vz, js

vertices from Vy1 ⊆ T1 and also js vertices from each non-empty Ti with i ≥ 2.

Since q < p, at least one other set Ti, besides T1, is nonempty. As such we see

that the graph induced by the union of all these vertices has a Hamiltonian cycle

as seen in Figure 2.6. We remove all chosen vertices. Then, for the second subset

of our partition, we pick js−1− js vertices from Vz and also js−1− js vertices from

Vy1 and each Ti (i > 2) that is not yet empty. The graph induced by the union

of all chosen vertices has a Hamiltonian cycle while there exists a non-empty set

Ti (i ≥ 2). We repeat this procedure until all sets Ti (i ≥ 2) are empty, at which

point we see that we have q − j2 vertices remaining in both T1 and Vz which can

be eliminated via a perfect matching. In this way we have found a [1, 2]-factor of

Gx. Consequently, pko(Gx) = 1. Hence, pseudo(x) = 0 = l(x).

Vy1 Vy2
T2

Vz

T3 = Vy3

T1 = Vy1 ∪D

Figure 2.6: An example of Gx where s = 3 and js = 2. The vertex in D is
shown in red. We see the vertices chosen for the first subset and a Hamiltonian
path through these vertices shown in blue.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 35

Case 2. q ≥ p and l(x) = 0.

As l(z) = q, the assumption that l(x) = 0 implies that q − f(x) · p ≤ 1
2
p(p + 1).

By Lemma 2.3, all vertices in VG \ Vx that are adjacent to Vx are complete to Vx

and moreover, the number of such vertices is equal to f(x). This enables us to

define the following x-pseudo-KO-scheme. Let all vertices of F (x) fire at different

vertices in Vz for the first f(x) rounds. Let all vertices in Vz fire at the same vertex

of VG \ Vx for the first f(x) rounds. Note that q decreases in this way. However,

we may not need to perform all these rounds: after each round we check whether

p ≤ q ≤ 1
2
p(p+1). Because q−f(x) ·p ≤ 1

2
p(p+1), it will eventually happen that

q ≤ 1
2
p(p + 1). If it turns out that q < p, we slightly adjust the previous round

by letting a sufficient number of vertices of F (x) fire at the same vertex in Vz

instead of at different vertices, in order to get p ≤ q ≤ 1
2
p(p+ 1). We then apply

Lemma 2.2 to knock out the remaining vertices of Vx in at most p additional

rounds. Hence pseudo(x) = 0 = l(x).

Case 3. q ≥ p and l(x) > 0.

As l(z) = q, the assumption that l(x) > 0 implies that q > f(x) · p + 1
2
p(p + 1).

Recall that, by Lemma 2.3, all vertices in VG \ Vx that are adjacent to Vx are

complete to Vx, and moreover, the number of such vertices is equal to f(x). This

enables us to define the following x-pseudo-KO-scheme. Let all vertices of F (x)

fire at different vertices in Vz for the first f(x) rounds. Let all vertices in Vz fire

at the same vertex of VG \Vx for the first f(x) rounds. Afterwards we can reduce

the number of vertices of Vx by at most 1
2
p(p + 1) by letting all vertices of F (x)

fire at different vertices in Vz, whereas all vertices in Vz fire at the same vertex

of F (x) until F (x) = ∅. Because F (x) = ∅ in the end, and in each round we have

reduced the maximum number of vertices of the independent set Vz, we find that

pseudo(x) = q − f(x) · p− 1
2
p(p+ 1) = l(z)− f(x) · p− 1

2
p(p+ 1) = l(x).

II. The Inductive Step

Let d ≥ 1. Then z is not a leaf as otherwise all children of x are leaves, which

Chapter 2. Parallel Knock-Out on Pk-free Graphs 36

contradicts d ≥ 1. Consequently, z is a ⊕-node. We distinguish two cases.

Case 1. q < p.

Observe that l(z) ≤ q. Then l(z)−f(x)·p− 1
2
p(p+1) ≤ q−f(x)·p− 1

2
p(p+1) ≤ 0.

Hence, l(x) = 0. We repeat the same arguments as for the corresponding case for

d = 0 to obtain that pseudo(x) = 0 = l(x). So Case 1 is proven.

Before we consider Case 2, we first analyse the subtree of TG rooted at x. Let

s1, . . . , sp be the children of z with l(si) > 0 for i = 1, . . . , p (if such children

exist) and let t1, . . . , tq be the children of z with l(ti) = 0 for i = 1, . . . , q (if

such children exist). Note that all children of z are either leaves or ⊗-nodes.

Let z′ be a child of z. If z′ is a leaf, then pseudo(z′) = 1 = l(z′). If z′ is a

⊗-node, we may apply the induction hypothesis to find that pseudo(z′) = l(z′).

In other words, pseudo(si) = l(si) for i = 1, . . . , p and pseudo(ti) = l(ti) for

i = 1, . . . , q. Then, because Gz = Gs1 + · · ·+Gsp +Gt1 + · · ·+Gtq , we find that

an optimal z-pseudo-KO-scheme mimics the optimal si-pseudo-KO-schemes and

optimal tj-pseudo-KO-schemes (we may assume without loss of generality that

all external firings outside Gz in a round are always at a single vertex). Hence,

pseudo(z) = l(s1) + · · ·+ l(sp) + l(t1) + · · ·+ l(tq) = l(z).

Case 2. q ≥ p.

We define the following x-pseudo-KO-selection scheme. The firing rounds for

the vertices in Gz are according to an optimal z-pseudo-KO-scheme under the

following conditions. For the first f(x) rounds any external firings outside Gz are

at a single vertex, which is not in Gx. Note that this is possible by Lemma 2.3.

Afterwards any external firing outside Gz must be in F (x) and also for such firings

we require that they are at a single vertex in every round. The vertices in F (x)

fire in each round at different vertices of Gx that are in Gs1 + · · ·+Gsp and that

are not being fired at by vertices in Gx. They stop firing in a graph Gsi as soon as

they have knocked out l(si) of its vertices. Note that we are guaranteed a budget

of exactly f(x) · p+ 1
2
p(p+ 1) firings from vertices outside Gz into Gz.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 37

First suppose that l(z)−f(x) ·p ≤ 1
2
p(p+1), so l(x) = 0. Then we can knock out

all l(z) vertices of Gz that cannot be knocked out by internal firings inside Gz. As

we still need to knock out the vertices of F (x), we check after each round whether q

has decreased such that p ≤ q ≤ 1
2
p(p+1) holds. Because q−f(x) ·p ≤ 1

2
p(p+1),

it will eventually happen that q ≤ 1
2
p(p + 1). If it turns out that q < p, we

slightly adjust the previous round as we did in Case 2 for d = 0, in order to get

p ≤ q ≤ 1
2
p(p+1). We then apply Lemma 2.2 to knock out the remaining vertices

of Vx in at most p additional rounds. We conclude that pseudo(x) = 0 = l(x).

Now suppose that l(z)− f(x) · p > 1
2
p(p+ 1), so l(x) > 0. Then, by the definition

of our x-pseudo-KO-reduction scheme, all vertices in F (x) have fired at different

vertices in every round for f(x) · p + 1
2
p(p + 1) rounds. Moreover, all vertices

in F (x) are knocked out afterwards. Because pseudo(z) = l(z) and because we

mimicked an optimal z-pseudo-KO-scheme as regards the firings of the vertices

of Gz in each round, we cannot improve upon this. As such we conclude that

pseudo(x) = l(z)− f(x) · p− 1
2
p(p+ 1) = l(x).

III. Conclusion.

We have proven the base case and the inductive step. Hence we conclude that

pseudo(x) = l(x) for any value of d. This completes the proof of Lemma 2.6.

Theorem 2.1. The Parallel Knock-Out problem can be solved in O(n+m)

time on cographs with n vertices and m edges.

Proof. Let G be a cograph with n vertices and m edges. If G is disconnected

we consider each connected component of G separately. Hence, assume that G is

connected.

We construct TG. Run Cograph-PKO with input G. By Lemma 2.4, we find that

l(r) 6= ⊥. Hence, we may apply Lemma 2.6 to find that l(r) = pseudo(r). By

Lemma 2.5, we find that G is KO-reducible if and only if pseudo(r) = 0. As

Cograph-PKO outputs a yes-answer if and only if l(r) = 0, we find it is correct.

Chapter 2. Parallel Knock-Out on Pk-free Graphs 38

It remains to show that Cograph-PKO runs in linear time. We can perform Step 1

in a bottom-up approach starting from the leaves of TG. So, Steps 1-3 each visit

each node at most once. This means that every node of x is visited at most three

times in total. Because every co-tree has at most n + n − 1 = 2n − 1 vertices,

we find that the running time of Cograph-PKO is O(n). Because constructing TG

costs time O(n+m) by Lemma 2.1, the total running time is O(n+m).

Chapter 2. Parallel Knock-Out on Pk-free Graphs 39

2.4 Split Graphs

We show the following result, the proof of which is (partially) based on the NP-

hardness proof of 2-Parallel Knock-Out for bipartite graphs from [13].

Theorem 2.2. The Parallel Knock-Out problem and, for any k ≥ 2, the

k-Parallel Knock-Out problem are NP-complete for split graphs.

Proof. First consider the Parallel Knock-Out problem. We reduce from the

Dominating Set problem, which is well known to be NP-complete (see [39]).

This problem takes as input a graph G = (V,E) and a positive integer p. We

may assume without loss of generality that p ≤ |V |. The question is whether G

has a dominating set of cardinality at most p.

v1

v2

v3

v4

v5

v1 v2 v3 v4 v5

v′1 v′2 v′3 v′4 v′5 w1 w2 w3 w4 w5 w6

V

V ′ W

Figure 2.7: An example of a graph G (left) and the split graph G′ constructed
from an instance (G, 2) of Dominating Set (right). (Note that the set V is a
clique.)

From an instance (G, p) of Dominating Set we construct a split graph G′ =

(VG′ , EG′) as follows. Let VG = {v1, . . . , vn}. We let VG′ consist of three mutually

disjoint sets: the set V = {v1, . . . , vn}, a set V ′ = {v′1, . . . , v′n} and a set W =

{w1, . . . , wr} where r = 1
2
(n − p)(n − p + 1). We define EG′ as follows. First we

add the edges viv
′
i for i = 1, . . . , n. For all i 6= j, we add the edges viv

′
j and vjv

′
i

if and only if vivj is an edge in EG. We also add an edge between every vi and

every wj. Finally, we add an edge between any two vertices in V . For an example

see Figure 2.7. Observe that G′ is indeed a split graph in which V is a clique of

Chapter 2. Parallel Knock-Out on Pk-free Graphs 40

size n and V ′ ∪W is an independent set of size n + r. We claim that G has a

dominating set of size at most p if and only if G′ is KO-reducible.

First suppose G has a dominating set D of size at most p. Because p ≤ |V |, we

may assume without loss of generality that D = {v1, . . . , vp}. We construct a

KO-reduction scheme of G′ as follows. In the first round let every vertex vi ∈ V

fire at v′i ∈ V ′. For i = 1, . . . , p, let v′i fire at vi. For i = p + 1, . . . , n let v′i

fire at an arbitrary vertex in D, which is possible because D is a dominating set

of G. Finally, let every vertex in W fire at an arbitrary vertex in D as well; this

is possible by the construction of G′. The resulting (split) graph G′′ consists of

a clique V \D of size n − p and the independent set W of size 1
2
(n − p)(n − p).

Because there is an edge between every vertex in V and every vertex in W , we

find that G′′ is KO-reducible by Lemma 2.2.

Now suppose G′ is KO-reducible. Consider a KO-reduction scheme of G′. Let D

be the subset of vertices of G′ that belong to V and that are knocked out in the

first round. Because each vertex must fire at a neighbour, and vertices of V ′ can

only fire at vertices of V (as they have neighbours only in V), we deduce that the

vertices of D form a dominating set of G.

In order to complete the proof it remains to prove that |D| ≤ p. For contradiction,

suppose that |D| ≥ p + 1. Let V1 = V \ D be the subset of V consisting of

vertices not knocked out in the first round. Because |D| ≥ p + 1, we obtain

|V1| = |V | − |D| ≤ n − p − 1. Let V ∗ and W ∗ be the subsets of V ′ and W ,

respectively, that consist of vertices not knocked out in the first round. Vertices

in V ′ ∪W can only be knocked out by vertices of V . Moreover, the total number

of vertices that V can knock out in the first round is at most |V | = n. This means

that V ∗ ∪W ∗ is an independent set of size

|V ∗ ∪W ∗| = |V ∗|+ |W ∗| ≥ |V ′|+ |W | − n = 1
2
(n− p)(n− p+ 1).

Chapter 2. Parallel Knock-Out on Pk-free Graphs 41

However, as in every round the size of V1 is reduced by at least 1, the maximum

number of vertices in V ∗ ∪W ∗ that V1 can knock out is at most

(n− p− 1) + (n− p− 2) + · · ·+ 1 <
1

2
(n− p)(n− p+ 1).

Hence, the scheme is not a KO-reduction scheme of G′. This is a contradiction,

and we have completed the proof for Parallel Knock-Out.

Now let k ≥ 2 and consider the k-Parallel Knock-Out problem. We use

the same reduction and the same arguments as for Parallel Knock-Out after

changing the size of W into r := (n− p) + (n− p− 1) + · · ·+ (n− p− k+ 2).

Chapter 2. Parallel Knock-Out on Pk-free Graphs 42

2.5 Conclusions

We have shown in Theorem 2.1 that Parallel Knock-Out is linear-time solv-

able for P4-free graphs. We have also shown in Theorem 2.2 that Parallel

Knock-Out and, for any k ≥ 2, k-Parallel Knock-Out are NP-complete

for split graphs. Because split graphs are (2K2, C4, C5)-free [38], they are P5-free.

Hence, Theorems 2.1 and 2.2 have the following consequence.

Corollary 2.1. The Parallel Knock-Out problem restricted to Pr-free graphs

is linear-time solvable if r ≤ 4 and NP-complete if r ≥ 5.

Whether it is possible to compute pko(G) in polynomial time for cographs is still

an open problem. It is natural to ask whether this can be solved by adjusting

our algorithm Cograph-PKO to solve k-Parallel Knock-Out on cographs in

polynomial time for every fixed integer k. We investigated this approach, but

encountered the following problem. With unlimited rounds, either all the vertices

in F (x) are used up or Gz(x) can be reduced entirely so an adjustment can be

made such that F (x) and Gz(x) knock each other out in the final round. With

a restriction on the number of rounds, the assumption that F (x) will always be

entirely eliminated is no longer valid, since there may be survivors in both F (x)

and Gz(x) and determining their optimal firing is not trivial.

Also recall that cographs are exactly those graphs that have clique-width at

most 2 [22]. Can we solve Parallel Knock-Out in polynomial time for graphs

of clique-width at most 3? For this we could start by considering the class of

distance-hereditary graphs, which have clique-width at most 3 [47]. Distance-

hereditary graphs are completely decomposable with respect to a so-called split

decomposition [49], a graph decomposition introduced by Cunningham and Ed-

monds [23] which may be useful for our purposes.

We also do not know whether there is a constant c such that Parallel Knock-

Out is NP-complete for graphs of clique-width at most c. However, it is known

Chapter 2. Parallel Knock-Out on Pk-free Graphs 43

that the related NP-complete problem Hamiltonian Cycle, which tests whether

a graph has a Hamiltonian cycle, is polynomial-time solvable on any graph class

whose clique-width is bounded by a constant (this follows from combining results

of [56, 98], also see [29]).

A different direction from above for extending our results would be to classify

the complexity of Parallel Knock-Out restricted to H-free graphs. The

complexity status is open even for small graphsH ∈ {4P1, 2P1+2P2, P1+P3, K1,4}.

Chapter 3

Minimal Disconnected Cut on

Planar Graphs

On a connected graph G = (V,E), a subset U ⊆ V is called a disconnected cut if U

disconnects the graph and the subgraph induced by U is disconnected as well. On

a connected graph G = (V,E), a subset U ⊆ V is called a minimal disconnected

cut if U is a disconnected cut and G[(V \U) ∪ {u}] is connected for every u ∈ U .

Ito et al. [54] showed that the problem of finding a minimal disconnected cut in

a graph is NP-hard in general but its computational complexity is unknown for

planar graphs.

In this chapter, we show that the problem of finding a minimal disconnected

cut is polynomial-time solvable on 3-connected planar graphs but NP-hard for

2-connected planar graphs. Our technique for the first result makes use of a

structure characterisation which we show is apparent in all 3-connected K3,3-free-

minor graphs if and only if it permits a minimal disconnected cut.

In addition we show that the problem of finding a minimal connected cut of size

at least 3 is NP-hard for 2-connected apex graphs, and hence for 2-connected

planar graphs as well. Finally, we relax the notion of minimality and prove that

the problem of finding a semi-minimal disconnected cut is still polynomial-time

solvable on planar graphs.

This result was initially presented at the 20th International Symposium on Fun-

damentals of Computation Theory (FCT 2015), Gdańsk, Poland [60] and has

been published in Networks [61].

45

Chapter 3. Minimal Disconnected Cut on Planar Graphs 46

3.1 Introduction

A cutset or cut in a connected graph is a subset of its vertices whose removal

disconnects the graph. The problem Stable Cut is that of testing whether a

connected graph has a cut that is an independent set. Le, Mosca, and Müller [68]

proved that this problem is NP-complete even for K4-free planar graphs with

maximum degree 5. A connected graph G = (V,E) is k-connected for some

integer k if |V | ≥ k+1 and every cut of G has size at least k. It is not hard to see

that if one can solve Stable Cut for 3-connected planar graphs in polynomial

time then one can do so for all planar graphs (in particular the problem is trivial

if the graph has a cut-vertex or a cut set of two vertices that are non-adjacent).

Hence, the problem is NP-complete for 3-connected planar graphs.

Figure 3.1: The graph P4 with a disconnected cutset.

Due to the above it is a natural question whether one can relax the condition

on the cut to be an independent set. This leads to the following notion. For a

connected graph G = (V,E), a subset U ⊆ V is called a disconnected cut if U

disconnects the graph and the subgraph induced by U is disconnected as well,

that is, has at least two (connected) components. This problem is NP-compete

in general [76] but polynomial-time solvable on planar graphs [55]. However, the

property of the cut being disconnected can be viewed to be somewhat artificial

if one considers the 4-vertex path P4 = p1p2p3p4, which has two disconnected

cuts, namely {p1, p3} and {p2, p4}. We see an example of this in Figure 3.1. Both

these cuts contain a vertex, namely p1 and p4, respectively, such that putting

this vertex out of the cut and back into the graph keeps the graph disconnected.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 47

S

Figure 3.2: An example of a planar graph with a minimal disconnected cut,
namely the set S.

Therefore, Ito et al. [54] defined the notion of a minimal disconnected cut of a

connected graph G = (V,E), that is, a disconnected cut U so that G[(V \U)∪{u}]

is connected for every u ∈ U (more generally, we call a cut that satisfies the later

condition a minimal cut). We note that every vertex of a minimal cut U of a

connected graph G = (V,E) is adjacent to every component of G[V \ U]. See

Figure 3.2 for an example of a planar graph with a minimal disconnected cut.

The corresponding decision problem is defined as follows.

Minimal Disconnected Cut

Instance: a connected graph G = (V,E).

Question: does G have a minimal disconnected cut?

Ito et al. [54] showed that Minimal Disconnected Cut is NP-complete. How-

ever its computational complexity remained open for planar graphs. As a graph

has a stable cut if and only if a graph has a minimal stable cut, the problem of

deciding whether a graph has a minimal stable cut is NP-complete for any graph

class (and thus for the class of planar graphs) for which Stable Cut is NP-

complete. In contrast, the problem of deciding whether a graph has a minimal

cut (that may be connected or disconnected) is polynomial-time solvable: for any

graph, given a vertex cut U we can remove vertices from U one by one until the

remaining vertices in U form a minimal cut.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 48

3.1.1 Our Results

As a start we observe that Minimal Disconnected Cut is polynomial-time

solvable for outerplanar graphs (as these graphs do not contain K2,3 as a minor,

any minimal cut has size at most 2). In Section 3.3 we prove that Minimal Dis-

connected Cut is also polynomial-time solvable on 3-connected planar graphs.

The technique used by Ito et al. [55] for solving Disconnected Cut in polyno-

mial time for planar graphs was based on the fact that a planar graph either has

its treewidth bounded by some constant or else contains a large grid as a minor.

However, grids (which are 3-connected planar graphs) do not have minimal dis-

connected cuts. Hence, we need to use a different approach, which we describe

below.

We first provide a structural characterisation of minimal disconnected cuts for

the class of 3-connected K3,3-minor-free graphs, which contains the class of 3-

connected planar graphs. In particular we show that any minimal disconnected

cut of a 3-connected planar graph G has exactly two components and that these

components are paths. A graph G contains a graph H as a contraction if H can

be reach from G by a sequence of edge contractions. In order to find such a cut

we prove that it suffices to test whether G contains, for some fixed integer r, the

biclique K2,r as a contraction. We show that G has such a contraction if and only

if its dual contains the multigraph Dr, which is obtained from the r-vertex cycle

by replacing each edge by two parallel edges, as a subdivision (which we define

in Section 3.2; see Figure 3.4 on page 57 for examples of Dr). We then present

a characterisation of any graph that contains such a subdivision. Next we use

this characterisation to prove that the corresponding decision problem of finding

a multigraph Dr as a subdivision for some r ≥ 2 is polynomial-time solvable even

on general graphs.

In Section 3.4 we give our second result, namely that, contrary to Disconnected

Chapter 3. Minimal Disconnected Cut on Planar Graphs 49

Cut, which is polynomial-time solvable for planar graphs [55], Minimal Dis-

connected Cut stays NP-complete for the class of 2-connected planar graphs.

Our proof is based on a reduction from Stable Cut and as such is different from

the NP-hardness proof for general graphs [54], the gadget of which contains large

cliques.

In Section 3.4 we also show that the problem of finding a minimal connected

cut of size at least 3 is NP-complete for 2-connected apex graphs (graphs that

can be made planar by deleting one vertex); to the best of our knowledge the

computational complexity of this problem has not yet been determined even for

general graphs. We note that the problem of finding whether a graph contains

a (not necessarily minimal) connected cut of size at most k that separates two

given vertices s and t is linear-time FPT when parameterised by k [77].

In Section 3.5 we consider a generalisation of (minimal) disconnected cuts and

stable cuts. For a family of graphs H, a connected graph has a (minimal) H-cut if

it has a (minimal) cut that induces a graph in H. This leads to the corresponding

decision problems H-Cut and Minimal H-Cut. For instance, we can describe

(Minimal) Stable Cut as (Minimal) {P1, 2P1, 3P1, . . .}-Cut. Moreover, if H

consists of all disconnected graphs, we obtain the (Minimal) Disconnected

Cut problem. The problem of finding minimum (that is, smallest) H-cuts that

separate two given vertices s and t has been studied from a parameterised point

of view for various graph families H by Heggernes et al. [51]. We show some

initial results for Minimal H-Cut, which provide some further insights in our

main results.

In Section 3.6 we relax the notion of minimality for cut sets as follows. If a

cut U of a graph G = (V,E) is minimal, each of its vertices is adjacent to every

component in G[V \ U]. What if instead we demand that each vertex u ∈ U

is adjacent to at least two (but maybe not all) components of G[V \ U]? This

leads to the following definition. A disconnected cut U of a connected graph

Chapter 3. Minimal Disconnected Cut on Planar Graphs 50

G = (V,E) is semi-minimal if G[(V \U) ∪ {u}] contains fewer components than

G[V \U] for every u ∈ U . The corresponding decision problem, which is known to

be NP-complete [54], is called Semi-Minimal Disconnected Cut. Note that

there exist graphs with a disconnected cut, such as the P4, that have no semi-

minimal disconnected cut. Because for planar graphs Minimal Disconnected

Cut is NP-complete and Disconnected Cut is polynomial-time solvable, it is a

natural question to determine the complexity of Semi-Minimal Disconnected

Cut for planar graphs. We adapt the proof for Disconnected Cut to show

that Semi-Minimal Disconnected Cut is also polynomial-time solvable on

planar graphs.

We finish this chapter with some further observations and open problems in Sec-

tion 3.7.

3.1.2 Related Work

Vertex cuts play an important role in graph connectivity. In the literature various

kinds of vertex cuts, besides stable cuts, have been studied extensively and we

briefly survey a number of results below that have not been mentioned yet.

A cut U of a graph G = (V,E) is a clique cut if G[U] is a clique, a k-clique cut if

G[U] has a spanning subgraph consisting of k complete graphs; a strict k-clique

cut if G[U] consists of k components that are complete graphs; and a matching

cut if EG[U] is a matching. We note that a clique cut is equivalent to a 1-clique

cut and to a strict 1-clique cut. It follows from a classical result of Tarjan [92]

that determining whether a graph has a clique cut is polynomial-time solvable.

Whitesides [99] and Cameron et al. [14] proved that the problem of testing whether

a graph has a k-clique cut is solvable in polynomial time for k = 1 and k = 2,

respectively. Cameron et al. [14] also proved that testing whether a graph has a

strict 2-clique cut can be solved in polynomial time. As mentioned the problem

of testing whether a graph has a stable cut is NP-complete. This was first shown

Chapter 3. Minimal Disconnected Cut on Planar Graphs 51

for general graphs by Chvátal [15]. Also the problem of testing whether a graph

has a matching cut is NP-complete. This was shown by Brandstädt et al. [9].

Bonsma [8] proved that this problem is NP-complete even for planar graphs with

girth 5 and for planar graphs with maximum degree 4.

The Skew Partition problem is that of testing whether a graph G = (V,E)

has a disconnected cut U so that V \ U induces a disconnected graph in the

complement of G. De Figueiredo, Klein, Kohayakawa and Reed [24] proved that

even the list version of this problem, where each vertex has been assigned a list

of blocks in which it must be placed, is polynomial-time solvable. Afterwards,

Kennedy and Reed [64] gave a faster polynomial-time algorithm for the non-list

version.

Finally, for an integer k ≥ 1, a cut U of a connected graph G is a k-cut of G if G[U]

contains exactly k components. For k ≥ 1 and ` ≥ 2, a k-cut U is a (k, `)-cut of

a graph G if G[V \U] consists of exactly ` components. Ito et al. [55] proved that

testing if a graph has a k-cut is solvable in polynomial time for k = 1 and NP-

complete for every fixed k ≥ 2. In addition they showed that testing if a graph

has a (k, `)-cut is polynomial-time solvable if k = 1, ` ≥ 2 and NP-complete

otherwise [55]. The same authors showed, by using the approach for solving

Disconnected Cut on planar graphs, that both problems are polynomial-time

solvable on planar graphs.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 52

3.2 Preliminaries

Let G = (V,E) be a graph. We recall the following operations. The contraction

of an edge uv removes u and v from G, and replaces them by a new vertex made

adjacent to precisely those vertices that were adjacent to u or v in G. Unless

we explicitly say otherwise we remove all self-loops and multiple edges so that

the resulting graph stays simple. The subdivision of an edge uv replaces uv by

a new vertex w with edges uw and vw. Let u ∈ V be a vertex that has exactly

two neighbours v, w, and moreover let v and w be non-adjacent. The vertex

dissolution of u removes u and adds the edge vw.

A graph G contains a graph H as a minor if H can be obtained from G by a

sequence of vertex deletions, edge deletions and edge contractions. If G does

not contain H as a minor, G is H-minor-free. We say that G contains H as a

contraction, denoted by H ≤c G, if H can be obtained from G by a sequence of

edge contractions. Finally, G contains H as a subdivision if H can be obtained

from G by a sequence of vertex deletions, edge deletions and vertex dissolutions,

or equivalently, if G contains a subgraph H ′ that is a subdivision of H, that is, H

can be obtained from H ′ after applying zero or more vertex dissolutions. We say

that a vertex in H ′ is a subdivision vertex if we need to dissolve it in order to

obtain H; otherwise it is called a branch vertex (that is, it corresponds to a vertex

of H). We note that some subdivisions may be reachable in different ways. For

example P3 is a subdivision of P4 with the end vertices being branch vertices,

however, either one of the inner vertices could be the subdivision vertex. When

we refer to branch vertices and subdivision vertices, we do so with respect to a

particular subgraph H ′ and a particular set of vertex dissolutions. In particular,

in this thesis we are only interested in Dr as a subdivision for some r. As such,

branch vertices have degree 4 while subdivision vertices have degree 2 so there is

only one way to dissolve the vertices of a given H ′ to obtain Dr.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 53

For some of our proofs the following global structure is useful. Let G = (VG, EG)

and H = (VH , EH) be two graphs. An H-witness structureW is a vertex partition

of a (not necessarily proper) subgraph of G into |VH | nonempty sets {W (x)}x∈VH

called (H-witness) bags, such that

(i) each W (x) induces a connected subgraph of G,

(ii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G if x

and y are adjacent in H.

In addition, we may require the following additional conditions:

(iii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G only

if x and y are adjacent in H,

(iv) every vertex of G belongs to some bag.

By contracting all bags to singletons we observe that H is a minor or contraction

of G if and only if G has an H-witness structure such that conditions (i)-(ii) or

(i)-(iv) hold, respectively. We note that G may have more than one H-witness

structure with respect to the same containment relation.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 54

3.3 3-Connected Planar Graphs

We first present a necessary and sufficient condition for a 3-connected K3,3-minor-

free graph to have a minimal disconnected cut. We recall that we say H ≤c G

when H is a contract of G.

Theorem 3.1. A 3-connected K3,3-minor-free graph G has a minimal discon-

nected cut if and only if K2,r ≤c G for some r ≥ 2.

Proof. Let G = (V,E) be a 3-connected graph that has no K3,3 as a minor. First

suppose that G has a minimal disconnected cut U . Let p and q be the number

of components of G[U] and G[V \ U], respectively. Because U is a disconnected

cut, p ≥ 2 and q ≥ 2. By definition, every vertex of every component of G[U] is

adjacent to all components in G[V \U]. Hence, G contains Kp,q as a contraction.

Because G has no K3,3 as a minor, G has no K3,3 as a contraction. This means

that p ≤ 2 or q ≤ 2. Because p ≥ 2 and q ≥ 2 holds as well, we find that

K2,r ≤c G for some r ≥ 2.

Now suppose that K2,r ≤c G for some r ≥ 2. Throughout the remainder

of the proof we denote the partition classes of Kk,` by X = {x1, . . . , xk} and

Y = {y1, . . . , y`}. We refer to the bags in a Kk,`-witness structure of G corre-

sponding to the vertices in X and Y as x-bags and y-bags, respectively. Because

K2,r ≤c G, there exists a K2,r-witness structure W of G that satisfies conditions

(i)-(iv). Note that W (x1)∪W (x2) is a disconnected cut. However, it may not be

minimal.

Suppose that W (x1) contains a vertex u that is adjacent to some but not all y-

bags, i.e., the number of y-bags to which u is adjacent is h for some

1 ≤ h < r. Then we move u to a y-bag that contains one of its neighbours

unless W (x1)∪W (x2) (without u) no longer induces a disconnected graph (which

will be the case if u is the only vertex in W (x1)). We observe that G[W (x1)\{u}]

Chapter 3. Minimal Disconnected Cut on Planar Graphs 55

may be disconnected, namely when u is a cut vertex in G[W (x1)]. We also

observe that u together with its adjacent y-bags induces a connected subgraph

of G. Hence, the resulting witness structure W ′ (after moving vertices out of

W (x1)) is a Kq,r′-witness structure of G with q ≥ 2 (as the resulting vertices in

W (x1) ∪W (x2) still induce a disconnected graph) and r′ = r − (h− 1). Because

1 ≤ h < r, we find that 2 ≤ r′ ≤ r. We repeat this rule as long as possible.

During this process, W (x2) does not change, and afterwards, we do the same for

W (x2). Let W∗ denote the resulting witness structure that is a Kq∗,r∗-witness

structure satisfying conditions (i)-(iv) for some q∗ ≥ 2 and 2 ≤ r∗ ≤ r.

We will now prove the following claim.

Claim 3.1. Every vertex of each x-bag of W∗ is adjacent to all y-bags.

We prove this claim as follows. First suppose that there exists an x-bag of W∗,

say W ∗(x1), that contains a vertex u adjacent to some but not to all y-bags

of W∗, say u is not adjacent to W ∗(y1). By our procedure we would have moved

u to an adjacent y-bag unless that makes the disconnected cut connected. Hence

we find that there are exactly two witness bags W ∗(x1) and W ∗(x2) and that

W ∗(x1) = {u}. In our procedure we only moved vertices from x-bags to y-bags.

This means that u belonged to an x-bag of the original witness structureW . This

x-bag was adjacent to all y-bags of W (as W was a K2,r-witness structure). As

we only moved vertices from x-bags to y-bags, this means that there must still

exist a path from u to a vertex in W ∗(y1) that does not use any vertex of W ∗(x2);

a contradiction. Hence every x-bag of W∗ only contains vertices that are either

adjacent to all y-bags or to none of them.

Now, in order to obtain a contradiction, suppose that an x-bag, say W ∗(x1),

contains a vertex u not adjacent to any y-bag. Because G is 3-connected, G

contains three vertex-disjoints paths P1, P2, P3 from u to a vertex in W ∗(y1) (by

Menger’s Theorem). Each Pi contains a vertex vi in W ∗(x1) whose successor

on Pi is outside W ∗(x1) and thus in some y-bag. Hence, by our assumption, vi

Chapter 3. Minimal Disconnected Cut on Planar Graphs 56

has a neighbour in every y-bag (including W ∗(y1)). Recall that the number of

y-bags is r∗ ≥ 2. We consider the subgraph induced by the vertices from W ∗(y1)

and W ∗(y2) together with the vertices on the three paths P1, P2, P3. For i =

1, . . . , 3 we contract all edges on the subpath of Pi from u to vi to one edge, and

we contract both W ∗(y1) and W ∗(y2) to single vertices. These edge contractions

modify the subgraph into a graph isomorphic to K3,3, which is not possible.

Hence, every vertex of each x-bag ofW∗ is adjacent to all y-bags. This completes

the proof of Claim 3.1.

As q∗ ≥ 2 and r∗ ≥ 2, there are at least two x-bags and at least two y-bags inW∗.

By combing this observation with Claim 3.1, we find that the x-bags of W∗ form

a minimal disconnected cut U of G. This completes the proof of Theorem 3.1.

Recall that planar graphs are K3,3-minor-free by Kuratowski’s Theorem. Hence,

by Theorem 3.1, in order to show that a 3-connected planar graph has a minimal

disconnected cut, it suffices to find a K2,r-contraction for some r ≥ 2. Below we

state some additional terminology.

Figure 3.3: The graph K2,4 in black and its dual in red.

Recall that Dn is the multigraph obtained from the cycle on n ≥ 3 vertices by

doubling its edges. We let D2 be the multigraph that has two vertices with four

edges between them. The dual graph Gd of a plane graph G has a vertex for each

face of G, and there exist k edges between two vertices u and v in Gd if and only

if the two corresponding faces share k edges in G. Note that the dual of a graph

may be a multigraph. As 3-connected planar graphs have a unique embedding

(see e.g. Lemma 2.5.1, p.39 of [81]) we can speak of the dual of a 3-connected

planar graph.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 57

D2 D4C4 K2,4

Figure 3.4: The graphs D2, C4, D4,K2,4. Note that the dual of C4 = K2,2 is
D2, that D4 is obtained from C4 by duplicating each edge and that D4 is the
dual of K2,4.

Lemma 3.1. Let G be a 3-connected planar graph. Then G contains K2,r as

a contraction for some r ≥ 2 if and only if the dual of G contains Dr as a

subdivision.

Proof. We first observe that for all r ≥ 2, every K2,r has a unique plane embed-

ding, the dual of which is Dr. Then the results follows from a result from [62]

that for 3-connected planar graphs comes down to the following statement: a

3-connected planar graph G contains a graph H as a contraction if and only if

the dual of G contains the dual of H as a subdivision.

By Lemma 3.1 it suffices to check if the dual of the 3-connected planar input

graph contains Dr as a subdivision for some r ≥ 2. We show how to solve this

problem in polynomial time for general graphs. In order to do so we need the next

lemma which gives a sufficient condition for a graph G to be a yes-instance of this

problem. In its proof we use the following notation. For a path P = v1v2 . . . vp, we

write viPvj to denote the subpath vivi+1 . . . vj or vjPvi if we want to emphasise

that the subpath is to be traversed from vj to vi.

Lemma 3.2. Let v, w be two distinct vertices of a multigraph G such that there

exist four edge-disjoint v-w-paths in G. Then G contains a subdivision of Dr for

some r ≥ 2.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 58

Proof. We prove the lemma by induction on |VG| + |EG|. Then we can assume

that G is the union of the four edge-disjoint v-w-paths. Let us call these paths

P1, P2, P3, and P4. If these four paths are vertex-disjoint (apart from v and w)

then they form a subdivision of D2. Hence, we may assume that there exists at

least one vertex of G not equal to v or w that belongs to more than one of the

four paths.

First suppose that there exists a vertex u that belongs to all four paths P1, P2, P3

and P4. Let G′ = (VG′ , EG′) be the graph consisting of the vertices and edges

of the four subpaths vP1u, vP2u, vP3u and vP4u. As G′ does not contain w, it

holds that VG′ +EG′ < |VG|+ |EG|. By the induction hypothesis, G′, and thus G,

contains a subdivision of Dr for some r ≥ 2.

Now suppose that there exists a vertex u that belong to only three of the four

paths, say to P1, P2, and P3. Let G′ be the graph that consists of the vertices

and edges of the four paths uP1w, uP2w, uP3w and uP1vP4w. As G′ does not

contain an edge of vP2u we find that VG′ + EG′ < |VG|+ |EG|. By the induction

hypothesis, G′, and thus G, contains a subdivision of Dr for some r ≥ 2.

From now on assume that every inner vertex of every path Pi (i = 1, . . . , 4)

belongs to at most one other path Pj (j 6= i). We say that two different paths

Pi and Pj cross in a vertex u if u is an inner vertex of both Pi and Pj. Suppose

Pi and Pj cross in some other vertex u′ as well. Then we say that u is crossed

before u′ by Pi and Pj if u is an inner vertex of both vPiu
′ and vPju

′.

We now prove the following claim.

Claim 3.2. If Pi and Pj (i 6= j) cross in both u and u′ then we may assume

without loss of generality that either u is crossed before u′ or u′ is crossed before u.

We prove Claim 3.2 as follows. Suppose that u is not crossed before u′ by Pi

and Pj and similarly that u′ is not crossed before u by Pi and Pj. Then we may

assume without loss of generality that u is an inner vertex of vPiu
′ and that u′ is

Chapter 3. Minimal Disconnected Cut on Planar Graphs 59

v w

u

u′

Pi

Pj

Figure 3.5: The paths Pi and Pj where u is not crossed before u′ by Pi and
Pj and similarly u′ is not crossed before u by Pj and Pi. Note that the paths Pi

and Pj may have more common vertices, but for clarify this is not been shown.

an inner vertex of vPju. See Figure 3.5 for an example of this situation. However,

in that case we can replace Pi and Pj by the paths vPiuPjw and vPju
′Piw. These

two paths together with the two unused original paths form a subgraph G′ of G

with fewer edges than G (as for instance no edge on uPiu
′ belongs to G′). We

apply the induction hypothesis on G′. This completes the proof of Claim 3.2.

We need Claim 3.2 to prove the following claim, which is crucial for our proof.

Claim 3.3. We may assume without loss of generality that there exists a vertex

u /∈ {v, w} that is on two paths Pi and Pj (i 6= j) so that every inner vertex

of vPiu and vPju has degree 2 in G.

We prove Claim 3.3 as follows. By our assumption there exists at least one

vertex in G that is on two paths. Let s /∈ {v, w} be such a vertex, without loss

of generality let s belong to P1. Suppose that there is an inner vertex of vP1s

with degree larger than 2, we may simply choose this vertex to be s instead and

as such we may assume that every inner vertex of vP1s has degree 2. Since s has

degree larger than 2, it belongs to another path, without loss of generality say it

belongs to P2. Then, by Claim 3.2, we find that P1 and P2 do not cross in an

inner vertex of vP2s.

If every inner vertex of vP1s and vP2s has degree 2 in G then the claim has been

proven. Suppose otherwise, namely that there exists an inner vertex s′ of vP1s

or vP2s whose degree in G is larger than 2, say s′ belongs to vP2s. As P1 does

Chapter 3. Minimal Disconnected Cut on Planar Graphs 60

v w

s

s′

s′′

P1

P2

P3

Figure 3.6: The paths P1, P2 and P3 where s belongs to P1 and P2, s
′ belongs

to vP2s and P3 and s′′ belongs to vP3s
′ and P1.

not cross vP2s, we find that s′ must belong to P3 or to P4. Choose s′ in such a

way that every inner vertex of vP2s
′ has degree 2 in G. Assume without loss of

generality that s′ belongs to P3.

If every inner vertex of vP3s
′ has degree 2 then the claim has been proven (as

every inner vertex of vP2s
′ has degree 2 as well). Suppose otherwise, namely

that there exists an inner vertex s′′ of vP3s
′ whose degree in G is larger than 2.

Choose s′′ in such a way that every inner vertex of vP3s
′′ has degree 2 in G. By

Claim 3.2, no inner vertex of vP3s
′ belongs to P2, so s′′ does not lie on P2. This

means that s′′ belongs either to P1 or to P4.

Suppose s′′ belongs to P1. See Figure 3.6 for an example of this situation. As

every inner vertex of vP1s has degree 2, we find that s is an inner vertex of vP1s
′′.

However, we can now replace P1, P2 and P3 by the three paths vP1sP2w, vP2s
′P3w

and vP3s
′′P1w. These three paths form, together with P4, a subgraph of G with

fewer edges than G (for instance, no edge of sP1s
′′ belongs to G′). We can apply

the induction hypothesis on this subgraph. Hence we may assume that s′′ does

not belong to P1.

From the above we conclude that s′′ belongs to P4. See Figure 3.7 for an example

of this situation. We consider the paths vP3s
′′ and vP4s

′′. If every inner vertex

of vP4s
′′ has degree 2 in G then we have proven Claim 3.3 (recall that every inner

vertex of vP3s
′′ has degree 2 in G as well). Suppose otherwise, namely that there

exists an inner vertex t of vP4s
′′ whose degree in G is larger than 2. Choose t

in such a way that every inner vertex of vP4t has degree 2 in G. By Claim 3.2

Chapter 3. Minimal Disconnected Cut on Planar Graphs 61

v w

s

s′

s′′

t

P1

P2

P3

P4

Figure 3.7: The paths P1, P2, P3 and P4 where s belongs to P1 and P2, s
′

belongs to vP2s and P3, s
′′ belongs to vP3s

′ and P4 and t belongs to vP4s
′′ and

P1.

we find that t is not on P3. If t is on P2 we can use a similar replacement of

three paths by three new paths as before that enables us to apply the induction

hypothesis. Hence, we find that t belongs to P1.

As every inner vertex of vP1s has degree 2 in G we find that s is an inner vertex

of vP1t. Then we take the four paths vP1sP2w, vP2s
′P3w, vP3s

′′P4w and vP4tP1w.

These four paths form a subgraph G′ of G with fewer edges than G (as for instance

G′ contains no edge from sP1t). We can apply the induction hypothesis on G′.

Hence we may assume that such a vertex t cannot exist. Thus we have found the

desired vertex and subpaths, namely s′′ with subpaths vP3s
′′ and vP4s

′′. This

completes the proof of Claim 3.3.

By Claim 3.3 we may assume without loss of generality that there exists a vertex u

that belongs to P1 and P2 such that every inner vertex of vP1u and vP2u has

degree 2. Let G∗ be the graph obtained from G by contracting all edges of

vP1u and vP2u (recall that we remove loops and multiple edges). Let u∗ be the

new vertex to which all the edges were contracted. Notice that there are four

edge-disjoint u∗-w-paths in G∗. Then, by the induction hypothesis, G∗ contains a

subdivision H of Dr for some r ≥ 2. If u∗ does not belong to H, then G contains H

as well and we would have proven the lemma. Assume that u∗ belongs to H.

First suppose that u∗ is a subdivision vertex of H in G∗. Let u∗ have neighbours s1

and s2 in H. Take a shortest path Q from s1 to s2 in the subgraph of G induced

Chapter 3. Minimal Disconnected Cut on Planar Graphs 62

by s1, s2 and the vertices of vP1u and vP2u. This results in a graph H ′, which is

a subgraph of G and which is a subdivision of Dr as well.

Now suppose that u∗ is a branch vertex of H in G∗, say u∗ corresponds to z ∈ VDr .

Note that any vertex in Dr has one neighbour if r = 2 and two neighbours if r ≥ 3.

We let s and t be the two branch vertices of H that correspond to the neighbours

of z in Dr (note that s = t if r = 2). Let s1 and s2 be the neighbours of u∗ on

the two paths from u∗ to s, respectively, in H. Similarly, let t1 and t2 be the

neighbours of u∗ on the two paths from u∗ to t, respectively, in H. Note that,

as G is a multigraph, it is possible that s1 = s2 = s and t1 = t2 = t.

Recall that every internal vertex on vP1u and on vP2u has degree 2 in G. As u

is an inner vertex of P1 and P2 but not of P3 and P4, it has degree 4 in G. As G

is the union of P1, P2, P3 and P4, we find that v has degree 4 as well. Then, after

uncontracting u∗, we have without loss of generality one of the following two

situations in G. First, u is adjacent to s1 and s2 and v is adjacent to t1 and t2.

In that case u and v become branch vertices of a subdivision of Dr+1 in G (to

which the internal vertices on the paths uP1v and uP2v belong as well, namely

as subdivision vertices). Second, u is adjacent to s1 and t1, whereas v is adjacent

to s2 and t2. Then u and v become subdivision vertices of a subdivision of Dr

in G (and we do not use the internal vertices on the paths uP1v and uP2v). This

completes the proof of the lemma.

Lemma 3.2 gives us the following result.

Theorem 3.2. It is possible to find in O(mn2) time whether a graph G with n

vertices and m edges contains Dr as a subdivision for some r ≥ 2.

Proof. Let G be a graph with m edges. We check for every pair of vertices s

and t whether G contains four edge-disjoint paths between them. We can do this

via a standard reduction to the maximum flow problem. Replace each edge uv

by the arcs (u, v) and (v, u). Give each arc capacity 1. Introduce a new vertex

Chapter 3. Minimal Disconnected Cut on Planar Graphs 63

s′ and an arc (s′, s) with capacity 4. Also introduce a new vertex t′ and an arc

(t, t′) with capacity 4. Check if there exists an (s′, t′)-flow of value 4 by using the

Ford-Fulkerson algorithm. As the maximum value of an (s′, t′)-flow is at most 4,

this costs O(m) time per pair, so O(mn2) time in total.

If there exists a pair s, t in G with four edge-disjoint paths between them then G

has a subdivision of Dr, for some r ≥ 2, by Lemma 3.2. If not then we find that

G has no subdivision of any Dr (r ≥ 2) as any subdivision of Dr immediately

yields four edge-disjoint paths between two vertices and our algorithm would have

detected this.

We are now ready to state our main result.

Theorem 3.3. Minimal Disconnected Cut can be solved in O(n3) time on

3-connected planar graphs with n vertices.

Proof. Let G be a 3-connected planar graph with n vertices. By Theorem 3.1 it

suffices to check whether K2,r ≤c G for some r ≥ 2. By Lemma 3.1, the latter is

equivalent to checking whether the dual of G, which we denote by G∗, contains Dr

as a subdivision for some r ≥ 2. To find G∗ we first embed G in the plane using

the linear-time algorithm from Mohar [80]. As the number of edges in a planar

graph is linear in the number of vertices, G∗ has O(n) vertices and O(n) edges

and can be constructed in O(n) time. We are left to apply Theorem 3.2.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 64

3.4 2-Connected Planar Graphs

We prove the following result, which shows that Theorem 3.3 cannot be gener-

alised to any further class of k-connected planar graphs.

Theorem 3.4. Minimal Disconnected Cut is NP-complete for the class of

2-connected planar graphs.

Proof. As we can check in polynomial time whether a given subset of vertices in

a graph is a minimal disconnected cut, the problem belongs to NP. To see this we

observe that we can determine whether a graph G is connected or not in O(n+m)

time using either a breath-first search of depth-first search. Given a set S, we

can easily check that both G[S] and G[VG \ S] are disconnected. It then remains

to show that S is minimal, we can do this be checking that G[(VG \ S) + v]

is connected for every v ∈ S. To show NP-hardness we reduce from Stable

Cut. Recall that this problem is to test whether a graph has a cut that is an

independent set and that it is an NP-complete problem for planar graphs [68] even

if they are 2-connected (as the answer is trivially yes if the input graph contains

a cut vertex1).

Figure 3.8: The graph G′ with the vertices and edges of G shown in black.
A stable cut and a minimal stable cut are shown with black and red dashed
lines respectively.

Let G = (VG, EG) be a 2-connected planar graph with n vertices and m edges.

We construct in polynomial time a graph G′ by adding for each edge e = uv in G

1We recall from Section 3.1 that Stable Cut is NP-complete even for 3-connected planar
graphs, but we do not need 3-connectivity in our proof.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 65

a new (blue) vertex xe that we make adjacent (only) to u and v. Note that G′ is

a planar graph with m + n vertices and 3m edges. Moreover, G′ is 2-connected.

Hence, it suffices to prove that G has a stable cut if and only if G′ has a minimal

disconnected cut. We see an example of this in Figure 3.8.

First suppose that G has a stable cut S. As long as S contains a vertex u so that

the subgraph of G induced by (VG \ S) ∪ {u} is disconnected we move u from S

to VG \ S. Because G is 2-connected, the resulting set S∗ ⊆ S is a stable cut of

size at least 2. By our procedure, S∗ is a minimal disconnected cut of G as well.

Because S∗ is an independent set, at least one vertex of every pair of adjacent

vertices u, v in G does not belong to S∗, say u does not belong to S. Let F be

the component of G[V \ S∗] that contains u. Then either v belongs to F as well

or v belongs to S∗. In both cases we place xuv in F (so we neither create any

new components in G∗ − S nor do we reduce the number of components). After

doing this for each pair of adjacent vertices in G we find that S∗ is also a minimal

disconnected cut of G∗.

Now suppose that G′ has a minimal disconnected cut S ′. Consider an edge uv

of G′ that belongs to G as well. We see that the vertex xuv (a blue vertex in Figure

3.8) can not belong to a minimal cut since its only neighbours are adjacent and

hence belong to at most one component of G′ − S ′. If xuv were in S ′ we would

see that S ′ − xuv is also a cut set and as such S ′ would not be minimal. Hence,

xuv cannot belong to a minimal cut since it’s only neighbours are adjacent and

hence can belong to at most one component. Moreover, at most one of u and v

can belong to S ′ as otherwise, due to their adjacency, they would belong to the

same component of G′[S ′], meaning that any other component of G′[S ′] is not

adjacent to the 1-vertex component of G′ − S ′ that contains xuv. Hence, S ′ is

a stable cut of G′ that only contains vertices of G. Because at least one vertex

of any pair of adjacent vertices u, v belongs to the same component of G′ − S ′

that contains the vertex xuv, we find that G− S ′ has just as many (and thus at

Chapter 3. Minimal Disconnected Cut on Planar Graphs 66

least two) components as G′ − S ′. We conclude that S ′ is a stable cut of G as

well.

3.4.1 Minimal Connected Cut on 2-Connected Apex Graphs

We recall the a graph is an apex graph if it can be made planar by the deletion

of a single vertex. As such we see that the class of apex graphs includes the class

of planar graphs.

A cut S in a graph G is a minimal connected cut if G[S] is connected and for all

u ∈ S we have that G[(V \S)∪{u}] is connected. We call the problem of testing

whether a graph has a minimal connected cut of size at least k the Minimal

Connected Cut(k) problem. By modifying the proof of Theorem 3.4 we obtain

the following result.

Theorem 3.5. Minimal Connected Cut(3) is NP-complete even for the class

of 2-connected apex graphs.

Proof. We can check in polynomial time (see Theorem 3.4) whether a given subset

of vertices in a graph is a minimal connected cut. Hence the problem belongs to

NP. As mentioned, we are following the line of the proof of Theorem 3.4, so we

reduce from the Stable Cut problem restricted to 2-connected planar graphs.

Figure 3.9: The graph G′′ with the vertices and edges of G shown in black
and with y in red. A stable cut and a minimal stable cut of G are shown with
black and red dashed lines respectively.

Let G be a 2-connected planar graph with n vertices and m edges. We construct

in polynomial time a graph G′′ by adding for each edge e = uv in G a new (blue)

Chapter 3. Minimal Disconnected Cut on Planar Graphs 67

vertex xe that we make adjacent (only) to u and v. We say that these newly

added vertices are of x-type. Afterwards we add a new vertex y that we make

adjacent to all vertices of G (so not to the x-type vertices). Note that G′′ is an

apex graph with m+n+ 1 vertices and 3m+n edges. We see an example of this

in Figure 3.9 Moreover, G′′ is 2-connected. We claim that G has a stable cut if

and only if G′′ has a minimal connected cut of size at least 3.

First suppose that G has a stable cut S. Following the same arguments as in

the proof of Theorem 3.4 we find that S contains a subset S∗ that is a minimal

disconnected cut of G′′ − {y}. Adding y to S∗ yields a minimal connected cut

of G′′. Because G is 2-connected, S∗ ∪ {y} has size at least 3.

Now suppose that G′′ has a minimal connected cut S ′′ of size at least 3. Consider

an edge uv of G′′ that belongs to G as well. We see that the vertex xuv (a blue

vertex in Figure 3.9) can not belong to a minimal cut since its only neighbours

are adjacent and hence belong to at most one component of G′ − S ′. If xuv were

in S ′′ we would see that S ′′ − xuv is also a cut set and as such S ′′ would not be

minimal. Moreover, at most one of u and v can belong to S ′′. This can be seen as

follows. For contradiction, assume that u and v both belong to S ′′. Because S ′′

has size at least 3, we find that S ′′ contains some vertex w /∈ {u, v}. This is not

possible, as w is not adjacent to the 1-vertex component of G′′−S ′′ that contains

xuv.

Let T = S ′′ \ {y} if y ∈ S ′′ and let T = S ′′ otherwise. Because at most one of

every pair of adjacent vertices in G and no x-type vertices belong to S ′′, we find

that T is a stable cut of G′′−{y} that only contains vertices of G. Because at least

one vertex of any pair of adjacent vertices u, v belongs to the same component

of G′′ − S ′′ that contains the vertex xuv, we find that G − T has just as many

(and thus at least two) components as G′′ − S ′′. Hence G − T has at least two

components. We conclude that T is a stable cut of G.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 68

Note that we cannot use the reduction in the proof of Theorem 3.5 to get NP-

hardness for Minimal Connected Cut(1), the reason being that every edge

uv ∈ G is a minimal connected cut of size 2 in G′′ as when removed it disconnects

xuv from the remainder of the graph.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 69

3.5 A Generalisation

Let H be a graph class. Recall that a given connected graph has a minimal H-cut

if it has a (minimal) cut that induces a graph in H and that the corresponding

decision problems are called H-Cut and Minimal H-Cut.

From the proof of Theorem 3.4 we find that the Minimal Stable Cut problem,

that is, the problem of determining whether a graph has a minimal stable cut is

NP-complete even for 2-connected planar graphs. The argument in this proof to

move any cut vertex not adjacent to all components outside the stable cut until a

minimal stable cut is obtained can be generalised to H-cuts if an extra condition

is added.

Observation 3.1. Let H be a graph class of graphs closed under vertex deletion.

Then a connected graph has a minimal H-cut if and only if it has a H-cut.

Due to Observation 3.1, the problems H-Cut and Minimal H-Cut are poly-

nomially equivalent if H is closed under vertex deletion. Recall that if we let H

be the class of disconnected graphs, we obtain the (Minimal) Disconnected

Cut problem. However, we cannot combine Observation 3.1 with results for

the Disconnected Cut problem to obtain corresponding results for the Min-

imal Disconnected Cut problem, because the class of disconnected graphs

is not closed under vertex deletion. This is also clear from the fact that Dis-

connected Cut is polynomial-time solvable for planar graphs [55], whereas we

showed in Section 3.4 that Minimal Disconnected Cut is NP-complete even

for 2-connected planar graphs.

Also if for instance H consists of all linear forests on at least two components

(disjoint unions of two or more paths) we cannot use Observation 3.1, but in that

case we can determine the complexity of Minimal H-Cut by first giving the

following description of minimal disconnected cuts in planar graphs (the second

Chapter 3. Minimal Disconnected Cut on Planar Graphs 70

statement is a structural observation which is not needed for the proof of this

result).

Theorem 3.6. Let G be a K3,3-minor-free graph. Let U be any minimal cut of G.

Then every component of G[U] is a path or a cycle, or in case G is planar and U

is disconnected, every component of G[U] is a path. Moreover, G has a minimal

disconnected cut of size 2 or for every minimal disconnected cut U of G it holds

that G[V \ U] has exactly two components.

Proof. Let V1 and V2 be the vertex sets of any two components of G[V \ U].

Suppose that U contains a vertex s of degree 3 in G[U]. Then s has neighbours

t1, t2, t3 in U . As every vertex of U is adjacent to both V1 and V2, the vertices

s, t1, t2, t3 form, together with V1 and V2, a K3,3-minor of G, a contradiction.

Hence, every component of G[U] has maximum degree at most 2, so is either

a path or a cycle. Suppose that G is planar and that U is disconnected. For

contradiction, assume that G[U] contains a component with vertex set U1 that is

a cycle. As every vertex of U is adjacent to both V1 and V2 we find that U1 and a

vertex of another component of G[U] form, together with V1 and V2, a K5-minor

of G, which is not possible as G is planar. To see this contract V1 and V2 to single

vertices and U1 to a cycle of length 3.

Now suppose that G has at least one minimal disconnected cut but not one of

size 2. Let U be a minimal disconnected cut of G. Then G[V \ U] must have

exactly two components; otherwise three vertices from U and three components

of G[V \ U] form a K3,3-minor of G, as every vertex of U is adjacent to every

component of G[V \ U] by definition.

Let P consist of all disjoint unions of two or more paths. Theorems 3.3, 3.4

and 3.6 have the following consequence.

Corollary 3.1. Minimal P-Cut is polynomial-time solvable for k-connected

planar graphs if k ≥ 3 and NP-complete if k ≤ 2.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 71

Figure 3.10: The grid M9, where the two thick cycles correspond to cycles
Cb and Cd in the proof of Theorem 3.7.

3.6 Semi-Minimality

Them×m gridMm has all pairs (i, j) for i, j = 0, 1, . . . ,m−1 as the vertex set, and

two vertices (i, j) and (i′, j′) are joined by an edge if and only if |i−i′|+|j−j′| = 1.

See Figure 3.10 for an example. We need the following result due to Robertson,

Seymour and Thomas.

Lemma 3.3 ([88]). For every integer m, every planar graph of treewidth at least

6m− 4 contains Mm as a minor.

We also use the well-known result of Courcelle [20] that states that on any class

of graphs of bounded treewidth, every problem definable in monadic second-order

logic can be solved in time linear in the number of vertices of the graph (we refer

to [20] for more details on monadic second-order logic).

Lemma 3.4. The Semi-Minimal Disconnected Cut problem can be defined

in monadic second order logic.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 72

Proof. We can express the property that G = (V,E) has a semi-minimal discon-

nected cut in monadic second order logic as follows. We first note that a graph G

has a disconnected cut if and only if V can be partitioned into four sets U1, U2,

V1, V2 such that the following three conditions hold:

1. every vertex of V belongs to exactly one set of {U1, U2, V1, V2};

2. sets U1, U2, V1, V2 are all nonempty;

3a. sets U1 and U2 are nonadjacent;

3b. sets V1 and V2 are nonadjacent.

It is readily seen that these conditions can be expressed in monadic second order

logic:

• φ1 = ∀u((U1(u) ∧ ¬U2(u) ∧ ¬V1(u) ∧ ¬V2(u))

∨(¬U1(u) ∧ U2(u) ∧ ¬V1(u) ∧ ¬V2(u))

∨(¬U1(u) ∧ ¬U2(u) ∧ V1(u) ∧ ¬V2(u))

∨(¬U1(u) ∧ ¬U2(u) ∧ ¬V1(u) ∧ V2(u)));

• φ2 = ∃uU1(u) ∧ ∃uU2(u) ∧ ∃uV1(u) ∧ ∃uV2(u);

• φ3a = ∀u∀v((U1(u) ∧ U2(v))→ ¬E(u, v));

• φ3b = ∀u∀v((V1(u) ∧ V2(v))→ ¬E(u, v)).

We are left to express the semi-minimality in monadic second order logic. This

condition is equivalent to demanding that for all u ∈ U1 ∪ U2 there exists a set

Zu ⊆ V (so Zu may be different for different vertices u of U1 ∪ U2) such that the

following three conditions hold:

4a. Zu ∩ (V1 ∪ V2) contains a neighbour s of u;

4b. (V1 ∪ V2) \ Zu contains a neighbour t of u;

4c. there is no edge between any vertex of Zu ∩ (V1 ∪ V2) and any vertex of

(V1 ∪ V2) \ Zu.

Also these conditions can be easily formulated in monadic second order logic:

• φ4a = ∃s(E(s, u) ∧ Zu(s) ∧ (V1(s) ∨ V2(s));

• φ4b = ∃t(E(t, u) ∧ (V1(t) ∨ V2(t)) ∧ ¬Zu(t));

Chapter 3. Minimal Disconnected Cut on Planar Graphs 73

• φ4c = ∀s∀t((Zu(s)∧ (V1(s)∨ V2(s))∧ (V1(t)∨ V2(t))∧¬Zu(t))→ ¬E(s, t)).

Then G has a semi-minimal disconnected cut if and only if the following monadic

second order logic sentence is true:

∃U1∃U2∃V1∃V2(φ1 ∧ φ2 ∧ φ3a ∧ φ3b ∧ ∀u((U1(u)∨U2(u))→ ∃Zu(φ4a ∧ φ4b ∧ φ4c))).

This completes the proof of Lemma 3.4.

We also need the following lemma.

Lemma 3.5. Let U be a disconnected cut of a connected graph G = (V,E). If

every component of G[U] is adjacent to at least two components of G[V \U], then

G has a semi-minimal disconnected cut U ′ ⊆ U .

Proof. Let D1, . . . , Dp be the components of G[U]. For each Di we do as follows.

As long as there exists a vertex u ∈ Di that is adjacent to at most one component

of G[V \ U] we move u from Di to G[V \ U]. Because Di is adjacent to at

least two components of G[V \ U], this process stops before Di becomes empty.

Afterwards, Di only contains vertices adjacent to none or at least two components

of G[V \ U]. Note that Di contains at least one vertex adjacent to at least two

components of G[V \ U]. We move all vertices not adjacent to any components

of G[V \ U] from Di to G[V \ U]. Afterwards, Di is still nonempty. Hence, after

doing this for each Di, we have obtained a set U ′ ⊆ U that is a semi-minimal

disconnected cut of G.

We are now ready to prove the main result of this section.

Theorem 3.7. The Semi-Minimal Disconnected Cut problem can be solved

in linear time for planar graphs.

Proof. Let G be a planar graph. We use Bodlaender’s algorithm [7] to test in

linear time whether the treewidth of G is at most 6·9−5. If so, then by Lemma 3.4

Chapter 3. Minimal Disconnected Cut on Planar Graphs 74

and the aforementioned theorem of Courcelle [20], we can test in linear time

whether G has a semi-minimal disconnected cut. If not, then G contains M9

as a minor by Lemma 3.3. Let W be a corresponding witness structure. We

notice that the vertices of M9 can be partitioned into 5 nested cycles Ca, Cb,

Cc, Cd and Ce of length 1 (with slight abuse of terminology), 8, 16, 24 and 32,

respectively; see also Figure 3.10. We let U be the union of vertices in the sets

W (x) for all x ∈ VCb
∪ VCd

. We now claim that U is a disconnected cut of G

since G is planar and hence K5-minor-free. First we show that G[VG \ U] is

disconnected. Contract every vertex in W (Cc) and W (Ce) to two single vertices

vc and ve respectively, and contract W (Cd) to a cycle of length 3. We see that

if G[VG \ U] were connected, there would be an edge between vc and ve, these

5 vertices would form K5 as a minor. We may apply the same logic to show

that G[U] is disconnected by considering W (Cb), W (Cd) and W (Cc). Moreover,

as VCb
∪ VCd

satisfies the condition of Lemma 3.5, U satisfies this condition as

well. Hence, we can apply this lemma to obtain a semi-minimal disconnected cut

U ′ ⊆ U of G.

Chapter 3. Minimal Disconnected Cut on Planar Graphs 75

3.7 Conclusions

Our main results are that Minimal Disconnected Cut is NP-complete for

2-connected planar graphs and polynomial-time solve for planar graphs that are

3-connected. Our proof technique for the latter result was based on translat-

ing the problem to a dual problem, namely the existence of a subdivision of Dr

for some r, for which we obtained a polynomial-time algorithm even for gen-

eral graphs. One can also solve the problem of determining whether a graph

contains Dr as a subdivision for some fixed integer r by using the algorithm of

Grohe, Kawarabayashi, Marx, and Wollan [48] which tests in cubic time, for any

fixed graph H, whether a graph contains H as a subdivision. However, when r is

part of the input we observe the following.

Theorem 3.8. The problem of deciding whether a graph contains the graph Dr

as a subdivision is NP-complete if r is part of the input.

Proof. We reduce from the problem Hamiltonian Cycle, which is well known

to be NP-complete [63]. Let G be a graph with n vertices and m vertices. We

replace each edge e = uv in G by two paths usev and utev where se and te

are two new vertices (so we add 2m new vertices in total). The resulting graph

contains Dn as a subdivision if and only if G has a Hamiltonian cycle.

We finish this chapter with some open problems. Recall that our construction in

Theorem 3.5 does not work for proving NP-hardness of Minimal Connected

Cut(1), which is the problem of deciding whether a graph has a minimal con-

nected cut. The computational complexity of this problem is not known. In fact

we do not know this even for (3-connected) planar graphs, and we pose these

questions as open problems. Note that these problems fall under a more general

study into minimal H-cuts that we introduced in Section 3.5.

Chapter 4

Square Root on Graphs with

Low Clique Number

The square H2 of a graph H has vertex set VH and edge set {uv | distH(u, v) ≤ 2}

as seen in Figure 4.1 below.

2

=

Figure 4.1: The graph P6 and its square.

A graph H is a square root of a graph G if H2 = G. There exist graphs with no

square root, graphs with a unique square root and graphs with multiple square

roots.

The Square Root problem is that of deciding whether a given graph admits a

square root. By showing boundedness of treewidth we prove that Square Root

is polynomial-time solvable on some classes of graphs with small clique number,

in particular K4-free graphs, 3-degenerate graphs and (Kr, Pt)-free graphs.

This result was initially presented at the 14th Cologne Twente Workshop

(CTW 2016), Gargnano, Italy [44]. We have also presented related work

at the 15th Scandinavian Symposium and Workshops on Algorithm Theory

(SWAT 2016), Reykjavik, Iceland [43] and at the 27th International Workshop

on Combinatorial Algorithms (IWOCA 2016), Helsinki, Finland [42]. A journal

paper containing the results presented at these conferences has been accepted by

Discrete Applied Mathematics and we have submitted a further paper to Theory

of Computing Systems.

77

Chapter 4. Square Root on Graphs with Low Clique Number 78

4.1 Introduction

Squares and square roots are well-known concepts in graph theory that have

been studied first from a structural perspective [83, 91] and later also from an

algorithmic perspective (as we will discuss). The square G = H2 of a graph

H = (VH , EH) is the graph with vertex set VG = VH , such that any two distinct

vertices u, v ∈ VH are adjacent in G if and only if u and v are of distance at

most 2 in H.

In this paper we study the reverse concept: a graph H is a square root of a

graph G if G = H2. There exist graphs with no square root (such as graphs

with a cut-vertex), graphs with a unique square root (such as squares of cycles

of length at least 7) as well as graphs with more than one square root (such as

complete graphs).

In 1967 Mukhopadhyay [83] characterised the class of connected graphs with a

square root. However, in 1994, Motwani and Sudan [82] showed that the decision

problem Square Root, which asks whether a given graph admits a square root,

is NP-complete.

Square Root

Instance: a graph G.

Question: does there exist a graph H with H2 = G?

Afterwards, Square Root was shown to be polynomial-time solvable for various

graph classes, such as planar graphs [73], or more generally, any non-trivial minor-

closed graph class [84]; line graphs [78]; trivially perfect graphs [79]; threshold

graphs [79]; graphs of maximum degree 6 [16] and graphs of maximum average

degree smaller than 46
11

[43]. It was also shown that Square Root is NP-complete

for chordal graphs [67]. We refer to [16, 17, 43] for a number of parameterised

complexity results on Square Root.

Chapter 4. Square Root on Graphs with Low Clique Number 79

For several well-known graph classes the complexity of Square Root is still un-

known. For example, Milanic and Schaudt [79] posed the complexity of Square

Root restricted to split graphs and cographs as open problems. In Table 4.1 we

survey the known results.

graph class G complexity

planar graphs [73] linear

non-trivial and minor-closed [84] linear

K4-free graphs∗ linear

(Kr, Pt)-free graphs∗ linear

3-degenerate graphs∗ linear

graphs of maximum degree ≤ 5 [16] linear

graphs of maximum degree ≤ 6 [16] polynomial

graphs of maximum average degree < 46
11 [43] polynomial

line graphs [78] polynomial

trivially perfect graphs [79] polynomial

threshold graphs [79] polynomial

chordal graphs [67] NP-complete

Table 4.1: A survey of the known results for Square Root restricted to
some special graph class G. Note that the row for planar graphs is implied by
the row below. Results marked with a ∗ are results shown in this chapter.

The computational hardness of Square Root also led to a variant, which asks

whether a given graph has a square root that belongs to some specified graph

class H. We denote this problem by H-Square Root. The H-Square Root

problem is known to be polynomial-time solvable if H is the class of trees [73],

proper interval graphs [67], bipartite graphs [66], block graphs [71], strongly

chordal split graphs [72], graphs with girth at least g for any fixed g ≥ 6 [32],

ptolemaic graphs [69], 3-sun-free split graphs [69] (see [70] for an extension of the

latter result to other subclasses of split graphs). In contrast, NP-completeness

of this problem has been shown if H is the class of split graphs [67], chordal

graphs [67], graphs of girth at least 4 [32] or graphs of girth at least 5 [31].

It follows from a result of Harary, Karp and Tutte [50] that every square root H of

a planar square has maximum degree at most 3 and only contains blocks that are

of size 4 or isomorphic to an even cycle. It follows from this that such graphs H

have bounded treewidth. By “blowing up” each bag of a tree decomposition by

Chapter 4. Square Root on Graphs with Low Clique Number 80

adding all neighbours of every vertex u to every bag that contains u, we get a tree

decomposition of H2. Hence, planar squares have bounded treewidth. As such

we may use Courcelle’s Theorem [21] to obtain an alternative (but comparable)

proof for the polynomial-time result of Lin and Skiena [73] for Square Root

restricted to planar graphs. We note that the polynomial-time algorithms for

solving Square Root for graphs of maximum degree at most 6 [16] and graphs

of maximum average degree less than 46
11

[43] are also based on showing that

the graphs which permit square roots also have bounded treewidth. Nestoridis

and Thilikos [84] proved their result for minor-closed graph classes by showing

boundedness of carving width. It is also possible, by using the graph minor

decomposition of Robertson and Seymour [89], to show that squares of graphs

from minor-closed classes have in fact bounded treewidth. Hence, it is a natural

question to ask whether the technique of showing boundedness of treewidth can

be used for recognising some other squares as well. In this chapter, we show

that Square Root is polynomial-time solvable for graphs with clique number 3

(or equivalently, K4-free graphs) and we prove the same result for 3-degenerate

graphs and (Kr, Pt)-free graphs for every r, t ≥ 1.

Chapter 4. Square Root on Graphs with Low Clique Number 81

4.2 Squares of Low Clique Number

We first consider the class of K4-free graphs. We will show that K4-free squares

have bounded treewidth. In order to do this we need the following Lemma. It

was first presented by Cochefert et al. [16] however without a proof so we present

a simple proof below for completeness.

Lemma 4.1 ([16]). The Square Root problem can be solved in time O(f(t)n)

for n-vertex graphs of treewidth at most t.

Proof. By Courcelle’s Theorem [21], it suffices to show that the existence of a

square root can be expressed in monadic second-order logic.

Let G be an instance of Square Root. We observe that the existence of a graph

H such that G = H2 is equivalent to the existence of a subset X ⊆ EG such that

the following properties hold:

(i) for every uv ∈ EG, uv ∈ X or there exists a vertex w such that uw,wv ∈ X;

(ii) for every two distinct edges uw, vw ∈ X, uv ∈ EG;

Since both of these properties can be easily defined in monadic second-order logic,

the lemma follows.

The second lemma gives an upper bound for the treewidth of the square of a graph;

it follows from the well-known fact that we can transform every tree decomposition

(T,X) of a graph G into a tree decomposition of G2 by adding, to each bag Xi

of T , all the neighbours of every vertex from Xi.

Lemma 4.2. For a graph G, tw(G2) ≤ (tw(G) + 1)(∆(G) + 1)− 1.

We now show that K4-free graphs with a square root have bounded treewidth.

Chapter 4. Square Root on Graphs with Low Clique Number 82

Lemma 4.3. If G is a K4-free graph with a square root, then tw(G) ≤ 8.

Proof. Suppose G is K4-free and has a square root H. We observe that every

vertex in H has maximum degree at most 2 since a vertex with 3 neighbours

when squared would become K4. As such it is clear that H is the disjoint union

of paths and cycles and hence has treewidth at most 2. As such it follows from

Lemma 4.2 that G has treewidth at most (2 + 1)(2 + 1)− 1 = 8.

We will make use of the following result of Bodlaender.

Lemma 4.4 ([7]). For any fixed constant k, it is possible to decide in linear time

whether the treewidth of a graph is at most k.

The following result follows from Lemmas 4.1, 4.3 and 4.4.

Theorem 4.1. Square Root can be solved in O(n) time for K4-free graphs

on n vertices.

Proof. Let G be an K4-free graph with n vertices. By Lemma 4.4 we can check

in O(n) time whether tw(G) ≤ 8. If tw(G) > 8, then G has no square root by

Lemma 4.3. If not we solve Square Root in O(n) time by using Lemma 4.1.

We now consider the class of 3-degenerate graphs where we will once again show

bounded treewidth. In order to do this we need the following result.

Lemma 4.5. Let H be a square root of a graph G. Let T be the bipartite graph

with VT = C ∪ B, where partition classes C and B are the set of cut vertices and

blocks of H, respectively, such that u ∈ C and Q ∈ B are adjacent if and only

if Q contains u. For u ∈ C, let Xu consist of u and all neighbours of u in H.

For Q ∈ B, let XQ = VQ. Then (T,X) is a tree decomposition of G.

Proof. We first prove that T is a tree. For contradiction, suppose that T contains

a cycle. Then this cycle is of the form Q1u1 · · ·QpupQ1 for some integer p ≥ 2,

Chapter 4. Square Root on Graphs with Low Clique Number 83

Q

XQ
u

Xu

C
B
VT = C ∪ B

Q

u

Figure 4.2: An example of a graph G = H2, the graph H and the corre-
sponding H-tree decomposition of G. Q is a block and u is a cut vertex.

where Q1, . . . , Qp are blocks of H and u1, . . . , up are cut vertices of H. By using

this cycle we find that H has one path from u1 to u2 that is contained in H[Q1]

and one path from u1 to u2 that is contained in H[Q2∪· · ·∪Qp]. This contradicts

our assumption that u1 and u2 are cut vertices of H.

We now prove that (T,X) satisfies the three conditions (i)–(iii) of the definition

of a tree decomposition. Condition (i) is satisfied, as every vertex of H, and

thus every vertex of G, belongs to some block Q of H and thus to some bag XQ.

Condition (ii) is satisfied, as every two vertices x, y that are adjacent in G either

belong to some common block Q of H, and thus belong to XQ, or else have a

common neighbour u in H that is a cut vertex of H, and thus belong to Xu.

In order to prove (iii), consider a vertex x ∈ VG. First suppose that x is a cut

vertex of H. Then the set of bags to which x belongs consists of bags XQ for

every block Q of H to which x belongs and bags Xu for every neighbour u of x

in H that is a cut vertex of H. Note that x and any neighbour u of x in H belong

to some common block of H. Hence, by definition, the corresponding nodes in T

form a connected induced subtree of T (which is a star in which every edge is

subdivided at most once). Now suppose that x is not a cut vertex of H. Then x is

contained in exactly one block Q of H. Hence the set of bags to which x belongs

consists of the bags XQ and bags Xu for every neighbour u of x in H that is a cut

vertex of H. Note that such a neighbour u belongs to Q. Hence, by definition,

Chapter 4. Square Root on Graphs with Low Clique Number 84

the corresponding nodes in T form a connected induced subtree of T (which is

a star). This completes the proof of Lemma 4.5.

We call the tree decomposition (T,X) of Lemma 4.5 the H-tree decomposition

of G and are now ready to prove the following lemma.

Lemma 4.6. If G is a 3-degenerate graph with a square root, then tw(G) ≤ 3.

Proof. Without loss of generality we assume that G is connected and has at least

one edge. Let H be a square root of G. Let C be the set of cut vertices of H, and

let B be the set of blocks of H. We construct the H-tree decomposition (T,X)

of G (cf. Lemma 4.5). We will show that (T,X) has width at most 3.

We start with two useful observations. If v ∈ VH , then NH [v] is a clique in G.

Because G is 3-degenerate, this means that ∆(H) ≤ 3. For the same reason H

contains no cycles of length at least 5 as a subgraph, because a square of a cycle

of length at least 5 has minimum degree 4.

We claim that XQ has size at most 4 for every Q ∈ B. In order to see this, let Q

be a block of H, and let u ∈ VQ. Suppose that Q has a vertex v at distance at

least 3 from u. Because Q is 2-connected, Q has two internally vertex disjoint

paths that join u and v and, therefore, Q (and thus H) contains a cycle of length

at least 6 which, as we saw, is not possible. We find that each vertex v ∈ VQ is at

distance at most 2 from u. Hence, u is adjacent to all other vertices of Q in G. By

the same reasoning any two vertices in Q are of distance at most 2 of each other.

Hence, Q is a clique in G. As G is 3-degenerate, this means that Q is a clique

in G of size at most 4. Consequently, XQ, has size at most 4. As ∆(H) ≤ 3, we

find that Xu has size at most 4 for every cut vertex u of H.

Chapter 4. Square Root on Graphs with Low Clique Number 85

Lemma 4.6, combined with Lemmas 4.4 and 4.1, leads to the following result.

Theorem 4.2. Square Root can be solved in O(n) time for 3-degenerate graphs

on n vertices.

Proof. Let G be an 3-degenerate graph on n vertices. By Lemma 4.4 we can check

in O(n) time whether tw(G) ≤ 3. If tw(G) > 3, then G has no square root by

Lemma 4.6. If not we solve Square Root in O(n) time by using Lemma 4.1.

Figure 4.3: Walls of height 2, 3, and 4, respectively.

Remark. We cannot claim any upper bound for the treewidth of 4-degenerate

graphs with a square root. In order to see this, take a wall (see Figure 4.3) and

subdivide each edge three times, that is, replace each edge uv by a path uabcv

where a, b, c are three new vertices. This gives us a graph H, such that H2

is 4-degenerate. In order to see the latter, note that every “b-type” vertex has

degree 4 in H2 and that after removing all degree-4 vertices, we obtain a disjoint

number of copies of K4, each of which is 4-degenerate. A wall of height h has

treewidth Ω(h) (see, for example, [26]). As subdividing an edge and adding edges

does not decrease the treewidth of a graph, this means that the graph H2 can

have arbitrarily large treewidth.

We now consider (Kr, Pt)-free graphs (that is, graphs with no long induced path Pt

and no large complete subgraph Kr). We let Ks,s denote the complete bipartite

graph in which both partition classes have s vertices. We need a result of Atminas,

Lozin and Razgon.

Chapter 4. Square Root on Graphs with Low Clique Number 86

Lemma 4.7 ([3]). For any two integers s and t, there exists an integer b(s, t)

such that any graph of treewidth at least b(s, t) contains the path Pt as an in-

duced subgraph or the complete bipartite graph Ks,s as a (not necessarily induced)

subgraph.

Lemma 4.7 enables us to prove the following lemma.

Lemma 4.8. For every two fixed integers r, t ≥ 1, if G is a (Kr, Pt)-free graphs

with a square root, then tw(G) ≤ b((r − 2)2 + 1, t).

Proof. Let r, t ≥ 1. For contradiction, assume that the class of (Kr, Pt)-free

graphs with a square root has unbounded treewidth. Then there exists a (Kr, Pt)-

free graph G with a square root such that G has treewidth at least b(s, t), where

b(s, t) is the constant in Lemma 4.7 for a sufficiently large integer s. Then, by

Lemma 4.7, we find that G contains a subgraph F isomorphic to Ks,s. We denote

the vertex sets of the two partition classes of F as A and B. Let H be a square

root of G. We observe that there must be s paths of length at most 2 in H

between a vertex u ∈ A and the s vertices of B. Let H ′ be the subgraph induced

by these paths in H. A vertex of degree d in H would result in a clique of size

d+ 1 in G. Since G is Kr-free we see that each vertex in H and hence in H ′ has

degree at most r−2. As such we see that there are at most r−2 vertices adjacent

to to u in H ′ and at most r − 2 vertices (including u) adjacent to each of those.

Hence |H ′| ≤ (r − 2)2 + 1. Since we know that H ′ includes at least u and its s

neighbours B in G we have a contradiction when we choose s > (r − 2)2. Hence

we see that any (Kr, Pt)-free graph with treewidth at least b((r− 2)2 + 1, t) does

not have a square root.

Using the same reasoning as in Theorems 4.1 and 4.2, we find that Lemma 4.8,

combined with Lemmas 4.4 and 4.1, leads to the following result.

Theorem 4.3. For every two integers r, t ≥ 1, Square Root can be solved in

time O(n) for (Kr, Pt)-free graphs on n vertices.

Chapter 4. Square Root on Graphs with Low Clique Number 87

4.3 Conclusions

The motivation for this research stems from the fact that the hardness reductions

for Square Root rely on the creation of large cliques [67]. This leads us to

that natural question as to whether Square Root is tractable on graphs with

bounded clique number. As such we pose the following open question: Does there

exist an integer r such that Square Root is hard when restricted to the class

of Kr-free graphs? It may also be the case the Square Root is tractable when

restricted to the class of graphs with bounded clique number. In this chapter we

have shown that it is linear time solvable when restricted to the the classes of

K4-free graphs and (Kr, Pt)-free graphs. We believe that the logical next step

would be in determining the complexity of Square Root when restricted to

K5-free graphs.

In addition we showed that Square Root is linear time solvable when restricted

to 3-degenerate graphs, however, as mentioned this method would not work for

4-degenerate graphs as we cannot claim any upper bound for the treewidth of

such graphs.

We recall the summary of the known results for Square Root in Table 4.1

on page 79. As can be seen from the table, the computational complexity of

Square Root is unknown for several other well-known graph classes. In partic-

ular, we recall the open problems of Milanic and Schaudt [79], who asked about

the complexity of Square Root restricted to split graphs and cographs.

Chapter 5

Surjective H-Colouring with

2-reflexive H

A homomorphism from a graph G to a graph H is a vertex mapping f from the

vertex set of G to the vertex set of H such that there is an edge between vertices

f(u) and f(v) of H whenever there is an edge between vertices u and v of G.

Figure 5.1: An example of a homomorphism from the 3-colourable Peterson
graph to the irreflexive K3.

The H-Colouring problem is to decide if a graph G allows a homomorphism

to a fixed graph H. The H-Colouring problem generalises the well known k-

Colouring since a graph is k-colourable if and only if it is

Kk-colourable. We continue a study on a variant of this problem, the

Surjective H-Colouring problem, which requires the homomorphism to be

vertex-surjective. We show that this problem is NP-complete for every connected

graph H that has exactly two vertices with a self-loop as long as these two vertices

are not adjacent. This result enables us to classify the complexity of Surjective

H-Colouring for every fixed graph H on at most four vertices.

This result has been submitted to Computability in Europe 2017: Unveiling

Dynamics and Complexity (CiE 2017), Turku, Finland and can be found on

arXiv [41]. A journal paper is currently being written.

89

Chapter 5. Surjective H-Colouring with 2-reflexive H 90

5.1 Introduction

The well-known Colouring problem is to decide if the vertices of a given graph

can be properly coloured with at most k colours for some given integer k. If we

exclude k from the input and assume it is fixed, we obtain the k-Colouring

problem. A homomorphism from a graph G = (VG, EG) to a graph H = (VH , EH)

is a vertex mapping f : VG → VH , such that there is an edge between f(u)

and f(v) in H whenever there is an edge between u and v in G. We observe

that k-Colouring is equivalent to the problem of asking if a graph allows a

homomorphism to the complete graph Kk on k vertices. Hence, a natural gen-

eralisation of the k-Colouring problem is the H-Colouring problem, which

asks if a given graph allows a homomorphism to an arbitrary fixed graph H.

We call this fixed graph H the target graph. Throughout the paper we consider

undirected graphs with no multiple edges. We assume that an input graph G

contains no vertices with self-loops (we call such vertices reflexive), whereas a

target graph H may contain such vertices. We call H reflexive if all its vertices

are reflexive, and irreflexive if all its vertices are irreflexive.

For a survey on graph homomorphisms we refer the reader to the textbook of Hell

and Nešetřil [53]. Here, we will discuss the H-Colouring problem, a number of

its variants and their relations to each other. In particular, we will focus on the

surjective variant: a homomorphism f from a graph G to a graph H is (vertex-

)surjective if f is surjective, that is, if for every vertex x ∈ VH there exists at least

one vertex u ∈ VG with f(u) = x.

The computational complexity ofH-Colouring has been determined completely.

The problem is trivial if H contains a reflexive vertex u (we can map each vertex

of the input graph to u). If H has no reflexive vertices, then the Hell-Nešetřil

dichotomy theorem [52] tells us that H-Colouring is solvable in polynomial time

if H is bipartite and that it is NP-complete otherwise.

Chapter 5. Surjective H-Colouring with 2-reflexive H 91

The List H-Colouring problem takes as input a graph G and a function L

that assigns to each u ∈ VG a list L(u) ⊆ VH . The question is whether G al-

lows a homomorphism f to the target H with f(u) ∈ L(u) for every u ∈ VG.

Feder, Hell and Huang [33] proved that List H-Colouring is polynomial-time

solvable if H is a bi-arc graph and NP-complete otherwise (we refer to [33] for

the definition of a bi-arc graph). A homomorphism f from G to an induced sub-

graph H of G is a retraction if f(x) = x for every x ∈ VH , and we say that G

retracts to H. A retraction from G to H can be viewed as a list-homomorphism:

choose L(u) = {u} if u ∈ VH , and L(u) = VH if u ∈ VG \ VH . The correspond-

ing decision problem is called H-Retraction. The computational complexity of

H-Retraction has not yet been classified. Feder et al. [34] determined the com-

plexity of the H-Retraction problem whenever H is a pseudo-forest (a graph

in which every connected component has at most one cycle). They also showed

that H-Retraction is NP-complete if H contains a connected component in

which the reflexive vertices induce a disconnected graph.

As mentioned, we impose a (vertex-)surjectivity condition on the graph homo-

morphism. Such a condition can be imposed locally or globally. If we require a

homomorphism f from a graph G to a graph H to be surjective when restricted

to the open neighbourhood of every vertex u of G, we say that f is an H-role

assignment. The corresponding decision problem is called H-Role Assignment

and its computational complexity has been fully classified [37]. We refer to the

survey of Fiala and Kratochv́ıl [36] for further details on locally constrained ho-

momorphisms and from here on only consider global surjectivity.

It has been shown that deciding whether a given graph G allows a surjective

homomorphism to a given graph H is NP-complete even if G and H both belong

to one of the following graph classes: disjoint unions of paths; disjoint unions

of complete graphs; trees; connected cographs; connected proper interval graphs;

and connected split graphs [45]. Hence it is natural, just as before, to fix H which

yields the following problem:

Chapter 5. Surjective H-Colouring with 2-reflexive H 92

Surjective H-Colouring

Instance: a graph G.

Question: does there exist a surjective homomorphism from G to H?

We emphasise that we are considering vertex-surjectivity and that being vertex-

surjective is a different condition than being edge-surjective. A homomorphism

from a graph G to a graph H is called edge-surjective or a compaction if for any

edge xy ∈ EH with x 6= y there exists an edge uv ∈ EG with f(u) = x and

f(v) = y. Note that the edge-surjectivity condition does not hold for any self-

loops xx ∈ EH . If f is a compaction from G to H, we say that G compacts to H.

The corresponding decision problem is known as the H-Compaction problem.

A full classification of this problem is still wide open. However partial results are

known, for example when H is a reflexive cycle, an irreflexive cycle, or a graph

on at most four vertices [94–96], or when G is restricted to some special graph

class [97]. Vikas also showed that whenever H-Retraction is polynomial-time

solvable, then so isH-Compaction [95]. Whether the reverse implication holds is

not known. A complete complexity classification of Surjective H-Colouring

is also still open. Below we survey the known results.

We first consider irreflexive target graphs H. The Surjective H-Colouring

problem is NP-complete for every such graph H if H is non-bipartite, as observed

by Golovach et al. [46]. The straightforward reduction is from the correspond-

ing H-Colouring problem, which is NP-complete due to the aforementioned

Hell-Nešetřil dichotomy theorem. However, the complexity classifications of H-

Colouring and Surjective H-Colouring do not coincide: there exist bipar-

tite graphs H for which Surjective H-Colouring is NP-complete, for instance

when H is the graph obtained from a 6-vertex cycle to each of which vertices we

add a path of length 3 [6], or when H is the 6-vertex cycle itself [?].

We now consider target graphs with at least one reflexive vertex. Unlike the

H-Colouring problem, the presence of a reflexive vertex does not make the

Chapter 5. Surjective H-Colouring with 2-reflexive H 93

Surjective H-Colouring problem trivial to solve. We call a connected graph

loop-connected if all its reflexive vertices induce a connected subgraph. Golovach,

Paulusma and Song [46] showed that if H is a tree (in this context, a connected

graph with no cycles of length at least 3) then Surjective H-Colouring is

polynomial-time solvable if H is loop-connected and NP-complete otherwise. As

such the following question is natural:

Is Surjective H-Colouring NP-complete for every connected graph H that is

not loop-connected?

The reverse statement is not true (if P 6= NP): Surjective H-Colouring is NP-

complete when H is the 4-vertex cycle C∗4 with a self-loop in each of its vertices.

This result has been shown by Martin and Paulusma [76] and independently by

Vikas, as announced in [97]. Recall also that Surjective H-Colouring is

NP-complete if H is irreflexive (and thus loop-connected) and non-bipartite.

It is known that Surjective H-Colouring is polynomial-time solvable when-

ever H-Compaction is [6]. Recall that H-Compaction is polynomial-time solv-

able whenever H-Retraction is [95]. Hence, for instance, the aforementioned

result of Feder, Hell and Huang [33] implies that Surjective H-Colouring

is polynomial-time solvable if H is a bi-arc graph. We also recall that H-

Retraction is NP-complete whenever H is a connected graph that is not loop-

connected [34]. Hence, an affirmative answer to the above question would mean

that for these target graphsH the complexities ofH-Retraction, H-Compaction

and Surjective H-Colouring coincide.

In Figure 5.2 we display the relationships between the different problems dis-

cussed. In particular, it is a major open problem whether the computational com-

plexities of H-Compaction, H-Retraction and Surjective H-Colouring

coincide for each target graph H. Even showing this for specific cases, such as

the case H = C∗4 , has been proven to be non-trivial. If it is true, it would relate

the Surjective H-Colouring problem to a well-known conjecture of Feder

Chapter 5. Surjective H-Colouring with 2-reflexive H 94

and Vardi [35], which states that the H-Constraint Satisfaction problem

has a dichotomy when H is some fixed finite target structure and which is equiv-

alent to conjecturing that H-Retraction has a dichotomy [35]. We refer to

the survey of Bodirsky, Kara and Martin [6] for more details on the Surjective

H-Colouring problem from a constraint satisfaction point of view.

List H-Colouring

H-Retraction

H-Compaction

Surjective H-Colouring

H-Colouring

Figure 5.2: Relations between Surjective H-Colouring and its variants.
An arrow from one problem to another indicates that the latter problem is
polynomial-time solvable for a target graph H if the former is polynomial-time
solvable for H. Reverse arrows do not hold for the leftmost and rightmost
arrows, as witnessed by the reflexive 4-vertex cycle for the rightmost arrow
and by any reflexive tree that is not a reflexive interval graph for the leftmost
arrow (Feder, Hell and Huang [33] showed that the only reflexive bi-arc graphs
are reflexive interval graphs). It is not known if the reverse direction holds for
the two middle arrows.

5.1.1 Our Results

We present further progress on the research question of whether Surjective

H-Colouring is NP-complete for every connected graph H that is not loop-

connected. We first consider the case where the target graph H is a connected

graph with exactly two reflexive vertices that are non-adjacent. In Section 5.2

we prove that Surjective H-Colouring is indeed NP-complete for every such

target graph H. In the same section we slightly generalise this result by showing

that it holds even if the reflexive vertices of H can be partitioned into two non-

adjacent sets of twin vertices. This enables us to classify in Section 5.3 the

Chapter 5. Surjective H-Colouring with 2-reflexive H 95

computational complexity of Surjective H-Colouring for every graph H on

at most four vertices, just as Vikas [96] did for the H-Compaction problem.

Chapter 5. Surjective H-Colouring with 2-reflexive H 96

5.2 Two Non-Adjacent Reflexive Vertices

We say that a graph is 2-reflexive if it contains exactly 2 reflexive vertices that

are non-adjacent. In this section we will prove that Surjective H-Colouring

is NP-complete whenever H is connected and 2-reflexive. The problem is readily

seen to be in NP. Our NP-hardness reduction uses similar ingredients as the

reduction of Golovach, Paulusma and Song [46] for proving NP-hardness when H

is a tree that is not loop-connected. There are, however, a number of differences.

For instance, we will reduce from a factor cut problem instead of the less general

matching cut problem used in [46]. We will explain these two problems and prove

NP-hardness for the former one in Section 5.2.1. Then in Section 5.2.2 we give

our hardness reduction.

5.2.1 Factor Cuts

Let G = (VG, EG) be a connected graph. For v ∈ VG and E ⊆ EG, let dE(v)

denote the number of edges of E incident with v. For a partition (V1, V2) of VG,

let EG(V1, V2) denote the set of edges between V1 and V2 in G.

Let i and j be positive integers, i ≤ j. Let (V1, V2) be a partition of VG and

let M = EG(V1, V2). Then (V1, V2) is an (i, j)-factor cut of G if, for all v ∈ V1,

dM(v) ≤ i, and, for all v ∈ V2, dM(v) ≤ j. Observe that if a vertex v exists

with degree at most j, then there is a trivial (i, j)-factor cut (V \ {v}, {v}). Two

distinct vertices s and t in VG are (i, j)-factor roots of G if, for each (i, j)-factor

cut (V1, V2) of G, s and t belong to different parts of the partition and, if i < j,

s ∈ V1 and t ∈ V2 (of course, if i = j, we do not require the latter condition

as (V2, V1) is also an (i, j)-factor cut). We note that when no (i, j)-factor cut

exists, every pair of vertices is a pair of (i, j)-factor roots. We define the following

decision problem.

Chapter 5. Surjective H-Colouring with 2-reflexive H 97

(i, j)-Factor Cut with Roots

Instance: a connected graph G with roots s and t.

Question: does G have an (i, j)-factor cut?

We emphasise that the (i, j)-factor roots are given as part of the input. That is,

the problem asks whether or not an (i, j)-factor cut (V1, V2) exists, but we know

already that if it does, then s and t belong to different parts of the partition.

That is, we actually define (i, j)-Factor Cut with Roots to be a promise

problem in which we assume that if an (i, j)-factor cut exists then it has the

property that s and t belong to different parts of the partition. The promise class

may not itself be polynomially recognisable but one may readily find a subclass

of it that is polynomially recognisable and includes all the instances we need for

NP-hardness. In fact this will become clear when reading our proof but we refer

also to [46] where such a subclass is given for the case (i, j) = (1, 1).

A (1, 1)-factor cut (V1, V2) of G is also known as a matching cut as no two edges in

EG(V1, V2) have a common end-vertex, that is, EG(V1, V2) is a matching. Similarly

(1, 1)-Factor Cut with Roots is known as Matching Cut with Roots

and was proved NP-complete by Golovach, Paulusma and Song [46] (by making

an observation about the proof of the result of Patrignani and Pizzonia [85] that

deciding if any given graph has a matching cut is NP-complete).

We will prove the NP-completeness of (i, j)-Factor Cut with Roots after

first presenting a helpful lemma (a clique is a subset of vertices of G that are

pairwise adjacent to each other).

Lemma 5.1. Let i, j and k be positive integers where i ≤ j and k > i + j. Let

G be a graph that contains a clique K on k vertices. Then, for every (i, j)-factor

cut (V1, V2) of G, either VK ⊆ V1 or VK ⊆ V2.

Proof. If the lemma is false, then for some (i, j)-factor cut (V1, V2), we can choose

v1 ∈ V1∩VK and v2 ∈ V2∩VK . Let M = EG(V1, V2). Since every vertex in V1∩VK

Chapter 5. Surjective H-Colouring with 2-reflexive H 98

is linked by an edge of M to v2 and every vertex in V2 ∩ VK is linked by an edge

of M to v1, we have dM(v1) + dM(v2) ≥ k > i+ j, contradicting the definition of

an (i, j)-factor cut.

Theorem 5.1. Let i and j be positive integers, i ≤ j. Then (i, j)-Factor Cut

with Roots is NP-complete.

Proof. If i = j = 1, then the problem is Matching Cut with Roots which,

as we noted, is known to be NP-complete [46]. We split the remaining cases in

two according to whether or not i = 1. In each case, we construct a polynomial

time reduction from Matching Cut with Roots. In particular, we take an

instance (G, s, t) of Matching Cut with Roots, and construct a graph G′

that is a supergraph of G = (V,E) and show that

1. (G′, s, t) is an instance of (i, j)-Factor Cut with Roots (that is, if G′

has an (i, j)-factor cut (V ′1 , V
′
2), then s ∈ V1 and t ∈ V2 or, possibly, vice

versa if i = j),

2. if G′ has an (i, j)-factor cut, then G has a matching cut, and

3. if G has a matching cut, then G′ has an (i, j)-factor cut.

We note that (1) is an atypical feature of an NP-completeness proof as, unusually

for (i, j)-Factor Cut with Roots, it is not immediate to recognise a problem

instance. We let n = |V |.

Case 1: i = 1.

Let k = max{(n − 1)(j − 1), 1 + j}. Construct G′ from G by first adding a

complete graph K on k vertices and adding edges from s to every vertex of VK .

Then, for each v ∈ VG \ {s}, add edges from v to j − 1 vertices of K in such a

way that no vertex of VK has more than one neighbour in VG \ {s}.

Chapter 5. Surjective H-Colouring with 2-reflexive H 99

Let (V ′1 , V
′
2) be a (1, j)-factor cut of G′. The vertices of {s} ∪ VK induce a clique

on 1 + k > 1 + j vertices. So, by Lemma 5.1, {s} ∪ VK ⊆ V ′1 or {s} ∪ VK ⊆ V ′2 .

Suppose that {s}∪VK ⊆ V ′2 . Then VG must contain vertices of both V ′1 (otherwise

V ′1 would be empty) and V ′2 (at least s). Thus, as G is connected, we can find

a vertex v ∈ V ′1 ∩ VG that has a neighbour in V ′2 ∩ VG. But v also has j − 1 ≥

1 neighbours in VK and so has at least 2 neighbours in V ′2 , contradicting the

definition of a (1, j)-factor cut.

So we must have that {s}∪VK ⊆ V ′1 . Let V1 = V ′1∩VG and V2 = V ′2 be a partition

of VG, and let M = EG(V1, V2) and M ′ = EG(V ′1 , V
′
2) and notice that M ′ is the

union of M and, for each v ∈ V2, the j − 1 edges from v to VK . For each v ∈ V1,

dM(v) = dM ′(v) ≤ 1. For each v ∈ V2, dM(v) = dM ′(v)− (j − 1) ≤ 1. So (V1, V2)

is a matching cut of G; this proves (2). As s ∈ V1, we have, by the definition of

factor roots, t ∈ V2; this proves (1).

To prove (3), we note that if (V1, V2) is a matching cut of G, then we can assume

that s ∈ V1 and t ∈ V2 (else relabel them for the purpose of constructing G′), and

then (V1 ∪ VK , V2) is a (1, j)-factor cut of G′.

Case 2: i ≥ 2.

Let k = max{(n−1)(j−1), i+j}. Construct G′ from G by first adding a complete

graph Ks on k vertices and adding edges from s to every vertex of VKs , and then

adding a complete graph Kt on k vertices and adding edges from t to every vertex

of VKt . Then, for each v ∈ VG \ {s}, add edges from v to j − 1 vertices of Ks

in such a way that no vertex of VKs has more than one neighbour in VG \ {s}.

Afterwards, for each v ∈ VG \{t}, add edges from v to i−1 vertices of Kt in such

a way that no vertex of VKt has more than one neighbour in VG \ {t}.

Let (V ′1 , V
′
2) be an (i, j)-factor cut of G′. The vertices of {s} ∪ VKs induce a

clique on at least 1 + k > i + j vertices. So, by Lemma 5.1, {s} ∪ VKs ⊆ V ′1 or

{s} ∪ VKs ⊆ V ′2 . Similarly {t} ∪ VKt ⊆ V ′1 or {t} ∪ VKt ⊆ V ′2 .

Chapter 5. Surjective H-Colouring with 2-reflexive H 100

Suppose that {s}∪VKs and {t}∪VKt are both subsets of V ′1 . Then VG must contain

vertices of both V ′1 (at least s and t) and V ′2 (else it would be empty). Thus, as

G is connected, we can find a vertex v ∈ V ′2 ∩VG that has a neighbour in V ′1 ∩VG.

But v also has j − 1 neighbours in VKs and i− 1 neighbours in VKt and so has at

least 1 + (i− 1) + (j − 1) = i+ j − 1 > j ≥ i neighbours in V ′2 , contradicting the

definition of an (i, j)-factor. By an analogous argument {s} ∪ VKs and {t} ∪ VKt

cannot both be subsets of V ′2 .

Suppose that i < j and {s} ∪ VKs ⊆ V ′2 . As G is connected and VG contains

vertices of both V ′1 and V ′2 , we can find a vertex v ∈ V ′1 ∩VG that has a neighbour

in V ′2 ∩VG. But v also has j−1 > i−1 neighbours in VKs and so has more than i

neighbours in V ′2 , contradicting the definition of a (i, j)-factor.

Thus we have that {s} ∪ VKs and {t} ∪ VKt are subsets of separate parts and,

moreover, either {s} ∪ VKs ⊆ V ′1 or i = j. Thus (1) is proved, and we have, in

either case, that each vertex in V ′1∩VG is joined by i−1 edges to vertices in V ′2\VG,

and each vertex in V ′2∩VG is joined by j−1 edges to vertices in V ′1 \VG. Therefore

each vertex in V ′1 ∩VG is joined to at most one vertex in V ′2 ∩VG, and each vertex

in V ′2 ∩ VG is joined to at most one vertex in V ′1 ∩ VG. Thus (V ′1 ∩ VG, V ′2 ∩ VG) is

a matching cut of G. This proves (2).

To prove (3), we note that if (V1, V2) is a matching cut of G, then we can assume

that s ∈ V1 and t ∈ V2 (else relabel them for the purpose of constructing G′), and

then (V1 ∪ VKs , V2 ∪ VKt) is an (i, j)-factor cut of G′.

5.2.2 The Hardness Reduction

Let H be a connected 2-reflexive target graph. Let p and q be the two (non-

adjacent) reflexive vertices of H. The length of a path is its number of edges.

The distance between two vertices u and v in a graph G is the length of a

shortest path between them and is denoted distG(u, v). We define two induced

Chapter 5. Surjective H-Colouring with 2-reflexive H 101

subgraphs H1 and H2 of H whose vertex sets partition VH . First H1 contains

those vertices of H that are closer to p than to q; and H2 contains those ver-

tices that are at least as close to q as to p (so contains any vertex equidistant

to p and q). That is, VH1 = {v ∈ VH : distH(v, p) < distH(v, q)} and VH2 =

{v ∈ VH : distH(v, q) ≤ distH(v, p)}. See Figure 5.3 for an example.

p q

H1

H2

Figure 5.3: An example of the construction of graphs H1 and H2 from a
connected 2-reflexive target graph H with ω = 3.

The following lemma follows immediately from our assumption that H is con-

nected.

Lemma 5.2. Both H1 and H2 are connected. Moreover, distH1(x, p) = distH(x, p)

for every x ∈ VH1 and distH2(x, q) = distH(x, q) for every x ∈ VH2.

Let ω denote the size of a largest clique in H. From graphs H1 and H2 we

construct graphs F1 and F2, respectively, in the following way:

1. for each x /∈ {p, q}, create a vertex t1x;

2. for p, create ω vertices t1p, . . . , t
ω
p ;

3. for q, create ω vertices t1q, . . . , t
ω
q ;

4. for i = 1, 2, add an edge in Fi between any two vertices thx and tjy if and

only if xy is an edge of EHi
.

We note that F1 is the graph obtained by taking H1 and replacing p by a clique

of size ω. Similarly, F2 is the graph obtained by taking H2 and replacing q by a

Chapter 5. Surjective H-Colouring with 2-reflexive H 102

clique of size ω. We say that t1p, . . . , t
ω
p are the roots of F1 and that t1q, . . . , t

ω
q are

the roots of F2. Figure 5.4 shows an example of the graphs F1 and F2 obtained

from the graph H in Figure 5.3.

Figure 5.4: The graphs F1 (left) and F2 (right) resulting from the graph H
in Figure 5.3.

Let ` = distH(p, q) ≥ 2 denote the distance between p and q. Let Np be the set of

neighbours of p that are each on some shortest path (thus of length `) from p to

q in H. Let rp be the size of a largest clique in Np. We define Nq and rq similarly.

We will reduce from (rp, rq)-Factor Cut with Roots, which is NP-complete

due to Theorem 5.1. Hence, consider an instance (G, s, t) of (rp, rq)-Factor Cut

with Roots, where G is a connected graph and s and t form the (ordered) pair

of (rp, rq)-factor roots of G. Recall that we assume that G is irreflexive.

We say that we identify two vertices u and v of a graph when we remove them

from the graph and replace them with a single vertex that we make adjacent to

every vertex that was adjacent to u or v. Our aim is to create a graph based on

G where each vertex is replaced by cliques so large that in any homomorphism to

H, they must be mapped to reflexive vertices. We then construct paths between

these cliques that must map to shortest paths between the reflexive vertices such

that vertices from the same component of an (i, j)-factor cut must be mapped to

the same reflexive vertex. From F1, F2, and G we construct a new graph G′ as

follows:

1. For each edge e = uv ∈ EG, we do as follows. We create four vertices, gru,e,

gbu,e, g
r
v,e and gbv,e. We also create two paths P 1

e and P 2
e , each of length `−2,

between gru,e and gbv,e, and between grv,e and gbu,e, respectively. If ` = 2 we

identify gru,e and gbv,e and grv,e and gbu,e to get paths of length 0.

Chapter 5. Surjective H-Colouring with 2-reflexive H 103

2. For each vertex u ∈ VG, we do as follows. First we construct a clique Cu

on ω vertices. We denote these vertices by g1u, . . . , g
ω
u . We then make every

vertex in Cu adjacent to both gru,e and gbu,e for every edge e incident to u;

we call gru,e and gbu,e a red and blue neighbour of Cu, respectively; if ` = 2,

then the vertex obtained by identifying two vertices gru,e and gbv,e, or grv,e and

gbu,e is simultaneously a red neighbour of one clique and a blue neighbour of

another one. Finally, for every two edges e and e′ incident to u, we make

gru,e and gru,e′ adjacent, that is, the set of red neighbours of Cu form a clique,

whereas the set of blue neighbours form an independent set.

3. We add F1 by identifying tip and gis for i = 1, . . . , ω, and we add F2 by

identifying tiq and git for i = 1, . . . , ω. We denote the vertices in F1 and F2

in G′ by their label tix in F1 or F2.

See Figure 5.5 for an example of a graph G′.

s

t

(a) An example of a graph G with
a (1, 2)-factor cut with (1, 2)-factor
roots s and t.

F2

F1

(b) The corresponding graph G′ where H is a
2-reflexive target graph with ` = 3 and ω = 3.

Figure 5.5: An example of a graph G and the corresponding graph G′.

The next lemma describes a straightforward property of graph homomorphisms

that will prove useful.

Lemma 5.3. If there exists a homomorphism h : G′ → H then distG′(u, v) ≥

distH (h(u), h(v)) for every pair of vertices u, v ∈ VG′.

Chapter 5. Surjective H-Colouring with 2-reflexive H 104

We now prove the key property of our construction.

Lemma 5.4. For every homomorphism h from G′ to H, there exists at least one

clique Ca with p ∈ h(Ca) and at least one clique Cb with q ∈ h(Cb).

Proof. Since for each u ∈ VG and any edge e incident to u, every clique Cu∪{gru,e}

in G′ is of size at least ω+ 1, we find that h must map at least two of its vertices

to a reflexive vertex, so either to p or q. Hence, for every u ∈ VG, we find that h

maps at least one vertex of Cu to either p or q.

We prove the lemma by contradiction. We will assume that h does not map any

vertex of any Cu to q, thus p ∈ h(Cu) for all u ∈ VG. We will note later that if

instead q ∈ h(Cu) for all u ∈ VG we can obtain a contradiction in the same way.

We consider two vertices tip ∈ F1 and tjq ∈ F2 such that h(tip) = h(tjq) = p.

Without loss of generality let i = j = 1. We shall refer to these vertices as tp

and tq respectively. We now consider a vertex v ∈ VF1∪VF2 . By Lemma 5.3,

distG′(v, tp) ≥ distH(h(v), p) and distG′(v, tq) ≥ distH(h(v), p). In other words:

min (distG′(v, tp), distG′(v, tq)) ≥ distH(h(v), p).

In fact by applying Lemma 5.3 we can generalise this further to any vertex mapped

to p by h:

min
w∈h−1(p)

(distG′(v, w)) ≥ distH(h(v), p). (5.1)

For every v ∈ VG′ we define a value D(v) as follows:

D(v) =

distF1(v, tp) if v ∈ F1

distF2(v, tq) if v ∈ F2

b`/2c otherwise

Claim 5.1. D(v) ≥ minw∈h−1(p) (distG′(v, w)) ≥ distH(h(v), p) for all v ∈ VG′.

Chapter 5. Surjective H-Colouring with 2-reflexive H 105

We prove Claim 5.1 by showing that D(v) ≥ minw∈h−1(p) (distG′(v, w)), which

suffices due to (5.1). First suppose v ∈ VF1 ∪ VF2 . We may assume, with-

out loss of generality, that v ∈ VF2 . So D(v) = distF2(v, tq) = distG′(v, tq) ≥

minw∈h−1(p) (distG′(v, w)), as tq ∈ h−1(p).

Now suppose v 6∈ VF1 ∪ VF2 . Then v either belongs to a clique Cu or is a ver-

tex of a path P 1
e or P 2

e between two cliques. If v belongs to a clique or is an

end-vertex of such a path, then v is either in h−1(p) or adjacent to a vertex

in h−1(p) (since at least one vertex in Cu maps to p). Hence D(v) = b`/2c ≥ 1 ≥

minw∈h−1(p) (distG′(v, w)). Finally, suppose v is an inner vertex of a path P 1
e or P 2

e .

By definition, such a path has length `−2. Then v is at most distance b(`−2)/2c

from a vertex in a clique, which we know is either in h−1(p) or adjacent to a vertex

in h−1(p). Hence D(v) = b`/2c = b(` − 2)/2c + 1 ≥ minw∈h−1(p) (distG′(v, w)).

This proves Claim 5.1.

Claim 5.2. If there exists a surjective homomorphism from G′ to H, then for

any integer d ≥ `:

∣∣{t1w ∈ VF1∪VF2 : D(t1w) ≥ d
}∣∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

We prove Claim 5.2 as follows. Using the fact that with a surjective homomor-

phism every vertex must be mapped to, we see from Lemma 5.3 that if there

are n vertices in H which are at a distance d from p, there must be at least n

vertices in G′ that are at distance at least d from every vertex that maps to p.

This means we can say for any distance d ≥ 0:

|{v ∈ VG′ : min
w∈h−1(p)

(distG′(v, w)) ≥ d}| ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

Combining this inequality with Claim 5.1 yields, for every distance d ≥ 0:

Chapter 5. Surjective H-Colouring with 2-reflexive H 106

|{v ∈ VG′ : D(v) ≥ d}| ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

Now let d ≥ `. Then we only have to consider vertices in F1∪F2. Hence, for every

d ≥ `:

∣∣{tiw ∈ VF1∪VF2 : D(tiw) ≥ d
}∣∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

By construction, for any tiw with i > 1 we have that w ∈ {s, t} and thus D(tiw) ≤

1 < ` ≤ d. Therefore, no vertex tiw with i 6= 1 is involved in the equation above,

so we can write:

∣∣{t1w ∈ VF1∪VF2 : D(t1w) ≥ d
}∣∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

Hence Claim 5.2 is proven.

p

q

q′

distH(p, v) = 1

distH(p, v) = 2

distH(p, v) = 3

distH(p, v) = 4

distH(p, v) = 5

H

t1p t1qt2p t2q

tq′
D(tv) = 1

D(tv) = 2

D(tv) = 3

D(tv) = 4

D(tv) = 5

F1 F2

Figure 5.6: An example of a graph H with corresponding graphs F1 and F2.
Vertices in H equidistant from p are plotted at the same vertical position and
likewise vertices tv ∈ F1 and tw ∈ F2 with D(tv) = D(tw) are plotted at the
same vertical position. The vertices q′ ∈ H and corresponding tq′ ∈ F2 are
highlighted.

We first present the intuition behind the final part of the proof. Consider the

graphs F1, F2 and H in the example shown in Figure 5.6. We recall that every

Chapter 5. Surjective H-Colouring with 2-reflexive H 107

vertex v (other than p or q) has a single corresponding vertex tv in F1 or F2.

We may naturally want to map the vertices of F1 onto the vertices of H1, which

is possible by definition of F1. However, when we try to map the vertices of F2

onto the vertices of H2, with h(tiq) = p (for some i), we will prove that there

is at least one vertex q′ in H2 which is further from p in H than it is from q

and that cannot be mapped to and thus violates the surjectivity constraint. In

Figure 5.6 this vertex, which will play a special role in our proof, is shown in red.

In the this figure we observe that there are ten vertices in H (including q′) with

distH(p, v) ≥ 3 but only nine vertices (excluding tq′) in F1 ∪ F2 with D(tv) ≥ 3

which could be mapped to these vertices. This contradicts Claim 5.2.

We now formally prove that our initial assumption that p ∈ h(Cu) for all

u ∈ VG contradicts Claim 5.2. For every vertex x in H1 there is a correspond-

ing vertex t1x such that D(t1x) = distF1(t
1
x, tp) = distH1(x, p), where the latter

equality follows from the construction of F1. From Lemma 5.2 we find that

distH1(x, p) = distH(x, p) for every x ∈ VH1 . Hence D(t1x) = distH(x, p), and for

all d ≥ 0:

∣∣{t1x ∈ VF1 : D(t1x) ≥ d
}∣∣ = |{x ∈ VH1 : distH(x, p) ≥ d}| . (5.2)

Now let x ∈ VH2 . Using the same arguments, we see that D(t1x) = distH(x, q), and

thus D(t1x) = distH(x, q) ≤ distH(x, p) by definition. Note that, had we instead

supposed that it was q to which everything mapped, we would instead have a

strict inequality. As it turns out, we only need the weaker inequality.

We now look for a vertex q′ in H2, such that q′ is as far from p as possible, subject

to the condition that distH(q′, q) < distH(q′, p). Let j = distH(q′, p). We see that

for any vertex x in H2 such that distH(x, p) > j, it is the case that distH(x, q) =

distH(x, p). Note that there may be no vertices with distH(x, q) = distH(x, p) in

Chapter 5. Surjective H-Colouring with 2-reflexive H 108

which case q′ is simply the farthest vertex from p within H2. We also observe

that q′ = q is possible. So j is well defined and, in fact, we have that j ≥ `.

We now consider the mapping of vertices in H2 at a distance d ≥ ` from p. We

recall that D(t1x) = distH(x, q) for every x in H2 and that for a vertex x ∈ H2

of distance at least j + 1 from q in H, it holds that distH(x, q) = distH(x, p).

Combining this with equation (5.2) yields that:

∣∣{t1x ∈ VF1∪VF2 : D(t1x) > j
}∣∣ = |{x ∈ VH : distH(x, p) > j}| . (5.3)

However, for d = j we find that, in addition to vertices in H2 equidistant from p

and q, there is at least one vertex that is closer to q than p, namely q′, for which it

holds that D(t1q′) = distH(q′, q) < distH(q′, p) = j. It therefore follows that there

are fewer vertices t1x with D(t1x) = j than there are vertices x with distH(x, p) = j

and hence we see that:

∣∣{t1x ∈ VF1∪VF2 : D(t1x) = j
}∣∣ < |{x ∈ VH : distH(x, p) = j}| . (5.4)

By combining equations (5.3) and (5.4), we see that:

∣∣{t1x ∈ VF1∪VF2 : D(t1x) ≥ j
}∣∣ < |{x ∈ VH : distH(x, p) ≥ j}| .

As j ≥ `, this contradicts Claim 5.2 and concludes the proof of Lemma 5.4.

We are now ready to state our main result.

Theorem 5.2. For every connected 2-reflexive graph H, the Surjective H-

Colouring problem is NP-complete.

Proof. Let H be a connected 2-reflexive graph with reflexive vertices p and q at

distance ` ≥ 2 from each other. Let ω be the size of a largest clique in H. We

Chapter 5. Surjective H-Colouring with 2-reflexive H 109

define the graphs H1, H2, F1 and F2, sets Np an Nq, and values rp, rq as above.

Recall that the problem is readily seen to be in NP and that we reduce from

(rp, rq)-Factor Cut with Roots. From F1, F2 and an instance (G, s, t) of the

latter problem we construct the graph G′. We claim that G has an (rp, rq)-factor

cut (V1, V2) if and only if there exists a surjective homomorphism h from G′ to H.

First suppose that G has an (rp, rq)-factor cut (V1, V2). By definition, s ∈ V1 and

t ∈ V2. We define a homomorphism h as follows. For every x ∈ VF1 ∪ VF2 , we

let h map t1x to x. This shows that h is surjective. It remains to define h on the

other vertices. For every u ∈ VG, let h map all of Cu to p if u is in V1 and let h

map all of Cu to q if u is in V2 (note that this is consistent with how we defined h

so far). For each uv ∈ EG with u, v ∈ V1, we map the vertices of the paths P 1
e

and P 2
e to p. For each uv ∈ EG with u, v ∈ V2, we map the vertices of the paths

P 1
e and P 2

e to q. We are left to show that the vertices of the remaining paths P 1
e

and P 2
e can be mapped to appropriate vertices of H.

Note that the red neighbours of each Cu form a clique (whereas all blue vertices

of each Cu form an independent set and inner vertices of paths P 1
e and P 2

e have

degree 2). However, as (V1, V2) is an (rp, rq)-factor cut of G, all but at most rp

vertices of these red cliques have been mapped to p already if u ∈ V1 and all

but at most rq vertices have been mapped to q already if u ∈ V2. By definition

of rp and rq, this means that we can map the vertices of the paths P 1
e and P 2

e

with e = uv for u ∈ V1 and v ∈ V2 to vertices of appropriate shortest paths

between p and q in H, so that h is a homomorphism from G′ to H (recall that

we already showed surjectivity). In particular, the clique formed by the red

neighbours of each Cu is mapped to a clique in Np ∪ {p} or Nq ∪ {q}.

Now suppose that there exists a surjective homomorphism h from G′ to H. For

a clique Cu, we may choose any edge e incident to u, such that C ′u = Cu ∪

{gru,e} is a clique of size ω + 1. Since H contains no cliques larger than ω, we

find that h maps each clique C ′u (which has size ω + 1) to a clique in H that

Chapter 5. Surjective H-Colouring with 2-reflexive H 110

contains a reflexive vertex. Note that at least two vertices of C ′u are mapped to

a reflexive vertex. Hence we can define the following partition of VG. We let

V1 = {v ∈ VG : p ∈ h(Cv)} and V2 = VG \ V1 = {v ∈ VG : q ∈ h(Cv)}. Lemma 5.4

tells us that V1 6= ∅ and V2 6= ∅. We define M = {uv ∈ EG : u ∈ V1, v ∈ V2}.

Let e = uv be an arbitrary edge in M . By definition, h maps all of Cu to a clique

containing p and all of Cv to a clique containing q. Hence, the vertices of the two

paths P 1
e and P 2

e must be mapped to the vertices of a shortest path between p

and q. At most rp red neighbours of every Cu with u ∈ V1 can be mapped to a

vertex other than p. This is because these red neighbours form a clique. As such

they must be mapped onto vertices that form a clique in H. As such vertices lie

on a shortest path from p to q, the clique in H has size at most rp. Similarly, at

most rq red neighbours of every Cu with u ∈ V2 can be mapped to a vertex other

than q. As such, (V1, V2) is an (rp, rq)-factor cut in G.

A Small Extension. Two vertices u and v in a graph G are true twins if they

are adjacent to each other and share the same neighbours in VG\{u, v}. Let H(i,j)

be a graph obtained from a connected 2-reflexive graph H with reflexive vertices p

and q after introducing i reflexive true twins of p and j reflexive true twins of q. In

the graph G′ we increase the cliques Cu to size ω+max(i, j). We call the resulting

graph G′′. Then it is readily seen that there exists a surjective homomorphism

from G′ to H if and only if there exists a surjective homomorphism from G′′

to H(i,j).

Since creating true twins of an irreflexive vertex will not prevent a graph from

being 2-reflexive, we can state the following result.

Theorem 5.3. For any graph H that can be obtained from a 2-reflexive graph H ′

by replacing vertices with true twins; the Surjective H-Colouring problem

is NP-complete.

Chapter 5. Surjective H-Colouring with 2-reflexive H 111

5.3 Target Graphs Of At Most Four Vertices

In this section we classify the computational complexity of Surjective H-

Colouring for every target graph H with at most four vertices. We require

a number of lemmas. The first lemma is proved for compaction and not vertex-

surjection. However, the only property of compaction used is vertex-surjection

and so it is easy to see it holds in this modified form. The second lemma is also

displayed in Figure 5.2.

Lemma 5.5 ([96]). Let H be a graph with connected components H1, . . . , Hs.

If Surjective Hi-Colouring is NP-complete for some i, then Surjective

H-Colouring is also NP-complete.

Lemma 5.6 ([6]). For every graph H, if H-Compaction is polynomial-time

solvable, then Surjective H-Colouring is polynomial-time solvable.

We also need two results of Golovach, Paulusma and Song. Recall that in our

context a tree is a connected graph with no cycles of length at least 3.

Lemma 5.7 ([46]). Let H be an irreflexive non-bipartite graph. Then

Surjective H-Colouring is NP-complete.

Lemma 5.8 ([46]). Let H be a tree. Then Surjective H-Colouring is solv-

able in polynomial time if H is loop-connected and NP-complete otherwise.

Recall that C∗4 denotes the reflexive cycle on four vertices (see Figure 5.7 for an

example).

Lemma 5.9 ([76]). The Surjective C∗4 -Colouring problem is NP-complete.

We let D denote the irreflexive diamond, that is, the irreflexive complete graph

on four vertices minus an edge. The (irreflexive) paw is the graph obtained from

the triangle after attaching a pendant vertex to one of the vertices of the triangle,

Chapter 5. Surjective H-Colouring with 2-reflexive H 112

Figure 5.7: The graphs C∗4 , D and paw∗.

that is, the graph with vertices x1, x2, y, z and edges x1x2, x1y, x2y, yz. We let

paw∗ denote the graph obtained from the paw after adding a loop to its vertex of

degree 1 (that is, following the above notation, the loop zz). Both D and paw∗

are displayed in Figure 5.7 as well.

We are now ready to state our main result.

Theorem 5.4. Let H be a graph with |VH | ≤ 4. Then Surjective H-Colouring

is NP-complete if some connected component of H is not loop-connected or is an

irreflexive complete graph on at least three vertices, or H ∈ {C∗4 , D, paw∗}.

Otherwise Surjective H-Colouring is polynomial-time solvable.

Proof. Let H be a graph on at most four vertices. If H is a loop-connected forest

(that is, every component of H is loop-connected) or H has a dominating reflexive

vertex, then Vikas [96] showed that H-Compaction is in P. Hence, Surjective

H-Colouring is in P by Lemma 5.6. If H contains a component that is a

non-loop-connected tree, then Surjective H-Colouring is NP-complete by

Lemmas 5.5 and 5.8. If H is an irreflexive non-bipartite graph, then Surjective

H-Colouring is NP-complete by Lemma 5.7.

Note that the above cases cover all graphs H on at most three vertices, all dis-

connected graphs H on four vertices and all trees H on four vertices. The only

two graphs H on at most three vertices for which Surjective H-Colouring

is NP-complete are the irreflexive cycle on three vertices and the 3-vertex path in

which the two end-vertices are reflexive. The only disconnected graphs H on four

vertices for which Surjective H-Colouring is NP-complete are those that

Chapter 5. Surjective H-Colouring with 2-reflexive H 113

contain these two graphs as connected components. The only trees H on four

vertices for which Surjective H-Colouring is NP-complete are those that are

not loop-connected. Hence the theorem holds for every graph H on at most three

vertices, for every disconnected graph H on four vertices and for every tree H on

four vertices.

(a) P (b) P (c) P

(d) NP-complete (e) P (f) NP-complete

Figure 5.8: All cycles H on four vertices.

From now on we assume that H is a connected graph on four vertices that is not

a tree. Then H is either the cycle on four vertices, the complete graph on four

vertices, the diamond or the paw. We consider each of these cases separately.

Suppose H is the cycle on four vertices. There are six cases to consider (see Fig-

ure 5.8). If H is reflexive, then Surjective H-Colouring is NP-complete

by Lemma 5.9. If H is not loop-connected, then H is 2-reflexive, and thus

Surjective H-Colouring is NP-complete by Theorem 5.2. In the remain-

ing four cases H is loop-connected. For each of these target graphs, Vikas [96]

showed that H-Compaction is in P. Hence, Surjective H-Colouring is in

P by Lemma 5.6. We find that the theorem holds when H is a cycle on four

vertices.

Suppose H is the complete graph on four vertices. There are five cases to con-

sider (see Figure 5.9). If H is irreflexive, then Surjective H-Colouring is

Chapter 5. Surjective H-Colouring with 2-reflexive H 114

(a) NP-complete (b) P (c) P

(d) P (e) P

Figure 5.9: All complete graphs H on four vertices.

NP-complete by Lemma 5.7 (as H is non-bipartite as well). For each of the

other four target graphs, Vikas [96] showed that H-Compaction is in P. Hence,

Surjective H-Colouring is in P by Lemma 5.6. We find that the theorem

holds when H is the complete graph on four vertices.

Suppose H is the diamond. There are nine cases to consider (see Figure 5.10 on

page 115). If H is irreflexive, then Surjective H-Colouring is NP-complete

by Lemma 5.7 (as H is non-bipartite as well). If H is not loop-connected,

then H is 2-reflexive, and thus Surjective H-Colouring is NP-complete by

Theorem 5.2. For the remaining seven target graphs, Vikas [96] showed that

H-Compaction is in P. Hence, Surjective H-Colouring is in P by Lemma 5.6.

We find that the theorem holds when H is the diamond.

Suppose H is the paw with vertices x1, x2, y, z and edges x1x2, x1y, x2y and yz and

possibly one or more loops. There are twelve cases to consider (see Figure 5.11 on

page 116). If H is irreflexive, then Surjective H-Colouring is NP-complete

by Lemma 5.7 (as H is non-bipartite as well). If H is not loop-connected, then

the set of reflexive vertices is formed by one or two vertices from {x1, x2} and z.

Then Surjective H-Colouring is NP-complete by Theorem 5.3. We are left

with nine cases. Vikas [96] showed that H-Compaction is in P for all of these

Chapter 5. Surjective H-Colouring with 2-reflexive H 115

(a) NP-complete (b) P (c) P

(d) P (e) P (f) NP-complete

(g) P (h) P (i) P

Figure 5.10: All diamonds H on four vertices.

cases except for the case where z is the only reflexive vertex. Hence, for eight of

these nine cases, Surjective H-Colouring is in P by Lemma 5.6.

We are left to consider the case in which z is the (only) reflexive vertex. Recall

that we denote this target graph by paw∗. Theorem 3.5 of [96] proves that

paw∗-Compaction is NP-complete using a reduction from C3-Retraction

(which is NP-complete), but we will argue the proof also works in the case of

Surjective paw∗-Colouring. It is shown that (i) a graph G retracts to C3 if

and only if a certain graph G′ retracts to paw∗ if and only if (iii) G′ compacts to

paw∗. The salient part of the proof is Lemma 3.5.2 of [96], in which it is argued

that (ii) and (iii) are equivalent. We note that if a graph retracts to another graph,

then there exists a surjective homomorphism from the first graph to the second

graph. Hence, we need to verify only whether G′ retracts to paw∗ should there

exist a surjective homomorphism from G′ to paw∗. In the proof of Lemma 3.5.2

of [96], the properties of compaction are only used three times. The first two

Chapter 5. Surjective H-Colouring with 2-reflexive H 116

(a) NP-complete (b) P (c) NP-complete

(d) P (e) P (f) P

(g) P (h) NP-complete (i) P

(j) P (k) NP-complete (l) P

Figure 5.11: All paws H on four vertices.

are paragraph 2, line 2 and paragraph 7, line 4 (in the proof of Lemma 3.5.2).

The only property used of compaction on these two occasions is vertex surjection.

Finally, compaction is alluded to in the final paragraph of the proof, but here any

homomorphism would have the desired property. Thus, Vikas [96] has actually

proved that G′ retracts to paw∗ if and only if G′ has a surjective homomorphism

to paw∗, and it follows that Surjective paw∗-Colouring is NP-complete.

From the above we conclude that the theorem holds in all cases when H is the

paw. This completes the proof of Theorem 5.4.

Chapter 5. Surjective H-Colouring with 2-reflexive H 117

From the proof of Theorem 5.4 it follows that whenever H is a target graph on at

most four vertices for which H-Compaction is polynomial-time solvable, then

so is Surjective H-Colouring. Vikas [96] also showed that for every target

graph H on at most four vertices for which Surjective H-Colouring is NP-

complete, H-Compaction is NP-complete. Hence, Theorem 5.4 corresponds to

Vikas’ complexity classification of H-Compaction for targets graphs H of at

most four vertices. We also refer to Vikas [96] for the complexity equivalence of

H-Compaction and H-Retraction. Thus, we obtained the following corol-

lary.

Corollary 5.1. Let H be a graph on at most four vertices. Then the three prob-

lems Surjective H-Colouring, H-Compaction and H-Retraction are

polynomially equivalent.

Chapter 5. Surjective H-Colouring with 2-reflexive H 118

5.4 Conclusions

There are two main challenges in the area of Surjective H-Colouring. The

first would be a complete dichotomy of Surjective H-Colouring between P

and NP-complete, however, this still seems to be difficult. A first goal could be

to prove that Surjective H-Colouring is NP-complete for every connected

graph H that is not loop-connected. However, doing this using our current tech-

niques does not seem straightforward and we may need new hardness reductions.

In this chapter we have made another step towards this by showing that Sur-

jective H-Colouring is NP-complete for every connected, 2-reflexive graph

H that is not loop-connected. The next step along this avenue would be to try

and extend the result to k-reflexive graphs, however, this has proven to be very

complex.

The second challenge is to prove polynomial equivalence between the three prob-

lems Surjective H-Colouring, H-Compaction and H-Retraction. How-

ever, completely achieving this goal also seems far from trivial. Our classification

for target graphs H up to four vertices does show such an equivalence for these

cases.

Bibliography

[1] M. H. Alsuwaiyel. Algorithms: Design Techniques and Analysis. World

Scientific, 1999.

[2] K. Appel and W Haken. Every planar map is four colorable. Part I: Dis-

charging. Illinois Journal of Mathematics, 21:429–490, 1977.

[3] A. Atminas, V. V. Lozin, and I. Razgon. Linear time algorithm for com-

puting a small biclique in graphs without long induced paths. Proc. SWAT

2012, Lecture Notes in Computer Science, 7357:142–152, 2012.

[4] R. Beigel and D. Eppstein. 3-Coloring in time O(1.3289n). Journal of

Algorithms, 54(2):168–204, 2005.

[5] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Claren-

don Press, New York, NY, USA, 1986.

[6] M. Bodirsky, J. Kára, and B. Martin. The complexity of surjective homo-

morphism problems – a survey. Discrete Applied Mathematics, 160:1680–

1690, 2012.

[7] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions

of small treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[8] P. S. Bonsma. The complexity of the matching-cut problem for planar

graphs and other graph classes. Journal of Graph Theory, 62:109–126,

2009.

[9] A. Brandstädt, F. F. Dragan, V. B. Le, and T. Szymczak. On stable cutsets

in graphs. Discrete Applied Mathematics, 105:39–50, 2000.

[10] A. Brandstädt, V. B. Le, and J. Spinrad. Graph classes: A survey. SIAM

Monographs on Discrete Mathematics and Applications, Society for Indus-

trial and Applied Mathematics (SIAM), 1999.

[11] H. J. Broersma, F. V. Fomin, R. Královič, and G.J. Woeginger. Elimi-

nating graphs by means of parallel knock-out schemes. Discrete Applied

Mathematics, 155:92–102, 2007.

119

Bibliography 120

[12] H. J. Broersma, M. Johnson, and D. Paulusma. Upper bounds and al-

gorithms for parallel knock-out numbers. Theoretical Computer Science,

410:1329–1327, 2008.

[13] H. J. Broersma, M. Johnson, D. Paulusma, and I. A. Stewart. The computa-

tional complexity of the parallel knock-out problem. Theoretical Computer

Science, 393:182–195, 2008.

[14] K. Cameron, E. M. Eschen, C. T. Hoàng, and R. Sritharan. The com-

plexity of the list partition problem for graphs. SIAM Journal on Discrete

Mathematics, 21:900–929, 2007.

[15] V. Chvátal. Recognizing decomposable graphs. Journal of Graph Theory,

8:51–53, 1984.

[16] M. Cochefert, J-F. Couturier, P. A. Golovach, D. Kratsch, and D. Paulusma.

Sparse square roots. Proc. WG 2013, LNCS, 8165:177–188, 2013.

[17] M. Cochefert, J-F. Couturier, P. A. Golovach, D. Kratsch, and D. Paulusma.

Parameterized algorithms for finding square roots. Algorithmica, 74:602–

629, 2016.

[18] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement re-

ducible graphs. Discrete Applied Mathematics, 3:163–174, 1981.

[19] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm

for cographs. SIAM Journal on Computing, 14:926–934, 1985.

[20] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets

of finite graphs. Information and Computation, 85:12–75, 1990.

[21] B. Courcelle. The monadic second-order logic of graphs. III. tree-

decompositions, minor and complexity issues. Informatique Théorique et

Applications, 26:257–286, 1992.

[22] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs.

Discrete Applied Mathematics, 101:77–144, 2000.

[23] W. H. Cunnigham and J. Edmonds. A combinatorial decomposition theory.

Canadian Journal of Mathematics, 32:734–765, 1980.

[24] C. M. H. de Figueiredo, S. Klein, and B. Reed. Finding skew partitions

efficiently. Journal of Algorithms, 37:505–521, 2000.

Bibliography 121

[25] H. N. de Ridder et al. Information System on Graph Classes and their

Inclusions, 2001.

[26] R. Diestel. Graph Theory, 4th Edition, Graduate Texts in Mathematics,

vol. 173. Springer, 2012.

[27] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-

Verlag Monographs in Computer Science, 1999.

[28] B. Esfahbod. Euler diagram for P, NP, NP-complete, and NP-hard set of

problems, 2007.

[29] W. Espelage, F. Gurski, and E. Wanke. How to solve np-hard graph prob-

lems on clique-width bounded graphs in polynomial time. Proc. WG 2001,

Lecture Notes in Computer Science, 2204:117–128, 2001.

[30] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum imperialis Petropolitanae, 8:128–140, 1741.

[31] B. Farzad and M. Karimi. Square-root finding problem in graphs, a com-

plete dichotomy theorem. CoRR, abs/1210.7684, 2012.

[32] B. Farzad, L. C. Lau, V. B. Le, and N. N. Tuy. Complexity of finding graph

roots with girth conditions. Algorithmica, 62:38–53, 2012.

[33] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list

homomorphisms. Journal of Graph Theory, 42:61–80, 2003.

[34] T. Feder, P. Hell, P. Jonsson, A. Krokhin, and G. Nordh. Retractions to

pseudoforests. SIAM Journal on Discrete Mathematics, 24:101–112, 2010.

[35] T. Feder and M. Y. Vardi. The computational structure of monotone

monadic snp and constraint satisfaction: a study through datalog and group

theory. SIAM Journal on Computing, 28:57–104, 1998.

[36] J. Fiala and J. Kratochv́ıl. Locally constrained graph homomorphisms –

structure, complexity, and applications. Computer Science Review, 2:97–

111, 2008.

[37] J. Fiala and D. Paulusma. A complete complexity classification of the role

assignment problem. Theoretical Computer Science, 349:67–81, 2005.

Bibliography 122

[38] S. Földes and P. L. Hammer. Split graphs. 8th South–Eastern Conf. on

Combinatorics, Graph Theory and Computing, Congressus Numerantium,

19:311–315, 1977.

[39] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, 1979.

[40] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-

complete problems. Proceedings of the Sixth Annual ACM Symposium on

Theory of Computing, STOC’74:47–63, 1974.

[41] P. A. Golovach, M. Johnson, B. Martin, D. Paulusma, and A. Stewart. Sur-

jective h-Colouring: New hardness results. CoRR, abs/1701.02188, 2017.

[42] P. A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart. Finding cactus

roots in polynomial time. Proc. IWOCA 16, Lecture Notes in Computer

Science, 9843:361–372, 2016.

[43] P. A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart. A linear kernel

for finding square roots of almost planar graphs. Proc. SWAT 16, Leibniz

International Proceedings in Informatics, 53:4:1–4:14, 2016.

[44] P. A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart. Squares of low

clique number. Proc. CTW 16, Electronic Notes in Discrete Mathematics,

55:195–198, 2016.

[45] P. A. Golovach, B. Lidický, B. Martin, and D. Paulusma. Finding vertex-

surjective graph homomorphisms. Acta Informatica, 49:381–394, 2012.

[46] P. A. Golovach, D. Paulusma, and J. Song. Computing vertex-surjective

homomorphisms to partially reflexive trees. Theoretical Computer Science,

457:86–100, 2012.

[47] M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph

classes. International Journal of Foundations of Computer Science, 11:423–

443, 2000.

[48] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan. Finding topological

subgraphs is fixed-parameter tractable. Proc. STOC, 2011:479–488, 2011.

[49] P. Hammer and F. Maffray. Completely separable graphs. Discrete Applied

Mathematics, 27:85–99, 1990.

Bibliography 123

[50] F. Harary, R. M. Karp, and W. T. Tutte. A criterion for planarity of the

square of a graph. Journal of Combinatorial Theory, 2:395–405, 1967.

[51] P. Heggernes, P. van ’t Hof, D. Marx, N. Misra, and Y. Villanger. On the

parameterized complexity of finding separators with non-hereditary prop-

erties. Algorithmica, 72:687–713, 2015.

[52] P. Hell and J. Nešetřil. On the complexity of h-colouring. Journal of

Combinatorial Theory. Series B, 48:92–110, 1990.

[53] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University

Press, 2004.

[54] T. Ito, M. Kamiński, D. Paulusma, and D. M. Thilikos. On disconnected

cuts and separators. Discrete Applied Mathematics, 159:1345–1351, 2011.

[55] T. Ito, M. Kamiński, D. Paulusma, and D. M. Thilikos. Parameterizing cut

sets in a graph by the number of their components. Theoretical Computer

Science, 412:6340–6350, 2011.

[56] O. Johansson. Clique-decomposition. NLC-decomposition, and modular

decomposition – relationships and results for random graphs, Congressus

Numerantium, 132:39–60, 1998.

[57] M. Johnson, D. Paulusma, and A. Stewart. Knocking out Pk-free graphs.

Proc. MFCS 2014, Lecture Notes in Computer Science, 8635:396–407, 2014.

[58] M. Johnson, D. Paulusma, and A. Stewart. Knocking out Pk-free graphs.

Discrete Applied Mathematics, 190:100–108, 2015.

[59] M. Johnson, D. Paulusma, and C. Wood. Path factors and parallel knock-

out schemes of almost claw-free graphs. Discrete Mathematics, 310:1413–

1423, 2010.

[60] M. Kamiński, D. Paulusma, A. Stewart, and D. M. Thilikos. Minimal

disconnected cuts in planar graphs. Proc. FCT 2015, LNCS, 9210:243–254,

2015.

[61] M. Kamiński, D. Paulusma, A. Stewart, and D. M. Thilikos. Minimal

disconnected cuts in planar graphs. Networks, 68:250–259, 2016.

[62] M. Kamiński, D. Paulusma, and D. M. Thilikos. Contractions of planar

graphs in polynomial time. Proc. ESA 2010, LNCS, 6346:122–133, 2010.

Bibliography 124

[63] Richard. M. Karp. Reducibility among combinatorial problems. In Com-

plexity of Computer Computations, The IBM Research Symposia Series,

pages 85–103. Springer US, 1972.

[64] W. S. Kennedy and B. Reed. Fast skew partition recognition. In: Compu-

tational Geometry and Graph Theory, Lecture Notes in Computer Science,

4535:101–107, 2008.

[65] D. E. Lampert and P. J. Slater. Parallel knockouts in the complete graph.

American Mathematical Monthly, 105:556–558, 1998.

[66] L. C. Lau. Bipartite roots of graphs. ACM Transactions on Algorithms,

2:178–208, 2006.

[67] L. C. Lau and D. G. Corneil. Recognizing powers of proper interval, split,

and chordal graphs. SIAM Journal on Discrete Mathematics, 18:83–102,

2004.

[68] V. B. Le, R. Mosca, and H. Müller. On stable cutsets in claw-free graphs

and planar graphs. J. Discrete Algorithms, 6:256–276, 2008.

[69] V. B. Le, A. Oversberg, and O. Schaudt. Polynomial time recognition of

squares of ptolemaic graphs and 3-sun-free split graphs. Theoretical Com-

puter Science, 648:26–33, 2015.

[70] V. B. Le, A. Oversberg, and O. Schaudt. A unified approach for recognizing

squares of split graphs. Theoretical Computer Science, 602:39–49, 2015.

[71] V. B. Le and N. N. Tuy. The square of a block graph. Discrete Mathematics,

310:734–741, 2010.

[72] V. B. Le and N. N. Tuy. A good characterization of squares of strongly

chordal split graphs. Information Processing Letters, 111:120–123, 2011.

[73] Y. Lin and S. Skiena. Algorithms for square roots of graphs. SIAM Journal

on Discrete Mathematics, 8:99–118, 1995.

[74] Transport For London. Standard tube map, 2016.

[75] Donald MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT

Press, 2004.

Bibliography 125

[76] B. Martin and D. Paulusma. The computational complexity of disconnected

cut and 2k2-partition. Journal of Combinatorial Theory, Series B, 111:17–

37, 2015.

[77] D. Marx, B. O’Sullivan, and I. Razgon. Finding small separators in linear

time via treewidth reduction. ACM Transactions on Algorithms, 9:30:1–

30:35, 2013.

[78] M. Milanic, A. Oversberg, and O. Schaudt. A characterization of line graphs

that are squares of graphs. Discrete Applied Mathematics, 173:83–91, 2014.

[79] M. Milanic and O. Schaudt. Computing square roots of trivially perfect

and threshold graphs. Discrete Applied Mathematics, 161:1538–1545, 2013.

[80] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary

surface. SIAM Journal on Discrete Mathematics, 12:6–26, 1999.

[81] B. Mohar and C. Thomassen. Graphs on Surfaces. The Johns Hopkins

University Press, 2001.

[82] R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete

Applied Mathematics, 54:81–88, 1994.

[83] A. Mukhopadhyay. The square root of a graph. Journal of Combinatorial

Theory, 2:290–295, 1967.

[84] N. V. Nestoridis and D. M. Thilikos. Square roots of minor closed graph

classes. Discrete Applied Mathematics, 168:34–39, 2014.

[85] M. Patrignani and M. Pizzonia. The complexity of the matching-cut prob-

lem. Proc. WG 2001, Lecture Notes in Computer Science, 2204:284–295,

2001.

[86] F. P. Ramsey. On a problem of formal logic. Proceedings of the London

Mathematical Society, 30:264–286, 1930.

[87] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

21:120–126, 1978.

[88] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar

graph. Journal of Combinatorial Theory, Series B, 62:323–348, 1994.

Bibliography 126

[89] N. Robertson and P. D. Seymour. Graph minors. xvi. excluding a non-

planar graph. Journal of Combinatorial Theory Series B, 89:43–76, 2003.

[90] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. Effi-

ciently four-coloring planar graphs. Proceedings of the twenty-eighth Annual

ACM symposium on Theory of computing, STOC’96:571–575, 1996.

[91] I. C. Ross and F. Harary. The square of a tree. Bell System Technical

Journal, 39:641–647, 1960.

[92] R. E. Tarjan. Decomposition by clique separators. Discrete Math., 55:221–

232, 1985.

[93] R. Thomas. An update on the four-color theorem. Notices of the American

Mathematical Society, 45:848–859, 1998.

[94] N. Vikas. Computational complexity of compaction to reflexive cycles.

SIAM Journal on Computing, 32:253–280, 2002.

[95] N. Vikas. Compaction, Retraction, and Constraint Satisfaction. SIAM

Journal on Computing, 33:761–782, 2004.

[96] N. Vikas. A complete and equal computational complexity classification

of compaction and retraction to all graphs with at most four vertices and

some general results. Journal of Computer and System Sciences, 71:406–

439, 2005.

[97] Narayan Vikas. Algorithms for partition of some class of graphs under

compaction and vertex-compaction. Algorithmica, 67(2):180–206, 2013.

[98] E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied

Mathematics, 54:251–266, 1994.

[99] S. H. Whitesides. An algorithm for finding clique cut-sets. Information

Processing Letters, 12:31–32, 1981.

[100] Robin Wilson. Four Colors Suffice: How the Map Problem Was Solved.

Princeton University Press, 2002.

