
Durham E-Theses

The Parameterized Complexity of Degree Constrained

Editing Problems

MATHIESON, LUKE

How to cite:

MATHIESON, LUKE (2009) The Parameterized Complexity of Degree Constrained Editing Problems,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/76/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/76/
 http://etheses.dur.ac.uk/76/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

1

Abstract

Luke Mathieson – The Parameterized Complexity of Degree Constrained

Editing Problems

This thesis examines degree constrained editing problems within the framework

of parameterized complexity. A degree constrained editing problem takes as input

a graph and a set of constraints and asks whether the graph can be altered in at

most k editing steps such that the degrees of the remaining vertices are within

the given constraints. Parameterized complexity gives a framework for examining

problems that are traditionally considered intractable and developing efficient exact

algorithms for them, or showing that it is unlikely that they have such algorithms,

by introducing an additional component to the input, the parameter, which gives

additional information about the structure of the problem. If the problem has

an algorithm that is exponential in the parameter, but polynomial, with constant

degree, in the size of the input, then it is considered to be fixed-parameter tractable.

Parameterized complexity also provides an intractability framework for identifying

problems that are likely to not have such an algorithm.

Degree constrained editing problems provide natural parameterizations in terms

of the total cost k of vertex deletions, edge deletions and edge additions allowed, and

the upper bound r on the degree of the vertices remaining after editing. We define

a class of degree constrained editing problems, WDCE, which generalises several

well know problems, such as Degree r Deletion, Cubic Subgraph, r-Regular

Subgraph, f-Factor and General Factor. We show that in general if both k

and r are part of the parameter, problems in the WDCE class are fixed-parameter

tractable, and if parameterized by k or r alone, the problems are intractable in a

parameterized sense.

We further show cases of WDCE that have polynomial time kernelizations, and

in particular when all the degree constraints are a single number and the editing

operations include vertex deletion and edge deletion we show that there is a kernel

with at most O(kr(k + r)) vertices. If we allow vertex deletion and edge addition,

we show that despite remaining fixed-parameter tractable when parameterized by k

and r together, the problems are unlikely to have polynomial sized kernelizations, or

polynomial time kernelizations of a certain form, under certain complexity theoretic

assumptions.

We also examine a more general case where given an input graph the question

is whether with at most k deletions the graph can be made r-degenerate. We show

that in this case the problems are intractable, even when r is a constant.

The Parameterized Complexity of

Degree Constrained Editing

Problems

Luke Mathieson

Supervisor:

Dr. Stefan Szeider

Co-supervisor:

Prof. Hajo Broersma

School of Engineering and Computing Sciences

University of Durham

Thesis Submitted in Fulfilment of the

Requirements of the Degree of Doctor of

Philosophy

2009

Contents

Contents 3

List of Tables 6

List of Figures 6

1 Preamble 7

1.1 Declaration . 7

1.2 Statement of Copyright . 7

1.3 Acknowledgements . 8

1.4 Dedication . 9

2 Introduction 10

2.1 Known Results on the Complexity of Graph Modification and Editing

Problems . 11

2.1.1 Degree Constraint Problems 13

2.1.2 Parameterized Graph Editing 14

2.2 Where to Look: A Guide for this Thesis 17

2.3 Preliminaries . 18

2.3.1 Graph Theory and Notation 18

2.3.2 Propositional Logic . 21

2.3.3 First Order and Second Order Logic 22

2.3.4 Circuits . 25

3 Parameterized Complexity Theory 27

3.1 Basic Definitions . 27

3.2 The W-Hierarchy . 30

3.2.1 A Note on Containment . 33

3.3 W[SAT] and W[P] . 33

3

CONTENTS 4

3.4 Para-NP and XP . 35

3.5 Techniques in Parameterized Complexity 37

3.5.1 Non-Constructive and Non-Practical Techniques 37

3.5.2 Bounded Search Trees . 41

3.5.3 Dynamic Programming . 42

3.5.4 Iterative Compression . 43

3.5.5 Greedy Localization . 43

3.5.6 Colour-Coding . 44

3.5.7 Kernelization and Reduction 44

3.5.8 Compositional Problems and Polynomial Sized Kernels . . . 47

4 Regular and Chosen Degree Graphs 49

4.1 Introduction . 49

4.1.1 Relationship to Existing Problems 50

4.2 NP-Completeness and para-NP-Completeness 51

4.3 A Bounded Search Tree Algorithm for WDCEr
1(v) and WDCE∗(v, e) 52

4.4 A Kernelization for WDCE∗(v, e) . 55

4.4.1 Reduction Rules . 55

4.4.2 Kernelization Lemma . 57

4.5 Polynomial Time Cases . 58

4.6 W [1]-Hardness of WDCE for Parameter k 61

4.6.1 A Useful Construction: The Fixing Gadget 61

4.6.2 Preliminary Hardness Reductions 62

4.6.3 Main Hardness Results . 64

4.7 Conclusion . 68

5 General Factors of Graphs 69

5.1 Introduction . 69

5.1.1 A Note on Some Immediate Results 70

5.2 Kernelizations for WDCE(v), WDCE(v, e) and WDCE(e) 71

5.2.1 Reduction Rules . 71

5.2.2 Kernelization Lemmas . 72

5.3 Kernelization and Edge Addition . 73

5.4 General Fixed-Parameter Tractability for WDCE 76

5.5 W [1]-Hardness for WDCE1(e), WDCE1(a) and WDCE1(e, a) 78

5.6 Bounded Degree Graphs . 80

CONTENTS 5

5.6.1 A Kernelization for WDCE≤r(v, e) 80

5.7 WDCE and Treewidth . 82

5.7.1 Parameterizations Excluding k 83

5.8 A Note on Extended Regularity Constraints 84

5.8.1 Edge-Degree Regularity . 84

5.8.2 Edge Regularity and Strong Regularity 85

5.9 Conclusion . 86

6 Degenerate Graphs 87

6.1 Some Problems that are Tractable on Degenerate Graphs 87

6.1.1 Preliminary Definitions . 88

6.1.2 Independence Problems . 88

6.1.3 Clique Problems . 90

6.1.4 Domination Problems . 91

6.2 Some Hard Problems for Degenerate Graphs 94

6.3 Editing to Obtain Degenerate Graphs 96

6.3.1 A Note on Degeneracy . 97

6.3.2 Cyclic Monotone Circuit Activation and Almost Degenerate

Gate Gadgets . 98

6.3.3 Vertex Deletion . 99

6.3.4 Edge Deletion . 102

6.3.5 Vertex and Edge Deletion . 104

6.4 Conclusion . 104

7 Conclusion 105

7.1 Future Research . 106

Bibliography 108

Index 124

List of Tables

7.1 A summary of the main results of the thesis. 107

List of Figures

3.1 The relationships of major parameterized classes. 34

4.1 Reduction Rule 3. 56

4.2 Example of the partitioning described in the proof of Lemma 4.4.4

with r = 3. 58

4.3 Fixing gadget for r = 3. 62

4.4 An illustration of the gadget construction in the proof of Theorem 4.6.3. 65

6.1 An example monotone cyclic circuit. 98

6.2 OR gadget for r = 4 . 100

6.3 AND gadget for r = 4 . 100

6.4 AND edge gadget for r = 4 . 103

6

Chapter 1

Preamble

1.1 Declaration

The work contained in this thesis represents original work by the author under the

supervision of Dr. Stefan Szeider and Prof. Hajo Broersma. Portions of this thesis

have been published in preliminary form [117, 118]. At the time of writing a two

further papers [119, 115] have been submitted, but not yet reviewed.

No part of this thesis has been previously submitted for any degree at any

institution.

1.2 Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without the prior written consent and information derived from it should

be acknowledged.

7

CHAPTER 1. PREAMBLE 8

1.3 Acknowledgements

I would like to thank, in roughly chronological order, my parents for encouraging

me in academic pursuits from an early age, Dr. Ljiljana Branković for first introduc-

ing me to computational complexity and theoretical computer science in general,

Prof. Mike Fellows and Dr. Fran Rosamond, not just for introducing me to parame-

terized complexity and finding me a PhD fellowship, but for showing me the fun in

complexity theory, and of course my supervisor, Dr. Stefan Szeider for his patience,

guidance and support through this PhD.

I would also like to thank, in no particular order and for various reasons,

Dr. Pablo Moscato, Dr. Regina Berretta, Dr. Michael Hannaford, Dr. Alexandre

Mendes, Dr. Mario Inostroza, Triinu Tasa, Dr. Elena Prieto, Matt Skerritt, An-

drew Hide, Tony Kemp, Bryan Paton, Dr. Liz Paton, Pim van ’t Hof, James Gate,

Dr. Barnaby Martin, Ioannis Lignos, Mark Rhodes, Dr. Berndt Farwer and no doubt

many others.

I would further like to thank the University of Durham for both its support and

environment during my doctoral studies, and my examiners Dr. Vadim Lozin and

Prof. Iain Stewart.

Most of all I would like to thank Amanda.

CHAPTER 1. PREAMBLE 9

1.4 Dedication

This thesis, and much more, is dedicated to Amanda Grech.

Chapter 2

Introduction

Graphs are key tools for the computational modelling of many real world problems.

Consisting of elements (vertices) and relationships (edges) between pairs of elements

(see Section 2.3 for formal definitions), graphs can be used to model problems

and structures in networking, resource allocation, genetics, physics, silicon chip

design, and many other areas. Furthermore graphs, as discrete structures, are easily

handled by computers, and are thus an attractive abstraction tool in computer

science.

Graph editing and modification plays a major role in algorithmic graph theory,

and many problems can be viewed as an editing problem of some form. For example

the well known Vertex Cover [80] problem, that asks for a (minimum) set of

vertices of the graph where every edge is incident on at least one of these vertices,

can be viewed as a vertex deletion problem where we are looking for a (minimum)

set of vertices that can be deleted so that every vertex remaining in the graph is

isolated. Similarly Dominating Set [80] can be viewed as an editing problem

where we want to delete a set of vertices so that the degree of all the remaining

vertices is lowered by at least one.

In fact any subgraph problem where we are given a graph G and asked to find a

subgraph H with given structure or properties can be viewed as an editing problem.

In this sense Clique, Subgraph Isomorphism, Maximum Cut, Maximum Leaf

Spanning Tree, r-Regular Subgraph (all in [80]), General Factor [106] and

many others can be viewed as editing problems.

Of course there are also many graph problems that are explicitly stated as editing

problems. Cluster Editing [83], which asks for a minimum number of edge

deletions and additions to create a set of disjoint cliques, is a particularly prominent

10

CHAPTER 2. INTRODUCTION 11

graph editing problem, thanks to its broad range of applications [15, 105, 110, 158].

Editing problems are also widely studied in the setting of parameterized com-

plexity. Parameterized complexity extends the notion of tractability by including

in the problem a special input, the parameter. If a problem can be solved in time

bounded by a polynomial in the overall size of the input, but possibly exponen-

tial in the parameter, then it is tractable in a parameterized sense (see Chapter 3

for formal definitions). Many editing problems can be naturally parameterized by

the number of editing steps allowed, for example Graph Bipartization [90, 142]

and Cluster Editing [83] are both fixed-parameter tractable with the number of

editing steps as the parameter.

The character of editing problems can also be varied by the editing operations

available (see Section 2.3.1). If vertex deletion alone is allowed, then the graphs

produced by editing are induced subgraphs, edge deletion alone produces spanning

subgraphs. If edge addition is allowed then the result may no longer be a subgraph

of the original graph. If vertex deletion, edge deletion and edge contraction are

allowed, then we get the Minor Order Testing problem [144] (see Section 3.5.1).

In this thesis we study parameterizations of degree constrained editing problems,

where rather than editing to produce a specific target graph, the goal of editing is to

be left with a graph where the degrees of the vertices are within certain constraints,

such as the Cubic Subgraph problem [80].

2.1 Known Results on the Complexity of Graph

Modification and Editing Problems

The general Π Vertex (Edge) Deletion problem asks for a minimal set of ver-

tices (edges) whose deletion results in a graph with property Π. Krishnamoorthy

and Deo [97] classify the Π Vertex Deletion problem where Π defines one of 17

different graph classes including complete graphs, acyclic graphs and degree con-

strained graphs, showing that in all cases Π Vertex Deletion is NP-complete.

Yannakakis [168] shows that if Π is hereditary on induced subgraphs, Π Vertex

Deletion is NP-complete, and requiring that the graph remaining after deletion

is connected does not alter the complexity. Yannakakis [169] also shows that the Π

Edge Deletion problem is NP-complete for certain properties. Lewis [100] gives

NP-completeness results for the Π Vertex Deletion problem with various prop-

erties Π (Lewis and Yannakakis give a combined presentation of results in [101]).

CHAPTER 2. INTRODUCTION 12

Yannakakis [170] also gives various cases where restricting the input graph to a

bipartite graph results in polynomial time algorithms for hereditary properties.

Watanabe at al. [165, 166] give a more generalised result for Π Edge Dele-

tion, showing that the problem is NP-complete if Π can be characterised by finitely

many 3-connected graphs, their result also holds for the Π Edge Contraction

problem. Asano and Hirata [11] generalise this result to hereditary properties de-

termined by the 3-connected components. Later [12] they refine the result for the

Π Edge Contraction problem, showing that it is NP-complete if Π is heredi-

tary under edge contractions and determined by the biconnected components. They

also show that if Π is determined by the 3-connected components, then the Π Edge

Contraction remains hard when restricted to 3-connected graphs. Colbourn and

El Mallah [40] consider further restrictions on the class of target graphs, and show

that the H Edge Deletion problem where H is the class of target graphs is NP-

complete when H is defined by a set of forbidden minors which are all 2-connected

with minimum degree 3, when H is defined by K4 as a forbidden minor and when

H is defined by P3 as a forbidden induced subgraph.

When edge deletion and edge addition are allowed we get the Π Edge Mod-

ification problem. Natanzon et al. [123] show that this is also NP-complete for

certain target graph classes such as perfect graphs, chordal graphs and split graphs.

They also give cases where bounded degree input graphs admit polynomial time

algorithms.

Schoone et al. [146] show that it is NP-complete to decide whether it is possible

to add at most k edges to reduce the diameter of the graph below a bound D, or

to delete at most k edges to increase it above a bound D where k and D are part

of the input.

As mentioned previously, Cluster Editing and its variants are well studied

problems due to their wide practical applicability. Ben-Dor et al. [14] introduce

the problem and demonstrate a stochastic algorithm. Shamir et al. [149] prove

that Cluster Editing (specifically where both edge deletion and edge addition is

allowed) is NP-complete. If we consider only clusters on two vertices (i.e. K2) then

Maximum Matching can be thought of as a form of Cluster Deletion problem.

Hell and Kirkpatrick [89] take this view and generalise the problem to deletion

with the aim of obtaining a collection of vertex disjoint subgraphs isomorphic to a

given graph on at least 3 vertices. They show that despite Maximum Matching

admitting a polynomial time algorithm their generalised problem is NP-complete.

CHAPTER 2. INTRODUCTION 13

2.1.1 Degree Constraint Problems

Degree constrained editing problems have a long history in the literature. Cubic

Subgraph is one of the early NP-complete problems, with a proof attributed to

Chvátal by Garey and Johnson [80]. If one considers matching problems as degree

contrained editing problems, i.e. where we ask for a 1-regular spanning subgraph,

then the first polynomial time algorithms date to the work of Kuhn [98, 99] and

Edmonds [64, 65]. Matchings in their own right form a wide topic of research [81,

109].

The Cubic Subgraph problem naturally generalises to the r-Regular Sub-

graph problem, which can be seen as a degree constrained editing problem where we

are allowed to delete edges and vertices to obtain an r regular graph. Plesńık [134]

establishes the NP-completeness of r-Regular Subgraph for every r ≥ 3, even

when the input graph is bipartite, planar and has maximum degree 4. Stew-

art [151, 152, 153] shows NP-completeness holds under a series of other constraints.

Cheah and Corneil [33] show that r-Regular Subgraph remains NP-complete

when the input graph has maximum degree r + 1. If we only allow vertex deletion

(i.e. the subgraph must be induced), but demand that we delete a minimal num-

ber of vertices, the problem corresponds to the Maximum r-Regular Induced

Subgraph problem. Cardoso et al. [30] show that this problem is NP-complete

for every r ≥ 0 (notably when r = 0 the problem is Maximum Independent

Set). If the only editing operation allowed is edge deletion (i.e. the subgraph is

spanning), then we have the r-Factor problem, which Tutte [160] reduces to a

matching problem, later shown to be polynomial time solvable. In fact Tutte’s

proof is for the more general f-Factor problem [161], where each vertex may have

a different degree, specified by the function f . Anstee [10] provides a direct algo-

rithm and Liu and Zhu [104] give an improved algorithm when the input graph is

bipartite. The Degree Constrained Subgraph problem generalises the degree

constraints with each vertex having upper and lower bounds for the final degree.

Urquhart [163] gives the earliest polynomial solution specifically for this problem,

although an algorithm can be derived from Edmond and Johnson’s work [66] ac-

cording to Shiloach [150], who also provides alternative algorithms for the problem.

The (Perfect) b-Matching problem [81] extends this further, by adding capac-

ities to the edges. Tutte’s [160, 161] algorithm extends to cover this problem [94].

Tutte [162] gives a discussion of related results.

Lovász [106, 107] introduces and studies the General Factor problem, which

CHAPTER 2. INTRODUCTION 14

generalises the f-Factor problem by giving each vertex a list of possible degrees

and asks for a subset of the edges of the graph that satisfy these constraints. Simi-

larly the General Antifactor problem [108] gives each vertex a list of forbidden

degrees. Cornuéjols [43] gives a complete complexity classification of the General

Factor problem; if the degree lists (excepting some trivial cases) contain gaps of

length greater than 1, e.g. {2, 5, 6, 8} the problem is NP-complete, otherwise the

problem is polynomially solvable using matching techniques.

Lin and Sahni [103] look at a global degree constraint, where the question is

whether at most k edge deletions can leave a graph where the number of edges

incident on any vertex and the number of edges deleted from any vertex is bounded.

In particular they show that if the resultant graph is acyclic then the problem is

NP-hard if the input graph is undirected, but can be solved in linear time if the

input graph is directed.

Bodlaender et al. [21] examine the problem of finding a ∆-regular supergraph

of the input graph using edge addition and a minimum number of vertex additions

(at most 2), where ∆ is the maximum degree of the input graph. They show that

this problem is solvable in polynomial time.

2.1.2 Parameterized Graph Editing

Parameterized complexity (see Chapter 3) examines the complexity of problems,

typically NP-hard, taking into account the structure within the problem and the

input. This structure is measured by an additional input, the parameter. The

parameter can measure many aspects of a problem; natural parameters include so-

lution size, structural measures of the input, and for editing problems in particular,

the number of editing steps allowed. When the number of editing steps is taken

as or included in the parameter, many editing problems can be shown to be fixed-

parameter tractable (see Section 3.1). For the remainder of this section, k will

be the number of editing steps allowed and G the input graph, unless otherwise

specified.

One of the most general graph editing results, due to Cai [27], concerns editing a

graph to obtain a graph with hereditary graph property Π. Given a limited number

of edge additions, edge deletions and vertex deletions, if Π can be characterised

by a finite set of forbidden induced subgraphs then the problem is fixed-parameter

tractable. By controlling the number of editing operations of each type allowed, this

result establishes the fixed-parameter tractability of several distinct subproblems

CHAPTER 2. INTRODUCTION 15

such as the Π Edge Deletion problem and the Π Edge Editing problem. This,

for example, shows that Cluster Editing is fixed-parameter tractable with an

O(3k ·|V (G)|4) time algorithm where the forbidden graph is a path on three vertices.

Conversely a property such as regularity is not hereditary, so Cai’s result does not

apply. Kratsch and Wahlström [96] answer an open question of Cai and show that

Π Edge Deletion and Π Edge Editing do not in general have polynomial size

kernelizations. Khot and Raman [93] examine the related problem of finding a Π

subgraph with k vertices where Π is a hereditary property. They show that if Π

contains all trivial graphs, but not all complete graphs, or vice versa, then the

problem is W [1]-hard. Otherwise the problem is fixed-parameter tractable.

Cluster Editing problems are some of the most widely studied editing prob-

lems in parameterized complexity with not only extensive theoretical results, but

numerous practical studies [17, 19, 51, 84, 138]. Gramm et al. [83] introduce the

problems to the parameterized context giving a O(2.27k + |V (G)|3) time algorithm

for Cluster Editing, where k is the number of edge deletions and edge additions

allowed, and a O(1.77k + |V (G)|3) time algorithm for Cluster Deletion, where

only edge deletion is allowed. Both cases have a kernel, an equivalent instance of size

bounded by a function of the parameter (see Section 3.5.7), with O(k3) vertices. As

they note, Cluster Completion, where only edge addition is allowed, is polyno-

mial time solvable. Dehne et al. [51] investigate implementations based on Gramm

et al.’s work. Protti et al. [137] improve the kernelization to O(k2) vertices and give

an O(4k+|V (G)|+|E(G)|) time algorithm. Fellows et al. [69, 74] improve the kernel

size to 24k vertices, and Guo [85] improves this further to 4k. Böcker et al. [18] give

an O(1.82k + |V (G)|3) time algorithm which Hüffner et al. [91] claim can be com-

bined with Protti et al.’s work to give a O(1.82k + |V (G)|+ |E(G)|) time algorithm.

Damaschke [46] shows that enumerating all minimal sets of edges to delete or add

is also fixed-parameter tractable. Guo [85] also shows fixed-parameter tractabil-

ity with a kernel with at most (d + 2)k + d vertices for the Cluster Editing[d]

problem, which asks for at most k edge edits that give exactly d cliques. Hüffner

et al. [91] examine the parameterized complexity of Cluster Vertex Deletion,

where at most k vertex deletions are allowed, and no edge deletions or additions,

and the d-Cluster Vertex Deletion problem, the vertex deletion analogue of

Cluster Editing[d]. They show both are fixed parameter tractable, and in fact

give three different algorithms for d-Cluster Vertex Deletion. Damaschke [47]

introduces a generalisation of the Cluster Editing problem, the Twin Graph

CHAPTER 2. INTRODUCTION 16

Editing problem in which we are asked to add or delete at most k edges to obtain

a twin graph with at most t edges, where a twin graph is the graph of relationships

between vertex equivalence classes. Cluster Editing is the special case where

t = 0. Damaschke shows that this problem is fixed-parameter tractable when pa-

rameterized by k and t together. If the problem is changed to ask for k changes that

give a twin graph with at most t vertices, the new problem is still fixed-parameter

tractable when parameterized by k and t together.

Marx and Schlotter [113] examine the Planar +k Vertex problem, which

asks for a set of vertices whose deletion renders the graph planar. As this class

of “almost planar” graphs is minor closed, Robertson and Seymour’s graph minor

theorem (see Section 3.5.1) immediately gives fixed-parameter tractability for the

Planar +k Vertex problem. However this approach gives only a classification

result. Marx and Schlotter give a more practical algorithm relying on reducing the

input graph then applying treewidth based techniques (see Section 3.5.1). We show

in Section 6.3 that the related general problem for degenerate graphs is W [P]-hard.

Given two graphs G and H the Induced Subgraph Isomorphism problem

asks whether there is an induced subgraph of G isomorphic to H. Typically this

problem is parameterized by |V (H)|. Marx and Schlotter [114] recast the problem

as an editing problem with the parameterization |V (G)| − |V (H)|. With this pa-

rameterization the problem is fixed-parameter tractable when H is a tree or when

both H and G are planar and H is 3-connected.

Nishimura et al. [130] study the following generalisation of Vertex Cover:

let G be a graph class that is minor closed, where each graph in G has bounded

degree and all obstructions are connected; then given a graph G, is it possible to

remove at most k vertices such that the resulting graph is in G? They show that

this general problem has an O((g+ k)|V (G)|+ (fk)k) time algorithm, where f and

g are constants dependent on G. If G is the class of graphs of maximum degree d,

which is not minor closed, they show that they can still obtain an algorithm with

time complexity O((d+ k)|V (G)|+ k(d+ k)k+3). Fellows et al. [70] concentrate on

the Bounded Degree Deletion case where G is the class of graphs of maximum

degree d, and give a kernel with at most (d3+4d2+6d+4)k vertices, implying a single

exponential algorithm for the problem. Interestingly they use a generalisation of

Nemhauser and Trotter’s [124] theorem that implies a 2k kernelization for Vertex

Cover.

The problem of adding at most k edges to a graph to obtain an interval graph,

CHAPTER 2. INTRODUCTION 17

k-Interval Completion, appears in [80] as an NP-complete problem. Heggernes

et al. [88] show that it is fixed-parameter tractable with a bounded search tree

algorithm running in O(k2k · |V (G)|3 · |E(G)|) time.

Marx [112] shows that the Chordal Deletion problem of deleting at most k

vertices and at most k′ edges to obtain a chordal graph is fixed-parameter tractable

with parameter k+k′ using iterative compression (see Section 3.5.4). Setting either

k or k′ to zero also shows that the Chordal Vertex Deletion and Chordal

Edge Deletion problems are fixed-parameter tractable.

Moser and Thilikos [122] provide an examination of some parameterized edit-

ing problems that are explicitly degree constrained with the k-Size r-Regular

Induced Subgraph and k-Almost r-Regular Induced Subgraph problems.

k-Size r-Regular Induced Subgraph asks for an r-regular induced subgraph of

the input graph with exactly k vertices. This problem is W [1]-hard for any r ≥ 0

when parameterized by k. Conversely k-Almost r-Regular Induced Subgraph

asks for an r-regular induced subgraph of the input graph which is obtainable by

at most k vertex deletions. When parameterized by both k and r, this problem is

fixed-parameter tractable. Stewart [154] shows how the fixed-parameter tractabil-

ity of k-Almost r-Regular Induced Subgraph can be established using a logic

based approach. In the conference version of the paper [121] Moser and Thilikos

left the parameterized complexity of k-Almost r-Regular Induced Subgraph

when parameterized by k alone as an open question. In Chapter 4 we answer this

question, showing that it is W [1]-hard, along with several other variants and gen-

eralisations.

Amini et al. [9] show that finding a subgraph with k vertices and minimum

degree d isW [1]-hard when parameterized by k; however the problem becomes fixed-

parameter tractable on classes of graphs defined by excluded minors and classes of

graphs of effectively bounded local treewidth.

2.2 Where to Look: A Guide for this Thesis

The remainder of the Introduction is devoted to providing preliminary definitions

needed for the main body of the work (Section 2.3).

Chapter 3 formally introduces parameterized complexity theory, including an

overview of the major techniques and tools of the field.

Chapter 4 introduces the WDCE∗ class of problems, which generalise a variety

of degree constraint problems, particularly the r-Regular Subgraph problem,

CHAPTER 2. INTRODUCTION 18

and classifies several WDCE∗ problems according to their parameterizations and

the available editing operations.

Chapter 5 extends the definition of WDCE∗ to the WDCE class of problems,

which generalise the General Factor problem [106]. Chapter 5 completes the

classification begun in Chapter 4 and extends these results to the more problematic

case where both vertex deletion and edge addition are allowed as editing opera-

tions (see Section 2.3.1). We also examine various WDCE problems where the

parameterization includes the treewidth of the input graph.

In Chapter 6 we move to a different style of degree constraint and examine

parameterized problems in degenerate graphs (see Section 2.3.1). We give sev-

eral complexity results for well known problems restricted to degenerate graphs,

including both W [1]-hardness and fixed-parameter tractability results (defined in

Sections 3.2 and 3.1 respectively). We conclude this with a proof that unlike regular

graphs and general factors, it is hard to obtain degenerate graphs with a limited

number of editing steps, even when the degeneracy is a constant.

2.3 Preliminaries

2.3.1 Graph Theory and Notation

We now present relevant graph theoretic definitions, for complete coverage any of

the monographs of Diestel [53], Bondy and Murty [25], Chartrand and Lesniak [32]

or West [167] are excellent.

A graph G = (V,E) is a pair of finite sets V and E where E is a set of two

element subsets of V . V is the set of vertices of G. E is the set of edges of G.

Where the vertex and edge sets are not explicitly labelled, V (G) denotes the vertex

set and E(G) the edge set. Unless otherwise stated we will only consider graphs

where E(G) is a set, that is there are no parallel edges. In general however E(G)

may be a multiset.

For two vertices u, v ∈ V (G) we denote the edge {u, v} as uv or equivalently vu.

In general we will only consider graphs where given an edge uv ∈ E(G), u 6= v.

Given two graphs G = (V,E) and G′ = (V ′, E′), if V ′ ⊆ V and E′ ⊆ E, we

say G′ is a subgraph of G. If V ′ (V or E′ (E, then G′ is a proper subgraph of

G. If G′ is a subgraph of G and for every pair of vertices u, v ∈ V (G′) we have

uv ∈ E(G′) if and only if uv ∈ E(G), then G′ is an induced subgraph of G. If G′ is

a subgraph of G and V (G′) = V (G), then G′ is a spanning subgraph of G.

CHAPTER 2. INTRODUCTION 19

Given a graph G and a vertex v we denote the graph G′ = (V (G) \ {v}, E(G) \

{uv|u ∈ V (G)}) by G − v. We extend this notation in the natural way to cover

edges, and sets of vertices and/or edges.

Given two vertices u, v ∈ V (G) and an edge uv ∈ E(G) we say u is adjacent to v

(or u and v are adjacent) and u and v are incident on uv. u and v are the endpoints

of uv. If two vertices are adjacent, then they are neighbours. Given a vertex u the

set of all neighbours of u is denoted NG(u) and is called the open neighbourhood

of u, and NG[u] = NG(u) ∪ {u} is called the closed neighbourhood of u. Given a

set V ′ of vertices, the open neighbourhood of V ′ is NG(V ′) =
⋃

u∈V ′ NG(u) \ V ′,

and the closed neighbourhood of V ′ is NG[V ′] =
⋃

u∈V ′ NG[u]. If a vertex v has

|NG(v)| = 0, we call v isolated . Where context allows we omit the subscript and

write N(u), N [u], N(V ′) and N [V ′].

A subgraph G′ of a graph G is a clique if the vertices in V (G′) are pairwise

adjacent, i.e. uv ∈ E(G) for all u, v ∈ V (G′). A clique on k vertices is called a

k-clique or a complete graph on k vertices, and is denoted Kk. A set V ′ of vertices

is independent (or an independent set) if the vertices are pairwise non-adjacent,

i.e. uv /∈ E(G) for all u, v ∈ V ′.

We denote the set of edges that v is incident on as E(v), i.e. E(v) = {uv ∈

E(G) | u ∈ V (G) }. The degree of a vertex v, denoted d(v) is |E(v)| = |N(v)|.

Given a set V ′ of vertices, the degree of v into V ′, denoted dV ′(v), is the number of

vertices u ∈ V ′ where u 6= v and uv ∈ E(v). In this thesis we also consider weighted

graphs, where there is a function ρ : V (G) ∪ E(G) → N, with N denoting the

set {0, 1, 2, . . .} of natural numbers and N+ denoting the set {1, 2, . . .} of positive

naturals. We then define the weighted degree of a vertex v, denoted dρ(v), as∑
uv∈E(v) ρ(uv).

Given a graph G, a path on k vertices with k ≥ 1, denoted Pk, is a subgraph

of G with vertex set {v1, . . . , vk} and edge set {v1v2, . . . , vk−1vk}. v1 and vk are

the endpoints of the path. The length of a path on k vertices is k − 1. Given two

vertices u, v ∈ V (G) the distance between u and v, denoted d(u, v) or d(v, u), is

the length of a shortest path in G with endpoints u and v. If for every distinct

pair of vertices u, v ∈ V (G) there exists a path in G with u and v as endpoints,

then G is connected . A cycle on k vertices with k ≥ 3, denoted Ck, in a graph

G is a subgraph with vertex set {v1, . . . , vk} and edge set {v1v2, . . . , vk−1vk, vkv1}.

The length of a cycle on k vertices is k. If a graph G contains no cycles, then it

is a forest . If G is a forest and connected, then G is a tree. Given a tree G and

CHAPTER 2. INTRODUCTION 20

a vertex v ∈ V (G), if v has d(v) = 1 then v is a leaf . A rooted tree is a tree G

with a distinguished vertex v called the root . Let v be the root of a tree G with

leaf set L; if maxu∈L{d(v, u)} = k then G has depth k. Given a rooted tree G with

root v ∈ V (G), the branching factor of a vertex u is the number of neighbours of u

that are further from the root than u. The branching factor of the tree G is then

the maximum branching factor over all vertices of G. If every non-leaf vertex has

branching factor r, then G is an r-ary tree. We denote the maximum number of

vertices in an r-ary tree of depth k by tr(r, k). Given an r-ary tree G with root v

and leaf set L, if d(v, u) = k for all u ∈ L then

|V (G)| = tr(r, k) =
k∑

i=0

ri = (rk+1 − 1)/(r − 1).

Given a graph G and a set of vertices C, the boundary of C, denoted B(C) ⊆

V (G), is the set of vertices not in C that are adjacent to some vertex in C,

i.e. B(C) = { v ∈ V (G) \ C | there exists a vertex u ∈ C such that uv ∈ E(G) }.

Graph Editing

In this thesis we consider three graph editing operations: vertex deletion, edge dele-

tion and edge addition.

Given a vertex v ∈ V (G), we delete v from G by setting V (G) := V (G) \ {v}

and E(G) := E(G) \ E(v). In an unweighted graph the cost of deleting a vertex

is 1. In a weighted graph where ρ(v) is the weight of vertex v, the cost of deleting

v is ρ(v).

In an unweighted graph G, given an edge uv, we delete uv from G by setting

E(G) := E(G) \ {uv}. The cost of deleting an edge is 1.

In a weighted graph we allow “partial deletion” of an edge, that is, given an

edge uv ∈ E(G) of weight ρ(uv) at a cost of c ≤ ρ(uv) we can reduce the weight of

uv to ρ(uv) := ρ(uv)− c. If c = ρ(uv) then the edge is completely deleted as before

as in general we do not allow edges of weight 0.

Given an unweighted graph G, and two vertices u and v such that uv /∈ E(G),

we add an edge by setting E(G) := E(G)∪{uv}. This operation costs 1 to perform.

Given a weighted graph G we may add an edge of weight c between any pair of

vertices u and v at a cost of c. If uv ∈ E(G) then the weight of uv is increased by c,

ρ(uv) := ρ(uv) + c. If uv /∈ E(G) then we set E(G) := E(G)∪ {uv} and ρ(uv) = c.

Intuitively we may think of an edge of weight c as c parallel edges, then edge

deletion in a weighted graph corresponds to removing some or all of the parallel

CHAPTER 2. INTRODUCTION 21

edges, and edge addition corresponds to adding new parallel edges.

Directed Graphs

The problems considered in this thesis will not involve directed graphs, however the

definitions of circuits in Section 2.3.4 require them. A directed graph, or digraph,

D = (V,A) consists of a set V of vertices and a set A of ordered pairs of vertices

called the arc set , or set of arcs, of D. When the vertex and arc sets are not

explicitly labelled V (D) denotes the vertex set of the digraph D, and A(D) denotes

the arc set of D.

We denote an element of A(D) by (u, v) where u, v ∈ V (D). Given an arc

(u, v) ∈ A(D), u is the tail vertex and v is the head vertex of (u, v). (u, v) is an out

arc of u and an in arc of v. We exclude arcs of the form (u, u) from our definition.

It no longer holds that (u, v) = (v, u) in a directed graph.

The in-neighbourhood of a vertex v ∈ V (G), denoted N−(v), is the set {u ∈

V (D) | (u, v) ∈ A(D) }. The out-neighbourhood of a vertex v ∈ V (G), denoted

N+(v), is the set {u ∈ V (D) | (v, u) ∈ A(D) }. The in-degree of a vertex v,

denoted d−(v), is |N−(v)|. The out-degree of a vertex v, denoted d+(v), is |N+(v)|.

A directed path on k vertices, where k ≥ 1, in a directed graph is a subdigraph

with vertex set {v1, . . . , vk} and arc set {(v1, v2), . . . , (vk−1, vk)}. A directed cycle

on k vertices, where k ≥ 2, is a subdigraph with vertex set {v1, . . . , vk} and arc set

{(v1, v2), . . . , (vk−1, vk), (vk, v1)}. If a digraph D contains no directed cycles, then

D is acyclic.

2.3.2 Propositional Logic

Propositional logic formulae are constructed inductively from propositional vari-

ables, negations (NOTs), conjunctions (ANDs) and disjunctions (ORs). Let X =

{X1, X2, . . .} be a countably infinite set of propositional variables, let ¬ be the

negation operator, let
∨

be the disjunction operator and let
∧

be the conjunction

operator. When dealing with binary operations we write a1 ∨ a2 (resp. a1 ∧ a2)

as shorthand for
∨

i∈{1,2} ai (resp.
∧

i∈{1,2} ai). A literal is a variable or negated

variable. We write [m,n] for the interval {m, . . . , n}, if m = 1 we write [n]. The

rules for constructing propositional formulae are:

1. Any element of X is a formula.

2. Let α be a formula. Then ¬α is a formula.

CHAPTER 2. INTRODUCTION 22

3. Let α1, α2, . . . , αd be formulae. Then
∨

i∈[d] αi and
∧

i∈[d] αi are formulae.

4. Nothing else is a formula.

The class of all propositional formulae is denoted PROP. PROP will be impor-

tant in the definition of the class W [SAT] (see Section 3.3).

For t ≥ 0 and d ≥ 1 we inductively define the classes Γt,d and ∆t,d, which will

form the basis of one definition of the W -hierarchy (see Section 3.2):

Γ0,d = {
∧

i∈[c]

λi | 1 ≤ c ≤ d, λ1, . . . , λc are literals }

∆0,d = {
∨

i∈[c]

λi | 1 ≤ c ≤ d, λ1, . . . , λc are literals }

Γt+1,d = {
∧
i∈I

αi | I is a finite, non-empty index set, and for all i ∈ I, αi ∈ ∆t,d }

∆t+1,d = {
∨
i∈I

αi | I is a finite, non-empty index set, and for all i ∈ I, αi ∈ Γt,d }

2.3.3 First Order and Second Order Logic

The definitions for relational structures, first order logic and second order logic are

drawn from Flum and Grohe [78]. For a dedicated coverage of these topics the

monographs of Ebbinghaus and Flum [62] and Ebbinghaus, Flum and Thomas [63]

are more complete references.

Relational Structures

A relational vocabulary (or just vocabulary) τ is a set of predicates (or relation

symbols). The number of variables over which a predicate R ∈ τ operates, the

arity , is denoted arity(R). All predicates R ∈ τ have arity(R) ≥ 1. A τ -structure

A consists of a set A, the universe, and for every R ∈ τ a relation RA ⊆ Aarity(R),

the interpretation of R.

For the purposes of this thesis it is sufficient to consider only vocabularies that

are non-empty and finite, and structures with a finite universe.

Graphs as Structures As will be seen in Section 5.4 it is important that we

define how we treat graphs in terms of relational structures. Typically graphs are

represented by a relational structure where the vocabulary τ consists of a single

predicate E of arity 2 that defines the edge relation, and the universe is the set of

vertices of the graph.

CHAPTER 2. INTRODUCTION 23

For Section 5.4 however it is useful to consider vertices and edges as elements of

the universe. To this end we represent a graph G by its incidence structure G, with

universe A = V (G)∪E(G) and vocabulary τ = {E, V, I} where EG = E(G), V G =

V (G) and IG = { (x, y) | x ∈ V (G) is incident with y ∈ E(G) }. In Section 5.4 we

will introduce further predicates into τ that will be useful in the particular cases

examined there.

First Order Logic

Let X = {x1, x2, . . .} be a countably infinite set of variables. Let τ be a vocabulary.

Atomic formulae of vocabulary τ are of the form xi = xj where xi, xj ∈ X or

Ry1 . . . yr where yi ∈ X for i ∈ {1, . . . , r} and R ∈ τ has arity(R) = r. Formulae of

vocabulary τ are constructed inductively using the boolean connectives ¬, ∧ and ∨,

with a→ b as shorthand for ¬a ∨ b, and the existential and universal quantifiers ∃

and ∀ by the following rules:

1. Any atomic formula is a first order formula.

2. If φ and ψ are first order formulae, then φ ∧ ψ and φ ∨ ψ are first order

formulae.

3. If φ is a first order formula, then ¬φ is a first order formula.

4. If φ is a first order formula and x is a variable not quantified in φ, then ∃xφ

and ∀xφ are first order formulae.

We defer the details of the semantic interpretation of first order formulae of

vocabulary τ over τ -structures to Section 2.3.3, where it is treated as a special case

of the semantics of second order logic.

The set of free variables of a formula φ is the set of variables x with an occurrence

in φ that is not in the scope of any quantifier quantifying x. A formula with no

free variables is a sentence. A formula is quantifier free if neither ∃ nor ∀ appear in

the formula. A formula is in negation normal form if all negation symbols appear

immediately in front of atomic formulae. A formula is in prenex normal form (or

prenex form) if it is of the form Q1x1 . . . Qqxqφ where φ is in negation normal form

and is quantifier free, and Qi ∈ {∃,∀} for all i ∈ {1, . . . , q}.

Second Order Logic

Second order logic is an extension of first order logic that allows quantification over

subsets of the universe and relations, rather than just elements of the universe. To

CHAPTER 2. INTRODUCTION 24

the definition of first order logic formulae we add a countably infinite set of relation

variables X = {X1,X2, . . .} and allow new atomic formulae of the from Xix1 . . . xr

where Xi ∈ X has arity r, and xi ∈ X for all i ∈ {1, . . . , r}. If a relation variable

has arity 1, then we call it a set variable. If all relation variables are set variables,

then the formula is monadic. The class of all monadic second order formulae is

called monadic second order logic and denoted MSO. If a relation variable X is not

quantified in a formula φ, then X is a free relation variable of φ. We add a new

inductive rule; if φ is a formula and X is a free relation variable then ∃Xφ and ∀Xφ

are formulae.

Given a second order formula φ where all relation variables are free, following

Flum and Grohe [78] we slightly abuse the terminology and call φ a first order

formula with free relation variables.

The Semantics of First Order and Second Order Logic

In the following we define the semantics of second order logic. The semantics for

first order logic arises as a special case. When context allows, we omit τ and refer

to a formula of vocabulary τ and a τ -structure simple as a formula and structure

respectively.

Given a τ -structure A with universe A, and a second-order formula φ, an inter-

pretation of φ is a mapping ι that

(a) assigns each free (individual) variable x of φ an element ι(x) ∈ A, and

(b) assigns each free relation variable Y of φ of arity r a relation ι(Y) ⊆ Ar.

We define whether φ is true in A under ι as follows.

1. If φ is the atomic formula xi = xj , then φ is true in A under ι if ι(xi) = ι(xj).

2. If φ is the atomic formula Ry1 . . . yr where R ∈ τ is a relation symbol of arity

r, then φ is true in A under ι if (ι(y1), . . . , ι(yr)) ∈ RA.

3. If φ is the atomic formula Yy1 . . . yr where Y is a relation variable of arity r,

then φ is true in A under ι if (ι(y1), . . . , ι(yr)) ∈ ι(Y).

4. If φ = ¬φ′, then φ is true in A under ι if and only if φ′ is not true in A under ι.

5. If φ = φ1 ∧ φ2, then φ is true in A under ι if and only if φ1 and φ2 are true

in A under ι.

6. If φ = φ1 ∨ φ2, then φ is true in A under ι if and only if φ1 or φ2 is true in A

under ι.

CHAPTER 2. INTRODUCTION 25

7. If φ = ∀xφ′, then φ is true in A under ι if for all elements a ∈ A, φ′ is true in

A under the interpretation ι′ obtained from ι by setting ι(x) = a.

8. If φ = ∃xφ′ then φ is true in A under ι if there is at least one element a ∈ A,

such that φ′ is true in A under the interpretation ι′ obtained from ι by setting

ι(x) = a.

If φ has no free variables then we say that φ is true in A if it is true in the empty

interpretation ι = ∅; in that case we also say that A is a model of φ.

Let φ be a first order formula with exactly one free relation variable X of arity

s. We say that a set S ⊆ As is a solution for φ over A if φ is true in A for an

interpretation ι with ι(X) = S. In most considered cases the free relation variable

will be a set variable, and accordingly the solution S is a subset of the universe A.

Let both Σ0 and Π0 denote the class of all quantifier free formulae. For t ≥ 1

we inductively define Σt as the class of all formulae of the form

∃x1 . . .∃xpφ

for all p ∈ N where φ ∈ Πt−1 and Πt as the class of all formulae of the form

∀x1 . . .∀xpφ

for all p ∈ N where φ ∈ Σt−1.

These classes will help form the basis of two definitions of the W -hierarchy (see

Section 3.2).

2.3.4 Circuits

Circuit complexity has a key historical place in parameterized complexity; the W -

hierarchy was original conceived in terms of the complexity of certain circuits (see

Section 3.2). The definitions we give here are sufficient for the material presented

in this thesis. For a full treatment of circuit complexity we refer to Vollmer’s

monograph [164], from which we derive our notation.

Let B = {AND,OR,NOT, true, false} where AND, OR and NOT correspond

to the familiar boolean operators and true and false to the boolean constants. A

(boolean) circuit C with n inputs x1, . . . , xn and m outputs y1, . . . , ym consists of

an acyclic directed graph D = (V,A), a mapping β : V → B ∪ {x1, . . . , xn} and a

mapping ω : V → {y1, . . . , ym, ?}, where ? indicates that a vertex is not an output

CHAPTER 2. INTRODUCTION 26

vertex, such that:

1. If v ∈ V has d−(v) = 0 then β(v) ∈ {true, false, x1, . . . , xn}.

2. If v ∈ V has d−(v) = 1 then β(v) ∈ {AND,OR,NOT}.

3. If v ∈ V has d−(v) ≥ 2 then β(v) ∈ {AND,OR}.

4. For all i ∈ {1, . . . , n} there is exactly one vertex v ∈ V such that β(v) = xi.

5. For all i ∈ {1, . . . ,m} there is exactly one vertex v ∈ V such that ω(v) = yi.

Let C be a boolean circuit and D be the associated directed graph. Here D is

acyclic, but in Section 6.3 we consider a special case involving cyclic circuits. For

v ∈ V (D) we relax the notation and write v ∈ C. If v ∈ C has d−(v) ≥ 1 then v

is a gate with fan-in d−(v). If v ∈ C has d+(v) ≥ 1 then v has fan-out d+(v). If

β(v) = xi for some i ∈ {1, . . . , n} then v is an input gate or simply input for the

circuit. If ω(v) = yi for some i ∈ {1, . . . ,m} then v is an output gate or output for

the circuit. If m = 1 (i.e. the circuit has exactly one output) then C is a decision

circuit .

For a gate v ∈ C the predecessor set of v is N−(v), the successor set of v is

N+(v).

The value of a circuit is computed inductively from its inputs. Let C be a circuit

with n inputs and m outputs. Let {a1, . . . , an} ∈ {0, 1}n be the set of input values.

For each gate v the value f(v) of v is computed as follows:

1. If β(v) = xi for some i ∈ {1, . . . , n}, then f(v) = ai.

2. If β(v) = true, then f(v) = 1.

3. If β(v) = false, then f(v) = 0.

4. If β(v) = NOT and u is the predecessor of v, then f(v) = 1− f(u).

5. If β(v) = AND, then f(v) = minu∈N−(v){f(u)}.

6. If β(v) = OR, then f(v) = maxu∈N−(v){f(u)}.

The value of the circuit is f(C) = (f(v1), . . . , f(vm)) where v1, . . . , vm are the

outputs of C.

Chapter 3

Parameterized Complexity

Theory

In this chapter we introduce the framework of parameterized complexity theory, first

developed by Downey and Fellows, and expanded in a series of papers (including [1,

2, 55, 56, 57, 73]) culminating in a formal founding in the form of Downey and

Fellow’s [59] monograph, collecting the known theory to that point. The area has

since expanded greatly and aside from a substantial quantity of publications, has

led to two further key monographs, Flum and Grohe’s [78] and Niedermeier’s [126].

3.1 Basic Definitions

Definition 3.1.1 (Parameterized Problem). Let Σ be a non-empty finite alphabet.

A parameterized problem is a pair (P, κ) where P ⊆ Σ∗ is a language over Σ and κ is

a polynomial time computable mapping κ : Σ∗ → N. κ is called the parameterization

(of (P, κ)).

An instance of (P, κ) is a pair (x, k) where x ∈ Σ∗ and k = κ(x). For decision

problems if (x, k) ∈ (P, κ), then (x, k) is a Yes-instance of (P, κ), otherwise it is

a No-instance. In this thesis we will be mostly concerned with decision problems;

if a problem is not a decision problem, this will be clear from context. When the

parameter is also part of the input we write the instance as (x, k), rather than the

more correct ((x, k), k). Informally we will refer to the witness that verifies a Yes-

instance as a solution; for example the k vertices that make up the vertex cover for a

Yes-instance of Vertex Cover. If we have a parameterized problem (P, κ), then

P is the un-parameterized, traditional version of the problem. A parameterized

27

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 28

problem will normally be presented in this thesis in the following form:

P-Problem

Instance: x ∈ Σ∗.

Parameter: κ(x).

Question: Is x ∈ P?

If the parameterization is undecided when the problem is defined or multiple

parameterizations are involved, the problem may be presented in the traditional

form with the particular parameterization specified later:

P-Problem

Instance: x ∈ Σ∗.

Question: Is x ∈ P?

Typically the mapping κ will also remain unspecified, with the parameter drawn

from the input implicitly.

P-Problem

Instance: x ∈ Σ∗, a positive integer k.

Parameter: k.

Question: Is x ∈ P?

Definition 3.1.2 (Fixed-parameter Tractability). Let (P, κ) be a parameterized

problem and (x, k) an instance of that problem with |x| = n. (P, κ) is fixed-

parameter tractable if and only if there exists an algorithm A that solves the problem

in time

f(k) · p(n)

where f is a computable function and p is a polynomial with degree independent of

the parameter. If such an algorithm exists then A is called an fpt-algorithm.

FPT is the class of all fixed-parameter tractable problems.

If f is also a polynomial, then the problem is in P. Thus FPT generalises the

traditional notion of tractability.

Note that Definitions 3.1.1 and 3.1.2 correspond to that of Flum and Grohe [78],

rather than Downey and Fellows [59]. Downey and Fellows originally gave a more

expansive, and less formal definition where the parameter was simply a second

input drawn from Σ∗, and thus was not necessarily numeric. Furthermore Downey

and Fellows do not require that the function f in the definition be computable.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 29

However Flum and Grohe’s definition corresponds to Downey and Fellows’ strongly

uniform fixed-parameter tractability, which suffices for all natural problems and

parameterizations, and certainly does not affect the results in this thesis.

We now demonstrate an alternative definition of fixed-parameter tractability.

Proposition 3.1.3 (Additive FPT [59]). Let (P, κ) be a parameterized problem and

(x, k) an instance of that problem with |x| = n. (P, κ) is fixed-parameter tractable

if and only if there exists an algorithm B that solves the problem in time

g(k) + q(n)

where g is a computable function and q is a polynomial with degree independent of

the parameter.

Proof. (⇒) Assume (P, κ) ∈ FPT. There exists an algorithm A that solves the

problem in time f(k) · p(n). By the inequality ab ≤ a2 + b2, this algorithm solves

the problem in time f(k)2 + p(n)2.

(⇐) Assume (P, κ) has such an algorithm B. By the inequality a+b ≤ a ·(b+1)

we have g(k) + q(n) ≤ g(k) · (q(n) + 1) = g(k) · q′(n) where q′(n) = q(n) + 1.

Therefore the additive definition of fixed-parameter tractability is equivalent to

the multiplicative definition.

Before introducing the first set of parameterized intractability classes we must

define an adequate notion of reducibility.

Definition 3.1.4 (FPT Reductions). Let (P1, κ1) and (P2, κ2) be parameterized

problems. An FPT many-one reduction (or FPT reduction for short) from (P1, κ1)

to (P2, k2) maps an instance (x, k) of (P1, κ1) to an instance (x′, k′) of (P2, κ2) such

that:

1. x is a Yes-instance of (P1, κ1) if and only if x′ is a Yes-instance of (P2, κ2).

2. k′ ≤ g(k) for some computable function g.

3. The mapping can be computed in time bounded by f(k)p(|x|) for some com-

putable function f and polynomial p.

If such a mapping exists, then (P1, κ1) is (FPT) reducible to (P2, κ2). If f is

also a polynomial, then the reduction is a polynomial time FPT reduction.

Given a parameterized problem (P, κ), the closure of (P, κ) under FPT-

reductions is the set [(P, κ)]FPT of all problems FPT reducible to (P, κ). Similar to

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 30

the closure of P under polynomial time many-one reductions, FPT is closed under

FPT reductions, i.e. given two parameterized problems (P1, κ1) and (P2, κ2) such

that (P1, κ1) is reducible to (P2, κ2), if (P2, κ2) ∈ FPT then (P1, κ1) ∈ FPT.

Given a parameterized complexity class X and a parameterized problem (P, κ),

if there is an FPT reduction from every problem in X to (P, κ), then (P, κ) is

X-hard. If (P, κ) is X-hard and also in X, then (P, κ) is X-complete.

Given two parameterized problems (P1, κ1) and (P2, κ2), and a parameterized

complexity class X such that (P2, κ2) is X-hard, if there is an FPT-reduction from

(P2, κ2) to (P1, κ1) then (P1, κ1) is also X-hard.

3.2 The W-Hierarchy

Just as NP-hardness forms the basis of the traditional idea of intractability, param-

eterized complexity has a notion of parameterized intractability, to demonstrate

when a problem is unlikely to have an fpt-algorithm. However this notion is built

not on one class, but a series of classes organised into hierarchies. We introduce the

most fundamental, in a practical sense, of these, the W -hierarchy.

The W -hierarchy consists of a series of classes W [t], t ∈ N+ such that W [t] ⊆

W [t+ 1] for all t and two additional classes W [SAT] and W [P], which will be

discussed separately. It remains an open question as to whether the inclusions in

the hierarchy are strict, though they are generally believed to be.

The W -hierarchy can be defined in a series of equivalent ways, the first we

present is the weighted Fagin definability version.

Let φ be a first order formula with one free relation variable. The parameterized

weighted Fagin definability problem for φ is:

WDφ

Instance: A structure A, a non-negative integer k.

Parameter: k.

Question: Is there a solution S for φ with |S| = k?

If Φ is a class of first order formulas, then the class of problems WD-Φ is the class

of weighted Fagin definability problems where φ ∈ Φ. Recall from Section 2.3.3 that

Π1 is the class of prenex form first order formulae with only universal quantification.

Example 3.2.1. The following formula expresses the problem Vertex Cover:

vertexcover(X) := ∀x∀y∀e(Ixe ∧ Iye ∧ V x ∧ V y → (Xx ∨Xy))

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 31

Thus Vertex Cover is in WD-Π1.

Now we may define the W -hierarchy. Recall that Πt is the class of prenex

form first-order formulae with at most t alternations of existential and universal

quantification, beginning with universal (Section 2.3.3).

Definition 3.2.2 (W -hierarchy). For every t ∈ N+,

W [t] = [WD-Πt]FPT

Combining Definition 3.2.2 and Example 3.2.1, we can see that Vertex Cover

is in W [1].

It can also be shown [78] that WD-Σt+1 ⊆ WD-Πt for t ≥ 1, and that WD-Σ1 ⊆

FPT.

Downey and Fellows’ [59] original formulation of the classes W [t] is based on a

family of circuit satisfiability problems where the decision circuit consists of large

gates with unbounded fan-in, and small gates with bounded fan-in (the precise value

of the bound is unimportant [59]). The weft of the circuit is the largest number

of large gates on any path from the inputs to the ouput of the circuit. The W -

hierarchy derives its name from circuit weft. The depth of the circuit is the largest

number of gates of any size on any path from the inputs to the output of the circuit.

Weighted Weft t Depth h Circuit Satisfiability (WCS(t, h))

Instance: A weft t depth h decision circuit C.

Parameter: A positive integer k.

Question: Does C have a weight k satisfying assignment?

This problem gives the proposition:

Proposition 3.2.3 ([59]). Let t ∈ N+. For every h ∈ N:

W [t] = [WCS(t, h)]FPT

Downey and Fellows [59] also give a characterisation in terms of weighted satis-

fiability problems. Let F be a class of propositional formulae (see Section 2.3.2). A

formula is k-satisfiable if there is a satisfying assignment where k variables are set

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 32

to TRUE. The weighted satisfiability problem for F is:

WSAT(F)

Instance: A formula f ∈ F and a positive integer k.

Parameter: k.

Question: Is f k-satisfiable?

Recall from Section 2.3.2 that Γt,d is the class of propositional formulae with at

most t alternations of
∧

and
∨

, beginning with
∧

and having at most d literals per

clause.

Proposition 3.2.4 ([59]). Let t ∈ N+. For every d ∈ N+:

W [t] = [WSAT(Γt,d)]FPT

The equivalence of the definitions of the W -hierarchy from Propositions 3.2.4

and 3.2.3 is given by Downey and Fellows [56], and the equivalence of the definitions

of the W -hierarchy from Definition 3.2.2 and Proposition 3.2.4 is given by Downey

et al. [60].

Flum and Grohe [77] give a further definition of the W -hierarchy in terms of

model checking problems. Let Φ be a class of (first order) formulae. Then the

parameterized model checking problem for Φ is:

MC(Φ)

Instance: A structure A and a formula φ ∈ Φ.

Parameter: |φ|.

Question: Is A a model of φ?

Recall from Section 2.3.3 that a prenex form first order formula is in Σt if it has

at most t alternations of existential and universal quantification, beginning with

existential. Let Σt,d be the class of Σt sentences where all quantifier blocks after

the leading existential block have length most d.

Proposition 3.2.5 ([77]). Let t ∈ N+. For every d ∈ N+:

W [t] = [MC(Σt,d)]FPT

If d is removed from the definition (i.e. is unbounded), then we obtain the defi-

nition for the A-hierarchy, an alternative parameterized hierarchy. It is known that

A[1] = W [1], and that W [t] ⊆ A[t] for all t. However whether the containment is

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 33

strict for any level above the first is not known. Flum and Grohe [78] provide the fol-

lowing argument that it is unlikely that A[t] ⊆W [t] for t ≥ 1. The classes W [t] are

defined by the problems WD-Πt, which when viewed as non-parameterized prob-

lems are all in NP. The defining problems MC(Σt) for the classes A[t] correspond

to complete problems for the Polynomial Hierarchy [155], and it seems unlikely the

two would be equivalent.

Of course to this point all these definitions have been relative to a collection of

chosen complete problems which although practical may seem unsatisfying with re-

gards to any underlying method of computation. However the W -hierarchy can also

be defined in terms of machine models. Chen and Flum [37] give a characterisation

using an alternating Turing machine model. Islam [92] gives a much more workable

machine model. As this thesis does not deal with machine characterisations we refer

to the cited literature for further discussion and definitions.

3.2.1 A Note on Containment

For every t ≥ 1, W [t] ⊆ W [t+ 1], by virtue of the similar containment of the

defining classes Πt. However it may not be immediately clear that FPT ⊆W [1].

Proposition 3.2.6. FPT ⊆W [1].

Proof. Let (P, κ) ∈ FPT be a parameterized problem. By Definition 3.1.2 there

exists an algorithm A that solves each instance (x, k) of (P, κ) in time f(k) · p(n)

where |x| = n, f is a computable function and p is a polynomial.

We construct a reduction that maps an instance (x, k) of (P, κ) to an instance of

a problem in WD-Π1 by running A on (x, k). If (x, k) is a Yes-instance, the WD-

Π1 problem instance is the formula ∀y(Xy∨¬Xy) whereX is the free set variable. If

it is a No-instance, the WD-Π1 problem instance is the formula ∀y(Xy∧¬Xy). In

the first case both are Yes-instances, and in the second both are No-instances. Fur-

thermore it is clear that reduction can be computed in time O(f(k)p(n)). Therefore

(P, κ) ∈W [1].

3.3 W[SAT] and W[P]

So far the W -hierarchy classes considered have been defined in terms of problems

for a series of fragments of logic. The next natural step is to consider the complexity

classes obtained when the logic is less restricted.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 34

FPT

W[1]

W[2]

...

W[SAT]

W[P]

para-NP XP

Figure 3.1: The relationships of major parameterized classes.

Consider the weighted satisfiability definition of the W [t] classes (Proposi-

tion 3.2.4). If we choose F to be the class of all propositional logic formulae then

we obtain the original definition of W [SAT] [56].

Definition 3.3.1. Let PROP be the class of all propositional logic formulae.

W [SAT] = [WSAT(PROP)]FPT

Papadimitriou and Yannakakis [132] give an alternative definition in terms of a

parameterized model checking problem.

v-MC(Φ)

Instance: A structure A and a formula φ ∈ Φ.

Parameter: The number of variables in φ.

Question: Is A a model of φ?

Proposition 3.3.2 ([132]).

W [SAT] = [v-MC(Σ1)]FPT

Propositional formulae can be simulated by boolean circuits, thus it is natural

to extend the definition of WSAT to boolean circuits. A decision circuit C is k-

satisfiable if there exists an assignment to the inputs that gives an output of 1 with

k inputs set to 1. Using the class of circuits in place of propositional logic classes

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 35

in the WSAT problem gives Downey and Fellows’ [56] definition of W [P].

Proposition 3.3.3 ([56]). Let CIRC be the class of all decision circuits.

W [P] = [WSAT(CIRC)]FPT

Combining Definitions 3.2.4, 3.3.1 and 3.3.3 and Proposition 3.2.6 we can see

the structure of the W -hierarchy:

FPT ⊆W [1] ⊆W [2] ⊆ . . . ⊆W [t] ⊆ . . . ⊆W [SAT] ⊆W [P]

Thus hardness of a problem for any class in the W -hierarchy gives evidence that the

problem is not in FPT similar to NP-hardness indicating that a problem is unlikely

to be in P.

Chen et al. [38] provide a particularly useful alternative definition of W [P] based

on Turing Machines. A nondeterministic Turing Machine M is κ-restricted if there

are computable functions f and g and a polynomial p such that on input (x, k), M

performs at most f(k)p(n) steps, g(k) log n of them being nondeterministic, where

n = |x| and k = κ(x).

Proposition 3.3.4 ([38]). W [P] is the class of problems (P, κ) that can be solved

by a κ-restricted nondeterministic Turing Machine.

This definition gives an intuitive method of showing that a problem is inW [P] by

a simple guess-and-check algorithm. Assuming the solution is of size k, each element

of the solution can be encoded in log n bits, and the solution can be verified in time

bounded by f(k)p(n), where f is a computable function and p is a polynomial,

it suffices to nondeterministically guess k elements as the solution and verify the

correctness of the guesses. For example Dominating Set can be solved on such a

Turing Machine by guessing k vertices then verifying in polynomial time that the

vertices form a dominating set (i.e. that all vertices in the graph are either in the

set or are adjacent to one of the vertices in the set).

3.4 Para-NP and XP

The W -hierarchy is contained in two more general classes. para-NP results from

mimicking the relationship between P and NP by replacing ‘algorithm’ with ‘non-

deterministic’ algorithm in the definition of FPT.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 36

Definition 3.4.1 (Para-NP). Let (P, κ) be a parameterized problem. (P, κ) is

in para-NP if there is a nondeterministic algorithm A that on input (x, k) where

|x| = n and k = κ(x) solves (P, κ) in time

f(k) · p(n)

where f is a computable function and p is a polynomial.

Note that if P ∈ NP, then no matter what paramerization κ is chosen, (P, κ) ∈

para-NP. In fact the relationship between NP and para-NP can be strengthened

further.

Proposition 3.4.2 ([78]). FPT = para-NP if and only if P = NP.

Consider the following parameterization of the colourability problem:

Colourability

Instance: A graph G, a positive integer k.

Question: Does G have a proper vertex colouring with k colours?

As Colourability is in NP, Colourability parameterized by k is in

para-NP. As Colourability is NP-hard even when k is fixed at 3 we can see

that Colourability cannot be in FPT with parameter k unless P = NP. This

simple observation can be extended to a general statement. Let (P, κ) be a param-

eterized problem. The lth slice of (P, κ) is the problem

(P, κ)l = {x ∈ (P, κ) | κ(x) = l }.

It is clear that if (P, κ) ∈ FPT, then (P, κ)l ∈ P. If (P, κ)l ∈ P for each l then

(P, κ) is slice-wise polynomial.

Proposition 3.4.3 ([76]). If (P, κ)l is NP-complete for some l ∈ N and P ∈ NP,

then (P, κ) is para-NP-complete.

Thus Colourability is para-NP-complete when parameterized by k. However

Proposition 3.4.3 largely gives the intuition that para-NP is in fact a poor character-

isation of parameterized intractability. Problems such as Clique and Dominating

Set which appear to have no fpt-algorithm for their natural parameterizations (and

are in factW [1]-complete andW [2]-complete respectively) are slice-wise polynomial.

The notion of slicewise polynomial however provides the basis for the class

XP [59].

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 37

Definition 3.4.4. nonuniform-XP is the class of all parameterized problems (P, κ)

such that (P, κ)l ∈ P for all l ≥ 1.

From this we can derive the following observation:

Proposition 3.4.5. If P 6= NP then para-NP * nonuniform-XP.

Proof. If para-NP ⊆ nonuniform-XP then Colourability with parameter k is

slice-wise polynomial; in particular 3-Colourability is in P, therefore P = NP.

However nonuniform-XP contains undecidable problems [78], therefore the fol-

lowing definition is generally more preferable:

Definition 3.4.6 (XP). XP is the class of all parameterized problems (P, κ) such

that given an instance (x, k) of (P, κ) with |x| = n, there is an algorithm that solves

(x, k) in time pf(k)(n) where pf(k) is a polynomial of degree f(k).

XP is one of the few classes about which a strict containment statement can be

made.

Proposition 3.4.7 ([78]). FPT (XP.

The relationships of the classes discussed in Sections 3.1, 3.2, 3.3 and 3.4 are

shown in Figure 3.1.

3.5 Techniques in Parameterized Complexity

The field of parameterized complexity is rich in techniques for classifying the

complexity of parameterized problems and particularly for demonstrating fixed-

parameter tractability. In this section, we will outline the main techniques and

provide illustrative examples of their application.

3.5.1 Non-Constructive and Non-Practical Techniques

First we will examine techniques that demonstrate fixed-parameter tractability ei-

ther without an accompanying algorithm, or with an algorithm with a running time

that renders the algorithm infeasible to implement. However these techniques can

still be readily used to obtain classifications.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 38

Graph Minors

A graph H is a minor of a graph G if H can be obtained from G by a finite number

of edge contractions, edge deletions and vertex deletions. An edge contraction is

conducted by taking an edge uv, and creating a new vertex w such that N(w) =

(N(u) ∪ N(v)) \ {u, v}, and deleting u and v. Determining whether such a set of

contractions and deletions exist for a given pair G and H is called minor testing .

In a series of twenty papers (starting with [143] and ending with [144]) Robert-

son and Seymour demonstrated one of the deepest results in modern graph theory.

In brief it states that for any family F of (finite) graphs closed under taking minors

(closed under the minor order), there exists a finite obstruction set of graphs such

that a graph G belongs to F if and only if G does not contain any of the obstruc-

tions as a minor. Moreover, given a graph G, the problem of determining whether

an obstruction is a minor of G is fixed-parameter tractable where the size of the

obstruction is the parameter.

Thus any problem of determining whether a graph has a property that is closed

under the minor order (i.e. given a graph G with the property, all minors of G also

have the property) is fixed-parameter tractable by the Graph Minor Theorem where

the parameter is the number of vertices in the largest obstruction graph. Vertex

Cover is one such problem; if a graph G has a vertex cover of size at most k,

then any minor of G will also have a vertex cover of size at most k. Dominating

Set, which is W [2]-complete [59] clearly does not succumb to this approach. An

induced cycle of length greater than 3k forms an obstruction for the existence of a

dominating set of size at most k. Consider such a cycle, where each vertex on the

cycle is connected to a central vertex. This central vertex forms a dominating set

for the graph. If we remove the central vertex however, the size of the minimum

dominating set increases (this increase can be made arbitrarily large). Therefore

the property of having a dominating set of size at most k is not closed under the

minor order, and there is no finite obstruction set.

The problems with using Graph Minor theory as a practical approach are

twofold. First, although testing whether H with |V (H)| = k is a minor of G with

|V (G)| = n has a running time of O(f(k)n3), f is a fast growing function and thus

proves impractical even compared to näıve, brute force fixed-parameter algorithms.

Second, Robertson and Seymour’s proof is non-constructive. Thus it gives no way

of determining the finite obstruction set. However some progress has been made on

algorithms to compute excluded minors by Adler et al. [6] and Demaine et al. [52].

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 39

Graph Minor theory allows a quick determination of whether certain problems

are fixed-parameter tractable, and whether it is possibly worthwhile pursuing a

practical algorithm. However if a property is not closed under the minor order,

then the associated problem may or may not be fixed-parameter tractable.

Bounded Treewidth and Courcelle’s Theorem

It is often the case that when the input of a hard problem is restricted to trees, it

becomes easy; for example Colouring can be decided in time O(1) (all trees can

be coloured with two colours) and a colouring can be found in time O(|V |). Thus

it is often useful to have a graph that is, in a certain sense, almost a tree.

Following Niedermeier’s definition [126], a tree decomposition of a graph G =

(V,E) consists of a set X = {Xi | i ∈ I } where each element Xi (called a bag) is a

set of vertices of G, and an accompanying tree where the nodes are elements of I

with the following properties:

1.
⋃

i∈I Xi = V .

2. For every uv ∈ E, there exists an i such that {u, v } ⊆ Xi.

3. For every i, j, k ∈ I, if j lies on the path in T from i to k, then Xi ∩Xk ⊆ Xj .

The width of a decomposition is given by w = max{ |Xi| | i ∈ I } − 1. Then the

treewidth tw(G) of a graph G is given by the minimum k such that G has a tree

decomposition of width k.

Thus a nontrivial tree may be decomposed into a series of bags of size 2 (effec-

tively the edges), and has treewidth 1. If a graph has small treewidth, then it may

be easier to deal with than a general graph. Practical approaches to using treewidth

will be discussed later, however fixed-parameter tractability for graphs of bounded

treewidth is often relatively simple to determine using Monadic Second-Order Logic

(MSO), and Courcelle’s Theorem.

Courcelle’s Theorem, stated and developed over several publications (beginning

with [44] and finishing with [45]) states that given a graph G of treewidth at most

k, and an MSO formula φ, then it can be determined in time O(f(k+ |φ|) ·(|V (G)|+

|E(G)|)) whether G is a model for φ (see Section 2.3.3 for the semantics of second

order logic). In other words, if a graph property can be expressed in MSO logic, then

it is fixed parameter tractable to determine whether a graph of bounded treewidth

has that property or not where the parameter is the treewidth of the graph plus

the length of the formula expressing the property.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 40

For example, we may express the property of a graph being k-colourable:

∃X1 . . . Xk∀x∀y∀e((V x ∧ V y ∧ x 6= y ∧ Ixe ∧ Iye→∧
i∈[k] ¬(Xix ∧Xiy)) ∧ (V x→

∨
i∈[k]Xix))

Thus Colourability parameterized by the treewidth of the input graph and

the number of colour classes k is fixed-parameter tractable.

However, much like Graph Minors, the function f in the running time is unfea-

sibly large, with enormous hidden constants, thus Courcelle’s Theorem is entirely

of theoretical significance. However Courcelle’s Theorem is at least constructive.

Despite the algorithmic limitations, Courcelle’s Theorem is an invaluable tool, as

fixed-parameter algorithms for bounded treewidth generally rely on dynamic pro-

gramming, and are complex and difficult. Courcelle’s Theorem provides a quick and

easy method of determining the complexity of a problem with respect to bounded

treewidth.

This does not mean that treewidth cannot be used in a practical setting al-

though a key problem here is producing a tree decomposition of small width. Bod-

laender [22] gives a linear time fixed-parameter algorithm to decide if a graph G has

treewidth k, and if so produce a tree decomposition of G with width k, where k is the

parameter. However the hidden constant in the running time is prohibitively large.

Most commonly Reed’s [142] 4-approximation algorithm for tree decompositions is

used, Bodlaender [20] gives some recent perspective on this. Once a tree decomposi-

tion is produced however, other (fixed-parameter) techniques are generally applied,

most commonly dynamic programming.

Bounded Local Treewidth and First Order Logic

Frick and Grohe [79] give a meta-theorem thematically similar to Courcelle’s The-

orem. Given a τ -structure A with universe A we define the Gaifman graph of A

as the graph G(A) = (V,E) where V = A and ab with a, b ∈ A and a 6= b is an

edge if and only if there exists R ∈ τ such that a, b ∈ {x1, . . . , xarity(R)} for some

(x1, . . . , xarity(R)) ∈ RA. Note that if a graph has maximum degree d then the Gaif-

man graph of its incidence structure has maximum degree d. The distance between

two elements of A is their distance in G(A). Let NG
r (v) = {u ∈ V | d(u, v) ≤ r }

be the r-neighbourhood of v, and let [NG
r (v)] be the graph induced by the r-

neighbourhood of v. The local treewidth at depth r ltwr(A) of a structure A is

maxv∈V (G(A)) tw([NG
r (v)]). The local treewidth of a class of structures C is effec-

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 41

tively bounded if there is a computable function f such that ltwr(A) ≤ f(r) for all

A ∈ C and all r ≥ 1.

Classes with effectively bounded local treewidth include the class of planar

graphs, the classes of graphs of bounded treewidth, and notable for our purposes,

the classes of graphs of bounded degree.

Let MC(C,FO) denote the model checking problem where the formula φ is a

first order formula and the structure A is from the class C. Bounded local treewidth

becomes useful when combined with the following theorem:

Theorem 3.5.1 ([79]). Let C be a class of structures of effectively bounded lo-

cal treewidth. MC(C,FO) is fixed-parameter tractable where the parameter is a

function of the length of the input formula.

As graphs of bounded degree are structures with effectively bounded local

treewidth we obtain the following useful corollary:

Corollary 3.5.2 ([79]). Let Gd be the class of graphs with degree at most d ∈ N.

MC(Gd,FO) is fixed-parameter tractable where the parameter is a function of the

length of the input formula.

Stewart [154] demonstrates that Frick and Grohe’s proof of Theorem 3.5.1 es-

tablishes a stronger result. Let C be a class of pairs (A, φ) where A is a structure

and φ a first order formula, and assume that there exists a function f : N×N → N

such that for (A, φ) ∈ C we have ltwr(A) ≤ f(r, |φ|). Then the problem of deciding

if A is a model of φ for (A, φ) ∈ C is fixed parameter tractable for parameter |φ|.

This generalisation of Theorem 3.5.1 gives the following corollary:

Corollary 3.5.3 ([154]). Let C be a class of structures. MC(C,FO) is fixed-

parameter tractable with parameter d + l where d is the maximum degree of the

structure and l is the length of the formula.

3.5.2 Bounded Search Trees

Employing a search tree to solve a problem is by no means a new technique, and as a

parameterized technique it has been recognised from the founding of the field. The

key to developing a search tree algorithm is that of bounding the size of the tree by

a function of the parameter, with each branching step performable in polynomial

time. The branching factor of a bounded search tree is the maximum number of

children of any vertex in the tree. Typically a tree is designed with a constant bound

on the branching factor, along with a depth bound described by a function of the

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 42

parameter. However as long as the tree size is bounded entirely by a function of the

parameter, and each step is performable in “FPT-time”, the resulting algorithm will

still be fixed-parameter tractable. Given a search tree G with branching factor r

and depth k (see Section 2.3.1), we denote the maximum number of vertices of G

by tr(r, k).

The classic example is that of Vertex Cover, which admits a very simple

bounded search tree, but also has been studied extensively (Balasubramanian et

al. [13], Downey et al. [54], Niedermeier and Rossmanith [127, 129], Chen et al. [34],

Chen et al. [35] and Chandran and Grandoni [31] give significant contributions). If

we consider an edge in the graph, then at least one of the endpoints must be in

the vertex cover, giving a branching factor of 2. As there may only be at most

k vertices in the cover, the depth is bounded by k. Thus the search tree has size

O(2k). The current best, due to Chen et al. [35], stands at O(1.2738k), and uses

more sophisticated branching rules and interleaved kernelization steps.

Many problems are amenable to a bounded search tree approach, and the tech-

nique is quite practical as the branching steps in the search tree are essentially a

map for the recursive calls of the underlying algorithm, thus a bounded search tree

approach leads directly to an algorithm, with running time inherently similar to

the size of the search tree (perhaps plus some overhead or auxiliary processing).

Therefore much effort is focussed on producing clever branching strategies that re-

duce the size of the tree, although sometimes an ‘improvement’ is a matter of closer

analysis of the complex recurrences produced by the branching strategy.

Example problems that admit a bounded search tree based algorithm include

Cluster Editing [83], d-Hitting Set [128] and Dominating Set for graphs

of bounded genus [67]. For further examples of the application of bounded search

trees consult the texts of Niedermeier [126] or Downey and Fellows [59].

3.5.3 Dynamic Programming

Dynamic programming is possibly one of the most widely applied algorithmic tech-

niques in computer science. The basic idea is that by storing in a table the solutions

to previously calculated sub-problems, the cost of conducting in effect an exhaustive

search is reduced. For a general introduction one may consult any algorithms text

(for example the popular text by Cormen et al. [42]). In the context of parameter-

ized complexity, dynamic programming is still an important technique. Dynamic

programming directly produces fixed-parameter tractable algorithms when the size

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 43

of the table (implicitly) generated is bounded by a function of the parameter alone,

and each entry can be calculated in “FPT-time” (though typically it will be poly-

nomial).

There are many fixed-parameter tractability results that employ dynamic pro-

gramming algorithms for at least part of the process. For example Dreyfus and

Wagner [61] present an algorithm for the Steiner Problem in Graphs that al-

though not recognised at the time of publication, is a fixed-parameter algorithm.

Mölle et al. [120] give a recent improvement to this. Guo and Niedermeier [87] give

an algorithm for Multicommodity Demand Flow in Trees. An application to

Vertex Cover is shown by Niedermeier and Rossmanith [129] and improved by

Chandran and Grandoni [31].

3.5.4 Iterative Compression

Iterative compression is one of the newest techniques to enter the parameterized

complexity toolbox. The technique was introduced by Reed et al. [141] for Graph

Bipartization. Hüffner improves the algorithm and provides a clear explanation

of its working [90].

The fundamental premise of iterative compression is to provide a fixed-parameter

algorithm called the compression step that, given a solution of size k + 1, either

produces a solution of size k, or correctly states that there is no such solution. In

practice, the input is slowly reconstructed from an empty input (or some base case),

where the optimal solution is easy or trivial to calculate, and each component of the

input is added individually to the solution, then the compression step is run. This

guarantees that at each step, the solution is optimal for that particular sub-instance.

Iterative compression has been applied in several interesting cases. Guo at

al. [86] and Dehne et al. [49] independently provide similar algorithms for the

Feedback Vertex Set problem. The long standing open problem Directed

Feedback Vertex Set was shown to be fixed-parameter tractable using itera-

tive compression [36], along with the subsidiary problem Ordered Multi-cut in

DAGs [140], indicating that iterative compression may provide a new inroads to

problems that have not yet proven amenable to other approaches.

3.5.5 Greedy Localization

Greedy localization is another relatively new technique, that is particularly suited

to maximisation problems, and is in a sense, the reverse of iterative compression.

The general technique is to greedily compute a maximal solution to the problem

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 44

being considered, and then either this solution is sufficient (i.e. large enough), or it

provides a starting point from which we can construct an optimal solution in “FPT-

time”.

This technique was first applied to the Set Splitting problem by Dehne et

al. [50]. Greedy localization also proves fruitful for Set Packing [71] and Star

Packing [136].

3.5.6 Colour-Coding

Colour-coding is another long standing technique in parameterized complexity, but

is also one of the most difficult to apply. Colour-coding relies on colouring the

input with f(k) colours for some f , where k is the parameter, such that at least

one colouring allows the solution to be identified. Then the complexity of searching

the input is reduced to searching for different coloured elements, of which there are

at most f(k) groups. The colouring in question may be generated randomly, with

an expectation that a correct colouring will be generated after a finite number of

iterations, bounded by some function of the parameter k. The colouring algorithm

may be made into an exact algorithm using hashing, at a corresponding cost to the

running time. This relies on the existence of a “k-perfect family of hash functions”

H, which is a set of functions mapping each element {1, . . . , n} to the set {1, . . . , k}

such that for each k sized subset S ⊆ {1, . . . , n}, there is a function h ∈ H such

that h is one-to-one on S.

In fact, it turns out that not only do such families exist, it is possible to generate

such a family in time O(2O(k) log n) [8].

Alon et al. [8] give a colour-coding algorithm for the Longest Path problem.

Other recent colour-coding algorithms are demonstrated by Marx [111], Scott et

al. [147] and Bläser [16].

Although the technique provides reasonably elegant theoretical results, the cost

of generating and searching the family of hash functions tends to be prohibitive.

3.5.7 Kernelization and Reduction

Kernelization is one of the most fundamental techniques of parameterized com-

plexity, providing not only theoretical classifications, but also direct practical al-

gorithms. Kernelizations also tend to be more easily understandable and intuitive

than many other techniques, as kernelizations usually rely not on global properties,

but small, local structure. Kernelizations can also provide integral parts of other

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 45

approaches, either in the form of reduction rules that can be used independently of

the kernelization, or as a preprocessing step. In fact, in practice, most kernelization

algorithms use only a selection of the (theoretical) reduction rules available (com-

pare for example the rules used practically by Abu-Khzam et al. [4] and the range

of Vertex Cover reductions available), and often interleave kernelization steps

with other approaches, such as bounded search trees (for example Chen et al. [35]

use such a process).

One of the key definitions in parameterized complexity theory, due to Downey

and Fellows [59], is the following:

Definition 3.5.4 (Kernelization). A kernelization for a parameterized problem

(P, κ) is a polynomial time computable function that takes an instance (x, k) of

(P, κ) and maps it to an instance (x′, k′) (the kernel) of (P, κ) such that |x′| ≤ g(k)

for some computable function g, k′ ≤ k, and (x, k) is a Yes-instance if and only if

(x′, k′) is a Yes-instance.

The mapping that kernelizations are based on may also be thought of as a

polynomial time self reduction. Note that fixed-parameter tractable preprocessing

that results in an instance of size bounded by a function of the parameter is not

generally considered a kernelization (and certainly not a proper kernelization as

defined by Abu-Khzam and Fernau [5]). Niedermeier [126] gives the following key

result:

Proposition 3.5.5. A decidable parameterized problem is fixed-parameter tractable

if and only if it has a kernelization.

Proof. Let (P, κ) be a decidable parameterized problem with instance (x, k).

(⇐) Assume that (P, κ) has a kernelization with a kernel of size f(k). Given

the kernel, since the problem is decidable, we can decide whether the kernel is a

Yes-instance in time bounded by some computable function g of the size of the

kernel, i.e. g(f(k)) = g′(k). As the kernel is obtained in polynomial time, we have

an algorithm that solves the problem in time p(n) + g′(k) where p is a polynomial

and |x| = n. Therefore (P, κ) ∈ FPT.

(⇒) Assume that (P, κ) ∈ FPT. Then there is an algorithm solving (P, κ) for

every instance (x, k) in time bounded by f(k) ·nc where f is a computable function,

|x| = n and c is a constant independent of k and n. Assume that f(k) < n. Then in

time bounded by nc+1 we can solve the problem and produce a constant size instance

that encodes either Yes or No, depending on the solution, i.e. a kernelization. If

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 46

f(k) ≥ n then the size of the instance is already bounded by a function of the

parameter, i.e. is already a kernel.

For example, consider the following:

Harmonious Colouring

Instance: A graph G = (V,E), a positive integer k.

Parameter: k.

Question: Is there a k-colouring of the vertices such that each pair of

colours appears on at most edge?

Given k colours, there are only
(
k
2

)
pairs of colours, thus if there are more

than
(
k
2

)
edges, there must be at least one repeated pair. Thus (assuming there

are no isolated vertices), there can be at most 2
(
k
2

)
vertices in the graph. So

for Harmonious Colouring there is a trivial kernelization, thus Harmonious

Colouring ∈ FPT.

Reduction Rules

Generally kernelizations are given in terms of reduction rules such as the following

simple reduction for Vertex Cover due to Buss and Goldsmith [26]. Given a

vertex v of degree k+1, either v must be in the cover, or all of N(v). As |N(v)| > k,

the only possibility for obtaining a cover of size at most k requires that v be in the

cover. Therefore v is added to the cover, and deleted from the graph, and k is

reduced by 1. Then after this rule is exhaustively applied, if the instance has more

than k2 + k vertices with degree at least 1, it cannot have a cover of size k or less,

and is a No-instance.

Kernelizations can be much more complex than this, particularly with regards

to the rules applied to obtain the kernelization. Most rules exploit small, fixed

structure to obtain a reduction. Some are parameter dependent, some are parameter

independent. A rarer type of reduction rule is one that exploits variable structure,

such as the so called “crown rule” for vertex cover (developed by Chor et al. [39],

[68]).

Definition 3.5.6. Given a graph G = (V,E), a crown is a tri-partition C,H,X ⊆

V , such that:

• C is an independent set.

• There is a matching from H into C.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 47

• There are no edges between C and X.

It is easy to see that there exists a minimum vertex cover of G that includes all

of H and none of C. Therefore we obtain an equivalent instance by removing C and

H, and decreasing k by |H|. Note that the matching implies that |H| ≤ |C|. This

leads to a kernel with at most 3k vertices. This general approach has also been

applied to other problems, such as Edge Disjoint Triangle Packing [116],

Star Packing [136] and d-Hitting Set [3].

Kernelization by application of reduction rules is normally conducted in a some-

what ad hoc fashion, but Prieto [135] formalises the process of proving kernelization

results as the ‘Method of Extremal Structure’.

3.5.8 Compositional Problems and Polynomial Sized Kernels

As noted there a several techniques for demonstrating fixed-parameter tractability

that do not produce practical algorithms, particularly applications of the graph

minor theorem, and Courcelle’s Theorem. For some problems classified via these

techniques we may suspect that we cannot do much better. In particular they may

not have kernels bounded by a polynomial in the parameter. Of course Propo-

sition 3.5.5 guarantees that they have a kernelization of some form, however this

may also be impractical. Bodlaender et al. [23] develop a tool aimed at showing

that problems do not have a polynomially sized kernel, based on certain complexity

theoretic assumptions. Note that the results we present here concern only OR-

compositionality, so we quietly omit results concerned with AND-compositionality.

For these results we refer to Bodlaender et al. [23, 24].

Definition 3.5.7 (Composition). A composition algorithm for a parameterized

problem (P, κ) is an algorithm that receives as input a sequence ((x1, k), . . . , (xt, k))

of instances of (P, κ) and outputs in time bounded by a polynomial in
∑t

i=1|xi|+k

an instance (x′, k′) where:

1. (x′, k′) is a Yes-instance of (P, κ) if and only if (xi, k) is a Yes-instance of

(P, κ) for some i ∈ {1, . . . , t}.

2. k′ = p(k) where p is a polynomial.

This definition is then accompanied by the key lemma:

Lemma 3.5.8 ([23]). Let (P, κ) be a parameterized problem with a composition

algorithm where the non-parameterized version of the problem P is NP-complete.

CHAPTER 3. PARAMETERIZED COMPLEXITY THEORY 48

Then if (P, κ) has a polynomially sized kernel, the Polynomial Hierarchy collapses

to the third level.

For details of the Polynomial Hierarchy we refer to Stockmeyer [155], and note

that a collapse in the Polynomial Hierarchy seems unlikely [131].

Therefore any demonstration of the existence of a composition algorithm for a

fixed-parameter tractable problem indicates that the problem is unlikely to have a

polynomially sized kernel.

Bodlaender et al. [23] also make the following useful observation:

Lemma 3.5.9 ([23]). Let (P, κ) be a parameterized graph problem, let G1 and G2 a

pair of graphs and let k be the parameter. Suppose that (G1, k) ∈ P or (G2, k) ∈ P

if and only if (G1]G2, k) ∈ P. Then (P, κ) has a composition algorithm.

A]B denotes the disjoint union of A and B.

This lemma then immediately shows that problems such as Longest Path,

k-Cycle and k-Exact Cycle have composition algorithms, and are therefore un-

likely to have polynomially sized kernels unless there is a collapse in the Polynomial

Hierarchy.

Given two parameterized problems (P, κ) and (P ′, κ′) a polynomial time and

parameter FPT reduction from (P, κ) to (P ′, κ′) is a polynomial time FPT reduction

that maps an instance (x, k) of (P, κ) to an instance (x′, k′) of (P ′, κ′) such that

k′ ≤ p(k), where p is a polynomial. Bodlaender et al. [24] show that this notion of

reduction can be used to demonstrate lower bounds for kernel sizes.

Theorem 3.5.10 ([24]). Let (P, κ) and (P ′, κ′) be parameterized problems where the

unparameterized problem P is in NP, P ′ is NP-complete and there is a polynomial

time and parameter FPT reduction from (P, κ) to (P ′, κ′). If (P ′, κ′) admits a

polynomially sized kernel, then (P, κ) also admits a polynomially sized kernel.

Kratsch and Wahlström [96] use this approach to show that the Π Edge Dele-

tion problem in unlikely to have a polynomial size kernel when parameterized by

the number of deletions where Π is characterised by a finite set of forbidden induced

subgraphs.

Chapter 4

Regular and Chosen Degree

Graphs

4.1 Introduction

A graph G is r-regular if for every vertex v ∈ V (G), we have d(v) = r; a graph is

regular if it is r-regular for some r ≥ 0.

The problem of finding a regular subgraph of a given graph has a long his-

tory. The Cubic Subgraph problem is one of Garey and Johnson’s [80] original

NP-complete problems, with the NP-hardness proof attributed to Chvátal. Stew-

art [151, 152, 153] refines this result, showing that r-Regular Subgraph is NP-

complete for every r ≥ 3, even when restricted to graphs of maximum degree 7,

planar graphs of maximum degree 4 and bipartite graphs. In general results con-

cerning similar problems are negative, with the only nontrivial polynomial results

concerning spanning subgraphs [160].

From a parameterized viewpoint we may apply Proposition 3.4.3 immediately

to state the following:

Proposition 4.1.1. r-Regular Subgraph is para-NP-complete for parameter r.

Therefore such a parameterization of the problem is not very interesting. How-

ever if we consider an editing version of the problem where the number of changes

made to obtain the regular graph is limited we obtain more interesting parame-

terizations. For example, we can ask whether it is possible to obtain a 3-regular

graph from an input graph by deleting at most k vertices. In order to study a wide

range of such problems where the type and number of editing steps is restricted

49

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 50

we define a general template, the Weighted Degree Constrained Editing, or

WDCE∗, class of problems. We denote the editing operations vertex deletion, edge

deletion and edge addition defined in Section 2.3.1 as v, e and a respectively. Then

for ∅ 6= S ⊆ {v, e, a} we define WDCE∗(S) as:

WDCE∗(S)

Instance: A graph G = (V,E), two integers k and r, a weight function

ρ : V ∪ E → {1, 2, . . . }, and a degree function δ : V → {0, . . . , r}.

Question: Can we obtain from G a graph G′ = (V ′, E′) using editing

operations from S only, such that for all v ∈ V ′ we have
∑

uv∈E′ ρ(uv) =

δ(v), with total editing cost at most k?

We write WDCE∗
1(S) to indicate that the given graph is unweighted. If for all

vertices v the degree constraint is δ(v) = {r} then we write WDCEr(S). Further-

more, we write ∞WDCE∗(S) to indicate that the editing cost is not restricted (or

set to a value that exceeds the sum of weights of all vertices and edges). We omit

set braces whenever the context allows, and write, for example, WDCE∗(v) instead

of WDCE∗({v}). For example the problem of deleting at most k vertices to obtain

a 3-regular graph can be conveniently expressed as WDCE3
1(v). In Chapter 5 we

will introduce a more general form of these problems, WDCE.

Chapters 4 and 5 constitute a complete classification of the complexity of

WDCE(S) for ∅ 6= S ⊆ {v, e, a}. In this Chapter we establish the fixed-parameter

tractability of the cases WDCE∗
1(S) and WDCE∗(S) with ∅ 6= S ⊆ {v, e}, the

W [1]-hardness of WDCEr
1(S) with {v} ⊆ S ⊆ {v, e, a} and the polynomial time

computability of WDCE∗(e, a) and the various implications. In Chapter 5 we ex-

amine the remaining cases.

4.1.1 Relationship to Existing Problems

Chvátal [80], as mentioned above, shows NP-completeness for the Cubic Sub-

graph = ∞WDCE3
1(v, e) problem. Stewart shows that the problem r-Regular

Subgraph = ∞WDCEr
1(v, e) remains NP-complete for any r ≥ 3, even for graphs

with maximum degree 7, and planar graphs with maximum degree 4 [151, 152].

With WDCEr
1(v) we can express the problem of finding an induced r-regular

subgraph with the largest number of vertices which includes several known NP-

complete problems: Independent Set = WDCE0
1(v) [80], Induced Matching =

WDCE1
1(v) [29, 156], and Induced r-Regular Subgraph = WDCEr

1(v) [30,

121].

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 51

The problem r-Factor = ∞WDCEr
1(e) asks whether a given graph has a span-

ning r-regular subgraph; this problem is well-known to be solvable in polynomial

time as it can be reduced to the problem Perfect Matching = ∞WDCE1
1(e)

as Tutte [160] shows. In fact Tutte’s result holds for the more general problems

f-Factor = ∞WDCE∗
1(e) and Perfect b-Matching = ∞WDCE∗(e) [94].

Lovász [106, 107] considers the NP-hard generalization of this problem, Gen-

eral Factor = ∞WDCE1(e), where each vertex is given with a list of possible

degrees. By a result of Cornuéjols [43], General Factor is NP-complete, apart

from certain trivial cases, if the lists may contain gaps of length > 1, such as in

{2, 3, 6, 7}, but is otherwise polynomially solvable.

Moser and Thilikos [121] establish the fixed-parameter tractability of k-Almost

r-Regular Graph = WDCEr
1(v) with combined parameter k + r but leave the

parameterized complexity of the same problem with parameter k as an open ques-

tion.

4.2 NP-Completeness and para-NP-Completeness

Although the problem r-Regular Subgraph = ∞WDCEr
1(v, e) is NP-complete

for r ≥ 3, r-Regular Subgraph is in P for r ∈ {0, 1, 2} [41]. Cardoso et al. [30]

show that the Maximum r-Regular Induced Bipartite Subgraph problem

is NP-complete for every r ≥ 0. We use a variant of their reduction to show the

following:

Lemma 4.2.1. WDCEr
1(v) is NP-complete for all r ≥ 0.

Proof. WDCE0
1(v) (i.e. r = 0) corresponds to the Vertex Cover problem where

the size of the vertex cover is k, which is a fundamental NP-complete problem [80].

For r > 0, the reduction is from WDCE0
1(v). First we construct a bipartite r-regular

graph H. Let t ≥ r, V (H) = V1]V2 where V1 = {x1, . . . , xt} and V2 = {y1, . . . , yt}.

E(H) = {xiyj | r > j − i mod (t), xi ∈ V1, yj ∈ V2 }.

Let (G, k) be an instance of WDCE0
1(v) and choose t ≥ r · |V (G)|. We construct

an instance (G′, k′) of WDCEr
1(v) with a copy Hv of H in G′ for every vertex v

in V (G), and with all possible edges between the vertices of every Hv and Hu if

uv ∈ E(G). Following Cardoso et al. we say thatHu is adjacent toHv if uv ∈ E(G).

Let k′ = 2tk.

Assume (G, k) is a Yes-instance of WDCE0
1(v). Then there exists a set S ⊆

V (G) of size at most k such that the deletion of S from G leaves all other vertices

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 52

isolated. For each v ∈ S we can delete Hv from G′. This results in 2t · |S| ≤ 2tk = k′

vertex deletions. G′ is now r-regular as each Hu is now no longer adjacent to any

other Hv, otherwise S would not have been a solution for (G, k), and the graph H

was r-regular to begin with. Therefore (G′, k′) is a Yes-instance of WDCEr
1(v).

Assume (G′, k′) is a Yes-instance of WDCEr
1(v). Assume that Q is a set of ver-

tices inducing an r-regular induced subgraph of G′ and that Q′ induces a connected

component of Q. We may assume that |Q| is maximised by the following argument.

Assume that there is some Hv that is not wholly included in Q′. Some vertices

of Hv must have been deleted and the remaining vertices of Hv must be adjacent

to vertices of some other Hu, but then all the remaining vertices of Hu must be

adjacent to all the remaining vertices of Hv by the construction. As each vertex of

Hu has degree r there can be at most r vertices remaining of Hv. Q′ can at most

contain fragments of each Hw in G′ therefore |Q′| ≤ r · |V (G)|, but by choosing Hv

to remain in the graph and deleting all other fragments in Q′, we have more than

r · |V (G)| vertices as t ≥ r · |V (G)|. This new solution, as it contains more vertices,

must require less deletions, therefore it is still a Yes-instance of WDCEr
1(v). Fur-

thermore this argument shows that we can assume that Hv components are either

completely deleted or remain whole. Any remaining Hv component cannot be adja-

cent to any other, as the graph would not be r-regular. Therefore there is a solution

to (G, k) where the remaining vertices correspond to the remaining Hv components.

Thus (G, k) is a Yes-instance of WDCE0
1(v).

By subproblem containment we may also immediately claim the following:

Corollary 4.2.2. WDCE∗
1(v) and WDCE∗(v) are para-NP-complete for parame-

ter r.

4.3 A Bounded Search Tree Algorithm for

WDCEr
1(v) and WDCE∗(v, e)

Apart from a kernelization, Moser and Thilikos [122] give an elegant bounded search

tree algorithm for WDCEr
1(v).

Lemma 4.3.1 ([122]). WDCEr
1(v) is fixed-parameter tractable for parameter k+r.

Proof. Let (G, k, r) be an instance of WDCEr
1(v). As the only operation available

is vertex deletion, we may preprocess the instance by deleting any vertices with

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 53

degree less than r and reducing the parameter accordingly. Thus we may assume

that all vertices have degree at least r. The algorithm then proceeds as follows:

1. If k ≥ 0 and G is r-regular, answer Yes. If k < 0 or k = 0 and G is not

r-regular, answer No.

2. Choose a vertex v with d(v) > r.

3. Arbitrarily pick a set M ⊆ N(v) of size r + 1.

4. Branch on deleting one vertex of M ∪ {v}, reduce k by 1.

5. Return to step 1.

The search tree has branching factor r + 2, and depth at most k, thus the tree

has at most tr(r + 2, k) = ((r + 2)k+1 − 1)/(r + 1) vertices (see Section 3.5.2 for

details regarding the size of search trees).

In this thesis we consider several variants of the bounded search tree algorithm

given above, the key difference between them being the choice of branching set at

step 4. Therefore to avoid repetition and to make the presentation more compact,

we present a generic version of the bounded search tree algorithm, which can then be

applied with appropriate branching sets for the variants of the problems examined

later.

Let G be a weighted graph with weight function ρ : V (G) ∪ E(G) → N and a

series of constraints f1, f2, . . . , fh such that fi : X → 2{0,...,ri} for each i ∈ [h] where

X is either the vertices or edges of G. Let r = maxi∈[h]{ri}. Let g1, g2, . . . , gh be

a series of functions gi : X → N, where X is either the vertices or edges of G, such

that gi is associated with fi and has the same domain for each i ∈ [h]. An element

x ∈ V (G)∪E(G) of a graph G is clean if for every i ∈ [h] we have gi(x) ∈ fi(x). If

every element of G is clean, then we say that G is clean.

Consider the generic problem Constrained Deletion(v, e) of rendering a

weighted graph G with constraints f1, f2, . . . , fh, functions g1, g2, . . . , gh and weight

function ρ : V (G) ∪ E(G) → {1, . . . , k + 1} clean with at most k deletions. The

following bounded search tree algorithm, an extension of the algorithm of Moser

and Thilikos [122], solves the problem.

1. If G is clean and k ≥ 0, answer Yes. If k < 0 or G is not clean and k = 0,

answer No.

2. Choose an element x ∈ V (G) ∪ E(G) that is not clean. If x is an edge, let u

and v be its endpoints.

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 54

3. If gi(x) < min{fi(x)} for some i ∈ [h] and x is a vertex, delete x, reduce k by

ρ(x) and return to step 1. If x is an edge branch on deleting x, u or v, reduce

k by ρ(x), ρ(u) or ρ(v) as appropriate and return to step 1.

4. Arbitrarily select a set B of r+ 1 vertices from N(x) if x ∈ V (G), or (N(u)∪

N(v)) \ {u, v} if x ∈ E(G). Let EB be the set of edges between a vertex of B

and x if x is a vertex, or u and v if x is an edge.

5. Branch on the following options and reduce k as specified:

• Delete x and reduce k by ρ(x).

• Delete a vertex b ∈ B and reduce k by ρ(b).

• Reduce the weight of an edge e ∈ EB by 1 and reduce k by 1.

• If x is an edge, delete u and reduce k by ρ(u).

• If x is an edge, delete v and reduce k by ρ(v).

6. Return to step 1.

Step 3 has branching factor at most 3. In the case where the elements of EB are

adjacent to both u and v step 5 has branching factor at most |B|+ |EB |+3 = 3r+6.

At each branching step k is reduced by at least 1, therefore the tree has depth at

most k. Therefore the tree has at most tr(3r + 6, k) = ((3r + 6)k+1 − 1)/(3r + 5)

vertices. Hence we have shown the following:

Lemma 4.3.2. Constrained Deletion(v, e) is fixed-parameter tractable with

parameter k + r.

If we restrict the operations available, the branching factor can be reduced. If

only one of vertex deletion and edge deletion is allowed, the branching factor of

step 4 can be reduced to r + 2. In this case, the tree has at most tr(r + 2, k) =

((r + 2)k+1 − 1)/(r + 1) vertices.

If both vertex deletion and edge deletion are allowed, but all constraints apply

only to vertices then the branching factor of step 5 is reduced to 2r + 3 and the

maximum number of vertices in the tree to tr(2r + 3, k) = ((2r + 3)k+1)/(2r + 2).

We may now instantiate this generic algorithm by specifying the branching set

chosen in step 4.

Lemma 4.3.3. WDCE∗(v, e) is fixed-parameter tractable for parameter k + r.

Proof. The branching set consists of a vertex v with δ(v) < dρ(v) and at most r+1

neighbours of v, and the edges between v and the r + 1 vertices. With this set

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 55

we can apply the algorithm described above to obtain a search tree with at most

tr(2r + 3, k) = ((2r + 3)k+1 − 1)/(2r + 2) vertices.

4.4 A Kernelization for WDCE∗(v, e)

We now present a kernelization for WDCE∗(v, e). Although the kernelization is for

the weighted version of the problem, it produces correct kernels for the unweighted

version, thus applies also to WDCE∗
1(S), WDCEr(S) and WDCEr

1(S) for ∅ 6= S ⊆

{v, e}, although it should be noted that if S = {e} this is less interesting, as this

variant is in P (see Section 4.5). It is however interesting to note that even though

the kernelization is for a more general version of the problem, the weighting allows

a smaller kernel than Moser and Thilikos [122] achieve.

4.4.1 Reduction Rules

For all reduction rules considered it is obvious that they can be applied in polynomial

time and one can check in polynomial time if they are applicable.

Reduction Rule 1: Let (G, k, r) be an instance of WDCE∗(S). If there is a

vertex v in G such that dρ(v) > k + r, then replace (G, k, r) with (G′, k′, r) where

G′ = G− v and k′ = k − ρ(v).

Lemma 4.4.1. Reduction Rule 1 is sound for WDCE∗(S) with {v} ⊆ S ⊆ {v, e}.

Proof. Assume there is such a vertex v, then at least k + 1 vertices or edges must

be deleted if we do not delete v, but we may only perform at most k deletions.

Thus (G, k, r) is a Yes-instance of WDCE∗(S) if and only if (G′, k′, r) is a

Yes-instance of WDCE∗(S).

Consider an instance (G, k, r) of WDCE∗(S). A vertex v is clean if dρ(v) ∈ δ(v).

Extending a notion of Moser and Thilikos [121], we define a clean region C of G

as a maximal connected subgraph of G where each vertex v ∈ V (C) is clean. See

Section 2.3.1 for the definition of a boundary.

Reduction Rule 2: Let (G, k, r) be an instance of WDCE∗(S), let C be a clean

region of G with empty boundary B(C) = ∅, and let G′ = G−V (C). Then replace

(G, k, r) with (G′, k, r).

Lemma 4.4.2. Reduction Rule 2 is sound for WDCE∗(S) with ∅ 6= S ⊆ {v, e}.

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 56

Proof. As B(C) = ∅, C is not connected to the rest of the graph and therefore does

not affect the solution.

Reduction Rule 3: Let (G, k, r) be an instance of WDCE∗(S). Let C be a clean

region of G containing more than one vertex. Then we replace (G, k, r) with

(G′, k, r) where G′ is obtained from G by contracting C to a single vertex v as

follows:

1. Add a new vertex v.

2. For each b ∈ B(C) we add the edge bv to G′ of weight ρ(bv) =∑
bc∈E(G),c∈V (C) ρ(bc).

3. Set ρ(v) = min{k + 1,
∑

u∈V (C) ρ(u)} and δ(v) = dρ(v) (i.e. v is clean in G′).

4. Delete all vertices that belong to C.

Claim 4.4.3. Reduction Rule 3 is sound for WDCE∗(S) with {v} ⊆ S ⊆ {v, e}.

Proof. Let (G, k, r) be an instance of WDCE∗(S) and let C be a clean region of

G with boundary B(C). Let (G′, k, r) be the new instance obtained by Reduction

Rule 3, contracting C to a new vertex v as illustrated in Figure 4.1.

If we delete a vertex u ∈ V (C)∪B(C) or an edge incident with a vertex u ∈ V (C),

then any neighbour u′ ∈ V (C) of u will no longer be clean, and subsequently must

also be deleted (edge addition is not available to make u′ clean again). Clearly this

cascades until the entire clean region is removed. Thus any solution for (G, k, r)

either deletes all or none of the vertices in V (C). Hence we can represent V (C) by

a single vertex v as described in Reduction Rule 3. We can limit the weight of v to

k + 1 as any weight larger than k prevents deletion.

G− C C

7−→

G− C

v

Figure 4.1: Reduction Rule 3.

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 57

4.4.2 Kernelization Lemma

We may now state the kernelization lemma. We omit the case WDCE∗(e) as

it is solvable in polynomial-time and thus admits a kernel of constant size (see

Section 4.5).

Lemma 4.4.4. Let {v} ⊆ S ⊆ {v, e}. Let (G, k, r) be a Yes-instance of

WDCE∗(S) that is reduced under Reduction Rules 1, 2, and 3. Then |V (G)| ≤

k(1 + (k + r)(1 + r)) = O(kr(k + r)).

Proof. Let (G, k, r) be a Yes-instance of WDCE∗(S) with {v} ⊆ S ⊆ {v, e}. We

define three disjoint sets D, H and X where D ⊆ V (G)∪E(G) is the set of vertices

and edges deleted from G to obtain the solution. H ⊆ V (G) is the set of vertices

adjacent to vertices of D or incident to edges of D. X ⊆ V (G) contains all vertices

that are in neither D nor H. |D| ≤ k by definition, and D ⊆ V (G) if S = {v}.

Observe that H separates D from X. By definition, for all vertices v ∈ H ∪ X

we have dρ
H∪X(v) ∈ δ(v), otherwise D would not be a solution. Furthermore there

are no independent clean regions in G, by Reduction Rule 2. Figure 4.2 gives an

example of such a partition.

Claim 4.4.5. |H| ≤ |D| · (k + r).

By Reduction Rule 1, for any vertex v ∈ V (G), d(v) ≤ k+r. In particular every

element of D is adjacent to at most k + r vertices in H. Moreover every vertex in

H is adjacent or incident to an element of D. The claim follows directly.

Claim 4.4.6. |X| ≤ |H| · r.

All vertices in X are clean, and thus X consists entirely of clean regions. By

Reduction Rule 3 all clean regions have been reduced to a single vertex each. Fur-

thermore as G −D is also clean, the vertices of H can have at most r neighbours

in X.

As |V (G)| ≤ |D| + |H| + |X| and |D| ≤ k, by Claims 4.4.5 and 4.4.6 we have

|V (G)| ≤ k + k(k + r) + kr(k + r).

Proposition 4.4.7. Let {v} ⊆ S ⊆ {v, e}. WDCE∗(S) has a kernelization with a

kernel of size O(kr(k + r)).

By recasting instances of WDCE∗
1(S), WDCEr(S) and WDCEr

1(S) as in-

stances of WDCE∗(S) we may apply this kernelization to all these problems.

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 58

S

H

X

Figure 4.2: Example of the partitioning described in the proof of Lemma 4.4.4 with
r = 3.

Corollary 4.4.8. Let {v} ⊆ S ⊆ {v, e}. WDCE∗
1(S), WDCEr(S) and

WDCEr
1(S) have kernelizations with kernels of size O(kr(k + r)).

Proof. The case for WDCEr(S) is clear. For WDCE∗
1(S) and WDCEr

1(S) it is

clear that Reduction Rules 1 and 2 hold. For Reduction Rule 3 we note that

although the definitions WDCE∗
1(S) and WDCEr

1(S) do not allow weights greater

than 1, the clean regions still behave as detailed in the rule. Thus treating the clean

regions as a single element represented by a weighted vertex does not introduce

incorrect solutions, nor invalidate correct ones. Once the kernelization has been

performed and a solution obtained, any clean regions remaining in the graph can

be restored without loss of information.

4.5 Polynomial Time Cases

In this section we show that the problems WDCE∗(S) and WDCE∗
1(S), and hence

WDCEr(S) and WDCEr
1(S), can be solved in polynomial time for ∅ 6= S ⊆ {e, a}.

If S = {e} then it is not difficult to apply standard methods of matching theory [109].

The case S = {a} can be reduced to the case S = {e} by a complementation

technique which will be used in the proof of Theorem 5.5.1. However it is not

immediately apparent that matching techniques can be directly applied to the case

where we allow both edge addition and edge deletion. Hence we give a general

construction for solving all variants of the problem with ∅ 6= S ⊆ {e, a}.

Given a graph G, a matching is a set E′ ⊆ E(G) such that for every vertex

v ∈ V (G) we have E(v)∩E′ ≤ 1. If E(v)∩E′ = 1 for every vertex v ∈ V (G), then

E′ is a perfect matching . The Minimum Weight Perfect Matching problem is

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 59

defined as:

Minimum Weight Perfect Matching

Instance: A graph G = (V,E) and a weight function ρ : E(G) → N.

Question: Find a perfect matching E′ ⊆ E(G) such that
∑

e∈E′ ρ(e) is

minimised or answer No if no perfect matching exists.

Edmonds’ blossom algorithm gives the following result:

Theorem 4.5.1 ([64, 65]). The Minimum Weight Perfect Matching is solv-

able in polynomial time.

We will use this theorem to demonstrate the following:

Theorem 4.5.2. The problems WDCE∗(S) and WDCE∗
1(S) can be solved in poly-

nomial time for ∅ 6= S ⊆ {e, a}.

Proof. First we consider the problem WDCE∗(e, a); we will explain later how the

approach can be modified for the other versions of the problem.

Let (G, k) be an instance of WDCE∗(e, a) with G = (V,E). For the scope of

this proof it is convenient to allow edges of weight 0, so we may assume that G

is a complete graph. Solving the problem is clearly equivalent to finding an edge

weight function ρ′ : E(G) → {0, 1, 2, . . . } of G such that for each v ∈ V (G) we

have
∑

vv′∈E(G) ρ
′(vv′) = δ(v) and the cost of ρ′,

∑
vv′∈E(G)|ρ(vv′)− ρ′(vv′)|, is at

most k.

We construct a graph H with edge-weight function η as follows: For each vertex

v of G we introduce in H a set V (v) of δ(v) vertices. For each edge vv′ ∈ E(G) we

add the following vertices and edges to H.

1. We add two sets Vdel(v, v′) and Vdel(v′, v) of vertices, each of size ρ(vv′).

2. We add two sets Vadd(v, v′) and Vadd(v′, v) of vertices, each of size

min{δ(v), δ(v′)}.

3. We add all edges uw for u ∈ V (v) and w ∈ Vdel(v, v′) ∪ Vadd(v, v′), and all

edges uw for u ∈ V (v′) and w ∈ Vdel(v′, v) ∪ Vadd(v′, v).

4. We add edges that form a matching Mvv′ between the sets Vdel(v, v′) and

Vdel(v′, v). We will refer to these edges as deletion edges.

5. We add edges that form a matching M ′
vv′ between the sets Vadd(v, v′) and

Vadd(v′, v) and subdivide the edges ofM ′
vv′ twice; that is, we replace xy ∈M ′

vv′

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 60

by a path x, xy, yx, y where xy and yx are new vertices. We will refer to the

edges of the form xyyx as addition edges.

For all addition and deletion edges e in E(H) we set η(e) = 1. All other edges

e′ have η(e′) = 0.

Claim 4.5.3. G has a solution ρ′ of cost at most k if and only if H has a perfect

matching of weight at most k.

(⇒) Let ρ′ be a solution of cost k′ ≤ k. We define a perfect matching M of H

as follows. Consider an edge e = vv′ ∈ E(G).

First we consider the case ρ(e) ≤ ρ′(e). Let d = ρ′(e) − ρ(e). We match the

vertices in Vdel(v, v′) to ρ(e) vertices in V (v), and similarly, we match the ver-

tices in Vdel(v′, v) to ρ(e) vertices in V (v′). Now we choose d vertices x1, . . . , xd

in Vadd(v, v′); let y1, . . . , yd be the corresponding vertices in Vadd(v′, v). We match

the vertices xi to vertices in V (v), the vertices yi to vertices in V (v′), and the

vertices (xi)(yi) and (yi)(xi) to each other, 1 ≤ i ≤ d. We match the re-

maining vertices x ∈ Vadd(v, v′) \ {x1, . . . , xd} to xy and the remaining vertices

y ∈ Vadd(v′, v) \ {y1, . . . , yd} to yx. Observe that the defined matching has weight

d (all edges used for the matching have weight 0 except for d addition edges).

Second we consider the case ρ′(e) ≤ ρ(e). Let d = ρ(e) − ρ′(e). We choose d

vertices x1, . . . , xd from Vdel(v, v′) and match them to the corresponding vertices

y1, . . . , yd in V (v′, v). We match the remaining vertices in Vdel(v, v′) \ {x1, . . . , xd}

to vertices in V (v), and the remaining vertices in Vdel(v′, v)\{y1, . . . , yd} to vertices

in V (v′). We match all vertices x ∈ Vadd(v, v′) to the corresponding vertices xy, and

symmetrically, all vertices y ∈ Vadd(v′, v) to the corresponding vertices yx. Observe

that the defined matching has weight d as the only edges of weight 1 are d deletion

edges.

In both cases we have defined a matching that covers exactly ρ′(e) vertices of

V (v) and ρ′(e) vertices of V (v′). By assumption
∑

vv′∈E(G) ρ
′(vv′) = δ(v), hence

we can proceed in this way for all edges vv′ ∈ E(G), and we end up with a perfect

matching M of H of weight k′ ≤ k.

(⇐) Conversely, let M be a perfect matching of H of minimum weight k′ ≤ k.

First, we make the observation that for the sets of vertices corresponding to an

edge vv′, the matching M must be symmetric. That is, if a vertex x from Vdel(v, v′)

is matched to a vertex in V (v), then the adjacent vertex y in Vdel(v′, v) must be

matched to a vertex in V (v′), as there is no other possibility if M is a perfect

matching. Similarly if a vertex x in Vadd(v, v′) is matched to a vertex in V (v), then

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 61

its corresponding vertex y in Vadd(v′, v) must be matched to a vertex in V (v′), and

xy must be matched to yx, as again there is no other possibility if M is a perfect

matching. Thus a perfect matching of H must correspond to some solution for G.

Second, as M is of minimum weight, there can be no edge vv′ in G where the

matching in H has vertices from Vadd(v, v′) that are matched to vertices in V (v) and

vertices in Vdel(v, v′) matched to vertices in Vdel(v, v′). Assume for contradiction

that a ∈ Vadd(v, v′) is matched to x ∈ V (v) and d ∈ Vdel(v, v′) is matched to

c ∈ Vdel(v′, v). By symmetry we must have b ∈ Vadd(v′, v) matched to y ∈ V (v′),

and the vertices ab and ba must also be matched to each other. Then we could take

the following alternate matching M ′ where we match d to x, c to y, a to ab and b

to ba. Then M ′ is still a perfect matching, but of weight two less than M .

Then we can construct a solution ρ′ of weight k. For each addition edge used in

M , we increase the weight of the edge between the corresponding vertices in G by

one. For each deletion edge used in M , we reduce the weight of the corresponding

edge in G. As the vertices in V (v) are matched, we know that
∑

vv′∈E(G) ρ
′(vv′) =

δ(v).

Therefore a minimum weight perfect matching for H corresponds to a minimum

weight solution for G. This completes the proof of Claim 4.5.3.

The graph H can be obtained from G in polynomial time, and we can find a mini-

mum weight perfect matching for H in polynomial by Theorem 4.5.1. Consequently

WDCE∗(a, e) can be solved in polynomial time.

For the unweighted case WDCE∗
1(e, a) we need to modify the above construction

of H to ensure that α′(e) ≤ 1 holds for all e ∈ E(G). This, however, can be accom-

plished by using sets Vadd(v, v′), vv′ ∈ E(G), of size at most 1 only: |Vadd(v, v′)| = 1

if and only if ρ(vv′) = 0. Furthermore, the above construction can be modified to

deal with the (simpler) case where only edge deletion or edge addition is available:

For S = {e} we remove all addition edges from H; for S = {a} we remove all dele-

tion edges from H. It is easy to check that Claim 4.5.3 also holds for these variants

of WDCE∗(a, e) with H modified as described.

4.6 W [1]-Hardness of WDCE for Parameter k

4.6.1 A Useful Construction: The Fixing Gadget

Before proceeding to the main results of this section we introduce a construction

that we will later use in several proofs. For any r ≥ 2, this construction produces an

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 62

almost r-regular graph Gr, where all vertices have degree r except two with degree

r − 1. We will refer to an instance of Gr as a fixing gadget. The vertex set of Gr

consists of the vertices xj , yj
i , z

j
i for 1 ≤ j ≤ 2 and 1 ≤ i ≤ r. The edge set consists

of all edges xjyj
i and yj

i z
j
i′ for 1 ≤ j ≤ 2 and 1 ≤ i, i′ ≤ r, i 6= i′, and all edges z1

i z
2
i

for 1 ≤ i ≤ r − 1.

Thus each vertex has degree r, except z1
r and z2

r which have degree r − 1. The

two vertices of degree r − 1 will be used as attachment points.

x1

y1
3

y1
2

y1
1

z1
3

z1
2

z1
1

x2

y2
3

y2
2

y2
1

z2
3

z2
2

z2
1

Figure 4.3: Fixing gadget for r = 3.

4.6.2 Preliminary Hardness Reductions

We now demonstrate W [1]-hardness for WDCEr
1(S) where v ∈ S when the problem

is parameterized by k alone. This also answers an open question posed by Moser

and Thilikos [121].

Ultimately, all our reductions are from the Clique problem, parameterized by

the number of vertices that form the clique, a fundamental W [1]-complete prob-

lem [59].

Clique

Instance: A graph G = (V,E) and an integer k.

Question: Does G contain a k-clique (i.e. a complete subgraph on k

vertices)?

Without parameterization, Clique is NP-complete [80], and all our reductions

are in fact polynomial-time FPT reductions. Therefore, all problems that we show

to be W [1]-hard are NP-hard if considered without parameterization. This holds

in particular for the next lemma; we shall use its NP-hardness part explicitly in

Section 5.3.

First we show that Regular Clique (the problem Clique restricted to regular

graphs) is W [1]-complete.

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 63

Lemma 4.6.1. The problem Regular Clique is NP-complete and W [1]-complete

for parameter k.

Proof. Membership in NP of the non-parameterized version and membership in

W [1] for the parameterized version of the problem follow immediately as the prob-

lem is a special case of Clique. To prove hardness we devise a polynomial-time

FPT reduction from Clique. Let (G, k) be an instance of Clique. We construct

an instance (G′, k) of Regular Clique by modifying G as follows. Let ∆ be the

maximum degree of G, and let r = ∆ + (∆ mod 2). We will now demonstrate how

to make the graph r-regular. We use fixing gadgets (see Section 4.6.1) to increase

the degree of each vertex by attaching as many fixing gadgets as necessary by the

two attachment vertices. This attachment is made between a vertex v and an in-

stance of the fixing gadget by adding the edges between each attachment vertex

and v (or perhaps only one of these edges, as below). If the degree of v is initially

even, then we use an integral number of fixing gadgets; if the degree of v is initially

odd, then will reach degree r− 1 by this method, and we will have to take another

degree r − 1 vertex and attach one fixing gadget attachment vertex to the first,

and the other attachment vertex to the second. There is always some pairing of

such vertices as necessary as every graph contains an even number of vertices of

odd degree, and so there is an even number of vertices requiring an odd increase of

degree.

The fixing gadgets added to create G′ contain no non-trivial cliques and do not

introduce any new non-trivial cliques since the two attachment vertices in a fixing

gadget are not adjacent. Thus G and G′ have exactly the same non-trivial cliques.

Clearly G′ can be constructed from G in polynomial time, and since the parameter

remains the same we have a polynomial-time FPT reduction.

The reduction for several of our hardness results will be from the following

variant of Regular Clique.

Strongly Regular Multi-Coloured Clique (SRMCC)

Instance: A graph G = (V,E), vertex-coloured with k colours, where

each vertex has exactly d neighbours in each of the k colour classes (thus

G is kd-regular and each colour class has the same size)

Question: Does G contain a properly coloured k-clique (i.e. a k-clique

whose vertices have all different colours)?

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 64

The proof of the next lemma follows closely the W [1]-completeness proof of

the problems Multi-Coloured Clique and Partitioned Clique in [72, 133],

respectively.

Lemma 4.6.2. The problem SRMCC is W [1]-complete for parameter k.

Proof. Again W [1] membership follows as the problem is a special case of Clique.

We reduce from Regular Clique. Given an instance (G, k) of Regular Clique

where G is d-regular, we let G′ be the union of k vertex disjoint copies G1, . . . , Gk

of G, assigning the vertices of Gi the colour i. Then for every pair of vertices u, v in

G, if uv is an edge, we add the edges uivj , for all i, j, where ai denotes the vertex

in Gi which corresponds to vertex a in G. Clearly every vertex of G′ has exactly d

neighbours in each colour class, and there is a k-clique in G if and only if there is

a properly coloured k-clique in G′.

4.6.3 Main Hardness Results

We may now move to the key hardness results for this chapter.

Theorem 4.6.3. The problem WDCEr
1(S) is W [1]-hard for parameter k and {v} ⊆

S ⊆ {v, e, a},

Proof. Consider an instance (G, k) of SRMCC. Let G = (V,E) be kd-regular, thus

each vertex has exactly d neighbours in each colour class. We denote the set of

vertices of colour i by Vi (1 ≤ i ≤ k). Then V =
⋃k

i=1 Vi forms a partition of V .

Let |Vi| = s for all 1 ≤ i ≤ k.

We construct an instance (G′, k′) of WDCEr
1(S), G′ = (V ′, E′), by first defining

k sets V ′
i (1 ≤ i ≤ k) such that for each vertex v ∈ Vi we add a vertex v′ to V ′

i . We

add all possible edges between pairs of vertices in the same set V ′
i . We call each of

these k subgraphs induced by V ′
i a (colour) class gadget.

For each edge uv in G where u ∈ Vi and v ∈ Vj with i 6= j, we add to G′

two vertices u′v′ and v′u′ , with the edges u′u′v′ , u
′
v′v

′
u′ and v′u′v

′. For each pair V ′
i

and V ′
j (where i 6= j) of class gadgets, we denote the set of these new vertices and

edges as Pij . We denote by P i
ij the set of all vertices u′v′ ∈ Pij where u′ ∈ V ′

i .

Furthermore, for each pair of vertices uv and u′v′ in the same P i
ij we add the edge

uvu
′
v′ to P i

ij if u and u′ belong to the same class gadget and u 6= u′. We call each

such Pij a connection gadget, and each P i
ij a side of the connection gadget. There

are
(
k
2

)
connection gadgets in total. Figure 4.4 gives a sketch of the structure of a

connection gadget.

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 65

V ′
i P i

i,j P j
i,j

V ′
j

u′ v′u′v′ v′u′

Figure 4.4: An illustration of the gadget construction in the proof of Theorem 4.6.3.

At this point we have k class gadgets corresponding to the k colour classes in the

original graph, each with s vertices of degree (s− 1) + d(k− 1), and
(
k
2

)
connection

gadgets corresponding to the “inter-colour-class” edges, each with 2sd vertices of

degree 2+(s−1)d (sd vertices in each half). Now we choose r for the instance such

that r ≥ max{(s− 1) + d(k − 1), 2 + (s− 1)d}, and r ≡ s+ 1 modulo 2 (i.e. r is of

opposite parity to s). In particular we may choose the smallest r such that this is

true.

Now we add for each class gadget V ′
i a gadget V ′′

i that contains r+1− ((s−1)+

d(k − 1)) vertices with s edges per vertex, such that each vertex in V ′′
i is adjacent

to every vertex in the class gadget V ′
i . We refer to V ′′

i as a degree gadget. We then

add a further set of fixing gadgets as before to complete the degree of each vertex in

the degree gadget to r+1. Note that by choosing r to have opposite parity to s, we

guarantee that this is possible (if s is odd, r will be even and each vertex will require

r + 1 − s additional edges, which is even, and thus achievable; if s is even, r will

be odd, then r + 1− s is again even, and we can complete the construction). Thus

each vertex in each class gadget and degree gadget has degree one too many, but

the vertices in the fixing gadgets attached to each degree gadget have the correct

degree.

We similarly adjust the connection gadgets by adding two degree gadgets, each

with r+ 1− 2 + (s− 1)d vertices, one for each side of the connection gadget. Every

vertex in the degree gadget is connected to every vertex in its associated side of the

connection gadget. Again we complete the degree of vertices in the degree gadgets

to r+1 by adding fixing gadgets, and as before, by the choice of r we can guarantee

that this can be done (if s is even, r is odd and r + 1− sd is even, if s is odd, r is

even and r+1− sd is even). Thus each vertex in the connection gadgets has degree

r + 1, as does each vertex in the degree gadgets. Each vertex in each fixing gadget

has degree r.

We can construct G′ from G in polynomial time, as we are adding only (4r +

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 66

3)(2r+2s−s−sd−dk+1) vertices, where r, s, d ≤ n. Thus, by the following claim

we have a polynomial-time FPT reduction from SRMCC to WDCEr
1(S), and the

result follows.

We set k′ = k + 2
(
k
2

)
.

Claim 4.6.4. The following statements are equivalent:

1. (G, k) is a Yes-instance of SRMCC.

2. (G′, k′) is a Yes-instance of WDCEr
1(v).

3. (G′, k′) is a Yes-instance of WDCEr
1(v, e).

4. (G′, k′) is a Yes-instance of WDCEr
1(v, e, a).

(1 ⇒ 2) Assume that (G, k) is a Yes-instance of SRMCC. Then there exist k

vertices v1, . . . , vk, one from each colour class, that form a properly coloured clique.

Assume without loss of generality that vi ∈ Vi. Then we can delete from G′ the

corresponding vertices v′i from V ′
i , and the pairs of vertices (v′i)v′j

and (v′j)v′i
from

Pij that correspond to the edges in the clique. Then each remaining vertex in

each class gadget has had precisely one incident edge removed from it, as have the

vertices in each degree gadget associated with the class gadget. So the components

corresponding to the colour classes and their immediate extension are now r-regular.

Similarly each vertex in every connection gadget and their associated connection

gadgets has had exactly one incident edge removed, either by the vertex removed

from the connection gadget, or from the parent vertex in the class gadget (but never

both). Now each vertex in these gadgets has degree precisely r. We have chosen one

vertex from each V ′
i , and two vertices from each Pij , giving a total of k′ = k+ 2

(
k
2

)
vertices, thus (G′, k′) is also a Yes-instance of WDCEr

1(v).

(2 ⇒ 3, 3 ⇒ 4) These implications are trivial.

(4 ⇒ 1) Assume that (G′, k′) is a Yes-instance of WDCEr
1(v, e, a). Then there

are k′ = k + 2
(
k
2

)
deletions that can be made to make G′ r-regular. Obviously

we cannot delete any vertices from the fixing gadgets in the graph. Further we

cannot delete any vertices from the degree gadgets, as this would reduce the degree

of their attached fixing gadgets. Thus the deleted vertices must come from class

and connection gadgets. However, there must be precisely one vertex from each

such component: if no vertex is deleted then the degree of some vertex in that

component will remain r+ 1; if more than one vertex is deleted, then the degree of

some vertices in the component will drop below r. Also note that for each vertex

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 67

uv deleted from one side of a connection gadget, the vertex deleted in the other side

must be the vertex vu. If it were not, then at least one vertex in each side would

have degree r−1. Also, the vertex deleted from each side of each connection gadget

must be attached to the vertex deleted from the adjacent class gadget, otherwise

the vertices attached to vertices deleted from the class gadget will have degree at

most r− 1. Thus we can see that if (G′, k′) is a Yes-instance, the set of vertices to

be deleted is very precise and restricted. In fact, if we are to use only the allotted

budget of k+2
(
k
2

)
, we must choose precisely one vertex from each class gadget, and

two vertices from each connection gadget, where the vertices from the connection

gadget component are connected to the vertices deleted from the two class gadgets

it is associated with. An edge deletion can only reduce the degree of two vertices,

leaving us with too many edges to delete, or vertices of degree less than r. Similarly,

the tight budget implies that no edge addition can be used either. Thus (G′, k′) is a

Yes-instance of WDCEr
1(v). Furthermore, the vertices v1, . . . , vk corresponding to

the k vertices deleted from the class gadgets induce a properly coloured clique in G;

the edges of the clique correspond to the 2
(
k
2

)
vertices deleted from the connection

gadgets. Hence (G, k) is a Yes-instance of SRMCC.

Corollary 4.6.5. WDCE∗
1(S) is W [1]-hard for parameter k and {v} ⊆ S ⊆

{v, e, a}.

As the proof of Theorem 4.6.3 ensures that no edge addition is used in the reduc-

tion, the W [1]-hardness results hold also for the weighted versions of the problems.

Corollary 4.6.6. The problems WDCEr(S) and WDCE∗(S) are W [1]-hard for

parameter k and {v} ⊆ S ⊆ {v, e, a}.

Let WDCE=(S) denote the variant of WDCEr(S) where we ask for a regular

graph of unspecified regularity (i.e. when r is not given).

Corollary 4.6.7. The problems WDCE=
1 (S) and WDCE=(S) are W [1]-hard for

parameter k and {v} ⊆ S ⊆ {v, e, a}.

Proof. We reduce from WDCEr
1(S) and WDCEr(S), respectively. Given an in-

stance (G, k) of one of these problems, we construct a new instance (G′, k) by adding

one r-regular connected component with more than k vertices. This can be done

by taking, for example, k fixing gadgets and connecting them in a ring. We clearly

cannot alter this component within the budget k, thus the only possible solution

is the same as that for (G, k). Thus if (G′, k) is a Yes-instance of WDCE=
1 (S) or

CHAPTER 4. REGULAR AND CHOSEN DEGREE GRAPHS 68

WDCE=(S), then it is also a Yes-instance of WDCEr
1(S) or WDCEr(S), respec-

tively. The converse direction holds trivially.

4.7 Conclusion

In this chapter we have seen the key results for the WDCE∗ class of problems.

We have demonstrated a polynomially sized kernelization for WDCE∗(v, e) pa-

rameterized by k+r that extends to WDCEr
1(v) = k-Almost r-Regular Graph

= Maximum Induced r-Regular Subgraph, and thus improves Moser and

Thilikos’s [122] kernelization.

We have given a polynomial time algorithm for WDCE∗(v, e) which comple-

ments previously known results for r-Factor = ∞WDCEr
1(e), Perfect Match-

ing = ∞WDCE1
1(e), f-Factor = ∞WDCE∗

1(e) and Perfect b-Matching =

∞WDCE∗(e).

We have also answered an open question of Moser and Thilikos [121], and shown

that WDCEr
1(v) is W [1]-hard for parameter k. Subsequently any variant of the

problem which contains this as a subproblem is also W [1]-hard.

In Chapter 5 we will continue the generalisation of these results, moving to

variants that resemble Lovász’s General Factor problem, and also examining

the case where both vertex deletion and edge addition are allowed.

Chapter 5

General Factors of Graphs

5.1 Introduction

In this chapter we will generalise the WDCE∗ class of problems, and classify the

complexity of the cases not already covered by the WDCE∗ cases. The cases

examined in this chapter generally relate to the General Factor = ∞WDCE1(e)

problem, introduced by Lovász [106, 107] and studied by many others [10, 29, 43,

108, 109, 148, 161, 162].

We define the generalisation of WDCE∗ as WDCE.

WDCE(S)

Instance: A graph G = (V,E), two integers k and r, a weight function

ρ : V ∪ E → {1, 2, . . . }, and a degree list function δ : V → 2{0,...,r}.

Question: Can we obtain from G a graph G′ = (V ′, E′) using editing

operations from S only, such that for all v ∈ V ′ we have
∑

uv∈E′ ρ(uv) ∈

δ(v), with total editing cost at most k?

By a result due to Cornuéjols [43], General Factor is NP-complete, apart

from certain trivial cases, if the lists may contain gaps of length > 1, but is

otherwise polynomially solvable. This subsumes the polynomial time results for

r-Factor = ∞WDCEr
1(e) (which can be reduced to Perfect Matching =

∞WDCE1
1(e) as shown by Tutte [160]), f-Factor = ∞WDCE∗

1(e) [160] and

Perfect b-Matching = ∞WDCE∗(e) [66, 94, 150, 163].

We also examine the cases where vertex deletion and edge addition are both al-

lowed with parameter k+ r. It appears that this combination of editing operations

increases the complexity significantly, and we show that although the problem is still

fixed-parameter tractable there is unlikely to be a polynomial time kernelization of

69

CHAPTER 5. GENERAL FACTORS OF GRAPHS 70

a form similar to that of Lemma 4.4.4, unless P = NP. Moreover we show that in

the general case this combination of editing operations is unlikely to allow a polyno-

mially sized kernel by application of Lemma 3.5.9. However by application of Stew-

art’s [154] extension (Corollary 3.5.3) of the logical meta-theorem (Section 3.5.1)

due to Frick and Grohe [79], we show that WDCE(S) with ∅ 6= S ⊆ {v, e, a} is

fixed parameter tractable for parameter k + r.

5.1.1 A Note on Some Immediate Results

Chapter 4 gives some immediate results that we may apply to the more general

problems in this chapter.

Bound Search Tree Algorithm

The bounded search tree approach from Section 4.3 can be applied essentially im-

mediately to WDCE(S) where {v} ⊆ S ⊆ {v, e}.

Lemma 5.1.1. WDCE(v, e) is fixed-parameter tractable for parameter k + r.

Proof. The branching set consists of a vertex v with dρ(v) /∈ δ(v), at most r + 1

neighbours of v and the edges between v and the r + 1 neighbours. Therefore

the branching set has size at most 2r + 3. By instantiating the generic algorithm

described in Section 4.3, we obtain a search tree with at most tr(2r + 3, k) =

((2r + 3)k+1 − 1)/(2r + 2) vertices.

If we only allow vertex deletion, then the branching set consists only of vertices,

and is of size at most r + 2, giving a search tree with at most tr(r + 2, k) =

((r + 2)k+1 − 1)/(r + 1) vertices.

Corollary 5.1.2. WDCE(v) is fixed-parameter tractable for parameter k + r.

Hardness

Theorem 4.6.3 established the W [1]-hardness of WDCE∗(S), WDCEr(S) and

WDCE∗
1(S) for parameter k with {v} ⊆ S ⊆ {v, e, a} for parameter k. As these

are all subproblems of the more general form, we may immediately conclude the

following:

Theorem 5.1.3. The problems WDCE1(S) and WDCE(S) with {v} ⊆ S ⊆

{v, e, a} are W [1]-hard for parameter k.

Similarly the para-NP-completeness results of Corollary 4.2.2 carry over imme-

diately.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 71

Proposition 5.1.4. WDCE1(v) and WDCE(v) are para-NP-complete for param-

eter r.

5.2 Kernelizations for WDCE(v), WDCE(v, e) and

WDCE(e)

5.2.1 Reduction Rules

Consider an instance (G, k, r) of WDCE(S) with ∅ 6= S ⊆ {v, e}.

Observe that Reduction Rules 1 and 2 from Section 4.4.1 still apply in this case.

However Reduction Rule 3 is no longer valid. We introduce the following new rule.

We extend the definition of clean vertices and regions to the case where vertices

have degree list functions. A vertex v is clean if dρ(v) ∈ δ(v). A clean region C

of graph G is a maximal connected subgraph of G such that every vertex v ∈ C is

clean. Let C be a clean region of G with boundary B(C). Let the i-th layer of C

be the subset Ci = { c ∈ V (C) | minb∈B(C){dG(c, b)} = i } where dG(c, b) denotes

is the distance between c and b in G. Note that all the neighbours of a vertex of

layer Ci belong to Ci−1 ∪ Ci ∪ Ci+1.

Reduction Rule 4: Let (G, k, r) be an instance of WDCE(S) and let C be a clean

region of G such that Ck+2 6= ∅. Then replace (G, k, r) with (G′, k, r) as follows:

1. For each vertex u ∈ Ck+1 reduce each entry of δ(u) by dρ
Ck+2

(u).

2. Delete all layers Ci for i ≥ k + 2.

Lemma 5.2.1. Reduction Rule 4 is sound for WDCE(S) with ∅ 6= S ⊆ {v, e}.

Proof. Let D be the set of vertices and edges deleted in a minimal solution of

(G, k, r); thus D ⊆ V (G) if S = {v} and D ⊆ V (G)∪E(G) if S = {v, e}. Let G(D)

be the subgraph of G induced by all vertices that belong to D or are incident to an

edge in D. Each connected component X of G(D) that contains a vertex of a clean

region C must also contain a vertex of the boundary B(C) of C, since otherwise

we could obtain a solution that is smaller than D by removing those vertices and

edges from D that induce X in G(D). Consequently, each vertex v ∈ D ∩ V (C)

must be of distance at most |D| from a vertex in the boundary of C, i.e. v ∈ Ci for

i ≤ |D|. Similarly, each endpoint of an edge e ∈ D ∩ E(C) must belong to some

Ci for i ≤ |D| + 1. If |D| ≤ k then D is also a solution of (G′, k, r) as D does not

CHAPTER 5. GENERAL FACTORS OF GRAPHS 72

touch the part deleted from G. On the other hand, each solution D′ of (G′, k, r) is

trivially a solution of (G, k, r).

5.2.2 Kernelization Lemmas

Now we can state our kernelization lemmas.

Lemma 5.2.2. Let {v} ⊆ S ⊆ {v, e}. Let (G, k, r) be a Yes-instance of WDCE(S)

that is reduced under Reduction Rules 1, 2 and 4. Then |V (G)| ≤ k(1 + (k+ r)(1 +

rk+1)) = O(k2rk+1 + krk+2).

Proof. Assume that (G, k, r) is a Yes-instance of WDCE(S) and is reduced under

Reduction Rules 1, 2 and 4. Similarly to the proof of Lemma 4.4.4, we define three

disjoint sets D, H, and X where D ⊆ E(G) ∪ V (G) is the set of vertices and edges

whose deletion provides a solution, H ⊆ V (G) is the set of vertices adjacent to

vertices in D or incident to edges in D, and X ⊆ V (G) contains the remaining

vertices of G that are neither in D nor in H. |D| ≤ k by definition, and D ⊆ V (G)

if S = {v}. Observe that H separates D from X. Furthermore, observe that there

are no independent clean regions in G (otherwise the graph would not be reduced

under Reduction Rule 2), and dρ(x) ∈ δ(x) for all x ∈ X (otherwise D would not

be a solution).

Claim 5.2.3. |H| ≤ |D| · (k + r).

Since the instance is reduced under Reduction Rule 1, the maximum weighted

degree of every vertex is at most k+ r, and each vertex in H is adjacent or incident

to some element of D; hence the claim follows.

Claim 5.2.4. |X| ≤ |H| · rk+1.

As all vertices in X are clean, all boundary vertices for all clean regions are

contained in H ∪ D. Then there is no vertex in X of distance greater than k + 1

from H, otherwise the graph is not reduced under Reduction Rule 4. Thus X is the

disjoint union of the sets X1, . . . , Xk+1 where Xi = {x ∈ X | minh∈H{dG(x, h)} =

i }. We have |X1| ≤ |H| · r as vertices in H may have all their neighbours in X.

For i > 1 we have |Xi| ≤ |Xi−1|(r − 1) ≤ |X1|(r − 1)i−1 as each vertex in Xi

has at least one neighbour in Xi−1 and at most r in neighbours in total. For

r ≥ 1 we assume inductively that
∑m

i=1|Xi| ≤ |X1| · rm−1. Then
∑m+1

i=1 |Xi| ≤

|X1| · rm−1 + |X1| · (r − 1)m−1(r − 1) ≤ |X1| · rm. Therefore with k + 1 layers,

|X| ≤ |H| · rk+1. For r = 0, H is an independent set after removal of D, therefore

X = ∅, and the claim holds trivially.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 73

Since |V (G)| ≤ |D|+ |H|+ |X| and |D| ≤ k, the lemma follows from Claims 5.2.3

and 5.2.4.

If we restrict the allowed editing operations to edge deletion alone, then we can

obtain a better kernel by observing that if the graph contains any vertex of degree

greater than k+r, then it is a No-instance, as this vertex cannot be fixed with only

k edge deletions. Reduction Rules 2 and 3 still apply. Thus WDCE(e) allows an

improved kernelization lemma.

Lemma 5.2.5. Let (G, k, r) be a Yes-instance of WDCE(e) that is reduced under

Reduction Rules 2 and 4. Then |V (G)| ≤ 2k(1 + rk+1) = O(krk+1).

Proof. We define D, H, and X as in the proof of Lemma 5.2.2. Since D consists

only of edges and is of size at most k, we have |H| ≤ 2k. The rest of the proof

follows as for Lemma 5.2.2.

We combine the results of Lemmas 4.4.4, 5.2.2 and 5.2.5 into the following

theorem.

Theorem 5.2.6. For {v} ⊆ S ⊆ {v, e}, the problem WDCE(S) admits a kernel

with O(k2rk+1 + krk+2) vertices, and the problem WDCE∗(S) admits a kernel

with O(kr(k+ r)) vertices. The problem WDCE(e) admits a kernel with O(krk+1)

vertices.

5.3 Kernelization and Edge Addition

It appears that the kernelization approach in Section 4.4 does not work under the

presence of edge addition. If we apply our approach to a variant of WDCE that

includes WDCE∗(v, a) as a subproblem, it becomes necessary to consider deleting

a set of vertices from clean regions so that the edges that become available may be

used to complete the degree of a vertex of insufficient degree. This gives rise to the

following subproblem:

Edge Replacement Set

Instance: A graph G = (V,E), two positive integers k and t.

Question: Does there exist a set X ⊆ V such that |X| ≤ k and there

are exactly t edges between vertices in X and vertices in V \X?

Unfortunately, Edge Replacement Set is NP-complete, thus making the pos-

sibility of obtaining a kernel in polynomial time by somehow identifying all relevant

sets in the clean regions unlikely.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 74

Proposition 5.3.1. Edge Replacement Set is NP-complete and W [1]-hard for

parameter k.

Proof. We give a polynomial-time FPT reduction from Regular Clique (see

Lemma 4.6.1).

Let (G, k) be an instance of Regular Clique where G = (V,E) is r-regular.

We may assume that r > k2 since we can use the fixing gadgets (see Section 4.6.1)

to increase the degree of each vertex arbitrarily without introducing non-trivial

cliques. For a set X ⊆ V let d(X) denote the number of edges uv ∈ E with u ∈ X

and v ∈ V \X. If X forms a k-clique in G then d(X) = k(r− k+ 1). Therefore we

put t = k(r − k + 1) and consider (G, k, t) as an instance of Edge Replacement

Set.

Let X ⊆ V with |X| ≤ k and d(X) = t. We show that X has exactly k elements

and forms a clique in G. Assume for the sake of contradiction that |X| < k. It

follows that d(X) ≤ |X|r ≤ r(k− 1) < rk− k2 ≤ t, a contradiction; hence |X| = k.

Each vertex x ∈ X has at most k−1 neighbours inX and at least r−k+1 neighbours

in V \X. Therefore, if at least one x ∈ X had fewer than k − 1 neighbours in X,

then d(X) > k(r − k + 1) = t, again a contradiction. Hence X indeed induces a

k-clique in G.

Membership in NP is clear, establishing the completeness requirement of the

proposition.

Thus this proof demonstrates that a polynomial time kernelization which relies

upon identifying such candidate sets for deletion is unlikely to exist unless P = NP.

Note also that the proof holds if we also demand that the set X is connected.

In fact we go further and note that Lemma 3.5.9 applies to Regular Clique.

Therefore Regular Clique has a composition algorithm, and thus does not have

a polynomially sized kernel unless the Polynomial Hierarchy collapses to the third

level. As the reduction for Proposition 5.3.1 is a polynomial time and parameter

FPT reduction, by Theorem 3.5.10 we can infer the following:

Lemma 5.3.2. Edge Replacement Set has no kernel of size polynomial in k

and r unless the Polynomial Hierarchy collapses to the third level.

This can be extended further by noting that it is trivial (in the sense of a polyno-

mial time and parameter FPT reduction) to produce an instance of WDCE∗(v, a)

where a deletion in the style of Edge Replacement Set is required.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 75

Lemma 5.3.3. For {v, a} ⊆ S ⊆ {v, e, a}, WDCE∗(S), and hence WDCE(S), has

no kernel of size polynomial in k and r unless the Polynomial Hierarchy collapses

to the third level.

Proof. We will show that there is a polynomial time and parameter FPT reduc-

tion from Edge Replacement Set to WDCE∗(S) where {v, a} ⊆ S ⊆ {v, e, a}.

The non-parameterized WDCE∗(S) is NP-complete by Theorem 4.6.3 and the non-

parameterized Edge Replacement Set is clearly in NP. Hence we can use The-

orem 3.5.10 to extend Lemma 5.3.2 to WDCE∗(S).

Let (G, k, t) be an instance of Edge Replacement Set. By the proof of

Proposition 5.3.1 we may assume that t = k(r − k + 1) and that G is r-regular for

some r > k2, and therefore that the instance is a Yes-instance if and only if G

contains a k-clique. Furthermore we assume that k ≥ 3. We construct an instance

of (G′, k′, r′) of WDCE∗(S) with {v, a} ⊆ S ⊆ {v, e, a} where G′ is G with an

additional vertex v added. We set k′ = k + t, ρ(v) = k + 1 and δ(v) = {t}. For all

vertices u ∈ V (G′) \ {v} we set δ(u) = {r} and ρ(u) = 1. We choose r′ to be t.

Assume (G, k, t) is a Yes-instance of Edge Replacement Set. Then there

is a set X of vertices of size at most k such that
∑

x∈X dV (G)\X(x) = t. Let

X ′ ⊆ V (G) \X be the set of endpoints of edges with one endpoint in X. Deleting

the vertices of X from G′ and suitably adding t edges between v and the vertices of

X ′ satisfies all degree constraints of vertices remaining after editing. The cost of the

deletions and additions is at most t+k = k′. Therefore (G′, k′, r′) is a Yes-instance

of WDCE∗(S) with {v, a} ⊆ S ⊆ {v, e, a}.

Assume (G′, k′, r′) is a Yes-instance of WDCE∗(S) with {v, a} ⊆ S ⊆ {v, e, a}.

As the weight of v is k + 1 it cannot have been deleted, so there must be a set of

added edges of total weight t incident on v. Let ke be number of edges deleted.

We first assume that ke = 0 (and will later show that ke > 0 is not possible).

By the construction G′ − v is clean. We also have that t = k(r − k + 1) and

r > k2. By the same argument as in the proof of Proposition 5.3.1, the only

possibility is that there is a k-clique in G′ − v which can be deleted to allow t

edges to be added. This would give a total cost of t + k = k′. Assume that

ke > 0, then we may only delete at most k − ke vertices, which would give at most

r(k − ke) + 2ke = rk − (r − 2)ke ≤ rk − (r − 2) < rk − k2 + 2 ≤ t edges to add

and we derive a contradiction. Thus ke = 0. Therefore (G, k, t) is a Yes-instance

of Edge Replacement Set.

The reduction is clearly a polynomial time and parameter FPT reduction.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 76

Extending this result to WDCEr
1(v, a) seems more difficult, as it is not clear

that Edge Replacement Set is a subproblem. Conversely however there does

not seem to be a good kernelization for WDCEr
1(v, a), but perhaps some progress

can be made here with new structural insights.

5.4 General Fixed-Parameter Tractability for

WDCE

In this section we establish the fixed-parameter tractability of WDCE for parameter

k + r where we allow edge addition:

Theorem 5.4.1. The problems WDCE(S) and WDCE1(S) are fixed-parameter

tractable for parameter k + r and ∅ 6= S ⊆ {v, e, a}.

For establishing Theorem 5.4.1 we apply the meta-theorem of Frick and

Grohe [79] (see Section 3.5.1). In particular we use Corollary 3.5.3, due to Stew-

art [154], which states that that the parameterized model checking problem for

first-order logic is fixed-parameter tractable for relational structures of bounded

degree where the degree bound depends on the parameter. In fact Stewart [154] in-

dicated how this can be used to show that r-Regular Subgraph = WDCEr
1(v, e)

with parameter k + r is fixed-parameter tractable. In the following we extend this

approach to WDCE(S) and WDCE1(S) for S ⊆ {v, e, a}.

We must now ensure that the maximum weighted degree of the graph is bounded

by a function of the parameter, which is not guaranteed by the problem. However

if the graph has a vertex v such that dρ(v) > k+r then, if there is a solution of cost

at most k, v must be part of the solution, i.e. v must be deleted (i.e. by Reduction

Rule 1, from Section 4.4). Thus we can eliminate all such vertices in polynomial

time and decrease the parameter k accordingly. Further, we can assume that all

vertices are of weight at most k + 1 and all edges are of weight at most r + k + 1

(this or any higher weight renders deletion infeasible). Hence we can assume that

the weighted degree and all edge and vertex weights are bounded in terms of the

parameters k and r.

We associate with a weighted graph G its incidence structure SG as described

in Section 2.3.3. To the vocabulary of the structure we add the unary relations Wi,

1 ≤ i ≤ k + 1, and Dj , 0 ≤ j ≤ r (where Wix expresses that vertex x has weight

ρ(x) = i, and Djx expresses that j ∈ δ(x)). We represent an edge uv of weight w

by w distinct “parallel” elements x1, . . . , xw with Iuxi and Ivxi, 1 ≤ i ≤ w. Note

CHAPTER 5. GENERAL FACTORS OF GRAPHS 77

that the maximum degree of the structure SG (in particular the maximum degree

of the Gaifman graph as defined in Section 3.5.1) is bounded in terms of k and r.

We now define the formulae φk,r expressing the problem. In the following we

write [n] = {1, . . . , n}. We define

φk,r =
∨

k′,k′′,k′′′∈[k] such that k′+k′′+k′′′≤k ∃u1, . . . , uk′ ,

∃e1, . . . , ek′′ ,∃a1, . . . , ak′′′ ,∃b1, . . . , bk′′′(φ′k,r ∧ ∀v φ′′k,r)

where φ′k,r and φ′′k,r are given below. The subformula φ′k,r is the conjunction of the

clauses (1)–(3) and ensures that u1, . . . , uk′ represent deleted vertices, e1, . . . ek′′

represent deleted edges, ai, bi, 1 ≤ i ≤ k′′′ represent end points of added edges, and

the total editing cost is at most k. Note that since added edges are not present

in the given structure we need to express them in terms vertex pairs. For the

unweighted case we must also include subformulae (4) and (5) to ensure that the

addition of edges does not produce parallel edges. By restricting k′, k′′ or k′′′ to

zero as appropriate we can express which editing operations are available.

(1)
∧

i∈[k′] V ui ∧
∧

i∈[k′′]Eei “ui is a vertex, ei is an edge;”

(2)
∧

i∈[k′′′] V ai∧V bi∧ai 6= bi∧
∧

j∈[k′](uj 6= ai∧uj 6= bi) “ai and bi are distinct

vertices and not deleted;”

(3)
∨

w1,...,wk′∈[k′] such that
∑

i∈[k′] wi+k′′+k′′′≤k

∧
i∈[k′]Wwi

ui “the weight of

deleted vertices is correct;”

(4)
∧

1≤i<j≤k′′(ai 6= bj ∨ aj 6= bi) ∧ (ai 6= aj ∨ bi 6= bj) “the pairs of vertices are

mutually distinct;”

(5)
∧

i∈[k′′′] ∀y(¬Iaiy ∨ ¬Ibiy) “ai and bi are not adjacent.”

The subformula φ′′k,r ensures that after editing each vertex v has degree l ∈ δ(v).

φ′′k,r = (V v ∧
∧

i∈[k′]

v 6= ui) →
∨

l∈[r]

Dlv ∧
∨

l′, l′′ ∈ [l]

l′ + l′′ = l

∃x1, . . . , xl′ , y1, . . . , yl′′ φ
′′′
k ,

where φ′′′k,r is the conjunction of the clauses (6)–(12).

(6)
∧

i∈[l′] Ivxi “v is incident with l′ edges;”

(7)
∧

1≤i<j≤l′ xi 6= xj “the edges are all different;”

(8)
∧

i∈[l′],j∈[k′′] xi 6= ej “the edges have not been deleted;”

CHAPTER 5. GENERAL FACTORS OF GRAPHS 78

(9)
∧

i∈[l′],j∈[k′] ¬Iujxi “the ends of the edges have not been deleted;”

(10) ∀x(Ivx →
∨

i∈[l′] x = xi ∨
∨

i∈[k′′] x = ei ∨
∨

i Ixui) “v is not incident with

any further edges except deleted edges;”

(11)
∧

i∈[l′′]

∨
j∈[k′′′](yi = aj ∧ v = bj) ∨ (yi = bj ∧ v = aj) “v is incident with at

least l′′ added edges;”

(12)
∧

j∈[l′′](v = aj →
∨

i yi = bj) ∧ (v = bj →
∨

j∈[l′′] yi = aj) “v is incident with

at most l′′ added edges.”

The formulae φk,r give us the following results:

Lemma 5.4.2. For all k, r ≥ 0 there exists a first order formula φk,r such that for

every instance (G, k, r) of WDCE(S) (resp. WDCE1(S)) with ∅ 6= S ⊆ {v, e, a}

and associated incidence structure SG, we have SG is a model of φk,r if and only if

(G, k, r) is a Yes-instance of WDCE(S) (resp. WDCE1(S)).

Then by Corollary 3.5.3, Lemma 5.4.2 proves Theorem 5.4.1.

5.5 W [1]-Hardness for WDCE1(e), WDCE1(a) and

WDCE1(e, a)

We now show W [1]-hardness for the remaining cases where the only operations are

edge deletion and edge addition.

Theorem 5.5.1. The problem WDCE1(S) is W [1]-hard for parameter k and ∅ 6=

S ⊆ {e, a}.

Proof. Let (G, k) be an instance of Regular Clique where G is r-regular and has

n vertices. We construct a graph H by adding to G additional vertices v1, . . . , vk

and all edges uvi for u ∈ V (G) and 1 ≤ i ≤ k. We set δ(vi) = {n−k}, 1 ≤ i ≤ k, and

δ(u) = {r− k+1, r+ k} for all u ∈ V (G). We set k′ =
(
k
2

)
+ k2. Furthermore let H̄

be the complement graph of H (i.e. V (H̄) = V (H) and E(H̄) = {uv | u, v ∈ V (H),

u 6= v, and uv /∈ E(H) }) and label the vertices v of H̄ with δ̄(v) = { |V (H)| − 1−

d | d ∈ δ(v) }.

The theorem follows from Lemma 4.6.1 and the following claim.

Claim 5.5.2. The following statements are equivalent.

1. (G, k) is a Yes-instance of Regular Clique.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 79

2. (H, k′) is a Yes-instance of WDCE1(e).

3. (H, k′) is a Yes-instance of WDCE1(e, a).

4. (H̄, k) is a Yes-instance of WDCE1(a).

(1 ⇒ 2) Assume there is a k-clique in G. Let the set of vertices of the clique be

C = {u1, . . . , uk}. Then we can satisfy the degree requirement of H by deleting the

edges uiuj , where 1 ≤ i, j ≤ k, and the edges viuj , where 1 ≤ i, j ≤ k. The number

of edges deleted is exactly k′.

(2 ⇒ 3) This implication is trivial.

(3 ⇒ 1) Assume that (H, k′) is a Yes-instance of WDCE1(e, a) and fix a solution

of total cost at most k′. For i ∈ {r − k + 1, r + k} let Vi ⊆ V (G) be the set

of vertices that have degree i after editing. Let D be the set of edges that are

deleted in the solution and are incident with a vertex vi for 1 ≤ i ≤ k. Clearly

|D| ≥ k2. Let Di ⊆ D denote the subset of deleted edges that have an end point

in Vi, i ∈ {r − k + 1, r + k}. Each deleted edge e ∈ D causes the degree of a

vertex v ∈ V (G) to be decreased by one, and therefore causes additional editing

operations to repair the degree of v: either by edge additions (if v ∈ Vr+k) or by

edge deletions (if v ∈ Vr−k+1). At least one edge addition is required to repair

the degree change caused by 2 edges from Dr+k. At least
(
k
2

)
= k(k − 1)/2 edge

deletions are required to repair the degree change caused by k2 edges from Dr−k+1;

this is exactly the case if G contains a clique on k vertices u1, . . . , uk, and Dr+1 =

{uivj | 1 ≤ i, j ≤ k }. Thus the average cost caused by an edge in Dr+k is

at least 1/2, whereas the average cost caused by an edge in Dr−k+1 is at least

k(k−1)/(2k2) = (k−1)/(2k), which is smaller than 1/2. Consequently, the editing

cost is smallest if Dr+k = ∅ and Dr−k+1 = {uivj | 1 ≤ i, j ≤ k } for vertices

u1, . . . , uk that form a clique in G. However, in this case the total editing cost is

exactly |Dr−k+1|+ |Dr−k+1|(k− 1)(2k) = k2 +
(
k
2

)
= k′, hence this case is the only

one possible.

(2 ⇔ 4) This equivalence follows immediately from the definition of H̄.

Since the main reduction in the proof of Theorem 5.5.1 does not use edge addition

it also applies to the weighted version of the problems:

Corollary 5.5.3. The problem WDCE(S) is W [1]-hard for parameter k and ∅ 6=

S ⊆ {e, a}.

In fact we may now combine the ultimate results of Theorems 4.6.3 and 5.5.1

and subsequent corollaries.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 80

Theorem 5.5.4. The problems defined by WDCE(S) with ∅ 6= S ⊆ {v, e, a} are

W [1]-hard for parameter k. If v ∈ S the problems remain W [1]-hard even when

restricted to the class WDCEr
1(S) with parameter k.

5.6 Bounded Degree Graphs

Fellows et al. [70] generalise Vertex Cover to obtain the following problem (as

Bounded-Degree Deletion):

Degree r Deletion

Instance: A graph G = (V,E), a positive integer k.

Question: Can at most k vertices be deleted from G such that no vertex

has degree greater than r?

They give a kernel with (r3 + 4r2 + 6r + 4) · k vertices via a generalisation of

Nemhauser and Trotter’s Vertex Cover techniques [124].

This problem may be considered as a special case of WDCE where δ(v) =

{0, . . . , r} for every vertex v ∈ V (G). We denote this case by WDCE≤r.

As we have only an upper bound on the degree, edge addition makes no sense

as an operation.

Lemma 5.6.1. (G, k, r) is a Yes-instance of WDCE≤r(v, e) if and only if (G, k, r)

is a Yes-instance of WDCE≤r(v).

Proof. (⇐) Clearly if (G, k, r) is a Yes-instance of WDCE≤r(v) then it is a Yes-

instance of WDCE≤r(v, e) with the same set of deletions.

(⇒) Assume (G, k, r) is a Yes-instance of WDCE≤r(v, e) and let D be the set

of vertices and edges deleted in the solution. We construct a new set D′ consisting

entirely of vertices by adding to D′ all vertices in D and for each edge in D we add

one endpoint to D′. Every vertex in G−D′ is in G−D, furthermore every vertex

in the graph induced G − D′ has degree no greater than in the graph induced by

G−D. Clearly |D′| ≤ |D|, therefore (G, k, r) is a Yes-instance of WDCE≤r(v).

5.6.1 A Kernelization for WDCE≤r(v, e)

Reduction Rules

Naturally Reduction Rule 1 (Section 4.4.1) applies immediately. Reduction Rule 2

(Section 4.4.1) also applies directly.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 81

However as deleting an element of a clean region does not affect whether or not it

is a clean region, we cannot apply Reduction Rule 3 (Section 4.4.1). Furthermore as

elements of the clean region beyond the first layer need never be deleted, Reduction

Rule 4 (Section 5.2.1), while still correct, can be improved.

Reduction Rule 5: Let (G, k, r) be an instance of WDCE≤r(S) with clean region

C. Replace (G, k, r) with a new instance (G′, k, r) where G′ is obtained from G by

deleting all layers Ci of C where i ≥ 1.

Claim 5.6.2. Reduction Rule 5 is sound for WDCE≤r(v).

Proof. Let D be a set of deleted vertices. If D contains any vertices from any layer

Ci where i > 1, we may replace D with a new solution D′ where those vertices are

not deleted. As C is clean, the solution will still be correct.

Kernelization Lemma

Lemma 5.6.3. Let (G, k, r) be a Yes-instance of WDCE≤r(v) reduced under Re-

duction Rules 1, 2 and 5. Then |V (G)| ≤ k + k(k + r) + kr(k + r) = O(kr(k + r)).

Proof. Let (G, k, r) be a Yes-instance of WDCE≤r(S) reduced under Reduction

Rules 1, 2 and 5. As in the proofs of Lemmas 4.4.4, 5.2.2 and 5.2.5 we define three

disjoint sets, D, H and X, where D is the set of vertices deleted in the solution, H

is the set of vertices adjacent to vertices in D and X is the remaining vertices of

the graph. As before H separates D and X, thus no element of X has a neighbour

outside of H ∪X. |D| ≤ k by definition.

Claim 5.6.4. |H| ≤ |D| · (k + r).

By Reduction Rule 1 no vertex has degree greater than k + r, therefore each

vertex in D at most k + r neighbours in H.

Claim 5.6.5. |X| ≤ |H| · r.

G−D is clean, therefore vertices in H have at most r neighbours in G−D. As

X consists entirely of clean regions, by Reduction Rule 5, every element of X must

be adjacent to some element of H.

Therefore |V (G)| = |D|+ |H|+ |X| ≤ k + k(k + r) + kr(k + r).

Theorem 5.6.6. WDCE≤r(v) is fixed-parameter tractable for parameter k + r.

By Lemma 5.6.1 we have:

Corollary 5.6.7. WDCE≤r(v, e) is fixed-parameter tractable for parameter k+ r.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 82

5.7 WDCE and Treewidth

We now return to the WDCE problem with an alternate parameterization, the

treewidth tw(G) of the input graph G (see Section 3.5.1 for the definition of

treewidth). There are several options for parameterizing, dependent on what com-

bination of the treewidth, the degree bound r and the editing cost k is chosen. Of

course if both k and r are part of the parameterization, we already have a com-

plete classification (summarised by Theorem 5.9.1). It can also be observed that

if a graph G has treewidth tw(G) ≤ t, then there is some vertex v ∈ V (G) with

d(v) ≤ t [20]. As we only have deletion operations, the vertex v with d(v) ≤ t can-

not have its degree constraint satisfied and must be deleted, however the resultant

graph G′ has tw(G′) ≤ t, therefore this process cascades and the entire graph must

be deleted, therefore for WDCEr
1(v, e) if r > t we may immediately answer No.

Furthermore if r ≤ t and k is also a parameter, then Theorem 5.9.1 applies. As

WDCE∗(S) for ∅ 6= S ⊆ {e, a} is in P, parameterization by any combination of

treewidth, k and r does not affect the complexity.

Samer and Szeider [145] show that the General Factor = ∞WDCE1(e) prob-

lem is W [1]-hard when parameterized by treewidth alone. Recall that the ∞WDCE

case can be obtained from the WDCE case by choosing k to be large.

Proposition 5.7.1 ([145]). ∞WDCE1(e) is W [1]-hard when parameterized by the

treewidth of the input graph. Furthermore it remains W [1]-hard when the input

graphs are bipartite and the vertices of one partite set are assigned degree list {1}.

If we set the vertex weights appropriately, we can also allow vertex deletion.

However we can no longer claim unit weights.

Corollary 5.7.2. WDCE(v, e) is W [1]-hard when parameterized by the treewidth

of the input graph. Furthermore it remains W [1]-hard when the input graphs are

bipartite and the vertices of one partite set are assigned degree list {1}.

Proof. Let (G, tw(G)) be an instance of ∞WDCE1(e). We reduce to an instance

(G, k, tw(G)) of WDCE(v, e) by setting k to be
∑

e∈E(G) ρ(e) and for all vertices

v ∈ V (G) setting ρ(v) = k+ 1. Therefore no vertex can be deleted within the cost,

however we can delete all edges if needed. Clearly (G, tw(G)) is a Yes-instance of

∞WDCE1(e) if and only if (G, k, tw(G)) is a Yes-instance of WDCE(v, e).

By subdividing the edges and setting the weights of the new vertices to 1 we can

restrict the operations to vertex deletion alone, as subdivision does not increase the

treewidth.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 83

Corollary 5.7.3. WDCE(v) is W [1]-hard when parameterized by the treewidth

of the input graph. Furthermore it remains W [1]-hard when the input graphs are

bipartite and the vertices of one partite set are assigned degree list {1}.

5.7.1 Parameterizations Excluding k

If we consider versions of the problem where the number of edit operations is un-

bounded, we can obtain some further results for limited cases. In this setting, as

the number of deletions is unbounded, we do not consider the trivial case where

V (G) = ∅ as a valid solution.

Lemma 5.7.4. ∞WDCEr
1(v) is fixed-parameter tractable when parameterized by

the treewidth of the input graph.

Proof. As noted earlier, if r > tw(G) for a graph G, then (G, tw(G)) is a No-

instance of ∞WDCEr
1(v), as the entire graph would have to be deleted. However

if r ≤ tw(G), we may apply Courcelle’s Theorem with the following second order

sentence:

∃S∀v∀u(V v → Sv ∨ ∃v1, . . . , vr(
∧

i 6=j∈[r](vi 6= vj)∧∧
i∈[r](¬Svi ∧Avvi ∧ v 6= vi) ∧ (Avu→ Su ∨

∨
i∈[r] u = vi)))

where Axy is shorthand for ∃e(Ee∧V x∧V y∧Ixe∧Iye) (i.e, x and y are adjacent).

The sentence ensures that there is a set S (the deleted vertices) such that for every

vertex v and every vertex u, either v is deleted, or it is adjacent to r distinct vertices

that haven’t been deleted, and if u is adjacent to v, then it is one of these vertices,

or it has been deleted.

This can be extended to include edge deletion.

Lemma 5.7.5. ∞WDCEr
1(v, e) is fixed-parameter tractable when parameterized by

the treewidth of the input graph.

Proof. As before if r > tw(G), the instance is a No-instance. Then we need only

construct a second order logic sentence that encodes the problem.

∃S∀v∀e(V v → Sv ∨ (∃e1, . . . , er, v1, . . . , vr(φ1 ∧ φ2)))

where φ1 is the conjunction of subclauses (1)–(5):

(1)
∧

i∈[r] ¬Sei ∧ ¬Svi “ei and vi have not been deleted;”

CHAPTER 5. GENERAL FACTORS OF GRAPHS 84

(2)
∧

i∈[r]Eei ∧ V vi “ei is an edge and vi is a vertex;”

(3)
∧

i∈[r] vi 6= v “v is not equal to any vi;”

(4)
∧

i∈[r] Iviei ∧ Ivei “v and vi are adjacent;”

(5)
∧

i 6=j∈[r] vi 6= vj “the vis are distinct;”

and

φ2 = Ive→ (
∨

i∈[r]

(e = ei) ∨ Se ∨ ∃u(Iue ∧ u 6= v ∧ Su)).

φ2 ensures that if there is an edge incident to v, then either it is one of the r edges

making up the the regular degree of v, it was deleted, or its other endpoint was

deleted.

If vertex deletion and edge addition are allowed, then the problem becomes

trivially polynomial.

Lemma 5.7.6. ∞WDCEr
1(v, e, a) and ∞WDCEr

1(v, a) are polynomial-time solv-

able.

Proof. As the number of editing steps is unlimited, we can simply delete all but

r + 1 vertices, and make the graph a Kr+1.

If there are fewer than r + 1 vertices, it is not possible to have an r-regular

graph, and we answer No immediately.

5.8 A Note on Extended Regularity Constraints

We now present additional results not otherwise included in this thesis. The tech-

niques in Chapters 4 and 5 can be applied to other constraints similar to regularity

with little change. We briefly summarise these extensions.

5.8.1 Edge-Degree Regularity

For an edge uv ∈ E(G), the degree of uv, denoted d(uv) and called the edge-degree, is

the sum of the degrees of the endpoints, d(u)+d(v). If for every edge uv ∈ E(G) we

have d(uv) = r, then G is edge-degree r-regular . Edge-degree constraints naturally

extend vertex based degree constraints, notably any r-regular graph is edge-degree

2r-regular. However an edge-degree regular graph may not be regular. Therefore

the class of edge-degree regular graphs forms a proper superclass of the class of

regular graphs.

CHAPTER 5. GENERAL FACTORS OF GRAPHS 85

We define the Weighted Edge Degree Constraint Editing problem, or

WEDCE similarly to the WDCE problem. For convenience we extend the notation

for degree and weighted degree to edge-degree and weighted edge-degree.

WEDCE(S)

Instance: A graph G = (V,E), two integers k and r, a weight function

ρ : V ∪ E → {1, 2, . . . }, and a degree list function δ : E → 2{0,...,r}.

Question: Can we obtain from G a graph G′ = (V ′, E′) using edit-

ing operations from S only, such that for all uv ∈ E′ we have∑
uu′∈E′ ρ(uu′) +

∑
vv′∈E′ ρ(vv′) ∈ δ(uv), with total editing cost at

most k?

Edge addition makes less sense in this context, much as vertex addition makes

little sense in the WDCE context. Thus we restrict ourselves to vertex deletion

and edge deletion.

WEDCEr
1(v) remains para-NP-complete for parameter r, and the W [1]-

hardness results of Theorem 4.6.3 carry over to the WEDCE cases. WEDCE(v, e)

is fixed-parameter tractable when parameterized by k + r, by instantiation of the

generic search tree algorithm (Section 4.3). With correct modification of the def-

inition of a clean region, the kernelization given in Section 5.2 gives a kernel of

O(k2rk+1 + krk+2) vertices for WEDCE∗(v, e). If we restrict the editing opera-

tions to only edge deletion, this kernel can be reduced to O(kr) vertices.

5.8.2 Edge Regularity and Strong Regularity

A graph G is (r, λ)-edge regular if every vertex has degree r and every edge uv ∈

E(G) has |N(u)∩N(v)| = λ. A graph G is (r, λ, µ)-strongly regular if it is (r, λ)-edge

regular and for every pair u, v of non-adjacent vertices we have |N(u) ∩ N(v)| =

µ. For this set of constraints, our problem becomes the Weighted Strongly

Regular Editing (WSRE) problem.

WSRE(S)

Instance: A graph G = (V,E), four integers k, r and λ, µ ≤ r, a weight

function ρ : V ∪E → {1, 2, . . . }, a degree function δ : V → 2{0,...,r}, and

two neighbourhood functions ν : V × V → 2{0,...,λ} and ξ : V × V →

2{0,...,µ}.

Question: Can we obtain from G a graph G′ = (V ′, E′) using editing

operations from S only, such that for all v ∈ V ′ we have
∑

uv∈E′ ρ(uv) ∈

CHAPTER 5. GENERAL FACTORS OF GRAPHS 86

δ(v), for every uv ∈ E′ we have |N(u) ∩N(v)| ∈ ν(u, v), and for every

uv /∈ E′ we have |N(u) ∩ N(v)| ∈ ξ(u, v), with total editing cost at

most k?

By choosing ξ(u, v) = {0, . . . , r} for all u, v ∈ V (G) we can express the constraint

of edge regularity.

As both constraints are extensions of regularity, the para-NP-completeness and

W [1]-hardness results for WDCE carry over immediately. When parameterized by

k + r the kernelization for WDCE∗(v, e) can be extended, again with appropriate

redefinition of a clean region, to give a kernel for WSRE∗(v, e) with O(kr2(k + r))

vertices. The generic search tree algorithm of Section 4.3 can be instantiated to

show fixed-parameter tractability for WSRE(v, e). If we allow edge addition, then

the logic approach of Section 5.4 can be extended, with appropriate predicates,

to show fixed-parameter tractability for WSRE(S) where ∅ 6= S ⊆ {v, e, a} with

parameter k + r.

5.9 Conclusion

The key results of Chapters 4 and 5 can be summarised by the following theorem:

Theorem 5.9.1. For all non-empty subsets S of {v, e, a} the problem WDCE(S)

is fixed-parameter tractable for parameter k + r, and W [1]-hard for parameter k.

If v ∈ S then WDCE(S) remains W [1]-hard for parameter k even when all degree

lists are restricted to {r} and all vertices and edges have unit weight 1.

However the additional results further illuminate the complexity of the problem

class WDCE by showing that the problem is in general para-NP-complete for pa-

rameter r, thus indicating that the combined parameter k+ r is in a sense minimal

in that both k and r are needed to render the problem tractable. Furthermore

the NP-completeness of Edge Replacement Set, and the existence of a com-

position algorithm for it indicate that a reasonable algorithm for the cases where

both vertex deletion and edge addition are available is unlikely. The best hope for

progress here is that some new structural insight allows a new avenue of attack on

the WDCEr
1(v, a) case.

Chapter 6

Degenerate Graphs

In this chapter we consider editing problems for degenerate graphs. A graph G is

r-degenerate if every non-empty subgraph of G has a vertex of degree at most r [53].

The degeneracy of a graph G is the smallest number r such that G is r-degenerate.

When we speak of “degenerate graphs” we implicitly assume a fixed upper bound

r on their degeneracy. Degeneracy represents a more general form of degree con-

straint, where the constraint is expressed in terms of a property of the graph as a

whole. Degenerate graph classes include planar graphs, regular graphs, graphs of

bounded degree, graphs of bounded treewidth and H-minor-free graphs [95, 159].

Bounded degeneracy is also equivalent to bounded arboricity [53]. Several NP-hard

problems become polynomial time solvable for degenerate graphs, for example any

d-degenerate graph is (d+1)-colourable and such a colouring can be found in poly-

nomial time. Moreover many problems that are W [1]-hard become fixed-parameter

tractable when restricted to degenerate graphs [7, 28, 82]. Unfortunately there are

also numerous problems that remain hard even when the degeneracy of the graph

is a fixed constant. Despite this the wealth of problems which are fixed-parameter

tractable makes the question of whether it is possible to obtain a degenerate graph

with a limited amount of editing interesting. Unfortunately, as we will show, when

parameterized by the number of editing operations, this problem is W [P]-hard, even

if the degeneracy is fixed and the graph has fixed maximum degree.

6.1 Some Problems that are Tractable on Degen-

erate Graphs

We present fixed-parameter tractability results for various problems with input re-

stricted to degenerate graphs where the problems are in general W [1]-hard or W [2]-

hard. 87

CHAPTER 6. DEGENERATE GRAPHS 88

6.1.1 Preliminary Definitions

Let G be a graph and A,B ⊆ V (G). We say A dominates B if for every vertex

b ∈ B there exists a vertex a ∈ A such that ab ∈ E(G). If A dominates V (G), then

A is a dominating set for G. An independent set in G is a set I ⊆ V (G) such that

for all vertices x, y ∈ I we have xy /∈ E(G). An independent set I is maximal if and

only if there is no independent set I ′ such that I ⊂ I ′. Note that an independent

set is maximal if and only if it is also a dominating set.

We now give an alternative definition of degeneracy. Given a graph G, let

v1, . . . , vn be an ordering of V (G), and let Vi =
⋃

j≤i{vj}. G is r-degenerate if and

only if an ordering exists such that for every vertex vi we have dVi(vi) ≤ r [102].

This ordering provides an intuitive way of dealing with degeneracy, as we can think

of testing for degeneracy as a sequence of deletions where we iteratively pick a vertex

of degree at most r to remove from the graph. The entire graph can be deleted this

way if and only if it is r-degenerate [102].

6.1.2 Independence Problems

The first tractability result was mentioned as an observation by Golovach and Vil-

langer [82] without proof. The kernelization was not noted.

r-Degenerate Independent Set

Instance: An r-degenerate graph G = (V,E), a positive integer k.

Parameter: k.

Question: Does G have an independent set of size at least k?

Lemma 6.1.1. r-Degenerate Independent Set is fixed-parameter tractable

with a search tree with at most tr(r + 1, k) = ((r + 1)k+1 − 1)/r vertices, and a

kernel with at most (r + 1)k vertices.

Proof. Both of these results are simple extensions of the proofs for the equivalent

results for planar graphs [78].

Given any vertex v in the graph, we know that any maximal independent set

contains a vertex from N [v], and that every independent set is a subset of some

maximal independent set. Therefore there is a simple bounded search tree algorithm

to solve the problem.

1. Choose a vertex u of degree at most r, whose existence is guaranteed by the

degeneracy of the graph.

CHAPTER 6. DEGENERATE GRAPHS 89

2. Branch on choosing a vertex v from N [u] to add to the independent set.

3. Remove N [v] from the graph and reduce k by 1.

4. If k = 0 return Yes, if k > 0 and the graph is not empty, go to step 1,

otherwise return No.

The maximum branching factor of the search tree is |N [u]| ≤ r+1, and the tree

has depth at most k. Therefore the tree has at most tr(r + 1, k) vertices.

For the kernelization we note that it is possible in polynomial time to colour

an r-degenerate graph with r + 1 colours (a greedy approach suffices). Therefore

given such a colouring, at least one of the colour classes is of size at least n/(r+1).

Further, this forms a independent set. Then if n/(r+1) ≥ k, this is a Yes-instance.

Otherwise n < (r + 1)k, and the instance is kernelized.

The search tree algorithm for r-Degenerate Independent Set can also easily

be adapted to demonstrate fixed-parameter tractability for the following problem:

r-Degenerate Minimum Maximal Independent Set

Instance: An r-degenerate graph G = (V,E), a positive integer k.

Parameter: k.

Question: Does G have a maximal independent set of size at most k?

This problem can be equivalently formulated as Independent Dominating

Set [75].

Corollary 6.1.2. r-Degenerate Minimum Maximal Independent Set is

fixed-parameter tractable for parameter k.

Proof. As noted in the previous proof, for every vertex v in the graph, at least

one vertex from N [v] is contained in any maximal independent set. Then we apply

the search tree approach as for r-Degenerate Independent Set, except we now

answer Yes if there exists a leaf of the search tree of distance at most k from the

root, and the graph at this leaf is empty. Note that we need never extend the tree

beyond distance k from the root, as either it is a Yes answer at distance k from

the root, or we can terminate that branch of the search.

CHAPTER 6. DEGENERATE GRAPHS 90

6.1.3 Clique Problems

Restricting the input to degenerate graphs also renders several clique based prob-

lems fixed-parameter tractable.

r-Degenerate #Clique

Instance: An r-degenerate graph G = (V,E), a positive integer k.

Parameter: k.

Question: Compute the number of k-cliques in G.

Lemma 6.1.3. r-Degenerate #Clique is fixed-parameter tractable.

Proof. We can apply the following algorithm:

1. Find a vertex v of degree at most r.

2. Try all combinations (at most
(

r
k−1

)
) of creating a k-clique with v and k − 1

neighbours. Count each successful attempt.

3. Remove v.

4. If there are at least k vertices in the graph, continue from step 1.

5. Return the total count.

Clearly we can always find a vertex of degree at most r, as the graph is r-

degenerate. Step 2 counts all cliques containing this vertex, and no others, so we

have not over counted, and we can safely remove the vertex from consideration.

This algorithm can easily be adapted for the following general problem which is

W [1]-hard on general graphs. Π is a polynomial time decidable property.

r-Degenerate Π Clique

Instance: An r-degenerate graph G = (V,E), a positive integer k.

Parameter: k.

Question: Does G contain a k-clique with property Π?

Corollary 6.1.4. r-Degenerate Π Clique is fixed-parameter tractable.

Proof. Apply the enumeration algorithm for r-Degenerate #Clique, and check

if any clique satisfies Π.

This gives a classification for the following problems, all of which are W [1]-

complete on general graphs. Partitioned Clique is the source of the reduction

CHAPTER 6. DEGENERATE GRAPHS 91

for the main hardness result of Chapter 4, Theorem 4.6.3, and Clique is the source

for several reductions in Chapters 4, 5 and this chapter.

r-Degenerate Clique

Instance: An r-degenerate graph G = (V,E), a positive integer k.

Parameter: k.

Question: Does G contain a k-clique?

r-Degenerate Partitioned Clique

Instance: An r-degenerate graph G = (V,E), with V partitioned into k

equal size disjoint subsets.

Parameter: k.

Question: Does G contain a k-clique where each vertex of the clique is

in a different set in the partition?

r-Degenerate Dominating Clique

Instance: An r-degenerate graph G = (V,E), a positive integer k.

Parameter: k.

Question: Does G contain a k-clique that dominates the entire graph?

Corollary 6.1.5. r-Degenerate Clique, r-Degenerate Partitioned Clique

and r-Degenerate Dominating Clique are fixed-parameter tractable.

6.1.4 Domination Problems

A perfect code of a graph is a set of vertices V ′ ⊆ V such that V ′ is an independent

set and every vertex in V \ v′ has exactly one neighbour in V ′.

r-Degenerate Perfect Code

Instance: An r-degenerate graph G = (V,E), an integer k.

Parameter: k.

Question: Does G have a perfect code of size at most k?

r-Degenerate Perfect Code was shown to be fixed-parameter tractable

under the name Efficient Domination k-Set for degenerate graphs by Cai and

Kloks [28].

Lemma 6.1.6 ([28]). r-Degenerate Perfect Code is fixed-parameter tractable.

Proof. Consider an arbitrary perfect code V ′. Given any vertex v, exactly one

vertex in N [v] is in the perfect code. If v has a neighbour u in the perfect code, no

CHAPTER 6. DEGENERATE GRAPHS 92

other vertex u 6= w ∈ N(v) can be in the perfect code, however w may still require

a vertex of N(w) to be in the perfect code. Therefore it is useful to introduce an

annotated version of the problem, to which a bounded search tree approach can be

applied with more clarity.

Annotated r-Degenerate Perfect Code

Instance: An r-degenerate graph G = (V,E), a set B ⊆ V and an

integer k.

Parameter: k.

Question: Is there a set V ′ ⊆ V \ B such that V ′ is a perfect code for

G, with size at most k?

Then the original problem will be the special case of the annotated problem

where initially B = ∅. The search tree algorithm runs as follows:

1. Choose a vertex v of degree at most r.

2. Branch on all possibilities of choosing a vertex u to be in the perfect code

from N [v] \B. If N [v] ⊆ B, then terminate this branch.

3. Set B = B ∪N [N [u]] and reduce k by one.

4. Delete N [u].

5. If k ≥ 0 and all vertices are deleted, answer Yes.

6. If k = 0 and vertices remain, terminate this branch.

7. If k > 0 and vertices remain, return to step 1.

8. If no branch returns Yes, return No.

Considering the original problem, the set B is then employed to ensure that

vertices adjacent to the neighbourhood of a vertex in the perfect code cannot be

themselves added to the perfect code. This ensures the correctness of the solution.

The branching factor of the tree is at most r + 1, as we choose a vertex out of a

set of at most r + 1 vertices at each iteration. The depth of the tree is at most k.

Therefore the tree has at most tr(r + 1, k) = ((r + 1)k+1 − 1)/r vertices.

Alon and Gutner [7] first demonstrated the fixed-parameter tractability of r-

Degenerate Dominating Set, using an interesting annotated version of the

CHAPTER 6. DEGENERATE GRAPHS 93

problem, illustrated below.

r-Degenerate Dominating Set

Instance: An r-degenerate graph G = (V,E), an integer k.

Parameter: k.

Question: Does G have a dominating set of size at most k?

Lemma 6.1.7 ([7]). r-Degenerate Dominating Set is fixed-parameter

tractable.

First we define a black/white graph, where the vertex set V = B]W is a disjoint

union of the set B of black vertices and the set W of white vertices. Now we may

define the r-Degenerate Black/White Dominating Set problem:

r-Degenerate Black/White Dominating Set

Instance: A black/white graph G = (B]W,E), an integer k.

Parameter: k.

Question: Is there a set V ′ ⊆ B]W of size at most k that dominates

B?

It is for this problem that Alon and Gutner show fixed-parameter tractability.

Then r-Degenerate Dominating Set may be solved by first setting B = V and

W = ∅. The proof involves the following key lemma:

Lemma 6.1.8 ([7]). Let G = (B]W,E) be an r-degenerate black/white graph. If

|B| > (4r + 2)k, then there are at most (4r + 2)k vertices in G that dominate at

least |B|/k vertices of B.

Alon and Gutner’s algorithm uses a bounded search tree approach. Given an

instance (G, k) of r-Degenerate Black/White Dominating Set, either |B| ≤

(4r + 2)k, in which case there are at most O(k(4r+2)k) ways of splitting B into

k parts, each of which has a vertex dominating it, or |B| > (4r + 2)k, in which

case by Lemma 6.1.8 there are at most (4r + 2)k vertices which dominate enough

of the graph to be chosen to be in the dominating set. The algorithm proceeds

by branching on the two cases as appropriate. When a vertex is added to the

dominating set, it is removed from the graph, and all white neighbours are coloured

black. This results in a O(krk · |V (G)|)-time algorithm.

CHAPTER 6. DEGENERATE GRAPHS 94

Subsequently Raman et al. [139] extended this result to r-Degenerate Vec-

tor Dominating Set.

r-Degenerate Vector Dominating Set

Instance: An r-degenerate graph G = (V,E), a function L : V → N+

and a positive integer k.

Parameter: k.

Question: Is there a set V ′ ⊆ V such that |N(v) ∩ V ′| ≥ L(v) for every

v ∈ V \ V ′ and |V ′| ≤ k?

Lemma 6.1.9 ([139]). r-Degenerate Vector Dominating Set is fixed-

parameter tractable.

6.2 Some Hard Problems for Degenerate Graphs

Although restricting the input to degenerate graphs is a powerful method of obtain-

ing fixed-parameter tractability results, it is also easy to generate problems that are

hard even for 2-degenerate graphs. A subdivided k-clique in a graph G is a set V ′

of k independent vertices where for every pair of vertices u, v ∈ V ′ there is a vertex

w of degree 2 such that uw, vw ∈ E(G).

Subdivided Clique

Instance: A graph G = (V,E), a positive integer k.

Parameter: k.

Question: Does G have a subdivided k-clique?

Lemma 6.2.1. Subdivided Clique is W [1]-hard, even when restricted to 2-

degenerate graphs.

Proof. Assume k ≥ 4.

The reduction is from Clique. Let (G, k) be an instance of Clique. We

construct an instance (G′, k) of Subdivided Clique where for each vertex v ∈

V (G) we add a vertex v′ to V (G′). For each edge uv ∈ E(G) we add a vertex euv to

V (G′) and two edges u′euv and v′euv to E(G′) where u′, v′ ∈ V (G′) are the vertices

corresponding to u and v respectively. As all euv vertices are of degree 2, and their

deletion leaves all other vertices with degree 0, the graph is 2-degenerate.

We claim that (G, k) is a Yes-instance of Clique if and only if (G′, k) is a

Yes-instance of Subdivided Clique. The forward direction of the proof is trivial,

so we concentrate on the reverse.

CHAPTER 6. DEGENERATE GRAPHS 95

Assume (G′, k) is a Yes-instance of Subdivided Clique. Then there is a set

of k vertices that are pairwise at distance two that form the subdivided clique. By

definition each of these vertices is adjacent to at least k − 1 other vertices. As the

euv vertices added in the subdivision have degree 2, the vertices of the subdivided

clique must correspond to vertices of G. Therefore the corresponding vertices in G

must have been mutually adjacent, i.e. these k vertices formed a k-clique in G.

Golovach and Villanger [82] give a hardness proof for the following domination

problem:

(k, d)-Center

Instance: A graph G = (V,E), integers k and d.

Parameter: k.

Question: Is there a set V ′ ⊆ V of size at most k such that all vertices

are of distance at most d from some vertex in V ′?

Here we present a similar hardness proof for a variant of the problem:

Annotated Distance Domination

Instance: A black/white graph G = (B]W,E), a function D : B]W →

N+ and an integer k.

Parameter: k.

Question: Is there a set V ′ ⊆ B such that for every v ∈ (B]W) \ V ′

there is a vertex u ∈ V ′ where d(u, v) ≤ D(v)?

Lemma 6.2.2. Annotated Distance Domination is W [2]-hard, even when re-

stricted to 2-degenerate graphs and D(v) = 2 for every vertex v.

Proof. The reduction is from Dominating Set, which is known to be W [2]-

complete [59]:

Dominating Set

Instance: A graph G = (V,E) and a positive integer k.

Parameter: k.

Question: Does G have a dominating set of size at most k?

Let (G, k) be an instance of Dominating Set. We construct an instance

((G′, D), k + 1) of Annotated Distance Domination where for each vertex

v ∈ V (G) we add a vertex v′ to B. Then for each edge uv ∈ E(G) with end-

points u and v we add a vertex euv to W and two edges u′euv and v′euv to E(G′)

CHAPTER 6. DEGENERATE GRAPHS 96

where u′ and v′ correspond to u and v respectively. Add a vertex x to B. For

each vertex euv ∈ W add a vertex euvx to W and the edges euveuvx and xeuvx to

E(G′). Finally add two vertices y and z to W and the edges xy and yz to E(G′).

Set D(v) = 2 for all vertices. The vertices euvx have degree 2, and if they are

deleted, the vertices euv have degree 2. The vertices y and z have degree at 2 and

1 respectively. When the vertices euvx are removed, the vertex x has degree 2. All

other vertices are adjacent only to the vertices euv. Therefore G′ is 2-degenerate.

(G, k) is a Yes-instance of Dominating Set if and only if ((G′, D), k + 1) is a

Yes-instance of Annotated Distance Domination. Again the forward direction

is trivial, as the at most k vertices corresponding to the dominating set of G along

with the vertex x form a suitable distance dominating set for G′ with size at most

k + 1.

Assume ((G′, D), k + 1) is a Yes-instance of Annotated Distance Domina-

tion. x must be in the distance dominating set, z must be dominated, and x is

the only black vertex within a distance of 2. Thus all white vertices are dominated

by x. However x dominates no other vertices. Thus the remaining un-dominated

vertices are all black, that is, those vertices corresponding to the original vertices

of the graph, precisely B \ {x}. Therefore there is a set S ⊆ B \ {x} of size at most

k such that every vertex of B \ {x} is at distance at most two from some member

of S. Then in G this would form a dominating set of size at most k.

This type of proof can be constructed for most graph problems, giving a ‘dis-

tance’ or ‘subdivided’ version that is hard even on 2-degenerate graphs.

6.3 Editing to Obtain Degenerate Graphs

Despite the ease of developing hard problems for degenerate graphs, there are obvi-

ously many natural problems, including main problems such as Clique, Indepen-

dent Set and Dominating Set, that are fixed-parameter tractable for degenerate

graphs as discussed in Section 6.1. Thus we move to the main results of the chap-

ter, and examine editing problems for degenerate graphs. Unfortunately these seem

to be hard, W [P]-hard in all examined cases, even when the input is restricted to

bounded degree graphs.

CHAPTER 6. DEGENERATE GRAPHS 97

The general class of problems we will examine is as follows:

r-Degenerate(S)

Instance: A graph G = (V,E), an integer k ≥ 0.

Parameter: k.

Question: Can an r-degenerate graph H be obtained from G by at most

k editing steps using the operations of S?

In the case of degenerate graphs, edge addition is never a useful editing oper-

ation, so we do not consider any variant involving it. Therefore S is restricted to

vertex deletion (v) and edge deletion (e). We also note that a 0-degenerate graph

is an independent set, so the vertex deletion variant becomes Vertex Cover, and

is fixed-parameter tractable [26], the edge deletion variant is trivially polynomial

time solvable. A 1-degenerate graph is a forest, so 1-Degenerate(v) is the Feed-

back Vertex Set problem and 1-Degenerate(e) is the Feedback Edge Set

problem, both of which are also fixed-parameter tractable [58, 36].

Lemma 6.3.1. (G, k) is a Yes-instance of r-Degenerate(v, e) if and only if

(G, k) is a Yes-instance of r-Degenerate(v).

The proof of Lemma 6.3.1 runs essentially identically to that of Lemma 5.6.1.

As we can always preferentially delete a vertex over an edge by Lemma 6.3.1,

1-Degenerate(v, e) is also fixed-parameter tractable.

Proposition 6.3.2. r-Degenerate(S) is fixed-parameter tractable for r ≤ 1

where ∅ 6= S ⊆ {v, e}.

6.3.1 A Note on Degeneracy

When considering the degeneracy of a graph, it is convenient to think in terms of

the greedy algorithm for determining whether a graph is degenerate, which suc-

cessively removes vertices of low degree as outlined in Section 6.1.1. Thus when

demonstrating the degeneracy of a graph it will frequently be expressed by the abil-

ity to remove vertices as they have sufficiently low degree. Clearly this may create

some confusion between the act of deleting vertices to create a degenerate graph,

as defined in the problem, and the descriptive deletion of vertices to demonstrate

degeneracy. To the end of clarifying this possible confusion, we define deletion to

refer to the editing operation specified in the problem, and clearing to refer to the

descriptive act of removing vertices to demonstrate degeneracy.

CHAPTER 6. DEGENERATE GRAPHS 98

ORa

AND

b

ANDc OR d

Figure 6.1: An example monotone cyclic circuit. The sets {a} and {b} activate the
entire circuit, whereas the sets {c} and {d} do not.

6.3.2 Cyclic Monotone Circuit Activation and Almost De-

generate Gate Gadgets

We now use a relaxation of the circuits described in Section 2.3.4, where we no longer

require the underlying graph D to be acyclic. Recall that a circuit is monotone if it

includes no NOT gates. Let A be a set of gates of a cyclic monotone circuit D. We

define a sequence of sets A0, A1, A2, . . . where A0 = A and Ai+1 is obtained from

Ai by adding all all gates that output true if all their predecessors in Ai are set to

true. The sequence is extended until Ai = Ai+1, we then call Ai the closure of A.

As D is finite the sequence has at most |V (D)| elements. If the closure of A is D

we say that A activates the circuit D. An example of a monotone cyclic circuit is

given in Figure 6.1.

For the subsequent hardness proofs we use the following problem:

Cyclic Monotone Circuit Activation

Instance: A cyclic monotone circuit D, a positive integer k.

Parameter: k.

Question: Is there a set A of size at most k that activates D?

This was shown to be W [P]-complete by Szeider [157]. Moreover the result

holds with the following restriction:

Lemma 6.3.3 ([157]). Cyclic Monotone Circuit Activation is W [P]-

complete, and remains W [P]-complete if there are no input or output gates and

each gate has at most two inputs and two outputs.

Before introducing the reduction proper, we will present the construction of the

gate gadgets used in the reduction. Two gadgets will be used for representing gates,

an AND gadget and an OR gadget, which will be used to represent AND gates and

CHAPTER 6. DEGENERATE GRAPHS 99

OR gates respectively. Both gadgets consist of three parts, an input vertex vi, an

independent set L, and an r-clique C which includes a designated output vertex

vo. There is an edge between every vertex in L and vi, and between every vertex

in L and every vertex in C. The difference between AND gadgets and OR gadgets

occurs in the size of L. An AND gadget has r vertices in L, an OR gadget has

r− 1 vertices in L. Figures 6.2 and 6.3 give examples of the gadgets. Note that the

construction of the gadgets require that r ≥ 2, otherwise L = ∅.

When connected to form the representation of the circuit, each input vertex

will have one or two additional edges, coming from the output vertices of other

gate gadgets (the predecessor gadgets), and each output vertex will have one or

two additional edges connecting to the input vertices of other gate gadgets (the

successor gadgets). Initially, no vertex in the graph has degree less than r+1, thus

the graph is not r-degenerate.

Then for an AND gadget A, if all predecessor gadgets are cleared or deleted, the

input vertex of A will have degree r, and may be cleared, which leaves all vertices

in L with degree r, thus they may be cleared, and then the vertices of C − vo

have degree r − 1 and may also be cleared. This leaves the output vertex vo with

degree at most 2. As we assume that r ≥ 2, vo may also be cleared. Note that if a

predecessor gate of A is not cleared or deleted, the input vertex will have degree at

least r + 1 and will not be able to be cleared.

Similarly for an OR gadget O, if at least one of the predecessor gates of O is

cleared or deleted, the input vertex will have degree at most r, and the gate gadget

can be cleared as for the AND gadget.

Note that the vertices in L always have degree r+1. As we do not modify this in

any construction, the graphs constructed are always r+1 degenerate. Furthermore

the highest degree vertex in any gadget is the ouput vertex, which at most can have

degree 2r + 1, therefore all the graphs constructed have maximum degree at most

2r + 1.

6.3.3 Vertex Deletion

Theorem 6.3.4. r-Degenerate(v) with r ≥ 2 is W [P]-hard, and remains W [P]-

hard even when the input graph is (r + 1)-degenerate and has maximum degree

2r + 1.

Proof. We reduce from Cyclic Monotone Circuit Activation. For this reduc-

tion we assume the additional restrictions of no input or ouput gates, and fan-in

CHAPTER 6. DEGENERATE GRAPHS 100

vi

vo

Figure 6.2: OR gadget for r = 4

vi

vo

Figure 6.3: AND gadget for r = 4

and fan-out of at most 2 hold.

Consider an instance (D, k) of Cyclic Monotone Circuit Activation.

Then we construct an instance (G, k) of r-Degenerate(v) as follows using the

AND and OR gadgets described in Section 6.3.2:

If a gate has only 1 input and 1 output, it may be removed from the circuit, and

its input connected to its output, as it will output true if and only if the input is

true, therefore it performs no function. For each gate g in D we have a gadget g′

in G according to the following scheme:

• If g is an AND gate, g′ is an AND gadget.

• If g is an OR gate with one input, g′ is an AND gadget.

• If g is an OR gate with two inputs, g′ is an OR gadget.

For each gate g in D with corresponding gadget g′ in G let h be a successor of

CHAPTER 6. DEGENERATE GRAPHS 101

g with corresponding gadget h′ in G. There is an edge between the output vertex

vo
g′ of g′ and the input vertex vi

h′ of h′.

Assume (D, k) is a Yes-instance of Cyclic Monotone Circuit Activation,

then there is a set of at most k gates D′ = {g1, . . . , gk′} that activates D. Let

G′ = {g′1, . . . , g′k′} be the corresponding set of gadgets in D′. Then we argue

that deleting the input vertex of each gadget in G′ makes G r-degenerate. For all

gadgets in G′, deleting the input vertex renders them r-degenerate as described in

Section 6.3.2, and they may be cleared. Let g be a gate inD−D′ with corresponding

gadget g′ in G. As D is activated, sufficient predecessors of g must be activated.

Assume g is an AND gate, then all predecessors of g must be activated. Therefore

all predecessors of g′ can be deleted or cleared, so d(vi
g′) = r, and g′ can be cleared.

Assume g is an OR gate, then at least one of the predecessors of g is activated.

Therefore at least one of the predecessor of g′ can be deleted or cleared. If g′ had

one predecessor, g′ is an AND gadget, where |L| = r, so initially d(vi
g′) = r + 1.

After the predecessor is deleted or cleared, d(vi
g′) = r, so g′ can be cleared. If g′

had two predecessors, then g′ is an OR gadget, with |L| = r − 1, so deleting or

clearing one predecessor leaves d(vi
g′) = r, and g′ can also be cleared. Applying

this argument inductively from the set D′ shows that (G, k) is a Yes-instance of

r-Degenerate(v).

Assume that (G, k) is a Yes-instance of r-Degenerate(v). Then there is a set

of at most k vertices V ′ = {v1, . . . , vk′} whose deletion leaves G r-degenerate. We

may assume that each vertex vj comes from a different gadget and furthermore that

vj = vi
g′j

for some gadget g′j . Section 6.3.2 shows that one vertex deletion is sufficient

to leave the gadget r-degenerate, therefore if there were two vertices deleted from

one gadget, we may obtain a smaller solution by deleting only the input vertex of the

gadget. Thus the set of deleted vertices V ′ corresponds to a set of at most k gadgets

G′ = {g′1, . . . , g′k′}. We argue that the corresponding set of gates D′ = {g1, . . . , gk′}

in D activates D. Let g′ be a gadget in G − G′ with corresponding gate g in

D − V (D′). As G − G′ is r-degenerate, some of the predecessors of g′ must be

cleared before g′ can be cleared. If g′ is an AND gadget, then all predecessors of g′

are deleted or cleared. Therefore in D all predecessors of g are activated, and g will

be activated. If g′ is an OR gadget, then at least one predecessor of g′ is deleted

or cleared, therefore in D one predecessor of the OR gate g is activated, and g will

be activated. Therefore applying this argument inductively starting from G′ shows

that (D, k) is a Yes-instance of Cyclic Monotone Circuit Activation.

CHAPTER 6. DEGENERATE GRAPHS 102

It is also possible to show that r-Degenerate(v) is in W [P], and therefore

W [P]-complete. We sketch the basic idea: degeneracy is a polynomial-time decid-

able property, so we may take the guess and check approach derived from Defi-

nition 3.3.4. Non-deterministically choose k vertices to delete, these vertices can

be represented in at most logm bits (where m is the size of the input). Then

apply the polynomial time greedy algorithm to verify that the remaining graph is

r-degenerate.

6.3.4 Edge Deletion

When considering the edge deletion operation instead of vertex deletion, we first

have to modify the AND gadget as we need to be able to remove a single edge to

represent activating the gate, but still retain the property that both edges from

predecessor gadgets have to be removed before the gadget can otherwise be cleared.

Note that the OR gadget requires no such modification. For clarity we will refer

to this new gadget as the AND edge gadget. It is constructed of six components,

an input vertex vi, an independent set S of r − 1 stabilising vertices, a stabilising

r-clique B, an internal activation vertex va, an independent set L of size r and

an r-clique C with a designated output vertex vo. Edges exist between the input

vertex and every vertex in S, and between every vertex in S and every vertex in B.

The edge between vi and va will be referred to as the activation edge ea. Then as

before there is an edge between va and every vertex in L, and between every vertex

in L and every vertex in C. For convenience we label vi, S and B collectively as

the head and the remainder of the gadget as the tail. Figure 6.4 gives an example

for r = 4.

As before when properly connected vi will have at most two additional edges

from the output vertices of its predecessor gadgets, and vo will have at most two

additional edges to its successor gadgets. Then each vertex has degree at least r+1,

and in particular vi has degree r + 2, thus requiring the removal of two edges to

clear, va has degree r + 1, requiring the removal of at least one edge to clear (with

ea being the obvious candidate) and vo has degree at least 2r− 1, so clearing of the

successor gadgets will not cause incorrect clearing of this gadget.

For convenience with OR gadgets, we will also arbitrarily designate one of the

edges between vi and L as ea.

We are now ready to prove the following:

Theorem 6.3.5. r-Degenerate(e) with r ≥ 2 is W [P]-hard, and remains W [P]-

CHAPTER 6. DEGENERATE GRAPHS 103

vi va

vo

ea

Figure 6.4: AND edge gadget for r = 4

hard even when the input graph is (r + 1)-degenerate and has maximum degree

2r + 1.

Proof. The instance (G, k) is constructed as in the proof of Theorem 6.3.4 , except

we now replace AND gadgets with AND edge gadgets.

Clearly OR gadgets work as before, except now we choose to delete ea in repre-

sentation of activating the corresponding gate.

The correspondence between activation and clearing works as before, we need

only argue that AND edge gadgets clear correctly. Let g be an AND edge gadget

with input vertex vi, activation edge ea and internal activation vertex va. If all

predecessors of g are cleared then d(vi) = r so vi may be cleared, which removes

ea, and then d(va
g) = r, so the rest of the gadget may be cleared. If g is chosen

to have its activation edge ea deleted from it, then d(va
g) = r and the tail of the

gadget will clear, however the head may not, as d(vi) may still be r + 1. In this

case the head will clear when at least one if its predecessors clears. If G can be

rendered r-degenerate by deleting at most k edges, then we are guaranteed that all

predecessors will eventually be cleared, therefore the head will also clear.

Then the argument proceeds as before, except we replace the set of deleted

vertices V ′ with a set of deleted edges E′.

Again membership in W [P] can be demonstrated by a guess and check algorithm

(Section 3.3). First non-deterministically choose k edges to delete, then determin-

istically check that the resulting graph is r-degenerate.

CHAPTER 6. DEGENERATE GRAPHS 104

6.3.5 Vertex and Edge Deletion

Corollary 6.3.6. r-Degenerate(v, e) with r ≥ 2 is W [P]-hard, and remains

W [P]-hard even when the input graph is (r+1)-degenerate and has maximum degree

2r + 1.

Proof. The result follows immediately from Lemma 6.3.1.

6.4 Conclusion

Although restricting input to degenerate graphs renders many W [1]-hard prob-

lems fixed-parameter tractable, editing problems are clearly not so well behaved.

Furthermore as the editing problems considered here are W [P]-hard, a Frick and

Grohe [79] style logic based approach cannot be applied unless there is some col-

lapse in the W -hierarchy. In fact as the problems remain W [P]-hard on graphs

of bounded degree, they can be immediately seen to be W [P]-hard on graphs of

effectively bounded local treewidth.

It may be more fruitful to examine classes intermediate between degenerate

graphs and regular graphs (or bounded degree graphs), such as nowhere-dense

graphs, introduced by Nešetřil and Ossona de Mendez [125], for which (k, d)-

Center is fixed-parameter tractable [48].

Chapter 7

Conclusion

The main work of this thesis is a parameterized complexity classification of a number

of degree constrained editing problems. In particular we show that the WDCE(S)

class of problems is in general fixed-parameter tractable when parameterized by

the number k of editing steps and the bound r on the degree lists (Section 5.4),

and W [1]-hard when parameterized by k alone (Sections 4.6 and 5.5). The prob-

lems remain W [1]-hard even when the degree constraints are uniformly restricted

to {r} and the graph is unweighted, if vertex deletion is one of the available editing

operations. When parameterized by r alone, the problems are para-NP-complete

(Section 4.1), suggesting that (k, r) is in some sense a minimal parameterization for

tractability, as neither k nor r alone is sufficient. When ∅ 6= S ⊆ {v, e} we obtain

kernelizations: WDCE(S) admits a kernel of size O(k2rk+1 + krk+2) (Section 5.2);

WDCE∗(S) admits a kernel of size O(kr(k+r)) (Section 4.4). In the WDCE∗ case,

the kernelization remains correct when degree constraints are uniformly restricted

to {r} and the graph is unweighted, thus giving a kernel for the WDCEr
1(v) =

r-Regular Induced Subgraph problem that improves Moser and Thilikos’ [122]

kernel. When vertex deletion and edge addition are allowed, we show that it is

unlikely that WDCE∗ has either a polynomially sized kernel or a polynomial time

kernelization (of a certain form), as Edge Replacement Set is a subproblem

(Section 5.3). In the case where the degree lists are singletons and the only opera-

tions are edge deletion and edge addition, we show that the problem is polynomial

time solvable (Section 4.5).

We also show that WDCE problems remain hard in general when parameterized

by the treewidth of the input graph (Section 5.7), however when the limit on the

number of editing steps is removed, the WDCEr
1 problems become fixed-parameter

105

CHAPTER 7. CONCLUSION 106

tractable when parameterized by the treewidth of the input graph (Section 5.7.1).

When the degree constraint considered is degeneracy, editing problems appear

to become much harder, even when r is a constant: r-Degenerate(S) is W [P]-

hard when parameterized by the number k of editing steps, and remains W [P]-hard

when the input graph is (r + 1)-degenerate, and has bounded degree (Section 6.3),

where ∅ 6= S ⊆ {v, e}. This implies that the problem is W [P]-hard on graphs of

effectively bounded local treewidth, so a logical approach as in Section 5.4 is inap-

plicable. Interestingly, many otherwise hard problems such as Independent Set,

Dominating Set and Clique are fixed-parameter tractable when the input graph

is degenerate. In fact Independent Set admits a linear kernel when restricted to

degenerate graphs (Section 6.1).

7.1 Future Research

Although the WDCE class of problems and the variants presented here cover a wide

range of degree constrained editing problems, there are many more forms of degree

constraints that are still to be examined. In particular, more general forms of degree

constraints are interesting. Although the editing problem for degenerate graphs is

W [P]-hard, there should be some further classes between regular/bounded degree

graphs and degenerate graphs for which the editing problem is fixed-parameter

tractable. For example nowhere-dense graphs are interesting in this sense, par-

ticularly as (k, d)-Centers is fixed-parameter tractable for nowhere-dense graphs,

whereas it is W [2]-hard for degenerate graphs. Alternatively we may consider con-

straints that are not specified for each vertex, but for the graph as a whole, for

example a list of desired degrees.

CHAPTER 7. CONCLUSION 107

P
ar

am
et

er
:

k
k

+
r

E
di

ti
ng

O
pe

ra
ti

on
s:

{v
}

{v
,e
}

{e
}

{e
,a
}

{v
,e
,a
}

{v
}

{v
,e
}

{e
}

{e
,a
}

{v
,e
,a
}

W
D

C
E

r 1
W

[1
]-
ha

rd
1

W
[1

]-
ha

rd
1

P
3

P
3

W
[1

]-
ha

rd
1

F
P

T
4

F
P

T
4

P
3

P
3

F
P

T
4

W
D

C
E
∗

W
[1

]-
ha

rd
1

W
[1

]-
ha

rd
1

P
3

P
3

W
[1

]-
ha

rd
1

F
P

T
4

F
P

T
4

P
3

P
3

F
P

T
4

W
D

C
E

W
[1

]-
ha

rd
1

W
[1

]-
ha

rd
1

W
[1

]-
ha

rd
2

W
[1

]-
ha

rd
2

W
[1

]-
ha

rd
1

F
P

T
4

F
P

T
4

F
P

T
4

F
P

T
4

F
P

T
4

r-
D

e
g
e
n
e
r
a
t
e

W
[P

]-
ha

rd
5

W
[P

]-
ha

rd
7

W
[P

]-
ha

rd
6

N
/A

N
/A

W
[P

]-
ha

rd
5

W
[P

]-
ha

rd
7

W
[P

]-
ha

rd
6

N
/A

N
/A

T
ab

le
7.

1:
A

su
m

m
ar

y
of

th
e

ke
y

re
su

lt
s
of

C
ha

pt
er

s
4,

5
an

d
6.

T
he

re
su

lt
s
ar

e
gi

ve
n

by
th

e
fo

llo
w

in
g

T
he

or
em

s:
1

T
he

or
em

4.
6.

3,
2

T
he

or
em

5.
5.

1,
3

T
he

or
em

4.
5.

2,
4

T
he

or
em

5.
4.

1,
5

T
he

or
em

6.
3.

4,
6

T
he

or
em

6.
3.

5,
7

C
or

ol
la

ry
6.

3.
6.

Bibliography

[1] K. R. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter

intractability II (extended abstract). In P. Enjalbert, A. Finkel, and K. W.

Wagner, editors, 10th Annual Symposium on Theoretical Aspects of Computer

Science (STACS’93), volume 665 of Lecture Notes in Computer Science, pages

374–385, Würzburg, Germany, 1993. Springer.

[2] K. R. Abrahamson, J. A. Ellis, M. R. Fellows, and M. E. Mata. On the

complexity of fixed parameter problems (extended abstract). In 30th Annual

Symposium on Foundations of Computer Science (FOCS’89), pages 210–215,

Research Triangle Park, North Carolina, USA, 1989. IEEE Computer Soc.

[3] F. N. Abu-Khzam. Kernelization algorithms for d-hitting set problems. In

F. K. H. A. Dehne, J.-R. Sack, and N. Zeh, editors, 10th International Work-

shop on Algorithms and Data Structures (WADS’07), volume 4619 of Lecture

Notes in Computer Science, pages 434–445. Springer, 2007.

[4] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H.

Suters, and C. T. Symons. Kernelization algorithms for the vertex cover

problem: Theory and experiments. In L. Arge, G. F. Italiano, and

R. Sedgewick, editors, Workshop on Algorithm Engineering and Experiments

(ALENEX/ANALC’04), pages 62–69. Society for Industrial and Applied

Mathematics (SIAM), 2004.

[5] F. N. Abu-Khzam and H. Fernau. Kernels: Annotated, proper and induced.

In The Second International Workshop on Parameterized and Exact Compu-

tation 2006 (IWPEC’06), Lecture Notes in Computer Science, pages 264–275.

Springer, 2006.

[6] I. Adler, M. Grohe, and S. Kreutzer. Computing excluded minors. In The 19th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pages

641–650, 2008.

108

BIBLIOGRAPHY 109

[7] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of

fixed size in degenerated graphs. In The 13th Annual International Computing

and Combinatorics Conference (COCOON’07), volume 4598 of Lecture Notes

in Computer Science, pages 394–405. Springer, 2007.

[8] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856,

1995.

[9] O. Amini, I. Sau, and S. Saurabh. Parameterized complexity of the small-

est degree-constrained subgraph problem. In M. Grohe and R. Niedermeier,

editors, Third International Workshop on Parameterized and Exact Computa-

tion (IWPEC’08), volume 5018 of Lecture Notes in Computer Science, pages

13–29. Springer, 2008.

[10] R. P. Anstee. An algorithmic proof of Tutte’s f-factor theorem. J. Algorithms,

6(1):112–131, 1985.

[11] T. Asano and T. Hirata. Edge-deletion and edge-contraction problems. In

Proceedings of the Fourteenth Annual ACM Symposium on Theory of Com-

puting (STOC’82), pages 245–254. ACM, 1982.

[12] T. Asano and T. Hirata. Edge-contraction problems. J. Comput. System Sci.,

26(2):197–208, 1983.

[13] R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed-

parameter algorithm for vertex cover. Information Processing Letters,

65(3):163–168, 1998.

[14] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.

Journal of Computational Biology, 6(3/4):281–297, 1999.

[15] H. Bensmail, J. Golek, M. M. Moody, J. O. Semmes, and A. Haoudi. A novel

approach for clustering proteomics data using bayesian fast fourier transform.

Bioinformatics, 21(10):2210–2224, 2005.

[16] M. Bläser. Computing small partial coverings. Information Processing Letters,

85(6):327–331, 2003.

[17] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. A fixed-parameter

approach for weighted cluster editing. In A. Brazma, S. Miyano, and

BIBLIOGRAPHY 110

T. Akutsu, editors, Proceedings of the 6th Asia-Pacific Bioinformatics Confer-

ence (APBC’08), volume 6 of Advances in Bioinformatics and Computational

Biology, pages 211–220. Imperial College Press, 2008.

[18] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. Going weighted:

Parameterized algorithms for cluster editing. In B. Yang, D.-Z. Du, and

C. A. Wang, editors, Second International Conference on Combinatorial Op-

timization and Applications (COCOA’08), volume 5165 of Lecture Notes in

Computer Science, pages 1–12. Springer, 2008.

[19] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster

editing: Evaluation and experiments. In C. C. McGeoch, editor, 7th Inter-

national Workshop on Experimental Algorithms (WEA’08), volume 5038 of

Lecture Notes in Computer Science, pages 289–302. Springer, 2008.

[20] H. Bodlaender. Discovering treewidth. In P. Vojtás̆, M. Bieliková, B. Charron-

Bost, and O. Sýkora, editors, Software Seminar (SOFSEM’05), volume 3381

of Lecture Notes in Computer Science, pages 1–16, 2005.

[21] H. Bodlaender, R. Tan, and J. van Leeuwen. Finding a 4-regular supergraph

of minimum order. Discrete Appl. Math., 131(1):3–9, 2003.

[22] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of

small treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[23] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On

problems without polynomial kernels (extended abstract). In L. Aceto,

I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and

I. Walukiewicz, editors, 35th International Colloquium on Automata, Lan-

guages and Programming (ICALP’08) Part I: Tack A: Algorithms, Automata,

Complexity, and Games (Extended Abstract), volume 5125 of Lecture Notes

in Computer Science, pages 563–574. Springer, 2008.

[24] H. L. Bodlaender, S. Thomassé, and A. Yeo. Analysis of data reduction:

Transformations give evidence for non-existence of polynomial kernels. Tech-

nical report, Utrecht University, 2008.

[25] J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate

Texts in Mathematics. Springer, 2008.

[26] J. Buss and J. Goldsmith. Nondeterminism within P. SIAM J. Comput.,

22(3):560–572, 1993.

BIBLIOGRAPHY 111

[27] L. Cai. Fixed-parameter tractability of graph modification problems for hered-

itary properties. Information Processing Letters, 58(4):171–176, 1996.

[28] L. Cai and T. Kloks. Parameterized tractability of some (efficient) y -

domination variants for planar graphs and t-degenerate graphs. In Inter-

national Computer Symposium (ICS), 2000.

[29] K. Cameron. Induced matchings. Discrete Appl. Math., 24(1–3):97–102, 1989.

[30] D. M. Cardoso, M. Kamiński, and V. Lozin. Maximum k-regular induced

subgraphs. J. Comb. Optim., 14(4):455–463, 2007.

[31] L. S. Chandran and F. Grandoni. Refined memorisation for vertex cover.

Information Processing Letters, 93(3):125–131, 2005.

[32] G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman and Hall/CRC,

fourth edition, 2004.

[33] F. Cheah and D. G. Corneil. The complexity of regular subgraph recognition.

Discrete Appl. Math., 27(1–2):59–68, 1990.

[34] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further observations and further

improvements. J. Algorithms, 41:280–301, 2001.

[35] J. Chen, I. Kanj, and G. Xia. Simplicity is beauty: Improved upper bounds

for vertex cover. Technical report, School of CTI, DePaul University, 2005.

[36] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter

algorithm for the directed feedback vertex set problem. In R. E. Ladner

and C. Dwork, editors, Proceedings of the 40th Annual ACM Symposium on

Theory of Computing (STOC’08), pages 177–186. Assoc. Comput. Mach.,

New York, 2008.

[37] Y. Chen and J. Flum. Machine characterization of the classes of the W-

hierarchy. In M. Baaz and J. A. Makowsky, editors, 17th International Work-

shop on Computer Science Logic (CSL’03), volume 2803 of Lecture Notes in

Computer Science, pages 114–127. Springer, 2003.

[38] Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized

complexity theory. Theoret. Comput. Sci., 339(2–3):167–199, 2005.

[39] B. Chor, M. Fellows, and D. W. Juedes. Linear kernels in linear time, or how

to save k colors in O(n2) steps. In J. Hromkovic, M. Nagl, and B. Westfechtel,

BIBLIOGRAPHY 112

editors, 30th International Workshop on Graph-Theoretic Concepts in Com-

puter Science (WG’04), volume 3353 of Lecture Notes in Computer Science,

pages 257–269. Springer, 2004.

[40] C. J. Colbourn and E. S. El-Mallah. The complexity of some edge deletion

problems. IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988.

[41] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic

space. J. Algorithms, 8(3):385–394, 1987.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. McGraw-Hill, 2nd edition, 2001.

[43] G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B,

45(2):185–198, 1988.

[44] B. Courcelle. The monadic second order logic of graphs, I: Recognizable sets

of finite graphs. Information and Computation, 85:12–75, 1990.

[45] B. Courcelle. The monadic second-order logic of graphs XVI: Canonical graph

decompositions. Logical Methods in Computer Science, 2:1–46, 2006.

[46] P. Damaschke. On the fixed-parameter enumerability of cluster editing. In

D. Kratsch, editor, 31st International Workshop on Graph-Theoretic Concepts

in Computer Science (WG’05), volume 3787 of Lecture Notes in Computer

Science, pages 283–294. Springer, 2005.

[47] P. Damaschke. Fixed-parameter tractable generalizations of cluster editing. In

T. Calamoneri, I. Finocchi, and G. F. Italiano, editors, 6th Italian Conference

on Algorithms and Complexity (CIAC’06), volume 3998 of Lecture Notes in

Computer Science, pages 344–355. Springer, 2006.

[48] A. Dawar and S. Kreutzer. Dominating sets and network centres in nowhere-

dense classes of graphs. Unpublished Manuscript, 2008.

[49] F. Dehne, M. R. Fellows, M. Langston, F. A. Rosamond, and K. Stevens. An

O∗(2O(k)) FPT algorithm for the undirected feedback vertex set problem. In

Proceedings of the 11th COCOON, volume 3595 of Lecture Notes in Computer

Science, pages 859–869. Springer, 2005.

[50] F. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization,

iterative compression, and modeled crown reductions: New FPT techniques,

BIBLIOGRAPHY 113

and improved algorithm for set splitting, and a novel 2k kernelization for

vertex cover. In The First International Workshop on Parameterized and

Exact Computation (IWPEC’04), volume 3162 of Lecture Notes in Computer

Science, pages 271–280. Springer, 2004.

[51] F. Dehne, M. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang. The cluster

editing problem: Implementations and experiments. In The Second Inter-

national Workshop on Parameterized and Exact Computation (IWPEC’06),

volume 4169 of Lecture Notes in Computer Science, pages 13–24. Springer,

2006.

[52] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexpo-

nential parameterized algorithms on graphs of bounded genus and H-minor-

free graphs. J. ACM, 52(6):866–893, 2005.

[53] R. Diestel. Graph Theory. Springer, 1997.

[54] R. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A frame-

work for systematically confronting computational intractability. In Contem-

porary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the

Future, volume 49 of AMS-DIMACS, pages 49–99. American Mathematical

Society, 1999.

[55] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-

ness. Congr. Numer., 87:161–187, 1992.

[56] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-

ness I: Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[57] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-

ness II: On completeness for W[1]. Theoret. Comput. Sci., 141(1&2):109–131,

1995.

[58] R. G. Downey and M. R. Fellows. Parameterized computational feasibility.

In P. Clote and J. Remmel, editors, Feasible Mathematics, volume II, pages

219–244, 1995.

[59] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[60] R. G. Downey, M. R. Fellows, and K. W. Regan. Descriptive complexity

and the W-hierarchy. In P. Beame and S. Buss, editors, Proof Complexity

BIBLIOGRAPHY 114

and Feasible Arithmetic, volume 39 of AMS-DIMACS Volume Series, pages

119–134. American Mathematical Society, 1998.

[61] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,

1:195–207, 1972.

[62] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, second edition,

1999.

[63] H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer,

second edition, 1996.

[64] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal

of Research of the National Bureau of Standards, 69B:125–130, 1965.

[65] J. Edmonds. Paths trees and flowers. Canad. J. Math., 17:449–467, 1965.

[66] J. Edmonds and E. Johnson. Matchings: A well solved class of integer linear

programs. In Combinatorial Structures and their Applications, pages 89–92,

1970.

[67] J. Ellis, H. Fan, and M. R. Fellows. The dominating set problem is fixed

parameter tractable for graphs of bounded genus. J. Algorithms, 52(2):152–

168, 2004.

[68] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions

in FPT. In H. L. Bodlaender, editor, 29th International Workshop on Graph-

Theoretic Concepts in Computer Science (WG’03), volume 2880 of Lecture

Notes in Computer Science, pages 1–12. Springer, 2003.

[69] M. R. Fellows. The lost continent of polynomial time: Preprocessing and ker-

nelization. In H. L. Bodlaender and M. A. Langston, editors, Second Inter-

national Workshop on Parameterized and Exact Computation (IWPEC’06),

volume 4169 of Lecture Notes in Computer Science, pages 276–277. Springer,

2006.

[70] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization of

Nemhauser and Trotter’s local optimization theorem. In S. Albers and J.-

Y. Marion, editors, 26th International Symposium on Theoretical Aspects of

Computer Science (STACS’09), pages 409–420, 2009.

[71] M. R. Fellows, P. Heggernes, F. A. Rosamond, C. Sloper, and J. A. Telle. Find-

ing k disjoint triangles in an arbitrary graph. In 30th International Workshop

BIBLIOGRAPHY 115

on Graph-Theoretic Concepts in Computer Science (WG’04), volume 3353 of

Lecture Notes in Computer Science, pages 235–244. Springer, 2004.

[72] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the param-

eterized complexity of multiple-interval graph problems. Theoret. Comput.

Sci., 410(1):53–61, 2009.

[73] M. R. Fellows and M. A. Langston. Nonconstructive advances in polynomial-

time complexity. Information Processing Letters, 26(3):155–162, 1987.

[74] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient pa-

rameterized preprocessing for cluster editing. In E. Csuhaj-Varjú and Z. Ésik,

editors, 16th International Symposium on the Fundamentals of Computation

Theory (FCT’07), volume 4639 of Lecture Notes in Computer Science, pages

312–321. Springer, 2007.

[75] H. Fernau. Parameterized Algorithmics: A Graph-Theoretic Approach. Habi-

litationsschrift, Universität Tübingen, Germany, 2005.

[76] J. Flum and M. Grohe. Describing parameterized complexity classes. Infor-

mation and Computation, 187(2):291–319, 2003.

[77] J. Flum and M. Grohe. Model-checking problems as a basis for parameterized

intractability. Logical Methods in Computer Science, 1(1), 2005.

[78] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[79] M. Frick and M. Grohe. Deciding first-order properties of locally tree-

decomposable structures. J. ACM, 48(6):1184–1206, 2001.

[80] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, New York,

1979.

[81] B. Gerards. Matching. In Network Models, volume 7 of Handbooks in Op-

erations Research and Management Science, pages 135–224. North-Holland

Publishing Co., 1995.

[82] P. Golovach and Y. Villanger. Parameterized complexity for domination prob-

lems on degenerate graphs. In H. Broersma, T. Erlebach, T. Friedetzky, and

D. Paulusma, editors, 34th International Workshop on Graph-Theoretic Con-

cepts in Computer Science (WG’08), volume 5344 of Lecture Notes in Com-

puter Science, pages 195–205. Springer, 2008.

BIBLIOGRAPHY 116

[83] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data

clustering: Exact algorithms for clique generation. Theory Comput. Syst.,

38(4):373–392, 2005.

[84] J. Guo. Fixed-parameter algorithms for graph-modeled date clustering. In

J. Chen and S. B. Cooper, editors, 6th Annual Conference on the Theory

and Applications of Models of Computation, volume 5532 of Lecture Notes in

Computer Science, pages 39–48. Springer, 2009.

[85] J. Guo. A more effective linear kernelization for cluster editing. Theoret.

Comput. Sci., 410(8–10):718–726, 2009.

[86] J. Guo, F. Hüffner, R. Niedermeier, and S. Wernicke. Improved fixed-

parameter algorithms for two feedback set problems. In Ninth Workshop on

Algorithms and Data Structures (WADS’05), volume 3608 of Lecture Notes

in Computer Science, pages 158–168. Springer, 2005.

[87] J. Guo and R. Niedermeier. A fixed-parameter tractable algorithm for multi-

commodity demand flow in trees. Information Processing Letters, 97:109–114,

2006.

[88] P. Heggernes, C. Paul, J. A. Telle, and Y. Villanger. Interval completion with

few edges. In D. S. Johnson and U. Feige, editors, 39th Annual ACM Sym-

posium on Theory of Computing (STOC’07), pages 374–381. Assoc. Comput.

Mach., New York, 2007.

[89] P. Hell and D. G. Kirkpatrick. On the completeness of a generalized matching

problem. In Conference Record of the Tenth Annual ACM Symposium on

Theory of Computing (STOC’78), pages 240–245, 1978.

[90] F. Hüffner. Algorithm engineering for optimal graph bipartizartion. In Fourth

International Workshop on Experimental and Efficient Algorithms (WEA’05),

volume 3503 of Lecture Notes in Computer Science, pages 240–252. Springer,

2005.

[91] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter

algorithms for cluster vertex deletion. In E. S. Laber, C. F. Bornstein, L. T.

Nogueira, and L. Faria, editors, 8th Latin American Symposium on Theo-

retical Informatics (LATIN’08), volume 4957 of Lecture Notes in Computer

Science, pages 711–722. Springer, 2008. Journal Version to Appear in Theory

of Computing Systems.

BIBLIOGRAPHY 117

[92] T. M. Islam. Characterizing Hardness in Parameterized Complexity. PhD

thesis, University of Waterloo, 2007.

[93] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with

hereditary properties. Theoret. Comput. Sci., 289(2):997–1008, 2002.

[94] B. Korte and J. Vygen. Combinatorial Optimization, volume 21 of Algorithms

and Combinatorics. Springer, Berlin, fourth edition, 2008.

[95] A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their

average degree. Combinatorica, 4(4):307–316, 1984.

[96] S. Kratsch and M. Wahlström. Two edge modification problems without

polynomial kernels. In The Fourth International Workshop on Parameterized

and Exact Computation (IWPEC’09), 2009. To appear.

[97] M. S. Krishnamoorthy and N. Deo. Node-deletion NP-complete problems.

SIAM J. Comput., 8(4):619–625, 1979.

[98] H. W. Kuhn. The Hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 2(2):83–97, 1955.

[99] H. W. Kuhn. Variants of the Hungarian method for assignment problems.

Naval Research Logistics Quarterly, 3(4):253–258, 1956.

[100] J. M. Lewis. On the complexity of the maximum subgraph problem. In Con-

ference Record of the Tenth Annual ACM Symposium on Theory of Computing

(STOC’78), pages 265–274. Assoc. Comput. Mach., New York, 1978.

[101] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary

properties is NP-complete. J. Comput. System Sci., 20(2):219–230, 1980.

[102] D. R. Lick and A. T. White. k-degenerate graphs. Canad. J. Math., 22:1082–

1096, 1970.

[103] L. Lin and S. Sahni. Fair edge deletion problems. IEEE Transactions on

Computers, 38(5):756–761, 1989.

[104] G. Liu and B. Zhu. Some problems on factorizations with constraints in

bipartite graphs. Discrete Appl. Math., 128(2–3):421–434, 2003.

[105] Z. Liu, D. Chen, H. Bensmail, and Y. Xu. Clustering gene expression data with

kernel principal components. J. Bioinformatics and Computational Biology,

3(2):303–316, 2005.

BIBLIOGRAPHY 118

[106] L. Lovász. The factorization of graphs. In Combinatorial Structures and their

Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 243–

246. Gordon and Breach, New York, 1970.

[107] L. Lovász. The factorization of graphs. II. Acta Math. Acad. Sci. Hungar.,

23:223–246, 1972.

[108] L. Lovász. Antifactors of graphs. Periodica Mathematica Hungarica, 4(2):121–

123, 1973.

[109] L. Lovász and M. D. Plummer. Matching Theory (North-Holland mathematics

studies). Elsevier Science Publishers, North-Holland, 1986.

[110] J. MacCuish, C. Nicolaou, and N. E. MacCuish. Ties in proximity and clus-

tering compounds. Journal of Chemical Information and Computer Sciences,

41(1):134–146, 2001.

[111] D. Marx. Parameterized complexity of constraint satisfaction problems. Com-

putational Complexity, 14(2):153–183, 2005.

[112] D. Marx. Chordal deletion is fixed-parameter tractable. In F. V. Fomin, edi-

tor, 32nd International Workshop on Graph-Theoretic Concepts in Computer

Science (WG’06), volume 4271 of Lecture Notes in Computer Science, pages

37–48. Springer, 2006.

[113] D. Marx and I. Schlotter. Obtaining a planar graph by vertex deletion. In

A. Brandstädt, D. Kratsch, and H. Müller, editors, 33rd International Work-

shop on Graph-Theoretic Concepts in Computer Science (WG’07), volume

4769 of Lecture Notes in Computer Science, pages 292–303. Springer, 2007.

[114] D. Marx and I. Schlotter. Parameterized graph cleaning problems. In

H. Broersma, T. Erlebach, T. Friedetzky, and D. Paulusma, editors, 34th

International Workshop on Graph-Theoretic Concepts in Computer Science

(WG’08), volume 5344 of Lecture Notes in Computer Science, pages 287–299.

Springer, 2008.

[115] L. Mathieson. The parameterized complexity of editing graphs for bounded

degeneracy. 2009. Submitted.

[116] L. Mathieson, E. Prieto, and P. Shaw. Packing edge disjoint triangles: A

parameterized view. In F. Dehne, R. Downey, and M. Fellows, editors, Pro-

ceedings of the 1st International Workshop on Parameterized and Exact Com-

BIBLIOGRAPHY 119

putation (IWPEC’04), volume 3162 of Lecture Notes in Computer Science,

pages 127–137. Springer, 2004.

[117] L. Mathieson and S. Szeider. The parameterized complexity of regular sub-

graph problems and generalizations. In J. Harland and P. Manyem, editors,

Fourteenth Computing: The Australasian Theory Symposium (CATS’08), vol-

ume 77 of CRPIT, pages 79–86, Wollongong, NSW, Australia, 2008. ACS.

[118] L. Mathieson and S. Szeider. Parameterized graph editing with chosen vertex

degrees. In B. Yang, D. Du, and C. Wang, editors, Second Annual Inter-

national Conference on Combinatorial Optimization and Applications (CO-

COA’08), volume 5165 of Lecture Notes in Computer Science, pages 13–22,

St John’s, Canada, 2008. Springer.

[119] L. Mathieson and S. Szeider. Editing graphs to satisfy degree constraints: A

parameterized approach. 2009. Submitted.

[120] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner

tree problem. Technical report, Department of Computer Science, RWTH

Aachen, 2005.

[121] H. Moser and D. Thilikos. Parameterized complexity of finding regular in-

duced subgraphs. In Algorithms and Complexity in Durham 2006 (ACiD06),

Texts in Algorithmics, pages 107–118. College Publications, 2006. A full and

updated version of the paper is to appear in the J. of Discrete Algorithms.

[122] H. Moser and D. Thilikos. Parameterized complexity of finding regular in-

duced subgraphs. J. Discrete Algorithms, 2008. Article in Press.

[123] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some

edge modification problems. Discrete Appl. Math., 113(1):109–128, 2001.

[124] G. L. Nemhauser and L. E. T. Jr. Vertex packings: Structural properties and

algorithms. Mathematical Programming, 8:232–248, 1975.

[125] J. Nešetřil and P. O. de Mendez. First order properties on nowhere dense

structures. Unpublished Manuscript, 2008.

[126] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.

BIBLIOGRAPHY 120

[127] R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover further

improved. In Proceedings of the 16th STACS, volume 1563 of Lecture Notes

in Computer Science, pages 561–570. Springer, 1999.

[128] R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm

for 3-hitting set. J. Discrete Algorithms, 1:89–102, 2003.

[129] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms

for weighted vertex cover. J. Algorithms, 47(2):63–77, 2003.

[130] N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable

algorithms for nontrivial generalizations of vertex cover. Discrete Appl. Math.,

152(1–3):229–245, 2005.

[131] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[132] C. H. Papadimitriou and M. Yannakakis. On the complexity of database

queries. J. Comput. System Sci., 58(3):407–427, 1999.

[133] K. Pietrzak. On the parameterized complexity of the fixed alphabet short-

est common supersequence and longest common subsequence problems. J.

Comput. System Sci., 67(4):757–771, 2003.

[134] J. Plesńık. A note on the complexity of finding regular subgraphs. Discrete

Math., 49(2):161–167, 1984.

[135] E. Prieto. Systematic Kernelization in FPT Algorithm Design. PhD thesis,

University of Newcastle, Australia, 2005.

[136] E. Prieto and C. Sloper. Looking at the stars. Theoret. Comput. Sci.,

351(3):437–445, 2006.

[137] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decom-

position to parameterized bicluster editing. In H. L. Bodlaender and M. A.

Langston, editors, Second International Workshop on Parameterized and Ex-

act Computation (IWPEC’06), volume 4169 of Lecture Notes in Computer

Science, pages 1–12. Springer, 2006.

[138] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, and S. Böcker.

Exact and heuristic algorithms for weighted cluster editing. In Computational

Systems Bioinformatics (CSB’07), volume 6, pages 391–401, 2007.

BIBLIOGRAPHY 121

[139] V. Raman, S. Saurabh, and S. Srihari. Parameterized algorithms for gener-

alized domination. In Proceedings of Combinatorial Optimization and Appli-

cations, 2nd International Conference (COCOA ’08), volume 5165 of Lecture

Notes in Computer Science, pages 116–126. Springer, 2008.

[140] I. Razgon. Parameterized dfvs and multicut problems on dags. In Proceed-

ings of the 3rd Algorithms and Complexity in Durham Workshop (ACiD’07),

volume 9 of Texts in Algorithmics, pages 119–128. College Publications, 2007.

[141] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res.

Lett., 32(4):299–301, 2004.

[142] B. A. Reed. Finding approximate separators and computing tree width

quickly. In STOC ’92: Proceedings of the twenty-fourth annual ACM sympo-

sium on Theory of computing, pages 221–228. Assoc. Comput. Mach., New

York, 1992.

[143] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J.

Combin. Theory Ser. B, 35(1):39–61, 1983.

[144] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture.

J. Combin. Theory Ser. B, 92(2):325–357, 2004.

[145] M. Samer and S. Szeider. Tractable cases of the extended global cardinality

constraint. In Computing: The Australasian Theory Symposium (CATS’08),

volume 77 of CRPIT, pages 67–74. ACS, 2008.

[146] A. A. Schoone, H. L. Bodlaender, and J. van Leeuwen. Diameter increase

caused by edge deletion. J. Graph Theory, 11(3):409–427, 1987.

[147] J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for de-

tecting signaling pathways in protein interaction networks. Journal of Com-

putational Biology, 13(2):133–144, 2006.

[148] A. Sebő. General antifactors of graphs. J. Combin. Theory Ser. B, 58(2):174–

184, 1993.

[149] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.

Discrete Appl. Math., 144(1–2):173–182, 2004.

[150] Y. Shiloach. Another look at the degree constrained subgraph problem. In-

formation Processing Letters, 12(2):89–92, 1981.

BIBLIOGRAPHY 122

[151] I. A. Stewart. Deciding whether a planar graph has a cubic subgraph is NP-

complete. Discrete Math., 126(1–3):349–357, 1994.

[152] I. A. Stewart. Finding regular subgraphs in both arbitrary and planar graphs.

Discrete Appl. Math., 68(3):223–235, 1996.

[153] I. A. Stewart. On locating cubic subgraphs in bounded-degree connected

bipartite graphs. Discrete Math., 163(1–3):319–324, 1997.

[154] I. A. Stewart. On the fixed-parameter tractability of parameterized model-

checking problems. Information Processing Letters, 106:33–36, 2008.

[155] L. J. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci.,

3(1):1–22, 1976.

[156] L. J. Stockmeyer and V. V. Vazirani. NP-completeness of some generalizations

of the maximum matching problem. Information Processing Letters, 15(1):14–

19, 1982.

[157] S. Szeider. Backdoor sets for DLL subsolvers. Journal of Automated Rea-

soning, 35(1–3):73–88, 2005. Reprinted as Chapter 4 of the book SAT 2005

- Satisfiability Research in the Year 2005, edited by E. Giunchiglia and T.

Walsh, Springer-Verlag, 2006.

[158] D. K. Tasoulis, G. J. Ross, and N. M. Adams. Visualising the cluster struc-

ture of data streams. In M. R. Berthold, J. Shawe-Taylor, and N. Lavrac,

editors, Advances in Intelligent Data Analysis VII, 7th International Sympo-

sium on Intelligent Data Analysis, (IDA’07), volume 4723 of Lecture Notes

in Computer Science, pages 81–92. Springer, 2007.

[159] A. Thomason. The extremal function for complete minors. J. Combin. Theory

Ser. B, 81(2):318–338, 2001.

[160] W. T. Tutte. A short proof of the factor theorem for finite graphs. Canad. J.

Math., 6:347–352, 1954.

[161] W. T. Tutte. Spanning subgraphs with specified valencies. Discrete Math.,

9(1):97–108, 1974.

[162] W. T. Tutte. Graph factors. Combinatorica, 1(1):79–97, 1981.

[163] R. J. Urquhart. Degree Constrained Subgraphs of Linear Graphs. PhD thesis,

University of Michigan, Ann Arbor, USA, 1967.

BIBLIOGRAPHY 123

[164] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.

Springer, 1999.

[165] T. Watanabe, T. Ae, and A. Nakamura. On the removal of forbidden graphs

by edge-deletion or by edge-contraction. Discrete Appl. Math., 3(2):151–153,

1981.

[166] T. Watanabe, T. Ae, and A. Nakamura. On the NP-hardness of edge-deletion

and -contraction problems. Discrete Appl. Math., 6(1):63–78, 1983.

[167] D. B. West. Introduction to Graph Theory. Prentice Hall, second edition,

2001.

[168] M. Yannakakis. Node- and edge-deletion NP-complete problems. In The

Tenth Annual ACM Symposium on the Theory of Computing (STOC’78),

pages 253–264. Assoc. Comput. Mach., New York, 1978.

[169] M. Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309,

1981.

[170] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Com-

put., 10(2):310–327, 1981.

Index

r-regular, 49

(P, κ), 27

(u, v), 21

[(P, κ)]FPT, 29

[m,n], 21

[n], 21

A(D), 21

B(C), 20

Ck, 19

∆t,d, 22

E(G), 18

G− v, 19

Γt,d, 22

Kk, 19

N, 19

N(V), 19

N(u), 19

N+, 19

N [V], 19

N [u], 19

N+(v), 21

N−(v), 21

Pk, 19

Π0, 25

Πt, 25

Σ0, 25

Σt, 25

V (G), 18

W [P], 35

and Turing Machines, 35

W [SAT], 34

v-MC(Σ1), 34

W [t], 30

XP, 36∨
, 21∧
, 21

d(u, v), 19

d(v), 19

d+(v), 21

d−(v), 21

dρ(v), 19

dV (v), 19

a, 50

e, 50

∃, 23

∀, 23

κ, 27

P, 27

¬, 21

para-NP, 35

completeness, 36

ρ(x), 19

τ , 22

tr(r, k), 20, 42

tw(G), 39

v, 50

A-hierarchy, 32

activate, 98

acyclic, 21

adjacent, 19

124

INDEX 125

AND edge gadget, 102

AND gadget, 98

arc, 21

head, 21

in, 21

out, 21

tail, 21

arity, 22

atomic formula, 23, 24

boolean

circuit, 25

constant, 25

operator, 25

boundary, 20

bounded local treewidth, 40

bounded search tree, 41

bounded treewidth, 39

branching factor, 41

circuit, 25

activated, 98

decision, 26

depth, 31

value, 26

circuit satisfiability, 31

clean, 55, 71

region, 55

layer, 71

clique, 19

closure, 29, 98

complete, 30

composition algorithm, 47

conjunction, 21

connected, 19

Courcelle’s Theorem, 39

cycle, 19

directed, 21

length, 19

degeneracy, 87

degree, 19

in-, 21

out-, 21

weighted, 19

disjunction, 21

distance, 19

edge, 18

edge addition, 20

edge contraction, 38

edge deletion, 20

partial, 20

edge regular, 85

Edge Replacement Set, 73

edge-degree, 84

edge-degree regular, 84

editing operation, 20

effectively bounded, 41

endpoint, 19

endpoints, 19

fan-in, 26

fan-out, 26

first order

formula, 23

formula with free relation variables,

24

logic, 23

semantics, see second order seman-

tics

fixed-parameter tractable, 28

additive, 29

forest, 19

INDEX 126

FPT, 28

FPT reduction, 29

polynomial time, 29

polynomial time and parameter, 48

free relation variable, 24

free variable, 23

Gaifman graph, 40

gate, 26

input, 26

large, 31

output, 26

small, 31

graph, 18

directed, 21

incidence structure, 23

regular, 49

structure, 22

weighted, 19

graph minor theory, 38

hard, 30

incident, 19

independent, 19

independent set, 19

input, 26

instance, 27

interpretation, 22, 24

isolated, 19

k-satisfiable, 31

kernel, 45

kernelization, 44, 45

leaf, 20

local treewidth, 40

matching, 58

perfect, 58

MC(Φ), 32

minor, 38

minor order, 38

minor testing, 38

model, 25

monadic, 24

monotone, 98

MSO, 24

negation, 21

negation normal form, 23

neighbour, 19

neighbourhood

closed, 19

in-, 21

open, 19

out-, 21

obstruction set, 38

OR gadget, 98

output, 26

parameterization, 27

Parameterized Problem, 27

path, 19

directed, 21

length, 19

Polynomial Hierarchy, 48

predecessor, 26

predecessor gadget, 99

prenex normal form, 23

PROP, 22

propositional

formula, 21

logic, 21

variable, 21

INDEX 127

quantifier

existential, 23

free, 23

universal, 23

r-Degenerate, 97

r-degenerate, 87

reduction, 44

reduction rule, 46

regular, 49

Regular Clique, 62

relational

predicate, 22

structure, 22

graph, 22

symbol, 22

vocabulary, 22

root, 20

second order

formula, 24

logic, 23

monadic, 24

semantics, 24

sentence, 23

set variable, 24

solution, 25, 27

SRMCC, see Strongly Regular

Multi-Coloured Clique

strongly regular, 85

Strongly Regular Multi-

Coloured Clique, 63

subgraph, 18

induced, 18

proper, 18

spanning, 18

successor, 26

successor gadget, 99

τ -structure, 22

tree, 19

branching factor, 20

depth, 20

r-ary, 20

rooted, 20

treewidth, 39

universe, 22

vertex, 18

vertex deletion, 20

vocabulary, see relational vocabulary

W -hierarchy, 30

MC(Φ), 32

WCS(t, h), 31

WD-Πt, 31

WSAT(Γt,d), 32

WDCE≤r, 80

WCS(t, h), 31

WD-Φ, 30

WD-Σt, 31

WDφ, 30

WDCE∗, 50

WDCE∗
1, 50

WDCEr, 50

∞WDCE∗, 50

WDCE, 69

WEDCE, 85

weft, 31

weighted Fagin definability, 30

weighted satisfiability, 31

WSAT(F), 32

WSRE, 86

